Science.gov

Sample records for mouse lung carcinogenesis

  1. Interactions between ethanol and cigarette smoke in a mouse lung carcinogenesis model.

    PubMed

    Balansky, Roumen; Ganchev, Gancho; Iltcheva, Marietta; Nikolov, Manasi; La Maestra, S; Micale, Rosanna T; Steele, Vernon E; De Flora, Silvio

    2016-12-12

    Both ethanol and cigarette smoke are classified as human carcinogens. They can synergize, especially in tissues of the upper aerodigestive tract that are targeted by both agents. The main objective of the present study was to evaluate the individual and combined effects of ethanol and smoke in the respiratory tract, either following transplacental exposure and/or postnatal exposure. We designed two consecutive studies in mouse models by exposing Swiss H mice to oral ethanol and/or inhaled mainstream cigarette smoke for up to 4 months, at various prenatal and postnatal life stages. Clastogenic effects and histopathological alterations were evaluated after 4 and 8 months, respectively. Ethanol was per se devoid of clastogenic effects in mouse peripheral blood erythrocytes. However, especially in mice exposed both transplacentally throughout pregnancy and in the postnatal life, ethanol administration was associated not only with liver damage but also with pro-angiogenetic effects in the lung by stimulating the proliferation of blood vessels. In addition, these mice developed pulmonary emphysema, alveolar epithelial hyperplasias, microadenomas, and benign tumors. On the other hand, ethanol interfered in the lung carcinogenesis process resulting from the concomitant exposure of mice to smoke. In fact, ethanol significantly attenuated some smoke-related preneoplastic and neoplastic lesions in the respiratory tract, such as alveolar epithelial hyperplasia, microadenomas, and even malignant tumors. In addition, ethanol attenuated cigarette smoke clastogenicity. In conclusion, preclinical studies provide evidence that, in spite of its pulmonary toxicity, ethanol may mitigate some noxious effects of cigarette smoke in the respiratory tract. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Mouse Models of Gastric Carcinogenesis

    PubMed Central

    Yu, Sungsook; Yang, Mijeong

    2014-01-01

    Gastric cancer is one of the most common cancers in the world. Animal models have been used to elucidate the details of the molecular mechanisms of various cancers. However, most inbred strains of mice have resistance to gastric carcinogenesis. Helicobacter infection and carcinogen treatment have been used to establish mouse models that exhibit phenotypes similar to those of human gastric cancer. A large number of transgenic and knockout mouse models of gastric cancer have been developed using genetic engineering. A combination of carcinogens and gene manipulation has been applied to facilitate development of advanced gastric cancer; however, it is rare for mouse models of gastric cancer to show aggressive, metastatic phenotypes required for preclinical studies. Here, we review current mouse models of gastric carcinogenesis and provide our perspectives on future developments in this field. PMID:25061535

  3. The M2 macrophages induce autophagic vascular disorder and promote mouse sensitivity to urethane-related lung carcinogenesis.

    PubMed

    Li, G-G; Guo, Z-Z; Ma, X-F; Cao, N; Geng, S-N; Zheng, Y-Q; Meng, M-J; Lin, H-H; Han, G; Du, G-J

    2016-06-01

    Tumor vessels are known to be abnormal, with typically aberrant, leaky and disordered vessels. Here, we investigated whether polarized macrophage phenotypes are involved in tumor abnormal angiogenesis and what is its mechanism. We found that there was no difference in chemotaxis of polarized M1 and M2 macrophages to lewis lung carcinoma (LLC) cells and that either M1 or M2 macrophage-conditioned media had no effect on LLC cell proliferation. Unexpectedly, the M2 but not M1 macrophage-conditioned media promoted the proliferation of human umbilical vein endothelial cells (HUVECs) and simultaneously increased endothelial cell permeability in vitro and angiogenic index in the chick embryo chorioallantoic membrane (CAM). The treatment with M2 but not M1 macrophage-conditioned media increased autophagosomes as well as microtubule-associated protein light chain 3B (LC3-B) expression (a robust marker of autophagosomes) but decreased p62 protein expression (a selective autophagy substrate) in HUVECs, the treatment with chloroquine that blocked autophagy abrogated the abnormal angiogenic efficacy of M2 macrophage-conditioned media. These results were confirmed in urethane-induced lung carcinogenic progression. Urethane-induced lung carcinogenesis led to more M2 macrophage phenotype and increased abnormal angiogenesis concomitant with the upregulation of LC3-B and the downregulation of p62. Clodronate liposome-induced macrophage depletion, chloroquine-induced autophagic prevention or salvianolic acid B-induced vascular protection decreased abnormal angiogenesis and lung carcinogenesis. In addition, we found that the tendency of age-related M2 macrophage polarization also promoted vascular permeability and carcinogenesis in urethane carcinogenic progression. These findings indicate that the M2 macrophages induce autophagic vascular disorder to promote lung cancer progression, and the autophagy improvement represents an efficacious strategy for abnormal angiogenesis and cancer

  4. Lung carcinogenesis by tobacco smoke.

    PubMed

    Hecht, Stephen S

    2012-12-15

    Cigarette smoke is a complex mixture of chemicals including multiple genotoxic lung carcinogens. The classic mechanisms of carcinogen metabolic activation to DNA adducts, leading to miscoding and mutations in critical growth control genes, applies to this mixture but some aspects are difficult to establish because of the complexity of the exposure. This article discusses certain features of this mechanism including the role of nicotine and its receptors; lung carcinogens, co-carcinogens and related substances in cigarette smoke; structurally characterized DNA adducts in the lungs of smokers; the mutational consequences of DNA adduct formation in smokers' lungs; and biomarkers of nicotine and carcinogen uptake as related to lung cancer. While there are still uncertainties which may never be fully resolved, the general mechanisms by which cigarette smoking causes lung cancer are well understood and provide insights relevant to prevention of lung cancer, the number one cancer killer in the world, causing 1.37 million deaths per year. Copyright © 2012 UICC.

  5. Lung Carcinogenesis by Tobacco Smoke

    PubMed Central

    Hecht, Stephen S.

    2012-01-01

    Cigarette smoke is a complex mixture of chemicals including multiple genotoxic lung carcinogens. The classic mechanisms of carcinogen metabolic activation to DNA adducts, leading to miscoding and mutations in critical growth control genes, applies to this mixture but some aspects are difficult to establish because of the complexity of the exposure. This paper discusses certain features of this mechanism including the role of nicotine and its receptors; lung carcinogens, co-carcinogens and related substances in cigarette smoke; structurally characterized DNA adducts in the lungs of smokers; the mutational consequences of DNA adduct formation in smokers’ lungs; and biomarkers of nicotine and carcinogen uptake as related to lung cancer. While there are still uncertainties which may never be fully resolved, the general mechanisms by which cigarette smoking causes lung cancer are well understood and provide insights relevant to prevention of lung cancer, the number one cancer killer in the world, causing 1.37 million deaths per year. PMID:22945513

  6. Cell Lineage Analysis of Mouse Prostate Carcinogenesis

    DTIC Science & Technology

    2015-09-01

    are derived from luminal or basal epithelial cells using genetic lineage tracing of prostate carcinogenesis in PSA-CreERT2;R26RmT/mG;EAF2-/-;PTEN...derived from luminal epithelial cells in the prostate, because a hallmark of prostate cancer is the loss of basal epithelial cells and prostate...publications [2, 3]. This project will determine whether prostate cancer cells are derived from luminal or basal epithelial cells in an EAF2-/- mouse

  7. UCP2 knockout suppresses mouse skin carcinogenesis.

    PubMed

    Li, Wenjuan; Zhang, Chunjing; Jackson, Kasey; Shen, Xingui; Jin, Rong; Li, Guohong; Kevil, Christopher G; Gu, Xin; Shi, Runhua; Zhao, Yunfeng

    2015-06-01

    Mitochondrial uncoupling (uncouples electron transport from ATP production) has recently been proposed as a novel survival mechanism for cancer cells, and reduction in free radical generation is the accepted mechanism of action. However, there is no direct evidence supporting that uncoupling proteins promote carcinogenesis. Herein, we examined whether mitochondrial uncoupling affects mouse skin carcinogenesis using uncoupling protein 2 (UCP2) homozygous knockout and wild-type mice. The results indicate that knockout of Ucp2 significantly reduced the formation of both benign (papilloma) and malignant (squamous cell carcinoma) tumors. UCP2 knockout did not cause increases in apoptosis during skin carcinogenesis. The rates of oxygen consumption were decreased only in the carcinogen-treated UCP2 knockout mice, whereas glycolysis was increased only in the carcinogen-treated wild-type mice. Finally, the levels of metabolites pyruvate, malate, and succinate showed different trends after carcinogen treatments between the wild-type and UCP2 knockout mice. Our study is the first to demonstrate that Ucp2 knockout suppresses carcinogenesis in vivo. Together with early studies showing that UCP2 is overexpressed in a number of human cancers, UCP2 could be a potential target for cancer prevention and/or therapy. Cancer Prev Res; 8(6); 487-91. ©2015 AACR. ©2015 American Association for Cancer Research.

  8. The roles of diol epoxide and o-quinone pathways in mouse lung tumorigenesis induced by benzo(a)pyrene: relevance to human lung carcinogenesis

    EPA Science Inventory

    There is sufficient epidemiological evidence supported by experimental data that some PAH-containing complex environmental mixtures pose risks to human health by increasing lung cancer incidence. The International Agency for Research on Cancer has determined that human respirator...

  9. The roles of diol epoxide and o-quinone pathways in mouse lung tumorigenesis induced by benzo(a)pyrene: relevance to human lung carcinogenesis

    EPA Science Inventory

    There is sufficient epidemiological evidence supported by experimental data that some PAH-containing complex environmental mixtures pose risks to human health by increasing lung cancer incidence. The International Agency for Research on Cancer has determined that human respirator...

  10. PHLPP2 Downregulation Contributes to Lung Carcinogenesis Following B[a]P/B[a]PDE Exposure

    PubMed Central

    Huang, Haishan; Pan, Xiaofu; Jin, Honglei; Li, Yang; Zhang, Lin; Yang, Caili; Liu, Pei; Liu, Ya; Chen, Lili; Li, Jingxia; Zhu, Junlan; Zeng, Xingruo; Fu, Kai; Chen, Guorong; Gao, Jimin; Huang, Chuanshu

    2015-01-01

    Purpose The carcinogenic capacity of B[a]P/B[a]PDE is supported by epidemiologic studies. However, the molecular mechanisms responsible for B[a]P/B[a]PDE-caused lung cancer have not been well investigated. We evaluated here the role of novel target PHLPP2 in lung inflammation and carcinogenesis upon B[a]P/B[a]PDE exposure. Experimental Design We used the Western blotting, RT-PCR, [35S]methionine pulse and immunohistochemistry staining to determine PHLPP2 downregulation following B[a]P/B[a]PDE exposure. Both B[a]PDE-induced Beas-2B cell transformation model and B[a]P-caused mouse lung cancer model were used to elucidate the mechanisms leading to PHLPP2 downregulation and lung carcinogenesis. The important findings were also extended to in vivo human studies. Results We found that B[a]P/B[a]PDE exposure downregulated PHLPP2 expression in human lung epithelial cells in vitro and in mouse lung tissues in vivo. The ectopic expression of PHLPP2 dramatically inhibited cell transformation upon B[a]PDE exposure. Mechanistic studies showed that miR-205 induction was crucial for inhibition of PHLPP2 protein translation by targeting PHLPP2-3′-UTR. Interestingly, PHLPP2 expression was inversely associated with tumor necrosis factor alpha (TNFα) expression, with low PHLPP2 and high TNFα expression in lung cancer tissues compared with the paired adjacent normal lung tissues. Additional studies revealed that PHLPP2 exhibited its antitumorigenic effect of B[a]P/B[a]PDE through the repression of inflammatory TNFα transcription. Conclusions Our studies not only first time identify PHLPP2 downregulation by lung carcinogen B[a]P/B[a]PDE, but also elucidate a novel molecular mechanisms underlying lung inflammation and carcinogenesis upon B[a]P/B[a]PDE exposure. PMID:25977341

  11. [THE ROLE OF ESTROGENS IN THE CARCINOGENESIS OF LUNG CANCER].

    PubMed

    Uchikova, E; Uchikov, A; Dimitrakova, E; Uchikov, P

    2016-01-01

    Morbidity and mortality from lung cancer has dramatically increased in women as compared to men over the past few years. Historically, smoking has been considered the major risk factor for lung cancer regardless of gender. Several recent lines of evidence implicate gender differences in the observed differences in prevalence and histologic type which cannot be explained based on the carcinogenic action of nicotine. Several recent studies underscore the importance of reproductive and hormonal factors in the carcinogenesis of lung cancer Lung cancer morbidity and mortality in Bulgaria was 16.2/100000 women and 14.6/ 100000 women, resp. Lung cancer morbidity in Europe was 39/100000 women. Lung cancer is extremely sensitive to estrogens. The latter act directly or as effect modifiers for the relationship between smoking and lung cancer. Further research examining the relationship between serum estrogen levels and the estrogen receptor expression in normal and tumor lung tissue samples can help elucidate the importance of reproductive and hormonal (exogenous and endogenous) factors in the carcinogenesis of lung cancer.

  12. miR-494-3p is a novel tumor driver of lung carcinogenesis.

    PubMed

    Faversani, Alice; Amatori, Stefano; Augello, Claudia; Colombo, Federico; Porretti, Laura; Fanelli, Mirco; Ferrero, Stefano; Palleschi, Alessandro; Pelicci, Pier Giuseppe; Belloni, Elena; Ercoli, Giulia; Degrassi, Anna; Baccarin, Marco; Altieri, Dario C; Vaira, Valentina; Bosari, Silvano

    2017-01-31

    Lung cancer is the leading cause of tumor-related death worldwide and more efforts are needed to elucidate lung carcinogenesis. Here we investigated the expression of 641 miRNAs in lung tumorigenesis in a K-Ras(+/LSLG12Vgeo);RERTn(ert/ert) mouse model and 113 human tumors. The conserved miRNA cluster on chromosome 12qF1 was significantly and progressively upregulated during murine lung carcinogenesis. In particular, miR-494-3p expression was correlated with lung cancer progression in mice and with worse survival in lung cancer patients. Mechanistically, ectopic expression of miR-494-3p in A549 lung cancer cells boosted the tumor-initiating population, enhanced cancer cell motility, and increased the expression of stem cell-related genes. Importantly, miR-494-3p improved the ability of A549 cells to grow and metastasize in vivo, modulating NOTCH1 and PTEN/PI3K/AKT signaling.Overall, these data identify miR-494-3p as a key factor in lung cancer onset and progression and possible therapeutic target.

  13. Neutrophils Are Required for 3-Methylcholanthrene-Initiated, Butylated Hydroxytoluene-Promoted Lung Carcinogenesis

    PubMed Central

    Vikis, Haris G.; Gelman, Andrew E.; Franklin, Andrew; Stein, Lauren; Rymaszewski, Amy; Zhu, Jihong; Liu, Pengyuan; Tichelaar, Jay W.; Krupnick, Alexander S.; You, Ming

    2012-01-01

    Multiple studies have shown a link between chronic inflammation and lung tumorigenesis. Inbred mouse strains vary in their susceptibility to methylcholanthrene (MCA)-initiated butylated hydroxytoluene (BHT)-promoted lung carcinogenesis. In the present study we investigated whether neutrophils play a role in strain dependent differences in susceptibility to lung tumor promotion. We observed a significant elevation in homeostatic levels of neutrophils in the lungs of tumor-susceptible BALB/cByJ (BALB) mice compared to tumor-resistant C57BL/6J (B6) mice. Additionally, BHT treatment further elevated neutrophil numbers as well as neutrophil chemoattractant keratinocyte-derived cytokine (KC)/chemokine (C-X-C motif) ligand 1 (Cxcl1) levels in BALB lung airways. Lung CD11c+ cells were a major source of KC expression and depletion of neutrophils in BALB mice resulted in a 71% decrease in tumor multiplicity. However, tumor multiplicity did not depend on the presence of T cells, despite the accumulation of T cells following BHT treatment. These data demonstrate that neutrophils are essential to promote tumor growth in the MCA/BHT two-step lung carcinogenesis model. PMID:22006501

  14. Cell Selection as Driving Force in Lung and Colon Carcinogenesis

    PubMed Central

    Schöllnberger, Helmut; Beerenwinkel, Niko; Hoogenveen, Rudolf; Vineis, Paolo

    2011-01-01

    Carcinogenesis is the result of mutations and subsequent clonal expansions of mutated, selectively advantageous cells. To investigate the relative contributions of mutation versus cell selection in tumorigenesis, we compared two mathematical models of carcinogenesis in two different cancer types: lung and colon. One approach is based on a population genetics model, the Wright-Fisher process, whereas the other approach is the two-stage clonal expansion model. We compared the dynamics of tumorigenesis predicted by the two models in terms of the time period until the first malignant cell appears, which will subsequently form a tumor. The mean waiting time to cancer has been calculated approximately for the evolutionary colon cancer model. Here, we derive new analytic approximations to the median waiting time for the two-stage lung cancer model and for a multistage approximation to the Wright-Fisher process. Both equations show that the waiting time to cancer is dominated by the selective advantage per mutation and the net clonal expansion rate, respectively, whereas the mutation rate has less effect. Our comparisons support the idea that the main driving force in lung and colon carcinogenesis is Darwinian cell selection. PMID:20656803

  15. Helicobacter-based mouse models of digestive system carcinogenesis.

    PubMed

    Rogers, Arlin B; Houghton, JeanMarie

    2009-01-01

    Animal models are necessary to reproduce the complex host, microbial and environmental influences associated with infectious carcinogenesis of the digestive system. Today, mouse models are preferred by most researchers because of cost efficiencies, rapid reproduction, choice of laboratory reagents, and availability of genetically engineered mutants to study specific gene functions in vivo. Mouse models have validated the once-provocative hypothesis that Helicobacter pylori infection is a major risk factor for gastric carcinoma, dispelling early skepticism over the pathogenic nature of this organism in the human stomach. Enterohepatic Helicobacter spp. induce inflammatory bowel disease and colorectal carcinoma in susceptible mouse strains, permitting study of host immunity and microbial factors at the cellular and molecular level. H. hepaticus is the only proven infectious hepatocarcinogen of mice and has been used to explore mechanisms of inflammation-associated liver cancer as seen in human chronic viral hepatitis. For example, this model was used to identify for the first time a potential mechanism for male-predominant liver cancer risk independent of circulating sex hormones. Helicobacter-based mouse models of digestive system carcino-genesis are used to investigate the basic biology of inflammation-associated human cancers and to evaluate therapeutic interventions at the discovery level. Because of exciting advances in genetic engineering of mice, in vivo imaging, and system-wide genomics and proteomics, these models will provide even more information in the future. This chapter introduces the mouse as a model species; summarizes important models of inflammation-associated cancer incited by murine Helicobacter infection; and describes methods for the collection, sampling, and histologic grading of mouse digestive system tissues.

  16. Carcinogenesis of Nitrated Toluenes and Benzenes Skin and Lung Tumor Assays in Mice

    DTIC Science & Technology

    1985-05-01

    SLAGA ET AL. NAY 85 ORNL -TOX-82-1 UNCLASSIFIED DOE-IRG-40-i~i6-79 F/G 6/29 N LmhmhhII -4I LI 1. .6 I1.8 111jj 12511 .4 I1 . MICROCOPY RESOLUTION TEST...November 1979--March 1983 SKIN AND LUNG TUMOR ASSAYS IN MICE 6. PERFORMING ORG. REPORT NUMBER - ORNL TOX 82-i 7. AUTI4OR(a) S. CONTRACT OR GRANT NUMBER...mouse Ure than UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGErIYIon Data Ento.e) QI AD ORNL /TM-9645 P CARCINOGENESIS OF NITRATED TOLUENES AND

  17. The Anticancer Role of Capsaicin in Experimentallyinduced Lung Carcinogenesis.

    PubMed

    Anandakumar, Pandi; Kamaraj, Sattu; Jagan, Sundaram; Ramakrishnan, Gopalakrishnan; Asokkumar, Selvamani; Naveenkumar, Chandrashekar; Raghunandhakumar, Subramanian; Vanitha, Manickam Kalappan; Devaki, Thiruvengadam

    2015-06-01

    Capsaicin (CAP) is the chief pungent principle found in the hot red peppers and the chili peppers that have long been used as spices, food additives and drugs. This study investigated the anticancer potential of CAP through its ability to modify extracellular matrix components and proteases during mice lung carcinogenesis. Swiss albino mice were treated with benzo(a) pyrene (50 mg/kg body weight dissolved in olive oil) orally twice a week for four successive weeks to induce lung cancer at the end of 14(th) week. CAP was administrated (10 mg/kg body weight dissolved in olive oil) intraperitoneally. Extracellular matrix components were assayed; Masson's trichome staining of lung tissues was performed. Western blot analyses of matrix metalloproteases 2 and 9 were also carried out. In comparison with the control animals, animals in which benzo(a)pyrene had induced lung cancer showed significant increases in extracellular matrix components such as collagen (hydroxy proline), elastin, uronic acid and hexosamine and in glycosaminoglycans such as hyaluronate, chondroitin sulfate, keratan sulfate and dermatan sulfate. The above alterations in extracellular matrix components were effectively counteracted in benzo(a)pyrene along with CAP supplemented animals when compared to benzo(a) pyrene alone supplemented animals. The results of Masson's trichome staining for collagen and of, immunoblotting analyses of matrix metalloproteases 2 and 9 further supported the biochemical findings. The apparent potential of CAP in modulating extracellular matrix components and proteases suggests that CAP plays a chemomodulatory and anti- cancer role working against experimentally induced lung carcinogenesis.

  18. Mouse models for the study of colon carcinogenesis

    PubMed Central

    Rosenberg, Daniel W.; Giardina, Charles; Tanaka, Takuji

    2009-01-01

    The study of experimental colon carcinogenesis in rodents has a long history, dating back almost 80 years. There are many advantages to studying the pathogenesis of carcinogen-induced colon cancer in mouse models, including rapid and reproducible tumor induction and the recapitulation of the adenoma–carcinoma sequence that occurs in humans. The availability of recombinant inbred mouse panels and the existence of transgenic, knock-out and knock-in genetic models further increase the value of these studies. In this review, we discuss the general mechanisms of tumor initiation elicited by commonly used chemical carcinogens and how genetic background influences the extent of disease. We will also describe the general features of lesions formed in response to carcinogen treatment, including the underlying molecular aberrations and how these changes may relate to the pathogenesis of human colorectal cancer. PMID:19037092

  19. The malignant conversion step of mouse skin carcinogenesis

    SciTech Connect

    Yuspa, S.H.; Hennings, H.; Roop, D.; Strickland, J.; Greenhalgh, D.A. )

    1990-08-01

    Multiple benign squamous papillomas commonly precede the development of an occasional squamous cell carcinoma in mouse skin carcinogenesis. The incidence of carcinomas can be enhanced by treating papilloma-bearing mice with mutagens such as urethane, nitroquinoline-N-oxide, or cisplatinum. This observation suggests that a genetic change is required for malignant conversion. The malignant phenotype is characterized by a marked reduction in the transcription of specific epidermal differentiation markers, a pattern which is useful for the early diagnosis of malignant conversion. Cells expressing a benign phenotype can be obtained by introducing the v-ras{sup Ha} oncogene into cultured epidermal cells by a replication-defective retrovirus. Alternatively, benign tumor cells can be cultured from papillomas induced by chemical carcinogens in vivo or from carcinogen-treated mouse epidermis. In all cases, the benign phenotype in vitro is characterized by an altered biological response to changes in extracellular calcium, an important determinant of the differentiation state of cultured normal keratinocytes. Transfection of cloned plasmid DNA into benign tumor cells has revealed that transforming constructs of the fos oncogene induce malignant conversion, whereas myc and adenovirus E1A oncogenes do not. Cultured normal epidermal cells, exposed to the v-ras and the v-fos oncogenes simultaneously, are malignantly transformed. Alone, the fos oncogene does not detectably alter the phenotype of normal keratinocytes. These studies indicate that a limited number of genes is involved in epidermal carcinogenesis.

  20. Differential Gene Expression in Chemically Induced Mouse Lung Adenomas1

    PubMed Central

    Yao, Ruisheng; Wang, Yian; Lubet, Ronald A; You, Ming

    2003-01-01

    Abstract Because of similarities in histopathology and tumor progression stages between mouse and human lung adenocarcinomas, the mouse lung tumor model with lung adenomas as the endpoint has been used extensively to evaluate the efficacy of putative lung cancer chemopreventive agents. In this study, a competitive cDNA library screening (CCLS) was employed to determine changes in the expression of mRNA in chemically induced lung adenomas compared with paired normal lung tissues. A total of 2555 clones having altered expression in tumors were observed following competitive hybridization between normal lung and lung adenomas after primary screening of over 160,000 clones from a mouse lung cDNA library. Among the 755 clones confirmed by dot blot hybridization, 240 clones were underexpressed, whereas 515 clones were overexpressed in tumors. Sixty-five clones with the most frequently altered expression in six individual tumors were confirmed by semiquantitative RT-PCR. When examining the 58 known genes, 39 clones had increased expression and 19 had decreased expression, whereas the 7 novel genes showed overexpression. A high percentage (>60%) of overexpressed or underexpressed genes was observed in at least two or three of the lesions. Reproducibly overexpressed genes included ERK-1, JAK-1, surfactant proteins A, B, and C, NFAT1, α-1 protease inhibitor, helix-loop-helix ubiquitous kinase (CHUK), α-adaptin, α-1 PI2, thioether S-methyltransferase, and CYP2C40. Reproducibly underexpressed genes included paroxanase, ALDH II, CC10, von Ebner salivary gland protein, and α- and β-globin. In addition, CCLS identified several novel genes or genes not previously associated with lung carcinogenesis, including a hypothetical protein (FLJ11240) and a guanine nucleotide exchange factor homologue. This study shows the efficacy of this methodology for identifying genes with altered expression. These genes may prove to be helpful in our understanding of the genetic basis of lung

  1. Epithelial NF-κB signaling promotes EGFR-driven lung carcinogenesis via macrophage recruitment

    PubMed Central

    Saxon, Jamie A.; Sherrill, Taylor P.; Polosukhin, Vasiliy V.; Sai, Jiqing; Zaynagetdinov, Rinat; McLoed, Allyson G.; Gulleman, Peter M.; Barham, Whitney; Cheng, Dong-Sheng; Hunt, Raphael P.; Gleaves, Linda A.; Richmond, Ann; Young, Lisa R.; Yull, Fiona E.; Blackwell, Timothy S.

    2016-01-01

    ABSTRACT Several studies have demonstrated that NF-κB activation is common in lung cancer; however, the mechanistic links between NF-κB signaling and tumorigenesis remain to be fully elucidated. We investigated the function of NF-κB signaling in epidermal growth factor receptor (EGFR)-mutant lung tumors using a transgenic mouse model with doxycycline (dox)-inducible expression of oncogenic EGFR in the lung epithelium with or without a dominant inhibitor of NF-κB signaling. NF-κB inhibition resulted in a significant reduction in tumor burden in both EGFR tyrosine kinase inhibitor (TKI)-sensitive and resistant tumors. However, NF-κB inhibition did not alter epithelial cell survival in vitro or in vivo, and no changes were detected in activation of EGFR downstream signaling pathways. Instead, we observed an influx of inflammatory cells (macrophages and neutrophils) in the lungs of mice with oncogenic EGFR expression that was blocked in the setting of NF-κB inhibition. To investigate whether inflammatory cells play a role in promoting EGFR-mutant lung tumors, we depleted macrophages and neutrophils during tumorigenesis and found that neutrophil depletion had no effect on tumor formation, but macrophage depletion caused a significant reduction in tumor burden. Together, these data suggest that epithelial NF-κB signaling supports carcinogenesis in a non-cell autonomous manner in EGFR-mutant tumors through recruitment of pro-tumorigenic macrophages. PMID:27471643

  2. Chemoprevention of lung carcinogenesis in addicted smokers and ex-smokers.

    PubMed

    Hecht, Stephen S; Kassie, Fekadu; Hatsukami, Dorothy K

    2009-07-01

    Chemoprevention of lung carcinogenesis is one approach to controlling the epidemic of lung cancer caused by cigarette smoking. The target for chemoprevention should be the activities of the multiple carcinogens, toxicants, co-carcinogens, tumour promoters and inflammatory compounds in cigarette smoke. At present there are many agents, both synthetic and naturally occurring, that prevent lung tumour development in well-established animal models. It seems likely that logically constructed mixtures of these agents, developed from the ground up, will be necessary for the prevention of lung carcinogenesis.

  3. Chemoprevention of Lung Carcinogenesis in Addicted Smokers and Ex-Smokers

    PubMed Central

    Hecht, Stephen S.; Kassie, Fekadu; Hatsukami, Dorothy K.

    2013-01-01

    Chemoprevention of lung carcinogenesis is one approach to controlling the epidemic of lung cancer caused by cigarette smoking. The target for chemoprevention should be the activities of the multiple carcinogens, toxicants, co-carcinogens, tumor promoters and inflammatory compounds in cigarette smoke. There are presently many agents both synthetic and naturally occurring that prevent lung tumor development in well established animal models. It seems likely that logically constructed mixtures of these agents, developed from the ground up, will be necessary for prevention of lung carcinogenesis PMID:19550424

  4. Gender-dependent effects of gonadectomy on lung carcinogenesis by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) in female and male A/J mice

    PubMed Central

    NINOMIYA, FUMIKO; YOKOHIRA, MASANAO; KISHI, SOSUKE; NAKANO, YUKO; YAMAKAWA, KEIKO; INOUE, TATSUSHI; KUNO, TOSHIYA; IMAIDA, KATSUMI

    2013-01-01

    The present study was conducted to investigate the effects of gonadectomy on lung carcinogenesis in female and male mice, and to determine an association between sex hormone and lung carcinogenesis. Female and male A/J mice were divided into gonadectomized and unoperated control groups and all animals were treated intraperitoneally with 1 or 2 injections of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) at the dose of 2 mg/mouse. The mice were sacrificed 18 or 56 weeks after surgery. Serum levels of estradiol in females and testosterone in males were confirmed to be decreased by gonadectomy. Lung white nodules were detected in all mice of all groups. In the control groups of 18- and 56-week studies, the multiplicities of lung nodules in females were significantly greater than in males. In males in the 56-week study, the multiplicity of macroscopical lung nodules, bronchiolo-alveolar hyperplasias, adenomas and tumors (adenomas and adenocarcinomas) showed significant increase with castration. In females in the 18-week study, the multiplicity of adenomas decreased significantly by ovariectomy. Based on the results of the present study, female A/J mice were confirmed to be more susceptible to NNK-induced lung carcinogenesis than males. Furthermore, it was suggested that the process is inhibited by testosterone and accelerated by estradiol. These findings indicate the possibility that sex hormones play important roles in determining sex differences in lung carcinogenesis in the A/J mice initiated by NNK. PMID:24085151

  5. Radiation-enhanced lung cancer progression in a transgenic mouse model of lung cancer is predictive of outcomes in human lung and breast cancer.

    PubMed

    Delgado, Oliver; Batten, Kimberly G; Richardson, James A; Xie, Xian-Jin; Gazdar, Adi F; Kaisani, Aadil A; Girard, Luc; Behrens, Carmen; Suraokar, Milind; Fasciani, Gail; Wright, Woodring E; Story, Michael D; Wistuba, Ignacio I; Minna, John D; Shay, Jerry W

    2014-03-15

    Carcinogenesis is an adaptive process between nascent tumor cells and their microenvironment, including the modification of inflammatory responses from antitumorigenic to protumorigenic. Radiation exposure can stimulate inflammatory responses that inhibit or promote carcinogenesis. The purpose of this study is to determine the impact of radiation exposure on lung cancer progression in vivo and assess the relevance of this knowledge to human carcinogenesis. K-ras(LA1) mice were irradiated with various doses and dose regimens and then monitored until death. Microarray analyses were performed using Illumina BeadChips on whole lung tissue 70 days after irradiation with a fractionated or acute dose of radiation and compared with age-matched unirradiated controls. Unique group classifiers were derived by comparative genomic analysis of three experimental cohorts. Survival analyses were performed using principal component analysis and k-means clustering on three lung adenocarcinoma, three breast adenocarcinoma, and two lung squamous carcinoma annotated microarray datasets. Radiation exposure accelerates lung cancer progression in the K-ras(LA1) lung cancer mouse model with dose fractionation being more permissive for cancer progression. A nonrandom inflammatory signature associated with this progression was elicited from whole lung tissue containing only benign lesions and predicts human lung and breast cancer patient survival across multiple datasets. Immunohistochemical analyses suggest that tumor cells drive predictive signature. These results demonstrate that radiation exposure can cooperate with benign lesions in a transgenic model of cancer by affecting inflammatory pathways, and that clinically relevant similarities exist between human lung and breast carcinogenesis. ©2014 AACR.

  6. [Carcinogenesis].

    PubMed

    Martín de Civetta, María Teresa; Civetta, Julio Domingo

    2011-01-01

    Cell division is controlled by stimulatory and inhibitory systems.The origin of cancer is monoclonal, and in order that a normal cell switches its phenotype and becomes a neoplastic cell, genetic mutations must occur on it.These genetic mutations modify the products that in normal conditions the gene would codify and, finally, cause cancer. Cancer may be hereditary (due to mutations in one or both of germinal cells alleles) or sporadic (due to action of environmental mutagenic agents).The mechanisms that may cause alterations on genes may be genetic or epigenetic. Genetic mechanisms occur when structural alterations of genome are present and the epigenetic processes occur due to enzymatic alterations or alterations on its substrates. Carcinogenesis has three stages: initiation, promotion and progression.The last of these stages, progression, is exclusive of malignant transformation and implies the capacity to invade surrounding or distant tissues. For metastasis to take place, many mechanisms are required: angiogenesis, matrix degradation, cell migration, evasion of host immune response and metastatic colonization. This article presents a partial review of current bibliography about concepts related to carcinogenesis and conveys the minimum necessary information to achieve an understanding of this complex process.

  7. MicroRNA 4423 is a primate-specific regulator of airway epithelial cell differentiation and lung carcinogenesis

    PubMed Central

    Perdomo, Catalina; Campbell, Joshua D.; Gerrein, Joseph; Tellez, Carmen S.; Garrison, Carly B.; Walser, Tonya C.; Drizik, Eduard; Si, Huiqing; Gower, Adam C.; Vick, Jessica; Anderlind, Christina; Jackson, George R.; Mankus, Courtney; Schembri, Frank; O’Hara, Carl; Gomperts, Brigitte N.; Dubinett, Steven M.; Hayden, Patrick; Belinsky, Steven A.; Lenburg, Marc E.; Spira, Avrum

    2013-01-01

    Smoking is a significant risk factor for lung cancer, the leading cause of cancer-related deaths worldwide. Although microRNAs are regulators of many airway gene-expression changes induced by smoking, their role in modulating changes associated with lung cancer in these cells remains unknown. Here, we use next-generation sequencing of small RNAs in the airway to identify microRNA 4423 (miR-4423) as a primate-specific microRNA associated with lung cancer and expressed primarily in mucociliary epithelium. The endogenous expression of miR-4423 increases as bronchial epithelial cells undergo differentiation into mucociliary epithelium in vitro, and its overexpression during this process causes an increase in the number of ciliated cells. Furthermore, expression of miR-4423 is reduced in most lung tumors and in cytologically normal epithelium of the mainstem bronchus of smokers with lung cancer. In addition, ectopic expression of miR-4423 in a subset of lung cancer cell lines reduces their anchorage-independent growth and significantly decreases the size of the tumors formed in a mouse xenograft model. Consistent with these phenotypes, overexpression of miR-4423 induces a differentiated-like pattern of airway epithelium gene expression and reverses the expression of many genes that are altered in lung cancer. Together, our results indicate that miR-4423 is a regulator of airway epithelium differentiation and that the abrogation of its function contributes to lung carcinogenesis. PMID:24158479

  8. Geranylgeranylacetone suppresses colitis‑related mouse colon carcinogenesis.

    PubMed

    Inoue, Takuya; Yorifuji, Naoki; Iguchi, Munetaka; Fujiwara, Kaori; Kakimoto, Kazuki; Nouda, Sadaharu; Okada, Toshihiko; Kawakami, Ken; Abe, Yosuke; Takeuchi, Toshihisa; Higuchi, Kazuhide

    2015-04-01

    Geranylgeranylacetone (GGA), an isoprenoid compound, is an anti-ulcer drug developed in Japan. GGA protects a variety of cells and tissues against numerous stresses via induction of heat shock protein (HSP) 70, and it has recently been reported to protect mice from experimental ulcerative colitis (UC). However, it is unknown whether GGA exhibits a preventive effect on UC-associated neoplasia. In the present study, we evaluated the preventive effects of GGA on colitis-related carcinogenesis in the mouse colon. Mice were administered 1,2-dimethylhydrazine (DMH) subcutaneously three times within a week, followed by 2 cycles of dextran sulfate sodium (DSS) (each cycle, 3% DSS for 7 days and then distilled water for 14 days) and they were sacrificed 28 days after the completion of the 2 cycles. The mice were divided into the following groups according to the diet received during the experiment: group A, which received a standard diet and served as a disease control; group B, which received a diet mixed with 0.25% GGA; group C, which received a diet mixed with 0.5% GGA; group D, which received a diet mixed with 1.0% GGA; group E, which received a diet mixed with 2.0% GGA; and group F, which received a diet containing no agents, including DSS and served as a normal control. The incidence of neoplasia was assessed. The expression of inducible nitric oxide synthase (iNOS) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) was also determined. In addition, the expression of HSP70 in the colon tissues was determined by immunohistochemistry and western blot analysis. The mean number of tumors was 16.6, 11.0, 9.4, 5.8, 5.4 and 0 in groups A-F, respectively. GGA significantly suppressed the occurrence of neoplasia in a dose-dependent manner. GGA treatment enhanced the expression of HSP70 and suppressed the oxidative damage in the background mucosa (i.e. lesion-free colon). These results suggest that GGA could be useful in the prevention of UC-associated neoplasia.

  9. The Combination of Three Natural Compounds Effectively Prevented Lung Carcinogenesis by Optimal Wound Healing

    PubMed Central

    Guo, Zhenzhen; Ma, Xiaofang; Cao, Ning; Zheng, Yaqiu; Geng, Shengnan; Duan, Yongjian; Han, Guang; Du, Gangjun

    2015-01-01

    The tumor stroma has been described as “normal wound healing gone awry”. We explored whether the restoration of a wound healing-like microenvironment may facilitate tumor healing. Firstly, we screened three natural compounds (shikonin, notoginsenoside R1 and aconitine) from wound healing agents and evaluated the efficacies of wound healing microenvironment for limiting single agent-elicited carcinogenesis and two-stage carcinogenesis. The results showed that three compounds used alone could promote wound healing but had unfavorable efficacy to exert wound healing, and that the combination of three compounds made up treatment disadvantage of a single compound in wound healing and led to optimal wound healing. Although individual treatment with these agents may prevent cancer, they were not effective for the treatment of established tumors. However, combination treatment with these three compounds almost completely prevented urethane-induced lung carcinogenesis and reduced tumor burden. Different from previous studies, we found that urethane-induced lung carcinogenesis was associated with lung injury independent of pulmonary inflammation. LPS-induced pulmonary inflammation did not increase lung carcinogenesis, whereas decreased pulmonary inflammation by macrophage depletion promoted lung carcinogenesis. In addition, urethane damaged wound healing in skin excision wound model, reversed lung carcinogenic efficacy by the combination of three compounds was consistent with skin wound healing. Further, the combination of these three agents reduced the number of lung cancer stem cells (CSCs) by inducing cell differentiation, restoration of gap junction intercellular communication (GJIC) and blockade of the epithelial-to-mesenchymal transition (EMT). Our results suggest that restoration of a wound healing microenvironment represents an effective strategy for cancer prevention. PMID:26599445

  10. Apoptotic role of natural isothiocyanate from broccoli (Brassica oleracea italica) in experimental chemical lung carcinogenesis.

    PubMed

    Kalpana Deepa Priya, D; Gayathri, R; Gunassekaran, G R; Murugan, S; Sakthisekaran, D

    2013-05-01

    Sulforaphane (SFN) [1-isothiocyanato-4-(methylsulfinyl)butane] is a naturally occurring isothiocyanate found in cruciferous vegetables such as broccoli [Brassica oleracea L. var. italica Plenck. (Brassicaceae)]. Since it is among the most potent bioactive components with antioxidant and antitumor properties, it has received intense attention in the recent years for its chemopreventive properties. The present work determined the rehabilitating role in alleviating the oxidative damage caused by benzo(a)pyrene [B(a)P] to biomolecules and the apoptotic cascade mediated by orally administered isothiocyanate-SFN (9 µmol/mouse/day) against B(a)P (100 mg/kg body weight, i.p.) induced pulmonary carcinogenesis in Swiss albino mice. Oxidative damage was assessed by measuring lipid peroxidation, 8-hydroxydeoxyguanosine, hydrogen peroxide (H2O2) production, glycoprotein components, protein carbonyl levels and DNA-protein crosslinks. DNA fragmentation by agarose gel electrophoresis and caspase-3 activity by ELISA proved apoptotic induction by SFN along with the protein expression of Bcl-2, Bax and Cyt c. SFN treatment was found to decrease the H2O2 production (p < 0.001) in cancer induced animals, proving its antioxidant potential. Apoptosis was induced by increasing the release of Cyt c (p < 0.001) from mitochondria, decreasing and increasing the expression of Bcl-2 (p < 0.01) and Bax (p < 0.001), respectively. Caspase-3 activity was also enhanced (p < 0.001) which leads to DNA fragmentation in SFN treated groups. Our results reflect the rehabilitating role of SFN in B(a)P induced lung carcinogenesis.

  11. Carcinogenesis in mouse and human cells: parallels and paradoxes.

    PubMed

    Balmain, A; Harris, C C

    2000-03-01

    It has been known since the last century that genetic changes are important in carcinogenesis [Boveri,T. (1914) Zur Frage der Erstehung Maligner Tumoren. Gustav Fischer, Jena]. Observations of tumor cells growing in tissue culture led to the prediction, even before the true nature of the genetic material was known, that alterations at the chromosomal level were critically involved in the process of neoplastic development. The past 20 years have seen the transition of carcinogenesis studies from the purely observational to the molecular genetic level. Although much more needs to be done, it is nevertheless gratifying to be able to piece together the sequence of events from carcinogen exposure, metabolism of the carcinogen to the activated form, formation of specific carcinogen-DNA adducts, misrepair leading to the fixation of mutations in particular target genes, and the resulting selective outgrowth of neoplastic cells. The nature of many of these steps has been clarified only in the relatively recent past, and only for a small number of specific target genes, but the fact that we can say with confidence that such processes occur and are causal changes in tumorigenesis represents a tremendous advance over the situation pertaining 20 years ago. The purpose of this review is to summarize the advances over this time period in our understanding of some of the genetic alterations that contribute to neoplasia, with particular emphasis on chemical carcinogenesis in rodents and the parallels with transformation of human cells.

  12. NF-kappaB, a mediator for lung carcinogenesis and a target for lung cancer prevention and therapy

    PubMed Central

    Chen, Wenshu; Li, Zi; Bai, Lang; Lin, Yong

    2011-01-01

    Lung cancer ranks as the first malignant tumor killer worldwide. Despite the knowledge that carcinogens from tobacco smoke and the environment constitute the main causes of lung cancer, the mechanisms for lung carcinogenesis are still elusive. Cancer development and progression depend on the balance between cell survival and death signals. Common cell survival signaling pathways are activated by carcinogens as well as by inflammatory cytokines, which contribute substantially to cancer development. As a major cell survival signal, nuclear factor-kappaB (NF-kappaB) is involved in multiple steps in carcinogenesis and in cancer cell’s resistance to chemo- and radiotherapy. Recent studies with animal models and cell culture systems have established the links between NF-kappaB and lung carcinogenesis, highlighting the significance of targeting the NF-kappaB signaling pathway for lung cancer treatment and chemoprevention. In this review, we summarize progresses in understanding the NF-kappaB pathway in lung cancer development as well as in modulating NF-kappaB for lung cancer prevention and therapy. PMID:21196225

  13. Occupational lung cancer and smoking: a review in the light of current theories of carcinogenesis.

    PubMed Central

    Chovil, A C

    1979-01-01

    This paper considers modern theories of carcinogenesis as they apply to the induction of lung cancer by tobacco smoking and occupational exposure to carcinogens. Some of the known and postulated factors affecting carcinogenesis are discussed, with particular reference to syncarcinogenesis and thresholds. Factors affecting the intensity of smoking exposure are reviewed, and the generally accepted occupational lung carcinogens are listed. Relative risks for the various carcinogens according to smoking status (where known) are presented. The carcinogens are considered individually, and known or postulated interactions with smoking are discussed. It is concluded that the effects of lung carcinogens can be explained on the basis of current theories that support a rational definition of priorities for the prevention of occupational lung cancer. Images p553-a PMID:387195

  14. Multi-walled carbon nanotube-induced gene expression in the mouse lung: Association with lung pathology

    SciTech Connect

    Pacurari, M.; Qian, Y.; Porter, D.W.; Wolfarth, M.; Wan, Y.; Luo, D.; Ding, M.; Castranova, V.; Guo, N.L.

    2011-08-15

    Due to the fibrous shape and durability of multi-walled carbon nanotubes (MWCNT), concerns regarding their potential for producing environmental and human health risks, including carcinogenesis, have been raised. This study sought to investigate how previously identified lung cancer prognostic biomarkers and the related cancer signaling pathways are affected in the mouse lung following pharyngeal aspiration of well-dispersed MWCNT. A total of 63 identified lung cancer prognostic biomarker genes and major signaling biomarker genes were analyzed in mouse lungs (n = 80) exposed to 0, 10, 20, 40, or 80 {mu}g of MWCNT by pharyngeal aspiration at 7 and 56 days post-exposure using quantitative PCR assays. At 7 and 56 days post-exposure, a set of 7 genes and a set of 11 genes, respectively, showed differential expression in the lungs of mice exposed to MWCNT vs. the control group. Additionally, these significant genes could separate the control group from the treated group over the time series in a hierarchical gene clustering analysis. Furthermore, 4 genes from these two sets of significant genes, coiled-coil domain containing-99 (Ccdc99), muscle segment homeobox gene-2 (Msx2), nitric oxide synthase-2 (Nos2), and wingless-type inhibitory factor-1 (Wif1), showed significant mRNA expression perturbations at both time points. It was also found that the expression changes of these 4 overlapping genes at 7 days post-exposure were attenuated at 56 days post-exposure. Ingenuity Pathway Analysis (IPA) found that several carcinogenic-related signaling pathways and carcinogenesis itself were associated with both the 7 and 11 gene signatures. Taken together, this study identifies that MWCNT exposure affects a subset of lung cancer biomarkers in mouse lungs. - Research Highlights: > Multi-Walled Carbon Nanotubes affect lung cancer biomarkers in mouse lungs. > The results suggest potentially harmful effects of MWCNT exposure on human lungs. > The results could potentially be used for

  15. Validation of an HPV16-mediated carcinogenesis mouse model.

    PubMed

    De Azambuja, Katherine; Barman, Provabati; Toyama, Joy; Elashoff, David; Lawson, Gregory W; Williams, Lisa K; Chua, Kristofer; Lee, Deborah; Kehoe, Joseph J; Brodkorb, Andre; Schwiebert, Rebecca; Kitchen, Scott; Bhimani, Aamir; Wiley, Dorothy J

    2014-01-01

    Human papillomavirus Type 16 (HPV16) infection is a necessary but alone insufficient cause of invasive cervical cancer (ICC) and likely causes other genital cancers. Individual genetic variability influences the natural history of the neoplasm. Developing a variety of animal models to investigate HPV16-mediated carcinogenesis is important to Phase 1 trials for human cancer treatments. C57BL/6 mice expressing the HPV16-E7 transgene were treated with 100 nmoles of 7,12-dimethylbenz(a)anthracene (DMBA) on dorsal-thoracolumbar skin for ≤20 weeks. Transgenic-HPV16E7 mice showed more tumors (14.11±1.49 vs. 7.2±0.73) that more quickly reached maximal size (17.53±0.53 vs. 28.75±0.67 weeks) than syngeneic controls. DMBA topically-treated C57BL/6-HPV16E7 mice developed chronic inflammation as well as benign and malignant lesions, many of which ulcerated. Histology showed that the HPV16-E7 transgene more than doubled the effect of complete carcinogenesis against a C57BL/6 background alone, strongly influencing the number, size, and time-to-maximal tumor burden for DMBA-exposed transgenic-C57BL/6 mice. Copyright © 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  16. Validation of an HPV16-mediated Carcinogenesis Mouse Model

    PubMed Central

    Azambuja, Katherine DE; Barman, Provabati; Toyama, Joy; David, Elashoff D; Lawson, Gregory W.; Williams, Lisa K.; Chua, Kristofer; Lee, Deborah; Kehoe, Joseph J.; Brodkorb, Andre; Schwiebert, Rebecca; Kitchen, Scott; Bhimani, Aamir; Wiley, Dorothy J.

    2016-01-01

    Background Human papillomavirus Type 16 (HPV16) infection is a necessary but alone insufficient cause of invasive cervical cancer (ICC) and likely causes other genital cancers. Individual genetic variability influences the natural history of neoplasm. Developing a variety of animal models to investigate HPV16-mediated carcinogenesis is important to Phase 1 trials for human cancer treatments. Methods C57BL/6 mice expressing HPV16-E7 transgene were treated with 100 nmoles of 7,12-dimethylbenz(a)anthracene (DMBA) on dorsal-thoracolumbar skin for ≤20 weeks. Results Transgenic-HPV16E7 mice showed more tumors (14.11 ±1.49 vs. 7.2 ±0.73) that more quickly reached maximal size (17.53 ±0.53 vs. 28.75 ±0.67 weeks) than syngeneic controls. Conclusion DMBA topically-treated C57BL/6-HPV16E7 mice developed chronic inflammation as well as benign and malignant lesions, many of which ulcerated. Histology showed the HPV16-E7 transgene more than doubled the effect of complete carcinogenesis against a C57BL/6 background alone, strongly influencing the number, size, and time to maximal tumor burden for DMBA-exposed transgenic-C57BL/6 mice. PMID:25189887

  17. Impact of dietary amino acids and polyamines on intestinal carcinogenesis and chemoprevention in mouse models

    PubMed Central

    Gerner, E.W.

    2010-01-01

    Colon cancer in humans is influenced by both genetic and dietary risk factors. The majority of colon cancers have somatic mutations in the APC (adenomatous polyposis coli) tumour-suppressor gene. Dietary arginine enhances the risk of APC-dependent colon carcinogenesis in mouse models by a mechanism involving NOS2 (nitric oxide synthase 2), as elimination of NOS2 alleles suppresses this phenotype. DFMO (difluoromethylornithine), a specific inhibitor of polyamine synthesis, also inhibits dietary arginine-induced colon carcinogenesis in C57BL/6J-ApcMin/J mice. The primary consequence of dietary arginine is to increase the adenoma grade in these mice. Either loss of NOS2 alleles or inhibition of polyamine synthesis suppresses the arginine-induced increase in adenoma grade. In addition to promoting intestinal carcinogenesis, polyamines can also reduce the efficacy of certain intestinal cancer chemopreventive agents. The NSAID (non-steroidal anti-inflammatory drug) sulindac is a potent inhibitor of intestinal carcinogenesis in the C57BL/6J-ApcMin/J mouse model and is used to treat humans with FAP (familial adenomatous polyposis). Dietary putrescine reduces the ability of sulindac to suppress intestinal tumorigenesis in the mouse model. These data suggest that reducing polyamine metabolism and dietary polyamine levels may enhance strategies for colon cancer chemoprevention. PMID:17371270

  18. Selective binding of lectins to normal and neoplastic urothelium in rat and mouse bladder carcinogenesis models.

    PubMed

    Zupančič, Daša; Kreft, Mateja Erdani; Romih, Rok

    2014-01-01

    Bladder cancer adjuvant intravesical therapy could be optimized by more selective targeting of neoplastic tissue via specific binding of lectins to plasma membrane carbohydrates. Our aim was to establish rat and mouse models of bladder carcinogenesis to investigate in vivo and ex vivo binding of selected lectins to the luminal surface of normal and neoplastic urothelium. Male rats and mice were treated with 0.05 % N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN) in drinking water and used for ex vivo and in vivo lectin binding experiments. Urinary bladder samples were also used for paraffin embedding, scanning electron microscopy and immunofluorescence labelling of uroplakins. During carcinogenesis, the structure of the urinary bladder luminal surface changed from microridges to microvilli and ropy ridges and the expression of urothelial-specific glycoproteins uroplakins was decreased. Ex vivo and in vivo lectin binding experiments gave comparable results. Jacalin (lectin from Artocarpus integrifolia) exhibited the highest selectivity for neoplastic compared to normal urothelium of rats and mice. The binding of lectin from Amaranthus caudatus decreased in rat model and increased in mouse carcinogenesis model, indicating interspecies variations of plasma membrane glycosylation. Lectin from Datura stramonium showed higher affinity for neoplastic urothelium compared to the normal in rat and mouse model. The BBN-induced animal models of bladder carcinogenesis offer a promising approach for lectin binding experiments and further lectin-mediated targeted drug delivery research. Moreover, in vivo lectin binding experiments are comparable to ex vivo experiments, which should be considered when planning and optimizing future research.

  19. Defining the role of polyamines in colon carcinogenesis using mouse models

    PubMed Central

    Ignatenko, Natalia A.; Gerner, Eugene W.; Besselsen, David G.

    2011-01-01

    Genetics and diet are both considered important risk determinants for colorectal cancer, a leading cause of death in the US and worldwide. Genetically engineered mouse (GEM) models have made a significant contribution to the characterization of colorectal cancer risk factors. Reliable, reproducible, and clinically relevant animal models help in the identification of the molecular events associated with disease progression and in the development of effictive treatment strategies. This review is focused on the use of mouse models for studying the role of polyamines in colon carcinogenesis. We describe how the available mouse models of colon cancer such as the multiple intestinal neoplasia (Min) mice and knockout genetic models facilitate understanding of the role of polyamines in colon carcinogenesis and help in the development of a rational strategy for colon cancer chemoprevention. PMID:21712957

  20. Inhibition of lung carcinogenesis by retinoids and vitamin D

    USDA-ARS?s Scientific Manuscript database

    Lung cancer is the most common cause of cancer death in the world today. Despite great efforts to improve the treatment of patients with lung cancer, the survival rate for people diagnosed with this disease has not significantly improved over the past 30 years. Cigarette smoking is the dominant caus...

  1. Lung carcinogenesis and fibrosis taken together: just coincidence?

    PubMed

    Giopanou, Ioanna; Arendt, Kristina A M; Stathopoulos, Georgios T

    2017-07-01

    The pathogenesis of lung cancer and pulmonary fibrotic disorders partially overlaps. This review focuses on the common features of the two disease categories, aimed at advancing our translational understanding of their pathobiology and at fostering the development of new therapies. Both malignant and collagen-producing lung cells display enhanced cellular proliferation, increased resistance to apoptosis, a propensity for invading and distorting the lung parenchyma, as well as stemness potential. These characteristics are reinforced by the tissue microenvironment and inflammation seems to play an important adjuvant role in both types of disorders. Unraveling the thread of the common and distinct characteristics of lung fibrosis and cancer might contribute to a more comprehensive approach of the pathobiology of both diseases and to a pathfinder for novel and personalized therapeutic strategies.

  2. Radiation-enhanced Lung Cancer Progression in a Transgenic Mouse Model of Lung Cancer is Predictive of Outcomes in Human Lung and Breast Cancer

    PubMed Central

    Delgado, Oliver; Batten, Kimberly G.; Richardson, James A.; Xie, Xian-Jin; Gazdar, Adi F.; Kaisani, Aadil A.; Girard, Luc; Behrens, Carmen; Suraokar, Milind; Fasciani, Gail; Wright, Woodring E.; Story, Michael D.; Wistuba, Ignacio I.; Minna, John D.; Shay, Jerry W.

    2014-01-01

    Purpose Carcinogenesis is an adaptive process between nascent tumor cells and their microenvironment including the modification of inflammatory responses from anti-tumorigenic to pro-tumorigenic. Radiation exposure can stimulate inflammatory responses that inhibit or promote carcinogenesis. The purpose of this study is to determine the impact of radiation exposure on lung cancer progression in vivo and assess the relevance of this knowledge to human carcinogenesis. Experimental Design K-rasLA1 mice were irradiated with various doses and dose regimens and then monitored till death. Microarray analyses were performed using Illumina® BeadChips on whole lung tissue 70 days post-irradiation with a fractionated or acute dose of radiation and compared to age-matched unirradiated controls. Unique group classifiers were derived by comparative genomic analysis of three experimental cohorts. Survival analyses were performed using principal component analysis and k-means clustering on three lung adenocarcinoma, three breast adenocarcinoma, and two lung squamous carcinoma annotated microarray datasets. Results Radiation exposure accelerates lung cancer progression in the K-rasLA1 lung cancer mouse model with dose fractionation being more permissive for cancer progression. A non-random inflammatory signature associated with this progression was elicited from whole lung tissue containing only benign lesions and predicts human lung and breast cancer patient survival across multiple datasets. Immunohistochemical analyses suggest that tumor cells drive predictive signature. Conclusions These results demonstrate that radiation exposure can cooperate with benign lesions in a transgenic model of cancer by impacting inflammatory pathways, and that clinically relevant similarities exist between human lung and breast carcinogenesis. PMID:24486591

  3. Oxygen radicals in lung carcinogenesis accompanying phagocytosis of diesel exhaust particles.

    PubMed

    Ichinose, T; Yamanushi, T; Seto, H; Sagai, M

    1997-09-01

    We sought to examine the involvement of oxygen radicals derived from phagocytosis process in lung carcinogenesis induced by diesel exhaust particles (DEP). The carcinogenic response and formation of 8-hydroxydeoxyguanosine (8-OHdG) were examined in the lungs of mice intratracheally injected with washed DEP (WDEP), DEP, or nontoxic control particles of titanium dioxide (TiO2). After 10 weekly treatments with these particles, the formation of 8-OHdG in the lungs of mice treated with WDEP or DEP showed a significant increase, but not in those treated with TiO2. After 12 months, the incidence of lung tumors in mice treated with WDEP or DEP was higher than that of mice treated with vehicle by 2.3- and 3.1-fold, respectively. A significant difference in the incidence of tumors was found between the vehicle group and DEP-treated group. Treatment with TiO2 had no effect on the incidence of lung tumors. The formation of 8-OHdG in mice treated with these particles was significantly correlated with the development of lung tumors. These results suggest that the induction of DNA damage by oxygen radicals may be an important factor in the initiation of WDEP- and DEP-induced lung carcinogenesis, and that oxygen radicals derived from the phagocytic process may play a role in 8-OHdG formation induced by DEP.

  4. Ultrastructural changes during lung carcinogenesis-modulation by curcumin and quercetin

    PubMed Central

    Wang, Xin; Wang, Lei; Zhang, Hao; Li, Ke; You, Jiqin

    2016-01-01

    The aim of the present study was to examine the effectiveness of curcumin and quercetin in modulating ultrastructural changes during lung carcinogenesis. A total of 24 male laka mice were divided into the normal control, benzo[a]pyrene (BP)-treated, BP+curcumin-treated, BP+quercetin- treated, and BP+curcumin+quercetin-treated groups (n=6 per group). Lung carcinogenesis was induced by a single intraperitoneal injection of BP [100 mg/kg of body weight (b.wt.)]. Curcumin was supplemented to mice at a dose level of 60 mg/kg of b.wt. in drinking water and quercetin was given at a dose level of 40 mg/kg of b.wt. in drinking water. The ultrastructure of BP-treated mice revealed disruptions in cellular integrity together with nuclear deformation and premature mitochondrial aging. Notably, supplementation with phytochemicals individually resulted in improvement of the ultra-histoarchitecture of BP-treated mice although the improvement was much greater with combined supplementation of phytochemicals. Furthermore, BP treatment revealed alterations in lung histoarchitecture, which, however, were improved appreciably following combined supplementation with curcumin and quercetin. The results of the present study show that, combined supplementation with curcumin and quercetin effectively preserved the histoarchitecture as well as ultra-histoarchitecture during BP-induced lung carcinogenesis in mice. PMID:28101199

  5. Ultrastructural changes during lung carcinogenesis-modulation by curcumin and quercetin.

    PubMed

    Wang, Xin; Wang, Lei; Zhang, Hao; Li, Ke; You, Jiqin

    2016-12-01

    The aim of the present study was to examine the effectiveness of curcumin and quercetin in modulating ultrastructural changes during lung carcinogenesis. A total of 24 male laka mice were divided into the normal control, benzo[a]pyrene (BP)-treated, BP+curcumin-treated, BP+quercetin- treated, and BP+curcumin+quercetin-treated groups (n=6 per group). Lung carcinogenesis was induced by a single intraperitoneal injection of BP [100 mg/kg of body weight (b.wt.)]. Curcumin was supplemented to mice at a dose level of 60 mg/kg of b.wt. in drinking water and quercetin was given at a dose level of 40 mg/kg of b.wt. in drinking water. The ultrastructure of BP-treated mice revealed disruptions in cellular integrity together with nuclear deformation and premature mitochondrial aging. Notably, supplementation with phytochemicals individually resulted in improvement of the ultra-histoarchitecture of BP-treated mice although the improvement was much greater with combined supplementation of phytochemicals. Furthermore, BP treatment revealed alterations in lung histoarchitecture, which, however, were improved appreciably following combined supplementation with curcumin and quercetin. The results of the present study show that, combined supplementation with curcumin and quercetin effectively preserved the histoarchitecture as well as ultra-histoarchitecture during BP-induced lung carcinogenesis in mice.

  6. Ovarian Mouse Models with Targeted Fallopian Tubal Carcinogenesis

    DTIC Science & Technology

    2012-09-01

    serous subtype of epithelial ovarian cancer may also arise from the fallopian epithelium. This shift in cell-of-origin for ovarian cancer has...hypothesis that high-grade serous ovarian cancer may arise from fallopian tubal epithelium are lacking. Therefore, in this proposal we generated a mouse...Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT To test the idea that ovarian cancer arises from oviductal

  7. Lessons learned using different mouse models during space radiation-induced lung tumorigenesis experiments

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Zhang, Xiangming; Wang, Ping; Wang, Xiang; Farris, Alton B.; Wang, Ya

    2016-06-01

    Unlike terrestrial ionizing radiation, space radiation, especially galactic cosmic rays (GCR), contains high energy charged (HZE) particles with high linear energy transfer (LET). Due to a lack of epidemiologic data for high-LET radiation exposure, it is highly uncertain how high the carcinogenesis risk is for astronauts following exposure to space radiation during space missions. Therefore, using mouse models is necessary to evaluate the risk of space radiation-induced tumorigenesis; however, which mouse model is better for these studies remains uncertain. Since lung tumorigenesis is the leading cause of cancer death among both men and women, and low-LET radiation exposure increases human lung carcinogenesis, evaluating space radiation-induced lung tumorigenesis is critical to enable safe Mars missions. Here, by comparing lung tumorigenesis obtained from different mouse strains, as well as miR-21 in lung tissue/tumors and serum, we believe that wild type mice with a low spontaneous tumorigenesis background are ideal for evaluating the risk of space radiation-induced lung tumorigenesis, and circulating miR-21 from such mice model might be used as a biomarker for predicting the risk.

  8. Lessons learned using different mouse models during space radiation-induced lung tumorigenesis experiments.

    PubMed

    Wang, Jian; Zhang, Xiangming; Wang, Ping; Wang, Xiang; Farris, Alton B; Wang, Ya

    2016-06-01

    Unlike terrestrial ionizing radiation, space radiation, especially galactic cosmic rays (GCR), contains high energy charged (HZE) particles with high linear energy transfer (LET). Due to a lack of epidemiologic data for high-LET radiation exposure, it is highly uncertain how high the carcinogenesis risk is for astronauts following exposure to space radiation during space missions. Therefore, using mouse models is necessary to evaluate the risk of space radiation-induced tumorigenesis; however, which mouse model is better for these studies remains uncertain. Since lung tumorigenesis is the leading cause of cancer death among both men and women, and low-LET radiation exposure increases human lung carcinogenesis, evaluating space radiation-induced lung tumorigenesis is critical to enable safe Mars missions. Here, by comparing lung tumorigenesis obtained from different mouse strains, as well as miR-21 in lung tissue/tumors and serum, we believe that wild type mice with a low spontaneous tumorigenesis background are ideal for evaluating the risk of space radiation-induced lung tumorigenesis, and circulating miR-21 from such mice model might be used as a biomarker for predicting the risk.

  9. Altered glucocorticoid receptor expression and function during mouse skin carcinogenesis.

    PubMed

    Budunova, I V; Carbajal, S; Kang, H; Viaje, A; Slaga, T J

    1997-03-01

    Glucocorticoids are the most potent inhibitors of tumor promotion in mouse skin, when applied with a promoting agent at the early stages of promotion. However, established skin papillomas become resistant to growth inhibition by glucocorticoids. Glucocorticoid control of cellular functions is mediated by the glucocorticoid receptor (GR), a well-known transcription factor. Here we present data on GR expression and function in mouse papillomas and squamous cell carcinomas. Tumors were produced in SENCAR mice by a 7,12-dimethylbenz[a]anthracene and 12-O-tetradecanoylphorbol-13-acetate two-stage protocol. In early papillomas (after 15-20 wk of promotion), northern blotting revealed a decrease in the GR mRNA level that was confirmed by a binding assay. However, in late papillomas (after 30-40 wk of promotion), and especially in squamous cell carcinomas, the level of GR in both assays was similar to or higher than the GR level in normal epidermis. To test the functional capability of GR in tumors, we compared the effect of the synthetic glucocorticoid fluocinolone acetonide (FA) on keratinocyte proliferation and on expression of glucocorticoid-responsive genes in normal epidermis, hyperplastic skin surrounding tumors, and mouse skin papillomas. FA strongly inhibited DNA synthesis in keratinocytes in normal skin and tumor-surrounding skin but had no effect on DNA synthesis in papillomas. In addition, FA strongly induced metallothionein 1 expression and inhibited connexin 26 expression in skin but did not affect expression of these genes in tumors. These data suggest that alteration of both the expression and function of GR may be an important mechanism of tumor promotion in skin.

  10. Intranasal Administration of Type V Collagen Reduces Lung Carcinogenesis through Increasing Endothelial and Epithelial Apoptosis in a Urethane-Induced Lung Tumor Model.

    PubMed

    Parra, Edwin Roger; Alveno, Renata Antunes; Faustino, Carolina Brito; Corrêa, Paula Yume Sato Serzedello; Vargas, Camilla Mutai; de Morais, Jymenez; Rangel, Maristela Peres; Velosa, Ana Paula Pereira; Fabro, Alexandre Todorovic; Teodoro, Walcy Rosolia; Capelozzi, Vera Luiza

    2016-08-01

    Type V collagen (Col V) is a "minor" component of normal lung extracellular matrix, which is subjected to decreased and abnormal synthesis in human lung infiltrating adenocarcinoma. We previously reported that a direct link between low amounts of Col V and decreased cell apoptosis may favor cancer cell growth in the mouse lung after chemical carcinogenesis. Moreover, this collagen species was able to trigger DNA fragmentation and impair survival of neoplastic cells. In this study, we have extended our investigation with the aim to obtain further evidence that the death induced by Col V-treatment is of the caspase-9 apoptotic type. We used (1) optical and electron microscopy, (2) quantitation of TUNEL-labeled cells and (3) analysis of the expression levels of Col V and selected genes coding for apoptosis-linked factors, by conventional RT-PCR. BALB/c mice were injected intraperitoneally with 1.5 g/kg body weight of urethane. After urethane injection, the animals received intranasal administration of 20 µg/20 µl of Col V every day during 2 months. We report here that Col V treatment was able to determine significant increase in Col V protein and gene expression and in the percentage of TUNEL-positive cells, to up-regulate caspase-9, resulting in low growth of tumor cells. Our data validate chemical carcinogenesis as a suitable "in vivo" model for further and more detailed studies on the molecular mechanisms of the death response induced by Col V in lung infiltrating adenocarcinoma opening new strategies for treatment.

  11. Wnt5a Is Associated with Cigarette Smoke-Related Lung Carcinogenesis via Protein Kinase C

    PubMed Central

    Sung, Jae Sook; Ju, Hyun Jung; Kim, Hyun Kyung; Park, Kyong Hwa; Lee, Jong Won; Koh, In Song; Kim, Yeul Hong

    2013-01-01

    Wnt5a is overexpressed during the progression of human non-small cell lung cancer. However, the roles of Wnt5a during smoking-related lung carcinogenesis have not been clearly elucidated. We investigated the associations between Wnt5a and the early development of cigarette smoke related lung cancer using human bronchial epithelial (HBE) cells (NHBE, BEAS-2B, 1799, 1198 and 1170I) at different malignant stages established by exposure to cigarette smoke condensate (CSC). Abnormal up-regulation of Wnt5a mRNA and proteins was detected in CSC-exposed transformed 1198 and tumorigenic 1170I cells as compared with other non-CSC exposed HBE cells. Tumor tissues obtained from smokers showed higher Wnt5a expressions than matched normal tissues. In non-CSC exposed 1799 cells, treatment of recombinant Wnt5a caused the activations of PKC and Akt, and the blockage of Wnt5a and PKC significantly decreased the viabilities of CSC-transformed 1198 cells expressing high levels of Wnt5a. This reduced cell survival rate was associated with increased apoptosis via the down-regulation of Bcl2 and the induction of cleaved poly ADP-ribose polymerase. Moreover, CSC-treated 1799 cells showed induction of Wnt5a expression and enhanced colony-forming capacity. The CSC-induced colony forming efficiency was suppressed by the co-incubation with a PKC inhibitor. In conclusion, these results suggest that cigarette smoke induces Wnt5a-coupled PKC activity during lung carcinogenesis, which causes Akt activity and anti-apoptosis in lung cancer. Therefore, current study provides novel clues for the crucial role of Wnt5a in the smoking-related lung carcinogenesis. PMID:23349696

  12. Skin Carcinogenesis Studies Using Mouse Models with Altered Polyamines

    PubMed Central

    Nowotarski, Shannon L; Feith, David J; Shantz, Lisa M

    2015-01-01

    Nonmelanoma skin cancer (NMSC) is a major health concern worldwide. With increasing numbers in high-risk groups such as organ transplant recipients and patients taking photosensitizing medications, the incidence of NMSC continues to rise. Mouse models of NMSC allow us to better understand the molecular signaling cascades involved in skin tumor development in order to identify novel therapeutic strategies. Here we review the models designed to determine the role of the polyamines in NMSC development and maintenance. Elevated polyamines are absolutely required for tumor growth, and dysregulation of their biosynthetic and catabolic enzymes has been observed in NMSC. Studies using mice with genetic alterations in epidermal polyamines suggest that they play key roles in tumor promotion and epithelial cell survival pathways, and recent clinical trials indicate that pharmacological inhibitors of polyamine metabolism show promise in individuals at high risk for NMSC. PMID:26380554

  13. Development of Mouse Lung Deposition Models

    DTIC Science & Technology

    2015-07-01

    Particle inhalability in mice was lower than that in rats . In contrast, deposition of the same size particle was higher in mice nasal passages than...that in rats . Thus, fewer particles entered the mouse lung in comparison with rat particle inhalation. The penetration was severely limited for...geometry that was previously developed for humans, rats , and rhesus monkeys [6], [7]. Inputs to the model included lung geometry and volumes, and

  14. Epithelial nuclear factor-κB signaling promotes lung carcinogenesis via recruitment of regulatory T lymphocytes.

    PubMed

    Zaynagetdinov, R; Stathopoulos, G T; Sherrill, T P; Cheng, D-S; McLoed, A G; Ausborn, J A; Polosukhin, V V; Connelly, L; Zhou, W; Fingleton, B; Peebles, R S; Prince, L S; Yull, F E; Blackwell, T S

    2012-06-28

    The mechanisms by which chronic inflammatory lung diseases, particularly chronic obstructive pulmonary disease, confer enhanced risk for lung cancer are not well-defined. To investigate whether nuclear factor (NF)-κB, a key mediator of immune and inflammatory responses, provides an interface between persistent lung inflammation and carcinogenesis, we utilized tetracycline-inducible transgenic mice expressing constitutively active IκB kinase β in airway epithelium (IKTA (IKKβ trans-activated) mice). Intraperitoneal injection of ethyl carbamate (urethane), or 3-methylcholanthrene (MCA) and butylated hydroxytoluene (BHT) was used to induce lung tumorigenesis. Doxycycline-treated IKTA mice developed chronic airway inflammation and markedly increased numbers of lung tumors in response to urethane, even when transgene expression (and therefore epithelial NF-κB activation) was begun after exposure to carcinogen. Studies using a separate tumor initiator/promoter model (MCA+BHT) indicated that NF-κB functions as an independent tumor promoter. Enhanced tumor formation in IKTA mice was preceded by increased proliferation and reduced apoptosis of alveolar epithelium, resulting in increased formation of premalignant lesions. Investigation of inflammatory cells in lungs of IKTA mice revealed a substantial increase in macrophages and lymphocytes, including functional CD4+/CD25+/FoxP3+ regulatory T lymphocytes (Tregs). Importantly, Treg depletion using repetitive injections of anti-CD25 antibodies limited excessive tumor formation in IKTA mice. At 6 weeks following urethane injection, antibody-mediated Treg depletion in IKTA mice reduced the number of premalignant lesions in the lungs in association with an increase in CD8 lymphocytes. Thus, persistent NF-κB signaling in airway epithelium facilitates carcinogenesis by sculpting the immune/inflammatory environment in the lungs.

  15. Suppressive function of RKTG on chemical carcinogen-induced skin carcinogenesis in mouse.

    PubMed

    Xie, Xiaoduo; Zhang, Yixuan; Jiang, Yuhui; Liu, Weizhong; Ma, Hong; Wang, Zhenzhen; Chen, Yan

    2008-08-01

    Raf kinase trapping to Golgi (RKTG) is a newly characterized negative regulator of the Ras-Raf-MEK-ERK signaling pathway via sequestrating Raf-1 to the Golgi apparatus. However, little is known about the physiological functions of RKTG in mitogenic pathway and carcinogenesis. Here, we describe a suppressive role of RKTG in skin carcinogenesis by analyzing chemical carcinogen-induced tumorigenesis. Epidermis hyperplasia and proliferation are increased in RKTG-deficient mice (RKTG(-/-)) after acute treatment with 7, 12-dimethylbenz(a)anthracene (DMBA) and 12-O-tetradecanoylphorbol-13-acetate (TPA). Using a two-stage DMBA/TPA carcinogenesis protocol on mouse skin, the number and size of papillomas are increased in RKTG(-/-) mice, accompanied by shortened tumor latency and enhanced keratinocyte proliferation. The regression of the carcinogen-induced tumors is also prolonged in RKTG(-/-) mice. Consistently, the levels of Raf-1 and extracellular signal-regulated kinase phosphorylation in primary keratinocytes as well as skin tumors are elevated when RKTG is disrupted. Collectively, our results indicate that RKTG has a suppressive activity in chemical carcinogen-induced mitogenesis and tumor formation in mouse skin.

  16. Lung carcinogenesis from chronic obstructive pulmonary disease: characteristics of lung cancer from COPD and contribution of signal transducers and lung stem cells in the inflammatory microenvironment.

    PubMed

    Sekine, Yasuo; Hata, Atsushi; Koh, Eitetsu; Hiroshima, Kenzo

    2014-07-01

    Chronic obstructive pulmonary disease (COPD) and lung cancer are closely related. The annual incidence of lung cancer arising from COPD has been reported to be 0.8-1.7 %. Treatment of lung cancer from COPD is very difficult due to low cardiopulmonary function, rapid tumor growth, and resistance to molecularly targeted therapies. Chronic inflammation caused by toxic gases can induce COPD and lung cancer. Carcinogenesis in the inflammatory microenvironment occurs during cycles of tissue injury and repair. Cellular damage can induce induction of necrotic cell death and loss of tissue integrity. Quiescent normal stem cells or differentiated progenitor cells are introduced to repair injured tissues. However, inflammatory mediators may promote the growth of bronchioalveolar stem cells, and activation of NF-κB and signal transducer and activator of transcription 3 (STAT3) play crucial roles in the development of lung cancer from COPD. Many of the protumorgenic effects of NF-κB and STAT3 activation in immune cells are mediated through paracrine signaling. NF-κB and STAT3 also contribute to epithelial-mesenchymal transition. To improve lung cancer treatment outcomes, lung cancer from COPD must be overcome. In this article, we review the characteristics of lung cancer from COPD and the mechanisms of carcinogenesis in the inflammatory microenvironment. We also propose the necessity of identifying the mechanisms underlying progression of COPD to lung cancer, and comment on the clinical implications with respect to lung cancer prevention, screening, and therapy.

  17. Smoking-promoted oxidative DNA damage response is highly correlated to lung carcinogenesis.

    PubMed

    Cao, Chao; Lai, Tianwen; Li, Miao; Zhou, Hongbin; Lv, Dan; Deng, Zaichun; Ying, Songmin; Chen, Zhihua; Li, Wen; Shen, Huahao

    2016-04-05

    Oxidative stress induced by tobacco smoking is one of the main causes of DNA damage and is known to be involved in various cancers. Smoking is the leading cause of lung cancer, while the role of cigarette smoke-induced oxidative DNA damage response during lung carcinogenesis is largely unknown. In this study, we investigated oxidative DNA damage response levels in smoking and nonsmoking patients with lung cancer, and evaluated the potential diagnostic value of 8-OHdG for lung cancer. We observed a higher level of 8-OHdG expression and secretion in airways of lung cancer patients than that of noncancer controls. 8-OHdG expression was associated with the TNM stages. Additionally, cigarette smoke-induced oxidative DNA damage response was observed in bronchial epithelial cells in vitro and in vivo. A statistical significance correlation was found between the levels of 8-OHdG and smoking index. With a cut-off value of 2.86 ng/ml, 8-OHdG showed a sensitivity and specificity of 70.0% and 73.7%, respectively, to identify a patient with lung cancer. These findings not only underscore the importance of smoking in oxidative DNA damage response of lung cancer patients, but also suggest 8-OHdG as a potential diagnostic biomarker for lung cancer.

  18. Multiplicative effect of inhaled plutonium oxide and benzo (a) pyrene on lung carcinogenesis in rats.

    PubMed Central

    Métivier, H.; Wahrendorf, J.; Masse, R.

    1984-01-01

    This study describes the effect of intratracheal instillations (2 X 5 mg) of benzo(a)pyrene (B(a)P) on lung carcinogenesis in rats which had previously inhaled different levels of 239 plutonium oxide (220, 630, 6300 Bq, initial lung burden). Survival decreased with increasing PuO2 exposure and additional B(a)P exposure. The incidence of malignant lung tumours, adjusted for differences in survival, increased in a dose-related fashion with PuO2 dose and was elevated in the presence of additional B(a)P exposure. A multiplicative relative risk model was found to describe reasonably well the observed joint effect. The practical implications of these findings are discussed. PMID:6087866

  19. Antibodies to mouse lung capillary endothelium.

    PubMed

    Rorvik, M C; Allison, D P; Hotchkiss, J A; Witschi, H P; Kennel, S J

    1988-07-01

    We are interested in developing monoclonal antibodies (MoAbs) that recognize specific cell types in the lung of BALB/c mice. Normal mouse lung homogenate was used to immunize F344 rats and hybridomas were produced by fusion of rat spleen cells with mouse myeloma SP 2/0. Two hybridomas were selected which produced MoAbs active in immunohistochemistry of lung cells. MoAb 273-34A and 411-201B both show extensive peroxidase staining of capillary endothelial cells within alveolar walls of lungs at the light microscopic level. To demonstrate cell specificity, immunoelectron microscopy with gold-labeled antibody was performed. Lightly fixed lungs were frozen and thin-sectioned before staining with MoAb and 5-nm gold particles coupled to secondary antibody. Quantitative analyses of these cryosections show that both antibodies, used at optimal concentrations, are specific for binding to capillary endothelial cells. More than 95% of the gold particles are associated with capillary endothelial cells on the thin side of the alveolar wall. When capillaries adjoined thick septa containing interstitial cells, about two thirds of the gold particles were associated with endothelial cells and about one quarter with interstitial cells. These MoAbs should be useful in studying the role of endothelial cells in toxic lung injury.

  20. Multi-stage chemical carcinogenesis in mouse skin: Fundamentals and applications

    PubMed Central

    Abel, Erika L.; Angel, Joe M; Kiguchi, Kaoru; DiGiovanni, John

    2011-01-01

    For more than 60 years, the chemical induction of tumors in mouse skin has been used to study mechanisms of epithelial carcinogenesis and evaluate modifying factors. In the traditional two-stage skin carcinogenesis model, initiation is accomplished by the application of a subcarcinogenic dose of a carcinogen. Subsequently, tumor development is elicited by repeated treatment with a tumor promoting agent. The initiation protocol can be completed within 1–3 hours depending on the number of mice used, while the promotion phase requires twice weekly treatments (1–2 hours) and once weekly tumor palpation (1–2 hours) for the duration of the study. A highly reproducible papilloma burden is expected within 10–20 weeks with progression of a portion of the tumors to squamous cell carcinomas within 20–50 weeks. In contrast to complete skin carcinogenesis, the two-stage model allows for greater yield of premalignant lesions as well as separation of the initiation and promotion phases. PMID:19713956

  1. Fifty years of tobacco carcinogenesis research: from mechanisms to early detection and prevention of lung cancer.

    PubMed

    Hecht, Stephen S; Szabo, Eva

    2014-01-01

    The recognition of the link between cigarette smoking and lung cancer in the 1964 Surgeon General's Report initiated definitive and comprehensive research on the identification of carcinogens in tobacco products and the relevant mechanisms of carcinogenesis. The resultant comprehensive data clearly illustrate established pathways of cancer induction involving carcinogen exposure, metabolic activation, DNA adduct formation, and consequent mutation of critical genes along with the exacerbating influences of inflammation, cocarcinogenesis, and tumor promotion. This mechanistic understanding has provided a framework for the regulation of tobacco products and for the development of relevant tobacco carcinogen and toxicant biomarkers that can be applied in cancer prevention. Simultaneously, the recognition of the link between smoking and lung cancer paved the way for two additional critical approaches to cancer prevention that are discussed here: detection of lung cancer at an early, curable stage, and chemoprevention of lung cancer. Recent successes in more precisely identifying at-risk populations and in decreasing lung cancer mortality with helical computed tomography screening are notable, and progress in chemoprevention continues, although challenges with respect to bringing these approaches to the general population exist. Collectively, research performed since the 1964 Report demonstrates unequivocally that the majority of deaths from lung cancer are preventable.

  2. Lung carcinogenesis in rats after inhalation exposure to (237)NpO2.

    PubMed

    Dudoignon, N; Guézingar-Liébard, F; Guillet, K; L'Hullier, I; Rateau, G; Monchaux, G; Fritsch, P

    1999-12-01

    The results of several studies of experimental carcinogenesis suggest that, after inhalation of alpha-particle emitters, lung tumor incidence varies depending on the exposure rate and dose distribution in the tissue. In the case of transuranics, the main influencing factor would be the specific alpha-particle activity of the inhaled actinide. To confirm these results, long-term studies were performed using male Sprague-Dawley rats exposed to (237)NpO(2) by inhalation. The initial lung burdens of the animals ranged from 0. 1 to about 7 kBq. The rats were followed during their life span and weighed regularly, and their lung burdens were determined in vivo and at death to estimate the lung dose. At death, the incidence of lung tumors and their malignancy and histological types were analyzed. The analysis revealed a typically linear-quadratic dose response for incidence of malignant lung neoplasm and a differential dose response for various types of tumors. Although these results confirm the influence of the activity of the inhaled actinide oxide, further experiments are needed to be able to compare a more homogeneous population of animals.

  3. p38 MAP Kinase Plays a Functional Role in UVB-Induced Mouse Skin Carcinogenesis

    PubMed Central

    Dickinson, Sally E.; Olson, Erik R.; Zhang, Jack; Cooper, Simon J.; Melton, Tania; Criswell, P. Jane; Casanova, Ana; Dong, Zigang; Hu, Chengcheng; Saboda, Kathylynn; Jacobs, Elizabeth T.; Alberts, David S.; Bowden, G. Tim

    2010-01-01

    UVB irradiation of epidermal keratinocytes results in the activation of the p38 MAPK pathway and subsequently activator protein-1 (AP-1) transcription factor activation and COX-2 expression. AP-1 and COX-2 have been shown to play functional roles in UVB-induced mouse skin carcinogenesis. In this study, the experimental approach was to express a dominant negative p38α MAPK (p38DN) in the epidermis of SKH-1 hairless mice and assess UVB-induced AP-1 activation, COX-2 expression and the skin carcinogenesis response in these mice compared to wild-type littermates. We observed a significant inhibition of UVB-induced AP-1 activation and COX-2 expression in p38DN transgenic mice, leading to a significant reduction of UVB-induced tumor number and growth compared to wild-type littermates in a chronic UVB skin carcinogenesis model. A potential mechanism for this reduction in tumor number and growth rate is an inhibition of chronic epidermal proliferation, observed as reduced Ki-67 staining in p38DN mice compared to wild-type. Although we detected no difference in chronic apoptotic rates between transgenic and non-transgenic mice, analysis of acutely irradiated mice demonstrated that expression of the p38DN transgene significantly inhibited UVB-induced apoptosis of keratinocytes. These results counter the concerns that inhibition of p38 MAPK in a chronic situation could compromise the ability of the skin to eliminate potentially tumorigenic cells. Our data indicate that p38 MAPK is a good target for pharmacological intervention for UV induced skin cancer in patients with sun damaged skin, and suggest that inhibition of p38 signaling reduces skin carcinogenesis by inhibiting COX-2 expression and proliferation of UVB-irradiated cells. PMID:21268131

  4. Chronic ultraviolet exposure-induced p53 gene alterations in sencar mouse skin carcinogenesis model

    SciTech Connect

    Tong, Ying; Smith, M.A.; Tucker, S.B.

    1997-06-27

    Alterations of the tumor suppressor gene p53 have been found in ultraviolet radiation (UVR) related human skin cancers and in UVR-induced murine skin tumors. However, links between p53 gene alterations and the stages of carcinogenesis induced by UVR have not been clearly defined. We established a chronic UVR exposure-induced Sencar mouse skin carcinogenesis model to determine the frequency of p53 gene alterations in different stages of carcinogenesis, including UV-exposed skin, papillomas, squamous-cell carcinomas (SCCs), and malignant spindle-cell tumors (SCTs). A high incidence of SCCs and SCTs were found in this model. Positive p53 nuclear staining was found in 10137 (27%) of SCCs and 12124 (50%) of SCTs, but was not detected in normal skin or papillomas. DNA was isolated from 40 paraffin-embedded normal skin, UV-exposed skin, and tumor sections. The p53 gene (exons 5 and 6) was amplified from the sections by using nested polymerase chain reaction (PCR). Subsequent single-strand conformation polymorphism (SSCP) assay and sequencing analysis revealed one point mutation in exon 6 (coden 193, C {r_arrow} A transition) from a UV-exposed skin sample, and seven point mutations in exon 5 (codens 146, 158, 150, 165, and 161, three C {r_arrow} T, two C {r_arrow} A, one C {r_arrow} G, and one A {r_arrow} T transition, respectively) from four SCTs, two SCCs and one UV-exposed skin sample. These experimental results demonstrate that alterations in the p53 gene are frequent events in chronic UV exposure-induced SCCs and later stage SCTs in Sencar mouse skin. 40 refs., 5 figs., 1 tab.

  5. Multi-step lung carcinogenesis model induced by oral administration of N-nitrosobis(2-hydroxypropyl)amine in rats.

    PubMed

    Tsujiuchi, Toshifumi; Nakae, Dai; Konishi, Yoichi

    2014-03-01

    N-Nitrosobis(2-hydroxypropyl)amine (BHP) was first synthesized by Krüger et al. (1974), and has been shown to primarily induce pancreatic duct adenocarcinomas by a subcutaneous injection in Syrian hamsters. By contrast, the carcinogenic effect of BHP has been indicated at the different target organs in rats, namely the lung. When rats are received by an oral administration of BHP in drinking water for 25 weeks, a high incidence of lung carcinomas are induced, which include adenocarcinomas, squamous cell carcinomas and combined squamous cell and adenocarcinomas. So many similarities are observed in terms of not only histological appearances but also gene alterations between human and BHP-induced rat lung cancers. Moreover, the step by step development of lung lesions, from preneoplastic lesions to cancers in rat lung carcinogenesis by BHP offers a good model to investigate the mechanisms underlying the pathogenesis of lung cancers. Because data for genetic and epigenetic alterations have indeed been accumulated during the BHP-induced rat lung carcinogenesis, we will introduce them in this review and hence demonstrate that this lung carcinogenesis model provides a useful opportunity for the research on the pathogenesis of lung cancers of both humans and rats.

  6. Deletion of cyclooxygenase-2 inhibits K-ras-induced lung carcinogenesis.

    PubMed

    Pan, Yong; Jiang, Yan; Tan, Lin; Ravoori, Murali K; Gagea, Mihai; Kundra, Vikas; Fischer, Susan M; Yang, Peiying

    2015-11-17

    The purpose of this study was to identify the role COX-2 plays in K-ras-induced lung carcinogenesis. We crossed COX-2-homozygous knockout mice with K-rasLA1 (G12D) expressing mice to obtain COX-2-deficient mice with K-ras expression (K-ras/COX-2(-/-) mice) and COX-2 wild type mice with K-ras expression (K-ras mice). At 3.5 months of age, the K-ras/COX-2(-/-) mice had significantly fewer lung adenocarcinomas and substantially smaller tumors than K-ras mice. K-ras/COX-2(-/-) mice also had significantly fewer bronchioalveolar hyperplasias than K-ras mice. Compared with lung tumors from K-Ras mice, the levels of prostaglandin E2 (PGE2) were significantly lower, whereas levels of the PGE2 metabolite 13,14-dihydro-15-keto-PGE2 were significantly higher, in lung tumors from K-ras/COX-2(-/-) mice. In addition, K-ras/COX-2(-/-) mice had strikingly lower rates of tumor cell proliferation and expressed less MEK and p-Erk1/2 protein than K-ras mice did. In line with this, knocking down COX-2 in mutant K-ras non-small cell lung cancer A549 cells reduced colony formation, PGE2 synthesis and ERK phosphorylation compared to that of vector control cells. Taken together, these findings suggest that COX-2 deletion contributes to the repression of K-ras-induced lung tumorigenesis by reducing tumor cell proliferation, decreasing the production of PGE2, and increasing the production of 13,14-dihydro-15-keto-PGE2, possibly via the MAPK pathway. Thus, COX-2 is likely important in lung tumorigenesis, and COX-2 and its product, PGE2, are potential targets for lung cancer prevention.

  7. Caryocar brasiliense camb protects against genomic and oxidative damage in urethane-induced lung carcinogenesis

    PubMed Central

    Colombo, N.B.R.; Rangel, M.P.; Martins, V.; Hage, M.; Gelain, D.P.; Barbeiro, D.F.; Grisolia, C.K.; Parra, E.R.; Capelozzi, V.L.

    2015-01-01

    The antioxidant effects of Caryocar brasiliense Camb, commonly known as the pequi fruit, have not been evaluated to determine their protective effects against oxidative damage in lung carcinogenesis. In the present study, we evaluated the role of pequi fruit against urethane-induced DNA damage and oxidative stress in forty 8-12 week old male BALB/C mice. An in vivo comet assay was performed to assess DNA damage in lung tissues and changes in lipid peroxidation and redox cycle antioxidants were monitored for oxidative stress. Prior supplementation with pequi oil or its extract (15 µL, 60 days) significantly reduced urethane-induced oxidative stress. A protective effect against DNA damage was associated with the modulation of lipid peroxidation and low protein and gene expression of nitric oxide synthase. These findings suggest that the intake of pequi fruit might protect against in vivo genotoxicity and oxidative stress. PMID:26200231

  8. Mouse endogenous retroviral long terminal repeat (LTR) elements and environmental carcinogenesis

    SciTech Connect

    Yang, W.K.; Ch'ang, L-Y; Myer, F.E.; Yang, M.D.; Koh, C.K.

    1988-01-01

    For the past several years, the working hypothesis of this laboratory has been that chromosomal retrovirus-related gene elements play important roles in gene-rearrangement and gene-activation events of carcinogenesis and mutagenesis induced by environmental agents. This working hypothesis is based on the concept of transposable genes as well as the recent understanding of retroviruses (RNA tumor viruses) in relation to the carcinogenesis problem. Activation of transposable gene elements has been discussed from the viewpoint of unprogrammed genomic changes in response to unanticipated genomic shocks. This view was used in considering the possibility of transposable gene elements involved in genetic changes of cancer formation in the animal. In this regard, this concept is similar to the perspectives of RNA tumor viruses, the oncogene-virogene hypothesis, and the provirus hypothesis because retroviruses replicate through DNA forms that carry long terminal repeat (LTR) sequences resembling the insertion sequences (or the IS elements) of prokaryotic transposons. The finding of oncogene myc activation in avian leukosis virus-induced leukemogenesis and proviral insertion in the mouse dilute locus mutation have also pointed to the functional similarity between retroviruses and transposable genes.

  9. Vital-dye-enhanced multimodal imaging of neoplastic progression in a mouse model of oral carcinogenesis

    PubMed Central

    Hellebust, Anne; Rosbach, Kelsey; Wu, Jessica Keren; Nguyen, Jennifer; Gillenwater, Ann; Vigneswaran, Nadarajah; Richards-Kortum, Rebecca

    2013-01-01

    Abstract. In this longitudinal study, a mouse model of 4-nitroquinoline 1-oxide chemically induced tongue carcinogenesis was used to assess the ability of optical imaging with exogenous and endogenous contrast to detect neoplastic lesions in a heterogeneous mucosal surface. Widefield autofluorescence and fluorescence images of intact 2-NBDG-stained and proflavine-stained tissues were acquired at multiple time points in the carcinogenesis process. Confocal fluorescence images of transverse fresh tissue slices from the same specimens were acquired to investigate how changes in tissue microarchitecture affect widefield fluorescence images of intact tissue. Widefield images were analyzed to develop and evaluate an algorithm to delineate areas of dysplasia and cancer. A classification algorithm for the presence of neoplasia based on the mean fluorescence intensity of 2-NBDG staining and the standard deviation of the fluorescence intensity of proflavine staining was found to separate moderate dysplasia, severe dysplasia, and cancer from non-neoplastic regions of interest with 91% sensitivity and specificity. Results suggest this combination of noninvasive optical imaging modalities can be used in vivo to discriminate non-neoplastic from neoplastic tissue in this model with the potential to translate this technology to the clinic. PMID:24362926

  10. Vital-dye-enhanced multimodal imaging of neoplastic progression in a mouse model of oral carcinogenesis

    NASA Astrophysics Data System (ADS)

    Hellebust, Anne; Rosbach, Kelsey; Wu, Jessica Keren; Nguyen, Jennifer; Gillenwater, Ann; Vigneswaran, Nadarajah; Richards-Kortum, Rebecca

    2013-12-01

    In this longitudinal study, a mouse model of 4-nitroquinoline 1-oxide chemically induced tongue carcinogenesis was used to assess the ability of optical imaging with exogenous and endogenous contrast to detect neoplastic lesions in a heterogeneous mucosal surface. Widefield autofluorescence and fluorescence images of intact 2-NBDG-stained and proflavine-stained tissues were acquired at multiple time points in the carcinogenesis process. Confocal fluorescence images of transverse fresh tissue slices from the same specimens were acquired to investigate how changes in tissue microarchitecture affect widefield fluorescence images of intact tissue. Widefield images were analyzed to develop and evaluate an algorithm to delineate areas of dysplasia and cancer. A classification algorithm for the presence of neoplasia based on the mean fluorescence intensity of 2-NBDG staining and the standard deviation of the fluorescence intensity of proflavine staining was found to separate moderate dysplasia, severe dysplasia, and cancer from non-neoplastic regions of interest with 91% sensitivity and specificity. Results suggest this combination of noninvasive optical imaging modalities can be used in vivo to discriminate non-neoplastic from neoplastic tissue in this model with the potential to translate this technology to the clinic.

  11. Characterization of hERG1 channel role in mouse colorectal carcinogenesis

    PubMed Central

    Fiore, Antonella; Carraresi, Laura; Morabito, Angela; Polvani, Simone; Fortunato, Angelo; Lastraioli, Elena; Femia, Angelo P; Lorenzo, Emanuele; Caderni, Giovanna; Arcangeli, Annarosa

    2013-01-01

    The human ether-à-go-go-related gene (hERG)1 K+ channel is upregulated in human colorectal cancer cells and primary samples. In this study, we examined the role of hERG1 in colorectal carcinogenesis using two mouse models: adenomatous polyposis coli (Apcmin/+) and azoxymethane (AOM)-treated mice. Colonic polyps of Apcmin/+ mice overexpressed mERG1 and their formation was reverted by the hERG1 blocker E4031. AOM was applied to either hERG1-transgenic (TG) mice, which overexpress hERG1 in the mucosa of the large intestine, or wild-type mice. A significant increase of both mucin-depleted foci and polyps in the colon of hERG1-TG mice was detected. Both the intestine of TG mice and colonic polyps of Apcmin/+ showed an upregulation of phospho-Protein Kinase B (pAkt)/vascular endothelial growth factor (VEGF-A) and an increased angiogenesis, which were reverted by treatment with E4031. On the whole, this article assigns a relevant role to hERG1 in the process of in vivo colorectal carcinogenesis. PMID:24403225

  12. Altered expression of G1/S regulatory genes occurs early and frequently in lung carcinogenesis in transforming growth factor-beta1 heterozygous mice.

    PubMed

    Kang, Yang; Ozbun, Laurent L; Angdisen, Jerry; Moody, Terry W; Prentice, Margaret; Diwan, Bhalchandra A; Jakowlew, Sonia B

    2002-07-01

    We developed the AJBL6 transforming growth factor-beta 1 (TGF-beta1) heterozygous (HT) mouse by mating A/J mice with C57BL/6 TGF-beta1 HT mice that shows increased carcinogen-induced lung lesions with decreased latency to examine progressive events in lung tumorigenesis. Mouse cDNA macroarrays were used to identify cell cycle genes that are differentially regulated in ethyl carbamate-induced lung adenocarcinomas compared with normal lung tissue in AJBL6 TGF-beta1 HT mice using probes that were generated from tissues isolated using laser capture microdissection. While expression of the genes for cyclin D1, CDK4, and E2F1 increased in lung adenocarcinomas relative to normal lung, expression of p15(Ink4b), p16(Ink4a), p21(Cip1), p27(Kip1), p57(Kip2), and pRb genes decreased in comparison. Competitive RT-PCR showed that the levels of cyclin D1 and CDK4 mRNAs were 2- and 3-fold higher, respectively, in lung adenocarcinomas than in normal lung, while the mRNAs for p15(Ink4b), p16(Ink4a), p21(Cip1), p27(Kip1), and pRb were 3- to 4-fold lower in adenocarcinomas than in normal lung, thus validating the macroarray findings. Competitive RT-PCR of microdissected lesions also showed that the levels of cyclin D1 and CDK4 mRNAs increased significantly, while the mRNAs for p15(Ink4b) and p27(Kip1) decreased significantly as lung tumorigenesis progressed. Immunohistochemical staining for cyclin D1 and CDK4 showed staining in >80% of nuclei in adenocarcinomas compared with fewer than 20% of nuclei staining positively in normal lung. In contrast, while >60% of normal lung cells showed immunostaining for p15(Ink4b), p16(Ink4a), p21(Cip1), p27(Kip1), and pRb, staining for these proteins decreased in hyperplasias, adenomas, and adenocarcinomas. These data show that multiple components of the cyclin D1/CDK4/p16(Ink4a)/pRb signaling pathway are frequently altered early in lung lesions of AJBL6 TGF-beta1 HT mice that are induced by ethyl carbamate as a function of progressive lung

  13. Modeling Lung Carcinogenesis in Radon-Exposed Miner Cohorts: Accounting for Missing Information on Smoking.

    PubMed

    van Dillen, Teun; Dekkers, Fieke; Bijwaard, Harmen; Brüske, Irene; Wichmann, H-Erich; Kreuzer, Michaela; Grosche, Bernd

    2016-05-01

    Epidemiological miner cohort data used to estimate lung cancer risks related to occupational radon exposure often lack cohort-wide information on exposure to tobacco smoke, a potential confounder and important effect modifier. We have developed a method to project data on smoking habits from a case-control study onto an entire cohort by means of a Monte Carlo resampling technique. As a proof of principle, this method is tested on a subcohort of 35,084 former uranium miners employed at the WISMUT company (Germany), with 461 lung cancer deaths in the follow-up period 1955-1998. After applying the proposed imputation technique, a biologically-based carcinogenesis model is employed to analyze the cohort's lung cancer mortality data. A sensitivity analysis based on a set of 200 independent projections with subsequent model analyses yields narrow distributions of the free model parameters, indicating that parameter values are relatively stable and independent of individual projections. This technique thus offers a possibility to account for unknown smoking habits, enabling us to unravel risks related to radon, to smoking, and to the combination of both.

  14. miR-196b Is Epigenetically Silenced during the Premalignant Stage of Lung Carcinogenesis.

    PubMed

    Tellez, Carmen S; Juri, Daniel E; Do, Kieu; Picchi, Maria A; Wang, Teresa; Liu, Gang; Spira, Avrum; Belinsky, Steven A

    2016-08-15

    miRNA silencing by promoter hypermethylation may represent a mechanism by which lung cancer develops and progresses, but the miRNAs involved during malignant transformation are unknown. We previously established a model of premalignant lung cancer wherein we treated human bronchial epithelial cells (HBEC) with low doses of tobacco carcinogens. Here, we demonstrate that next-generation sequencing of carcinogen-transformed HBECs treated with the demethylating agent 5-aza-2'deoxycytidine revealed miR-196b and miR-34c-5p to be epigenetic targets. Bisulfite sequencing confirmed dense promoter hypermethylation indicative of silencing in multiple malignant cell lines and primary tumors. Chromatin immunoprecipitation studies further demonstrated an enrichment in repressive histone marks on the miR-196b promoter during HBEC transformation. Restoration of miR-196b expression by transfecting transformed HBECs with specific mimics led to cell-cycle arrest mediated in part through transcriptional regulation of the FOS oncogene, and miR-196b reexpression also significantly reduced the growth of tumor xenografts. Luciferase assays demonstrated that forced expression of miR-196b inhibited the FOS promoter and AP-1 reporter activity. Finally, a case-control study revealed that methylation of miR-196b in sputum was strongly associated with lung cancer (OR = 4.7, P < 0.001). Collectively, these studies highlight miR-196b as a tumor suppressor whose silencing early in lung carcinogenesis may provide a selective growth advantage to premalignant cells. Targeted delivery of miR-196b could therefore serve as a preventive or therapeutic strategy for the management of lung cancer. Cancer Res; 76(16); 4741-51. ©2016 AACR.

  15. Identification of potential lung cancer biomarkers using an in vitro carcinogenesis model.

    PubMed

    Kim, Jung Eun; Koo, Kyung Hee; Kim, Yeul Hong; Sohn, Jeongwon; Park, Yun Gyu

    2008-12-31

    Lung cancer is one of the deadliest and commonly diagnosed neoplasms. Early diagnosis of this disease is critical for improving clinical outcome and prognosis. Because the early stages of lung cancer often produce no symptoms, it is necessary to identify biomarkers for early detection, prognostic evaluation, and recurrence monitoring of the cancer. To identify potential lung cancer biomarkers, we analyzed the differential protein secretion from transformed bronchial epithelial cells (1198 and 1170-I) as compared to immortalized normal bronchial epithelial cells (BEAS-2B) and non-transformed cells (1799) all of which are derived from BEAS-2B and represent multistage bronchial epithelial carcinogenesis. The proteins recovered from the conditioned media of the cells were separated on two-dimensional gels. There was little difference between the secretome of the BEAS-2B and 1799 cells, whereas the patterns between the transformed 1198 and 1170-I cells and non-transformed 1799 cells were significantly different. Using mass spectrometry and database search, we identified 20 proteins including protein gene product 9.5 (PGP9.5), translationally controlled tumor protein (TCTP), tissue inhibitors of metalloproteinases-2 (TIMP-2), and triosephosphate isomerase (TPI), that were either increased or decreased simultaneously in conditioned media of both 1198 and 1170-I cells. Furthermore, levels of PGP9.5, TCTP, TIMP-2, and TPI were significantly increased not only in the conditioned media of both transformed cell lines when compared to those of BEAS-2B and 1799 cells, but also in plasmas and tissues from lung cancer patients when compared to those in normal controls. We suggest the PGP9.5, TCTP, TIMP-2, and TPI as promising candidates for lung cancer serum biomarkers.

  16. Pharmacological Modulation of Lung Carcinogenesis in Smokers: Preclinical and Clinical Evidence

    PubMed Central

    De Flora, Silvio; Ganchev, Gancho; Iltcheva, Marietta; La Maestra, Sebastiano; Micale, Rosanna T.; Steele, Vernon E.; Balansky, Roumen

    2016-01-01

    Many drugs in common use possess pleiotropic properties that make them capable of interfering with carcinogenesis mechanisms. We discuss here the ability of pharmacological agents to mitigate the pulmonary carcinogenicity of mainstream cigarette smoke. The evaluated agents included antiinflammatory drugs (budesonide, celecoxib, aspirin, naproxen, licofelone), antidiabetic drugs (metformin, pioglitazone), antineoplastic agents (lapatinib, bexarotene, vorinostat), and other drugs and supplements (phenethyl isothiocyanate, myo-inositol, N-acetylcysteine, ascorbic acid, berry extracts). The drugs have been evaluated in mouse models mimicking interventions either in current smokers or in ex-smokers or a prenatal chemoprevention. They displayed a broad spectrum of activities by attenuating either smoke-induced preneoplastic lesions or benign tumors and/or malignant tumors. Together with epidemiological data, these findings provide useful information to predict the potential effects of pharmacological agents in smokers. PMID:26726119

  17. Curcumin and resveratrol in combination modulate drug-metabolizing enzymes as well as antioxidant indices during lung carcinogenesis in mice.

    PubMed

    Liu, Y; Wu, Y-M; Yu, Y; Cao, C-S; Zhang, J-H; Li, K; Zhang, P-Y

    2015-06-01

    This study investigated combined chemopreventive potential of curcumin and resveratrol during benzo(a)pyrene (BP)-induced lung carcinogenesis in mice. The mice were segregated into five groups that included normal control, BP-treated, BP + curcumin-treated, BP + resveratrol-treated, and BP + curcumin + resveratrol-treated groups. A statistically significant increase in the levels of lipid peroxidation (LPO) was observed in the lungs of mice after 22 weeks of single dose of benzo(a)pyrene. Further, BP treatment also resulted in a significant increase in the enzyme activities of aryl hydrocarbon hydroxylase as well as drug-metabolizing enzymes, namely cytocrome P450 and cytochrome b5. On the other hand, reduced glutathione (GSH) levels, the activities of superoxide dismutase (SOD), glutathione reductase (GR), and glutathione-S-transferase (GST) were found to be significantly decreased following BP treatment. Supplementation with curcumin and resveratrol to BP-treated mice significantly decreased the LPO levels, GSH levels, and enzyme activities of drug-metabolizing enzymes. Further, treatment of curcumin and resveratrol to BP-treated mice significantly elevated the activities of SOD, GR, and GST. Histoarchitectural studies showed well-differentiated signs of lung carcinogenesis following BP administration to mice. However, combined treatment with curcumin and resveratrol resulted in a noticeable improvement in the lung histoarchitecture. This study, therefore, concludes that curcumin and resveratrol when supplemented in combination regulate drug-metabolizing enzymes as well as antioxidant enzymes during lung carcinogenesis in mice. © The Author(s) 2014.

  18. Chemo-immunotherapy induces tumor regression in a mouse model of spontaneous mammary carcinogenesis

    PubMed Central

    Carpinelli, Giulia; Canese, Rossella; Cecchetti, Serena; Schiavoni, Giovanna; D'Urso, Maria Teresa; Belardelli, Filippo; Proietti, Enrico

    2016-01-01

    Tumor-specific immune tolerance represents an obstacle for the development of effective anti-tumor immune responses through cancer vaccines. We here evaluated the efficacy of chemo-immunotherapy in breaking tumor-specific immune tolerance in an almost incurable mouse model of spontaneous carcinogenesis. Transgenic HER-2/neu mice bearing large mammary tumors received the adoptive transfer of splenocytes and serum isolated from immune donors, with or without pre-conditioning with cyclophosphamide. Treatment efficacy was assessed by monitoring tumor growth by manual inspection and by magnetic resonance imaging. The same chemo-immunotherapy protocol was tested on tumor-free HER-2/neu mice, to evaluate the effects on tumor emergence. Our data show that chemo-immunotherapy hampered carcinogenesis and caused the regression of large mammary tumor lesions in tumor-bearing HER-2/neu mice. The complete eradication of a significant number of tumor lesions occurred only in mice receiving cyclophosphamide shortly before immunotherapy, and was associated with increased serum anti HER-2/p185 antibodies and tumor leukocyte infiltration. The same protocol significantly delayed the appearance of mammary tumors when administered to tumor-free HER-2/neu mice, indicating that this chemo-immunotherapy approach acted through the elicitation of an effective anti-tumor immune response. Overall, our data support the immune-modulatory role of chemotherapy in overcoming cancer immune tolerance when administered at lymphodepleting non-myeloablative doses shortly before transfer of antigen-specific immune cells and immunoglobulins. These findings open new perspectives on combining immune-modulatory chemotherapy and immunotherapy to overcome immune tolerance in cancer patients. PMID:27486759

  19. Ablating all three retinoblastoma family members in mouse lung leads to neuroendocrine tumor formation

    PubMed Central

    Lázaro, Sara; Pérez-Crespo, Miriam; Enguita, Ana Belén; Hernández, Pilar; Martínez-Palacio, Jesús; Oteo, Marta; Sage, Julien; Paramio, Jesús M.; Santos, Mirentxu

    2017-01-01

    Lung cancer is a deadly disease with increasing cases diagnosed worldwide and still a very poor prognosis. While mutations in the retinoblastoma (RB1) tumor suppressor have been reported in lung cancer, mainly in small cell lung carcinoma, the tumor suppressive role of its relatives p107 and p130 is still a matter of debate. To begin to investigate the role of these two Rb family proteins in lung tumorigenesis, we have generated a conditional triple knockout mouse model (TKO) in which the three Rb family members can be inactivated in adult mice. We found that ablation of all three family members in the lung of mice induces tumorlets, benign neuroendocrine tumors that are remarkably similar to their human counterparts. Upon chemical carcinogenesis, DHPN and urethane accelerate tumor development; the TKO model displays increased sensitivity to DHPN, and urethane increases malignancy of tumors. All the tumors developing in TKO mice (spontaneous and chemically induced) have neuroendocrine features but do not progress to fully malignant tumors. Thus, loss of Rb and its family members confers partial tumor susceptibility in neuroendocrine lineages in the lungs of mice. Our data also imply the requirement of other oncogenic signaling pathways to achieve full transformation in neuroendocrine lung lesions mutant for the Rb family. PMID:27966456

  20. The p53 heterozygous knockout mouse as a model for chemical carcinogenesis in vascular tissue.

    PubMed Central

    Carmichael, N G; Debruyne, E L; Bigot-Lasserre, D

    2000-01-01

    Heterozygous p53 knockout mice were investigated as a potential model for vascular tumor carcinogenesis. Groups of 20 male mice were exposed by gavage for 6 months to the vascular carcinogen urethane at 1, 10, or 100 mg/kg body weight/day. Wild-type and heterozygous p53 knockout control groups were exposed by gavage to the vehicle alone. Another group of 20 male mice received d-limonene by gavage (d-limonene is noncarcinogenic in mice). The high dose of urethane caused early mortality in the majority of mice associated with histopathologic evidence of toxicity and tumors, including a high incidence of benign and malignant vascular tumors, in all animals. At the intermediate dose, toxicity was less marked and 3 of 20 mice had tumors; mice that received the low dose did not have signs of toxicity or neoplasia. The two control groups had no tumors and the d-limonene group had one tumor of the prostate, which was considered spontaneous. We conclude that the p53 knockout mouse is a useful tool for investigating vascular tumorogenesis. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:10620525

  1. Chemopreventive effects of the juice of Vitis coignetiae Pulliat on two-stage mouse skin carcinogenesis.

    PubMed

    Arimoto-Kobayashi, Sakae; Zhang, Xiaomeng; Yuhara, Yuta; Kamiya, Tomonori; Negishi, Tomoe; Okamoto, Goro

    2013-01-01

    Our study revealed the inhibitory effect of Vitis coignetiae Pulliat, known as Yamabudo in Japan, at the stages of multi-step carcinogenesis. The juice of Vitis coignetiae (Y-grape juice) was antimutagenic toward dimethylbenzo[a]anthracene (DMBA), aflatoxin B1, and benzo[a]pyrene in the Ames test. The Y-grape juice was also antigenotoxic in the micronucleus test using HepG2 cells toward DMBA and aflatoxin B1. Topical and oral administration of the Y-grape juice to mice inhibited the induction of inflammation of 12-O-tetradecanoylphorbol-13-acetate (TPA). Topical and oral administration of the Y-grape juice significantly decreased the incidence and mean number of tumors in mice skin with the 2-stage tumorigenesis protocol. To elucidate the mechanisms underlying the antiinflammatory and antitumor promotion activity of the Y-grape juice, the effect of Y-grape juice on cyclooxygenase-2 (COX-2) activity in mouse ear treated with TPA was studied. Both topical and oral application of the Y-grape juice inhibited the TPA-induced increase in COX-2 activity. Caftaric acid, isolated and identified from the Y-grape juice, was antimutagenic toward DMBA and prevented TPA-induced inflammation in mice, suggesting caftaric acid participates in chemopreventive effect/activities of Y-grape juice.

  2. A mouse model of orthotopic vascularized aerated lung transplantation.

    PubMed

    Okazaki, M; Krupnick, A S; Kornfeld, C G; Lai, J M; Ritter, J H; Richardson, S B; Huang, H J; Das, N A; Patterson, G A; Gelman, A E; Kreisel, D

    2007-06-01

    Outcomes after lung transplantation are markedly inferior to those after other solid organ transplants. A better understanding of cellular and molecular mechanisms contributing to lung graft injury will be critical to improve outcomes. Advances in this field have been hampered by the lack of a mouse model of lung transplantation. Here, we report a mouse model of vascularized aerated single lung transplantation utilizing cuff techniques. We show that syngeneic grafts have normal histological appearance with minimal infiltration of T lymphocytes. Allogeneic grafts show acute cellular rejection with infiltration of T lymphocytes and recipient-type antigen presenting cells. Our data show that we have developed a physiological model of lung transplantation in the mouse, which provides ample opportunity for the study of nonimmune and immune mechanisms that contribute to lung allograft injury.

  3. Antioxidant and antitumor efficacy of Luteolin, a dietary flavone on benzo(a)pyrene-induced experimental lung carcinogenesis.

    PubMed

    Kasala, Eshvendar Reddy; Bodduluru, Lakshmi Narendra; Barua, Chandana C; Gogoi, Ranadeep

    2016-08-01

    The present study is designed to assess the antioxidant and antitumor potential of luteolin against benzo(a)pyrene [B(a)P]-induced lung carcinogenesis in Swiss albino mice. Here, we reported that oral administration of B(a)P (50mg/kg body weight) to mice resulted in raised lipid peroxides (LPO), lung specific tumor markers such as carcinoembryonic antigen (CEA) and neuron specific enolase (NSE) with concomitant decrease in the levels of both enzymatic antioxidants such as superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx) and glutathione-s-transferase (GST), and non-enzymatic antioxidants such as reduced glutathione (GSH), vitamin E and vitamin C. Luteolin treatment (15mg/kg body weight, p.o) significantly counteracted all these alterations and maintained cellular normalcy. Moreover, assessment of protein expression levels by western blot analysis revealed that luteolin treatment effectively negates B(a)P-induced upregulated expression of proliferating cell nuclear antigen (PCNA), cytochrome P450 1A1 (CYP1A1) and nuclear factor-kappa B (NF-κB). Furthermore, histopathology of lung tissue and immunohistochemistry of CYP1A1 were carried out to substantiate the anti- lung cancer effect of luteolin. Overall, these findings confirm the chemopreventive potential of luteolin against B(a)P induced lung carcinogenesis.

  4. Subchronic Oral Exposure to Benzo(a)pyrene Leads to Distinct Transcriptomic Changes in the Lungs That Are Related to Carcinogenesis

    PubMed Central

    Halappanavar, Sabina

    2012-01-01

    We have previously shown that acute oral exposure to the environmental carcinogen benzo(a)pyrene (BaP) elicits comparable levels of DNA adducts, but distinct transcriptomic changes, in mouse lungs and livers, the two main BaP bioactivating organs. Oral BaP exposure is predominantly associated with lung cancer and not hepatic cancer in some animal models, suggesting that gene expression differences may provide insight into the drivers of tissue-specific carcinogenesis. In the present study, we examine pulmonary DNA adduct formation, lacZ mutant frequency, and mRNA profiles in adult male MutaMouse following subchronic (28 day) oral exposure to BaP (0, 25, 50, and 75mg/kg/day) and sacrificed 3 days postexposure. The results are compared with those obtained from livers of the same mice (previously published). Although there was a 1.8- to 3.3-fold increase in the levels of DNA adducts in lung compared with liver, the lacZ transgene mutant frequency was similar in both tissues. At the transcriptomic level, a transition from activation of the DNA damage response p53 pathway at the low dose to the induction of genes involved in angiogenesis, evasion of apoptosis and growth signals at the high doses was evident only in the lungs. These results suggest that tissue DNA adducts and mutant frequency are sensitive markers of target tissue exposure and mode of action, whereas early changes in gene expression may provide a better indication of the likelihood of carcinogenic transformation in selected tissues. Moreover, the study provides new information on the underlying mecha- nisms that contribute to tissue-specific responses to BaP. PMID:22610609

  5. Mouse Genetic Models Reveal Surprising Functions of IκB Kinase Alpha in Skin Development and Skin Carcinogenesis

    PubMed Central

    Xia, Xiaojun; Park, Eunmi; Fischer, Susan M.; Hu, Yinling

    2013-01-01

    Gene knockout studies unexpectedly reveal a pivotal role for IκB kinase alpha (IKKα) in mouse embryonic skin development. Skin carcinogenesis experiments show that Ikkα heterozygous mice are highly susceptible to chemical carcinogen or ultraviolet B light (UVB) induced benign and malignant skin tumors in comparison to wild-type mice. IKKα deletion mediated by keratin 5 (K5).Cre or K15.Cre in keratinocytes induces epidermal hyperplasia and spontaneous skin squamous cell carcinomas (SCCs) in Ikkα floxed mice. On the other hand, transgenic mice overexpressing IKKα in the epidermis, under the control of a truncated loricrin promoter or K5 promoter, develop normal skin and show no defects in the formation of the epidermis and other epithelial organs, and the transgenic IKKα represses chemical carcinogen or UVB induced skin carcinogenesis. Moreover, IKKα deletion mediated by a mutation, which generates a stop codon in the Ikkα gene, has been reported in a human autosomal recessive lethal syndrome. Downregulated IKKα and Ikkα mutations and deletions are found in human skin SCCs. The collective evidence not only highlights the importance of IKKα in skin development, maintaining skin homeostasis, and preventing skin carcinogenesis, but also demonstrates that mouse models are extremely valuable tools for revealing the mechanisms underlying these biological events, leading our studies from bench side to bedside. PMID:24216703

  6. Micro-imaging of the Mouse Lung via MRI

    NASA Astrophysics Data System (ADS)

    Wang, Wei

    Quantitative measurement of lung microstructure is of great significance in assessment of pulmonary disease, particularly in the earliest stages. Conventional stereological assessment of ex-vivo fixed tissue specimens under the microscope has a long and successful tradition and is regarded as a gold standard, but the invasive nature limits its applications and the practicality of use in longitudinal studies. The technique for diffusion MRI-based 3He lung morphometry was previously developed and validated for human lungs, and was recently extended to ex-vivo mouse lungs. The technique yields accurate, quantitative information about the microstructure and geometry of acinar airways. In this dissertation, the 3He lung morphometry technique is for the first time successfully implemented for in-vivo studies of mice. It can generate spatially-resolved maps of parameters that reveal the microstructure of mouse lung. Results in healthy mice indicate excellent agreement between in-vivo morphometry via 3He MRI and microscopic morphometry after sacrifice. The implementation and validation of 3He morphometry in healthy mice open up new avenues for application of the technique as a precise, noninvasive, in-vivo biomarker of changes in lung microstructure, within various mouse models of lung disease. We have applied 3He morphometry to the Sendai mouse model of lung disease. Specifically, the Sendai-virus model of chronic obstructive lung disease has demonstrated an innate immune response in mouse airways that exhibits similarities to the chronic airway inflammation in human COPD and asthma, but the effect on distal lung parenchyma had not been investigated. We imaged the time course and regional distribution of mouse lung microstructural changes in vivo after Sendai virus (SeV) infection with 1H and 3He diffusion MRI. 1H MR images detected the SeV-induced pulmonary inflammation in vivo and 3He lung morphometry showed modest increase in alveolar duct radius distal to airway

  7. Flavonoids Extracted from Licorice Prevents Colitis-Associated Carcinogenesis in AOM/DSS Mouse Model

    PubMed Central

    Huo, Xiaowei; Liu, Dongyu; Gao, Li; Li, Liyong; Cao, Li

    2016-01-01

    Inflammatory bowel disease (IBD) is generally considered as a major risk factor in the progression of colitis-associated carcinogenesis (CAC). Thus, it is well accepted that ameliorating inflammation creates a potential to achieve an inhibitory effect on CAC. Licorice flavonoids (LFs) possess strong anti-inflammatory activity, making it possible to investigate its pharmacologic role in suppressing CAC. The purpose of the present study was to evaluate the anti-tumor potential of LFs, and further explore the underlying mechanisms. Firstly, an azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced mouse model was established and administered with or without LFs for 10 weeks, and then the severity of CAC was examined macroscopically and histologically. Subsequently, the effects of LFs on expression of proteins associated with apoptosis and proliferation, levels of inflammatory cytokine, expression of phosphorylated-Janus kinases 2 (p-Jak2) and phosphorylated-signal transducer and activator of transcription 3 (p-Stat3), and activation of nuclear factor-κB (NFκB) and P53 were assessed. We found that LFs could significantly reduce tumorigenesis induced by AOM/DSS. Further study revealed that LFs treatment substantially reduced activation of NFκB and P53, and subsequently suppressed production of inflammatory cytokines and phosphorylation of Jak2 and Stat3 in AOM/DSS-induced mice. Taken together, LFs treatment alleviated AOM/DSS induced CAC via P53 and NFκB/IL-6/Jak2/Stat3 pathways, highlighting the potential of LFs in preventing CAC. PMID:27563884

  8. Chemically-induced Mouse Lung Tumors: Applications to ...

    EPA Pesticide Factsheets

    A state-of-the-science workshop on chemically-induced mouse lung tumors was conducted by U.S. Environmental Protection Agency to better understand the mouse lung tumor data’s role in human health assessments. Three environmental chemicals - naphthalene, styrene, and ethylbenzene were chosen for the analysis due to the commonality of mouse lung tumors in all three chemicals. The goals of the workshop were to: identify the evidence, from multiple scientific disciplines, regarding formation of chemically-induced lung tumors in mice; discuss analysis and interpretation of the evidence; discuss how such evidence informs human health assessments; and identify commonalities, linkages, or differences between the evidence from various disciplines and across the chemicals. Evidence informing the association between occupational exposure to styrene, ethylbenzene, or naphthalene and lung cancer; comparative biology of mouse lung tumors, associated pathologic effects, issues related to tissue and species concordance; mode of action analysis and biological mechanisms including pharmacokinetics and pharmacodynamics; and evidence from cellular, genetic and molecular toxicity was discussed. In summary, although consensus was not sought, the panelists agreed that available mouse lung tumor data should be considered for human health risk evaluation on an individual chemical basis. Key data gaps were identified that would assist in further understanding the mechanism and relevan

  9. Chemically-induced mouse lung tumors: applications to ...

    EPA Pesticide Factsheets

    A state-of-the-science workshop on chemically-induced mouse lung tumors was conducted by U.S. Environmental Protection Agency to discuss issues related to the use of mouse lung tumor data in human health assessments. Naphthalene, styrene, and ethylbenzene were chosen for the analysis due to the commonality of mouse lung tumors in all these three environmental chemicals. The goals of the workshop were to: identify the evidence, from multiple scientific disciplines, regarding formation of chemically-induced lung tumors in mice; discuss analysis and interpretation of the evidence; discuss how such evidence informs human health assessments; and identify commonalities, linkages, or differences between the evidence from various disciplines and across the chemicals. Evidence informing the association between occupational exposure to styrene, ethylbenzene, or naphthalene and lung cancer; comparative biology of mouse lung tumors, associated pathologic effects, issues related to tissue and species concordance; mode of action analysis and biological mechanisms including pharmacokinetics and pharmacodynamics; and evidence from cellular, genetic and molecular toxicity was discussed. In summary, although consensus was not sought, the panelists agreed that data showing mouse lung tumors with chemical exposures can be relevant for human health risk evaluation on an individual chemical basis. Key data gaps were identified that would assist in further understanding the mechanism

  10. Chemically-induced Mouse Lung Tumors: Applications to ...

    EPA Pesticide Factsheets

    A state-of-the-science workshop on chemically-induced mouse lung tumors was conducted by U.S. Environmental Protection Agency to better understand the mouse lung tumor data’s role in human health assessments. Three environmental chemicals - naphthalene, styrene, and ethylbenzene were chosen for the analysis due to the commonality of mouse lung tumors in all three chemicals. The goals of the workshop were to: identify the evidence, from multiple scientific disciplines, regarding formation of chemically-induced lung tumors in mice; discuss analysis and interpretation of the evidence; discuss how such evidence informs human health assessments; and identify commonalities, linkages, or differences between the evidence from various disciplines and across the chemicals. Evidence informing the association between occupational exposure to styrene, ethylbenzene, or naphthalene and lung cancer; comparative biology of mouse lung tumors, associated pathologic effects, issues related to tissue and species concordance; mode of action analysis and biological mechanisms including pharmacokinetics and pharmacodynamics; and evidence from cellular, genetic and molecular toxicity was discussed. In summary, although consensus was not sought, the panelists agreed that available mouse lung tumor data should be considered for human health risk evaluation on an individual chemical basis. Key data gaps were identified that would assist in further understanding the mechanism and relevan

  11. ESR measurement of radical clearance in lung of whole mouse

    SciTech Connect

    Takeshita, K.; Utsumi, H.; Hamada, A. )

    1991-06-14

    Clearance of the nitroxide radicals, hydroxy-TEMPO and carboxy-PROxYL, in whole-mouse lung was directly measured by in vivo ESR. After injecting a nitroxide radical, distribution of the nitroxide radical all over the lung was confirmed by ESR imaging. The ESR signal of hydroxy-TEMPO was reduced in the lung and the clearance obeyed first-order kinetics, whereas the signal of carboxy-PROxYL remained constant. Comparison of the clearance rates of live and dead mice indicated the presence of 2 different clearance systems in the lung: loss of its paramagnetism in the lung, and transfer from alveolar to the blood circulation system.

  12. EGF-receptor and extracellular matrix changes in mouse pulmonary carcinogenesis

    SciTech Connect

    Smith, G.J.; Morris, C.; Leigh, D.; Rhodes, G.C.; Wong, A. )

    1991-03-01

    Malignant Balb/c mouse lung cell clones related to alveologenic carcinoma exhibited low levels of epidermal growth factor (EGF) receptor activity compared to nonmalignant cell clones. Immunoprecipitation of cell homogenates and immunohistochemistry on urethane-induced lung tumors suggest that the absence of activity reflects decreased amounts of EGF receptor protein. Low levels of EGF receptor alone cannot cause neoplastic transformation, since a nonneoplastic cell cone, B5D3, exhibited low levels of EGF receptor despite its nontransformed phenotype. The reduced levels of EGF receptor in malignant clones have been mimicked by long-term (12 h) treatment of a nontransformed cell clone with 200 nM phorbol dibutyrate. The detection of mutated ras oncogene in the transformed cell lines, taken together with the EGF receptor findings, suggests that more than one alteration in the signal transduction pathway may be necessary for transformation in alveologenic adenoma and carcinoma cell systems. A further phenotypic feature of transformation, reduced expression of the extracellular matrix proteins fibronectin and laminin, may be mediated at the transcriptional level.

  13. Quantitative analysis of tumor burden in mouse lung via MRI.

    PubMed

    Tidwell, Vanessa K; Garbow, Joel R; Krupnick, Alexander S; Engelbach, John A; Nehorai, Arye

    2012-02-01

    Lung cancer is the leading cause of cancer death in the United States. Despite recent advances in screening protocols, the majority of patients still present with advanced or disseminated disease. Preclinical rodent models provide a unique opportunity to test novel therapeutic drugs for targeting lung cancer. Respiratory-gated MRI is a key tool for quantitatively measuring lung-tumor burden and monitoring the time-course progression of individual tumors in mouse models of primary and metastatic lung cancer. However, quantitative analysis of lung-tumor burden in mice by MRI presents significant challenges. Herein, a method for measuring tumor burden based upon average lung-image intensity is described and validated. The method requires accurate lung segmentation; its efficiency and throughput would be greatly aided by the ability to automatically segment the lungs. A technique for automated lung segmentation in the presence of varying tumor burden levels is presented. The method includes development of a new, two-dimensional parametric model of the mouse lungs and a multi-faceted cost function to optimally fit the model parameters to each image. Results demonstrate a strong correlation (0.93), comparable with that of fully manual expert segmentation, between the automated method's tumor-burden metric and the tumor burden measured by lung weight.

  14. Carcinogenesis of nitrated toluenes and benzenes, skin and lung tumor assays in mice. Final report

    SciTech Connect

    Slaga, T.J.; Triplett, L.L.; Smith, L.H.; Witschi, H.P.

    1985-05-01

    A series of nitrated toluenes and benzene were tested for their capability to act as initiators, promoters or complete carcinogens in mouse skin. 2,6- dinitrotoluenes and 2-nitrotoluene were found to have weak skin tumor initiating activity. 2,4-dinitrotoluene, 2,6-dinitrotoluenes and 1,3,5-trinitrobenzene produced histological changes in skin which usually are produced by promoting agents; this finding suggests that the three compounds could have skin tumor promoting activity. However, a firm conclusion can only be reached following appropriate in vivo tests. In the lung tumor assay, none of the chemicals tested gave an unequivocal positive response. A borderline positive result for unpurified 2,6-dinitrotoluene could not be repeated when the purified compound was reassayed in the same assay. 19 refs., 9 tabs.

  15. A novel sulindac derivative lacking cyclooxygenase-inhibitory activities suppresses carcinogenesis in the transgenic adenocarcinoma of mouse prostate model.

    PubMed

    Zhang, Yong; Zhang, Jinhui; Wang, Lei; Quealy, Emily; Gary, Bernard D; Reynolds, Robert C; Piazza, Gary A; Lü, Junxuan

    2010-07-01

    Nonsteroidal anti-inflammatory drugs including sulindac are well documented to be highly effective for cancer chemoprevention. However, their cyclooxygenase (COX)-inhibitory activities cause severe gastrointestinal, renal, and cardiovascular toxicities, limiting their chronic use. Recent studies suggest that COX-independent mechanisms may be responsible for the chemopreventive benefits of nonsteroidal anti-inflammatory drugs and support the potential for the development of a novel generation of sulindac derivatives lacking COX inhibition for cancer chemoprevention. A prototypic sulindac derivative with a N,N-dimethylammonium substitution called sulindac sulfide amide (SSA) was recently identified to be devoid of COX-inhibitory activity yet displays much more potent tumor cell growth-inhibitory activity in vitro compared with sulindac sulfide. In this study, we investigated the androgen receptor (AR) signaling pathway as a potential target for its COX-independent antineoplastic mechanism and evaluated its chemopreventive efficacy against prostate carcinogenesis using the transgenic adenocarcinoma of mouse prostate model. The results showed that SSA significantly suppressed the growth of human and mouse prostate cancer cells expressing AR in strong association with G(1) arrest, and decreased AR level and AR-dependent transactivation. Dietary SSA consumption dramatically attenuated prostatic growth and suppressed AR-dependent glandular epithelial lesion progression through repressing cell proliferation in the transgenic adenocarcinoma of mouse prostate mice, whereas it did not significantly affect neuroendocrine carcinoma growth. Overall, the results suggest that SSA may be a chemopreventive candidate against prostate glandular epithelial carcinogenesis. 2010 AACR.

  16. Overexpression of CRM1: A Characteristic Feature in a Transformed Phenotype of Lung Carcinogenesis and a Molecular Target for Lung Cancer Adjuvant Therapy.

    PubMed

    Gao, Weimin; Lu, Chuanwen; Chen, Lixia; Keohavong, Phouthone

    2015-05-01

    Our previous study showed that chromosome region maintenance 1 (CRM1), a nuclear export receptor for various cancer-associated "cargo" proteins, was important in regulating lung carcinogenesis in response to a tobacco carcinogen, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). The objectives of this study are to comprehensively evaluate the significance of CRM1 in lung cancer development and investigate the therapeutic potential of targeting CRM1 for lung cancer treatment using both in vitro and in vivo models. We showed that CRM1 was overexpressed not only in lung tumor tissues from both lung cancer patients and mice treated with NNK but also in NNK-transformed BEAS-2B human bronchial epithelial cells. Furthermore, stable overexpression of CRM1 in BEAS-2B cells by plasmid vector transfection led to malignant cellular transformation. Moreover, a decreased CRM1 expression level in A549 cells by short hairpin siRNA transfection led to a decreased tumorigenic activity both in vitro and in nude mice, suggesting the potential to target CRM1 for lung cancer treatment. Indeed, we showed that the cytotoxic effects of cisplatin on A549 cells with CRM1 down-regulated by short hairpin siRNA were significantly increased, compared with A549 cells, and the cytotoxic effects of cisplatin became further enhanced when the drug was used in combination with leptomycin B, a CRM1 inhibitor, in both in vitro and in vivo models. Cancer target genes were significantly involved in these processes. These data suggest that CRM1 plays an important role in lung carcinogenesis and provides a novel target for lung cancer adjuvant therapy.

  17. Integration of gene chip and topological network techniques to screen a candidate biomarker gene (CBG) for predication of the source water carcinogenesis risks on mouse Mus musculus.

    PubMed

    Sun, Jie; Cheng, Shupei; Li, Aimin; Zhang, Rui; Wu, Bing; Zhang, Yan; Zhang, Xuxiang

    2011-07-01

    Screening of a candidate biomarker gene (CBG) to predicate the carcinogenesis risks in the Yangtze River source of drinking water in Nanjing area (YZR-SDW-NJ) on mouse (Mus musculus) was conducted in this research. The effects of YZR-SDW-NJ on the genomic transcriptional expression levels were measured by the GeneChip(®) Mouse Genome and data treated by the GO database analysis. The 298 genes discovered as the differently expressed genes (DEGs) were down-regulated and their values were ≤-1.5-fold. Of the 298 DEGs, 25 were cancer-related genes selected as the seed genes to build a topological network map with Genes2Networks software, only 7 of them occurred at the constructed map. Smad2 gene was at the constructed map center and could be identified as a candidate biomarker gene (CBG) primarily which involves the genesis and development of colorectal, leukemia, lung and prostate cancers directly. Analysis of the gene signal pathway further approved that smad2 gene had the relationships closely to other 16 cancer-related genes and could be used as a CBG to indicate the carcinogenic risks in YZR-SDW-NJ. The data suggest that integration of gene chip and network techniques may be a way effectively to screen a CBG. And the parameter values for further judgment of the CBG through signal pathway relationship analysis also will be discussed.

  18. Practical use of advanced mouse models for lung cancer.

    PubMed

    Safari, Roghaiyeh; Meuwissen, Ralph

    2015-01-01

    To date a variety of non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) mouse models have been developed that mimic human lung cancer. Chemically induced or spontaneous lung cancer in susceptible inbred strains has been widely used, but the more recent genetically engineered somatic mouse models recapitulate much better the genotype-phenotype correlations found in human lung cancer. Additionally, improved orthotopic transplantation of primary human cancer tissue fragments or cells into lungs of immune-compromised mice can be valuable tools for preclinical research such as antitumor drug tests. Here we give a short overview of most somatic mouse models for lung cancer that are currently in use. We accompany each different model with a description of its practical use and application for all major lung tumor types, as well as the intratracheal injection or direct injection of fresh or freeze-thawed tumor cells or tumor cell lines into lung parenchyma of recipient mice. All here presented somatic mouse models are based on the ability to (in) activate specific alleles at a time, and in a tissue-specific cell type, of choice. This spatial-temporal controlled induction of genetic lesions allows the selective introduction of main genetic lesions in an adult mouse lung as found in human lung cancer. The resulting conditional somatic mouse models can be used as versatile powerful tools in basic lung cancer research and preclinical translational studies alike. These distinctively advanced lung cancer models permit us to investigate initiation (cell of origin) and progression of lung cancer, along with response and resistance to drug therapy. Cre/lox or FLP/frt recombinase-mediated methods are now well-used techniques to develop tissue-restricted lung cancer in mice with tumor-suppressor gene and/or oncogene (in)activation. Intranasal or intratracheal administration of engineered adenovirus-Cre or lentivirus-Cre has been optimized for introducing Cre

  19. Proteome Analysis for Downstream Targets of Oncogenic KRAS - the Potential Participation of CLIC4 in Carcinogenesis in the Lung

    PubMed Central

    Okudela, Koji; Katayama, Akira; Woo, Tetsukan; Mitsui, Hideaki; Suzuki, Takehisa; Tateishi, Yoko; Umeda, Shigeaki; Tajiri, Michihiko; Masuda, Munetaka; Nagahara, Noriyuki; Kitamura, Hitoshi; Ohashi, Kenichi

    2014-01-01

    This study investigated the proteome modulated by oncogenic KRAS in immortalized airway epithelial cells. Chloride intracellular channel protein 4 (CLIC4), S100 proteins (S100A2 and S100A11), tropomyosin 2, cathepsin L1, integrinsα3, eukaryotic elongation factor 1, vimentin, and others were discriminated. We here focused on CLIC4 to investigate its potential involvement in carcinogenesis in the lung because previous studies suggested that some chloride channels and chloride channel regulators could function as tumor suppressors. CILC4 protein levels were reduced in some lung cancer cell lines. The restoration of CLIC4 in lung cancer cell lines in which CLIC4 expression was reduced attenuated their growth activity. The immunohistochemical expression of the CLIC4 protein was weaker in primary lung cancer cells than in non-tumorous airway epithelial cells and was occasionally undetectable in some tumors. CLIC4 protein levels were significantly lower in a subtype of mucinous ADC than in others, and were also significantly lower in KRAS-mutated ADC than in EGFR-mutated ADC. These results suggest that the alteration in CLIC4 could be involved in restrictedly the development of a specific fraction of lung adenocarcinomas. The potential benefit of the proteome modulated by oncogenic KRAS to lung cancer research has been demonstrated. PMID:24503901

  20. Inhibition of STAT3 activity delays obesity-induced thyroid carcinogenesis in a mouse model.

    PubMed

    Park, Jeong Won; Han, Cho Rong; Zhao, Li; Willingham, Mark C; Cheng, Sheue-yann

    2016-01-01

    Compelling epidemiologic studies indicate that obesity is a risk factor for many human cancers, including thyroid cancer. In recent decades, the incidence of thyroid cancer has dramatically increased along with a marked rise in obesity prevalence. We previously demonstrated that a high fat diet (HFD) effectively induced the obese phenotype in a mouse model of thyroid cancer (Thrb(PV/PV)Pten(+/-) mice). Moreover, HFD activates the STAT3 signal pathway to promote more aggressive tumor phenotypes. The aim of the present study was to evaluate the effect of S3I-201, a specific inhibitor of STAT3 activity, on HFD-induced aggressive cancer progression in the mouse model of thyroid cancer. WT and Thrb(PV/PV)Pten(+/-) mice were treated with HFD together with S3I-201 or vehicle-only as controls. We assessed the effects of S3I-201 on HFD-induced thyroid cancer progression, the leptin-JAK2-STAT3 signaling pathway, and key regulators of epithelial-mesenchymal transition (EMT). S3I-201 effectively inhibited HFD-induced aberrant activation of STAT3 and its downstream targets to markedly inhibit thyroid tumor growth and to prolong survival. Decreased protein levels of cyclins D1 and B1, cyclin dependent kinase 4 (CDK4), CDK6, and phosphorylated retinoblastoma protein led to the inhibition of tumor cell proliferation in S3I-201-treated Thrb(PV/PV)Pten(+/-) mice. Reduced occurrence of vascular invasion and blocking of anaplasia and lung metastasis in thyroid tumors of S3I-201-treated Thrb(PV/PV)Pten(+/-) mice were mediated via decreased expression of vimentin and matrix metalloproteinases, two key effectors of EMT. The present findings suggest that inhibition of the STAT3 activity would be a novel treatment strategy for obesity-induced thyroid cancer. © 2016 Society for Endocrinology.

  1. The Effect of Different Doses of Cigarette Smoke in a Mouse Lung Tumor Model

    PubMed Central

    Santiago, Ludmilla Nadir; de Camargo Fenley, Juliana; Braga, Lúcia Campanario; Cordeiro, José Antônio; Cury, Patrícia M.

    2009-01-01

    Few studies have used Balb/c mice as an animal model for lung carcinogenesis. In this study, we investigated the effect of different doses of cigarette smoking in the urethane-induced Balb/c mouse lung cancer model. After injection of 3mg/kg urethane intraperitoneally, the mice were then exposed to tobacco smoke once or twice a day, five times a week, in a closed chamber. The animals were randomly divided into four groups. The control group (G0) received urethane only. The experimental groups (G1, G2 and G3) received urethane and exposure to the smoke of 3 cigarettes for 10 minutes once a day, 3 cigarettes for 10 minutes twice a day, and 6 cigarettes for 10 minutes twice a day, respectively. The mice were sacrificed after 16 weeks of exposure, and the number of nodules and hyperplasia in the lungs was counted. The results showed no statistically significant difference in the mean number of nodules and hyperplasia among the different groups, suggesting that the Balb/c mice are not suitable to study the pathogenesis of tobacco smoking-induced tumor progression in the lungs. PMID:19079653

  2. Imaging mouse lung allograft rejection with 1H MRI

    PubMed Central

    Guo, Jinbang; Huang, Howard J.; Wang, Xingan; Wang, Wei; Ellison, Henry; Thomen, Robert P.; Gelman, Andrew E.; Woods, Jason C.

    2014-01-01

    Purpose To demonstrate that longitudinal, non-invasive monitoring via MRI can characterize acute cellular rejection (ACR) in mouse orthotopic lung allografts. Methods Nineteen Balb/c donor to C57BL/6 recipient orthotopic left lung transplants were performed, further divided into control-Ig vs anti-CD4/anti-CD8 treated groups. A two-dimensional multi-slice gradient-echo pulse sequence synchronized with ventilation was used on a small-animal MR scanner to acquire proton images of lung at post-operative days 3, 7 and 14, just before sacrifice. Lung volume and parenchymal signal were measured, and lung compliance was calculated as volume change per pressure difference between high and low pressures. Results Normalized parenchymal signal in the control-Ig allograft increased over time, with statistical significance between day 14 and day 3 post transplantation (0.046→0.789, P < 0.05), despite large inter-mouse variations; this was consistent with histopathologic evidence of rejection. Compliance of the control-Ig allograft decreased significantly over time (0.013→0.003, P < 0.05), but remained constant in mice treated with anti-CD4/anti-CD8 antibodies. Conclusion Lung allograft rejection in individual mice can be monitored by lung parenchymal signal changes and by lung compliance through MRI. Longitudinal imaging can help us better understand the time course of individual lung allograft rejection and response to treatment. PMID:24954886

  3. Preconditioning allows engraftment of mouse and human embryonic lung cells, enabling lung repair in mice.

    PubMed

    Rosen, Chava; Shezen, Elias; Aronovich, Anna; Klionsky, Yael Zlotnikov; Yaakov, Yasmin; Assayag, Miri; Biton, Inbal Eti; Tal, Orna; Shakhar, Guy; Ben-Hur, Herzel; Shneider, David; Vaknin, Zvi; Sadan, Oscar; Evron, Shmuel; Freud, Enrique; Shoseyov, David; Wilschanski, Michael; Berkman, Neville; Fibbe, Willem E; Hagin, David; Hillel-Karniel, Carmit; Krentsis, Irit Milman; Bachar-Lustig, Esther; Reisner, Yair

    2015-08-01

    Repair of injured lungs represents a longstanding therapeutic challenge. We show that human and mouse embryonic lung tissue from the canalicular stage of development (20-22 weeks of gestation for humans, and embryonic day 15-16 (E15-E16) for mouse) are enriched with progenitors residing in distinct niches. On the basis of the marked analogy to progenitor niches in bone marrow (BM), we attempted strategies similar to BM transplantation, employing sublethal radiation to vacate lung progenitor niches and to reduce stem cell competition. Intravenous infusion of a single cell suspension of canalicular lung tissue from GFP-marked mice or human fetal donors into naphthalene-injured and irradiated syngeneic or SCID mice, respectively, induced marked long-term lung chimerism. Donor type structures or 'patches' contained epithelial, mesenchymal and endothelial cells. Transplantation of differentially labeled E16 mouse lung cells indicated that these patches were probably of clonal origin from the donor. Recipients of the single cell suspension transplant exhibited marked improvement in lung compliance and tissue damping reflecting the energy dissipation in the lung tissues. Our study provides proof of concept for lung reconstitution by canalicular-stage human lung cells after preconditioning of the pulmonary niche.

  4. A novel sulindac derivative lacking COX-inhibitory activities suppresses carcinogenesis in the transgenic adenocarcinoma of mouse prostate model

    PubMed Central

    Zhang, Yong; Zhang, Jinhui; Wang, Lei; Quealy, Emily; Gary, Bernard D.; Reynolds, Robert C.; Piazza, Gary A.; Lü, Junxuan

    2016-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) including sulindac are well-documented to be highly effective for cancer chemoprevention. However, their cyclooxygenase (COX) inhibitory activities cause severe gastrointestinal and cardiovascular toxicities, limiting their chronic use. Recent studies suggest that COX-independent mechanisms may be responsible for the chemopreventive benefits of the NSAIDs, and support the potential for development of a novel generation of sulindac derivatives lacking COX inhibition for cancer chemoprevention. A prototypic sulindac derivative with a N,N-dimethylammonium substitution, referred to as sulindac sulfide amide (SSA) was recently identified to be devoid of COX inhibitory activity yet displays much more potent tumor cell growth inhibitory activity in vitro compared to sulindac sulfide. In this study, we investigated the androgen receptor (AR) signaling pathway as a potential target for its COX-independent antineoplastic mechanism and evaluated its chemopreventive efficacy against prostate carcinogenesis using the TRAMP mouse model. The results showed that SSA significantly suppressed the growth of human and mouse prostate cancer cells expressing AR in strong association with G1 arrest, and decreased AR level and AR-dependent transactivation. Dietary SSA consumption from 6 to 24 weeks of age dramatically attenuated prostatic growth and suppressed AR-dependent glandular epithelial lesion progression via repressing cell proliferation in the TRAMP mice, whereas it did not significantly impact neuroendocrine carcinoma growth. Overall, the results suggest that SSA may be a chemopreventive candidate against prostate glandular epithelial carcinogenesis. PMID:20587701

  5. Korean Solar Salt Ameliorates Colon Carcinogenesis in an AOM/DSS-Induced C57BL/6 Mouse Model.

    PubMed

    Ju, Jaehyun; Kim, Yeung-Ju; Park, Eui Seong; Park, Kun-Young

    2017-06-01

    The effects of Korean solar salt on an azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced colon cancer C57BL/6 mouse model were studied. Korean solar salt samples (SS-S, solar salt from S salt field; SS-Yb, solar salt from Yb salt field), nine-time-baked bamboo salt (BS-9x, made from SS-Yb), purified salt (PS), and SS-G (solar salt from Guérande, France) were orally administered at a concentration of 1% during AOM/DSS colon cancer induction, and compared for their protective effects during colon carcinogenesis in C57BL/6 mice. SS-S and SS-Yb suppressed colon length shortening and tumor counts in mouse colons. Histological evaluation by hematoxylin and eosin staining also revealed suppression of tumorigenesis by SS-S. Conversely, PS and SS-G did not show a similar suppressive efficacy as Korean solar salt. SS-S and SS-Yb promoted colon mRNA expression of an apoptosis-related factor and cell-cycle-related gene and suppressed pro-inflammatory factor. SS-Yb baked into BS-9x further promoted these anti-carcinogenic efficacies. Taken together, the results indicate that Korean solar salt, especially SS-S and SS-Yb, exhibited anti-cancer activity by modulating apoptosis- and inflammation-related gene expression during colon carcinogenesis in mice, and bamboo salt baked from SS-Yb showed enhanced anti-cancer functionality.

  6. Dietary chemoprevention strategies for induction of phase II xenobiotic-metabolizing enzymes in lung carcinogenesis: A review

    PubMed Central

    Tan, Xiang-Lin; Spivack, Simon D.

    2013-01-01

    Lung cancer is the leading cause of cancer mortality for men and women in the United States and is a growing worldwide problem. Protection against lung cancer is associated with higher dietary intake of fruits and vegetables, according to recent large epidemiologic studies. One strategy for lung cancer chemoprevention focuses on the use of agents to modulate the metabolism and disposition of tobacco, environmental and endogenous carcinogens through upregulation of detoxifying phase II enzymes. We summarize the substantial evidence that suggests that induction of phase II enzymes, particularly the glutathione S-transferases, plays a direct role in chemoprotection against lung carcinogenesis. The engagement of the Keap1–Nrf2 complex regulating the antioxidant response element (ARE) signaling pathway has been identified as a key molecular target of chemopreventive phase II inducers in several systems. Monitoring of phase II enzyme induction has led to identification of novel chemopreventive agents such as the isothiocyanate sulforaphane, and the 1,2-dithiole-3-thiones. However, no agents have yet demonstrated clear benefit in human cell systems, or in clinical trials. Alternative strategies include: (a) using intermediate cancer biomarkers for the endpoint in human trials; (b) high-throughput small molecule discovery approaches for induced expression of human phase II genes; and (c) integrative approaches that consider pharmacogenetics, along with pharmacokinetics and pharmacodynamics in target lung tissue. These approaches may lead to a more effective strategy of tailored chemoprevention efforts using compounds with proven human activity. PMID:19185948

  7. Dietary chemoprevention strategies for induction of phase II xenobiotic-metabolizing enzymes in lung carcinogenesis: A review.

    PubMed

    Tan, Xiang-Lin; Spivack, Simon D

    2009-08-01

    Lung cancer is the leading cause of cancer mortality for men and women in the United States and is a growing worldwide problem. Protection against lung cancer is associated with higher dietary intake of fruits and vegetables, according to recent large epidemiologic studies. One strategy for lung cancer chemoprevention focuses on the use of agents to modulate the metabolism and disposition of tobacco, environmental and endogenous carcinogens through upregulation of detoxifying phase II enzymes. We summarize the substantial evidence that suggests that induction of phase II enzymes, particularly the glutathione S-transferases, plays a direct role in chemoprotection against lung carcinogenesis. The engagement of the Keap1-Nrf2 complex regulating the antioxidant response element (ARE) signaling pathway has been identified as a key molecular target of chemopreventive phase II inducers in several systems. Monitoring of phase II enzyme induction has led to identification of novel chemopreventive agents such as the isothiocyanate sulforaphane, and the 1,2-dithiole-3-thiones. However, no agents have yet demonstrated clear benefit in human cell systems, or in clinical trials. Alternative strategies include: (a) using intermediate cancer biomarkers for the endpoint in human trials; (b) high-throughput small molecule discovery approaches for induced expression of human phase II genes; and (c) integrative approaches that consider pharmacogenetics, along with pharmacokinetics and pharmacodynamics in target lung tissue. These approaches may lead to a more effective strategy of tailored chemoprevention efforts using compounds with proven human activity.

  8. Failure of catalase to protect against aflatoxin B{sub 1}-induced mouse lung tumorigenicity

    SciTech Connect

    Guindon, Katherine A.; Foley, Julie F.; Maronpot, Robert R.; Massey, Thomas E.

    2008-03-01

    The carcinogenic mycotoxin aflatoxin B{sub 1} (AFB{sub 1}) induces 8-hydroxy-2'-deoxyguanosine (8-OHdG) formation in mouse lung, an effect that can be prevented by treatment with polyethylene glycol-conjugated catalase (PEG-CAT). G {yields} T transversion mutation in K-ras, an early event in AFB{sub 1}-induced mouse lung carcinogenesis, is thought to result from AFB{sub 1}-8,9-exo-epoxide binding to DNA to form AFB{sub 1}-N{sup 7}-guanine, but may also result from formation of 8-OHdG. Therefore, oxidative DNA damage may be important in AFB{sub 1} carcinogenicity. The objective of this study was to determine whether PEG-CAT would prevent AFB{sub 1} tumorigenicity. Mouse lung tumorigenesis was assessed following treatment of female A/J mice with 300 kU/kg PEG-CAT ip and/or 50 mg/kg AFB{sub 1}. Mice were killed 7 months post-treatment and tumors greater than 1 mm in diameter were excised. Unexpectedly, the mean number of tumors per mouse in the PEG-CAT + AFB{sub 1} group (8.81 {+-} 3.64, n = 47) was greater than that of the group treated with AFB{sub 1} alone (7.05 {+-} 3.45, n = 42) (P < 0.05). The tumors obtained from mice treated with PEG-CAT + AFB{sub 1} were larger than those from mice treated with AFB{sub 1} alone (P < 0.05). There was no difference in K-ras exon 1 mutation spectrum or in the histological diagnosis of tumors between AFB{sub 1} and PEG-CAT + AFB{sub 1} groups (P > 0.05). In vitro incubation with mouse liver catalase (CAT) resulted in conversion of [{sup 3}H]AFB{sub 1} into a DNA-binding species, a possible explanation for the results observed in vivo. These results demonstrate that PEG-CAT is not protective against AFB{sub 1} carcinogenicity in mouse lung despite preventing DNA oxidation.

  9. Lung regeneration by fetal lung tissue implantation in a mouse pulmonary emphysema model.

    PubMed

    Uyama, Koh; Sakiyama, Shoji; Yoshida, Mitsuteru; Kenzaki, Koichiro; Toba, Hiroaki; Kawakami, Yukikiyo; Okumura, Kazumasa; Takizawa, Hiromitsu; Kondo, Kazuya; Tangoku, Akira

    2016-01-01

    The mortality and morbidity of chronic obstructive pulmonary disease are high. However, no radical therapy has been developed to date. The purpose of this study was to evaluate whether fetal mouse lung tissue can grow and differentiate in the emphysematous lung. Fetal lung tissue from green fluorescent protein C57BL/6 mice at 16 days' gestation was used as donor material. Twelve-month-old pallid mice were used as recipients. Donor lungs were cut into small pieces and implanted into the recipient left lung by performing thoracotomy under anesthesia. The recipient mice were sacrificed at day 7, 14, and 28 after implantation and used for histological examination. Well-developed spontaneous pulmonary emphysema was seen in 12-month-old pallid mice. Smooth and continuous connection between implanted fetal lung tissue and recipient lung was recognized. Air space expansion and donor tissue differentiation were observed over time. We could clearly distinguish the border zones between injected tissue and native tissue by the green fluorescence of grafts. Fetal mouse lung fragments survived and differentiated in the emphysematous lung of pallid mice. Implantation of fetal lung tissue in pallid mice might lead to further lung regeneration research from the perspective of respiratory and exercise function. J. Med. Invest. 63: 182-186, August, 2016.

  10. Curcumin inhibits B[a]PDE-induced procarcinogenic signals in lung cancer cells, and curbs B[a]P-induced mutagenesis and lung carcinogenesis.

    PubMed

    Puliyappadamba, Vineshkumar T; Thulasidasan, Arun Kumar T; Vijayakurup, Vinod; Antony, Jayesh; Bava, Smitha V; Anwar, Shabna; Sundaram, Sankar; Anto, Ruby John

    2015-01-01

    Benzo[a]pyrene is a procarcinogen present in environment and cigarette smoke, which could be bio-transformed in vivo to B[a]PDE, a potent carcinogen known to form DNA adducts and induce mutations. We observed that curcumin, a known chemopreventive, could significantly inhibit the survival of lung cancer cells exposed to B[a]PDE. It also downregulates B[a]PDE-induced nuclear translocation of NF-κB as assessed by Electrophoretic Mobility Shift Assay (EMSA) and NF-κB-dependent reporter gene assay. Ames assay demonstrated its ability to revert the mutagenic property of benzo[a]pyrene. These observations prompted us to evaluate the efficacy of curcumin in preventing B[a]P-induced lung carcinogenesis in vivo and to explore the molecular mechanism associated with it. The average number of tumor nodules present in the lungs of the Swiss albino mice, which received benzo[a]pyrene, was significantly high compared to that received curcumin as 2% diet along with B[a]P. Curcumin treatment significantly reverted histopathological deviations in the lung tissues due to benzo[a]pyrene ingestion. Moreover, curcumin diet reduced benzo[a]pyrene-induced activation of NF-κB and MAPK signaling and Cox-2 transcription in lung tissues of mice. Taken together, this study illustrates multifaceted efficacy of curcumin in preventing lung cancer.

  11. Chronic hypercapnia alters lung matrix composition in mouse pups

    PubMed Central

    Heldt, Gregory P.; Nguyen, Mary; Gavrialov, Orit; Haddad, Gabriel G.

    2010-01-01

    Rationale: permissive hypercapnia, a stretch-limiting ventilation strategy, often results in high PaCO2. This strategy is associated with reduced morbidity and mortality in premature infants and its benefits have been attributed to diminished barotrauma. However, little is known about the independent effect of high CO2 levels during the lung development. Methods: mice were exposed to 8% CO2 or room air for 2 wk either from postnatal day 2 through 17 or as adults (∼2 mo of age). Lungs were excised and processed for protein, RNA, histology, and total lung volumes. Results: histologic analysis demonstrated that alveolar walls of CO2-exposed mouse pups were thinner than those of controls and had twice the total lung volume. Molecular analysis revealed that several matrix proteins in the lung were downregulated in mouse pups exposed to hypercapnia. Interstitial collagen type I α1, type III α1, elastin and fibronectin protein, and mRNA levels were less than half of controls while collagen IV α5 was unaffected. This decrease in interstitial collagen could thus account for the thinning of the interstitial matrix and the altered lung biomechanics. Matrix metalloproteinase (MMP)-8, a collagenase that has specificity for collagen types I and III, increased in hypercapnic mouse pups, suggesting increased collagen degradation. Moreover, tissue inhibitor of MMP (TIMP)-1, a potent inhibitor of MMP-8, was significantly decreased. However, unlike pups, adult mice exposed to hypercapnia demonstrated only a mild increase in total lung volumes and did not exhibit similar molecular or histologic changes. Conclusions: although permissive hypercapnia may prevent lung injury from barotrauma, our study revealed that exposure to hypercapnia may be an important factor in lung remodeling and function, especially in early life. PMID:20360436

  12. Surgical technique for lung retransplantation in the mouse

    PubMed Central

    Li, Wenjun; Goldstein, Daniel R.; Bribriesco, Alejandro C.; Nava, Ruben G.; Spahn, Jessica H.; Wang, Xingan; Gelman, Andrew E.; Krupnick, Alexander S.

    2013-01-01

    Microsurgical cuff techniques for orthotopic vascularized murine lung transplantation have allowed for the design of studies that examine mechanisms contributing to the high failure rate of pulmonary grafts. Here, we provide a detailed technical description of orthotopic lung retransplantation in mice, which we have thus far performed in 144 animals. The total time of the retransplantation procedure is approximately 55 minutes, 20 minutes for donor harvest and 35 minutes for the implantation, with a success rate exceeding 95%. The mouse lung retransplantation model represents a novel and powerful tool to examine how cells that reside in or infiltrate pulmonary grafts shape immune responses. PMID:23825768

  13. Model-Based Tumor Growth Dynamics and Therapy Response in a Mouse Model of De Novo Carcinogenesis

    PubMed Central

    Hadjiandreou, Marios M.; Rizki, Gizem; Achilleos, Achilleas; Strati, Katerina; Mitsis, Georgios D.

    2015-01-01

    Tumorigenesis is a complex, multistep process that depends on numerous alterations within the cell and contribution from the surrounding stroma. The ability to model macroscopic tumor evolution with high fidelity may contribute to better predictive tools for designing tumor therapy in the clinic. However, attempts to model tumor growth have mainly been developed and validated using data from xenograft mouse models, which fail to capture important aspects of tumorigenesis including tumor-initiating events and interactions with the immune system. In the present study, we investigate tumor growth and therapy dynamics in a mouse model of de novo carcinogenesis that closely recapitulates tumor initiation, progression and maintenance in vivo. We show that the rate of tumor growth and the effects of therapy are highly variable and mouse specific using a Gompertz model to describe tumor growth and a two-compartment pharmacokinetic/ pharmacodynamic model to describe the effects of therapy in mice treated with 5-FU. We show that inter-mouse growth variability is considerably larger than intra-mouse variability and that there is a correlation between tumor growth and drug kill rates. Our results show that in vivo tumor growth and regression in a double transgenic mouse model are highly variable both within and between subjects and that mathematical models can be used to capture the overall characteristics of this variability. In order for these models to become useful tools in the design of optimal therapy strategies and ultimately in clinical practice, a subject-specific modelling strategy is necessary, rather than approaches that are based on the average behavior of a given subject population which could provide erroneous results. PMID:26649886

  14. Modelling of carcinogenesis and low-dose hypersensitivity: an application to lung cancer incidence among atomic bomb survivors.

    PubMed

    Jacob, Vesna; Jacob, Peter

    2004-02-01

    Lung cancer incidence among the atomic bomb survivors from Hiroshima and Nagasaki was analysed with the two-step clonal expansion (TSCE) model of carcinogenesis. For the baseline incidence, a new set of model parameters is introduced, which can be determined with a higher precision than the parameter sets previously used. The effect of temporal changes in the smoking behaviour on the lung cancer incidence is modelled by allowing initiation, inactivation and division rates of intermediate cells to depend on the year of birth. The TSCE model is further developed by implementing low-dose hypersensitivity in the survival of lung epithelial cells. According to the model fit to the data, the acute gamma exposure of the atomic bomb survivors does not only result in the conventional initiating effect, but also in a promoting effect for lung cancer. Compared to the model in which radiation acts merely on initiation, the new model is in better agreement with the age-at-exposure dependence in the data, and it does not predict an unexpected increase of the excess relative risk (ERR) at 40 years after exposure. According to the new model, the ERR at low doses increases non-linearly with dose, especially during the first 10 years after exposure to older persons.

  15. ERBB3 is required for tumor promotion in a mouse model of skin carcinogenesis.

    PubMed

    Dahlhoff, Maik; Schäfer, Matthias; Muzumdar, Sukalp; Rose, Christian; Schneider, Marlon R

    2015-11-01

    The epidermal growth factor receptor (EGFR) plays a key role in skin inflammation, wound healing, and carcinogenesis. Less is known about the functions of the structurally related receptor ERBB3 (HER3) in the skin. We assessed the requirement of ERBB3 for skin homeostasis, wound healing, and tumorigenesis by crossing mice carrying a conditional Erbb3 allele with animals expressing cre under the control of the keratin 5 promoter. Erbb3(del) mice, lacking ERBB3 specifically in keratinocytes, showed no obvious abnormalities. The EGFR was upregulated in Erbb3(del) skin, possibly compensating the loss of ERBB3. Nonetheless, healing of full-thickness excisional wounds was negatively affected by ERBB3 deficiency. To analyze the function of ERBB3 during tumorigenesis, we employed the established DMBA/TPA multi-stage chemical carcinogenesis protocol. Erbb3(del) mice remained free of papillomas for a longer time and had significantly reduced tumor burden compared to control littermates. Tumor cell proliferation was considerably reduced in Erbb3(del) mice, and loss of ERBB3 also impaired keratinocyte proliferation after a single application of TPA. In human skin tumor samples, upregulated ERBB3 expression was observed in squamous cell carcinoma, condyloma, and malignant melanoma. Thus, we conclude that ERBB3, while dispensable for the development and the homeostasis of the epidermis and its appendages, is required for proper wound healing and for the progression of skin tumors during multi-stage chemical carcinogenesis in mice. ERBB3 may also be important for human skin cancer progression. The latter effects most probably reflect a key role for ERBB3 in increasing cell proliferation after stimuli as wounding or carcinogenesis. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  16. Epimorphin deletion inhibits polyposis in the Apcmin/+ mouse model of colon carcinogenesis via decreased myofibroblast HGF secretion

    PubMed Central

    Swietlicki, Elzbieta A.; Bala, Shashi; Lu, Jianyun; Shaker, Anisa; Kularatna, Gowri; Levin, Marc S.

    2013-01-01

    Interactions between the epithelium and surrounding mesenchyme/stroma play an important role in normal gut morphogenesis, the epithelial response to injury, and epithelial carcinogenesis. The tumor microenvironment, composed of stromal cells including myofibroblasts and immune cells, regulates tumor growth and the cancer stem cell niche. Deletion of epimorphin (Epim), a syntaxin family member expressed in myofibroblasts and macrophages, results in partial protection from colitis and from inflammation-induced colon cancer in mice. We sought to determine whether epimorphin deletion protects from polyposis in the Apcmin/+ mouse model of intestinal carcinogenesis. Epim−/− mice were crossed to Apcmin/+ mice; Apcmin/+ and Apcmin/+/Epim−/− mice were killed at 3 mo of age. Polyp numbers and sizes were quantified in small intestine and colon, and gene expression analyses for pathways relevant to epithelial carcinogenesis were performed. Primary myofibroblast cultures were isolated, and expression and secretion of selected growth factors from Apcmin/+ and Apcmin/+/Epim−/− myofibroblasts were examined by ELISA. Small bowel polyposis was significantly inhibited in Apcmin/+/Epim−/− compared with Apcmin/+ mice. Apcmin/+/Epim−/− compared with Apcmin/+ polyps and adjacent uninvolved intestinal mucosa had increased transforming growth factor-β (TGF-β) expression and signaling with increased P-Smad2/3 expression. Myofibroblasts isolated from Apcmin/+/Epim−/− vs. Apcmin/+ mice had markedly decreased hepatocyte growth factor (HGF) expression and secretion. We concluded that Epim deletion inhibits polyposis in Apcmin/+ mice, associated with increased mucosal TGF-β signaling and decreased myofibroblast HGF expression and secretion. Our data suggest that Epim deletion reduces tumorigenicity of the stromal microenvironment. PMID:23886856

  17. Prevention of azoxymethane/dextran sodium sulfate-induced mouse colon carcinogenesis by processed Aloe vera gel.

    PubMed

    Im, Sun-A; Kim, Ji-Wan; Kim, Hee-Suk; Park, Chan-Su; Shin, Eunju; Do, Seon-Gil; Park, Young In; Lee, Chong-Kil

    2016-11-01

    The preventive effect of a processed Aloe vera gel (PAG) on colon carcinogenesis was examined using an azoxymethane (AOM)-initiated and dextran sodium sulfate (DSS)-promoted mouse colon carcinogenesis model. Oral administration of PAG (200, or 400mg/kg/day) significantly reduced the multiplicity of colonic adenomas and adenocarcinomas compared with the AOM/DSS only-treated mice. In the mice treated with 400mg/kg of PAG, adenoma and adenocarcinoma development was reduced to 80% and 60%, respectively, compared to 100% in the PAG-untreated AOM/DSS-treated mice. Western blot analysis using colon extracts showed that PAG reduced the activation of nuclear factor kappa B (NF-κB), resulting in the inhibition of inducible nitric oxide synthase and cyclooxygenase-2 expression. PAG appeared to inhibit the NF-κB activation through the activation of peroxisome proliferator-activated receptor gamma. PAG also inhibited the expression and phosphorylation of signal transducer and activator of transcription 3, which is known to connect inflammation and cancer. In addition, PAG inhibited cell cycle progression-inducing cellular factors, such as extracellular signal-regulated kinases 1/2, cyclin-dependent kinase 4, and cyclin D1. On the other hand, PAG increased the expression of Caudal-related homeobox transcription factor 2, which is known to be a tumor suppressor in colorectal cancer. These findings show that PAG suppresses colitis-related colon carcinogenesis by inhibiting both chronic inflammation and cell cycle progression in the colon. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. The Expression of miR-375 Is Associated with Carcinogenesis in Three Subtypes of Lung Cancer

    PubMed Central

    Zhang, Jin; Huang, Wei; Jiang, Hongni; Hou, Yingyong; Xu, Chen; Zhai, Changwen; Gao, Xue; Wang, Shuyang; Wu, Ying; Zhu, Hongguang; Lu, Shaohua

    2015-01-01

    Many studies demonstrated unique microRNA profiles in lung cancer. Nonetheless, the role and related signal pathways of miR-375 in lung cancer are largely unknown. Our study investigated relationships between carcinogenesis and miR-375 in adenocarcinoma, squamous cell carcinoma and small cell lung carcinoma to identify new molecular targets for treatment. We evaluated 723 microRNAs in microdissected cancerous cells and adjacent normal cells from 126 snap-frozen lung specimens using microarrays. We validated the expression profiles of miR-375 and its 22 putative target mRNAs in an independent cohort of 78 snap-frozen lung cancer tissues using quantitative reverse-transcriptase PCR. Moreover, we performed dual luciferase reporter assay and Western blot on 6 targeted genes (FZD8, ITGA10, ITPKB, LRP5, PIAS1 andRUNX1) in small cell lung carcinoma cell line NCI-H82. We also detected the effect of miR-375 on cell proliferation in NCI-H82. We found that miR-375 expression was significantly up-regulated in adenocarcinoma and small cell lung carcinoma but down-regulated in squamous cell carcinoma. Among the 22 putative target genes, 11 showed significantly different expression levels in at least 2 of 3 pair-wise comparisons (adenocarcinoma vs. normal, squamous cell carcinoma vs. normal or small cell lung carcinoma vs. normal). Six targeted genes had strong negative correlation with the expression level of miR-375 in small cell lung carcinoma. Further investigation revealed that miR-375 directly targeted the 3’UTR of ITPKB mRNA and over-expression of miR-375 led to significantly decreased ITPKB protein level and promoted cell growth. Thus, our study demonstrates the differential expression profiles of miR-375 in 3 subtypes of lung carcinomas and finds thatmiR-375 directly targets ITPKB and promoted cell growth in SCLC cell line. PMID:26642205

  19. Evaluation of the cancer chemopreventive efficacy of rice bran in genetic mouse models of breast, prostate and intestinal carcinogenesis

    PubMed Central

    Verschoyle, R D; Greaves, P; Cai, H; Edwards, R E; Steward, W P; Gescher, A J

    2007-01-01

    Brown rice is a staple dietary constituent in Asia, whereas rice consumed in the Western world is generally white, obtained from brown rice by removal of the bran. We tested the hypothesis that rice bran interferes with development of tumours in TAg, TRansgenic Adenocarcinoma of the Mouse Prostate (TRAMP) or ApcMin mice, genetic models of mammary, prostate and intestinal carcinogenesis, respectively. Mice received rice bran (30%) in AIN-93G diet throughout their post-weaning lifespan. In TAg and TRAMP mice, rice bran did not affect carcinoma development. In TRAMP or wild-type C57Bl6/J mice, dietary rice bran increased kidney weight by 18 and 20%, respectively. Consumption of rice bran reduced numbers of intestinal adenomas in ApcMin mice by 51% (P<0.01), compared to mice on control diet. In parallel, dietary rice bran decreased intestinal haemorrhage in these mice, as reflected by increased haematocrit. At 10% in the diet, rice bran did not significantly retard ApcMin adenoma development. Likewise, low-fibre rice bran (30% in the diet) did not affect intestinal carcinogenesis, suggesting that the fibrous constituents of the bran mediate chemopreventive efficacy. The results suggest that rice bran might be beneficially evaluated as a putative chemopreventive intervention in humans with intestinal polyps. PMID:17211473

  20. In vivo compartmental analysis of leukocytes in mouse lungs

    PubMed Central

    Patel, Brijesh V.; Tatham, Kate C.; Wilson, Michael R.; O'Dea, Kieran P.

    2015-01-01

    The lung has a unique structure consisting of three functionally different compartments (alveolar, interstitial, and vascular) situated in an extreme proximity. Current methods to localize lung leukocytes using bronchoalveolar lavage and/or lung perfusion have significant limitations for determination of location and phenotype of leukocytes. Here we present a novel method using in vivo antibody labeling to enable accurate compartmental localization/quantification and phenotyping of mouse lung leukocytes. Anesthetized C57BL/6 mice received combined in vivo intravenous and intratracheal labeling with fluorophore-conjugated anti-CD45 antibodies, and lung single-cell suspensions were analyzed by flow cytometry. The combined in vivo intravenous and intratracheal CD45 labeling enabled robust separation of the alveolar, interstitial, and vascular compartments of the lung. In naive mice, the alveolar compartment consisted predominantly of resident alveolar macrophages. The interstitial compartment, gated by events negative for both intratracheal and intravenous CD45 staining, showed two conventional dendritic cell populations, as well as a Ly6Clo monocyte population. Expression levels of MHCII on these interstitial monocytes were much higher than on the vascular Ly6Clo monocyte populations. In mice exposed to acid aspiration-induced lung injury, this protocol also clearly distinguished the three lung compartments showing the dynamic trafficking of neutrophils and exudative monocytes across the lung compartments during inflammation and resolution. This simple in vivo dual-labeling technique substantially increases the accuracy and depth of lung flow cytometric analysis, facilitates a more comprehensive examination of lung leukocyte pools, and enables the investigation of previously poorly defined “interstitial” leukocyte populations during models of inflammatory lung diseases. PMID:26254421

  1. Genetic deletion of the desmosomal component desmoplakin promotes tumor microinvasion in a mouse model of pancreatic neuroendocrine carcinogenesis.

    PubMed

    Chun, Matthew G H; Hanahan, Douglas

    2010-09-16

    We used the RIP1-Tag2 (RT2) mouse model of islet cell carcinogenesis to profile the transcriptome of pancreatic neuroendocrine tumors (PNET) that were either non-invasive or highly invasive, seeking to identify pro- and anti-invasive molecules. Expression of multiple components of desmosomes, structures that help maintain cellular adhesion, was significantly reduced in invasive carcinomas. Genetic deletion of one of these desmosomal components, desmoplakin, resulted in increased local tumor invasion without affecting tumor growth parameters in RT2 PNETs. Expression of cadherin 1, a component of the adherens junction adhesion complex, was maintained in these tumors despite the genetic deletion of desmoplakin. Our results demonstrate that loss of desmoplakin expression and resultant disruption of desmosomal adhesion can promote increased local tumor invasion independent of adherens junction status.

  2. Cholera toxin, a potent inducer of epidermal hyperplasia but with no tumor promoting activity in mouse skin carcinogenesis

    SciTech Connect

    Kuroki, T.; Chida, K.; Munakata, K.; Murakami, Y.

    1986-05-29

    Intracutaneous injection of cholera toxin into mice induced epidermal hyperplasia to a greater extent than 12-O-tetra-decanoylphorbol-13-acetate. It also induced adenylate cyclase and through weakly, ornithine decarboxylase of the epidermis. Cholera toxin, however, showed no tumor promoting activity in mouse skin carcinogenesis. In the single stage promotion, cholera toxin (50 ng) was injected once a week for 10 weeks into the skin of SENCAR mice initiated with 25 ..mu..g 7,12-dimethyl-benz(a)anthracene, but no tumors developed. In the two-stage promotion test, cholera toxin (10-100 ng) was injected for one or two weeks into the initiated skin and then mezerein (4 ..mu..g) was applied twice a week for 18 weeks, but the toxin did not increase incidence or numbers of papillomas.

  3. Dissection of human papillomavirus E6 and E7 function in transgenic mouse models of cervical carcinogenesis.

    PubMed

    Riley, Rebeccah R; Duensing, Stefan; Brake, Tiffany; Münger, Karl; Lambert, Paul F; Arbeit, Jeffrey M

    2003-08-15

    Human cervix cancer is caused by high-risk human papillomaviruses encoding E6 and E7 oncoproteins, each of which alter function of distinct targets regulating the cell cycle, apoptosis, and differentiation. Here we determined the molecular contribution of E6 or E7 to neoplastic progression and malignant growth in a transgenic mouse model of cervical carcinogenesis. E7 increased proliferation and centrosome copy number, and produced progression to multifocal microinvasive cervical cancers. E6 elevated centrosome copy number and eliminated detectable p53 protein, but did not produce neoplasia or cancer. E6 plus E7 additionally elevated centrosome copy number and created large, extensively invasive cancers. Centrosome copy number increases and p53 loss likely contributed to malignant growth; however, dysregulated proliferation and differentiation were required for carcinogenic progression.

  4. Multi-walled carbon nanotube-induced gene signatures in the mouse lung: potential predictive value for human lung cancer risk and prognosis

    PubMed Central

    Guo, Nancy L; Wan, Ying-Wooi; Denvir, James; Porter, Dale W; Pacurari, Maricica; Wolfarth, Michael G; Castranova, Vincent; Qian, Yong

    2012-01-01

    Concerns over the potential for multi-walled carbon nanotubes (MWCNT) to induce lung carcinogenesis have emerged. This study sought to (1) identify gene expression signatures in the mouse lungs following pharyngeal aspiration of well-dispersed MWCNT and (2) determine if these genes were associated with human lung cancer risk and progression. Genome-wide mRNA expression profiles were analyzed in mouse lungs (n=160) exposed to 0, 10, 20, 40, or 80 µg of MWCNT by pharyngeal aspiration at 1, 7, 28, and 56 days post-exposure. By using pairwise-Statistical Analysis of Microarray (SAM) and linear modeling, 24 genes were selected, which have significant changes in at least two time points, have a more than 1.5 fold change at all doses, and are significant in the linear model for the dose or the interaction of time and dose. Additionally, a 38-gene set was identified as related to cancer from 330 genes differentially expressed at day 56 post-exposure in functional pathway analysis. Using the expression profiles of the cancer-related gene set in 8 mice at day 56 post-exposure to 10 µg of MWCNT, a nearest centroid classification accurately predicts human lung cancer survival with a significant hazard ratio in training set (n=256) and test set (n=186). Furthermore, both gene signatures were associated with human lung cancer risk (n=164) with significant odds ratios. These results may lead to development of a surveillance approach for early detection of lung cancer and prognosis associated with MWCNT in the workplace. PMID:22891886

  5. Suppressed rate of carcinogenesis and decreases in tumour volume and lung metastasis in CXCL14/BRAK transgenic mice.

    PubMed

    Hata, Ryu-Ichiro; Izukuri, Kazuhito; Kato, Yasumasa; Sasaki, Soichiro; Mukaida, Naofumi; Maehata, Yojiro; Miyamoto, Chihiro; Akasaka, Tetsu; Yang, Xiaoyan; Nagashima, Yoji; Takeda, Kazuyoshi; Kiyono, Tohru; Taniguchi, Masaru

    2015-03-13

    Cancer progression involves carcinogenesis, an increase in tumour size, and metastasis. Here, we investigated the effect of overexpressed CXC chemokine ligand 14 (CXCL14) on these processes by using CXCL14/BRAK (CXCL14) transgenic (Tg) mice. The rate of AOM/DSS-induced colorectal carcinogenesis in these mice was significantly lower compared with that for isogenic wild type C57BL/6 (Wt) mice. When tumour cells were injected into these mice, the size of the tumours that developed and the number of metastatic nodules in the lungs of the animals were always significantly lower in the Tg mice than in the Wt ones. Injection of anti-asialo-GM1 antibodies to the mice before and after injection of tumour cells attenuated the suppressing effects of CXCL14 on the tumor growth and metastasis, suggesting that NK cell activity played an important role during CXCL14-mediated suppression of tumour growth and metastasis. The importance of NK cells on the metastasis was also supported when CXCL14 was expressed in B16 melanoma cells. Further, the survival rates after tumour cell injection were significantly increased for the Tg mice. As these Tg mice showed no obvious abnormality, we propose that CXCL14 to be a promising molecular target for cancer suppression/prevention.

  6. Methods of in-vivo mouse lung micro-CT

    NASA Astrophysics Data System (ADS)

    Recheis, Wolfgang A.; Nixon, Earl; Thiesse, Jacqueline; McLennan, Geoffrey; Ross, Alan; Hoffman, Eric

    2005-04-01

    Micro-CT will have a profound influence on the accumulation of anatomical and physiological phenotypic changes in natural and transgenetic mouse models. Longitudinal studies will be greatly facilitated, allowing for a more complete and accurate description of events if in-vivo studies are accomplished. The purpose of the ongoing project is to establish a feasible and reproducible setup for in-vivo mouse lung micro-computed tomography (μCT). We seek to use in-vivo respiratory-gated μCT to follow mouse models of lung disease with subsequent recovery of the mouse. Methodologies for optimizing scanning parameters and gating for the in-vivo mouse lung are presented. A Scireq flexiVent ventilated the gas-anesthetized mice at 60 breaths/minute, 30 cm H20 PEEP, 30 ml/kg tidal volume and provided a respiratory signal to gate a Skyscan 1076 μCT. Physiologic monitoring allowed the control of vital functions and quality of anesthesia, e.g. via ECG monitoring. In contrary to longer exposure times with ex-vivo scans, scan times for in-vivo were reduced using 35μm pixel size, 158ms exposure time and 18μm pixel size, 316ms exposure time to reduce motion artifacts. Gating via spontaneous breathing was also tested. Optimal contrast resolution was achieved at 50kVp, 200μA, applying an aluminum filter (0.5mm). There were minimal non-cardiac related motion artifacts. Both 35μm and 1μm voxel size images were suitable for evaluation of the airway lumen and parenchymal density. Total scan times were 30 and 65 minutes respectively. The mice recovered following scanning protocols. In-vivo lung scanning with recovery of the mouse delivered reasonable image quality for longitudinal studies, e.g. mouse asthma models. After examining 10 mice, we conclude μCT is a feasible tool evaluating mouse models of lung pathology in longitudinal studies with increasing anatomic detail available for evaluation as one moves from in-vivo to ex-vivo studies. Further developments include automated

  7. Progression of Mouse Skin Carcinogenesis Is Associated with Increased Erα Levels and Is Repressed by a Dominant Negative Form of Erα

    PubMed Central

    Michalopoulos, Ioannis; Sideridou, Maria; Tsimaratou, Katerina; Christodoulou, Ioannis; Pyrillou, Katerina; Gorgoulis, Vassilis; Vlahopoulos, Spiros; Zoumpourlis, Vassilis

    2012-01-01

    Estrogen receptors (ER), namely ERα and ERβ, are hormone-activated transcription factors with an important role in carcinogenesis. In the present study, we aimed at elucidating the implication of ERα in skin cancer, using chemically-induced mouse skin tumours, as well as cell lines representing distinct stages of mouse skin oncogenesis. First, using immunohistochemical staining we showed that ERα is markedly increased in aggressive mouse skin tumours in vivo as compared to the papilloma tumours, whereas ERβ levels are low and become even lower in the aggressive spindle tumours of carcinogen-treated mice. Then, using the multistage mouse skin carcinogenesis model, we showed that ERα gradually increases during promotion and progression stages of mouse skin carcinogenesis, peaking at the most aggressive stage, whereas ERβ levels only slightly change throughout skin carcinogenesis. Stable transfection of the aggressive, spindle CarB cells with a dominant negative form of ERα (dnERα) resulted in reduced ERα levels and reduced binding to estrogen responsive elements (ERE)-containing sequences. We characterized two highly conserved EREs on the mouse ERα promoter through which dnERα decreased endogenous ERα levels. The dnERα-transfected CarB cells presented altered protein levels of cytoskeletal and cell adhesion molecules, slower growth rate and impaired anchorage-independent growth in vitro, whereas they gave smaller tumours with extended latency period of tumour onset in vivo. Our findings suggest an implication of ERα in the aggressiveness of spindle mouse skin cancer cells, possibly through regulation of genes affecting cell shape and adhesion, and they also provide hints for the effective targeting of spindle cancer cells by dnERα. PMID:22870269

  8. Impaired CK1 Delta Activity Attenuates SV40-Induced Cellular Transformation In Vitro and Mouse Mammary Carcinogenesis In Vivo

    PubMed Central

    Hirner, Heidrun; Günes, Cagatay; Bischof, Joachim; Wolff, Sonja; Grothey, Arnhild; Kühl, Marion; Oswald, Franz; Wegwitz, Florian; Bösl, Michael R.; Trauzold, Anna; Henne-Bruns, Doris; Peifer, Christian; Leithäuser, Frank; Deppert, Wolfgang; Knippschild, Uwe

    2012-01-01

    Simian virus 40 (SV40) is a powerful tool to study cellular transformation in vitro, as well as tumor development and progression in vivo. Various cellular kinases, among them members of the CK1 family, play an important role in modulating the transforming activity of SV40, including the transforming activity of T-Ag, the major transforming protein of SV40, itself. Here we characterized the effects of mutant CK1δ variants with impaired kinase activity on SV40-induced cell transformation in vitro, and on SV40-induced mammary carcinogenesis in vivo in a transgenic/bi-transgenic mouse model. CK1δ mutants exhibited a reduced kinase activity compared to wtCK1δ in in vitro kinase assays. Molecular modeling studies suggested that mutation N172D, located within the substrate binding region, is mainly responsible for impaired mutCK1δ activity. When stably over-expressed in maximal transformed SV-52 cells, CK1δ mutants induced reversion to a minimal transformed phenotype by dominant-negative interference with endogenous wtCK1δ. To characterize the effects of CK1δ on SV40-induced mammary carcinogenesis, we generated transgenic mice expressing mutant CK1δ under the control of the whey acidic protein (WAP) gene promoter, and crossed them with SV40 transgenic WAP-T-antigen (WAP-T) mice. Both WAP-T mice as well as WAP-mutCK1δ/WAP-T bi-transgenic mice developed breast cancer. However, tumor incidence was lower and life span was significantly longer in WAP-mutCK1δ/WAP-T bi-transgenic animals. The reduced CK1δ activity did not affect early lesion formation during tumorigenesis, suggesting that impaired CK1δ activity reduces the probability for outgrowth of in situ carcinomas to invasive carcinomas. The different tumorigenic potential of SV40 in WAP-T and WAP-mutCK1δ/WAP-T tumors was also reflected by a significantly different expression of various genes known to be involved in tumor progression, specifically of those involved in wnt-signaling and DNA repair. Our data

  9. Overlapping loss of heterozygosity by mitotic recombination on mouse chromosome 7F1-ter in skin carcinogenesis.

    PubMed Central

    Bianchi, A B; Navone, N M; Aldaz, C M; Conti, C J

    1991-01-01

    A significant role for mouse chromosome 7 abnormalities during chemically induced skin carcinogenesis has been advanced based on previous cytogenetic and molecular studies. To determine the frequency of allelic losses at different loci of chromosome 7 in skin tumors induced in the outbred SENCAR mouse stock by a two-stage initiation-promotion protocol, we compared the constitutional and tumor genotypes of premalignant papillomas and squamous cell carcinomas for loss of heterozygosity at different informative loci. In a previous study, these tumors had been analyzed for their allelic composition at the Harvey ras-1 (Ha-ras-1) locus and it was found that 39% of squamous cell carcinomas had lost the normal Ha-ras-1 allele exhibiting 3 or 2 copies of the mutated counterpart or gene amplification. In the present study, by combining Southern blot and polymerase chain reaction fragment length polymorphism analyses, we detected complete loss of heterozygosity at the beta-globin (Hbb) locus, distal to Ha-ras-1, in 15 of 20 (75%) skin carcinomas. In addition, 5 of 5 informative cases attained homozygosity at the int-2 locus, 27 centimorgans distal to Hbb. Polymerase chain reaction analysis of DNA extracted from papillomas devoid of stromal contamination by fluorescence-activated sorting of single cell dispersions immunolabeled with anti-keratin 13 antibody revealed loss of heterozygosity at the Hbb locus, demonstrating that this event occurs during premalignant stages of tumor development. Interestingly, loss of heterozygosity was only detected in late-stage lesions exhibiting a high degree of dysplasia and areas of microinvasion. Analysis of allelic ratios by densitometric scanning of tumors that had become homozygous at Hbb but retained heterozygosis at Ha-ras-1 indicated mitotic recombination as the mechanism underlying loss of heterozygosity on mouse chromosome 7 during chemically induced skin carcinogenesis. These findings are consistent with the presence of a putative

  10. Hyperpolarized helium-3 mouse lung MRI: Studies of lung structure and function

    NASA Astrophysics Data System (ADS)

    Dugas, Joseph Paul

    Hyperpolarized 3He magnetic resonance imaging (MRI) of human and animal lungs has displayed promising and useful applications to studies of lung structure and function in both healthy and diseased lungs. Hyperpolarized 3He MRI allows the visualization of gas in the gas-exchange spaces of the lungs (as opposed to tissue) and has proven especially effective in studying diseases that are characterized by ventilation defects, such as emphysema. In particular, in-vivo measurements of the 3He apparent diffusion coefficient (ADC) can quantify lung structure by measuring its restrictive effects on the motion of 3He spins. This allows for detection and longitudinal tracking of changes in micro-architecture that result from disease destruction of alveolar walls. Due, in part, to the difficulties inherent in administering and imaging hyperpolarized 3He within the small (0.5 cc volume) mouse lung, applications of hyperpolarized 3He MRI techniques to laboratory mice are scarce. We have been able to implement and improve the techniques of hyperpolarized 3He mouse lung MRI and subsequently apply them to studies of several mouse models of disease, including elastase-induced emphysema, smoking-induced emphysema, and lung cancer. Here we detail the design, development, and implementation of a versatile, electronically-controlled, small animal ventilator that is capable of delivering tiny volumes of hyperpolarized 3He, mixed with oxygen, to the mouse and is also compatible with both the easily depolarized 3He gas and the highly magnetic environment within and around an imaging magnet. Also described are NM techniques developed to improve the signal-to-noise ratio of our images and effectively utilize the gas hyperpolarization. Applications of these technologies and techniques to small animal models of disease are presented wherein we have measured up to a 35% increase in 3He ADC in mice with elastase-induced emphysema as compared to healthy mice. We also demonstrate the potential

  11. Mouse lung-tumor assay: a final report

    SciTech Connect

    Smith, L.H.; Witschi, H.P.

    1983-05-01

    The objective was to validate a lung tumor assay. Agents evaluated included 5 complex mixtures from modern synfuel processes, 8 nitrated toluenes and 30 compounds which had been tested previously in a standard 2-year NCI-type carcinogenesis bioassay. Male A/Jax mice were injected 3 times a week, for eight consecutive weeks, with different test substances. After the last injection, the animals were left undisturbed for another 4 months, and then they were killed. The carcinogenic potential of the substances was evaluated by counting the number of visible tumors on the lung surface. The average number of tumors per lung was calculated for each group (tumor multiplicity). Tumor incidence and tumor multiplicity for each treatment group was compared to appropriate vehicle control groups. Statistical tests used were Chi-square for tumor incidence and Student's t-test for tumor multiplicity; a p value of 0.05 or less was considered to be significant. Very few of the substances tested were found to give an unequivocally positive response. Shale oil and two of its derivatives and two tar mixtures from a coal gasifier were clearly positive. No positives were found in a series of nitrated toluenes. Out of 18 compounds known with certainty to be animal or human carcinogens, the lung tumor assay correctly identified only 5 as having carcinogenic potential. In view of these data we concluded that the lung tumor assay, as developed and advocated (Advances in Cancer Research 21, 1 to 58, 1975), was not sensitive or accurate enough to serve as a short-term in vivo screening procedure for carcinogens.

  12. Inhibitory effects of chlorophyllin on 7,12-dimethylbenz[a]anthracene-induced bacterial mutagenesis and mouse skin carcinogenesis.

    PubMed

    Chung, W Y; Lee, J M; Park, M Y; Yook, J I; Kim, J; Chung, A S; Surh, Y J; Park, K K

    1999-10-18

    Chlorophyllin (CHL), a water-soluble derivative of chlorophyll, has been used for the treatment of several abnormal human conditions without apparent toxicity. Recent studies have revealed that CHL has the excellent chemopreventive potential. In the present investigation, we have found the inhibitory activities of CHL against 7,12-dimethylbenz[a]anthracene (DMBA)-induced mutagenesis in Salmonella typhimurium TA100 and also on DMBA-initiated and 12-O-tetradecanoyl-phorbol-13-acetate (TPA)-promoted mouse skin tumor formation. The incidence and the multiplicity of skin tumors were not significantly decreased in mice by a single topical application of CHL prior to the DMBA treatment, but there was a marked suppression of papillomagenesis in mice treated with CHL during the promotional stage. Furthermore, the formation of DMBA-induced papillomagenesis was reduced in all mice that had received CHL for 6 weeks following treatment with TPA for 6, 18 and 24 weeks. These results indicate that CHL can inhibit both tumor promotion and the progression of papillomagenesis in the two-stage mouse skin carcinogenesis induced by DMBA and TPA.

  13. Pilot study of CYP2B6 genetic variation to explore the contribution of nitrosamine activation to lung carcinogenesis.

    PubMed

    Wassenaar, Catherine A; Dong, Qiong; Amos, Christopher I; Spitz, Margaret R; Tyndale, Rachel F

    2013-04-16

    We explored the contribution of nitrosamine metabolism to lung cancer in a pilot investigation of genetic variation in CYP2B6, a high-affinity enzymatic activator of tobacco-specific nitrosamines with a negligible role in nicotine metabolism. Previously we found that variation in CYP2A6 and CHRNA5-CHRNA3-CHRNB4 combined to increase lung cancer risk in a case-control study in European American ever-smokers (n = 860). However, these genes are involved in the pharmacology of both nicotine, through which they alter smoking behaviours, and carcinogenic nitrosamines. Herein, we separated participants by CYP2B6 genotype into a high- vs. low-risk group (*1/*1 + *1/*6 vs. *6/*6). Odds ratios estimated through logistic regression modeling were 1.25 (95% CI 0.68-2.30), 1.27 (95% CI 0.89-1.79) and 1.56 (95% CI 1.04-2.31) for CYP2B6, CYP2A6 and CHRNA5-CHRNA3-CHRNB4, respectively, with negligible differences when all genes were evaluated concurrently. Modeling the combined impact of high-risk genotypes yielded odds ratios that rose from 2.05 (95% CI 0.39-10.9) to 2.43 (95% CI 0.47-12.7) to 3.94 (95% CI 0.72-21.5) for those with 1, 2 and 3 vs. 0 high-risk genotypes, respectively. Findings from this pilot point to genetic variation in CYP2B6 as a lung cancer risk factor supporting a role for nitrosamine metabolic activation in the molecular mechanism of lung carcinogenesis.

  14. Studies on the mechanisms involved in multistage carcinogenesis in mouse skin

    SciTech Connect

    Slaga, T.J.; Fischer, S.M.; Weeks, C.E.; Klein-Szanto, A.J.P.; Reiners, J.

    1982-01-01

    Skin tumors can be effectively induced in mice by the repetitive application of a carcinogen. The relative order of sensitivity to complete carcinogenesis is Sencar > CD-1 > C57BL/6 greater than or equal to BALB/c greater than or equal to ICR/Ha Swiss > C3H. Skin tumors in mice can also be induced by the sequential application of a subthreshold dose of a carcinogen (initiation phase) followed by repetitive treatment with a weak or noncarcinogenic tumor promoter (promotion phase) followed by repetitive treatment with a weak or noncarcinogenic tumor promoter (promotion phase). The relative order of sensitivity to initiation-promotion is Sencar > > CD-1 > ICR/Ha Swiss greater than or equal to Balb/c > C57BL/6 greater than or equal to C3H greater than or equal to DBA/2. The phorbol ester tumor promoters have been shown to have several cellular and biochemical effects on the skin. Of all the observed phorbol ester related effects on the skin, the induction of epidermal cell proliferation, polyamines, prostagladins, and dark basal keratinocytes as well as other embryonic conditions appear to correlate the best with promotion. Mezerein, a weak promoter, was found to induce many cellular and biochemical changes similar to 12-O-tetradecanoylphorbol-13 acetate (TPA), especially epidermal hyperplasia and polyamines; however, it was not a potent inducer of dark cells. Although C57BL/6 mice are relatively resistant to initiation-promotion by PAH initiation and phorbol ester promotion, they are fairly sensitive to complete carcinogenesis by PAH. This suggests that the C57BL/6 mice are resistant to phorbol ester tumor promotion. Preliminary experiments suggest that C57BL/6 and Sencar mice respond qualitatively but not quantitatively to a single treatment with TPA.

  15. MALDI imaging MS of phospholipids in the mouse lung[S

    PubMed Central

    Berry, Karin A. Zemski; Li, Bilan; Reynolds, Susan D.; Barkley, Robert M.; Gijón, Miguel A.; Hankin, Joseph A.; Henson, Peter M.; Murphy, Robert C.

    2011-01-01

    Lipid mediators are important in lung biochemistry and are derived from the enzymatic oxidation of arachidonic and docosahexaenoic acids, which are PUFAs that are present in phospholipids in cell membranes. In this study, MALDI imaging MS was used to determine the localization of arachidonate- and docosahexaenoate-containing phospholipids in mouse lung. These PUFA-containing phospholipids were determined to be uniquely abundant at the lining of small and large airways, which were unequivocally identified by immunohistochemistry. In addition, it was found that the blood vessels present in the lung were characterized by sphingomyelin molecular species, and lung surfactant phospholipids appeared evenly distributed throughout the lung parenchyma, indicating alveolar localization. This technique revealed unexpected high concentrations of arachidonate- and docosahexaenoate-containing phospholipids lining the airways in pulmonary tissue, which could serve as precursors of lipid mediators affecting airways biology. PMID:21508254

  16. Protandim, a fundamentally new antioxidant approach in chemoprevention using mouse two-stage skin carcinogenesis as a model.

    PubMed

    Liu, Jianfeng; Gu, Xin; Robbins, Delira; Li, Guohong; Shi, Runhua; McCord, Joe M; Zhao, Yunfeng

    2009-01-01

    Oxidative stress is an important contributor to cancer development. Consistent with that, antioxidant enzymes have been demonstrated to suppress tumorigenesis when being elevated both in vitro and in vivo, making induction of these enzymes a more potent approach for cancer prevention. Protandim, a well-defined combination of widely studied medicinal plants, has been shown to induce superoxide dismutase (SOD) and catalase activities and reduce superoxide generation and lipid peroxidation in healthy human subjects. To investigate whether Protandim can suppress tumor formation by a dietary approach, a two-stage mouse skin carcinogenesis study was performed. At the end of the study, the mice on a Protandim-containing basal diet had similar body weight compared with those on the basal diet, which indicated no overt toxicity by Protandim. After three weeks on the diets, there was a significant increase in the expression levels of SOD and catalase, in addition to the increases in SOD activities. Importantly, at the end of the carcinogenesis study, both skin tumor incidence and multiplicity were reduced in the mice on the Protandim diet by 33% and 57% respectively, compared with those on basal diet. Biochemical and histological studies revealed that the Protandim diet suppressed tumor promoter-induced oxidative stress (evidenced by reduction of protein carbonyl levels), cell proliferation (evidenced by reduction of skin hyperplasia and suppression of PKC/JNK/Jun pathway), and inflammation (evidenced by reduction of ICAM-1/VCAM-1 expression, NF-kappaB binding activity, and nuclear p65/p50 levels). Overall, induction of antioxidant enzymes by Protandim may serve as a practical and potent approach for cancer prevention.

  17. Protandim, a Fundamentally New Antioxidant Approach in Chemoprevention Using Mouse Two-Stage Skin Carcinogenesis as a Model

    PubMed Central

    Liu, Jianfeng; Gu, Xin; Robbins, Delira; Li, Guohong; Shi, Runhua; McCord, Joe M.; Zhao, Yunfeng

    2009-01-01

    Oxidative stress is an important contributor to cancer development. Consistent with that, antioxidant enzymes have been demonstrated to suppress tumorigenesis when being elevated both in vitro and in vivo, making induction of these enzymes a more potent approach for cancer prevention. Protandim, a well-defined combination of widely studied medicinal plants, has been shown to induce superoxide dismutase (SOD) and catalase activities and reduce superoxide generation and lipid peroxidation in healthy human subjects. To investigate whether Protandim can suppress tumor formation by a dietary approach, a two-stage mouse skin carcinogenesis study was performed. At the end of the study, the mice on a Protandim-containing basal diet had similar body weight compared with those on the basal diet, which indicated no overt toxicity by Protandim. After three weeks on the diets, there was a significant increase in the expression levels of SOD and catalase, in addition to the increases in SOD activities. Importantly, at the end of the carcinogenesis study, both skin tumor incidence and multiplicity were reduced in the mice on the Protandim diet by 33% and 57% respectively, compared with those on basal diet. Biochemical and histological studies revealed that the Protandim diet suppressed tumor promoter-induced oxidative stress (evidenced by reduction of protein carbonyl levels), cell proliferation (evidenced by reduction of skin hyperplasia and suppression of PKC/JNK/Jun pathway), and inflammation (evidenced by reduction of ICAM-1/VCAM-1 expression, NF-κB binding activity, and nuclear p65/p50 levels). Overall, induction of antioxidant enzymes by Protandim may serve as a practical and potent approach for cancer prevention. PMID:19384424

  18. Genetic ablation of caspase-7 promotes solar-simulated light-induced mouse skin carcinogenesis: the involvement of keratin-17

    PubMed Central

    Lee, Mee-Hyun; Lim, Do Young; Kim, Myoung Ok; Lee, Sung-Young; Shin, Seung Ho; Kim, Jae Young; Kim, Sung-Hyun; Kim, Dong Joon; Jung, Sung Keun; Yao, Ke; Kundu, Joydeb Kumar; Lee, Hye Suk; Lee, Cheol-Jung; Dickinson, Sally E.; Alberts, David; Bowden, G.Timothy; Stratton, Steven; Curiel, Clara; Einspahr, Janine; Bode, Ann M.; Surh, Young-Joon; Dong, Zigang

    2015-01-01

    Solar ultraviolet irradiation is an environmental carcinogen that causes skin cancer. Caspase-7 is reportedly expressed at reduced levels in many cancers. The present study was designed to examine the role of caspase-7 in solar-simulated light (SSL)-induced skin cancer and to elucidate its underlying molecular mechanisms. Our study revealed that mice with genetic deficiency of caspase-7 are highly susceptible to SSL-induced skin carcinogenesis. Epidermal hyperplasia, tumor volume and the average number of tumors were significantly increased in caspase-7 knockout (KO) mice compared with SKH1 wild-type mice irradiated with SSL. The expression of cell proliferation markers, such as survivin and Ki-67, was elevated in SSL-irradiated skin of caspase-7 KO mice compared with those observed in SSL-exposed wild-type SKH1 mouse skin. Moreover, SSL-induced apoptosis was abolished in skin from caspase-7 KO mice. Two-dimensional gel electrophoresis, followed by matrix-assisted laser desorption/ionization-time-of-flight analysis of skin tissue lysates from SSL-irradiated SKH1 wild-type and caspase-7 KO mice revealed an aberrant induction of keratin-17 in caspase-7 KO mice. Immunohistochemical analysis of skin tumors also showed an increase of keratin-17 expression in caspase-7 KO mice compared with SKH1 wild-type mice. The expression of keratin-17 was also elevated in SSL-irradiated caspase-7 KO keratinocytes as well as in human basal cell carcinomas. The in vitro caspase activity assay showed keratin-17 as a substrate of caspase-7, but not caspase-3. Overall, our study demonstrates that genetic loss of caspase-7 promotes SSL-induced skin carcinogenesis by blocking caspase-7-mediated cleavage of keratin-17. PMID:26271098

  19. Genetic ablation of caspase-7 promotes solar-simulated light-induced mouse skin carcinogenesis: the involvement of keratin-17.

    PubMed

    Lee, Mee-Hyun; Lim, Do Young; Kim, Myoung Ok; Lee, Sung-Young; Shin, Seung Ho; Kim, Jae Young; Kim, Sung-Hyun; Kim, Dong Joon; Jung, Sung Keun; Yao, Ke; Kundu, Joydeb Kumar; Lee, Hye Suk; Lee, Cheol-Jung; Dickinson, Sally E; Alberts, David; Bowden, G Timothy; Stratton, Steven; Curiel, Clara; Einspahr, Janine; Bode, Ann M; Surh, Young-Joon; Cho, Yong-Yeon; Dong, Zigang

    2015-11-01

    Solar ultraviolet irradiation is an environmental carcinogen that causes skin cancer. Caspase-7 is reportedly expressed at reduced levels in many cancers. The present study was designed to examine the role of caspase-7 in solar-simulated light (SSL)-induced skin cancer and to elucidate its underlying molecular mechanisms. Our study revealed that mice with genetic deficiency of caspase-7 are highly susceptible to SSL-induced skin carcinogenesis. Epidermal hyperplasia, tumor volume and the average number of tumors were significantly increased in caspase-7 knockout (KO) mice compared with SKH1 wild-type mice irradiated with SSL. The expression of cell proliferation markers, such as survivin and Ki-67, was elevated in SSL-irradiated skin of caspase-7 KO mice compared with those observed in SSL-exposed wild-type SKH1 mouse skin. Moreover, SSL-induced apoptosis was abolished in skin from caspase-7 KO mice. Two-dimensional gel electrophoresis, followed by matrix-assisted laser desorption/ionization-time-of-flight analysis of skin tissue lysates from SSL-irradiated SKH1 wild-type and caspase-7 KO mice revealed an aberrant induction of keratin-17 in caspase-7 KO mice. Immunohistochemical analysis of skin tumors also showed an increase of keratin-17 expression in caspase-7 KO mice compared with SKH1 wild-type mice. The expression of keratin-17 was also elevated in SSL-irradiated caspase-7 KO keratinocytes as well as in human basal cell carcinomas. The in vitro caspase activity assay showed keratin-17 as a substrate of caspase-7, but not caspase-3. Overall, our study demonstrates that genetic loss of caspase-7 promotes SSL-induced skin carcinogenesis by blocking caspase-7-mediated cleavage of keratin-17. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Interphase cytogenetics of sputum cells for the early detection of lung carcinogenesis.

    PubMed

    Prindiville, Sheila A; Ried, Thomas

    2010-04-01

    This perspective on Varella-Garcia et al. (beginning on p. 447 in this issue of the journal) examines the role of interphase fluorescence in situ hybridization for the early detection of lung cancer. This work is an important step toward identifying and validating a molecular marker in sputum samples for lung cancer early detection and highlights the value of establishing cohort studies with biorepositories of samples collected from participants followed over time for disease development. (c) 2010 AACR.

  1. Chemopreventive Effects of Korean Angelica versus Its Major Pyranocoumarins on Two Lineages of Transgenic Adenocarcinoma of Mouse Prostate Carcinogenesis.

    PubMed

    Tang, Su-Ni; Zhang, Jinhui; Wu, Wei; Jiang, Peixin; Puppala, Manohar; Zhang, Yong; Xing, Chengguo; Kim, Sung-Hoon; Jiang, Cheng; Lü, Junxuan

    2015-09-01

    We showed previously that daily gavage of Angelica gigas Nakai (AGN) root ethanolic extract starting 8 weeks of age inhibited growth of prostate epithelium and neuroendocrine carcinomas (NE-Ca) in the transgenic adenocarcinoma of mouse prostate (TRAMP) model. Because decursin (D) and its isomer decursinol angelate (DA) are major pyranocoumarins in AGN extract, we tested the hypothesis that D/DA represented active/prodrug compounds against TRAMP carcinogenesis. Three groups of male C57BL/6 TRAMP mice were gavage treated daily with excipient vehicle, AGN (5 mg per mouse), or equimolar D/DA (3 mg per mouse) from 8 weeks to 16 or 28 weeks of age. Measurement of plasma and NE-Ca D, DA, and their common metabolite decursinol indicated similar retention from AGN versus D/DA dosing. The growth of TRAMP dorsolateral prostate (DLP) in AGN- and D/DA-treated mice was inhibited by 66% and 61% at 16 weeks and by 67% and 72% at 28 weeks, respectively. Survival of mice bearing NE-Ca to 28 weeks was improved by AGN, but not by D/DA. Nevertheless, AGN- and D/DA-treated mice had lower NE-Ca burden. Immunohistochemical and mRNA analyses of DLP showed that AGN and D/DA exerted similar inhibition of TRAMP epithelial lesion progression and key cell-cycle genes. Profiling of NE-Ca mRNA showed a greater scope of modulating angiogenesis, epithelial-mesenchymal transition, invasion-metastasis, and inflammation genes by AGN than D/DA. The data therefore support D/DA as probable active/prodrug compounds against TRAMP epithelial lesions, and they cooperate with non-pyranocoumarin compounds to fully express AGN efficacy against NE-Ca.

  2. Chemopreventive effects of Korean Angelica vs. its major pyranocoumarins on two lineages of transgenic adenocarcinoma of mouse prostate carcinogenesis

    PubMed Central

    Tang, Su-Ni; Zhang, Jinhui; Wu, Wei; Jiang, Peixin; Puppala, Manohar; Zhang, Yong; Xing, Chengguo; Kim, Sung-Hoon; Jiang, Cheng; Lü, Junxuan

    2015-01-01

    We showed previously that daily gavage of Angelica gigas Nakai (AGN) root ethanolic extract starting 8 weeks of age inhibited growth of prostate epithelium and neuroendocrine carcinomas (NE-Ca) in the transgenic adenocarcinoma of mouse prostate (TRAMP) model. Since decursin (D) and its isomer decursinol angelate (DA) are major pyranocoumarins in AGN extract, we tested the hypothesis that D/DA represented active/prodrug compounds against TRAMP carcinogenesis. Three groups of male C57BL/6 TRAMP mice were gavage-treated daily with excipient vehicle, AGN (5 mg per mouse) or equimolar D/DA (3 mg per mouse) from 8 weeks to 16 or 28 weeks of age. Measurement of plasma and NE-Ca D, DA and their common metabolite decursinol indicated similar retention from AGN vs. D/DA dosing. The growth of TRAMP dorsolateral prostate (DLP) in AGN-and D/DA-treated mice was inhibited by 66% and 61% at 16 weeks and by 67% and 72% at 28 weeks, respectively. Survival of mice bearing NE-Ca to 28 weeks was improved by AGN, but not by D/DA. Nevertheless, AGN-and D/DA-treated mice had lower NE-Ca burden. Immunohistochemical and mRNA analyses of DLP showed AGN and D/DA exerted similar inhibition of TRAMP epithelial lesion progression and key cell cycle genes. Profiling of NE-Ca mRNA showed a greater scope of modulating angiogenesis, epithelial-mesenchymal-transition, invasion-metastasis and inflammation genes by AGN than D/DA. The data therefore support D/DA as probable active/prodrug compounds against TRAMP epithelial lesions, and they cooperate with non-pyranocoumarin compounds to fully express AGN efficacy against NE-Ca. PMID:26116406

  3. Effects of β-carotene supplementation on molecular markers of lung carcinogenesis in male smokers

    PubMed Central

    Wright, Margaret E.; Groshong, Steve D.; Husgafvel-Pursiainen, Kirsti; Genova, Erin; Lucia, M. Scott; Wolff, Henrik; Virtamo, Jarmo; Albanes, Demetrius

    2012-01-01

    Two primary prevention trials unexpectedly demonstrated adverse effects of supplemental β-carotene on lung cancer incidence in cigarette smokers. To elucidate the molecular mechanisms that might underlie these effects, we studied the immunohistochemical expression of cytochrome P450 (CYP) 1A1, 1A2, and 2E1, retinoic acid receptor-β (RAR-β), activated protein-1 (AP-1) elements, cyclin D1, and Ki67 in lung tumors and, when available, adjacent normal tissues obtained from incident cases in the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study. Archival lung tissue was available from 52 men randomized to receive 20 mg of β-carotene per day and 30 men randomized to the placebo arm, all of whom were diagnosed with incident non-small cell lung carcinoma during the course of the trial and subsequently underwent radical pulmonary resection. In normal appearing bronchial epithelium, positive staining for cyclin D1 was observed in 23% of cases in the β-carotene group and 0% of cases in the placebo group (based on only 3 of 13 versus 0 of 11 cases staining positively, however; p=0.04), with no differences in expression noted in lung tumor tissue (p=0.48). There were no statistically significant differences in Ki67 expression in normal or cancerous lung tissue between intervention groups, although a small increase in staining was noted among cases in the β-carotene versus placebo group (88% versus 71% of cases stained positive, respectively; p=0.13). Contrary to expectation, β-carotene supplementation had no apparent effect on RAR-β expression. These findings suggest that male smokers supplemented with β-carotene may have had an increased risk of lung cancer due to aberrant cell growth, although our results are based on a relatively small number of cases and require confirmation in other completed trials of β-carotene supplementation. PMID:20484175

  4. Effects of beta-carotene supplementation on molecular markers of lung carcinogenesis in male smokers.

    PubMed

    Wright, Margaret E; Groshong, Steve D; Husgafvel-Pursiainen, Kirsti; Genova, Erin; Lucia, M Scott; Wolff, Henrik; Virtamo, Jarmo; Albanes, Demetrius

    2010-06-01

    Two primary prevention trials unexpectedly showed adverse effects of supplemental beta-carotene on lung cancer incidence in cigarette smokers. To elucidate the molecular mechanisms that might underlie these effects, we studied the immunohistochemical expression of cytochrome P450 1A1, 1A2, and 2E1, retinoic acid receptor beta, activated protein-1 elements, cyclin D1, and Ki67 in lung tumors and, when available, adjacent normal tissues obtained from incident cases in the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study. Archival lung tissue was available from 52 men randomized to receive 20 mg of beta-carotene per day and 30 men randomized to the placebo arm, all of whom were diagnosed with incident non-small-cell lung carcinoma during the course of the trial and subsequently underwent radical pulmonary resection. In normal-appearing bronchial epithelium, positive staining for cyclin D1 was observed in 23% of cases in the beta-carotene group and 0% of cases in the placebo group (based on only 3 of 13 versus 0 of 11 cases staining positively, however; P = 0.04), with no differences in expression noted in lung tumor tissue (P = 0.48). There were no statistically significant differences in Ki67 expression in normal or cancerous lung tissue between intervention groups, although a small increase in staining in tumors was noted among cases in the beta-carotene versus placebo group (88% versus 71% of cases stained positive, respectively; P = 0.13). Contrary to expectation, beta-carotene supplementation had no apparent effect on retinoic acid receptor-beta expression. These findings suggest that male smokers supplemented with beta-carotene may have had an increased risk of lung cancer due to aberrant cell growth, although our results are based on a relatively small number of cases and require confirmation in other completed trials of beta-carotene supplementation. 2010 AACR.

  5. Carcinogenesis and low-level ionizing radiation with special reference to lung cancer and exposure to radon daughters

    SciTech Connect

    Fabrikant, J.I.

    1982-04-01

    Of the important health effects of ionizing radiation, three important late effects - carcinogenesis, teratogenesis and mutagenesis are of greatest concern. This is because any exposure, even at low levels, carries some risk of such deleterious effects. As the dose of radiation increases above very low levels, the risk of health effects increases. Cancer-induction is the most important late somatic effect of low-dose ionizing radiation. Solid cancers, rather than leukemia, are principal late effects in exposed individuals. Tissues vary greatly in their susceptibility to radiation carcinogenesis. The most frequently occurring radiation-induced cancers in man include, in decreasing order of susceptibility: the female breast, the thyroid gland, the blood-forming tissues, the lung, certain organs of the gastrointestinal tract, and the bones. A number of biological and physical factors affect the cancer risk, such as age, sex, life-style, LET, and RBE. Despite uncertainty about low-level radiation risks, regulatory and advisory bodies must set standards for exposure, and individuals need information to be able to make informed judgments for themselves. From the point of view of the policy maker, the overriding concern is the fact that small doses of radiation can cause people to have more cancers than would otherwise be expected. While concern for all radiation effects exists, our human experience is limited to cancer-induction in exposed populations. This discussion is limited to cancer risk estimation and decision-making in relation to the health effects on populations of exposure to low levels of ionizing radiation. Here, low-level radiation will refer to yearly whole-body doses up to 5 rems or 0.05 Sv, or to cumulative doses up to 50 rems or 0.5 Sv from low-LET radiation and from high-LET radiation. (ERB)

  6. Carcinogenesis and cellular immortalization without persistent inactivation of p16/Rb pathway in lung cancer.

    PubMed

    Arifin, Marina; Tanimoto, Keiji; Putra, Andika Chandra; Hiyama, Eiso; Nishiyama, Masahiko; Hiyama, Keiko

    2010-05-01

    Existence of cancer stem cells (CSCs) is still hypothetical and their practical marker is not available yet in lung cancer. To verify the possible existence of CSCs and to find their markers in lung cancer, we compared the p16/Rb and telomerase status in 83 lung cancer tissues and 15 lung cancer cell lines, since inactivation of p16/Rb pathway is considered to be a prerequisite for normal somatic cells to become immortal cancer cells. We found that 7 of 14 adenocarcinoma, but not squamous cell carcinoma, tissues with high telomerase activity and 3 adenocarcinoma cell lines likely had intact p16/Rb. Such cell lines showed higher colony formation capacity in soft agar compared with inactivated ones with similar growth rate. Moreover, cisplatin-resistant cell line PC9/CDDP with intact p16/Rb, but not PC14/CDDP with its inactivation, increased the colony formation capacity compared with the parent cells. Since CSCs are considered to be resistant to conventional anticancer drugs, they could have been concentrated as long as CSCs existed. We propose that half of immortal lung adenocarcinomas are derived from innately telomerase-positive stem cells, which might be the origin of CSCs, and that high telomerase activity with intact p16/Rb could be a marker of stem cell origin.

  7. Clinical, cellular, and bioinformatic analyses reveal involvement of WRAP53 overexpression in carcinogenesis of lung adenocarcinoma.

    PubMed

    Yuan, Xiao-Shuai; Cao, Long-Xiang; Hu, Ye-Ji; Bao, Fei-Chao; Wang, Zhi-Tian; Cao, Jin-Lin; Yuan, Ping; Lv, Wang; Hu, Jian

    2017-03-01

    Lung cancer, of which non-small cell lung cancer accounts for 80%, remains a leading cause of cancer-related mortality and morbidity worldwide. Our study revealed that the expression of WD repeat containing antisense to P53 (WRAP53) is higher in lung-adenocarcinoma specimens than in specimens from adjacent non-tumor tissues. The prevalence of WRAP53 overexpression was significantly higher in patients with tumor larger than 3.0 cm than in patients with tumor smaller than 3.0 cm. The depletion of WRAP53 inhibits the proliferation of lung-adenocarcinoma A549 and SPC-A-1 cells via G1/S cell-cycle arrest. Several proteins interacting with WRAP53 were identified through co-immunoprecipitation and liquid chromatography/mass spectrometry. These key proteins indicated previously undiscovered functions of WRAP53. These observations strongly suggested that WRAP53 should be considered a promising target in the prevention or treatment of lung adenocarcinoma.

  8. Down-Regulation of DUSP6 Expression in Lung Cancer —Its Mechanism and Potential Role in Carcinogenesis

    PubMed Central

    Okudela, Koji; Yazawa, Takuya; Woo, Tetsukan; Sakaeda, Masashi; Ishii, Jun; Mitsui, Hideaki; Shimoyamada, Hiroaki; Sato, Hanako; Tajiri, Michihiko; Ogawa, Nobuo; Masuda, Munetaka; Takahashi, Takashi; Sugimura, Haruhiko; Kitamura, Hitoshi

    2009-01-01

    Our preliminary studies revealed that oncogenic KRAS (KRAS/V12) dramatically suppressed the growth of immortalized airway epithelial cells (NHBE-T, with viral antigen-inactivated p53 and RB proteins). This process appeared to be a novel event, different from the so-called premature senescence that is induced by either p53 or RB, suggesting the existence of a novel tumor suppressor that functions downstream of oncogenic KRAS. After a comprehensive search for genes whose expression levels were modulated by KRAS/V12, we focused on DUSP6, a pivotal negative feedback regulator of the RAS-ERK pathway. A dominant-negative DUSP6 mutant, however, failed to rescue KRAS/V12-induced growth suppression, but conferred a stronger anchorage-independent growth activity to the surviving subpopulation of cells generated from KRAS/V12-transduced NHBE-T. DUSP6 expression levels were found to be weaker in most lung cancer cell lines than in NHBE-T, and DUSP6 restoration suppressed cellular growth. In primary lung cancers, DUSP6 expression levels decreased as both growth activity and histological grade of the tumor increased. Loss of heterozygosity of the DUSP6 locus was found in 17.7% of cases and was associated with reduced expression levels. These results suggest that DUSP6 is a growth suppressor whose inactivation could promote the progression of lung cancer. We have here identified an important factor involved in carcinogenesis through a comprehensive search for downstream targets of oncogenic KRAS. PMID:19608870

  9. Carnitines slow down tumor development of colon cancer in the DMH-chemical carcinogenesis mouse model.

    PubMed

    Roscilli, Giuseppe; Marra, Emanuele; Mori, Federica; Di Napoli, Arianna; Mancini, Rita; Serlupi-Crescenzi, Ottaviano; Virmani, Ashraf; Aurisicchio, Luigi; Ciliberto, Gennaro

    2013-07-01

    Dietary agents are receiving much attention for the chemoprevention of cancer. While curcumin is known to influence several pathways and affect tumor growth in vivo, carnitin and its congeners play a variety of important metabolic functions: are involved in the oxydation of long-chain fatty acids, regulate acyl-CoA levels and influence protein activity and stability by modifying the extent of protein acetylation. In this study we evaluated the efficacy of carnitines in the prevention of cancer development using the 1,2,-dimethylhydrazine (DMH)-induced colon carcinogenesis model. We also assessed whether their combination was able to give rise to increased protection from cancer development. Mice treated with DMH were dosed orally with curcumin and/or carnitine and acylcarnitines for 20 weeks. At the end of the treatment colon samples were collected, and scored for multiple ACF and adenomas. We observed that carnitine and acyl-carnitines had same, if not higher, efficacy than curcumin alone in inhibiting the formation of neoplastic lesions induced by DMH treatment. Interestingly, the combination of curcumin and acetyl-L-carnitine was able to fully inhibit the development of advanced adenoma lesions. Our data unveil the antitumor effects of carnitines and warrant additional studies to further support the adoption of carnitines as cancer chemopreventative agents.

  10. Inhibition of lung carcinogenesis and effects on angiogenesis and apoptosis in A/J mice by oral administration of green tea.

    PubMed

    Liao, Jie; Yang, Guang-Yu; Park, Eon Sub; Meng, Xiaofeng; Sun, Yuhai; Jia, Dongxuan; Seril, Darren N; Yang, Chung S

    2004-01-01

    Oral administration of tea (Camellia sinensis) has been shown to inhibit the formation and growth of several tumor types in animal models. The present study investigated the effects of treatment with different concentrations of green tea on 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced lung tumorigenesis in female A/J mice. Two days after a single dose of NNK (100 mg/kg body weight, i.p.), the mice were given 0.1, 0.2, 0.4, and 0.6% green tea solution (1, 2, 4, and 6 g of tea solids, respectively, dissolved in 1 l of water), 0.02% caffeine, or water as the sole source of drinking fluid until the termination of the experiment. Only the treatment with 0.6% tea preparation significantly reduced lung tumor multiplicity (mean +/- SE, 6.07 +/- 0.77 vs. 8.60 +/- 0.50 tumors per mouse, P = 0.018). Treatment with 0.6% tea also inhibited angiogenesis, as indicated by the lower microvessel density (number of blood vessels/mm2) based on immunostaining for the von Willebrand factor antigen (81.9 +/- 9.5 vs. 129.4 +/- 8.2, P = 0.0018) and anti-CD31 antibody staining (465.3 +/- 61.4 vs. 657.1 +/- 43.6, P = 0.0012). Significantly lower vascular endothelial growth factor immunostaining scores were also observed in the 0.6% tea-treated group (0.98 +/- 0.17 vs. 1.43 +/- 0.07, P = 0.006). The apoptosis index was significantly higher in lung adenomas from 0.6% tea-treated mice based on morphological analysis of cell apoptosis (2.51 +/- 0.18% vs. 1.57 +/- 0.11%, P = 0.00005), and the result was further confirmed using the TUNEL method. Inhibition of angiogenesis and the induction of apoptosis by green tea may be closely related to the inhibition of pulmonary carcinogenesis.

  11. Investigating the Role of FIP200 in Mammary Carcinogenesis Using a Transgenic Mouse Model

    DTIC Science & Technology

    2007-04-01

    the mammary gland of virgin mice however, lactating mice have severe lobulo-alveolar hypoplasia in the mammary gland. After completing the analysis... hypoplasia which renders the dams unable to lactate). In the 1B mating scheme a female mouse with FAKFlox/Flox genotype was mated to a male MMTV...Epithelial-Specific Deletion of the Focal Adhesion Kinase Gene Leads to Severe Lobulo-Alveolar Hypoplasia and Secretory Immaturity of the Murine Mammary

  12. Keratin modifications in epidermis, papillomas, and carcinomas during two-stage carcinogenesis in the SENCAR mouse

    SciTech Connect

    Nelson, K.G.; Slaga, T.J.

    1982-10-01

    To elucidate the role of keratin modification in tumor promotion, the authors investigated the keratin polypeptide patterns of mouse epidermis, papillomas, and carcinomas throughout an initiation-promotion experiment. The epidermal keratin modifications induced by repetitive 12-O-tetradecanoylphorbol-13-acetate treatments in both initiated and noninitiated mouse skin were essentially identical to those observed with a single 12-O-tetradecanoylphorbol-13-acetate application. These changes were even more pronounced in epidermal papillomas. As the experiment progressed, there appeared to be a selective loss of one group of high-molecular-weight keratins (M/sub r/ 62,000) in some of the papillomas. Interestingly, the carcinomas that appeared at this time had significant reduction in both groups of high-molecular-weight keratins. In fact, the keratin profiles of carcinomas were very similar to the patterns observed in basal cells after a single 12-O-tetradecanoylphorbol-13-acetate treatment of adult epidermis. This may indicate that the program of keratin expression of a carcinoma becomes permanently fixed at a basal cell pattern. Changes in keratin patterns may serve as a biochemical marker of malignant progression in mouse epidermis.

  13. Oncogenic K-ras promotes early carcinogenesis in the mouse proximal colon.

    PubMed

    Calcagno, Shelly R; Li, Shuhua; Colon, Migdalisel; Kreinest, Pamela A; Thompson, E Aubrey; Fields, Alan P; Murray, Nicole R

    2008-06-01

    Oncogenic K-ras mutations are frequently observed in colon cancers and contribute to transformed growth. Oncogenic K-ras is detected in aberrant crypt foci (ACF), precancerous colonic lesions, demonstrating that acquisition of a K-ras mutation is an early event in colon carcinogenesis. Here, we investigate the role of oncogenic K-ras in neoplastic initiation and progression. Transgenic mice in which an oncogenic K-ras(G12D) allele is activated in the colonic epithelium by sporadic recombination (K-rasLA2 mice) develop spontaneous ACF that are morphologically indistinguishable from those induced by the colon carcinogen azoxymethane (AOM). Similar neoplastic changes involving the entire colon are induced in transgenic mice constitutively expressing K-ras(G12D) throughout the colon (LSL-K-ras(G12D)/Villin-Cre mice). However, the biochemistry and fate of K-ras-induced lesions differ depending upon their location within the colon in these mice. In the proximal colon, K-ras(G12D) induces increased expression of procarcinogenic protein kinase C beta II (PKC beta II), activation of the MEK/ERK signaling axis and increased epithelial cell proliferation. In contrast, in the distal colon, K-ras(G12D) inhibits expression of procarcinogenic PKC beta II and induces apoptosis. Treatment of K-rasLA2 mice with AOM leads to neoplastic progression of small ACF to large, dysplastic microadenomas in the proximal, but not the distal colon. Thus, oncogenic K-ras functions differently in the proximal and distal colon of mice, inducing ACF capable of neoplastic progression in the proximal colon, and ACF with little or no potential for progression in the distal colon. Our data indicate that acquisition of a K-ras mutation is an initiating neoplastic event in proximal colon cancer development in mice. (c) 2008 Wiley-Liss, Inc.

  14. Oncogenic K-ras promotes early carcinogenesis in the mouse proximal colon

    PubMed Central

    Calcagno, Shelly R.; Li, Shuhua; Colon, Migdalisel; Kreinest, Pamela A.; Thompson, E. Aubrey; Fields, Alan P.; Murray, Nicole R.

    2014-01-01

    Oncogenic K-ras mutations are frequently observed in colon cancers and contribute to transformed growth. Oncogenic K-ras is detected in aberrant crypt foci (ACF), precancerous colonic lesions, demonstrating that acquisition of a K-ras mutation is an early event in colon carcinogenesis. Here, we investigate the role of oncogenic K-ras in neoplastic initiation and progression. Transgenic mice in which an oncogenic K-rasG12D allele is activated in the colonic epithelium by sporadic recombination (K-rasLA2 mice) develop spontaneous ACF that are morphologically indistinguishable from those induced by the colon carcinogen azoxymethane (AOM). Similar neoplastic changes involving the entire colon are induced in transgenic mice constitutively expressing K-rasG12D throughout the colon (LSL-K-rasG12D/Villin-Cre mice). However, the biochemistry and fate of K-ras-induced lesions differ depending upon their location within the colon in these mice. In the proximal colon, K-rasG12D induces increased expression of procarcinogenic protein kinase CβII (PKCβII), activation of the MEK/ERK signaling axis and increased epithelial cell proliferation. In contrast, in the distal colon, K-rasG12D inhibits expression of procarcinogenic PKCβII and induces apoptosis. Treatment of K-rasLA2 mice with AOM leads to neoplastic progression of small ACF to large, dysplastic microadenomas in the proximal, but not the distal colon. Thus, oncogenic K-ras functions differently in the proximal and distal colon of mice, inducing ACF capable of neoplastic progression in the proximal colon, and ACF with little or no potential for progression in the distal colon. Our data indicate that acquisition of a K-ras mutation is an initiating neoplastic event in proximal colon cancer development in mice. PMID:18271008

  15. Gastric Carcinogenesis in the miR-222/221 Transgenic Mouse Model

    PubMed Central

    Choi, Boram; Yu, Jieun; Han, Tae-Su; Kim, Young-Kook; Hur, Keun; Kang, Byeong-Cheol; Kim, Woo-Ho; Kim, Dae-Yong; Lee, Hyuk-Joon; Kim, V. Narry; Yang, Han-Kwang

    2017-01-01

    Purpose MicroRNAs (miRNAs) regulate various cellular functions, including development, cell proliferation, apoptosis, and tumorigenesis. Different signatures associated with various tissue types, diagnosis, progression, prognosis, staging, and treatment response have been identified by miRNA expression profiling of human tumors. miRNAs function as oncogenes or as tumor suppressors. The relationship between gastric cancer and miRNA garnered attention due to the high incidence of gastric cancer in Asian countries. miR-222/221 expression increases in gastric tumor tissues. The oncogenic effect of miR-222/221 was previously determined in functional studies and xenograft models. In this study, transgenic mice over-expressing miR-222/221 were generated to confirm the effect of miR-222/221 on gastric carcinogenesis. Materials and Methods At 6 weeks of age, 65 transgenic mice and 53 wild-type mice were given drinking water containing N-nitroso-N-methylurea (MNU) for 5 alternating weeks to induce gastric cancer. The mice were euthanized at 36 weeks of age and histologic analysis was performed. Results Hyperplasia was observed in 3.77% of the wild-type mice and in 18.46% of the transgenic mice (p=0.020). Adenoma was observed in 20.75% of the wild-type mice and 26.15% of the transgenic mice (p=0.522). Carcinoma was observed in 32.08% of the wild-type mice and 41.54% of the transgenic mice (p=0.341). The frequency of hyperplasia, adenoma, and carcinoma was higher in transgenic mice, but the difference was statistically significant only in hyperplasia. Conclusion These results suggest that hyperplasia, a gastric pre-cancerous lesion, is associated with miR-222/221 expression but miR-222/221 expression does not affect tumorigenesis itself. PMID:27338035

  16. Disruption of protein kinase Ceta results in impairment of wound healing and enhancement of tumor formation in mouse skin carcinogenesis.

    PubMed

    Chida, Kazuhiro; Hara, Takeshi; Hirai, Takaaki; Konishi, Chieko; Nakamura, Kenji; Nakao, Kazuki; Aiba, Atsu; Katsuki, Motoya; Kuroki, Toshio

    2003-05-15

    We have generated a mouse strain lacking protein kinase C (PKC) eta to evaluate its significance in epithelial organization and tumor formation. The PKCeta-deficient mice exhibited increased susceptibility to tumor formation in two-stage skin carcinogenesis by single application of 7,12-dimethylbenz(a)anthracene (DMBA) for tumor initiation and repeated applications of 12-O-tetradecanoylphorbol-13-acetate (TPA) for tumor promotion. The tumor formation was not enhanced by DMBA or TPA treatment alone, suggesting that PKCeta suppresses tumor promotion. Epidermal hyperplasia induced by topical TPA treatment was prolonged in the mutant mice. The enhanced tumor formation may be closely associated with the prolonged hyperplasia induced by topical TPA treatment. In the mutant mice, after inflicting injury by punch biopsy, wound healing on the dorsal skin, particularly reepithelialization, was significantly delayed and impaired in structure. Impairment of epithelial regeneration in wound healing indicates a possibility that PKCeta plays a role in maintenance of epithelial architecture. Homeostasis in epithelial tissues mediated by PKCeta is important for tumor formation in vivo. We propose that PKCeta is involved in tumor formation modulated by regulation of proliferation and remodeling of epithelial cells in vivo.

  17. Dietary feeding of Opuntia humifusa inhibits UVB radiation-induced carcinogenesis by reducing inflammation and proliferation in hairless mouse model.

    PubMed

    Lee, Jin-A; Jung, Bock-Gie; Kim, Tae-Hoon; Lee, Su-Gil; Park, Young-Seok; Lee, Bong-Joo

    2013-01-01

    It has been validated that ultraviolet B (UVB) irradiation induced both squamous and basal cell carcinomas, as a tumor initiator and promoter. Opuntia humifusa is a member of the Cactaceae family which has been demonstrated in our previous study to have a chemopreventive effect in 7, 12-dimethylbenz[a]anthracene and 12-O-tetradecanoylphorbol-13-acetate induced skin carcinogenesis models. Therefore, this study was designed to determine the protective effects of O. humifusa against photocarcinogenesis. O. humifusa was administrated to mice as a dietary feeding, following exposure to UVB radiation (180 mJ/cm(2)) twice a week of 30 weeks for skin tumor development in hairless mice. Dietary O. humifusa inhibited UVB-induced epidermal hyperplasia, infiltration of leukocytes, level of myeloperoxidase and the levels of proinflammatory cytokines, tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6), in UVB exposed skin. Also, O. humifusa significantly inhibited both protein and mRNA expression level of cyclooxygenase-2 (COX-2), nitric oxide synthase (iNOS), proliferating cell nuclear antigen (PCNA) and cyclin D1 compared to the non-O. humifusa treated group. Collectively, these results suggest that O. humifusa could inhibit photocarcinogenesis in mouse skin and that protective effect is associated with the inhibition of not only UVB-induced inflammatory responses involving COX-2, iNOS and proinflammatory cytokines, but also the down-regulation of UVB-induced cellular proliferation. © 2013 The American Society of Photobiology.

  18. De-regulation of the sonic hedgehog pathway in the InsGas mouse model of gastric carcinogenesis

    PubMed Central

    El-Zaatari, M; Tobias, A; Grabowska, A M; Kumari, R; Scotting, P J; Kaye, P; Atherton, J; Clarke, P A; Powe, D G; Watson, S A

    2007-01-01

    This study investigated sonic hedgehog (Shh) signalling in gastric metaplasia in the insulin-gastrin (InsGas) hypergastrinaemic mouse +/− Helicobacter felis (H. felis) infection. Sonic hedgehog gene and protein expression was reduced in pre-metaplastic lesions from non-infected mice (90% gene reduction, P<0.01) compared to normal mucosa. Sonic hedgehog was reactivated in gastric metaplasia of H. felis-infected mice (3.5-fold increase, P<0.01) compared to pre-metaplastic lesions. Additionally, the Shh target gene, glioma-associated oncogene (Gli)-1, was significantly reduced in the gastric glands of InsGas mice (75% reduction, P<0.05) and reactivated with H. felis infection (P<0.05, base of glands, P<0.01 stroma of metaplastic glands). The ability of H. felis to activate the Shh pathway was investigated by measuring the effect of target cytokine, interleukin-8 (IL-8), on Shh expression in AGS and MGLVA1 cells, which was shown to induce Shh expression at physiological concentrations. H. felis induced the expression of NF-κB in inflammatory infiltrates in vivo, and the expression of the IL-8 mouse homologue, protein KC, in inflammatory infiltrates and metaplastic lesions. Sonic hedgehog pathway reactivation was paralleled with an increase in proliferation of metaplastic lesions (15.75 vs 4.39% in infected vs non-infected mice, respectively, P<0.001). Furthermore, Shh overexpression increased the growth rate of the gastric cancer cell line, AGS. The antiapoptotic protein, bcl-2, was expressed in the stroma of infected mice, along with a second Shh target gene, patched-1 (P=0.0001, stroma of metaplastic gland). This study provides evidence suggesting reactivation of Shh signalling from pre-metaplastic to advanced metaplastic lesions of the stomach and outlines the importance of the Shh pathway as a potential chemoprophylactic target for gastric carcinogenesis. PMID:17505514

  19. Butylhydroxytoluene (BHT) increases susceptibility of transgenic rasH2 mice to lung carcinogenesis.

    PubMed

    Umemura, T; Kodama, Y; Hioki, K; Inoue, T; Nomura, T; Kurokawa, Y

    2001-10-01

    Transgenic mice carrying the human prototype c-Ha-ras gene (rasH2 mice) are highly susceptible to lung carcinogens. In order to investigate the possibility of developing a rapid in vivo assay for lung carcinogens, we examined whether the tumor-promoting activity of butylhydroxytoluene (BHT) is efficacious in rasH2 mice. rasH2 mice and wild littermates of both genders were pre-treated with carcinogens [urethane (UR), 4-nitroquinoline 1-oxide (4NQO) or diethylnitrosamine (DEN)], and, one day later, given a 400 mg/kg dose of BHT. Six weeks after the initiation treatment, evidence of carcinogenicity could be detected in male and female rasH2 mice that had received UR doses of > or = 250 mg/kg and > or = 125 mg/kg, respectively, prior to exposure to BHT, whereas only 500 mg/kg of UR was sufficient to induce tumors in female rasH2 mice given the carcinogen alone. The carcinogenicity of 15 mg/kg of 4NQO could be detected after 9 weeks in male rasH2 mice given the carcinogen followed by BHT. Similarly, the carcinogenicity of 60 mg/kg of DEN could be detected after 9 weeks and 6 weeks, respectively, in male and female rasH2 mice given the carcinogen followed by BHT. No carcinogenicity could be demonstrated through the experimental period with doses of 4NQO or DEN given alone. These results indicate that BHT administration increases the susceptibility of rasH2 mice to lung carcinogens, and suggest that the use of BHT in rasH2 mice might lead to the establishment of a rapid in vivo assay for lung carcinogens.

  20. Loss of Survivin in the Prostate Epithelium Impedes Carcinogenesis in a Mouse Model of Prostate Adenocarcinoma

    PubMed Central

    Adisetiyo, Helty; Liang, Mengmeng; Liao, Chun-Peng; Aycock-Williams, Ari; Cohen, Michael B.; Xu, Shili; Neamati, Nouri; Conway, Edward M.; Cheng, Chieh-Yang; Nikitin, Alexander Yu.; Roy-Burman, Pradip

    2013-01-01

    The inhibitor of apoptosis protein survivin is expressed in most cancers. Using the conditional PTEN deletion mouse model, we previously reported that survivin levels increase with prostate tumor growth. Here we evaluated the functional role of survivin in prostate tumor growth. First, we demonstrated that mice lacking the survivin gene in prostate epithelium were fertile and had normal prostate growth and development. We then serially, from about 10–56 weeks of age, evaluated histopathologic changes in the prostate of mice with PTEN deletion combined with survivin mono- or bi-allelic gene deletion. While within this time period most of the animals with wild-type or monoallelic survivin deletion developed adenocarcinomas, the most severe lesions in the biallelic survivin deleted mice were high-grade prostatic intra-epithelial neoplasia with distinct histopathology. Many atypical cells contained large hypertrophic cytoplasm and desmoplastic reaction in the prostatic intra-epithelial neoplasia lesions of this group was minimal until the late ages. A reduced proliferation index as well as apoptotic and senescent cells were detected in the lesions of mice with compound PTEN/survivin deficiency throughout the time points examined. Survivin deletion was also associated with reduced tumor expression of another inhibitor of apoptosis member, the X-linked inhibitor of apoptosis. Our findings suggest that survivin participates in the progression of prostatic intraepithelial neoplasia to adenocarcinoma, and that survivin interference at the prostatic intraepithelial neoplasia stages may be a potential therapeutic strategy to halt or delay further progression. PMID:23936028

  1. Measuring the lung function in the mouse: the challenge of size

    PubMed Central

    Irvin, Charles G; Bates, Jason HT

    2003-01-01

    Measurement of the effects of drugs, mediators and infectious agents on various models of lung disease, as well as assessment of lung function in the intact mouse has the potential for significantly advancing our knowledge of lung disease. However, the small size of the mouse presents significant challenges for the assessment of lung function. Because of compromises made between precision and noninvasiveness, data obtained may have an uncertain bearing on the mechanical response of the lung. Nevertheless, considerable recent progress has been made in developing valid and useful measures of mouse lung function. These advances, resulting in our current ability to measure sophisticated indices of lung function in laboratory animals, are likely to lead to important insights into the mechanisms of lung disease. PMID:12783622

  2. SKHIN/Sprd, a new genetically defined inbred hairless mouse strain for UV-induced skin carcinogenesis studies

    PubMed Central

    Perez, Carlos; Parker-Thornburg, Jan; Mikulec, Carol; Kusewitt, Donna F.; Fischer, Susan M.; DiGiovanni, John; Conti, Claudio J.; Benavides, Fernando

    2013-01-01

    Strains of mice vary in their susceptibility to ultra-violet (UV) radiation-induced skin tumors. Some strains of hairless mice (homozygous for the spontaneous Hrhr mutation) are particularly susceptible to these tumors. The skin tumors that develop in hairless mice resemble, both at the morphologic and molecular levels, UV-induced squamous cell carcinomas (SCC) and their precursors in human. The most commonly employed hairless mice belong to the SKH1 stock. However, these mice are outbred and their genetic background is not characterized, which makes them a poor model for genetic studies. We have developed a new inbred strain from outbred SKH1 mice that we named SKHIN/Sprd (now at generation F31). In order to characterize the genetic background of this new strain, we genotyped a cohort of mice at F30 with 92 microsatellites and 140 single nucleotide polymorphisms (SNP) evenly distributed throughout the mouse genome. We also exposed SKHIN/Sprd mice to chronic UV irradiation and showed that they are as susceptible to UV-induced skin carcinogenesis as outbred SKH1 mice. In addition, we proved that, albeit with low efficiency, inbred SKHIN/Sprd mice are suitable for transgenic production by classical pronuclear microinjection. This new inbred strain will be useful for the development of transgenic and congenic strains on a hairless inbred background as well as the establishment of syngeneic tumor cell lines. These new tools can potentially help elucidate a number of features of the cutaneous response to UV irradiation in humans, including the effect of genetic background and modifier genes. PMID:22379968

  3. Downregulation of glutathione S-transferase M1 protein in N-butyl-N-(4-hydroxybutyl)nitrosamine-induced mouse bladder carcinogenesis

    SciTech Connect

    Chuang, Jing-Jing; Dai, Yuan-Chang; Lin, Yung-Lun; Chen, Yang-Yi; Lin, Wei-Han; Chan, Hong-Lin; Liu, Yi-Wen

    2014-09-15

    Bladder cancer is highly recurrent following specific transurethral resection and intravesical chemotherapy, which has prompted continuing efforts to develop novel therapeutic agents and early-stage diagnostic tools. Specific changes in protein expression can provide a diagnostic marker. In our present study, we investigated changes in protein expression during urothelial carcinogenesis. The carcinogen BBN was used to induce mouse bladder tumor formation. Mouse bladder mucosa proteins were collected and analyzed by 2D electrophoresis from 6 to 20 weeks after commencing continuous BBN treatment. By histological examination, the connective layer of the submucosa showed gradual thickening and the number of submucosal capillaries gradually increased after BBN treatment. At 12-weeks after the start of BBN treatment, the urothelia became moderately dysplastic and tumors arose after 20-weeks of treatment. These induced bladder lesions included carcinoma in situ and connective tissue invasive cancer. In protein 2D analysis, the sequentially downregulated proteins from 6 to 20 weeks included GSTM1, L-lactate dehydrogenase B chain, keratin 8, keratin 18 and major urinary proteins 2 and 11/8. In contrast, the sequentially upregulated proteins identified were GSTO1, keratin 15 and myosin light polypeptide 6. Western blotting confirmed that GSTM1 and NQO-1 were decreased, while GSTO1 and Sp1 were increased, after BBN treatment. In human bladder cancer cells, 5-aza-2′-deoxycytidine increased the GSTM1 mRNA and protein expression. These data suggest that the downregulation of GSTM1 in the urothelia is a biomarker of bladder carcinogenesis and that this may be mediated by DNA CpG methylation. - Highlights: • GSTM1 and NQO-1 proteins decreased in the mouse bladder mucosa after BBN treatment. • BBN induced GSTO1 and Sp1 protein expression in the mouse bladder mucosa. • 5-Aza-2′-deoxycytidine increased GSTM1 mRNA and protein in human bladder cancer cell. • GSTM1

  4. RECENT ADVANCES IN ARSENIC CARCINOGENESIS: MODES OF ACTION, ANIMAL MODEL SYSTEMS AND METHYLATED ARSENIC METABOLITES

    EPA Science Inventory


    Abstract:

    Recent advances in our knowledge of arsenic carcinogenesis include the development of rat or mouse models for all human organs in which inorganic arsenic is known to cause cancer -skin, lung, urinary bladder, liver and kidney. Tumors can be produced from eit...

  5. RECENT ADVANCES IN ARSENIC CARCINOGENESIS: MODES OF ACTION, ANIMAL MODEL SYSTEMS AND METHYLATED ARSENIC METABOLITES

    EPA Science Inventory


    Abstract:

    Recent advances in our knowledge of arsenic carcinogenesis include the development of rat or mouse models for all human organs in which inorganic arsenic is known to cause cancer -skin, lung, urinary bladder, liver and kidney. Tumors can be produced from eit...

  6. A novel SCID mouse model for studying spontaneous metastasis of human lung cancer to human tissue.

    PubMed

    Teraoka, S; Kyoizumi, S; Seyama, T; Yamakido, M; Akiyama, M

    1995-05-01

    We established a novel severe combined immunodeficient (SCID) mouse model for the study of human lung cancer metastasis to human lung. Implantation of both human fetal and adult lung tissue into mammary fat pads of SCID mice showed a 100% rate of engraftment, but only fetal lung implants revealed normal morphology of human lung tissue. Using these chimeric mice, we analyzed human lung cancer metastasis to both mouse and human lungs by subcutaneous inoculation of human squamous cell carcinoma and adenocarcinoma cell lines into the mice. In 60 to 70% of SCID mice injected with human-lung squamous-cell carcinoma, RERF-LC-AI, cancer cells were found to have metastasized to both mouse lungs and human fetal lung implants but not to human adult lung implants 80 days after cancer inoculation. Furthermore, human-lung adenocarcinoma cells, RERF-LC-KJ, metastasized to the human lung implants within 90 days in about 40% of SCID mice, whereas there were no metastases to the lungs of the mice. These results demonstrate the potential of this model for the in vivo study of human lung cancer metastasis.

  7. Activation of proto-oncogenes in human and mouse lung tumors

    SciTech Connect

    Reynolds, S.H.; Anderson, M.W. )

    1991-06-01

    Lung cancer is a leading cause of cancer-related deaths in several nations. Epidemiological studies have indicated that 85% of all lung cancer deaths and 30% of all cancer deaths in the US are associated with tobacco smoking. Various chemicals in tobacco smoke are thought to react with DNA and to ultimately yield heritable mutations. In an effort to understand the molecular mechanisms involved in lung tumorigenesis, the authors have analyzed proto-oncogene activation in a series of human lung tumors from smokers and spontaneously occurring and chemically induced lung tumors in mice. Approximately 86% of the human lung tumors and > 90% of the mouse lung tumors were found to contain activated oncogenes. ras Oncogenes activated by point mutations were detected in many of the human lung adenocarcinomas and virtually all of the mouse lung adenomas and adenocarcinomas. The mutation profiles of the activated K-ras genes detected in the chemically induced mouse lung tumors suggest that the observed mutations result from genotoxic effects of the chemicals. Comparison of the K-ras mutations observed in the human lung adenocarcinomas with mutation profiles observed in the mouse lung tumors suggest that bulky hydrophobic DNA adducts may be responsible for the majority of the mutations observed in the activated human K-ras genes. Other data indicate that approximately 20% of human lung tumors contain potentially novel transforming genes that may also be targets for mutagens in cigarette smoke.

  8. Beyond two-stage models for lung carcinogenesis in the Mayak workers: implications for plutonium risk.

    PubMed

    Zöllner, Sascha; Sokolnikov, Mikhail E; Eidemüller, Markus

    2015-01-01

    Mechanistic multi-stage models are used to analyze lung-cancer mortality after Plutonium exposure in the Mayak-workers cohort, with follow-up until 2008. Besides the established two-stage model with clonal expansion, models with three mutation stages as well as a model with two distinct pathways to cancer are studied. The results suggest that three-stage models offer an improved description of the data. The best-fitting models point to a mechanism where radiation increases the rate of clonal expansion. This is interpreted in terms of changes in cell-cycle control mediated by bystander signaling or repopulation following cell killing. No statistical evidence for a two-pathway model is found. To elucidate the implications of the different models for radiation risk, several exposure scenarios are studied. Models with a radiation effect at an early stage show a delayed response and a pronounced drop-off with older ages at exposure. Moreover, the dose-response relationship is strongly nonlinear for all three-stage models, revealing a marked increase above a critical dose.

  9. Beyond Two-Stage Models for Lung Carcinogenesis in the Mayak Workers: Implications for Plutonium Risk

    PubMed Central

    Zöllner, Sascha; Sokolnikov, Mikhail E.; Eidemüller, Markus

    2015-01-01

    Mechanistic multi-stage models are used to analyze lung-cancer mortality after Plutonium exposure in the Mayak-workers cohort, with follow-up until 2008. Besides the established two-stage model with clonal expansion, models with three mutation stages as well as a model with two distinct pathways to cancer are studied. The results suggest that three-stage models offer an improved description of the data. The best-fitting models point to a mechanism where radiation increases the rate of clonal expansion. This is interpreted in terms of changes in cell-cycle control mediated by bystander signaling or repopulation following cell killing. No statistical evidence for a two-pathway model is found. To elucidate the implications of the different models for radiation risk, several exposure scenarios are studied. Models with a radiation effect at an early stage show a delayed response and a pronounced drop-off with older ages at exposure. Moreover, the dose-response relationship is strongly nonlinear for all three-stage models, revealing a marked increase above a critical dose. PMID:26000637

  10. Some lupane-type triterpenes inhibit tumor promotion by 12-O-tetradecanoylphorbol-13-acetate in two-stage carcinogenesis in mouse skin.

    PubMed

    Yasukawa, K; Yu, S; Yamanouchi, S; Takido, M; Akihisa, T; Tamura, T

    1995-04-01

    We have found that several lupane-type triterpenes, including lupeol, its acetate, betulin and betulinic acid, inhibit 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced inflammation, and that betulinic acid inhibits tumor promotion in two-stage carcinogenesis in mice. Among seven lupane-type triterpenes assayed, these compounds inhibited the inflammatory activity induced by TPA in mice. The 50 % inhibitory dose of these compounds for TPA-induced inflammation was 0.4-4.0 μmol. Furthermore, topical application of lupeol, lupeol 3-acetate and betulin markedly suppressed the tumor-promoting effect of TPA (1 μg/mouse) in mouse skin initiated with 7,12-dimethyl-benz[a]anthracene (50 μg/mouse), at a grade corresponding to that of betulinic acid.

  11. Pulmonary oxidative stress, inflammation and cancer: respirable particulate matter, fibrous dusts and ozone as major causes of lung carcinogenesis through reactive oxygen species mechanisms.

    PubMed

    Valavanidis, Athanasios; Vlachogianni, Thomais; Fiotakis, Konstantinos; Loridas, Spyridon

    2013-08-27

    Reactive oxygen or nitrogen species (ROS, RNS) and oxidative stress in the respiratory system increase the production of mediators of pulmonary inflammation and initiate or promote mechanisms of carcinogenesis. The lungs are exposed daily to oxidants generated either endogenously or exogenously (air pollutants, cigarette smoke, etc.). Cells in aerobic organisms are protected against oxidative damage by enzymatic and non-enzymatic antioxidant systems. Recent epidemiologic investigations have shown associations between increased incidence of respiratory diseases and lung cancer from exposure to low levels of various forms of respirable fibers and particulate matter (PM), at occupational or urban air polluting environments. Lung cancer increases substantially for tobacco smokers due to the synergistic effects in the generation of ROS, leading to oxidative stress and inflammation with high DNA damage potential. Physical and chemical characteristics of particles (size, transition metal content, speciation, stable free radicals, etc.) play an important role in oxidative stress. In turn, oxidative stress initiates the synthesis of mediators of pulmonary inflammation in lung epithelial cells and initiation of carcinogenic mechanisms. Inhalable quartz, metal powders, mineral asbestos fibers, ozone, soot from gasoline and diesel engines, tobacco smoke and PM from ambient air pollution (PM₁₀ and PM₂.₅) are involved in various oxidative stress mechanisms. Pulmonary cancer initiation and promotion has been linked to a series of biochemical pathways of oxidative stress, DNA oxidative damage, macrophage stimulation, telomere shortening, modulation of gene expression and activation of transcription factors with important role in carcinogenesis. In this review we are presenting the role of ROS and oxidative stress in the production of mediators of pulmonary inflammation and mechanisms of carcinogenesis.

  12. CREB- and NF-κB-Regulated CXC Chemokine Gene Expression in Lung Carcinogenesis

    PubMed Central

    Sun, Hongxia; Chung, Wen-Cheng; Ryu, Seung-Hee; Ju, Zhenlin; Tran, Hai T.; Kim, Edward; Kurie, Jonathan M.; Koo, Ja Seok

    2009-01-01

    The recognition of the importance of angiogenesis in tumor progression has led to the development of antiangiogenesis as a new strategy for cancer treatment and prevention. By modulating tumor microenvironment and inducing angiogenesis, the proinflammatory cytokine interleukine (IL)-1 β has been reported to promote tumor development. However, the factors mediating IL-1β-induced angiogenesis in non-small cell lung cancer (NSCLC) and the regulation of these angiogenic factors by IL-1β are less clear. Here, we report that IL-1β upregulated an array of proangiogenic CXC chemokine genes in NSCLC cell line A549 and in normal human tracheobronchial epithelium (NHTBE) cells, as determined by microarray analysis. Further analysis revealed that IL-1β induced much higher protein levels of CXC chemokines in NSCLC cells than in NHTBE cells. Conditioned medium from IL-1β treated A549 cells markedly increased endothelial cell migration, which was suppressed by neutralizing antibodies against CXCL5 and CXCR2. We also found that IL-1β-induced CXC chemokine gene overexpression in NSCLC cells was abrogated with the knockdown of CREB or NF-κB. Moreover, the expression of the CXC chemokine genes as well as CREB and NF-κB activities were greatly increased in tumorigenic NSCLC cell line compared with normal, premalignant immortalized or non-tumorigenic cell lines. A disruptor of the interaction between CREB-binding protein (CBP) and transcription factors such as CREB and NF-κB, 2-naphthol-AS-E-phosphate (KG-501), inhibited IL-1β-induced CXC chemokine gene expression and angiogenic activity in NSCLC. We propose that targeting CREB or NF-κB using small molecule inhibitors, such as KG-501, holds promise as a preventive and/or therapeutic approach for NSCLC. PMID:19138976

  13. Inhibition of lung carcinogenesis and critical cancer-related signaling pathways by N-acetyl-S-(N-2-phenethylthiocarbamoyl)-l-cysteine, indole-3-carbinol and myo-inositol, alone and in combination.

    PubMed

    Kassie, Fekadu; Melkamu, Tamene; Endalew, Abaineh; Upadhyaya, Pramod; Luo, Xianghua; Hecht, Stephen S

    2010-09-01

    In an extension of our earlier studies, we examined the inhibitory effects of N-acetyl-S-(N-2-phenethylthiocarbamoyl)-l-cysteine (PEITC-NAC), myo-inositol (MI) and indole-3-carbinol (I3C) or 3,3'-diindolylmethane (DIM), alone and in combination, on 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) plus benzo[a]pyrene (BaP)-induced A/J mouse lung tumorigenesis and proliferation of A549 cells and human bronchial epithelial cells (HBECs) and relevant potential mechanisms. Mice treated with NNK plus BaP and fed non-supplemented diet had 13.0 + or - 4.1 lung tumors per mouse. Dietary feeding of mice with PEITC-NAC (5 mumol/g diet), I3C (5 mumol/g diet) or MI (56 mumol/g diet), beginning at 50% in the carcinogen treatment phase, significantly reduced tumor multiplicity to 8.2 + or - 2.0, 8.4 + or - 1.5 and 6.8 + or - 1.7 tumors per mouse, respectively. In mice given combinations of the chemopreventive agents, lung tumor multiplicity was significantly reduced to 6.3 + or - 2.2, 4.9 + or - 1.8, 4.8 + or - 1.9 and 3.6 + or - 1.4 by PEITC-NAC plus I3C, PEITC-NAC plus MI, I3C plus MI or PEITC-NAC plus I3C plus MI, respectively. Post-carcinogen administration of combinations of the agents also caused significant but weaker effects. Assessment of the anti-proliferative effects of the individual agents or their combinations showed significant reductions in the proliferation of cigarette smoke condensate (CSC)-pretreated HBEC (reduction by 30-41% at 48 h and 41-58% at 72 h) and A549 cells (30-43% at 48 h and 40-59% at 72 h), but not in dimethyl sulfoxide-pretreated HBEC. Combinatorial treatment with the agents also caused marked reductions in the activation of Akt, extracellular signal-regulated kinase and nuclear factor-kappaB in lung tumor tissues, CSC-pretreated HBEC and A549 cells. In conclusion, our studies demonstrated the promise of combinations of PEITC-NAC, I3C/DIM and MI for the chemoprevention of lung carcinogenesis in current and former smokers.

  14. Identifying Efficacious Approaches to Chemoprevention with chlorophyllin, purified chlorophylls and freeze-dried spinach in a Mouse Model of Transplacental Carcinogenesis

    SciTech Connect

    Castro, David J.; Lohr, Christiane V.; Fischer, Kay A.; Waters, Katrina M.; Webb-Robertson, Bobbie-Jo M.; Dashwood, Roderick H.; Bailey, George S.; Williams, David E.

    2009-02-01

    The carcinogenic potential of dibenzo[a,l]pyrene (DBP) has been well characterized in numerous animal models. We have previously documented that a single dose of 15 mg/Kg DBP to pregnant mice late in gestation (GD 17) produces an aggressive T-cell lymphoma as well as lung and liver cancer in offspring. The current study examines the chemopreventative properties of chlorophyllin (CHL) and chlorophyll (Chl) in this transplacental carcinogenesis model. Pregnant B6129SF1 females, bred to 129S1/SvIm males, received purified diets incorporated with either 2000 ppm CHL, 2000 ppm Chl, or 10% freeze-dried spinach beginning at gestation day 9. Lymphoma-dependent mortality was not significantly altered by maternal consumption of any of the diet and little effect on lung tumor burden in mice surviving to 10 months of age was observed. However, co-administration of CHL at 380 mg/Kg with DBP by gavage (molar ratio of 10:1, CHL:DBP) provided significant protection against DBP initiated carcinogenesis. Offspring born to dams receiving CHL co-gavaged with DBP exhibited markedly fewer lymphoma-dependent mortalities (p< 0.001). The degree of protection by CHL, compared to controls dosed with DBP in tricaprylin (TCP) as the vehicle, were less marked, but still significant. Co-administration of CHL (TCP as vehicle) also reduced lung tumor multiplicity in mice by approximately 50% and this was observed throughout the study (p< 0.005). This is the first demonstration that CHL can provide potent chemoprotection in a transplacental carcinogenesis model and supports a mechanism involving complex-mediated reduction of carcinogen uptake.

  15. Identifying efficacious approaches to chemoprevention with chlorophyllin, purified chlorophylls and freeze-dried spinach in a mouse model of transplacental carcinogenesis.

    PubMed

    Castro, David J; Löhr, Christiane V; Fischer, Kay A; Waters, Katrina M; Webb-Robertson, Bobbie-Jo M; Dashwood, Roderick H; Bailey, George S; Williams, David E

    2009-02-01

    The carcinogenic potential of dibenzo[a,l]pyrene (DBP) has been well characterized in numerous animal models. We have previously documented that a single dose of 15 mg/Kg DBP to pregnant mice late in gestation (GD 17) produces an aggressive T-cell lymphoma as well as lung and liver cancer in offspring. The current study examines the chemopreventative properties of chlorophyllin (CHL) and chlorophyll (Chl) in this transplacental carcinogenesis model. Pregnant B6129SF1 females, bred to 129S1/SvIm males, received purified diets incorporated with either 2000 p.p.m. CHL, 2000 p.p.m. Chl or 10% freeze-dried spinach beginning at gestation day 9. Lymphoma-dependent mortality was not significantly altered by maternal consumption of any of the diet and little effect on lung tumor burden in mice surviving to 10 months of age was observed. However, coadministration of CHL at 380 mg/Kg with DBP by gavage (molar ratio of 10:1, CHL:DBP) provided significant protection against DBP-initiated carcinogenesis. Offspring born to dams receiving CHL co-gavaged with DBP exhibited markedly less lymphoma-dependent mortality (P < 0.001). The degree of protection by CHL, compared with controls dosed with DBP in tricaprylin (TCP) as the vehicle, was less marked, but still significant. Coadministration of CHL (TCP as vehicle) also reduced lung tumor multiplicity in mice by approximately 50% and this was observed throughout the study (P < 0.005). This is the first demonstration that CHL can provide potent chemoprotection in a transplacental carcinogenesis model and support a mechanism involving complex-mediated reduction of carcinogen uptake.

  16. Alterations of lung microbiota in a mouse model of LPS-induced lung injury

    PubMed Central

    Meng, Fanyong; Meliton, Angelo; Afonyushkin, Taras; Ulanov, Alexander; Semenyuk, Ekaterina; Latif, Omar; Tesic, Vera; Birukova, Anna A.; Birukov, Konstantin G.

    2015-01-01

    Acute lung injury (ALI) and the more severe acute respiratory distress syndrome are common responses to a variety of infectious and noninfectious insults. We used a mouse model of ALI induced by intratracheal administration of sterile bacterial wall lipopolysaccharide (LPS) to investigate the changes in innate lung microbiota and study microbial community reaction to lung inflammation and barrier dysfunction induced by endotoxin insult. One group of C57BL/6J mice received LPS via intratracheal injection (n = 6), and another received sterile water (n = 7). Bronchoalveolar lavage (BAL) was performed at 72 h after treatment. Bacterial DNA was extracted and used for qPCR and 16S rRNA gene-tag (V3–V4) sequencing (Illumina). The bacterial load in BAL from ALI mice was increased fivefold (P = 0.03). The community complexity remained unchanged (Simpson index, P = 0.7); the Shannon diversity index indicated the increase of community evenness in response to ALI (P = 0.07). Principal coordinate analysis and analysis of similarity (ANOSIM) test (P = 0.005) revealed a significant difference between microbiota of control and ALI groups. Bacteria from families Xanthomonadaceae and Brucellaceae increased their abundance in the ALI group as determined by Metastats test (P < 0.02). In concordance with the 16s-tag data, Stenotrohomonas maltophilia (Xanthomonadaceae) and Ochrobactrum anthropi (Brucellaceae) were isolated from lungs of mice from both groups. Metabolic profiling of BAL detected the presence of bacterial substrates suitable for both isolates. Additionally, microbiota from LPS-treated mice intensified IL-6-induced lung inflammation in naive mice. We conclude that the morbid transformation of ALI microbiota was attributed to the set of inborn opportunistic pathogens thriving in the environment of inflamed lung, rather than the external infectious agents. PMID:25957290

  17. Alterations of lung microbiota in a mouse model of LPS-induced lung injury.

    PubMed

    Poroyko, Valeriy; Meng, Fanyong; Meliton, Angelo; Afonyushkin, Taras; Ulanov, Alexander; Semenyuk, Ekaterina; Latif, Omar; Tesic, Vera; Birukova, Anna A; Birukov, Konstantin G

    2015-07-01

    Acute lung injury (ALI) and the more severe acute respiratory distress syndrome are common responses to a variety of infectious and noninfectious insults. We used a mouse model of ALI induced by intratracheal administration of sterile bacterial wall lipopolysaccharide (LPS) to investigate the changes in innate lung microbiota and study microbial community reaction to lung inflammation and barrier dysfunction induced by endotoxin insult. One group of C57BL/6J mice received LPS via intratracheal injection (n = 6), and another received sterile water (n = 7). Bronchoalveolar lavage (BAL) was performed at 72 h after treatment. Bacterial DNA was extracted and used for qPCR and 16S rRNA gene-tag (V3-V4) sequencing (Illumina). The bacterial load in BAL from ALI mice was increased fivefold (P = 0.03). The community complexity remained unchanged (Simpson index, P = 0.7); the Shannon diversity index indicated the increase of community evenness in response to ALI (P = 0.07). Principal coordinate analysis and analysis of similarity (ANOSIM) test (P = 0.005) revealed a significant difference between microbiota of control and ALI groups. Bacteria from families Xanthomonadaceae and Brucellaceae increased their abundance in the ALI group as determined by Metastats test (P < 0.02). In concordance with the 16s-tag data, Stenotrohomonas maltophilia (Xanthomonadaceae) and Ochrobactrum anthropi (Brucellaceae) were isolated from lungs of mice from both groups. Metabolic profiling of BAL detected the presence of bacterial substrates suitable for both isolates. Additionally, microbiota from LPS-treated mice intensified IL-6-induced lung inflammation in naive mice. We conclude that the morbid transformation of ALI microbiota was attributed to the set of inborn opportunistic pathogens thriving in the environment of inflamed lung, rather than the external infectious agents.

  18. Differential Impact of Cysteine Cathepsins on Genetic Mouse Models of De novo Carcinogenesis: Cathepsin B as Emerging Therapeutic Target

    PubMed Central

    Reinheckel, Thomas; Peters, Christoph; Krüger, Achim; Turk, Boris; Vasiljeva, Olga

    2012-01-01

    Lysosomal cysteine cathepsins belong to a family of 11 human proteolytic enzymes. Some of them correlate with progression in a variety of cancers and therefore are considered as potential therapeutic targets. Until recently, the contribution of individual cathepsins to tumorigenesis and tumor progression remained unknown. By crossing various types of mouse cancer models with mice where specific cathepsins have been ablated, we contributed to this gap of knowledge and will summarize the results in this report. The employed models are the Rip1-Tag2 model for pancreatic neuroendocrine tumors, the K14-HPV16 model for squamous skin and cervical cancers, and the MMTV-PyMT model for metastasizing breast cancer, the KPC model for pancreatic ductal adenocarcinoma, and the APCmin mice developing early stages of intestinal neoplasia. All models harbor mutations in relevant tumor suppressors and/or cell-type specific expression of potent oncogenes, which initiate de novo carcinogenesis in the targeted tissues. In all these models deletion of cathepsin B led to suppression of the aggressiveness of the respective cancer phenotype. Cathepsin B is networking with other proteases as it was shown for cathepsin X/Z. In contrast, deletion of cathepsin L was beneficial in the RiP1-Tag2 model, but enhanced tumorigenesis in the APCmin, and the K14-HPV16 mice. A logical consequence of these results would be to further pursue selective inhibition of cathepsin B. Moreover, it became clear that cathepsins B and S derived from cells of the tumor microenvironment support cancer growth. Strikingly, delivery of broad spectrum cysteine cathepsin inhibitors in the tumor microenvironment disrupts the permissive ecosystem of the cancer and results in impaired growth or even in regression of the tumor. In addition, combination of cysteine cathepsin inhibition and standard chemotherapy improves the therapeutic response of the latter. Taken together, the next preclinical challenges for developing

  19. Recent progress in carcinogenesis, progression and therapy of lung cancer: the 19th Hiroshima Cancer Seminar: the 3rd Three Universities' Consortium International Symposium, November 2009.

    PubMed

    Tahara, Eiichi; Yasui, Wataru; Ito, Hisao; Harris, Curtis C

    2010-07-01

    This symposium presented recent progress of the pathogenesis and treatment of lung cancer. Aberrantly increased expression of miR-21 plays a significant role in lung carcinogenesis and is a potential therapeutic target in both epidermal growth factor receptor-mutant and wild-type cases. miR-34 may be necessary for the radiation-induced DNA damage response. Detailed expression profiling analyses of transcriptome have potential to provide increased understanding of the molecular biology of lung cancer. An embryonic signature is present in lung adenocarcinoma only, associated with a worse clinical outcome. Cytoplasmic expression of caveolin and membranous expression of CD26 are specific to mesothelioma. Nectin-4 is a new candidate for serum and tissue biomarker as well as a therapeutic target for lung cancer. Clinical presentations have provided us a great deal information on epidermal growth factor receptor mutations for personalized therapy, combination therapy with inhibitors of the tyrosine kinase activity of epidermal growth factor receptor and cytotoxic agents, antibody-dependent cellular cytotoxicity activity, and current management of lung cancer depending on both the extent of the disease and the treatment approach.

  20. Lung Cancer Signatures in Plasma Based on Proteome Profiling of Mouse Tumor Models

    PubMed Central

    Taguchi, Ayumu; Politi, Katerina; Pitteri, Sharon J.; Lockwood, William W.; Faça, Vitor M.; Kelly-Spratt, Karen; Wong, Chee-Hong; Zhang, Qing; Chin, Alice; Park, Kwon-Sik; Goodman, Gary; Gazdar, Adi F.; Sage, Julien; Dinulescu, Daniela M.; Kucherlapati, Raju; DePinho, Ronald A.; Kemp, Christopher J.; Varmus, Harold E.; Hanash, Samir M.

    2012-01-01

    SUMMARY We investigated the potential of in-depth quantitative proteomics to reveal plasma protein signatures that reflect lung tumor biology. We compared plasma protein profiles of four mouse models of lung cancer with profiles of models of pancreatic, ovarian, colon, prostate, and breast cancer and two models of inflammation. A protein signature for Titf1/Nkx2-1, a known lineage-survival oncogene in lung cancer, was found in plasmas of mouse models of lung adenocarcinoma. An EGFR signature was found in plasma of an EGFR mutant model, and a distinct plasma signature related to neuroendocrine development was uncovered in the small-cell lung cancer model. We demonstrate relevance to human lung cancer of the protein signatures identified on the basis of mouse models. PMID:21907921

  1. Cytochrome P450 1b1 in polycyclic aromatic hydrocarbon (PAH)-induced skin carcinogenesis: Tumorigenicity of individual PAHs and coal-tar extract, DNA adduction and expression of select genes in the Cyp1b1 knockout mouse

    SciTech Connect

    Siddens, Lisbeth K.; Bunde, Kristi L.; Harper, Tod A.; McQuistan, Tammie J.; Löhr, Christiane V.; Bramer, Lisa M.; Waters, Katrina M.; Tilton, Susan C.; Krueger, Sharon K.; and others

    2015-09-01

    FVB/N mice wild-type, heterozygous or null for Cyp 1b1 were used in a two-stage skin tumor study comparing PAH, benzo[a]pyrene (BaP), dibenzo[def,p]chrysene (DBC), and coal tar extract (CTE, SRM 1597a). Following 20 weeks of promotion with TPA the Cyp 1b1 null mice, initiated with DBC, exhibited reductions in incidence, multiplicity, and progression. None of these effects were observed with BaP or CTE. The mechanism of Cyp 1b1-dependent alteration of DBC skin carcinogenesis was further investigated by determining expression of select genes in skin from DBC-treated mice 2, 4 and 8 h post-initiation. A significant reduction in levels of Cyp 1a1, Nqo1 at 8 h and Akr 1c14 mRNA was observed in Cyp 1b1 null (but not wt or het) mice, whereas no impact was observed in Gst a1, Nqo 1 at 2 and 4 h or Akr 1c19 at any time point. Cyp 1b1 mRNA was not elevated by DBC. The major covalent DNA adducts, dibenzo[def,p]chrysene-(±)-11,12-dihydrodiol-cis and trans-13,14-epoxide-deoxyadenosine (DBCDE-dA) were quantified by UHPLC-MS/MS 8 h post-initiation. Loss of Cyp1 b1 expression reduced DBCDE-dA adducts in the skin but not to a statistically significant degree. The ratio of cis- to trans-DBCDE-dA adducts was higher in the skin than other target tissues such as the spleen, lung and liver (oral dosing). These results document that Cyp 1b1 plays a significant role in bioactivation and carcinogenesis of DBC in a two-stage mouse skin tumor model and that loss of Cyp 1b1 has little impact on tumor response with BaP or CTE as initiators. - Highlights: • Cyp1b1 null mice exhibit lower skin cancer sensitivity to DBC but not BaP or CTE. • Cyp1b1 expression impacts expression of other PAH metabolizing enzymes. • cis/trans-DBCDE-dA ratio significantly higher in the skin than the spleen, lung or liver • Potency of DBC and CTE in mouse skin is higher than predicted by RPFs.

  2. Phenotyping mouse pulmonary function in vivo with the lung diffusing capacity.

    PubMed

    Limjunyawong, Nathachit; Fallica, Jonathan; Ramakrishnan, Amritha; Datta, Kausik; Gabrielson, Matthew; Horton, Maureen; Mitzner, Wayne

    2015-01-06

    The mouse is now the primary animal used to model a variety of lung diseases. To study the mechanisms that underlie such pathologies, phenotypic methods are needed that can quantify the pathologic changes. Furthermore, to provide translational relevance to the mouse models, such measurements should be tests that can easily be done in both humans and mice. Unfortunately, in the present literature few phenotypic measurements of lung function have direct application to humans. One exception is the diffusing capacity for carbon monoxide, which is a measurement that is routinely done in humans. In the present report, we describe a means to quickly and simply measure this diffusing capacity in mice. The procedure involves brief lung inflation with tracer gases in an anesthetized mouse, followed by a 1 min gas analysis time. We have tested the ability of this method to detect several lung pathologies, including emphysema, fibrosis, acute lung injury, and influenza and fungal lung infections, as well as monitoring lung maturation in young pups. Results show significant decreases in all the lung pathologies, as well as an increase in the diffusing capacity with lung maturation. This measurement of lung diffusing capacity thus provides a pulmonary function test that has broad application with its ability to detect phenotypic structural changes with most of the existing pathologic lung models.

  3. [Radiation carcinogenesis].

    PubMed

    Hosoi, Yoshio

    2013-11-01

    Misrepair of DNA damage induced by ionizing radiation is a potential cause of carcinogenesis following exposure to radiation. Radiation exposure increases the incidence of the same types of mutations that occur spontaneously in a given population. A high incidence of DNA double-strand breaks is characteristic of damage by ionizing radiation compared with those induced by other environmental mutagens. In China, residents living in areas with high level background radiation(6mSv/y) had a significantly higher frequency of dicentric and ring chromosomes compared to that for the residents living in the control areas(2mSv/y). Radiation-associated increases in risk were seen for most sites. Gender-averaged excess absolute risk rates estimated at age 70, after exposure at age 30, differ in the sites, and the risks of gastric cancer, breast cancer, colon cancer, and lung cancer were highly increased, in that order. Latent periods for the development of leukemia and thyroid cancer after radiation exposure at ages younger than 18 were shorter compared to those for other solid cancers.

  4. Oral recombinant human or mouse lactoferrin reduces Mycobacterium tuberculosis TDM induced granulomatous lung pathology.

    PubMed

    Hwang, Shen-An; Kruzel, Marian L; Actor, Jeffrey K

    2017-02-01

    Trehalose 6'6-dimycolate (TDM) is the most abundant glycolipid on the cell wall of Mycobacterium tuberculosis (MTB). TDM is capable of inducing granulomatous pathology in mouse models that resembles those induced by MTB infection. Using the acute TDM model, this work investigates the effect of recombinant human and mouse lactoferrin to reduce granulomatous pathology. C57BL/6 mice were injected intravenously with TDM at a dose of 25 μg·mouse(-1). At day 4 and 6, recombinant human or mouse lactoferrin (1 mg·(100 μL)(-1)·mouse(-1)) were delivered by gavage. At day 7 after TDM injection, mice were evaluated for lung pathology, cytokine production, and leukocyte populations. Mice given human or mouse lactoferrin had reduced production of IL-12p40 in their lungs. Mouse lactoferrin increased IL-6 and KC (CXCL1) in lung tissue. Increased numbers of macrophages were observed in TDM-injected mice given human or mouse lactoferrin. Granulomatous pathology, composed of mainly migrated leukocytes, was visually reduced in mice that received human or mouse lactoferrin. Quantitation of granulomatous pathology demonstrated a significant decrease in mice given human or mouse lactoferrin compared with TDM control mice. This report is the first to directly compare the immune modulatory effects of both heterologous recombinant human and homologous mouse lactoferrin on the development of TDM-induced granulomas.

  5. Refraction-enhanced tomography of mouse and rabbit lungs

    SciTech Connect

    Sera, T.; Uesugi, K.; Yagi, N.

    2005-09-15

    In order to evaluate the effectiveness of edge enhancement by refraction in computed tomography, images of a cross section of a euthanized mouse thorax were recorded at low (20 keV) and high (72 keV) x-ray energies at a spatial resolution of about 40 {mu}m. Compared with the images obtained with the detector at 30 cm from an object, when the object was located at 113 cm from the detector, the contrast between tissues and air was improved at both energies. The improvement was more pronounced at 72 keV where the absorption contrast was weaker. This effect was due to refraction at the surfaces of alveolar membranes and small airways which creates areas with apparently high and low linear attenuation coefficients within tissues. The edge enhancement by refraction was also effective in images of a euthanized rabbit thorax at x-ray energies of 40 and 70 keV at a spatial resolution of about 0.15 mm. These results raise the possibility that the refraction contrast may be utilized to obtain a high-resolution tomographic image of human lung and bone with low dose.

  6. Developing Novel Therapeutic Approaches in Small Cell Lung Carcinoma Using Genetically Engineered Mouse Models and Human Circulating Tumor Cells

    DTIC Science & Technology

    2015-10-01

    Using Genetically Engineered Mouse Models and Human Circulating Tumor Cells PRINCIPAL INVESTIGATOR: Jeffrey Engelman MD PhD CONTRACTING...SUBTITLE Developiing Novel Therapeutic Approaches in Small Cell Lung 5a. CONTRACT NUMBER Carcinoma Using Genetically Engineered Mouse Models and 5b...biomarkers. 15. SUBJECT TERMS Small cell lung cancer (SCLC), Genetically engineered mouse model (GEMM), BH3 mimetic, TORC inhibitor, Apoptosis

  7. Long non-coding RNA stabilizes the Y-box-binding protein 1 and regulates the epidermal growth factor receptor to promote lung carcinogenesis

    PubMed Central

    Huang, Yun-Chao; Wang, Gui-Zhen; Zhao, Xin-Chun; Pan, Hong-Li; Qu, Li-Wei; Zhang, Jian; Zhang, Chen; Cheng, Xin; Zhou, Guang-Biao

    2016-01-01

    Indoor and outdoor air pollution has been classified as group I carcinogen in humans, but the underlying tumorigenesis remains unclear. Here, we screened for abnormal long noncoding RNAs (lncRNAs) in lung cancers from patients living in Xuanwei city which has the highest lung cancer incidence in China due to smoky coal combustion-generated air pollution. We reported that Xuanwei patients had much more dysregulated lncRNAs than patients from control regions where smoky coal was not used. The lncRNA CAR intergenic 10 (CAR10) was up-regulated in 39/62 (62.9%) of the Xuanwei patients, which was much higher than in patients from control regions (32/86, 37.2%; p=0.002). A multivariate regression analysis showed an association between CAR10 overexpression and air pollution, and a smoky coal combustion-generated carcinogen dibenz[a,h]anthracene up-regulated CAR10 by increasing transcription factor FoxF2 expression. CAR10 bound and stabilized transcription factor Y-box-binding protein 1 (YB-1), leading to up-regulation of the epidermal growth factor receptor (EGFR) and proliferation of lung cancer cells. Knockdown of CAR10 inhibited cell growth in vitro and tumor growth in vivo. These results demonstrate the role of lncRNAs in environmental lung carcinogenesis, and CAR10-YB-1 represents a potential therapeutic target. PMID:27322209

  8. The G gamma / T-15 transgenic mouse model of androgen-independent prostate cancer: target cells of carcinogenesis and the effect of the vitamin D analogue EB 1089.

    PubMed

    Perez-Stable, Carlos M; Schwartz, Gary G; Farinas, Adan; Finegold, Milton; Binderup, Lise; Howard, Guy A; Roos, Bernard A

    2002-06-01

    Transgenic mouse models of prostate cancer provide unique opportunities to understand the molecular events in prostate carcinogenesis and for the preclinical testing of new therapies. We studied the G gamma T-15 transgenic mouse line, which contains the human fetal globin promoter linked to SV40 T antigen (Tag) and which develops androgen-independent prostate cancer. Using the immunohistochemistry of normal mouse prostates before tumor formation, we showed that the target cells of carcinogenesis in G gamma T-15 mice are located in the basal epithelial layer. We tested the efficacy of the 1,25(OH)(2)D(3) analogue, EB 1089, to chemoprevent prostate cancer in these transgenic mice. Compared with treatment with placebo, treatment with EB 1089 at three different time points before the onset of prostate tumors in mice did not prevent or delay tumor onset. However, EB 1089 significantly inhibited prostate tumor growth. At the highest dose, EB 1089 inhibited prostate tumor growth by 60% (P = 0.0003) and the growth in the number of metastases, although this dose also caused significant hypercalcemia and weight loss. We conducted several in vitro experiments to explore why EB 1089 did not prevent the occurrence of the primary tumors. EB 1089 significantly inhibited the growth of a Tag-expressing human prostate epithelial cell line, BPH-1, and an androgen-insensitive subline of LNCaP cells [which was not inhibited by 1,25(OH)(2)D(3)]. Thus, neither Tag expression nor androgen insensitivity explain the absence of chemopreventive effect. Conversely, neither 1,25(OH)(2)D(3) nor EB 1089 inhibited the growth of the normal rat prostate basal epithelial cell line NRP-152. It is likely that EB 1089 was not effective in delaying the growth of the primary tumor in G gamma T-15 transgenic mice because the target cells of carcinogenesis in these mice are located in the basal epithelial layer. We conclude that G gamma T-15 transgenic mice are a useful model for testing vitamin D

  9. Curcumin ameliorates the tumor-enhancing effects of a high-protein diet in an azoxymethane-induced mouse model of colon carcinogenesis.

    PubMed

    Byun, So-Young; Kim, Dan-Bi; Kim, Eunjung

    2015-08-01

    An increasing number of reports suggest that a high-protein diet (HPD) is associated with an increased risk for colorectal cancer (CRC). One of the proposed mechanisms is that an HPD increases the delivery of protein to the colon and generates various toxic metabolites that contribute to colon carcinogenesis. Curcumin was shown to exert significant preventive properties against CRC. We therefore hypothesized that curcumin can reverse the tumor-enhancing effects of an HPD. This study examined the effects of curcumin on the development of azoxymethane (AOM)-induced colorectal tumors in HPD-fed mice. A total of 30 female Balb/c mice were randomly divided into 3 groups: those fed a normal diet (20% casein), those fed an HPD (HPD; 50% casein), and those fed an HPD supplemented with curcumin (HPDC; 0.02% curcumin). The mice were subjected to an AOM-dextran sodium sulfate colon carcinogenesis protocol. Mice in the HPDC group exhibited a significant (40%) reduction in colorectal tumor multiplicity when compared with those in the HPD group. The expression of colonic inflammatory proteins (cyclooxygenase-2 and inducible nitric oxide synthase), the levels of plasma inflammatory markers (nitric oxide and tumor necrosis factor-α), fecal ammonia, short- and branched-chain fatty acid levels, and the rate of colonocyte proliferation were significantly lower in the HPDC than the HPD group. In conclusion, curcumin inhibited the development of colorectal tumors in an AOM-induced mouse model of colon carcinogenesis by attenuating colonic inflammation, proliferation, and toxic metabolite production. Curcumin might be useful in the chemoprevention of CRC in individuals consuming an HPD.

  10. Depletion of tumor-associated macrophages slows the growth of chemically induced mouse lung adenocarcinomas.

    PubMed

    Fritz, Jason M; Tennis, Meredith A; Orlicky, David J; Lin, Hao; Ju, Cynthia; Redente, Elizabeth F; Choo, Kevin S; Staab, Taylor A; Bouchard, Ronald J; Merrick, Daniel T; Malkinson, Alvin M; Dwyer-Nield, Lori D

    2014-01-01

    Chronic inflammation is a risk factor for lung cancer, and low-dose aspirin intake reduces lung cancer risk. However, the roles that specific inflammatory cells and their products play in lung carcinogenesis have yet to be fully elucidated. In mice, alveolar macrophage numbers increase as lung tumors progress, and pulmonary macrophage programing changes within 2 weeks of carcinogen exposure. To examine how macrophages specifically affect lung tumor progression, they were depleted in mice bearing urethane-induced lung tumors using clodronate-encapsulated liposomes. Alveolar macrophage populations decreased to ≤50% of control levels after 4-6 weeks of liposomal clodronate treatment. Tumor burden decreased by 50% compared to vehicle treated mice, and tumor cell proliferation, as measured by Ki67 staining, was also attenuated. Pulmonary fluid levels of insulin-like growth factor-I, CXCL1, IL-6, and CCL2 diminished with clodronate liposome treatment. Tumor-associated macrophages expressed markers of both M1 and M2 programing in vehicle and clodronate liposome-treated mice. Mice lacking CCR2 (the receptor for macrophage chemotactic factor CCL2) had comparable numbers of alveolar macrophages and showed no difference in tumor growth rates when compared to similarly treated wild-type mice suggesting that while CCL2 may recruit macrophages to lung tumor microenvironments, redundant pathways can compensate when CCL2/CCR2 signaling is inactivated. Depletion of pulmonary macrophages rather than inhibition of their recruitment may be an advantageous strategy for attenuating lung cancer progression.

  11. The FYVE domain of Smad Anchor for Receptor Activation (SARA) is required to prevent skin carcinogenesis, but not in mouse development.

    PubMed

    Chang, Huang-Ming; Lin, Yu-Ying; Tsai, Pei-Chun; Liang, Chung-Tiang; Yan, Yu-Ting

    2014-01-01

    Smad Anchor for Receptor Activation (SARA) has been reported as a critical role in TGF-β signal transduction by recruiting non-activated Smad2/3 to the TGF-β receptor and ensuring appropriate subcellular localization of the activated receptor-bound complex. However, controversies still exist in previous reports. In this study, we describe the expression of two SARA isoforms, SARA1 and SARA2, in mice and report the generation and characterization of SARA mutant mice with FYVE domain deletion. SARA mutant mice developed normally and showed no gross abnormalities. Further examination showed that the TGF-β signaling pathway was indeed altered in SARA mutant mice, with the downregulation of Smad2 protein expression. The decreasing expression of Smad2 was caused by enhancing Smurf2-mediated proteasome degradation pathway. However, the internalization of TGF-β receptors into the early endosome was not affected in SARA mutant mouse embryonic fibroblasts (MEFs). Moreover, the downregulation of Smad2 in SARA mutant MEFs was not sufficient to disrupt the diverse cellular biological functions of TGF-β signaling, including growth inhibition, apoptosis, senescence, and the epithelial-to-mesenchymal transition. Our results indicate that SARA is not involved in the activation process of TGF-β signal transduction. Using a two-stage skin chemical carcinogenesis assay, we found that the loss of SARA promoted skin tumor formation and malignant progression. Our data suggest a protective role of SARA in skin carcinogenesis.

  12. Curcumin Inhibits Transforming Growth Factor β Induced Differentiation of Mouse Lung Fibroblasts to Myofibroblasts

    PubMed Central

    Liu, Daishun; Gong, Ling; Zhu, Honglan; Pu, Shenglan; Wu, Yang; Zhang, Wei; Huang, Guichuan

    2016-01-01

    Transforming growth factor β (TGF-β) induced differentiation of lung fibroblasts to myofibroblasts is a key event in the pathogenesis of pulmonary fibrosis. This study aimed to evaluate the effect of curcumin on TGF-β induced differentiation of lung fibroblasts to myofibroblasts and explore the underlying mechanism. Mouse lung fibroblasts were cultured and treated with TGF-β2 and curcumin or rosiglitazone. Cell vitality was examined by MTT assay. The secretion of collagen-1 was assessed by ELISA. α smooth muscle actin (α-SMA) was visualized by immunofluorescence technique. The expression of peroxisome proliferator activated receptor γ (PPAR-γ) and platelet derived growth factor R β (PDGFR-β) was detected by PCR and Western blot analysis. We found that curcumin and rosiglitazone inhibited the proliferation and TGF-β induced differentiation of mouse lung fibroblasts. In addition, curcumin and rosiglitazone inhibited collagen-1 secretion and α-SMA expression in mouse lung fibroblasts. Furthermore, curcumin and rosiglitazone upregulated PPAR-γ and downregulated PDGFR-β expression in mouse lung fibroblasts. In conclusion, our study reveals novel mechanism by which curcumin inhibits TGF-β2 driven differentiation of lung fibroblasts to myofibroblasts. Curcumin could potentially be used for effective treatment of pulmonary fibrosis. PMID:27877129

  13. Regulation of IL-33 by Oncostatin M in Mouse Lung Epithelial Cells

    PubMed Central

    Izakelian, Laura; Dubey, Anisha; Zhang, Grace; Wong, Steven; Kwofie, Karen; Qureshi, Aatif; Botelho, Fernando

    2016-01-01

    IL-33 modulates both innate and adaptive immune responses at tissue sites including lung and may play critical roles in inflammatory lung disease. Although IL-33 expression can be altered upon NF-Kappa B activation, here we examine regulation by Oncostatin M, a gp130 cytokine family member, in mouse lung tissue. Responses were assessed in BALB/c mouse lung at day 7 of transient overexpression using endotracheally administered adenovirus encoding OSM (AdOSM) or empty vector (AdDel70). Whole lung extracts showed induction of IL-33 mRNA (>20-fold) and protein (10-fold increase in immunoblots) by AdOSM relative to AdDel70. Immunohistochemistry for IL-33 indicated a marked induction of nuclear staining in alveolar epithelial cells in vivo. Oncostatin M stimulated IL-33 mRNA and IL-33 full length protein in C10 mouse type 2 alveolar epithelial cells in culture in time-dependent and dose-dependent fashion, whereas IL-6, LIF, IL-31, IL-4, or IL-13 did not, and TGFβ repressed IL-33. IL-33 induction was associated with activation of STAT3, and pharmacological inhibition of STAT3 ameliorated IL-33 levels. These results indicate Oncostatin M as a potent inducer of IL-33 in mouse lung epithelial cells and suggest that an OSM/IL-33 axis may participate in innate immunity and inflammatory conditions in lung. PMID:27703303

  14. Inhibitory Effects of Gymnema (Gymnema sylvestre) Leaves on Tumour Promotion in Two-Stage Mouse Skin Carcinogenesis.

    PubMed

    Yasukawa, Ken; Okuda, Sakiko; Nobushi, Yasuhito

    2014-01-01

    Ethanol extracts of gymnema (Gymnema sylvestre) leaves exhibited marked antitumour-promoting activity in an in vivo two-stage carcinogenesis test in mice using 7,12-dimethylbenz[a]anthracene as an initiator and 12-O-tetradecanoylphorbol-13-acetate (TPA) as a promoter. From the active fraction of the ethanol extract of the gymnema leaves, three triterpenoids were isolated and identified. These compounds were evaluated for their inhibitory effects on TPA-induced inflammation (1 µg/ear) in mice. The tested compounds showed marked anti-inflammatory effects, with a 50% inhibitory dose of 50-555 nmol/ear.

  15. Inhibitory Effects of Gymnema (Gymnema sylvestre) Leaves on Tumour Promotion in Two-Stage Mouse Skin Carcinogenesis

    PubMed Central

    Yasukawa, Ken; Okuda, Sakiko; Nobushi, Yasuhito

    2014-01-01

    Ethanol extracts of gymnema (Gymnema sylvestre) leaves exhibited marked antitumour-promoting activity in an in vivo two-stage carcinogenesis test in mice using 7,12-dimethylbenz[a]anthracene as an initiator and 12-O-tetradecanoylphorbol-13-acetate (TPA) as a promoter. From the active fraction of the ethanol extract of the gymnema leaves, three triterpenoids were isolated and identified. These compounds were evaluated for their inhibitory effects on TPA-induced inflammation (1 µg/ear) in mice. The tested compounds showed marked anti-inflammatory effects, with a 50% inhibitory dose of 50–555 nmol/ear. PMID:24734106

  16. Neuroendocrine lung carcinogenesis in hamsters is inhibited by green tea or theophylline while the development of adenocarcinomas is promoted: implications for chemoprevention in smokers.

    PubMed

    Schuller, Hildegard M; Porter, B; Riechert, A; Walker, K; Schmoyer, R

    2004-07-01

    Lung cancer continues to be the leading cause of cancer death in developed countries. With smoking the major etiological factor for lung cancer, there is a great need for the development of chemopreventive treatments that inhibit the progression of initiated cells and premalignant lesions into overt lung cancer in smokers who quit. Although the major focus of chemoprevention research has been on agents that inhibit the metabolic activation of genotoxic chemicals contained in tobacco products, some of these agents may additionally modulate growth-regulating signal transduction. In turn, the function of such signaling pathways is highly cell type-specific, with a given pathway inhibiting the growth of one cell type while stimulating the growth of others. The current experiment has tested the hypothesis that green tea and the methylxanthine theophylline contained in tea inhibit the progression of neuroendocrine lung carcinogenesis in hamsters with hyperoxic lung injury and initiated with the tobacco carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) while promoting the development of Clara cell-derived pulmonary adenocarcinomas initiated by NNK in healthy hamsters. This hypothesis is based on published evidence that human small cell lung cancer as well as the neuroendocrine hamster tumors are regulated via autocrine signaling pathways that activate Raf-1 and the mitogen-activated (MAP) kinase pathway whereas human pulmonary adenocarcinomas of Clara cell lineage and the hamster model of this cancer type are regulated by a beta-adrenergic pathway involving the activation of cyclic adenosine 3',5'-monophosphate (cAMP) and the arachidonic acid (AA) cascade. In turn, it was hypothesized that theophylline would inhibit Raf-1-dependent tumor progression while promoting cAMP-dependent tumor progression due to its documented ability to inhibit the enzyme cAMP-phophodiesterase. The experimental design simulated chemoprevention in former smokers in that treatments

  17. Virus Carcinogenesis

    DTIC Science & Technology

    1961-01-01

    viruses are capable of inducing cancer, it is obvious that virus carcinogenesis cannot be considered in an isolated fashion, without some reference to...intradermal inoculations of vaccinia virus . One of the viruses most widely investigated with respect to quantitative dose- response relationships is the...than the rule. Figure 6 shows the type of deviation most commonly observed with viruses of infectious diseases. VIRUS CARCINOGENESIS 131 It is a

  18. Prenatal exposure to bisphenol A disrupts mouse fetal lung development.

    PubMed

    Hijazi, Ayten; Guan, Haiyan; Cernea, Maria; Yang, Kaiping

    2015-12-01

    Developmental exposure to bisphenol A (BPA) is associated with lung dysfunction and diseases. However, it is unknown if this association has a fetal origin. The present study addressed this important question by examining the effects of BPA on fetal lung development. BPA was administered to pregnant mice via diet from embryonic day (E) 7.5 to E18.5. Fetal lungs were analyzed at E18.5 for changes in structure and expression of key molecular markers of lung maturation. Our main findings were as follows: BPA severely retards fetal lung maturation, as evidenced by diminished alveolar airspace (15% of control) and thickened septa, hallmarks of lung immaturity; this immaturity is characterized by aberrant alveolar epithelial type I cell differentiation because expression of the type I cell marker, aquaporin 5, but not type II cell markers, is dramatically reduced (16% of control); and the effects of BPA are likely mediated through the glucocorticoid signaling pathway because the expression of epithelial sodium channel γ and glutathione peroxidase, 2 well-known glucocorticoid target genes, is down-regulated in BPA-exposed fetal lungs, and, importantly, maternal dexamethasone administration rescues the lung immaturity phenotype. Taken together, these findings demonstrate that BPA disrupts fetal lung maturation, thus suggesting a fetal origin for BPA-induced lung diseases. © FASEB.

  19. Stereotactic Body Radiation Therapy Delivery in a Genetically Engineered Mouse Model of Lung Cancer

    PubMed Central

    Du, Shisuo; Lockamy, Virginia; Zhou, Lin; Xue, Christine; LeBlanc, Justin; Glenn, Shonna; Shukla, Gaurav; Yu, Yan; Dicker, Adam P.; Leeper, Dennis B.; Lu, You; Lu, Bo

    2016-01-01

    Purpose To implement clinical stereotactic body radiation therapy (SBRT) using a small animal radiation research platform (SARRP) in a genetically engineered mouse model of lung cancer. Methods and Materials A murine model of multinodular Kras-driven spontaneous lung tumors was used for this study. High-resolution cone beam computed tomography (CBCT) imaging was used to identify and target peripheral tumor nodules, whereas off-target lung nodules in the contralateral lung were used as a nonirradiated control. CBCT imaging helps localize tumors, facilitate high-precision irradiation, and monitor tumor growth. SBRT planning, prescription dose, and dose limits to normal tissue followed the guidelines set by RTOG protocols. Pathologic changes in the irradiated tumors were investigated using immunohistochemistry. Results The image guided radiation delivery using the SARRP system effectively localized and treated lung cancer with precision in a genetically engineered mouse model of lung cancer. Immunohistochemical data confirmed the precise delivery of SBRT to the targeted lung nodules. The 60 Gy delivered in 3 weekly fractions markedly reduced the proliferation index, Ki-67, and increased apoptosis per staining for cleaved caspase-3 in irradiated lung nodules. Conclusions It is feasible to use the SARRP platform to perform dosimetric planning and delivery of SBRT in mice with lung cancer. This allows for preclinical studies that provide a rationale for clinical trials involving SBRT, especially when combined with immunotherapeutics. PMID:27681749

  20. AKT1E¹⁷K Is Oncogenic in Mouse Lung and Cooperates with Chemical Carcinogens in Inducing Lung Cancer.

    PubMed

    Malanga, Donatella; Belmonte, Stefania; Colelli, Fabiana; Scarfò, Marzia; De Marco, Carmela; Oliveira, Duarte Mendes; Mirante, Teresa; Camastra, Caterina; Gagliardi, Monica; Rizzuto, Antonia; Mignogna, Chiara; Paciello, Orlando; Papparella, Serenella; Fagman, Henrik; Viglietto, Giuseppe

    2016-01-01

    The hotspot AKT1E17K mutation in the pleckstrin homology domain of AKT1 occurs in approximately 0.6-2% of human lung cancers. Recently, we have demonstrated that AKT1E17K transforms immortalized human bronchial cells. Here by use of a transgenic Cre-inducible murine strain in the wild type Rosa26 (R26) locus (R26-AKT1E17K mice) we demonstrate that AKT1E17K is a bona-fide oncogene and plays a role in the development of lung cancer in vivo. In fact, we report that mutant AKT1E17K induces bronchial and/or bronchiolar hyperplastic lesions in murine lung epithelium, which progress to frank carcinoma at very low frequency, and accelerates tumor formation induced by chemical carcinogens. In conclusion, AKT1E17K induces hyperplasia of mouse lung epithelium in vivo and cooperates with urethane to induce the fully malignant phenotype.

  1. Chromosomal changes in high- and low-invasive mouse lung adenocarcinoma cell strains derived from early passage mouse lung adenocarcinoma cell strains

    SciTech Connect

    Sargent, Linda M. Ensell, Mang X.; Ostvold, Anne-Carine; Baldwin, Kimberly T.; Kashon, Michael L.; Lowry, David T.; Senft, Jamie R.; Jefferson, Amy M.; Johnson, Robert C.; Li Zhi; Tyson, Frederick L.; Reynolds, Steven H.

    2008-11-15

    The incidence of adenocarcinoma of the lung is increasing in the United States, however, the difficulties in obtaining lung cancer families and representative samples of early to late stages of the disease have lead to the study of mouse models for lung cancer. We used Spectral Karyotyping (SKY), mapping with fluorescently labeled genomic clones (FISH), comparative genomic hybridization (CGH) arrays, gene expression arrays, Western immunoblot and real time polymerase chain reaction (PCR) to analyze nine pairs of high-invasive and low-invasive tumor cell strains derived from early passage mouse lung adenocarcinoma cells to detect molecular changes associated with tumor invasion. The duplication of chromosomes 1 and 15 and deletion of chromosome 8 were significantly associated with a high-invasive phenotype. The duplication of chromosome 1 at band C4 and E1/2-H1 were the most significant chromosomal changes in the high-invasive cell strains. Mapping with FISH and CGH array further narrowed the minimum region of duplication of chromosome 1 to 71-82 centimorgans (cM). Expression array analysis and confirmation by real time PCR demonstrated increased expression of COX-2, Translin (TB-RBP), DYRK3, NUCKS and Tubulin-{alpha}4 genes in the high-invasive cell strains. Elevated expression and copy number of these genes, which are involved in inflammation, cell movement, proliferation, inhibition of apoptosis and telomere elongation, were associated with an invasive phenotype. Similar linkage groups are altered in invasive human lung adenocarcinoma, implying that the mouse is a valid genetic model for the study of the progression of human lung adenocarcinoma.

  2. Reduced type II interleukin-4 receptor signalling drives initiation, but not progression, of colorectal carcinogenesis: evidence from transgenic mouse models and human case–control epidemiological observations

    PubMed Central

    Hull, Mark A.

    2013-01-01

    We investigated the role of interleukin (IL)-4 receptor (IL-4R) signalling during mouse carcinogen-induced colorectal carcinogenesis and in a case–control genetic epidemiological study of IL-4Rα single nucleotide polymorphisms (SNPs). Azoxymethane-induced aberrant crypt focus (ACF; 6 weeks) and tumours (32 weeks) were analysed in wild-type (WT) BALB/c mice, as well as in IL-4Rα − /−, IL-13 −/− and ‘double-knockout’ (DKO) animals. Colorectal cancer (CRC) cases (1502) and controls (584) were genotyped for six coding IL-4Rα SNPs. The association with CRC risk and CRC-specific mortality was analysed by logistic regression. Lack of IL-4Rα expression was associated with increased ACFs [median 8.5 ACFs per mouse (IL-4Rα −/−) versus 3 (WT); P = 0.007], but no difference in the number of colorectal tumours [mean 1.4 per mouse (IL-4Rα −/−) versus 2 (WT)], which were smaller and demonstrated reduced nuclear/cytoplasmic β-catenin translocation compared with WT tumours. Tumour-bearing IL-4Rα −/− mice had fewer CD11b+/Gr1+ myeloid-derived suppressor splenocytes than WT animals. IL-13 −/− mice developed a similar number of ACFs to IL-4Rα −/− and DKO mice. There was a significant increase in CRC risk associated with the functional SNP Q576R [odds ratio 1.54 (95% confidence interval 0.94–2.54), P trend 0.03 for the minor G allele]. There was no effect of IL-4Rα genotype on either CRC-specific or all-cause mortality. These combined pre-clinical and human data together demonstrate that reduced IL-4R signalling has stage-specific effects on colorectal carcinogenesis (increased CRC initiation and risk but reduced tumour progression and no effect on CRC mortality). These results should prompt evaluation of the effect of pharmacological manipulation of IL-4R signalling on future CRC risk and for CRC treatment. PMID:23784081

  3. Aberrant methylation accounts for cell adhesion-related gene silencing during 3-methylcholanthrene and diethylnitrosamine induced multistep rat lung carcinogenesis associated with overexpression of DNA methyltransferases 1 and 3a

    SciTech Connect

    Liu Wenbin; Cui Zhihong; Ao Lin; Zhou Ziyuan; Zhou Yanhong; Yuan Xiaoyan; Xiang Yunlong; Liu Jinyi Cao Jia

    2011-02-15

    To evaluate the significance of alterations in cell adhesion-related genes methylation during lung multistep carcinogenesis induced by the genotoxic carcinogens 3-methylcholanthrene (MCA) and diethylnitrosamine (DEN), tissue samples microdissected from MCA/DEN-induced rat lung carcinogenesis model were subjected to methylation-specific PCR to evaluate the DNA methylation status of CADM1, TIMP3, E-cadherin and N-cadherin. Immunohistochemistry was used to determine protein expression of CADM1, TIMP3, N-cadherin and the DNA methyltransferases (DNMTs) 1, 3a and 3b. E-cadherin hypermethylation was not detected in any tissue. CADM1, TIMP3 and N-cadherin hypermethylation was correlated with the loss of their protein expression during the progression of pathologic lesions. The prevalence of DNA methylation of at least one gene and the average number of methylated genes increased with the histological progression. DNMT1 and DNMT3a protein expression increased progressively during the stages of lung carcinogenesis, whereas DNMT3b overexpression was only found in several samples. Furthermore, DNMT1 protein expression levels were correlated with CADM1 methylation, and DNMT3a protein expression levels were correlated with CADM1, TIMP3 and N-cadherin methylation. The average number of methylated genes during carcinogenesis was significantly correlated with DNMT1 and DNMT3a protein expression levels. Moreover, mRNA expression of CADM1 significantly increased after treatment with DNMT inhibitor 5-aza-2'-deoxycytidine in CADM1-methylated primary tumor cell lines. Our findings suggest that an accumulation of hypermethylation accounts for cell adhesion-related gene silencing is associated with dynamic changes in the progression of MCA/DEN-induced rat lung carcinogenesis. We suggest that DNMT1 and DNMT3a protein overexpression may be responsible for this aberrant DNA methylation.

  4. Mechanical properties of acellular mouse lungs after sterilization by gamma irradiation.

    PubMed

    Uriarte, Juan J; Nonaka, Paula N; Campillo, Noelia; Palma, Renata K; Melo, Esther; de Oliveira, Luis V F; Navajas, Daniel; Farré, Ramon

    2014-12-01

    Lung bioengineering using decellularized organ scaffolds is a potential alternative for lung transplantation. Clinical application will require donor scaffold sterilization. As gamma-irradiation is a conventional method for sterilizing tissue preparations for clinical application, the aim of this study was to evaluate the effects of lung scaffold sterilization by gamma irradiation on the mechanical properties of the acellular lung when subjected to the artificial ventilation maneuvers typical within bioreactors. Twenty-six mouse lungs were decellularized by a sodium dodecyl sulfate detergent protocol. Eight lungs were used as controls and 18 of them were submitted to a 31kGy gamma irradiation sterilization process (9 kept frozen in dry ice and 9 at room temperature). Mechanical properties of acellular lungs were measured before and after irradiation. Lung resistance (RL) and elastance (EL) were computed by linear regression fitting of recorded signals during mechanical ventilation (tracheal pressure, flow and volume). Static (Est) and dynamic (Edyn) elastances were obtained by the end-inspiratory occlusion method. After irradiation lungs presented higher values of resistance and elastance than before irradiation: RL increased by 41.1% (room temperature irradiation) and 32.8% (frozen irradiation) and EL increased by 41.8% (room temperature irradiation) and 31.8% (frozen irradiation). Similar increases were induced by irradiation in Est and Edyn. Scanning electron microscopy showed slight structural changes after irradiation, particularly those kept frozen. Sterilization by gamma irradiation at a conventional dose to ensure sterilization modifies acellular lung mechanics, with potential implications for lung bioengineering.

  5. Suppressive effects of Moringa oleifera Lam pod against mouse colon carcinogenesis induced by azoxymethane and dextran sodium sulfate.

    PubMed

    Budda, Sirintip; Butryee, Chaniphun; Tuntipopipat, Siriporn; Rungsipipat, Anudep; Wangnaithum, Supradit; Lee, Jeong-Sang; Kupradinun, Piengchai

    2011-01-01

    Moringa oleifera Lam (horseradish tree; tender pod or fruits) is a major ingredient in Thai cuisine and has some medicinal properties. Previous studies have shown potentially antioxidant, antitumor promoter, anticlastogen and anticarcinogen activities both in vitro and in vivo. The present study was conducted to investigate chemopreventive effects on azoxymethane (AOM)-initiated and dextran sodium sulfate (DSS)-promoted colon carcinogenesis in mice. Male ICR mice were divided into 8 groups: Group 1 served as a negative control; Group 2 received AOM/DSS as a positive control; Groups 3-5 were fed boiled freeze-dried M. oleifera (bMO) at 1.5%, 3.0% and 6.0%, respectively supplemented in basal diets for 5 weeks; Groups 6-8 were fed with bMO diets at the designed doses above for 2 weeks prior to AOM, during and 1 week after DSS administration. At the end of the study, colon samples were processed for histopathological examination. PCNA indices, and iNOS and COX-2 expression were assessed by immunohistochemistry. The results demonstrated the incidences and multiplicities of tumors in Groups 6-8 to be decreased when compared to Group 2 in a dose dependent manner, but this was significant only in Group 8. The PCNA index was also significantly decreased in Group 8 whereas iNOS and COX-2 protein expression were significantly decreased in Groups 7 and 8. The findings suggest that M. oleifera Lam pod exerts suppressive effects in a colitis-related colon carcinogenesis model induced by AOM/DSS and could serve as a chemopreventive agent.

  6. TACE in perinatal mouse lung epithelial cells promotes lung saccular formation

    PubMed Central

    Xu, Wei; Liu, Chengyu; Kaartinen, Vesa; Chen, Hui; Lu, Chi-Han; Zhang, Wenming; Luo, Yongfeng

    2013-01-01

    Tumor necrosis factor-α converting enzyme (TACE) is a cell membrane sheddase, expressed in both developmental lung epithelia and mesenchyme. Global abrogation of TACE results in neonatal lethality and multiple organ developmental abnormalities, including dysplastic lung. To further define the roles of TACE in regulating lung development, lung epithelial and/or mesenchymal specific TACE conditional knockout mice were generated. Blockade of TACE function in developing lung epithelial cells caused reduced saccular formation, decreased cell proliferation, and reduced mid-distal lung epithelial cell differentiation. In contrast, mesenchymal TACE knockout did not have any phenotypic change in developing lung. Simultaneous abrogation of TACE in both lung epithelial and mesenchymal cells did not result in a more severe lung abnormality. Interestingly, these lung-specific TACE conditional knockout mice were not neonatal lethal, and their lung structures were essentially normal after alveolarization. In addition, TACE conditional knockout in developing cardiomyocytes resulted in noncompaction of ventricular myocardium, as seen in TACE conventional knockout mice. However, these mice were also not neonatal lethal. In conclusion, lung epithelial TACE is essential for promoting fetal lung saccular formation, but not postnatal lung alveolarization in mice. Because the developmental abnormality of either lung or heart induced by TACE deficiency does not directly lead to neonatal lethality, the neonatal death of TACE conventional knockout mice is likely a result of synergistic effects of multiple organ abnormalities. PMID:24142516

  7. Chemical carcinogenesis.

    PubMed

    Oliveira, Paula A; Colaço, Aura; Chaves, Raquel; Guedes-Pinto, Henrique; De-La-Cruz P, Luis F; Lopes, Carlos

    2007-12-01

    The use of chemical compounds benefits society in a number of ways. Pesticides, for instance, enable foodstuffs to be produced in sufficient quantities to satisfy the needs of millions of people, a condition that has led to an increase in levels of life expectancy. Yet, at times, these benefits are offset by certain disadvantages, notably the toxic side effects of the chemical compounds used. Exposure to these compounds can have varying effects, ranging from instant death to a gradual process of chemical carcinogenesis. There are three stages involved in chemical carcinogenesis. These are defined as initiation, promotion and progression. Each of these stages is characterised by morphological and biochemical modifications and result from genetic and/or epigenetic alterations. These genetic modifications include: mutations in genes that control cell proliferation, cell death and DNA repair--i.e. mutations in proto-oncogenes and tumour suppressing genes. The epigenetic factors, also considered as being non-genetic in character, can also contribute to carcinogenesis via epigenetic mechanisms which silence gene expression. The control of responses to carcinogenesis through the application of several chemical, biochemical and biological techniques facilitates the identification of those basic mechanisms involved in neoplasic development. Experimental assays with laboratory animals, epidemiological studies and quick tests enable the identification of carcinogenic compounds, the dissection of many aspects of carcinogenesis, and the establishment of effective strategies to prevent the cancer which results from exposure to chemicals.

  8. Mitigating role of baicalein on lysosomal enzymes and xenobiotic metabolizing enzyme status during lung carcinogenesis of Swiss albino mice induced by benzo(a)pyrene.

    PubMed

    Naveenkumar, Chandrashekar; Raghunandakumar, Subramanian; Asokkumar, Selvamani; Binuclara, John; Rajan, Balan; Premkumar, Thandavamoorthy; Devaki, Thiruvengadam

    2014-06-01

    The lungs mainly serve as a primary site for xenobiotic metabolism and constitute an important defense mechanism against inhalation of carcinogens. Our current study aimed to evaluate the chemotherapeutic efficacy of baicalein (BE) in Swiss albino mice exposed to tobacco-specific carcinogen benzo(a)pyrene [B(a)P] for its ability to mitigate pulmonary carcinogenesis. Here, we report that altered activities/levels of lysosomal enzymes (cathepsin-D, cathepsin-B, acid phosphatase, β-D-galactosidase, β-D-glucuronidase, and β-D-N-acetyl glucosaminidase), phase I biotransformation enzymes (cytochrome P450, cytochrome b5, NADPH-cytochrome P450 reductase, and NADH-cytochrome b5 reductase), and phase II enzymes (glutathione S-transferase, UDP-glucuronyl transferase, and DT-diaphorase) were observed in the B(a)P-induced mice. Treatment with BE significantly restored back the activities/levels of lysosomal enzymes, phase I and phase II biotransformation enzymes. Moreover, assessment of lysosomal abnormalities by transmission electron microscopic examination revealed that BE treatment effectively counteract B(a)P-induced oxidative damages. Protein expression levels studied by immunohistochemistry, immunofluorescence, and immunoblot analysis of CYP1A1 revealed that BE treatment effectively negate B(a)P-induced upregulated expression of CYP1A1. Further analysis of scanning electron microscopic studies in lung was carried out to substantiate the anticarcinogenic effect of BE. The overall data suggest that BE treatment significantly inhibits lysosomal and microsomal dysfunction, thus revealing its potent anticarcinogenic effect.

  9. Efficacy of a technique for exposing the mouse lung to particles aspirated from the pharynx.

    PubMed

    Rao, G V S; Tinkle, Sally; Weissman, David N; Antonini, James M; Kashon, Michael L; Salmen, Rebecca; Battelli, Lori A; Willard, Patsy A; Hoover, Mark D; Hubbs, Ann F

    2003-08-08

    Recent studies have demonstrated that the mouse lung can be exposed to soluble antigens by aspiration of these antigens from the pharynx. This simple technique avoids the trauma associated with intratracheal instillation. In this study, the pharyngeal aspiration technique was validated for exposing the mouse lung to respirable particles. Using respirable fluorescent amine-modified polystyrene latex beads and beryllium oxide particles, we investigated the localization of aspirated particles within the lung and the relationship between the amount of material placed in the pharynx and the amount deposited in the lung. For exposure, mice were anesthetized with isoflurane in a bell jar, placed on a slant board, and the tongue was gently held in full extension while a 50-microl suspension of particles was pipetted onto the base of the tongue. Tongue restraint was maintained until at least two breaths were completed. Less than a minute after exposure, all mice awoke from anesthesia without visible sequela. There were no significant differences in particle distribution between the left and right side of the lung (p=.16). Particles were widely disseminated in a peribronchiolar pattern within the alveolar region. There was a linear and significant correlation (r2=.99) between the amount administered and the amount deposited in the lung. In beryllium-exposed mice, measurable lung beryllium was 77.5 to 88.2% of the administered beryllium. These findings demonstrate that following aspiration of pharyngeal deposited particles, exposures to the deep lung are repeatable, technically simple, and highly correlated to the administered dose.

  10. Gremlin negatively modulates BMP-4 induction of embryonic mouse lung branching morphogenesis.

    PubMed

    Shi, W; Zhao, J; Anderson, K D; Warburton, D

    2001-05-01

    Bone morphogenetic protein-4 (BMP-4) is a key morphogen for embryonic lung development that is expressed at high levels in the peripheral epithelium, but the mechanisms that modulate BMP-4 function in early mouse lung branching morphogenesis are unclear. Here, we studied the BMP-4 antagonist Gremlin, which is a member of the DAN family of BMP antagonists that can bind and block BMP-2/4 activity. The expression level of gremlin in embryonic mouse lungs is highest in the early embryonic pseudoglandular stage [embryonic days (E) 11.5-14.5] and is reduced during fetal lung maturation (E18.5 to postnatal day 1). In situ hybridization indicates that gremlin is diffusely expressed in peripheral lung mesenchyme and epithelium, but relatively high epithelial expression occurs in branching buds at E11.5 and in large airways after E16.5. In E11.5 lung organ culture, we found that exogenous BMP-4 dramatically enhanced peripheral lung epithelial branching morphogenesis, whereas reduction of endogenous gremlin expression with antisense oligonucleotides achieved the same gain-of-function phenotype as exogenous BMP-4, including increased epithelial cell proliferation and surfactant protein C expression. On the other hand, adenoviral overexpression of gremlin blocked the stimulatory effects of exogenous BMP-4. Therefore, our data support the hypothesis that Gremlin is a physiologically negative regulator of BMP-4 in lung branching morphogenesis.

  11. An inducible mouse model of colon carcinogenesis for the analysis of sporadic and inflammation-driven tumor progression.

    PubMed

    Neufert, Clemens; Becker, Christoph; Neurath, Markus F

    2007-01-01

    Colorectal cancer is a life-threatening disease that can develop spontaneously or as a complication of inflammatory bowel diseases. Mouse models are essential tools for the preclinical testing of novel therapeutic options in vivo. Here, we provide a highly reliable protocol for an experimental mouse model to study the development of colon cancers. It is based on the mutagenic agent azoxymethane (AOM), which exerts colonotropic carcinogenicity. Repeated intraperitoneal administration of AOM results in the development of spontaneous tumors within 30 weeks. As an alternative option, inflammation-dependent tumor growth can be investigated by combining the administration of AOM with the inflammatory agent dextran sodium sulfate in drinking water, which causes rapid growth of multiple colon tumors per mouse within 10 weeks. Different scoring systems including number of tumors and tumor size identify factors promoting or inhibiting tumor initiation and/or tumor progression, respectively.

  12. A Curcumin Derivative That Inhibits Vinyl Carbamate-Induced Lung Carcinogenesis via Activation of the Nrf2 Protective Response

    PubMed Central

    Shen, Tao; Jiang, Tao; Long, Min; Chen, Jun; Ren, Dong-Mei; Wong, Pak Kin

    2015-01-01

    Abstract Aims: Lung cancer has a high worldwide morbidity and mortality. The employment of chemopreventive agents is effective to reduce lung cancer. Nuclear factor erythroid 2-related factor 2 (Nrf2) mitigates insults from both exogenous and endogenous sources and thus has been verified as a target for chemoprevention. Curcumin has long been recognized as a chemopreventive agent, but poor bioavailability and weak Nrf2 induction have prohibited clinical application. Thus, we have developed new curcumin derivatives and tested their Nrf2 induction. Results: Based on curcumin, we synthesized curcumin analogs with five carbon linkages and established a structure–activity relationship for Nrf2 induction. Among these derivatives, bis[2-hydroxybenzylidene]acetone (BHBA) was one of the most potent Nrf2 inducers with minimal toxicity and improved pharmacological properties and was thus selected for further investigation. BHBA activated the Nrf2 pathway in the canonical Keap1-Cys151-dependent manner. Furthermore, BHBA was able to protect human lung epithelial cells against sodium arsenite [As(III)]-induced cytotoxicity. More importantly, in an in vivo vinyl carbamate-induced lung cancer model in A/J mice, preadministration of BHBA significantly reduced lung adenocarcinoma, while curcumin failed to show any effects even at high doses. Innovation: The curcumin derivative, BHBA, is a potent inducer of Nrf2. It was demonstrated to protect against As(III) toxicity in lung epithelial cells in an Nrf2-dependent manner. Furthermore, compared with curcumin, BHBA displayed improved chemopreventive activities in a carcinogen-induced lung cancer model. Conclusion: Taken together, our results demonstrate that BHBA, a curcumin analog with improved Nrf2-activating and chemopreventive activities both in vitro and in vivo, could be developed into a chemoprotective pharmacological agent. Antioxid. Redox Signal. 23, 651–664. PMID:25891177

  13. Asymmetric dimethylarginine potentiates lung inflammation in a mouse model of allergic asthma

    PubMed Central

    Klein, Elizabeth; Weigel, Jason; Buford, Mary C.; Holian, Andrij

    2010-01-01

    Nitric oxide (NO), formed by nitric oxide synthase (NOS), is an important mediator of lung inflammation in allergic asthma. Asymmetric dimethylarginine (ADMA), a competitive endogenous inhibitor of NOS, is metabolized by the enzyme dimethylarginine dimethylaminohydrolase (DDAH). Elevated ADMA has been shown to affect lung function in mice, and by inhibiting NOS it alters NO and reactive oxygen species production in mouse lung epithelial cells. However, the effects of altered ADMA levels during lung inflammation have not been explored. A model of allergen-induced airway inflammation was utilized in combination with the modulation of endogenous circulating ADMA levels in mice. Airway inflammation was assessed by quantifying inflammatory cell infiltrates in lung lavage and by histology. Lung DDAH expression was assessed by quantitative PCR and immunohistochemistry. Nitrite levels were determined in lung lavage fluid as a measure of NO production. iNOS expression was determined by immunohistochemistry, immunofluorescence, Western blot, and quantitative PCR. NF-κB binding activity was assessed by a transcription factor binding assay. Allergen-induced lung inflammation was potentiated in mice with elevated circulating ADMA and was reduced in mice overexpressing DDAH. Elevated ADMA reduced nitrite levels in lung lavage fluid in both allergen-challenged and control animals. ADMA increased iNOS expression in airway epithelial cells in vivo following allergen challenge and in vitro in stimulated mouse lung epithelial cells. ADMA also increased NF-κB binding activity in airway epithelial cells in vitro. These data support that ADMA may play a role in inflammatory airway diseases such as asthma through modulation of iNOS expression in lung epithelial cells. PMID:20889675

  14. Genetically manipulated mouse models of lung disease: potential and pitfalls

    PubMed Central

    Choi, Alexander J. S.; Owen, Caroline A.; Choi, Augustine M. K.

    2012-01-01

    Gene targeting in mice (transgenic and knockout) has provided investigators with an unparalleled armamentarium in recent decades to dissect the cellular and molecular basis of critical pathophysiological states. Fruitful information has been derived from studies using these genetically engineered mice with significant impact on our understanding, not only of specific biological processes spanning cell proliferation to cell death, but also of critical molecular events involved in the pathogenesis of human disease. This review will focus on the use of gene-targeted mice to study various models of lung disease including airways diseases such as asthma and chronic obstructive pulmonary disease, and parenchymal lung diseases including idiopathic pulmonary fibrosis, pulmonary hypertension, pneumonia, and acute lung injury. We will attempt to review the current technological approaches of generating gene-targeted mice and the enormous dataset derived from these studies, providing a template for lung investigators. PMID:22198907

  15. Carcinogenesis and low-level ionizing radiation with special reference to lung cancer and exposure to radon daughters

    SciTech Connect

    Fabrikant, J.I.

    1982-06-01

    The quantitative estimation of the carcinogenic risk of low-dose, high-LET radiation in the case of exposure to radon daughters and lung-cancer is subject to numerous uncertainties. The greatest of these concerns the parametric values of the dose-response curve. We lack knowledge and an understanding of the dosimetry and the distribution of aggregates of radioactivity that remain localized as hot spots in specific regions of the lungs and the influence on greater or lesser risk of lung cancer per average lung dose than uniformly deposited radiation (NRC76). We have only a limited understanding of the response to exposure to high-LET radiations, such as alpha particles, for which linear risk estimates for low doses are less likely to overestimate the risk, and may, in fact, underestimate the risk (BEIR80). Other uncertainties include the length of the latency period, the RBE for alpha radiation relative to gamma radiation, the period during which the radiation risk is expressed, the risk projection model used - whether absolute or relative - for projecting risk beyond the period of observation, the effect of dose rate and protraction of dose, and the influence of differences in the natural incidence of lung cancer in different populations. In addition, uncertainties are introduced by the biological and life-style risk characteristics of humans, for example, the effect of sex, the effect of age at the time of irradiation and at the time of appearance of the cancer, the influence of length of observation or follow-up of the study populations, and the influence of perhaps the most important confounding bias, cigarette-smoking. The collective influence of these uncertainties is such as to deny great credibility to any estimate of human lung cancer risk and other cancer risk that can be made for low-dose, high-LET radon daughter radiation exposure.

  16. Wnt/β-catenin signaling accelerates mouse lung tumorigenesis by imposing an embryonic distal progenitor phenotype on lung epithelium.

    PubMed

    Pacheco-Pinedo, Eugenia C; Durham, Amy C; Stewart, Kathleen M; Goss, Ashley M; Lu, Min Min; Demayo, Francesco J; Morrisey, Edward E

    2011-05-01

    Although mutations in Kras are present in 21% of lung tumors, there is a high level of heterogeneity in phenotype and outcome among patients with lung cancer bearing similar mutations, suggesting that other pathways are important. Wnt/β-catenin signaling is a known oncogenic pathway that plays a well-defined role in colon and skin cancer; however, its role in lung cancer is unclear. We have shown here that activation of Wnt/β-catenin in the bronchiolar epithelium of the adult mouse lung does not itself promote tumor development. However, concurrent activation of Wnt/β-catenin signaling and expression of a constitutively active Kras mutant (KrasG12D) led to a dramatic increase in both overall tumor number and size compared with KrasG12D alone. Activation of Wnt/β-catenin signaling altered the KrasG12D tumor phenotype, resulting in a phenotypic switch from bronchiolar epithelium to the highly proliferative distal progenitors found in the embryonic lung. This was associated with decreased E-cadherin expression at the cell surface, which may underlie the increased metastasis of tumors with active Wnt/β-catenin signaling. Together, these data suggest that activation of Wnt/β-catenin signaling can combine with other oncogenic pathways in lung epithelium to produce a more aggressive tumor phenotype by imposing an embryonic distal progenitor phenotype and by decreasing E-cadherin expression.

  17. Mechanotransduction via TRPV4 regulates inflammation and differentiation in fetal mouse distal lung epithelial cells.

    PubMed

    Nayak, Pritha S; Wang, Yulian; Najrana, Tanbir; Priolo, Lauren M; Rios, Mayra; Shaw, Sunil K; Sanchez-Esteban, Juan

    2015-05-27

    Mechanical ventilation plays a central role in the injury of premature lungs. However, the mechanisms by which mechanical signals trigger an inflammatory cascade to promote lung injury are not well-characterized. Transient receptor potential vanilloid 4 (TRPV4), a calcium-permeable mechanoreceptor channel has been shown to be a major determinant of ventilator-induced acute lung injury in adult models. However, the role of these channels as modulators of inflammation in immature lungs is unknown. In this study, we tested the hypothesis that TRPV4 channels are important mechanotransducers in fetal lung injury. Expression of TRPV4 in the mouse fetal lung was investigated by immunohistochemistry, Western blot and qRT-PCR. Isolated fetal epithelial cells were exposed to mechanical stimulation using the Flexcell Strain Unit and inflammation and differentiation were analyzed by ELISA and SP-C mRNA, respectively. TRPV4 is developmentally regulated in the fetal mouse lung; it is expressed in the lung epithelium and increases with advanced gestation. In contrast, in isolated epithelial cells, TRPV4 expression is maximal at E17-E18 of gestation. Mechanical stretch increases TRPV4 in isolated fetal epithelial cells only during the canalicular stage of lung development. Using the TRPV4 agonist GSK1016790A, the antagonist HC-067047, and the cytokine IL-6 as a marker of inflammation, we observed that TRPV4 regulates release of IL-6 via p38 and ERK pathways. Interestingly, stretch-induced differentiation of fetal epithelial cells was also modulated by TRPV4. These studies demonstrate that TRPV4 may play an important role in the transduction of mechanical signals in the fetal lung epithelium by modulating not only inflammation but also the differentiation of fetal epithelial cells.

  18. CD11b immunophenotyping identifies inflammatory profiles in the mouse and human lungs.

    PubMed

    Duan, M; Steinfort, D P; Smallwood, D; Hew, M; Chen, W; Ernst, M; Irving, L B; Anderson, G P; Hibbs, M L

    2016-03-01

    The development of easily accessible tools for human immunophenotyping to classify patients into discrete disease endotypes is advancing personalized therapy. However, no systematic approach has been developed for the study of inflammatory lung diseases with often complex and highly heterogeneous disease etiologies. We have devised an internally standardized flow cytometry approach that can identify parallel inflammatory alveolar macrophage phenotypes in both the mouse and human lungs. In mice, lung innate immune cell alterations during endotoxin challenge, influenza virus infection, and in two genetic models of chronic obstructive lung disease could be segregated based on the presence or absence of CD11b alveolar macrophage upregulation and lung eosinophilia. Additionally, heightened alveolar macrophage CD11b expression was a novel feature of acute lung exacerbations in the SHIP-1(-/-) model of chronic obstructive lung disease, and anti-CD11b antibody administration selectively blocked inflammatory CD11b(pos) but not homeostatic CD11b(neg) alveolar macrophages in vivo. The identification of analogous profiles in respiratory disease patients highlights this approach as a translational avenue for lung disease endotyping and suggests that heterogeneous innate immune cell phenotypes are an underappreciated component of the human lung disease microenvironment.

  19. Morphological analysis of mouse lungs after treatment with magnetite-based magnetic fluid stabilized with DMSA

    NASA Astrophysics Data System (ADS)

    Garcia, Mônica Pereira; Miranda Parca, Renata; Braun Chaves, Sacha; Paulino Silva, Luciano; Djalma Santos, Antonio; Guerrero Marques Lacava, Zulmira; César Morais, Paulo; Azevedo, Ricardo Bentes

    2005-05-01

    Mouse lungs injected with magnetic fluids based on magnetite nanoparticles stabilized by 2,3-dimercaptosuccinic acid were studied. We observed clusters of magnetic nanoparticles inside blood vessels, within the organ parenchyma and cells, as well as increased numbers of leukocytes in the organ. Both the particle concentration and organ inflammation diminished in a time-dependent manner.

  20. Longitudinal in vivo microcomputed tomography of mouse lungs: No evidence for radiotoxicity

    PubMed Central

    Vande Velde, Greetje; De Langhe, Ellen; Poelmans, Jennifer; Bruyndonckx, Peter; d'Agostino, Emiliano; Verbeken, Erik; Bogaerts, Ria; Himmelreich, Uwe

    2015-01-01

    Before microcomputed tomography (micro-CT) can be exploited to its full potential for longitudinal monitoring of transgenic and experimental mouse models of lung diseases, radiotoxic side effects such as inflammation or fibrosis must be considered. We evaluated dose and potential radiotoxicity to the lungs for long-term respiratory-gated high-resolution micro-CT protocols. Free-breathing C57Bl/6 mice underwent four different retrospectively respiratory gated micro-CT imaging schedules of repeated scans during 5 or 12 wk, followed by ex vivo micro-CT and detailed histological and biochemical assessment of lung damage. Radiation exposure, dose, and absorbed dose were determined by ionization chamber, thermoluminescent dosimeter measurements and Monte Carlo calculations. Despite the relatively large radiation dose delivered per micro-CT acquisition, mice did not show any signs of radiation-induced lung damage or fibrosis when scanned weekly during 5 and up to 12 wk. Doubling the scanning frequency and once tripling the radiation dose as to mimic the instant repetition of a failed scan also stayed without detectable toxicity after 5 wk of scanning. Histological analyses confirmed the absence of radiotoxic damage to the lungs, thereby demonstrating that long-term monitoring of mouse lungs using high-resolution micro-CT is safe. This opens perspectives for longitudinal monitoring of (transgenic) mouse models of lung diseases and therapeutic response on an individual basis with high spatial and temporal resolution, without concerns for radiation toxicity that could potentially influence the readout of micro-CT-derived lung biomarkers. This work further supports the introduction of micro-CT for routine use in the preclinical pulmonary research field where postmortem histological approaches are still the gold standard. PMID:26024893

  1. Lung tumor promotion by chromium-containing welding particulate matter in a mouse model.

    PubMed

    Zeidler-Erdely, Patti C; Meighan, Terence G; Erdely, Aaron; Battelli, Lori A; Kashon, Michael L; Keane, Michael; Antonini, James M

    2013-09-05

    Epidemiology suggests that occupational exposure to welding particulate matter (PM) may increase lung cancer risk. However, animal studies are lacking to conclusively link welding with an increased risk. PM derived from stainless steel (SS) welding contains carcinogenic metals such as hexavalent chromium and nickel. We hypothesized that welding PM may act as a tumor promoter and increase lung tumor multiplicity in vivo. Therefore, the capacity of chromium-containing gas metal arc (GMA)-SS welding PM to promote lung tumors was evaluated using a two-stage (initiation-promotion) model in lung tumor susceptible A/J mice. Male mice (n = 28-30/group) were treated either with the initiator 3-methylcholanthrene (MCA;10 μg/g; IP) or vehicle (corn oil) followed by 5 weekly pharyngeal aspirations of GMA-SS (340 or 680 μg/exposure) or PBS. Lung tumors were enumerated at 30 weeks post-initiation. MCA initiation followed by GMA-SS welding PM exposure promoted tumor multiplicity in both the low (12.1 ± 1.5 tumors/mouse) and high (14.0 ± 1.8 tumors/mouse) exposure groups significantly above MCA/sham (4.77 ± 0.7 tumors/mouse; p = 0.0001). Multiplicity was also highly significant (p < 0.004) across all individual lung regions of GMA-SS-exposed mice. No exposure effects were found in the corn oil groups at 30 weeks. Histopathology confirmed the gross findings and revealed increased inflammation and a greater number of malignant lesions in the MCA/welding PM-exposed groups. GMA-SS welding PM acts as a lung tumor promoter in vivo. Thus, this study provides animal evidence to support the epidemiological data that show welders have an increased lung cancer risk.

  2. Lung tumor promotion by chromium-containing welding particulate matter in a mouse model

    PubMed Central

    2013-01-01

    Background Epidemiology suggests that occupational exposure to welding particulate matter (PM) may increase lung cancer risk. However, animal studies are lacking to conclusively link welding with an increased risk. PM derived from stainless steel (SS) welding contains carcinogenic metals such as hexavalent chromium and nickel. We hypothesized that welding PM may act as a tumor promoter and increase lung tumor multiplicity in vivo. Therefore, the capacity of chromium-containing gas metal arc (GMA)-SS welding PM to promote lung tumors was evaluated using a two-stage (initiation-promotion) model in lung tumor susceptible A/J mice. Methods Male mice (n = 28-30/group) were treated either with the initiator 3-methylcholanthrene (MCA;10 μg/g; IP) or vehicle (corn oil) followed by 5 weekly pharyngeal aspirations of GMA-SS (340 or 680 μg/exposure) or PBS. Lung tumors were enumerated at 30 weeks post-initiation. Results MCA initiation followed by GMA-SS welding PM exposure promoted tumor multiplicity in both the low (12.1 ± 1.5 tumors/mouse) and high (14.0 ± 1.8 tumors/mouse) exposure groups significantly above MCA/sham (4.77 ± 0.7 tumors/mouse; p = 0.0001). Multiplicity was also highly significant (p < 0.004) across all individual lung regions of GMA-SS-exposed mice. No exposure effects were found in the corn oil groups at 30 weeks. Histopathology confirmed the gross findings and revealed increased inflammation and a greater number of malignant lesions in the MCA/welding PM-exposed groups. Conclusions GMA-SS welding PM acts as a lung tumor promoter in vivo. Thus, this study provides animal evidence to support the epidemiological data that show welders have an increased lung cancer risk. PMID:24107379

  3. Longitudinal in vivo microcomputed tomography of mouse lungs: No evidence for radiotoxicity.

    PubMed

    Vande Velde, Greetje; De Langhe, Ellen; Poelmans, Jennifer; Bruyndonckx, Peter; d'Agostino, Emiliano; Verbeken, Erik; Bogaerts, Ria; Lories, Rik; Himmelreich, Uwe

    2015-08-01

    Before microcomputed tomography (micro-CT) can be exploited to its full potential for longitudinal monitoring of transgenic and experimental mouse models of lung diseases, radiotoxic side effects such as inflammation or fibrosis must be considered. We evaluated dose and potential radiotoxicity to the lungs for long-term respiratory-gated high-resolution micro-CT protocols. Free-breathing C57Bl/6 mice underwent four different retrospectively respiratory gated micro-CT imaging schedules of repeated scans during 5 or 12 wk, followed by ex vivo micro-CT and detailed histological and biochemical assessment of lung damage. Radiation exposure, dose, and absorbed dose were determined by ionization chamber, thermoluminescent dosimeter measurements and Monte Carlo calculations. Despite the relatively large radiation dose delivered per micro-CT acquisition, mice did not show any signs of radiation-induced lung damage or fibrosis when scanned weekly during 5 and up to 12 wk. Doubling the scanning frequency and once tripling the radiation dose as to mimic the instant repetition of a failed scan also stayed without detectable toxicity after 5 wk of scanning. Histological analyses confirmed the absence of radiotoxic damage to the lungs, thereby demonstrating that long-term monitoring of mouse lungs using high-resolution micro-CT is safe. This opens perspectives for longitudinal monitoring of (transgenic) mouse models of lung diseases and therapeutic response on an individual basis with high spatial and temporal resolution, without concerns for radiation toxicity that could potentially influence the readout of micro-CT-derived lung biomarkers. This work further supports the introduction of micro-CT for routine use in the preclinical pulmonary research field where postmortem histological approaches are still the gold standard.

  4. Bromelain nanoparticles protect against 7,12-dimethylbenz[a]anthracene induced skin carcinogenesis in mouse model.

    PubMed

    Bhatnagar, Priyanka; Pant, Aditya B; Shukla, Yogeshwer; Chaudhari, Bhushan; Kumar, Pradeep; Gupta, Kailash C

    2015-04-01

    Conventional cancer chemotherapy leads to severe side effects, which limits its use. Nanoparticles (NPs) based delivery systems offer an effective alternative. Several evidences highlight the importance of Bromelain (BL), a proteolytic enzyme, as an anti-tumor agent which however has been limited due to the requirement of high doses at the tumor site. Therefore, we illustrate the development of BL loaded poly (lactic-co-glycolic acid) NPs that show enhanced anti-tumor effects compared to free BL. The formulated NPs with a mean particle size of 130.4 ± 8.81 nm exhibited sustained release of BL. Subsequent investigation revealed enhanced anti-tumor ability of NPs in 2-stage skin tumorigenesis mice model. Reduction in average number of tumors (∼ 2.3 folds), delay in tumorigenesis (∼ 2 weeks), percent tumorigenesis (∼ 4 folds), and percent mortality rate as well as a reduction in the average tumor volume (∼ 2.5 folds) in mice as compared to free BL were observed. The NPs were found to be superior in exerting chemopreventive effects over chemotherapeutic effects at 10 fold reduced dose than free BL, validated by the enhanced ability of NPs (∼ 1.8 folds) to protect the DNA from induced damage. The effects were also supported by histopathological evaluations. NPs were also capable of modulating the expression of pro-apoptotic (P53, Bax) and anti-apoptotic (Bcl2) proteins. Therefore, our findings demonstrate that developed NPs formulation could be used to improve the efficacy of chemotherapy by exerting chemo-preventive effects against induced carcinogenesis at lower dosages.

  5. Stable isotope resolved metabolomics of lung cancer in a SCID mouse model.

    PubMed

    Fan, Teresa W-M; Lane, Andrew N; Higashi, Richard M; Yan, Jun

    2011-06-01

    We have determined the time course of [U-(13)C]-glucose utilization and transformations in SCID mice via bolus injection of the tracer in the tail vein. Incorporation of (13)C into metabolites extracted from mouse blood plasma and several tissues (lung, heart, brain, liver, kidney, and skeletal muscle) were profiled by NMR and GC-MS, which helped ascertain optimal sampling times for different target tissues. We found that the time for overall optimal (13)C incorporation into tissue was 15-20 min but with substantial differences in (13)C labeling patterns of various organs that reflected their specific metabolism. Using this stable isotope resolved metabolomics (SIRM) approach, we have compared the (13)C metabolite profile of the lungs in the same mouse with or without an orthotopic lung tumor xenograft established from human PC14PE6 lung adenocarcinoma cells. The (13)C metabolite profile shows considerable differences in [U-(13)C]-glucose transformations between the two lung tissues, demonstrating the feasibility of applying SIRM to investigate metabolic networks of human cancer xenograft in the mouse model.

  6. Chemopreventive effects of the standardized extract (DA-9601) of Artemisia asiatica on azoxymethane-initiated and dextran sulfate sodium-promoted mouse colon carcinogenesis.

    PubMed

    Kim, Hyun Soo; Kundu, Joydeb Kumar; Lee, Jeong-Sang; Oh, Tae-Young; Na, Hye-Kyung; Surh, Young-Joon

    2008-01-01

    Dextran sulfate sodium (DSS) administration has been reported to cause inflammation in mouse colonic mucosa, which promotes colon carcinogenesis. When male ICR mice were treated with a single intraperitoneal dose (10 mg/kg body weight) of azoxymethane (AOM) followed by 2.5% DSS in drinking water for 7 consecutive days, all developed tumors at the 16th wk, mostly in the distal colon. Cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) were markedly upregulated in the AOM-initiated and DSS-promoted colon tumors. The DNA binding activity of nuclear factor-kappaB (NF-kappa B) was also elevated in the colon tumors. In this study, we examined the chemopreventive effects of the standardized extract (DA-9601) of Artemisia asiatica that has been used in the traditional herbal medicine for the treatment of inflammatory disorders. Mice fed the chow diet containing 10% DA-9601 for 15 wk following DSS treatment displayed the significantly lower multiplicity of colon tumors. DA-9601 treatment suppressed the expression of COX-2 and iNOS as well as NF-kappa B DNA binding in the colonic tissues. It also downregulated the phosphorylation of extracellular, signal-regulated protein kinase and p38 mitogen-activated protein kinase that are upstream of NF-kappa B. Furthermore, DA-9601 reduced expression of beta-catenin in colonic mucosa of mice challenged with AOM plus DSS.

  7. Lgr6+ stem cells and their progeny in mouse epidermis under regimens of exogenous skin carcinogenesis, and their absence in ensuing skin tumors

    PubMed Central

    van de Glind, Gerline C.; Rebel, Heggert G.; Out-Luiting, Jacoba J.; Zoutman, Wim; Tensen, Cornelis P.; de Gruijl, Frank R.

    2016-01-01

    Lgr6+ cells have been identified as a novel class of proliferating (Ki67+) stem cells in mouse epidermis. We investigated their response to UV exposure in Lgr6-EGFP-Ires-CreERT2/R26R-LacZ haired and hairless mice and whether they become initiating cells of UV- or chemically induced skin tumors. UV overexposure erased Lgr6+ cells (EGFP+) from the interfollicular epidermis (IFE), but - as after wounding - they apparently repopulated the IFE from the hair follicles. Under sub-sunburn chronic UV exposure, Lgr6+ cells and their progeny (LacZ+ after pulse of tamoxifen) diminished strongly in the IFE. Although the inter-tumoral IFE clearly showed Lgr6 progeny, none of the UV- or chemically induced tumors (n = 22 and 41, respectively) appeared to be clonal expansions of Lgr6+ stem cells; i.e. no Lgr6+ cells or progeny in the proliferating tumor bulk. In checking for promoter methylation we found it to occur stochastically for the EGFP-Cre cassette. Lgr6 mRNA measured by qPCR was found to be diminished in skin tumors (also in UV tumors from wt type mice). The ratio of Lgr6/Ki67 was significantly reduced, pointing at a loss of Lgr6+ cells from the proliferative pool. Our data show that Lgr6+ cells are not major tumor-initiating cells in skin carcinogenesis. PMID:27880932

  8. Maternally imprinted microRNAs are differentially expressed during mouse and human lung development

    PubMed Central

    Williams, Andrew E.; Moschos, Sterghios A.; Perry, Mark M.; Barnes, Peter J.; Lindsay, Mark A.

    2008-01-01

    MicroRNAs (miRNAs) are a recently discovered class of non-coding genes that regulate the translation of target mRNA. More than 300 miRNAs have now been discovered in humans, although the function of most is still unknown. A highly sensitive, semi-quantitative RT-PCR method was utilised to reveal the differential expression of a number of miRNAs during the development of both mouse and human lung. Of note was the upregulation in neonatal mouse and fetal human lung of a maternally imprinted miRNA cluster located at human chromosome 14q32.21 (mouse chromosome 12F2), which includes the miR-154 and miR-335 families and is situated within the Gtl2-Dio3 domain. Conversely, several miRNAs were upregulated in adult compared to neonatal/fetal lung including miR-29a and miR-29b. Differences in the spatial expression patterns of miR-154, miR-29a and miR-26a was demonstrated using in situ hybridisation of mouse neonatal and adult tissue using miRNA-specific LNA probes. Interestingly, miR-154 appeared to be localised to the stroma of fetal but not adult lungs. The overall expression profile was similar for mouse and human tissue suggesting evolutionary conservation of miRNA expression during lung development and demonstrating the importance of maternally imprinted miRNAs in the developmental process. PMID:17191223

  9. Slit and robo expression in the developing mouse lung.

    PubMed

    Greenberg, James M; Thompson, Felisa Y; Brooks, Sherry K; Shannon, John M; Akeson, Ann L

    2004-06-01

    Mammalian lung development is mediated through complex interactions between foregut endoderm and surrounding mesenchyme. As airway branching progresses, the mesenchyme undergoes dramatic remodeling and differentiation. Little is understood about the mechanisms that direct mesenchymal organization during lung development. A screen for candidate genes mediating this process identified Slit, a ligand for the Roundabout (Robo) receptor previously associated with guidance of axonal projections during central nervous system development. Here, we demonstrate by in situ hybridization that two Slit genes (Slit-2 and Slit-3) and two Robo genes (Robo-1 and Robo-2) are expressed in fetal lung mesenchyme. Slit-2 and Robo-1 expression is present throughout mesenchyme at midgestation and is not detectable by newborn day 1. Slit-3 and Robo-2 expression is restricted to specific, complementary subsets of mesenchyme. Robo-2 is expressed in mesenchymal cells immediately adjacent to large airways, whereas Slit-3 expression predominates in mesenchyme remote from airway epithelium. The temporal and spatial distribution of Slit and Robo mRNAs indicate that these genes may direct the functional organization and differentiation of fetal lung mesenchyme.

  10. Plasminogen activator inhibitor-1 in acute hyperoxic mouse lung injury.

    PubMed Central

    Barazzone, C; Belin, D; Piguet, P F; Vassalli, J D; Sappino, A P

    1996-01-01

    Hyperoxia-induced lung disease is associated with prominent intraalveolar fibrin deposition. Fibrin turnover is tightly regulated by the concerted action of proteases and antiproteases, and inhibition of plasmin-mediated proteolysis could account for fibrin accumulation in lung alveoli. We show here that lungs of mice exposed to hyperoxia overproduce plasminogen activator inhibitor-1 (PAI-1), and that PAI-1 upregulation impairs fibrinolytic activity in the alveolar compartment. To explore whether increased PAI-1 production is a causal or only a correlative event for impaired intraalveolar fibrinolysis and the development of hyaline membrane disease, we studied mice genetically deficient in PAI-1. We found that these mice fail to develop intraalveolar fibrin deposits in response to hyperoxia and that they are more resistant to the lethal effects of hyperoxic stress. These observations provide clear and novel evidence for the pathogenic contribution of PAI-1 in the development of hyaline membrane disease. They identify PAI-1 as a major deleterious mediator of hyperoxic lung injury. PMID:8981909

  11. Chemopreventive Effects of an HDAC2-Selective Inhibitor on Rat Colon Carcinogenesis and APCmin/+ Mouse Intestinal Tumorigenesis

    PubMed Central

    Ravillah, Durgadevi; Mohammed, Altaf; Qian, Li; Brewer, Misty; Zhang, Yuting; Biddick, Laura; Steele, Vernon E.

    2014-01-01

    Epigenetic modulators, particularly histone deacetylases (HDACs), are valid targets for cancer prevention and therapy. Recent studies report that HDAC2 overexpression is associated with colon tumor progression and is a potential target for colon cancer prevention. This study tested chemopreventive and dose-response effects of Ohio State University HDAC42 (OSU-HDAC42), a selective HDAC2 inhibitor, using a rat colon carcinogenesis model to assess aberrant crypt foci inhibition and a familial adenomatous polyposis model to assess intestinal tumor inhibition. Colonic aberrant crypt foci were induced by azoxymethane (AOM) (15 mg/kg body weight, once-weekly subcutaneous injections at 8 and 9 weeks age). One week after AOM treatment, groups of rats were fed an AIN-76A diet containing 0, 75, 150, and 300 ppm OSU-HDAC42 for 8 weeks, and colonic aberrant crypt foci were evaluated. To assess the inhibitory effect of OSU-HDAC42 on small-intestinal polyps and colon tumor growth, 6-week-old male C57Bl/6J-APCmin/+mice were fed an AIN-76A diet containing 150 ppm OSU-HADC42 or 300 ppm pan-HDAC inhibitor suberoylanilide hydroxyamic acid (SAHA) for 80 days. Our results demonstrate that dietary OSU-HDAC42 produced dose-dependent inhibition of AOM-induced colonic aberrant crypt foci formation (13–50%; P < 0.01 to < 0.0001) and reduced multiple crypts with ≥4 crypts per focus (25–57%; P < 0.01 to < 0.0001) in F344 rats. Our findings show that 150 ppm OSU-HDAC42 significantly inhibited small-intestinal polyps (>46%; P < 0.001), with polyp size measuring >1 mm (P < 0.001), and colon tumors (>26%) in APCmin/+mice, whereas 300 ppm SAHA showed nonsignificant inhibition. Mice fed 150 ppm OSU-HDAC42 had significantly decreased HDAC2, proliferating cell nuclear antigen, B cell lymphoma 2, cyclin-dependent kinase 2, and cell division cycle homolog 25C expression levels and increased p53 expression levels. These observations demonstrate the chemopreventive efficacy of OSU-HDAC42 against

  12. Cadmium stimulates myofibroblast differentiation and mouse lung fibrosis.

    PubMed

    Hu, Xin; Fernandes, Jolyn; Jones, Dean P; Go, Young-Mi

    2017-03-21

    Increasing evidence suggests that Cd at levels found in the human diet can cause oxidative stress and activate redox-sensitive transcription factors in inflammatory signaling. Following inflammation, tissue repair often involves activation of redox-sensitive transcription factors in fibroblasts. In lungs, epithelial barrier remodeling is required to restore gas exchange and barrier function, and aberrant myofibroblast differentiation leads to pulmonary fibrosis. Contributions of exogenous exposures, such as dietary Cd, to pulmonary fibrosis remain incompletely defined. In the current study, we tested whether Cd activates fibrotic signaling in human fetal lung fibroblasts (HFLF) at micromolar and submicromolar Cd concentrations that do not cause cell death. Exposure of HFLF to low-dose Cd (≤1.0μM) caused an increase in stress fibers and increased protein levels of myofibroblast differentiation markers, including α-smooth muscle actin (α-SMA) and extra-domain-A-containing fibronectin (ED-A-FN). Assay of transcription factor (TF) activity using a 45-TF array showed that Cd increased activity of 12 TF, including SMAD2/3/4 (mothers against decapentaplegic homolog) signaling differentiation and fibrosis. Results were confirmed by real-time PCR and supported by increased expression of target genes of SMAD2/3/4. Immunocytochemistry of lungs of mice exposed to low-dose Cd (0.3 and 1.0mg/L in drinking water) showed increased α-SMA protein level with lung Cd accumulation similar to lung Cd in non-smoking humans. Together, the results show that relatively low Cd exposures stimulate pulmonary fibrotic signaling and myofibroblast differentiation by activating SMAD2/3/4-dependent signaling. The results indicate that dietary Cd intake could be an important variable contributing to pulmonary fibrosis in humans.

  13. Impact of Prostate Inflammation on Lesion Development in the POET3+Pten+/− Mouse Model of Prostate Carcinogenesis

    PubMed Central

    Burcham, Grant N.; Cresswell, Gregory M.; Snyder, Paul W.; Chen, Long; Liu, Xiaoqi; Crist, Scott A.; Henry, Michael D.; Ratliff, Timothy L.

    2015-01-01

    Evidence linking prostatitis and prostate cancer development is contradictory. To study this link, the POET3 mouse, an inducible model of prostatitis, was crossed with a Pten-loss model of prostate cancer (Pten+/−) containing the ROSA26 luciferase allele to monitor prostate size. Prostatitis was induced, and prostate bioluminescence was tracked over 12 months, with lesion development, inflammation, and cytokine expression analyzed at 4, 8, and 12 months and compared with mice without induction of prostatitis. Acute prostatitis led to more proliferative epithelium and enhanced bioluminescence. However, 4 months after initiation of prostatitis, mice with induced inflammation had lower grade pre-neoplastic lesions. A trend existed toward greater development of carcinoma 12 months after induction of inflammation, including one of two mice with carcinoma developing perineural invasion. Two of 18 mice at the later time points developed lesions with similarities to proliferative inflammatory atrophy, including one mouse with associated carcinoma. Pten+/− mice developed spontaneous inflammation, and prostatitis was similar among groups of mice at 8 and 12 months. Analyzed as one cohort, lesion number and grade were positively correlated with prostatitis. Specifically, amounts of CD11b+Gr1+ cells were correlated with lesion development. These results support the hypothesis that myeloid-based inflammation is associated with lesion development in the murine prostate, and previous bouts of CD8-driven prostatitis may promote invasion in the Pten+/− model of cancer. PMID:25455686

  14. Genotoxicity of 3-nitrobenzanthrone and 3-aminobenzanthrone in MutaMouse and lung epithelial cells derived from MutaMouse.

    PubMed

    Arlt, Volker M; Gingerich, John; Schmeiser, Heinz H; Phillips, David H; Douglas, George R; White, Paul A

    2008-11-01

    FE1 lung epithelial cells derived from MutaMouse are a new model system to provide in vitro mutagenicity data with the potential to predict the outcome of an in vivo MutaMouse test. 3-Nitrobenzanthrone (3-NBA) is a potent mutagen and suspected human carcinogen identified in diesel exhaust and urban air pollution. We investigated the mutagenicity and DNA binding of 3-NBA and its main metabolite 3-aminobenzanthrone (3-ABA) in vitro and in vivo in the MutaMouse assay. Mice were treated with 3-NBA or 3-ABA (0, 2 or 5 mg/kg body weight/day) by gavage for 28 days and 28 days later lacZ mutant frequency (MF) was determined in liver, lung and bone marrow. For both compounds, dose-related increases in MF were seen in liver and bone marrow, but not in lung; mutagenic activity was approximately 2-fold lower for 3-ABA than for 3-NBA. With 3-NBA, highest DNA adduct levels (measured by (32)P-post-labelling) were found in liver (approximately 230 adducts per 10(8) nucleotides) with levels 20- to 40-fold lower in bone marrow and lung. With 3-ABA, DNA adduct levels were again highest in the liver, but approximately 4-fold lower than for 3-NBA. FE1 cells were exposed to up to 10 microg/ml 3-NBA or 3-ABA for 6 h with or without exogenous activation (S9) and harvested after 3 days. For 3-NBA, there was a dose-related increase in MF both with and without S9 mix, which was >10 times higher than observed in vivo. At the highest concentration of 3-ABA (10 microg/ml), we found only around a 2-fold increase in MF relative to controls. DNA adduct formation in FE1 cells was dose-dependent for both compounds, but 10- to 20-fold higher for 3-NBA compared to 3-ABA. Collectively, our data indicate that MutaMouse FE1 cells are well suited for cost-effective testing of suspected mutagens with different metabolic activation pathways as a guide for subsequent in vivo MutaMouse testing.

  15. BIIL 284 reduces neutrophils numbers but increases P. aeruginosa bacteraemia and inflammation in mouse lungs

    PubMed Central

    Döring, Gerd; Bragonzi, Alessandra; Paroni, Moira; Aktürk, Firdevs-Fatma; Cigana, Cristina; Schmidt, Annika; Gilpin, Deirdre; Heyder, Susanne; Born, Torsten; Smaczny, Christina; Kohlhäufl, Martin; Wagner, Thomas O. F.; Loebinger, Michael R.; Bilton, Diana; Tunney, Michael M.; Elborn, J. Stuart; Pier, Gerald B.; Konstan, Michael W.; Ulrich, Martina

    2014-01-01

    Background A clinical study to investigate the leukotriene B4 (LTB4)-receptor antagonist BIIL 284 in cystic fibrosis (CF) patients was prematurely terminated due to a significantly increased risk of adverse pulmonary events. We aimed to establish the effect of BIIL284 in models of Pseudomonas aeruginosa lung infection, thereby contributing to a better understanding of what could have led to adverse pulmonary events in CF patients. Methods P. aeruginosa DNA in the blood of CF patients during and after acute pulmonary exacerbations and in stable patients with non-CF bronchiectasis (NCFB) and healthy individuals was assessed by PCR. The effect of BIIL 284 treatment was tested in an agar beads murine model of Pseudomonas aeruginosa lung infection. Bacterial count and inflammation were evaluated in lung and other organs. Result Most CF patients (98%) and all patients with NCFB and healthy individuals had negative P. aeruginosa DNA in their blood. Similarly, the P. aeruginosa-infected mice showed bacterial counts in the lung but not blood or spleen. BIIL 284 treatment decreased pulmonary neutrophils and increased P. aeruginosa numbers in mouse lungs leading to significantly higher bacteremia rates and lung inflammation compared to placebo treated animals. Conclusions Decreased airway neutrophils induced lung proliferation and severe bacteraemia in a murine model of P. aeruginosa lung infection. These data suggest that caution should be taken when administering anti-inflammatory compounds to patients with bacterial infections. PMID:24183915

  16. BIIL 284 reduces neutrophil numbers but increases P. aeruginosa bacteremia and inflammation in mouse lungs.

    PubMed

    Döring, Gerd; Bragonzi, Alessandra; Paroni, Moira; Aktürk, Firdevs-Fatma; Cigana, Cristina; Schmidt, Annika; Gilpin, Deirdre; Heyder, Susanne; Born, Torsten; Smaczny, Christina; Kohlhäufl, Martin; Wagner, Thomas O F; Loebinger, Michael R; Bilton, Diana; Tunney, Michael M; Elborn, J Stuart; Pier, Gerald B; Konstan, Michael W; Ulrich, Martina

    2014-03-01

    A clinical study to investigate the leukotriene B(4) (LTB(4))-receptor antagonist BIIL 284 in cystic fibrosis (CF) patients was prematurely terminated due to a significantly increased risk of adverse pulmonary events. We aimed to establish the effect of BIIL284 in models of Pseudomonas aeruginosa lung infection, thereby contributing to a better understanding of what could have led to adverse pulmonary events in CF patients. P. aeruginosa DNA in the blood of CF patients during and after acute pulmonary exacerbations and in stable patients with non-CF bronchiectasis (NCFB) and healthy individuals was assessed by PCR. The effect of BIIL 284 treatment was tested in an agar bead murine model of P. aeruginosa lung infection. Bacterial count and inflammation were evaluated in lung and other organs. Most CF patients (98%) and all patients with NCFB and healthy individuals had negative P. aeruginosa DNA in their blood. Similarly, the P. aeruginosa-infected mice showed bacterial counts in the lung but not in the blood or spleen. BIIL 284 treatment decreased pulmonary neutrophils and increased P. aeruginosa numbers in mouse lungs leading to significantly higher bacteremia rates and lung inflammation compared to placebo treated animals. Decreased airway neutrophils induced lung proliferation and severe bacteremia in a murine model of P. aeruginosa lung infection. These data suggest that caution should be taken when administering anti-inflammatory compounds to patients with bacterial infections. © 2013.

  17. Cold stress aggravates inflammatory responses in an LPS-induced mouse model of acute lung injury

    NASA Astrophysics Data System (ADS)

    Joo, Su-Yeon; Park, Mi-Ju; Kim, Kyun-Ha; Choi, Hee-Jung; Chung, Tae-Wook; Kim, Yong Jin; Kim, Joung Hee; Kim, Keuk-Jun; Joo, Myungsoo; Ha, Ki-Tae

    2016-08-01

    Although the relationship between environmental cold temperature and susceptibility to respiratory infection is generally accepted, the effect of ambient cold temperature on host reactivity in lung inflammation has not been fully studied. To examine the function of ambient cold temperature on lung inflammation, mice were exposed to 4 °C for 8 h each day for 14 days. In the lungs of mice exposed to cold stress, inflammatory cells in bronchoalveolar lavage (BAL) fluid and lung tissues were slightly increased by about twofold. However, the structures of pulmonary epithelial cells were kept within normal limits. Next, we examined the effect of cold stress on the inflammatory responses in a lipopolysaccharide (LPS)-induced acute lung injury (ALI) mouse model. The infiltration of neutrophils and inflammation of lung tissue determined by histology were significantly increased by exposure to ambient cold temperature. In addition, the production of pro-inflammatory cytokines including interleukin (IL)-12, IL-17, and monokine induced by gamma interferon (MIG) was elevated by exposure to cold stress. Therefore, we suggest that cold stress is a factor that exacerbates lung inflammation including ALI. To our knowledge, this is the first report on the relationship between cold stress and severity of lung inflammation.

  18. The Fas/FasL pathway impairs the alveolar fluid clearance in mouse lungs

    PubMed Central

    Herrero, Raquel; Tanino, Mishie; Smith, Lincoln S.; Kajikawa, Osamu; Wong, Venus A.; Mongovin, Steve; Matute-Bello, Gustavo

    2013-01-01

    Alveolar epithelial damage is a critical event that leads to protein-rich edema in acute lung injury (ALI), but the mechanisms leading to epithelial damage are not completely understood. Cell death by necrosis and apoptosis occurs in alveolar epithelial cells in the lungs of patients with ALI. Fas activation induces apoptosis of alveolar epithelial cells, but its role in the formation of lung edema is unclear. The main goal of this study was to determine whether activation of the Fas/Fas ligand pathway in the lungs could alter the function of the lung epithelium, and the mechanisms involved. The results show that Fas activation alters the alveolar barrier integrity and impairs the ability of the lung alveolar epithelium to reabsorb fluid from the air spaces. This result was dependent on the presence of a normal Fas receptor and was not affected by inflammation induced by Fas activation. Alteration of the fluid transport properties of the alveolar epithelium was partially restored by β-adrenergic stimulation. Fas activation also caused apoptosis of alveolar endothelial cells, but this effect was less pronounced than the effect on the alveolar epithelium. Thus, activation of the Fas pathway impairs alveolar epithelial function in mouse lungs by mechanisms involving caspase-dependent apoptosis, suggesting that targeting apoptotic pathways could reduce the formation of lung edema in ALI. PMID:23812636

  19. Significance of Stat3 Signaling in Epithelial Cell Differentiation of Fetal Mouse Lungs

    PubMed Central

    Kameyama, Hiroki; Kudoh, Shinji; Hatakeyama, Jun; Matuo, Akira; Ito, Takaaki

    2017-01-01

    To study the significance of signal transducer and activator of transcription (Stat) 3 in lung epithelial development of fetal mice, we examined fetal mouse lungs, focusing on the expression of Clara cell secretory protein (CCSP), Forkhead box protein J1 (Foxj1), calcitonin gene-related peptide (CGRP), phosphorylated Stat3 (Tyr705), and hairy/enhancer of split (Hes) 1, and observed cultured fetal lungs upon treatment with IL-6, a Stat3 activator, or cucurbitacin I, a Stat3 inhibitor. Moreover, the interaction of Stat3 signaling and Hes1 was studied using Hes1 gene-deficient mice. Phosphorylated Stat3 was detected in fetal lungs and, immunohistochemically, phosphorylated Stat3 was found to be co-localized in developing Clara cells, but not in ciliated cells. In the organ culture studies, upon treatment with IL-6, quantitative RT-PCR revealed that CCSP mRNA increased with increasing Stat3 phosphorylation, while cucurbitacin I decreased Hes1, CCSP, Foxj1 and CGRP mRNAs with decreasing Stat3 phosphorylation. In the lungs of Hes1 gene-deficient mice, Stat3 phosphorylation was not markedly different from wild-type mice, the expression of CCSP and CGRP was enhanced, and the treatment of IL-6 or cucurbitacin I induced similar effects on mouse lung epithelial differentiation regardless of Hes1 expression status. Stat3 signaling acts in fetal mouse lung development, and seems to regulate Clara cell differentiation positively. Hes1 could regulate Clara cell differentiation in a manner independent from Stat3 signaling. PMID:28386145

  20. Effects of microcystin-LR on mouse lungs.

    PubMed

    Soares, Raquel M; Cagido, Viviane R; Ferraro, Rodrigo B; Meyer-Fernandes, José Roberto; Rocco, Patrícia R M; Zin, Walter A; Azevedo, Sandra M F O

    2007-09-01

    Toxic cyanobacteria blooms in drinking water supplies have been an increasing public health concern all over the world. Human populations can be exposed to microcystins, an important family of cyanotoxins, mainly by oral ingestion. However, inhalation from recreational water and hemodialysis can represent other routes. This study investigated changes in respiratory mechanics, histology, protein phosphatase (PP) 1 and 2A activity and microcystin in lung of adult mice injected intraperitoneally (i.p.) with microcystin-LR. Thirty-six mice were divided into control (CTRL) and test (CYANO) groups. CTRL group received an i.p. injection of saline and the CYANO group received 40 microg MCYST-LR/kg i.p. After 2 and 8 h, and 1, 2 and 4 days after toxin injection, six mice from each group were sampled for analyses. Resistive and viscoelastic pressures, static and dynamic elastances augmented at 2 h in CYANO and so remained until day 4. Alveolar collapse and inflammatory cell infiltration were found 2h after the injection, reaching peak values at 8 h. However, no microcystin or inhibition of PPases could be detected in mice lungs. In conclusion, MCYST-LR led to a rapid increase in lung impedance and an inflammatory response with interstitial edema and inflammatory cell recruitment in mice.

  1. Alterations of mouse lung tissue dimensions during processing for morphometry: a comparison of methods.

    PubMed

    Schneider, Jan Philipp; Ochs, Matthias

    2014-02-15

    Preservation of original tissue dimensions is an essential prerequisite for morphometric studies. Shrinkage occurring during tissue processing for histology may severely influence the appearance of structures seen under the microscope and stereological calculations. Therefore, shrinkage has to be avoided so that estimates obtained by application of unbiased stereology are indeed unbiased. The present study investigates the alterations of tissue dimensions of mouse lung samples during processing for histology. Different fixatives as well as embedding protocols are considered. Mouse lungs were fixed by instillation of either 4% formalin or a mixture of 1.5% glutaraldehyde/1.5% formaldehyde. Tissue blocks were sampled according to principles of stereology for embedding in paraffin, glycol methacrylate without treatment with osmium tetroxide and uranyl acetate, and glycol methacrylate including treatment with osmium tetroxide and uranyl acetate before dehydration. Shrinkage was investigated by stereological measurements of dimensional changes of tissue cut faces. Results show a shrinkage of the cut face areas of roughly 40% per lung during paraffin embedding, 30% during "simple" glycol methacrylate embedding, and <3% during osmium tetroxide/uranyl acetate/glycol methacrylate embedding. Furthermore, the superiority of the glutaraldehyde-containing fixative regarding shrinkage is demonstrated. In conclusion, the use of a glutaraldehyde-containing fixative and embedding in glycol methacrylate with previous treatment of the samples with osmium tetroxide and uranyl acetate before dehydration is recommended for stereological studies of the mouse lung.

  2. Lung arginase expression and activity is increased in cystic fibrosis mouse models.

    PubMed

    Jaecklin, Thomas; Duerr, Julia; Huang, Hailu; Rafii, Mahroukh; Bear, Christine E; Ratjen, Felix; Pencharz, Paul; Kavanagh, Brian P; Mall, Marcus A; Grasemann, Hartmut

    2014-08-01

    The activity of arginase is increased in airway secretions of patients with cystic fibrosis (CF). Downstream products of arginase activity may contribute to CF lung disease. We hypothesized that pulmonary arginase expression and activity would be increased in mouse models of CF and disproportionally increased in CF mice with Pseudomonas aeruginosa pneumonia. Expression of arginase isoforms in lung tissue was quantified with reverse transcriptase-PCR in naive cystic fibrosis transmembrane conductance regulator (Cftr)-deficient mice and β-epithelial sodium channel-overexpressing [β-ENaC-transgenic (Tg)] mice. An isolated lung stable isotope perfusion model was used to measure arginase activity in Cftr-deficient mice before and after intratracheal instillation of Pseudomonas aeruginosa. The expression of arginase-2 in lung was increased in adult Cftr-deficient animals and in newborn β-ENaC-Tg. Arginase-1 lung expression was normal in Cftr-deficient and in newborn β-ENaC-Tg mice, but was increased in β-ENaC-Tg mice at age 1, 3, and 6 wk. Arginase activity was significantly higher in lung (5.0 ± 0.7 vs. 3.2 ± 0.3 nmol·(-1)·h(-1), P = 0.016) and airways (204.6 ± 49.8 vs. 79.3 ± 17.2 nmol·(-1)·h(-1), P = 0.045) of naive Cftr-deficient mice compared with sex-matched wild-type littermate controls. Infection with Pseudomonas aeruginosa resulted in a far greater increase in lung arginase activity in Cftr-deficient mice (10-fold) than in wild-type controls (6-fold) (P = 0.01). This is the first ex vivo characterization of arginase expression and activity in CF mouse lung and airways. Our data show that pulmonary arginase expression and activity is increased in CF mice, especially with Pseudomonas aeruginosa infections.

  3. Identification of candidate lung cancer susceptibility genes in mouse using oligonucleotide arrays

    PubMed Central

    Lemon, W; Bernert, H; Sun, H; Wang, Y; You, M

    2002-01-01

    We applied microarray gene expression profiling to lungs from mouse strains having variable susceptibility to lung tumour development as a means to identify, within known quantitative trait loci (QTLs), candidate genes responsible for susceptibility or resistance to lung cancer. At least eight chromosomal regions of mice have been mapped and verified to be linked with lung tumour susceptibility or resistance. In this study, high density oligonucleotide arrays were used to measure the relative expression levels of >36 000 genes and ESTs in lung tissues of A/J, BALB/cJ, SM/J, C3H/HeJ, and C57BL/6J mice. A number of differentially expressed genes were found in each of the lung cancer susceptibility QTLs. Bioinformatic analysis of the differentially expressed genes located within QTLs produced 28 susceptibility candidates and 22 resistance candidates. These candidates may be extremely helpful in the ultimate identification of the precise genes responsible for lung tumour susceptibility or resistance in mice and, through follow up, humans. Complete data sets are available at http://thinker.med.ohio-state.edu. PMID:12205107

  4. Novel Mouse Model of Chronic Pseudomonas aeruginosa Lung Infection Mimicking Cystic Fibrosis

    PubMed Central

    Hoffmann, Nadine; Rasmussen, Thomas Bovbjerg; Jensen, PeterØstrup; Stub, Charlotte; Hentzer, Morten; Molin, Søren; Ciofu, Oana; Givskov, Michael; Johansen, Helle Krogh; Høiby, Niels

    2005-01-01

    Pseudomonas aeruginosa causes a chronic infection in the lungs of cystic fibrosis (CF) patients by establishing an alginate-containing biofilm. The infection has been studied in several animal models; however, most of the models required artificial embedding of the bacteria. We present here a new pulmonary mouse model without artificial embedding. The model is based on a stable mucoid CF sputum isolate (NH57388A) with hyperproduction of alginate due to a deletion in mucA and functional N-acylhomoserine lactone (AHL)-based quorum-sensing systems. Chronic lung infection could be established in both CF mice (CftrtmlUnc−/−) and BALB/c mice, as reflected by the detection of a high number of P. aeruginosa organisms in the lung homogenates at 7 days postinfection and alginate biofilms, surrounded by polymorphonuclear leukocytes in the alveoli. In comparison, both an AHL-producing nonmucoid revertant (NH57388C) from the mucoid isolate (NH57388A) and a nonmucoid isolate (NH57388B) deficient in AHL were almost cleared from the lungs of the mice. This model, in which P. aeruginosa is protected against the defense system of the lung by alginate, is similar to the clinical situation. Therefore, the mouse model provides an improved method for evaluating the interaction between mucoid P. aeruginosa, the host, and antibacterial therapy. PMID:15784597

  5. Regulation of mouse lung development by the extracellular calcium-sensing receptor, CaR.

    PubMed

    Finney, Brenda A; del Moral, Pierre M; Wilkinson, William J; Cayzac, Sebastien; Cole, Martin; Warburton, David; Kemp, Paul J; Riccardi, Daniela

    2008-12-15

    Postnatal lung function is critically dependent upon optimal embryonic lung development. As the free ionized plasma calcium concentration ([Ca(2+)](o)) of the fetus is higher than that of the adult, the process of lung development occurs in a hypercalcaemic environment. In the adult, [Ca(2+)](o) is monitored by the G-protein coupled, extracellular calcium-sensing receptor (CaR), but neither its ontogeny nor its potential role in lung development are known. Here, we demonstrate that CaR is expressed in the mouse lung epithelium, and that its expression is developmentally regulated, with a peak of expression at embryonic day 12.5 (E12.5) and a subsequent decrease by E18, after which the receptor is absent. Experiments carried out using the lung explant culture model in vitro show that lung branching morphogenesis is sensitive to [Ca(2+)](o), being maximal at physiological adult [Ca(2+)](o) (i.e. 1.0-1.3 mM) and lowest at the higher, fetal (i.e. 1.7 mM) [Ca(2+)](o). Administration of the specific CaR positive allosteric modulator, the calcimimetic R-568, mimics the suppressive effects of high [Ca(2+)](o) on branching morphogenesis while both phospholipase C and PI3 kinase inhibition reverse these effects. CaR activation suppresses cell proliferation while it enhances intracellular calcium signalling, lung distension and fluid secretion. Conditions which are restrictive either to branching or to secretion can be rescued by manipulating [Ca(2+)](o) in the culture medium. In conclusion, fetal Ca(2+)(o), acting through a developmentally regulated CaR, is an important extrinsic factor that modulates the intrinsic lung developmental programme. Our observations support a novel role for the CaR in preventing hyperplastic lung disease in utero.

  6. Mutant p53(R270H) gain of function phenotype in a mouse model for oncogene-induced mammary carcinogenesis.

    PubMed

    Heinlein, Christina; Krepulat, Frauke; Löhler, Jürgen; Speidel, Daniel; Deppert, Wolfgang; Tolstonog, Genrich V

    2008-04-15

    In human breast cancer, mutations in the p53 gene are associated with poor prognosis. However, analysis of patient data so far did not clarify, whether missense point mutations in the p53 gene, in addition to causing loss of wild-type p53 function, also confer a gain of function phenotype to the encoded mutant p53. As heterogeneity of patient material and data might obscure a clear answer, we studied the effects of a coexpressed mutant p53(R270H) in transgenic mice in which SV40 early proteins initiate the development of mammary adenocarcinoma (WAP-T mice). In such tumors the endogenous wild-type p53 is functionally compromised by complex formation with SV40 T-antigen, thereby constituting a loss of wild-type p53 function situation that allowed analysis of the postulated gain of function effects of mutant p53(R270H). We found that mutant p53(R270H) in bi-transgenic mice enhanced the transition from intraepithelial neoplasia to invasive carcinoma, resulting in a higher frequency of invasive carcinoma per gland and per mouse, a more severe tumor phenotype, and more frequent pulmonary metastasis. Surprisingly, mutant p53(R270H) in this system does not increase genomic instability. Therefore, other postulated gain of function activities of mutant p53 must be responsible for the effects described here.

  7. Quantification of Lung Metastases from In Vivo Mouse Models.

    PubMed

    Chang, Joan; Erler, Janine T

    2016-01-01

    Cancer research has made significant progress in terms of understanding and targeting primary tumors; however, the challenge remains for the successful treatment of metastatic cancers. This highlights the importance to use in vivo models to study the metastatic process, as well as for preclinical testing of compounds that could inhibit metastasis. As a result, proper quantification of metastases from in vivo models is of the utmost significance. Here, we provide a detailed protocol for collecting and handling lung tissues from mice, and guidance for subsequent analysis of metastases, as well as interpretation of data.

  8. AKT1E17K Is Oncogenic in Mouse Lung and Cooperates with Chemical Carcinogens in Inducing Lung Cancer

    PubMed Central

    Malanga, Donatella; Belmonte, Stefania; Colelli, Fabiana; Scarfò, Marzia; De Marco, Carmela; Oliveira, Duarte Mendes; Mirante, Teresa; Camastra, Caterina; Gagliardi, Monica; Rizzuto, Antonia; Mignogna, Chiara; Paciello, Orlando; Papparella, Serenella; Fagman, Henrik; Viglietto, Giuseppe

    2016-01-01

    The hotspot AKT1E17K mutation in the pleckstrin homology domain of AKT1 occurs in approximately 0.6–2% of human lung cancers. Recently, we have demonstrated that AKT1E17K transforms immortalized human bronchial cells. Here by use of a transgenic Cre-inducible murine strain in the wild type Rosa26 (R26) locus (R26-AKT1E17K mice) we demonstrate that AKT1E17K is a bona-fide oncogene and plays a role in the development of lung cancer in vivo. In fact, we report that mutant AKT1E17K induces bronchial and/or bronchiolar hyperplastic lesions in murine lung epithelium, which progress to frank carcinoma at very low frequency, and accelerates tumor formation induced by chemical carcinogens. In conclusion, AKT1E17K induces hyperplasia of mouse lung epithelium in vivo and cooperates with urethane to induce the fully malignant phenotype. PMID:26859676

  9. High-Fat, High-Calorie Diet Enhances Mammary Carcinogenesis and Local Inflammation in MMTV-PyMT Mouse Model of Breast Cancer

    PubMed Central

    Cowen, Sarah; McLaughlin, Sarah L.; Hobbs, Gerald; Coad, James; Martin, Karen H.; Olfert, I. Mark; Vona-Davis, Linda

    2015-01-01

    Epidemiological studies provide strong evidence that obesity and the associated adipose tissue inflammation are risk factors for breast cancer; however, the molecular mechanisms are poorly understood. We evaluated the effect of a high-fat/high-calorie diet on mammary carcinogenesis in the immunocompetent MMTV-PyMT murine model. Four-week old female mice (20/group) were randomized to receive either a high-fat (HF; 60% kcal as fat) or a low-fat (LF; 16% kcal) diet for eight weeks. Body weights were determined, and tumor volumes measured by ultrasound, each week. At necropsy, the tumors and abdominal visceral fat were weighed and plasma collected. The primary mammary tumors, adjacent mammary fat, and lungs were preserved for histological and immunohistochemical examination and quantification of infiltrating macrophages, crown-like structure (CLS) formation, and microvessel density. The body weight gains, visceral fat weights, the primary mammary tumor growth rates and terminal weights, were all significantly greater in the HF-fed mice. Adipose tissue inflammation in the HF group was indicated by hepatic steatosis, pronounced macrophage infiltration and CLS formation, and elevations in plasma monocyte chemoattractant protein-1 (MCP-1), leptin and proinflammatory cytokine concentrations. HF intake was also associated with higher tumor-associated microvascular density and the proangiogenic factor MCP-1. This study provides preclinical evidence in a spontaneous model of breast cancer that mammary adipose tissue inflammation induced by diet, enhances the recruitment of macrophages and increases tumor vascular density suggesting a role for obesity in creating a microenvironment favorable for angiogenesis in the progression of breast cancer. PMID:26132316

  10. High-Fat, High-Calorie Diet Enhances Mammary Carcinogenesis and Local Inflammation in MMTV-PyMT Mouse Model of Breast Cancer.

    PubMed

    Cowen, Sarah; McLaughlin, Sarah L; Hobbs, Gerald; Coad, James; Martin, Karen H; Olfert, I Mark; Vona-Davis, Linda

    2015-06-26

    Epidemiological studies provide strong evidence that obesity and the associated adipose tissue inflammation are risk factors for breast cancer; however, the molecular mechanisms are poorly understood. We evaluated the effect of a high-fat/high-calorie diet on mammary carcinogenesis in the immunocompetent MMTV-PyMT murine model. Four-week old female mice (20/group) were randomized to receive either a high-fat (HF; 60% kcal as fat) or a low-fat (LF; 16% kcal) diet for eight weeks. Body weights were determined, and tumor volumes measured by ultrasound, each week. At necropsy, the tumors and abdominal visceral fat were weighed and plasma collected. The primary mammary tumors, adjacent mammary fat, and lungs were preserved for histological and immunohistochemical examination and quantification of infiltrating macrophages, crown-like structure (CLS) formation, and microvessel density. The body weight gains, visceral fat weights, the primary mammary tumor growth rates and terminal weights, were all significantly greater in the HF-fed mice. Adipose tissue inflammation in the HF group was indicated by hepatic steatosis, pronounced macrophage infiltration and CLS formation, and elevations in plasma monocyte chemoattractant protein-1 (MCP-1), leptin and proinflammatory cytokine concentrations. HF intake was also associated with higher tumor-associated microvascular density and the proangiogenic factor MCP-1. This study provides preclinical evidence in a spontaneous model of breast cancer that mammary adipose tissue inflammation induced by diet, enhances the recruitment of macrophages and increases tumor vascular density suggesting a role for obesity in creating a microenvironment favorable for angiogenesis in the progression of breast cancer.

  11. Ozone-related fluorescent compounds in mouse liver and lung

    SciTech Connect

    Csallany, A.S.; Manwaring, J.D.; Menken, B.Z.

    1985-08-01

    Groups of ten female, weanling mice were fed a basal, vitamin E-deficient diet or a basal diet supplemented with RRR-alpha-tocopheryl acetate for 14 months. During the last month one group from each dietary regimen was exposed for 30-60 min/day to 1.5 ppm ozone (25 hr total ozone exposure) and the remaining groups to control ambient air. The liver and lung tissues were homogenized and extracted with 2:1 chloroform:methanol and water. Excitation and emission wavelengths for the eluting fractions were determined by continuous emission scans from 250 to 600 nm for each excitation wavelength between 250 and 500 nm. Ozone exposure did not effect the concentration of any of the fluorescent materials examined in the lung, but it resulted in a significant increase in two of four water-soluble compounds in the liver with excitation wavelength maxima/emission wavelength maxima of 270 nm/310 nm and 275 nm/350 nm (smaller molecular weight material) suggesting in vivo lipid oxidation.

  12. [Effects of 5-Aza-2'-deoxycytidine on the carcinogenesis of colorectal cancer in mouse and the in vivo expression of p16/CDKN(2) mRNA].

    PubMed

    Fang, Xiao-Ming; Jiang, Zhao-Hui; Yao, Ning; Ding, Xiao-Wen; Peng, Jia-Ping; Zheng, Shu

    2011-09-06

    To explore the effects and relationship of specific demethylation agent 5-Aza-2'-deoxycytidine (5-Aza-CdR) on colorectal cancer (CRC) induced by 1, 2-dimethylhydrazine (DMH) in mouse and the in vivo expression of cyclin-dependent kinases inhibitor p16/CDKN(2) mRNA. A total of 40 male KM mice were randomized into 2 groups and CRC was induced by a 22-week injection of DMH. One group was interfered by specific DNA methyltransferase inhibitor 5-Aza-CdR. Another 10 the same source male KM mice were induced by a 22-week injection of saline as none induced cancer control group (negative control group). All mice were sacrificed to examine for colorectal neoplasm. Immunohistochemical staining was used to assess the expression of proliferating cell nuclear antigen (PCNA). The expression of p16/CDKN(2) mRNA was detected by in situ hybridization. The average numbers of neoplasm was higher in the DMH group (7.6 ± 3.1) than that of the group DMH + 5-Aza-CdR (3.4 ± 1.8, P < 0.05). Immunohistochemical staining showed there was a significant elevation of PCNA in the group DMH (16/19) as compared with that in the group DMH + 5-Aza-CdR (11/19, P < 0.05). In situ hybridization revealed that the level of tumor suppressor gene p16/CDKN(2) mRNA was significantly lower in the group DMH than that in the group DMH + 5-Aza-CdR. The specific demethylation agent 5-Aza-2'-deoxycytidine may inhibit the carcinogenesis of CRC. Its mechanism may be related with a high expression of p16/CDKN(2) mRNA.

  13. Autofluorescence characterization of DMBA-TPA-induced two-stage carcinogenesis in mouse skin for the early detection of tissue transformation

    NASA Astrophysics Data System (ADS)

    Diagaradjane, Parmeswaran; Yaseen, Mohammed A.; Yu, Jie; Wong, Michael S.; Anvari, Bahman

    2005-04-01

    The use of autofluorescence technique in the characterization of the sequential tissue transformation process in 7,12-dimethylbenz(a)anthracene and 12-O-tetradecanoylphorbol-13-acetate (DMBA & TPA) induced two-stage mouse skin carcinogenesis model in conjunction with a suitable statistical method is being explored. The fluorescence excitation emission matrix (EEM) from experimental group (n=40; DMBA/TPA application), control group (n=6; acetone application) and the blank group (n=6; no application of DMBA/TPA or acetone) were measured every week using Fluoromax3 spectrofluorometer coupled with a waveguide fiber optic bundle (JY Horiba, NJ). The EEM was recorded for 19 excitation wavelengths from 280 to 460 nm at 10 nm intervals and the fluorescence emission was scanned from 300 to 750 nm. During the tissue transformation the epithelial tissues underwent biochemical and structural changes that are manifested in the tissue fluorescence. To correlate the tissue morphology with the observed fluorescence differences in the fluorescence emission, animals were sacrificed and the tissue biopsies were subjected to histopathological evaluation. The fluorescence emission corresponding to different fluorophores was extracted from the EEM, and the spectral data were used in multivariate statistical algorithm for the earliest diagnosis of the onset of tissue transformation. The intrinsic fluorescence from tryptophan, NADH and prophyrins showed distinct differences in the spectral signature during the tissue transformation, due to the altered metabolic activities of the cells. The statistical analysis of the spectral data corresponding to each excitation wavelength showed better classification accuracy at 280, 320, 350 and 405 nm excitations, corresponding to tryptophan, collagen, NADH and porphyrins with the classification accuracy of 74.3, 68.1, 64.6 and 74.7 % respectively. The variations in the spectral signature and the results of the statistical analysis suggest that

  14. Circadian disruption alters mouse lung clock gene expression and lung mechanics.

    PubMed

    Hadden, Hélène; Soldin, Steven J; Massaro, Donald

    2012-08-01

    Most aspects of human physiology and behavior exhibit 24-h rhythms driven by a master circadian clock in the brain, which synchronizes peripheral clocks. Lung function and ventilation are subject to circadian regulation and exhibit circadian oscillations. Sleep disruption, which causes circadian disruption, is common in those with chronic lung disease, and in the general population; however, little is known about the effect on the lung of circadian disruption. We tested the hypothesis circadian disruption alters expression of clock genes in the lung and that this is associated with altered lung mechanics. Female and male mice were maintained on a 12:12-h light/dark cycle (control) or exposed for 4 wk to a shifting light regimen mimicking chronic jet lag (CJL). Airway resistance (Rn), tissue damping (G), and tissue elastance (H) did not differ between control and CJL females. Rn at positive end-expiratory pressure (PEEP) of 2 and 3 cmH(2)O was lower in CJL males compared with controls. G, H, and G/H did not differ between CJL and control males. Among CJL females, expression of clock genes, Bmal1 and Rev-erb alpha, was decreased; expression of their repressors, Per2 and Cry 2, was increased. Among CJL males, expression of Clock was decreased; Per 2 and Rev-erb alpha expression was increased. We conclude circadian disruption alters lung mechanics and clock gene expression and does so in a sexually dimorphic manner.

  15. Comparison of cell cycle components, apoptosis and cytoskeleton-related molecules and therapeutic effects of flavopiridol and geldanamycin on the mouse fibroblast, lung cancer and embryonic stem cells.

    PubMed

    Aktug, Huseyin; Acikgoz, Eda; Uysal, Aysegul; Oltulu, Fatih; Oktem, Gulperi; Yigitturk, Gurkan; Demir, Kenan; Yavasoglu, Altug; Bozok Cetintas, Vildan

    2016-09-01

    Similarities and differences in the cell cycle components, apoptosis and cytoskeleton-related molecules among mouse skin fibroblast cells (MSFs), mouse squamous cell lung carcinomas (SqCLCs) and mouse embryonic stem cells (mESCs) are important determinants of the behaviour and differentiation capacity of these cells. To reveal apoptotic pathways and to examine the distribution and the role of cell cycle-cell skeleton comparatively would necessitate tumour biology and stem cell biology to be assessed together in terms of oncogenesis and embryogenesis. The primary objectives of this study are to investigate the effects of flavopiridol, a cell cycle inhibitor, and geldanamycin, a heat shock protein inhibitor on mouse somatic, tumour and embryonic stem cells, by specifically focusing on alterations in cytoskeletal proteins, cell polarity and motility as well as cell cycle regulators. To meet these objectives, expression of several genes, cell cycle analysis and immunofluorescence staining of intracellular cytoskeletal molecules were performed in untreated and flavopiridol- or geldanamycin-treated cell lines. Cytotoxicity assays showed that SqCLCs are more sensitive to flavopiridol than MSFs and mESCs. Keratin-9 and keratin-2 expressions increased dramatically whereas cell cycle regulatory genes decreased significantly in the flavopiridol-treated MSFs. Flavopiridol-treated SqCLCs displayed a slight increase in several cell cytoskeleton regulatory genes as well as cell cycle regulatory genes. However, gene expression profiles of mESCs were not affected after flavopiridol treatment except the Cdc2a. Cytotoxic concentrations of geldanamycin were close to each other for all cell lines. Cdkn1a was the most increased gene in the geldanamycin-treated MSFs. However, expression levels of cell cytoskeleton-associated genes were increased dramatically in the geldanamycin-treated SqCLCs. Our results revealing differences in molecular mechanisms between embryogenesis and

  16. An apple oligogalactan prevents against inflammation and carcinogenesis by targeting LPS/TLR4/NF-κB pathway in a mouse model of colitis-associated colon cancer.

    PubMed

    Liu, Li; Li, Yu H; Niu, Yin B; Sun, Yang; Guo, Zhen J; Li, Qian; Li, Chen; Feng, Juan; Cao, Shou S; Mei, Qi B

    2010-10-01

    Evidence strongly supported a link between inflammation and cancer. Patients with colitis have high risk for development of colon cancer. Nuclear factor-kappa B (NF-κB), partially induced by lipopolysaccharide (LPS) binding to Toll-like receptor (TLR) 4, is a vital molecule in supervising the transformation of colitis to colon cancer. It could be a good strategy to prevent colitis carcinogenesis for targeting LPS/TLR4/NF-κB pathway. In the present study, we obtained an oligogalactan composed of five galacturonic acids from apple pectin and evaluated its protective efficacy on intestinal toxicities and carcinogenesis in a mouse model of colitis-associated colon cancer induced by 1,2-dimethylhydrazine and dextran sodium sulfate (DSS). The apple oligogalactan (AOG) was highly effective against intestinal toxicities and carcinogenesis and decreased the elevated levels of TLR4 and tumor necrosis factor-α (TNF-α) induced by inflammation in vivo in this model system. In vitro studies, AOG alone only slightly increased the levels of protein expression and messenger RNA of TLR4, phosphorylation of IκBα and production of TNF-α in HT-29 cells. However, AOG significantly decreased the elevation of all the biomarkers induced by LPS when it was combined with LPS. The effect of AOG may be related to membrane internalization and redistribution of TLR4 from cell membrane to cytoplasm. AOG is active against inflammation and carcinogenesis through targeting LPS/TLR4/NF-κB pathway. Both AOG and LPS are agonists of TLR4 for sharing the same ligand but AOG has a much lower intrinsic activity than that of LPS. AOG may be useful for treatment of colitis and prevention of carcinogenesis in the clinics.

  17. Early recognition of lung cancer by integrin targeted imaging in K-ras mouse model.

    PubMed

    Ermolayev, Vladimir; Mohajerani, Pouyan; Ale, Angelique; Sarantopoulos, Athanasios; Aichler, Michaela; Kayser, Gian; Walch, Axel; Ntziachristos, Vasilis

    2015-09-01

    Non-small cell lung cancer is characterized by slow progression and high heterogeneity of tumors. Integrins play an important role in lung cancer development and metastasis and were suggested as a tumor marker; however their role in anticancer therapy remains controversial. In this work, we demonstrate the potential of integrin-targeted imaging to recognize early lesions in transgenic mouse model of lung cancer based on spontaneous introduction of mutated human gene bearing K-ras mutation. We conducted ex vivo and fluorescence molecular tomography-X-ray computed tomography (FMT-XCT) in vivo imaging and analysis for specific targeting of early lung lesions and tumors in rodent preclinical model for lung cancer. The lesions and tumors were characterized by histology, immunofluorescence and immunohistochemistry using a panel of cancer markers. Ex vivo, the integrin-targeted fluorescent signal significantly differed between wild type lung tissue and K-ras pulmonary lesions (PL) at all ages studied. The panel of immunofluorescence experiments demonstrated that PL, which only partially show cancer cell features were detected by αvβ3-integrin targeted imaging. Human patient material analysis confirmed the specificity of target localization in different lung cancer types. Most importantly, small tumors in the lungs of 4-week-old animals could be noninvasively detected in vivo on the fluorescence channel of FMT-XCT. Our findings demonstrated αvβ3-integrin targeted fluorescent imaging to specifically detect premalignant pleural lesions in K-ras mice. Integrin targeted imaging may find application areas in preclinical research and clinical practice, such as early lung cancer diagnostics, intraoperative assistance or therapy monitoring.

  18. Scale dependence of structure-function relationship in the emphysematous mouse lung

    PubMed Central

    Sato, Susumu; Bartolák-Suki, Erzsébet; Parameswaran, Harikrishnan; Hamakawa, Hiroshi; Suki, Béla

    2015-01-01

    The purpose of this study was to determine how the initial distribution of elastase in mouse lungs determines the time course of tissue destruction and how structural heterogeneity at different spatial scales influences lung function. We evaluated lung function and alveolar structure in normal and emphysematous C57BL/6 mice at 2 and 21 days following orotracheal treatment with porcine pancreatic elastase (PPE). Initial distribution of elastase 1 h after treatment was assessed using red fluorescently labeled PPE (f-PPE) by laser scanning confocal microscopy. From measured input impedance of the respiratory system, the global lung compliance, and the variability of regional compliance were obtained. Lungs were fixed and equivalent airspace diameters were measured in four lobes of the right lung and three regions of the left lung. At day 2 and day 21, the mean airspace diameter of each region was significantly enlarged which was accompanied by an increased inter-regional heterogeneity. The deposition of f-PPE on day 0 was much more heterogeneous than the inter-regional diameters at both day 2 and day 21 and, at day 21, this reached statistical significance (p < 0.05). Microscale heterogeneity characterized by the overall variability of airspace diameters correlated significantly better with compliance than macroscale or inter-regional heterogeneity. Furthermore, while the spatial distribution of the inflammatory response does not seem to follow that of the elastase deposition, it correlates with the strongest regional determinant of lung function. These results may help interpret lung function decline in terms of structural deterioration in human patients with emphysema. PMID:26029115

  19. Scale dependence of structure-function relationship in the emphysematous mouse lung.

    PubMed

    Sato, Susumu; Bartolák-Suki, Erzsébet; Parameswaran, Harikrishnan; Hamakawa, Hiroshi; Suki, Béla

    2015-01-01

    The purpose of this study was to determine how the initial distribution of elastase in mouse lungs determines the time course of tissue destruction and how structural heterogeneity at different spatial scales influences lung function. We evaluated lung function and alveolar structure in normal and emphysematous C57BL/6 mice at 2 and 21 days following orotracheal treatment with porcine pancreatic elastase (PPE). Initial distribution of elastase 1 h after treatment was assessed using red fluorescently labeled PPE (f-PPE) by laser scanning confocal microscopy. From measured input impedance of the respiratory system, the global lung compliance, and the variability of regional compliance were obtained. Lungs were fixed and equivalent airspace diameters were measured in four lobes of the right lung and three regions of the left lung. At day 2 and day 21, the mean airspace diameter of each region was significantly enlarged which was accompanied by an increased inter-regional heterogeneity. The deposition of f-PPE on day 0 was much more heterogeneous than the inter-regional diameters at both day 2 and day 21 and, at day 21, this reached statistical significance (p < 0.05). Microscale heterogeneity characterized by the overall variability of airspace diameters correlated significantly better with compliance than macroscale or inter-regional heterogeneity. Furthermore, while the spatial distribution of the inflammatory response does not seem to follow that of the elastase deposition, it correlates with the strongest regional determinant of lung function. These results may help interpret lung function decline in terms of structural deterioration in human patients with emphysema.

  20. The Nicotinic Receptor Alpha7 Impacts the Mouse Lung Response to LPS through Multiple Mechanisms

    PubMed Central

    Enioutina, Elena Y.; Myers, Elizabeth J.; Tvrdik, Petr; Hoidal, John R.; Rogers, Scott W.; Gahring, Lorise C.

    2015-01-01

    The nicotinic acetylcholine receptor alpha7 (α7) is expressed by neuronal and non-neuronal cells throughout the body. We examined the mechanisms of the lung inflammatory response to intranasal (i.n.) lipopolysaccharide (LPS) regulated by α7. This was done in mice using homologous recombination to introduce a point mutation in the α7 receptor that replaces the glutamate residue 260 that lines the pore with alanine (α7E260A), which has been implicated in controlling the exceptional calcium ion conductance of this receptor. The α7E260A mice exhibit normal inflammatory cell recruitment to the blood in response to i.n. LPS administration. This differs from the α7knock-out (α7KO) in which upstream signaling to initiate the recruitment to the blood following i.n. LPS is significantly impaired. While hematopoietic cells are recruited to the bloodstream in the α7E260A mouse, they fail to be recruited efficiently into both the interstitium and alveolar spaces of the lung. Bone marrow reconstitution experiments demonstrate that the responsiveness of both CD45+ and CD45- cells of the α7E260A mouse are impaired. The expression of several pro-inflammatory cytokine and chemokine RNAs including TNFα, IL-1α, Ccl2 and Cxcl10 are decreased in the α7E260A mouse. However, there is a substantial increase in IL-13 expression by CD45- lung interstitial cells in the α7E260A mouse. Our results support the conclusion that α7 functional pleiotropy contributes to modulating the tissue response to an inflammatory insult through impacting upon a variety of mechanisms reflecting the individual cell composition of the lung. PMID:25803612

  1. [Distribution of compact bone mesenchymal stem cells in lung tissue and bone marrow of mouse].

    PubMed

    Wang, Rui-Ping; Wu, Ren-Na; Guo, Yu-Qing; Zhang, Bin; Chen, Hu

    2014-02-01

    This study was aimed to investigate the distribution of compact bone mesenchymal stem cells(MSC) marked with lentiviral plasmid pGC FU-RFP-LV in lung tissue and bone marrow of mouse. The MSC were infected by lentivirus with infection efficiency 78%, the infected MSC were injected into BALB/c mice via tail veins in concentration of 1×10(6) /mouse. The mice were randomly divided into 4 group according to 4 time points as 1, 2, 5 and 7 days. The lung tissue and bone marrow were taken and made of frozen sections and smears respectively in order to observed the distributions of MSC. The results indicated that the lentiviral infected MSC displayed phenotypes and biological characteristics which conformed to MSC by immunophenotyping analysis and induction differentiation detection. After the MSC were infected with optimal viral titer MOI = 50, the cell growth no significantly changed; the fluorescent microscopy revealed that the distributions of MSC in bone marrow on day 1, 2, 5 and 7 were 0.50 ± 0.20, 0.67 ± 0.23, 0.53 ± 0.14, 0.33 ± 0.16; those in lung tissue were 0.55 ± 0.15, 0.47 ± 0.13, 0.29 ± 0.13, 0.26 ± 0.08. It is concluded that the distribution of MSC in lung tissue reaches a peak on day 1, while distribution of MSC in bone marrow reaches a peak on day 2. The distribution of mouse MSC relates with RFP gene expression and implantation of MSC in lung tissue and bone marrow.

  2. Susceptibility to quantum dot induced lung inflammation differs widely among the Collaborative Cross founder mouse strains

    PubMed Central

    Scoville, David K.; White, Collin C.; Botta, Dianne; McConnachie, Lisa A.; Zadworny, Megan E.; Schmuck, Stefanie C.; Hu, Xiaoge; Gao, Xiaohu; Yu, Jianbo; Dills, Russell L.; Sheppard, Lianne; Delaney, Martha A.; Griffith, William C.; Beyer, Richard P.; Zangar, Richard C.; Pounds, Joel G.; Faustman, Elaine M.; Kavanagh, Terrance J.

    2015-01-01

    Quantum dots (QDs) are engineered semiconductor nanoparticles with unique physicochemical properties that make them potentially useful in clinical, research and industrial settings. However, a growing body of evidence indicates that like other engineered nanomaterials, QDs have the potential to be respiratory hazards, especially in the context of the manufacture of QDs and products containing them, as well as exposures to consumers using these products. The overall goal of this study was to investigate the role of mouse strain in determining susceptibility to QD-induced pulmonary inflammation and toxicity. Male mice from 8 genetically diverse inbred strains (the Collaborative Cross founder strains) were exposed to CdSe–ZnS core–shell QDs stabilized with an amphiphilic polymer. QD treatment resulted in significant increases in the percentage of neutrophils and levels of cytokines present in bronchoalveolar lavage fluid (BALF) obtained from NOD/ShiLtJ and NZO/HlLtJ mice relative to their saline (Sal) treated controls. Cadmium measurements in lung tissue indicated strain-dependent differences in disposition of QDs in the lung. Total glutathione levels in lung tissue were significantly correlated with percent neutrophils in BALF as well as with lung tissue Cd levels. Our findings indicate that QD-induced acute lung inflammation is mouse strain dependent, that it is heritable, and that the choice of mouse strain is an important consideration in planning QD toxicity studies. These data also suggest that formal genetic analyses using additional strains or recombinant inbred strains from these mice could be useful for discovering potential QD-induced inflammation susceptibility loci. PMID:26476918

  3. Differential responses in the lungs of newborn mouse pups exposed to 85% or >95% oxygen.

    PubMed

    Rogers, Lynette K; Tipple, Trent E; Nelin, Leif D; Welty, Stephen E

    2009-01-01

    Premature infants often develop serious clinical complications associated with respiratory failure and hyperoxic lung injury that includes lung inflammation and alterations in lung development. The goal of these studies is to test the hypothesis that there are differences in the course of lung injury in newborn mice exposed to 85% or >95% oxygen that provide models to address the differential effects of oxidation and inflammation. Our results indicate differences between the 85% and >95% O2 exposure groups by day 14 in weight gain and lung alveolarization. Inflammation, assessed by neutrophil counts, was observed in both hyperoxia groups by day 3 but was dramatically greater in the >95% O2-exposed groups by day 14 and associated with greater developmental deficits. Cytoplasmic phospholipase A2, cyclooxygenase-2, and 5-lipoxygenase levels were elevated but no patterns of differences were observed between exposure groups. Prostaglandins D2, E2, and F2alpha were increased in the tissues from mouse pups exposed to >95% O2 at 7 d indicating a differential expression of cyclooxygenase-2 products. Our data indicate that there are differences in the models of 85% or >95% O2 exposure and these differences may provide mechanistic insights into hyperoxic lung injury in an immature system.

  4. Two Nested Developmental Waves Demarcate a Compartment Boundary in the Mouse Lung

    PubMed Central

    Alanis, Denise Martinez; Chang, Daniel R.; Akiyama, Haruhiko; Krasnow, Mark A.; Chen, Jichao

    2014-01-01

    The lung is a branched tubular network with two distinct compartments — the proximal conducting airways and the peripheral gas exchange region — separated by a discrete boundary termed the bronchoalveolar duct junction (BADJ). Here we image the developing mouse lung in three dimensions and show that two nested developmental waves demarcate the BADJ under the control of a global hormonal signal. A first wave of branching morphogenesis progresses throughout embryonic development, generating branches for both compartments. A second wave of conducting airway differentiation follows the first wave but terminates earlier, specifying the proximal compartment and setting the BADJ. The second wave is terminated by a glucocorticoid signaling: premature activation or loss of glucocorticoid signaling causes a proximal or distal shift, respectively, in BADJ location. The results demonstrate a novel mechanism of boundary formation in complex, three-dimensional organs and provide new insights into glucocorticoid therapies for lung defects in premature birth. PMID:24879355

  5. GATA2 is epigenetically repressed in human and mouse lung tumors and is not requisite for survival of KRAS mutant lung cancer

    PubMed Central

    Tessema, Mathewos; Yingling, Christin M.; Snider, Amanda M.; Do, Kieu; Juri, Daniel E.; Picchi, Maria A.; Zhang, Xiequn; Liu, Yushi; Leng, Shuguang; Tellez, Carmen S.; Belinsky, Steven A.

    2014-01-01

    Introduction GATA2 was recently described as a critical survival factor and therapeutic target for KRAS mutant non-small cell lung cancer (NSCLC). However, whether this role is affected by epigenetic repression of GATA2 in lung cancer is unclear. Methods GATA2 expression and promoter CpG island methylation were evaluated using human and mouse NSCLC cell lines and tumor-normal pairs. In vitro assays were used to study GATA2 repression on cell survival and during tobacco carcinogen-induced transformation. Results GATA2 expression in KRAS wild-type (n=15) and mutant (n=10) NSCLC cell lines and primary lung tumors (n=24) was significantly lower, 1.3–33.6-fold (p=2.2×10−9), compared to corresponding normal lung. GATA2 promoter was unmethylated in normal lung (0/10) but frequently methylated in lung tumors (96%, 159/165) and NSCLC cell lines (97%, 30/31). This highly prevalent aberrant methylation was independently validated using TCGA data for 369 NSCLC tumor-normal pairs. In vitro studies using an established carcinogen-induced pre-malignancy model revealed that GATA2 expression was initially repressed by chromatin remodeling followed by cytosine methylation during transformation. Similarly, expression of Gata2 in NNK-induced mouse lung tumors (n=6) and cell lines (n=5) was 5-fold and 100-fold lower, respectively, than normal mouse lung. Finally, siRNA-mediated knockdown of GATA2 in KRAS mutant [human (n=4) and murine (n=5)] and wild-type [human (n=4)] NSCLC cell lines showed that further reduction of expression (up to 95%) does not induce cell death. Conclusion GATA2 is epigenetically repressed in human and mouse lung tumors and its further inhibition is not a valid therapeutic strategy for KRAS mutant lung cancer. PMID:24807155

  6. CYCLOPENTA-FUSED POLYCYCLIC AROMATIC HYDROCARBONS IN STRAIN A/J MOUSE LUNG: DNA ADDUCTS, ONCOGENE MUTATIONS, & TUMORIGENESIS

    EPA Science Inventory

    Cyclopenta-fused Polycyclic Aromatic Hydrocarbons in Strain AJJ Mouse Lung: DNA Adducts, Oncogene Mutations, and Tumorigenesis.

    We have examined the relationships between DNA adducts, Ki-ras oncogene mutations, DNA adducts, and adenoma induction in the lungs of strain A/J...

  7. CYCLOPENTA-FUSED POLYCYCLIC AROMATIC HYDROCARBONS IN STRAIN A/J MOUSE LUNG: DNA ADDUCTS, ONCOGENE MUTATIONS, & TUMORIGENESIS

    EPA Science Inventory

    Cyclopenta-fused Polycyclic Aromatic Hydrocarbons in Strain AJJ Mouse Lung: DNA Adducts, Oncogene Mutations, and Tumorigenesis.

    We have examined the relationships between DNA adducts, Ki-ras oncogene mutations, DNA adducts, and adenoma induction in the lungs of strain A/J...

  8. Effect of urethane, dimethylnitrosamine, paraquat, and butylated hydroxytoluene on the activities of glycolytic key enzymes in mouse lung

    SciTech Connect

    Arany, I.; Rady, P.; Bojan, I.; Kertai, P.

    1981-12-01

    Effects of carcinogens and noncarcinogenic pulmonary toxicants on the activities of glycolytic key enzymes in the mouse lung were investigated. The carcinogens urethane (URTH) and dimethylnitrosamine (DMN) permanently enhanced, and the noncarcinogenic pulmonary toxicants paraquat (PAR) and butylated hydroxytoluene (BHT) temporarily, enhanced the activities of hexokinase (HK), phosphofructokinase (PFK), and pyruvate kinase (PK) in the lungs of mice.

  9. Mouse lung infection model to assess Rhodococcus equi virulence and vaccine protection.

    PubMed

    González-Iglesias, Patricia; Scortti, Mariela; MacArthur, Iain; Hapeshi, Alexia; Rodriguez, Héctor; Prescott, John F; Vazquez-Boland, José A

    2014-08-06

    The pathogenic actinomycete Rhodococcus equi causes severe purulent lung infections in foals and immunocompromised people. Although relatively unsusceptible to R. equi, mice are widely used for in vivo studies with this pathogen. The most commonly employed mouse model is based on systemic (intravenous) infection and determination of R. equi burdens in spleen and liver. Here, we investigated the murine lung for experimental infection studies with R. equi. Using a 10(7)CFU intranasal challenge in BALB/c mice, virulent R. equi consistently survived in quantifiable numbers up to 10 days in the lungs whereas virulence-deficient R. equi bacteria were rapidly cleared. An internally controlled virulence assay was developed in which the test R. equi strains are co-inoculated and monitored in the same mouse. Isogenic R. equi bacteria lacking either the plasmid vapA gene or the entire virulence plasmid were compared using this competitive assay. Both strains showed no significant differences in in vivo fitness in the lung, indicating that the single loss of the virulence factor VapA was sufficient to account for the full attenuation seen in the absence of the virulence plasmid. To test the adequacy of the lung infection model for monitoring R. equi vaccine efficacy, BALB/c mice were immunized with live R. equi and challenged intranasally. Vaccination conferred protection against acute pulmonary challenge with virulent R. equi. Our data indicate that the murine lung infection model provides a useful tool for both R. equi virulence and vaccine studies. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Glial Fibrillary Acidic Protein-Expressing Glia in the Mouse Lung

    PubMed Central

    Suarez-Mier, Gabriela B.

    2015-01-01

    Autonomic nerves regulate important functions in visceral organs, including the lung. The postganglionic portion of these nerves is ensheathed by glial cells known as non-myelinating Schwann cells. In the brain, glia play important functional roles in neurotransmission, neuroinflammation, and maintenance of the blood brain barrier. Similarly, enteric glia are now known to have analogous roles in gastrointestinal neurotransmission, inflammatory response, and barrier formation. In contrast to this, very little is known about the function of glia in other visceral organs. Like the gut, the lung forms a barrier between airborne pathogens and the bloodstream, and autonomic lung innervation is known to affect pulmonary inflammation and lung function. Lung glia are described as non-myelinating Schwann cells but their function is not known, and indeed no transgenic tools have been validated to study them in vivo. The primary goal of this research was, therefore, to investigate the relationship between non-myelinating Schwann cells and pulmonary nerves in the airways and vasculature and to validate existing transgenic mouse tools that would be useful for studying their function. We focused on the glial fibrillary acidic protein promoter, which is a cognate marker of astrocytes that is expressed by enteric glia and non-myelinating Schwann cells. We describe the morphology of non-myelinating Schwann cells in the lung and verify that they express glial fibrillary acidic protein and S100, a classic glial marker. Furthermore, we characterize the relationship of non-myelinating Schwann cells to pulmonary nerves. Finally, we report tools for studying their function, including a commercially available transgenic mouse line. PMID:26442852

  11. Preclinical evaluation of human secretoglobin 3A2 in mouse models of lung development and fibrosis

    PubMed Central

    Cai, Yan; Winn, Melissa E.; Zehmer, John K.; Gillette, William K.; Lubkowski, Jacek T.; Pilon, Aprile L.

    2013-01-01

    Secretoglobin (SCGB) 3A2 is a member of the SCGB gene superfamily of small secreted proteins, predominantly expressed in lung airways. We hypothesize that human SCGB3A2 may exhibit anti-inflammatory, growth factor, and antifibrotic activities and be of clinical utility. Recombinant human SCGB3A2 was expressed, purified, and biochemically characterized as a first step to its development as a therapeutic agent in clinical settings. Human SCGB3A2, as well as mouse SCGB3A2, readily formed a dimer in solution and exhibited novel phospholipase A2 inhibitory activity. This is the first demonstration of any quantitative biochemical measurement for the evaluation of SCGB3A2 protein. In the mouse as an experimental animal, human SCGB3A2 exhibited growth factor activity by promoting embryonic lung development in both ex vivo and in vivo systems and antifibrotic activity in the bleomycin-induced lung fibrosis model. The results suggested that human SCGB3A2 can function as a growth factor and an antifibrotic agent in humans. When SCGB3A2 was administered to pregnant female mice through the tail vein, the protein was detected in the dam's serum and lung, as well as the placenta, amniotic fluids, and embryonic lungs at 10 min postadministration, suggesting that SCGB3A2 readily crosses the placenta. The results warrant further development of recombinant SCGB3A2 as a therapeutic agent in treating patients suffering from lung diseases or preterm infants with respiratory distress. PMID:24213919

  12. Lung Pathologies in a Chronic Inflammation Mouse Model Are Independent of Eosinophil Degranulation.

    PubMed

    Jacobsen, Elizabeth A; Ochkur, Sergei I; Doyle, Alfred D; LeSuer, William E; Li, Wen; Protheroe, Cheryl A; Colbert, Dana; Zellner, Katie R; Shen, HuaHao H; Irvin, Charles G; Lee, James J; Lee, Nancy A

    2017-05-15

    The release of eosinophil granule proteins in the lungs of patients with asthma has been dogmatically linked with lung remodeling and airway hyperresponsiveness. However, the demonstrated inability of established mouse models to display the eosinophil degranulation occurring in human subjects has prevented a definitive in vivo test of this hypothesis. To demonstrate in vivo causative links between induced pulmonary histopathologies/lung dysfunction and eosinophil degranulation. A transgenic mouse model of chronic T-helper cell type 2-driven inflammation overexpressing IL-5 from T cells and human eotaxin 2 in the lung (I5/hE2) was used to test the hypothesis that chronic histopathologies and the development of airway hyperresponsiveness occur as a consequence of extensive eosinophil degranulation in the lung parenchyma. Studies targeting specific inflammatory pathways in I5/hE2 mice surprisingly showed that eosinophil-dependent immunoregulative events and not the release of individual secondary granule proteins are the central contributors to T-helper cell type 2-induced pulmonary remodeling and lung dysfunction. Specifically, our studies highlighted a significant role for eosinophil-dependent IL-13 expression. In contrast, extensive degranulation leading to the release of major basic protein-1 or eosinophil peroxidase was not causatively linked to many of the induced pulmonary histopathologies. However, these studies did define a previously unappreciated link between the release of eosinophil peroxidase (but not major basic protein-1) and observed levels of induced airway mucin. These data suggest that improvements observed in patients with asthma responding to therapeutic strategies ablating eosinophils may occur as a consequence of targeting immunoregulatory mechanisms and not by simply eliminating the destructive activities of these purportedly end-stage effector cells.

  13. Cell-Specific Oxidative Stress and Cytotoxicity after Wildfire Coarse Particulate Matter Instillation into Mouse Lung

    PubMed Central

    Williams, Keisha M.; Franzi, Lisa M.; Last, Jerold A.

    2012-01-01

    Our previous work has shown that coarse particulate matter (PM10-2.5) from wildfire smoke is more toxic to lung macrophages on an equal dose (by mass) basis than coarse PM isolated from normal ambient air, as evidenced by decreased numbers of macrophages in lung lavage fluid 6 and 24 hours after PM instillation into mouse lungs in vivo and by cytotoxicity to a macrophage cell line observed directly in vitro. We hypothesized that pulmonary macrophages from mice instilled with wildfire coarse PM would undergo more cytotoxicity than macrophages from controls, and that there would be an increase in oxidative stress in their lungs. Cytotoxicity was quantified as decreased viable macrophages and increased percentages of dead macrophages in the bronchoalveolar lavage fluid (BALF) of mice instilled with wildfire coarse PM. At one hour after PM instillation, we observed both decreased numbers of viable macrophages and increased dead macrophage percentages as compared to controls. An increase in free isoprostanes, an indicator of oxidative stress, from control values of 28.1±3.2 pg/mL to 83.9±12.2 pg/mL was observed a half-hour after PM instillation. By one hour after PM instillation, isoprostane values had returned to 30.4±7.6pg/mL, not significantly different from control concentrations. Lung sections from mice instilled with wildfire coarse PM showed rapid Clara cell responses, with decreased intracellular staining for the Clara cell secretory protein CCSP 1 hour after wildfire PM instillation. In conclusion, very rapid cytotoxicity occurs in pulmonary macrophages and oxidative stress responses are seen 0.5-1 hour after wildfire coarse PM instillation. These results define early cellular and biochemical events occurring in vivo and support the hypothesis that oxidative stress-mediated macrophage toxicity plays a key role in the initial response of the mouse lung to wildfire PM exposure. PMID:23142465

  14. Gene expression profiling in mouse lung following polymeric hexamethylene diisocyanate exposure

    SciTech Connect

    Lee, C.-T.; Ylostalo, Joni; Friedman, Mitchell; Hoyle, Gary W. . E-mail: ghoyle@tulane.edu

    2005-05-15

    Isocyanates are a common cause of occupational lung disease. Hexamethylene diisocyanate (HDI), a component of polyurethane spray paints, can induce respiratory symptoms, inflammation, lung function impairment, and isocyanate asthma. The predominant form of HDI in polyurethane paints is a nonvolatile polyisocyanate known as HDI biuret trimer (HDI-BT). Exposure of mice to aerosolized HDI-BT results in pathological effects, including pulmonary edema, lung inflammation, cellular proliferation, and fibrotic lesions, which occur with distinct time courses following exposure. To identify genes that mediate lung pathology in the distinct temporal phases after exposure, gene expression profiles in HDI-BT-exposed C57BL/6J mouse lungs were analyzed. RNase protection assay (RPA) of genes involved in apoptosis, cell survival, and inflammation revealed increased expression of I{kappa}B{alpha}, Fas, Bcl-X{sub L}, TNF{alpha}, KC, MIP-2, IL-6, and GM-CSF following HDI-BT exposure. Microarray analysis of approximately 10 000 genes was performed on lung RNA collected from mice 6, 18, and 90 h after HDI-BT exposure and from unexposed mice. Classes of genes whose expression was increased 6 h after exposure included those involved in stress responses (particularly oxidative stress and thiol redox balance), growth arrest, apoptosis, signal transduction, and inflammation. Types of genes whose expression was increased at 18 h included proteinases, anti-proteinases, cytoskeletal molecules, and inflammatory mediators. Transcripts increased at 90 h included extracellular matrix components, transcription factors, inflammatory mediators, and cell cycle regulators. This characterization of the gene expression profile in lungs exposed to HDI-BT will provide a basis for investigating injury and repair pathways that are operative during isocyanate-induced lung disease.

  15. Viral Carcinogenesis.

    PubMed

    Smith, A J; Smith, L A

    2016-01-01

    Cancer has been recognized for thousands of years. Egyptians believed that cancer occurred at the will of the gods. Hippocrates believed human disease resulted from an imbalance of the four humors: blood, phlegm, yellow bile, and black bile with cancer being caused by excess black bile. The lymph theory of cancer replaced the humoral theory and the blastema theory replaced the lymph theory. Rudolph Virchow was the first to recognize that cancer cells like all cells came from other cells and believed chronic irritation caused cancer. At the same time there was a belief that trauma caused cancer, though it never evolved after many experiments inducing trauma. The birth of virology occurred in 1892 when Dimitri Ivanofsky demonstrated that diseased tobacco plants remained infective after filtering their sap through a filter that trapped bacteria. Martinus Beijerinck would call the tiny infective agent a virus and both Dimitri Ivanofsky and Marinus Beijerinck would become the fathers of virology. Not to long thereafter, Payton Rous founded the field of tumor virology in 1911 with his discovery of a transmittable sarcoma of chickens by what would come to be called Rous sarcoma virus or RSV for short. The first identified human tumor virus was the Epstein-Barr virus (EBV), named after Tony Epstein and Yvonne Barr who visualized the virus particles in Burkitt's lymphoma cells by electron microscopy in 1965. Since that time, many viruses have been associated with carcinogenesis including the most studied, human papilloma virus associated with cervical carcinoma, many other anogenital carcinomas, and oropharyngeal carcinoma. The World Health Organization currently estimates that approximately 22% of worldwide cancers are attributable to infectious etiologies, of which viral etiologies is estimated at 15-20%. The field of tumor virology/viral carcinogenesis has not only identified viruses as etiologic agents of human cancers, but has also given molecular insights to all human

  16. Generation of Multipotent Lung and Airway Progenitors from Mouse ESCs and Patient-Specific Cystic Fibrosis iPSCs

    PubMed Central

    Mou, Hongmei; Zhao, Rui; Sherwood, Richard; Ahfeldt, Tim; Lapey, Allen; Wain, John; Sicilian, Leonard; Izvolsky, Konstantin; Lau, Frank H.; Musunuru, Kiran; Cowan, Chad; Rajagopal, Jayaraj

    2012-01-01

    SUMMARY Deriving lung progenitors from patient-specific pluripotent cells is a key step in producing differentiated lung epithelium for disease modeling and transplantation. By mimicking the signaling events that occur during mouse lung development, we generated murine lung progenitors in a series of discrete steps. Definitive endoderm derived from mouse embryonic stem cells (ESCs) was converted into foregut endoderm, then into replicating Nkx2.1+ lung endoderm, and finally into multipotent embryonic lung progenitor and airway progenitor cells. We demonstrated that precisely-timed BMP, FGF, and WNT signaling are required for NKX2.1 induction. Mouse ESC-derived Nkx2.1+ progenitor cells formed respiratory epithelium (tracheospheres) when transplanted subcutaneously into mice. We then adapted this strategy to produce disease-specific lung progenitor cells from human Cystic Fibrosis induced pluripotent stem cells (iPSCs), creating a platform for dissecting human lung disease. These disease-specific human lung progenitors formed respiratory epithelium when subcutaneously engrafted into immunodeficient mice. PMID:22482504

  17. Expression and function of the ion channel TRPA1 in vagal afferent nerves innervating mouse lungs.

    PubMed

    Nassenstein, Christina; Kwong, Kevin; Taylor-Clark, Thomas; Kollarik, Marian; Macglashan, Donald M; Braun, Armin; Undem, Bradley J

    2008-03-15

    Transient receptor potential (TRP) A1 and TRPM8 are ion channels that have been localized to afferent nociceptive nerves. These TRP channels may be of particular relevance to respiratory nociceptors in that they can be activated by various inhaled irritants and/or cold air. We addressed the hypothesis that mouse vagal sensory nerves projecting to the airways express TRPA1 and TRPM8 and that they can be activated via these receptors. Single cell RT-PCR analysis revealed that TRPA1 mRNA, but not TRPM8, is uniformly expressed in lung-labelled TRPV1-expressing vagal sensory neurons. Neither TRPA1 nor TRPM8 mRNA was expressed in TRPV1-negative neurons. Capsaicin-sensitive, but not capsaicin-insensitive, lung-specific neurons responded to cinnamaldehyde, a TRPA1 agonist, with increases in intracellular calcium. Menthol, a TRPM8 agonist, was ineffective at increasing cellular calcium in lung-specific vagal sensory neurons. Cinnamaldehyde also induced TRPA1-like inward currents (as measured by means of whole cell patch clamp recordings) in capsaicin-sensitive neurons. In an ex vivo vagal innervated mouse lung preparation, cinnamaldehyde evoked action potential discharge in mouse vagal C-fibres with a peak frequency similar to that observed with capsaicin. Cinnamaldehyde inhalation in vivo mimicked capsaicin in eliciting strong central-reflex changes in breathing pattern. Taken together, our results support the hypothesis that TRPA1, but not TRPM8, is expressed in vagal sensory nerves innervating the airways. TRPA1 activation provides a mechanism by which certain environmental stimuli may elicit action potential discharge in airway afferent C-fibres and the consequent nocifensor reflexes.

  18. Transplacental arsenic carcinogenesis in mice

    SciTech Connect

    Waalkes, Michael P. Liu, Jie; Diwan, Bhalchandra A.

    2007-08-01

    Our work has focused on the carcinogenic effects of in utero arsenic exposure in mice. Our data show that a short period of maternal exposure to inorganic arsenic in the drinking water is an effective, multi-tissue carcinogen in the adult offspring. These studies have been reproduced in three temporally separate studies using two different mouse strains. In these studies pregnant mice were treated with drinking water containing sodium arsenite at up to 85 ppm arsenic from days 8 to 18 of gestation, and the offspring were observed for up to 2 years. The doses used in all these studies were well tolerated by both the dam and offspring. In C3H mice, two separate studies show male offspring exposed to arsenic in utero developed liver carcinoma and adrenal cortical adenoma in a dose-related fashion during adulthood. Prenatally exposed female C3H offspring show dose-related increases in ovarian tumors and lung carcinoma and in proliferative lesions (tumors plus preneoplastic hyperplasia) of the uterus and oviduct. In addition, prenatal arsenic plus postnatal exposure to the tumor promoter, 12-O-tetradecanoyl phorbol-13-acetate (TPA) in C3H mice produces excess lung tumors in both sexes and liver tumors in females. Male CD1 mice treated with arsenic in utero develop tumors of the liver and adrenal and renal hyperplasia while females develop tumors of urogenital system, ovary, uterus and adrenal and hyperplasia of the oviduct. Additional postnatal treatment with diethylstilbestrol or tamoxifen after prenatal arsenic in CD1 mice induces urinary bladder transitional cell proliferative lesions, including carcinoma and papilloma, and enhances the carcinogenic response in the liver of both sexes. Overall this model has provided convincing evidence that arsenic is a transplacental carcinogen in mice with the ability to target tissues of potential human relevance, such as the urinary bladder, lung and liver. Transplacental carcinogenesis clearly occurs with other agents in humans

  19. Transplacental Arsenic Carcinogenesis in Mice

    PubMed Central

    Waalkes, Michael P.; Liu, Jie; Diwan, Bhalchandra A.

    2007-01-01

    Our work has focused on the carcinogenic effects of in utero arsenic exposure in mice. Our data show a short period of maternal exposure to inorganic arsenic in the drinking water is an effective, multi-tissue carcinogen in the adult offspring. These studies have been reproduced in three temporally separate studies using two different mouse strains. In these studies pregnant mice were treated with drinking water containing sodium arsenite at up to 85 ppm arsenic from day 8 to 18 of gestation, and the offspring were observed for up to two years. The doses used in all these studies were well tolerated by both the dam and offspring. In C3H mice, two separate studies show male offspring exposed to arsenic in utero developed liver carcinoma and adrenal cortical adenoma in a dose-related fashion during adulthood. Prenatally exposed female C3H offspring show dose-related increases in ovarian tumors and lung carcinoma and in proliferative lesions (tumors plus preneoplastic hyperplasia) of the uterus and oviduct. In addition, prenatal arsenic plus postnatal exposure to the tumor promoter, 12-O-tetradecanoyl phorbol-13-acetate (TPA) in C3H mice produces excess lung tumors in both sexes and liver tumors in females. Male CD1 mice treated with arsenic in utero develop tumors of the liver and adrenal and renal hyperplasia while females develop tumors of urogenital system, ovary, uterus and adrenal and hyperplasia of the oviduct. Additional postnatal treatment with diethylstilbestrol or tamoxifen after prenatal arsenic in CD1 mice induces urinary bladder transitional cell proliferative lesions, including carcinoma and papilloma, and enhances the carcinogenic response in the liver of both sexes. Overall this model has provided convincing evidence that arsenic is a transplacental carcinogen in mice with the ability to target tissues of potential human relevance, such as the urinary bladder, lung and liver. Transplacental carcinogenesis clearly occurs with other agents in humans and

  20. Antibodies against benzo[a]pyrene in immunized mouse and in lung cancer patients.

    PubMed

    Ustinov, V A; Matveeva, V A; Kostyanko, M A; Glushkov, A N

    2013-09-01

    To evaluate the production of antibodies against benzo[a]pyrene (BP) (Ab1) and corresponding antiidiotypic antibodies (Ab2) in mice after immunization with BP-protein conjugate and in lung cancer patients. The Ab1 and Ab2 levels were measured by non-competitive ELISA in blood serum of 10 mice immunized with BP-protein conjugate, and in blood serum of 288 healthy persons and 165 lung cancer patients. The Ab1 level of was 2-fold higher than Ab2 level in blood serum of BP-immunized mice. In lung cancer patients the Ab1 level was almost 3 times higher and the Ab2 level was by 30% higher than these indexes in healthy individuals. The Ab1/Ab2 ratio was 2 in BP-immunized mice and healthy individuals and 1 in lung cancer patients. Our data have shown that the Ab1/Ab2 ratio in lung cancer patients differ from that in healthy individuals and is close to the Ab1/Ab2 ratio in BP-immunized mouse.

  1. CpG-ODN increases the release of VEGF in a mouse model of lung carcinoma.

    PubMed

    Sorrentino, Rosalinda; Morello, Silvana; Giordano, Maria Grazia; Arra, Claudio; Maiolino, Piera; Adcock, Ian M; Pinto, Aldo

    2011-06-15

    Vascular endothelial-derived growth factor (VEGF) plays a fundamental role in the formation of new vessels within the tumour mass. Increasing evidence has highlighted the involvement of Toll-like receptors (TLRs) in cancer. Of interest, TLR9 is over-expressed in human lung carcinoma tissues. The aim of our study was to determine whether TLR9 activation could alter VEGF release in a mouse model of lung carcinoma. Lewis lung carcinoma cells were intravenously (i.v.) inoculated and 10 days later, tumour-bearing mice were treated with CpG-ODN (CpG, a TLR9 ligand) or PBS. CpG administration enhanced VEGF release, which was associated with increased tumour lesions in the lung. CpG induced high levels of IL-6 expression and activation of STAT3 in tumour-bearing mice. Moreover, CpG induced VEGF release from primary fibroblasts and endothelial cells, which correlated with IL-6 and TGFβ production. This may explain the large influx of fibroblasts and the production of basic fibroblast growth factor (bFGF) in the tumour mass. The administration of a monoclonal antibody against VEGF A arrested tumour progression and induced a Th1-like response in CpG-treated tumour-bearing mice. In conclusion, our study demonstrates that the combination of CpG with anti-VEGF monoclonal antibody could be of potential therapeutic in lung carcinoma.

  2. Ezh2 restricts the smooth muscle lineage during mouse lung mesothelial development.

    PubMed

    Snitow, Melinda; Lu, MinMin; Cheng, Lan; Zhou, Su; Morrisey, Edward E

    2016-10-15

    During development, the lung mesoderm generates a variety of cell lineages, including airway and vascular smooth muscle. Epigenetic changes in adult lung mesodermal lineages are thought to contribute towards diseases such as idiopathic pulmonary fibrosis and chronic obstructive pulmonary disease, although the factors that regulate early lung mesoderm development are unknown. We show in mouse that the PRC2 component Ezh2 is required to restrict smooth muscle differentiation in the developing lung mesothelium. Mesodermal loss of Ezh2 leads to the formation of ectopic smooth muscle in the submesothelial region of the developing lung mesoderm. Loss of Ezh2 specifically in the developing mesothelium reveals a mesothelial cell-autonomous role for Ezh2 in repression of the smooth muscle differentiation program. Loss of Ezh2 derepresses expression of myocardin and Tbx18, which are important regulators of smooth muscle differentiation from the mesothelium and related cell lineages. Together, these findings uncover an Ezh2-dependent mechanism to restrict the smooth muscle gene expression program in the developing mesothelium and allow appropriate cell fate decisions to occur in this multipotent mesoderm lineage. © 2016. Published by The Company of Biologists Ltd.

  3. Pharmacokinetic and Genomic Effects of Arsenite in Drinking Water on Mouse Lung in a 30-Day Exposure

    PubMed Central

    Chilakapati, Jaya; Wallace, Kathleen; Hernandez-Zavala, Araceli; Moore, Tanya; Ren, Hongzu

    2015-01-01

    The 2 objectives of this subchronic study were to determine the arsenite drinking water exposure dependent increases in female C3H mouse liver and lung tissue arsenicals and to characterize the dose response (to 0, 0.05, 0.25, 1, 10, and 85 ppm arsenite in drinking water for 30 days and a purified AIN-93M diet) for genomic mouse lung expression patterns. Mouse lungs were analyzed for inorganic arsenic, monomethylated, and dimethylated arsenicals by hydride generation atomic absorption spectroscopy. The total lung mean arsenical levels were 1.4, 22.5, 30.1, 50.9, 105.3, and 316.4 ng/g lung tissue after 0, 0.05, 0.25, 1, 10, and 85 ppm, respectively. At 85 ppm, the total mean lung arsenical levels increased 14-fold and 131-fold when compared to either the lowest noncontrol dose (0.05 ppm) or the control dose, respectively. We found that arsenic exposure elicited minimal numbers of differentially expressed genes (DEGs; 77, 38, 90, 87, and 87 DEGs) after 0.05, 0.25, 1, 10, and 85 ppm, respectively, which were associated with cardiovascular disease, development, differentiation, apoptosis, proliferation, and stress response. After 30 days of arsenite exposure, this study showed monotonic increases in mouse lung arsenical (total arsenic and dimethylarsinic acid) concentrations but no clear dose-related increases in DEG numbers. PMID:26674514

  4. Pharmacokinetic and Genomic Effects of Arsenite in Drinking Water on Mouse Lung in a 30-Day Exposure.

    PubMed

    Chilakapati, Jaya; Wallace, Kathleen; Hernandez-Zavala, Araceli; Moore, Tanya; Ren, Hongzu; Kitchin, Kirk T

    2015-01-01

    The 2 objectives of this subchronic study were to determine the arsenite drinking water exposure dependent increases in female C3H mouse liver and lung tissue arsenicals and to characterize the dose response (to 0, 0.05, 0.25, 1, 10, and 85 ppm arsenite in drinking water for 30 days and a purified AIN-93M diet) for genomic mouse lung expression patterns. Mouse lungs were analyzed for inorganic arsenic, monomethylated, and dimethylated arsenicals by hydride generation atomic absorption spectroscopy. The total lung mean arsenical levels were 1.4, 22.5, 30.1, 50.9, 105.3, and 316.4 ng/g lung tissue after 0, 0.05, 0.25, 1, 10, and 85 ppm, respectively. At 85 ppm, the total mean lung arsenical levels increased 14-fold and 131-fold when compared to either the lowest noncontrol dose (0.05 ppm) or the control dose, respectively. We found that arsenic exposure elicited minimal numbers of differentially expressed genes (DEGs; 77, 38, 90, 87, and 87 DEGs) after 0.05, 0.25, 1, 10, and 85 ppm, respectively, which were associated with cardiovascular disease, development, differentiation, apoptosis, proliferation, and stress response. After 30 days of arsenite exposure, this study showed monotonic increases in mouse lung arsenical (total arsenic and dimethylarsinic acid) concentrations but no clear dose-related increases in DEG numbers.

  5. Impact of Cigarette Smoke on the Human and Mouse Lungs: A Gene-Expression Comparison Study

    PubMed Central

    Morissette, Mathieu C.; Lamontagne, Maxime; Bérubé, Jean-Christophe; Gaschler, Gordon; Williams, Andrew; Yauk, Carole; Couture, Christian; Laviolette, Michel; Hogg, James C.; Timens, Wim; Halappanavar, Sabina; Stampfli, Martin R.; Bossé, Yohan

    2014-01-01

    Cigarette smoke is well known for its adverse effects on human health, especially on the lungs. Basic research is essential to identify the mechanisms involved in the development of cigarette smoke-related diseases, but translation of new findings from pre-clinical models to the clinic remains difficult. In the present study, we aimed at comparing the gene expression signature between the lungs of human smokers and mice exposed to cigarette smoke to identify the similarities and differences. Using human and mouse whole-genome gene expression arrays, changes in gene expression, signaling pathways and biological functions were assessed. We found that genes significantly modulated by cigarette smoke in humans were enriched for genes modulated by cigarette smoke in mice, suggesting a similar response of both species. Sixteen smoking-induced genes were in common between humans and mice including six newly reported to be modulated by cigarette smoke. In addition, we identified a new conserved pulmonary response to cigarette smoke in the induction of phospholipid metabolism/degradation pathways. Finally, the majority of biological functions modulated by cigarette smoke in humans were also affected in mice. Altogether, the present study provides information on similarities and differences in lung gene expression response to cigarette smoke that exist between human and mouse. Our results foster the idea that animal models should be used to study the involvement of pathways rather than single genes in human diseases. PMID:24663285

  6. Cell kinetics in mouse lung following administration of carcinogens and butylated hydroxytoluene

    SciTech Connect

    Witschi, H.P.; Morse, C.C.

    1985-01-01

    A series of experiments is described which was designed to test the hypothesis that, in mouse lung, enhancement of tumor development could occur independently of overall alveolar cell hyperplasia. Male A/J mice were given 1000 mg/kg of urethane or 10 mg/kg of 3-methylcholanthrene (MCA). Alveolar cells were labeled through continuous infusion of (TH)thymidine for 6 weeks after administration of the carcinogen. Urethane produced a significant hyperplasia of the type II alveolar cell population, whereas MCA had no such effect. Five repeated injections of 300 mg/kg of butylated hydroxytoluene (BHT), a procedure known to enhance lung tumor development, produced cell hyperplasia only during the first 2 weeks; later the mice became resistant to the action of BHT. In animals treated with piperonyl butoxide prior to BHT, cell proliferation was abolished. BHT still had a small but significant enhancing effect on tumor development. However, this effect was dwarfed by the observation that piperonyl butoxide alone greatly inhibited tumor development. The data do not allow exclusion of alveolar cell hyperplasia as a mechanism in BHT-mediated enhancement of mouse lung tumor development. 19 references, 4 figures, 3 tables.

  7. Protective effect of 4,4'-diaminodiphenylsulfone against paraquat-induced mouse lung injury.

    PubMed

    Cho, Sung Chun; Rhim, Ji Heon; Choi, Hae Ri; Son, Young Hoon; Lee, Seok Jin; Song, Kye Yong; Park, Sang Chul

    2011-09-30

    Although 4,4'-diaminodiphenylsulfone (DDS, dapsone) has been used to treat several dermatologic conditions, including Hansen disease, for the past several decades, its mode of action has remained a topic of debate. We recently reported that DDS treatment significantly extends the lifespan of the nematode C. elegans by decreasing the generation of reactive oxygen species. Additionally, in in vitro experiments using non-phagocytic human fibroblasts, we found that DDS effectively counteracted the toxicity of paraquat (PQ). In the present study, we extended our work to test the protective effect of DDS against PQ in vivo using a mouse lung injury model. Oral administration of DDS to mice significantly attenuated the lung tissue damage caused by subsequent administration of PQ. Moreover, DDS reduced the local expression of mRNA transcripts encoding inflammation-related molecules, including endothelin-1 (ET-1), macrophage inflammatory protein-1α (MIP-1α), and transforming growth factor-β (TGF-β). In addition, DDS decreased the PQ-induced expression of NADPH oxidase mRNA and activation of protein kinase Cμ (PKCμ). DDS treatment also decreased the PQ-induced generation of superoxide anions in mouse lung fibroblasts. Taken together, these data suggest the novel efficacy of DDS as an effective protective agent against oxidative stress-induced tissue damages.

  8. Morphological and Cytochemical Characterization of Cells Infiltrating Mouse Lungs After Influenza Infection

    PubMed Central

    Wyde, Philip R.; Peavy, Duane L.; Cate, Thomas R.

    1978-01-01

    To initiate evaluation of the cell-mediated immunological response to influenza virus in a major site of disease, lung cells were obtained by transpleural lavage from lungs of uninfected mice and from those infected 3 or 6 days previously with 5 50% mouse infectious doses (MID50) of avirulent (P3) or virulent (P9) influenza A Hong Kong (H3N2) virus. The number of cells recovered by lavage was dependent on the dose, time after inoculation, and the type of virus used for inoculation. Although lavage pools were shown to contain peripheral blood leukocytes, this contamination was shown to be consistently less than 5% of the total leukocytes harvested. Among the ca. 0.75 × 106 lavage cells obtained from each uninfected mouse, about 90% were macrophages or lymphocytes in approximately equal proportion. T, B, and null (lyphocytes lacking theta or surface immunoglobulin markers) lymphocytes averaged 23, 9, and 7% of cells in these suspensions, respectively. After infection with either P3 or P9 virus, increased numbers of activated macrophages and lymphoblasts were observed. The major change during P3 infection was an increase in absolute numbers of null lymphocytes. In contrast, during P9 infection, T and B lymphocytes and macrophages progressively increased in absolute numbers while null cells decreased. These data suggest that cell-mediated immunological responses to influenza virus occur in the lung during infection, but that the responses to virulent and avirulent variants may differ both qualitatively and quantitatively. PMID:711312

  9. The "Goldilocks Effect" in Cystic Fibrosis: identification of a lung phenotype in the cftr knockout and heterozygous mouse

    PubMed Central

    Craig Cohen, J; Lundblad, Lennart KA; Bates, Jason HT; Levitzky, Michael; Larson, Janet E

    2004-01-01

    Background Cystic Fibrosis is a pleiotropic disease in humans with primary morbidity and mortality associated with a lung disease phenotype. However, knockout in the mouse of cftr, the gene whose mutant alleles are responsible for cystic fibrosis, has previously failed to produce a readily, quantifiable lung phenotype. Results Using measurements of pulmonary mechanics, a definitive lung phenotype was demonstrated in the cftr-/- mouse. Lungs showed decreased compliance and increased airway resistance in young animals as compared to cftr+/+ littermates. These changes were noted in animals less than 60 days old, prior to any long term inflammatory effects that might occur, and are consistent with structural differences in the cftr-/- lungs. Surprisingly, the cftr+/- animals exhibited a lung phenotype distinct from either the homozygous normal or knockout genotypes. The heterozygous mice showed increased lung compliance and decreased airway resistance when compared to either homozygous phenotype, suggesting a heterozygous advantage that might explain the high frequency of this mutation in certain populations. Conclusions In the mouse the gene dosage of cftr results in distinct differences in pulmonary mechanics of the adult. Distinct phenotypes were demonstrated in each genotype, cftr-/-, cftr +/-, and cftr+/+. These results are consistent with a developmental role for CFTR in the lung. PMID:15279681

  10. Plasmacytoid dendritic cells alter the antitumor activity of CpG-oligodeoxynucleotides in a mouse model of lung carcinoma.

    PubMed

    Sorrentino, Rosalinda; Morello, Silvana; Luciano, Antonio; Crother, Timothy R; Maiolino, Piera; Bonavita, Eduardo; Arra, Claudio; Adcock, Ian M; Arditi, Moshe; Pinto, Aldo

    2010-10-15

    The effect of CpG-oligodeoxynucleotides (CpG) has been studied on a number of tumors. Although CpG may facilitate tumor regression in mouse models of melanoma, its activity in lung cancer is unclear. The aim of our study was to elucidate the effect of CpG (0.5-50 μg/mouse) in a mouse model of Lewis lung carcinoma cell-induced lung cancer. Lung tumor growth increased at 3 and 7 d after a single administration of CpG. This was associated with a greater influx of plasmacytoid dendritic cells (pDCs), immature myeloid dendritic cells, and greater recruitment of regulatory T cells. Depletion of pDCs using a specific Ab (m927) reversed the immune-suppressive environment and resulted in a decreased lung tumor burden, accompanied by a greater influx of active myeloid dendritic cells and CD8(+) T cells, and a higher production of Th1- and Th17-like cytokines. Furthermore, the rate of apoptosis in the lungs of mice treated with CpG increased following the depletion of pDCs. CpG treatment alone does not lead to tumor regression in the lung. However, ablation of pDCs renders CpG a good adjuvant for lung cancer chemotherapy in this experimental model.

  11. A new monoclonal antibody to study mouse macrophage antigen during BHT-induced lung injury and repair.

    PubMed

    Kennel, S J; Lankford, T; Galloway, P; Witschi, H P

    1989-04-01

    A rat monoclonal antibody 133-13A to a mouse lung carcinoma cell line was found to react with macrophages in mouse lung [1]. This monoclonal antibody is different from previously described antibodies to macrophages. Immunogold electron-microscopy and immunoperoxidase light microscopy have been used to show that MoAb 133-13A binds specifically to macrophages in normal and in BHT treated mouse lungs. This MoAb recognizes a protein of approximately 100 kDa (P100) on cultured lung carcinoma cells and a 87 kDa protein on macrophages from lung or the peritoneal cavity which is different from other macrophage antigens. The surface glycoprotein has been purified from cultured cells using immunoaffinity chromatography. The purified protein was radioiodinated and MoAb 133-13A was used to develop a competition radioimmunoassay to quantitate P100. Spleen, intestines, lung, skin and uterus all have high levels of P100. P100 on peritoneal macrophages has been determined to be about 94,000 molecules/cell. Analyses of lung lavage and whole lung homogenates from mice treated with BHT, BHT plus 70% O2, and 70% O2 alone show that treated animals have elevated P100 content compared to corn oil treated mice.

  12. Mechanisms of cadmium carcinogenesis

    SciTech Connect

    Joseph, Pius

    2009-08-01

    Cadmium (Cd), a heavy metal of considerable occupational and environmental concern, has been classified as a human carcinogen by the International Agency for Research on Cancer (IARC). The carcinogenic potential of Cd as well as the mechanisms underlying carcinogenesis following exposure to Cd has been studied using in vitro cell culture and in vivo animal models. Exposure of cells to Cd results in their transformation. Administration of Cd in animals results in tumors of multiple organs/tissues. Also, a causal relationship has been noticed between exposure to Cd and the incidence of lung cancer in human. It has been demonstrated that Cd induces cancer by multiple mechanisms and the most important among them are aberrant gene expression, inhibition of DNA damage repair, induction of oxidative stress, and inhibition of apoptosis. The available evidence indicates that, perhaps, oxidative stress plays a central role in Cd carcinogenesis because of its involvement in Cd-induced aberrant gene expression, inhibition of DNA damage repair, and apoptosis.

  13. Cell-specific oxidative stress and cytotoxicity after wildfire coarse particulate matter instillation into mouse lung

    SciTech Connect

    Williams, Keisha M.; Franzi, Lisa M.; Last, Jerold A.

    2013-01-01

    Our previous work has shown that coarse particulate matter (PM{sub 10-2.5}) from wildfire smoke is more toxic to lung macrophages on an equal dose (by mass) basis than coarse PM isolated from normal ambient air, as evidenced by decreased numbers of macrophages in lung lavage fluid 6 and 24 hours after PM instillation into mouse lungs in vivo and by cytotoxicity to a macrophage cell line observed directly in vitro. We hypothesized that pulmonary macrophages from mice instilled with wildfire coarse PM would undergo more cytotoxicity than macrophages from controls, and that there would be an increase in oxidative stress in their lungs. Cytotoxicity was quantified as decreased viable macrophages and increased percentages of dead macrophages in the bronchoalveolar lavage fluid (BALF) of mice instilled with wildfire coarse PM. At 1 hour after PM instillation, we observed both decreased numbers of viable macrophages and increased dead macrophage percentages as compared to controls. An increase in free isoprostanes, an indicator of oxidative stress, from control values of 28.1 ± 3.2 pg/mL to 83.9 ± 12.2 pg/mL was observed a half-hour after PM instillation. By 1 hour after PM instillation, isoprostane values had returned to 30.4 ± 7.6 pg/mL, not significantly different from control concentrations. Lung sections from mice instilled with wildfire coarse PM showed rapid Clara cell responses, with decreased intracellular staining for the Clara cell secretory protein CCSP 1 hour after wildfire PM instillation. In conclusion, very rapid cytotoxicity occurs in pulmonary macrophages and oxidative stress responses are seen 0.5–1 hour after wildfire coarse PM instillation. These results define early cellular and biochemical events occurring in vivo and support the hypothesis that oxidative stress-mediated macrophage toxicity plays a key role in the initial response of the mouse lung to wildfire PM exposure. -- Highlights: ► We studied very early events (0.5–1 hour) after

  14. Vasodilator-Stimulated Phosphoprotein Deficiency Potentiates PAR-1-induced Increase in Endothelial Permeability in Mouse Lungs

    PubMed Central

    Profirovic, Jasmina; Han, Jingyan; Andreeva, Alexandra V.; Neamu, Radu F.; Pavlovic, Sasha; Vogel, Stephen M.; Walter, Ulrich; Voyno-Yasenetskaya, Tatyana A.

    2010-01-01

    Vasodilator-stimulated phosphoprotein (VASP) is implicated in the protection of the endothelial barrier in vitro and in vivo. VASP function in thrombin signaling in the endothelial cells (ECs) is not known. For the first time we studied the effects of VASP deficiency on EC permeability and pulmonary vascular permeability in response to thrombin receptor stimulation. We provided the evidence that VASP deficiency potentiates the increase in endothelial permeability induced by activation of thrombin receptor in cultured human umbilical vein endothelial cells (HUVECs) and isolated mouse lungs. Using transendothelial resistance measurement, we showed that siRNA-mediated VASP downregulation in HUVECs leads to a potentiation of thrombin- and protease-activated receptor 1 (PAR-1) agonist-induced increase in endothelial permeability. Compared to control cells, VASP-deficient HUVECs had delayed endothelial junctional reassembly and abrogated VE-cadherin cytoskeletal anchoring in the recovery phase after thrombin stimulation, as demonstrated by immunofluorescence studies and cell fractionation analysis, respectively. Measurement of the capillary filtration coefficient in isolated mouse lungs demonstrated that VASP−/− mice have increased microvascular permeability in response to infusion with PAR-1 agonist compared to wild type mice. Lack of VASP led to decreased Rac1 activation both in VASP-deficient HUVECs after thrombin stimulation and VASP−/− mouse lungs after PAR-1 agonist infusion, indicating that VASP effects on thrombin signaling may correlated with changes in Rac1 activity. This study demonstrates that VASP may play critical and complex role in the regulation of thrombin-dependent disruption of the endothelial barrier function. PMID:20945373

  15. Impaired Pulmonary Defense Against Pseudomonas aeruginosa in VEGF Gene Inactivated Mouse Lung

    PubMed Central

    Breen, Ellen C.; Malloy, Jaret L.; Tang, Kechun; Xia, Feng; Fu, Zhenxing; Hancock, Robert E. W.; Overhage, Joerg; Wagner, Peter D.; Spragg, Roger G.

    2012-01-01

    Repeated bacterial and viral infections are known to contribute to worsening lung function in several respiratory diseases, including asthma, cystic fibrosis and chronic obstructive pulmonary disease (COPD). Previous studies have reported alveolar wall cell apoptosis and parenchymal damage in adult pulmonary VEGF gene ablated mice. We hypothesized that VEGF expressed by type II cells is also necessary to provide an effective host defense against bacteria in part by maintaining surfactant homeostasis. Therefore, Pseudomonas aeruginosa (PAO1) levels were evaluated in mice following lung-targeted VEGF gene inactivation, and alterations in VEGF-dependent type II cell function were evaluated by measuring surfactant homeostasis in mouse lungs and isolated type II cells. In VEGF-deficient lungs increased PAO1 levels and pro-inflammatory cytokines, TNFα and IL-6, were detected 24 hours after bacterial instillation compared to control lungs. In vivo lung-targeted VEGF gene deletion (57% decrease in total pulmonary VEGF) did not alter alveolar surfactant or tissue disaturated phosphatidylcholine (DSPC) levels. However, sphingomyelin content, choline phosphate cytidylyltransferase (CCT) mRNA and SP-D expression were decreased. In isolated type II cells an 80% reduction of VEGF protein resulted in decreases in total phospholipids (PL), DSPC, DSPC synthesis, surfactant associated proteins (SP)-B and -D, and the lipid transporters, ABCA1 and Rab3D. TPA-induced DSPC secretion and apoptosis were elevated in VEGF-deficient type II cells. These results suggest a potential protective role for type II cell-expressed VEGF against bacterial initiated infection. PMID:22718316

  16. High Inorganic Phosphate Intake Promotes Tumorigenesis at Early Stages in a Mouse Model of Lung Cancer

    PubMed Central

    Lee, Somin; Kim, Ji-Eun; Hong, Seong-Ho; Lee, Ah-Young; Park, Eun-Jung; Seo, Hwi Won; Chae, Chanhee; Doble, Philip; Bishop, David; Cho, Myung-Haing

    2015-01-01

    Inorganic phosphate (Pi) is required by all living organisms for the development of organs such as bone, muscle, brain, and lungs, regulating the expression of several critical genes as well as signal transduction. However, little is known about the effects of prolonged dietary Pi consumption on lung cancer progression. This study investigated the effects of a high-phosphate diet (HPD) in a mouse model of adenocarcinoma. K-rasLA1 mice were fed a normal diet (0.3% Pi) or an HPD (1% Pi) for 1, 2, or 4 months. Mice were then sacrificed and subjected to inductively coupled plasma mass/optical emission spectrometry and laser ablation inductively coupled plasma mass-spectrometry analyses, western blot analysis, histopathological, immunohistochemical, and immunocytochemical analyses to evaluate tumor formation and progression (including cell proliferation, angiogenesis, and apoptosis), changes in ion levels and metabolism, autophagy, epithelial-to-mesenchymal transition, and protein translation in the lungs. An HPD accelerated tumorigenesis, as evidenced by increased adenoma and adenocarcinoma rates as well as tumor size. However, after 4 months of the HPD, cell proliferation was arrested, and marked increases in liver and lung ion levels and in energy production via the tricarboxylic acid cycle in the liver were observed, which were accompanied by increased autophagy and decreased angiogenesis and apoptosis. These results indicate that an HPD initially promotes but later inhibits lung cancer progression because of metabolic adaptation leading to tumor cell quiescence. Moreover, the results suggest that carefully regulated Pi consumption are effective in lung cancer prevention. PMID:26285136

  17. Proteomic Study of Differential Protein Expression in Mouse Lung Tissues after Aerosolized Ricin Poisoning

    PubMed Central

    Guo, Zhendong; Han, Chao; Du, Jiajun; Zhao, Siyan; Fu, Yingying; Zheng, Guanyu; Sun, Yucheng; Zhang, Yi; Liu, Wensen; Wan, Jiayu; Qian, Jun; Liu, Linna

    2014-01-01

    Ricin is one of the most poisonous natural toxins from plants and is classified as a Class B biological threat pathogen by the Centers for Disease Control and Prevention (CDC) of U.S.A. Ricin exposure can occur through oral or aerosol routes. Ricin poisoning has a rapid onset and a short incubation period. There is no effective treatment for ricin poisoning. In this study, an aerosolized ricin-exposed mouse model was developed and the pathology was investigated. The protein expression profile in the ricin-poisoned mouse lung tissue was analyzed using proteomic techniques to determine the proteins that were closely related to the toxicity of ricin. 2D gel electrophoresis, mass spectrometry and subsequent biological functional analysis revealed that six proteins including Apoa1 apolipoprotein, Ywhaz 14-3-3 protein, Prdx6 Uncharacterized Protein, Selenium-binding protein 1, HMGB1, and DPYL-2, were highly related to ricin poisoning. PMID:24786090

  18. Proteomic study of differential protein expression in mouse lung tissues after aerosolized ricin poisoning.

    PubMed

    Guo, Zhendong; Han, Chao; Du, Jiajun; Zhao, Siyan; Fu, Yingying; Zheng, Guanyu; Sun, Yucheng; Zhang, Yi; Liu, Wensen; Wan, Jiayu; Qian, Jun; Liu, Linna

    2014-04-28

    Ricin is one of the most poisonous natural toxins from plants and is classified as a Class B biological threat pathogen by the Centers for Disease Control and Prevention (CDC) of U.S.A. Ricin exposure can occur through oral or aerosol routes. Ricin poisoning has a rapid onset and a short incubation period. There is no effective treatment for ricin poisoning. In this study, an aerosolized ricin-exposed mouse model was developed and the pathology was investigated. The protein expression profile in the ricin-poisoned mouse lung tissue was analyzed using proteomic techniques to determine the proteins that were closely related to the toxicity of ricin. 2D gel electrophoresis, mass spectrometry and subsequent biological functional analysis revealed that six proteins including Apoa1 apolipoprotein, Ywhaz 14-3-3 protein, Prdx6 Uncharacterized Protein, Selenium-binding protein 1, HMGB1, and DPYL-2, were highly related to ricin poisoning.

  19. Autocrine growth factors are involved in branching morphogenesis of mouse lung epithelium.

    PubMed

    Okada, Kimiko; Noda, Masatsugu; Nogawa, Hiroyuki

    2013-01-01

    The current model for branching morphogenesis of mouse lung proposes that the epithelium bifurcates as cells pursue separate sources of fibroblast growth factor (FGF) 10, secreted from mesenchymal tissue through interactions with epithelial tissue. If so, it may be assumed that the lung epithelium will grow into a uniform, expanding ball (without branching) when uniformly exposed to a constant concentration of FGF10. To test this hypothesis, we cultured Matrigel-embedded lung epithelium explants in FGF10-supplemented medium while shaking the culture dishes. Shaking cultures with FGF10 resulted in inferior epithelial branching compared to control cultures at rest. However, this effect was unexpectedly accompanied by poor growth rather than by ball-like expansion. When using FGF1, epithelial cultures grew and branched similarly well under either culture condition. Thus, we hypothesized that FGF10 signaling must be mediated by autocrine FGFs, such as FGF1, which might easily diffuse through the culture medium in the shaking culture. Reverse transcription-polymerase chain reaction analyses showed that FGF9 as well as FGF1 were expressed in the epithelium in vivo and in FGF10-stimulated epithelium in vitro, and FGF9 induced epithelial branching at a much lower concentration than FGF10. These results suggest that FGF1 and FGF9 may mediate FGF10 signaling and induce branching in the lung epithelium via autocrine signaling.

  20. Thyroid hormone drives the expression of mouse carbonic anhydrase Car4 in kidney, lung and brain.

    PubMed

    Vujovic, Milica; Dudazy-Gralla, Susi; Hård, Joanna; Solsjö, Peter; Warner, Amy; Vennström, Björn; Mittag, Jens

    2015-11-15

    Thyroid hormone is a well-known regulator of brain, lung and kidney development and function. However, the molecular mechanisms by which the hormone exerts its function have remained largely enigmatic, and only a limited set of target genes have been identified in these tissues. Using a mouse model with a mutation in thyroid hormone receptor α1 (TRα1), we here demonstrate that the expression of carbonic anhydrase 4 in lung and brain of the adult animal depends on intact TRα1 signaling. In the kidney, carbonic anhydrase 4 mRNA and protein are not affected by the mutant TRα1, but are acutely repressed by thyroid hormone. However, neither lung function--as measured by respiration rate and oxygen saturation--nor urine pH levels were affected by altered carbonic anhydrase 4 levels, suggesting that other carbonic anhydrases are likely to compensate. Taken together, our findings identify a previously unknown marker of TRα1 action in brain and lung, and provide a novel negatively regulated target gene to assess renal thyroid hormone status. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Mechanical ventilation enhances lung inflammation and caspase activity in a model of mouse pneumovirus infection.

    PubMed

    Bem, Reinout A; van Woensel, Job B M; Bos, Albert P; Koski, Amy; Farnand, Alex W; Domachowske, Joseph B; Rosenberg, Helene F; Martin, Thomas R; Matute-Bello, Gustavo

    2009-01-01

    Severe infection with respiratory syncytial virus (RSV) in children can progress to respiratory distress and acute lung injury (ALI). Accumulating evidence suggests that mechanical ventilation (MV) is an important cofactor in the development of ALI by modulating the host immune responses to bacteria. This study investigates whether MV enhances the host response to pneumonia virus of mice (PVM), a mouse pneumovirus that has been used as a model for RSV infection in humans. BALB/c mice were inoculated intranasally with diluted clarified lung homogenates from mice infected with PVM strain J3666 or uninfected controls. Four days after inoculation, the mice were subjected to 4 h of MV (tidal volume, 10 ml/kg) or allowed to breathe spontaneously. When compared with that of mice inoculated with PVM only, the administration of MV to PVM-infected mice resulted in increased bronchoalveolar lavage fluid concentrations of the cytokines macrophage inflammatory protein (MIP)-2, MIP-1alpha (CCL3), and IL-6; increased alveolar-capillary permeability to high molecular weight proteins; and increased caspase-3 activity in lung homogenates. We conclude that MV enhances the activation of inflammatory and caspase cell death pathways in response to pneumovirus infection. We speculate that MV potentially contributes to the development of lung injury in patients with RSV infection.

  2. Evaluation of Lung Metastasis in Mouse Mammary Tumor Models by Quantitative Real-time PCR

    PubMed Central

    Abt, Melissa A.; Grek, Christina L.; Ghatnekar, Gautam S.; Yeh, Elizabeth S.

    2016-01-01

    Metastatic disease is the spread of malignant tumor cells from the primary cancer site to a distant organ and is the primary cause of cancer associated death 1. Common sites of metastatic spread include lung, lymph node, brain, and bone 2. Mechanisms that drive metastasis are intense areas of cancer research. Consequently, effective assays to measure metastatic burden in distant sites of metastasis are instrumental for cancer research. Evaluation of lung metastases in mammary tumor models is generally performed by gross qualitative observation of lung tissue following dissection. Quantitative methods of evaluating metastasis are currently limited to ex vivo and in vivo imaging based techniques that require user defined parameters. Many of these techniques are at the whole organism level rather than the cellular level 3–6. Although newer imaging methods utilizing multi-photon microscopy are able to evaluate metastasis at the cellular level 7, these highly elegant procedures are more suited to evaluating mechanisms of dissemination rather than quantitative assessment of metastatic burden. Here, a simple in vitro method to quantitatively assess metastasis is presented. Using quantitative Real-time PCR (QRT-PCR), tumor cell specific mRNA can be detected within the mouse lung tissue. PMID:26862835

  3. Evaluation of Lung Metastasis in Mouse Mammary Tumor Models by Quantitative Real-time PCR.

    PubMed

    Abt, Melissa A; Grek, Christina L; Ghatnekar, Gautam S; Yeh, Elizabeth S

    2016-01-29

    Metastatic disease is the spread of malignant tumor cells from the primary cancer site to a distant organ and is the primary cause of cancer associated death. Common sites of metastatic spread include lung, lymph node, brain, and bone. Mechanisms that drive metastasis are intense areas of cancer research. Consequently, effective assays to measure metastatic burden in distant sites of metastasis are instrumental for cancer research. Evaluation of lung metastases in mammary tumor models is generally performed by gross qualitative observation of lung tissue following dissection. Quantitative methods of evaluating metastasis are currently limited to ex vivo and in vivo imaging based techniques that require user defined parameters. Many of these techniques are at the whole organism level rather than the cellular level. Although newer imaging methods utilizing multi-photon microscopy are able to evaluate metastasis at the cellular level, these highly elegant procedures are more suited to evaluating mechanisms of dissemination rather than quantitative assessment of metastatic burden. Here, a simple in vitro method to quantitatively assess metastasis is presented. Using quantitative Real-time PCR (QRT-PCR), tumor cell specific mRNA can be detected within the mouse lung tissue.

  4. Curcumin reduces lung inflammation via Wnt/β-catenin signaling in mouse model of asthma.

    PubMed

    Yang, Xia; Lv, Jian-Ning; Li, Hui; Jiao, Bo; Zhang, Qiu-Hong; Zhang, Yong; Zhang, Jie; Liu, Yan-Qin; Zhang, Ming; Shan, Hu; Zhang, Jin-Zhao; Wu, Run-Miao; Li, Ya-Li

    2017-05-01

    Asthma is a chronic inflammatory, heterogeneous airway disease affecting millions of people around the world. Curcumin has been found to have anti-inflammatory and antifibrosis effects. Researchers reported that curcumin regulated Wnt/β-catenin signaling in lots of cells. However, whether curcumin regulates the levels of Wnt/β-Catenin signaling in lung tissues and DCs (dendritic cells) remains unclear. In this study, we assessed the effects of curcumin on DCs and asthma. C57BL/6 mice immunized with OVA (ovalbumin) were challenged thrice with an aerosol of OVA every second day for 8 days. Dexamethasone or curcumin was administered intraperitoneally to OVA-immunized C57BL/6 mice on day 24 once a day for 9 days. Mice were analyzed for effects of curcumin on asthma, inflammatory cell infiltration and cytokine levels in lung tissue. DCs were isolated from mouse bone morrow. The surface markers CD40, CD86 and CD11c of DCs was detected by FACS (fluorescence activated cell sorting) and the function of DCs was detected by mixed lymphocyte reaction. The expression of GSK-3β and β-catenin was detected by Western Blot. Results showed that OVA increased the number of inflammatory factors in BALF (bronchoalveolar lavage fluid), elevated lung inflammation scores in mice. Curcumin dose-dependently reversed the alterations induced by OVA in the asthmatic mice. Curcumin activated Wnt/β-catenin signaling pathway in DCs and asthmatic mouse lungs. Curcumin could influence the morphology and function of DCs, ease asthma symptom and inflammatory reaction through the activation of Wnt/β-catenin signaling. These results provide new evidence new evidence for application of curcumin on asthma.

  5. Acute inflammation decreases the expression of connexin 40 in mouse lung.

    PubMed

    Rignault, Stéphanie; Haefliger, Jacques-Antoine; Waeber, Bernard; Liaudet, Lucas; Feihl, François

    2007-07-01

    Transmigration of neutrophil polymorphonuclear leukocytes through the microvascular endothelium is a cardinal event of acute inflammation. In vitro, this process can be restricted by gap junctional intercellular communication, but whether it also occurs in vivo is unknown. Connexin 40 (Cx40) is a gap junctional protein abundantly present in the lung, notably in vascular endothelium. We hypothesized that acute lung inflammation would be aggravated in knockout mice genetically deficient in Cx40. This hypothesis was tested in two different models: 1) intranasal instillation of LPS at either supramaximal (50 microg/mouse) or inframaximal dose (0.01 microg/mouse) and 2) pulmonary inflammation as a distant consequence of an abdominal infection caused by cecal ligation and perforation. Pulmonary transmigration of neutrophils was assessed by counting these cells in bronchoalveolar lavage fluid (LPS model) or with the myeloperoxidase assay in homogenates of blood-free tissue (cecal ligation and perforation model). Pulmonary content in Cx40 and Cx43 was evaluated with immunoblots. In wild-type mice, there was a time-dependent decrease of Cx40 expression in both models. The time points for studies with the knockout mice were chosen in such a manner that inflammation was clearly present and Cx40 still largely expressed in wild-type animals. In either model, the development of lung inflammation did not differ between wild-type and Cx40-deficient mice. In conclusion, the pulmonary expression of the Cx40 protein is progressively and markedly decreased in two different murine models of acute lung inflammation, but there is no causal relationship between this process and the pulmonary transmigration of neutrophils.

  6. Carbon black nanoparticle instillation induces sustained inflammation and genotoxicity in mouse lung and liver

    PubMed Central

    2012-01-01

    Background Widespread occupational exposure to carbon black nanoparticles (CBNPs) raises concerns over their safety. CBNPs are genotoxic in vitro but less is known about their genotoxicity in various organs in vivo. Methods We investigated inflammatory and acute phase responses, DNA strand breaks (SB) and oxidatively damaged DNA in C57BL/6 mice 1, 3 and 28 days after a single instillation of 0.018, 0.054 or 0.162 mg Printex 90 CBNPs, alongside sham controls. Bronchoalveolar lavage (BAL) fluid was analyzed for cellular composition. SB in BAL cells, whole lung and liver were assessed using the alkaline comet assay. Formamidopyrimidine DNA glycosylase (FPG) sensitive sites were assessed as an indicator of oxidatively damaged DNA. Pulmonary and hepatic acute phase response was evaluated by Saa3 mRNA real-time quantitative PCR. Results Inflammation was strongest 1 and 3 days post-exposure, and remained elevated for the two highest doses (i.e., 0.054 and 0.162 mg) 28 days post-exposure (P < 0.001). SB were detected in lung at all doses on post-exposure day 1 (P < 0.001) and remained elevated at the two highest doses until day 28 (P < 0.05). BAL cell DNA SB were elevated relative to controls at least at the highest dose on all post-exposure days (P < 0.05). The level of FPG sensitive sites in lung was increased throughout with significant increases occurring on post-exposure days 1 and 3, in comparison to controls (P < 0.001-0.05). SB in liver were detected on post-exposure days 1 (P < 0.001) and 28 (P < 0.001). Polymorphonuclear (PMN) cell counts in BAL correlated strongly with FPG sensitive sites in lung (r = 0.88, P < 0.001), whereas no such correlation was observed with SB (r = 0.52, P = 0.08). CBNP increased the expression of Saa3 mRNA in lung tissue on day 1 (all doses), 3 (all doses) and 28 (0.054 and 0.162 mg), but not in liver. Conclusions Deposition of CBNPs in lung induces inflammatory and genotoxic effects in mouse lung that persist considerably after the

  7. Mouse bronchiolar cell carcinogenesis. Histologic characterization and expression of Clara cell antigen in lesions induced by N-nitrosobis-(2-chloroethyl) ureas.

    PubMed Central

    Rehm, S.; Lijinsky, W.; Singh, G.; Katyal, S. L.

    1991-01-01

    Female Swiss mice (Cr:NIH(S)) developed bronchiolar cell hyperplasia, dysplasia, metaplasia, and various morphologic types of bronchiolar cell tumors after topical (skin) application of N-nitroso-methyl-bis-chloroethylurea (NMBCU) or N-nitroso-tris-chloroethylurea (NTCU). These compounds are the first found to induce systemically bronchiolar cell tumors in mice in high incidence. Twice a week, with a 3-day interval, a 25-microliter drop of 0.04 mol/l (molar) NMBCU or NTCU in acetone was applied to the shaved interscapular integument for a maximum of 35 to 40 weeks. The earliest lung neoplasms were seen in mice that died after 23 weeks of treatment and affected 11 of 19 with NMBCU and 14 of 19 with NTCU treatment. Tumor growth pattern was nodular or the neoplastic tissue was frequently disseminated throughout the parenchyma, starting from multicentric peribronchiolar foci. The most common tumor types were squamous cell carcinomas and adenosquamous carcinomas, followed by adenocarcinomas with or without secretory cells, and a single ciliated-cell tumor. Histochemical and immunohistochemical studies were carried out on paraffin-embedded lungs using the avidin-biotin immunoperoxidase complex procedure and antisera against keratin, Clara cell antigen, surfactant apoprotein, neuron-specific enolase, bombesin, and chromogranin A. In several mice from both groups, hyperplasias and tumors were composed of cells expressing Clara cell antigen. No tumor cells were found expressing alveolar type II or neuroendocrine cell markers. It appeared that bronchiolar cells, in particular Clara cells, had migrated from terminal bronchioles or invaded bronchiolar walls to extend into the alveolar parenchyma. Squamous cell metaplasia with keratin expression was seen within airways or associated with glandular tumors, especially at the periphery. A unique cell type, with large eosinophilic globules and associated eosinophilic crystals, was seen lining airways or forming hyperplastic and

  8. Longitudinal assessment of lung cancer progression in the mouse using in vivo micro-CT imaging

    PubMed Central

    Namati, Eman; Thiesse, Jacqueline; Sieren, Jessica C.; Ross, Alan; Hoffman, Eric A.; McLennan, Geoffrey

    2010-01-01

    Purpose: Small animal micro-CT imaging is being used increasingly in preclinical biomedical research to provide phenotypic descriptions of genomic models. Most of this imaging is coincident with animal death and is used to show the extent of disease as an end point. Longitudinal imaging overcomes the limitation of single time-point imaging because it enables tracking of the natural history of disease and provides qualitative and, where possible, quantitative assessments of the effects of an intervention. The pulmonary system is affected by many disease conditions, such as lung cancer, chronic obstructive pulmonary disease, asthma, and granulomatous disorders. Noninvasive imaging can accurately assess the lung phenotype within the living animal, evaluating not only global lung measures, but also regional pathology. However, imaging the lung in the living animal is complicated by rapid respiratory motion, which leads to image based artifacts. Furthermore, no standard mouse lung imaging protocols exist for longitudinal assessment, with each group needing to develop their own systematic approach. Methods: In this article, the authors present an outline for performing longitudinal breath-hold gated micro-CT imaging for the assessment of lung nodules in a mouse model of lung cancer. The authors describe modifications to the previously published intermittent isopressure breath-hold technique including a new animal preparation and anesthesia protocol, implementation of a ring artifact reduction, variable scanner geometry, and polynomial beam hardening correction. In addition, the authors describe a multitime-point data set registration and tumor labeling and tracking strategy. Results:In vivo micro-CT data sets were acquired at months 2, 3, and 4 posturethane administration in cancer mice (n=5) and simultaneously in control mice (n=3). 137 unique lung nodules were identified from the cancer mice while no nodules were detected in the control mice. A total of 411 nodules

  9. New Role of Adult Lung c-kit+ Cells in a Mouse Model of Airway Hyperresponsiveness

    PubMed Central

    Cappetta, Donato; Urbanek, Konrad; Esposito, Grazia; Matteis, Maria; Sgambato, Manuela; Tartaglione, Gioia; Rossi, Francesco

    2016-01-01

    Structural changes contribute to airway hyperresponsiveness and airflow obstruction in asthma. Emerging evidence points to the involvement of c-kit+ cells in lung homeostasis, although their potential role in asthma is unknown. Our aim was to isolate c-kit+ cells from normal mouse lungs and to test whether these cells can interfere with hallmarks of asthma in an animal model. Adult mouse GFP-tagged c-kit+ cells, intratracheally delivered in the ovalbumin-induced airway hyperresponsiveness, positively affected airway remodeling and improved airway function. In bronchoalveolar lavage fluid of cell-treated animals, a reduction in the number of inflammatory cells and in IL-4, IL-5, and IL-13 release, along with an increase of IL-10, was observed. In MSC-treated mice, the macrophage polarization to M2-like subset may explain, at least in part, the increment in the level of anti-inflammatory cytokine IL-10. After in vitro stimulation of c-kit+ cells with proinflammatory cytokines, the indoleamine 2,3-dioxygenase and TGFβ were upregulated. These data, together with the increased apoptosis of inflammatory cells in vivo, indicate that c-kit+ cells downregulate immune response in asthma by influencing local environment, possibly by cell-to-cell contact combined to paracrine action. In conclusion, intratracheally administered c-kit+ cells reduce inflammation, positively modulate airway remodeling, and improve function. These data document previously unrecognized properties of c-kit+ cells, able to impede pathophysiological features of experimental airway hyperresponsiveness. PMID:28090152

  10. Phase-contrast zoom tomography reveals precise locations of macrophages in mouse lungs

    NASA Astrophysics Data System (ADS)

    Krenkel, Martin; Markus, Andrea; Bartels, Matthias; Dullin, Christian; Alves, Frauke; Salditt, Tim

    2015-05-01

    We have performed x-ray phase-contrast tomography on mouse lung tissue. Using a divergent x-ray beam generated by nanoscale focusing, we used zoom tomography to produce three-dimensional reconstructions with selectable magnification, resolution, and field of view. Thus, macroscopic tissue samples extending over several mm can be studied in sub-cellular-level structural detail. The zoom capability and, in particular, the high dose efficiency are enabled by the near-perfect exit wavefront of an optimized x-ray waveguide channel. In combination with suitable phase-retrieval algorithms, challenging radiation-sensitive and low-contrast samples can be reconstructed with minimal artefacts. The dose efficiency of the method is demonstrated by the reconstruction of living macrophages both with and without phagocytized contrast agents. We also used zoom tomography to visualize barium-labelled macrophages in the context of morphological structures in asthmatic and healthy mouse lung tissue one day after intratracheal application. The three-dimensional reconstructions showed that the macrophages predominantly localized to the alveoli, but they were also found in bronchial walls, indicating that these cells might be able to migrate from the lumen of the bronchi through the epithelium.

  11. Phase-contrast zoom tomography reveals precise locations of macrophages in mouse lungs

    PubMed Central

    Krenkel, Martin; Markus, Andrea; Bartels, Matthias; Dullin, Christian; Alves, Frauke; Salditt, Tim

    2015-01-01

    We have performed x-ray phase-contrast tomography on mouse lung tissue. Using a divergent x-ray beam generated by nanoscale focusing, we used zoom tomography to produce three-dimensional reconstructions with selectable magnification, resolution, and field of view. Thus, macroscopic tissue samples extending over several mm can be studied in sub-cellular-level structural detail. The zoom capability and, in particular, the high dose efficiency are enabled by the near-perfect exit wavefront of an optimized x-ray waveguide channel. In combination with suitable phase-retrieval algorithms, challenging radiation-sensitive and low-contrast samples can be reconstructed with minimal artefacts. The dose efficiency of the method is demonstrated by the reconstruction of living macrophages both with and without phagocytized contrast agents. We also used zoom tomography to visualize barium-labelled macrophages in the context of morphological structures in asthmatic and healthy mouse lung tissue one day after intratracheal application. The three-dimensional reconstructions showed that the macrophages predominantly localized to the alveoli, but they were also found in bronchial walls, indicating that these cells might be able to migrate from the lumen of the bronchi through the epithelium. PMID:25966338

  12. Phase-contrast zoom tomography reveals precise locations of macrophages in mouse lungs.

    PubMed

    Krenkel, Martin; Markus, Andrea; Bartels, Matthias; Dullin, Christian; Alves, Frauke; Salditt, Tim

    2015-05-12

    We have performed x-ray phase-contrast tomography on mouse lung tissue. Using a divergent x-ray beam generated by nanoscale focusing, we used zoom tomography to produce three-dimensional reconstructions with selectable magnification, resolution, and field of view. Thus, macroscopic tissue samples extending over several mm can be studied in sub-cellular-level structural detail. The zoom capability and, in particular, the high dose efficiency are enabled by the near-perfect exit wavefront of an optimized x-ray waveguide channel. In combination with suitable phase-retrieval algorithms, challenging radiation-sensitive and low-contrast samples can be reconstructed with minimal artefacts. The dose efficiency of the method is demonstrated by the reconstruction of living macrophages both with and without phagocytized contrast agents. We also used zoom tomography to visualize barium-labelled macrophages in the context of morphological structures in asthmatic and healthy mouse lung tissue one day after intratracheal application. The three-dimensional reconstructions showed that the macrophages predominantly localized to the alveoli, but they were also found in bronchial walls, indicating that these cells might be able to migrate from the lumen of the bronchi through the epithelium.

  13. INDUCTION OF DNA ADDUCTS, TUMORS, AND KI-RAS ONCOGENE MUTATIONS IN STRAIN A/J MOUSE LUNG BY IP. ADMINISTRATION OF DIBENZ[A,H]ANTHRACENE

    EPA Science Inventory

    Induction of DNA adducts, tumors, and Ki-ras oncogene mutations in strain AlJ mouse lung by ip. administration of dibenz[a,h]anthracene

    Previous studies of polycyclic aromatic hydrocarbon (P AH) induced lung tumors in the strain NJ mouse model system have demonstrated qua...

  14. INDUCTION OF DNA ADDUCTS, TUMORS, AND KI-RAS ONCOGENE MUTATIONS IN STRAIN A/J MOUSE LUNG BY IP. ADMINISTRATION OF DIBENZ[A,H]ANTHRACENE

    EPA Science Inventory

    Induction of DNA adducts, tumors, and Ki-ras oncogene mutations in strain AlJ mouse lung by ip. administration of dibenz[a,h]anthracene

    Previous studies of polycyclic aromatic hydrocarbon (P AH) induced lung tumors in the strain NJ mouse model system have demonstrated qua...

  15. Fetal calcium regulates branching morphogenesis in the developing human and mouse lung: involvement of voltage-gated calcium channels.

    PubMed

    Brennan, Sarah C; Finney, Brenda A; Lazarou, Maria; Rosser, Anne E; Scherf, Caroline; Adriaensen, Dirk; Kemp, Paul J; Riccardi, Daniela

    2013-01-01

    Airway branching morphogenesis in utero is essential for optimal postnatal lung function. In the fetus, branching morphogenesis occurs during the pseudoglandular stage (weeks 9-17 of human gestation, embryonic days (E)11.5-16.5 in mouse) in a hypercalcaemic environment (~1.7 in the fetus vs. ~1.1-1.3 mM for an adult). Previously we have shown that fetal hypercalcemia exerts an inhibitory brake on branching morphogenesis via the calcium-sensing receptor. In addition, earlier studies have shown that nifedipine, a selective blocker of L-type voltage-gated Ca(2+) channels (VGCC), inhibits fetal lung growth, suggesting a role for VGCC in lung development. The aim of this work was to investigate the expression of VGCC in the pseudoglandular human and mouse lung, and their role in branching morphogenesis. Expression of L-type (CaV1.2 and CaV1.3), P/Q type (CaV2.1), N-type (CaV2.2), R-type (CaV2.3), and T-type (CaV3.2 and CaV3.3) VGCC was investigated in paraffin sections from week 9 human fetal lungs and E12.5 mouse embryos. Here we show, for the first time, that Cav1.2 and Cav1.3 are expressed in both the smooth muscle and epithelium of the developing human and mouse lung. Additionally, Cav2.3 was expressed in the lung epithelium of both species. Incubating E12.5 mouse lung rudiments in the presence of nifedipine doubled the amount of branching, an effect which was partly mimicked by the Cav2.3 inhibitor, SNX-482. Direct measurements of changes in epithelial cell membrane potential, using the voltage-sensitive fluorescent dye DiSBAC2(3), demonstrated that cyclic depolarisations occur within the developing epithelium and coincide with rhythmic occlusions of the lumen, driven by the naturally occurring airway peristalsis. We conclude that VGCC are expressed and functional in the fetal human and mouse lung, where they play a role in branching morphogenesis. Furthermore, rhythmic epithelial depolarisations evoked by airway peristalsis would allow for branching to match

  16. Deuterium depleted water effects on survival of lung cancer patients and expression of Kras, Bcl2, and Myc genes in mouse lung.

    PubMed

    Gyöngyi, Zoltán; Budán, Ferenc; Szabó, István; Ember, István; Kiss, István; Krempels, Krisztina; Somlyai, Ildikó; Somlyai, Gábor

    2013-01-01

    Although advances in cancer therapies continue to develop, the shortness of the survival of lung cancer patients is still disappointing. Therefore, finding new adjuvant strategies is within the focus of cancer cure. Based on observations that deuterium depletion inhibits the growth of cancer cell lines and suppresses certain proto-oncogenes, we have conducted a clinical study in 129 patients with small cell and nonsmall cell lung cancers who consumed deuterium-depleted drinking water (DDW) as a nontoxic agent in addition to conventional chemotherapy and radiotherapy. Median survival time (MST) was 25.9 mo in males and 74.1 mo in female patients; the difference between genders was statistically significant (p < 0.05). Median survival of subjects with brain metastasis was 27.1 mo. Cumulative 5-yr survival probabilities were 19%, 52%, and 33% in males, females, and all patients with brain metastasis, respectively. Gene expression analysis in mouse lung indicated that DDW attenuates 7,12-dimethylbenz(a)anthracene (DMBA)-induced expression of Bcl2, Kras, and Myc in females. In conclusion, DDW counteracts the DMBA-induced overexpression of Bcl2, Kras and Myc genes in mouse lung, and it may extend survival of lung cancer patients as a nontoxic anticancer dietary supplement, especially for women with tumors overexpressing cancer-related genes, because MST of DDW-consuming group was 2-4 times longer than it is generally observed in lung cancer patients.

  17. Deuterium Depleted Water Effects on Survival of Lung Cancer Patients and Expression of Kras, Bcl2, and Myc Genes in Mouse Lung

    PubMed Central

    Gyöngyi, Zoltán; Budán, Ferenc; Szabó, István; Ember, István; Kiss, István; Krempels, Krisztina; Somlyai, Ildikó; Somlyai, Gábor

    2013-01-01

    Although advances in cancer therapies continue to develop, the shortness of the survival of lung cancer patients is still disappointing. Therefore, finding new adjuvant strategies is within the focus of cancer cure. Based on observations that deuterium depletion inhibits the growth of cancer cell lines and suppresses certain proto-oncogenes, we have conducted a clinical study in 129 patients with small cell and nonsmall cell lung cancers who consumed deuterium-depleted drinking water (DDW) as a nontoxic agent in addition to conventional chemotherapy and radiotherapy. Median survival time (MST) was 25.9 mo in males and 74.1 mo in female patients; the difference between genders was statistically significant (p < 0.05). Median survival of subjects with brain metastasis was 27.1 mo. Cumulative 5-yr survival probabilities were 19%, 52%, and 33% in males, females, and all patients with brain metastasis, respectively. Gene expression analysis in mouse lung indicated that DDW attenuates 7,12-dimethylbenz(a)anthracene (DMBA)-induced expression of Bcl2, Kras, and Myc in females. In conclusion, DDW counteracts the DMBA-induced overexpression of Bcl2, Kras and Myc genes in mouse lung, and it may extend survival of lung cancer patients as a nontoxic anticancer dietary supplement, especially for women with tumors overexpressing cancer-related genes, because MST of DDW-consuming group was 2–4 times longer than it is generally observed in lung cancer patients. PMID:23441611

  18. Enhanced reseeding of decellularized rodent lungs with mouse embryonic stem cells

    PubMed Central

    Lecht, Shimon; Stabler, Collin T.; Rylander, Alexis L.; Chiaverelli, Rachel; Schulman, Edward S.; Marcinkiewicz, Cezary; Lelkes, Peter I.

    2016-01-01

    Repopulation of decellularized lung scaffolds (DLS) is limited due to alterations in the repertoire and ratios of the residual extracellular matrix (ECM) proteins, characterized by e.g., the retention of type I collagen and loss of glycoproteins. We hypothesized that pre-treatment of decellularized matrices with defined ECM proteins, which match the repertoire of integrin receptors expressed by the cells to be seeded (e.g., embryonic stem cells) can increase the efficacy of the reseeding process. To test this hypothesis, we first determined the integrin receptors profile of mouse embryonic stem cells (mESCs). Mouse ESCs express α3, α5, α6, α9 and β1, but not α1, α2 and α4 integrin subunits, as established by Western blotting and adhesion to laminin and fibronectin, but not to collagens type I and IV. Reseeding of DLS with mESCs was inefficient (6.9 ± 0.5%), but was significantly enhanced (2.3 ± 0.1 fold) by pre-treating the scaffolds with media conditioned by A549 human lung adenocarcinoma cells, which we found to contain ~5 μg/ml laminin. Furthermore, pre-treatment with A549-conditioned media resulted in a significantly more uniform distribution of the seeded mESCs throughout the engineered organ as compared to untreated DLS. Our study may advance whole lung engineering by stressing the importance of matching the integrin receptor repertoire of the seeded cells and the cell binding motifs of DLS. PMID:24439414

  19. Gene expression profiling in the lung and liver of PFOA-exposed mouse fetuses.

    PubMed

    Rosen, Mitchell B; Thibodeaux, Julie R; Wood, Carmen R; Zehr, Robert D; Schmid, Judith E; Lau, Christopher

    2007-09-24

    Perfluorooctanoic acid (PFOA) is a stable perfluoroalkyl acid used to synthesize fluoropolymers during the manufacture of a wide variety of products. Concerns have been raised over the potential health effects of PFOA because it is persistent in the environment and can be detected in blood and other tissues of many animal species, including humans. PFOA has also been shown to induce growth deficits and mortality in murine neonates. To better understand the mechanism of PFOA induced developmental toxicity, lung and liver gene expression profiling was conducted in PFOA-exposed full-term mouse fetuses. Thirty timed-pregnant CD-1 mice were orally dosed from gestation days 1-17 with either 0, 1, 3, 5, or 10mg/(kgday) PFOA in water. At term, fetal lung and liver were collected, total RNA prepared, and samples pooled from three fetuses per litter. Five biological replicates consisting of individual litter samples were then evaluated for each treatment group using Affymetrix mouse 430_2 microarrays. The expression of genes related to fatty acid catabolism was altered in both the fetal liver and lung. In the fetal liver, the effects of PFOA were robust and also included genes associated with lipid transport, ketogenesis, glucose metabolism, lipoprotein metabolism, cholesterol biosynthesis, steroid metabolism, bile acid biosynthesis, phospholipid metabolism, retinol metabolism, proteosome activation, and inflammation. These changes are consistent with transactivation of PPARalpha, although, with regard to bile acid biosynthesis and glucose metabolism, non-PPARalpha related effects were suggested as well. Additional studies will be needed to more thoroughly address the role of PPARalpha, and other nuclear receptors, in PFOA mediated developmental toxicity.

  20. In Vivo Measurements of T2 Relaxation Time of Mouse Lungs during Inspiration and Expiration

    PubMed Central

    Hockings, Paul D.

    2016-01-01

    Purpose The interest in measurements of magnetic resonance imaging relaxation times, T1, T2, T2*, with intention to characterize healthy and diseased lungs has increased recently. Animal studies play an important role in this context providing models for understanding and linking the measured relaxation time changes to the underlying physiology or disease. The aim of this work was to study how the measured transversal relaxation time (T2) in healthy lungs is affected by normal respiration in mouse. Method T2 of lung was measured in anaesthetized freely breathing mice. Image acquisition was performed on a 4.7 T, Bruker BioSpec with a multi spin-echo sequence (Car-Purcell-Meiboom-Gill) in both end-expiration and end-inspiration. The echo trains consisted of ten echoes of inter echo time 3.5 ms or 4.0 ms. The proton density, T2 and noise floor were fitted to the measured signals of the lung parenchyma with a Levenberg-Marquardt least-squares three-parameter fit. Results T2 in the lungs was longer (p<0.01) at end-expiration (9.7±0.7 ms) than at end-inspiration (9.0±0.8 ms) measured with inter-echo time 3.5 ms. The corresponding relative proton density (lung/muscle tissue) was higher (p<0.001) during end-expiration, (0.61±0.06) than during end-inspiration (0.48±0.05). The ratio of relative proton density at end-inspiration to that at end-expiration was 0.78±0.09. Similar results were found for inter-echo time 4.0 ms and there was no significant difference between the T2 values or proton densities acquired with different interecho times. The T2 value increased linearly (p< 0.001) with proton density. Conclusion The measured T2 in-vivo is affected by diffusion across internal magnetic susceptibility gradients. In the lungs these gradients are modulated by respiration, as verified by calculations. In conclusion the measured T2 was found to be dependent on the size of the alveoli. PMID:27936061

  1. Strain-dependent Damage in Mouse Lung After Carbon Ion Irradiation

    SciTech Connect

    Moritake, Takashi; Fujita, Hidetoshi; Yanagisawa, Mitsuru; Nakawatari, Miyako; Imadome, Kaori; Nakamura, Etsuko; Iwakawa, Mayumi; Imai, Takashi

    2012-09-01

    Purpose: To examine whether inherent factors produce differences in lung morbidity in response to carbon ion (C-ion) irradiation, and to identify the molecules that have a key role in strain-dependent adverse effects in the lung. Methods and Materials: Three strains of female mice (C3H/He Slc, C57BL/6J Jms Slc, and A/J Jms Slc) were locally irradiated in the thorax with either C-ion beams (290 MeV/n, in 6 cm spread-out Bragg peak) or with {sup 137}Cs {gamma}-rays as a reference beam. We performed survival assays and histologic examination of the lung with hematoxylin-eosin and Masson's trichrome staining. In addition, we performed immunohistochemical staining for hyaluronic acid (HA), CD44, and Mac3 and assayed for gene expression. Results: The survival data in mice showed a between-strain variance after C-ion irradiation with 10 Gy. The median survival time of C3H/He was significantly shortened after C-ion irradiation at the higher dose of 12.5 Gy. Histologic examination revealed early-phase hemorrhagic pneumonitis in C3H/He and late-phase focal fibrotic lesions in C57BL/6J after C-ion irradiation with 10 Gy. Pleural effusion was apparent in C57BL/6J and A/J mice, 168 days after C-ion irradiation with 10 Gy. Microarray analysis of irradiated lung tissue in the three mouse strains identified differential expression changes in growth differentiation factor 15 (Gdf15), which regulates macrophage function, and hyaluronan synthase 1 (Has1), which plays a role in HA metabolism. Immunohistochemistry showed that the number of CD44-positive cells, a surrogate marker for HA accumulation, and Mac3-positive cells, a marker for macrophage infiltration in irradiated lung, varied significantly among the three mouse strains during the early phase. Conclusions: This study demonstrated a strain-dependent differential response in mice to C-ion thoracic irradiation. Our findings identified candidate molecules that could be implicated in the between-strain variance to early

  2. Mutational landscape of EGFR-, MYC-, and Kras-driven genetically engineered mouse models of lung adenocarcinoma

    PubMed Central

    McFadden, David G.; Politi, Katerina; Bhutkar, Arjun; Chen, Frances K.; Song, Xiaoling; Pirun, Mono; Santiago, Philip M.; Kim-Kiselak, Caroline; Platt, James T.; Lee, Emily; Hodges, Emily; Rosebrock, Adam P.; Bronson, Roderick T.; Socci, Nicholas D.; Hannon, Gregory J.; Jacks, Tyler; Varmus, Harold

    2016-01-01

    Genetically engineered mouse models (GEMMs) of cancer are increasingly being used to assess putative driver mutations identified by large-scale sequencing of human cancer genomes. To accurately interpret experiments that introduce additional mutations, an understanding of the somatic genetic profile and evolution of GEMM tumors is necessary. Here, we performed whole-exome sequencing of tumors from three GEMMs of lung adenocarcinoma driven by mutant epidermal growth factor receptor (EGFR), mutant Kirsten rat sarcoma viral oncogene homolog (Kras), or overexpression of MYC proto-oncogene. Tumors from EGFR- and Kras-driven models exhibited, respectively, 0.02 and 0.07 nonsynonymous mutations per megabase, a dramatically lower average mutational frequency than observed in human lung adenocarcinomas. Tumors from models driven by strong cancer drivers (mutant EGFR and Kras) harbored few mutations in known cancer genes, whereas tumors driven by MYC, a weaker initiating oncogene in the murine lung, acquired recurrent clonal oncogenic Kras mutations. In addition, although EGFR- and Kras-driven models both exhibited recurrent whole-chromosome DNA copy number alterations, the specific chromosomes altered by gain or loss were different in each model. These data demonstrate that GEMM tumors exhibit relatively simple somatic genotypes compared with human cancers of a similar type, making these autochthonous model systems useful for additive engineering approaches to assess the potential of novel mutations on tumorigenesis, cancer progression, and drug sensitivity. PMID:27702896

  3. Characterization of FGF family growth factors concerning branching morphogenesis of mouse lung epithelium.

    PubMed

    Goto, Asami; Yamazaki, Naohiro; Nogawa, Hiroyuki

    2014-05-01

    Mouse lung rudiments express eight members of fibroblast growth factor (FGF) family genes from embryonic day 10 (E10) to E13. Some of these are expressed in either the epithelium or mesenchyme, while others are expressed in both. Incorporating the results of our previous study, we characterized the branch-inducing activities of all of FGFs expressed in the early lung rudiment. Of these, FGF1, FGF2, FGF7, FGF9 and FGF10 induced branching morphogenesis in Matrigel-embedded E11 epithelium, and their effective concentrations varied (10 nM, 10 nM, 3 nM, 1 nM, and 100 nM, respectively). Whereas shaking culture dishes containing medium supplemented with FGF7 or FGF10 showed reduced branching morphogenesis, those supplemented with FGF1, FGF2, or FGF9 did not, suggesting the involvement of autocrine growth factor(s) in branching morphogenesis induced by FGF7 or FGF10. In the presence of heparin, a well-known activator of FGF signaling, cystic morphology with lumen expansion was observed in cultures containing FGF1, FGF7, or FGF10, but growth arrest was observed in cultures containing FGF2 or FGF9. These results indicate that several paracrine and autocrine FGFs function during branching morphogenesis of lung epithelium.

  4. Caffeine induces alveolar apoptosis in the hyperoxia-exposed developing mouse lung

    PubMed Central

    Dayanim, Sara; Lopez, Benjamin; Maisonet, Tiffany M.; Grewal, Sungat; Londhe, Vedang A.

    2014-01-01

    Background Caffeine is a nonspecific adenosine receptor antagonist used in premature neonates to treat apnea of prematurity. While its use may reduce the incidence of bronchopulmonary dysplasia (BPD), the precise mechanisms remain unknown. Evidence of increased adenosine levels are noted in chronic lung diseases including tracheal aspirates of infants with BPD. Utilizing a well characterized newborn mouse model of alveolar hypoplasia, we hypothesized that hyperoxia-induced alveolar inflammation and hypoplasia is associated with alterations in the adenosine signaling pathway. Methods Newborn murine pups were exposed to a 14-day period of hyperoxia and daily caffeine administration followed by a 14-day recovery period in room air. Lungs were collected at both time points for bronchoalveolar fluid (BAL) analysis as well as histopathology and mRNA and protein expression. Results Caffeine treatment increased inflammation and worsened alveolar hypoplasia in hyperoxia exposed newborn mice. These changes were associated with decreased alveolar type II cell numbers, increased cell apoptosis, and decreased expression of A2A receptors. Following discontinuation of caffeine and hyperoxia, lung histology returned to baseline levels comparable to hyperoxia exposure alone. Conclusion Results of this study suggest a potentially adverse role of caffeine on alveolar development in a murine model of hyperoxia-induced alveolar hypoplasia. PMID:24321990

  5. Atorvastatin and Simvastatin Promoted Mouse Lung Repair After Cigarette Smoke-Induced Emphysema.

    PubMed

    Pinho-Ribeiro, Vanessa; Melo, Adriana Correa; Kennedy-Feitosa, Emanuel; Graca-Reis, Adriane; Barroso, Marina Valente; Cattani-Cavalieri, Isabella; Carvalho, Giovanna Marcella Cavalcante; Zin, Walter Araújo; Porto, Luis Cristóvão; Gitirana, Lycia Brito; Lanzetti, Manuella; Valença, Samuel Santos

    2017-03-01

    Cigarette smoke (CS) induces pulmonary emphysema by inflammation, oxidative stress, and metalloproteinase (MMP) activation. Pharmacological research studies have not focused on tissue repair after the establishment of emphysema but have instead focused on inflammatory stimulation. The aim of our study was to analyze the effects of atorvastatin and simvastatin on mouse lung repair after emphysema caused by CS. Male mice (C57BL/6, n = 45) were divided into the following groups: control (sham-exposed), CSr (mice exposed to 12 cigarettes a day for 60 days and then treated for another 60 days with the vehicle), CSr+A (CSr mice treated with atorvastatin for 60 days), and CSr+S (CSr mice treated with simvastatin for 60 days). The treatment with atorvastatin and simvastatin was administered via inhalation (15 min with 1 mg/mL once a day). Mice were sacrificed 24 h after the completion of the 120-day experimental procedure. We performed biochemical, morphological, and physiological analyses. We observed decreased levels of leukocytes and cytokines in statin-treated mice, accompanied by a reduction in oxidative stress markers. We also observed a morphological improvement confirmed by a mean linear intercept counting in statin-treated mice. Finally, statins also ameliorated lung function. We conclude that inhaled atorvastatin and simvastatin improved lung repair after cigarette smoke-induced emphysema in mice.

  6. Toxoplasma gondii tachyzoite-infected peripheral blood mononuclear cells are enriched in mouse lungs and liver.

    PubMed

    Unno, Akihiro; Kachi, Seira; Batanova, Tatiana A; Ohno, Tamio; Elhawary, Nagwa; Kitoh, Katsuya; Takashima, Yasuhiro

    2013-06-01

    The intracellular parasite Toxoplasma gondii is thought to disseminate throughout the host by circulation of tachyzoite-infected leukocytes in the blood, and adherence and migration of such leukocytes into solid tissues. However, it is unclear whether T. gondii-infected leukocytes can migrate to solid organs via the general circulation. In this study, we developed a real-time quantitative PCR (qRT-PCR) method to determine the rate of infection of peripheral blood mononuclear cells (PBMCs) flowing into and remaining within solid organs in mice. A transgenic T. gondii parasite line derived from the PLK strain that expresses DsRed Express, and transgenic green fluorescent protein-positive PBMCs, were used for these experiments. Tachyzoite-infected PBMCs were injected into mouse tail veins and qRT-PCR was used to measure the infection rates of the PBMCs remaining in the lungs, liver, spleen and brain. We found that the PBMCs in the lungs and liver had statistically higher infection rates than that of the original inoculum; this difference was statistically significant. However, the PBMC infection rate in the spleen showed no such enhancement. These results show that tachyzoite-infected PBMCs in the general circulation remain in the lungs and liver more effectively than non-infected PBMCs.

  7. Chemoprevention of skin cancer: effect of Lawsonia inermis L. (Henna) leaf powder and its pigment artifact, lawsone in the Epstein- Barr virus early antigen activation assay and in two-stage mouse skin carcinogenesis models.

    PubMed

    Kapadia, Govind J; Rao, G Subba; Sridhar, Rajagopalan; Ichiishi, Eiichiro; Takasaki, Midori; Suzuki, Nobutaka; Konoshima, Takao; Iida, Akira; Tokuda, Harukuni

    2013-12-01

    In continuation of our studies with chemoprevention potential of plant-derived naphthoquinone derivatives, leaf powder of the medicinal plant Lawsonia inermis L, commonly known as 'henna', was evaluated by its inhibition of the Epstein-Barr virus early antigen (EBV-EA) activation induced by the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) in Raji cells. Lawsone (2-hydroxy- 1,4-naphthoquinone), the reddish orange pigment artifact formed during the extraction or preparation of the dye from henna leaves and believed to be the active component, was also assessed in this in vitro assay. Both showed a profound inhibition (>88%) of EBV-EA activation. In the in vivo two-stage mouse skin carcinogenesis study using UV-B radiation for initiation and TPA for tumor promotion, oral feeding of henna (0.0025%) in drinking water ad libitum decreased tumor incidence by 66% and multiplicity by 40% when compared to the positive control at 10 weeks of treatment. Similarly, in the above mouse model, orally fed lawsone (0.0025%) decreased tumor incidence by 72% and multiplicity by 50%. The tumor inhibitory trend continued throughout the 20-week test period. Similar antitumor activities were observed when henna (0.5 mg/ml) was applied topically on the back skin in the UV-B initiated, TPA promoted and peroxynitrite initiated, TPA promoted mouse skin carcinogenesis models. Topically applied lawsone (0.015 mg/ml) also exhibited similar protection against tumor formation in the 7,12-dimtehylbenz(a)anthracene induced and TPA promoted skin cancer in mice. Also, there was a delay of 1 to 2 weeks in tumor appearance in both henna and lawsone treated groups compared to control in all three test models. This study ascertains the skin cancer chemopreventive activity of henna leaf powder and lawsone when administered by either oral (through drinking water) or topical (by application on the back skin) routes. Further, it emphasizes the need for the evaluation of these henna-derived green

  8. Longitudinal micro-CT provides biomarkers of lung disease that can be used to assess the effect of therapy in preclinical mouse models, and reveal compensatory changes in lung volume.

    PubMed

    Vande Velde, Greetje; Poelmans, Jennifer; De Langhe, Ellen; Hillen, Amy; Vanoirbeek, Jeroen; Himmelreich, Uwe; Lories, Rik J

    2016-01-01

    In vivo lung micro-computed tomography (micro-CT) is being increasingly embraced in pulmonary research because it provides longitudinal information on dynamic disease processes in a field in which ex vivo assessment of experimental disease models is still the gold standard. To optimize the quantitative monitoring of progression and therapy of lung diseases, we evaluated longitudinal changes in four different micro-CT-derived biomarkers [aerated lung volume, lung tissue (including lesions) volume, total lung volume and mean lung density], describing normal development, lung infections, inflammation, fibrosis and therapy. Free-breathing mice underwent micro-CT before and repeatedly after induction of lung disease (bleomycin-induced fibrosis, invasive pulmonary aspergillosis, pulmonary cryptococcosis) and therapy (imatinib). The four lung biomarkers were quantified. After the last time point, we performed pulmonary function tests and isolated the lungs for histology. None of the biomarkers remained stable during longitudinal follow-up of adult healthy mouse lungs, implying that biomarkers should be compared with age-matched controls upon intervention. Early inflammation and progressive fibrosis led to a substantial increase in total lung volume, which affects the interpretation of aerated lung volume, tissue volume and mean lung density measures. Upon treatment of fibrotic lung disease, the improvement in aerated lung volume and function was not accompanied by a normalization of the increased total lung volume. Significantly enlarged lungs were also present in models of rapidly and slowly progressing lung infections. The data suggest that total lung volume changes could partly reflect a compensatory mechanism that occurs during disease progression in mice. Our findings underscore the importance of quantifying total lung volume in addition to aerated lung or lesion volumes to accurately document growth and potential compensatory mechanisms in mouse models of lung

  9. THE REACTIVE OXYGEN SPECIES (ROS) THEORY OF ARSENIC CARCINOGENESIS

    EPA Science Inventory



    Arsenic is a human carcinogen in skin, lung, liver, urinary bladder
    and kidney. At this time, there is not a scientific consensus on the
    mechanisms/modes of action for arsenic carcinogenesis. Proposed
    mechanisms/modes of action for arsenic carcinogenesi...

  10. THE REACTIVE OXYGEN SPECIES (ROS) THEORY OF ARSENIC CARCINOGENESIS

    EPA Science Inventory



    Arsenic is a human carcinogen in skin, lung, liver, urinary bladder
    and kidney. At this time, there is not a scientific consensus on the
    mechanisms/modes of action for arsenic carcinogenesis. Proposed
    mechanisms/modes of action for arsenic carcinogenesi...

  11. Polymeric black tea polyphenols (PBPs) inhibit benzo(a)pyrene and 4-(methylnitrosamino)-1-(3-pyridyl)-1- butanone-induced lung carcinogenesis potentially through down-regulation of p38 and Akt phosphorylation in A/J mice.

    PubMed

    Hudlikar, Rasika R; Venkadakrishnan, Varadha Balaji; Kumar, Rajiv; Thorat, Rahul A; Kannan, Sadhana; Ingle, Arvind D; Desai, Saral; Maru, Girish B; Mahimkar, Manoj B

    2017-02-01

    The aim of our study was to evaluate chemopreventive efficacy and possible mechanism of most abundant polyphenolic fraction in black tea, polymeric black tea polyphenols (PBPs), in experimental lung carcinogenesis model. Effect of 1.5% black tea derived PBPs on benzo(a)pyrene [B(a)P] and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) induced lung lesions were studied over 28 wks. Chemopreventive efficacy was studied using decrease in tumor incidence and/or multiplicity and/or delay in the latency period in A/J mice. Histopathological analysis of lung was carried out post-carcinogen treatment weeks to analyze the microscopic lung lesions. Inflammation, cell proliferation, and apoptosis markers along with signaling kinases like p38, Akt, and their phosphorylated forms were studied using immunoblotting and immunohistochemistry at 4th, 10th, and 18th wk post-carcinogen treatment. Administration of PBPs throughout the treatment period significantly decreased the multiplicity of surface tumors as well as microscopic lung lesions, including adenomas. Although tumor incidence and latency period remains unaffected, histopathological evaluation of lung at 6, 10, and 18 wks post- carcinogen treatment period showed decrease in tumor multiplicity which was also correlated with different molecular markers. Anti- inflammatory action of PBPs was demonstrated by reduced Cox-2 expression. PBPs down-regulated the B(a)P and NNK-induced cell proliferation (diminished PCNA expression, proliferation index, and Bcl-2 expression) and enhanced apoptosis (increased Bax expression and apoptotic index) potentially through phosphorylation of p38 and Akt. PBPs, most abundant polyphenolic component in the black tea, have chemopreventive effect through inhibition of inflammation, cellular proliferation, and induction of apoptosis possibly via modulation of signaling kinases. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Effect of aerosol particles generated by ultrasonic humidifiers on the lung in mouse

    PubMed Central

    2013-01-01

    Background Ultrasonic humidifiers silently generate water droplets as a cool fog and produce most of the dissolved minerals in the fog in the form of an aerosolized “white dust.” However, the health effect of these airborne particles is largely unknown. This study aimed to characterize the aerosol particles generated by ultrasonic humidifiers and to investigate their effect on the lung tissue of mice. Methods An ultrasonic humidifier was operated with tap water, high-silica water, ultrapure water, or other water types. In a chamber (0.765 m3, ventilation ratio 11.5 m3/hr), male ICR mice (10-week-old) were exposed by inhalation to an aerosol-containing vapor generated by the humidifier. After exposure for 7 or 14 days, lung tissues and bronchoalveolar lavage fluid (BALF) were collected from each mouse and examined by microarray, quantitative reverse transcription-polymerase chain reaction, and light and electron microscopy. Results Particles generated from the humidifier operated with tap water had a mass concentration of 0.46 ± 0.03 mg/m3, number concentration of (5.0 ± 1.1) × 104/cm3, and peak size distribution of 183 nm. The particles were phagocytosed by alveolar macrophages in the lung of mice. Inhalation of particles caused dysregulation of genes related to mitosis, cell adhesion molecules, MHC molecules and endocytosis, but did not induce any signs of inflammation or tissue injury in the lung. Conclusion These results indicate that aerosol particles released from ultrasonic humidifiers operated with tap water initiated a cellular response but did not cause severe acute inflammation in pulmonary tissue. Additionally, high mineral content tap water is not recommended and de-mineralized water should be recommended in order to exclude any adverse effects. PMID:24359587

  13. Light cigarette smoke-induced emphysema and NFκB activation in mouse lung

    PubMed Central

    Santos Valenca, Samuel; Castro, Paulo; Alves Pimenta, Wagner; Lanzetti, Manuella; Vargas Silva, Simone; Barja-Fidalgo, Cristina; Gonçalves Koatz, Vera Lúcia; Porto, Luís Cristóvão

    2006-01-01

    Light cigarette (LC) exposure is supposed to be less hazardous with a decreased incidence of cancer and tobacco-associated diseases. C57BL/6 mouse groups were subjected to smoke from 3, 6 or 12 LC for 60 days and compared with mice exposed to ambient air (EAA) in order to study lung injury by morphometrical and biochemical methods. Bronchoalveolar lavage (BAL) analysis and histology and stereology were performed. Tissue from the right lung was used for measuring thiobarbituric acid reactive substances (TBARS) and Western blot analysis. One way anova was performed followed by the Student–Newman Keuls post-test (P < 0.05). The cellular content of BAL was 95% alveolar macrophages in all groups except in mice exposed to 3 LC, where 23% neutrophils were observed. Emphysema was not observed in three and 6 LC, but it was found in 12 LC parallel to increased volume density (Vv) of airspaces from 61.0 ± 0.6 (EAA) to 80.9 ± 1.0 (12 LC) and decreased Vv of elastic fibres from 17.8 ± 0.9 (EAA) to 11.8 ± 0.6 (12 LC). All exposed groups to LC showed low TBARS levels compared with mice EAA. Lung tissue from animals exposed to 12 LC showed decreased tissue inhibitor of metalloprotease-2 and increased matrix metalloprotease-12 detection, which suggests an imbalance in extracellular matrix (ECM). Increased tumour necrosis factor-α and nuclear factor-κB detection were observed in exposed groups to LC when compared with mice EAA. The data suggest that LC is so dangerous to lungs as full-flavour cigarettes inducing ECM imbalance and emphysema. PMID:16965565

  14. Comparison of inflammatory responses in mouse lungs exposed to atranones A and C from Stachybotrys chartarum.

    PubMed

    Rand, Thomas G; Flemming, J; David Miller, J; Womiloju, Taiwo O

    2006-07-01

    Stachybotrys chartarum isolates can be separated into two distinct chemotypes based on the toxins they produce. One chemotype produces macrocyclic trichothecenes; the other produces atranones (and sometimes simple trichothecenes, e.g., trichodermol and trichodermin). Studies using in vivo models of lung disease revealed that exposure to spores of the atranone producing S. chartarum isolates led to a variety of immunotoxic, inflammatory, and other pathological changes. However, it is unclear from these studies what role the pure atranone toxins sequestered in spores of these isolates exert on lung disease onset. This study examined dose-response (0.2, 1.0, 2.0, 5.0, or 20 microg atranone/animal) and time-course (3, 6, 24, and 48 h postinstillation [PI]) relationships associated with inflammatory cell and proinflammatory chemokine/cytokine responses in mouse lungs intratracheally instilled with two pure atranones (either A or C) isolated from S. chartarum. High doses (2.0 to 20 microg toxin/animal) of atranone A and C induced significant inflammatory responses manifested as differentially elevated macrophage, neutrophil, macrophage inflammatory protein (MIP)-2, tumor necrosis factor (TNF) and interleukin (IL)-6 concentrations in the bronchioalveolar lavage fluid (BALF) of intratracheally exposed mice. Compared to controls, BALF macrophage and neutrophil numbers were increased to significant levels from 6 to 48 h (PI). Except for macrophage numbers in atranone A treatment animals, cells exhibited significant dose dependent-like responses. The chemokine/cytokine marker responses were significantly and dose-dependently increased from 3 to 24 h PI and declined to nonsignificant levels at 48 h PI. The results suggest not only that atranones are inflammatory but also that they exhibit different inflammatory potency with different toxicokinetics. Data also suggest that exposure to these toxins in spores of S. chartarum in contaminated building environments could contribute

  15. Wound-healing error model for radon carcinogenesis

    SciTech Connect

    Kondo, Sohei

    1995-12-31

    Epidemiological studies of lung cancer in uranium miners exposed to radon suggest that radon is a tumor promoter. I will refine this notion by applying the wound-healing error model proposed for radiation carcinogenesis in general.

  16. CD8(+)IL-17(+) T Cells Mediate Neutrophilic Airway Obliteration in T-bet-Deficient Mouse Lung Allograft Recipients.

    PubMed

    Lendermon, Elizabeth A; Dodd-o, Jeffrey M; Coon, Tiffany A; Miller, Hannah L; Ganguly, Sudipto; Popescu, Iulia; O'Donnell, Christopher P; Cardenes, Nayra; Levine, Melanie; Rojas, Mauricio; Weathington, Nathaniel M; Zhao, Jing; Zhao, Yutong; McDyer, John F

    2015-05-01

    Acute cellular rejection is a known risk factor for the development of obliterative bronchiolitis, which limits the long-term survival of lung transplant recipients. However, the T cell effector mechanisms in both of these processes remain incompletely understood. Using the mouse orthotopic lung transplant model, we investigated whether C57BL/6 T-bet(-/-) recipients of major histocompatibility complex (MHC)-mismatched BALB/c lung grafts develop rejection pathology and allospecific cytokine responses that differ from wild-type mice. T-bet(-/-) recipients demonstrated vigorous allograft rejection at 10 days, characterized by neutrophilic inflammation and predominantly CD8(+) T cells producing allospecific IL-17 and/or IFN-γ, in contrast to IFN-γ-dominant responses in WT mice. CD4(+) T cells produced IL-17 but not IFN-γ responses in T-bet(-/-) recipients, in contrast to WT controls. Costimulation blockade using anti-CD154 Ab significantly reduced allospecific CD8(+)IFN-γ(+) responses in both T-bet(-/-) and WT mice but had no attenuating effect on lung rejection pathology in T-bet(-/-) recipients or on the development of obliterative airway inflammation that occurred only in T-bet(-/-) recipients. However, neutralization of IL-17A significantly attenuated costimulation blockade-resistant rejection pathology and airway inflammation in T-bet(-/-) recipients. In addition, CXCL1 (neutrophil chemokine) was increased in T-bet(-/-) allografts, and IL-17 induced CXCL1 from mouse lung epithelial cells in vitro. Taken together, our data show that T-bet-deficient recipients of complete MHC-mismatched lung allografts develop costimulation blockade-resistant rejection characterized by neutrophilia and obliterative airway inflammation that is predominantly mediated by CD8(+)IL-17(+) T cells. Our data support T-bet-deficient mouse recipients of lung allografts as a viable animal model to study the immunopathogenesis of small airway injury in lung transplantation.

  17. Relationships of microRNA expression in mouse lung with age and exposure to cigarette smoke and light

    PubMed Central

    Izzotti, Alberto; Calin, George A.; Steele, Vernon E.; Croce, Carlo M.; De Flora, Silvio

    2009-01-01

    MicroRNAs provide a formidable tool not only in cancer research but also to investigate physiological mechanisms and to assess the effect of environmental exposures in healthy tissues. Collectively, cigarette smoke and sunlight have been estimated to account for 40% of all human cancers, and not only smoke but also, surprisingly, UV light induced genomic and postgenomic alterations in mouse lung. Here we evaluated by microarray the expression of 484 microRNAs in the lungs of CD-1 mice, including newborns, postweanling males and females, and their dams, either untreated or exposed to environmental cigarette smoke and/or UV-containing light. The results obtained highlighted age-related variations in microRNA profiles, especially during the weanling period, due to perinatal stress and postnatal maturation of the lung. UV light alone did not affect pulmonary microRNAs, whereas smoke produced dramatic changes, mostly in the sense of down-regulation, reflecting both adaptive mechanisms and activation of pathways involved in the pathogenesis of pulmonary diseases. Both gender and age affected smoke-related microRNA dysregulation in mice. The data presented provide supporting evidence that microRNAs play a fundamental role in both physiological and pathological changes occurring in mouse lung.—Izzotti, A., Calin, G. A., Vernon E. St., Croce, G. M., De Flora, S. Relationships of microRNA expression in mouse lung with age and exposure to cigarette smoke and light. PMID:19465468

  18. Phase-contrast computed tomography for quantification of structural changes in lungs of asthma mouse models of different severity.

    PubMed

    Dullin, Christian; Larsson, Emanuel; Tromba, Giuliana; Markus, Andrea M; Alves, Frauke

    2015-07-01

    Lung imaging in mouse disease models is crucial for the assessment of the severity of airway disease but remains challenging due to the small size and the high porosity of the organ. Synchrotron inline free-propagation phase-contrast computed tomography (CT) with its intrinsic high soft-tissue contrast provides the necessary sensitivity and spatial resolution to analyse the mouse lung structure in great detail. Here, this technique has been applied in combination with single-distance phase retrieval to quantify alterations of the lung structure in experimental asthma mouse models of different severity. In order to mimic an in vivo situation as close as possible, the lungs were inflated with air at a constant physiological pressure. Entire mice were embedded in agarose gel and imaged using inline free-propagation phase-contrast CT at the SYRMEP beamline (Synchrotron Light Source, `Elettra', Trieste, Italy). The quantification of the obtained phase-contrast CT data sets revealed an increasing lung soft-tissue content in mice correlating with the degree of the severity of experimental allergic airways disease. In this way, it was possible to successfully discriminate between healthy controls and mice with either mild or severe allergic airway disease. It is believed that this approach may have the potential to evaluate the efficacy of novel therapeutic strategies that target airway remodelling processes in asthma.

  19. Phase-contrast computed tomography for quantification of structural changes in lungs of asthma mouse models of different severity

    PubMed Central

    Dullin, Christian; Larsson, Emanuel; Tromba, Giuliana; Markus, Andrea M.; Alves, Frauke

    2015-01-01

    Lung imaging in mouse disease models is crucial for the assessment of the severity of airway disease but remains challenging due to the small size and the high porosity of the organ. Synchrotron inline free-propagation phase-contrast computed tomography (CT) with its intrinsic high soft-tissue contrast provides the necessary sensitivity and spatial resolution to analyse the mouse lung structure in great detail. Here, this technique has been applied in combination with single-distance phase retrieval to quantify alterations of the lung structure in experimental asthma mouse models of different severity. In order to mimic an in vivo situation as close as possible, the lungs were inflated with air at a constant physiological pressure. Entire mice were embedded in agarose gel and imaged using inline free-propagation phase-contrast CT at the SYRMEP beamline (Synchrotron Light Source, ‘Elettra’, Trieste, Italy). The quantification of the obtained phase-contrast CT data sets revealed an increasing lung soft-tissue content in mice correlating with the degree of the severity of experimental allergic airways disease. In this way, it was possible to successfully discriminate between healthy controls and mice with either mild or severe allergic airway disease. It is believed that this approach may have the potential to evaluate the efficacy of novel therapeutic strategies that target airway remodelling processes in asthma. PMID:26134818

  20. Hyperinsulinemia Promotes Metastasis to the Lung in a Mouse Model of Her2-mediated Breast Cancer

    PubMed Central

    Ferguson, Rosalyn; Gallagher, Emily; Cohen, Dara; Tobin-Hess, Aviva; Alikhani, Nyosha; Novosyadlyy, Ruslan; Haddad, Nadine; Yakar, Shoshana; LeRoith, Derek

    2014-01-01

    The Her2 oncogene is expressed in approximately 25% of human breast cancers and is associated with metastatic progression and poor outcome. Epidemiological studies report that breast cancer incidence and mortality rates are higher in women with type 2 diabetes. Here we use a mouse model of Her2-mediated breast cancer on a background of hyperinsulinemia to determine how elevated circulating insulin levels affect Her2-mediated primary tumor growth and lung metastasis. Hyperinsulinemic (MKR+/+) mice were crossed with doxycycline-inducible NeuNT (MTB/TAN) mice to produce the MTB/TAN/MKR+/+ mouse model. Both MTB/TAN and MTB/TAN/MKR+/+ mice were administered doxycycline in drinking water to induce NeuNT mammary tumor formation. In tumor tissues removed at two, four and six weeks of Neu-NT overexpression, we observed increased tumor mass and higher phosphorylation of the insulin receptor (IR)/insulin-like growth factor receptor 1 (IGF-1R), suggesting that activation of these receptors in conditions of hyperinsulinemia could contribute to the increased growth of mammary tumors. After 12 weeks on doxycycline, although no significant further increase in tumor weight was observed in MTB/TAN/MKR+/+ compared to MTB/TAN mice, the number of lung metastases was significantly higher in MTB/TAN/MKR+/+ mice compared to controls (MTB/TAN/MKR+/+ 16.41 ± 4.18 vs. MTB/TAN 5.36 ± 2.72). In tumors at the six week time-point, we observed an increase in vimentin, a cytoskeletal protein and marker of mesenchymal cells, associated with epithelial-to-mesenchymal transition and cancer associated fibroblasts. We conclude that hyperinsulinemia in MTB/TAN/MKR+/+ mice resulted in larger primary tumors, with more mesenchymal cells and therefore, more aggressive tumors with more numerous pulmonary metastases. PMID:23572162

  1. Systems biology-based identification of Mycobacterium tuberculosis persistence genes in mouse lungs.

    PubMed

    Dutta, Noton K; Bandyopadhyay, Nirmalya; Veeramani, Balaji; Lamichhane, Gyanu; Karakousis, Petros C; Bader, Joel S

    2014-02-18

    Identifying Mycobacterium tuberculosis persistence genes is important for developing novel drugs to shorten the duration of tuberculosis (TB) treatment. We developed computational algorithms that predict M. tuberculosis genes required for long-term survival in mouse lungs. As the input, we used high-throughput M. tuberculosis mutant library screen data, mycobacterial global transcriptional profiles in mice and macrophages, and functional interaction networks. We selected 57 unique, genetically defined mutants (18 previously tested and 39 untested) to assess the predictive power of this approach in the murine model of TB infection. We observed a 6-fold enrichment in the predicted set of M. tuberculosis genes required for persistence in mouse lungs relative to randomly selected mutant pools. Our results also allowed us to reclassify several genes as required for M. tuberculosis persistence in vivo. Finally, the new results implicated additional high-priority candidate genes for testing. Experimental validation of computational predictions demonstrates the power of this systems biology approach for elucidating M. tuberculosis persistence genes. Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), has a genetic repertoire that permits it to persist in the face of host immune responses. Identification of such persistence genes could reveal novel drug targets and elucidate mechanisms by which the organism eludes the immune system and resists drugs. Genetic screens have identified a total of 31 persistence genes, but to date only 15% of the ~4,000 M. tuberculosis genes have been tested experimentally. In this paper, as an alternative to brute force experimental screens, we describe computational methods that predict new persistence genes by combining known examples with growing databases of biological networks. Experimental testing demonstrated that these predictions are highly accurate, validating the computational approach and providing new information

  2. Monitoring Cyp2b10 mRNA expression at cessation of 2-year carcinogenesis bioassay in mouse liver provides evidence for a carcinogenic mechanism devoid of human relevance: The dalcetrapib experience

    SciTech Connect

    Hoflack, J-C.; Mueller, L. Fowler, S.; Braendli-Baiocco, A.; Flint, N.; Kuhlmann, O.; Singer, T.; Roth, A.

    2012-03-15

    Introduction: Dalcetrapib is a cholesteryl ester transfer protein (CETP) modulator in clinical assessment for cardiovascular outcome benefits. In compliance with regulatory requirements, dalcetrapib was evaluated in rodent 2-year carcinogenesis bioassays. In the mouse bioassay, male mice demonstrated increased liver weight and statistically increased incidences of hepatocellular adenoma/carcinoma. Hepatic cytochrome p450 (Cyp) 2b10 mRNA induction and increased Cyp2b10 enzyme activity signify activation of hepatic nuclear receptor constitutive androstane receptor (CAR), a widely established promoter of rodent-specific hepatic tumors. We therefore monitored hepatic Cyp2b10 mRNA and its enzyme activity in a subset of dalcetrapib-treated male mice from the bioassay. Methods: Liver samples were obtained from ∼ 1/3 of male mice from each dose group including vehicle-controls (mean and earliest study day of death 678 and 459 respectively). Quantitative real time PCR (qRT-PCR) was performed to determine Cyp2b10 mRNA expression and Cyp1a-, Cyp2b10- and Cyp3a-selective activities were monitored. Results: Cyp2b10 mRNA was strongly induced by dalcetrapib with an expected wide inter-individual variation (5–1421-fold). Group average fold-induction versus vehicle-controls showed a dose-related increase from 48-fold (250 mg/kg/day) to 160-fold (750 mg/kg/day), which declined slightly at 2000 mg/kg/day (97-fold). Cyp enzyme activities showed approximate doubling of total Cyp P450 content per milligram protein and a 9-fold increase in Cyp2b10-selective pentoxyresorufin O-dealkylase activity (750 mg/kg/day). Discussion: These data from hepatic Cyp2b10 monitoring are strongly suggestive of CAR activation by dalcetrapib, a mechanism devoid of relevance towards hepatocarcinogenesis in humans; results show feasibility of Cyp2b10 as a surrogate marker for this mechanism at cessation of a carcinogenesis bioassay. -- Highlights: ► Liver tumors were induced in male mice by dalcetrapib

  3. Mechanisms and Chemoprevention of Ovarian Carcinogenesis

    DTIC Science & Technology

    2008-02-01

    2004 Apr;14(2):175-82. 10. Kabbarah O, Pinto K, Mutch DG, Goodfellow PJ. Expression profiling of mouse endometrial cancers microdissected from...Ovarian Carcinogenesis PRINCIPAL INVESTIGATOR: Dusica Cvetkovic, Ph.D. CONTRACTING ORGANIZATION: Fox Chase Cancer Center...ES) 8. PERFORMING ORGANIZATION REPORT NUMBER Fox Chase Cancer Center Philadelphia, PA 19111 9. SPONSORING / MONITORING

  4. Par-4 inhibits Akt and suppresses Ras-induced lung tumorigenesis

    PubMed Central

    Joshi, Jayashree; Fernandez-Marcos, Pablo J; Galvez, Anita; Amanchy, Ramars; Linares, Juan F; Duran, Angeles; Pathrose, Peterson; Leitges, Michael; Cañamero, Marta; Collado, Manuel; Salas, Clara; Serrano, Manuel; Moscat, Jorge; Diaz-Meco, Maria T

    2008-01-01

    The atypical PKC-interacting protein, Par-4, inhibits cell survival and tumorigenesis in vitro, and its genetic inactivation in mice leads to reduced lifespan, enhanced benign tumour development and low-frequency carcinogenesis. Here, we demonstrate that Par-4 is highly expressed in normal lung but reduced in human lung cancer samples. We show, in a mouse model of lung tumours, that the lack of Par-4 dramatically enhances Ras-induced lung carcinoma formation in vivo, acting as a negative regulator of Akt activation. We also demonstrate in cell culture, in vivo, and in biochemical experiments that Akt regulation by Par-4 is mediated by PKCζ, establishing a new paradigm for Akt regulation and, likely, for Ras-induced lung carcinogenesis, wherein Par-4 is a novel tumour suppressor. PMID:18650932

  5. Nonmucoid Pseudomonas aeruginosa Expresses Alginate in the Lungs of Patients with Cystic Fibrosis and in a Mouse Model

    PubMed Central

    Bragonzi, Alessandra; Worlitzsch, Dieter; Pier, Gerald B.; Timpert, Petra; Ulrich, Martina; Hentzer, Morten; Andersen, Jens Bo; Givskov, Michael; Conese, Massimo; Döring, Gerd

    2005-01-01

    Background. In patients with cystic fibrosis (CF), lung infection with mucoid Pseudomonas aeruginosa strains overexpressing the exopolysaccaride alginate is preceded by colonization with nonmucoid strains. We investigated the kinetics, impact of environmental signals, and genetics of P. aeruginosa alginate expression in a mouse model and in patients with CF. Methods. Using indirect immunofluorescence, microarray technology and real-time reverse-transcriptionpolymerase chain reaction, we assessed alginate gene expression during aerobic and anaerobic growth of the nonmucoid strain PAO1 in vitro, in a mouse lung-infection model and in sputum specimens from patients with CF infected with nonmucoid or mucoid P. aeruginosa strains. Results. Anaerobic conditions increased the transcription of alginate genes in vitro and in murine lungs within 24 h. Alginate production by PAO1 in murine lungs and by nonmucoid P. aeruginosa strains in patients with CF was reversible after in vitro culture under aerobic conditions. A subpopulation of P. aeruginosa clones revealing stable alginate production was detected in murine lungs 2 weeks after infection. Conclusions. Anaerobiosis and lung infection rapidly induce alginate production by gene regulation in nonmucoid P. aeruginosa. This trait may contribute to early persistence, leading to chronic P. aeruginosa infection once stable mucoid strains are generated. PMID:15995954

  6. Nonmucoid Pseudomonas aeruginosa expresses alginate in the lungs of patients with cystic fibrosis and in a mouse model.

    PubMed

    Bragonzi, Alessandra; Worlitzsch, Dieter; Pier, Gerald B; Timpert, Petra; Ulrich, Martina; Hentzer, Morten; Andersen, Jens Bo; Givskov, Michael; Conese, Massimo; Doring, Gerd

    2005-08-01

    In patients with cystic fibrosis (CF), lung infection with mucoid Pseudomonas aeruginosa strains overexpressing the exopolysaccaride alginate is preceded by colonization with nonmucoid strains. We investigated the kinetics, impact of environmental signals, and genetics of P. aeruginosa alginate expression in a mouse model and in patients with CF. Using indirect immunofluorescence, microarray technology and real-time reverse-transcription polymerase chain reaction, we assessed alginate gene expression during aerobic and anaerobic growth of the nonmucoid strain PAO1 in vitro, in a mouse lung-infection model and in sputum specimens from patients with CF infected with nonmucoid or mucoid P. aeruginosa strains. Anaerobic conditions increased the transcription of alginate genes in vitro and in murine lungs within 24 h. Alginate production by PAO1 in murine lungs and by nonmucoid P. aeruginosa strains in patients with CF was reversible after in vitro culture under aerobic conditions. A subpopulation of P. aeruginosa clones revealing stable alginate production was detected in murine lungs 2 weeks after infection. Anaerobiosis and lung infection rapidly induce alginate production by gene regulation in nonmucoid P. aeruginosa. This trait may contribute to early persistence, leading to chronic P. aeruginosa infection once stable mucoid strains are generated.

  7. Differential role of FGF9 on epithelium and mesenchyme in mouse embryonic lung.

    PubMed

    del Moral, Pierre-Marie; De Langhe, Stijn P; Sala, Frédéric G; Veltmaat, Jacqueline M; Tefft, Denise; Wang, Kasper; Warburton, David; Bellusci, Savério

    2006-05-01

    Mesothelial Fibroblast Growth Factor 9 (Fgf9) has been demonstrated by inactivation studies in mouse to be critical for the proliferation of the mesenchyme. We now show that Fgf9 is also expressed at significant levels in the distal epithelium from the mid-pseudoglandular stages. Using mesenchymal-free lung endoderm culture, we show that FGF9 triggers the proliferation of the distal epithelium leading to the formation of a cyst-like structure. On embryonic Fgfr2b-/- lungs, FGF9 induces proliferation of the mesenchyme but fails to trigger a similar effect on the epithelium, therefore involving the FGFR2b receptor in the proliferative response of the epithelium to FGF9. While FGF9 inhibits the differentiation of the mesenchyme, the epithelium appears to differentiate normally. At the molecular level, FGF9 up-regulates Fgf10 expression in the mesenchyme likely via increased expression of Tbx4 and 5 and controls the transcription of Hedgehog targets Ptc and Gli-1 in a Hedgehog-independent manner. We also show that FGF9 inhibits the activation of the canonical Wnt pathway in the epithelium by increasing Dkk1 expression, a canonical Wnt antagonist. Our work shows for the first time that FGF9 acts on the epithelium involving FGFR2b to control its proliferation but not its differentiation and contributes to the regulation of canonical Wnt signaling in the epithelium.

  8. Proteoglycans maintain lung stability in an elastase-treated mouse model of emphysema.

    PubMed

    Takahashi, Ayuko; Majumdar, Arnab; Parameswaran, Harikrishnan; Bartolák-Suki, Erzsébet; Suki, Béla

    2014-07-01

    Extracellular matrix remodeling and tissue rupture contribute to the progression of emphysema. Lung tissue elasticity is governed by the tensile stiffness of fibers and the compressive stiffness of proteoglycans. It is not known how proteoglycan remodeling affects tissue stability and destruction in emphysema. The objective of this study was to characterize the role of remodeled proteoglycans in alveolar stability and tissue destruction in emphysema. At 30 days after treatment with porcine pancreatic elastase, mouse lung tissue stiffness and alveolar deformation were evaluated under varying tonicity conditions that affect the stiffness of proteoglycans. Proteoglycans were stained and measured in the alveolar walls. Computational models of alveolar stability and rupture incorporating the mechanical properties of fibers and proteoglycans were developed. Although absolute tissue stiffness was only 24% of normal, changes in relative stiffness and alveolar shape distortion due to changes in tonicity were increased in emphysema (P < 0.01 and P < 0.001). Glycosaminoglycan amount per unit alveolar wall length, which is responsible for proteoglycan stiffness, was higher in emphysema (P < 0.001). Versican expression increased in the tissue, but decorin decreased. Our network model predicted that the rate of tissue deterioration locally governed by mechanical forces was reduced when proteoglycan stiffness was increased. Consequently, this general network model explains why increasing proteoglycan deposition protects the alveolar walls from rupture in emphysema. Our results suggest that the loss of proteoglycans observed in human emphysema contributes to disease progression, whereas treatments that promote proteoglycan deposition in the extracellular matrix should slow the progression of emphysema.

  9. PCR detection of retinoblastoma gene deletions in radiation-induced mouse lung adenocarcinomas

    SciTech Connect

    Churchill, M.E.; Gemmell, M.A.; Woloschak, G.E.

    1994-05-01

    From 1971--1986, Argonne National Laboratory conducted a series of large-scale studies of tumor incidence in 40,000 BCF{sub 1} mice irradiated with {sup 60}Co {gamma}-rays or JANUS fission-spectrum neutrons. Polymerase chain reaction (PCR) technique was used to detect deletions in the mouse retinoblastoma (mRb) gene. Six mRb gene exon fragments were amplified in a 40-cycle, 3-temperature PCR protocol. Absence of any of these fragments on a Southern blot indicated a deletion of that portion of the mRb gene. Tumors chosen for analysis were lung adenocarcinomas that were judged to be the cause of death in post-mortem analyses. Spontaneous tumors as well as those from irradiated mice were analyzed for mRb deletions. In all normal mouse tissues studies all six mRb exon fragments were present on Southern blots. Tumors in six neutron-irradiated mice also had no mRb deletions. However, 1 of 6 tumors from {gamma}-irradiated mice and 6 of 18 spontaneous tumors from unirradiated mice showed a deletion in one or both mRb alleles. All deletions detected were in the 5{prime} region of the mRb gene.

  10. Comparison of two methods used to prepare smears of mouse lung tissue for detection of Pneumocystis carinii.

    PubMed Central

    Thomson, R B; Smith, T F; Wilson, W R

    1982-01-01

    The laboratory diagnosis of Pneumocystis carinii pneumonia in humans includes the identification of cysts in stained lung tissue impression smears. By using a mouse model, we compared the number of cysts in lung tissue impression smears with those contained in a concentrate of homogenized lung tissue. Eleven C3H/HEN mice developed P. carinii infection after corticosteroid injections, a low protein (8%) diet, and tetracycline administered in drinking water. Impression smears were prepared with freshly bisected lung tissue. Smears of concentrates were prepared with sediment from centrifuged lung tissue homogenates. All smears were made in duplicate, stained with toluidine blue O or methenamine silver, coded, randomized, and examined. The concentrate preparations contained more cysts per microscopic field than the impression preparations (P less than 0.01). Concentrates prepared by grinding with a mortar and pestle contained more cysts than concentrates prepared by blending with a Stomacher (P less than 0.05). Cysts were detected equally well with either the toluidine blue O or silver stain (not significant). Lung tissue concentrates were superior to lung tissue impressions for detecting P. carinii cysts in mice. Use of lung tissue concentrates should be considered for the diagnosis of human P. carinii infection. PMID:6181088

  11. Lgr5+ stem cells and their progeny in mouse epidermis under regimens of exogenous skin carcinogenesis, and their absence in ensuing skin tumors

    PubMed Central

    van de Glind, Gerline C.; Out, Jacoba J.; Rebel, Heggert G.; Tensen, Cornelis P.; de Gruijl, Frank R.

    2016-01-01

    Actively proliferating Lgr5+ skin stem cells are found deep in the hair follicle (HF). These cells renew the HF and drive its expansion in anagen phase. Their long residence and continuous mitotic activity make them prime candidates to transform into skin tumor-initiating cells. This was investigated by subjecting Lgr5-EGFP-Ires-CreERT2/R26R-LacZ mice (haired and hairless) to chemical and UV carcinogenic regimens. In the course of these regimens Lgr5+ cells (EGFP+) remained exclusively located in HFs, and in deep-seated cysts of hairless skin. In haired mice, progeny of Lgr5+ stem cells (LacZ+ after a pulse of tamoxifen) appeared in the interfollicular epidermis upon UV-induced sunburn and in TPA-induced hyperplasia. In hairless mice the progeny remained located in deep-seated cysts and in HF remnants. Progeny in hairless skin was only detected interfollicularly at a late stage, in between outgrowing tumors. Lgr5+ stem cells were absent in the ultimate tumor masses, and no tumor appeared to be a (clonal) expansion of Lgr5+ cells (52 tumors with tamoxifen at the start of carcinogenesis, 42 tumors with tamoxifen late during tumor outgrowth). In contrast to CD34/K15+ quiescent bulge stem cells, actively proliferating Lgr5+ stem cells do therefore not appear to be tumor drivers in experimental skin carcinogenesis. PMID:27409834

  12. Anti-tumor effect of cimetidine via inhibiting angiogenesis factors in N-butyl-N-(4-hydroxybutyl) nitrosamine-induced mouse and rat bladder carcinogenesis.

    PubMed

    Chihara, Yoshitomo; Fujimoto, Kiyohide; Miyake, Makito; Hiasa, Yoshio; Hirao, Yoshihiko

    2009-07-01

    The aim of this study was to assess the anti-tumor effect and mechanisms of cimetidine in N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN)-induced bladder carcinogenesis model. Sixty-three male BALB/c mice and 67 male Wister rats were treated with BBN and cimetidine to examine the anti-tumor effect of cimetidine. Immunohistochemistry (IHC) of vascular endothelial growth factor (VEGF), platelet-derived endothelial growth factor (PDECGF), and E-selectin were examined to compare their expression in the tumor tissues. In mice, the tumor growth was reduced by cimetidine (p=0.011). The expression of PDECGF was reduced in the cimetidine-treated group (p=0.016). In rats, treatment of cimetidine reduced tumor growth (p=0.0001). Moreover, the expression of VEGF and PDECGF was reduced (p=0.02 and <0.001, respectively). The expression of E-selectin did not correlate with the tumor growth in either mice or rats. In mice, long-term cimetidine treatment proved very effective for inhibiting the tumor growth, but in rats, BBN after treatment with cimetidine showed the least tumor growth-inhibitory effect. In conclusion, cimetidine may have an inhibitory effect on tumor growth in bladder carcinogenesis via reducing the expression of angiogenesis factors including VEGF and PDECGF.

  13. Phenotypical and ultrastructural features of Oct4-positive cells in the adult mouse lung

    PubMed Central

    Galiger, Celimene; Kostin, Sawa; Golec, Anita; Ahlbrecht, Katrin; Becker, Sven; Gherghiceanu, Mihaela; Popescu, Laurentiu M; Morty, Rory E; Seeger, Werner; Voswinckel, Robert

    2014-01-01

    Octamer binding trascription factor 4 (Oct4) is a transcription factor of POU family specifically expressed in embryonic stem cells (ESCs). A role for maintaining pluripotency and self-renewal of ESCs is assigned to Oct4 as a pluripotency marker. Oct4 can also be detected in adult stem cells such as bone marrow-derived mesenchymal stem cells. Several studies suggest a role for Oct4 in sustaining self-renewal capacity of adult stem cells. However, Oct4 gene ablation in adult stem cells revealed no abnormalities in tissue turnover or regenerative capacity. In the present study we have conspicuously found pulmonary Oct4-positive cells closely resembling the morphology of telocytes (TCs). These cells were found in the perivascular and peribronchial areas and their presence and location were confirmed by electron microscopy. Moreover, we have used Oct4-GFP transgenic mice which revealed a similar localization of the Oct4-GFP signal. We also found that Oct4 co-localized with several described TC markers such as vimentin, Sca-1, platelet-derived growth factor receptor-beta C-kit and VEGF. By flow cytometry analyses carried out with Oct4-GFP reporter mice, we described a population of EpCAMneg/CD45neg/Oct4-GFPpos that in culture displayed TC features. These results were supported by qRT-PCR with mRNA isolated from lungs by using laser capture microdissection. In addition, Oct4-positive cells were found to express Nanog and Klf4 mRNA. It is concluded for the first time that TCs in adult lung mouse tissue comprise Oct4-positive cells, which express pluripotency-related genes and represent therefore a population of adult stem cells which might contribute to lung regeneration. PMID:24889158

  14. The composition of cigarette smoke determines inflammatory cell recruitment to the lung in COPD mouse models.

    PubMed

    John, Gerrit; Kohse, Katrin; Orasche, Jürgen; Reda, Ahmed; Schnelle-Kreis, Jürgen; Zimmermann, Ralf; Schmid, Otmar; Eickelberg, Oliver; Yildirim, Ali Önder

    2014-02-01

    COPD (chronic obstructive pulmonary disease) is caused by exposure to toxic gases and particles, most often CS (cigarette smoke), leading to emphysema, chronic bronchitis, mucus production and a subsequent decline in lung function. The disease pathogenesis is related to an abnormal CS-induced inflammatory response of the lungs. Similar to active (mainstream) smoking, second hand (sidestream) smoke exposure severely affects respiratory health. These processes can be studied in vivo in models of CS exposure of mice. We compared the acute inflammatory response of female C57BL/6 mice exposed to two concentrations [250 and 500 mg/m3 TPM (total particulate matter)] of sidestream and mainstream CS for 3 days and interpreted the biological effects based on physico-chemical differences in the gas and particulate phase composition of CS. BAL (bronchoalveolar lavage fluid) was obtained to perform differential cell counts and to measure cytokine release. Lung tissue was used to determine mRNA and protein expression of proinflammatory genes and to assess tissue inflammation. A strong acute inflammatory response characterized by neutrophilic influx, increased cytokine secretion [KC (keratinocyte chemoattractant), TNF-α (tumour necrosis factor α), MIP-2 (macrophage inflammatory protein 2), MIP-1α and MCP-1 (monocyte chemoattractant protein-1)], pro-inflammatory gene expression [KC, MIP-2 and MMP12 (matrix metalloproteinase 12)] and up-regulated GM-CSF (granulocyte macrophage colony-stimulating factor) production was observed in the mainstream model. After sidestream exposure there was a dampened inflammatory reaction consisting only of macrophages and diminished GM-CSF levels, most likely caused by elevated CO concentrations. These results demonstrate that the composition of CS determines the dynamics of inflammatory cell recruitment in COPD mouse models. Different initial inflammatory processes might contribute to COPD pathogenesis in significantly varying ways, thereby

  15. The composition of cigarette smoke determines inflammatory cell recruitment to the lung in COPD mouse models

    PubMed Central

    John, Gerrit; Kohse, Katrin; Orasche, Jürgen; Reda, Ahmed; Schnelle-Kreis, Jürgen; Zimmermann, Ralf; Schmid, Otmar; Eickelberg, Oliver; Yildirim, Ali Önder

    2013-01-01

    COPD (chronic obstructive pulmonary disease) is caused by exposure to toxic gases and particles, most often CS (cigarette smoke), leading to emphysema, chronic bronchitis, mucus production and a subsequent decline in lung function. The disease pathogenesis is related to an abnormal CS-induced inflammatory response of the lungs. Similar to active (mainstream) smoking, second hand (sidestream) smoke exposure severely affects respiratory health. These processes can be studied in vivo in models of CS exposure of mice. We compared the acute inflammatory response of female C57BL/6 mice exposed to two concentrations [250 and 500 mg/m3 TPM (total particulate matter)] of sidestream and mainstream CS for 3 days and interpreted the biological effects based on physico-chemical differences in the gas and particulate phase composition of CS. BAL (bronchoalveolar lavage fluid) was obtained to perform differential cell counts and to measure cytokine release. Lung tissue was used to determine mRNA and protein expression of proinflammatory genes and to assess tissue inflammation. A strong acute inflammatory response characterized by neutrophilic influx, increased cytokine secretion [KC (keratinocyte chemoattractant), TNF-α (tumour necrosis factor α), MIP-2 (macrophage inflammatory protein 2), MIP-1α and MCP-1 (monocyte chemoattractant protein-1)], pro-inflammatory gene expression [KC, MIP-2 and MMP12 (matrix metalloproteinase 12)] and up-regulated GM-CSF (granulocyte macrophage colony-stimulating factor) production was observed in the mainstream model. After sidestream exposure there was a dampened inflammatory reaction consisting only of macrophages and diminished GM-CSF levels, most likely caused by elevated CO concentrations. These results demonstrate that the composition of CS determines the dynamics of inflammatory cell recruitment in COPD mouse models. Different initial inflammatory processes might contribute to COPD pathogenesis in significantly varying ways, thereby

  16. Interactions between the otitis media gene, Fbxo11, and p53 in the mouse embryonic lung.

    PubMed

    Tateossian, Hilda; Morse, Susan; Simon, Michelle M; Dean, Charlotte H; Brown, Steve D M

    2015-12-01

    Otitis media with effusion (OME) is the most common cause of hearing loss in children, and tympanostomy (ear tube insertion) to alleviate the condition remains the commonest surgical intervention in children in the developed world. Chronic and recurrent forms of otitis media (OM) are known to have a very substantial genetic component; however, until recently, little was known of the underlying genes involved. The Jeff mouse mutant carries a mutation in the Fbxo11 gene, a member of the F-box family, and develops deafness due to a chronic proliferative OM. We previously reported that Fbxo11 is involved in the regulation of transforming growth factor beta (TGF-β) signalling by regulating the levels of phospho-Smad2 in the epithelial cells of palatal shelves, eyelids and airways of the lungs. It has been proposed that FBXO11 regulates the cell's response to TGF-β through the ubiquitination of CDT2. Additional substrates for FBXO11 have been identified, including p53. Here, we have studied both the genetic and biochemical interactions between FBXO11 and p53 in order to better understand the function of FBXO11 in epithelial development and its potential role in OM. In mice, we show that p53 (also known as Tp53) homozygous mutants and double heterozygous mutants (Jf/+ p53/+) exhibit similar epithelial developmental defects to Fbxo11 homozygotes. FBXO11 and p53 interact in the embryonic lung, and mutation in Fbxo11 prevents the interaction with p53. Both p53 and double mutants show raised levels of pSMAD2, recapitulating that seen in Fbxo11 homozygotes. Overall, our results support the conclusion that FBXO11 regulates the TGF-β pathway in the embryonic lung via cross-talk with p53.

  17. Curcumin inhibits paraquat induced lung inflammation and fibrosis by extracellular matrix modifications in mouse model.

    PubMed

    Tyagi, Namitosh; Dash, D; Singh, Rashmi

    2016-12-01

    Paraquat (PQ), a potent herbicide can cause severe toxicity. We report here that fibroproliferation phase of acute lung injury (ALI) is initiated much earlier (within 48 h) after PQ intoxication than previously reported (after 2 weeks) and we aimed to study the protective effects of intranasal curcumin as new therapeutic strategy in mouse model. Mice (Park's strain) were divided into five experimental groups (I) control, received only saline (0.9 % NaCl) (II) PQ, mice intoxicated with PQ (50 mg/kg, i.p., single dose); (III) curcumin, treated with curcumin (5 mg/kg, i.n) an hour before PQ administration; (IV)Veh, DMSO (equal volume to curcumin) given an hour before PQ exposure; (V) DEXA, mice treated with dexamethasone (1 mg/kg, i.p) before an hour of PQ intoxication. After 48 h of the PQ exposure, all mice were sacrificed and samples were analyzed. Pretreatment with intranasal curcumin (5 mg/kg) could modify the PQ-intoxication (50 mg/kg, i.p) induced structural remodeling of lung parenchyma at an early phase of acute lung injury. Significant increase in inflammatory cell count, reactive oxygen species and hydroxyproline levels were decreased after curcumin pretreatment (all p < 0.05). Histological examination and zymography results were also found consistent. Our results show that curcumin pretreatment decreased the expression of alpha smooth muscle actin (α-SMA), matrix metalloproteinases-9 (MMP-9) and changed the expression of tissue inhibitors of metalloproteinase (TIMP-1) after PQ intoxication. Single toxic dose of PQ has initiated fibroproliferation within 48 h and intranasal curcumin may prove as new therapeutic strategy for PQ induced ALI and fibroproliferation.

  18. The sickle cell mouse lung: pro-inflammatory and primed for allergic inflammation

    PubMed Central

    Andemariam, Biree; Adami, Alexander J.; McNamara, Jeffrey T.; Secor, Eric R.; Guernsey, Linda A.; Thrall, Roger S.

    2015-01-01

    Co-morbid asthma in sickle cell disease (SCD) confers higher rates of vaso-occlusive pain and mortality, yet the physiological link between these two distinct diseases remains puzzling. We utilized a mouse model of SCD to study pulmonary immunology and physiology before and after the induction of allergic airway disease (AAD). SCD mice were sensitized with ovalbumin (OVA) and aluminum hydroxide by the intraperitoneal (IP) route followed by daily, nose-only OVA-aerosol challenge to induce AAD. The lungs of naive SCD mice showed signs of inflammatory and immune processes: (1) histologic and cytochemical evidence of airway inflammation as compared to naïve wildtype mice; (2) bronchoalveolar lavage fluid (BAL) contained increased total lymphocytes, %CD8+ T cells, G-CSF, IL-5, IL-7, and CXCL1, and (3) lung tissue and hilar lymph node (HLN) had increased CD4+, CD8+, and regulatory T cells (Tregs). Further, SCD mice at AAD demonstrated significant changes compared to the naïve state: (1) BAL with increased %CD4+ T cells and Tregs, lower %CD8+ T cells, and decreased IFNγ, CXCL10, CCL2, and IL-17, (2) serum with increased OVA-specific IgE, IL-6, and IL-13, and decreased IL-1α and CXCL10, (3) no increase in Tregs in the lung tissue or HLN, and (4) hypo-responsiveness to methacholine challenge. In conclusion, SCD mice have an altered immunologic pulmonary milieu and physiologic responsiveness. These findings suggest that the clinical phenotype of AAD in SCD mice differs from that of wildtype mice and suggests that individuals with SCD may also have a unique, divergent phenotype perhaps amenable to a different therapeutic approach. PMID:25843670

  19. Interactions between the otitis media gene, Fbxo11, and p53 in the mouse embryonic lung

    PubMed Central

    Tateossian, Hilda; Morse, Susan; Simon, Michelle M.; Dean, Charlotte H.; Brown, Steve D. M.

    2015-01-01

    ABSTRACT Otitis media with effusion (OME) is the most common cause of hearing loss in children, and tympanostomy (ear tube insertion) to alleviate the condition remains the commonest surgical intervention in children in the developed world. Chronic and recurrent forms of otitis media (OM) are known to have a very substantial genetic component; however, until recently, little was known of the underlying genes involved. The Jeff mouse mutant carries a mutation in the Fbxo11 gene, a member of the F-box family, and develops deafness due to a chronic proliferative OM. We previously reported that Fbxo11 is involved in the regulation of transforming growth factor beta (TGF-β) signalling by regulating the levels of phospho-Smad2 in the epithelial cells of palatal shelves, eyelids and airways of the lungs. It has been proposed that FBXO11 regulates the cell's response to TGF-β through the ubiquitination of CDT2. Additional substrates for FBXO11 have been identified, including p53. Here, we have studied both the genetic and biochemical interactions between FBXO11 and p53 in order to better understand the function of FBXO11 in epithelial development and its potential role in OM. In mice, we show that p53 (also known as Tp53) homozygous mutants and double heterozygous mutants (Jf/+ p53/+) exhibit similar epithelial developmental defects to Fbxo11 homozygotes. FBXO11 and p53 interact in the embryonic lung, and mutation in Fbxo11 prevents the interaction with p53. Both p53 and double mutants show raised levels of pSMAD2, recapitulating that seen in Fbxo11 homozygotes. Overall, our results support the conclusion that FBXO11 regulates the TGF-β pathway in the embryonic lung via cross-talk with p53. PMID:26471094

  20. Genetically determined heterogeneity of lung disease in a mouse model of airway mucus obstruction.

    PubMed

    Livraghi-Butrico, Alessandra; Grubb, Barbara R; Kelly, Elizabeth J; Wilkinson, Kristen J; Yang, Huifang; Geiser, Marianne; Randell, Scott H; Boucher, Richard C; O'Neal, Wanda K

    2012-04-15

    Mucus clearance is an important airway innate defense mechanism. Airway-targeted overexpression of the epithelial Na(+) channel β-subunit [encoded by sodium channel nonvoltage gated 1, beta subunit (Scnn1b)] in mice [Scnn1b-transgenic (Tg) mice] increases transepithelial Na(+) absorption and dehydrates the airway surface, which produces key features of human obstructive lung diseases, including mucus obstruction, inflammation, and air-space enlargement. Because the first Scnn1b-Tg mice were generated on a mixed background, the impact of genetic background on disease phenotype in Scnn1b-Tg mice is unknown. To explore this issue, congenic Scnn1b-Tg mice strains were generated on C57BL/6N, C3H/HeN, BALB/cJ, and FVB/NJ backgrounds. All strains exhibited a two- to threefold increase in tracheal epithelial Na(+) absorption, and all developed airway mucus obstruction, inflammation, and air-space enlargement. However, there were striking differences in neonatal survival, ranging from 5 to 80% (FVB/NJlung atelectasis. The spontaneous occurrence of a high surviving BALB/cJ line, which exhibited delayed onset of Na(+) hyperabsorption, provided evidence that: 1) air-space enlargement and postnatal death were only present when Na(+) hyperabsorption occurred early, and 2) inflammation and mucus obstruction developed whenever Na(+) hyperabsorption was expressed. In summary, the genetic context and timing of airway innate immune dysfunction critically determines lung disease phenotype. These mouse strains may be useful to identify key modifier genes and pathways.

  1. PCR detection of retinoblastoma gene deletions in radiation-induced mouse lung adenocarcinomas

    SciTech Connect

    Churchill, M.E.; Gemmell, M.A.; Woloschak, G.E.

    1993-04-01

    From 1971 to 1986, Argonne National Laboratory conducted a series of large-scale studies of tumor incidence in 40,000 BCF{sub 1} mice irradiated with {sup 60}Co {gamma} rays or JANUS fission-spectrum neutrons; normal and tumor tissues from mice in these studies were preserved in paraffin blocks. A polymerase chain reaction (PCR) technique has been developed to detect deletions in the mouse retinoblastoma (mRb) gene in the paraffin-embedded tissues. Microtomed sections were used as the DNA source in PCR reaction mixtures. Six mRb gene exon fragments were amplified in a 40-cycle, 3-temperature PCR protocol. The absence of any of these fragments (relative to control PCR products) on a Southern blot indicated a deletion of that portion of the mRb gene. The tumors chosen for analysis were lung adenocarcinomas that were judged to be the cause of death in post-mortem analyses. Spontaneous tumors as well as those from irradiated mice (569 cGy of {sup 60}Co {gamma} rays or 60 cGy of JANUS neutrons, doses that have been found to have approximately equal biological effectiveness in the BCF, mouse) were analyzed for mRb deletions. In all normal mouse tissues studies, all six mRb exon fragments were present on Southem blots. Tumors in six neutron-irradiated mice also had no mRb deletions. However, I of 6 tumors from {gamma}-irradiated mice and 6 of 18 spontaneous tumors from unirradiated mice had a deletion in one or both mRb alleles. All deletions detected were in the 5{prime} region of the mRb gene.

  2. PCR detection of retinoblastoma gene deletions in radiation-induced mouse lung adenocarcinomas

    SciTech Connect

    Churchill, M.E.; Gemmell, M.A.; Woloschak, G.E.

    1993-01-01

    From 1971 to 1986, Argonne National Laboratory conducted a series of large-scale studies of tumor incidence in 40,000 BCF[sub 1] mice irradiated with [sup 60]Co [gamma] rays or JANUS fission-spectrum neutrons; normal and tumor tissues from mice in these studies were preserved in paraffin blocks. A polymerase chain reaction (PCR) technique has been developed to detect deletions in the mouse retinoblastoma (mRb) gene in the paraffin-embedded tissues. Microtomed sections were used as the DNA source in PCR reaction mixtures. Six mRb gene exon fragments were amplified in a 40-cycle, 3-temperature PCR protocol. The absence of any of these fragments (relative to control PCR products) on a Southern blot indicated a deletion of that portion of the mRb gene. The tumors chosen for analysis were lung adenocarcinomas that were judged to be the cause of death in post-mortem analyses. Spontaneous tumors as well as those from irradiated mice (569 cGy of [sup 60]Co [gamma] rays or 60 cGy of JANUS neutrons, doses that have been found to have approximately equal biological effectiveness in the BCF, mouse) were analyzed for mRb deletions. In all normal mouse tissues studies, all six mRb exon fragments were present on Southem blots. Tumors in six neutron-irradiated mice also had no mRb deletions. However, I of 6 tumors from [gamma]-irradiated mice and 6 of 18 spontaneous tumors from unirradiated mice had a deletion in one or both mRb alleles. All deletions detected were in the 5[prime] region of the mRb gene.

  3. Promotion of lung tumors in mice

    SciTech Connect

    Witschi, H.P.

    1981-01-01

    Several elements of two-stage carcinogenesis apply to the development of lung tumors in mice. At least three agents, identified as promoters, will also enhance tumor formation in lung: phorbol, saccharin, and butylated hydroxytoluene (BHT). The antioxidant BHT is effective only if animals are treated after exposure to an initiating agent. Administration can be delayed up to 5 months after urethan treatment and still enhance tumor formation. BHT enhances lung tumor formation regardless of its route of administration. The lowest dose required to produce an effect has not yet been determined. In at least one mouse strain, BHT also enhances tumor formation in animals initiated with 3-methylcholanthren or diethylnitrosaine. No evidence is available yet to show that BHT would enhance tumor development in animals treated with subcarcinogenic doses of an initiating compound. Nor has it been possible to produce more tumors with BHT in mouse strains which have a low spontaneous tumor incidence and respond poorly to urethan. Neveretheless, the data collected on the effects of BHT on mouse lung tumor development have broadened the concept of two-stage carcinogenesis and complement the evidence for initiation-promotion available for other epithelial tissues. (ERB)

  4. In vitro radiation sensitivity of mouse lung fibroblasts isolated by flow cytometry

    SciTech Connect

    Keng, P.C.; Phipps, R.; Penney, D.P.

    1995-02-01

    Recently, we have isolated two major fibroblast cells (Thy-1{sup +}, Thy-1{sup {minus}}) from mouse LAF1 lung tissue using the anti-Thy-1 antibody expression and fluorescence activated cell sorter. To examine the possibility that x- or {gamma}-ray-induced pulmonary fibrosis at the late stage of injury could arise from radioresistant cell subpopulations, the radiation sensitivities of Thy-1{sup +} and Thy-1{sup {minus}} cells were evaluated by the colony forming assay. Cell survival curves, repair of potentially lethal damage (PLD) and sublethal damage (SLD), and cell-age response curves were obtained after Cs-137 {gamma}-ray irradiation. The cell survival curves measured after 0-10 Gy {gamma}-ray showed that Thy-1{sup +} cells were slightly more radioresistant than Thy-1{sup {minus}} cells. The D{sub 0}, n, alpha, and beta values measured from the survival curves also confirmed this observation. After a single dose of 10 Gy, a small amount of PLD repair was observed in Thy-1{sup {minus}} cells, while no PLD repair was found in Thy-1{sup +} cells. Although the initial cell survival level of Thy-1{sup {minus}} cells was lower, the final survival levels of Thy-1{sup +} and Thy-1{sup {minus}} cells became identical at 8 h after irradiation due to the PLD repair. After split-dose irradiation of 4 Gy followed by 4 Gy, a similar extent and rate of SLD repair was found in Thy-1{sup +} and Thy-1{sup {minus}} cells. Cell-age response curves were obtained from irradiated G{sub 0}/G{sub 1}, S, and G{sub 2}/M cells separated by centrifugal elutriation and irradiated with 8 Gy gamma-ray. The results indicated that Thy-1{sup +} and Thy-1{sup {minus}} cells had a similar S resistant, and G{sub 1}, G{sub 2}M-sensitive radiation cell-age response curve. This study suggests that the selection of radioresistant lung fibroblast may not be responsible for the development of lung fibrosis in irradiated LAF{sub 1} mouse. 16 refs., 4 figs., 1 tab.

  5. Metabolism of the anti-tuberculosis drug ethionamide by mouse and human FMO1, FMO2 and FMO3 and mouse and human lung microsomes

    SciTech Connect

    Henderson, Marilyn C.; Siddens, Lisbeth K.; Morre, Jeffrey T.; Krueger, Sharon K.; Williams, David E.

    2008-12-15

    Tuberculosis (TB) results from infection with Mycobacterium tuberculosis and remains endemic throughout the world with one-third of the world's population infected. The prevalence of multi-drug resistant strains necessitates the use of more toxic second-line drugs such as ethionamide (ETA), a pro-drug requiring bioactivation to exert toxicity. M. tuberculosis possesses a flavin monooxygenase (EtaA) that oxygenates ETA first to the sulfoxide and then to 2-ethyl-4-amidopyridine, presumably through a second oxygenation involving sulfinic acid. ETA is also a substrate for mammalian flavin-containing monooxygenases (FMOs). We examined activity of expressed human and mouse FMOs toward ETA, as well as liver and lung microsomes. All FMOs converted ETA to the S-oxide (ETASO), the first step in bioactivation. Compared to M. tuberculosis, the second S-oxygenation to the sulfinic acid is slow. Mouse liver and lung microsomes, as well as human lung microsomes from an individual expressing active FMO, oxygenated ETA in the same manner as expressed FMOs, confirming this reaction functions in the major target organs for therapeutics (lung) and toxicity (liver). Inhibition by thiourea, and lack of inhibition by SKF-525A, confirm ETASO formation is primarily via FMO, particularly in lung. ETASO production was attenuated in a concentration-dependent manner by glutathione. FMO3 in human liver may contribute to the toxicity and/or affect efficacy of ETA administration. Additionally, there may be therapeutic implications of efficacy and toxicity in human lung based on the FMO2 genetic polymorphism, though further studies are needed to confirm that suggestion.

  6. Carcinogenesis and aging

    SciTech Connect

    Anisimov, V.N.; Petrov, N.N.

    1987-01-01

    This 2-voluem set discusses the problem of inter-relation between carcinogenesis and aging, and the phenomenon of age-related increase in cancer incidence in animals and humans. Covered topics include current concepts in mechanisms of carcinogenesis and aging; data on chemical, radiation, ultraviolet-light, hormonal and viral carcinogenesis in aging; data on the role of age-related shifts in the activity of carcinogen-metabolizing enzymes; binding of carcinogens with macromolecules; DNA repair; tissue proliferation; and immunity and homono-metabolic patterns in realization of initiation and promotion of carcinogenesis.

  7. A comprehensive analysis of oxidative stress in the ozone-induced lung inflammation mouse model.

    PubMed

    Wiegman, Coen H; Li, Feng; Clarke, Colin J; Jazrawi, Elen; Kirkham, Paul; Barnes, Peter J; Adcock, Ian M; Chung, Kian F

    2014-03-01

    Ozone is an oxidizing environmental pollutant that contributes significantly to respiratory health. Exposure to increased levels of ozone has been associated with worsening of symptoms of patients with asthma and COPD (chronic obstructive pulmonary disease). In the present study, we investigated the acute and chronic effects of ozone exposure-induced oxidative stress-related inflammation mechanics in mouse lung. In particular, we investigated the oxidative stress-induced effects on HDAC2 (histone deacetylase 2) modification and activation of the Nrf2 (nuclear factor erythroid-related factor 2) and HIF-1α (hypoxia-inducible factor-1α) signalling pathways. Male C57BL/6 mice were exposed to ozone (3 p.p.m.) for 3 h a day, twice a week for a period of 1, 3 or 6 weeks. Control mice were exposed to normal air. After the last exposure, mice were killed for BAL (bronchoalveolar lavage) fluid and lung tissue collection. BAL total cell counts were elevated at all of the time points studied. This was associated with increased levels of chemokines and cytokines in all ozone-exposed groups, indicating the presence of a persistent inflammatory environment in the lung. Increased inflammation and Lm (mean linear intercept) scores were observed in chronic exposed mice, indicating emphysematous changes were present in lungs of chronic exposed mice. The antioxidative stress response was active (indicated by increased Nrf2 activity and protein) after 1 week of ozone exposure, but this ability was lost after 3 and 6 weeks of ozone exposure. The transcription factor HIF-1α was elevated in 3- and 6-week ozone-exposed mice and this was associated with increased gene expression levels of several HIF-1α target genes including Hdac2 (histone deacetylase 2), Vegf (vascular endothelial growth factor), Keap1 (kelch-like ECH-associated protein 1) and Mif (macrophage migration inhibitory factor). HDAC2 protein was found to be phosphorylated and carbonylated in nuclear and cytoplasm fractions

  8. Inhibitory effect of the rhizomes of Alpinia officinarum on TPA-induced inflammation and tumor promotion in two-stage carcinogenesis in mouse skin.

    PubMed

    Yasukawa, Ken; Sun, Yi; Kitanaka, Susumu; Tomizawa, Naoyuki; Miura, Motofumi; Motohashi, Shigeyasu

    2008-07-01

    The methanol extract of galangal (the rhizomes of Alpinia officinarum L.) exhibited remarkable antitumor-promoting activity on an in vivo two-stage carcinogenesis test of mice using 7,12-dimethylbenz[a]anthracene as an initiator and 12-O-tetradecanoylphorbol-13-acetate (TPA) as a promoter. Seven diarylheptanoids (1-7) were isolated and identified from the active fraction of the methanol extracts of the galangal. These compounds, 1-7, were evaluated for their inhibitory effects on TPA-induced inflammation (1 microg/ear) in mice. These compounds (1-7) tested showed marked anti-inflammatory effects, with a 50% inhibitory dose of 0.8-2.7 micromol/ear.

  9. Metabolite signatures in hydrophilic extracts of mouse lungs exposed to cigarette smoke revealed by 1H NMR metabolomics investigation

    DOE PAGES

    Hu, Jian Z.; Wang, Xuan; Feng, Ju; ...

    2015-05-12

    Herein, 1H-NMR metabolomics are carried out to evaluate the changes of metabolites in lungs of mice exposed to cigarette smoke. It is found that the concentrations of adenosine derivatives (i.e. ATP, ADP and AMP), inosine and uridine are significantly fluctuated in the lungs of mice exposed to cigarette smoke compared with those of controls regardless the mouse is obese or regular weight. The decreased ATP, ADP, AMP and elevated inosine predict that the deaminases in charge of adenosine derivatives to inosine derivatives conversion are altered in lungs of mice exposed to cigarette smoke. Transcriptional analysis reveals that the concentrations ofmore » adenosine monophosphate deaminase and adenosine deaminase are different in the lungs of mice exposed to cigarette smoke, confirming the prediction from metabolomics studies. We also found, for the first time, that the ratio of glycerophosphocholine (GPC) to phosphocholine (PC) is significantly increased in the lungs of obese mice compared with regular weight mice. The ratio of GPC/PC is further elevated in the lungs of obese group by cigarette smoke exposure. Since GPC/PC ratio is a known biomarker for cancer, these results may suggest that obese group is more susceptible to lung cancer when exposed to cigarette smoke.« less

  10. Bioluminescent Orthotopic Mouse Models of Human Localized Non-Small Cell Lung Cancer: Feasibility and Identification of Circulating Tumour Cells

    PubMed Central

    Lahon, Benoit; Castier, Yves; Lesèche, Guy; Soria, Jean-Charles; Vozenin, Marie-Catherine; Decraene, Charles; Deutsch, Eric

    2011-01-01

    Background Preclinical models of non-small cell lung cancer (NSCLC) require better clinical relevance to study disease mechanisms and innovative therapeutics. We sought to compare and refine bioluminescent orthotopic mouse models of human localized NSCLC. Methods Athymic nude mice underwent subcutaneous injection (group 1-SC, n = 15, control), percutaneous orthotopic injection (group 2-POI, n = 30), surgical orthotopic implantation of subcutaneously grown tumours (group 3-SOI, n = 25), or transpleural orthotopic injection (group 4-TOI, n = 30) of A549-luciferase cells. Bioluminescent in vivo imaging was then performed weekly. Circulating tumour cells (CTCs) were searched using Cellsearch® system in SC and TOI models. Results Group 2-POI was associated with unexpected direct pleural spreading of the cellular solution in 53% of the cases, forbidding further evaluation of any localized lung tumour. Group 3-SOI was characterized by high perioperative mortality, initially localized lung tumours, and local evolution. Group 4-TOI was associated with low perioperative mortality, initially localized lung tumours, loco regional extension, and distant metastasis. CTCs were detected in 83% of nude mice bearing subcutaneous or orthotopic NSCLC tumours. Conclusions Transpleural orthotopic injection of A549-luc cells in nude mouse lung induces localized tumour, followed by lymphatic extension and specific mortality, and allowed the first time identification of CTCs in a NSCLC mice model. PMID:22022511

  11. The glucocorticoid-glucocorticoid receptor signal transduction pathway, transforming growth factor-beta, and embryonic mouse lung development in vivo.

    PubMed

    Jaskoll, T; Choy, H A; Melnick, M

    1996-05-01

    Lung morphogenesis has been shown to be regulated by glucocorticoids (CORT). Because CORT has been primarily thought to affect fetal lung development, previous studies have focused on the role of CORT receptor (GR)-mediated regulation of fetal lung development. Although endogenous CORT increases during embryonic and fetal stages and exogenous CORT treatment in vivo and in vitro clearly accelerates embryonic lung development, little is known about the morphoregulatory role of the embryonic CORT-GR signal transduction pathway during lung development. In this study, we characterize the embryonic mouse CORT-GR pathway and demonstrate: stage-specific in situ patterns of GR immunolocalization; similarity in GR relative mobility with progressive (E13 --> E17) development; that embryonic GR can be activated to bind a GR response element (GRE); significantly increasing levels of functional GR with increasing lung maturation; and the presence of heat shock protein (hsp) 70 and hsp90 from early (E13) to late (E17) developmental stages. These results support the purported importance of the embryonic CORT-GR signal transduction pathway in progressive lung differentiation. To demonstrate that the embryonic CORT-GR directed pathway plays a role in lung development, early embryonic (E12) lungs were exposed to CORT in utero and surfactant-associated protein A (SP-A) expression was analyzed; CORT treatment up-regulates SP-A mRNA expression and spatiotemporal protein distribution. Finally, to determine whether CORT-GR-directed pulmonary morphogenesis in vivo involves the modulation of growth factors, we studied the effect of CORT on TGF-beta gene expression. Northern analysis of TGF-beta 1, TGF-beta 2, and TGF-beta 3 transcript levels in vivo indicates that CORT regulates the rate of lung morpho- and histodifferentiation by down-regulating TGF-beta 3 gene expression.

  12. Cigarette side-stream smoke lung and bladder carcinogenesis: inducing mutagenic acrolein-DNA adducts, inhibiting DNA repair and enhancing anchorage-independent-growth cell transformation.

    PubMed

    Lee, Hyun-Wook; Wang, Hsiang-Tsui; Weng, Mao-wen; Chin, Chiu; Huang, William; Lepor, Herbert; Wu, Xue-Ru; Rom, William N; Chen, Lung-Chi; Tang, Moon-shong

    2015-10-20

    Second-hand smoke (SHS) is associated with 20-30% of cigarette-smoke related diseases, including cancer. Majority of SHS (>80%) originates from side-stream smoke (SSS). Compared to mainstream smoke, SSS contains more tumorigenic polycyclic aromatic hydrocarbons and acrolein (Acr). We assessed SSS-induced benzo(a)pyrene diol epoxide (BPDE)- and cyclic propano-deoxyguanosine (PdG) adducts in bronchoalveolar lavage (BAL), lung, heart, liver, and bladder-mucosa from mice exposed to SSS for 16 weeks. In SSS exposed mice, Acr-dG adducts were the major type of PdG adducts formed in BAL (p < 0.001), lung (p < 0.05), and bladder mucosa (p < 0.001), with no significant accumulation of Acr-dG adducts in heart or liver. SSS exposure did not enhance BPDE-DNA adduct formation in any of these tissues. SSS exposure reduced nucleotide excision repair (p < 0.01) and base excision repair (p < 0.001) in lung tissue. The levels of DNA repair proteins, XPC and hOGG1, in lung tissues of exposed mice were significantly (p < 0.001 and p < 0.05) lower than the levels in lung tissues of control mice. We found that Acr can transform human bronchial epithelial and urothelial cells in vitro. We propose that induction of mutagenic Acr-DNA adducts, inhibition of DNA repair, and induction of cell transformation are three mechanisms by which SHS induces lung and bladder cancers.

  13. Cigarette side-stream smoke lung and bladder carcinogenesis: inducing mutagenic acrolein-DNA adducts, inhibiting DNA repair and enhancing anchorage-independent-growth cell transformation

    PubMed Central

    Chin, Chiu; Huang, William; Lepor, Herbert; Wu, Xue-Ru; Rom, William N.; Chen, Lung-Chi; Tang, Moon-shong

    2015-01-01

    Second-hand smoke (SHS) is associated with 20–30% of cigarette-smoke related diseases, including cancer. Majority of SHS (>80%) originates from side-stream smoke (SSS). Compared to mainstream smoke, SSS contains more tumorigenic polycyclic aromatic hydrocarbons and acrolein (Acr). We assessed SSS-induced benzo(a)pyrene diol epoxide (BPDE)- and cyclic propano-deoxyguanosine (PdG) adducts in bronchoalveolar lavage (BAL), lung, heart, liver, and bladder-mucosa from mice exposed to SSS for 16 weeks. In SSS exposed mice, Acr-dG adducts were the major type of PdG adducts formed in BAL (p < 0.001), lung (p < 0.05), and bladder mucosa (p < 0.001), with no significant accumulation of Acr-dG adducts in heart or liver. SSS exposure did not enhance BPDE-DNA adduct formation in any of these tissues. SSS exposure reduced nucleotide excision repair (p < 0.01) and base excision repair (p < 0.001) in lung tissue. The levels of DNA repair proteins, XPC and hOGG1, in lung tissues of exposed mice were significantly (p < 0.001 and p < 0.05) lower than the levels in lung tissues of control mice. We found that Acr can transform human bronchial epithelial and urothelial cells in vitro. We propose that induction of mutagenic Acr-DNA adducts, inhibition of DNA repair, and induction of cell transformation are three mechanisms by which SHS induces lung and bladder cancers. PMID:26431382

  14. Low oxygen tension enhances the generation of lung progenitor cells from mouse embryonic and induced pluripotent stem cells

    PubMed Central

    Garreta, Elena; Melo, Esther; Navajas, Daniel; Farré, Ramon

    2014-01-01

    Abstract Whole‐organ decellularization technology has emerged as a new alternative for the fabrication of bioartificial lungs. Embryonic stem cells (ESC) and induced pluripotent stem cells (iPSC) are potentially useful for recellularization since they can be directed to express phenotypic marker genes of lung epithelial cells. Normal pulmonary development takes place in a low oxygen environment ranging from 1 to 5%. By contrast, in vitro ESC and iPSC differentiation protocols are usually carried out at room‐air oxygen tension. Here, we sought to determine the role played by oxygen tension on the derivation of Nkx2.1+ lung/thyroid progenitor cells from mouse ESC and iPSC. A step‐wise differentiation protocol was used to generate Nkx2.1+ lung/thyroid progenitors under 20% and 5% oxygen tension. On day 12, gene expression analysis revealed that Nkx2.1 and Foxa2 (endodermal and early lung epithelial cell marker) were significantly upregulated at 5% oxygen tension in ESC and iPSC differentiated cultures compared to 20% oxygen conditions. In addition, quantification of Foxa2+Nkx2.1+Pax8‐ cells corresponding to the lung field, with exclusion of the potential thyroid fate identified by Pax8 expression, confirmed that the low physiologic oxygen tension exerted a significant positive effect on early pulmonary differentiation of ESC and iPSC. In conclusion, we found that 5% oxygen tension enhanced the derivation of lung progenitors from mouse ESC and iPSC compared to 20% room‐air oxygen tension. PMID:25347858

  15. [Effect of thalidomide in a mouse model of paraquat-induced acute lung injury and the underlying mechanisms].

    PubMed

    Zhao, Guangju; Cai, Xiaoxia; She, Xingrong; Li, Dong; Hong, Guangliang; Wu, Bin; Li, Mengfang; Lu, Zhongqiu

    2014-11-01

    To investigate the effects of thalidomide in a mouse model of paraquat-induced acute lung injury and the mechanisms underlying the properties of thalidomide. Male ICR mice were randomly allocated into four groups: nomal control group (n = 30), thalidomide control group (n = 30), paraquat poisioning group (n = 30) and thalidomide treatment group (n = 90). Mice were sacrificed at 1d, 3d and 7d after paraquat poisioning. The level of (MDA) malondialdehyde, Superoxidedi-smutase (SOD) and glutathione (GSH) in the lung tissue were measuerd by chemical colorimetry. The expression of Nrf2 mRNA was determined by RT-PCR; Nuclear protein Nrf2 was abserved by Western blotting; Pathological changes of lung tissue were observed under light microscope by HE stain; the lung apoptosis cells were detected by TUNEL. The levels of MDA, SOD and the expressions Nrf2 mRNA and protein Nrf2 in lung tissue were all markedly increased in mice of paraquat poisioning group than those in nomal group at 1 d, 3 d, 7 d. In contrast, the levels of GSH were decreaseel (P<0.05). Compared with paraquat poisioning group, the pulmonary SOD, Nrf2 mRNA and protein were increased and the lung wet dry ratio were all significantly decreased in mice of THD treatment group at 1 d, 3 d, 7 d (P<0.05). THD alleviated the pulmonary damage in the lightmicroscope at 3d after paraquat poisioning. The apoptosis index was markedly decreased in THD treatment groups comparing to paraquat piosioning group (P<0.05). Lipid peroxide damage was one of the mechanisms of paraquat poisioning, thalidomide could attenuate paraquat-induced acute lung injury and its mechanism may be activating the Nrf2-ARE signaling pathway to protect mouse from Lipid peroxide damage.

  16. Network Inference Algorithms Elucidate Nrf2 Regulation of Mouse Lung Oxidative Stress

    PubMed Central

    Singhal, Mudita; Malhotra, Deepti; Biswal, Shyam

    2008-01-01

    A variety of cardiovascular, neurological, and neoplastic conditions have been associated with oxidative stress, i.e., conditions under which levels of reactive oxygen species (ROS) are elevated over significant periods. Nuclear factor erythroid 2-related factor (Nrf2) regulates the transcription of several gene products involved in the protective response to oxidative stress. The transcriptional regulatory and signaling relationships linking gene products involved in the response to oxidative stress are, currently, only partially resolved. Microarray data constitute RNA abundance measures representing gene expression patterns. In some cases, these patterns can identify the molecular interactions of gene products. They can be, in effect, proxies for protein–protein and protein–DNA interactions. Traditional techniques used for clustering coregulated genes on high-throughput gene arrays are rarely capable of distinguishing between direct transcriptional regulatory interactions and indirect ones. In this study, newly developed information-theoretic algorithms that employ the concept of mutual information were used: the Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNE), and Context Likelihood of Relatedness (CLR). These algorithms captured dependencies in the gene expression profiles of the mouse lung, allowing the regulatory effect of Nrf2 in response to oxidative stress to be determined more precisely. In addition, a characterization of promoter sequences of Nrf2 regulatory targets was conducted using a Support Vector Machine classification algorithm to corroborate ARACNE and CLR predictions. Inferred networks were analyzed, compared, and integrated using the Collective Analysis of Biological Interaction Networks (CABIN) plug-in of Cytoscape. Using the two network inference algorithms and one machine learning algorithm, a number of both previously known and novel targets of Nrf2 transcriptional activation were identified. Genes predicted as

  17. Proteoglycans Maintain Lung Stability in an Elastase-Treated Mouse Model of Emphysema

    PubMed Central

    Takahashi, Ayuko; Majumdar, Arnab; Parameswaran, Harikrishnan; Bartolák-Suki, Erzsébet

    2014-01-01

    Extracellular matrix remodeling and tissue rupture contribute to the progression of emphysema. Lung tissue elasticity is governed by the tensile stiffness of fibers and the compressive stiffness of proteoglycans. It is not known how proteoglycan remodeling affects tissue stability and destruction in emphysema. The objective of this study was to characterize the role of remodeled proteoglycans in alveolar stability and tissue destruction in emphysema. At 30 days after treatment with porcine pancreatic elastase, mouse lung tissue stiffness and alveolar deformation were evaluated under varying tonicity conditions that affect the stiffness of proteoglycans. Proteoglycans were stained and measured in the alveolar walls. Computational models of alveolar stability and rupture incorporating the mechanical properties of fibers and proteoglycans were developed. Although absolute tissue stiffness was only 24% of normal, changes in relative stiffness and alveolar shape distortion due to changes in tonicity were increased in emphysema (P < 0.01 and P < 0.001). Glycosaminoglycan amount per unit alveolar wall length, which is responsible for proteoglycan stiffness, was higher in emphysema (P < 0.001). Versican expression increased in the tissue, but decorin decreased. Our network model predicted that the rate of tissue deterioration locally governed by mechanical forces was reduced when proteoglycan stiffness was increased. Consequently, this general network model explains why increasing proteoglycan deposition protects the alveolar walls from rupture in emphysema. Our results suggest that the loss of proteoglycans observed in human emphysema contributes to disease progression, whereas treatments that promote proteoglycan deposition in the extracellular matrix should slow the progression of emphysema. PMID:24450478

  18. Acinetobacter baumannii Infection Inhibits Airway Eosinophilia and Lung Pathology in a Mouse Model of Allergic Asthma

    PubMed Central

    Qiu, Hongyu; KuoLee, Rhonda; Harris, Greg; Zhou, Hongyan; Miller, Harvey; Patel, Girishchandra B.; Chen, Wangxue

    2011-01-01

    Allergic asthma is a dysregulation of the immune system which leads to the development of Th2 responses to innocuous antigens (allergens). Some infections and microbial components can re-direct the immune response toward the Th1 response, or induce regulatory T cells to suppress the Th2 response, thereby inhibiting the development of allergic asthma. Since Acinetobacter baumannii infection can modulate lung cellular and cytokine responses, we studied the effect of A. baumannii in modulating airway eosinophilia in a mouse model of allergic asthma. Ovalbumin (OVA)-sensitized mice were treated with live A. baumannii or phosphate buffered saline (PBS), then intranasally challenged with OVA. Compared to PBS, A. baumannii treatment significantly reduced pulmonary Th2 cytokine and chemokine responses to OVA challenge. More importantly, the airway inflammation in A. baumannii-treated mice was strongly suppressed, as seen by the significant reduction of the proportion and the total number of eosinophils in the bronchoalveolar lavage fluid. In addition, A. baumannii-treated mice diminished lung mucus overproduction and pathology. However, A. baumannii treatment did not significantly alter systemic immune responses to OVA. Serum OVA-specific IgE, IgG1 and IgG2a levels were comparable between A. baumannii- and PBS-treated mice, and tracheobronchial lymph node cells from both treatment groups produced similar levels of Th1 and Th2 cytokines in response to in vitro OVA stimulation. Moreover, it appears that TLR-4 and IFN-γ were not directly involved in the A. baumannii-induced suppression of airway eosinophilia. Our results suggest that A. baumannii inhibits allergic airway inflammation by direct suppression of local pulmonary Th2 cytokine responses to the allergen. PMID:21789200

  19. Stereological assessment of mouse lung parenchyma via nondestructive, multiscale micro-CT imaging validated by light microscopic histology.

    PubMed

    Vasilescu, Dragos M; Klinge, Christine; Knudsen, Lars; Yin, Leilei; Wang, Ge; Weibel, Ewald R; Ochs, Matthias; Hoffman, Eric A

    2013-03-15

    Quantitative assessment of the lung microstructure using standard stereological methods such as volume fractions of tissue, alveolar surface area, or number of alveoli, are essential for understanding the state of normal and diseased lung. These measures are traditionally obtained from histological sections of the lung tissue, a process that ultimately destroys the three-dimensional (3-D) anatomy of the tissue. In comparison, a novel X-ray-based imaging method that allows nondestructive sectioning and imaging of fixed lungs at multiple resolutions can overcome this limitation. Scanning of the whole lung at high resolution and subsequent regional sampling at ultrahigh resolution without physically dissecting the organ allows the application of design-based stereology for assessment of the whole lung structure. Here we validate multiple stereological estimates performed on micro-computed tomography (μCT) images by comparing them with those obtained via conventional histology on the same mouse lungs. We explore and discuss the potentials and limitations of the two approaches. Histological examination offers higher resolution and the qualitative differentiation of tissues by staining, but ultimately loses 3-D tissue relationships, whereas μCT allows for the integration of morphometric data with the spatial complexity of lung structure. However, μCT has limited resolution satisfactory for the sterological estimates presented in this study but not for differentiation of tissues. We conclude that introducing stereological methods in μCT studies adds value by providing quantitative information on internal structures while not curtailing more complex approaches to the study of lung architecture in the context of physiological or pathological studies.

  20. Stereological assessment of mouse lung parenchyma via nondestructive, multiscale micro-CT imaging validated by light microscopic histology

    PubMed Central

    Vasilescu, Dragoş M.; Klinge, Christine; Knudsen, Lars; Yin, Leilei; Wang, Ge; Weibel, Ewald R.; Ochs, Matthias

    2013-01-01

    Quantitative assessment of the lung microstructure using standard stereological methods such as volume fractions of tissue, alveolar surface area, or number of alveoli, are essential for understanding the state of normal and diseased lung. These measures are traditionally obtained from histological sections of the lung tissue, a process that ultimately destroys the three-dimensional (3-D) anatomy of the tissue. In comparison, a novel X-ray-based imaging method that allows nondestructive sectioning and imaging of fixed lungs at multiple resolutions can overcome this limitation. Scanning of the whole lung at high resolution and subsequent regional sampling at ultrahigh resolution without physically dissecting the organ allows the application of design-based stereology for assessment of the whole lung structure. Here we validate multiple stereological estimates performed on micro–computed tomography (μCT) images by comparing them with those obtained via conventional histology on the same mouse lungs. We explore and discuss the potentials and limitations of the two approaches. Histological examination offers higher resolution and the qualitative differentiation of tissues by staining, but ultimately loses 3-D tissue relationships, whereas μCT allows for the integration of morphometric data with the spatial complexity of lung structure. However, μCT has limited resolution satisfactory for the sterological estimates presented in this study but not for differentiation of tissues. We conclude that introducing stereological methods in μCT studies adds value by providing quantitative information on internal structures while not curtailing more complex approaches to the study of lung architecture in the context of physiological or pathological studies. PMID:23264542

  1. PR-Set7 is degraded in a conditional Cul4A transgenic mouse model of lung cancer

    DOE PAGES

    Wang, Yang; Xu, Zhidong; Mao, Jian -Hua; ...

    2015-06-01

    Background and objective. Maintenance of genomic integrity is essential to ensure normal organismal development and to prevent diseases such as cancer. PR-Set7 (also known as Set8) is a cell cycle regulated enzyme that catalyses monomethylation of histone 4 at Lys20 (H4K20me1) to promote chromosome condensation and prevent DNA damage. Recent studies show that CRL4CDT2-mediated ubiquitylation of PR-Set7 leads to its degradation during S phase and after DNA damage. This might occur to ensure appropriate changes in chromosome structure during the cell cycle or to preserve genome integrity after DNA damage. Methods. We developed a new model of lung tumor developmentmore » in mice harboring a conditionally expressed allele of Cul4A. We have therefore used a mouse model to demonstrate for the first time that Cul4A is oncogenic in vivo. With this model, staining of PR-Set7 in the preneoplastic and tumor lesions in AdenoCre-induced mouse lungs was performed. Meanwhile we identified higher protein level changes of γ-tubulin and pericentrin by IHC. Results. The level of PR-Set7 down-regulated in the preneoplastic and adenocarcinomous lesions following over-expression of Cul4A. We also identified higher levels of the proteins pericentrin and γ-tubulin in Cul4A mouse lungs induced by AdenoCre. Conclusion. PR-Set7 is a direct target of Cul4A for degradation and involved in the formation of lung tumors in the conditional Cul4A transgenic mouse model.« less

  2. Mouse lung slices: An ex vivo model for the evaluation of antiviral and anti-inflammatory agents against influenza viruses.

    PubMed

    Liu, Rui; An, Liwei; Liu, Ge; Li, Xiaoyu; Tang, Wei; Chen, Xulin

    2015-08-01

    The influenza A virus is notoriously known for its ability to cause recurrent epidemics and global pandemics. Antiviral therapy is effective when treatment is initiated within 48h of symptom onset, and delaying treatment beyond this time frame is associated with decreased efficacy. Research on anti-inflammatory therapy to ameliorate influenza-induced inflammation is currently underway and seems important to the impact on the clinical outcome. Both antiviral and anti-inflammatory drugs with novel mechanisms of action are urgently needed. Current methods for evaluating the efficacy of anti-influenza drugs rely mostly on transformed cells and animals. Transformed cell models are distantly related to physiological and pathological conditions. Although animals are the best choices for preclinical drug testing, they are not time- or cost-efficient. In this study, we established an ex vivo model using mouse lung slices to evaluate both antiviral and anti-inflammatory agents against influenza virus infection. Both influenza virus PR8 (H1N1) and A/Human/Hubei/3/2005 (H3N2) can replicate efficiently in mouse lung slices and trigger significant cytokine and chemokine responses. The induction of selected cytokines and chemokines were found to have a positive correlation between ex vivo and in vivo experiments, suggesting that the ex vivo cultured lung slices may closely resemble the lung functionally in an in vivo configuration when challenged by influenza virus. Furthermore, a set of agents with known antiviral and/or anti-inflammatory activities were tested to validate the ex vivo model. Our results suggested that mouse lung slices provide a robust, convenient and cost-efficient model for the assessment of both antiviral and anti-inflammatory agents against influenza virus infection in one assay. This ex vivo model may predict the efficacy of drug candidates' antiviral and anti-inflammatory activities in vivo.

  3. Ion-Current-Based Temporal Proteomic Profiling of Influenza-A-Virus-Infected Mouse Lungs Revealed Underlying Mechanisms of Altered Integrity of the Lung Microvascular Barrier.

    PubMed

    Shen, Shichen; Li, Jun; Hilchey, Shannon; Shen, Xiaomeng; Tu, Chengjian; Qiu, Xing; Ng, Andrew; Ghaemmaghami, Sina; Wu, Hulin; Zand, Martin S; Qu, Jun

    2016-02-05

    Investigation of influenza-A-virus (IAV)-infected lung proteomes will greatly promote our understanding on the virus-host crosstalk. Using a detergent-cocktail extraction and digestion procedure and a reproducible ion-current-based method, we performed the first comprehensive temporal analysis of mouse IAV infection. Mouse lung tissues at three time points post-inoculation were compared with controls (n = 4/group), and >1600 proteins were quantified without missing value in any animal. Significantly changed proteins were identified at 4 days (n = 144), 7 days (n = 695), and 10 days (n = 396) after infection, with low false altered protein rates (1.73-8.39%). Functional annotation revealed several key biological processes involved in the systemic host responses. Intriguingly, decreased levels of several cell junction proteins as well as increased levels of tissue metalloproteinase MMP9 were observed, reflecting the IAV-induced structural breakdown of lung epithelial barrier. Supporting evidence of MMP9 activation came from immunoassays examining the abundance and phosphorylation states of all MAPKs and several relevant molecules. Importantly, IAV-induced MMP gelatinase expression was suggested to be specific to MMP9, and p38 MAPK may contribute predominantly to MMP9 elevation. These findings help to resolve the long-lasting debate regarding the signaling pathways of IAV-induced MMP9 expression and shed light on the molecular mechanisms underlying pulmonary capillary-alveolar leak syndrome that can occur during influenza infection.

  4. The Shc 66 and 46 kD isoforms are differentially downregulated at parturition in the fetal mouse lung.

    PubMed

    Lee, M K; Zhao, J; Smith, S M; Tefft, J D; Bringas, P; Hwang, C; Warburton, D

    1998-12-01

    Many of the signaling pathways regulating fetal lung mesenchymal cell proliferation are mediated by the Shc intracellular signaling proteins. Shc is expressed as three isoforms: 52 kD and 46 kD proteins (Shc 52 and Shc 46, respectively) translated from the same mRNA, and a 66 kD form (Shc 66) translated from a separate mRNA. Shc 52 is an activator of Ras and mitogen-activated protein kinase, whereas Shc 66 antagonizes Ras activation. The function of Shc 46 is unclear. We hypothesized that the Shc isoforms are differentially regulated during fetal mouse lung morphogenesis. Relative Shc 66 and Shc 46 protein expression are high until parturition (term = 18.5 d), when a dramatic decrease begins; by postconceptual d 20, relative Shc 66 and Shc 46 expression have fallen by 75 and 69%, respectively. A similar pattern of decreasing Shc 66 mRNA expression in the peripartum period was detected by reverse transcription and competitive polymerase chain reaction during the same period. By isoform-specific immunohistochemistry, Shc 66 is widely distributed in the embryonic lung but becomes restricted to the bronchial smooth muscle and overlying epithelia, periarterial smooth muscle, and the interlobar pleura late in gestation. After parturition, Shc 66 is virtually absent from the lung. All three Shc isoforms are phosphorylated by epidermal growth factor stimulation in fetal lung mesenchymal cells, indicating that Shc 66 is functional in these cells. These data indicate that Shc isoforms are differentially regulated during lung development.

  5. In vivo tomographic imaging of lung colonization of tumour in mouse with simultaneous fluorescence and X-ray CT.

    PubMed

    Zhang, Bin; Gao, Fuping; Wang, Mengjiao; Cao, Xu; Liu, Fei; Wang, Xin; Luo, Jianwen; Wang, Guangzhi; Bai, Jing

    2014-01-01

    Non-invasive in vivo imaging of diffuse and wide-spread colonization within the lungs, rather than distinct solid primary tumors, is still a challenging work. In this work, a lung colonization mouse model bearing A549 human lung tumor was simultaneously scanned by a dual-modality fluorescence molecular tomography (FMT) and X-ray computed tomography (CT) system in vivo. A two steps method which incorporates CT structural information into the FMT reconstruction procedure is employed to provide concurrent anatomical and functional information. By using the target-specific fluorescence agent, the fluorescence tomographic results show elevated fluorescence intensity deep within the lungs which is colonized with diffuse and wide-spread tumors. The results were confirmed with ex vivo fluorescence reflectance imaging and histological examination of the lung tissues. With FMT reconstruction combined with the CT information, the dual-modality FMT/micro-CT system is expected to offer sensitive and noninvasive imaging of diffuse tumor colonization within the lungs in vivo. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. DNA vaccine elicits an efficient antitumor response by targeting the mutant Kras in a transgenic mouse lung cancer model.

    PubMed

    Weng, T-Y; Yen, M-C; Huang, C-T; Hung, J-J; Chen, Y-L; Chen, W-C; Wang, C-Y; Chang, J-Y; Lai, M-D

    2014-10-01

    Mutant Kras (V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog) is observed in more than 20% of non-small-cell lung cancers; however, no effective Kras target therapy is available at present. The Kras DNA vaccine may represent as a novel immunotherapeutic agent in lung cancer. In this study, we investigated the antitumor efficacy of the Kras DNA vaccine in a genetically engineered inducible mouse lung tumor model driven by Kras(G12D). Lung tumors were induced by doxycycline, and the therapeutic effects of Kras DNA vaccine were evaluated with delivery of Kras(G12D) plasmids. Mutant Kras(G12D) DNA vaccine significantly decreased the tumor nodules. A dominant-negative mutant Kras(G12D)N17, devoid of oncogenic activity, achieved similar therapeutic effects. The T-helper 1 immune response was enhanced in mice treated with Kras DNA vaccine. Splenocytes from mice receiving Kras DNA vaccine presented an antigen-specific response by treatment with peptides of Kras but not Hras or OVA. The number of tumor-infiltrating CD8(+) T cells increased after Kras vaccination. In contrast, Kras DNA vaccine was not effective in the lung tumor in transgenic mice, which was induced by mutant L858R epidermal growth factor receptor. Overall, these results indicate that Kras DNA vaccine produces an effective antitumor response in transgenic mice, and may be useful in treating lung cancer-carrying Ras mutation.

  7. Cationic amphiphiles with fatty acyl chain asymmetry of coconut oil deliver genes selectively to mouse lung.

    PubMed

    Chandrashekhar, Voshavar; Srujan, Marepally; Prabhakar, Rairala; Reddy, Rakesh C; Sreedhar, Bojja; Rentam, Kiran K R; Kanjilal, Sanjit; Chaudhuri, Arabinda

    2011-03-16

    Recent structure-activity studies have revealed a dramatic influence of hydrophobic chain asymmetry in enhancing gene delivery efficacies of synthetic cationic amphiphiles (Nantz, M. H. et al. Mol. Pharmaceutics2010, 7, 786-794; Koynova, R. et al. Mol. Pharmaceutics2009, 6, 951-958). The present findings demonstrate for the first time that such a transfection enhancing influence of asymmetric hydrocarbon chains observed in pure synthetic cationic amphiphiles also works for cationic amphiphiles designed with natural, asymmetric fatty acyl chains of a food-grade oil. Herein, we demonstrate that cationic amphiphiles designed with the natural fatty acyl chain asymmetry of food-grade coconut oil are less cytotoxic and deliver genes selectively to mouse lung. Despite lauroyl chains being the major fatty acyl chains of coconut oil, both the in vitro and In vivo gene transfer efficiencies of such cationic amphiphiles were found to be remarkably superior (>4-fold) to those of their pure dilauroyl analogue. Mechanistic studies involving the technique of fluorescence resonance energy transfer (FRET) revealed higher biomembrane fusibility of the cationic liposomes of the coconut amphiphiles than that of the symmetric dilauroyl analogue. AFM study revealed pronounced fusogenic nonlamellar structures of the liposomes of coconut amphiphiles. Findings in the FRET and cellular uptake study, taken together, support the notion that the higher cellular uptake resulting from the more fusogenic nature of the liposomes of coconut amphiphiles 1 are likely to play a dominant role in making the coconut amphiphiles transfection competent.

  8. Arsenic trioxide inhibits lung metastasis of mouse colon cancer via reducing the infiltration of regulatory T cells.

    PubMed

    Wang, Lei; Hu, Xiang; Xu, Yingxin; Liu, Zhong

    2016-11-01

    The purpose of this study was to investigate the effects of arsenic trioxide (As2O3) on the infiltration of regulatory T cells (Tregs) in the local lung metastasis of mouse colon cancer in vivo and the regulation of Tregs in cytokine-induced killer cells (CIKs) in vitro. A high Tregs infiltration mouse colon cancer lung metastasis model was established by intravenous injection of CT26 murine colon carcinoma cells. Tumor-bearing mice were randomly divided into three groups: control group, low-dose As2O3 group, and high-dose As2O3 group. For in vitro studies, CIKs were treated with vehicle control or 0.1, 1, or 5 μM As2O3. The level of Tregs was detected via flow cytometry, Foxp3 expression was assessed by immunohistochemistry and reverse transcription-polymerase chain reaction (RT-PCR), the level of interferon gamma (IFN-γ) was evaluated by enzyme-linked immunoassay (ELISA), and the cytotoxic activity of As2O3-treated CIKs was assessed through a lactate dehydrogenase (LDH) release assay. Obvious lung metastasis was observed 3 days after CT26 murine colon carcinoma cell injection. The numbers of Tregs in the lungs and spleens of tumor-bearing mice were significantly higher than those of the normal group (p < 0.01). As2O3 treatment increased the mouse weight as well as reduced the number of metastatic lung nodules and the lung/body weight ratio (p < 0.01). Moreover, As2O3 treatment significantly reduced the Tregs proportion and the Foxp3 messenger RNA (mRNA) levels in metastatic lung tissues (p < 0.01). In vitro, As2O3 significantly reduced the Tregs proportion and the Foxp3 mRNA levels (p < 0.01) and significantly increased the cytotoxic activity of CIKs and the IFN-γ levels in the supernatant of cultured CIKs (p < 0.01). As2O3 might inhibit lung metastasis of colon cancer by reducing the local infiltration of Tregs and increase the cytotoxic activity of CIKs by suppressing Tregs.

  9. Airway segmentation and analysis for the study of mouse models of lung disease using micro-CT

    NASA Astrophysics Data System (ADS)

    Artaechevarria, X.; Pérez-Martín, D.; Ceresa, M.; de Biurrun, G.; Blanco, D.; Montuenga, L. M.; van Ginneken, B.; Ortiz-de-Solorzano, C.; Muñoz-Barrutia, A.

    2009-11-01

    Animal models of lung disease are gaining importance in understanding the underlying mechanisms of diseases such as emphysema and lung cancer. Micro-CT allows in vivo imaging of these models, thus permitting the study of the progression of the disease or the effect of therapeutic drugs in longitudinal studies. Automated analysis of micro-CT images can be helpful to understand the physiology of diseased lungs, especially when combined with measurements of respiratory system input impedance. In this work, we present a fast and robust murine airway segmentation and reconstruction algorithm. The algorithm is based on a propagating fast marching wavefront that, as it grows, divides the tree into segments. We devised a number of specific rules to guarantee that the front propagates only inside the airways and to avoid leaking into the parenchyma. The algorithm was tested on normal mice, a mouse model of chronic inflammation and a mouse model of emphysema. A comparison with manual segmentations of two independent observers shows that the specificity and sensitivity values of our method are comparable to the inter-observer variability, and radius measurements of the mainstem bronchi reveal significant differences between healthy and diseased mice. Combining measurements of the automatically segmented airways with the parameters of the constant phase model provides extra information on how disease affects lung function.

  10. Immunohistochemical and immunocytochemical detection of SchS34 antigen in Stachybotrys chartarum spores and spore impacted mouse lungs.

    PubMed

    Rand, Thomas G; Miller, J David

    2008-02-01

    The purpose of this study was to evaluate the distribution of a 34 kD antigen isolated from S. chartarum sensu lato in spores and in the mouse lung 48 h after intra-tracheal instillation of spores by immuno-histochemistry. This antigen was localized in spore walls, primarily in the outer and inner wall layers and on the external wall surfaces with modest labelling observed in cytoplasm. Immuno-histochemistry revealed that in spore impacted mouse lung, antigen was again observed in spore walls, along the outside surface of the outer wall and in the intercellular space surrounding spores. In lung granulomas the labelled antigen formed a diffusate, some 2-3x the size of the long axis of spores, with highest concentrations nearest to spores. Collectively, these observations indicated that this protein not only displayed a high degree of specificity with respect to its location in spores and wall fragments, but also that it slowly diffuses into surrounding lungs.

  11. Kinase domain activation of FGFR2 yields high-grade lung adenocarcinoma sensitive to a Pan-FGFR inhibitor in a mouse model of NSCLC.

    PubMed

    Tchaicha, Jeremy H; Akbay, Esra A; Altabef, Abigail; Mikse, Oliver R; Kikuchi, Eiki; Rhee, Kevin; Liao, Rachel G; Bronson, Roderick T; Sholl, Lynette M; Meyerson, Matthew; Hammerman, Peter S; Wong, Kwok-Kin

    2014-09-01

    Somatic mutations in FGFR2 are present in 4% to 5% of patients diagnosed with non-small cell lung cancer (NSCLC). Amplification and mutations in FGFR genes have been identified in patients with NSCLCs, and clinical trials are testing the efficacy of anti-FGFR therapies. FGFR2 and other FGFR kinase family gene alterations have been found in both lung squamous cell carcinoma and lung adenocarcinoma, although mouse models of FGFR-driven lung cancers have not been reported. Here, we generated a genetically engineered mouse model (GEMM) of NSCLC driven by a kinase domain mutation in FGFR2. Combined with p53 ablation, primary grade 3/4 adenocarcinoma was induced in the lung epithelial compartment exhibiting locally invasive and pleiotropic tendencies largely made up of multinucleated cells. Tumors were acutely sensitive to pan-FGFR inhibition. This is the first FGFR2-driven lung cancer GEMM, which can be applied across different cancer indications in a preclinical setting.

  12. Radiation-induced lung fibrosis in a tumor-bearing mouse model is associated with enhanced Type-2 immunity.

    PubMed

    Chen, Jing; Wang, Yacheng; Mei, Zijie; Zhang, Shimin; Yang, Jie; Li, Xin; Yao, Ye; Xie, Conghua

    2016-03-01

    Lung fibrosis may be associated with Type-2 polarized inflammation. Herein, we aim to investigate whether radiation can initiate a Type-2 immune response and contribute to the progression of pulmonary fibrosis in tumor-bearing animals. We developed a tumor-bearing mouse model with Lewis lung cancer to receive either radiation therapy alone or radiation combined with Th1 immunomodulator unmethylated cytosine-phosphorothioate-guanine containing oligodeoxynucleotide (CpG-ODN). The Type-2 immune phenotype in tumors and the histological grade of lung fibrosis were evaluated in mice sacrificed three weeks after irradiation. Mouse lung tissues were analyzed for hydroxyproline and the expression of Type-1/Type-2 key transcription factors (T-bet/GATA-3). The concentration of Type-1/Type-2 cytokines in serum was measured by cytometric bead array. Lung fibrosis was observed to be more serious in tumor-bearing mice than in normal mice post-irradiation. The fibrosis score in irradiated tumor-bearing mice on Day 21 was 4.33 ± 0.82, which was higher than that of normal mice (2.00 ± 0.63; P < 0.05). Hydroxyproline and GATA-3 expression were increased in the lung tissues of tumor-bearing mice following irradiation. CpG-ODN attenuated fibrosis by markedly decreasing GATA-3 expression. Serum IL-13 and IL-5 were elevated, whereas INF-γ and IL-12 expression were decreased in irradiated tumor-bearing mice. These changes were reversed after CpG-ODN treatment. Thus, Type-2 immunity in tumors appeared to affect the outcome of radiation damage and might be of interest for future studies on developing approaches in which Type-1-related immunotherapy and radiotherapy are used in combination. © The Author 2015. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  13. A Novel Nontoxic Inhibitor of the Activation of NADPH Oxidase Reduces Reactive Oxygen Species Production in Mouse LungS⃞

    PubMed Central

    Lee, Intae; Dodia, Chandra; Chatterjee, Shampa; Zagorski, John; Mesaros, Clementina; Blair, Ian A.; Feinstein, Sheldon I.; Jain, Mahendra

    2013-01-01

    1-Hexadecyl-3-trifluoroethylglycero-sn-2-phosphomethanol (MJ33) is a fluorinated phospholipid analog that inhibits the phospholipase A2 (PLA2) activity of peroxiredoxin 6 (Prdx6). Prdx6 PLA2 activity is required for activation of NADPH oxidase 2 and subsequent generation of reactive oxygen species (ROS). In vitro, MJ33 inhibited agonist-stimulated production of ROS by the isolated perfused mouse lung, lung microvascular endothelial cells, and polymorphonuclear leukocytes. MJ33 (0.02–0.5 µmol MJ33/kg body weight) in mixed unilamellar liposomes was administered to C57BL/6 mice by either intratracheal (i.t.) or i.v. routes. Lung MJ33 content, measured by liquid chromatography/mass spectroscopy, showed uptake of 67–87% of the injected dose for i.t. and 23–42% for i.v. administration at 4 hours postinjection. PLA2 activity of lung homogenates was markedly inhibited (>85%) at 4 hours postadministration. Both MJ33 content and PLA2 activity gradually returned to near control levels over the subsequent 24–72 hours. Mice treated with MJ33 at 12.5–25 µmol/kg did not show changes (compared with control) in clinical symptomatology, body weight, hematocrit, and histology of lung, liver, and kidney during a 30- to 50-day observation period. Thus, the toxic dose of MJ33 was >25 µmol/kg, whereas the PLA2 inhibitory dose was approximately 0.02 µmol/kg, indicating a high margin of safety. MJ33 administered to mice prior to lung isolation markedly reduced ROS production and tissue lipid and protein oxidation during ischemia followed by reperfusion. Thus, MJ33 could be useful as a therapeutic agent to prevent ROS-mediated tissue injury associated with lung inflammation or in harvested lungs prior to transplantation. PMID:23475902

  14. Transalveolar osmotic and diffusional water permeability in intact mouse lung measured by a novel surface fluorescence method.

    PubMed

    Carter, E P; Matthay, M A; Farinas, J; Verkman, A S

    1996-09-01

    A surface fluorescence method was developed to measure transalveolar transport of water, protons, and solutes in intact perfused lungs. Lungs from c57 mice were removed and perfused via the pulmonary artery (approximately 2 ml/min). The airspace was filled via the trachea with physiological saline containing a membrane-impermeant fluorescent indicator (FITC-dextran or aminonapthalene trisulfonic acid, ANTS). Because fluorescence is detected only near the lung surface due to light absorption by lung tissue, the surface fluorescence signal is directly proportional to indicator concentration. Confocal microscopy confirmed that the fluorescence signal arises from fluorophores in alveoli just beneath the pleural surface. Osmotic water permeability (Pf) was measured from the time course of intraalveolar FITC-dextran fluorescence in response to changes in perfusate osmolality. Transalveolar Pf was 0.017 +/- 0.001 cm/s at 23 degrees C, independent of the solute used to induce osmosis (sucrose, NaCl, urea), independent of osmotic gradient size and direction, weakly temperature dependent (Arrhenius activation energy 5.3 kcal/mol) and inhibited by HgCl2. Pf was not affected by cAMP activation but was decreased by 43% in lung exposed to hyperoxia for 5 d. Diffusional water permeability (Pd) and Pf were measured in the same lung from intraalveolar ANTS fluorescence, which increased by 1.8-fold upon addition of 50% D2O to the perfusate, Pd was 1.3 x 10(-5) cm/s at 23 degrees C. Transalveolar proton transport was measured from FITC-dextran fluorescence upon switching perfusate pH between 7.4 and 5.6; alveolar pH half-equilibrated in 1.9 and 1.0 min without and with HCO3-, respectively. These results indicate high transalveolar water permeability in mouse lung, implicating the involvement of molecular water channels, and establish a quantitative surface fluorescence method to measure water and solute permeabilities in intact lung.

  15. Macrophages mediate lung inflammation in a mouse model of ischemic acute kidney injury

    PubMed Central

    Altmann, Christopher; Andres-Hernando, Ana; McMahan, Rachel H.; Ahuja, Nilesh; He, Zhibin; Rivard, Chris J.; Edelstein, Charles Louis; Barthel, Lea; Janssen, William J.

    2012-01-01

    Serum IL-6 is increased in acute kidney injury (AKI) and inhibition of IL-6 reduces AKI-mediated lung inflammation. We hypothesized that circulating monocytes produce IL-6 and that alveolar macrophages mediate lung inflammation after AKI via chemokine (CXCL1) production. To investigate systemic and alveolar macrophages in lung injury after AKI, sham operation or 22 min of renal pedicle clamping (AKI) was performed in three experimental settings: 1) systemic macrophage depletion via diphtheria toxin (DT) injection to CD11b-DTR transgenic mice, 2) DT injection to wild-type mice, and 3) alveolar macrophage depletion via intratracheal (IT) liposome-encapsulated clodronate (LEC) administration to wild-type mice. In mice with AKI and systemic macrophage depletion (CD11b-DTR transgenic administered DT) vs. vehicle-treated AKI, blood monocytes and lung interstitial macrophages were reduced, renal function was similar, serum IL-6 was increased, lung inflammation was improved, lung CXCL1 was reduced, and lung capillary leak was increased. In wild-type mice with AKI administered DT vs. vehicle, serum IL-6 was increased. In mice with AKI and alveolar macrophage depletion (IT-LEC) vs. AKI with normal alveolar macrophage content, blood monocytes and lung interstitial macrophages were similar, alveolar macrophages were reduced, renal function was similar, lung inflammation was improved, lung CXCL1 was reduced, and lung capillary leak was increased. In conclusion, administration of DT in AKI is proinflammatory, limiting the use of the DTR-transgenic model to study systemic effects of AKI. Mice with AKI and either systemic mononuclear phagocyte depletion or alveolar macrophage depletion had reduced lung inflammation and lung CXCL1, but increased lung capillary leak; thus, mononuclear phagocytes mediate lung inflammation, but they protect against lung capillary leak after ischemic AKI. Since macrophage activation and chemokine production are key events in the development of acute

  16. Molecular and functional characterization of a calcium-sensitive chloride channel from mouse lung.

    PubMed

    Gandhi, R; Elble, R C; Gruber, A D; Schreur, K D; Ji, H L; Fuller, C M; Pauli, B U

    1998-11-27

    A protein (mCLCA1) has been cloned from a mouse lung cDNA library that bears strong sequence homology with the recently described bovine tracheal, Ca2+-sensitive chloride channel protein (bCLCA1), bovine lung endothelial cell adhesion molecule-1 (Lu-ECAM-1), and the human intestinal Ca2+-sensitive chloride channel protein (hCLCA1). In vitro, its 3.1-kilobase message translates into a 100-kDa protein that can be glycosylated to an approximately 125-kDa product. SDS-polyacrylamide gel electrophoresis from lysates of mCLCA1 cDNA-transfected transformed human embryonic kidney cells (HEK293) reveals proteins of 130, 125, and 90 kDa as well as a protein triplet in the 32-38 kDa size range. Western analyses with antisera raised against Lu-ECAM-1 peptides show that the N-terminal region of the predicted open reading frame is present only in the larger size proteins (i.e. 130, 125, and 90 kDa), whereas the C-terminal region of the open reading frame is observed in the 32-38 kDa size proteins, suggesting a posttranslational, proteolytic processing of a precursor protein (125/130 kDa) into 90 kDa and 32-38 kDa components similar to that reported for Lu-ECAM-1. Hydrophobicity analyses predict four transmembrane domains for the 90-kDa protein. The mCLCA1 mRNA is readily detected by Northern analysis and by in situ hybridization in the respiratory epithelia of trachea and bronchi. Transient expression of mCLCA1 in HEK293 cells was associated with an increase in whole cell Cl- current that could be activated by Ca2+ and ionomycin and inhibited by 4, 4'-diisothiocyanatostilbene-2,2'-disulfonic acid, dithiothreitol, and niflumic acid. The discovery of mCLCA1 opens the door for further investigating the possible contribution of a Ca2+-sensitive chloride conductance to the pathogenesis of cystic fibrosis.

  17. Analysis of the pathological lesions of the lung in a mouse model of cutaneous infection with Streptococcus pyogenes.

    PubMed

    Minami, Masaaki; Sobue, Sayaka; Ichihara, Masatoshi; Hasegawa, Tadao

    2012-02-01

    Invasive diseases such as toxic shock syndrome caused by Streptococcus pyogenes (S. pyogenes) are re-emerging infectious diseases. The mechanism of pathogenesis is not completely understood although the virulence of this organism has been analyzed using animal model systems, particularly using mice. The analysis of the progression of infection, however, is difficult. Computed tomography (CT) scanning is an extremely powerful technique that we applied to the mouse model of cutaneous infection with S. pyogenes. Two or three days after subcutaneous administration of bacteria, high density reticular areas were detected in the lung by CT. Histopathological examination of the lung was performed to examine the results of CT. Increased numbers of cytokeratin-positive epithelial cells, probably alveolar type II epithelial cells, were detected but no remarkable increase of inflammatory cell infiltrates was observed. Our results show that the pathological lesions of the lung in this model, wherein relatively few numbers of neutrophils were in the alveoli, are well correlated with the lung of a part of streptococcal toxic shock syndrome patients. Therefore, CT may be useful in assessing the progression of S. pyogenes infection, particularly in the pathological lesions of the lung in this model. © 2011 The Authors. Pathology International © 2011 Japanese Society of Pathology and Blackwell Publishing Asia Pty Ltd.

  18. Radiogenic cell transformation and carcinogenesis

    NASA Technical Reports Server (NTRS)

    Yang, T. C.; Georgy, K. A.; Mei, M.; Durante, M.; Craise, L. M.

    1995-01-01

    Radiation carcinogenesis is one of the major biological effects considered important in the risk assessment for space travel. Various biological model systems, including both cultured cells and animals, have been found useful for studying the carcinogenic effects of space radiations, which consist of energetic electrons, protons and heavy ions. The development of techniques for studying neoplastic cell transformation in culture has made it possible to examine the cellular and molecular mechanisms of radiation carcinogenesis. Cultured cell systems are thus complementary to animal models. Many investigators have determined the oncogenic effects of ionizing and nonionizing radiation in cultured mammalian cells. One of the cell systems used most often for radiation transformation studies is mouse embryonic cells (C3H10T1/2), which are easy to culture and give good quantitative dose-response curves. Relative biological effectiveness (RBE) for heavy ions with various energies and linear energy transfer (LET) have been obtained with this cell system. Similar RBE and LET relationship was observed by investigators for other cell systems. In addition to RBE measurements, fundamental questions on repair of sub- and potential oncogenic lesions, direct and indirect effect, primary target and lesion, the importance of cell-cell interaction and the role of oncogenes and tumor suppressor genes in radiogenic carcinogenesis have been studied, and interesting results have been found. Recently several human epithelial cell systems have been developed, and ionizing radiation have been shown to transform these cells. Oncogenic transformation of these cells, however, requires a long expression time and/or multiple radiation exposures. Limited experimental data indicate high-LET heavy ions can be more effective than low-LET radiation in inducing cell transformation. Cytogenetic and molecular analyses can be performed with cloned transformants to provide insights into basic genetic

  19. Radiogenic cell transformation and carcinogenesis

    NASA Technical Reports Server (NTRS)

    Yang, T. C.; Georgy, K. A.; Mei, M.; Durante, M.; Craise, L. M.

    1995-01-01

    Radiation carcinogenesis is one of the major biological effects considered important in the risk assessment for space travel. Various biological model systems, including both cultured cells and animals, have been found useful for studying the carcinogenic effects of space radiations, which consist of energetic electrons, protons and heavy ions. The development of techniques for studying neoplastic cell transformation in culture has made it possible to examine the cellular and molecular mechanisms of radiation carcinogenesis. Cultured cell systems are thus complementary to animal models. Many investigators have determined the oncogenic effects of ionizing and nonionizing radiation in cultured mammalian cells. One of the cell systems used most often for radiation transformation studies is mouse embryonic cells (C3H10T1/2), which are easy to culture and give good quantitative dose-response curves. Relative biological effectiveness (RBE) for heavy ions with various energies and linear energy transfer (LET) have been obtained with this cell system. Similar RBE and LET relationship was observed by investigators for other cell systems. In addition to RBE measurements, fundamental questions on repair of sub- and potential oncogenic lesions, direct and indirect effect, primary target and lesion, the importance of cell-cell interaction and the role of oncogenes and tumor suppressor genes in radiogenic carcinogenesis have been studied, and interesting results have been found. Recently several human epithelial cell systems have been developed, and ionizing radiation have been shown to transform these cells. Oncogenic transformation of these cells, however, requires a long expression time and/or multiple radiation exposures. Limited experimental data indicate high-LET heavy ions can be more effective than low-LET radiation in inducing cell transformation. Cytogenetic and molecular analyses can be performed with cloned transformants to provide insights into basic genetic

  20. Initial Binding and Recellularization of Decellularized Mouse Lung Scaffolds with Bone Marrow-Derived Mesenchymal Stromal Cells

    PubMed Central

    Daly, Amanda B.; Wallis, John M.; Borg, Zachary D.; Bonvillain, Ryan W.; Deng, Bin; Ballif, Bryan A.; Jaworski, Diane M.; Allen, Gilman B.

    2012-01-01

    Recellularization of whole decellularized lung scaffolds provides a novel approach for generating functional lung tissue ex vivo for subsequent clinical transplantation. To explore the potential utility of stem and progenitor cells in this model, we investigated recellularization of decellularized whole mouse lungs after intratracheal inoculation of bone marrow-derived mesenchymal stromal cells (MSCs). The decellularized lungs maintained structural features of native lungs, including intact vasculature, ability to undergo ventilation, and an extracellular matrix (ECM) scaffold consisting primarily of collagens I and IV, laminin, and fibronectin. However, even in the absence of intact cells or nuclei, a number of cell-associated (non-ECM) proteins were detected using mass spectroscopy, western blots, and immunohistochemistry. MSCs initially homed and engrafted to regions enriched in types I and IV collagen, laminin, and fibronectin, and subsequently proliferated and migrated toward regions enriched in types I and IV collagen and laminin but not provisional matrix (fibronectin). MSCs cultured for up to 1 month in either basal MSC medium or in a small airways growth media (SAGM) localized in both parenchymal and airway regions and demonstrated several different morphologies. However, while MSCs cultured in basal medium increased in number, MSCs cultured in SAGM decreased in number over 1 month. Under both media conditions, the MSCs predominantly expressed genes consistent with mesenchymal and osteoblast phenotype. Despite a transient expression of the lung precursor TTF-1, no other airway or alveolar genes or vascular genes were expressed. These studies highlight the power of whole decellularized lung scaffolds to study functional recellularization with MSCs and other cells. PMID:21756220

  1. Toxicogenomics analysis of mouse lung responses following exposure to titanium dioxide nanomaterials reveal their disease potential at high doses

    PubMed Central

    Rahman, Luna; Wu, Dongmei; Johnston, Michael; William, Andrew; Halappanavar, Sabina

    2017-01-01

    Titanium dioxide nanoparticles (TiO2NPs) induce lung inflammation in experimental animals. In this study, we conducted a comprehensive toxicogenomic analysis of lung responses in mice exposed to six individual TiO2NPs exhibiting different sizes (8, 20 and 300nm), crystalline structure (anatase, rutile or anatase/rutile) and surface modifications (hydrophobic or hydrophilic) to investigate whether the mechanisms leading to TiO2NP-induced lung inflammation are property specific. A detailed histopathological analysis was conducted to investigate the long-term disease implications of acute exposure to TiO2NPs. C57BL/6 mice were exposed to 18, 54, 162 or 486 µg of TiO2NPs/mouse via single intratracheal instillation. Controls were exposed to dispersion medium only. Bronchoalveolar lavage fluid (BALF) and lung tissue were sampled on 1, 28 and 90 days post-exposure. Although all TiO2NPs induced lung inflammation as measured by the neutrophil influx in BALF, rutile-type TiO2NPs induced higher inflammation with the hydrophilic rutile TiO2NP showing the maximum increase. Accordingly, the rutile TiO2NPs induced higher number of differentially expressed genes. Histopathological analysis of lung sections on Day 90 post-exposure showed increased collagen staining and fibrosis-like changes following exposure to the rutile TiO2NPs at the highest dose tested. Among the anatase, the smallest TiO2NP of 8nm showed the maximum response. The anatase TiO2NP of 300nm was the least responsive of all. The results suggest that the severity of lung inflammation is property specific; however, the underlying mechanisms (genes and pathways perturbed) leading to inflammation were the same for all particle types. While the particle size clearly influenced the overall acute lung responses, a combination of small size, crystalline structure and hydrophilic surface contributed to the long-term pathological effects observed at the highest dose (486 µg/mouse). Although the dose at which the

  2. Flaxseed Mitigates Acute Oxidative Lung Damage in a Mouse Model of Repeated Radiation and Hyperoxia Exposure Associated with Space Exploration.

    PubMed

    Pietrofesa, Ralph A; Solomides, Charalambos C; Christofidou-Solomidou, Melpo

    Spaceflight missions may require crewmembers to conduct extravehicular activities (EVA). Pre-breathe protocols in preparation for an EVA entail 100% hyperoxia exposure that may last for a few hours and be repeated 2-3 times weekly. Each EVA is associated with additional challenges such as low levels of total body cosmic/galactic radiation exposure that may present a threat to crewmember health. We have developed a mouse model of total body radiation and hyperoxia exposure and identified acute damage of lung tissues. In the current study we evaluated the usefulness of dietary flaxseed (FS) as a countermeasure agent for such double-hit exposures. We evaluated lung tissue changes 2 weeks post-initiation of exposure challenges. Mouse cohorts (n=5/group) were pre-fed diets containing either 0% FS or 10% FS for 3 weeks and exposed to: a) normoxia (Untreated); b) >95% O2 (O2); c) 0.25Gy single fraction gamma radiation (IR); or d) a combination of O2 and IR (O2+IR) 3 times per week for 2 consecutive weeks, where 8-hour hyperoxia treatments were spanned by normoxic intervals. At 2 weeks post challenge, while control-diet fed mice developed significant lung injury and inflammation across all challenges, FS protected lung tissues by decreasing bronchoalveolar lavage fluid (BALF) neutrophils (p<0.003) and protein levels, oxidative tissue damage, as determined by levels of malondialdehyde (MDA) (p<0.008) and nitrosative stress as determined by nitrite levels. Lung hydroxyproline levels, a measure of lung fibrosis, were significantly elevated in mice fed 0% FS (p<0.01) and exposed to hyperoxia/radiation or the combination treatment, but not in FS-fed mice. FS also decreased levels of a pro-inflammatory, pro-fibrogenic cytokine (TGF-β1) gene expression levels in lung. Flaxseed mitigated adverse effects in lung of repeat exposures to radiation/hyperoxia. This data will provide useful information in the design of countermeasures to early tissue oxidative damage associated with

  3. Flaxseed Mitigates Acute Oxidative Lung Damage in a Mouse Model of Repeated Radiation and Hyperoxia Exposure Associated with Space Exploration

    PubMed Central

    Pietrofesa, Ralph A.; Solomides, Charalambos C.; Christofidou-Solomidou, Melpo

    2015-01-01

    Background Spaceflight missions may require crewmembers to conduct extravehicular activities (EVA). Pre-breathe protocols in preparation for an EVA entail 100% hyperoxia exposure that may last for a few hours and be repeated 2-3 times weekly. Each EVA is associated with additional challenges such as low levels of total body cosmic/galactic radiation exposure that may present a threat to crewmember health. We have developed a mouse model of total body radiation and hyperoxia exposure and identified acute damage of lung tissues. In the current study we evaluated the usefulness of dietary flaxseed (FS) as a countermeasure agent for such double-hit exposures. Methods We evaluated lung tissue changes 2 weeks post-initiation of exposure challenges. Mouse cohorts (n=5/group) were pre-fed diets containing either 0% FS or 10% FS for 3 weeks and exposed to: a) normoxia (Untreated); b) >95% O2 (O2); c) 0.25Gy single fraction gamma radiation (IR); or d) a combination of O2 and IR (O2+IR) 3 times per week for 2 consecutive weeks, where 8-hour hyperoxia treatments were spanned by normoxic intervals. Results At 2 weeks post challenge, while control-diet fed mice developed significant lung injury and inflammation across all challenges, FS protected lung tissues by decreasing bronchoalveolar lavage fluid (BALF) neutrophils (p<0.003) and protein levels, oxidative tissue damage, as determined by levels of malondialdehyde (MDA) (p<0.008) and nitrosative stress as determined by nitrite levels. Lung hydroxyproline levels, a measure of lung fibrosis, were significantly elevated in mice fed 0% FS (p<0.01) and exposed to hyperoxia/radiation or the combination treatment, but not in FS-fed mice. FS also decreased levels of a pro-inflammatory, pro-fibrogenic cytokine (TGF-β1) gene expression levels in lung. Conclusion Flaxseed mitigated adverse effects in lung of repeat exposures to radiation/hyperoxia. This data will provide useful information in the design of countermeasures to early

  4. Phosphatidylinositol 3-Kinase Mediates Bronchioalveolar Stem Cell Expansion in Mouse Models of Oncogenic K-ras-Induced Lung Cancer

    PubMed Central

    Yang, Yanan; Iwanaga, Kentaro; Raso, Maria Gabriela; Wislez, Marie; Hanna, Amy E.; Wieder, Eric D.; Molldrem, Jeffrey J.; Wistuba, Ignacio I.; Powis, Garth; Demayo, Francesco J.; Kim, Carla F.; Kurie, Jonathan M.

    2008-01-01

    Background Non-small cell lung cancer (NSCLC) is the most common cause of cancer-related death in Western countries. Developing more effective NSCLC therapeutics will require the elucidation of the genetic and biochemical bases for this disease. Bronchioalveolar stem cells (BASCs) are a putative cancer stem cell population in mouse models of oncogenic K-ras-induced lung adenocarcinoma, an histologic subtype of NSCLC. The signals activated by oncogenic K-ras that mediate BASC expansion have not been fully defined. Methodology/Principal Findings We used genetic and pharmacologic approaches to modulate the activity of phosphatidylinositol 3-kinase (PI3K), a key mediator of oncogenic K-ras, in two genetic mouse models of lung adenocarcinoma. Oncogenic K-ras-induced BASC accumulation and tumor growth were blocked by treatment with a small molecule PI3K inhibitor and enhanced by inactivation of phosphatase and tensin homologue deleted from chromosome 10, a negative regulator of PI3K. Conclusions/Significance We conclude that PI3K is a critical regulator of BASC expansion, supporting treatment strategies to target PI3K in NSCLC patients. PMID:18493606

  5. TH-E-BRF-07: Raman Spectroscopy for Radiation Treatment Response Assessment in a Lung Metastases Mouse Model

    SciTech Connect

    Devpura, S; Barton, K; Brown, S; Siddiqui, F; Chetty, I; Sethi, S; Klein, M

    2014-06-15

    Purpose: Raman spectroscopy is an optical spectroscopic method used to probe chemical information about a target tissue. Our goal was to investigate whether Raman spectroscopy is able to distinguish lung tumors from normal lung tissue and whether this technique can identify the molecular changes induced by radiation. Methods: 4T1 mouse breast cancer cells were implanted subcutaneously into the flanks of 6 Balb/C female mice. Four additional mice were used as “normal lung” controls. After 14 days, 3 mice bearing tumors received 6Gy to the left lung with 6MV photons and the other three were treated as “unirradiated tumor” controls. At a 24-hour time point, lungs were excised and the specimens were sectioned using a cryostat; alternating sections were either stained with hematoxylin and eosin (H and E) for evaluation by a pathologist or unstained for Raman measurements. 240 total Raman spectra were collected; 84 from normal lung controls; 63 from unirradiated tumors and 64 from tumors irradiated with 6Gy in a single fraction. Raman spectra were also collected from normal lung tissues of mice with unirradiated tumors. Principal component analysis (PCA) and discriminant function analysis (DFA) were performed to analyze the data. Results: Raman bands assignable to DNA/RNA showed prominent contributions in tumor tissues while Raman bands associated with hemoglobin showed strong contributions in normal lung tissue. PCA/DFA analysis identified normal lung tissue and tumor with 100% and 98.4% accuracy, respectively, relative to pathologic scoring. Additionally, normal lung tissues from unirradiated mice bearing tumors were classified as normal with 100% accuracy. In a model consisting of unirradiated and irradiated tumors identification accuracy was 79.4% and 93.8% respectively, relative to pathologic assessment. Conclusion: Initial results demonstrate the promise for Raman spectroscopy in the diagnosis normal vs. lung metastases as well as the assessment of

  6. Progesterone Signaling Inhibits Cervical Carcinogenesis in Mice

    PubMed Central

    Yoo, Young A; Son, Jieun; Mehta, Fabiola F.; DeMayo, Francesco J.; Lydon, John P.; Chung, Sang-Hyuk

    2014-01-01

    Human papillomavirus is the main cause of cervical cancer, yet other nonviral cofactors are also required for the disease. The uterine cervix is a hormone-responsive tissue, and female hormones have been implicated in cervical carcinogenesis. A transgenic mouse model expressing human papillomavirus oncogenes E6 and/or E7 has proven useful to study a mechanism of hormone actions in the context of this common malignancy. Estrogen and estrogen receptor α are required for the development of cervical cancer in this mouse model. Estrogen receptor α is known to up-regulate expression of the progesterone receptor, which, on activation by its ligands, either promotes or inhibits carcinogenesis, depending on the tissue context. Here, we report that progesterone receptor inhibits cervical and vaginal epithelial cell proliferation in a ligand-dependent manner. We also report that synthetic progestin medroxyprogesterone acetate promotes regression of cancers and precancerous lesions in the female lower reproductive tracts (ie, cervix and vagina) in the human papillomavirus transgenic mouse model. Our results provide the first experimental evidence that supports the hypothesis that progesterone signaling is inhibitory for cervical carcinogenesis in vivo. PMID:24012679

  7. Sterol and triterpene derivatives from plants inhibit the effects of a tumor promoter, and sitosterol and betulinic acid inhibit tumor formation in mouse skin two-stage carcinogenesis.

    PubMed

    Yasukawa, K; Takido, M; Matsumoto, T; Takeuchi, M; Nakagawa, S

    1991-01-01

    A single topical application of 1 microgram of 12-O-tetradecanoylphorbol- 13-acetate (TPA) to the ears of mice was shown to induce edema, and this TPA-induced inflammation was inhibited by 4-methylsterol and triterpene derivatives. The ED50 of these compounds against TPA-induced inflammation was 0.1-3 mumol. Phytosterols had only slight inhibitory effects. Furthermore, application of 5 micrograms TPA to mouse skin rapidly caused accumulation of ornithine decarboxylase (ODC). Similarly, sitosterol and lupane-type triterpene derivatives markedly inhibited this TPA-induced ODC accumulation. In addition, 5 mumol betulinic acid markedly inhibited the promoting effect of 2.5 micrograms TPA applied twice weekly on skin tumor formation in mice initiated with 50 micrograms of 7,12-dimethylbenz[a]anthracene, and 5 mumol of sitosterol caused slight suppression. Thus, the inhibitory effects of sterol and triterpene derivatives on TPA-induced inflammation roughly parallelled their inhibitory activities against tumor promotion.

  8. The nonsteroidal anti-inflammatory drug, nabumetone, differentially inhibits beta-catenin signaling in the MIN mouse and azoxymethane-treated rat models of colon carcinogenesis.

    PubMed

    Roy, Hemant K; Karolski, William J; Wali, Ramesh K; Ratashak, Anne; Hart, John; Smyrk, Thomas C

    2005-01-20

    The mechanisms through which beta-catenin signaling is inhibited during colorectal cancer chemoprevention by nonsteroidal anti-inflammatory agents is incompletely understood. We report that nabumetone decreased uninvolved intestinal mucosal beta-catenin levels in the MIN mouse with a concomitant increase in glycogen synthase kinase (GSK)-3beta levels, an enzyme that targets beta-catenin for destruction. However, in the azoxymethane-treated rat, where beta-catenin is frequently rendered GSK-3beta-insensitive, nabumetone failed to alter beta-catenin levels but did decrease beta-catenin nuclear localization and transcriptional activity as gauged by cyclin D1. In conclusion, we demonstrate that the differential mechanisms for beta-catenin suppression may be determined, at least partly, by GSK-3beta.

  9. Mouse mammary tumor virus infection accelerates mammary carcinogenesis in Wnt-1 transgenic mice by insertional activation of int-2/Fgf-3 and hst/Fgf-4.

    PubMed Central

    Shackleford, G M; MacArthur, C A; Kwan, H C; Varmus, H E

    1993-01-01

    Transgenic mice carrying the Wnt-1 protooncogene modified for expression in mammary epithelial cells exhibit hyperplastic mammary glands and stochastically develop mammary carcinomas, suggesting that additional events are necessary for tumorigenesis. To induce such events and to identify the genes involved, we have infected Wnt-1 transgenic mice with mouse mammary tumor virus (MMTV), intending to insertionally activate, and thereby molecularly tag, cooperating protooncogenes. Infection of breeding female Wnt-1 transgenics decreased the average age at which tumors appeared from approximately 4 months to approximately 2.5 months and increased the average number of primary tumors per mouse from 1-2 to > 5. A smaller effect was observed in virgin females, and infection of transgenic males showed no significant effect on tumor latency. More than half of the tumors from the infected breeding group contained one or more newly acquired MMTV proviruses in a pattern suggesting that most cells in tumors arose from a single infected cell. Analyses of provirus-containing tumors for induced or altered expression of int-2/Fgf-3, hst/Fgf-4, int-3, and Wnt-3 showed activation of int-2 in 39% of tumors, hst in 3%, and both int-2 and hst in 3%. DNA analyses with probes for protooncogenes and MMTV confirmed that the activations resulted from proviral insertions. There was no evidence for proviral insertions at the int-3, Wnt-3, or Wnt-1 loci. These findings provide further evidence that fibroblast growth factors Int-2 and Hst can cooperate with Wnt-1, another secreted factor, in mammary tumorigenesis, and they illustrate the capacity of this system to identify cooperating oncogenes. Images PMID:8380647

  10. Tumor necrosis factor-alpha increases reactive oxygen species by inducing spermine oxidase in human lung epithelial cells: a potential mechanism for inflammation-induced carcinogenesis.

    PubMed

    Babbar, Naveen; Casero, Robert A

    2006-12-01

    Inflammation has been implicated in the development of many human epithelial cancers, including those of the stomach, lung, colon, and prostate. Tumor necrosis factor-alpha (TNF-alpha) is a potent pleiotropic, proinflammatory cytokine produced by many cells in response to injury and inflammation. Here, we show that TNF-alpha exposure results in increased production of reactive oxygen species (ROS), with a concomitant increase in the production of 8-oxo-deoxyguanosine, a marker for oxidative DNA damage, in human lung bronchial epithelial cells. The source of the ROS in TNF-alpha-treated cells was determined by both pharmacologic and small interfering RNA (siRNA) strategies to be spermine oxidase (SMO/PAOh1). SMO/PAOh1 oxidizes spermine into spermidine, 3-aminopropanal, and H(2)O(2). Inhibition of TNF-alpha-induced SMO/PAOh1 activity with MDL 72,527 or with a targeted siRNA prevented ROS production and oxidative DNA damage. Further, similar induction in SMO/PAOh1 is observed with treatment of another inflammatory cytokine, interleukin-6. The data are consistent with a model that directly links inflammation and DNA damage through the production of H(2)O(2) by SMO/PAOh1. Further, these results suggest a common mechanism by which inflammation from multiple sources can lead to the mutagenic changes necessary for the development and progression of epithelial cancers.

  11. Lung Cancer Mortality (1950–1999) among Eldorado Uranium Workers: A Comparison of Models of Carcinogenesis and Empirical Excess Risk Models

    PubMed Central

    Eidemüller, Markus; Jacob, Peter; Lane, Rachel S. D.; Frost, Stanley E.; Zablotska, Lydia B.

    2012-01-01

    Lung cancer mortality after exposure to radon decay products (RDP) among 16,236 male Eldorado uranium workers was analyzed. Male workers from the Beaverlodge and Port Radium uranium mines and the Port Hope radium and uranium refinery and processing facility who were first employed between 1932 and 1980 were followed up from 1950 to 1999. A total of 618 lung cancer deaths were observed. The analysis compared the results of the biologically-based two-stage clonal expansion (TSCE) model to the empirical excess risk model. The spontaneous clonal expansion rate of pre-malignant cells was reduced at older ages under the assumptions of the TSCE model. Exposure to RDP was associated with increase in the clonal expansion rate during exposure but not afterwards. The increase was stronger for lower exposure rates. A radiation-induced bystander effect could be a possible explanation for such an exposure response. Results on excess risks were compared to a linear dose-response parametric excess risk model with attained age, time since exposure and dose rate as effect modifiers. In all models the excess relative risk decreased with increasing attained age, increasing time since exposure and increasing exposure rate. Large model uncertainties were found in particular for small exposure rates. PMID:22936975

  12. Age-Dependent Decline in Mouse Lung Regeneration with Loss of Lung Fibroblast Clonogenicity and Increased Myofibroblastic Differentiation

    PubMed Central

    Paxson, Julia A.; Gruntman, Alisha; Parkin, Christopher D.; Mazan, Melissa R.; Davis, Airiel; Ingenito, Edward P.; Hoffman, Andrew M.

    2011-01-01

    While aging leads to a reduction in the capacity for regeneration after pneumonectomy (PNX) in most mammals, this biological phenomenon has not been characterized over the lifetime of mice. We measured the age-specific (3, 9, 24 month) effects of PNX on physiology, morphometry, cell proliferation and apoptosis, global gene expression, and lung fibroblast phenotype and clonogenicity in female C57BL6 mice. The data show that only 3 month old mice were fully capable of restoring lung volumes by day 7 and total alveolar surface area by 21 days. By 9 months, the rate of regeneration was slower (with incomplete regeneration by 21 days), and by 24 months there was no regrowth 21 days post-PNX. The early decline in regeneration rate was not associated with changes in alveolar epithelial cell type II (AECII) proliferation or apoptosis rate. However, significant apoptosis and lack of cell proliferation was evident after PNX in both total cells and AECII cells in 24 mo mice. Analysis of gene expression at several time points (1, 3 and 7 days) post-PNX in 9 versus 3 month mice was consistent with a myofibroblast signature (increased Tnc, Lox1, Col3A1, Eln and Tnfrsf12a) and more alpha smooth muscle actin (αSMA) positive myofibroblasts were present after PNX in 9 month than 3 month mice. Isolated lung fibroblasts showed a significant age-dependent loss of clonogenicity. Moreover, lung fibroblasts isolated from 9 and 17 month mice exhibited higher αSMA, Col3A1, Fn1 and S100A expression, and lower expression of the survival gene Mdk consistent with terminal differentiation. These data show that concomitant loss of clonogenicity and progressive myofibroblastic differentiation contributes to the age-dependent decline in the rate of lung regeneration. PMID:21912590

  13. Autophagy Inhibition by Sustained Over-production of IL-6 Contributes to Arsenic Carcinogenesis

    PubMed Central

    Qi, Yuanlin; Zhang, Mingfang; Li, Hui; Frank, Jacqueline A.; Dai, Lu; Liu, Huijuan; Zhang, Zhuo; Wang, Chi; Chen, Gang

    2014-01-01

    Chronic inflammation has been implicated as an etiological factor in cancer, whereas autophagy may help preserve cancer cell survival but exert anti-inflammatory effects. How these phenomena interact during carcinogenesis remains unclear. We explored this question in a human bronchial epithelial cell-based model of lung carcinogenesis that is mediated by sub-chronic exposure to arsenic. We found that sustained overexpression of the pro-inflammatory interleukin IL-6 promoted arsenic-induced cell transformation by inhibiting autophagy. Conversely, strategies to enhance autophagy counteracted the effect of IL-6 in the model. These findings were confirmed and extended in a mouse model of arsenic-induced lung cancer. Mechanistic investigations suggested that mTOR inhibition contributed to the activation of autophagy, whereas IL-6 overexpression was sufficient to block autophagy by supporting Beclin-1/Mcl-1 interaction. Overall, our findings argued that chronic inflammatory states driven by IL-6 could antagonize autophagic states that may help preserve cancer cell survival and promote malignant progression, suggesting a need to uncouple inflammation and autophagy controls to enable tumor progression. PMID:24830721

  14. The effects of exogenous surfactant administration on ventilation-induced inflammation in mouse models of lung injury

    PubMed Central

    2013-01-01

    Background Mechanical ventilation (MV) is an essential supportive therapy for acute lung injury (ALI); however it can also contribute to systemic inflammation. Since pulmonary surfactant has anti-inflammatory properties, the aim of the study was to investigate the effect of exogenous surfactant administration on ventilation-induced systemic inflammation. Methods Mice were randomized to receive an intra-tracheal instillation of a natural exogenous surfactant preparation (bLES, 50 mg/kg) or no treatment as a control. MV was then performed using the isolated and perfused mouse lung (IPML) set up. This model allowed for lung perfusion during MV. In experiment 1, mice were exposed to mechanical ventilation only (tidal volume =20 mL/kg, 2 hours). In experiment 2, hydrochloric acid or air was instilled intra-tracheally four hours before applying exogenous surfactant and ventilation (tidal volume =5 mL/kg, 2 hours). Results For both experiments, exogenous surfactant administration led to increased total and functional surfactant in the treated groups compared to the controls. Exogenous surfactant administration in mice exposed to MV only did not affect peak inspiratory pressure (PIP), lung IL-6 levels and the development of perfusate inflammation compared to non-treated controls. Acid injured mice exposed to conventional MV showed elevated PIP, lung IL-6 and protein levels and greater perfusate inflammation compared to air instilled controls. Instillation of exogenous surfactant did not influence the development of lung injury. Moreover, exogenous surfactant was not effective in reducing the concentration of inflammatory cytokines in the perfusate. Conclusions The data indicates that exogenous surfactant did not mitigate ventilation-induced systemic inflammation in our models. Future studies will focus on altering surfactant composition to improve its immuno-modulating activity. PMID:24256698

  15. Tissue optical clearing, three-dimensional imaging, and computer morphometry in whole mouse lungs and human airways.

    PubMed

    Scott, Gregory D; Blum, Emily D; Fryer, Allison D; Jacoby, David B

    2014-07-01

    In whole adult mouse lung, full identification of airway nerves (or other cellular/subcellular objects) has not been possible due to patchy distribution and micron-scale size. Here we describe a method using tissue clearing to acquire the first complete image of three-dimensional (3D) innervation in the lung. We then created a method to pair analysis of nerve (or any other colabeled epitope) images with identification of 3D tissue compartments and airway morphometry by using fluorescent casting and morphometry software (which we designed and are making available as open-source). We then tested our method to quantify a sparse heterogeneous nerve population by examining visceral pleural nerves. Finally, we demonstrate the utility of our method in human tissue to image full thickness innervation in irregular 3D tissue compartments and to quantify sparse objects (intrinsic airway ganglia). Overall, this method can uniquely pair the advantages of whole tissue imaging and cellular/subcellular fluorescence microscopy.

  16. The genetic basis of strain-dependent differences in the early phase of radiation injury in mouse lung

    SciTech Connect

    Franko, A.J.; Sharplin, J.; Ward, W.F.; Hinz, J.M. )

    1991-06-01

    Substantial differences between mouse strains have been reported in the lesions present in the lung during the early phase of radiation injury. Some strains show only classical pneumonitis, while other strains develop substantial fibrosis and hyaline membranes which contribute appreciably to respiratory insufficiency, in addition to pneumonitis. Other strains are intermediate between these extremes. These differences correlate with intrinsic differences in activities of lung plasminogen activator and angiotensin converting enzyme. The genetic basis of these differences was assessed by examining histologically the early reaction in lungs of seven murine hybrids available commercially after whole-thorax irradiation. Crosses between fibrosing and nonfibrosing parents were uniformly nonfibrosing, and crosses between fibrosing and intermediate parents were uniformly intermediate. No evidence of sex linkage was seen. Thus the phenotype in which fibrosis is found is controlled by autosomal recessive determinants. Strains prone to radiation-induced pulmonary fibrosis and hyaline membranes exhibited intrinsically lower activities of lung plasminogen activator and angiotensin converting enzyme than either the nonfibrosing strains or the nonfibrosing hybrid crosses. The median time of death of the hybrids was genetically determined primarily by the longest-lived parent regardless of the types of lesions expressed.

  17. Azithromycin Attenuates Lung Inflammation in a Mouse Model of Ventilator-Associated Pneumonia by Multidrug-Resistant Acinetobacter baumannii

    PubMed Central

    Yamada, Koichi; Kaku, Norihito; Harada, Yosuke; Migiyama, Yohei; Nagaoka, Kentaro; Morinaga, Yoshitomo; Nakamura, Shigeki; Imamura, Yoshifumi; Miyazaki, Taiga; Izumikawa, Koichi; Kakeya, Hiroshi; Hasegawa, Hiroo; Mikamo, Hiroshige; Kohno, Shigeru

    2013-01-01

    Acinetobacter baumannii is one of the main pathogens that cause ventilator-associated pneumonia (VAP) and is associated with a high rate of mortality. Little is known about the efficacy of macrolides against A. baumannii. In order to confirm the efficacy of azithromycin (AZM) against VAP caused by multidrug-resistant A. baumannii (MDRAB), we used a mouse model that mimics VAP by placement of a plastic tube in the bronchus. AZM (10 and 100 mg/kg of body weight) was administered subcutaneously every 24 h beginning at 3 h after inoculation. Phosphate-buffered saline was administered as the control. Survival was evaluated over 7 days. At 48 h postinfection, mice were sacrificed and the numbers of viable bacteria in lungs and bronchoalveolar lavage fluid were compared. Histopathological analysis of lung specimens was also performed. The treatment groups displayed significantly longer survival than the control group (P < 0.05). AZM did not have an antimicrobial effect. Histopathological examination of lung specimens indicated that the progression of lung inflammation was prevented in the AZM-treated groups. Furthermore, total cell and neutrophil counts, as well as cytokine levels, in bronchoalveolar lavage fluid were significantly decreased (P < 0.05) in the AZM-treated groups. AZM may have a role for the treatment of VAP with MDRAB because of its anti-inflammatory effects. PMID:23733468

  18. Anti-tumor activity of fenretinide complexed with human serum albumin in lung cancer xenograft mouse model.

    PubMed

    Durante, Sandra; Orienti, Isabella; Teti, Gabriella; Salvatore, Viviana; Focaroli, Stefano; Tesei, Anna; Pignatta, Sara; Falconi, Mirella

    2014-07-15

    Sufficient knowledge regarding cellular and molecular basis of lung cancer progression and metastasis would help in the development of novel and effective strategies for the treatment of lung cancer. 4HPR is a synthetic retinoid with potential anti-tumor activity but is still limited because of its poor bioavailability. The use of albumin as a complexing agent for a hydrophobic drug is expected to improve the water solubility and consequently their bioavailability.This study investigated the antitumor activity of a novel complex between albumin and 4-HPR in a mouse model of human lung cancer and focuses on role and mechanism of Cav-1 mainly involved in regulating cancer and ACSVL3 mainly connected with tumor growth. Their expressions were assayed by immunohistochemistry and qRT-PCR, to demonstrate the reduction of the tumor growth following the drug treatment. Our results showed a high antitumor activity of 4HPR-HSA by reduction of the volume of tumor mass and the presence of a high level of apoptotic cell by TUNEL assay. The downregulation of Cav-1 and ACSVL3 suggested a reduction of tumor growth. In conclusion, we demonstrated the great potential of 4HPR-HSA in the treatment of lung cancer. More data about the mechanism of drug delivery the 4HPR-HSA are necessary.

  19. Feasibility Assessment of a MALDI FTICR Imaging Approach for the 3D Reconstruction of a Mouse Lung

    NASA Astrophysics Data System (ADS)

    Jones, E. Ellen; Quiason, Cristine; Dale, Stephanie; Shahidi-Latham, Sheerin K.

    2017-08-01

    Matrix assisted laser desorption ionization imaging mass spectrometry (MALDI IMS) has proven to be a quick, robust, and label-free tool to produce two-dimensional (2D) ion-density maps representing the distribution of a variety of analytes across a tissue section of interest. In addition, three-dimensional (3D) imaging mass spectrometry workflows have been developed that are capable of visualizing these same analytes throughout an entire volume of a tissue rather than a single cross-section. Until recently, the use of Fourier transform ion cyclotron resonance (FTICR) mass spectrometers for 3D volume reconstruction has been impractical due to software limitations, such as inadequate capacity to manipulate the extremely large data files produced during an imaging experiment. Fortunately with recent software and hardware advancements, 3D reconstruction from MALDI FTICR IMS datasets is now feasible. Here we describe the first proof of principle study for a 3D volume reconstruction of an entire mouse lung using data collected on a FTICR mass spectrometer. Each lung tissue section was analyzed with high mass resolution and mass accuracy, and considered as an independent dataset. Each subsequent lung section image, or lung dataset, was then co-registered to its adjacent section to reconstruct a 3D volume. Volumes representing various endogenous lipid species were constructed, including sphingolipids and phosphatidylcholines (PC), and species confirmation was performed with on-tissue collision induced dissociation (CID).

  20. Induction of terminal differentiation-resistant epidermal cells in mouse skin and in papillomas by different initiators during two-stage carcinogenesis.

    PubMed

    Miller, D R; Viaje, A; Rotstein, J; Aldaz, C M; Conti, C J; Slaga, T J

    1989-01-15

    Carcinogen treatment of normal mouse epidermal cells causes some cells, if cultured under the appropriate conditions, to continue to proliferate instead of terminally differentiate, forming foci at 37 degrees C in medium with a calcium level above 0.1 mM. We have examined these Calcium (Ca)-resistant cells formed in the skin of SENCAR mice after treatment with the carcinogen initiator 7,12-dimethylbenz[a]anthracene (DMBA) followed by tumor promotion with 12-O-tetradecanoylphorbol-13-acetate (TPA). Although in our previous studies TPA promotion initially increased the size but reduced the number of foci caused by the carcinogen initiator N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), TPA promotion of DMBA-treated mice increased the s