Science.gov

Sample records for mouse lung carcinogenesis

  1. Mouse Models of Gastric Carcinogenesis

    PubMed Central

    Yu, Sungsook; Yang, Mijeong

    2014-01-01

    Gastric cancer is one of the most common cancers in the world. Animal models have been used to elucidate the details of the molecular mechanisms of various cancers. However, most inbred strains of mice have resistance to gastric carcinogenesis. Helicobacter infection and carcinogen treatment have been used to establish mouse models that exhibit phenotypes similar to those of human gastric cancer. A large number of transgenic and knockout mouse models of gastric cancer have been developed using genetic engineering. A combination of carcinogens and gene manipulation has been applied to facilitate development of advanced gastric cancer; however, it is rare for mouse models of gastric cancer to show aggressive, metastatic phenotypes required for preclinical studies. Here, we review current mouse models of gastric carcinogenesis and provide our perspectives on future developments in this field. PMID:25061535

  2. The M2 macrophages induce autophagic vascular disorder and promote mouse sensitivity to urethane-related lung carcinogenesis.

    PubMed

    Li, G-G; Guo, Z-Z; Ma, X-F; Cao, N; Geng, S-N; Zheng, Y-Q; Meng, M-J; Lin, H-H; Han, G; Du, G-J

    2016-06-01

    Tumor vessels are known to be abnormal, with typically aberrant, leaky and disordered vessels. Here, we investigated whether polarized macrophage phenotypes are involved in tumor abnormal angiogenesis and what is its mechanism. We found that there was no difference in chemotaxis of polarized M1 and M2 macrophages to lewis lung carcinoma (LLC) cells and that either M1 or M2 macrophage-conditioned media had no effect on LLC cell proliferation. Unexpectedly, the M2 but not M1 macrophage-conditioned media promoted the proliferation of human umbilical vein endothelial cells (HUVECs) and simultaneously increased endothelial cell permeability in vitro and angiogenic index in the chick embryo chorioallantoic membrane (CAM). The treatment with M2 but not M1 macrophage-conditioned media increased autophagosomes as well as microtubule-associated protein light chain 3B (LC3-B) expression (a robust marker of autophagosomes) but decreased p62 protein expression (a selective autophagy substrate) in HUVECs, the treatment with chloroquine that blocked autophagy abrogated the abnormal angiogenic efficacy of M2 macrophage-conditioned media. These results were confirmed in urethane-induced lung carcinogenic progression. Urethane-induced lung carcinogenesis led to more M2 macrophage phenotype and increased abnormal angiogenesis concomitant with the upregulation of LC3-B and the downregulation of p62. Clodronate liposome-induced macrophage depletion, chloroquine-induced autophagic prevention or salvianolic acid B-induced vascular protection decreased abnormal angiogenesis and lung carcinogenesis. In addition, we found that the tendency of age-related M2 macrophage polarization also promoted vascular permeability and carcinogenesis in urethane carcinogenic progression. These findings indicate that the M2 macrophages induce autophagic vascular disorder to promote lung cancer progression, and the autophagy improvement represents an efficacious strategy for abnormal angiogenesis and cancer

  3. The roles of diol epoxide and o-quinone pathways in mouse lung tumorigenesis induced by benzo(a)pyrene: relevance to human lung carcinogenesis

    EPA Science Inventory

    There is sufficient epidemiological evidence supported by experimental data that some PAH-containing complex environmental mixtures pose risks to human health by increasing lung cancer incidence. The International Agency for Research on Cancer has determined that human respirator...

  4. PHLPP2 Downregulation Contributes to Lung Carcinogenesis Following B[a]P/B[a]PDE Exposure

    PubMed Central

    Huang, Haishan; Pan, Xiaofu; Jin, Honglei; Li, Yang; Zhang, Lin; Yang, Caili; Liu, Pei; Liu, Ya; Chen, Lili; Li, Jingxia; Zhu, Junlan; Zeng, Xingruo; Fu, Kai; Chen, Guorong; Gao, Jimin; Huang, Chuanshu

    2015-01-01

    Purpose The carcinogenic capacity of B[a]P/B[a]PDE is supported by epidemiologic studies. However, the molecular mechanisms responsible for B[a]P/B[a]PDE-caused lung cancer have not been well investigated. We evaluated here the role of novel target PHLPP2 in lung inflammation and carcinogenesis upon B[a]P/B[a]PDE exposure. Experimental Design We used the Western blotting, RT-PCR, [35S]methionine pulse and immunohistochemistry staining to determine PHLPP2 downregulation following B[a]P/B[a]PDE exposure. Both B[a]PDE-induced Beas-2B cell transformation model and B[a]P-caused mouse lung cancer model were used to elucidate the mechanisms leading to PHLPP2 downregulation and lung carcinogenesis. The important findings were also extended to in vivo human studies. Results We found that B[a]P/B[a]PDE exposure downregulated PHLPP2 expression in human lung epithelial cells in vitro and in mouse lung tissues in vivo. The ectopic expression of PHLPP2 dramatically inhibited cell transformation upon B[a]PDE exposure. Mechanistic studies showed that miR-205 induction was crucial for inhibition of PHLPP2 protein translation by targeting PHLPP2-3′-UTR. Interestingly, PHLPP2 expression was inversely associated with tumor necrosis factor alpha (TNFα) expression, with low PHLPP2 and high TNFα expression in lung cancer tissues compared with the paired adjacent normal lung tissues. Additional studies revealed that PHLPP2 exhibited its antitumorigenic effect of B[a]P/B[a]PDE through the repression of inflammatory TNFα transcription. Conclusions Our studies not only first time identify PHLPP2 downregulation by lung carcinogen B[a]P/B[a]PDE, but also elucidate a novel molecular mechanisms underlying lung inflammation and carcinogenesis upon B[a]P/B[a]PDE exposure. PMID:25977341

  5. [THE ROLE OF ESTROGENS IN THE CARCINOGENESIS OF LUNG CANCER].

    PubMed

    Uchikova, E; Uchikov, A; Dimitrakova, E; Uchikov, P

    2016-01-01

    Morbidity and mortality from lung cancer has dramatically increased in women as compared to men over the past few years. Historically, smoking has been considered the major risk factor for lung cancer regardless of gender. Several recent lines of evidence implicate gender differences in the observed differences in prevalence and histologic type which cannot be explained based on the carcinogenic action of nicotine. Several recent studies underscore the importance of reproductive and hormonal factors in the carcinogenesis of lung cancer Lung cancer morbidity and mortality in Bulgaria was 16.2/100000 women and 14.6/ 100000 women, resp. Lung cancer morbidity in Europe was 39/100000 women. Lung cancer is extremely sensitive to estrogens. The latter act directly or as effect modifiers for the relationship between smoking and lung cancer. Further research examining the relationship between serum estrogen levels and the estrogen receptor expression in normal and tumor lung tissue samples can help elucidate the importance of reproductive and hormonal (exogenous and endogenous) factors in the carcinogenesis of lung cancer.

  6. miR-494-3p is a novel tumor driver of lung carcinogenesis.

    PubMed

    Faversani, Alice; Amatori, Stefano; Augello, Claudia; Colombo, Federico; Porretti, Laura; Fanelli, Mirco; Ferrero, Stefano; Palleschi, Alessandro; Pelicci, Pier Giuseppe; Belloni, Elena; Ercoli, Giulia; Degrassi, Anna; Baccarin, Marco; Altieri, Dario C; Vaira, Valentina; Bosari, Silvano

    2017-01-31

    Lung cancer is the leading cause of tumor-related death worldwide and more efforts are needed to elucidate lung carcinogenesis. Here we investigated the expression of 641 miRNAs in lung tumorigenesis in a K-Ras(+/LSLG12Vgeo);RERTn(ert/ert) mouse model and 113 human tumors. The conserved miRNA cluster on chromosome 12qF1 was significantly and progressively upregulated during murine lung carcinogenesis. In particular, miR-494-3p expression was correlated with lung cancer progression in mice and with worse survival in lung cancer patients. Mechanistically, ectopic expression of miR-494-3p in A549 lung cancer cells boosted the tumor-initiating population, enhanced cancer cell motility, and increased the expression of stem cell-related genes. Importantly, miR-494-3p improved the ability of A549 cells to grow and metastasize in vivo, modulating NOTCH1 and PTEN/PI3K/AKT signaling.Overall, these data identify miR-494-3p as a key factor in lung cancer onset and progression and possible therapeutic target.

  7. Cell Selection as Driving Force in Lung and Colon Carcinogenesis

    PubMed Central

    Schöllnberger, Helmut; Beerenwinkel, Niko; Hoogenveen, Rudolf; Vineis, Paolo

    2011-01-01

    Carcinogenesis is the result of mutations and subsequent clonal expansions of mutated, selectively advantageous cells. To investigate the relative contributions of mutation versus cell selection in tumorigenesis, we compared two mathematical models of carcinogenesis in two different cancer types: lung and colon. One approach is based on a population genetics model, the Wright-Fisher process, whereas the other approach is the two-stage clonal expansion model. We compared the dynamics of tumorigenesis predicted by the two models in terms of the time period until the first malignant cell appears, which will subsequently form a tumor. The mean waiting time to cancer has been calculated approximately for the evolutionary colon cancer model. Here, we derive new analytic approximations to the median waiting time for the two-stage lung cancer model and for a multistage approximation to the Wright-Fisher process. Both equations show that the waiting time to cancer is dominated by the selective advantage per mutation and the net clonal expansion rate, respectively, whereas the mutation rate has less effect. Our comparisons support the idea that the main driving force in lung and colon carcinogenesis is Darwinian cell selection. PMID:20656803

  8. Carcinogenesis of Nitrated Toluenes and Benzenes Skin and Lung Tumor Assays in Mice

    DTIC Science & Technology

    1985-05-01

    SLAGA ET AL. NAY 85 ORNL -TOX-82-1 UNCLASSIFIED DOE-IRG-40-i~i6-79 F/G 6/29 N LmhmhhII -4I LI 1. .6 I1.8 111jj 12511 .4 I1 . MICROCOPY RESOLUTION TEST...November 1979--March 1983 SKIN AND LUNG TUMOR ASSAYS IN MICE 6. PERFORMING ORG. REPORT NUMBER - ORNL TOX 82-i 7. AUTI4OR(a) S. CONTRACT OR GRANT NUMBER...mouse Ure than UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGErIYIon Data Ento.e) QI AD ORNL /TM-9645 P CARCINOGENESIS OF NITRATED TOLUENES AND

  9. Mouse models for the study of colon carcinogenesis

    PubMed Central

    Rosenberg, Daniel W.; Giardina, Charles; Tanaka, Takuji

    2009-01-01

    The study of experimental colon carcinogenesis in rodents has a long history, dating back almost 80 years. There are many advantages to studying the pathogenesis of carcinogen-induced colon cancer in mouse models, including rapid and reproducible tumor induction and the recapitulation of the adenoma–carcinoma sequence that occurs in humans. The availability of recombinant inbred mouse panels and the existence of transgenic, knock-out and knock-in genetic models further increase the value of these studies. In this review, we discuss the general mechanisms of tumor initiation elicited by commonly used chemical carcinogens and how genetic background influences the extent of disease. We will also describe the general features of lesions formed in response to carcinogen treatment, including the underlying molecular aberrations and how these changes may relate to the pathogenesis of human colorectal cancer. PMID:19037092

  10. Epithelial NF-κB signaling promotes EGFR-driven lung carcinogenesis via macrophage recruitment

    PubMed Central

    Saxon, Jamie A.; Sherrill, Taylor P.; Polosukhin, Vasiliy V.; Sai, Jiqing; Zaynagetdinov, Rinat; McLoed, Allyson G.; Gulleman, Peter M.; Barham, Whitney; Cheng, Dong-Sheng; Hunt, Raphael P.; Gleaves, Linda A.; Richmond, Ann; Young, Lisa R.; Yull, Fiona E.; Blackwell, Timothy S.

    2016-01-01

    ABSTRACT Several studies have demonstrated that NF-κB activation is common in lung cancer; however, the mechanistic links between NF-κB signaling and tumorigenesis remain to be fully elucidated. We investigated the function of NF-κB signaling in epidermal growth factor receptor (EGFR)-mutant lung tumors using a transgenic mouse model with doxycycline (dox)-inducible expression of oncogenic EGFR in the lung epithelium with or without a dominant inhibitor of NF-κB signaling. NF-κB inhibition resulted in a significant reduction in tumor burden in both EGFR tyrosine kinase inhibitor (TKI)-sensitive and resistant tumors. However, NF-κB inhibition did not alter epithelial cell survival in vitro or in vivo, and no changes were detected in activation of EGFR downstream signaling pathways. Instead, we observed an influx of inflammatory cells (macrophages and neutrophils) in the lungs of mice with oncogenic EGFR expression that was blocked in the setting of NF-κB inhibition. To investigate whether inflammatory cells play a role in promoting EGFR-mutant lung tumors, we depleted macrophages and neutrophils during tumorigenesis and found that neutrophil depletion had no effect on tumor formation, but macrophage depletion caused a significant reduction in tumor burden. Together, these data suggest that epithelial NF-κB signaling supports carcinogenesis in a non-cell autonomous manner in EGFR-mutant tumors through recruitment of pro-tumorigenic macrophages. PMID:27471643

  11. Gender-dependent effects of gonadectomy on lung carcinogenesis by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) in female and male A/J mice

    PubMed Central

    NINOMIYA, FUMIKO; YOKOHIRA, MASANAO; KISHI, SOSUKE; NAKANO, YUKO; YAMAKAWA, KEIKO; INOUE, TATSUSHI; KUNO, TOSHIYA; IMAIDA, KATSUMI

    2013-01-01

    The present study was conducted to investigate the effects of gonadectomy on lung carcinogenesis in female and male mice, and to determine an association between sex hormone and lung carcinogenesis. Female and male A/J mice were divided into gonadectomized and unoperated control groups and all animals were treated intraperitoneally with 1 or 2 injections of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) at the dose of 2 mg/mouse. The mice were sacrificed 18 or 56 weeks after surgery. Serum levels of estradiol in females and testosterone in males were confirmed to be decreased by gonadectomy. Lung white nodules were detected in all mice of all groups. In the control groups of 18- and 56-week studies, the multiplicities of lung nodules in females were significantly greater than in males. In males in the 56-week study, the multiplicity of macroscopical lung nodules, bronchiolo-alveolar hyperplasias, adenomas and tumors (adenomas and adenocarcinomas) showed significant increase with castration. In females in the 18-week study, the multiplicity of adenomas decreased significantly by ovariectomy. Based on the results of the present study, female A/J mice were confirmed to be more susceptible to NNK-induced lung carcinogenesis than males. Furthermore, it was suggested that the process is inhibited by testosterone and accelerated by estradiol. These findings indicate the possibility that sex hormones play important roles in determining sex differences in lung carcinogenesis in the A/J mice initiated by NNK. PMID:24085151

  12. Chemoprevention of Lung Carcinogenesis in Addicted Smokers and Ex-Smokers

    PubMed Central

    Hecht, Stephen S.; Kassie, Fekadu; Hatsukami, Dorothy K.

    2013-01-01

    Chemoprevention of lung carcinogenesis is one approach to controlling the epidemic of lung cancer caused by cigarette smoking. The target for chemoprevention should be the activities of the multiple carcinogens, toxicants, co-carcinogens, tumor promoters and inflammatory compounds in cigarette smoke. There are presently many agents both synthetic and naturally occurring that prevent lung tumor development in well established animal models. It seems likely that logically constructed mixtures of these agents, developed from the ground up, will be necessary for prevention of lung carcinogenesis PMID:19550424

  13. MicroRNA 4423 is a primate-specific regulator of airway epithelial cell differentiation and lung carcinogenesis

    PubMed Central

    Perdomo, Catalina; Campbell, Joshua D.; Gerrein, Joseph; Tellez, Carmen S.; Garrison, Carly B.; Walser, Tonya C.; Drizik, Eduard; Si, Huiqing; Gower, Adam C.; Vick, Jessica; Anderlind, Christina; Jackson, George R.; Mankus, Courtney; Schembri, Frank; O’Hara, Carl; Gomperts, Brigitte N.; Dubinett, Steven M.; Hayden, Patrick; Belinsky, Steven A.; Lenburg, Marc E.; Spira, Avrum

    2013-01-01

    Smoking is a significant risk factor for lung cancer, the leading cause of cancer-related deaths worldwide. Although microRNAs are regulators of many airway gene-expression changes induced by smoking, their role in modulating changes associated with lung cancer in these cells remains unknown. Here, we use next-generation sequencing of small RNAs in the airway to identify microRNA 4423 (miR-4423) as a primate-specific microRNA associated with lung cancer and expressed primarily in mucociliary epithelium. The endogenous expression of miR-4423 increases as bronchial epithelial cells undergo differentiation into mucociliary epithelium in vitro, and its overexpression during this process causes an increase in the number of ciliated cells. Furthermore, expression of miR-4423 is reduced in most lung tumors and in cytologically normal epithelium of the mainstem bronchus of smokers with lung cancer. In addition, ectopic expression of miR-4423 in a subset of lung cancer cell lines reduces their anchorage-independent growth and significantly decreases the size of the tumors formed in a mouse xenograft model. Consistent with these phenotypes, overexpression of miR-4423 induces a differentiated-like pattern of airway epithelium gene expression and reverses the expression of many genes that are altered in lung cancer. Together, our results indicate that miR-4423 is a regulator of airway epithelium differentiation and that the abrogation of its function contributes to lung carcinogenesis. PMID:24158479

  14. The Combination of Three Natural Compounds Effectively Prevented Lung Carcinogenesis by Optimal Wound Healing

    PubMed Central

    Guo, Zhenzhen; Ma, Xiaofang; Cao, Ning; Zheng, Yaqiu; Geng, Shengnan; Duan, Yongjian; Han, Guang; Du, Gangjun

    2015-01-01

    The tumor stroma has been described as “normal wound healing gone awry”. We explored whether the restoration of a wound healing-like microenvironment may facilitate tumor healing. Firstly, we screened three natural compounds (shikonin, notoginsenoside R1 and aconitine) from wound healing agents and evaluated the efficacies of wound healing microenvironment for limiting single agent-elicited carcinogenesis and two-stage carcinogenesis. The results showed that three compounds used alone could promote wound healing but had unfavorable efficacy to exert wound healing, and that the combination of three compounds made up treatment disadvantage of a single compound in wound healing and led to optimal wound healing. Although individual treatment with these agents may prevent cancer, they were not effective for the treatment of established tumors. However, combination treatment with these three compounds almost completely prevented urethane-induced lung carcinogenesis and reduced tumor burden. Different from previous studies, we found that urethane-induced lung carcinogenesis was associated with lung injury independent of pulmonary inflammation. LPS-induced pulmonary inflammation did not increase lung carcinogenesis, whereas decreased pulmonary inflammation by macrophage depletion promoted lung carcinogenesis. In addition, urethane damaged wound healing in skin excision wound model, reversed lung carcinogenic efficacy by the combination of three compounds was consistent with skin wound healing. Further, the combination of these three agents reduced the number of lung cancer stem cells (CSCs) by inducing cell differentiation, restoration of gap junction intercellular communication (GJIC) and blockade of the epithelial-to-mesenchymal transition (EMT). Our results suggest that restoration of a wound healing microenvironment represents an effective strategy for cancer prevention. PMID:26599445

  15. NF-kappaB, a mediator for lung carcinogenesis and a target for lung cancer prevention and therapy

    PubMed Central

    Chen, Wenshu; Li, Zi; Bai, Lang; Lin, Yong

    2011-01-01

    Lung cancer ranks as the first malignant tumor killer worldwide. Despite the knowledge that carcinogens from tobacco smoke and the environment constitute the main causes of lung cancer, the mechanisms for lung carcinogenesis are still elusive. Cancer development and progression depend on the balance between cell survival and death signals. Common cell survival signaling pathways are activated by carcinogens as well as by inflammatory cytokines, which contribute substantially to cancer development. As a major cell survival signal, nuclear factor-kappaB (NF-kappaB) is involved in multiple steps in carcinogenesis and in cancer cell’s resistance to chemo- and radiotherapy. Recent studies with animal models and cell culture systems have established the links between NF-kappaB and lung carcinogenesis, highlighting the significance of targeting the NF-kappaB signaling pathway for lung cancer treatment and chemoprevention. In this review, we summarize progresses in understanding the NF-kappaB pathway in lung cancer development as well as in modulating NF-kappaB for lung cancer prevention and therapy. PMID:21196225

  16. Occupational lung cancer and smoking: a review in the light of current theories of carcinogenesis.

    PubMed Central

    Chovil, A C

    1979-01-01

    This paper considers modern theories of carcinogenesis as they apply to the induction of lung cancer by tobacco smoking and occupational exposure to carcinogens. Some of the known and postulated factors affecting carcinogenesis are discussed, with particular reference to syncarcinogenesis and thresholds. Factors affecting the intensity of smoking exposure are reviewed, and the generally accepted occupational lung carcinogens are listed. Relative risks for the various carcinogens according to smoking status (where known) are presented. The carcinogens are considered individually, and known or postulated interactions with smoking are discussed. It is concluded that the effects of lung carcinogens can be explained on the basis of current theories that support a rational definition of priorities for the prevention of occupational lung cancer. Images p553-a PMID:387195

  17. Inhibition of lung carcinogenesis by retinoids and vitamin D

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lung cancer is the most common cause of cancer death in the world today. Despite great efforts to improve the treatment of patients with lung cancer, the survival rate for people diagnosed with this disease has not significantly improved over the past 30 years. Cigarette smoking is the dominant caus...

  18. Defining the role of polyamines in colon carcinogenesis using mouse models

    PubMed Central

    Ignatenko, Natalia A.; Gerner, Eugene W.; Besselsen, David G.

    2011-01-01

    Genetics and diet are both considered important risk determinants for colorectal cancer, a leading cause of death in the US and worldwide. Genetically engineered mouse (GEM) models have made a significant contribution to the characterization of colorectal cancer risk factors. Reliable, reproducible, and clinically relevant animal models help in the identification of the molecular events associated with disease progression and in the development of effictive treatment strategies. This review is focused on the use of mouse models for studying the role of polyamines in colon carcinogenesis. We describe how the available mouse models of colon cancer such as the multiple intestinal neoplasia (Min) mice and knockout genetic models facilitate understanding of the role of polyamines in colon carcinogenesis and help in the development of a rational strategy for colon cancer chemoprevention. PMID:21712957

  19. Lessons learned using different mouse models during space radiation-induced lung tumorigenesis experiments.

    PubMed

    Wang, Jian; Zhang, Xiangming; Wang, Ping; Wang, Xiang; Farris, Alton B; Wang, Ya

    2016-06-01

    Unlike terrestrial ionizing radiation, space radiation, especially galactic cosmic rays (GCR), contains high energy charged (HZE) particles with high linear energy transfer (LET). Due to a lack of epidemiologic data for high-LET radiation exposure, it is highly uncertain how high the carcinogenesis risk is for astronauts following exposure to space radiation during space missions. Therefore, using mouse models is necessary to evaluate the risk of space radiation-induced tumorigenesis; however, which mouse model is better for these studies remains uncertain. Since lung tumorigenesis is the leading cause of cancer death among both men and women, and low-LET radiation exposure increases human lung carcinogenesis, evaluating space radiation-induced lung tumorigenesis is critical to enable safe Mars missions. Here, by comparing lung tumorigenesis obtained from different mouse strains, as well as miR-21 in lung tissue/tumors and serum, we believe that wild type mice with a low spontaneous tumorigenesis background are ideal for evaluating the risk of space radiation-induced lung tumorigenesis, and circulating miR-21 from such mice model might be used as a biomarker for predicting the risk.

  20. Lessons learned using different mouse models during space radiation-induced lung tumorigenesis experiments

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Zhang, Xiangming; Wang, Ping; Wang, Xiang; Farris, Alton B.; Wang, Ya

    2016-06-01

    Unlike terrestrial ionizing radiation, space radiation, especially galactic cosmic rays (GCR), contains high energy charged (HZE) particles with high linear energy transfer (LET). Due to a lack of epidemiologic data for high-LET radiation exposure, it is highly uncertain how high the carcinogenesis risk is for astronauts following exposure to space radiation during space missions. Therefore, using mouse models is necessary to evaluate the risk of space radiation-induced tumorigenesis; however, which mouse model is better for these studies remains uncertain. Since lung tumorigenesis is the leading cause of cancer death among both men and women, and low-LET radiation exposure increases human lung carcinogenesis, evaluating space radiation-induced lung tumorigenesis is critical to enable safe Mars missions. Here, by comparing lung tumorigenesis obtained from different mouse strains, as well as miR-21 in lung tissue/tumors and serum, we believe that wild type mice with a low spontaneous tumorigenesis background are ideal for evaluating the risk of space radiation-induced lung tumorigenesis, and circulating miR-21 from such mice model might be used as a biomarker for predicting the risk.

  1. Ultrastructural changes during lung carcinogenesis-modulation by curcumin and quercetin

    PubMed Central

    Wang, Xin; Wang, Lei; Zhang, Hao; Li, Ke; You, Jiqin

    2016-01-01

    The aim of the present study was to examine the effectiveness of curcumin and quercetin in modulating ultrastructural changes during lung carcinogenesis. A total of 24 male laka mice were divided into the normal control, benzo[a]pyrene (BP)-treated, BP+curcumin-treated, BP+quercetin- treated, and BP+curcumin+quercetin-treated groups (n=6 per group). Lung carcinogenesis was induced by a single intraperitoneal injection of BP [100 mg/kg of body weight (b.wt.)]. Curcumin was supplemented to mice at a dose level of 60 mg/kg of b.wt. in drinking water and quercetin was given at a dose level of 40 mg/kg of b.wt. in drinking water. The ultrastructure of BP-treated mice revealed disruptions in cellular integrity together with nuclear deformation and premature mitochondrial aging. Notably, supplementation with phytochemicals individually resulted in improvement of the ultra-histoarchitecture of BP-treated mice although the improvement was much greater with combined supplementation of phytochemicals. Furthermore, BP treatment revealed alterations in lung histoarchitecture, which, however, were improved appreciably following combined supplementation with curcumin and quercetin. The results of the present study show that, combined supplementation with curcumin and quercetin effectively preserved the histoarchitecture as well as ultra-histoarchitecture during BP-induced lung carcinogenesis in mice. PMID:28101199

  2. Intranasal Administration of Type V Collagen Reduces Lung Carcinogenesis through Increasing Endothelial and Epithelial Apoptosis in a Urethane-Induced Lung Tumor Model.

    PubMed

    Parra, Edwin Roger; Alveno, Renata Antunes; Faustino, Carolina Brito; Corrêa, Paula Yume Sato Serzedello; Vargas, Camilla Mutai; de Morais, Jymenez; Rangel, Maristela Peres; Velosa, Ana Paula Pereira; Fabro, Alexandre Todorovic; Teodoro, Walcy Rosolia; Capelozzi, Vera Luiza

    2016-08-01

    Type V collagen (Col V) is a "minor" component of normal lung extracellular matrix, which is subjected to decreased and abnormal synthesis in human lung infiltrating adenocarcinoma. We previously reported that a direct link between low amounts of Col V and decreased cell apoptosis may favor cancer cell growth in the mouse lung after chemical carcinogenesis. Moreover, this collagen species was able to trigger DNA fragmentation and impair survival of neoplastic cells. In this study, we have extended our investigation with the aim to obtain further evidence that the death induced by Col V-treatment is of the caspase-9 apoptotic type. We used (1) optical and electron microscopy, (2) quantitation of TUNEL-labeled cells and (3) analysis of the expression levels of Col V and selected genes coding for apoptosis-linked factors, by conventional RT-PCR. BALB/c mice were injected intraperitoneally with 1.5 g/kg body weight of urethane. After urethane injection, the animals received intranasal administration of 20 µg/20 µl of Col V every day during 2 months. We report here that Col V treatment was able to determine significant increase in Col V protein and gene expression and in the percentage of TUNEL-positive cells, to up-regulate caspase-9, resulting in low growth of tumor cells. Our data validate chemical carcinogenesis as a suitable "in vivo" model for further and more detailed studies on the molecular mechanisms of the death response induced by Col V in lung infiltrating adenocarcinoma opening new strategies for treatment.

  3. Ovarian Mouse Models with Targeted Fallopian Tubal Carcinogenesis

    DTIC Science & Technology

    2012-09-01

    serous subtype of epithelial ovarian cancer may also arise from the fallopian epithelium. This shift in cell-of-origin for ovarian cancer has...hypothesis that high-grade serous ovarian cancer may arise from fallopian tubal epithelium are lacking. Therefore, in this proposal we generated a mouse...Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT To test the idea that ovarian cancer arises from oviductal

  4. Altered glucocorticoid receptor expression and function during mouse skin carcinogenesis.

    PubMed

    Budunova, I V; Carbajal, S; Kang, H; Viaje, A; Slaga, T J

    1997-03-01

    Glucocorticoids are the most potent inhibitors of tumor promotion in mouse skin, when applied with a promoting agent at the early stages of promotion. However, established skin papillomas become resistant to growth inhibition by glucocorticoids. Glucocorticoid control of cellular functions is mediated by the glucocorticoid receptor (GR), a well-known transcription factor. Here we present data on GR expression and function in mouse papillomas and squamous cell carcinomas. Tumors were produced in SENCAR mice by a 7,12-dimethylbenz[a]anthracene and 12-O-tetradecanoylphorbol-13-acetate two-stage protocol. In early papillomas (after 15-20 wk of promotion), northern blotting revealed a decrease in the GR mRNA level that was confirmed by a binding assay. However, in late papillomas (after 30-40 wk of promotion), and especially in squamous cell carcinomas, the level of GR in both assays was similar to or higher than the GR level in normal epidermis. To test the functional capability of GR in tumors, we compared the effect of the synthetic glucocorticoid fluocinolone acetonide (FA) on keratinocyte proliferation and on expression of glucocorticoid-responsive genes in normal epidermis, hyperplastic skin surrounding tumors, and mouse skin papillomas. FA strongly inhibited DNA synthesis in keratinocytes in normal skin and tumor-surrounding skin but had no effect on DNA synthesis in papillomas. In addition, FA strongly induced metallothionein 1 expression and inhibited connexin 26 expression in skin but did not affect expression of these genes in tumors. These data suggest that alteration of both the expression and function of GR may be an important mechanism of tumor promotion in skin.

  5. Lung carcinogenesis from chronic obstructive pulmonary disease: characteristics of lung cancer from COPD and contribution of signal transducers and lung stem cells in the inflammatory microenvironment.

    PubMed

    Sekine, Yasuo; Hata, Atsushi; Koh, Eitetsu; Hiroshima, Kenzo

    2014-07-01

    Chronic obstructive pulmonary disease (COPD) and lung cancer are closely related. The annual incidence of lung cancer arising from COPD has been reported to be 0.8-1.7 %. Treatment of lung cancer from COPD is very difficult due to low cardiopulmonary function, rapid tumor growth, and resistance to molecularly targeted therapies. Chronic inflammation caused by toxic gases can induce COPD and lung cancer. Carcinogenesis in the inflammatory microenvironment occurs during cycles of tissue injury and repair. Cellular damage can induce induction of necrotic cell death and loss of tissue integrity. Quiescent normal stem cells or differentiated progenitor cells are introduced to repair injured tissues. However, inflammatory mediators may promote the growth of bronchioalveolar stem cells, and activation of NF-κB and signal transducer and activator of transcription 3 (STAT3) play crucial roles in the development of lung cancer from COPD. Many of the protumorgenic effects of NF-κB and STAT3 activation in immune cells are mediated through paracrine signaling. NF-κB and STAT3 also contribute to epithelial-mesenchymal transition. To improve lung cancer treatment outcomes, lung cancer from COPD must be overcome. In this article, we review the characteristics of lung cancer from COPD and the mechanisms of carcinogenesis in the inflammatory microenvironment. We also propose the necessity of identifying the mechanisms underlying progression of COPD to lung cancer, and comment on the clinical implications with respect to lung cancer prevention, screening, and therapy.

  6. Epithelial nuclear factor-κB signaling promotes lung carcinogenesis via recruitment of regulatory T lymphocytes.

    PubMed

    Zaynagetdinov, R; Stathopoulos, G T; Sherrill, T P; Cheng, D-S; McLoed, A G; Ausborn, J A; Polosukhin, V V; Connelly, L; Zhou, W; Fingleton, B; Peebles, R S; Prince, L S; Yull, F E; Blackwell, T S

    2012-06-28

    The mechanisms by which chronic inflammatory lung diseases, particularly chronic obstructive pulmonary disease, confer enhanced risk for lung cancer are not well-defined. To investigate whether nuclear factor (NF)-κB, a key mediator of immune and inflammatory responses, provides an interface between persistent lung inflammation and carcinogenesis, we utilized tetracycline-inducible transgenic mice expressing constitutively active IκB kinase β in airway epithelium (IKTA (IKKβ trans-activated) mice). Intraperitoneal injection of ethyl carbamate (urethane), or 3-methylcholanthrene (MCA) and butylated hydroxytoluene (BHT) was used to induce lung tumorigenesis. Doxycycline-treated IKTA mice developed chronic airway inflammation and markedly increased numbers of lung tumors in response to urethane, even when transgene expression (and therefore epithelial NF-κB activation) was begun after exposure to carcinogen. Studies using a separate tumor initiator/promoter model (MCA+BHT) indicated that NF-κB functions as an independent tumor promoter. Enhanced tumor formation in IKTA mice was preceded by increased proliferation and reduced apoptosis of alveolar epithelium, resulting in increased formation of premalignant lesions. Investigation of inflammatory cells in lungs of IKTA mice revealed a substantial increase in macrophages and lymphocytes, including functional CD4+/CD25+/FoxP3+ regulatory T lymphocytes (Tregs). Importantly, Treg depletion using repetitive injections of anti-CD25 antibodies limited excessive tumor formation in IKTA mice. At 6 weeks following urethane injection, antibody-mediated Treg depletion in IKTA mice reduced the number of premalignant lesions in the lungs in association with an increase in CD8 lymphocytes. Thus, persistent NF-κB signaling in airway epithelium facilitates carcinogenesis by sculpting the immune/inflammatory environment in the lungs.

  7. Skin Carcinogenesis Studies Using Mouse Models with Altered Polyamines

    PubMed Central

    Nowotarski, Shannon L; Feith, David J; Shantz, Lisa M

    2015-01-01

    Nonmelanoma skin cancer (NMSC) is a major health concern worldwide. With increasing numbers in high-risk groups such as organ transplant recipients and patients taking photosensitizing medications, the incidence of NMSC continues to rise. Mouse models of NMSC allow us to better understand the molecular signaling cascades involved in skin tumor development in order to identify novel therapeutic strategies. Here we review the models designed to determine the role of the polyamines in NMSC development and maintenance. Elevated polyamines are absolutely required for tumor growth, and dysregulation of their biosynthetic and catabolic enzymes has been observed in NMSC. Studies using mice with genetic alterations in epidermal polyamines suggest that they play key roles in tumor promotion and epithelial cell survival pathways, and recent clinical trials indicate that pharmacological inhibitors of polyamine metabolism show promise in individuals at high risk for NMSC. PMID:26380554

  8. Smoking-promoted oxidative DNA damage response is highly correlated to lung carcinogenesis.

    PubMed

    Cao, Chao; Lai, Tianwen; Li, Miao; Zhou, Hongbin; Lv, Dan; Deng, Zaichun; Ying, Songmin; Chen, Zhihua; Li, Wen; Shen, Huahao

    2016-04-05

    Oxidative stress induced by tobacco smoking is one of the main causes of DNA damage and is known to be involved in various cancers. Smoking is the leading cause of lung cancer, while the role of cigarette smoke-induced oxidative DNA damage response during lung carcinogenesis is largely unknown. In this study, we investigated oxidative DNA damage response levels in smoking and nonsmoking patients with lung cancer, and evaluated the potential diagnostic value of 8-OHdG for lung cancer. We observed a higher level of 8-OHdG expression and secretion in airways of lung cancer patients than that of noncancer controls. 8-OHdG expression was associated with the TNM stages. Additionally, cigarette smoke-induced oxidative DNA damage response was observed in bronchial epithelial cells in vitro and in vivo. A statistical significance correlation was found between the levels of 8-OHdG and smoking index. With a cut-off value of 2.86 ng/ml, 8-OHdG showed a sensitivity and specificity of 70.0% and 73.7%, respectively, to identify a patient with lung cancer. These findings not only underscore the importance of smoking in oxidative DNA damage response of lung cancer patients, but also suggest 8-OHdG as a potential diagnostic biomarker for lung cancer.

  9. Antibodies to mouse lung capillary endothelium.

    PubMed

    Rorvik, M C; Allison, D P; Hotchkiss, J A; Witschi, H P; Kennel, S J

    1988-07-01

    We are interested in developing monoclonal antibodies (MoAbs) that recognize specific cell types in the lung of BALB/c mice. Normal mouse lung homogenate was used to immunize F344 rats and hybridomas were produced by fusion of rat spleen cells with mouse myeloma SP 2/0. Two hybridomas were selected which produced MoAbs active in immunohistochemistry of lung cells. MoAb 273-34A and 411-201B both show extensive peroxidase staining of capillary endothelial cells within alveolar walls of lungs at the light microscopic level. To demonstrate cell specificity, immunoelectron microscopy with gold-labeled antibody was performed. Lightly fixed lungs were frozen and thin-sectioned before staining with MoAb and 5-nm gold particles coupled to secondary antibody. Quantitative analyses of these cryosections show that both antibodies, used at optimal concentrations, are specific for binding to capillary endothelial cells. More than 95% of the gold particles are associated with capillary endothelial cells on the thin side of the alveolar wall. When capillaries adjoined thick septa containing interstitial cells, about two thirds of the gold particles were associated with endothelial cells and about one quarter with interstitial cells. These MoAbs should be useful in studying the role of endothelial cells in toxic lung injury.

  10. Suppressive function of RKTG on chemical carcinogen-induced skin carcinogenesis in mouse.

    PubMed

    Xie, Xiaoduo; Zhang, Yixuan; Jiang, Yuhui; Liu, Weizhong; Ma, Hong; Wang, Zhenzhen; Chen, Yan

    2008-08-01

    Raf kinase trapping to Golgi (RKTG) is a newly characterized negative regulator of the Ras-Raf-MEK-ERK signaling pathway via sequestrating Raf-1 to the Golgi apparatus. However, little is known about the physiological functions of RKTG in mitogenic pathway and carcinogenesis. Here, we describe a suppressive role of RKTG in skin carcinogenesis by analyzing chemical carcinogen-induced tumorigenesis. Epidermis hyperplasia and proliferation are increased in RKTG-deficient mice (RKTG(-/-)) after acute treatment with 7, 12-dimethylbenz(a)anthracene (DMBA) and 12-O-tetradecanoylphorbol-13-acetate (TPA). Using a two-stage DMBA/TPA carcinogenesis protocol on mouse skin, the number and size of papillomas are increased in RKTG(-/-) mice, accompanied by shortened tumor latency and enhanced keratinocyte proliferation. The regression of the carcinogen-induced tumors is also prolonged in RKTG(-/-) mice. Consistently, the levels of Raf-1 and extracellular signal-regulated kinase phosphorylation in primary keratinocytes as well as skin tumors are elevated when RKTG is disrupted. Collectively, our results indicate that RKTG has a suppressive activity in chemical carcinogen-induced mitogenesis and tumor formation in mouse skin.

  11. Multiplicative effect of inhaled plutonium oxide and benzo (a) pyrene on lung carcinogenesis in rats.

    PubMed Central

    Métivier, H.; Wahrendorf, J.; Masse, R.

    1984-01-01

    This study describes the effect of intratracheal instillations (2 X 5 mg) of benzo(a)pyrene (B(a)P) on lung carcinogenesis in rats which had previously inhaled different levels of 239 plutonium oxide (220, 630, 6300 Bq, initial lung burden). Survival decreased with increasing PuO2 exposure and additional B(a)P exposure. The incidence of malignant lung tumours, adjusted for differences in survival, increased in a dose-related fashion with PuO2 dose and was elevated in the presence of additional B(a)P exposure. A multiplicative relative risk model was found to describe reasonably well the observed joint effect. The practical implications of these findings are discussed. PMID:6087866

  12. Fifty years of tobacco carcinogenesis research: from mechanisms to early detection and prevention of lung cancer.

    PubMed

    Hecht, Stephen S; Szabo, Eva

    2014-01-01

    The recognition of the link between cigarette smoking and lung cancer in the 1964 Surgeon General's Report initiated definitive and comprehensive research on the identification of carcinogens in tobacco products and the relevant mechanisms of carcinogenesis. The resultant comprehensive data clearly illustrate established pathways of cancer induction involving carcinogen exposure, metabolic activation, DNA adduct formation, and consequent mutation of critical genes along with the exacerbating influences of inflammation, cocarcinogenesis, and tumor promotion. This mechanistic understanding has provided a framework for the regulation of tobacco products and for the development of relevant tobacco carcinogen and toxicant biomarkers that can be applied in cancer prevention. Simultaneously, the recognition of the link between smoking and lung cancer paved the way for two additional critical approaches to cancer prevention that are discussed here: detection of lung cancer at an early, curable stage, and chemoprevention of lung cancer. Recent successes in more precisely identifying at-risk populations and in decreasing lung cancer mortality with helical computed tomography screening are notable, and progress in chemoprevention continues, although challenges with respect to bringing these approaches to the general population exist. Collectively, research performed since the 1964 Report demonstrates unequivocally that the majority of deaths from lung cancer are preventable.

  13. Lung carcinogenesis in rats after inhalation exposure to (237)NpO2.

    PubMed

    Dudoignon, N; Guézingar-Liébard, F; Guillet, K; L'Hullier, I; Rateau, G; Monchaux, G; Fritsch, P

    1999-12-01

    The results of several studies of experimental carcinogenesis suggest that, after inhalation of alpha-particle emitters, lung tumor incidence varies depending on the exposure rate and dose distribution in the tissue. In the case of transuranics, the main influencing factor would be the specific alpha-particle activity of the inhaled actinide. To confirm these results, long-term studies were performed using male Sprague-Dawley rats exposed to (237)NpO(2) by inhalation. The initial lung burdens of the animals ranged from 0. 1 to about 7 kBq. The rats were followed during their life span and weighed regularly, and their lung burdens were determined in vivo and at death to estimate the lung dose. At death, the incidence of lung tumors and their malignancy and histological types were analyzed. The analysis revealed a typically linear-quadratic dose response for incidence of malignant lung neoplasm and a differential dose response for various types of tumors. Although these results confirm the influence of the activity of the inhaled actinide oxide, further experiments are needed to be able to compare a more homogeneous population of animals.

  14. Multi-step lung carcinogenesis model induced by oral administration of N-nitrosobis(2-hydroxypropyl)amine in rats.

    PubMed

    Tsujiuchi, Toshifumi; Nakae, Dai; Konishi, Yoichi

    2014-03-01

    N-Nitrosobis(2-hydroxypropyl)amine (BHP) was first synthesized by Krüger et al. (1974), and has been shown to primarily induce pancreatic duct adenocarcinomas by a subcutaneous injection in Syrian hamsters. By contrast, the carcinogenic effect of BHP has been indicated at the different target organs in rats, namely the lung. When rats are received by an oral administration of BHP in drinking water for 25 weeks, a high incidence of lung carcinomas are induced, which include adenocarcinomas, squamous cell carcinomas and combined squamous cell and adenocarcinomas. So many similarities are observed in terms of not only histological appearances but also gene alterations between human and BHP-induced rat lung cancers. Moreover, the step by step development of lung lesions, from preneoplastic lesions to cancers in rat lung carcinogenesis by BHP offers a good model to investigate the mechanisms underlying the pathogenesis of lung cancers. Because data for genetic and epigenetic alterations have indeed been accumulated during the BHP-induced rat lung carcinogenesis, we will introduce them in this review and hence demonstrate that this lung carcinogenesis model provides a useful opportunity for the research on the pathogenesis of lung cancers of both humans and rats.

  15. Chronic ultraviolet exposure-induced p53 gene alterations in sencar mouse skin carcinogenesis model

    SciTech Connect

    Tong, Ying; Smith, M.A.; Tucker, S.B.

    1997-06-27

    Alterations of the tumor suppressor gene p53 have been found in ultraviolet radiation (UVR) related human skin cancers and in UVR-induced murine skin tumors. However, links between p53 gene alterations and the stages of carcinogenesis induced by UVR have not been clearly defined. We established a chronic UVR exposure-induced Sencar mouse skin carcinogenesis model to determine the frequency of p53 gene alterations in different stages of carcinogenesis, including UV-exposed skin, papillomas, squamous-cell carcinomas (SCCs), and malignant spindle-cell tumors (SCTs). A high incidence of SCCs and SCTs were found in this model. Positive p53 nuclear staining was found in 10137 (27%) of SCCs and 12124 (50%) of SCTs, but was not detected in normal skin or papillomas. DNA was isolated from 40 paraffin-embedded normal skin, UV-exposed skin, and tumor sections. The p53 gene (exons 5 and 6) was amplified from the sections by using nested polymerase chain reaction (PCR). Subsequent single-strand conformation polymorphism (SSCP) assay and sequencing analysis revealed one point mutation in exon 6 (coden 193, C {r_arrow} A transition) from a UV-exposed skin sample, and seven point mutations in exon 5 (codens 146, 158, 150, 165, and 161, three C {r_arrow} T, two C {r_arrow} A, one C {r_arrow} G, and one A {r_arrow} T transition, respectively) from four SCTs, two SCCs and one UV-exposed skin sample. These experimental results demonstrate that alterations in the p53 gene are frequent events in chronic UV exposure-induced SCCs and later stage SCTs in Sencar mouse skin. 40 refs., 5 figs., 1 tab.

  16. Altered expression of G1/S regulatory genes occurs early and frequently in lung carcinogenesis in transforming growth factor-beta1 heterozygous mice.

    PubMed

    Kang, Yang; Ozbun, Laurent L; Angdisen, Jerry; Moody, Terry W; Prentice, Margaret; Diwan, Bhalchandra A; Jakowlew, Sonia B

    2002-07-01

    We developed the AJBL6 transforming growth factor-beta 1 (TGF-beta1) heterozygous (HT) mouse by mating A/J mice with C57BL/6 TGF-beta1 HT mice that shows increased carcinogen-induced lung lesions with decreased latency to examine progressive events in lung tumorigenesis. Mouse cDNA macroarrays were used to identify cell cycle genes that are differentially regulated in ethyl carbamate-induced lung adenocarcinomas compared with normal lung tissue in AJBL6 TGF-beta1 HT mice using probes that were generated from tissues isolated using laser capture microdissection. While expression of the genes for cyclin D1, CDK4, and E2F1 increased in lung adenocarcinomas relative to normal lung, expression of p15(Ink4b), p16(Ink4a), p21(Cip1), p27(Kip1), p57(Kip2), and pRb genes decreased in comparison. Competitive RT-PCR showed that the levels of cyclin D1 and CDK4 mRNAs were 2- and 3-fold higher, respectively, in lung adenocarcinomas than in normal lung, while the mRNAs for p15(Ink4b), p16(Ink4a), p21(Cip1), p27(Kip1), and pRb were 3- to 4-fold lower in adenocarcinomas than in normal lung, thus validating the macroarray findings. Competitive RT-PCR of microdissected lesions also showed that the levels of cyclin D1 and CDK4 mRNAs increased significantly, while the mRNAs for p15(Ink4b) and p27(Kip1) decreased significantly as lung tumorigenesis progressed. Immunohistochemical staining for cyclin D1 and CDK4 showed staining in >80% of nuclei in adenocarcinomas compared with fewer than 20% of nuclei staining positively in normal lung. In contrast, while >60% of normal lung cells showed immunostaining for p15(Ink4b), p16(Ink4a), p21(Cip1), p27(Kip1), and pRb, staining for these proteins decreased in hyperplasias, adenomas, and adenocarcinomas. These data show that multiple components of the cyclin D1/CDK4/p16(Ink4a)/pRb signaling pathway are frequently altered early in lung lesions of AJBL6 TGF-beta1 HT mice that are induced by ethyl carbamate as a function of progressive lung

  17. Vital-dye-enhanced multimodal imaging of neoplastic progression in a mouse model of oral carcinogenesis

    NASA Astrophysics Data System (ADS)

    Hellebust, Anne; Rosbach, Kelsey; Wu, Jessica Keren; Nguyen, Jennifer; Gillenwater, Ann; Vigneswaran, Nadarajah; Richards-Kortum, Rebecca

    2013-12-01

    In this longitudinal study, a mouse model of 4-nitroquinoline 1-oxide chemically induced tongue carcinogenesis was used to assess the ability of optical imaging with exogenous and endogenous contrast to detect neoplastic lesions in a heterogeneous mucosal surface. Widefield autofluorescence and fluorescence images of intact 2-NBDG-stained and proflavine-stained tissues were acquired at multiple time points in the carcinogenesis process. Confocal fluorescence images of transverse fresh tissue slices from the same specimens were acquired to investigate how changes in tissue microarchitecture affect widefield fluorescence images of intact tissue. Widefield images were analyzed to develop and evaluate an algorithm to delineate areas of dysplasia and cancer. A classification algorithm for the presence of neoplasia based on the mean fluorescence intensity of 2-NBDG staining and the standard deviation of the fluorescence intensity of proflavine staining was found to separate moderate dysplasia, severe dysplasia, and cancer from non-neoplastic regions of interest with 91% sensitivity and specificity. Results suggest this combination of noninvasive optical imaging modalities can be used in vivo to discriminate non-neoplastic from neoplastic tissue in this model with the potential to translate this technology to the clinic.

  18. Vital-dye-enhanced multimodal imaging of neoplastic progression in a mouse model of oral carcinogenesis

    PubMed Central

    Hellebust, Anne; Rosbach, Kelsey; Wu, Jessica Keren; Nguyen, Jennifer; Gillenwater, Ann; Vigneswaran, Nadarajah; Richards-Kortum, Rebecca

    2013-01-01

    Abstract. In this longitudinal study, a mouse model of 4-nitroquinoline 1-oxide chemically induced tongue carcinogenesis was used to assess the ability of optical imaging with exogenous and endogenous contrast to detect neoplastic lesions in a heterogeneous mucosal surface. Widefield autofluorescence and fluorescence images of intact 2-NBDG-stained and proflavine-stained tissues were acquired at multiple time points in the carcinogenesis process. Confocal fluorescence images of transverse fresh tissue slices from the same specimens were acquired to investigate how changes in tissue microarchitecture affect widefield fluorescence images of intact tissue. Widefield images were analyzed to develop and evaluate an algorithm to delineate areas of dysplasia and cancer. A classification algorithm for the presence of neoplasia based on the mean fluorescence intensity of 2-NBDG staining and the standard deviation of the fluorescence intensity of proflavine staining was found to separate moderate dysplasia, severe dysplasia, and cancer from non-neoplastic regions of interest with 91% sensitivity and specificity. Results suggest this combination of noninvasive optical imaging modalities can be used in vivo to discriminate non-neoplastic from neoplastic tissue in this model with the potential to translate this technology to the clinic. PMID:24362926

  19. Effect of an epidermal growth factor receptor inhibitor in mouse models of lung cancer.

    PubMed

    Yan, Ying; Lu, Yan; Wang, Min; Vikis, Haris; Yao, Ruisheng; Wang, Yian; Lubet, Ronald A; You, Ming

    2006-12-01

    Gefitinib (Iressa, ZD1839) is a potent high-affinity competitive tyrosine kinase inhibitor aimed primarily at epidermal growth factor receptor (EGFR). Inhibitors in this class have recently been approved for clinical use in the treatment of advanced non-small cell lung cancer as monotherapy following failure of chemotherapy. We examined the efficacy of gefitinib on lung tumorigenesis in mouse models using both postinitiation and progression protocols. Gefitinib was given at a dose of 200 mg/kg body weight (i.g.) beginning either 2 or 12 weeks following carcinogen initiation. In the postinitiation protocol, gefitinib significantly inhibited both tumor multiplicity (approximately 70%) and tumor load (approximately 90%) in A/J or p53-mutant mice (P < 0.0001). Interestingly, gefitinib was also highly effective against lung carcinogenesis in the progression protocol when individual animals already have multiple preinvasive lesions in the lung. Gefitinib exhibited approximately 60% inhibition of tumor multiplicity and approximately 80% inhibition of tumor load when compared with control mice (both P < 0.0001). These data show that gefitinib is a potent chemopreventive agent in both wild-type and p53-mutant mice and that a delayed administration was still highly effective. Analyses of mutations in the EGFR and K-ras genes in lung tumors from either control or treatment groups showed no mutations in EGFR and consistent mutation in K-ras. Using an oligonucleotide array on control and gefitinib-treated lesions showed that gefitinib treatment failed to alter the activity or the expression level of EGFR. In contrast, gefitinib treatment significantly altered the expression of a series of genes involved in cell cycle, cell proliferation, cell transformation, angiogenesis, DNA synthesis, cell migration, immune responses, and apoptosis. Thus, gefitinib showed highly promising chemopreventive and chemotherapeutic activity in this mouse model of lung carcinogenesis.

  20. Modeling Lung Carcinogenesis in Radon-Exposed Miner Cohorts: Accounting for Missing Information on Smoking.

    PubMed

    van Dillen, Teun; Dekkers, Fieke; Bijwaard, Harmen; Brüske, Irene; Wichmann, H-Erich; Kreuzer, Michaela; Grosche, Bernd

    2016-05-01

    Epidemiological miner cohort data used to estimate lung cancer risks related to occupational radon exposure often lack cohort-wide information on exposure to tobacco smoke, a potential confounder and important effect modifier. We have developed a method to project data on smoking habits from a case-control study onto an entire cohort by means of a Monte Carlo resampling technique. As a proof of principle, this method is tested on a subcohort of 35,084 former uranium miners employed at the WISMUT company (Germany), with 461 lung cancer deaths in the follow-up period 1955-1998. After applying the proposed imputation technique, a biologically-based carcinogenesis model is employed to analyze the cohort's lung cancer mortality data. A sensitivity analysis based on a set of 200 independent projections with subsequent model analyses yields narrow distributions of the free model parameters, indicating that parameter values are relatively stable and independent of individual projections. This technique thus offers a possibility to account for unknown smoking habits, enabling us to unravel risks related to radon, to smoking, and to the combination of both.

  1. miR-196b Is Epigenetically Silenced during the Premalignant Stage of Lung Carcinogenesis.

    PubMed

    Tellez, Carmen S; Juri, Daniel E; Do, Kieu; Picchi, Maria A; Wang, Teresa; Liu, Gang; Spira, Avrum; Belinsky, Steven A

    2016-08-15

    miRNA silencing by promoter hypermethylation may represent a mechanism by which lung cancer develops and progresses, but the miRNAs involved during malignant transformation are unknown. We previously established a model of premalignant lung cancer wherein we treated human bronchial epithelial cells (HBEC) with low doses of tobacco carcinogens. Here, we demonstrate that next-generation sequencing of carcinogen-transformed HBECs treated with the demethylating agent 5-aza-2'deoxycytidine revealed miR-196b and miR-34c-5p to be epigenetic targets. Bisulfite sequencing confirmed dense promoter hypermethylation indicative of silencing in multiple malignant cell lines and primary tumors. Chromatin immunoprecipitation studies further demonstrated an enrichment in repressive histone marks on the miR-196b promoter during HBEC transformation. Restoration of miR-196b expression by transfecting transformed HBECs with specific mimics led to cell-cycle arrest mediated in part through transcriptional regulation of the FOS oncogene, and miR-196b reexpression also significantly reduced the growth of tumor xenografts. Luciferase assays demonstrated that forced expression of miR-196b inhibited the FOS promoter and AP-1 reporter activity. Finally, a case-control study revealed that methylation of miR-196b in sputum was strongly associated with lung cancer (OR = 4.7, P < 0.001). Collectively, these studies highlight miR-196b as a tumor suppressor whose silencing early in lung carcinogenesis may provide a selective growth advantage to premalignant cells. Targeted delivery of miR-196b could therefore serve as a preventive or therapeutic strategy for the management of lung cancer. Cancer Res; 76(16); 4741-51. ©2016 AACR.

  2. Identification of potential lung cancer biomarkers using an in vitro carcinogenesis model.

    PubMed

    Kim, Jung Eun; Koo, Kyung Hee; Kim, Yeul Hong; Sohn, Jeongwon; Park, Yun Gyu

    2008-12-31

    Lung cancer is one of the deadliest and commonly diagnosed neoplasms. Early diagnosis of this disease is critical for improving clinical outcome and prognosis. Because the early stages of lung cancer often produce no symptoms, it is necessary to identify biomarkers for early detection, prognostic evaluation, and recurrence monitoring of the cancer. To identify potential lung cancer biomarkers, we analyzed the differential protein secretion from transformed bronchial epithelial cells (1198 and 1170-I) as compared to immortalized normal bronchial epithelial cells (BEAS-2B) and non-transformed cells (1799) all of which are derived from BEAS-2B and represent multistage bronchial epithelial carcinogenesis. The proteins recovered from the conditioned media of the cells were separated on two-dimensional gels. There was little difference between the secretome of the BEAS-2B and 1799 cells, whereas the patterns between the transformed 1198 and 1170-I cells and non-transformed 1799 cells were significantly different. Using mass spectrometry and database search, we identified 20 proteins including protein gene product 9.5 (PGP9.5), translationally controlled tumor protein (TCTP), tissue inhibitors of metalloproteinases-2 (TIMP-2), and triosephosphate isomerase (TPI), that were either increased or decreased simultaneously in conditioned media of both 1198 and 1170-I cells. Furthermore, levels of PGP9.5, TCTP, TIMP-2, and TPI were significantly increased not only in the conditioned media of both transformed cell lines when compared to those of BEAS-2B and 1799 cells, but also in plasmas and tissues from lung cancer patients when compared to those in normal controls. We suggest the PGP9.5, TCTP, TIMP-2, and TPI as promising candidates for lung cancer serum biomarkers.

  3. Pharmacological Modulation of Lung Carcinogenesis in Smokers: Preclinical and Clinical Evidence

    PubMed Central

    De Flora, Silvio; Ganchev, Gancho; Iltcheva, Marietta; La Maestra, Sebastiano; Micale, Rosanna T.; Steele, Vernon E.; Balansky, Roumen

    2016-01-01

    Many drugs in common use possess pleiotropic properties that make them capable of interfering with carcinogenesis mechanisms. We discuss here the ability of pharmacological agents to mitigate the pulmonary carcinogenicity of mainstream cigarette smoke. The evaluated agents included antiinflammatory drugs (budesonide, celecoxib, aspirin, naproxen, licofelone), antidiabetic drugs (metformin, pioglitazone), antineoplastic agents (lapatinib, bexarotene, vorinostat), and other drugs and supplements (phenethyl isothiocyanate, myo-inositol, N-acetylcysteine, ascorbic acid, berry extracts). The drugs have been evaluated in mouse models mimicking interventions either in current smokers or in ex-smokers or a prenatal chemoprevention. They displayed a broad spectrum of activities by attenuating either smoke-induced preneoplastic lesions or benign tumors and/or malignant tumors. Together with epidemiological data, these findings provide useful information to predict the potential effects of pharmacological agents in smokers. PMID:26726119

  4. Chemo-immunotherapy induces tumor regression in a mouse model of spontaneous mammary carcinogenesis

    PubMed Central

    Carpinelli, Giulia; Canese, Rossella; Cecchetti, Serena; Schiavoni, Giovanna; D'Urso, Maria Teresa; Belardelli, Filippo; Proietti, Enrico

    2016-01-01

    Tumor-specific immune tolerance represents an obstacle for the development of effective anti-tumor immune responses through cancer vaccines. We here evaluated the efficacy of chemo-immunotherapy in breaking tumor-specific immune tolerance in an almost incurable mouse model of spontaneous carcinogenesis. Transgenic HER-2/neu mice bearing large mammary tumors received the adoptive transfer of splenocytes and serum isolated from immune donors, with or without pre-conditioning with cyclophosphamide. Treatment efficacy was assessed by monitoring tumor growth by manual inspection and by magnetic resonance imaging. The same chemo-immunotherapy protocol was tested on tumor-free HER-2/neu mice, to evaluate the effects on tumor emergence. Our data show that chemo-immunotherapy hampered carcinogenesis and caused the regression of large mammary tumor lesions in tumor-bearing HER-2/neu mice. The complete eradication of a significant number of tumor lesions occurred only in mice receiving cyclophosphamide shortly before immunotherapy, and was associated with increased serum anti HER-2/p185 antibodies and tumor leukocyte infiltration. The same protocol significantly delayed the appearance of mammary tumors when administered to tumor-free HER-2/neu mice, indicating that this chemo-immunotherapy approach acted through the elicitation of an effective anti-tumor immune response. Overall, our data support the immune-modulatory role of chemotherapy in overcoming cancer immune tolerance when administered at lymphodepleting non-myeloablative doses shortly before transfer of antigen-specific immune cells and immunoglobulins. These findings open new perspectives on combining immune-modulatory chemotherapy and immunotherapy to overcome immune tolerance in cancer patients. PMID:27486759

  5. A mouse model of orthotopic vascularized aerated lung transplantation.

    PubMed

    Okazaki, M; Krupnick, A S; Kornfeld, C G; Lai, J M; Ritter, J H; Richardson, S B; Huang, H J; Das, N A; Patterson, G A; Gelman, A E; Kreisel, D

    2007-06-01

    Outcomes after lung transplantation are markedly inferior to those after other solid organ transplants. A better understanding of cellular and molecular mechanisms contributing to lung graft injury will be critical to improve outcomes. Advances in this field have been hampered by the lack of a mouse model of lung transplantation. Here, we report a mouse model of vascularized aerated single lung transplantation utilizing cuff techniques. We show that syngeneic grafts have normal histological appearance with minimal infiltration of T lymphocytes. Allogeneic grafts show acute cellular rejection with infiltration of T lymphocytes and recipient-type antigen presenting cells. Our data show that we have developed a physiological model of lung transplantation in the mouse, which provides ample opportunity for the study of nonimmune and immune mechanisms that contribute to lung allograft injury.

  6. Micro-imaging of the Mouse Lung via MRI

    NASA Astrophysics Data System (ADS)

    Wang, Wei

    Quantitative measurement of lung microstructure is of great significance in assessment of pulmonary disease, particularly in the earliest stages. Conventional stereological assessment of ex-vivo fixed tissue specimens under the microscope has a long and successful tradition and is regarded as a gold standard, but the invasive nature limits its applications and the practicality of use in longitudinal studies. The technique for diffusion MRI-based 3He lung morphometry was previously developed and validated for human lungs, and was recently extended to ex-vivo mouse lungs. The technique yields accurate, quantitative information about the microstructure and geometry of acinar airways. In this dissertation, the 3He lung morphometry technique is for the first time successfully implemented for in-vivo studies of mice. It can generate spatially-resolved maps of parameters that reveal the microstructure of mouse lung. Results in healthy mice indicate excellent agreement between in-vivo morphometry via 3He MRI and microscopic morphometry after sacrifice. The implementation and validation of 3He morphometry in healthy mice open up new avenues for application of the technique as a precise, noninvasive, in-vivo biomarker of changes in lung microstructure, within various mouse models of lung disease. We have applied 3He morphometry to the Sendai mouse model of lung disease. Specifically, the Sendai-virus model of chronic obstructive lung disease has demonstrated an innate immune response in mouse airways that exhibits similarities to the chronic airway inflammation in human COPD and asthma, but the effect on distal lung parenchyma had not been investigated. We imaged the time course and regional distribution of mouse lung microstructural changes in vivo after Sendai virus (SeV) infection with 1H and 3He diffusion MRI. 1H MR images detected the SeV-induced pulmonary inflammation in vivo and 3He lung morphometry showed modest increase in alveolar duct radius distal to airway

  7. Antioxidant and antitumor efficacy of Luteolin, a dietary flavone on benzo(a)pyrene-induced experimental lung carcinogenesis.

    PubMed

    Kasala, Eshvendar Reddy; Bodduluru, Lakshmi Narendra; Barua, Chandana C; Gogoi, Ranadeep

    2016-08-01

    The present study is designed to assess the antioxidant and antitumor potential of luteolin against benzo(a)pyrene [B(a)P]-induced lung carcinogenesis in Swiss albino mice. Here, we reported that oral administration of B(a)P (50mg/kg body weight) to mice resulted in raised lipid peroxides (LPO), lung specific tumor markers such as carcinoembryonic antigen (CEA) and neuron specific enolase (NSE) with concomitant decrease in the levels of both enzymatic antioxidants such as superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx) and glutathione-s-transferase (GST), and non-enzymatic antioxidants such as reduced glutathione (GSH), vitamin E and vitamin C. Luteolin treatment (15mg/kg body weight, p.o) significantly counteracted all these alterations and maintained cellular normalcy. Moreover, assessment of protein expression levels by western blot analysis revealed that luteolin treatment effectively negates B(a)P-induced upregulated expression of proliferating cell nuclear antigen (PCNA), cytochrome P450 1A1 (CYP1A1) and nuclear factor-kappa B (NF-κB). Furthermore, histopathology of lung tissue and immunohistochemistry of CYP1A1 were carried out to substantiate the anti- lung cancer effect of luteolin. Overall, these findings confirm the chemopreventive potential of luteolin against B(a)P induced lung carcinogenesis.

  8. Subchronic Oral Exposure to Benzo(a)pyrene Leads to Distinct Transcriptomic Changes in the Lungs That Are Related to Carcinogenesis

    PubMed Central

    Halappanavar, Sabina

    2012-01-01

    We have previously shown that acute oral exposure to the environmental carcinogen benzo(a)pyrene (BaP) elicits comparable levels of DNA adducts, but distinct transcriptomic changes, in mouse lungs and livers, the two main BaP bioactivating organs. Oral BaP exposure is predominantly associated with lung cancer and not hepatic cancer in some animal models, suggesting that gene expression differences may provide insight into the drivers of tissue-specific carcinogenesis. In the present study, we examine pulmonary DNA adduct formation, lacZ mutant frequency, and mRNA profiles in adult male MutaMouse following subchronic (28 day) oral exposure to BaP (0, 25, 50, and 75mg/kg/day) and sacrificed 3 days postexposure. The results are compared with those obtained from livers of the same mice (previously published). Although there was a 1.8- to 3.3-fold increase in the levels of DNA adducts in lung compared with liver, the lacZ transgene mutant frequency was similar in both tissues. At the transcriptomic level, a transition from activation of the DNA damage response p53 pathway at the low dose to the induction of genes involved in angiogenesis, evasion of apoptosis and growth signals at the high doses was evident only in the lungs. These results suggest that tissue DNA adducts and mutant frequency are sensitive markers of target tissue exposure and mode of action, whereas early changes in gene expression may provide a better indication of the likelihood of carcinogenic transformation in selected tissues. Moreover, the study provides new information on the underlying mecha- nisms that contribute to tissue-specific responses to BaP. PMID:22610609

  9. Chemically-induced Mouse Lung Tumors: Applications to ...

    EPA Pesticide Factsheets

    A state-of-the-science workshop on chemically-induced mouse lung tumors was conducted by U.S. Environmental Protection Agency to better understand the mouse lung tumor data’s role in human health assessments. Three environmental chemicals - naphthalene, styrene, and ethylbenzene were chosen for the analysis due to the commonality of mouse lung tumors in all three chemicals. The goals of the workshop were to: identify the evidence, from multiple scientific disciplines, regarding formation of chemically-induced lung tumors in mice; discuss analysis and interpretation of the evidence; discuss how such evidence informs human health assessments; and identify commonalities, linkages, or differences between the evidence from various disciplines and across the chemicals. Evidence informing the association between occupational exposure to styrene, ethylbenzene, or naphthalene and lung cancer; comparative biology of mouse lung tumors, associated pathologic effects, issues related to tissue and species concordance; mode of action analysis and biological mechanisms including pharmacokinetics and pharmacodynamics; and evidence from cellular, genetic and molecular toxicity was discussed. In summary, although consensus was not sought, the panelists agreed that available mouse lung tumor data should be considered for human health risk evaluation on an individual chemical basis. Key data gaps were identified that would assist in further understanding the mechanism and relevan

  10. ESR measurement of radical clearance in lung of whole mouse

    SciTech Connect

    Takeshita, K.; Utsumi, H.; Hamada, A. )

    1991-06-14

    Clearance of the nitroxide radicals, hydroxy-TEMPO and carboxy-PROxYL, in whole-mouse lung was directly measured by in vivo ESR. After injecting a nitroxide radical, distribution of the nitroxide radical all over the lung was confirmed by ESR imaging. The ESR signal of hydroxy-TEMPO was reduced in the lung and the clearance obeyed first-order kinetics, whereas the signal of carboxy-PROxYL remained constant. Comparison of the clearance rates of live and dead mice indicated the presence of 2 different clearance systems in the lung: loss of its paramagnetism in the lung, and transfer from alveolar to the blood circulation system.

  11. Quantitative analysis of tumor burden in mouse lung via MRI.

    PubMed

    Tidwell, Vanessa K; Garbow, Joel R; Krupnick, Alexander S; Engelbach, John A; Nehorai, Arye

    2012-02-01

    Lung cancer is the leading cause of cancer death in the United States. Despite recent advances in screening protocols, the majority of patients still present with advanced or disseminated disease. Preclinical rodent models provide a unique opportunity to test novel therapeutic drugs for targeting lung cancer. Respiratory-gated MRI is a key tool for quantitatively measuring lung-tumor burden and monitoring the time-course progression of individual tumors in mouse models of primary and metastatic lung cancer. However, quantitative analysis of lung-tumor burden in mice by MRI presents significant challenges. Herein, a method for measuring tumor burden based upon average lung-image intensity is described and validated. The method requires accurate lung segmentation; its efficiency and throughput would be greatly aided by the ability to automatically segment the lungs. A technique for automated lung segmentation in the presence of varying tumor burden levels is presented. The method includes development of a new, two-dimensional parametric model of the mouse lungs and a multi-faceted cost function to optimally fit the model parameters to each image. Results demonstrate a strong correlation (0.93), comparable with that of fully manual expert segmentation, between the automated method's tumor-burden metric and the tumor burden measured by lung weight.

  12. Mouse Genetic Models Reveal Surprising Functions of IκB Kinase Alpha in Skin Development and Skin Carcinogenesis

    PubMed Central

    Xia, Xiaojun; Park, Eunmi; Fischer, Susan M.; Hu, Yinling

    2013-01-01

    Gene knockout studies unexpectedly reveal a pivotal role for IκB kinase alpha (IKKα) in mouse embryonic skin development. Skin carcinogenesis experiments show that Ikkα heterozygous mice are highly susceptible to chemical carcinogen or ultraviolet B light (UVB) induced benign and malignant skin tumors in comparison to wild-type mice. IKKα deletion mediated by keratin 5 (K5).Cre or K15.Cre in keratinocytes induces epidermal hyperplasia and spontaneous skin squamous cell carcinomas (SCCs) in Ikkα floxed mice. On the other hand, transgenic mice overexpressing IKKα in the epidermis, under the control of a truncated loricrin promoter or K5 promoter, develop normal skin and show no defects in the formation of the epidermis and other epithelial organs, and the transgenic IKKα represses chemical carcinogen or UVB induced skin carcinogenesis. Moreover, IKKα deletion mediated by a mutation, which generates a stop codon in the Ikkα gene, has been reported in a human autosomal recessive lethal syndrome. Downregulated IKKα and Ikkα mutations and deletions are found in human skin SCCs. The collective evidence not only highlights the importance of IKKα in skin development, maintaining skin homeostasis, and preventing skin carcinogenesis, but also demonstrates that mouse models are extremely valuable tools for revealing the mechanisms underlying these biological events, leading our studies from bench side to bedside. PMID:24216703

  13. Practical use of advanced mouse models for lung cancer.

    PubMed

    Safari, Roghaiyeh; Meuwissen, Ralph

    2015-01-01

    To date a variety of non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) mouse models have been developed that mimic human lung cancer. Chemically induced or spontaneous lung cancer in susceptible inbred strains has been widely used, but the more recent genetically engineered somatic mouse models recapitulate much better the genotype-phenotype correlations found in human lung cancer. Additionally, improved orthotopic transplantation of primary human cancer tissue fragments or cells into lungs of immune-compromised mice can be valuable tools for preclinical research such as antitumor drug tests. Here we give a short overview of most somatic mouse models for lung cancer that are currently in use. We accompany each different model with a description of its practical use and application for all major lung tumor types, as well as the intratracheal injection or direct injection of fresh or freeze-thawed tumor cells or tumor cell lines into lung parenchyma of recipient mice. All here presented somatic mouse models are based on the ability to (in) activate specific alleles at a time, and in a tissue-specific cell type, of choice. This spatial-temporal controlled induction of genetic lesions allows the selective introduction of main genetic lesions in an adult mouse lung as found in human lung cancer. The resulting conditional somatic mouse models can be used as versatile powerful tools in basic lung cancer research and preclinical translational studies alike. These distinctively advanced lung cancer models permit us to investigate initiation (cell of origin) and progression of lung cancer, along with response and resistance to drug therapy. Cre/lox or FLP/frt recombinase-mediated methods are now well-used techniques to develop tissue-restricted lung cancer in mice with tumor-suppressor gene and/or oncogene (in)activation. Intranasal or intratracheal administration of engineered adenovirus-Cre or lentivirus-Cre has been optimized for introducing Cre

  14. Flavonoids Extracted from Licorice Prevents Colitis-Associated Carcinogenesis in AOM/DSS Mouse Model

    PubMed Central

    Huo, Xiaowei; Liu, Dongyu; Gao, Li; Li, Liyong; Cao, Li

    2016-01-01

    Inflammatory bowel disease (IBD) is generally considered as a major risk factor in the progression of colitis-associated carcinogenesis (CAC). Thus, it is well accepted that ameliorating inflammation creates a potential to achieve an inhibitory effect on CAC. Licorice flavonoids (LFs) possess strong anti-inflammatory activity, making it possible to investigate its pharmacologic role in suppressing CAC. The purpose of the present study was to evaluate the anti-tumor potential of LFs, and further explore the underlying mechanisms. Firstly, an azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced mouse model was established and administered with or without LFs for 10 weeks, and then the severity of CAC was examined macroscopically and histologically. Subsequently, the effects of LFs on expression of proteins associated with apoptosis and proliferation, levels of inflammatory cytokine, expression of phosphorylated-Janus kinases 2 (p-Jak2) and phosphorylated-signal transducer and activator of transcription 3 (p-Stat3), and activation of nuclear factor-κB (NFκB) and P53 were assessed. We found that LFs could significantly reduce tumorigenesis induced by AOM/DSS. Further study revealed that LFs treatment substantially reduced activation of NFκB and P53, and subsequently suppressed production of inflammatory cytokines and phosphorylation of Jak2 and Stat3 in AOM/DSS-induced mice. Taken together, LFs treatment alleviated AOM/DSS induced CAC via P53 and NFκB/IL-6/Jak2/Stat3 pathways, highlighting the potential of LFs in preventing CAC. PMID:27563884

  15. Overexpression of CRM1: A Characteristic Feature in a Transformed Phenotype of Lung Carcinogenesis and a Molecular Target for Lung Cancer Adjuvant Therapy.

    PubMed

    Gao, Weimin; Lu, Chuanwen; Chen, Lixia; Keohavong, Phouthone

    2015-05-01

    Our previous study showed that chromosome region maintenance 1 (CRM1), a nuclear export receptor for various cancer-associated "cargo" proteins, was important in regulating lung carcinogenesis in response to a tobacco carcinogen, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). The objectives of this study are to comprehensively evaluate the significance of CRM1 in lung cancer development and investigate the therapeutic potential of targeting CRM1 for lung cancer treatment using both in vitro and in vivo models. We showed that CRM1 was overexpressed not only in lung tumor tissues from both lung cancer patients and mice treated with NNK but also in NNK-transformed BEAS-2B human bronchial epithelial cells. Furthermore, stable overexpression of CRM1 in BEAS-2B cells by plasmid vector transfection led to malignant cellular transformation. Moreover, a decreased CRM1 expression level in A549 cells by short hairpin siRNA transfection led to a decreased tumorigenic activity both in vitro and in nude mice, suggesting the potential to target CRM1 for lung cancer treatment. Indeed, we showed that the cytotoxic effects of cisplatin on A549 cells with CRM1 down-regulated by short hairpin siRNA were significantly increased, compared with A549 cells, and the cytotoxic effects of cisplatin became further enhanced when the drug was used in combination with leptomycin B, a CRM1 inhibitor, in both in vitro and in vivo models. Cancer target genes were significantly involved in these processes. These data suggest that CRM1 plays an important role in lung carcinogenesis and provides a novel target for lung cancer adjuvant therapy.

  16. The Effect of Different Doses of Cigarette Smoke in a Mouse Lung Tumor Model

    PubMed Central

    Santiago, Ludmilla Nadir; de Camargo Fenley, Juliana; Braga, Lúcia Campanario; Cordeiro, José Antônio; Cury, Patrícia M.

    2009-01-01

    Few studies have used Balb/c mice as an animal model for lung carcinogenesis. In this study, we investigated the effect of different doses of cigarette smoking in the urethane-induced Balb/c mouse lung cancer model. After injection of 3mg/kg urethane intraperitoneally, the mice were then exposed to tobacco smoke once or twice a day, five times a week, in a closed chamber. The animals were randomly divided into four groups. The control group (G0) received urethane only. The experimental groups (G1, G2 and G3) received urethane and exposure to the smoke of 3 cigarettes for 10 minutes once a day, 3 cigarettes for 10 minutes twice a day, and 6 cigarettes for 10 minutes twice a day, respectively. The mice were sacrificed after 16 weeks of exposure, and the number of nodules and hyperplasia in the lungs was counted. The results showed no statistically significant difference in the mean number of nodules and hyperplasia among the different groups, suggesting that the Balb/c mice are not suitable to study the pathogenesis of tobacco smoking-induced tumor progression in the lungs. PMID:19079653

  17. Imaging mouse lung allograft rejection with 1H MRI

    PubMed Central

    Guo, Jinbang; Huang, Howard J.; Wang, Xingan; Wang, Wei; Ellison, Henry; Thomen, Robert P.; Gelman, Andrew E.; Woods, Jason C.

    2014-01-01

    Purpose To demonstrate that longitudinal, non-invasive monitoring via MRI can characterize acute cellular rejection (ACR) in mouse orthotopic lung allografts. Methods Nineteen Balb/c donor to C57BL/6 recipient orthotopic left lung transplants were performed, further divided into control-Ig vs anti-CD4/anti-CD8 treated groups. A two-dimensional multi-slice gradient-echo pulse sequence synchronized with ventilation was used on a small-animal MR scanner to acquire proton images of lung at post-operative days 3, 7 and 14, just before sacrifice. Lung volume and parenchymal signal were measured, and lung compliance was calculated as volume change per pressure difference between high and low pressures. Results Normalized parenchymal signal in the control-Ig allograft increased over time, with statistical significance between day 14 and day 3 post transplantation (0.046→0.789, P < 0.05), despite large inter-mouse variations; this was consistent with histopathologic evidence of rejection. Compliance of the control-Ig allograft decreased significantly over time (0.013→0.003, P < 0.05), but remained constant in mice treated with anti-CD4/anti-CD8 antibodies. Conclusion Lung allograft rejection in individual mice can be monitored by lung parenchymal signal changes and by lung compliance through MRI. Longitudinal imaging can help us better understand the time course of individual lung allograft rejection and response to treatment. PMID:24954886

  18. Preconditioning allows engraftment of mouse and human embryonic lung cells, enabling lung repair in mice.

    PubMed

    Rosen, Chava; Shezen, Elias; Aronovich, Anna; Klionsky, Yael Zlotnikov; Yaakov, Yasmin; Assayag, Miri; Biton, Inbal Eti; Tal, Orna; Shakhar, Guy; Ben-Hur, Herzel; Shneider, David; Vaknin, Zvi; Sadan, Oscar; Evron, Shmuel; Freud, Enrique; Shoseyov, David; Wilschanski, Michael; Berkman, Neville; Fibbe, Willem E; Hagin, David; Hillel-Karniel, Carmit; Krentsis, Irit Milman; Bachar-Lustig, Esther; Reisner, Yair

    2015-08-01

    Repair of injured lungs represents a longstanding therapeutic challenge. We show that human and mouse embryonic lung tissue from the canalicular stage of development (20-22 weeks of gestation for humans, and embryonic day 15-16 (E15-E16) for mouse) are enriched with progenitors residing in distinct niches. On the basis of the marked analogy to progenitor niches in bone marrow (BM), we attempted strategies similar to BM transplantation, employing sublethal radiation to vacate lung progenitor niches and to reduce stem cell competition. Intravenous infusion of a single cell suspension of canalicular lung tissue from GFP-marked mice or human fetal donors into naphthalene-injured and irradiated syngeneic or SCID mice, respectively, induced marked long-term lung chimerism. Donor type structures or 'patches' contained epithelial, mesenchymal and endothelial cells. Transplantation of differentially labeled E16 mouse lung cells indicated that these patches were probably of clonal origin from the donor. Recipients of the single cell suspension transplant exhibited marked improvement in lung compliance and tissue damping reflecting the energy dissipation in the lung tissues. Our study provides proof of concept for lung reconstitution by canalicular-stage human lung cells after preconditioning of the pulmonary niche.

  19. A novel sulindac derivative lacking cyclooxygenase-inhibitory activities suppresses carcinogenesis in the transgenic adenocarcinoma of mouse prostate model.

    PubMed

    Zhang, Yong; Zhang, Jinhui; Wang, Lei; Quealy, Emily; Gary, Bernard D; Reynolds, Robert C; Piazza, Gary A; Lü, Junxuan

    2010-07-01

    Nonsteroidal anti-inflammatory drugs including sulindac are well documented to be highly effective for cancer chemoprevention. However, their cyclooxygenase (COX)-inhibitory activities cause severe gastrointestinal, renal, and cardiovascular toxicities, limiting their chronic use. Recent studies suggest that COX-independent mechanisms may be responsible for the chemopreventive benefits of nonsteroidal anti-inflammatory drugs and support the potential for the development of a novel generation of sulindac derivatives lacking COX inhibition for cancer chemoprevention. A prototypic sulindac derivative with a N,N-dimethylammonium substitution called sulindac sulfide amide (SSA) was recently identified to be devoid of COX-inhibitory activity yet displays much more potent tumor cell growth-inhibitory activity in vitro compared with sulindac sulfide. In this study, we investigated the androgen receptor (AR) signaling pathway as a potential target for its COX-independent antineoplastic mechanism and evaluated its chemopreventive efficacy against prostate carcinogenesis using the transgenic adenocarcinoma of mouse prostate model. The results showed that SSA significantly suppressed the growth of human and mouse prostate cancer cells expressing AR in strong association with G(1) arrest, and decreased AR level and AR-dependent transactivation. Dietary SSA consumption dramatically attenuated prostatic growth and suppressed AR-dependent glandular epithelial lesion progression through repressing cell proliferation in the transgenic adenocarcinoma of mouse prostate mice, whereas it did not significantly affect neuroendocrine carcinoma growth. Overall, the results suggest that SSA may be a chemopreventive candidate against prostate glandular epithelial carcinogenesis.

  20. Prevention of azoxymethane/dextran sodium sulfate-induced mouse colon carcinogenesis by processed Aloe vera gel.

    PubMed

    Im, Sun-A; Kim, Ji-Wan; Kim, Hee-Suk; Park, Chan-Su; Shin, Eunju; Do, Seon-Gil; Park, Young In; Lee, Chong-Kil

    2016-11-01

    The preventive effect of a processed Aloe vera gel (PAG) on colon carcinogenesis was examined using an azoxymethane (AOM)-initiated and dextran sodium sulfate (DSS)-promoted mouse colon carcinogenesis model. Oral administration of PAG (200, or 400mg/kg/day) significantly reduced the multiplicity of colonic adenomas and adenocarcinomas compared with the AOM/DSS only-treated mice. In the mice treated with 400mg/kg of PAG, adenoma and adenocarcinoma development was reduced to 80% and 60%, respectively, compared to 100% in the PAG-untreated AOM/DSS-treated mice. Western blot analysis using colon extracts showed that PAG reduced the activation of nuclear factor kappa B (NF-κB), resulting in the inhibition of inducible nitric oxide synthase and cyclooxygenase-2 expression. PAG appeared to inhibit the NF-κB activation through the activation of peroxisome proliferator-activated receptor gamma. PAG also inhibited the expression and phosphorylation of signal transducer and activator of transcription 3, which is known to connect inflammation and cancer. In addition, PAG inhibited cell cycle progression-inducing cellular factors, such as extracellular signal-regulated kinases 1/2, cyclin-dependent kinase 4, and cyclin D1. On the other hand, PAG increased the expression of Caudal-related homeobox transcription factor 2, which is known to be a tumor suppressor in colorectal cancer. These findings show that PAG suppresses colitis-related colon carcinogenesis by inhibiting both chronic inflammation and cell cycle progression in the colon.

  1. Lung regeneration by fetal lung tissue implantation in a mouse pulmonary emphysema model.

    PubMed

    Uyama, Koh; Sakiyama, Shoji; Yoshida, Mitsuteru; Kenzaki, Koichiro; Toba, Hiroaki; Kawakami, Yukikiyo; Okumura, Kazumasa; Takizawa, Hiromitsu; Kondo, Kazuya; Tangoku, Akira

    2016-01-01

    The mortality and morbidity of chronic obstructive pulmonary disease are high. However, no radical therapy has been developed to date. The purpose of this study was to evaluate whether fetal mouse lung tissue can grow and differentiate in the emphysematous lung. Fetal lung tissue from green fluorescent protein C57BL/6 mice at 16 days' gestation was used as donor material. Twelve-month-old pallid mice were used as recipients. Donor lungs were cut into small pieces and implanted into the recipient left lung by performing thoracotomy under anesthesia. The recipient mice were sacrificed at day 7, 14, and 28 after implantation and used for histological examination. Well-developed spontaneous pulmonary emphysema was seen in 12-month-old pallid mice. Smooth and continuous connection between implanted fetal lung tissue and recipient lung was recognized. Air space expansion and donor tissue differentiation were observed over time. We could clearly distinguish the border zones between injected tissue and native tissue by the green fluorescence of grafts. Fetal mouse lung fragments survived and differentiated in the emphysematous lung of pallid mice. Implantation of fetal lung tissue in pallid mice might lead to further lung regeneration research from the perspective of respiratory and exercise function. J. Med. Invest. 63: 182-186, August, 2016.

  2. Failure of catalase to protect against aflatoxin B{sub 1}-induced mouse lung tumorigenicity

    SciTech Connect

    Guindon, Katherine A.; Foley, Julie F.; Maronpot, Robert R.; Massey, Thomas E.

    2008-03-01

    The carcinogenic mycotoxin aflatoxin B{sub 1} (AFB{sub 1}) induces 8-hydroxy-2'-deoxyguanosine (8-OHdG) formation in mouse lung, an effect that can be prevented by treatment with polyethylene glycol-conjugated catalase (PEG-CAT). G {yields} T transversion mutation in K-ras, an early event in AFB{sub 1}-induced mouse lung carcinogenesis, is thought to result from AFB{sub 1}-8,9-exo-epoxide binding to DNA to form AFB{sub 1}-N{sup 7}-guanine, but may also result from formation of 8-OHdG. Therefore, oxidative DNA damage may be important in AFB{sub 1} carcinogenicity. The objective of this study was to determine whether PEG-CAT would prevent AFB{sub 1} tumorigenicity. Mouse lung tumorigenesis was assessed following treatment of female A/J mice with 300 kU/kg PEG-CAT ip and/or 50 mg/kg AFB{sub 1}. Mice were killed 7 months post-treatment and tumors greater than 1 mm in diameter were excised. Unexpectedly, the mean number of tumors per mouse in the PEG-CAT + AFB{sub 1} group (8.81 {+-} 3.64, n = 47) was greater than that of the group treated with AFB{sub 1} alone (7.05 {+-} 3.45, n = 42) (P < 0.05). The tumors obtained from mice treated with PEG-CAT + AFB{sub 1} were larger than those from mice treated with AFB{sub 1} alone (P < 0.05). There was no difference in K-ras exon 1 mutation spectrum or in the histological diagnosis of tumors between AFB{sub 1} and PEG-CAT + AFB{sub 1} groups (P > 0.05). In vitro incubation with mouse liver catalase (CAT) resulted in conversion of [{sup 3}H]AFB{sub 1} into a DNA-binding species, a possible explanation for the results observed in vivo. These results demonstrate that PEG-CAT is not protective against AFB{sub 1} carcinogenicity in mouse lung despite preventing DNA oxidation.

  3. Chronic hypercapnia alters lung matrix composition in mouse pups

    PubMed Central

    Heldt, Gregory P.; Nguyen, Mary; Gavrialov, Orit; Haddad, Gabriel G.

    2010-01-01

    Rationale: permissive hypercapnia, a stretch-limiting ventilation strategy, often results in high PaCO2. This strategy is associated with reduced morbidity and mortality in premature infants and its benefits have been attributed to diminished barotrauma. However, little is known about the independent effect of high CO2 levels during the lung development. Methods: mice were exposed to 8% CO2 or room air for 2 wk either from postnatal day 2 through 17 or as adults (∼2 mo of age). Lungs were excised and processed for protein, RNA, histology, and total lung volumes. Results: histologic analysis demonstrated that alveolar walls of CO2-exposed mouse pups were thinner than those of controls and had twice the total lung volume. Molecular analysis revealed that several matrix proteins in the lung were downregulated in mouse pups exposed to hypercapnia. Interstitial collagen type I α1, type III α1, elastin and fibronectin protein, and mRNA levels were less than half of controls while collagen IV α5 was unaffected. This decrease in interstitial collagen could thus account for the thinning of the interstitial matrix and the altered lung biomechanics. Matrix metalloproteinase (MMP)-8, a collagenase that has specificity for collagen types I and III, increased in hypercapnic mouse pups, suggesting increased collagen degradation. Moreover, tissue inhibitor of MMP (TIMP)-1, a potent inhibitor of MMP-8, was significantly decreased. However, unlike pups, adult mice exposed to hypercapnia demonstrated only a mild increase in total lung volumes and did not exhibit similar molecular or histologic changes. Conclusions: although permissive hypercapnia may prevent lung injury from barotrauma, our study revealed that exposure to hypercapnia may be an important factor in lung remodeling and function, especially in early life. PMID:20360436

  4. Dietary chemoprevention strategies for induction of phase II xenobiotic-metabolizing enzymes in lung carcinogenesis: A review

    PubMed Central

    Tan, Xiang-Lin; Spivack, Simon D.

    2013-01-01

    Lung cancer is the leading cause of cancer mortality for men and women in the United States and is a growing worldwide problem. Protection against lung cancer is associated with higher dietary intake of fruits and vegetables, according to recent large epidemiologic studies. One strategy for lung cancer chemoprevention focuses on the use of agents to modulate the metabolism and disposition of tobacco, environmental and endogenous carcinogens through upregulation of detoxifying phase II enzymes. We summarize the substantial evidence that suggests that induction of phase II enzymes, particularly the glutathione S-transferases, plays a direct role in chemoprotection against lung carcinogenesis. The engagement of the Keap1–Nrf2 complex regulating the antioxidant response element (ARE) signaling pathway has been identified as a key molecular target of chemopreventive phase II inducers in several systems. Monitoring of phase II enzyme induction has led to identification of novel chemopreventive agents such as the isothiocyanate sulforaphane, and the 1,2-dithiole-3-thiones. However, no agents have yet demonstrated clear benefit in human cell systems, or in clinical trials. Alternative strategies include: (a) using intermediate cancer biomarkers for the endpoint in human trials; (b) high-throughput small molecule discovery approaches for induced expression of human phase II genes; and (c) integrative approaches that consider pharmacogenetics, along with pharmacokinetics and pharmacodynamics in target lung tissue. These approaches may lead to a more effective strategy of tailored chemoprevention efforts using compounds with proven human activity. PMID:19185948

  5. Dietary chemoprevention strategies for induction of phase II xenobiotic-metabolizing enzymes in lung carcinogenesis: A review.

    PubMed

    Tan, Xiang-Lin; Spivack, Simon D

    2009-08-01

    Lung cancer is the leading cause of cancer mortality for men and women in the United States and is a growing worldwide problem. Protection against lung cancer is associated with higher dietary intake of fruits and vegetables, according to recent large epidemiologic studies. One strategy for lung cancer chemoprevention focuses on the use of agents to modulate the metabolism and disposition of tobacco, environmental and endogenous carcinogens through upregulation of detoxifying phase II enzymes. We summarize the substantial evidence that suggests that induction of phase II enzymes, particularly the glutathione S-transferases, plays a direct role in chemoprotection against lung carcinogenesis. The engagement of the Keap1-Nrf2 complex regulating the antioxidant response element (ARE) signaling pathway has been identified as a key molecular target of chemopreventive phase II inducers in several systems. Monitoring of phase II enzyme induction has led to identification of novel chemopreventive agents such as the isothiocyanate sulforaphane, and the 1,2-dithiole-3-thiones. However, no agents have yet demonstrated clear benefit in human cell systems, or in clinical trials. Alternative strategies include: (a) using intermediate cancer biomarkers for the endpoint in human trials; (b) high-throughput small molecule discovery approaches for induced expression of human phase II genes; and (c) integrative approaches that consider pharmacogenetics, along with pharmacokinetics and pharmacodynamics in target lung tissue. These approaches may lead to a more effective strategy of tailored chemoprevention efforts using compounds with proven human activity.

  6. Surgical technique for lung retransplantation in the mouse

    PubMed Central

    Li, Wenjun; Goldstein, Daniel R.; Bribriesco, Alejandro C.; Nava, Ruben G.; Spahn, Jessica H.; Wang, Xingan; Gelman, Andrew E.; Krupnick, Alexander S.

    2013-01-01

    Microsurgical cuff techniques for orthotopic vascularized murine lung transplantation have allowed for the design of studies that examine mechanisms contributing to the high failure rate of pulmonary grafts. Here, we provide a detailed technical description of orthotopic lung retransplantation in mice, which we have thus far performed in 144 animals. The total time of the retransplantation procedure is approximately 55 minutes, 20 minutes for donor harvest and 35 minutes for the implantation, with a success rate exceeding 95%. The mouse lung retransplantation model represents a novel and powerful tool to examine how cells that reside in or infiltrate pulmonary grafts shape immune responses. PMID:23825768

  7. Curcumin inhibits B[a]PDE-induced procarcinogenic signals in lung cancer cells, and curbs B[a]P-induced mutagenesis and lung carcinogenesis.

    PubMed

    Puliyappadamba, Vineshkumar T; Thulasidasan, Arun Kumar T; Vijayakurup, Vinod; Antony, Jayesh; Bava, Smitha V; Anwar, Shabna; Sundaram, Sankar; Anto, Ruby John

    2015-01-01

    Benzo[a]pyrene is a procarcinogen present in environment and cigarette smoke, which could be bio-transformed in vivo to B[a]PDE, a potent carcinogen known to form DNA adducts and induce mutations. We observed that curcumin, a known chemopreventive, could significantly inhibit the survival of lung cancer cells exposed to B[a]PDE. It also downregulates B[a]PDE-induced nuclear translocation of NF-κB as assessed by Electrophoretic Mobility Shift Assay (EMSA) and NF-κB-dependent reporter gene assay. Ames assay demonstrated its ability to revert the mutagenic property of benzo[a]pyrene. These observations prompted us to evaluate the efficacy of curcumin in preventing B[a]P-induced lung carcinogenesis in vivo and to explore the molecular mechanism associated with it. The average number of tumor nodules present in the lungs of the Swiss albino mice, which received benzo[a]pyrene, was significantly high compared to that received curcumin as 2% diet along with B[a]P. Curcumin treatment significantly reverted histopathological deviations in the lung tissues due to benzo[a]pyrene ingestion. Moreover, curcumin diet reduced benzo[a]pyrene-induced activation of NF-κB and MAPK signaling and Cox-2 transcription in lung tissues of mice. Taken together, this study illustrates multifaceted efficacy of curcumin in preventing lung cancer.

  8. Development of Mouse Lung Deposition Models

    DTIC Science & Technology

    2015-07-01

    unit (thermochemical) calorie (thermochemical) cal (thermochemical/cm ) curie degree (angle) degree Fahrenheit electron volt erg erg/second foot...fraction dropped to zero . The results indicated that to reach the deepest regions of the lung with significant deposition, particle size should have been

  9. Multi-walled carbon nanotube-induced gene signatures in the mouse lung: potential predictive value for human lung cancer risk and prognosis

    PubMed Central

    Guo, Nancy L; Wan, Ying-Wooi; Denvir, James; Porter, Dale W; Pacurari, Maricica; Wolfarth, Michael G; Castranova, Vincent; Qian, Yong

    2012-01-01

    Concerns over the potential for multi-walled carbon nanotubes (MWCNT) to induce lung carcinogenesis have emerged. This study sought to (1) identify gene expression signatures in the mouse lungs following pharyngeal aspiration of well-dispersed MWCNT and (2) determine if these genes were associated with human lung cancer risk and progression. Genome-wide mRNA expression profiles were analyzed in mouse lungs (n=160) exposed to 0, 10, 20, 40, or 80 µg of MWCNT by pharyngeal aspiration at 1, 7, 28, and 56 days post-exposure. By using pairwise-Statistical Analysis of Microarray (SAM) and linear modeling, 24 genes were selected, which have significant changes in at least two time points, have a more than 1.5 fold change at all doses, and are significant in the linear model for the dose or the interaction of time and dose. Additionally, a 38-gene set was identified as related to cancer from 330 genes differentially expressed at day 56 post-exposure in functional pathway analysis. Using the expression profiles of the cancer-related gene set in 8 mice at day 56 post-exposure to 10 µg of MWCNT, a nearest centroid classification accurately predicts human lung cancer survival with a significant hazard ratio in training set (n=256) and test set (n=186). Furthermore, both gene signatures were associated with human lung cancer risk (n=164) with significant odds ratios. These results may lead to development of a surveillance approach for early detection of lung cancer and prognosis associated with MWCNT in the workplace. PMID:22891886

  10. The Expression of miR-375 Is Associated with Carcinogenesis in Three Subtypes of Lung Cancer

    PubMed Central

    Zhang, Jin; Huang, Wei; Jiang, Hongni; Hou, Yingyong; Xu, Chen; Zhai, Changwen; Gao, Xue; Wang, Shuyang; Wu, Ying; Zhu, Hongguang; Lu, Shaohua

    2015-01-01

    Many studies demonstrated unique microRNA profiles in lung cancer. Nonetheless, the role and related signal pathways of miR-375 in lung cancer are largely unknown. Our study investigated relationships between carcinogenesis and miR-375 in adenocarcinoma, squamous cell carcinoma and small cell lung carcinoma to identify new molecular targets for treatment. We evaluated 723 microRNAs in microdissected cancerous cells and adjacent normal cells from 126 snap-frozen lung specimens using microarrays. We validated the expression profiles of miR-375 and its 22 putative target mRNAs in an independent cohort of 78 snap-frozen lung cancer tissues using quantitative reverse-transcriptase PCR. Moreover, we performed dual luciferase reporter assay and Western blot on 6 targeted genes (FZD8, ITGA10, ITPKB, LRP5, PIAS1 andRUNX1) in small cell lung carcinoma cell line NCI-H82. We also detected the effect of miR-375 on cell proliferation in NCI-H82. We found that miR-375 expression was significantly up-regulated in adenocarcinoma and small cell lung carcinoma but down-regulated in squamous cell carcinoma. Among the 22 putative target genes, 11 showed significantly different expression levels in at least 2 of 3 pair-wise comparisons (adenocarcinoma vs. normal, squamous cell carcinoma vs. normal or small cell lung carcinoma vs. normal). Six targeted genes had strong negative correlation with the expression level of miR-375 in small cell lung carcinoma. Further investigation revealed that miR-375 directly targeted the 3’UTR of ITPKB mRNA and over-expression of miR-375 led to significantly decreased ITPKB protein level and promoted cell growth. Thus, our study demonstrates the differential expression profiles of miR-375 in 3 subtypes of lung carcinomas and finds thatmiR-375 directly targets ITPKB and promoted cell growth in SCLC cell line. PMID:26642205

  11. Model-Based Tumor Growth Dynamics and Therapy Response in a Mouse Model of De Novo Carcinogenesis

    PubMed Central

    Hadjiandreou, Marios M.; Rizki, Gizem; Achilleos, Achilleas; Strati, Katerina; Mitsis, Georgios D.

    2015-01-01

    Tumorigenesis is a complex, multistep process that depends on numerous alterations within the cell and contribution from the surrounding stroma. The ability to model macroscopic tumor evolution with high fidelity may contribute to better predictive tools for designing tumor therapy in the clinic. However, attempts to model tumor growth have mainly been developed and validated using data from xenograft mouse models, which fail to capture important aspects of tumorigenesis including tumor-initiating events and interactions with the immune system. In the present study, we investigate tumor growth and therapy dynamics in a mouse model of de novo carcinogenesis that closely recapitulates tumor initiation, progression and maintenance in vivo. We show that the rate of tumor growth and the effects of therapy are highly variable and mouse specific using a Gompertz model to describe tumor growth and a two-compartment pharmacokinetic/ pharmacodynamic model to describe the effects of therapy in mice treated with 5-FU. We show that inter-mouse growth variability is considerably larger than intra-mouse variability and that there is a correlation between tumor growth and drug kill rates. Our results show that in vivo tumor growth and regression in a double transgenic mouse model are highly variable both within and between subjects and that mathematical models can be used to capture the overall characteristics of this variability. In order for these models to become useful tools in the design of optimal therapy strategies and ultimately in clinical practice, a subject-specific modelling strategy is necessary, rather than approaches that are based on the average behavior of a given subject population which could provide erroneous results. PMID:26649886

  12. Methods of in-vivo mouse lung micro-CT

    NASA Astrophysics Data System (ADS)

    Recheis, Wolfgang A.; Nixon, Earl; Thiesse, Jacqueline; McLennan, Geoffrey; Ross, Alan; Hoffman, Eric

    2005-04-01

    Micro-CT will have a profound influence on the accumulation of anatomical and physiological phenotypic changes in natural and transgenetic mouse models. Longitudinal studies will be greatly facilitated, allowing for a more complete and accurate description of events if in-vivo studies are accomplished. The purpose of the ongoing project is to establish a feasible and reproducible setup for in-vivo mouse lung micro-computed tomography (μCT). We seek to use in-vivo respiratory-gated μCT to follow mouse models of lung disease with subsequent recovery of the mouse. Methodologies for optimizing scanning parameters and gating for the in-vivo mouse lung are presented. A Scireq flexiVent ventilated the gas-anesthetized mice at 60 breaths/minute, 30 cm H20 PEEP, 30 ml/kg tidal volume and provided a respiratory signal to gate a Skyscan 1076 μCT. Physiologic monitoring allowed the control of vital functions and quality of anesthesia, e.g. via ECG monitoring. In contrary to longer exposure times with ex-vivo scans, scan times for in-vivo were reduced using 35μm pixel size, 158ms exposure time and 18μm pixel size, 316ms exposure time to reduce motion artifacts. Gating via spontaneous breathing was also tested. Optimal contrast resolution was achieved at 50kVp, 200μA, applying an aluminum filter (0.5mm). There were minimal non-cardiac related motion artifacts. Both 35μm and 1μm voxel size images were suitable for evaluation of the airway lumen and parenchymal density. Total scan times were 30 and 65 minutes respectively. The mice recovered following scanning protocols. In-vivo lung scanning with recovery of the mouse delivered reasonable image quality for longitudinal studies, e.g. mouse asthma models. After examining 10 mice, we conclude μCT is a feasible tool evaluating mouse models of lung pathology in longitudinal studies with increasing anatomic detail available for evaluation as one moves from in-vivo to ex-vivo studies. Further developments include automated

  13. Hyperpolarized helium-3 mouse lung MRI: Studies of lung structure and function

    NASA Astrophysics Data System (ADS)

    Dugas, Joseph Paul

    Hyperpolarized 3He magnetic resonance imaging (MRI) of human and animal lungs has displayed promising and useful applications to studies of lung structure and function in both healthy and diseased lungs. Hyperpolarized 3He MRI allows the visualization of gas in the gas-exchange spaces of the lungs (as opposed to tissue) and has proven especially effective in studying diseases that are characterized by ventilation defects, such as emphysema. In particular, in-vivo measurements of the 3He apparent diffusion coefficient (ADC) can quantify lung structure by measuring its restrictive effects on the motion of 3He spins. This allows for detection and longitudinal tracking of changes in micro-architecture that result from disease destruction of alveolar walls. Due, in part, to the difficulties inherent in administering and imaging hyperpolarized 3He within the small (0.5 cc volume) mouse lung, applications of hyperpolarized 3He MRI techniques to laboratory mice are scarce. We have been able to implement and improve the techniques of hyperpolarized 3He mouse lung MRI and subsequently apply them to studies of several mouse models of disease, including elastase-induced emphysema, smoking-induced emphysema, and lung cancer. Here we detail the design, development, and implementation of a versatile, electronically-controlled, small animal ventilator that is capable of delivering tiny volumes of hyperpolarized 3He, mixed with oxygen, to the mouse and is also compatible with both the easily depolarized 3He gas and the highly magnetic environment within and around an imaging magnet. Also described are NM techniques developed to improve the signal-to-noise ratio of our images and effectively utilize the gas hyperpolarization. Applications of these technologies and techniques to small animal models of disease are presented wherein we have measured up to a 35% increase in 3He ADC in mice with elastase-induced emphysema as compared to healthy mice. We also demonstrate the potential

  14. Genetic deletion of the desmosomal component desmoplakin promotes tumor microinvasion in a mouse model of pancreatic neuroendocrine carcinogenesis.

    PubMed

    Chun, Matthew G H; Hanahan, Douglas

    2010-09-16

    We used the RIP1-Tag2 (RT2) mouse model of islet cell carcinogenesis to profile the transcriptome of pancreatic neuroendocrine tumors (PNET) that were either non-invasive or highly invasive, seeking to identify pro- and anti-invasive molecules. Expression of multiple components of desmosomes, structures that help maintain cellular adhesion, was significantly reduced in invasive carcinomas. Genetic deletion of one of these desmosomal components, desmoplakin, resulted in increased local tumor invasion without affecting tumor growth parameters in RT2 PNETs. Expression of cadherin 1, a component of the adherens junction adhesion complex, was maintained in these tumors despite the genetic deletion of desmoplakin. Our results demonstrate that loss of desmoplakin expression and resultant disruption of desmosomal adhesion can promote increased local tumor invasion independent of adherens junction status.

  15. Dissection of human papillomavirus E6 and E7 function in transgenic mouse models of cervical carcinogenesis.

    PubMed

    Riley, Rebeccah R; Duensing, Stefan; Brake, Tiffany; Münger, Karl; Lambert, Paul F; Arbeit, Jeffrey M

    2003-08-15

    Human cervix cancer is caused by high-risk human papillomaviruses encoding E6 and E7 oncoproteins, each of which alter function of distinct targets regulating the cell cycle, apoptosis, and differentiation. Here we determined the molecular contribution of E6 or E7 to neoplastic progression and malignant growth in a transgenic mouse model of cervical carcinogenesis. E7 increased proliferation and centrosome copy number, and produced progression to multifocal microinvasive cervical cancers. E6 elevated centrosome copy number and eliminated detectable p53 protein, but did not produce neoplasia or cancer. E6 plus E7 additionally elevated centrosome copy number and created large, extensively invasive cancers. Centrosome copy number increases and p53 loss likely contributed to malignant growth; however, dysregulated proliferation and differentiation were required for carcinogenic progression.

  16. Cholera toxin, a potent inducer of epidermal hyperplasia but with no tumor promoting activity in mouse skin carcinogenesis

    SciTech Connect

    Kuroki, T.; Chida, K.; Munakata, K.; Murakami, Y.

    1986-05-29

    Intracutaneous injection of cholera toxin into mice induced epidermal hyperplasia to a greater extent than 12-O-tetra-decanoylphorbol-13-acetate. It also induced adenylate cyclase and through weakly, ornithine decarboxylase of the epidermis. Cholera toxin, however, showed no tumor promoting activity in mouse skin carcinogenesis. In the single stage promotion, cholera toxin (50 ng) was injected once a week for 10 weeks into the skin of SENCAR mice initiated with 25 ..mu..g 7,12-dimethyl-benz(a)anthracene, but no tumors developed. In the two-stage promotion test, cholera toxin (10-100 ng) was injected for one or two weeks into the initiated skin and then mezerein (4 ..mu..g) was applied twice a week for 18 weeks, but the toxin did not increase incidence or numbers of papillomas.

  17. MALDI imaging MS of phospholipids in the mouse lung[S

    PubMed Central

    Berry, Karin A. Zemski; Li, Bilan; Reynolds, Susan D.; Barkley, Robert M.; Gijón, Miguel A.; Hankin, Joseph A.; Henson, Peter M.; Murphy, Robert C.

    2011-01-01

    Lipid mediators are important in lung biochemistry and are derived from the enzymatic oxidation of arachidonic and docosahexaenoic acids, which are PUFAs that are present in phospholipids in cell membranes. In this study, MALDI imaging MS was used to determine the localization of arachidonate- and docosahexaenoate-containing phospholipids in mouse lung. These PUFA-containing phospholipids were determined to be uniquely abundant at the lining of small and large airways, which were unequivocally identified by immunohistochemistry. In addition, it was found that the blood vessels present in the lung were characterized by sphingomyelin molecular species, and lung surfactant phospholipids appeared evenly distributed throughout the lung parenchyma, indicating alveolar localization. This technique revealed unexpected high concentrations of arachidonate- and docosahexaenoate-containing phospholipids lining the airways in pulmonary tissue, which could serve as precursors of lipid mediators affecting airways biology. PMID:21508254

  18. Overlapping loss of heterozygosity by mitotic recombination on mouse chromosome 7F1-ter in skin carcinogenesis.

    PubMed Central

    Bianchi, A B; Navone, N M; Aldaz, C M; Conti, C J

    1991-01-01

    A significant role for mouse chromosome 7 abnormalities during chemically induced skin carcinogenesis has been advanced based on previous cytogenetic and molecular studies. To determine the frequency of allelic losses at different loci of chromosome 7 in skin tumors induced in the outbred SENCAR mouse stock by a two-stage initiation-promotion protocol, we compared the constitutional and tumor genotypes of premalignant papillomas and squamous cell carcinomas for loss of heterozygosity at different informative loci. In a previous study, these tumors had been analyzed for their allelic composition at the Harvey ras-1 (Ha-ras-1) locus and it was found that 39% of squamous cell carcinomas had lost the normal Ha-ras-1 allele exhibiting 3 or 2 copies of the mutated counterpart or gene amplification. In the present study, by combining Southern blot and polymerase chain reaction fragment length polymorphism analyses, we detected complete loss of heterozygosity at the beta-globin (Hbb) locus, distal to Ha-ras-1, in 15 of 20 (75%) skin carcinomas. In addition, 5 of 5 informative cases attained homozygosity at the int-2 locus, 27 centimorgans distal to Hbb. Polymerase chain reaction analysis of DNA extracted from papillomas devoid of stromal contamination by fluorescence-activated sorting of single cell dispersions immunolabeled with anti-keratin 13 antibody revealed loss of heterozygosity at the Hbb locus, demonstrating that this event occurs during premalignant stages of tumor development. Interestingly, loss of heterozygosity was only detected in late-stage lesions exhibiting a high degree of dysplasia and areas of microinvasion. Analysis of allelic ratios by densitometric scanning of tumors that had become homozygous at Hbb but retained heterozygosis at Ha-ras-1 indicated mitotic recombination as the mechanism underlying loss of heterozygosity on mouse chromosome 7 during chemically induced skin carcinogenesis. These findings are consistent with the presence of a putative

  19. Pilot study of CYP2B6 genetic variation to explore the contribution of nitrosamine activation to lung carcinogenesis.

    PubMed

    Wassenaar, Catherine A; Dong, Qiong; Amos, Christopher I; Spitz, Margaret R; Tyndale, Rachel F

    2013-04-16

    We explored the contribution of nitrosamine metabolism to lung cancer in a pilot investigation of genetic variation in CYP2B6, a high-affinity enzymatic activator of tobacco-specific nitrosamines with a negligible role in nicotine metabolism. Previously we found that variation in CYP2A6 and CHRNA5-CHRNA3-CHRNB4 combined to increase lung cancer risk in a case-control study in European American ever-smokers (n = 860). However, these genes are involved in the pharmacology of both nicotine, through which they alter smoking behaviours, and carcinogenic nitrosamines. Herein, we separated participants by CYP2B6 genotype into a high- vs. low-risk group (*1/*1 + *1/*6 vs. *6/*6). Odds ratios estimated through logistic regression modeling were 1.25 (95% CI 0.68-2.30), 1.27 (95% CI 0.89-1.79) and 1.56 (95% CI 1.04-2.31) for CYP2B6, CYP2A6 and CHRNA5-CHRNA3-CHRNB4, respectively, with negligible differences when all genes were evaluated concurrently. Modeling the combined impact of high-risk genotypes yielded odds ratios that rose from 2.05 (95% CI 0.39-10.9) to 2.43 (95% CI 0.47-12.7) to 3.94 (95% CI 0.72-21.5) for those with 1, 2 and 3 vs. 0 high-risk genotypes, respectively. Findings from this pilot point to genetic variation in CYP2B6 as a lung cancer risk factor supporting a role for nitrosamine metabolic activation in the molecular mechanism of lung carcinogenesis.

  20. Inhibitory effects of chlorophyllin on 7,12-dimethylbenz[a]anthracene-induced bacterial mutagenesis and mouse skin carcinogenesis.

    PubMed

    Chung, W Y; Lee, J M; Park, M Y; Yook, J I; Kim, J; Chung, A S; Surh, Y J; Park, K K

    1999-10-18

    Chlorophyllin (CHL), a water-soluble derivative of chlorophyll, has been used for the treatment of several abnormal human conditions without apparent toxicity. Recent studies have revealed that CHL has the excellent chemopreventive potential. In the present investigation, we have found the inhibitory activities of CHL against 7,12-dimethylbenz[a]anthracene (DMBA)-induced mutagenesis in Salmonella typhimurium TA100 and also on DMBA-initiated and 12-O-tetradecanoyl-phorbol-13-acetate (TPA)-promoted mouse skin tumor formation. The incidence and the multiplicity of skin tumors were not significantly decreased in mice by a single topical application of CHL prior to the DMBA treatment, but there was a marked suppression of papillomagenesis in mice treated with CHL during the promotional stage. Furthermore, the formation of DMBA-induced papillomagenesis was reduced in all mice that had received CHL for 6 weeks following treatment with TPA for 6, 18 and 24 weeks. These results indicate that CHL can inhibit both tumor promotion and the progression of papillomagenesis in the two-stage mouse skin carcinogenesis induced by DMBA and TPA.

  1. Studies on the mechanisms involved in multistage carcinogenesis in mouse skin

    SciTech Connect

    Slaga, T.J.; Fischer, S.M.; Weeks, C.E.; Klein-Szanto, A.J.P.; Reiners, J.

    1982-01-01

    Skin tumors can be effectively induced in mice by the repetitive application of a carcinogen. The relative order of sensitivity to complete carcinogenesis is Sencar > CD-1 > C57BL/6 greater than or equal to BALB/c greater than or equal to ICR/Ha Swiss > C3H. Skin tumors in mice can also be induced by the sequential application of a subthreshold dose of a carcinogen (initiation phase) followed by repetitive treatment with a weak or noncarcinogenic tumor promoter (promotion phase) followed by repetitive treatment with a weak or noncarcinogenic tumor promoter (promotion phase). The relative order of sensitivity to initiation-promotion is Sencar > > CD-1 > ICR/Ha Swiss greater than or equal to Balb/c > C57BL/6 greater than or equal to C3H greater than or equal to DBA/2. The phorbol ester tumor promoters have been shown to have several cellular and biochemical effects on the skin. Of all the observed phorbol ester related effects on the skin, the induction of epidermal cell proliferation, polyamines, prostagladins, and dark basal keratinocytes as well as other embryonic conditions appear to correlate the best with promotion. Mezerein, a weak promoter, was found to induce many cellular and biochemical changes similar to 12-O-tetradecanoylphorbol-13 acetate (TPA), especially epidermal hyperplasia and polyamines; however, it was not a potent inducer of dark cells. Although C57BL/6 mice are relatively resistant to initiation-promotion by PAH initiation and phorbol ester promotion, they are fairly sensitive to complete carcinogenesis by PAH. This suggests that the C57BL/6 mice are resistant to phorbol ester tumor promotion. Preliminary experiments suggest that C57BL/6 and Sencar mice respond qualitatively but not quantitatively to a single treatment with TPA.

  2. Genetic ablation of caspase-7 promotes solar-simulated light-induced mouse skin carcinogenesis: the involvement of keratin-17

    PubMed Central

    Lee, Mee-Hyun; Lim, Do Young; Kim, Myoung Ok; Lee, Sung-Young; Shin, Seung Ho; Kim, Jae Young; Kim, Sung-Hyun; Kim, Dong Joon; Jung, Sung Keun; Yao, Ke; Kundu, Joydeb Kumar; Lee, Hye Suk; Lee, Cheol-Jung; Dickinson, Sally E.; Alberts, David; Bowden, G.Timothy; Stratton, Steven; Curiel, Clara; Einspahr, Janine; Bode, Ann M.; Surh, Young-Joon; Dong, Zigang

    2015-01-01

    Solar ultraviolet irradiation is an environmental carcinogen that causes skin cancer. Caspase-7 is reportedly expressed at reduced levels in many cancers. The present study was designed to examine the role of caspase-7 in solar-simulated light (SSL)-induced skin cancer and to elucidate its underlying molecular mechanisms. Our study revealed that mice with genetic deficiency of caspase-7 are highly susceptible to SSL-induced skin carcinogenesis. Epidermal hyperplasia, tumor volume and the average number of tumors were significantly increased in caspase-7 knockout (KO) mice compared with SKH1 wild-type mice irradiated with SSL. The expression of cell proliferation markers, such as survivin and Ki-67, was elevated in SSL-irradiated skin of caspase-7 KO mice compared with those observed in SSL-exposed wild-type SKH1 mouse skin. Moreover, SSL-induced apoptosis was abolished in skin from caspase-7 KO mice. Two-dimensional gel electrophoresis, followed by matrix-assisted laser desorption/ionization-time-of-flight analysis of skin tissue lysates from SSL-irradiated SKH1 wild-type and caspase-7 KO mice revealed an aberrant induction of keratin-17 in caspase-7 KO mice. Immunohistochemical analysis of skin tumors also showed an increase of keratin-17 expression in caspase-7 KO mice compared with SKH1 wild-type mice. The expression of keratin-17 was also elevated in SSL-irradiated caspase-7 KO keratinocytes as well as in human basal cell carcinomas. The in vitro caspase activity assay showed keratin-17 as a substrate of caspase-7, but not caspase-3. Overall, our study demonstrates that genetic loss of caspase-7 promotes SSL-induced skin carcinogenesis by blocking caspase-7-mediated cleavage of keratin-17. PMID:26271098

  3. Protandim, a Fundamentally New Antioxidant Approach in Chemoprevention Using Mouse Two-Stage Skin Carcinogenesis as a Model

    PubMed Central

    Liu, Jianfeng; Gu, Xin; Robbins, Delira; Li, Guohong; Shi, Runhua; McCord, Joe M.; Zhao, Yunfeng

    2009-01-01

    Oxidative stress is an important contributor to cancer development. Consistent with that, antioxidant enzymes have been demonstrated to suppress tumorigenesis when being elevated both in vitro and in vivo, making induction of these enzymes a more potent approach for cancer prevention. Protandim, a well-defined combination of widely studied medicinal plants, has been shown to induce superoxide dismutase (SOD) and catalase activities and reduce superoxide generation and lipid peroxidation in healthy human subjects. To investigate whether Protandim can suppress tumor formation by a dietary approach, a two-stage mouse skin carcinogenesis study was performed. At the end of the study, the mice on a Protandim-containing basal diet had similar body weight compared with those on the basal diet, which indicated no overt toxicity by Protandim. After three weeks on the diets, there was a significant increase in the expression levels of SOD and catalase, in addition to the increases in SOD activities. Importantly, at the end of the carcinogenesis study, both skin tumor incidence and multiplicity were reduced in the mice on the Protandim diet by 33% and 57% respectively, compared with those on basal diet. Biochemical and histological studies revealed that the Protandim diet suppressed tumor promoter-induced oxidative stress (evidenced by reduction of protein carbonyl levels), cell proliferation (evidenced by reduction of skin hyperplasia and suppression of PKC/JNK/Jun pathway), and inflammation (evidenced by reduction of ICAM-1/VCAM-1 expression, NF-κB binding activity, and nuclear p65/p50 levels). Overall, induction of antioxidant enzymes by Protandim may serve as a practical and potent approach for cancer prevention. PMID:19384424

  4. Protandim, a fundamentally new antioxidant approach in chemoprevention using mouse two-stage skin carcinogenesis as a model.

    PubMed

    Liu, Jianfeng; Gu, Xin; Robbins, Delira; Li, Guohong; Shi, Runhua; McCord, Joe M; Zhao, Yunfeng

    2009-01-01

    Oxidative stress is an important contributor to cancer development. Consistent with that, antioxidant enzymes have been demonstrated to suppress tumorigenesis when being elevated both in vitro and in vivo, making induction of these enzymes a more potent approach for cancer prevention. Protandim, a well-defined combination of widely studied medicinal plants, has been shown to induce superoxide dismutase (SOD) and catalase activities and reduce superoxide generation and lipid peroxidation in healthy human subjects. To investigate whether Protandim can suppress tumor formation by a dietary approach, a two-stage mouse skin carcinogenesis study was performed. At the end of the study, the mice on a Protandim-containing basal diet had similar body weight compared with those on the basal diet, which indicated no overt toxicity by Protandim. After three weeks on the diets, there was a significant increase in the expression levels of SOD and catalase, in addition to the increases in SOD activities. Importantly, at the end of the carcinogenesis study, both skin tumor incidence and multiplicity were reduced in the mice on the Protandim diet by 33% and 57% respectively, compared with those on basal diet. Biochemical and histological studies revealed that the Protandim diet suppressed tumor promoter-induced oxidative stress (evidenced by reduction of protein carbonyl levels), cell proliferation (evidenced by reduction of skin hyperplasia and suppression of PKC/JNK/Jun pathway), and inflammation (evidenced by reduction of ICAM-1/VCAM-1 expression, NF-kappaB binding activity, and nuclear p65/p50 levels). Overall, induction of antioxidant enzymes by Protandim may serve as a practical and potent approach for cancer prevention.

  5. Carcinogenesis and low-level ionizing radiation with special reference to lung cancer and exposure to radon daughters

    SciTech Connect

    Fabrikant, J.I.

    1982-04-01

    Of the important health effects of ionizing radiation, three important late effects - carcinogenesis, teratogenesis and mutagenesis are of greatest concern. This is because any exposure, even at low levels, carries some risk of such deleterious effects. As the dose of radiation increases above very low levels, the risk of health effects increases. Cancer-induction is the most important late somatic effect of low-dose ionizing radiation. Solid cancers, rather than leukemia, are principal late effects in exposed individuals. Tissues vary greatly in their susceptibility to radiation carcinogenesis. The most frequently occurring radiation-induced cancers in man include, in decreasing order of susceptibility: the female breast, the thyroid gland, the blood-forming tissues, the lung, certain organs of the gastrointestinal tract, and the bones. A number of biological and physical factors affect the cancer risk, such as age, sex, life-style, LET, and RBE. Despite uncertainty about low-level radiation risks, regulatory and advisory bodies must set standards for exposure, and individuals need information to be able to make informed judgments for themselves. From the point of view of the policy maker, the overriding concern is the fact that small doses of radiation can cause people to have more cancers than would otherwise be expected. While concern for all radiation effects exists, our human experience is limited to cancer-induction in exposed populations. This discussion is limited to cancer risk estimation and decision-making in relation to the health effects on populations of exposure to low levels of ionizing radiation. Here, low-level radiation will refer to yearly whole-body doses up to 5 rems or 0.05 Sv, or to cumulative doses up to 50 rems or 0.5 Sv from low-LET radiation and from high-LET radiation. (ERB)

  6. Down-Regulation of DUSP6 Expression in Lung Cancer —Its Mechanism and Potential Role in Carcinogenesis

    PubMed Central

    Okudela, Koji; Yazawa, Takuya; Woo, Tetsukan; Sakaeda, Masashi; Ishii, Jun; Mitsui, Hideaki; Shimoyamada, Hiroaki; Sato, Hanako; Tajiri, Michihiko; Ogawa, Nobuo; Masuda, Munetaka; Takahashi, Takashi; Sugimura, Haruhiko; Kitamura, Hitoshi

    2009-01-01

    Our preliminary studies revealed that oncogenic KRAS (KRAS/V12) dramatically suppressed the growth of immortalized airway epithelial cells (NHBE-T, with viral antigen-inactivated p53 and RB proteins). This process appeared to be a novel event, different from the so-called premature senescence that is induced by either p53 or RB, suggesting the existence of a novel tumor suppressor that functions downstream of oncogenic KRAS. After a comprehensive search for genes whose expression levels were modulated by KRAS/V12, we focused on DUSP6, a pivotal negative feedback regulator of the RAS-ERK pathway. A dominant-negative DUSP6 mutant, however, failed to rescue KRAS/V12-induced growth suppression, but conferred a stronger anchorage-independent growth activity to the surviving subpopulation of cells generated from KRAS/V12-transduced NHBE-T. DUSP6 expression levels were found to be weaker in most lung cancer cell lines than in NHBE-T, and DUSP6 restoration suppressed cellular growth. In primary lung cancers, DUSP6 expression levels decreased as both growth activity and histological grade of the tumor increased. Loss of heterozygosity of the DUSP6 locus was found in 17.7% of cases and was associated with reduced expression levels. These results suggest that DUSP6 is a growth suppressor whose inactivation could promote the progression of lung cancer. We have here identified an important factor involved in carcinogenesis through a comprehensive search for downstream targets of oncogenic KRAS. PMID:19608870

  7. Chemopreventive Effects of Korean Angelica versus Its Major Pyranocoumarins on Two Lineages of Transgenic Adenocarcinoma of Mouse Prostate Carcinogenesis.

    PubMed

    Tang, Su-Ni; Zhang, Jinhui; Wu, Wei; Jiang, Peixin; Puppala, Manohar; Zhang, Yong; Xing, Chengguo; Kim, Sung-Hoon; Jiang, Cheng; Lü, Junxuan

    2015-09-01

    We showed previously that daily gavage of Angelica gigas Nakai (AGN) root ethanolic extract starting 8 weeks of age inhibited growth of prostate epithelium and neuroendocrine carcinomas (NE-Ca) in the transgenic adenocarcinoma of mouse prostate (TRAMP) model. Because decursin (D) and its isomer decursinol angelate (DA) are major pyranocoumarins in AGN extract, we tested the hypothesis that D/DA represented active/prodrug compounds against TRAMP carcinogenesis. Three groups of male C57BL/6 TRAMP mice were gavage treated daily with excipient vehicle, AGN (5 mg per mouse), or equimolar D/DA (3 mg per mouse) from 8 weeks to 16 or 28 weeks of age. Measurement of plasma and NE-Ca D, DA, and their common metabolite decursinol indicated similar retention from AGN versus D/DA dosing. The growth of TRAMP dorsolateral prostate (DLP) in AGN- and D/DA-treated mice was inhibited by 66% and 61% at 16 weeks and by 67% and 72% at 28 weeks, respectively. Survival of mice bearing NE-Ca to 28 weeks was improved by AGN, but not by D/DA. Nevertheless, AGN- and D/DA-treated mice had lower NE-Ca burden. Immunohistochemical and mRNA analyses of DLP showed that AGN and D/DA exerted similar inhibition of TRAMP epithelial lesion progression and key cell-cycle genes. Profiling of NE-Ca mRNA showed a greater scope of modulating angiogenesis, epithelial-mesenchymal transition, invasion-metastasis, and inflammation genes by AGN than D/DA. The data therefore support D/DA as probable active/prodrug compounds against TRAMP epithelial lesions, and they cooperate with non-pyranocoumarin compounds to fully express AGN efficacy against NE-Ca.

  8. Chemopreventive effects of Korean Angelica vs. its major pyranocoumarins on two lineages of transgenic adenocarcinoma of mouse prostate carcinogenesis

    PubMed Central

    Tang, Su-Ni; Zhang, Jinhui; Wu, Wei; Jiang, Peixin; Puppala, Manohar; Zhang, Yong; Xing, Chengguo; Kim, Sung-Hoon; Jiang, Cheng; Lü, Junxuan

    2015-01-01

    We showed previously that daily gavage of Angelica gigas Nakai (AGN) root ethanolic extract starting 8 weeks of age inhibited growth of prostate epithelium and neuroendocrine carcinomas (NE-Ca) in the transgenic adenocarcinoma of mouse prostate (TRAMP) model. Since decursin (D) and its isomer decursinol angelate (DA) are major pyranocoumarins in AGN extract, we tested the hypothesis that D/DA represented active/prodrug compounds against TRAMP carcinogenesis. Three groups of male C57BL/6 TRAMP mice were gavage-treated daily with excipient vehicle, AGN (5 mg per mouse) or equimolar D/DA (3 mg per mouse) from 8 weeks to 16 or 28 weeks of age. Measurement of plasma and NE-Ca D, DA and their common metabolite decursinol indicated similar retention from AGN vs. D/DA dosing. The growth of TRAMP dorsolateral prostate (DLP) in AGN-and D/DA-treated mice was inhibited by 66% and 61% at 16 weeks and by 67% and 72% at 28 weeks, respectively. Survival of mice bearing NE-Ca to 28 weeks was improved by AGN, but not by D/DA. Nevertheless, AGN-and D/DA-treated mice had lower NE-Ca burden. Immunohistochemical and mRNA analyses of DLP showed AGN and D/DA exerted similar inhibition of TRAMP epithelial lesion progression and key cell cycle genes. Profiling of NE-Ca mRNA showed a greater scope of modulating angiogenesis, epithelial-mesenchymal-transition, invasion-metastasis and inflammation genes by AGN than D/DA. The data therefore support D/DA as probable active/prodrug compounds against TRAMP epithelial lesions, and they cooperate with non-pyranocoumarin compounds to fully express AGN efficacy against NE-Ca. PMID:26116406

  9. Inhibition of lung carcinogenesis and effects on angiogenesis and apoptosis in A/J mice by oral administration of green tea.

    PubMed

    Liao, Jie; Yang, Guang-Yu; Park, Eon Sub; Meng, Xiaofeng; Sun, Yuhai; Jia, Dongxuan; Seril, Darren N; Yang, Chung S

    2004-01-01

    Oral administration of tea (Camellia sinensis) has been shown to inhibit the formation and growth of several tumor types in animal models. The present study investigated the effects of treatment with different concentrations of green tea on 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced lung tumorigenesis in female A/J mice. Two days after a single dose of NNK (100 mg/kg body weight, i.p.), the mice were given 0.1, 0.2, 0.4, and 0.6% green tea solution (1, 2, 4, and 6 g of tea solids, respectively, dissolved in 1 l of water), 0.02% caffeine, or water as the sole source of drinking fluid until the termination of the experiment. Only the treatment with 0.6% tea preparation significantly reduced lung tumor multiplicity (mean +/- SE, 6.07 +/- 0.77 vs. 8.60 +/- 0.50 tumors per mouse, P = 0.018). Treatment with 0.6% tea also inhibited angiogenesis, as indicated by the lower microvessel density (number of blood vessels/mm2) based on immunostaining for the von Willebrand factor antigen (81.9 +/- 9.5 vs. 129.4 +/- 8.2, P = 0.0018) and anti-CD31 antibody staining (465.3 +/- 61.4 vs. 657.1 +/- 43.6, P = 0.0012). Significantly lower vascular endothelial growth factor immunostaining scores were also observed in the 0.6% tea-treated group (0.98 +/- 0.17 vs. 1.43 +/- 0.07, P = 0.006). The apoptosis index was significantly higher in lung adenomas from 0.6% tea-treated mice based on morphological analysis of cell apoptosis (2.51 +/- 0.18% vs. 1.57 +/- 0.11%, P = 0.00005), and the result was further confirmed using the TUNEL method. Inhibition of angiogenesis and the induction of apoptosis by green tea may be closely related to the inhibition of pulmonary carcinogenesis.

  10. Carnitines slow down tumor development of colon cancer in the DMH-chemical carcinogenesis mouse model.

    PubMed

    Roscilli, Giuseppe; Marra, Emanuele; Mori, Federica; Di Napoli, Arianna; Mancini, Rita; Serlupi-Crescenzi, Ottaviano; Virmani, Ashraf; Aurisicchio, Luigi; Ciliberto, Gennaro

    2013-07-01

    Dietary agents are receiving much attention for the chemoprevention of cancer. While curcumin is known to influence several pathways and affect tumor growth in vivo, carnitin and its congeners play a variety of important metabolic functions: are involved in the oxydation of long-chain fatty acids, regulate acyl-CoA levels and influence protein activity and stability by modifying the extent of protein acetylation. In this study we evaluated the efficacy of carnitines in the prevention of cancer development using the 1,2,-dimethylhydrazine (DMH)-induced colon carcinogenesis model. We also assessed whether their combination was able to give rise to increased protection from cancer development. Mice treated with DMH were dosed orally with curcumin and/or carnitine and acylcarnitines for 20 weeks. At the end of the treatment colon samples were collected, and scored for multiple ACF and adenomas. We observed that carnitine and acyl-carnitines had same, if not higher, efficacy than curcumin alone in inhibiting the formation of neoplastic lesions induced by DMH treatment. Interestingly, the combination of curcumin and acetyl-L-carnitine was able to fully inhibit the development of advanced adenoma lesions. Our data unveil the antitumor effects of carnitines and warrant additional studies to further support the adoption of carnitines as cancer chemopreventative agents.

  11. Investigating the Role of FIP200 in Mammary Carcinogenesis Using a Transgenic Mouse Model

    DTIC Science & Technology

    2007-04-01

    the mammary gland of virgin mice however, lactating mice have severe lobulo-alveolar hypoplasia in the mammary gland. After completing the analysis... hypoplasia which renders the dams unable to lactate). In the 1B mating scheme a female mouse with FAKFlox/Flox genotype was mated to a male MMTV...Epithelial-Specific Deletion of the Focal Adhesion Kinase Gene Leads to Severe Lobulo-Alveolar Hypoplasia and Secretory Immaturity of the Murine Mammary

  12. Role of sulforaphane in the anti-initiating mechanism of lung carcinogenesis in vivo by modulating the metabolic activation and detoxification of benzo(a)pyrene.

    PubMed

    Kalpana Deepa Priya, D; Gayathri, R; Sakthisekaran, D

    2011-02-01

    Biomarkers are central to the molecular epidemiology approach. Since scientific research progress within this standard, a more complete biological understanding of the specific events underlying the multistage carcinogenesis model is essential. Hence the present investigation was designed to assess the anti-initiating potential of Sulforaphane (SFN) against benzo(a)pyrene [B(a)P] induced lung carcinogenesis in female Swiss Albino Mice by evaluating the activities of xenobiotic markers, and the balance between phase I and phase II carcinogen/drug metabolizing enzymes. We sought to institute whether orally administered SFN reaches the lung tissue and increases functional capacity of detoxification enzymes in this tissue and compare the biochemical changes associated with the initiation of cancer. We demonstrated the inhibitory effects of orally administered sulforaphane on B[a]P-induced aryl hydrocarbon receptor (AHR) activation which subsequently resulted in decreased Phase-I enzyme activities in vivo. The study also highlights that treatment with sulforaphane enhanced the Nuclear factor erythroid 2-related factor 2 (Nrf2) transcription which reflects its nuclear accumulation and DNA binding in mice, together with the induction of phase II enzymes as evident from our results. These modulations by sulforaphane further result in decreased carcinogen-induced stress. By and large, the results suggest an anti-initiating role of sulforaphane in pre- and post-initiation phase of experimentally induced lung carcinogenesis in female Swiss albino mice.

  13. Gastric Carcinogenesis in the miR-222/221 Transgenic Mouse Model

    PubMed Central

    Choi, Boram; Yu, Jieun; Han, Tae-Su; Kim, Young-Kook; Hur, Keun; Kang, Byeong-Cheol; Kim, Woo-Ho; Kim, Dae-Yong; Lee, Hyuk-Joon; Kim, V. Narry; Yang, Han-Kwang

    2017-01-01

    Purpose MicroRNAs (miRNAs) regulate various cellular functions, including development, cell proliferation, apoptosis, and tumorigenesis. Different signatures associated with various tissue types, diagnosis, progression, prognosis, staging, and treatment response have been identified by miRNA expression profiling of human tumors. miRNAs function as oncogenes or as tumor suppressors. The relationship between gastric cancer and miRNA garnered attention due to the high incidence of gastric cancer in Asian countries. miR-222/221 expression increases in gastric tumor tissues. The oncogenic effect of miR-222/221 was previously determined in functional studies and xenograft models. In this study, transgenic mice over-expressing miR-222/221 were generated to confirm the effect of miR-222/221 on gastric carcinogenesis. Materials and Methods At 6 weeks of age, 65 transgenic mice and 53 wild-type mice were given drinking water containing N-nitroso-N-methylurea (MNU) for 5 alternating weeks to induce gastric cancer. The mice were euthanized at 36 weeks of age and histologic analysis was performed. Results Hyperplasia was observed in 3.77% of the wild-type mice and in 18.46% of the transgenic mice (p=0.020). Adenoma was observed in 20.75% of the wild-type mice and 26.15% of the transgenic mice (p=0.522). Carcinoma was observed in 32.08% of the wild-type mice and 41.54% of the transgenic mice (p=0.341). The frequency of hyperplasia, adenoma, and carcinoma was higher in transgenic mice, but the difference was statistically significant only in hyperplasia. Conclusion These results suggest that hyperplasia, a gastric pre-cancerous lesion, is associated with miR-222/221 expression but miR-222/221 expression does not affect tumorigenesis itself. PMID:27338035

  14. Disruption of protein kinase Ceta results in impairment of wound healing and enhancement of tumor formation in mouse skin carcinogenesis.

    PubMed

    Chida, Kazuhiro; Hara, Takeshi; Hirai, Takaaki; Konishi, Chieko; Nakamura, Kenji; Nakao, Kazuki; Aiba, Atsu; Katsuki, Motoya; Kuroki, Toshio

    2003-05-15

    We have generated a mouse strain lacking protein kinase C (PKC) eta to evaluate its significance in epithelial organization and tumor formation. The PKCeta-deficient mice exhibited increased susceptibility to tumor formation in two-stage skin carcinogenesis by single application of 7,12-dimethylbenz(a)anthracene (DMBA) for tumor initiation and repeated applications of 12-O-tetradecanoylphorbol-13-acetate (TPA) for tumor promotion. The tumor formation was not enhanced by DMBA or TPA treatment alone, suggesting that PKCeta suppresses tumor promotion. Epidermal hyperplasia induced by topical TPA treatment was prolonged in the mutant mice. The enhanced tumor formation may be closely associated with the prolonged hyperplasia induced by topical TPA treatment. In the mutant mice, after inflicting injury by punch biopsy, wound healing on the dorsal skin, particularly reepithelialization, was significantly delayed and impaired in structure. Impairment of epithelial regeneration in wound healing indicates a possibility that PKCeta plays a role in maintenance of epithelial architecture. Homeostasis in epithelial tissues mediated by PKCeta is important for tumor formation in vivo. We propose that PKCeta is involved in tumor formation modulated by regulation of proliferation and remodeling of epithelial cells in vivo.

  15. A novel SCID mouse model for studying spontaneous metastasis of human lung cancer to human tissue.

    PubMed

    Teraoka, S; Kyoizumi, S; Seyama, T; Yamakido, M; Akiyama, M

    1995-05-01

    We established a novel severe combined immunodeficient (SCID) mouse model for the study of human lung cancer metastasis to human lung. Implantation of both human fetal and adult lung tissue into mammary fat pads of SCID mice showed a 100% rate of engraftment, but only fetal lung implants revealed normal morphology of human lung tissue. Using these chimeric mice, we analyzed human lung cancer metastasis to both mouse and human lungs by subcutaneous inoculation of human squamous cell carcinoma and adenocarcinoma cell lines into the mice. In 60 to 70% of SCID mice injected with human-lung squamous-cell carcinoma, RERF-LC-AI, cancer cells were found to have metastasized to both mouse lungs and human fetal lung implants but not to human adult lung implants 80 days after cancer inoculation. Furthermore, human-lung adenocarcinoma cells, RERF-LC-KJ, metastasized to the human lung implants within 90 days in about 40% of SCID mice, whereas there were no metastases to the lungs of the mice. These results demonstrate the potential of this model for the in vivo study of human lung cancer metastasis.

  16. Activation of proto-oncogenes in human and mouse lung tumors

    SciTech Connect

    Reynolds, S.H.; Anderson, M.W. )

    1991-06-01

    Lung cancer is a leading cause of cancer-related deaths in several nations. Epidemiological studies have indicated that 85% of all lung cancer deaths and 30% of all cancer deaths in the US are associated with tobacco smoking. Various chemicals in tobacco smoke are thought to react with DNA and to ultimately yield heritable mutations. In an effort to understand the molecular mechanisms involved in lung tumorigenesis, the authors have analyzed proto-oncogene activation in a series of human lung tumors from smokers and spontaneously occurring and chemically induced lung tumors in mice. Approximately 86% of the human lung tumors and > 90% of the mouse lung tumors were found to contain activated oncogenes. ras Oncogenes activated by point mutations were detected in many of the human lung adenocarcinomas and virtually all of the mouse lung adenomas and adenocarcinomas. The mutation profiles of the activated K-ras genes detected in the chemically induced mouse lung tumors suggest that the observed mutations result from genotoxic effects of the chemicals. Comparison of the K-ras mutations observed in the human lung adenocarcinomas with mutation profiles observed in the mouse lung tumors suggest that bulky hydrophobic DNA adducts may be responsible for the majority of the mutations observed in the activated human K-ras genes. Other data indicate that approximately 20% of human lung tumors contain potentially novel transforming genes that may also be targets for mutagens in cigarette smoke.

  17. RECENT ADVANCES IN ARSENIC CARCINOGENESIS: MODES OF ACTION, ANIMAL MODEL SYSTEMS AND METHYLATED ARSENIC METABOLITES

    EPA Science Inventory


    Abstract:

    Recent advances in our knowledge of arsenic carcinogenesis include the development of rat or mouse models for all human organs in which inorganic arsenic is known to cause cancer -skin, lung, urinary bladder, liver and kidney. Tumors can be produced from eit...

  18. Cholera-toxin suppresses carcinogenesis in a mouse model of inflammation-driven sporadic colon cancer.

    PubMed

    Doulberis, Michael; Angelopoulou, Katerina; Kaldrymidou, Eleni; Tsingotjidou, Anastasia; Abas, Zaphiris; Erdman, Suzan E; Poutahidis, Theofilos

    2015-02-01

    Human studies and clues from animal models have provided important links between gastrointestinal (GI) tract bacteria and colon cancer. Gut microbiota antigenic stimuli play an important role in shaping the intestinal immune responses. Therefore, especially in the case of inflammation-associated colon cancer, gut bacteria antigens may affect tumorigenesis. The present study aimed to investigate the effects of the oral administration of a bacterial product with known immunomodulatory properties on inflammation-driven colorectal neoplasmatogenesis. For that, we used cholera-toxin and a well-established mouse model of colon cancer in which neoplasia is initiated by a single dose of the genotoxic agent azoxymethane (AOM) and subsequently promoted by inflammation caused by the colitogenic substance dextran sodium sulfate (DSS). We found that a single, low, non-pathogenic dose of CT, given orally at the beginning of each DSS treatment cycle downregulated neutrophils and upregulated regulatory T-cells and IL-10 in the colonic mucosa. The CT-induced disruption of the tumor-promoting character of DSS-induced inflammation led to the reduction of the AOM-initiated colonic polypoidogenesis. This result adds value to the emerging notion that certain GI tract bacteria or their products affect the immune system and render the microenvironment of preneoplastic lesions less favorable for promoting their evolution to cancer.

  19. Beyond two-stage models for lung carcinogenesis in the Mayak workers: implications for plutonium risk.

    PubMed

    Zöllner, Sascha; Sokolnikov, Mikhail E; Eidemüller, Markus

    2015-01-01

    Mechanistic multi-stage models are used to analyze lung-cancer mortality after Plutonium exposure in the Mayak-workers cohort, with follow-up until 2008. Besides the established two-stage model with clonal expansion, models with three mutation stages as well as a model with two distinct pathways to cancer are studied. The results suggest that three-stage models offer an improved description of the data. The best-fitting models point to a mechanism where radiation increases the rate of clonal expansion. This is interpreted in terms of changes in cell-cycle control mediated by bystander signaling or repopulation following cell killing. No statistical evidence for a two-pathway model is found. To elucidate the implications of the different models for radiation risk, several exposure scenarios are studied. Models with a radiation effect at an early stage show a delayed response and a pronounced drop-off with older ages at exposure. Moreover, the dose-response relationship is strongly nonlinear for all three-stage models, revealing a marked increase above a critical dose.

  20. Beyond Two-Stage Models for Lung Carcinogenesis in the Mayak Workers: Implications for Plutonium Risk

    PubMed Central

    Zöllner, Sascha; Sokolnikov, Mikhail E.; Eidemüller, Markus

    2015-01-01

    Mechanistic multi-stage models are used to analyze lung-cancer mortality after Plutonium exposure in the Mayak-workers cohort, with follow-up until 2008. Besides the established two-stage model with clonal expansion, models with three mutation stages as well as a model with two distinct pathways to cancer are studied. The results suggest that three-stage models offer an improved description of the data. The best-fitting models point to a mechanism where radiation increases the rate of clonal expansion. This is interpreted in terms of changes in cell-cycle control mediated by bystander signaling or repopulation following cell killing. No statistical evidence for a two-pathway model is found. To elucidate the implications of the different models for radiation risk, several exposure scenarios are studied. Models with a radiation effect at an early stage show a delayed response and a pronounced drop-off with older ages at exposure. Moreover, the dose-response relationship is strongly nonlinear for all three-stage models, revealing a marked increase above a critical dose. PMID:26000637

  1. Pulmonary oxidative stress, inflammation and cancer: respirable particulate matter, fibrous dusts and ozone as major causes of lung carcinogenesis through reactive oxygen species mechanisms.

    PubMed

    Valavanidis, Athanasios; Vlachogianni, Thomais; Fiotakis, Konstantinos; Loridas, Spyridon

    2013-08-27

    Reactive oxygen or nitrogen species (ROS, RNS) and oxidative stress in the respiratory system increase the production of mediators of pulmonary inflammation and initiate or promote mechanisms of carcinogenesis. The lungs are exposed daily to oxidants generated either endogenously or exogenously (air pollutants, cigarette smoke, etc.). Cells in aerobic organisms are protected against oxidative damage by enzymatic and non-enzymatic antioxidant systems. Recent epidemiologic investigations have shown associations between increased incidence of respiratory diseases and lung cancer from exposure to low levels of various forms of respirable fibers and particulate matter (PM), at occupational or urban air polluting environments. Lung cancer increases substantially for tobacco smokers due to the synergistic effects in the generation of ROS, leading to oxidative stress and inflammation with high DNA damage potential. Physical and chemical characteristics of particles (size, transition metal content, speciation, stable free radicals, etc.) play an important role in oxidative stress. In turn, oxidative stress initiates the synthesis of mediators of pulmonary inflammation in lung epithelial cells and initiation of carcinogenic mechanisms. Inhalable quartz, metal powders, mineral asbestos fibers, ozone, soot from gasoline and diesel engines, tobacco smoke and PM from ambient air pollution (PM₁₀ and PM₂.₅) are involved in various oxidative stress mechanisms. Pulmonary cancer initiation and promotion has been linked to a series of biochemical pathways of oxidative stress, DNA oxidative damage, macrophage stimulation, telomere shortening, modulation of gene expression and activation of transcription factors with important role in carcinogenesis. In this review we are presenting the role of ROS and oxidative stress in the production of mediators of pulmonary inflammation and mechanisms of carcinogenesis.

  2. Downregulation of glutathione S-transferase M1 protein in N-butyl-N-(4-hydroxybutyl)nitrosamine-induced mouse bladder carcinogenesis

    SciTech Connect

    Chuang, Jing-Jing; Dai, Yuan-Chang; Lin, Yung-Lun; Chen, Yang-Yi; Lin, Wei-Han; Chan, Hong-Lin; Liu, Yi-Wen

    2014-09-15

    Bladder cancer is highly recurrent following specific transurethral resection and intravesical chemotherapy, which has prompted continuing efforts to develop novel therapeutic agents and early-stage diagnostic tools. Specific changes in protein expression can provide a diagnostic marker. In our present study, we investigated changes in protein expression during urothelial carcinogenesis. The carcinogen BBN was used to induce mouse bladder tumor formation. Mouse bladder mucosa proteins were collected and analyzed by 2D electrophoresis from 6 to 20 weeks after commencing continuous BBN treatment. By histological examination, the connective layer of the submucosa showed gradual thickening and the number of submucosal capillaries gradually increased after BBN treatment. At 12-weeks after the start of BBN treatment, the urothelia became moderately dysplastic and tumors arose after 20-weeks of treatment. These induced bladder lesions included carcinoma in situ and connective tissue invasive cancer. In protein 2D analysis, the sequentially downregulated proteins from 6 to 20 weeks included GSTM1, L-lactate dehydrogenase B chain, keratin 8, keratin 18 and major urinary proteins 2 and 11/8. In contrast, the sequentially upregulated proteins identified were GSTO1, keratin 15 and myosin light polypeptide 6. Western blotting confirmed that GSTM1 and NQO-1 were decreased, while GSTO1 and Sp1 were increased, after BBN treatment. In human bladder cancer cells, 5-aza-2′-deoxycytidine increased the GSTM1 mRNA and protein expression. These data suggest that the downregulation of GSTM1 in the urothelia is a biomarker of bladder carcinogenesis and that this may be mediated by DNA CpG methylation. - Highlights: • GSTM1 and NQO-1 proteins decreased in the mouse bladder mucosa after BBN treatment. • BBN induced GSTO1 and Sp1 protein expression in the mouse bladder mucosa. • 5-Aza-2′-deoxycytidine increased GSTM1 mRNA and protein in human bladder cancer cell. • GSTM1

  3. SKHIN/Sprd, a new genetically defined inbred hairless mouse strain for UV-induced skin carcinogenesis studies

    PubMed Central

    Perez, Carlos; Parker-Thornburg, Jan; Mikulec, Carol; Kusewitt, Donna F.; Fischer, Susan M.; DiGiovanni, John; Conti, Claudio J.; Benavides, Fernando

    2013-01-01

    Strains of mice vary in their susceptibility to ultra-violet (UV) radiation-induced skin tumors. Some strains of hairless mice (homozygous for the spontaneous Hrhr mutation) are particularly susceptible to these tumors. The skin tumors that develop in hairless mice resemble, both at the morphologic and molecular levels, UV-induced squamous cell carcinomas (SCC) and their precursors in human. The most commonly employed hairless mice belong to the SKH1 stock. However, these mice are outbred and their genetic background is not characterized, which makes them a poor model for genetic studies. We have developed a new inbred strain from outbred SKH1 mice that we named SKHIN/Sprd (now at generation F31). In order to characterize the genetic background of this new strain, we genotyped a cohort of mice at F30 with 92 microsatellites and 140 single nucleotide polymorphisms (SNP) evenly distributed throughout the mouse genome. We also exposed SKHIN/Sprd mice to chronic UV irradiation and showed that they are as susceptible to UV-induced skin carcinogenesis as outbred SKH1 mice. In addition, we proved that, albeit with low efficiency, inbred SKHIN/Sprd mice are suitable for transgenic production by classical pronuclear microinjection. This new inbred strain will be useful for the development of transgenic and congenic strains on a hairless inbred background as well as the establishment of syngeneic tumor cell lines. These new tools can potentially help elucidate a number of features of the cutaneous response to UV irradiation in humans, including the effect of genetic background and modifier genes. PMID:22379968

  4. Chemomodulatory Effect of Trigonella foenum graecum (L.) Seed Extract on Two Stage Mouse Skin Carcinogenesis.

    PubMed

    Chatterjee, Sreemoyee; Kumar, Madhu; Kumar, Ashok

    2012-09-01

    Cancer is not a single disease but a group of complex genetic diseases of aged cells. Chemoprevention of cancer is the attempt to use natural and synthetic compounds to intervene in the early stages of cancer, before invasive disease begins. Consuming a diet rich in plant foods can provide a milieu of phytochemicals and non-nutritive plant substances that possess health-protective effects. Some phytochemicals derived in spices and herbs as well as other plants possess substantial cancer preventive properties. Thus the cancer chemo preventive potential of naturally occurring phytochemicals is of great interest because of their preventive role and as they are not perceived as "medicine". During the course of present study Trigonella foenum graecum (L.) seed- TFGS (commonly called fenugreek) extract was given at pre-initiational, post-initiational, promotional and throughout the experiment along with 7,12-dimethylbenz [a] anthracene DMBA and 12-O-tetradecanoylphorbol-13-acetate TPA treatment in Swiss albino mice. A significant reduction of papillomas in DMBA + TPA + TFGS (400 mg/kg. body wt.) treated group was found to be effective in decreasing the rate of tumor incidence in comparison to control. Furthermore, cumulative number of papillomas, tumor yield and tumor burden were also found to be reduced. The TFGS extract treatment before DMBA and TPA application (i.e. Pre initiation) were more effective than that of treatment during, and /or after DMBA treatment, however TFGS extract treatment was most effective when treated throughout all the stages of tumorigenesis. The TFGS treatment also showed a modulatory influence on mouse hepatic antioxidant defense system (GSH and LPO level).

  5. Alterations of lung microbiota in a mouse model of LPS-induced lung injury

    PubMed Central

    Meng, Fanyong; Meliton, Angelo; Afonyushkin, Taras; Ulanov, Alexander; Semenyuk, Ekaterina; Latif, Omar; Tesic, Vera; Birukova, Anna A.; Birukov, Konstantin G.

    2015-01-01

    Acute lung injury (ALI) and the more severe acute respiratory distress syndrome are common responses to a variety of infectious and noninfectious insults. We used a mouse model of ALI induced by intratracheal administration of sterile bacterial wall lipopolysaccharide (LPS) to investigate the changes in innate lung microbiota and study microbial community reaction to lung inflammation and barrier dysfunction induced by endotoxin insult. One group of C57BL/6J mice received LPS via intratracheal injection (n = 6), and another received sterile water (n = 7). Bronchoalveolar lavage (BAL) was performed at 72 h after treatment. Bacterial DNA was extracted and used for qPCR and 16S rRNA gene-tag (V3–V4) sequencing (Illumina). The bacterial load in BAL from ALI mice was increased fivefold (P = 0.03). The community complexity remained unchanged (Simpson index, P = 0.7); the Shannon diversity index indicated the increase of community evenness in response to ALI (P = 0.07). Principal coordinate analysis and analysis of similarity (ANOSIM) test (P = 0.005) revealed a significant difference between microbiota of control and ALI groups. Bacteria from families Xanthomonadaceae and Brucellaceae increased their abundance in the ALI group as determined by Metastats test (P < 0.02). In concordance with the 16s-tag data, Stenotrohomonas maltophilia (Xanthomonadaceae) and Ochrobactrum anthropi (Brucellaceae) were isolated from lungs of mice from both groups. Metabolic profiling of BAL detected the presence of bacterial substrates suitable for both isolates. Additionally, microbiota from LPS-treated mice intensified IL-6-induced lung inflammation in naive mice. We conclude that the morbid transformation of ALI microbiota was attributed to the set of inborn opportunistic pathogens thriving in the environment of inflamed lung, rather than the external infectious agents. PMID:25957290

  6. Alterations of lung microbiota in a mouse model of LPS-induced lung injury.

    PubMed

    Poroyko, Valeriy; Meng, Fanyong; Meliton, Angelo; Afonyushkin, Taras; Ulanov, Alexander; Semenyuk, Ekaterina; Latif, Omar; Tesic, Vera; Birukova, Anna A; Birukov, Konstantin G

    2015-07-01

    Acute lung injury (ALI) and the more severe acute respiratory distress syndrome are common responses to a variety of infectious and noninfectious insults. We used a mouse model of ALI induced by intratracheal administration of sterile bacterial wall lipopolysaccharide (LPS) to investigate the changes in innate lung microbiota and study microbial community reaction to lung inflammation and barrier dysfunction induced by endotoxin insult. One group of C57BL/6J mice received LPS via intratracheal injection (n = 6), and another received sterile water (n = 7). Bronchoalveolar lavage (BAL) was performed at 72 h after treatment. Bacterial DNA was extracted and used for qPCR and 16S rRNA gene-tag (V3-V4) sequencing (Illumina). The bacterial load in BAL from ALI mice was increased fivefold (P = 0.03). The community complexity remained unchanged (Simpson index, P = 0.7); the Shannon diversity index indicated the increase of community evenness in response to ALI (P = 0.07). Principal coordinate analysis and analysis of similarity (ANOSIM) test (P = 0.005) revealed a significant difference between microbiota of control and ALI groups. Bacteria from families Xanthomonadaceae and Brucellaceae increased their abundance in the ALI group as determined by Metastats test (P < 0.02). In concordance with the 16s-tag data, Stenotrohomonas maltophilia (Xanthomonadaceae) and Ochrobactrum anthropi (Brucellaceae) were isolated from lungs of mice from both groups. Metabolic profiling of BAL detected the presence of bacterial substrates suitable for both isolates. Additionally, microbiota from LPS-treated mice intensified IL-6-induced lung inflammation in naive mice. We conclude that the morbid transformation of ALI microbiota was attributed to the set of inborn opportunistic pathogens thriving in the environment of inflamed lung, rather than the external infectious agents.

  7. CREB- and NF-κB-Regulated CXC Chemokine Gene Expression in Lung Carcinogenesis

    PubMed Central

    Sun, Hongxia; Chung, Wen-Cheng; Ryu, Seung-Hee; Ju, Zhenlin; Tran, Hai T.; Kim, Edward; Kurie, Jonathan M.; Koo, Ja Seok

    2009-01-01

    The recognition of the importance of angiogenesis in tumor progression has led to the development of antiangiogenesis as a new strategy for cancer treatment and prevention. By modulating tumor microenvironment and inducing angiogenesis, the proinflammatory cytokine interleukine (IL)-1 β has been reported to promote tumor development. However, the factors mediating IL-1β-induced angiogenesis in non-small cell lung cancer (NSCLC) and the regulation of these angiogenic factors by IL-1β are less clear. Here, we report that IL-1β upregulated an array of proangiogenic CXC chemokine genes in NSCLC cell line A549 and in normal human tracheobronchial epithelium (NHTBE) cells, as determined by microarray analysis. Further analysis revealed that IL-1β induced much higher protein levels of CXC chemokines in NSCLC cells than in NHTBE cells. Conditioned medium from IL-1β treated A549 cells markedly increased endothelial cell migration, which was suppressed by neutralizing antibodies against CXCL5 and CXCR2. We also found that IL-1β-induced CXC chemokine gene overexpression in NSCLC cells was abrogated with the knockdown of CREB or NF-κB. Moreover, the expression of the CXC chemokine genes as well as CREB and NF-κB activities were greatly increased in tumorigenic NSCLC cell line compared with normal, premalignant immortalized or non-tumorigenic cell lines. A disruptor of the interaction between CREB-binding protein (CBP) and transcription factors such as CREB and NF-κB, 2-naphthol-AS-E-phosphate (KG-501), inhibited IL-1β-induced CXC chemokine gene expression and angiogenic activity in NSCLC. We propose that targeting CREB or NF-κB using small molecule inhibitors, such as KG-501, holds promise as a preventive and/or therapeutic approach for NSCLC. PMID:19138976

  8. Some lupane-type triterpenes inhibit tumor promotion by 12-O-tetradecanoylphorbol-13-acetate in two-stage carcinogenesis in mouse skin.

    PubMed

    Yasukawa, K; Yu, S; Yamanouchi, S; Takido, M; Akihisa, T; Tamura, T

    1995-04-01

    We have found that several lupane-type triterpenes, including lupeol, its acetate, betulin and betulinic acid, inhibit 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced inflammation, and that betulinic acid inhibits tumor promotion in two-stage carcinogenesis in mice. Among seven lupane-type triterpenes assayed, these compounds inhibited the inflammatory activity induced by TPA in mice. The 50 % inhibitory dose of these compounds for TPA-induced inflammation was 0.4-4.0 μmol. Furthermore, topical application of lupeol, lupeol 3-acetate and betulin markedly suppressed the tumor-promoting effect of TPA (1 μg/mouse) in mouse skin initiated with 7,12-dimethyl-benz[a]anthracene (50 μg/mouse), at a grade corresponding to that of betulinic acid.

  9. Identifying Efficacious Approaches to Chemoprevention with chlorophyllin, purified chlorophylls and freeze-dried spinach in a Mouse Model of Transplacental Carcinogenesis

    SciTech Connect

    Castro, David J.; Lohr, Christiane V.; Fischer, Kay A.; Waters, Katrina M.; Webb-Robertson, Bobbie-Jo M.; Dashwood, Roderick H.; Bailey, George S.; Williams, David E.

    2009-02-01

    The carcinogenic potential of dibenzo[a,l]pyrene (DBP) has been well characterized in numerous animal models. We have previously documented that a single dose of 15 mg/Kg DBP to pregnant mice late in gestation (GD 17) produces an aggressive T-cell lymphoma as well as lung and liver cancer in offspring. The current study examines the chemopreventative properties of chlorophyllin (CHL) and chlorophyll (Chl) in this transplacental carcinogenesis model. Pregnant B6129SF1 females, bred to 129S1/SvIm males, received purified diets incorporated with either 2000 ppm CHL, 2000 ppm Chl, or 10% freeze-dried spinach beginning at gestation day 9. Lymphoma-dependent mortality was not significantly altered by maternal consumption of any of the diet and little effect on lung tumor burden in mice surviving to 10 months of age was observed. However, co-administration of CHL at 380 mg/Kg with DBP by gavage (molar ratio of 10:1, CHL:DBP) provided significant protection against DBP initiated carcinogenesis. Offspring born to dams receiving CHL co-gavaged with DBP exhibited markedly fewer lymphoma-dependent mortalities (p< 0.001). The degree of protection by CHL, compared to controls dosed with DBP in tricaprylin (TCP) as the vehicle, were less marked, but still significant. Co-administration of CHL (TCP as vehicle) also reduced lung tumor multiplicity in mice by approximately 50% and this was observed throughout the study (p< 0.005). This is the first demonstration that CHL can provide potent chemoprotection in a transplacental carcinogenesis model and supports a mechanism involving complex-mediated reduction of carcinogen uptake.

  10. Identifying efficacious approaches to chemoprevention with chlorophyllin, purified chlorophylls and freeze-dried spinach in a mouse model of transplacental carcinogenesis.

    PubMed

    Castro, David J; Löhr, Christiane V; Fischer, Kay A; Waters, Katrina M; Webb-Robertson, Bobbie-Jo M; Dashwood, Roderick H; Bailey, George S; Williams, David E

    2009-02-01

    The carcinogenic potential of dibenzo[a,l]pyrene (DBP) has been well characterized in numerous animal models. We have previously documented that a single dose of 15 mg/Kg DBP to pregnant mice late in gestation (GD 17) produces an aggressive T-cell lymphoma as well as lung and liver cancer in offspring. The current study examines the chemopreventative properties of chlorophyllin (CHL) and chlorophyll (Chl) in this transplacental carcinogenesis model. Pregnant B6129SF1 females, bred to 129S1/SvIm males, received purified diets incorporated with either 2000 p.p.m. CHL, 2000 p.p.m. Chl or 10% freeze-dried spinach beginning at gestation day 9. Lymphoma-dependent mortality was not significantly altered by maternal consumption of any of the diet and little effect on lung tumor burden in mice surviving to 10 months of age was observed. However, coadministration of CHL at 380 mg/Kg with DBP by gavage (molar ratio of 10:1, CHL:DBP) provided significant protection against DBP-initiated carcinogenesis. Offspring born to dams receiving CHL co-gavaged with DBP exhibited markedly less lymphoma-dependent mortality (P < 0.001). The degree of protection by CHL, compared with controls dosed with DBP in tricaprylin (TCP) as the vehicle, was less marked, but still significant. Coadministration of CHL (TCP as vehicle) also reduced lung tumor multiplicity in mice by approximately 50% and this was observed throughout the study (P < 0.005). This is the first demonstration that CHL can provide potent chemoprotection in a transplacental carcinogenesis model and support a mechanism involving complex-mediated reduction of carcinogen uptake.

  11. Phenotyping mouse pulmonary function in vivo with the lung diffusing capacity.

    PubMed

    Limjunyawong, Nathachit; Fallica, Jonathan; Ramakrishnan, Amritha; Datta, Kausik; Gabrielson, Matthew; Horton, Maureen; Mitzner, Wayne

    2015-01-06

    The mouse is now the primary animal used to model a variety of lung diseases. To study the mechanisms that underlie such pathologies, phenotypic methods are needed that can quantify the pathologic changes. Furthermore, to provide translational relevance to the mouse models, such measurements should be tests that can easily be done in both humans and mice. Unfortunately, in the present literature few phenotypic measurements of lung function have direct application to humans. One exception is the diffusing capacity for carbon monoxide, which is a measurement that is routinely done in humans. In the present report, we describe a means to quickly and simply measure this diffusing capacity in mice. The procedure involves brief lung inflation with tracer gases in an anesthetized mouse, followed by a 1 min gas analysis time. We have tested the ability of this method to detect several lung pathologies, including emphysema, fibrosis, acute lung injury, and influenza and fungal lung infections, as well as monitoring lung maturation in young pups. Results show significant decreases in all the lung pathologies, as well as an increase in the diffusing capacity with lung maturation. This measurement of lung diffusing capacity thus provides a pulmonary function test that has broad application with its ability to detect phenotypic structural changes with most of the existing pathologic lung models.

  12. Oral recombinant human or mouse lactoferrin reduces Mycobacterium tuberculosis TDM induced granulomatous lung pathology.

    PubMed

    Hwang, Shen-An; Kruzel, Marian L; Actor, Jeffrey K

    2017-02-01

    Trehalose 6'6-dimycolate (TDM) is the most abundant glycolipid on the cell wall of Mycobacterium tuberculosis (MTB). TDM is capable of inducing granulomatous pathology in mouse models that resembles those induced by MTB infection. Using the acute TDM model, this work investigates the effect of recombinant human and mouse lactoferrin to reduce granulomatous pathology. C57BL/6 mice were injected intravenously with TDM at a dose of 25 μg·mouse(-1). At day 4 and 6, recombinant human or mouse lactoferrin (1 mg·(100 μL)(-1)·mouse(-1)) were delivered by gavage. At day 7 after TDM injection, mice were evaluated for lung pathology, cytokine production, and leukocyte populations. Mice given human or mouse lactoferrin had reduced production of IL-12p40 in their lungs. Mouse lactoferrin increased IL-6 and KC (CXCL1) in lung tissue. Increased numbers of macrophages were observed in TDM-injected mice given human or mouse lactoferrin. Granulomatous pathology, composed of mainly migrated leukocytes, was visually reduced in mice that received human or mouse lactoferrin. Quantitation of granulomatous pathology demonstrated a significant decrease in mice given human or mouse lactoferrin compared with TDM control mice. This report is the first to directly compare the immune modulatory effects of both heterologous recombinant human and homologous mouse lactoferrin on the development of TDM-induced granulomas.

  13. Cytochrome P450 1b1 in polycyclic aromatic hydrocarbon (PAH)-induced skin carcinogenesis: Tumorigenicity of individual PAHs and coal-tar extract, DNA adduction and expression of select genes in the Cyp1b1 knockout mouse

    SciTech Connect

    Siddens, Lisbeth K.; Bunde, Kristi L.; Harper, Tod A.; McQuistan, Tammie J.; Löhr, Christiane V.; Bramer, Lisa M.; Waters, Katrina M.; Tilton, Susan C.; Krueger, Sharon K.; and others

    2015-09-01

    FVB/N mice wild-type, heterozygous or null for Cyp 1b1 were used in a two-stage skin tumor study comparing PAH, benzo[a]pyrene (BaP), dibenzo[def,p]chrysene (DBC), and coal tar extract (CTE, SRM 1597a). Following 20 weeks of promotion with TPA the Cyp 1b1 null mice, initiated with DBC, exhibited reductions in incidence, multiplicity, and progression. None of these effects were observed with BaP or CTE. The mechanism of Cyp 1b1-dependent alteration of DBC skin carcinogenesis was further investigated by determining expression of select genes in skin from DBC-treated mice 2, 4 and 8 h post-initiation. A significant reduction in levels of Cyp 1a1, Nqo1 at 8 h and Akr 1c14 mRNA was observed in Cyp 1b1 null (but not wt or het) mice, whereas no impact was observed in Gst a1, Nqo 1 at 2 and 4 h or Akr 1c19 at any time point. Cyp 1b1 mRNA was not elevated by DBC. The major covalent DNA adducts, dibenzo[def,p]chrysene-(±)-11,12-dihydrodiol-cis and trans-13,14-epoxide-deoxyadenosine (DBCDE-dA) were quantified by UHPLC-MS/MS 8 h post-initiation. Loss of Cyp1 b1 expression reduced DBCDE-dA adducts in the skin but not to a statistically significant degree. The ratio of cis- to trans-DBCDE-dA adducts was higher in the skin than other target tissues such as the spleen, lung and liver (oral dosing). These results document that Cyp 1b1 plays a significant role in bioactivation and carcinogenesis of DBC in a two-stage mouse skin tumor model and that loss of Cyp 1b1 has little impact on tumor response with BaP or CTE as initiators. - Highlights: • Cyp1b1 null mice exhibit lower skin cancer sensitivity to DBC but not BaP or CTE. • Cyp1b1 expression impacts expression of other PAH metabolizing enzymes. • cis/trans-DBCDE-dA ratio significantly higher in the skin than the spleen, lung or liver • Potency of DBC and CTE in mouse skin is higher than predicted by RPFs.

  14. Refraction-enhanced tomography of mouse and rabbit lungs

    SciTech Connect

    Sera, T.; Uesugi, K.; Yagi, N.

    2005-09-15

    In order to evaluate the effectiveness of edge enhancement by refraction in computed tomography, images of a cross section of a euthanized mouse thorax were recorded at low (20 keV) and high (72 keV) x-ray energies at a spatial resolution of about 40 {mu}m. Compared with the images obtained with the detector at 30 cm from an object, when the object was located at 113 cm from the detector, the contrast between tissues and air was improved at both energies. The improvement was more pronounced at 72 keV where the absorption contrast was weaker. This effect was due to refraction at the surfaces of alveolar membranes and small airways which creates areas with apparently high and low linear attenuation coefficients within tissues. The edge enhancement by refraction was also effective in images of a euthanized rabbit thorax at x-ray energies of 40 and 70 keV at a spatial resolution of about 0.15 mm. These results raise the possibility that the refraction contrast may be utilized to obtain a high-resolution tomographic image of human lung and bone with low dose.

  15. Developing Novel Therapeutic Approaches in Small Cell Lung Carcinoma Using Genetically Engineered Mouse Models and Human Circulating Tumor Cells

    DTIC Science & Technology

    2015-10-01

    Using Genetically Engineered Mouse Models and Human Circulating Tumor Cells PRINCIPAL INVESTIGATOR: Jeffrey Engelman MD PhD CONTRACTING...SUBTITLE Developiing Novel Therapeutic Approaches in Small Cell Lung 5a. CONTRACT NUMBER Carcinoma Using Genetically Engineered Mouse Models and 5b...biomarkers. 15. SUBJECT TERMS Small cell lung cancer (SCLC), Genetically engineered mouse model (GEMM), BH3 mimetic, TORC inhibitor, Apoptosis

  16. [Radiation carcinogenesis].

    PubMed

    Hosoi, Yoshio

    2013-11-01

    Misrepair of DNA damage induced by ionizing radiation is a potential cause of carcinogenesis following exposure to radiation. Radiation exposure increases the incidence of the same types of mutations that occur spontaneously in a given population. A high incidence of DNA double-strand breaks is characteristic of damage by ionizing radiation compared with those induced by other environmental mutagens. In China, residents living in areas with high level background radiation(6mSv/y) had a significantly higher frequency of dicentric and ring chromosomes compared to that for the residents living in the control areas(2mSv/y). Radiation-associated increases in risk were seen for most sites. Gender-averaged excess absolute risk rates estimated at age 70, after exposure at age 30, differ in the sites, and the risks of gastric cancer, breast cancer, colon cancer, and lung cancer were highly increased, in that order. Latent periods for the development of leukemia and thyroid cancer after radiation exposure at ages younger than 18 were shorter compared to those for other solid cancers.

  17. Long non-coding RNA stabilizes the Y-box-binding protein 1 and regulates the epidermal growth factor receptor to promote lung carcinogenesis

    PubMed Central

    Huang, Yun-Chao; Wang, Gui-Zhen; Zhao, Xin-Chun; Pan, Hong-Li; Qu, Li-Wei; Zhang, Jian; Zhang, Chen; Cheng, Xin; Zhou, Guang-Biao

    2016-01-01

    Indoor and outdoor air pollution has been classified as group I carcinogen in humans, but the underlying tumorigenesis remains unclear. Here, we screened for abnormal long noncoding RNAs (lncRNAs) in lung cancers from patients living in Xuanwei city which has the highest lung cancer incidence in China due to smoky coal combustion-generated air pollution. We reported that Xuanwei patients had much more dysregulated lncRNAs than patients from control regions where smoky coal was not used. The lncRNA CAR intergenic 10 (CAR10) was up-regulated in 39/62 (62.9%) of the Xuanwei patients, which was much higher than in patients from control regions (32/86, 37.2%; p=0.002). A multivariate regression analysis showed an association between CAR10 overexpression and air pollution, and a smoky coal combustion-generated carcinogen dibenz[a,h]anthracene up-regulated CAR10 by increasing transcription factor FoxF2 expression. CAR10 bound and stabilized transcription factor Y-box-binding protein 1 (YB-1), leading to up-regulation of the epidermal growth factor receptor (EGFR) and proliferation of lung cancer cells. Knockdown of CAR10 inhibited cell growth in vitro and tumor growth in vivo. These results demonstrate the role of lncRNAs in environmental lung carcinogenesis, and CAR10-YB-1 represents a potential therapeutic target. PMID:27322209

  18. Curcumin Inhibits Transforming Growth Factor β Induced Differentiation of Mouse Lung Fibroblasts to Myofibroblasts

    PubMed Central

    Liu, Daishun; Gong, Ling; Zhu, Honglan; Pu, Shenglan; Wu, Yang; Zhang, Wei; Huang, Guichuan

    2016-01-01

    Transforming growth factor β (TGF-β) induced differentiation of lung fibroblasts to myofibroblasts is a key event in the pathogenesis of pulmonary fibrosis. This study aimed to evaluate the effect of curcumin on TGF-β induced differentiation of lung fibroblasts to myofibroblasts and explore the underlying mechanism. Mouse lung fibroblasts were cultured and treated with TGF-β2 and curcumin or rosiglitazone. Cell vitality was examined by MTT assay. The secretion of collagen-1 was assessed by ELISA. α smooth muscle actin (α-SMA) was visualized by immunofluorescence technique. The expression of peroxisome proliferator activated receptor γ (PPAR-γ) and platelet derived growth factor R β (PDGFR-β) was detected by PCR and Western blot analysis. We found that curcumin and rosiglitazone inhibited the proliferation and TGF-β induced differentiation of mouse lung fibroblasts. In addition, curcumin and rosiglitazone inhibited collagen-1 secretion and α-SMA expression in mouse lung fibroblasts. Furthermore, curcumin and rosiglitazone upregulated PPAR-γ and downregulated PDGFR-β expression in mouse lung fibroblasts. In conclusion, our study reveals novel mechanism by which curcumin inhibits TGF-β2 driven differentiation of lung fibroblasts to myofibroblasts. Curcumin could potentially be used for effective treatment of pulmonary fibrosis. PMID:27877129

  19. Regulation of IL-33 by Oncostatin M in Mouse Lung Epithelial Cells

    PubMed Central

    Izakelian, Laura; Dubey, Anisha; Zhang, Grace; Wong, Steven; Kwofie, Karen; Qureshi, Aatif; Botelho, Fernando

    2016-01-01

    IL-33 modulates both innate and adaptive immune responses at tissue sites including lung and may play critical roles in inflammatory lung disease. Although IL-33 expression can be altered upon NF-Kappa B activation, here we examine regulation by Oncostatin M, a gp130 cytokine family member, in mouse lung tissue. Responses were assessed in BALB/c mouse lung at day 7 of transient overexpression using endotracheally administered adenovirus encoding OSM (AdOSM) or empty vector (AdDel70). Whole lung extracts showed induction of IL-33 mRNA (>20-fold) and protein (10-fold increase in immunoblots) by AdOSM relative to AdDel70. Immunohistochemistry for IL-33 indicated a marked induction of nuclear staining in alveolar epithelial cells in vivo. Oncostatin M stimulated IL-33 mRNA and IL-33 full length protein in C10 mouse type 2 alveolar epithelial cells in culture in time-dependent and dose-dependent fashion, whereas IL-6, LIF, IL-31, IL-4, or IL-13 did not, and TGFβ repressed IL-33. IL-33 induction was associated with activation of STAT3, and pharmacological inhibition of STAT3 ameliorated IL-33 levels. These results indicate Oncostatin M as a potent inducer of IL-33 in mouse lung epithelial cells and suggest that an OSM/IL-33 axis may participate in innate immunity and inflammatory conditions in lung. PMID:27703303

  20. The G gamma / T-15 transgenic mouse model of androgen-independent prostate cancer: target cells of carcinogenesis and the effect of the vitamin D analogue EB 1089.

    PubMed

    Perez-Stable, Carlos M; Schwartz, Gary G; Farinas, Adan; Finegold, Milton; Binderup, Lise; Howard, Guy A; Roos, Bernard A

    2002-06-01

    Transgenic mouse models of prostate cancer provide unique opportunities to understand the molecular events in prostate carcinogenesis and for the preclinical testing of new therapies. We studied the G gamma T-15 transgenic mouse line, which contains the human fetal globin promoter linked to SV40 T antigen (Tag) and which develops androgen-independent prostate cancer. Using the immunohistochemistry of normal mouse prostates before tumor formation, we showed that the target cells of carcinogenesis in G gamma T-15 mice are located in the basal epithelial layer. We tested the efficacy of the 1,25(OH)(2)D(3) analogue, EB 1089, to chemoprevent prostate cancer in these transgenic mice. Compared with treatment with placebo, treatment with EB 1089 at three different time points before the onset of prostate tumors in mice did not prevent or delay tumor onset. However, EB 1089 significantly inhibited prostate tumor growth. At the highest dose, EB 1089 inhibited prostate tumor growth by 60% (P = 0.0003) and the growth in the number of metastases, although this dose also caused significant hypercalcemia and weight loss. We conducted several in vitro experiments to explore why EB 1089 did not prevent the occurrence of the primary tumors. EB 1089 significantly inhibited the growth of a Tag-expressing human prostate epithelial cell line, BPH-1, and an androgen-insensitive subline of LNCaP cells [which was not inhibited by 1,25(OH)(2)D(3)]. Thus, neither Tag expression nor androgen insensitivity explain the absence of chemopreventive effect. Conversely, neither 1,25(OH)(2)D(3) nor EB 1089 inhibited the growth of the normal rat prostate basal epithelial cell line NRP-152. It is likely that EB 1089 was not effective in delaying the growth of the primary tumor in G gamma T-15 transgenic mice because the target cells of carcinogenesis in these mice are located in the basal epithelial layer. We conclude that G gamma T-15 transgenic mice are a useful model for testing vitamin D

  1. Curcumin ameliorates the tumor-enhancing effects of a high-protein diet in an azoxymethane-induced mouse model of colon carcinogenesis.

    PubMed

    Byun, So-Young; Kim, Dan-Bi; Kim, Eunjung

    2015-08-01

    An increasing number of reports suggest that a high-protein diet (HPD) is associated with an increased risk for colorectal cancer (CRC). One of the proposed mechanisms is that an HPD increases the delivery of protein to the colon and generates various toxic metabolites that contribute to colon carcinogenesis. Curcumin was shown to exert significant preventive properties against CRC. We therefore hypothesized that curcumin can reverse the tumor-enhancing effects of an HPD. This study examined the effects of curcumin on the development of azoxymethane (AOM)-induced colorectal tumors in HPD-fed mice. A total of 30 female Balb/c mice were randomly divided into 3 groups: those fed a normal diet (20% casein), those fed an HPD (HPD; 50% casein), and those fed an HPD supplemented with curcumin (HPDC; 0.02% curcumin). The mice were subjected to an AOM-dextran sodium sulfate colon carcinogenesis protocol. Mice in the HPDC group exhibited a significant (40%) reduction in colorectal tumor multiplicity when compared with those in the HPD group. The expression of colonic inflammatory proteins (cyclooxygenase-2 and inducible nitric oxide synthase), the levels of plasma inflammatory markers (nitric oxide and tumor necrosis factor-α), fecal ammonia, short- and branched-chain fatty acid levels, and the rate of colonocyte proliferation were significantly lower in the HPDC than the HPD group. In conclusion, curcumin inhibited the development of colorectal tumors in an AOM-induced mouse model of colon carcinogenesis by attenuating colonic inflammation, proliferation, and toxic metabolite production. Curcumin might be useful in the chemoprevention of CRC in individuals consuming an HPD.

  2. The FYVE domain of Smad Anchor for Receptor Activation (SARA) is required to prevent skin carcinogenesis, but not in mouse development.

    PubMed

    Chang, Huang-Ming; Lin, Yu-Ying; Tsai, Pei-Chun; Liang, Chung-Tiang; Yan, Yu-Ting

    2014-01-01

    Smad Anchor for Receptor Activation (SARA) has been reported as a critical role in TGF-β signal transduction by recruiting non-activated Smad2/3 to the TGF-β receptor and ensuring appropriate subcellular localization of the activated receptor-bound complex. However, controversies still exist in previous reports. In this study, we describe the expression of two SARA isoforms, SARA1 and SARA2, in mice and report the generation and characterization of SARA mutant mice with FYVE domain deletion. SARA mutant mice developed normally and showed no gross abnormalities. Further examination showed that the TGF-β signaling pathway was indeed altered in SARA mutant mice, with the downregulation of Smad2 protein expression. The decreasing expression of Smad2 was caused by enhancing Smurf2-mediated proteasome degradation pathway. However, the internalization of TGF-β receptors into the early endosome was not affected in SARA mutant mouse embryonic fibroblasts (MEFs). Moreover, the downregulation of Smad2 in SARA mutant MEFs was not sufficient to disrupt the diverse cellular biological functions of TGF-β signaling, including growth inhibition, apoptosis, senescence, and the epithelial-to-mesenchymal transition. Our results indicate that SARA is not involved in the activation process of TGF-β signal transduction. Using a two-stage skin chemical carcinogenesis assay, we found that the loss of SARA promoted skin tumor formation and malignant progression. Our data suggest a protective role of SARA in skin carcinogenesis.

  3. Stereotactic Body Radiation Therapy Delivery in a Genetically Engineered Mouse Model of Lung Cancer

    PubMed Central

    Du, Shisuo; Lockamy, Virginia; Zhou, Lin; Xue, Christine; LeBlanc, Justin; Glenn, Shonna; Shukla, Gaurav; Yu, Yan; Dicker, Adam P.; Leeper, Dennis B.; Lu, You; Lu, Bo

    2016-01-01

    Purpose To implement clinical stereotactic body radiation therapy (SBRT) using a small animal radiation research platform (SARRP) in a genetically engineered mouse model of lung cancer. Methods and Materials A murine model of multinodular Kras-driven spontaneous lung tumors was used for this study. High-resolution cone beam computed tomography (CBCT) imaging was used to identify and target peripheral tumor nodules, whereas off-target lung nodules in the contralateral lung were used as a nonirradiated control. CBCT imaging helps localize tumors, facilitate high-precision irradiation, and monitor tumor growth. SBRT planning, prescription dose, and dose limits to normal tissue followed the guidelines set by RTOG protocols. Pathologic changes in the irradiated tumors were investigated using immunohistochemistry. Results The image guided radiation delivery using the SARRP system effectively localized and treated lung cancer with precision in a genetically engineered mouse model of lung cancer. Immunohistochemical data confirmed the precise delivery of SBRT to the targeted lung nodules. The 60 Gy delivered in 3 weekly fractions markedly reduced the proliferation index, Ki-67, and increased apoptosis per staining for cleaved caspase-3 in irradiated lung nodules. Conclusions It is feasible to use the SARRP platform to perform dosimetric planning and delivery of SBRT in mice with lung cancer. This allows for preclinical studies that provide a rationale for clinical trials involving SBRT, especially when combined with immunotherapeutics. PMID:27681749

  4. AKT1E¹⁷K Is Oncogenic in Mouse Lung and Cooperates with Chemical Carcinogens in Inducing Lung Cancer.

    PubMed

    Malanga, Donatella; Belmonte, Stefania; Colelli, Fabiana; Scarfò, Marzia; De Marco, Carmela; Oliveira, Duarte Mendes; Mirante, Teresa; Camastra, Caterina; Gagliardi, Monica; Rizzuto, Antonia; Mignogna, Chiara; Paciello, Orlando; Papparella, Serenella; Fagman, Henrik; Viglietto, Giuseppe

    2016-01-01

    The hotspot AKT1E17K mutation in the pleckstrin homology domain of AKT1 occurs in approximately 0.6-2% of human lung cancers. Recently, we have demonstrated that AKT1E17K transforms immortalized human bronchial cells. Here by use of a transgenic Cre-inducible murine strain in the wild type Rosa26 (R26) locus (R26-AKT1E17K mice) we demonstrate that AKT1E17K is a bona-fide oncogene and plays a role in the development of lung cancer in vivo. In fact, we report that mutant AKT1E17K induces bronchial and/or bronchiolar hyperplastic lesions in murine lung epithelium, which progress to frank carcinoma at very low frequency, and accelerates tumor formation induced by chemical carcinogens. In conclusion, AKT1E17K induces hyperplasia of mouse lung epithelium in vivo and cooperates with urethane to induce the fully malignant phenotype.

  5. Neuroendocrine lung carcinogenesis in hamsters is inhibited by green tea or theophylline while the development of adenocarcinomas is promoted: implications for chemoprevention in smokers.

    PubMed

    Schuller, Hildegard M; Porter, B; Riechert, A; Walker, K; Schmoyer, R

    2004-07-01

    Lung cancer continues to be the leading cause of cancer death in developed countries. With smoking the major etiological factor for lung cancer, there is a great need for the development of chemopreventive treatments that inhibit the progression of initiated cells and premalignant lesions into overt lung cancer in smokers who quit. Although the major focus of chemoprevention research has been on agents that inhibit the metabolic activation of genotoxic chemicals contained in tobacco products, some of these agents may additionally modulate growth-regulating signal transduction. In turn, the function of such signaling pathways is highly cell type-specific, with a given pathway inhibiting the growth of one cell type while stimulating the growth of others. The current experiment has tested the hypothesis that green tea and the methylxanthine theophylline contained in tea inhibit the progression of neuroendocrine lung carcinogenesis in hamsters with hyperoxic lung injury and initiated with the tobacco carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) while promoting the development of Clara cell-derived pulmonary adenocarcinomas initiated by NNK in healthy hamsters. This hypothesis is based on published evidence that human small cell lung cancer as well as the neuroendocrine hamster tumors are regulated via autocrine signaling pathways that activate Raf-1 and the mitogen-activated (MAP) kinase pathway whereas human pulmonary adenocarcinomas of Clara cell lineage and the hamster model of this cancer type are regulated by a beta-adrenergic pathway involving the activation of cyclic adenosine 3',5'-monophosphate (cAMP) and the arachidonic acid (AA) cascade. In turn, it was hypothesized that theophylline would inhibit Raf-1-dependent tumor progression while promoting cAMP-dependent tumor progression due to its documented ability to inhibit the enzyme cAMP-phophodiesterase. The experimental design simulated chemoprevention in former smokers in that treatments

  6. Mechanical properties of acellular mouse lungs after sterilization by gamma irradiation.

    PubMed

    Uriarte, Juan J; Nonaka, Paula N; Campillo, Noelia; Palma, Renata K; Melo, Esther; de Oliveira, Luis V F; Navajas, Daniel; Farré, Ramon

    2014-12-01

    Lung bioengineering using decellularized organ scaffolds is a potential alternative for lung transplantation. Clinical application will require donor scaffold sterilization. As gamma-irradiation is a conventional method for sterilizing tissue preparations for clinical application, the aim of this study was to evaluate the effects of lung scaffold sterilization by gamma irradiation on the mechanical properties of the acellular lung when subjected to the artificial ventilation maneuvers typical within bioreactors. Twenty-six mouse lungs were decellularized by a sodium dodecyl sulfate detergent protocol. Eight lungs were used as controls and 18 of them were submitted to a 31kGy gamma irradiation sterilization process (9 kept frozen in dry ice and 9 at room temperature). Mechanical properties of acellular lungs were measured before and after irradiation. Lung resistance (RL) and elastance (EL) were computed by linear regression fitting of recorded signals during mechanical ventilation (tracheal pressure, flow and volume). Static (Est) and dynamic (Edyn) elastances were obtained by the end-inspiratory occlusion method. After irradiation lungs presented higher values of resistance and elastance than before irradiation: RL increased by 41.1% (room temperature irradiation) and 32.8% (frozen irradiation) and EL increased by 41.8% (room temperature irradiation) and 31.8% (frozen irradiation). Similar increases were induced by irradiation in Est and Edyn. Scanning electron microscopy showed slight structural changes after irradiation, particularly those kept frozen. Sterilization by gamma irradiation at a conventional dose to ensure sterilization modifies acellular lung mechanics, with potential implications for lung bioengineering.

  7. Inhibitory Effects of Gymnema (Gymnema sylvestre) Leaves on Tumour Promotion in Two-Stage Mouse Skin Carcinogenesis.

    PubMed

    Yasukawa, Ken; Okuda, Sakiko; Nobushi, Yasuhito

    2014-01-01

    Ethanol extracts of gymnema (Gymnema sylvestre) leaves exhibited marked antitumour-promoting activity in an in vivo two-stage carcinogenesis test in mice using 7,12-dimethylbenz[a]anthracene as an initiator and 12-O-tetradecanoylphorbol-13-acetate (TPA) as a promoter. From the active fraction of the ethanol extract of the gymnema leaves, three triterpenoids were isolated and identified. These compounds were evaluated for their inhibitory effects on TPA-induced inflammation (1 µg/ear) in mice. The tested compounds showed marked anti-inflammatory effects, with a 50% inhibitory dose of 50-555 nmol/ear.

  8. Inhibitory Effects of Gymnema (Gymnema sylvestre) Leaves on Tumour Promotion in Two-Stage Mouse Skin Carcinogenesis

    PubMed Central

    Yasukawa, Ken; Okuda, Sakiko; Nobushi, Yasuhito

    2014-01-01

    Ethanol extracts of gymnema (Gymnema sylvestre) leaves exhibited marked antitumour-promoting activity in an in vivo two-stage carcinogenesis test in mice using 7,12-dimethylbenz[a]anthracene as an initiator and 12-O-tetradecanoylphorbol-13-acetate (TPA) as a promoter. From the active fraction of the ethanol extract of the gymnema leaves, three triterpenoids were isolated and identified. These compounds were evaluated for their inhibitory effects on TPA-induced inflammation (1 µg/ear) in mice. The tested compounds showed marked anti-inflammatory effects, with a 50% inhibitory dose of 50–555 nmol/ear. PMID:24734106

  9. Genetically manipulated mouse models of lung disease: potential and pitfalls

    PubMed Central

    Choi, Alexander J. S.; Owen, Caroline A.; Choi, Augustine M. K.

    2012-01-01

    Gene targeting in mice (transgenic and knockout) has provided investigators with an unparalleled armamentarium in recent decades to dissect the cellular and molecular basis of critical pathophysiological states. Fruitful information has been derived from studies using these genetically engineered mice with significant impact on our understanding, not only of specific biological processes spanning cell proliferation to cell death, but also of critical molecular events involved in the pathogenesis of human disease. This review will focus on the use of gene-targeted mice to study various models of lung disease including airways diseases such as asthma and chronic obstructive pulmonary disease, and parenchymal lung diseases including idiopathic pulmonary fibrosis, pulmonary hypertension, pneumonia, and acute lung injury. We will attempt to review the current technological approaches of generating gene-targeted mice and the enormous dataset derived from these studies, providing a template for lung investigators. PMID:22198907

  10. Mitigating role of baicalein on lysosomal enzymes and xenobiotic metabolizing enzyme status during lung carcinogenesis of Swiss albino mice induced by benzo(a)pyrene.

    PubMed

    Naveenkumar, Chandrashekar; Raghunandakumar, Subramanian; Asokkumar, Selvamani; Binuclara, John; Rajan, Balan; Premkumar, Thandavamoorthy; Devaki, Thiruvengadam

    2014-06-01

    The lungs mainly serve as a primary site for xenobiotic metabolism and constitute an important defense mechanism against inhalation of carcinogens. Our current study aimed to evaluate the chemotherapeutic efficacy of baicalein (BE) in Swiss albino mice exposed to tobacco-specific carcinogen benzo(a)pyrene [B(a)P] for its ability to mitigate pulmonary carcinogenesis. Here, we report that altered activities/levels of lysosomal enzymes (cathepsin-D, cathepsin-B, acid phosphatase, β-D-galactosidase, β-D-glucuronidase, and β-D-N-acetyl glucosaminidase), phase I biotransformation enzymes (cytochrome P450, cytochrome b5, NADPH-cytochrome P450 reductase, and NADH-cytochrome b5 reductase), and phase II enzymes (glutathione S-transferase, UDP-glucuronyl transferase, and DT-diaphorase) were observed in the B(a)P-induced mice. Treatment with BE significantly restored back the activities/levels of lysosomal enzymes, phase I and phase II biotransformation enzymes. Moreover, assessment of lysosomal abnormalities by transmission electron microscopic examination revealed that BE treatment effectively counteract B(a)P-induced oxidative damages. Protein expression levels studied by immunohistochemistry, immunofluorescence, and immunoblot analysis of CYP1A1 revealed that BE treatment effectively negate B(a)P-induced upregulated expression of CYP1A1. Further analysis of scanning electron microscopic studies in lung was carried out to substantiate the anticarcinogenic effect of BE. The overall data suggest that BE treatment significantly inhibits lysosomal and microsomal dysfunction, thus revealing its potent anticarcinogenic effect.

  11. Reduced type II interleukin-4 receptor signalling drives initiation, but not progression, of colorectal carcinogenesis: evidence from transgenic mouse models and human case–control epidemiological observations

    PubMed Central

    Hull, Mark A.

    2013-01-01

    We investigated the role of interleukin (IL)-4 receptor (IL-4R) signalling during mouse carcinogen-induced colorectal carcinogenesis and in a case–control genetic epidemiological study of IL-4Rα single nucleotide polymorphisms (SNPs). Azoxymethane-induced aberrant crypt focus (ACF; 6 weeks) and tumours (32 weeks) were analysed in wild-type (WT) BALB/c mice, as well as in IL-4Rα − /−, IL-13 −/− and ‘double-knockout’ (DKO) animals. Colorectal cancer (CRC) cases (1502) and controls (584) were genotyped for six coding IL-4Rα SNPs. The association with CRC risk and CRC-specific mortality was analysed by logistic regression. Lack of IL-4Rα expression was associated with increased ACFs [median 8.5 ACFs per mouse (IL-4Rα −/−) versus 3 (WT); P = 0.007], but no difference in the number of colorectal tumours [mean 1.4 per mouse (IL-4Rα −/−) versus 2 (WT)], which were smaller and demonstrated reduced nuclear/cytoplasmic β-catenin translocation compared with WT tumours. Tumour-bearing IL-4Rα −/− mice had fewer CD11b+/Gr1+ myeloid-derived suppressor splenocytes than WT animals. IL-13 −/− mice developed a similar number of ACFs to IL-4Rα −/− and DKO mice. There was a significant increase in CRC risk associated with the functional SNP Q576R [odds ratio 1.54 (95% confidence interval 0.94–2.54), P trend 0.03 for the minor G allele]. There was no effect of IL-4Rα genotype on either CRC-specific or all-cause mortality. These combined pre-clinical and human data together demonstrate that reduced IL-4R signalling has stage-specific effects on colorectal carcinogenesis (increased CRC initiation and risk but reduced tumour progression and no effect on CRC mortality). These results should prompt evaluation of the effect of pharmacological manipulation of IL-4R signalling on future CRC risk and for CRC treatment. PMID:23784081

  12. Wnt/β-catenin signaling accelerates mouse lung tumorigenesis by imposing an embryonic distal progenitor phenotype on lung epithelium.

    PubMed

    Pacheco-Pinedo, Eugenia C; Durham, Amy C; Stewart, Kathleen M; Goss, Ashley M; Lu, Min Min; Demayo, Francesco J; Morrisey, Edward E

    2011-05-01

    Although mutations in Kras are present in 21% of lung tumors, there is a high level of heterogeneity in phenotype and outcome among patients with lung cancer bearing similar mutations, suggesting that other pathways are important. Wnt/β-catenin signaling is a known oncogenic pathway that plays a well-defined role in colon and skin cancer; however, its role in lung cancer is unclear. We have shown here that activation of Wnt/β-catenin in the bronchiolar epithelium of the adult mouse lung does not itself promote tumor development. However, concurrent activation of Wnt/β-catenin signaling and expression of a constitutively active Kras mutant (KrasG12D) led to a dramatic increase in both overall tumor number and size compared with KrasG12D alone. Activation of Wnt/β-catenin signaling altered the KrasG12D tumor phenotype, resulting in a phenotypic switch from bronchiolar epithelium to the highly proliferative distal progenitors found in the embryonic lung. This was associated with decreased E-cadherin expression at the cell surface, which may underlie the increased metastasis of tumors with active Wnt/β-catenin signaling. Together, these data suggest that activation of Wnt/β-catenin signaling can combine with other oncogenic pathways in lung epithelium to produce a more aggressive tumor phenotype by imposing an embryonic distal progenitor phenotype and by decreasing E-cadherin expression.

  13. Suppressive effects of Moringa oleifera Lam pod against mouse colon carcinogenesis induced by azoxymethane and dextran sodium sulfate.

    PubMed

    Budda, Sirintip; Butryee, Chaniphun; Tuntipopipat, Siriporn; Rungsipipat, Anudep; Wangnaithum, Supradit; Lee, Jeong-Sang; Kupradinun, Piengchai

    2011-01-01

    Moringa oleifera Lam (horseradish tree; tender pod or fruits) is a major ingredient in Thai cuisine and has some medicinal properties. Previous studies have shown potentially antioxidant, antitumor promoter, anticlastogen and anticarcinogen activities both in vitro and in vivo. The present study was conducted to investigate chemopreventive effects on azoxymethane (AOM)-initiated and dextran sodium sulfate (DSS)-promoted colon carcinogenesis in mice. Male ICR mice were divided into 8 groups: Group 1 served as a negative control; Group 2 received AOM/DSS as a positive control; Groups 3-5 were fed boiled freeze-dried M. oleifera (bMO) at 1.5%, 3.0% and 6.0%, respectively supplemented in basal diets for 5 weeks; Groups 6-8 were fed with bMO diets at the designed doses above for 2 weeks prior to AOM, during and 1 week after DSS administration. At the end of the study, colon samples were processed for histopathological examination. PCNA indices, and iNOS and COX-2 expression were assessed by immunohistochemistry. The results demonstrated the incidences and multiplicities of tumors in Groups 6-8 to be decreased when compared to Group 2 in a dose dependent manner, but this was significant only in Group 8. The PCNA index was also significantly decreased in Group 8 whereas iNOS and COX-2 protein expression were significantly decreased in Groups 7 and 8. The findings suggest that M. oleifera Lam pod exerts suppressive effects in a colitis-related colon carcinogenesis model induced by AOM/DSS and could serve as a chemopreventive agent.

  14. A Curcumin Derivative That Inhibits Vinyl Carbamate-Induced Lung Carcinogenesis via Activation of the Nrf2 Protective Response

    PubMed Central

    Shen, Tao; Jiang, Tao; Long, Min; Chen, Jun; Ren, Dong-Mei; Wong, Pak Kin

    2015-01-01

    Abstract Aims: Lung cancer has a high worldwide morbidity and mortality. The employment of chemopreventive agents is effective to reduce lung cancer. Nuclear factor erythroid 2-related factor 2 (Nrf2) mitigates insults from both exogenous and endogenous sources and thus has been verified as a target for chemoprevention. Curcumin has long been recognized as a chemopreventive agent, but poor bioavailability and weak Nrf2 induction have prohibited clinical application. Thus, we have developed new curcumin derivatives and tested their Nrf2 induction. Results: Based on curcumin, we synthesized curcumin analogs with five carbon linkages and established a structure–activity relationship for Nrf2 induction. Among these derivatives, bis[2-hydroxybenzylidene]acetone (BHBA) was one of the most potent Nrf2 inducers with minimal toxicity and improved pharmacological properties and was thus selected for further investigation. BHBA activated the Nrf2 pathway in the canonical Keap1-Cys151-dependent manner. Furthermore, BHBA was able to protect human lung epithelial cells against sodium arsenite [As(III)]-induced cytotoxicity. More importantly, in an in vivo vinyl carbamate-induced lung cancer model in A/J mice, preadministration of BHBA significantly reduced lung adenocarcinoma, while curcumin failed to show any effects even at high doses. Innovation: The curcumin derivative, BHBA, is a potent inducer of Nrf2. It was demonstrated to protect against As(III) toxicity in lung epithelial cells in an Nrf2-dependent manner. Furthermore, compared with curcumin, BHBA displayed improved chemopreventive activities in a carcinogen-induced lung cancer model. Conclusion: Taken together, our results demonstrate that BHBA, a curcumin analog with improved Nrf2-activating and chemopreventive activities both in vitro and in vivo, could be developed into a chemoprotective pharmacological agent. Antioxid. Redox Signal. 23, 651–664. PMID:25891177

  15. Lung tumor promotion by chromium-containing welding particulate matter in a mouse model

    PubMed Central

    2013-01-01

    Background Epidemiology suggests that occupational exposure to welding particulate matter (PM) may increase lung cancer risk. However, animal studies are lacking to conclusively link welding with an increased risk. PM derived from stainless steel (SS) welding contains carcinogenic metals such as hexavalent chromium and nickel. We hypothesized that welding PM may act as a tumor promoter and increase lung tumor multiplicity in vivo. Therefore, the capacity of chromium-containing gas metal arc (GMA)-SS welding PM to promote lung tumors was evaluated using a two-stage (initiation-promotion) model in lung tumor susceptible A/J mice. Methods Male mice (n = 28-30/group) were treated either with the initiator 3-methylcholanthrene (MCA;10 μg/g; IP) or vehicle (corn oil) followed by 5 weekly pharyngeal aspirations of GMA-SS (340 or 680 μg/exposure) or PBS. Lung tumors were enumerated at 30 weeks post-initiation. Results MCA initiation followed by GMA-SS welding PM exposure promoted tumor multiplicity in both the low (12.1 ± 1.5 tumors/mouse) and high (14.0 ± 1.8 tumors/mouse) exposure groups significantly above MCA/sham (4.77 ± 0.7 tumors/mouse; p = 0.0001). Multiplicity was also highly significant (p < 0.004) across all individual lung regions of GMA-SS-exposed mice. No exposure effects were found in the corn oil groups at 30 weeks. Histopathology confirmed the gross findings and revealed increased inflammation and a greater number of malignant lesions in the MCA/welding PM-exposed groups. Conclusions GMA-SS welding PM acts as a lung tumor promoter in vivo. Thus, this study provides animal evidence to support the epidemiological data that show welders have an increased lung cancer risk. PMID:24107379

  16. Longitudinal in vivo microcomputed tomography of mouse lungs: No evidence for radiotoxicity

    PubMed Central

    Vande Velde, Greetje; De Langhe, Ellen; Poelmans, Jennifer; Bruyndonckx, Peter; d'Agostino, Emiliano; Verbeken, Erik; Bogaerts, Ria; Himmelreich, Uwe

    2015-01-01

    Before microcomputed tomography (micro-CT) can be exploited to its full potential for longitudinal monitoring of transgenic and experimental mouse models of lung diseases, radiotoxic side effects such as inflammation or fibrosis must be considered. We evaluated dose and potential radiotoxicity to the lungs for long-term respiratory-gated high-resolution micro-CT protocols. Free-breathing C57Bl/6 mice underwent four different retrospectively respiratory gated micro-CT imaging schedules of repeated scans during 5 or 12 wk, followed by ex vivo micro-CT and detailed histological and biochemical assessment of lung damage. Radiation exposure, dose, and absorbed dose were determined by ionization chamber, thermoluminescent dosimeter measurements and Monte Carlo calculations. Despite the relatively large radiation dose delivered per micro-CT acquisition, mice did not show any signs of radiation-induced lung damage or fibrosis when scanned weekly during 5 and up to 12 wk. Doubling the scanning frequency and once tripling the radiation dose as to mimic the instant repetition of a failed scan also stayed without detectable toxicity after 5 wk of scanning. Histological analyses confirmed the absence of radiotoxic damage to the lungs, thereby demonstrating that long-term monitoring of mouse lungs using high-resolution micro-CT is safe. This opens perspectives for longitudinal monitoring of (transgenic) mouse models of lung diseases and therapeutic response on an individual basis with high spatial and temporal resolution, without concerns for radiation toxicity that could potentially influence the readout of micro-CT-derived lung biomarkers. This work further supports the introduction of micro-CT for routine use in the preclinical pulmonary research field where postmortem histological approaches are still the gold standard. PMID:26024893

  17. Longitudinal in vivo microcomputed tomography of mouse lungs: No evidence for radiotoxicity.

    PubMed

    Vande Velde, Greetje; De Langhe, Ellen; Poelmans, Jennifer; Bruyndonckx, Peter; d'Agostino, Emiliano; Verbeken, Erik; Bogaerts, Ria; Lories, Rik; Himmelreich, Uwe

    2015-08-01

    Before microcomputed tomography (micro-CT) can be exploited to its full potential for longitudinal monitoring of transgenic and experimental mouse models of lung diseases, radiotoxic side effects such as inflammation or fibrosis must be considered. We evaluated dose and potential radiotoxicity to the lungs for long-term respiratory-gated high-resolution micro-CT protocols. Free-breathing C57Bl/6 mice underwent four different retrospectively respiratory gated micro-CT imaging schedules of repeated scans during 5 or 12 wk, followed by ex vivo micro-CT and detailed histological and biochemical assessment of lung damage. Radiation exposure, dose, and absorbed dose were determined by ionization chamber, thermoluminescent dosimeter measurements and Monte Carlo calculations. Despite the relatively large radiation dose delivered per micro-CT acquisition, mice did not show any signs of radiation-induced lung damage or fibrosis when scanned weekly during 5 and up to 12 wk. Doubling the scanning frequency and once tripling the radiation dose as to mimic the instant repetition of a failed scan also stayed without detectable toxicity after 5 wk of scanning. Histological analyses confirmed the absence of radiotoxic damage to the lungs, thereby demonstrating that long-term monitoring of mouse lungs using high-resolution micro-CT is safe. This opens perspectives for longitudinal monitoring of (transgenic) mouse models of lung diseases and therapeutic response on an individual basis with high spatial and temporal resolution, without concerns for radiation toxicity that could potentially influence the readout of micro-CT-derived lung biomarkers. This work further supports the introduction of micro-CT for routine use in the preclinical pulmonary research field where postmortem histological approaches are still the gold standard.

  18. Morphological analysis of mouse lungs after treatment with magnetite-based magnetic fluid stabilized with DMSA

    NASA Astrophysics Data System (ADS)

    Garcia, Mônica Pereira; Miranda Parca, Renata; Braun Chaves, Sacha; Paulino Silva, Luciano; Djalma Santos, Antonio; Guerrero Marques Lacava, Zulmira; César Morais, Paulo; Azevedo, Ricardo Bentes

    2005-05-01

    Mouse lungs injected with magnetic fluids based on magnetite nanoparticles stabilized by 2,3-dimercaptosuccinic acid were studied. We observed clusters of magnetic nanoparticles inside blood vessels, within the organ parenchyma and cells, as well as increased numbers of leukocytes in the organ. Both the particle concentration and organ inflammation diminished in a time-dependent manner.

  19. An inducible mouse model of colon carcinogenesis for the analysis of sporadic and inflammation-driven tumor progression.

    PubMed

    Neufert, Clemens; Becker, Christoph; Neurath, Markus F

    2007-01-01

    Colorectal cancer is a life-threatening disease that can develop spontaneously or as a complication of inflammatory bowel diseases. Mouse models are essential tools for the preclinical testing of novel therapeutic options in vivo. Here, we provide a highly reliable protocol for an experimental mouse model to study the development of colon cancers. It is based on the mutagenic agent azoxymethane (AOM), which exerts colonotropic carcinogenicity. Repeated intraperitoneal administration of AOM results in the development of spontaneous tumors within 30 weeks. As an alternative option, inflammation-dependent tumor growth can be investigated by combining the administration of AOM with the inflammatory agent dextran sodium sulfate in drinking water, which causes rapid growth of multiple colon tumors per mouse within 10 weeks. Different scoring systems including number of tumors and tumor size identify factors promoting or inhibiting tumor initiation and/or tumor progression, respectively.

  20. Stable isotope resolved metabolomics of lung cancer in a SCID mouse model.

    PubMed

    Fan, Teresa W-M; Lane, Andrew N; Higashi, Richard M; Yan, Jun

    2011-06-01

    We have determined the time course of [U-(13)C]-glucose utilization and transformations in SCID mice via bolus injection of the tracer in the tail vein. Incorporation of (13)C into metabolites extracted from mouse blood plasma and several tissues (lung, heart, brain, liver, kidney, and skeletal muscle) were profiled by NMR and GC-MS, which helped ascertain optimal sampling times for different target tissues. We found that the time for overall optimal (13)C incorporation into tissue was 15-20 min but with substantial differences in (13)C labeling patterns of various organs that reflected their specific metabolism. Using this stable isotope resolved metabolomics (SIRM) approach, we have compared the (13)C metabolite profile of the lungs in the same mouse with or without an orthotopic lung tumor xenograft established from human PC14PE6 lung adenocarcinoma cells. The (13)C metabolite profile shows considerable differences in [U-(13)C]-glucose transformations between the two lung tissues, demonstrating the feasibility of applying SIRM to investigate metabolic networks of human cancer xenograft in the mouse model.

  1. Chemical carcinogenesis.

    PubMed

    Oliveira, Paula A; Colaço, Aura; Chaves, Raquel; Guedes-Pinto, Henrique; De-La-Cruz P, Luis F; Lopes, Carlos

    2007-12-01

    The use of chemical compounds benefits society in a number of ways. Pesticides, for instance, enable foodstuffs to be produced in sufficient quantities to satisfy the needs of millions of people, a condition that has led to an increase in levels of life expectancy. Yet, at times, these benefits are offset by certain disadvantages, notably the toxic side effects of the chemical compounds used. Exposure to these compounds can have varying effects, ranging from instant death to a gradual process of chemical carcinogenesis. There are three stages involved in chemical carcinogenesis. These are defined as initiation, promotion and progression. Each of these stages is characterised by morphological and biochemical modifications and result from genetic and/or epigenetic alterations. These genetic modifications include: mutations in genes that control cell proliferation, cell death and DNA repair--i.e. mutations in proto-oncogenes and tumour suppressing genes. The epigenetic factors, also considered as being non-genetic in character, can also contribute to carcinogenesis via epigenetic mechanisms which silence gene expression. The control of responses to carcinogenesis through the application of several chemical, biochemical and biological techniques facilitates the identification of those basic mechanisms involved in neoplasic development. Experimental assays with laboratory animals, epidemiological studies and quick tests enable the identification of carcinogenic compounds, the dissection of many aspects of carcinogenesis, and the establishment of effective strategies to prevent the cancer which results from exposure to chemicals.

  2. Carcinogenesis and low-level ionizing radiation with special reference to lung cancer and exposure to radon daughters

    SciTech Connect

    Fabrikant, J.I.

    1982-06-01

    The quantitative estimation of the carcinogenic risk of low-dose, high-LET radiation in the case of exposure to radon daughters and lung-cancer is subject to numerous uncertainties. The greatest of these concerns the parametric values of the dose-response curve. We lack knowledge and an understanding of the dosimetry and the distribution of aggregates of radioactivity that remain localized as hot spots in specific regions of the lungs and the influence on greater or lesser risk of lung cancer per average lung dose than uniformly deposited radiation (NRC76). We have only a limited understanding of the response to exposure to high-LET radiations, such as alpha particles, for which linear risk estimates for low doses are less likely to overestimate the risk, and may, in fact, underestimate the risk (BEIR80). Other uncertainties include the length of the latency period, the RBE for alpha radiation relative to gamma radiation, the period during which the radiation risk is expressed, the risk projection model used - whether absolute or relative - for projecting risk beyond the period of observation, the effect of dose rate and protraction of dose, and the influence of differences in the natural incidence of lung cancer in different populations. In addition, uncertainties are introduced by the biological and life-style risk characteristics of humans, for example, the effect of sex, the effect of age at the time of irradiation and at the time of appearance of the cancer, the influence of length of observation or follow-up of the study populations, and the influence of perhaps the most important confounding bias, cigarette-smoking. The collective influence of these uncertainties is such as to deny great credibility to any estimate of human lung cancer risk and other cancer risk that can be made for low-dose, high-LET radon daughter radiation exposure.

  3. Plasminogen activator inhibitor-1 in acute hyperoxic mouse lung injury.

    PubMed Central

    Barazzone, C; Belin, D; Piguet, P F; Vassalli, J D; Sappino, A P

    1996-01-01

    Hyperoxia-induced lung disease is associated with prominent intraalveolar fibrin deposition. Fibrin turnover is tightly regulated by the concerted action of proteases and antiproteases, and inhibition of plasmin-mediated proteolysis could account for fibrin accumulation in lung alveoli. We show here that lungs of mice exposed to hyperoxia overproduce plasminogen activator inhibitor-1 (PAI-1), and that PAI-1 upregulation impairs fibrinolytic activity in the alveolar compartment. To explore whether increased PAI-1 production is a causal or only a correlative event for impaired intraalveolar fibrinolysis and the development of hyaline membrane disease, we studied mice genetically deficient in PAI-1. We found that these mice fail to develop intraalveolar fibrin deposits in response to hyperoxia and that they are more resistant to the lethal effects of hyperoxic stress. These observations provide clear and novel evidence for the pathogenic contribution of PAI-1 in the development of hyaline membrane disease. They identify PAI-1 as a major deleterious mediator of hyperoxic lung injury. PMID:8981909

  4. Slit and robo expression in the developing mouse lung.

    PubMed

    Greenberg, James M; Thompson, Felisa Y; Brooks, Sherry K; Shannon, John M; Akeson, Ann L

    2004-06-01

    Mammalian lung development is mediated through complex interactions between foregut endoderm and surrounding mesenchyme. As airway branching progresses, the mesenchyme undergoes dramatic remodeling and differentiation. Little is understood about the mechanisms that direct mesenchymal organization during lung development. A screen for candidate genes mediating this process identified Slit, a ligand for the Roundabout (Robo) receptor previously associated with guidance of axonal projections during central nervous system development. Here, we demonstrate by in situ hybridization that two Slit genes (Slit-2 and Slit-3) and two Robo genes (Robo-1 and Robo-2) are expressed in fetal lung mesenchyme. Slit-2 and Robo-1 expression is present throughout mesenchyme at midgestation and is not detectable by newborn day 1. Slit-3 and Robo-2 expression is restricted to specific, complementary subsets of mesenchyme. Robo-2 is expressed in mesenchymal cells immediately adjacent to large airways, whereas Slit-3 expression predominates in mesenchyme remote from airway epithelium. The temporal and spatial distribution of Slit and Robo mRNAs indicate that these genes may direct the functional organization and differentiation of fetal lung mesenchyme.

  5. Cadmium stimulates myofibroblast differentiation and mouse lung fibrosis.

    PubMed

    Hu, Xin; Fernandes, Jolyn; Jones, Dean P; Go, Young-Mi

    2017-03-21

    Increasing evidence suggests that Cd at levels found in the human diet can cause oxidative stress and activate redox-sensitive transcription factors in inflammatory signaling. Following inflammation, tissue repair often involves activation of redox-sensitive transcription factors in fibroblasts. In lungs, epithelial barrier remodeling is required to restore gas exchange and barrier function, and aberrant myofibroblast differentiation leads to pulmonary fibrosis. Contributions of exogenous exposures, such as dietary Cd, to pulmonary fibrosis remain incompletely defined. In the current study, we tested whether Cd activates fibrotic signaling in human fetal lung fibroblasts (HFLF) at micromolar and submicromolar Cd concentrations that do not cause cell death. Exposure of HFLF to low-dose Cd (≤1.0μM) caused an increase in stress fibers and increased protein levels of myofibroblast differentiation markers, including α-smooth muscle actin (α-SMA) and extra-domain-A-containing fibronectin (ED-A-FN). Assay of transcription factor (TF) activity using a 45-TF array showed that Cd increased activity of 12 TF, including SMAD2/3/4 (mothers against decapentaplegic homolog) signaling differentiation and fibrosis. Results were confirmed by real-time PCR and supported by increased expression of target genes of SMAD2/3/4. Immunocytochemistry of lungs of mice exposed to Cd (0.3 and 1.0mg/L in drinking water) showed increased α-SMA staining with lung Cd accumulation similar to lung Cd in non-smoking humans. Together, the results show that relatively low Cd exposures stimulate pulmonary fibrotic signaling and myofibroblast differentiation by activating SMAD2/3/4-dependent signaling. The results indicate that dietary Cd intake could be an important variable contributing to pulmonary fibrosis in humans.

  6. Cold stress aggravates inflammatory responses in an LPS-induced mouse model of acute lung injury

    NASA Astrophysics Data System (ADS)

    Joo, Su-Yeon; Park, Mi-Ju; Kim, Kyun-Ha; Choi, Hee-Jung; Chung, Tae-Wook; Kim, Yong Jin; Kim, Joung Hee; Kim, Keuk-Jun; Joo, Myungsoo; Ha, Ki-Tae

    2016-08-01

    Although the relationship between environmental cold temperature and susceptibility to respiratory infection is generally accepted, the effect of ambient cold temperature on host reactivity in lung inflammation has not been fully studied. To examine the function of ambient cold temperature on lung inflammation, mice were exposed to 4 °C for 8 h each day for 14 days. In the lungs of mice exposed to cold stress, inflammatory cells in bronchoalveolar lavage (BAL) fluid and lung tissues were slightly increased by about twofold. However, the structures of pulmonary epithelial cells were kept within normal limits. Next, we examined the effect of cold stress on the inflammatory responses in a lipopolysaccharide (LPS)-induced acute lung injury (ALI) mouse model. The infiltration of neutrophils and inflammation of lung tissue determined by histology were significantly increased by exposure to ambient cold temperature. In addition, the production of pro-inflammatory cytokines including interleukin (IL)-12, IL-17, and monokine induced by gamma interferon (MIG) was elevated by exposure to cold stress. Therefore, we suggest that cold stress is a factor that exacerbates lung inflammation including ALI. To our knowledge, this is the first report on the relationship between cold stress and severity of lung inflammation.

  7. BIIL 284 reduces neutrophils numbers but increases P. aeruginosa bacteraemia and inflammation in mouse lungs

    PubMed Central

    Döring, Gerd; Bragonzi, Alessandra; Paroni, Moira; Aktürk, Firdevs-Fatma; Cigana, Cristina; Schmidt, Annika; Gilpin, Deirdre; Heyder, Susanne; Born, Torsten; Smaczny, Christina; Kohlhäufl, Martin; Wagner, Thomas O. F.; Loebinger, Michael R.; Bilton, Diana; Tunney, Michael M.; Elborn, J. Stuart; Pier, Gerald B.; Konstan, Michael W.; Ulrich, Martina

    2014-01-01

    Background A clinical study to investigate the leukotriene B4 (LTB4)-receptor antagonist BIIL 284 in cystic fibrosis (CF) patients was prematurely terminated due to a significantly increased risk of adverse pulmonary events. We aimed to establish the effect of BIIL284 in models of Pseudomonas aeruginosa lung infection, thereby contributing to a better understanding of what could have led to adverse pulmonary events in CF patients. Methods P. aeruginosa DNA in the blood of CF patients during and after acute pulmonary exacerbations and in stable patients with non-CF bronchiectasis (NCFB) and healthy individuals was assessed by PCR. The effect of BIIL 284 treatment was tested in an agar beads murine model of Pseudomonas aeruginosa lung infection. Bacterial count and inflammation were evaluated in lung and other organs. Result Most CF patients (98%) and all patients with NCFB and healthy individuals had negative P. aeruginosa DNA in their blood. Similarly, the P. aeruginosa-infected mice showed bacterial counts in the lung but not blood or spleen. BIIL 284 treatment decreased pulmonary neutrophils and increased P. aeruginosa numbers in mouse lungs leading to significantly higher bacteremia rates and lung inflammation compared to placebo treated animals. Conclusions Decreased airway neutrophils induced lung proliferation and severe bacteraemia in a murine model of P. aeruginosa lung infection. These data suggest that caution should be taken when administering anti-inflammatory compounds to patients with bacterial infections. PMID:24183915

  8. Significance of Stat3 Signaling in Epithelial Cell Differentiation of Fetal Mouse Lungs

    PubMed Central

    Kameyama, Hiroki; Kudoh, Shinji; Hatakeyama, Jun; Matuo, Akira; Ito, Takaaki

    2017-01-01

    To study the significance of signal transducer and activator of transcription (Stat) 3 in lung epithelial development of fetal mice, we examined fetal mouse lungs, focusing on the expression of Clara cell secretory protein (CCSP), Forkhead box protein J1 (Foxj1), calcitonin gene-related peptide (CGRP), phosphorylated Stat3 (Tyr705), and hairy/enhancer of split (Hes) 1, and observed cultured fetal lungs upon treatment with IL-6, a Stat3 activator, or cucurbitacin I, a Stat3 inhibitor. Moreover, the interaction of Stat3 signaling and Hes1 was studied using Hes1 gene-deficient mice. Phosphorylated Stat3 was detected in fetal lungs and, immunohistochemically, phosphorylated Stat3 was found to be co-localized in developing Clara cells, but not in ciliated cells. In the organ culture studies, upon treatment with IL-6, quantitative RT-PCR revealed that CCSP mRNA increased with increasing Stat3 phosphorylation, while cucurbitacin I decreased Hes1, CCSP, Foxj1 and CGRP mRNAs with decreasing Stat3 phosphorylation. In the lungs of Hes1 gene-deficient mice, Stat3 phosphorylation was not markedly different from wild-type mice, the expression of CCSP and CGRP was enhanced, and the treatment of IL-6 or cucurbitacin I induced similar effects on mouse lung epithelial differentiation regardless of Hes1 expression status. Stat3 signaling acts in fetal mouse lung development, and seems to regulate Clara cell differentiation positively. Hes1 could regulate Clara cell differentiation in a manner independent from Stat3 signaling. PMID:28386145

  9. Genotoxicity of 3-nitrobenzanthrone and 3-aminobenzanthrone in MutaMouse and lung epithelial cells derived from MutaMouse.

    PubMed

    Arlt, Volker M; Gingerich, John; Schmeiser, Heinz H; Phillips, David H; Douglas, George R; White, Paul A

    2008-11-01

    FE1 lung epithelial cells derived from MutaMouse are a new model system to provide in vitro mutagenicity data with the potential to predict the outcome of an in vivo MutaMouse test. 3-Nitrobenzanthrone (3-NBA) is a potent mutagen and suspected human carcinogen identified in diesel exhaust and urban air pollution. We investigated the mutagenicity and DNA binding of 3-NBA and its main metabolite 3-aminobenzanthrone (3-ABA) in vitro and in vivo in the MutaMouse assay. Mice were treated with 3-NBA or 3-ABA (0, 2 or 5 mg/kg body weight/day) by gavage for 28 days and 28 days later lacZ mutant frequency (MF) was determined in liver, lung and bone marrow. For both compounds, dose-related increases in MF were seen in liver and bone marrow, but not in lung; mutagenic activity was approximately 2-fold lower for 3-ABA than for 3-NBA. With 3-NBA, highest DNA adduct levels (measured by (32)P-post-labelling) were found in liver (approximately 230 adducts per 10(8) nucleotides) with levels 20- to 40-fold lower in bone marrow and lung. With 3-ABA, DNA adduct levels were again highest in the liver, but approximately 4-fold lower than for 3-NBA. FE1 cells were exposed to up to 10 microg/ml 3-NBA or 3-ABA for 6 h with or without exogenous activation (S9) and harvested after 3 days. For 3-NBA, there was a dose-related increase in MF both with and without S9 mix, which was >10 times higher than observed in vivo. At the highest concentration of 3-ABA (10 microg/ml), we found only around a 2-fold increase in MF relative to controls. DNA adduct formation in FE1 cells was dose-dependent for both compounds, but 10- to 20-fold higher for 3-NBA compared to 3-ABA. Collectively, our data indicate that MutaMouse FE1 cells are well suited for cost-effective testing of suspected mutagens with different metabolic activation pathways as a guide for subsequent in vivo MutaMouse testing.

  10. Effects of microcystin-LR on mouse lungs.

    PubMed

    Soares, Raquel M; Cagido, Viviane R; Ferraro, Rodrigo B; Meyer-Fernandes, José Roberto; Rocco, Patrícia R M; Zin, Walter A; Azevedo, Sandra M F O

    2007-09-01

    Toxic cyanobacteria blooms in drinking water supplies have been an increasing public health concern all over the world. Human populations can be exposed to microcystins, an important family of cyanotoxins, mainly by oral ingestion. However, inhalation from recreational water and hemodialysis can represent other routes. This study investigated changes in respiratory mechanics, histology, protein phosphatase (PP) 1 and 2A activity and microcystin in lung of adult mice injected intraperitoneally (i.p.) with microcystin-LR. Thirty-six mice were divided into control (CTRL) and test (CYANO) groups. CTRL group received an i.p. injection of saline and the CYANO group received 40 microg MCYST-LR/kg i.p. After 2 and 8 h, and 1, 2 and 4 days after toxin injection, six mice from each group were sampled for analyses. Resistive and viscoelastic pressures, static and dynamic elastances augmented at 2 h in CYANO and so remained until day 4. Alveolar collapse and inflammatory cell infiltration were found 2h after the injection, reaching peak values at 8 h. However, no microcystin or inhibition of PPases could be detected in mice lungs. In conclusion, MCYST-LR led to a rapid increase in lung impedance and an inflammatory response with interstitial edema and inflammatory cell recruitment in mice.

  11. Alterations of mouse lung tissue dimensions during processing for morphometry: a comparison of methods.

    PubMed

    Schneider, Jan Philipp; Ochs, Matthias

    2014-02-15

    Preservation of original tissue dimensions is an essential prerequisite for morphometric studies. Shrinkage occurring during tissue processing for histology may severely influence the appearance of structures seen under the microscope and stereological calculations. Therefore, shrinkage has to be avoided so that estimates obtained by application of unbiased stereology are indeed unbiased. The present study investigates the alterations of tissue dimensions of mouse lung samples during processing for histology. Different fixatives as well as embedding protocols are considered. Mouse lungs were fixed by instillation of either 4% formalin or a mixture of 1.5% glutaraldehyde/1.5% formaldehyde. Tissue blocks were sampled according to principles of stereology for embedding in paraffin, glycol methacrylate without treatment with osmium tetroxide and uranyl acetate, and glycol methacrylate including treatment with osmium tetroxide and uranyl acetate before dehydration. Shrinkage was investigated by stereological measurements of dimensional changes of tissue cut faces. Results show a shrinkage of the cut face areas of roughly 40% per lung during paraffin embedding, 30% during "simple" glycol methacrylate embedding, and <3% during osmium tetroxide/uranyl acetate/glycol methacrylate embedding. Furthermore, the superiority of the glutaraldehyde-containing fixative regarding shrinkage is demonstrated. In conclusion, the use of a glutaraldehyde-containing fixative and embedding in glycol methacrylate with previous treatment of the samples with osmium tetroxide and uranyl acetate before dehydration is recommended for stereological studies of the mouse lung.

  12. Bromelain nanoparticles protect against 7,12-dimethylbenz[a]anthracene induced skin carcinogenesis in mouse model.

    PubMed

    Bhatnagar, Priyanka; Pant, Aditya B; Shukla, Yogeshwer; Chaudhari, Bhushan; Kumar, Pradeep; Gupta, Kailash C

    2015-04-01

    Conventional cancer chemotherapy leads to severe side effects, which limits its use. Nanoparticles (NPs) based delivery systems offer an effective alternative. Several evidences highlight the importance of Bromelain (BL), a proteolytic enzyme, as an anti-tumor agent which however has been limited due to the requirement of high doses at the tumor site. Therefore, we illustrate the development of BL loaded poly (lactic-co-glycolic acid) NPs that show enhanced anti-tumor effects compared to free BL. The formulated NPs with a mean particle size of 130.4 ± 8.81 nm exhibited sustained release of BL. Subsequent investigation revealed enhanced anti-tumor ability of NPs in 2-stage skin tumorigenesis mice model. Reduction in average number of tumors (∼ 2.3 folds), delay in tumorigenesis (∼ 2 weeks), percent tumorigenesis (∼ 4 folds), and percent mortality rate as well as a reduction in the average tumor volume (∼ 2.5 folds) in mice as compared to free BL were observed. The NPs were found to be superior in exerting chemopreventive effects over chemotherapeutic effects at 10 fold reduced dose than free BL, validated by the enhanced ability of NPs (∼ 1.8 folds) to protect the DNA from induced damage. The effects were also supported by histopathological evaluations. NPs were also capable of modulating the expression of pro-apoptotic (P53, Bax) and anti-apoptotic (Bcl2) proteins. Therefore, our findings demonstrate that developed NPs formulation could be used to improve the efficacy of chemotherapy by exerting chemo-preventive effects against induced carcinogenesis at lower dosages.

  13. Lung arginase expression and activity is increased in cystic fibrosis mouse models.

    PubMed

    Jaecklin, Thomas; Duerr, Julia; Huang, Hailu; Rafii, Mahroukh; Bear, Christine E; Ratjen, Felix; Pencharz, Paul; Kavanagh, Brian P; Mall, Marcus A; Grasemann, Hartmut

    2014-08-01

    The activity of arginase is increased in airway secretions of patients with cystic fibrosis (CF). Downstream products of arginase activity may contribute to CF lung disease. We hypothesized that pulmonary arginase expression and activity would be increased in mouse models of CF and disproportionally increased in CF mice with Pseudomonas aeruginosa pneumonia. Expression of arginase isoforms in lung tissue was quantified with reverse transcriptase-PCR in naive cystic fibrosis transmembrane conductance regulator (Cftr)-deficient mice and β-epithelial sodium channel-overexpressing [β-ENaC-transgenic (Tg)] mice. An isolated lung stable isotope perfusion model was used to measure arginase activity in Cftr-deficient mice before and after intratracheal instillation of Pseudomonas aeruginosa. The expression of arginase-2 in lung was increased in adult Cftr-deficient animals and in newborn β-ENaC-Tg. Arginase-1 lung expression was normal in Cftr-deficient and in newborn β-ENaC-Tg mice, but was increased in β-ENaC-Tg mice at age 1, 3, and 6 wk. Arginase activity was significantly higher in lung (5.0 ± 0.7 vs. 3.2 ± 0.3 nmol·(-1)·h(-1), P = 0.016) and airways (204.6 ± 49.8 vs. 79.3 ± 17.2 nmol·(-1)·h(-1), P = 0.045) of naive Cftr-deficient mice compared with sex-matched wild-type littermate controls. Infection with Pseudomonas aeruginosa resulted in a far greater increase in lung arginase activity in Cftr-deficient mice (10-fold) than in wild-type controls (6-fold) (P = 0.01). This is the first ex vivo characterization of arginase expression and activity in CF mouse lung and airways. Our data show that pulmonary arginase expression and activity is increased in CF mice, especially with Pseudomonas aeruginosa infections.

  14. Lgr6+ stem cells and their progeny in mouse epidermis under regimens of exogenous skin carcinogenesis, and their absence in ensuing skin tumors

    PubMed Central

    van de Glind, Gerline C.; Rebel, Heggert G.; Out-Luiting, Jacoba J.; Zoutman, Wim; Tensen, Cornelis P.; de Gruijl, Frank R.

    2016-01-01

    Lgr6+ cells have been identified as a novel class of proliferating (Ki67+) stem cells in mouse epidermis. We investigated their response to UV exposure in Lgr6-EGFP-Ires-CreERT2/R26R-LacZ haired and hairless mice and whether they become initiating cells of UV- or chemically induced skin tumors. UV overexposure erased Lgr6+ cells (EGFP+) from the interfollicular epidermis (IFE), but - as after wounding - they apparently repopulated the IFE from the hair follicles. Under sub-sunburn chronic UV exposure, Lgr6+ cells and their progeny (LacZ+ after pulse of tamoxifen) diminished strongly in the IFE. Although the inter-tumoral IFE clearly showed Lgr6 progeny, none of the UV- or chemically induced tumors (n = 22 and 41, respectively) appeared to be clonal expansions of Lgr6+ stem cells; i.e. no Lgr6+ cells or progeny in the proliferating tumor bulk. In checking for promoter methylation we found it to occur stochastically for the EGFP-Cre cassette. Lgr6 mRNA measured by qPCR was found to be diminished in skin tumors (also in UV tumors from wt type mice). The ratio of Lgr6/Ki67 was significantly reduced, pointing at a loss of Lgr6+ cells from the proliferative pool. Our data show that Lgr6+ cells are not major tumor-initiating cells in skin carcinogenesis. PMID:27880932

  15. Chemopreventive effects of the standardized extract (DA-9601) of Artemisia asiatica on azoxymethane-initiated and dextran sulfate sodium-promoted mouse colon carcinogenesis.

    PubMed

    Kim, Hyun Soo; Kundu, Joydeb Kumar; Lee, Jeong-Sang; Oh, Tae-Young; Na, Hye-Kyung; Surh, Young-Joon

    2008-01-01

    Dextran sulfate sodium (DSS) administration has been reported to cause inflammation in mouse colonic mucosa, which promotes colon carcinogenesis. When male ICR mice were treated with a single intraperitoneal dose (10 mg/kg body weight) of azoxymethane (AOM) followed by 2.5% DSS in drinking water for 7 consecutive days, all developed tumors at the 16th wk, mostly in the distal colon. Cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) were markedly upregulated in the AOM-initiated and DSS-promoted colon tumors. The DNA binding activity of nuclear factor-kappaB (NF-kappa B) was also elevated in the colon tumors. In this study, we examined the chemopreventive effects of the standardized extract (DA-9601) of Artemisia asiatica that has been used in the traditional herbal medicine for the treatment of inflammatory disorders. Mice fed the chow diet containing 10% DA-9601 for 15 wk following DSS treatment displayed the significantly lower multiplicity of colon tumors. DA-9601 treatment suppressed the expression of COX-2 and iNOS as well as NF-kappa B DNA binding in the colonic tissues. It also downregulated the phosphorylation of extracellular, signal-regulated protein kinase and p38 mitogen-activated protein kinase that are upstream of NF-kappa B. Furthermore, DA-9601 reduced expression of beta-catenin in colonic mucosa of mice challenged with AOM plus DSS.

  16. Regulation of mouse lung development by the extracellular calcium-sensing receptor, CaR.

    PubMed

    Finney, Brenda A; del Moral, Pierre M; Wilkinson, William J; Cayzac, Sebastien; Cole, Martin; Warburton, David; Kemp, Paul J; Riccardi, Daniela

    2008-12-15

    Postnatal lung function is critically dependent upon optimal embryonic lung development. As the free ionized plasma calcium concentration ([Ca(2+)](o)) of the fetus is higher than that of the adult, the process of lung development occurs in a hypercalcaemic environment. In the adult, [Ca(2+)](o) is monitored by the G-protein coupled, extracellular calcium-sensing receptor (CaR), but neither its ontogeny nor its potential role in lung development are known. Here, we demonstrate that CaR is expressed in the mouse lung epithelium, and that its expression is developmentally regulated, with a peak of expression at embryonic day 12.5 (E12.5) and a subsequent decrease by E18, after which the receptor is absent. Experiments carried out using the lung explant culture model in vitro show that lung branching morphogenesis is sensitive to [Ca(2+)](o), being maximal at physiological adult [Ca(2+)](o) (i.e. 1.0-1.3 mM) and lowest at the higher, fetal (i.e. 1.7 mM) [Ca(2+)](o). Administration of the specific CaR positive allosteric modulator, the calcimimetic R-568, mimics the suppressive effects of high [Ca(2+)](o) on branching morphogenesis while both phospholipase C and PI3 kinase inhibition reverse these effects. CaR activation suppresses cell proliferation while it enhances intracellular calcium signalling, lung distension and fluid secretion. Conditions which are restrictive either to branching or to secretion can be rescued by manipulating [Ca(2+)](o) in the culture medium. In conclusion, fetal Ca(2+)(o), acting through a developmentally regulated CaR, is an important extrinsic factor that modulates the intrinsic lung developmental programme. Our observations support a novel role for the CaR in preventing hyperplastic lung disease in utero.

  17. AKT1E17K Is Oncogenic in Mouse Lung and Cooperates with Chemical Carcinogens in Inducing Lung Cancer

    PubMed Central

    Malanga, Donatella; Belmonte, Stefania; Colelli, Fabiana; Scarfò, Marzia; De Marco, Carmela; Oliveira, Duarte Mendes; Mirante, Teresa; Camastra, Caterina; Gagliardi, Monica; Rizzuto, Antonia; Mignogna, Chiara; Paciello, Orlando; Papparella, Serenella; Fagman, Henrik; Viglietto, Giuseppe

    2016-01-01

    The hotspot AKT1E17K mutation in the pleckstrin homology domain of AKT1 occurs in approximately 0.6–2% of human lung cancers. Recently, we have demonstrated that AKT1E17K transforms immortalized human bronchial cells. Here by use of a transgenic Cre-inducible murine strain in the wild type Rosa26 (R26) locus (R26-AKT1E17K mice) we demonstrate that AKT1E17K is a bona-fide oncogene and plays a role in the development of lung cancer in vivo. In fact, we report that mutant AKT1E17K induces bronchial and/or bronchiolar hyperplastic lesions in murine lung epithelium, which progress to frank carcinoma at very low frequency, and accelerates tumor formation induced by chemical carcinogens. In conclusion, AKT1E17K induces hyperplasia of mouse lung epithelium in vivo and cooperates with urethane to induce the fully malignant phenotype. PMID:26859676

  18. Quantification of Lung Metastases from In Vivo Mouse Models.

    PubMed

    Chang, Joan; Erler, Janine T

    2016-01-01

    Cancer research has made significant progress in terms of understanding and targeting primary tumors; however, the challenge remains for the successful treatment of metastatic cancers. This highlights the importance to use in vivo models to study the metastatic process, as well as for preclinical testing of compounds that could inhibit metastasis. As a result, proper quantification of metastases from in vivo models is of the utmost significance. Here, we provide a detailed protocol for collecting and handling lung tissues from mice, and guidance for subsequent analysis of metastases, as well as interpretation of data.

  19. Impact of Prostate Inflammation on Lesion Development in the POET3+Pten+/− Mouse Model of Prostate Carcinogenesis

    PubMed Central

    Burcham, Grant N.; Cresswell, Gregory M.; Snyder, Paul W.; Chen, Long; Liu, Xiaoqi; Crist, Scott A.; Henry, Michael D.; Ratliff, Timothy L.

    2015-01-01

    Evidence linking prostatitis and prostate cancer development is contradictory. To study this link, the POET3 mouse, an inducible model of prostatitis, was crossed with a Pten-loss model of prostate cancer (Pten+/−) containing the ROSA26 luciferase allele to monitor prostate size. Prostatitis was induced, and prostate bioluminescence was tracked over 12 months, with lesion development, inflammation, and cytokine expression analyzed at 4, 8, and 12 months and compared with mice without induction of prostatitis. Acute prostatitis led to more proliferative epithelium and enhanced bioluminescence. However, 4 months after initiation of prostatitis, mice with induced inflammation had lower grade pre-neoplastic lesions. A trend existed toward greater development of carcinoma 12 months after induction of inflammation, including one of two mice with carcinoma developing perineural invasion. Two of 18 mice at the later time points developed lesions with similarities to proliferative inflammatory atrophy, including one mouse with associated carcinoma. Pten+/− mice developed spontaneous inflammation, and prostatitis was similar among groups of mice at 8 and 12 months. Analyzed as one cohort, lesion number and grade were positively correlated with prostatitis. Specifically, amounts of CD11b+Gr1+ cells were correlated with lesion development. These results support the hypothesis that myeloid-based inflammation is associated with lesion development in the murine prostate, and previous bouts of CD8-driven prostatitis may promote invasion in the Pten+/− model of cancer. PMID:25455686

  20. Chemopreventive Effects of an HDAC2-Selective Inhibitor on Rat Colon Carcinogenesis and APCmin/+ Mouse Intestinal Tumorigenesis

    PubMed Central

    Ravillah, Durgadevi; Mohammed, Altaf; Qian, Li; Brewer, Misty; Zhang, Yuting; Biddick, Laura; Steele, Vernon E.

    2014-01-01

    Epigenetic modulators, particularly histone deacetylases (HDACs), are valid targets for cancer prevention and therapy. Recent studies report that HDAC2 overexpression is associated with colon tumor progression and is a potential target for colon cancer prevention. This study tested chemopreventive and dose-response effects of Ohio State University HDAC42 (OSU-HDAC42), a selective HDAC2 inhibitor, using a rat colon carcinogenesis model to assess aberrant crypt foci inhibition and a familial adenomatous polyposis model to assess intestinal tumor inhibition. Colonic aberrant crypt foci were induced by azoxymethane (AOM) (15 mg/kg body weight, once-weekly subcutaneous injections at 8 and 9 weeks age). One week after AOM treatment, groups of rats were fed an AIN-76A diet containing 0, 75, 150, and 300 ppm OSU-HDAC42 for 8 weeks, and colonic aberrant crypt foci were evaluated. To assess the inhibitory effect of OSU-HDAC42 on small-intestinal polyps and colon tumor growth, 6-week-old male C57Bl/6J-APCmin/+mice were fed an AIN-76A diet containing 150 ppm OSU-HADC42 or 300 ppm pan-HDAC inhibitor suberoylanilide hydroxyamic acid (SAHA) for 80 days. Our results demonstrate that dietary OSU-HDAC42 produced dose-dependent inhibition of AOM-induced colonic aberrant crypt foci formation (13–50%; P < 0.01 to < 0.0001) and reduced multiple crypts with ≥4 crypts per focus (25–57%; P < 0.01 to < 0.0001) in F344 rats. Our findings show that 150 ppm OSU-HDAC42 significantly inhibited small-intestinal polyps (>46%; P < 0.001), with polyp size measuring >1 mm (P < 0.001), and colon tumors (>26%) in APCmin/+mice, whereas 300 ppm SAHA showed nonsignificant inhibition. Mice fed 150 ppm OSU-HDAC42 had significantly decreased HDAC2, proliferating cell nuclear antigen, B cell lymphoma 2, cyclin-dependent kinase 2, and cell division cycle homolog 25C expression levels and increased p53 expression levels. These observations demonstrate the chemopreventive efficacy of OSU-HDAC42 against

  1. Ozone-related fluorescent compounds in mouse liver and lung

    SciTech Connect

    Csallany, A.S.; Manwaring, J.D.; Menken, B.Z.

    1985-08-01

    Groups of ten female, weanling mice were fed a basal, vitamin E-deficient diet or a basal diet supplemented with RRR-alpha-tocopheryl acetate for 14 months. During the last month one group from each dietary regimen was exposed for 30-60 min/day to 1.5 ppm ozone (25 hr total ozone exposure) and the remaining groups to control ambient air. The liver and lung tissues were homogenized and extracted with 2:1 chloroform:methanol and water. Excitation and emission wavelengths for the eluting fractions were determined by continuous emission scans from 250 to 600 nm for each excitation wavelength between 250 and 500 nm. Ozone exposure did not effect the concentration of any of the fluorescent materials examined in the lung, but it resulted in a significant increase in two of four water-soluble compounds in the liver with excitation wavelength maxima/emission wavelength maxima of 270 nm/310 nm and 275 nm/350 nm (smaller molecular weight material) suggesting in vivo lipid oxidation.

  2. Early recognition of lung cancer by integrin targeted imaging in K-ras mouse model.

    PubMed

    Ermolayev, Vladimir; Mohajerani, Pouyan; Ale, Angelique; Sarantopoulos, Athanasios; Aichler, Michaela; Kayser, Gian; Walch, Axel; Ntziachristos, Vasilis

    2015-09-01

    Non-small cell lung cancer is characterized by slow progression and high heterogeneity of tumors. Integrins play an important role in lung cancer development and metastasis and were suggested as a tumor marker; however their role in anticancer therapy remains controversial. In this work, we demonstrate the potential of integrin-targeted imaging to recognize early lesions in transgenic mouse model of lung cancer based on spontaneous introduction of mutated human gene bearing K-ras mutation. We conducted ex vivo and fluorescence molecular tomography-X-ray computed tomography (FMT-XCT) in vivo imaging and analysis for specific targeting of early lung lesions and tumors in rodent preclinical model for lung cancer. The lesions and tumors were characterized by histology, immunofluorescence and immunohistochemistry using a panel of cancer markers. Ex vivo, the integrin-targeted fluorescent signal significantly differed between wild type lung tissue and K-ras pulmonary lesions (PL) at all ages studied. The panel of immunofluorescence experiments demonstrated that PL, which only partially show cancer cell features were detected by αvβ3-integrin targeted imaging. Human patient material analysis confirmed the specificity of target localization in different lung cancer types. Most importantly, small tumors in the lungs of 4-week-old animals could be noninvasively detected in vivo on the fluorescence channel of FMT-XCT. Our findings demonstrated αvβ3-integrin targeted fluorescent imaging to specifically detect premalignant pleural lesions in K-ras mice. Integrin targeted imaging may find application areas in preclinical research and clinical practice, such as early lung cancer diagnostics, intraoperative assistance or therapy monitoring.

  3. Scale dependence of structure-function relationship in the emphysematous mouse lung

    PubMed Central

    Sato, Susumu; Bartolák-Suki, Erzsébet; Parameswaran, Harikrishnan; Hamakawa, Hiroshi; Suki, Béla

    2015-01-01

    The purpose of this study was to determine how the initial distribution of elastase in mouse lungs determines the time course of tissue destruction and how structural heterogeneity at different spatial scales influences lung function. We evaluated lung function and alveolar structure in normal and emphysematous C57BL/6 mice at 2 and 21 days following orotracheal treatment with porcine pancreatic elastase (PPE). Initial distribution of elastase 1 h after treatment was assessed using red fluorescently labeled PPE (f-PPE) by laser scanning confocal microscopy. From measured input impedance of the respiratory system, the global lung compliance, and the variability of regional compliance were obtained. Lungs were fixed and equivalent airspace diameters were measured in four lobes of the right lung and three regions of the left lung. At day 2 and day 21, the mean airspace diameter of each region was significantly enlarged which was accompanied by an increased inter-regional heterogeneity. The deposition of f-PPE on day 0 was much more heterogeneous than the inter-regional diameters at both day 2 and day 21 and, at day 21, this reached statistical significance (p < 0.05). Microscale heterogeneity characterized by the overall variability of airspace diameters correlated significantly better with compliance than macroscale or inter-regional heterogeneity. Furthermore, while the spatial distribution of the inflammatory response does not seem to follow that of the elastase deposition, it correlates with the strongest regional determinant of lung function. These results may help interpret lung function decline in terms of structural deterioration in human patients with emphysema. PMID:26029115

  4. Scale dependence of structure-function relationship in the emphysematous mouse lung.

    PubMed

    Sato, Susumu; Bartolák-Suki, Erzsébet; Parameswaran, Harikrishnan; Hamakawa, Hiroshi; Suki, Béla

    2015-01-01

    The purpose of this study was to determine how the initial distribution of elastase in mouse lungs determines the time course of tissue destruction and how structural heterogeneity at different spatial scales influences lung function. We evaluated lung function and alveolar structure in normal and emphysematous C57BL/6 mice at 2 and 21 days following orotracheal treatment with porcine pancreatic elastase (PPE). Initial distribution of elastase 1 h after treatment was assessed using red fluorescently labeled PPE (f-PPE) by laser scanning confocal microscopy. From measured input impedance of the respiratory system, the global lung compliance, and the variability of regional compliance were obtained. Lungs were fixed and equivalent airspace diameters were measured in four lobes of the right lung and three regions of the left lung. At day 2 and day 21, the mean airspace diameter of each region was significantly enlarged which was accompanied by an increased inter-regional heterogeneity. The deposition of f-PPE on day 0 was much more heterogeneous than the inter-regional diameters at both day 2 and day 21 and, at day 21, this reached statistical significance (p < 0.05). Microscale heterogeneity characterized by the overall variability of airspace diameters correlated significantly better with compliance than macroscale or inter-regional heterogeneity. Furthermore, while the spatial distribution of the inflammatory response does not seem to follow that of the elastase deposition, it correlates with the strongest regional determinant of lung function. These results may help interpret lung function decline in terms of structural deterioration in human patients with emphysema.

  5. Comparison of cell cycle components, apoptosis and cytoskeleton-related molecules and therapeutic effects of flavopiridol and geldanamycin on the mouse fibroblast, lung cancer and embryonic stem cells.

    PubMed

    Aktug, Huseyin; Acikgoz, Eda; Uysal, Aysegul; Oltulu, Fatih; Oktem, Gulperi; Yigitturk, Gurkan; Demir, Kenan; Yavasoglu, Altug; Bozok Cetintas, Vildan

    2016-09-01

    Similarities and differences in the cell cycle components, apoptosis and cytoskeleton-related molecules among mouse skin fibroblast cells (MSFs), mouse squamous cell lung carcinomas (SqCLCs) and mouse embryonic stem cells (mESCs) are important determinants of the behaviour and differentiation capacity of these cells. To reveal apoptotic pathways and to examine the distribution and the role of cell cycle-cell skeleton comparatively would necessitate tumour biology and stem cell biology to be assessed together in terms of oncogenesis and embryogenesis. The primary objectives of this study are to investigate the effects of flavopiridol, a cell cycle inhibitor, and geldanamycin, a heat shock protein inhibitor on mouse somatic, tumour and embryonic stem cells, by specifically focusing on alterations in cytoskeletal proteins, cell polarity and motility as well as cell cycle regulators. To meet these objectives, expression of several genes, cell cycle analysis and immunofluorescence staining of intracellular cytoskeletal molecules were performed in untreated and flavopiridol- or geldanamycin-treated cell lines. Cytotoxicity assays showed that SqCLCs are more sensitive to flavopiridol than MSFs and mESCs. Keratin-9 and keratin-2 expressions increased dramatically whereas cell cycle regulatory genes decreased significantly in the flavopiridol-treated MSFs. Flavopiridol-treated SqCLCs displayed a slight increase in several cell cytoskeleton regulatory genes as well as cell cycle regulatory genes. However, gene expression profiles of mESCs were not affected after flavopiridol treatment except the Cdc2a. Cytotoxic concentrations of geldanamycin were close to each other for all cell lines. Cdkn1a was the most increased gene in the geldanamycin-treated MSFs. However, expression levels of cell cytoskeleton-associated genes were increased dramatically in the geldanamycin-treated SqCLCs. Our results revealing differences in molecular mechanisms between embryogenesis and

  6. The Nicotinic Receptor Alpha7 Impacts the Mouse Lung Response to LPS through Multiple Mechanisms

    PubMed Central

    Enioutina, Elena Y.; Myers, Elizabeth J.; Tvrdik, Petr; Hoidal, John R.; Rogers, Scott W.; Gahring, Lorise C.

    2015-01-01

    The nicotinic acetylcholine receptor alpha7 (α7) is expressed by neuronal and non-neuronal cells throughout the body. We examined the mechanisms of the lung inflammatory response to intranasal (i.n.) lipopolysaccharide (LPS) regulated by α7. This was done in mice using homologous recombination to introduce a point mutation in the α7 receptor that replaces the glutamate residue 260 that lines the pore with alanine (α7E260A), which has been implicated in controlling the exceptional calcium ion conductance of this receptor. The α7E260A mice exhibit normal inflammatory cell recruitment to the blood in response to i.n. LPS administration. This differs from the α7knock-out (α7KO) in which upstream signaling to initiate the recruitment to the blood following i.n. LPS is significantly impaired. While hematopoietic cells are recruited to the bloodstream in the α7E260A mouse, they fail to be recruited efficiently into both the interstitium and alveolar spaces of the lung. Bone marrow reconstitution experiments demonstrate that the responsiveness of both CD45+ and CD45- cells of the α7E260A mouse are impaired. The expression of several pro-inflammatory cytokine and chemokine RNAs including TNFα, IL-1α, Ccl2 and Cxcl10 are decreased in the α7E260A mouse. However, there is a substantial increase in IL-13 expression by CD45- lung interstitial cells in the α7E260A mouse. Our results support the conclusion that α7 functional pleiotropy contributes to modulating the tissue response to an inflammatory insult through impacting upon a variety of mechanisms reflecting the individual cell composition of the lung. PMID:25803612

  7. Susceptibility to quantum dot induced lung inflammation differs widely among the Collaborative Cross founder mouse strains

    PubMed Central

    Scoville, David K.; White, Collin C.; Botta, Dianne; McConnachie, Lisa A.; Zadworny, Megan E.; Schmuck, Stefanie C.; Hu, Xiaoge; Gao, Xiaohu; Yu, Jianbo; Dills, Russell L.; Sheppard, Lianne; Delaney, Martha A.; Griffith, William C.; Beyer, Richard P.; Zangar, Richard C.; Pounds, Joel G.; Faustman, Elaine M.; Kavanagh, Terrance J.

    2015-01-01

    Quantum dots (QDs) are engineered semiconductor nanoparticles with unique physicochemical properties that make them potentially useful in clinical, research and industrial settings. However, a growing body of evidence indicates that like other engineered nanomaterials, QDs have the potential to be respiratory hazards, especially in the context of the manufacture of QDs and products containing them, as well as exposures to consumers using these products. The overall goal of this study was to investigate the role of mouse strain in determining susceptibility to QD-induced pulmonary inflammation and toxicity. Male mice from 8 genetically diverse inbred strains (the Collaborative Cross founder strains) were exposed to CdSe–ZnS core–shell QDs stabilized with an amphiphilic polymer. QD treatment resulted in significant increases in the percentage of neutrophils and levels of cytokines present in bronchoalveolar lavage fluid (BALF) obtained from NOD/ShiLtJ and NZO/HlLtJ mice relative to their saline (Sal) treated controls. Cadmium measurements in lung tissue indicated strain-dependent differences in disposition of QDs in the lung. Total glutathione levels in lung tissue were significantly correlated with percent neutrophils in BALF as well as with lung tissue Cd levels. Our findings indicate that QD-induced acute lung inflammation is mouse strain dependent, that it is heritable, and that the choice of mouse strain is an important consideration in planning QD toxicity studies. These data also suggest that formal genetic analyses using additional strains or recombinant inbred strains from these mice could be useful for discovering potential QD-induced inflammation susceptibility loci. PMID:26476918

  8. [Distribution of compact bone mesenchymal stem cells in lung tissue and bone marrow of mouse].

    PubMed

    Wang, Rui-Ping; Wu, Ren-Na; Guo, Yu-Qing; Zhang, Bin; Chen, Hu

    2014-02-01

    This study was aimed to investigate the distribution of compact bone mesenchymal stem cells(MSC) marked with lentiviral plasmid pGC FU-RFP-LV in lung tissue and bone marrow of mouse. The MSC were infected by lentivirus with infection efficiency 78%, the infected MSC were injected into BALB/c mice via tail veins in concentration of 1×10(6) /mouse. The mice were randomly divided into 4 group according to 4 time points as 1, 2, 5 and 7 days. The lung tissue and bone marrow were taken and made of frozen sections and smears respectively in order to observed the distributions of MSC. The results indicated that the lentiviral infected MSC displayed phenotypes and biological characteristics which conformed to MSC by immunophenotyping analysis and induction differentiation detection. After the MSC were infected with optimal viral titer MOI = 50, the cell growth no significantly changed; the fluorescent microscopy revealed that the distributions of MSC in bone marrow on day 1, 2, 5 and 7 were 0.50 ± 0.20, 0.67 ± 0.23, 0.53 ± 0.14, 0.33 ± 0.16; those in lung tissue were 0.55 ± 0.15, 0.47 ± 0.13, 0.29 ± 0.13, 0.26 ± 0.08. It is concluded that the distribution of MSC in lung tissue reaches a peak on day 1, while distribution of MSC in bone marrow reaches a peak on day 2. The distribution of mouse MSC relates with RFP gene expression and implantation of MSC in lung tissue and bone marrow.

  9. Differential responses in the lungs of newborn mouse pups exposed to 85% or >95% oxygen.

    PubMed

    Rogers, Lynette K; Tipple, Trent E; Nelin, Leif D; Welty, Stephen E

    2009-01-01

    Premature infants often develop serious clinical complications associated with respiratory failure and hyperoxic lung injury that includes lung inflammation and alterations in lung development. The goal of these studies is to test the hypothesis that there are differences in the course of lung injury in newborn mice exposed to 85% or >95% oxygen that provide models to address the differential effects of oxidation and inflammation. Our results indicate differences between the 85% and >95% O2 exposure groups by day 14 in weight gain and lung alveolarization. Inflammation, assessed by neutrophil counts, was observed in both hyperoxia groups by day 3 but was dramatically greater in the >95% O2-exposed groups by day 14 and associated with greater developmental deficits. Cytoplasmic phospholipase A2, cyclooxygenase-2, and 5-lipoxygenase levels were elevated but no patterns of differences were observed between exposure groups. Prostaglandins D2, E2, and F2alpha were increased in the tissues from mouse pups exposed to >95% O2 at 7 d indicating a differential expression of cyclooxygenase-2 products. Our data indicate that there are differences in the models of 85% or >95% O2 exposure and these differences may provide mechanistic insights into hyperoxic lung injury in an immature system.

  10. GATA2 is epigenetically repressed in human and mouse lung tumors and is not requisite for survival of KRAS mutant lung cancer

    PubMed Central

    Tessema, Mathewos; Yingling, Christin M.; Snider, Amanda M.; Do, Kieu; Juri, Daniel E.; Picchi, Maria A.; Zhang, Xiequn; Liu, Yushi; Leng, Shuguang; Tellez, Carmen S.; Belinsky, Steven A.

    2014-01-01

    Introduction GATA2 was recently described as a critical survival factor and therapeutic target for KRAS mutant non-small cell lung cancer (NSCLC). However, whether this role is affected by epigenetic repression of GATA2 in lung cancer is unclear. Methods GATA2 expression and promoter CpG island methylation were evaluated using human and mouse NSCLC cell lines and tumor-normal pairs. In vitro assays were used to study GATA2 repression on cell survival and during tobacco carcinogen-induced transformation. Results GATA2 expression in KRAS wild-type (n=15) and mutant (n=10) NSCLC cell lines and primary lung tumors (n=24) was significantly lower, 1.3–33.6-fold (p=2.2×10−9), compared to corresponding normal lung. GATA2 promoter was unmethylated in normal lung (0/10) but frequently methylated in lung tumors (96%, 159/165) and NSCLC cell lines (97%, 30/31). This highly prevalent aberrant methylation was independently validated using TCGA data for 369 NSCLC tumor-normal pairs. In vitro studies using an established carcinogen-induced pre-malignancy model revealed that GATA2 expression was initially repressed by chromatin remodeling followed by cytosine methylation during transformation. Similarly, expression of Gata2 in NNK-induced mouse lung tumors (n=6) and cell lines (n=5) was 5-fold and 100-fold lower, respectively, than normal mouse lung. Finally, siRNA-mediated knockdown of GATA2 in KRAS mutant [human (n=4) and murine (n=5)] and wild-type [human (n=4)] NSCLC cell lines showed that further reduction of expression (up to 95%) does not induce cell death. Conclusion GATA2 is epigenetically repressed in human and mouse lung tumors and its further inhibition is not a valid therapeutic strategy for KRAS mutant lung cancer. PMID:24807155

  11. Two Nested Developmental Waves Demarcate a Compartment Boundary in the Mouse Lung

    PubMed Central

    Alanis, Denise Martinez; Chang, Daniel R.; Akiyama, Haruhiko; Krasnow, Mark A.; Chen, Jichao

    2014-01-01

    The lung is a branched tubular network with two distinct compartments — the proximal conducting airways and the peripheral gas exchange region — separated by a discrete boundary termed the bronchoalveolar duct junction (BADJ). Here we image the developing mouse lung in three dimensions and show that two nested developmental waves demarcate the BADJ under the control of a global hormonal signal. A first wave of branching morphogenesis progresses throughout embryonic development, generating branches for both compartments. A second wave of conducting airway differentiation follows the first wave but terminates earlier, specifying the proximal compartment and setting the BADJ. The second wave is terminated by a glucocorticoid signaling: premature activation or loss of glucocorticoid signaling causes a proximal or distal shift, respectively, in BADJ location. The results demonstrate a novel mechanism of boundary formation in complex, three-dimensional organs and provide new insights into glucocorticoid therapies for lung defects in premature birth. PMID:24879355

  12. Effect of urethane, dimethylnitrosamine, paraquat, and butylated hydroxytoluene on the activities of glycolytic key enzymes in mouse lung

    SciTech Connect

    Arany, I.; Rady, P.; Bojan, I.; Kertai, P.

    1981-12-01

    Effects of carcinogens and noncarcinogenic pulmonary toxicants on the activities of glycolytic key enzymes in the mouse lung were investigated. The carcinogens urethane (URTH) and dimethylnitrosamine (DMN) permanently enhanced, and the noncarcinogenic pulmonary toxicants paraquat (PAR) and butylated hydroxytoluene (BHT) temporarily, enhanced the activities of hexokinase (HK), phosphofructokinase (PFK), and pyruvate kinase (PK) in the lungs of mice.

  13. CYCLOPENTA-FUSED POLYCYCLIC AROMATIC HYDROCARBONS IN STRAIN A/J MOUSE LUNG: DNA ADDUCTS, ONCOGENE MUTATIONS, & TUMORIGENESIS

    EPA Science Inventory

    Cyclopenta-fused Polycyclic Aromatic Hydrocarbons in Strain AJJ Mouse Lung: DNA Adducts, Oncogene Mutations, and Tumorigenesis.

    We have examined the relationships between DNA adducts, Ki-ras oncogene mutations, DNA adducts, and adenoma induction in the lungs of strain A/J...

  14. Preclinical evaluation of human secretoglobin 3A2 in mouse models of lung development and fibrosis

    PubMed Central

    Cai, Yan; Winn, Melissa E.; Zehmer, John K.; Gillette, William K.; Lubkowski, Jacek T.; Pilon, Aprile L.

    2013-01-01

    Secretoglobin (SCGB) 3A2 is a member of the SCGB gene superfamily of small secreted proteins, predominantly expressed in lung airways. We hypothesize that human SCGB3A2 may exhibit anti-inflammatory, growth factor, and antifibrotic activities and be of clinical utility. Recombinant human SCGB3A2 was expressed, purified, and biochemically characterized as a first step to its development as a therapeutic agent in clinical settings. Human SCGB3A2, as well as mouse SCGB3A2, readily formed a dimer in solution and exhibited novel phospholipase A2 inhibitory activity. This is the first demonstration of any quantitative biochemical measurement for the evaluation of SCGB3A2 protein. In the mouse as an experimental animal, human SCGB3A2 exhibited growth factor activity by promoting embryonic lung development in both ex vivo and in vivo systems and antifibrotic activity in the bleomycin-induced lung fibrosis model. The results suggested that human SCGB3A2 can function as a growth factor and an antifibrotic agent in humans. When SCGB3A2 was administered to pregnant female mice through the tail vein, the protein was detected in the dam's serum and lung, as well as the placenta, amniotic fluids, and embryonic lungs at 10 min postadministration, suggesting that SCGB3A2 readily crosses the placenta. The results warrant further development of recombinant SCGB3A2 as a therapeutic agent in treating patients suffering from lung diseases or preterm infants with respiratory distress. PMID:24213919

  15. Glial Fibrillary Acidic Protein-Expressing Glia in the Mouse Lung

    PubMed Central

    Suarez-Mier, Gabriela B.

    2015-01-01

    Autonomic nerves regulate important functions in visceral organs, including the lung. The postganglionic portion of these nerves is ensheathed by glial cells known as non-myelinating Schwann cells. In the brain, glia play important functional roles in neurotransmission, neuroinflammation, and maintenance of the blood brain barrier. Similarly, enteric glia are now known to have analogous roles in gastrointestinal neurotransmission, inflammatory response, and barrier formation. In contrast to this, very little is known about the function of glia in other visceral organs. Like the gut, the lung forms a barrier between airborne pathogens and the bloodstream, and autonomic lung innervation is known to affect pulmonary inflammation and lung function. Lung glia are described as non-myelinating Schwann cells but their function is not known, and indeed no transgenic tools have been validated to study them in vivo. The primary goal of this research was, therefore, to investigate the relationship between non-myelinating Schwann cells and pulmonary nerves in the airways and vasculature and to validate existing transgenic mouse tools that would be useful for studying their function. We focused on the glial fibrillary acidic protein promoter, which is a cognate marker of astrocytes that is expressed by enteric glia and non-myelinating Schwann cells. We describe the morphology of non-myelinating Schwann cells in the lung and verify that they express glial fibrillary acidic protein and S100, a classic glial marker. Furthermore, we characterize the relationship of non-myelinating Schwann cells to pulmonary nerves. Finally, we report tools for studying their function, including a commercially available transgenic mouse line. PMID:26442852

  16. Gene expression profiling in mouse lung following polymeric hexamethylene diisocyanate exposure

    SciTech Connect

    Lee, C.-T.; Ylostalo, Joni; Friedman, Mitchell; Hoyle, Gary W. . E-mail: ghoyle@tulane.edu

    2005-05-15

    Isocyanates are a common cause of occupational lung disease. Hexamethylene diisocyanate (HDI), a component of polyurethane spray paints, can induce respiratory symptoms, inflammation, lung function impairment, and isocyanate asthma. The predominant form of HDI in polyurethane paints is a nonvolatile polyisocyanate known as HDI biuret trimer (HDI-BT). Exposure of mice to aerosolized HDI-BT results in pathological effects, including pulmonary edema, lung inflammation, cellular proliferation, and fibrotic lesions, which occur with distinct time courses following exposure. To identify genes that mediate lung pathology in the distinct temporal phases after exposure, gene expression profiles in HDI-BT-exposed C57BL/6J mouse lungs were analyzed. RNase protection assay (RPA) of genes involved in apoptosis, cell survival, and inflammation revealed increased expression of I{kappa}B{alpha}, Fas, Bcl-X{sub L}, TNF{alpha}, KC, MIP-2, IL-6, and GM-CSF following HDI-BT exposure. Microarray analysis of approximately 10 000 genes was performed on lung RNA collected from mice 6, 18, and 90 h after HDI-BT exposure and from unexposed mice. Classes of genes whose expression was increased 6 h after exposure included those involved in stress responses (particularly oxidative stress and thiol redox balance), growth arrest, apoptosis, signal transduction, and inflammation. Types of genes whose expression was increased at 18 h included proteinases, anti-proteinases, cytoskeletal molecules, and inflammatory mediators. Transcripts increased at 90 h included extracellular matrix components, transcription factors, inflammatory mediators, and cell cycle regulators. This characterization of the gene expression profile in lungs exposed to HDI-BT will provide a basis for investigating injury and repair pathways that are operative during isocyanate-induced lung disease.

  17. Generation of Multipotent Lung and Airway Progenitors from Mouse ESCs and Patient-Specific Cystic Fibrosis iPSCs

    PubMed Central

    Mou, Hongmei; Zhao, Rui; Sherwood, Richard; Ahfeldt, Tim; Lapey, Allen; Wain, John; Sicilian, Leonard; Izvolsky, Konstantin; Lau, Frank H.; Musunuru, Kiran; Cowan, Chad; Rajagopal, Jayaraj

    2012-01-01

    SUMMARY Deriving lung progenitors from patient-specific pluripotent cells is a key step in producing differentiated lung epithelium for disease modeling and transplantation. By mimicking the signaling events that occur during mouse lung development, we generated murine lung progenitors in a series of discrete steps. Definitive endoderm derived from mouse embryonic stem cells (ESCs) was converted into foregut endoderm, then into replicating Nkx2.1+ lung endoderm, and finally into multipotent embryonic lung progenitor and airway progenitor cells. We demonstrated that precisely-timed BMP, FGF, and WNT signaling are required for NKX2.1 induction. Mouse ESC-derived Nkx2.1+ progenitor cells formed respiratory epithelium (tracheospheres) when transplanted subcutaneously into mice. We then adapted this strategy to produce disease-specific lung progenitor cells from human Cystic Fibrosis induced pluripotent stem cells (iPSCs), creating a platform for dissecting human lung disease. These disease-specific human lung progenitors formed respiratory epithelium when subcutaneously engrafted into immunodeficient mice. PMID:22482504

  18. Expression and function of the ion channel TRPA1 in vagal afferent nerves innervating mouse lungs.

    PubMed

    Nassenstein, Christina; Kwong, Kevin; Taylor-Clark, Thomas; Kollarik, Marian; Macglashan, Donald M; Braun, Armin; Undem, Bradley J

    2008-03-15

    Transient receptor potential (TRP) A1 and TRPM8 are ion channels that have been localized to afferent nociceptive nerves. These TRP channels may be of particular relevance to respiratory nociceptors in that they can be activated by various inhaled irritants and/or cold air. We addressed the hypothesis that mouse vagal sensory nerves projecting to the airways express TRPA1 and TRPM8 and that they can be activated via these receptors. Single cell RT-PCR analysis revealed that TRPA1 mRNA, but not TRPM8, is uniformly expressed in lung-labelled TRPV1-expressing vagal sensory neurons. Neither TRPA1 nor TRPM8 mRNA was expressed in TRPV1-negative neurons. Capsaicin-sensitive, but not capsaicin-insensitive, lung-specific neurons responded to cinnamaldehyde, a TRPA1 agonist, with increases in intracellular calcium. Menthol, a TRPM8 agonist, was ineffective at increasing cellular calcium in lung-specific vagal sensory neurons. Cinnamaldehyde also induced TRPA1-like inward currents (as measured by means of whole cell patch clamp recordings) in capsaicin-sensitive neurons. In an ex vivo vagal innervated mouse lung preparation, cinnamaldehyde evoked action potential discharge in mouse vagal C-fibres with a peak frequency similar to that observed with capsaicin. Cinnamaldehyde inhalation in vivo mimicked capsaicin in eliciting strong central-reflex changes in breathing pattern. Taken together, our results support the hypothesis that TRPA1, but not TRPM8, is expressed in vagal sensory nerves innervating the airways. TRPA1 activation provides a mechanism by which certain environmental stimuli may elicit action potential discharge in airway afferent C-fibres and the consequent nocifensor reflexes.

  19. CpG-ODN increases the release of VEGF in a mouse model of lung carcinoma.

    PubMed

    Sorrentino, Rosalinda; Morello, Silvana; Giordano, Maria Grazia; Arra, Claudio; Maiolino, Piera; Adcock, Ian M; Pinto, Aldo

    2011-06-15

    Vascular endothelial-derived growth factor (VEGF) plays a fundamental role in the formation of new vessels within the tumour mass. Increasing evidence has highlighted the involvement of Toll-like receptors (TLRs) in cancer. Of interest, TLR9 is over-expressed in human lung carcinoma tissues. The aim of our study was to determine whether TLR9 activation could alter VEGF release in a mouse model of lung carcinoma. Lewis lung carcinoma cells were intravenously (i.v.) inoculated and 10 days later, tumour-bearing mice were treated with CpG-ODN (CpG, a TLR9 ligand) or PBS. CpG administration enhanced VEGF release, which was associated with increased tumour lesions in the lung. CpG induced high levels of IL-6 expression and activation of STAT3 in tumour-bearing mice. Moreover, CpG induced VEGF release from primary fibroblasts and endothelial cells, which correlated with IL-6 and TGFβ production. This may explain the large influx of fibroblasts and the production of basic fibroblast growth factor (bFGF) in the tumour mass. The administration of a monoclonal antibody against VEGF A arrested tumour progression and induced a Th1-like response in CpG-treated tumour-bearing mice. In conclusion, our study demonstrates that the combination of CpG with anti-VEGF monoclonal antibody could be of potential therapeutic in lung carcinoma.

  20. Pharmacokinetic and Genomic Effects of Arsenite in Drinking Water on Mouse Lung in a 30-Day Exposure.

    PubMed

    Chilakapati, Jaya; Wallace, Kathleen; Hernandez-Zavala, Araceli; Moore, Tanya; Ren, Hongzu; Kitchin, Kirk T

    2015-01-01

    The 2 objectives of this subchronic study were to determine the arsenite drinking water exposure dependent increases in female C3H mouse liver and lung tissue arsenicals and to characterize the dose response (to 0, 0.05, 0.25, 1, 10, and 85 ppm arsenite in drinking water for 30 days and a purified AIN-93M diet) for genomic mouse lung expression patterns. Mouse lungs were analyzed for inorganic arsenic, monomethylated, and dimethylated arsenicals by hydride generation atomic absorption spectroscopy. The total lung mean arsenical levels were 1.4, 22.5, 30.1, 50.9, 105.3, and 316.4 ng/g lung tissue after 0, 0.05, 0.25, 1, 10, and 85 ppm, respectively. At 85 ppm, the total mean lung arsenical levels increased 14-fold and 131-fold when compared to either the lowest noncontrol dose (0.05 ppm) or the control dose, respectively. We found that arsenic exposure elicited minimal numbers of differentially expressed genes (DEGs; 77, 38, 90, 87, and 87 DEGs) after 0.05, 0.25, 1, 10, and 85 ppm, respectively, which were associated with cardiovascular disease, development, differentiation, apoptosis, proliferation, and stress response. After 30 days of arsenite exposure, this study showed monotonic increases in mouse lung arsenical (total arsenic and dimethylarsinic acid) concentrations but no clear dose-related increases in DEG numbers.

  1. Morphological and Cytochemical Characterization of Cells Infiltrating Mouse Lungs After Influenza Infection

    PubMed Central

    Wyde, Philip R.; Peavy, Duane L.; Cate, Thomas R.

    1978-01-01

    To initiate evaluation of the cell-mediated immunological response to influenza virus in a major site of disease, lung cells were obtained by transpleural lavage from lungs of uninfected mice and from those infected 3 or 6 days previously with 5 50% mouse infectious doses (MID50) of avirulent (P3) or virulent (P9) influenza A Hong Kong (H3N2) virus. The number of cells recovered by lavage was dependent on the dose, time after inoculation, and the type of virus used for inoculation. Although lavage pools were shown to contain peripheral blood leukocytes, this contamination was shown to be consistently less than 5% of the total leukocytes harvested. Among the ca. 0.75 × 106 lavage cells obtained from each uninfected mouse, about 90% were macrophages or lymphocytes in approximately equal proportion. T, B, and null (lyphocytes lacking theta or surface immunoglobulin markers) lymphocytes averaged 23, 9, and 7% of cells in these suspensions, respectively. After infection with either P3 or P9 virus, increased numbers of activated macrophages and lymphoblasts were observed. The major change during P3 infection was an increase in absolute numbers of null lymphocytes. In contrast, during P9 infection, T and B lymphocytes and macrophages progressively increased in absolute numbers while null cells decreased. These data suggest that cell-mediated immunological responses to influenza virus occur in the lung during infection, but that the responses to virulent and avirulent variants may differ both qualitatively and quantitatively. PMID:711312

  2. A new monoclonal antibody to study mouse macrophage antigen during BHT-induced lung injury and repair.

    PubMed

    Kennel, S J; Lankford, T; Galloway, P; Witschi, H P

    1989-04-01

    A rat monoclonal antibody 133-13A to a mouse lung carcinoma cell line was found to react with macrophages in mouse lung [1]. This monoclonal antibody is different from previously described antibodies to macrophages. Immunogold electron-microscopy and immunoperoxidase light microscopy have been used to show that MoAb 133-13A binds specifically to macrophages in normal and in BHT treated mouse lungs. This MoAb recognizes a protein of approximately 100 kDa (P100) on cultured lung carcinoma cells and a 87 kDa protein on macrophages from lung or the peritoneal cavity which is different from other macrophage antigens. The surface glycoprotein has been purified from cultured cells using immunoaffinity chromatography. The purified protein was radioiodinated and MoAb 133-13A was used to develop a competition radioimmunoassay to quantitate P100. Spleen, intestines, lung, skin and uterus all have high levels of P100. P100 on peritoneal macrophages has been determined to be about 94,000 molecules/cell. Analyses of lung lavage and whole lung homogenates from mice treated with BHT, BHT plus 70% O2, and 70% O2 alone show that treated animals have elevated P100 content compared to corn oil treated mice.

  3. The "Goldilocks Effect" in Cystic Fibrosis: identification of a lung phenotype in the cftr knockout and heterozygous mouse

    PubMed Central

    Craig Cohen, J; Lundblad, Lennart KA; Bates, Jason HT; Levitzky, Michael; Larson, Janet E

    2004-01-01

    Background Cystic Fibrosis is a pleiotropic disease in humans with primary morbidity and mortality associated with a lung disease phenotype. However, knockout in the mouse of cftr, the gene whose mutant alleles are responsible for cystic fibrosis, has previously failed to produce a readily, quantifiable lung phenotype. Results Using measurements of pulmonary mechanics, a definitive lung phenotype was demonstrated in the cftr-/- mouse. Lungs showed decreased compliance and increased airway resistance in young animals as compared to cftr+/+ littermates. These changes were noted in animals less than 60 days old, prior to any long term inflammatory effects that might occur, and are consistent with structural differences in the cftr-/- lungs. Surprisingly, the cftr+/- animals exhibited a lung phenotype distinct from either the homozygous normal or knockout genotypes. The heterozygous mice showed increased lung compliance and decreased airway resistance when compared to either homozygous phenotype, suggesting a heterozygous advantage that might explain the high frequency of this mutation in certain populations. Conclusions In the mouse the gene dosage of cftr results in distinct differences in pulmonary mechanics of the adult. Distinct phenotypes were demonstrated in each genotype, cftr-/-, cftr +/-, and cftr+/+. These results are consistent with a developmental role for CFTR in the lung. PMID:15279681

  4. Plasmacytoid dendritic cells alter the antitumor activity of CpG-oligodeoxynucleotides in a mouse model of lung carcinoma.

    PubMed

    Sorrentino, Rosalinda; Morello, Silvana; Luciano, Antonio; Crother, Timothy R; Maiolino, Piera; Bonavita, Eduardo; Arra, Claudio; Adcock, Ian M; Arditi, Moshe; Pinto, Aldo

    2010-10-15

    The effect of CpG-oligodeoxynucleotides (CpG) has been studied on a number of tumors. Although CpG may facilitate tumor regression in mouse models of melanoma, its activity in lung cancer is unclear. The aim of our study was to elucidate the effect of CpG (0.5-50 μg/mouse) in a mouse model of Lewis lung carcinoma cell-induced lung cancer. Lung tumor growth increased at 3 and 7 d after a single administration of CpG. This was associated with a greater influx of plasmacytoid dendritic cells (pDCs), immature myeloid dendritic cells, and greater recruitment of regulatory T cells. Depletion of pDCs using a specific Ab (m927) reversed the immune-suppressive environment and resulted in a decreased lung tumor burden, accompanied by a greater influx of active myeloid dendritic cells and CD8(+) T cells, and a higher production of Th1- and Th17-like cytokines. Furthermore, the rate of apoptosis in the lungs of mice treated with CpG increased following the depletion of pDCs. CpG treatment alone does not lead to tumor regression in the lung. However, ablation of pDCs renders CpG a good adjuvant for lung cancer chemotherapy in this experimental model.

  5. Transplacental arsenic carcinogenesis in mice

    SciTech Connect

    Waalkes, Michael P. Liu, Jie; Diwan, Bhalchandra A.

    2007-08-01

    Our work has focused on the carcinogenic effects of in utero arsenic exposure in mice. Our data show that a short period of maternal exposure to inorganic arsenic in the drinking water is an effective, multi-tissue carcinogen in the adult offspring. These studies have been reproduced in three temporally separate studies using two different mouse strains. In these studies pregnant mice were treated with drinking water containing sodium arsenite at up to 85 ppm arsenic from days 8 to 18 of gestation, and the offspring were observed for up to 2 years. The doses used in all these studies were well tolerated by both the dam and offspring. In C3H mice, two separate studies show male offspring exposed to arsenic in utero developed liver carcinoma and adrenal cortical adenoma in a dose-related fashion during adulthood. Prenatally exposed female C3H offspring show dose-related increases in ovarian tumors and lung carcinoma and in proliferative lesions (tumors plus preneoplastic hyperplasia) of the uterus and oviduct. In addition, prenatal arsenic plus postnatal exposure to the tumor promoter, 12-O-tetradecanoyl phorbol-13-acetate (TPA) in C3H mice produces excess lung tumors in both sexes and liver tumors in females. Male CD1 mice treated with arsenic in utero develop tumors of the liver and adrenal and renal hyperplasia while females develop tumors of urogenital system, ovary, uterus and adrenal and hyperplasia of the oviduct. Additional postnatal treatment with diethylstilbestrol or tamoxifen after prenatal arsenic in CD1 mice induces urinary bladder transitional cell proliferative lesions, including carcinoma and papilloma, and enhances the carcinogenic response in the liver of both sexes. Overall this model has provided convincing evidence that arsenic is a transplacental carcinogen in mice with the ability to target tissues of potential human relevance, such as the urinary bladder, lung and liver. Transplacental carcinogenesis clearly occurs with other agents in humans

  6. Cell-specific oxidative stress and cytotoxicity after wildfire coarse particulate matter instillation into mouse lung

    SciTech Connect

    Williams, Keisha M.; Franzi, Lisa M.; Last, Jerold A.

    2013-01-01

    Our previous work has shown that coarse particulate matter (PM{sub 10-2.5}) from wildfire smoke is more toxic to lung macrophages on an equal dose (by mass) basis than coarse PM isolated from normal ambient air, as evidenced by decreased numbers of macrophages in lung lavage fluid 6 and 24 hours after PM instillation into mouse lungs in vivo and by cytotoxicity to a macrophage cell line observed directly in vitro. We hypothesized that pulmonary macrophages from mice instilled with wildfire coarse PM would undergo more cytotoxicity than macrophages from controls, and that there would be an increase in oxidative stress in their lungs. Cytotoxicity was quantified as decreased viable macrophages and increased percentages of dead macrophages in the bronchoalveolar lavage fluid (BALF) of mice instilled with wildfire coarse PM. At 1 hour after PM instillation, we observed both decreased numbers of viable macrophages and increased dead macrophage percentages as compared to controls. An increase in free isoprostanes, an indicator of oxidative stress, from control values of 28.1 ± 3.2 pg/mL to 83.9 ± 12.2 pg/mL was observed a half-hour after PM instillation. By 1 hour after PM instillation, isoprostane values had returned to 30.4 ± 7.6 pg/mL, not significantly different from control concentrations. Lung sections from mice instilled with wildfire coarse PM showed rapid Clara cell responses, with decreased intracellular staining for the Clara cell secretory protein CCSP 1 hour after wildfire PM instillation. In conclusion, very rapid cytotoxicity occurs in pulmonary macrophages and oxidative stress responses are seen 0.5–1 hour after wildfire coarse PM instillation. These results define early cellular and biochemical events occurring in vivo and support the hypothesis that oxidative stress-mediated macrophage toxicity plays a key role in the initial response of the mouse lung to wildfire PM exposure. -- Highlights: ► We studied very early events (0.5–1 hour) after

  7. Viral Carcinogenesis.

    PubMed

    Smith, A J; Smith, L A

    2016-01-01

    Cancer has been recognized for thousands of years. Egyptians believed that cancer occurred at the will of the gods. Hippocrates believed human disease resulted from an imbalance of the four humors: blood, phlegm, yellow bile, and black bile with cancer being caused by excess black bile. The lymph theory of cancer replaced the humoral theory and the blastema theory replaced the lymph theory. Rudolph Virchow was the first to recognize that cancer cells like all cells came from other cells and believed chronic irritation caused cancer. At the same time there was a belief that trauma caused cancer, though it never evolved after many experiments inducing trauma. The birth of virology occurred in 1892 when Dimitri Ivanofsky demonstrated that diseased tobacco plants remained infective after filtering their sap through a filter that trapped bacteria. Martinus Beijerinck would call the tiny infective agent a virus and both Dimitri Ivanofsky and Marinus Beijerinck would become the fathers of virology. Not to long thereafter, Payton Rous founded the field of tumor virology in 1911 with his discovery of a transmittable sarcoma of chickens by what would come to be called Rous sarcoma virus or RSV for short. The first identified human tumor virus was the Epstein-Barr virus (EBV), named after Tony Epstein and Yvonne Barr who visualized the virus particles in Burkitt's lymphoma cells by electron microscopy in 1965. Since that time, many viruses have been associated with carcinogenesis including the most studied, human papilloma virus associated with cervical carcinoma, many other anogenital carcinomas, and oropharyngeal carcinoma. The World Health Organization currently estimates that approximately 22% of worldwide cancers are attributable to infectious etiologies, of which viral etiologies is estimated at 15-20%. The field of tumor virology/viral carcinogenesis has not only identified viruses as etiologic agents of human cancers, but has also given molecular insights to all human

  8. Impaired Pulmonary Defense Against Pseudomonas aeruginosa in VEGF Gene Inactivated Mouse Lung

    PubMed Central

    Breen, Ellen C.; Malloy, Jaret L.; Tang, Kechun; Xia, Feng; Fu, Zhenxing; Hancock, Robert E. W.; Overhage, Joerg; Wagner, Peter D.; Spragg, Roger G.

    2012-01-01

    Repeated bacterial and viral infections are known to contribute to worsening lung function in several respiratory diseases, including asthma, cystic fibrosis and chronic obstructive pulmonary disease (COPD). Previous studies have reported alveolar wall cell apoptosis and parenchymal damage in adult pulmonary VEGF gene ablated mice. We hypothesized that VEGF expressed by type II cells is also necessary to provide an effective host defense against bacteria in part by maintaining surfactant homeostasis. Therefore, Pseudomonas aeruginosa (PAO1) levels were evaluated in mice following lung-targeted VEGF gene inactivation, and alterations in VEGF-dependent type II cell function were evaluated by measuring surfactant homeostasis in mouse lungs and isolated type II cells. In VEGF-deficient lungs increased PAO1 levels and pro-inflammatory cytokines, TNFα and IL-6, were detected 24 hours after bacterial instillation compared to control lungs. In vivo lung-targeted VEGF gene deletion (57% decrease in total pulmonary VEGF) did not alter alveolar surfactant or tissue disaturated phosphatidylcholine (DSPC) levels. However, sphingomyelin content, choline phosphate cytidylyltransferase (CCT) mRNA and SP-D expression were decreased. In isolated type II cells an 80% reduction of VEGF protein resulted in decreases in total phospholipids (PL), DSPC, DSPC synthesis, surfactant associated proteins (SP)-B and -D, and the lipid transporters, ABCA1 and Rab3D. TPA-induced DSPC secretion and apoptosis were elevated in VEGF-deficient type II cells. These results suggest a potential protective role for type II cell-expressed VEGF against bacterial initiated infection. PMID:22718316

  9. High Inorganic Phosphate Intake Promotes Tumorigenesis at Early Stages in a Mouse Model of Lung Cancer

    PubMed Central

    Lee, Somin; Kim, Ji-Eun; Hong, Seong-Ho; Lee, Ah-Young; Park, Eun-Jung; Seo, Hwi Won; Chae, Chanhee; Doble, Philip; Bishop, David; Cho, Myung-Haing

    2015-01-01

    Inorganic phosphate (Pi) is required by all living organisms for the development of organs such as bone, muscle, brain, and lungs, regulating the expression of several critical genes as well as signal transduction. However, little is known about the effects of prolonged dietary Pi consumption on lung cancer progression. This study investigated the effects of a high-phosphate diet (HPD) in a mouse model of adenocarcinoma. K-rasLA1 mice were fed a normal diet (0.3% Pi) or an HPD (1% Pi) for 1, 2, or 4 months. Mice were then sacrificed and subjected to inductively coupled plasma mass/optical emission spectrometry and laser ablation inductively coupled plasma mass-spectrometry analyses, western blot analysis, histopathological, immunohistochemical, and immunocytochemical analyses to evaluate tumor formation and progression (including cell proliferation, angiogenesis, and apoptosis), changes in ion levels and metabolism, autophagy, epithelial-to-mesenchymal transition, and protein translation in the lungs. An HPD accelerated tumorigenesis, as evidenced by increased adenoma and adenocarcinoma rates as well as tumor size. However, after 4 months of the HPD, cell proliferation was arrested, and marked increases in liver and lung ion levels and in energy production via the tricarboxylic acid cycle in the liver were observed, which were accompanied by increased autophagy and decreased angiogenesis and apoptosis. These results indicate that an HPD initially promotes but later inhibits lung cancer progression because of metabolic adaptation leading to tumor cell quiescence. Moreover, the results suggest that carefully regulated Pi consumption are effective in lung cancer prevention. PMID:26285136

  10. Vasodilator-Stimulated Phosphoprotein Deficiency Potentiates PAR-1-induced Increase in Endothelial Permeability in Mouse Lungs

    PubMed Central

    Profirovic, Jasmina; Han, Jingyan; Andreeva, Alexandra V.; Neamu, Radu F.; Pavlovic, Sasha; Vogel, Stephen M.; Walter, Ulrich; Voyno-Yasenetskaya, Tatyana A.

    2010-01-01

    Vasodilator-stimulated phosphoprotein (VASP) is implicated in the protection of the endothelial barrier in vitro and in vivo. VASP function in thrombin signaling in the endothelial cells (ECs) is not known. For the first time we studied the effects of VASP deficiency on EC permeability and pulmonary vascular permeability in response to thrombin receptor stimulation. We provided the evidence that VASP deficiency potentiates the increase in endothelial permeability induced by activation of thrombin receptor in cultured human umbilical vein endothelial cells (HUVECs) and isolated mouse lungs. Using transendothelial resistance measurement, we showed that siRNA-mediated VASP downregulation in HUVECs leads to a potentiation of thrombin- and protease-activated receptor 1 (PAR-1) agonist-induced increase in endothelial permeability. Compared to control cells, VASP-deficient HUVECs had delayed endothelial junctional reassembly and abrogated VE-cadherin cytoskeletal anchoring in the recovery phase after thrombin stimulation, as demonstrated by immunofluorescence studies and cell fractionation analysis, respectively. Measurement of the capillary filtration coefficient in isolated mouse lungs demonstrated that VASP−/− mice have increased microvascular permeability in response to infusion with PAR-1 agonist compared to wild type mice. Lack of VASP led to decreased Rac1 activation both in VASP-deficient HUVECs after thrombin stimulation and VASP−/− mouse lungs after PAR-1 agonist infusion, indicating that VASP effects on thrombin signaling may correlated with changes in Rac1 activity. This study demonstrates that VASP may play critical and complex role in the regulation of thrombin-dependent disruption of the endothelial barrier function. PMID:20945373

  11. Autocrine growth factors are involved in branching morphogenesis of mouse lung epithelium.

    PubMed

    Okada, Kimiko; Noda, Masatsugu; Nogawa, Hiroyuki

    2013-01-01

    The current model for branching morphogenesis of mouse lung proposes that the epithelium bifurcates as cells pursue separate sources of fibroblast growth factor (FGF) 10, secreted from mesenchymal tissue through interactions with epithelial tissue. If so, it may be assumed that the lung epithelium will grow into a uniform, expanding ball (without branching) when uniformly exposed to a constant concentration of FGF10. To test this hypothesis, we cultured Matrigel-embedded lung epithelium explants in FGF10-supplemented medium while shaking the culture dishes. Shaking cultures with FGF10 resulted in inferior epithelial branching compared to control cultures at rest. However, this effect was unexpectedly accompanied by poor growth rather than by ball-like expansion. When using FGF1, epithelial cultures grew and branched similarly well under either culture condition. Thus, we hypothesized that FGF10 signaling must be mediated by autocrine FGFs, such as FGF1, which might easily diffuse through the culture medium in the shaking culture. Reverse transcription-polymerase chain reaction analyses showed that FGF9 as well as FGF1 were expressed in the epithelium in vivo and in FGF10-stimulated epithelium in vitro, and FGF9 induced epithelial branching at a much lower concentration than FGF10. These results suggest that FGF1 and FGF9 may mediate FGF10 signaling and induce branching in the lung epithelium via autocrine signaling.

  12. Evaluation of Lung Metastasis in Mouse Mammary Tumor Models by Quantitative Real-time PCR

    PubMed Central

    Abt, Melissa A.; Grek, Christina L.; Ghatnekar, Gautam S.; Yeh, Elizabeth S.

    2016-01-01

    Metastatic disease is the spread of malignant tumor cells from the primary cancer site to a distant organ and is the primary cause of cancer associated death 1. Common sites of metastatic spread include lung, lymph node, brain, and bone 2. Mechanisms that drive metastasis are intense areas of cancer research. Consequently, effective assays to measure metastatic burden in distant sites of metastasis are instrumental for cancer research. Evaluation of lung metastases in mammary tumor models is generally performed by gross qualitative observation of lung tissue following dissection. Quantitative methods of evaluating metastasis are currently limited to ex vivo and in vivo imaging based techniques that require user defined parameters. Many of these techniques are at the whole organism level rather than the cellular level 3–6. Although newer imaging methods utilizing multi-photon microscopy are able to evaluate metastasis at the cellular level 7, these highly elegant procedures are more suited to evaluating mechanisms of dissemination rather than quantitative assessment of metastatic burden. Here, a simple in vitro method to quantitatively assess metastasis is presented. Using quantitative Real-time PCR (QRT-PCR), tumor cell specific mRNA can be detected within the mouse lung tissue. PMID:26862835

  13. Evaluation of Lung Metastasis in Mouse Mammary Tumor Models by Quantitative Real-time PCR.

    PubMed

    Abt, Melissa A; Grek, Christina L; Ghatnekar, Gautam S; Yeh, Elizabeth S

    2016-01-29

    Metastatic disease is the spread of malignant tumor cells from the primary cancer site to a distant organ and is the primary cause of cancer associated death. Common sites of metastatic spread include lung, lymph node, brain, and bone. Mechanisms that drive metastasis are intense areas of cancer research. Consequently, effective assays to measure metastatic burden in distant sites of metastasis are instrumental for cancer research. Evaluation of lung metastases in mammary tumor models is generally performed by gross qualitative observation of lung tissue following dissection. Quantitative methods of evaluating metastasis are currently limited to ex vivo and in vivo imaging based techniques that require user defined parameters. Many of these techniques are at the whole organism level rather than the cellular level. Although newer imaging methods utilizing multi-photon microscopy are able to evaluate metastasis at the cellular level, these highly elegant procedures are more suited to evaluating mechanisms of dissemination rather than quantitative assessment of metastatic burden. Here, a simple in vitro method to quantitatively assess metastasis is presented. Using quantitative Real-time PCR (QRT-PCR), tumor cell specific mRNA can be detected within the mouse lung tissue.

  14. Proteomic Study of Differential Protein Expression in Mouse Lung Tissues after Aerosolized Ricin Poisoning

    PubMed Central

    Guo, Zhendong; Han, Chao; Du, Jiajun; Zhao, Siyan; Fu, Yingying; Zheng, Guanyu; Sun, Yucheng; Zhang, Yi; Liu, Wensen; Wan, Jiayu; Qian, Jun; Liu, Linna

    2014-01-01

    Ricin is one of the most poisonous natural toxins from plants and is classified as a Class B biological threat pathogen by the Centers for Disease Control and Prevention (CDC) of U.S.A. Ricin exposure can occur through oral or aerosol routes. Ricin poisoning has a rapid onset and a short incubation period. There is no effective treatment for ricin poisoning. In this study, an aerosolized ricin-exposed mouse model was developed and the pathology was investigated. The protein expression profile in the ricin-poisoned mouse lung tissue was analyzed using proteomic techniques to determine the proteins that were closely related to the toxicity of ricin. 2D gel electrophoresis, mass spectrometry and subsequent biological functional analysis revealed that six proteins including Apoa1 apolipoprotein, Ywhaz 14-3-3 protein, Prdx6 Uncharacterized Protein, Selenium-binding protein 1, HMGB1, and DPYL-2, were highly related to ricin poisoning. PMID:24786090

  15. Proteomic study of differential protein expression in mouse lung tissues after aerosolized ricin poisoning.

    PubMed

    Guo, Zhendong; Han, Chao; Du, Jiajun; Zhao, Siyan; Fu, Yingying; Zheng, Guanyu; Sun, Yucheng; Zhang, Yi; Liu, Wensen; Wan, Jiayu; Qian, Jun; Liu, Linna

    2014-04-28

    Ricin is one of the most poisonous natural toxins from plants and is classified as a Class B biological threat pathogen by the Centers for Disease Control and Prevention (CDC) of U.S.A. Ricin exposure can occur through oral or aerosol routes. Ricin poisoning has a rapid onset and a short incubation period. There is no effective treatment for ricin poisoning. In this study, an aerosolized ricin-exposed mouse model was developed and the pathology was investigated. The protein expression profile in the ricin-poisoned mouse lung tissue was analyzed using proteomic techniques to determine the proteins that were closely related to the toxicity of ricin. 2D gel electrophoresis, mass spectrometry and subsequent biological functional analysis revealed that six proteins including Apoa1 apolipoprotein, Ywhaz 14-3-3 protein, Prdx6 Uncharacterized Protein, Selenium-binding protein 1, HMGB1, and DPYL-2, were highly related to ricin poisoning.

  16. Carbon black nanoparticle instillation induces sustained inflammation and genotoxicity in mouse lung and liver

    PubMed Central

    2012-01-01

    Background Widespread occupational exposure to carbon black nanoparticles (CBNPs) raises concerns over their safety. CBNPs are genotoxic in vitro but less is known about their genotoxicity in various organs in vivo. Methods We investigated inflammatory and acute phase responses, DNA strand breaks (SB) and oxidatively damaged DNA in C57BL/6 mice 1, 3 and 28 days after a single instillation of 0.018, 0.054 or 0.162 mg Printex 90 CBNPs, alongside sham controls. Bronchoalveolar lavage (BAL) fluid was analyzed for cellular composition. SB in BAL cells, whole lung and liver were assessed using the alkaline comet assay. Formamidopyrimidine DNA glycosylase (FPG) sensitive sites were assessed as an indicator of oxidatively damaged DNA. Pulmonary and hepatic acute phase response was evaluated by Saa3 mRNA real-time quantitative PCR. Results Inflammation was strongest 1 and 3 days post-exposure, and remained elevated for the two highest doses (i.e., 0.054 and 0.162 mg) 28 days post-exposure (P < 0.001). SB were detected in lung at all doses on post-exposure day 1 (P < 0.001) and remained elevated at the two highest doses until day 28 (P < 0.05). BAL cell DNA SB were elevated relative to controls at least at the highest dose on all post-exposure days (P < 0.05). The level of FPG sensitive sites in lung was increased throughout with significant increases occurring on post-exposure days 1 and 3, in comparison to controls (P < 0.001-0.05). SB in liver were detected on post-exposure days 1 (P < 0.001) and 28 (P < 0.001). Polymorphonuclear (PMN) cell counts in BAL correlated strongly with FPG sensitive sites in lung (r = 0.88, P < 0.001), whereas no such correlation was observed with SB (r = 0.52, P = 0.08). CBNP increased the expression of Saa3 mRNA in lung tissue on day 1 (all doses), 3 (all doses) and 28 (0.054 and 0.162 mg), but not in liver. Conclusions Deposition of CBNPs in lung induces inflammatory and genotoxic effects in mouse lung that persist considerably after the

  17. Longitudinal assessment of lung cancer progression in the mouse using in vivo micro-CT imaging

    PubMed Central

    Namati, Eman; Thiesse, Jacqueline; Sieren, Jessica C.; Ross, Alan; Hoffman, Eric A.; McLennan, Geoffrey

    2010-01-01

    Purpose: Small animal micro-CT imaging is being used increasingly in preclinical biomedical research to provide phenotypic descriptions of genomic models. Most of this imaging is coincident with animal death and is used to show the extent of disease as an end point. Longitudinal imaging overcomes the limitation of single time-point imaging because it enables tracking of the natural history of disease and provides qualitative and, where possible, quantitative assessments of the effects of an intervention. The pulmonary system is affected by many disease conditions, such as lung cancer, chronic obstructive pulmonary disease, asthma, and granulomatous disorders. Noninvasive imaging can accurately assess the lung phenotype within the living animal, evaluating not only global lung measures, but also regional pathology. However, imaging the lung in the living animal is complicated by rapid respiratory motion, which leads to image based artifacts. Furthermore, no standard mouse lung imaging protocols exist for longitudinal assessment, with each group needing to develop their own systematic approach. Methods: In this article, the authors present an outline for performing longitudinal breath-hold gated micro-CT imaging for the assessment of lung nodules in a mouse model of lung cancer. The authors describe modifications to the previously published intermittent isopressure breath-hold technique including a new animal preparation and anesthesia protocol, implementation of a ring artifact reduction, variable scanner geometry, and polynomial beam hardening correction. In addition, the authors describe a multitime-point data set registration and tumor labeling and tracking strategy. Results:In vivo micro-CT data sets were acquired at months 2, 3, and 4 posturethane administration in cancer mice (n=5) and simultaneously in control mice (n=3). 137 unique lung nodules were identified from the cancer mice while no nodules were detected in the control mice. A total of 411 nodules

  18. Mechanisms of cadmium carcinogenesis

    SciTech Connect

    Joseph, Pius

    2009-08-01

    Cadmium (Cd), a heavy metal of considerable occupational and environmental concern, has been classified as a human carcinogen by the International Agency for Research on Cancer (IARC). The carcinogenic potential of Cd as well as the mechanisms underlying carcinogenesis following exposure to Cd has been studied using in vitro cell culture and in vivo animal models. Exposure of cells to Cd results in their transformation. Administration of Cd in animals results in tumors of multiple organs/tissues. Also, a causal relationship has been noticed between exposure to Cd and the incidence of lung cancer in human. It has been demonstrated that Cd induces cancer by multiple mechanisms and the most important among them are aberrant gene expression, inhibition of DNA damage repair, induction of oxidative stress, and inhibition of apoptosis. The available evidence indicates that, perhaps, oxidative stress plays a central role in Cd carcinogenesis because of its involvement in Cd-induced aberrant gene expression, inhibition of DNA damage repair, and apoptosis.

  19. Phase-contrast zoom tomography reveals precise locations of macrophages in mouse lungs

    PubMed Central

    Krenkel, Martin; Markus, Andrea; Bartels, Matthias; Dullin, Christian; Alves, Frauke; Salditt, Tim

    2015-01-01

    We have performed x-ray phase-contrast tomography on mouse lung tissue. Using a divergent x-ray beam generated by nanoscale focusing, we used zoom tomography to produce three-dimensional reconstructions with selectable magnification, resolution, and field of view. Thus, macroscopic tissue samples extending over several mm can be studied in sub-cellular-level structural detail. The zoom capability and, in particular, the high dose efficiency are enabled by the near-perfect exit wavefront of an optimized x-ray waveguide channel. In combination with suitable phase-retrieval algorithms, challenging radiation-sensitive and low-contrast samples can be reconstructed with minimal artefacts. The dose efficiency of the method is demonstrated by the reconstruction of living macrophages both with and without phagocytized contrast agents. We also used zoom tomography to visualize barium-labelled macrophages in the context of morphological structures in asthmatic and healthy mouse lung tissue one day after intratracheal application. The three-dimensional reconstructions showed that the macrophages predominantly localized to the alveoli, but they were also found in bronchial walls, indicating that these cells might be able to migrate from the lumen of the bronchi through the epithelium. PMID:25966338

  20. Phase-contrast zoom tomography reveals precise locations of macrophages in mouse lungs

    NASA Astrophysics Data System (ADS)

    Krenkel, Martin; Markus, Andrea; Bartels, Matthias; Dullin, Christian; Alves, Frauke; Salditt, Tim

    2015-05-01

    We have performed x-ray phase-contrast tomography on mouse lung tissue. Using a divergent x-ray beam generated by nanoscale focusing, we used zoom tomography to produce three-dimensional reconstructions with selectable magnification, resolution, and field of view. Thus, macroscopic tissue samples extending over several mm can be studied in sub-cellular-level structural detail. The zoom capability and, in particular, the high dose efficiency are enabled by the near-perfect exit wavefront of an optimized x-ray waveguide channel. In combination with suitable phase-retrieval algorithms, challenging radiation-sensitive and low-contrast samples can be reconstructed with minimal artefacts. The dose efficiency of the method is demonstrated by the reconstruction of living macrophages both with and without phagocytized contrast agents. We also used zoom tomography to visualize barium-labelled macrophages in the context of morphological structures in asthmatic and healthy mouse lung tissue one day after intratracheal application. The three-dimensional reconstructions showed that the macrophages predominantly localized to the alveoli, but they were also found in bronchial walls, indicating that these cells might be able to migrate from the lumen of the bronchi through the epithelium.

  1. New Role of Adult Lung c-kit+ Cells in a Mouse Model of Airway Hyperresponsiveness

    PubMed Central

    Cappetta, Donato; Urbanek, Konrad; Esposito, Grazia; Matteis, Maria; Sgambato, Manuela; Tartaglione, Gioia; Rossi, Francesco

    2016-01-01

    Structural changes contribute to airway hyperresponsiveness and airflow obstruction in asthma. Emerging evidence points to the involvement of c-kit+ cells in lung homeostasis, although their potential role in asthma is unknown. Our aim was to isolate c-kit+ cells from normal mouse lungs and to test whether these cells can interfere with hallmarks of asthma in an animal model. Adult mouse GFP-tagged c-kit+ cells, intratracheally delivered in the ovalbumin-induced airway hyperresponsiveness, positively affected airway remodeling and improved airway function. In bronchoalveolar lavage fluid of cell-treated animals, a reduction in the number of inflammatory cells and in IL-4, IL-5, and IL-13 release, along with an increase of IL-10, was observed. In MSC-treated mice, the macrophage polarization to M2-like subset may explain, at least in part, the increment in the level of anti-inflammatory cytokine IL-10. After in vitro stimulation of c-kit+ cells with proinflammatory cytokines, the indoleamine 2,3-dioxygenase and TGFβ were upregulated. These data, together with the increased apoptosis of inflammatory cells in vivo, indicate that c-kit+ cells downregulate immune response in asthma by influencing local environment, possibly by cell-to-cell contact combined to paracrine action. In conclusion, intratracheally administered c-kit+ cells reduce inflammation, positively modulate airway remodeling, and improve function. These data document previously unrecognized properties of c-kit+ cells, able to impede pathophysiological features of experimental airway hyperresponsiveness. PMID:28090152

  2. Phase-contrast zoom tomography reveals precise locations of macrophages in mouse lungs.

    PubMed

    Krenkel, Martin; Markus, Andrea; Bartels, Matthias; Dullin, Christian; Alves, Frauke; Salditt, Tim

    2015-05-12

    We have performed x-ray phase-contrast tomography on mouse lung tissue. Using a divergent x-ray beam generated by nanoscale focusing, we used zoom tomography to produce three-dimensional reconstructions with selectable magnification, resolution, and field of view. Thus, macroscopic tissue samples extending over several mm can be studied in sub-cellular-level structural detail. The zoom capability and, in particular, the high dose efficiency are enabled by the near-perfect exit wavefront of an optimized x-ray waveguide channel. In combination with suitable phase-retrieval algorithms, challenging radiation-sensitive and low-contrast samples can be reconstructed with minimal artefacts. The dose efficiency of the method is demonstrated by the reconstruction of living macrophages both with and without phagocytized contrast agents. We also used zoom tomography to visualize barium-labelled macrophages in the context of morphological structures in asthmatic and healthy mouse lung tissue one day after intratracheal application. The three-dimensional reconstructions showed that the macrophages predominantly localized to the alveoli, but they were also found in bronchial walls, indicating that these cells might be able to migrate from the lumen of the bronchi through the epithelium.

  3. INDUCTION OF DNA ADDUCTS, TUMORS, AND KI-RAS ONCOGENE MUTATIONS IN STRAIN A/J MOUSE LUNG BY IP. ADMINISTRATION OF DIBENZ[A,H]ANTHRACENE

    EPA Science Inventory

    Induction of DNA adducts, tumors, and Ki-ras oncogene mutations in strain AlJ mouse lung by ip. administration of dibenz[a,h]anthracene

    Previous studies of polycyclic aromatic hydrocarbon (P AH) induced lung tumors in the strain NJ mouse model system have demonstrated qua...

  4. Deuterium depleted water effects on survival of lung cancer patients and expression of Kras, Bcl2, and Myc genes in mouse lung.

    PubMed

    Gyöngyi, Zoltán; Budán, Ferenc; Szabó, István; Ember, István; Kiss, István; Krempels, Krisztina; Somlyai, Ildikó; Somlyai, Gábor

    2013-01-01

    Although advances in cancer therapies continue to develop, the shortness of the survival of lung cancer patients is still disappointing. Therefore, finding new adjuvant strategies is within the focus of cancer cure. Based on observations that deuterium depletion inhibits the growth of cancer cell lines and suppresses certain proto-oncogenes, we have conducted a clinical study in 129 patients with small cell and nonsmall cell lung cancers who consumed deuterium-depleted drinking water (DDW) as a nontoxic agent in addition to conventional chemotherapy and radiotherapy. Median survival time (MST) was 25.9 mo in males and 74.1 mo in female patients; the difference between genders was statistically significant (p < 0.05). Median survival of subjects with brain metastasis was 27.1 mo. Cumulative 5-yr survival probabilities were 19%, 52%, and 33% in males, females, and all patients with brain metastasis, respectively. Gene expression analysis in mouse lung indicated that DDW attenuates 7,12-dimethylbenz(a)anthracene (DMBA)-induced expression of Bcl2, Kras, and Myc in females. In conclusion, DDW counteracts the DMBA-induced overexpression of Bcl2, Kras and Myc genes in mouse lung, and it may extend survival of lung cancer patients as a nontoxic anticancer dietary supplement, especially for women with tumors overexpressing cancer-related genes, because MST of DDW-consuming group was 2-4 times longer than it is generally observed in lung cancer patients.

  5. Fetal calcium regulates branching morphogenesis in the developing human and mouse lung: involvement of voltage-gated calcium channels.

    PubMed

    Brennan, Sarah C; Finney, Brenda A; Lazarou, Maria; Rosser, Anne E; Scherf, Caroline; Adriaensen, Dirk; Kemp, Paul J; Riccardi, Daniela

    2013-01-01

    Airway branching morphogenesis in utero is essential for optimal postnatal lung function. In the fetus, branching morphogenesis occurs during the pseudoglandular stage (weeks 9-17 of human gestation, embryonic days (E)11.5-16.5 in mouse) in a hypercalcaemic environment (~1.7 in the fetus vs. ~1.1-1.3 mM for an adult). Previously we have shown that fetal hypercalcemia exerts an inhibitory brake on branching morphogenesis via the calcium-sensing receptor. In addition, earlier studies have shown that nifedipine, a selective blocker of L-type voltage-gated Ca(2+) channels (VGCC), inhibits fetal lung growth, suggesting a role for VGCC in lung development. The aim of this work was to investigate the expression of VGCC in the pseudoglandular human and mouse lung, and their role in branching morphogenesis. Expression of L-type (CaV1.2 and CaV1.3), P/Q type (CaV2.1), N-type (CaV2.2), R-type (CaV2.3), and T-type (CaV3.2 and CaV3.3) VGCC was investigated in paraffin sections from week 9 human fetal lungs and E12.5 mouse embryos. Here we show, for the first time, that Cav1.2 and Cav1.3 are expressed in both the smooth muscle and epithelium of the developing human and mouse lung. Additionally, Cav2.3 was expressed in the lung epithelium of both species. Incubating E12.5 mouse lung rudiments in the presence of nifedipine doubled the amount of branching, an effect which was partly mimicked by the Cav2.3 inhibitor, SNX-482. Direct measurements of changes in epithelial cell membrane potential, using the voltage-sensitive fluorescent dye DiSBAC2(3), demonstrated that cyclic depolarisations occur within the developing epithelium and coincide with rhythmic occlusions of the lumen, driven by the naturally occurring airway peristalsis. We conclude that VGCC are expressed and functional in the fetal human and mouse lung, where they play a role in branching morphogenesis. Furthermore, rhythmic epithelial depolarisations evoked by airway peristalsis would allow for branching to match

  6. Gene expression profiling in the lung and liver of PFOA-exposed mouse fetuses.

    PubMed

    Rosen, Mitchell B; Thibodeaux, Julie R; Wood, Carmen R; Zehr, Robert D; Schmid, Judith E; Lau, Christopher

    2007-09-24

    Perfluorooctanoic acid (PFOA) is a stable perfluoroalkyl acid used to synthesize fluoropolymers during the manufacture of a wide variety of products. Concerns have been raised over the potential health effects of PFOA because it is persistent in the environment and can be detected in blood and other tissues of many animal species, including humans. PFOA has also been shown to induce growth deficits and mortality in murine neonates. To better understand the mechanism of PFOA induced developmental toxicity, lung and liver gene expression profiling was conducted in PFOA-exposed full-term mouse fetuses. Thirty timed-pregnant CD-1 mice were orally dosed from gestation days 1-17 with either 0, 1, 3, 5, or 10mg/(kgday) PFOA in water. At term, fetal lung and liver were collected, total RNA prepared, and samples pooled from three fetuses per litter. Five biological replicates consisting of individual litter samples were then evaluated for each treatment group using Affymetrix mouse 430_2 microarrays. The expression of genes related to fatty acid catabolism was altered in both the fetal liver and lung. In the fetal liver, the effects of PFOA were robust and also included genes associated with lipid transport, ketogenesis, glucose metabolism, lipoprotein metabolism, cholesterol biosynthesis, steroid metabolism, bile acid biosynthesis, phospholipid metabolism, retinol metabolism, proteosome activation, and inflammation. These changes are consistent with transactivation of PPARalpha, although, with regard to bile acid biosynthesis and glucose metabolism, non-PPARalpha related effects were suggested as well. Additional studies will be needed to more thoroughly address the role of PPARalpha, and other nuclear receptors, in PFOA mediated developmental toxicity.

  7. Enhanced reseeding of decellularized rodent lungs with mouse embryonic stem cells

    PubMed Central

    Lecht, Shimon; Stabler, Collin T.; Rylander, Alexis L.; Chiaverelli, Rachel; Schulman, Edward S.; Marcinkiewicz, Cezary; Lelkes, Peter I.

    2016-01-01

    Repopulation of decellularized lung scaffolds (DLS) is limited due to alterations in the repertoire and ratios of the residual extracellular matrix (ECM) proteins, characterized by e.g., the retention of type I collagen and loss of glycoproteins. We hypothesized that pre-treatment of decellularized matrices with defined ECM proteins, which match the repertoire of integrin receptors expressed by the cells to be seeded (e.g., embryonic stem cells) can increase the efficacy of the reseeding process. To test this hypothesis, we first determined the integrin receptors profile of mouse embryonic stem cells (mESCs). Mouse ESCs express α3, α5, α6, α9 and β1, but not α1, α2 and α4 integrin subunits, as established by Western blotting and adhesion to laminin and fibronectin, but not to collagens type I and IV. Reseeding of DLS with mESCs was inefficient (6.9 ± 0.5%), but was significantly enhanced (2.3 ± 0.1 fold) by pre-treating the scaffolds with media conditioned by A549 human lung adenocarcinoma cells, which we found to contain ~5 μg/ml laminin. Furthermore, pre-treatment with A549-conditioned media resulted in a significantly more uniform distribution of the seeded mESCs throughout the engineered organ as compared to untreated DLS. Our study may advance whole lung engineering by stressing the importance of matching the integrin receptor repertoire of the seeded cells and the cell binding motifs of DLS. PMID:24439414

  8. In Vivo Measurements of T2 Relaxation Time of Mouse Lungs during Inspiration and Expiration

    PubMed Central

    Hockings, Paul D.

    2016-01-01

    Purpose The interest in measurements of magnetic resonance imaging relaxation times, T1, T2, T2*, with intention to characterize healthy and diseased lungs has increased recently. Animal studies play an important role in this context providing models for understanding and linking the measured relaxation time changes to the underlying physiology or disease. The aim of this work was to study how the measured transversal relaxation time (T2) in healthy lungs is affected by normal respiration in mouse. Method T2 of lung was measured in anaesthetized freely breathing mice. Image acquisition was performed on a 4.7 T, Bruker BioSpec with a multi spin-echo sequence (Car-Purcell-Meiboom-Gill) in both end-expiration and end-inspiration. The echo trains consisted of ten echoes of inter echo time 3.5 ms or 4.0 ms. The proton density, T2 and noise floor were fitted to the measured signals of the lung parenchyma with a Levenberg-Marquardt least-squares three-parameter fit. Results T2 in the lungs was longer (p<0.01) at end-expiration (9.7±0.7 ms) than at end-inspiration (9.0±0.8 ms) measured with inter-echo time 3.5 ms. The corresponding relative proton density (lung/muscle tissue) was higher (p<0.001) during end-expiration, (0.61±0.06) than during end-inspiration (0.48±0.05). The ratio of relative proton density at end-inspiration to that at end-expiration was 0.78±0.09. Similar results were found for inter-echo time 4.0 ms and there was no significant difference between the T2 values or proton densities acquired with different interecho times. The T2 value increased linearly (p< 0.001) with proton density. Conclusion The measured T2 in-vivo is affected by diffusion across internal magnetic susceptibility gradients. In the lungs these gradients are modulated by respiration, as verified by calculations. In conclusion the measured T2 was found to be dependent on the size of the alveoli. PMID:27936061

  9. Longitudinal micro-CT provides biomarkers of lung disease that can be used to assess the effect of therapy in preclinical mouse models, and reveal compensatory changes in lung volume.

    PubMed

    Vande Velde, Greetje; Poelmans, Jennifer; De Langhe, Ellen; Hillen, Amy; Vanoirbeek, Jeroen; Himmelreich, Uwe; Lories, Rik J

    2016-01-01

    In vivo lung micro-computed tomography (micro-CT) is being increasingly embraced in pulmonary research because it provides longitudinal information on dynamic disease processes in a field in which ex vivo assessment of experimental disease models is still the gold standard. To optimize the quantitative monitoring of progression and therapy of lung diseases, we evaluated longitudinal changes in four different micro-CT-derived biomarkers [aerated lung volume, lung tissue (including lesions) volume, total lung volume and mean lung density], describing normal development, lung infections, inflammation, fibrosis and therapy. Free-breathing mice underwent micro-CT before and repeatedly after induction of lung disease (bleomycin-induced fibrosis, invasive pulmonary aspergillosis, pulmonary cryptococcosis) and therapy (imatinib). The four lung biomarkers were quantified. After the last time point, we performed pulmonary function tests and isolated the lungs for histology. None of the biomarkers remained stable during longitudinal follow-up of adult healthy mouse lungs, implying that biomarkers should be compared with age-matched controls upon intervention. Early inflammation and progressive fibrosis led to a substantial increase in total lung volume, which affects the interpretation of aerated lung volume, tissue volume and mean lung density measures. Upon treatment of fibrotic lung disease, the improvement in aerated lung volume and function was not accompanied by a normalization of the increased total lung volume. Significantly enlarged lungs were also present in models of rapidly and slowly progressing lung infections. The data suggest that total lung volume changes could partly reflect a compensatory mechanism that occurs during disease progression in mice. Our findings underscore the importance of quantifying total lung volume in addition to aerated lung or lesion volumes to accurately document growth and potential compensatory mechanisms in mouse models of lung

  10. Strain-dependent Damage in Mouse Lung After Carbon Ion Irradiation

    SciTech Connect

    Moritake, Takashi; Fujita, Hidetoshi; Yanagisawa, Mitsuru; Nakawatari, Miyako; Imadome, Kaori; Nakamura, Etsuko; Iwakawa, Mayumi; Imai, Takashi

    2012-09-01

    Purpose: To examine whether inherent factors produce differences in lung morbidity in response to carbon ion (C-ion) irradiation, and to identify the molecules that have a key role in strain-dependent adverse effects in the lung. Methods and Materials: Three strains of female mice (C3H/He Slc, C57BL/6J Jms Slc, and A/J Jms Slc) were locally irradiated in the thorax with either C-ion beams (290 MeV/n, in 6 cm spread-out Bragg peak) or with {sup 137}Cs {gamma}-rays as a reference beam. We performed survival assays and histologic examination of the lung with hematoxylin-eosin and Masson's trichrome staining. In addition, we performed immunohistochemical staining for hyaluronic acid (HA), CD44, and Mac3 and assayed for gene expression. Results: The survival data in mice showed a between-strain variance after C-ion irradiation with 10 Gy. The median survival time of C3H/He was significantly shortened after C-ion irradiation at the higher dose of 12.5 Gy. Histologic examination revealed early-phase hemorrhagic pneumonitis in C3H/He and late-phase focal fibrotic lesions in C57BL/6J after C-ion irradiation with 10 Gy. Pleural effusion was apparent in C57BL/6J and A/J mice, 168 days after C-ion irradiation with 10 Gy. Microarray analysis of irradiated lung tissue in the three mouse strains identified differential expression changes in growth differentiation factor 15 (Gdf15), which regulates macrophage function, and hyaluronan synthase 1 (Has1), which plays a role in HA metabolism. Immunohistochemistry showed that the number of CD44-positive cells, a surrogate marker for HA accumulation, and Mac3-positive cells, a marker for macrophage infiltration in irradiated lung, varied significantly among the three mouse strains during the early phase. Conclusions: This study demonstrated a strain-dependent differential response in mice to C-ion thoracic irradiation. Our findings identified candidate molecules that could be implicated in the between-strain variance to early

  11. Atorvastatin and Simvastatin Promoted Mouse Lung Repair After Cigarette Smoke-Induced Emphysema.

    PubMed

    Pinho-Ribeiro, Vanessa; Melo, Adriana Correa; Kennedy-Feitosa, Emanuel; Graca-Reis, Adriane; Barroso, Marina Valente; Cattani-Cavalieri, Isabella; Carvalho, Giovanna Marcella Cavalcante; Zin, Walter Araújo; Porto, Luis Cristóvão; Gitirana, Lycia Brito; Lanzetti, Manuella; Valença, Samuel Santos

    2017-03-01

    Cigarette smoke (CS) induces pulmonary emphysema by inflammation, oxidative stress, and metalloproteinase (MMP) activation. Pharmacological research studies have not focused on tissue repair after the establishment of emphysema but have instead focused on inflammatory stimulation. The aim of our study was to analyze the effects of atorvastatin and simvastatin on mouse lung repair after emphysema caused by CS. Male mice (C57BL/6, n = 45) were divided into the following groups: control (sham-exposed), CSr (mice exposed to 12 cigarettes a day for 60 days and then treated for another 60 days with the vehicle), CSr+A (CSr mice treated with atorvastatin for 60 days), and CSr+S (CSr mice treated with simvastatin for 60 days). The treatment with atorvastatin and simvastatin was administered via inhalation (15 min with 1 mg/mL once a day). Mice were sacrificed 24 h after the completion of the 120-day experimental procedure. We performed biochemical, morphological, and physiological analyses. We observed decreased levels of leukocytes and cytokines in statin-treated mice, accompanied by a reduction in oxidative stress markers. We also observed a morphological improvement confirmed by a mean linear intercept counting in statin-treated mice. Finally, statins also ameliorated lung function. We conclude that inhaled atorvastatin and simvastatin improved lung repair after cigarette smoke-induced emphysema in mice.

  12. Mutational landscape of EGFR-, MYC-, and Kras-driven genetically engineered mouse models of lung adenocarcinoma

    PubMed Central

    McFadden, David G.; Politi, Katerina; Bhutkar, Arjun; Chen, Frances K.; Song, Xiaoling; Pirun, Mono; Santiago, Philip M.; Kim-Kiselak, Caroline; Platt, James T.; Lee, Emily; Hodges, Emily; Rosebrock, Adam P.; Bronson, Roderick T.; Socci, Nicholas D.; Hannon, Gregory J.; Jacks, Tyler; Varmus, Harold

    2016-01-01

    Genetically engineered mouse models (GEMMs) of cancer are increasingly being used to assess putative driver mutations identified by large-scale sequencing of human cancer genomes. To accurately interpret experiments that introduce additional mutations, an understanding of the somatic genetic profile and evolution of GEMM tumors is necessary. Here, we performed whole-exome sequencing of tumors from three GEMMs of lung adenocarcinoma driven by mutant epidermal growth factor receptor (EGFR), mutant Kirsten rat sarcoma viral oncogene homolog (Kras), or overexpression of MYC proto-oncogene. Tumors from EGFR- and Kras-driven models exhibited, respectively, 0.02 and 0.07 nonsynonymous mutations per megabase, a dramatically lower average mutational frequency than observed in human lung adenocarcinomas. Tumors from models driven by strong cancer drivers (mutant EGFR and Kras) harbored few mutations in known cancer genes, whereas tumors driven by MYC, a weaker initiating oncogene in the murine lung, acquired recurrent clonal oncogenic Kras mutations. In addition, although EGFR- and Kras-driven models both exhibited recurrent whole-chromosome DNA copy number alterations, the specific chromosomes altered by gain or loss were different in each model. These data demonstrate that GEMM tumors exhibit relatively simple somatic genotypes compared with human cancers of a similar type, making these autochthonous model systems useful for additive engineering approaches to assess the potential of novel mutations on tumorigenesis, cancer progression, and drug sensitivity. PMID:27702896

  13. Characterization of FGF family growth factors concerning branching morphogenesis of mouse lung epithelium.

    PubMed

    Goto, Asami; Yamazaki, Naohiro; Nogawa, Hiroyuki

    2014-05-01

    Mouse lung rudiments express eight members of fibroblast growth factor (FGF) family genes from embryonic day 10 (E10) to E13. Some of these are expressed in either the epithelium or mesenchyme, while others are expressed in both. Incorporating the results of our previous study, we characterized the branch-inducing activities of all of FGFs expressed in the early lung rudiment. Of these, FGF1, FGF2, FGF7, FGF9 and FGF10 induced branching morphogenesis in Matrigel-embedded E11 epithelium, and their effective concentrations varied (10 nM, 10 nM, 3 nM, 1 nM, and 100 nM, respectively). Whereas shaking culture dishes containing medium supplemented with FGF7 or FGF10 showed reduced branching morphogenesis, those supplemented with FGF1, FGF2, or FGF9 did not, suggesting the involvement of autocrine growth factor(s) in branching morphogenesis induced by FGF7 or FGF10. In the presence of heparin, a well-known activator of FGF signaling, cystic morphology with lumen expansion was observed in cultures containing FGF1, FGF7, or FGF10, but growth arrest was observed in cultures containing FGF2 or FGF9. These results indicate that several paracrine and autocrine FGFs function during branching morphogenesis of lung epithelium.

  14. Toxoplasma gondii tachyzoite-infected peripheral blood mononuclear cells are enriched in mouse lungs and liver.

    PubMed

    Unno, Akihiro; Kachi, Seira; Batanova, Tatiana A; Ohno, Tamio; Elhawary, Nagwa; Kitoh, Katsuya; Takashima, Yasuhiro

    2013-06-01

    The intracellular parasite Toxoplasma gondii is thought to disseminate throughout the host by circulation of tachyzoite-infected leukocytes in the blood, and adherence and migration of such leukocytes into solid tissues. However, it is unclear whether T. gondii-infected leukocytes can migrate to solid organs via the general circulation. In this study, we developed a real-time quantitative PCR (qRT-PCR) method to determine the rate of infection of peripheral blood mononuclear cells (PBMCs) flowing into and remaining within solid organs in mice. A transgenic T. gondii parasite line derived from the PLK strain that expresses DsRed Express, and transgenic green fluorescent protein-positive PBMCs, were used for these experiments. Tachyzoite-infected PBMCs were injected into mouse tail veins and qRT-PCR was used to measure the infection rates of the PBMCs remaining in the lungs, liver, spleen and brain. We found that the PBMCs in the lungs and liver had statistically higher infection rates than that of the original inoculum; this difference was statistically significant. However, the PBMC infection rate in the spleen showed no such enhancement. These results show that tachyzoite-infected PBMCs in the general circulation remain in the lungs and liver more effectively than non-infected PBMCs.

  15. Mouse bronchiolar cell carcinogenesis. Histologic characterization and expression of Clara cell antigen in lesions induced by N-nitrosobis-(2-chloroethyl) ureas.

    PubMed Central

    Rehm, S.; Lijinsky, W.; Singh, G.; Katyal, S. L.

    1991-01-01

    Female Swiss mice (Cr:NIH(S)) developed bronchiolar cell hyperplasia, dysplasia, metaplasia, and various morphologic types of bronchiolar cell tumors after topical (skin) application of N-nitroso-methyl-bis-chloroethylurea (NMBCU) or N-nitroso-tris-chloroethylurea (NTCU). These compounds are the first found to induce systemically bronchiolar cell tumors in mice in high incidence. Twice a week, with a 3-day interval, a 25-microliter drop of 0.04 mol/l (molar) NMBCU or NTCU in acetone was applied to the shaved interscapular integument for a maximum of 35 to 40 weeks. The earliest lung neoplasms were seen in mice that died after 23 weeks of treatment and affected 11 of 19 with NMBCU and 14 of 19 with NTCU treatment. Tumor growth pattern was nodular or the neoplastic tissue was frequently disseminated throughout the parenchyma, starting from multicentric peribronchiolar foci. The most common tumor types were squamous cell carcinomas and adenosquamous carcinomas, followed by adenocarcinomas with or without secretory cells, and a single ciliated-cell tumor. Histochemical and immunohistochemical studies were carried out on paraffin-embedded lungs using the avidin-biotin immunoperoxidase complex procedure and antisera against keratin, Clara cell antigen, surfactant apoprotein, neuron-specific enolase, bombesin, and chromogranin A. In several mice from both groups, hyperplasias and tumors were composed of cells expressing Clara cell antigen. No tumor cells were found expressing alveolar type II or neuroendocrine cell markers. It appeared that bronchiolar cells, in particular Clara cells, had migrated from terminal bronchioles or invaded bronchiolar walls to extend into the alveolar parenchyma. Squamous cell metaplasia with keratin expression was seen within airways or associated with glandular tumors, especially at the periphery. A unique cell type, with large eosinophilic globules and associated eosinophilic crystals, was seen lining airways or forming hyperplastic and

  16. Light cigarette smoke-induced emphysema and NFκB activation in mouse lung

    PubMed Central

    Santos Valenca, Samuel; Castro, Paulo; Alves Pimenta, Wagner; Lanzetti, Manuella; Vargas Silva, Simone; Barja-Fidalgo, Cristina; Gonçalves Koatz, Vera Lúcia; Porto, Luís Cristóvão

    2006-01-01

    Light cigarette (LC) exposure is supposed to be less hazardous with a decreased incidence of cancer and tobacco-associated diseases. C57BL/6 mouse groups were subjected to smoke from 3, 6 or 12 LC for 60 days and compared with mice exposed to ambient air (EAA) in order to study lung injury by morphometrical and biochemical methods. Bronchoalveolar lavage (BAL) analysis and histology and stereology were performed. Tissue from the right lung was used for measuring thiobarbituric acid reactive substances (TBARS) and Western blot analysis. One way anova was performed followed by the Student–Newman Keuls post-test (P < 0.05). The cellular content of BAL was 95% alveolar macrophages in all groups except in mice exposed to 3 LC, where 23% neutrophils were observed. Emphysema was not observed in three and 6 LC, but it was found in 12 LC parallel to increased volume density (Vv) of airspaces from 61.0 ± 0.6 (EAA) to 80.9 ± 1.0 (12 LC) and decreased Vv of elastic fibres from 17.8 ± 0.9 (EAA) to 11.8 ± 0.6 (12 LC). All exposed groups to LC showed low TBARS levels compared with mice EAA. Lung tissue from animals exposed to 12 LC showed decreased tissue inhibitor of metalloprotease-2 and increased matrix metalloprotease-12 detection, which suggests an imbalance in extracellular matrix (ECM). Increased tumour necrosis factor-α and nuclear factor-κB detection were observed in exposed groups to LC when compared with mice EAA. The data suggest that LC is so dangerous to lungs as full-flavour cigarettes inducing ECM imbalance and emphysema. PMID:16965565

  17. Effect of aerosol particles generated by ultrasonic humidifiers on the lung in mouse

    PubMed Central

    2013-01-01

    Background Ultrasonic humidifiers silently generate water droplets as a cool fog and produce most of the dissolved minerals in the fog in the form of an aerosolized “white dust.” However, the health effect of these airborne particles is largely unknown. This study aimed to characterize the aerosol particles generated by ultrasonic humidifiers and to investigate their effect on the lung tissue of mice. Methods An ultrasonic humidifier was operated with tap water, high-silica water, ultrapure water, or other water types. In a chamber (0.765 m3, ventilation ratio 11.5 m3/hr), male ICR mice (10-week-old) were exposed by inhalation to an aerosol-containing vapor generated by the humidifier. After exposure for 7 or 14 days, lung tissues and bronchoalveolar lavage fluid (BALF) were collected from each mouse and examined by microarray, quantitative reverse transcription-polymerase chain reaction, and light and electron microscopy. Results Particles generated from the humidifier operated with tap water had a mass concentration of 0.46 ± 0.03 mg/m3, number concentration of (5.0 ± 1.1) × 104/cm3, and peak size distribution of 183 nm. The particles were phagocytosed by alveolar macrophages in the lung of mice. Inhalation of particles caused dysregulation of genes related to mitosis, cell adhesion molecules, MHC molecules and endocytosis, but did not induce any signs of inflammation or tissue injury in the lung. Conclusion These results indicate that aerosol particles released from ultrasonic humidifiers operated with tap water initiated a cellular response but did not cause severe acute inflammation in pulmonary tissue. Additionally, high mineral content tap water is not recommended and de-mineralized water should be recommended in order to exclude any adverse effects. PMID:24359587

  18. Phase-contrast computed tomography for quantification of structural changes in lungs of asthma mouse models of different severity.

    PubMed

    Dullin, Christian; Larsson, Emanuel; Tromba, Giuliana; Markus, Andrea M; Alves, Frauke

    2015-07-01

    Lung imaging in mouse disease models is crucial for the assessment of the severity of airway disease but remains challenging due to the small size and the high porosity of the organ. Synchrotron inline free-propagation phase-contrast computed tomography (CT) with its intrinsic high soft-tissue contrast provides the necessary sensitivity and spatial resolution to analyse the mouse lung structure in great detail. Here, this technique has been applied in combination with single-distance phase retrieval to quantify alterations of the lung structure in experimental asthma mouse models of different severity. In order to mimic an in vivo situation as close as possible, the lungs were inflated with air at a constant physiological pressure. Entire mice were embedded in agarose gel and imaged using inline free-propagation phase-contrast CT at the SYRMEP beamline (Synchrotron Light Source, `Elettra', Trieste, Italy). The quantification of the obtained phase-contrast CT data sets revealed an increasing lung soft-tissue content in mice correlating with the degree of the severity of experimental allergic airways disease. In this way, it was possible to successfully discriminate between healthy controls and mice with either mild or severe allergic airway disease. It is believed that this approach may have the potential to evaluate the efficacy of novel therapeutic strategies that target airway remodelling processes in asthma.

  19. Phase-contrast computed tomography for quantification of structural changes in lungs of asthma mouse models of different severity

    PubMed Central

    Dullin, Christian; Larsson, Emanuel; Tromba, Giuliana; Markus, Andrea M.; Alves, Frauke

    2015-01-01

    Lung imaging in mouse disease models is crucial for the assessment of the severity of airway disease but remains challenging due to the small size and the high porosity of the organ. Synchrotron inline free-propagation phase-contrast computed tomography (CT) with its intrinsic high soft-tissue contrast provides the necessary sensitivity and spatial resolution to analyse the mouse lung structure in great detail. Here, this technique has been applied in combination with single-distance phase retrieval to quantify alterations of the lung structure in experimental asthma mouse models of different severity. In order to mimic an in vivo situation as close as possible, the lungs were inflated with air at a constant physiological pressure. Entire mice were embedded in agarose gel and imaged using inline free-propagation phase-contrast CT at the SYRMEP beamline (Synchrotron Light Source, ‘Elettra’, Trieste, Italy). The quantification of the obtained phase-contrast CT data sets revealed an increasing lung soft-tissue content in mice correlating with the degree of the severity of experimental allergic airways disease. In this way, it was possible to successfully discriminate between healthy controls and mice with either mild or severe allergic airway disease. It is believed that this approach may have the potential to evaluate the efficacy of novel therapeutic strategies that target airway remodelling processes in asthma. PMID:26134818

  20. THE REACTIVE OXYGEN SPECIES (ROS) THEORY OF ARSENIC CARCINOGENESIS

    EPA Science Inventory



    Arsenic is a human carcinogen in skin, lung, liver, urinary bladder
    and kidney. At this time, there is not a scientific consensus on the
    mechanisms/modes of action for arsenic carcinogenesis. Proposed
    mechanisms/modes of action for arsenic carcinogenesi...

  1. Hyperinsulinemia Promotes Metastasis to the Lung in a Mouse Model of Her2-mediated Breast Cancer

    PubMed Central

    Ferguson, Rosalyn; Gallagher, Emily; Cohen, Dara; Tobin-Hess, Aviva; Alikhani, Nyosha; Novosyadlyy, Ruslan; Haddad, Nadine; Yakar, Shoshana; LeRoith, Derek

    2014-01-01

    The Her2 oncogene is expressed in approximately 25% of human breast cancers and is associated with metastatic progression and poor outcome. Epidemiological studies report that breast cancer incidence and mortality rates are higher in women with type 2 diabetes. Here we use a mouse model of Her2-mediated breast cancer on a background of hyperinsulinemia to determine how elevated circulating insulin levels affect Her2-mediated primary tumor growth and lung metastasis. Hyperinsulinemic (MKR+/+) mice were crossed with doxycycline-inducible NeuNT (MTB/TAN) mice to produce the MTB/TAN/MKR+/+ mouse model. Both MTB/TAN and MTB/TAN/MKR+/+ mice were administered doxycycline in drinking water to induce NeuNT mammary tumor formation. In tumor tissues removed at two, four and six weeks of Neu-NT overexpression, we observed increased tumor mass and higher phosphorylation of the insulin receptor (IR)/insulin-like growth factor receptor 1 (IGF-1R), suggesting that activation of these receptors in conditions of hyperinsulinemia could contribute to the increased growth of mammary tumors. After 12 weeks on doxycycline, although no significant further increase in tumor weight was observed in MTB/TAN/MKR+/+ compared to MTB/TAN mice, the number of lung metastases was significantly higher in MTB/TAN/MKR+/+ mice compared to controls (MTB/TAN/MKR+/+ 16.41 ± 4.18 vs. MTB/TAN 5.36 ± 2.72). In tumors at the six week time-point, we observed an increase in vimentin, a cytoskeletal protein and marker of mesenchymal cells, associated with epithelial-to-mesenchymal transition and cancer associated fibroblasts. We conclude that hyperinsulinemia in MTB/TAN/MKR+/+ mice resulted in larger primary tumors, with more mesenchymal cells and therefore, more aggressive tumors with more numerous pulmonary metastases. PMID:23572162

  2. Differential role of FGF9 on epithelium and mesenchyme in mouse embryonic lung.

    PubMed

    del Moral, Pierre-Marie; De Langhe, Stijn P; Sala, Frédéric G; Veltmaat, Jacqueline M; Tefft, Denise; Wang, Kasper; Warburton, David; Bellusci, Savério

    2006-05-01

    Mesothelial Fibroblast Growth Factor 9 (Fgf9) has been demonstrated by inactivation studies in mouse to be critical for the proliferation of the mesenchyme. We now show that Fgf9 is also expressed at significant levels in the distal epithelium from the mid-pseudoglandular stages. Using mesenchymal-free lung endoderm culture, we show that FGF9 triggers the proliferation of the distal epithelium leading to the formation of a cyst-like structure. On embryonic Fgfr2b-/- lungs, FGF9 induces proliferation of the mesenchyme but fails to trigger a similar effect on the epithelium, therefore involving the FGFR2b receptor in the proliferative response of the epithelium to FGF9. While FGF9 inhibits the differentiation of the mesenchyme, the epithelium appears to differentiate normally. At the molecular level, FGF9 up-regulates Fgf10 expression in the mesenchyme likely via increased expression of Tbx4 and 5 and controls the transcription of Hedgehog targets Ptc and Gli-1 in a Hedgehog-independent manner. We also show that FGF9 inhibits the activation of the canonical Wnt pathway in the epithelium by increasing Dkk1 expression, a canonical Wnt antagonist. Our work shows for the first time that FGF9 acts on the epithelium involving FGFR2b to control its proliferation but not its differentiation and contributes to the regulation of canonical Wnt signaling in the epithelium.

  3. Proteoglycans maintain lung stability in an elastase-treated mouse model of emphysema.

    PubMed

    Takahashi, Ayuko; Majumdar, Arnab; Parameswaran, Harikrishnan; Bartolák-Suki, Erzsébet; Suki, Béla

    2014-07-01

    Extracellular matrix remodeling and tissue rupture contribute to the progression of emphysema. Lung tissue elasticity is governed by the tensile stiffness of fibers and the compressive stiffness of proteoglycans. It is not known how proteoglycan remodeling affects tissue stability and destruction in emphysema. The objective of this study was to characterize the role of remodeled proteoglycans in alveolar stability and tissue destruction in emphysema. At 30 days after treatment with porcine pancreatic elastase, mouse lung tissue stiffness and alveolar deformation were evaluated under varying tonicity conditions that affect the stiffness of proteoglycans. Proteoglycans were stained and measured in the alveolar walls. Computational models of alveolar stability and rupture incorporating the mechanical properties of fibers and proteoglycans were developed. Although absolute tissue stiffness was only 24% of normal, changes in relative stiffness and alveolar shape distortion due to changes in tonicity were increased in emphysema (P < 0.01 and P < 0.001). Glycosaminoglycan amount per unit alveolar wall length, which is responsible for proteoglycan stiffness, was higher in emphysema (P < 0.001). Versican expression increased in the tissue, but decorin decreased. Our network model predicted that the rate of tissue deterioration locally governed by mechanical forces was reduced when proteoglycan stiffness was increased. Consequently, this general network model explains why increasing proteoglycan deposition protects the alveolar walls from rupture in emphysema. Our results suggest that the loss of proteoglycans observed in human emphysema contributes to disease progression, whereas treatments that promote proteoglycan deposition in the extracellular matrix should slow the progression of emphysema.

  4. PCR detection of retinoblastoma gene deletions in radiation-induced mouse lung adenocarcinomas

    SciTech Connect

    Churchill, M.E.; Gemmell, M.A.; Woloschak, G.E.

    1994-05-01

    From 1971--1986, Argonne National Laboratory conducted a series of large-scale studies of tumor incidence in 40,000 BCF{sub 1} mice irradiated with {sup 60}Co {gamma}-rays or JANUS fission-spectrum neutrons. Polymerase chain reaction (PCR) technique was used to detect deletions in the mouse retinoblastoma (mRb) gene. Six mRb gene exon fragments were amplified in a 40-cycle, 3-temperature PCR protocol. Absence of any of these fragments on a Southern blot indicated a deletion of that portion of the mRb gene. Tumors chosen for analysis were lung adenocarcinomas that were judged to be the cause of death in post-mortem analyses. Spontaneous tumors as well as those from irradiated mice were analyzed for mRb deletions. In all normal mouse tissues studies all six mRb exon fragments were present on Southern blots. Tumors in six neutron-irradiated mice also had no mRb deletions. However, 1 of 6 tumors from {gamma}-irradiated mice and 6 of 18 spontaneous tumors from unirradiated mice showed a deletion in one or both mRb alleles. All deletions detected were in the 5{prime} region of the mRb gene.

  5. Wound-healing error model for radon carcinogenesis

    SciTech Connect

    Kondo, Sohei

    1995-12-31

    Epidemiological studies of lung cancer in uranium miners exposed to radon suggest that radon is a tumor promoter. I will refine this notion by applying the wound-healing error model proposed for radiation carcinogenesis in general.

  6. Interactions between the otitis media gene, Fbxo11, and p53 in the mouse embryonic lung.

    PubMed

    Tateossian, Hilda; Morse, Susan; Simon, Michelle M; Dean, Charlotte H; Brown, Steve D M

    2015-12-01

    Otitis media with effusion (OME) is the most common cause of hearing loss in children, and tympanostomy (ear tube insertion) to alleviate the condition remains the commonest surgical intervention in children in the developed world. Chronic and recurrent forms of otitis media (OM) are known to have a very substantial genetic component; however, until recently, little was known of the underlying genes involved. The Jeff mouse mutant carries a mutation in the Fbxo11 gene, a member of the F-box family, and develops deafness due to a chronic proliferative OM. We previously reported that Fbxo11 is involved in the regulation of transforming growth factor beta (TGF-β) signalling by regulating the levels of phospho-Smad2 in the epithelial cells of palatal shelves, eyelids and airways of the lungs. It has been proposed that FBXO11 regulates the cell's response to TGF-β through the ubiquitination of CDT2. Additional substrates for FBXO11 have been identified, including p53. Here, we have studied both the genetic and biochemical interactions between FBXO11 and p53 in order to better understand the function of FBXO11 in epithelial development and its potential role in OM. In mice, we show that p53 (also known as Tp53) homozygous mutants and double heterozygous mutants (Jf/+ p53/+) exhibit similar epithelial developmental defects to Fbxo11 homozygotes. FBXO11 and p53 interact in the embryonic lung, and mutation in Fbxo11 prevents the interaction with p53. Both p53 and double mutants show raised levels of pSMAD2, recapitulating that seen in Fbxo11 homozygotes. Overall, our results support the conclusion that FBXO11 regulates the TGF-β pathway in the embryonic lung via cross-talk with p53.

  7. Phenotypical and ultrastructural features of Oct4-positive cells in the adult mouse lung

    PubMed Central

    Galiger, Celimene; Kostin, Sawa; Golec, Anita; Ahlbrecht, Katrin; Becker, Sven; Gherghiceanu, Mihaela; Popescu, Laurentiu M; Morty, Rory E; Seeger, Werner; Voswinckel, Robert

    2014-01-01

    Octamer binding trascription factor 4 (Oct4) is a transcription factor of POU family specifically expressed in embryonic stem cells (ESCs). A role for maintaining pluripotency and self-renewal of ESCs is assigned to Oct4 as a pluripotency marker. Oct4 can also be detected in adult stem cells such as bone marrow-derived mesenchymal stem cells. Several studies suggest a role for Oct4 in sustaining self-renewal capacity of adult stem cells. However, Oct4 gene ablation in adult stem cells revealed no abnormalities in tissue turnover or regenerative capacity. In the present study we have conspicuously found pulmonary Oct4-positive cells closely resembling the morphology of telocytes (TCs). These cells were found in the perivascular and peribronchial areas and their presence and location were confirmed by electron microscopy. Moreover, we have used Oct4-GFP transgenic mice which revealed a similar localization of the Oct4-GFP signal. We also found that Oct4 co-localized with several described TC markers such as vimentin, Sca-1, platelet-derived growth factor receptor-beta C-kit and VEGF. By flow cytometry analyses carried out with Oct4-GFP reporter mice, we described a population of EpCAMneg/CD45neg/Oct4-GFPpos that in culture displayed TC features. These results were supported by qRT-PCR with mRNA isolated from lungs by using laser capture microdissection. In addition, Oct4-positive cells were found to express Nanog and Klf4 mRNA. It is concluded for the first time that TCs in adult lung mouse tissue comprise Oct4-positive cells, which express pluripotency-related genes and represent therefore a population of adult stem cells which might contribute to lung regeneration. PMID:24889158

  8. The composition of cigarette smoke determines inflammatory cell recruitment to the lung in COPD mouse models

    PubMed Central

    John, Gerrit; Kohse, Katrin; Orasche, Jürgen; Reda, Ahmed; Schnelle-Kreis, Jürgen; Zimmermann, Ralf; Schmid, Otmar; Eickelberg, Oliver; Yildirim, Ali Önder

    2013-01-01

    COPD (chronic obstructive pulmonary disease) is caused by exposure to toxic gases and particles, most often CS (cigarette smoke), leading to emphysema, chronic bronchitis, mucus production and a subsequent decline in lung function. The disease pathogenesis is related to an abnormal CS-induced inflammatory response of the lungs. Similar to active (mainstream) smoking, second hand (sidestream) smoke exposure severely affects respiratory health. These processes can be studied in vivo in models of CS exposure of mice. We compared the acute inflammatory response of female C57BL/6 mice exposed to two concentrations [250 and 500 mg/m3 TPM (total particulate matter)] of sidestream and mainstream CS for 3 days and interpreted the biological effects based on physico-chemical differences in the gas and particulate phase composition of CS. BAL (bronchoalveolar lavage fluid) was obtained to perform differential cell counts and to measure cytokine release. Lung tissue was used to determine mRNA and protein expression of proinflammatory genes and to assess tissue inflammation. A strong acute inflammatory response characterized by neutrophilic influx, increased cytokine secretion [KC (keratinocyte chemoattractant), TNF-α (tumour necrosis factor α), MIP-2 (macrophage inflammatory protein 2), MIP-1α and MCP-1 (monocyte chemoattractant protein-1)], pro-inflammatory gene expression [KC, MIP-2 and MMP12 (matrix metalloproteinase 12)] and up-regulated GM-CSF (granulocyte macrophage colony-stimulating factor) production was observed in the mainstream model. After sidestream exposure there was a dampened inflammatory reaction consisting only of macrophages and diminished GM-CSF levels, most likely caused by elevated CO concentrations. These results demonstrate that the composition of CS determines the dynamics of inflammatory cell recruitment in COPD mouse models. Different initial inflammatory processes might contribute to COPD pathogenesis in significantly varying ways, thereby

  9. The composition of cigarette smoke determines inflammatory cell recruitment to the lung in COPD mouse models.

    PubMed

    John, Gerrit; Kohse, Katrin; Orasche, Jürgen; Reda, Ahmed; Schnelle-Kreis, Jürgen; Zimmermann, Ralf; Schmid, Otmar; Eickelberg, Oliver; Yildirim, Ali Önder

    2014-02-01

    COPD (chronic obstructive pulmonary disease) is caused by exposure to toxic gases and particles, most often CS (cigarette smoke), leading to emphysema, chronic bronchitis, mucus production and a subsequent decline in lung function. The disease pathogenesis is related to an abnormal CS-induced inflammatory response of the lungs. Similar to active (mainstream) smoking, second hand (sidestream) smoke exposure severely affects respiratory health. These processes can be studied in vivo in models of CS exposure of mice. We compared the acute inflammatory response of female C57BL/6 mice exposed to two concentrations [250 and 500 mg/m3 TPM (total particulate matter)] of sidestream and mainstream CS for 3 days and interpreted the biological effects based on physico-chemical differences in the gas and particulate phase composition of CS. BAL (bronchoalveolar lavage fluid) was obtained to perform differential cell counts and to measure cytokine release. Lung tissue was used to determine mRNA and protein expression of proinflammatory genes and to assess tissue inflammation. A strong acute inflammatory response characterized by neutrophilic influx, increased cytokine secretion [KC (keratinocyte chemoattractant), TNF-α (tumour necrosis factor α), MIP-2 (macrophage inflammatory protein 2), MIP-1α and MCP-1 (monocyte chemoattractant protein-1)], pro-inflammatory gene expression [KC, MIP-2 and MMP12 (matrix metalloproteinase 12)] and up-regulated GM-CSF (granulocyte macrophage colony-stimulating factor) production was observed in the mainstream model. After sidestream exposure there was a dampened inflammatory reaction consisting only of macrophages and diminished GM-CSF levels, most likely caused by elevated CO concentrations. These results demonstrate that the composition of CS determines the dynamics of inflammatory cell recruitment in COPD mouse models. Different initial inflammatory processes might contribute to COPD pathogenesis in significantly varying ways, thereby

  10. PCR detection of retinoblastoma gene deletions in radiation-induced mouse lung adenocarcinomas

    SciTech Connect

    Churchill, M.E.; Gemmell, M.A.; Woloschak, G.E.

    1993-04-01

    From 1971 to 1986, Argonne National Laboratory conducted a series of large-scale studies of tumor incidence in 40,000 BCF{sub 1} mice irradiated with {sup 60}Co {gamma} rays or JANUS fission-spectrum neutrons; normal and tumor tissues from mice in these studies were preserved in paraffin blocks. A polymerase chain reaction (PCR) technique has been developed to detect deletions in the mouse retinoblastoma (mRb) gene in the paraffin-embedded tissues. Microtomed sections were used as the DNA source in PCR reaction mixtures. Six mRb gene exon fragments were amplified in a 40-cycle, 3-temperature PCR protocol. The absence of any of these fragments (relative to control PCR products) on a Southern blot indicated a deletion of that portion of the mRb gene. The tumors chosen for analysis were lung adenocarcinomas that were judged to be the cause of death in post-mortem analyses. Spontaneous tumors as well as those from irradiated mice (569 cGy of {sup 60}Co {gamma} rays or 60 cGy of JANUS neutrons, doses that have been found to have approximately equal biological effectiveness in the BCF, mouse) were analyzed for mRb deletions. In all normal mouse tissues studies, all six mRb exon fragments were present on Southem blots. Tumors in six neutron-irradiated mice also had no mRb deletions. However, I of 6 tumors from {gamma}-irradiated mice and 6 of 18 spontaneous tumors from unirradiated mice had a deletion in one or both mRb alleles. All deletions detected were in the 5{prime} region of the mRb gene.

  11. PCR detection of retinoblastoma gene deletions in radiation-induced mouse lung adenocarcinomas

    SciTech Connect

    Churchill, M.E.; Gemmell, M.A.; Woloschak, G.E.

    1993-01-01

    From 1971 to 1986, Argonne National Laboratory conducted a series of large-scale studies of tumor incidence in 40,000 BCF[sub 1] mice irradiated with [sup 60]Co [gamma] rays or JANUS fission-spectrum neutrons; normal and tumor tissues from mice in these studies were preserved in paraffin blocks. A polymerase chain reaction (PCR) technique has been developed to detect deletions in the mouse retinoblastoma (mRb) gene in the paraffin-embedded tissues. Microtomed sections were used as the DNA source in PCR reaction mixtures. Six mRb gene exon fragments were amplified in a 40-cycle, 3-temperature PCR protocol. The absence of any of these fragments (relative to control PCR products) on a Southern blot indicated a deletion of that portion of the mRb gene. The tumors chosen for analysis were lung adenocarcinomas that were judged to be the cause of death in post-mortem analyses. Spontaneous tumors as well as those from irradiated mice (569 cGy of [sup 60]Co [gamma] rays or 60 cGy of JANUS neutrons, doses that have been found to have approximately equal biological effectiveness in the BCF, mouse) were analyzed for mRb deletions. In all normal mouse tissues studies, all six mRb exon fragments were present on Southem blots. Tumors in six neutron-irradiated mice also had no mRb deletions. However, I of 6 tumors from [gamma]-irradiated mice and 6 of 18 spontaneous tumors from unirradiated mice had a deletion in one or both mRb alleles. All deletions detected were in the 5[prime] region of the mRb gene.

  12. Metabolism of the anti-tuberculosis drug ethionamide by mouse and human FMO1, FMO2 and FMO3 and mouse and human lung microsomes

    SciTech Connect

    Henderson, Marilyn C.; Siddens, Lisbeth K.; Morre, Jeffrey T.; Krueger, Sharon K.; Williams, David E.

    2008-12-15

    Tuberculosis (TB) results from infection with Mycobacterium tuberculosis and remains endemic throughout the world with one-third of the world's population infected. The prevalence of multi-drug resistant strains necessitates the use of more toxic second-line drugs such as ethionamide (ETA), a pro-drug requiring bioactivation to exert toxicity. M. tuberculosis possesses a flavin monooxygenase (EtaA) that oxygenates ETA first to the sulfoxide and then to 2-ethyl-4-amidopyridine, presumably through a second oxygenation involving sulfinic acid. ETA is also a substrate for mammalian flavin-containing monooxygenases (FMOs). We examined activity of expressed human and mouse FMOs toward ETA, as well as liver and lung microsomes. All FMOs converted ETA to the S-oxide (ETASO), the first step in bioactivation. Compared to M. tuberculosis, the second S-oxygenation to the sulfinic acid is slow. Mouse liver and lung microsomes, as well as human lung microsomes from an individual expressing active FMO, oxygenated ETA in the same manner as expressed FMOs, confirming this reaction functions in the major target organs for therapeutics (lung) and toxicity (liver). Inhibition by thiourea, and lack of inhibition by SKF-525A, confirm ETASO formation is primarily via FMO, particularly in lung. ETASO production was attenuated in a concentration-dependent manner by glutathione. FMO3 in human liver may contribute to the toxicity and/or affect efficacy of ETA administration. Additionally, there may be therapeutic implications of efficacy and toxicity in human lung based on the FMO2 genetic polymorphism, though further studies are needed to confirm that suggestion.

  13. Monitoring Cyp2b10 mRNA expression at cessation of 2-year carcinogenesis bioassay in mouse liver provides evidence for a carcinogenic mechanism devoid of human relevance: The dalcetrapib experience

    SciTech Connect

    Hoflack, J-C.; Mueller, L. Fowler, S.; Braendli-Baiocco, A.; Flint, N.; Kuhlmann, O.; Singer, T.; Roth, A.

    2012-03-15

    Introduction: Dalcetrapib is a cholesteryl ester transfer protein (CETP) modulator in clinical assessment for cardiovascular outcome benefits. In compliance with regulatory requirements, dalcetrapib was evaluated in rodent 2-year carcinogenesis bioassays. In the mouse bioassay, male mice demonstrated increased liver weight and statistically increased incidences of hepatocellular adenoma/carcinoma. Hepatic cytochrome p450 (Cyp) 2b10 mRNA induction and increased Cyp2b10 enzyme activity signify activation of hepatic nuclear receptor constitutive androstane receptor (CAR), a widely established promoter of rodent-specific hepatic tumors. We therefore monitored hepatic Cyp2b10 mRNA and its enzyme activity in a subset of dalcetrapib-treated male mice from the bioassay. Methods: Liver samples were obtained from ∼ 1/3 of male mice from each dose group including vehicle-controls (mean and earliest study day of death 678 and 459 respectively). Quantitative real time PCR (qRT-PCR) was performed to determine Cyp2b10 mRNA expression and Cyp1a-, Cyp2b10- and Cyp3a-selective activities were monitored. Results: Cyp2b10 mRNA was strongly induced by dalcetrapib with an expected wide inter-individual variation (5–1421-fold). Group average fold-induction versus vehicle-controls showed a dose-related increase from 48-fold (250 mg/kg/day) to 160-fold (750 mg/kg/day), which declined slightly at 2000 mg/kg/day (97-fold). Cyp enzyme activities showed approximate doubling of total Cyp P450 content per milligram protein and a 9-fold increase in Cyp2b10-selective pentoxyresorufin O-dealkylase activity (750 mg/kg/day). Discussion: These data from hepatic Cyp2b10 monitoring are strongly suggestive of CAR activation by dalcetrapib, a mechanism devoid of relevance towards hepatocarcinogenesis in humans; results show feasibility of Cyp2b10 as a surrogate marker for this mechanism at cessation of a carcinogenesis bioassay. -- Highlights: ► Liver tumors were induced in male mice by dalcetrapib

  14. A comprehensive analysis of oxidative stress in the ozone-induced lung inflammation mouse model.

    PubMed

    Wiegman, Coen H; Li, Feng; Clarke, Colin J; Jazrawi, Elen; Kirkham, Paul; Barnes, Peter J; Adcock, Ian M; Chung, Kian F

    2014-03-01

    Ozone is an oxidizing environmental pollutant that contributes significantly to respiratory health. Exposure to increased levels of ozone has been associated with worsening of symptoms of patients with asthma and COPD (chronic obstructive pulmonary disease). In the present study, we investigated the acute and chronic effects of ozone exposure-induced oxidative stress-related inflammation mechanics in mouse lung. In particular, we investigated the oxidative stress-induced effects on HDAC2 (histone deacetylase 2) modification and activation of the Nrf2 (nuclear factor erythroid-related factor 2) and HIF-1α (hypoxia-inducible factor-1α) signalling pathways. Male C57BL/6 mice were exposed to ozone (3 p.p.m.) for 3 h a day, twice a week for a period of 1, 3 or 6 weeks. Control mice were exposed to normal air. After the last exposure, mice were killed for BAL (bronchoalveolar lavage) fluid and lung tissue collection. BAL total cell counts were elevated at all of the time points studied. This was associated with increased levels of chemokines and cytokines in all ozone-exposed groups, indicating the presence of a persistent inflammatory environment in the lung. Increased inflammation and Lm (mean linear intercept) scores were observed in chronic exposed mice, indicating emphysematous changes were present in lungs of chronic exposed mice. The antioxidative stress response was active (indicated by increased Nrf2 activity and protein) after 1 week of ozone exposure, but this ability was lost after 3 and 6 weeks of ozone exposure. The transcription factor HIF-1α was elevated in 3- and 6-week ozone-exposed mice and this was associated with increased gene expression levels of several HIF-1α target genes including Hdac2 (histone deacetylase 2), Vegf (vascular endothelial growth factor), Keap1 (kelch-like ECH-associated protein 1) and Mif (macrophage migration inhibitory factor). HDAC2 protein was found to be phosphorylated and carbonylated in nuclear and cytoplasm fractions

  15. Mechanisms and Chemoprevention of Ovarian Carcinogenesis

    DTIC Science & Technology

    2008-02-01

    2004 Apr;14(2):175-82. 10. Kabbarah O, Pinto K, Mutch DG, Goodfellow PJ. Expression profiling of mouse endometrial cancers microdissected from...Ovarian Carcinogenesis PRINCIPAL INVESTIGATOR: Dusica Cvetkovic, Ph.D. CONTRACTING ORGANIZATION: Fox Chase Cancer Center...ES) 8. PERFORMING ORGANIZATION REPORT NUMBER Fox Chase Cancer Center Philadelphia, PA 19111 9. SPONSORING / MONITORING

  16. Metabolite signatures in hydrophilic extracts of mouse lungs exposed to cigarette smoke revealed by 1H NMR metabolomics investigation

    DOE PAGES

    Hu, Jian Z.; Wang, Xuan; Feng, Ju; ...

    2015-05-12

    Herein, 1H-NMR metabolomics are carried out to evaluate the changes of metabolites in lungs of mice exposed to cigarette smoke. It is found that the concentrations of adenosine derivatives (i.e. ATP, ADP and AMP), inosine and uridine are significantly fluctuated in the lungs of mice exposed to cigarette smoke compared with those of controls regardless the mouse is obese or regular weight. The decreased ATP, ADP, AMP and elevated inosine predict that the deaminases in charge of adenosine derivatives to inosine derivatives conversion are altered in lungs of mice exposed to cigarette smoke. Transcriptional analysis reveals that the concentrations ofmore » adenosine monophosphate deaminase and adenosine deaminase are different in the lungs of mice exposed to cigarette smoke, confirming the prediction from metabolomics studies. We also found, for the first time, that the ratio of glycerophosphocholine (GPC) to phosphocholine (PC) is significantly increased in the lungs of obese mice compared with regular weight mice. The ratio of GPC/PC is further elevated in the lungs of obese group by cigarette smoke exposure. Since GPC/PC ratio is a known biomarker for cancer, these results may suggest that obese group is more susceptible to lung cancer when exposed to cigarette smoke.« less

  17. The glucocorticoid-glucocorticoid receptor signal transduction pathway, transforming growth factor-beta, and embryonic mouse lung development in vivo.

    PubMed

    Jaskoll, T; Choy, H A; Melnick, M

    1996-05-01

    Lung morphogenesis has been shown to be regulated by glucocorticoids (CORT). Because CORT has been primarily thought to affect fetal lung development, previous studies have focused on the role of CORT receptor (GR)-mediated regulation of fetal lung development. Although endogenous CORT increases during embryonic and fetal stages and exogenous CORT treatment in vivo and in vitro clearly accelerates embryonic lung development, little is known about the morphoregulatory role of the embryonic CORT-GR signal transduction pathway during lung development. In this study, we characterize the embryonic mouse CORT-GR pathway and demonstrate: stage-specific in situ patterns of GR immunolocalization; similarity in GR relative mobility with progressive (E13 --> E17) development; that embryonic GR can be activated to bind a GR response element (GRE); significantly increasing levels of functional GR with increasing lung maturation; and the presence of heat shock protein (hsp) 70 and hsp90 from early (E13) to late (E17) developmental stages. These results support the purported importance of the embryonic CORT-GR signal transduction pathway in progressive lung differentiation. To demonstrate that the embryonic CORT-GR directed pathway plays a role in lung development, early embryonic (E12) lungs were exposed to CORT in utero and surfactant-associated protein A (SP-A) expression was analyzed; CORT treatment up-regulates SP-A mRNA expression and spatiotemporal protein distribution. Finally, to determine whether CORT-GR-directed pulmonary morphogenesis in vivo involves the modulation of growth factors, we studied the effect of CORT on TGF-beta gene expression. Northern analysis of TGF-beta 1, TGF-beta 2, and TGF-beta 3 transcript levels in vivo indicates that CORT regulates the rate of lung morpho- and histodifferentiation by down-regulating TGF-beta 3 gene expression.

  18. Lgr5+ stem cells and their progeny in mouse epidermis under regimens of exogenous skin carcinogenesis, and their absence in ensuing skin tumors

    PubMed Central

    van de Glind, Gerline C.; Out, Jacoba J.; Rebel, Heggert G.; Tensen, Cornelis P.; de Gruijl, Frank R.

    2016-01-01

    Actively proliferating Lgr5+ skin stem cells are found deep in the hair follicle (HF). These cells renew the HF and drive its expansion in anagen phase. Their long residence and continuous mitotic activity make them prime candidates to transform into skin tumor-initiating cells. This was investigated by subjecting Lgr5-EGFP-Ires-CreERT2/R26R-LacZ mice (haired and hairless) to chemical and UV carcinogenic regimens. In the course of these regimens Lgr5+ cells (EGFP+) remained exclusively located in HFs, and in deep-seated cysts of hairless skin. In haired mice, progeny of Lgr5+ stem cells (LacZ+ after a pulse of tamoxifen) appeared in the interfollicular epidermis upon UV-induced sunburn and in TPA-induced hyperplasia. In hairless mice the progeny remained located in deep-seated cysts and in HF remnants. Progeny in hairless skin was only detected interfollicularly at a late stage, in between outgrowing tumors. Lgr5+ stem cells were absent in the ultimate tumor masses, and no tumor appeared to be a (clonal) expansion of Lgr5+ cells (52 tumors with tamoxifen at the start of carcinogenesis, 42 tumors with tamoxifen late during tumor outgrowth). In contrast to CD34/K15+ quiescent bulge stem cells, actively proliferating Lgr5+ stem cells do therefore not appear to be tumor drivers in experimental skin carcinogenesis. PMID:27409834

  19. Anti-tumor effect of cimetidine via inhibiting angiogenesis factors in N-butyl-N-(4-hydroxybutyl) nitrosamine-induced mouse and rat bladder carcinogenesis.

    PubMed

    Chihara, Yoshitomo; Fujimoto, Kiyohide; Miyake, Makito; Hiasa, Yoshio; Hirao, Yoshihiko

    2009-07-01

    The aim of this study was to assess the anti-tumor effect and mechanisms of cimetidine in N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN)-induced bladder carcinogenesis model. Sixty-three male BALB/c mice and 67 male Wister rats were treated with BBN and cimetidine to examine the anti-tumor effect of cimetidine. Immunohistochemistry (IHC) of vascular endothelial growth factor (VEGF), platelet-derived endothelial growth factor (PDECGF), and E-selectin were examined to compare their expression in the tumor tissues. In mice, the tumor growth was reduced by cimetidine (p=0.011). The expression of PDECGF was reduced in the cimetidine-treated group (p=0.016). In rats, treatment of cimetidine reduced tumor growth (p=0.0001). Moreover, the expression of VEGF and PDECGF was reduced (p=0.02 and <0.001, respectively). The expression of E-selectin did not correlate with the tumor growth in either mice or rats. In mice, long-term cimetidine treatment proved very effective for inhibiting the tumor growth, but in rats, BBN after treatment with cimetidine showed the least tumor growth-inhibitory effect. In conclusion, cimetidine may have an inhibitory effect on tumor growth in bladder carcinogenesis via reducing the expression of angiogenesis factors including VEGF and PDECGF.

  20. Low oxygen tension enhances the generation of lung progenitor cells from mouse embryonic and induced pluripotent stem cells

    PubMed Central

    Garreta, Elena; Melo, Esther; Navajas, Daniel; Farré, Ramon

    2014-01-01

    Abstract Whole‐organ decellularization technology has emerged as a new alternative for the fabrication of bioartificial lungs. Embryonic stem cells (ESC) and induced pluripotent stem cells (iPSC) are potentially useful for recellularization since they can be directed to express phenotypic marker genes of lung epithelial cells. Normal pulmonary development takes place in a low oxygen environment ranging from 1 to 5%. By contrast, in vitro ESC and iPSC differentiation protocols are usually carried out at room‐air oxygen tension. Here, we sought to determine the role played by oxygen tension on the derivation of Nkx2.1+ lung/thyroid progenitor cells from mouse ESC and iPSC. A step‐wise differentiation protocol was used to generate Nkx2.1+ lung/thyroid progenitors under 20% and 5% oxygen tension. On day 12, gene expression analysis revealed that Nkx2.1 and Foxa2 (endodermal and early lung epithelial cell marker) were significantly upregulated at 5% oxygen tension in ESC and iPSC differentiated cultures compared to 20% oxygen conditions. In addition, quantification of Foxa2+Nkx2.1+Pax8‐ cells corresponding to the lung field, with exclusion of the potential thyroid fate identified by Pax8 expression, confirmed that the low physiologic oxygen tension exerted a significant positive effect on early pulmonary differentiation of ESC and iPSC. In conclusion, we found that 5% oxygen tension enhanced the derivation of lung progenitors from mouse ESC and iPSC compared to 20% room‐air oxygen tension. PMID:25347858

  1. Network Inference Algorithms Elucidate Nrf2 Regulation of Mouse Lung Oxidative Stress

    PubMed Central

    Singhal, Mudita; Malhotra, Deepti; Biswal, Shyam

    2008-01-01

    A variety of cardiovascular, neurological, and neoplastic conditions have been associated with oxidative stress, i.e., conditions under which levels of reactive oxygen species (ROS) are elevated over significant periods. Nuclear factor erythroid 2-related factor (Nrf2) regulates the transcription of several gene products involved in the protective response to oxidative stress. The transcriptional regulatory and signaling relationships linking gene products involved in the response to oxidative stress are, currently, only partially resolved. Microarray data constitute RNA abundance measures representing gene expression patterns. In some cases, these patterns can identify the molecular interactions of gene products. They can be, in effect, proxies for protein–protein and protein–DNA interactions. Traditional techniques used for clustering coregulated genes on high-throughput gene arrays are rarely capable of distinguishing between direct transcriptional regulatory interactions and indirect ones. In this study, newly developed information-theoretic algorithms that employ the concept of mutual information were used: the Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNE), and Context Likelihood of Relatedness (CLR). These algorithms captured dependencies in the gene expression profiles of the mouse lung, allowing the regulatory effect of Nrf2 in response to oxidative stress to be determined more precisely. In addition, a characterization of promoter sequences of Nrf2 regulatory targets was conducted using a Support Vector Machine classification algorithm to corroborate ARACNE and CLR predictions. Inferred networks were analyzed, compared, and integrated using the Collective Analysis of Biological Interaction Networks (CABIN) plug-in of Cytoscape. Using the two network inference algorithms and one machine learning algorithm, a number of both previously known and novel targets of Nrf2 transcriptional activation were identified. Genes predicted as

  2. Proteoglycans Maintain Lung Stability in an Elastase-Treated Mouse Model of Emphysema

    PubMed Central

    Takahashi, Ayuko; Majumdar, Arnab; Parameswaran, Harikrishnan; Bartolák-Suki, Erzsébet

    2014-01-01

    Extracellular matrix remodeling and tissue rupture contribute to the progression of emphysema. Lung tissue elasticity is governed by the tensile stiffness of fibers and the compressive stiffness of proteoglycans. It is not known how proteoglycan remodeling affects tissue stability and destruction in emphysema. The objective of this study was to characterize the role of remodeled proteoglycans in alveolar stability and tissue destruction in emphysema. At 30 days after treatment with porcine pancreatic elastase, mouse lung tissue stiffness and alveolar deformation were evaluated under varying tonicity conditions that affect the stiffness of proteoglycans. Proteoglycans were stained and measured in the alveolar walls. Computational models of alveolar stability and rupture incorporating the mechanical properties of fibers and proteoglycans were developed. Although absolute tissue stiffness was only 24% of normal, changes in relative stiffness and alveolar shape distortion due to changes in tonicity were increased in emphysema (P < 0.01 and P < 0.001). Glycosaminoglycan amount per unit alveolar wall length, which is responsible for proteoglycan stiffness, was higher in emphysema (P < 0.001). Versican expression increased in the tissue, but decorin decreased. Our network model predicted that the rate of tissue deterioration locally governed by mechanical forces was reduced when proteoglycan stiffness was increased. Consequently, this general network model explains why increasing proteoglycan deposition protects the alveolar walls from rupture in emphysema. Our results suggest that the loss of proteoglycans observed in human emphysema contributes to disease progression, whereas treatments that promote proteoglycan deposition in the extracellular matrix should slow the progression of emphysema. PMID:24450478

  3. Stereological assessment of mouse lung parenchyma via nondestructive, multiscale micro-CT imaging validated by light microscopic histology

    PubMed Central

    Vasilescu, Dragoş M.; Klinge, Christine; Knudsen, Lars; Yin, Leilei; Wang, Ge; Weibel, Ewald R.; Ochs, Matthias

    2013-01-01

    Quantitative assessment of the lung microstructure using standard stereological methods such as volume fractions of tissue, alveolar surface area, or number of alveoli, are essential for understanding the state of normal and diseased lung. These measures are traditionally obtained from histological sections of the lung tissue, a process that ultimately destroys the three-dimensional (3-D) anatomy of the tissue. In comparison, a novel X-ray-based imaging method that allows nondestructive sectioning and imaging of fixed lungs at multiple resolutions can overcome this limitation. Scanning of the whole lung at high resolution and subsequent regional sampling at ultrahigh resolution without physically dissecting the organ allows the application of design-based stereology for assessment of the whole lung structure. Here we validate multiple stereological estimates performed on micro–computed tomography (μCT) images by comparing them with those obtained via conventional histology on the same mouse lungs. We explore and discuss the potentials and limitations of the two approaches. Histological examination offers higher resolution and the qualitative differentiation of tissues by staining, but ultimately loses 3-D tissue relationships, whereas μCT allows for the integration of morphometric data with the spatial complexity of lung structure. However, μCT has limited resolution satisfactory for the sterological estimates presented in this study but not for differentiation of tissues. We conclude that introducing stereological methods in μCT studies adds value by providing quantitative information on internal structures while not curtailing more complex approaches to the study of lung architecture in the context of physiological or pathological studies. PMID:23264542

  4. Stereological assessment of mouse lung parenchyma via nondestructive, multiscale micro-CT imaging validated by light microscopic histology.

    PubMed

    Vasilescu, Dragos M; Klinge, Christine; Knudsen, Lars; Yin, Leilei; Wang, Ge; Weibel, Ewald R; Ochs, Matthias; Hoffman, Eric A

    2013-03-15

    Quantitative assessment of the lung microstructure using standard stereological methods such as volume fractions of tissue, alveolar surface area, or number of alveoli, are essential for understanding the state of normal and diseased lung. These measures are traditionally obtained from histological sections of the lung tissue, a process that ultimately destroys the three-dimensional (3-D) anatomy of the tissue. In comparison, a novel X-ray-based imaging method that allows nondestructive sectioning and imaging of fixed lungs at multiple resolutions can overcome this limitation. Scanning of the whole lung at high resolution and subsequent regional sampling at ultrahigh resolution without physically dissecting the organ allows the application of design-based stereology for assessment of the whole lung structure. Here we validate multiple stereological estimates performed on micro-computed tomography (μCT) images by comparing them with those obtained via conventional histology on the same mouse lungs. We explore and discuss the potentials and limitations of the two approaches. Histological examination offers higher resolution and the qualitative differentiation of tissues by staining, but ultimately loses 3-D tissue relationships, whereas μCT allows for the integration of morphometric data with the spatial complexity of lung structure. However, μCT has limited resolution satisfactory for the sterological estimates presented in this study but not for differentiation of tissues. We conclude that introducing stereological methods in μCT studies adds value by providing quantitative information on internal structures while not curtailing more complex approaches to the study of lung architecture in the context of physiological or pathological studies.

  5. Cigarette side-stream smoke lung and bladder carcinogenesis: inducing mutagenic acrolein-DNA adducts, inhibiting DNA repair and enhancing anchorage-independent-growth cell transformation.

    PubMed

    Lee, Hyun-Wook; Wang, Hsiang-Tsui; Weng, Mao-wen; Chin, Chiu; Huang, William; Lepor, Herbert; Wu, Xue-Ru; Rom, William N; Chen, Lung-Chi; Tang, Moon-shong

    2015-10-20

    Second-hand smoke (SHS) is associated with 20-30% of cigarette-smoke related diseases, including cancer. Majority of SHS (>80%) originates from side-stream smoke (SSS). Compared to mainstream smoke, SSS contains more tumorigenic polycyclic aromatic hydrocarbons and acrolein (Acr). We assessed SSS-induced benzo(a)pyrene diol epoxide (BPDE)- and cyclic propano-deoxyguanosine (PdG) adducts in bronchoalveolar lavage (BAL), lung, heart, liver, and bladder-mucosa from mice exposed to SSS for 16 weeks. In SSS exposed mice, Acr-dG adducts were the major type of PdG adducts formed in BAL (p < 0.001), lung (p < 0.05), and bladder mucosa (p < 0.001), with no significant accumulation of Acr-dG adducts in heart or liver. SSS exposure did not enhance BPDE-DNA adduct formation in any of these tissues. SSS exposure reduced nucleotide excision repair (p < 0.01) and base excision repair (p < 0.001) in lung tissue. The levels of DNA repair proteins, XPC and hOGG1, in lung tissues of exposed mice were significantly (p < 0.001 and p < 0.05) lower than the levels in lung tissues of control mice. We found that Acr can transform human bronchial epithelial and urothelial cells in vitro. We propose that induction of mutagenic Acr-DNA adducts, inhibition of DNA repair, and induction of cell transformation are three mechanisms by which SHS induces lung and bladder cancers.

  6. PR-Set7 is degraded in a conditional Cul4A transgenic mouse model of lung cancer

    DOE PAGES

    Wang, Yang; Xu, Zhidong; Mao, Jian -Hua; ...

    2015-06-01

    Background and objective. Maintenance of genomic integrity is essential to ensure normal organismal development and to prevent diseases such as cancer. PR-Set7 (also known as Set8) is a cell cycle regulated enzyme that catalyses monomethylation of histone 4 at Lys20 (H4K20me1) to promote chromosome condensation and prevent DNA damage. Recent studies show that CRL4CDT2-mediated ubiquitylation of PR-Set7 leads to its degradation during S phase and after DNA damage. This might occur to ensure appropriate changes in chromosome structure during the cell cycle or to preserve genome integrity after DNA damage. Methods. We developed a new model of lung tumor developmentmore » in mice harboring a conditionally expressed allele of Cul4A. We have therefore used a mouse model to demonstrate for the first time that Cul4A is oncogenic in vivo. With this model, staining of PR-Set7 in the preneoplastic and tumor lesions in AdenoCre-induced mouse lungs was performed. Meanwhile we identified higher protein level changes of γ-tubulin and pericentrin by IHC. Results. The level of PR-Set7 down-regulated in the preneoplastic and adenocarcinomous lesions following over-expression of Cul4A. We also identified higher levels of the proteins pericentrin and γ-tubulin in Cul4A mouse lungs induced by AdenoCre. Conclusion. PR-Set7 is a direct target of Cul4A for degradation and involved in the formation of lung tumors in the conditional Cul4A transgenic mouse model.« less

  7. Ion-Current-Based Temporal Proteomic Profiling of Influenza-A-Virus-Infected Mouse Lungs Revealed Underlying Mechanisms of Altered Integrity of the Lung Microvascular Barrier.

    PubMed

    Shen, Shichen; Li, Jun; Hilchey, Shannon; Shen, Xiaomeng; Tu, Chengjian; Qiu, Xing; Ng, Andrew; Ghaemmaghami, Sina; Wu, Hulin; Zand, Martin S; Qu, Jun

    2016-02-05

    Investigation of influenza-A-virus (IAV)-infected lung proteomes will greatly promote our understanding on the virus-host crosstalk. Using a detergent-cocktail extraction and digestion procedure and a reproducible ion-current-based method, we performed the first comprehensive temporal analysis of mouse IAV infection. Mouse lung tissues at three time points post-inoculation were compared with controls (n = 4/group), and >1600 proteins were quantified without missing value in any animal. Significantly changed proteins were identified at 4 days (n = 144), 7 days (n = 695), and 10 days (n = 396) after infection, with low false altered protein rates (1.73-8.39%). Functional annotation revealed several key biological processes involved in the systemic host responses. Intriguingly, decreased levels of several cell junction proteins as well as increased levels of tissue metalloproteinase MMP9 were observed, reflecting the IAV-induced structural breakdown of lung epithelial barrier. Supporting evidence of MMP9 activation came from immunoassays examining the abundance and phosphorylation states of all MAPKs and several relevant molecules. Importantly, IAV-induced MMP gelatinase expression was suggested to be specific to MMP9, and p38 MAPK may contribute predominantly to MMP9 elevation. These findings help to resolve the long-lasting debate regarding the signaling pathways of IAV-induced MMP9 expression and shed light on the molecular mechanisms underlying pulmonary capillary-alveolar leak syndrome that can occur during influenza infection.

  8. Mouse lung slices: An ex vivo model for the evaluation of antiviral and anti-inflammatory agents against influenza viruses.

    PubMed

    Liu, Rui; An, Liwei; Liu, Ge; Li, Xiaoyu; Tang, Wei; Chen, Xulin

    2015-08-01

    The influenza A virus is notoriously known for its ability to cause recurrent epidemics and global pandemics. Antiviral therapy is effective when treatment is initiated within 48h of symptom onset, and delaying treatment beyond this time frame is associated with decreased efficacy. Research on anti-inflammatory therapy to ameliorate influenza-induced inflammation is currently underway and seems important to the impact on the clinical outcome. Both antiviral and anti-inflammatory drugs with novel mechanisms of action are urgently needed. Current methods for evaluating the efficacy of anti-influenza drugs rely mostly on transformed cells and animals. Transformed cell models are distantly related to physiological and pathological conditions. Although animals are the best choices for preclinical drug testing, they are not time- or cost-efficient. In this study, we established an ex vivo model using mouse lung slices to evaluate both antiviral and anti-inflammatory agents against influenza virus infection. Both influenza virus PR8 (H1N1) and A/Human/Hubei/3/2005 (H3N2) can replicate efficiently in mouse lung slices and trigger significant cytokine and chemokine responses. The induction of selected cytokines and chemokines were found to have a positive correlation between ex vivo and in vivo experiments, suggesting that the ex vivo cultured lung slices may closely resemble the lung functionally in an in vivo configuration when challenged by influenza virus. Furthermore, a set of agents with known antiviral and/or anti-inflammatory activities were tested to validate the ex vivo model. Our results suggested that mouse lung slices provide a robust, convenient and cost-efficient model for the assessment of both antiviral and anti-inflammatory agents against influenza virus infection in one assay. This ex vivo model may predict the efficacy of drug candidates' antiviral and anti-inflammatory activities in vivo.

  9. DNA vaccine elicits an efficient antitumor response by targeting the mutant Kras in a transgenic mouse lung cancer model.

    PubMed

    Weng, T-Y; Yen, M-C; Huang, C-T; Hung, J-J; Chen, Y-L; Chen, W-C; Wang, C-Y; Chang, J-Y; Lai, M-D

    2014-10-01

    Mutant Kras (V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog) is observed in more than 20% of non-small-cell lung cancers; however, no effective Kras target therapy is available at present. The Kras DNA vaccine may represent as a novel immunotherapeutic agent in lung cancer. In this study, we investigated the antitumor efficacy of the Kras DNA vaccine in a genetically engineered inducible mouse lung tumor model driven by Kras(G12D). Lung tumors were induced by doxycycline, and the therapeutic effects of Kras DNA vaccine were evaluated with delivery of Kras(G12D) plasmids. Mutant Kras(G12D) DNA vaccine significantly decreased the tumor nodules. A dominant-negative mutant Kras(G12D)N17, devoid of oncogenic activity, achieved similar therapeutic effects. The T-helper 1 immune response was enhanced in mice treated with Kras DNA vaccine. Splenocytes from mice receiving Kras DNA vaccine presented an antigen-specific response by treatment with peptides of Kras but not Hras or OVA. The number of tumor-infiltrating CD8(+) T cells increased after Kras vaccination. In contrast, Kras DNA vaccine was not effective in the lung tumor in transgenic mice, which was induced by mutant L858R epidermal growth factor receptor. Overall, these results indicate that Kras DNA vaccine produces an effective antitumor response in transgenic mice, and may be useful in treating lung cancer-carrying Ras mutation.

  10. Inhibitory effect of the rhizomes of Alpinia officinarum on TPA-induced inflammation and tumor promotion in two-stage carcinogenesis in mouse skin.

    PubMed

    Yasukawa, Ken; Sun, Yi; Kitanaka, Susumu; Tomizawa, Naoyuki; Miura, Motofumi; Motohashi, Shigeyasu

    2008-07-01

    The methanol extract of galangal (the rhizomes of Alpinia officinarum L.) exhibited remarkable antitumor-promoting activity on an in vivo two-stage carcinogenesis test of mice using 7,12-dimethylbenz[a]anthracene as an initiator and 12-O-tetradecanoylphorbol-13-acetate (TPA) as a promoter. Seven diarylheptanoids (1-7) were isolated and identified from the active fraction of the methanol extracts of the galangal. These compounds, 1-7, were evaluated for their inhibitory effects on TPA-induced inflammation (1 microg/ear) in mice. These compounds (1-7) tested showed marked anti-inflammatory effects, with a 50% inhibitory dose of 0.8-2.7 micromol/ear.

  11. Carcinogenesis and aging

    SciTech Connect

    Anisimov, V.N.; Petrov, N.N.

    1987-01-01

    This 2-voluem set discusses the problem of inter-relation between carcinogenesis and aging, and the phenomenon of age-related increase in cancer incidence in animals and humans. Covered topics include current concepts in mechanisms of carcinogenesis and aging; data on chemical, radiation, ultraviolet-light, hormonal and viral carcinogenesis in aging; data on the role of age-related shifts in the activity of carcinogen-metabolizing enzymes; binding of carcinogens with macromolecules; DNA repair; tissue proliferation; and immunity and homono-metabolic patterns in realization of initiation and promotion of carcinogenesis.

  12. Cationic amphiphiles with fatty acyl chain asymmetry of coconut oil deliver genes selectively to mouse lung.

    PubMed

    Chandrashekhar, Voshavar; Srujan, Marepally; Prabhakar, Rairala; Reddy, Rakesh C; Sreedhar, Bojja; Rentam, Kiran K R; Kanjilal, Sanjit; Chaudhuri, Arabinda

    2011-03-16

    Recent structure-activity studies have revealed a dramatic influence of hydrophobic chain asymmetry in enhancing gene delivery efficacies of synthetic cationic amphiphiles (Nantz, M. H. et al. Mol. Pharmaceutics2010, 7, 786-794; Koynova, R. et al. Mol. Pharmaceutics2009, 6, 951-958). The present findings demonstrate for the first time that such a transfection enhancing influence of asymmetric hydrocarbon chains observed in pure synthetic cationic amphiphiles also works for cationic amphiphiles designed with natural, asymmetric fatty acyl chains of a food-grade oil. Herein, we demonstrate that cationic amphiphiles designed with the natural fatty acyl chain asymmetry of food-grade coconut oil are less cytotoxic and deliver genes selectively to mouse lung. Despite lauroyl chains being the major fatty acyl chains of coconut oil, both the in vitro and In vivo gene transfer efficiencies of such cationic amphiphiles were found to be remarkably superior (>4-fold) to those of their pure dilauroyl analogue. Mechanistic studies involving the technique of fluorescence resonance energy transfer (FRET) revealed higher biomembrane fusibility of the cationic liposomes of the coconut amphiphiles than that of the symmetric dilauroyl analogue. AFM study revealed pronounced fusogenic nonlamellar structures of the liposomes of coconut amphiphiles. Findings in the FRET and cellular uptake study, taken together, support the notion that the higher cellular uptake resulting from the more fusogenic nature of the liposomes of coconut amphiphiles 1 are likely to play a dominant role in making the coconut amphiphiles transfection competent.

  13. Airway segmentation and analysis for the study of mouse models of lung disease using micro-CT

    NASA Astrophysics Data System (ADS)

    Artaechevarria, X.; Pérez-Martín, D.; Ceresa, M.; de Biurrun, G.; Blanco, D.; Montuenga, L. M.; van Ginneken, B.; Ortiz-de-Solorzano, C.; Muñoz-Barrutia, A.

    2009-11-01

    Animal models of lung disease are gaining importance in understanding the underlying mechanisms of diseases such as emphysema and lung cancer. Micro-CT allows in vivo imaging of these models, thus permitting the study of the progression of the disease or the effect of therapeutic drugs in longitudinal studies. Automated analysis of micro-CT images can be helpful to understand the physiology of diseased lungs, especially when combined with measurements of respiratory system input impedance. In this work, we present a fast and robust murine airway segmentation and reconstruction algorithm. The algorithm is based on a propagating fast marching wavefront that, as it grows, divides the tree into segments. We devised a number of specific rules to guarantee that the front propagates only inside the airways and to avoid leaking into the parenchyma. The algorithm was tested on normal mice, a mouse model of chronic inflammation and a mouse model of emphysema. A comparison with manual segmentations of two independent observers shows that the specificity and sensitivity values of our method are comparable to the inter-observer variability, and radius measurements of the mainstem bronchi reveal significant differences between healthy and diseased mice. Combining measurements of the automatically segmented airways with the parameters of the constant phase model provides extra information on how disease affects lung function.

  14. Kinase domain activation of FGFR2 yields high-grade lung adenocarcinoma sensitive to a Pan-FGFR inhibitor in a mouse model of NSCLC.

    PubMed

    Tchaicha, Jeremy H; Akbay, Esra A; Altabef, Abigail; Mikse, Oliver R; Kikuchi, Eiki; Rhee, Kevin; Liao, Rachel G; Bronson, Roderick T; Sholl, Lynette M; Meyerson, Matthew; Hammerman, Peter S; Wong, Kwok-Kin

    2014-09-01

    Somatic mutations in FGFR2 are present in 4% to 5% of patients diagnosed with non-small cell lung cancer (NSCLC). Amplification and mutations in FGFR genes have been identified in patients with NSCLCs, and clinical trials are testing the efficacy of anti-FGFR therapies. FGFR2 and other FGFR kinase family gene alterations have been found in both lung squamous cell carcinoma and lung adenocarcinoma, although mouse models of FGFR-driven lung cancers have not been reported. Here, we generated a genetically engineered mouse model (GEMM) of NSCLC driven by a kinase domain mutation in FGFR2. Combined with p53 ablation, primary grade 3/4 adenocarcinoma was induced in the lung epithelial compartment exhibiting locally invasive and pleiotropic tendencies largely made up of multinucleated cells. Tumors were acutely sensitive to pan-FGFR inhibition. This is the first FGFR2-driven lung cancer GEMM, which can be applied across different cancer indications in a preclinical setting.

  15. Radiation-induced lung fibrosis in a tumor-bearing mouse model is associated with enhanced Type-2 immunity.

    PubMed

    Chen, Jing; Wang, Yacheng; Mei, Zijie; Zhang, Shimin; Yang, Jie; Li, Xin; Yao, Ye; Xie, Conghua

    2016-03-01

    Lung fibrosis may be associated with Type-2 polarized inflammation. Herein, we aim to investigate whether radiation can initiate a Type-2 immune response and contribute to the progression of pulmonary fibrosis in tumor-bearing animals. We developed a tumor-bearing mouse model with Lewis lung cancer to receive either radiation therapy alone or radiation combined with Th1 immunomodulator unmethylated cytosine-phosphorothioate-guanine containing oligodeoxynucleotide (CpG-ODN). The Type-2 immune phenotype in tumors and the histological grade of lung fibrosis were evaluated in mice sacrificed three weeks after irradiation. Mouse lung tissues were analyzed for hydroxyproline and the expression of Type-1/Type-2 key transcription factors (T-bet/GATA-3). The concentration of Type-1/Type-2 cytokines in serum was measured by cytometric bead array. Lung fibrosis was observed to be more serious in tumor-bearing mice than in normal mice post-irradiation. The fibrosis score in irradiated tumor-bearing mice on Day 21 was 4.33 ± 0.82, which was higher than that of normal mice (2.00 ± 0.63; P < 0.05). Hydroxyproline and GATA-3 expression were increased in the lung tissues of tumor-bearing mice following irradiation. CpG-ODN attenuated fibrosis by markedly decreasing GATA-3 expression. Serum IL-13 and IL-5 were elevated, whereas INF-γ and IL-12 expression were decreased in irradiated tumor-bearing mice. These changes were reversed after CpG-ODN treatment. Thus, Type-2 immunity in tumors appeared to affect the outcome of radiation damage and might be of interest for future studies on developing approaches in which Type-1-related immunotherapy and radiotherapy are used in combination.

  16. A Novel Nontoxic Inhibitor of the Activation of NADPH Oxidase Reduces Reactive Oxygen Species Production in Mouse LungS⃞

    PubMed Central

    Lee, Intae; Dodia, Chandra; Chatterjee, Shampa; Zagorski, John; Mesaros, Clementina; Blair, Ian A.; Feinstein, Sheldon I.; Jain, Mahendra

    2013-01-01

    1-Hexadecyl-3-trifluoroethylglycero-sn-2-phosphomethanol (MJ33) is a fluorinated phospholipid analog that inhibits the phospholipase A2 (PLA2) activity of peroxiredoxin 6 (Prdx6). Prdx6 PLA2 activity is required for activation of NADPH oxidase 2 and subsequent generation of reactive oxygen species (ROS). In vitro, MJ33 inhibited agonist-stimulated production of ROS by the isolated perfused mouse lung, lung microvascular endothelial cells, and polymorphonuclear leukocytes. MJ33 (0.02–0.5 µmol MJ33/kg body weight) in mixed unilamellar liposomes was administered to C57BL/6 mice by either intratracheal (i.t.) or i.v. routes. Lung MJ33 content, measured by liquid chromatography/mass spectroscopy, showed uptake of 67–87% of the injected dose for i.t. and 23–42% for i.v. administration at 4 hours postinjection. PLA2 activity of lung homogenates was markedly inhibited (>85%) at 4 hours postadministration. Both MJ33 content and PLA2 activity gradually returned to near control levels over the subsequent 24–72 hours. Mice treated with MJ33 at 12.5–25 µmol/kg did not show changes (compared with control) in clinical symptomatology, body weight, hematocrit, and histology of lung, liver, and kidney during a 30- to 50-day observation period. Thus, the toxic dose of MJ33 was >25 µmol/kg, whereas the PLA2 inhibitory dose was approximately 0.02 µmol/kg, indicating a high margin of safety. MJ33 administered to mice prior to lung isolation markedly reduced ROS production and tissue lipid and protein oxidation during ischemia followed by reperfusion. Thus, MJ33 could be useful as a therapeutic agent to prevent ROS-mediated tissue injury associated with lung inflammation or in harvested lungs prior to transplantation. PMID:23475902

  17. Molecular and functional characterization of a calcium-sensitive chloride channel from mouse lung.

    PubMed

    Gandhi, R; Elble, R C; Gruber, A D; Schreur, K D; Ji, H L; Fuller, C M; Pauli, B U

    1998-11-27

    A protein (mCLCA1) has been cloned from a mouse lung cDNA library that bears strong sequence homology with the recently described bovine tracheal, Ca2+-sensitive chloride channel protein (bCLCA1), bovine lung endothelial cell adhesion molecule-1 (Lu-ECAM-1), and the human intestinal Ca2+-sensitive chloride channel protein (hCLCA1). In vitro, its 3.1-kilobase message translates into a 100-kDa protein that can be glycosylated to an approximately 125-kDa product. SDS-polyacrylamide gel electrophoresis from lysates of mCLCA1 cDNA-transfected transformed human embryonic kidney cells (HEK293) reveals proteins of 130, 125, and 90 kDa as well as a protein triplet in the 32-38 kDa size range. Western analyses with antisera raised against Lu-ECAM-1 peptides show that the N-terminal region of the predicted open reading frame is present only in the larger size proteins (i.e. 130, 125, and 90 kDa), whereas the C-terminal region of the open reading frame is observed in the 32-38 kDa size proteins, suggesting a posttranslational, proteolytic processing of a precursor protein (125/130 kDa) into 90 kDa and 32-38 kDa components similar to that reported for Lu-ECAM-1. Hydrophobicity analyses predict four transmembrane domains for the 90-kDa protein. The mCLCA1 mRNA is readily detected by Northern analysis and by in situ hybridization in the respiratory epithelia of trachea and bronchi. Transient expression of mCLCA1 in HEK293 cells was associated with an increase in whole cell Cl- current that could be activated by Ca2+ and ionomycin and inhibited by 4, 4'-diisothiocyanatostilbene-2,2'-disulfonic acid, dithiothreitol, and niflumic acid. The discovery of mCLCA1 opens the door for further investigating the possible contribution of a Ca2+-sensitive chloride conductance to the pathogenesis of cystic fibrosis.

  18. Pharmacokinetics/Pharmacodynamics of Pulmonary Delivery of Colistin against Pseudomonas aeruginosa in a Mouse Lung Infection Model.

    PubMed

    Lin, Yu-Wei; Zhou, Qi Tony; Cheah, Soon-Ee; Zhao, Jinxin; Chen, Ke; Wang, Jiping; Chan, Hak-Kim; Li, Jian

    2017-03-01

    Colistin is often administered by inhalation and/or the parenteral route for the treatment of respiratory infections caused by multidrug-resistant (MDR) Pseudomonas aeruginosa However, limited pharmacokinetic (PK) and pharmacodynamic (PD) data are available to guide the optimization of dosage regimens of inhaled colistin. In the present study, PK of colistin in epithelial lining fluid (ELF) and plasma was determined following intratracheal delivery of a single dose of colistin solution in neutropenic lung-infected mice. The antimicrobial efficacy of intratracheal delivery of colistin against three P. aeruginosa strains (ATCC 27853, PAO1, and FADDI-PA022; MIC of 1 mg/liter for all strains) was examined in a neutropenic mouse lung infection model. Dose fractionation studies were conducted over 2.64 to 23.8 mg/kg of body weight/day. The inhibitory sigmoid model was employed to determine the PK/PD index that best described the antimicrobial efficacy of pulmonary delivery of colistin. In both ELF and plasma, the ratio of the area under the unbound concentration-time profile to MIC (fAUC/MIC) was the PK/PD index that best described the antimicrobial effect in mouse lung infection (R(2) = 0.60 to 0.84 for ELF and 0.64 to 0.83 for plasma). The fAUC/MIC targets required to achieve stasis against the three strains were 684 to 1,050 in ELF and 2.15 to 3.29 in plasma. The histopathological data showed that pulmonary delivery of colistin reduced infection-caused pulmonary inflammation and preserved the integrity of the lung epithelium, although colistin introduced mild pulmonary inflammation in healthy mice. This study showed pulmonary delivery of colistin provides antimicrobial effects against MDR P. aeruginosa lung infections superior to those of parenteral administrations. For the first time, our results provide important preclinical PK/PD information for optimization of inhaled colistin therapy.

  19. Toxicogenomics analysis of mouse lung responses following exposure to titanium dioxide nanomaterials reveal their disease potential at high doses

    PubMed Central

    Rahman, Luna; Wu, Dongmei; Johnston, Michael; William, Andrew; Halappanavar, Sabina

    2017-01-01

    Titanium dioxide nanoparticles (TiO2NPs) induce lung inflammation in experimental animals. In this study, we conducted a comprehensive toxicogenomic analysis of lung responses in mice exposed to six individual TiO2NPs exhibiting different sizes (8, 20 and 300nm), crystalline structure (anatase, rutile or anatase/rutile) and surface modifications (hydrophobic or hydrophilic) to investigate whether the mechanisms leading to TiO2NP-induced lung inflammation are property specific. A detailed histopathological analysis was conducted to investigate the long-term disease implications of acute exposure to TiO2NPs. C57BL/6 mice were exposed to 18, 54, 162 or 486 µg of TiO2NPs/mouse via single intratracheal instillation. Controls were exposed to dispersion medium only. Bronchoalveolar lavage fluid (BALF) and lung tissue were sampled on 1, 28 and 90 days post-exposure. Although all TiO2NPs induced lung inflammation as measured by the neutrophil influx in BALF, rutile-type TiO2NPs induced higher inflammation with the hydrophilic rutile TiO2NP showing the maximum increase. Accordingly, the rutile TiO2NPs induced higher number of differentially expressed genes. Histopathological analysis of lung sections on Day 90 post-exposure showed increased collagen staining and fibrosis-like changes following exposure to the rutile TiO2NPs at the highest dose tested. Among the anatase, the smallest TiO2NP of 8nm showed the maximum response. The anatase TiO2NP of 300nm was the least responsive of all. The results suggest that the severity of lung inflammation is property specific; however, the underlying mechanisms (genes and pathways perturbed) leading to inflammation were the same for all particle types. While the particle size clearly influenced the overall acute lung responses, a combination of small size, crystalline structure and hydrophilic surface contributed to the long-term pathological effects observed at the highest dose (486 µg/mouse). Although the dose at which the

  20. Flaxseed Mitigates Acute Oxidative Lung Damage in a Mouse Model of Repeated Radiation and Hyperoxia Exposure Associated with Space Exploration

    PubMed Central

    Pietrofesa, Ralph A.; Solomides, Charalambos C.; Christofidou-Solomidou, Melpo

    2015-01-01

    Background Spaceflight missions may require crewmembers to conduct extravehicular activities (EVA). Pre-breathe protocols in preparation for an EVA entail 100% hyperoxia exposure that may last for a few hours and be repeated 2-3 times weekly. Each EVA is associated with additional challenges such as low levels of total body cosmic/galactic radiation exposure that may present a threat to crewmember health. We have developed a mouse model of total body radiation and hyperoxia exposure and identified acute damage of lung tissues. In the current study we evaluated the usefulness of dietary flaxseed (FS) as a countermeasure agent for such double-hit exposures. Methods We evaluated lung tissue changes 2 weeks post-initiation of exposure challenges. Mouse cohorts (n=5/group) were pre-fed diets containing either 0% FS or 10% FS for 3 weeks and exposed to: a) normoxia (Untreated); b) >95% O2 (O2); c) 0.25Gy single fraction gamma radiation (IR); or d) a combination of O2 and IR (O2+IR) 3 times per week for 2 consecutive weeks, where 8-hour hyperoxia treatments were spanned by normoxic intervals. Results At 2 weeks post challenge, while control-diet fed mice developed significant lung injury and inflammation across all challenges, FS protected lung tissues by decreasing bronchoalveolar lavage fluid (BALF) neutrophils (p<0.003) and protein levels, oxidative tissue damage, as determined by levels of malondialdehyde (MDA) (p<0.008) and nitrosative stress as determined by nitrite levels. Lung hydroxyproline levels, a measure of lung fibrosis, were significantly elevated in mice fed 0% FS (p<0.01) and exposed to hyperoxia/radiation or the combination treatment, but not in FS-fed mice. FS also decreased levels of a pro-inflammatory, pro-fibrogenic cytokine (TGF-β1) gene expression levels in lung. Conclusion Flaxseed mitigated adverse effects in lung of repeat exposures to radiation/hyperoxia. This data will provide useful information in the design of countermeasures to early

  1. Phosphatidylinositol 3-Kinase Mediates Bronchioalveolar Stem Cell Expansion in Mouse Models of Oncogenic K-ras-Induced Lung Cancer

    PubMed Central

    Yang, Yanan; Iwanaga, Kentaro; Raso, Maria Gabriela; Wislez, Marie; Hanna, Amy E.; Wieder, Eric D.; Molldrem, Jeffrey J.; Wistuba, Ignacio I.; Powis, Garth; Demayo, Francesco J.; Kim, Carla F.; Kurie, Jonathan M.

    2008-01-01

    Background Non-small cell lung cancer (NSCLC) is the most common cause of cancer-related death in Western countries. Developing more effective NSCLC therapeutics will require the elucidation of the genetic and biochemical bases for this disease. Bronchioalveolar stem cells (BASCs) are a putative cancer stem cell population in mouse models of oncogenic K-ras-induced lung adenocarcinoma, an histologic subtype of NSCLC. The signals activated by oncogenic K-ras that mediate BASC expansion have not been fully defined. Methodology/Principal Findings We used genetic and pharmacologic approaches to modulate the activity of phosphatidylinositol 3-kinase (PI3K), a key mediator of oncogenic K-ras, in two genetic mouse models of lung adenocarcinoma. Oncogenic K-ras-induced BASC accumulation and tumor growth were blocked by treatment with a small molecule PI3K inhibitor and enhanced by inactivation of phosphatase and tensin homologue deleted from chromosome 10, a negative regulator of PI3K. Conclusions/Significance We conclude that PI3K is a critical regulator of BASC expansion, supporting treatment strategies to target PI3K in NSCLC patients. PMID:18493606

  2. TH-E-BRF-07: Raman Spectroscopy for Radiation Treatment Response Assessment in a Lung Metastases Mouse Model

    SciTech Connect

    Devpura, S; Barton, K; Brown, S; Siddiqui, F; Chetty, I; Sethi, S; Klein, M

    2014-06-15

    Purpose: Raman spectroscopy is an optical spectroscopic method used to probe chemical information about a target tissue. Our goal was to investigate whether Raman spectroscopy is able to distinguish lung tumors from normal lung tissue and whether this technique can identify the molecular changes induced by radiation. Methods: 4T1 mouse breast cancer cells were implanted subcutaneously into the flanks of 6 Balb/C female mice. Four additional mice were used as “normal lung” controls. After 14 days, 3 mice bearing tumors received 6Gy to the left lung with 6MV photons and the other three were treated as “unirradiated tumor” controls. At a 24-hour time point, lungs were excised and the specimens were sectioned using a cryostat; alternating sections were either stained with hematoxylin and eosin (H and E) for evaluation by a pathologist or unstained for Raman measurements. 240 total Raman spectra were collected; 84 from normal lung controls; 63 from unirradiated tumors and 64 from tumors irradiated with 6Gy in a single fraction. Raman spectra were also collected from normal lung tissues of mice with unirradiated tumors. Principal component analysis (PCA) and discriminant function analysis (DFA) were performed to analyze the data. Results: Raman bands assignable to DNA/RNA showed prominent contributions in tumor tissues while Raman bands associated with hemoglobin showed strong contributions in normal lung tissue. PCA/DFA analysis identified normal lung tissue and tumor with 100% and 98.4% accuracy, respectively, relative to pathologic scoring. Additionally, normal lung tissues from unirradiated mice bearing tumors were classified as normal with 100% accuracy. In a model consisting of unirradiated and irradiated tumors identification accuracy was 79.4% and 93.8% respectively, relative to pathologic assessment. Conclusion: Initial results demonstrate the promise for Raman spectroscopy in the diagnosis normal vs. lung metastases as well as the assessment of

  3. Tissue optical clearing, three-dimensional imaging, and computer morphometry in whole mouse lungs and human airways.

    PubMed

    Scott, Gregory D; Blum, Emily D; Fryer, Allison D; Jacoby, David B

    2014-07-01

    In whole adult mouse lung, full identification of airway nerves (or other cellular/subcellular objects) has not been possible due to patchy distribution and micron-scale size. Here we describe a method using tissue clearing to acquire the first complete image of three-dimensional (3D) innervation in the lung. We then created a method to pair analysis of nerve (or any other colabeled epitope) images with identification of 3D tissue compartments and airway morphometry by using fluorescent casting and morphometry software (which we designed and are making available as open-source). We then tested our method to quantify a sparse heterogeneous nerve population by examining visceral pleural nerves. Finally, we demonstrate the utility of our method in human tissue to image full thickness innervation in irregular 3D tissue compartments and to quantify sparse objects (intrinsic airway ganglia). Overall, this method can uniquely pair the advantages of whole tissue imaging and cellular/subcellular fluorescence microscopy.

  4. Tumor promoting and suppressive roles of autophagy in the same mouse model of BRAFV600E-driven lung cancer

    PubMed Central

    Chen, Song; Guan, Jun-Lin

    2013-01-01

    Summary Although a role of autophagy in cancer development and progression has received increasing appreciation in recent years, there are still significant uncertainty and conflicting results regarding its tumor suppressive and promoting functions, and more importantly a lack of understanding of mechanisms underlying these opposing activities. The work presented here by Strohecker and colleagues uses an innovative approach to address these challenges by examining the effects of inactivating the key autophagy gene Atg7 at different stages of oncogenic development in a BRAFV600E-driven mouse lung cancer model. The authors show that autophagy blockage accelerated tumor development initially, but suppressed tumor progression in later stages, converting adenomas to oncocytomas and increasing mouse survival. Importantly, they identify a critical role of glutamine dependency in the suppression of BRAFV600E-induced cancer, thus revealing an important mechanism by which autophagy may promote tumor progression in different cellular contexts. PMID:24203955

  5. Radiogenic cell transformation and carcinogenesis

    NASA Technical Reports Server (NTRS)

    Yang, T. C.; Georgy, K. A.; Mei, M.; Durante, M.; Craise, L. M.

    1995-01-01

    Radiation carcinogenesis is one of the major biological effects considered important in the risk assessment for space travel. Various biological model systems, including both cultured cells and animals, have been found useful for studying the carcinogenic effects of space radiations, which consist of energetic electrons, protons and heavy ions. The development of techniques for studying neoplastic cell transformation in culture has made it possible to examine the cellular and molecular mechanisms of radiation carcinogenesis. Cultured cell systems are thus complementary to animal models. Many investigators have determined the oncogenic effects of ionizing and nonionizing radiation in cultured mammalian cells. One of the cell systems used most often for radiation transformation studies is mouse embryonic cells (C3H10T1/2), which are easy to culture and give good quantitative dose-response curves. Relative biological effectiveness (RBE) for heavy ions with various energies and linear energy transfer (LET) have been obtained with this cell system. Similar RBE and LET relationship was observed by investigators for other cell systems. In addition to RBE measurements, fundamental questions on repair of sub- and potential oncogenic lesions, direct and indirect effect, primary target and lesion, the importance of cell-cell interaction and the role of oncogenes and tumor suppressor genes in radiogenic carcinogenesis have been studied, and interesting results have been found. Recently several human epithelial cell systems have been developed, and ionizing radiation have been shown to transform these cells. Oncogenic transformation of these cells, however, requires a long expression time and/or multiple radiation exposures. Limited experimental data indicate high-LET heavy ions can be more effective than low-LET radiation in inducing cell transformation. Cytogenetic and molecular analyses can be performed with cloned transformants to provide insights into basic genetic

  6. Gene Profiles in a Smoke-Induced COPD Mouse Lung Model Following Treatment with Mesenchymal Stem Cells.

    PubMed

    Kim, You-Sun; Kokturk, Nurdan; Kim, Ji-Young; Lee, Sei Won; Lim, Jaeyun; Choi, Soo Jin; Oh, Wonil; Oh, Yeon-Mok

    2016-10-01

    Mesenchymal stem cells (MSCs) effectively reduce airway inflammation and regenerate the alveolus in cigarette- and elastase-induced chronic obstructive pulmonary disease (COPD) animal models. The effects of stem cells are thought to be paracrine and immune-modulatory because very few stem cells remain in the lung one day after their systemic injection, which has been demonstrated previously. In this report, we analyzed the gene expression profiles to compare mouse lungs with chronic exposure to cigarette smoke with non-exposed lungs. Gene expression profiling was also conducted in a mouse lung tissue with chronic exposure to cigarette smoke following the systemic injection of human cord blood-derived mesenchymal stem cells (hCB-MSCs). Globally, 834 genes were differentially expressed after systemic injection of hCB-MSCs. Seven and 21 genes, respectively, were up-and downregulated on days 1, 4, and 14 after HCB-MSC injection. The Hbb and Hba, genes with oxygen transport and antioxidant functions, were increased on days 1 and 14. A serine protease inhibitor was also increased at a similar time point after injection of hCB-MSCs. Gene Ontology analysis indicated that the levels of genes related to immune responses, metabolic processes, and blood vessel development were altered, indicating host responses after hCB-MSC injection. These gene expression changes suggest that MSCs induce a regeneration mechanism against COPD induced by cigarette smoke. These analyses provide basic data for understanding the regeneration mechanisms promoted by hCB-MSCs in cigarette smoke-induced COPD.

  7. A novel mouse model of conditional IRAK-M deficiency in myeloid cells: application in lung Pseudomonas aeruginosa infection.

    PubMed

    Jiang, Di; Matsuda, Jennifer; Berman, Reena; Schaefer, Niccolette; Stevenson, Connor; Gross, James; Zhang, Bicheng; Sanchez, Amelia; Li, Liwu; Chu, Hong Wei

    2017-02-01

    Myeloid cells such as macrophages are critical to innate defense against infection. IL-1 receptor-associated kinase M (IRAK-M) is a negative regulator of TLR signaling during bacterial infection, but the role of myeloid cell IRAK-M in bacterial infection is unclear. Our goal was to generate a novel conditional knockout mouse model to define the role of myeloid cell IRAK-M during bacterial infection. Myeloid cell-specific IRAK-M knockout mice were generated by crossing IRAK-M floxed mice with LysM-Cre knock-in mice. The resulting LysM-Cre(+)/IRAK-M(fl/wt) and control (LysM-Cre(-)/IRAK-M(fl/wt)) mice were intranasally infected with Pseudomonas aeruginosa (PA). IRAK-M deletion, inflammation, myeloperoxidase (MPO) activity and PA load were measured in leukocytes, bronchoalveolar lavage (BAL) fluid and lungs. PA killing assay with BAL fluid was performed to determine mechanisms of IRAK-M-mediated host defense. IRAK-M mRNA and protein levels in alveolar and lung macrophages were significantly reduced in LysM-Cre(+)/IRAK-M(fl/wt) mice compared with control mice. Following PA infection, LysM-Cre(+)/IRAK-M(fl/wt) mice have enhanced lung neutrophilic inflammation, including MPO activity, but reduced PA load. The increased lung MPO activity in LysM-Cre(+)/IRAK-M(fl/wt) mouse BAL fluid reduced PA load. Generation of IRAK-M conditional knockout mice will enable investigators to determine precisely the function of IRAK-M in myeloid cells and other types of cells during infection and inflammation.

  8. Gene Profiles in a Smoke-Induced COPD Mouse Lung Model Following Treatment with Mesenchymal Stem Cells

    PubMed Central

    Kim, You-Sun; Kokturk, Nurdan; Kim, Ji-Young; Lee, Sei Won; Lim, Jaeyun; Choi, Soo Jin; Oh, Wonil; Oh, Yeon-Mok

    2016-01-01

    Mesenchymal stem cells (MSCs) effectively reduce airway inflammation and regenerate the alveolus in cigarette- and elastase-induced chronic obstructive pulmonary disease (COPD) animal models. The effects of stem cells are thought to be paracrine and immune-modulatory because very few stem cells remain in the lung one day after their systemic injection, which has been demonstrated previously. In this report, we analyzed the gene expression profiles to compare mouse lungs with chronic exposure to cigarette smoke with non-exposed lungs. Gene expression profiling was also conducted in a mouse lung tissue with chronic exposure to cigarette smoke following the systemic injection of human cord blood-derived mesenchymal stem cells (hCB-MSCs). Globally, 834 genes were differentially expressed after systemic injection of hCB-MSCs. Seven and 21 genes, respectively, were up-and downregulated on days 1, 4, and 14 after HCB-MSC injection. The Hbb and Hba, genes with oxygen transport and antioxidant functions, were increased on days 1 and 14. A serine protease inhibitor was also increased at a similar time point after injection of hCB-MSCs. Gene Ontology analysis indicated that the levels of genes related to immune responses, metabolic processes, and blood vessel development were altered, indicating host responses after hCB-MSC injection. These gene expression changes suggest that MSCs induce a regeneration mechanism against COPD induced by cigarette smoke. These analyses provide basic data for understanding the regeneration mechanisms promoted by hCB-MSCs in cigarette smoke-induced COPD. PMID:27802588

  9. Tumor necrosis factor-alpha increases reactive oxygen species by inducing spermine oxidase in human lung epithelial cells: a potential mechanism for inflammation-induced carcinogenesis.

    PubMed

    Babbar, Naveen; Casero, Robert A

    2006-12-01

    Inflammation has been implicated in the development of many human epithelial cancers, including those of the stomach, lung, colon, and prostate. Tumor necrosis factor-alpha (TNF-alpha) is a potent pleiotropic, proinflammatory cytokine produced by many cells in response to injury and inflammation. Here, we show that TNF-alpha exposure results in increased production of reactive oxygen species (ROS), with a concomitant increase in the production of 8-oxo-deoxyguanosine, a marker for oxidative DNA damage, in human lung bronchial epithelial cells. The source of the ROS in TNF-alpha-treated cells was determined by both pharmacologic and small interfering RNA (siRNA) strategies to be spermine oxidase (SMO/PAOh1). SMO/PAOh1 oxidizes spermine into spermidine, 3-aminopropanal, and H(2)O(2). Inhibition of TNF-alpha-induced SMO/PAOh1 activity with MDL 72,527 or with a targeted siRNA prevented ROS production and oxidative DNA damage. Further, similar induction in SMO/PAOh1 is observed with treatment of another inflammatory cytokine, interleukin-6. The data are consistent with a model that directly links inflammation and DNA damage through the production of H(2)O(2) by SMO/PAOh1. Further, these results suggest a common mechanism by which inflammation from multiple sources can lead to the mutagenic changes necessary for the development and progression of epithelial cancers.

  10. Lung Cancer Mortality (1950–1999) among Eldorado Uranium Workers: A Comparison of Models of Carcinogenesis and Empirical Excess Risk Models

    PubMed Central

    Eidemüller, Markus; Jacob, Peter; Lane, Rachel S. D.; Frost, Stanley E.; Zablotska, Lydia B.

    2012-01-01

    Lung cancer mortality after exposure to radon decay products (RDP) among 16,236 male Eldorado uranium workers was analyzed. Male workers from the Beaverlodge and Port Radium uranium mines and the Port Hope radium and uranium refinery and processing facility who were first employed between 1932 and 1980 were followed up from 1950 to 1999. A total of 618 lung cancer deaths were observed. The analysis compared the results of the biologically-based two-stage clonal expansion (TSCE) model to the empirical excess risk model. The spontaneous clonal expansion rate of pre-malignant cells was reduced at older ages under the assumptions of the TSCE model. Exposure to RDP was associated with increase in the clonal expansion rate during exposure but not afterwards. The increase was stronger for lower exposure rates. A radiation-induced bystander effect could be a possible explanation for such an exposure response. Results on excess risks were compared to a linear dose-response parametric excess risk model with attained age, time since exposure and dose rate as effect modifiers. In all models the excess relative risk decreased with increasing attained age, increasing time since exposure and increasing exposure rate. Large model uncertainties were found in particular for small exposure rates. PMID:22936975

  11. Understanding Lung Deposition of Alpha-1 Antitrypsin in Acute Experimental Mouse Lung Injury Model Using Fluorescence Microscopy

    PubMed Central

    Zhan, Yutian; Chen, Jianqing; Rong, Haojing; O'Neil, Shawn P.; Ghosh, Brahma; Nguyen, Vuong; Li, Xianfeng

    2016-01-01

    Human plasma-derived α1-antitrypsin (AAT) delivered by intravenous infusion is used as augmentation therapy in patients with emphysema who have a genetic mutation resulting in deficiency of AAT. Inhalation is an alternative route of administration that can potentially increase the efficacy and convenience of treatment. This study was conducted to determine whether delivery to the lungs, initially via the intratracheal (IT) route of administration, would deliver efficacious levels of a recombinant AAT (rAAT) to the site of action in the lungs in mice. 125I-radiolabeled rAAT, fluorophore-conjugated rAAT (rAAT-Alexa488), and NE680 (neutrophil elastase 680, a silent fluorescent substrate of neutrophil elastase which fluoresces in the near-infrared range upon activation by neutrophil elastase) were used to characterize the pharmacokinetics and tissue distribution profile, distribution of rAAT within the lung, and efficacy of rAAT to inhibit neutrophil elastase at the site of action, respectively. The study has demonstrated that rAAT was able to gain access to locations where neutrophil elastase was localized. The histochemical quantification of rAAT activity relative to dose at the site of action provided here will improve confidence in predicting the human dose via the inhalation route. PMID:28050284

  12. Sterol and triterpene derivatives from plants inhibit the effects of a tumor promoter, and sitosterol and betulinic acid inhibit tumor formation in mouse skin two-stage carcinogenesis.

    PubMed

    Yasukawa, K; Takido, M; Matsumoto, T; Takeuchi, M; Nakagawa, S

    1991-01-01

    A single topical application of 1 microgram of 12-O-tetradecanoylphorbol- 13-acetate (TPA) to the ears of mice was shown to induce edema, and this TPA-induced inflammation was inhibited by 4-methylsterol and triterpene derivatives. The ED50 of these compounds against TPA-induced inflammation was 0.1-3 mumol. Phytosterols had only slight inhibitory effects. Furthermore, application of 5 micrograms TPA to mouse skin rapidly caused accumulation of ornithine decarboxylase (ODC). Similarly, sitosterol and lupane-type triterpene derivatives markedly inhibited this TPA-induced ODC accumulation. In addition, 5 mumol betulinic acid markedly inhibited the promoting effect of 2.5 micrograms TPA applied twice weekly on skin tumor formation in mice initiated with 50 micrograms of 7,12-dimethylbenz[a]anthracene, and 5 mumol of sitosterol caused slight suppression. Thus, the inhibitory effects of sterol and triterpene derivatives on TPA-induced inflammation roughly parallelled their inhibitory activities against tumor promotion.

  13. The nonsteroidal anti-inflammatory drug, nabumetone, differentially inhibits beta-catenin signaling in the MIN mouse and azoxymethane-treated rat models of colon carcinogenesis.

    PubMed

    Roy, Hemant K; Karolski, William J; Wali, Ramesh K; Ratashak, Anne; Hart, John; Smyrk, Thomas C

    2005-01-20

    The mechanisms through which beta-catenin signaling is inhibited during colorectal cancer chemoprevention by nonsteroidal anti-inflammatory agents is incompletely understood. We report that nabumetone decreased uninvolved intestinal mucosal beta-catenin levels in the MIN mouse with a concomitant increase in glycogen synthase kinase (GSK)-3beta levels, an enzyme that targets beta-catenin for destruction. However, in the azoxymethane-treated rat, where beta-catenin is frequently rendered GSK-3beta-insensitive, nabumetone failed to alter beta-catenin levels but did decrease beta-catenin nuclear localization and transcriptional activity as gauged by cyclin D1. In conclusion, we demonstrate that the differential mechanisms for beta-catenin suppression may be determined, at least partly, by GSK-3beta.

  14. Mouse mammary tumor virus infection accelerates mammary carcinogenesis in Wnt-1 transgenic mice by insertional activation of int-2/Fgf-3 and hst/Fgf-4.

    PubMed Central

    Shackleford, G M; MacArthur, C A; Kwan, H C; Varmus, H E

    1993-01-01

    Transgenic mice carrying the Wnt-1 protooncogene modified for expression in mammary epithelial cells exhibit hyperplastic mammary glands and stochastically develop mammary carcinomas, suggesting that additional events are necessary for tumorigenesis. To induce such events and to identify the genes involved, we have infected Wnt-1 transgenic mice with mouse mammary tumor virus (MMTV), intending to insertionally activate, and thereby molecularly tag, cooperating protooncogenes. Infection of breeding female Wnt-1 transgenics decreased the average age at which tumors appeared from approximately 4 months to approximately 2.5 months and increased the average number of primary tumors per mouse from 1-2 to > 5. A smaller effect was observed in virgin females, and infection of transgenic males showed no significant effect on tumor latency. More than half of the tumors from the infected breeding group contained one or more newly acquired MMTV proviruses in a pattern suggesting that most cells in tumors arose from a single infected cell. Analyses of provirus-containing tumors for induced or altered expression of int-2/Fgf-3, hst/Fgf-4, int-3, and Wnt-3 showed activation of int-2 in 39% of tumors, hst in 3%, and both int-2 and hst in 3%. DNA analyses with probes for protooncogenes and MMTV confirmed that the activations resulted from proviral insertions. There was no evidence for proviral insertions at the int-3, Wnt-3, or Wnt-1 loci. These findings provide further evidence that fibroblast growth factors Int-2 and Hst can cooperate with Wnt-1, another secreted factor, in mammary tumorigenesis, and they illustrate the capacity of this system to identify cooperating oncogenes. Images PMID:8380647

  15. Pten Inactivation Accelerates Oncogenic K-ras-Initiated Tumorigenesis in a Mouse Model of Lung Cancer

    PubMed Central

    Iwanaga, Kentaro; Yang, Yanan; Raso, Maria Gabriela; Ma, Lijiang; Hanna, Amy E.; Thilaganathan, Nishan; Moghaddam, Seyed; Evans, Christopher M.; Li, Huaiguang; Cai, Wei-Wen; Sato, Mitsuo; Minna, John D.; Wu, Hong; Creighton, Chad J.; Demayo, Francesco J.; Wistuba, Ignacio I.; Kurie, Jonathan M.

    2009-01-01

    Phosphatase and tensin homologue deleted from chromosome 10 (Pten) is expressed aberrantly in non-small cell lung cancer cells, but the role of Pten in lung neoplasia has not been fully elucidated. In this study, we used a genetic approach to inactivate Pten in the bronchial epithelium of mice. Although, by itself, Pten inactivation had no discernible effect on bronchial epithelial histology, it accelerated lung tumorigenesis initiated by oncogenic K-ras, causing more rapid lethality than that induced by oncogenic K-ras alone (8 weeks versus 24 weeks of median duration of survival, respectively). Lung tumors arose in K-ras mutant, Pten-deficient mice that rapidly obstructed bronchial lumina and replaced alveolar spaces. Relative to K-ras mutant tumors, the K-ras mutant, Pten-deficient tumors exhibited more advanced histologic severity and more prominent inflammation and vascularity. Thus, Pten inactivation cooperated with oncogenic K-ras in promoting lung tumorigenesis. PMID:18281487

  16. Characterization of a genetic mouse model of lung cancer: a promise to identify Non-Small Cell Lung Cancer therapeutic targets and biomarkers

    PubMed Central

    2014-01-01

    Background Non-small cell lung cancer (NSCLC) accounts for 81% of all cases of lung cancer and they are often fatal because 60% of the patients are diagnosed at an advanced stage. Besides the need for earlier diagnosis, there is a high need for additional effective therapies. In this work, we investigated the feasibility of a lung cancer progression mouse model, mimicking features of human aggressive NSCLC, as biological reservoir for potential therapeutic targets and biomarkers. Results We performed RNA-seq profiling on total RNA extracted from lungs of a 30 week-old K-rasLA1/p53R172HΔg and wild type (WT) mice to detect fusion genes and gene/exon-level differential expression associated to the increase of tumor mass. Fusion events were not detected in K-rasLA1/p53R172HΔg tumors. Differential expression at exon-level detected 33 genes with differential exon usage. Among them nine, i.e. those secreted or expressed on the plasma membrane, were used for a meta-analysis of more than 500 NSCLC RNA-seq transcriptomes. None of the genes showed a significant correlation between exon-level expression and disease prognosis. Differential expression at gene-level allowed the identification of 1513 genes with a significant increase in expression associated to tumor mass increase. 74 genes, i.e. those secreted or expressed on the plasma membrane, were used for a meta-analysis of two transcriptomics datasets of human NSCLC samples, encompassing more than 900 samples. SPP1 was the only molecule whose over-expression resulted statistically related to poor outcome regarding both survival and metastasis formation. Two other molecules showed over-expression associated to poor outcome due to metastasis formation: GM-CSF and ADORA3. GM-CSF is a secreted protein, and we confirmed its expression in the supernatant of a cell line derived by a K-rasLA1/p53R172HΔg mouse tumor. ADORA3 is instead involved in the induction of p53-mediated apoptosis in lung cancer cell lines. Since in our

  17. Aberrant lung remodeling in a mouse model of surfactant dysregulation induced by modulation of the Abca3 gene.

    PubMed

    Beers, Michael F; Knudsen, Lars; Tomer, Yaniv; Maronn, Julian; Zhao, Ming; Ochs, Matthias; Mulugeta, Surafel

    2017-03-01

    The lipid transporter, ATP binding cassette class A3 (ABCA3), plays a critical role in the biogenesis of alveolar type 2 (AT2) cell lamellar bodies (LBs). A relatively large number of mutations in the ABCA3 gene have been identified in association with diffuse parenchymal lung disease (DPLD), the most common of which is a missense mutation (valine substitution for lysine at residue 292 (ABCA3(E292V))) that leads to functional impairment of the transporter in vitro. The consequences of ABCA3(E292)(V) gene expression in vivo are unknown. To address this question, we developed mouse models expressing ABCA3(E292V) knocked-in to the endogenous mouse locus. The parental (F1) mouse line (mAbca3(E292)(V)) that retained an intronic pgk-Neo selection cassette (inserted in reverse orientation) (mAbca3(E292)(V)-rNeo) demonstrated an allele dependent extracellular surfactant phospholipid (PL) deficiency. We hypothesize that this PL deficiency leads to aberrant parenchymal remodeling contributing to the pathophysiology of the DPLD phenotype. Compared to wild type littermates, baseline studies of mice homozygous for the pgk-Neo insert (mAbca3(E292)(V)-rNeo(+/)(+)) revealed nearly 50% reduction in bronchoalveolar lavage (BAL) PL content that was accompanied by quantitative reduction in AT2 LB size with a compensatory increase in LB number. The phenotypic alteration in surfactant lipid homeostasis resulted in an early macrophage predominant alveolitis which peaked at 8 weeks of age. This was followed by age-dependent development of histological DPLD characterized initially by peribronchial inflammatory cell infiltration and culminating in both an emphysema-like phenotype (which included stereologically quantifiable reductions in both alveolar septal surface area and volume of septal wall tissue) plus foci of trichrome-positive collagen deposition together with substantial proliferation of hyperplastic AT2 cells. In addition to spontaneous lung remodeling, mABCA3(E292V)-rNeo mice

  18. Induction of terminal differentiation-resistant epidermal cells in mouse skin and in papillomas by different initiators during two-stage carcinogenesis.

    PubMed

    Miller, D R; Viaje, A; Rotstein, J; Aldaz, C M; Conti, C J; Slaga, T J

    1989-01-15

    Carcinogen treatment of normal mouse epidermal cells causes some cells, if cultured under the appropriate conditions, to continue to proliferate instead of terminally differentiate, forming foci at 37 degrees C in medium with a calcium level above 0.1 mM. We have examined these Calcium (Ca)-resistant cells formed in the skin of SENCAR mice after treatment with the carcinogen initiator 7,12-dimethylbenz[a]anthracene (DMBA) followed by tumor promotion with 12-O-tetradecanoylphorbol-13-acetate (TPA). Although in our previous studies TPA promotion initially increased the size but reduced the number of foci caused by the carcinogen initiator N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), TPA promotion of DMBA-treated mice increased the size but had no effect on the number of foci. Papillomas resulting from DMBA plus TPA treatment contained many rapidly growing Ca-resistant cells, corroborating our earlier results with MNNG. Permanent cell lines prepared from papilloma-derived foci formed squamous cell carcinomas in nude mice after relatively short periods in culture. These data provide further evidence that Ca-resistant cells may be papilloma (and perhaps carcinoma) precursors in vivo. In addition, since TPA tends to reduce the number of early Ca-resistant cells caused by MNNG but not by DMBA, this may at least partially explain why treatment with DMBA plus TPA is much more effective in producing papillomas in SENCAR mice than is treatment with MNNG plus TPA.

  19. Protective effects of hemin and tetrakis(4-benzoic acid)porphyrin on bacterial mutagenesis and mouse skin carcinogenesis induced by 7, 12-dimethylbenz[a]anthracene.

    PubMed

    Chung, W Y; Lee, J M; Lee, W Y; Surh, Y J; Park, K K

    2000-12-20

    Porphyrins which are widespread in nature can interfere with the actions of certain carcinogens and mutagens, and have also been used clinically in photodynamic therapy (PDT) of tumors. Porphyrins such as chlorophyll, chlorophyllin (CHL) and hemin are known to inactivate various mutagens by forming complexes with them. Tetrakis(4-benzoic acid)porphyrin (TBAP) has been developed as a photosensitizer for PDT and its metal complex, MnTBAP has been shown to be efficacious in a variety of in vitro and in vivo oxidative stress models of human diseases. In the present study, we have found that TBAP and hemin exert concentration-related inhibition of his(+) reversion in Salmonella typhimurium TA100 induced by 7, 12-dimethylbenz[a]anthracene (DMBA), and significantly reduced both incidence and multiplicity of skin tumors when topically applied prior to treatment of 12-O-tetradecanoylphorbol-13-acetate in female ICR mice. Covalent DNA binding of DMBA in mouse skin was also significantly inhibited by topical application of TBAP or hemin as well as CHL. These results suggest the chemopreventive potential of compounds containing a porphyrin nucleus.

  20. Influence of dietary selenium on mouse lung biochemical response and tolerance to ozone inhalation

    SciTech Connect

    Elsayed, N.M.

    1983-01-01

    This study examined whether altered selenium (Se) intake with or without ozone (O/sub 3/) stress would result in a possible 1) dose-response relationship between lung Se and glutathione peroxidase, 2) influence of Se on other lung parameters, 3) interrelationship between lung Se and vitamin E contents, and 4) alteration of lung sensitivity or tolerance to O/sub 3/. The results showed the following: 1) Omission of dietary Se resulted in a drastic decline in GP activity but did not affect the other enzyme activities studied. 2) A stimulation of the PPC and CAC activites with low-level O/sub 3/ exposure occurred only in Se-supplemented mice. The stimulation was greater in the lungs of mice fed 1.0 ppm Se compared to 0.15 ppm, i.e., the response was Se-dose dependent in this range. 3) Diminished GP activity possibly resulted in a decreased demand for NADPH produced via not only the PPC but also the CAC. 4) An inverse relationship was observed between Se and vitamin E contents in lung tissue, showing that a compensatory relationship existed between the two. 5) After each O/sub 3/ exposure Se content increased in lung tissue of both dietary groups, suggesting a possible mobilization of Se to the lung under O/sub 3/ stress. 6) Decreased GP activity due to Se deficiency and the ensuring lack of stimulated NADPH production in the lung did not alter the animal sensitivity to O/sub 3/, suggesting that GP reaction and NADPH production cycles were not crucial for animal tolerance.

  1. Pharmacological and genetic reappraisals of protease and oxidative stress pathways in a mouse model of obstructive lung diseases.

    PubMed

    Shuto, Tsuyoshi; Kamei, Shunsuke; Nohara, Hirofumi; Fujikawa, Haruka; Tasaki, Yukihiro; Sugahara, Takuya; Ono, Tomomi; Matsumoto, Chizuru; Sakaguchi, Yuki; Maruta, Kasumi; Nakashima, Ryunosuke; Kawakami, Taisei; Suico, Mary Ann; Kondo, Yoshitaka; Ishigami, Akihito; Takeo, Toru; Tanaka, Ken-Ichiro; Watanabe, Hiroshi; Nakagata, Naomi; Uchimura, Kohei; Kitamura, Kenichiro; Li, Jian-Dong; Kai, Hirofumi

    2016-12-16

    Protease-antiprotease imbalance and oxidative stress are considered to be major pathophysiological hallmarks of severe obstructive lung diseases including chronic obstructive pulmonary disease (COPD) and cystic fibrosis (CF), but limited information is available on their direct roles in the regulation of pulmonary phenotypes. Here, we utilized βENaC-transgenic (Tg) mice, the previously established mouse model of severe obstructive lung diseases, to produce lower-mortality but pathophysiologically highly useful mouse model by backcrossing the original line with C57/BL6J mice. C57/BL6J-βENaC-Tg mice showed higher survival rates and key pulmonary abnormalities of COPD/CF, including mucous hypersecretion, inflammatory and emphysematous phenotypes and pulmonary dysfunction. DNA microarray analysis confirmed that protease- and oxidative stress-dependent pathways are activated in the lung tissue of C57/BL6J-βENaC-Tg mice. Treatments of C57/BL6J-βENaC-Tg mice with a serine protease inhibitor ONO-3403, a derivative of camostat methylate (CM), but not CM, and with an anti-oxidant N-acetylcystein significantly improved pulmonary emphysema and dysfunction. Moreover, depletion of a murine endogenous antioxidant vitamin C (VC), by genetic disruption of VC-synthesizing enzyme SMP30 in C57/BL6J-βENaC-Tg mice, exaggerated pulmonary phenotypes. Thus, these assessments clarified that protease-antiprotease imbalance and oxidative stress are critical pathways that exacerbate the pulmonary phenotypes of C57/BL6J-βENaC-Tg mice, consistent with the characteristics of human COPD/CF.

  2. Pharmacological and genetic reappraisals of protease and oxidative stress pathways in a mouse model of obstructive lung diseases

    PubMed Central

    Shuto, Tsuyoshi; Kamei, Shunsuke; Nohara, Hirofumi; Fujikawa, Haruka; Tasaki, Yukihiro; Sugahara, Takuya; Ono, Tomomi; Matsumoto, Chizuru; Sakaguchi, Yuki; Maruta, Kasumi; Nakashima, Ryunosuke; Kawakami, Taisei; Suico, Mary Ann; Kondo, Yoshitaka; Ishigami, Akihito; Takeo, Toru; Tanaka, Ken-ichiro; Watanabe, Hiroshi; Nakagata, Naomi; Uchimura, Kohei; Kitamura, Kenichiro; Li, Jian-Dong; Kai, Hirofumi

    2016-01-01

    Protease-antiprotease imbalance and oxidative stress are considered to be major pathophysiological hallmarks of severe obstructive lung diseases including chronic obstructive pulmonary disease (COPD) and cystic fibrosis (CF), but limited information is available on their direct roles in the regulation of pulmonary phenotypes. Here, we utilized βENaC-transgenic (Tg) mice, the previously established mouse model of severe obstructive lung diseases, to produce lower-mortality but pathophysiologically highly useful mouse model by backcrossing the original line with C57/BL6J mice. C57/BL6J-βENaC-Tg mice showed higher survival rates and key pulmonary abnormalities of COPD/CF, including mucous hypersecretion, inflammatory and emphysematous phenotypes and pulmonary dysfunction. DNA microarray analysis confirmed that protease- and oxidative stress-dependent pathways are activated in the lung tissue of C57/BL6J-βENaC-Tg mice. Treatments of C57/BL6J-βENaC-Tg mice with a serine protease inhibitor ONO-3403, a derivative of camostat methylate (CM), but not CM, and with an anti-oxidant N-acetylcystein significantly improved pulmonary emphysema and dysfunction. Moreover, depletion of a murine endogenous antioxidant vitamin C (VC), by genetic disruption of VC-synthesizing enzyme SMP30 in C57/BL6J-βENaC-Tg mice, exaggerated pulmonary phenotypes. Thus, these assessments clarified that protease-antiprotease imbalance and oxidative stress are critical pathways that exacerbate the pulmonary phenotypes of C57/BL6J-βENaC-Tg mice, consistent with the characteristics of human COPD/CF. PMID:27982104

  3. Mycobacterium terrae isolated from indoor air of a moisture-damaged building induces sustained biphasic inflammatory response in mouse lungs.

    PubMed

    Jussila, Juha; Komulainen, Hannu; Huttunen, Kati; Roponen, Marjut; Iivanainen, Eila; Torkko, Pirjo; Kosma, Veli-Matti; Pelkonen, Jukka; Hirvonen, Maija-Riitta

    2002-11-01

    Occupants in moisture-damaged buildings suffer frequently from respiratory symptoms. This may be partly due to the presence of abnormal microbial growth or the altered microbial flora in the damaged buildings. However, the specific effects of the microbes on respiratory health and the way they provoke clinical manifestations are poorly understood. In the present study, we exposed mice via intratracheal instillation to a single dose of Mycobacterium terrae isolated from the indoor air of a moisture-damaged building (1 X 10(7), 5 X 10(7), or 1 X 10(8) microbes). Inflammation and toxicity in lungs were evaluated 2 hr later. The time course of the effects was assessed with the dose of 1 X 10(8) bacterial cells for up to 28 days. M. terrae caused a sustained biphasic inflammation in mouse lungs. The characteristic features for the first phase, which lasted from 6 hr to 3 days, were elevated proinflammatory cytokine [i.e., tumor necrosis factor alpha (TNF-alpha) and interleukin-6 (IL-6)] levels in the bronchoalveolar lavage fluid (BALF). TNF-alpha was produced in the lungs more intensively than was IL-6. Neutrophils were the most abundant cells in the airways during the first phase, although their numbers in BALF remained elevated up to 21 days. The characteristics of the second phase, which lasted from 7 to 28 days, were elevated TNF-alpha levels in BALF, expression of inducible nitric oxide synthase in BAL cells, and recruitment of mononuclear cells such as lymphocytes and macrophages into the airways. Moreover, total protein, albumin, and lactate dehydrogenase concentrations were elevated in both phases in BALF. The bacteria were detected in lungs up to 28 days. In summary, these observations indicate that M. terrae is capable of provoking a sustained, biphasic inflammation in mouse lungs and can cause a moderate degree of cytotoxicity. Thus, M. terrae can be considered a species with potential to adversely affect the health of the occupants of moisture

  4. Lung tumors in strain A mice as a bioassay for carcinogenicity of environmental chemicals

    SciTech Connect

    Stoner, G.D. )

    1991-03-01

    This report describes the protocol for the strain A mouse lung tumor bioassay and summarizes results on selected chemicals that have been tested for carcinogenicity in the assay. The assay is of 6 months duration and can distinguish 2-fold differences in carcinogenic potential of compounds from several chemical classes. Specifically, the assay is sensitive to polycyclic hydrocarbons, nitrosamines and nitrosoureas, carbamates, aflatoxin, certain metals, hydrazines, and others, but is relatively insensitive to aromatic amines, aliphatic halides, and other compounds that are carcinogenic in the rodent liver and/or bladder. Recommendations are made for future studies on the: (1) distribution and metabolism of chemicals in strain A mouse lung tissue and in specific lung cell types; (2) ability of the lung tumor bioassay to detect inhibitors and promoters of carcinogenesis; and (3) use of the assay for testing mixtures of chemicals for carcinogenic activity.

  5. A Cell-Impermeable Cyclosporine A Derivative Reduces Pathology in a Mouse Model of Allergic Lung Inflammation

    PubMed Central

    Balsley, Molly A.; Malesevic, Miroslav; Stemmy, Erik J.; Gigley, Jason; Jurjus, Rosalyn A.; Herzog, Dallen; Bukrinsky, Michael I.; Fischer, Gunter; Constant, Stephanie L.

    2013-01-01

    Although the main regulators of leukocyte trafficking are chemokines, another family of chemotactic agents is cyclophilins. Intracellular cyclophilins function as peptidyl-protyl cis-trans isomerases and are targets of the immunosuppressive drug, cyclosporine A (CsA). Cyclophilins can also be secreted in response to stress factors, with elevated levels of extracellular cyclophilins detected in several inflammatory diseases. Extracellular cyclophilins are known to have potent chemotactic properties, suggesting they might contribute to inflammatory responses by recruiting leukocytes into tissues. The objective of the current study was to determine the impact of blocking cyclophilin activity using a cell-impermeable derivative of CsA, MM218, to specifically target extracellular pools of cyclophilins. We show that treatment with this compound in a mouse model of allergic lung inflammation: 1) demonstrates up to 80% reduction in inflammation, 2) directly inhibits the recruitment of antigen-specific CD4+ T cells, and 3) works equally well when delivered at 100-fold lower doses to the airways. Our findings suggest that cell-impermeable analogs of CsA can effectively reduce inflammatory responses by targeting leukocyte recruitment mediated by extracellular cyclophilins. Specifically blocking the extracellular function(s) of cyclophilins may provide a novel approach for inhibiting the recruitment of one of the principal immune regulators of allergic lung inflammation, antigen-specific CD4+ T cells, into inflamed airways and lungs. PMID:21057089

  6. A natural protective function of invariant NKT cells in a mouse model of innate-cell-driven lung inflammation.

    PubMed

    Bourgeois, Elvire A; Levescot, Anaïs; Diem, Séverine; Chauvineau, Angélique; Bergès, Hortense; Milpied, Pierre; Lehuen, Agnès; Damotte, Diane; Gombert, Jean-Marc; Schneider, Elke; Girard, Jean-Philippe; Gourdy, Pierre; Herbelin, André

    2011-02-01

    Activation of invariant natural killer T (iNKT) cells by treatment with their α-galactosyl ceramide ligand provides therapeutic benefits in several immune inflammatory settings. Given the artificial nature of this stimulation, the natural regulatory functions of iNKT remain uncertain. Addressing this issue in a mouse model of innate-cell-driven lung inflammation induced by the cytokine/alarmin IL-33 that targets iNKT cells, we found that eosinophil and neutrophil recruitment was markedly increased in treated iNKT cell-deficient (Jα18 KO) mice, as was the local production of eotaxin and keratinocyte chemoattractant chemokines. By contrast, lung inflammation decreased after adoptive transfer of iNKT cells, which restored the WT inflammatory response in Jα18 KO mice. Finally, we established that this natural anti-inflammatory function of iNKT cells depends on their IFN-γ production and on endogenous IL-12. Our study provides the first evidence of a protective role of iNKT cells during lung inflammation that does not require pharmacological TCR engagement.

  7. Carcinogenesis and aging

    SciTech Connect

    Anisimov, V.N.

    1983-01-01

    A suggested mechanism of carcinogenesis is presented. This scheme takes into account the effect of carcinogens at different integration levels: subcellular, tissue, and organism. Any of these levels may be age dependent. Age-associated changes in the activity of enzymes responsible for activation and inactivation of carcinogens, and variations in concentrations of lipids and proteins contributing to the transport of carcinogenic agents into cells, may play an important role in the modifying effect of age on carcinogenesis. The effects of age-associated changes in DNA repair need clarification. However, they are thought to exert a permissive influence on the age-associated rise in tumor incidence. It seems that proliferative activity of target tissues is the important modifying factor of carcinogenesis. Age-related changes of regulation at tissue and organism levels are also powerful factors in carcinogenesis modification. Age-dependent changes in the neuroendocrine system provide conditions for metabolic immunodepression and promotion of carcinogenesis. On the other hand, carcinogens per se (especially chemical and radiological) may intensify aging processes in the organism. Normalization, by drugs, of age-associated shifts requiring synthetic and energetic changes of a transformed tumor cells, and of immunological shifts, may exert both antitumor and geroprotective effects.

  8. Mutagenesis and carcinogenesis induced by dibenzo[a,l]pyrene in the mouse oral cavity: a potential new model for oral cancer.

    PubMed

    Guttenplan, Joseph B; Kosinska, Wieslawa; Zhao, Zhong-Lin; Chen, Kun-Ming; Aliaga, Cesar; DelTondo, Joseph; Cooper, Timothy; Sun, Yuan-Wan; Zhang, Shang-Min; Jiang, Kun; Bruggeman, Richard; Sharma, Arun K; Amin, Shantu; Ahn, Kwangmi; El-Bayoumy, Karam

    2012-06-15

    Cancer of the oral cavity is a serious disease, affecting about 30,000 individuals in US annually. There are several animal models of oral cancer, but each has certain disadvantages. As a new model, we investigated whether topical application of the tobacco smoke carcinogen, dibenzo[a,l]pyrene (DB[a,l]P) is mutagenic and carcinogenic in the oral cavity of the B6C3F1 lacI and B6C3F1 mouse, respectively. B6C3F1 lacI mice received DB[a,l]P (0, 3, 6, 12 nmol) 3× per week. B6C3F1 mice received the same doses and also 24 nmol. At 38 weeks mutagenesis was measured in oral tissues in lacI mice. For the high dose group, the mutant fraction (MF) in upper mucosa and tongue increased about twofold relative to that in vehicle-alone. The increases were statistically significant. The mutational profile in the DB[a,l]P-induced mutants was compared with that induced by benzo[a]pyrene (BaP) in oral tissue. BaP is mutagenic in many tissues when administered by gavage. The mutational profile for DB[a,l]P was more similar to that reported for p53 mutations in head and neck cancers than was that of BaP. At 47 weeks, oral squamous cell carcinomas (OSCC) were found in 31% of the high-dose B6C3F1 group. Elevations of p53 and COX-2 protein were observed in tumor and dysplastic tissue. As DB[a,l]P induces mutations and tumors in the oral cavity, and has a mutational profile in oral tissue similar to that found in p53 in human OSCC, the treatment protocol described here may represent a new and relevant model for cancer of the oral cavity.

  9. Mechanical properties of mouse lungs along organ decellularization by sodium dodecyl sulfate.

    PubMed

    Nonaka, Paula N; Uriarte, Juan J; Campillo, Noelia; Melo, Esther; Navajas, Daniel; Farré, Ramon; Oliveira, Luis V F

    2014-08-15

    Lung decellularization is based on the use of physical, chemical, or enzymatic methods to break down the integrity of the cells followed by a treatment to extract the cellular material from the lung scaffold. The aim of this study was to characterize the mechanical changes throughout the different steps of lung decellularization process. Four lungs from mice (C57BL/6) were decellularized by using a conventional protocol based on sodium dodecyl sulfate. Lungs resistance (R(L)) and elastance (E(L)) were measured along decellularization steps and were computed by linear regression fitting of tracheal pressure, flow, and volume during mechanical ventilation. Transients differences found were more distinct in an intermediate step after the lungs were rinsed with deionized water and treated with 1% SDS, whereupon the percentage of variation reached approximately 80% for resistance values and 30% for elastance values. In conclusion, although a variation in extracellular matrix stiffness was observed during the decellularization process, this variation can be considered negligible overall because the resistance and elastance returned to basal values at the final decellularization step.

  10. Comparison of Efficacy and Toxicity of Traditional Chinese Medicine (TCM) Herbal Mixture LQ and Conventional Chemotherapy on Lung Cancer Metastasis and Survival in Mouse Models

    PubMed Central

    Zhang, Lei; Wu, Chengyu; Zhang, Yong; Liu, Fang; Wang, Xiaoen; Zhao, Ming; Hoffman, Robert M.

    2014-01-01

    Unlike Western medicine that generally uses purified compounds and aims to target a single molecule or pathway, traditional Chinese medicine (TCM) compositions usually comprise multiple herbs and components that are necessary for efficacy. Despite the very long-time and wide-spread use of TCM, there are very few direct comparisons of TCM and standard cytotoxic chemotherapy. In the present report, we compared the efficacy of the TCM herbal mixture LQ against lung cancer in mouse models with doxorubicin (DOX) and cyclophosphamide (CTX). LQ inhibited tumor size and weight measured directly as well as by fluorescent-protein imaging in subcutaneous, orthotopic, spontaneous experimental metastasis and angiogenesis mouse models of lung cancer. LQ was efficacious against primary and metastatic lung cancer without weight loss and organ toxicity. In contrast, CTX and DOX, although efficacious in the lung cancer models caused significant weight loss, and organ toxicity. LQ also had anti-angiogenic activity as observed in lung tumors growing in nestin-driven green fluorescent protein (ND-GFP) transgenic nude mice, which selectively express GFP in nascent blood vessels. Survival of tumor-bearing mice was also prolonged by LQ, comparable to DOX. In vitro, lung cancer cells were killed by LQ as observed by time-lapse imaging, comparable to cisplatinum. LQ was more potent to induce cell death on cancer cell lines than normal cell lines unlike cytotoxic chemotherapy. The results indicate that LQ has non-toxic efficacy against metastatic lung cancer. PMID:25286158

  11. Multi-Modal Imaging in a Mouse Model of Orthotopic Lung Cancer

    PubMed Central

    Patel, Priya; Kato, Tatsuya; Ujiie, Hideki; Wada, Hironobu; Lee, Daiyoon; Hu, Hsin-pei; Hirohashi, Kentaro; Ahn, Jin Young; Zheng, Jinzi; Yasufuku, Kazuhiro

    2016-01-01

    Background Investigation of CF800, a novel PEGylated nano-liposomal imaging agent containing indocyanine green (ICG) and iohexol, for real-time near infrared (NIR) fluorescence and computed tomography (CT) image-guided surgery in an orthotopic lung cancer model in nude mice. Methods CF800 was intravenously administered into 13 mice bearing the H460 orthotopic human lung cancer. At 48 h post-injection (peak imaging agent accumulation time point), ex vivo NIR and CT imaging was performed. A clinical NIR imaging system (SPY®, Novadaq) was used to measure fluorescence intensity of tumor and lung. Tumor-to-background-ratios (TBR) were calculated in inflated and deflated states. The mean Hounsfield unit (HU) of lung tumor was quantified using the CT data set and a semi-automated threshold-based method. Histological evaluation using H&E, the macrophage marker F4/80 and the endothelial cell marker CD31, was performed, and compared to the liposomal fluorescence signal obtained from adjacent tissue sections Results The fluorescence TBR measured when the lung is in the inflated state (2.0 ± 0.58) was significantly greater than in the deflated state (1.42 ± 0.380 (n = 7, p<0.003). Mean fluorescent signal in tumor was highly variable across samples, (49.0 ± 18.8 AU). CT image analysis revealed greater contrast enhancement in lung tumors (a mean increase of 110 ± 57 HU) when CF800 is administered compared to the no contrast enhanced tumors (p = 0.0002). Conclusion Preliminary data suggests that the high fluorescence TBR and CT tumor contrast enhancement provided by CF800 may have clinical utility in localization of lung cancer during CT and NIR image-guided surgery. PMID:27584018

  12. Difference in the toxicity mechanism between ion and nanoparticle forms of silver in the mouse lung and in macrophages.

    PubMed

    Arai, Yuta; Miyayama, Takamitsu; Hirano, Seishiro

    2015-02-03

    The health effects of silver nanoparticles (AgNPs) have not been well investigated, despite AgNPs now being widely used in consumer products. We investigated the metabolic behavior and toxicity of AgNPs in comparison to silver nitrate (AgNO3) both in vivo and in vitro. AgNPs (20 nm diameter) suspended in 1% albumin solution or AgNO3 solution was injected into the mouse lung. Less than 1% of the initial dose of AgNPs and more than 7% of the initial dose of AgNO3 was recovered in the liver 4h after administration, suggesting that the ionic form of silver was absorbed by the lung tissue and entered the systemic circulation more efficiently than AgNPs. The pro-inflammatory cytokine, IL-1β, and neutrophils in bronchoalveolar lavage fluid (BALF) increased following intratracheal instillation of AgNPs or AgNO3. AgNO3 recruited more neutrophils in the alveolar space than did AgNPs. In the in vitro study, AgNO3 was more cytotoxic than 20, 60, or 100 nm diameter AgNPs in a mouse macrophage cell line (J774.1). To investigate the intracellular distribution of Ag in detail, J774.1 cells were exposed to AgNO3 or 20 nm AgNPs and the distribution of Ag to cytosolic proteins was investigated using HPLC-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS). Ag was mainly distributed to metallothioneins (MT) and to high molecular weight proteins in AgNO3- and AgNPs-exposed cells, respectively. Confocal laser microscopic examination of LysoTracker(®)-labeled cells indicated that AgNPs were colocalized with lysosomes in J774.1 cells. These results suggest that AgNPs were transported to lysosomes and only gradually dissolved in the macrophages, causing milder inflammatory stimulation in the mouse lung compared to AgNO3.

  13. Five-year update on the mouse model of orthotopic lung transplantation: Scientific uses, tricks of the trade, and tips for success

    PubMed Central

    Lin, Xue; Li, Wenjun; Lai, Jiaming; Okazaki, Mikio; Sugimoto, Seiichiro; Yamamoto, Sumiharu; Wang, Xingan; Gelman, Andrew E.; Kreisel, Daniel

    2012-01-01

    It has been 5 years since our team reported the first successful model of orthotopic single lung transplantation in the mouse. There has been great demand for this technique due to the obvious experimental advantages the mouse offers over other large and small animal models of lung transplantation. These include the availability of mouse-specific reagents as well as knockout and transgenic technology. Our laboratory has utilized this mouse model to study both immunological and non-immunological mechanisms of lung transplant physiology while others have focused on models of chronic rejection. It is surprising that despite our initial publication in 2007 only few other laboratories have published data using this model. This is likely due to the technical complexity of the surgical technique and perioperative complications, which can limit recipient survival. As two of the authors (XL and WL) have a combined experience of over 2500 left and right single lung transplants, this review will summarize their experience and delineate tips and tricks necessary for successful transplantation. We will also describe technical advances made since the original description of the model. PMID:22754663

  14. High microvascular endothelial water permeability in mouse lung measured by a pleural surface fluorescence method.

    PubMed Central

    Carter, E P; Olveczky, B P; Matthay, M A; Verkman, A S

    1998-01-01

    Transport of water between the capillary and airspace compartments in lung encounters serial barriers: the alveolar epithelium, interstitium, and capillary endothelium. We previously reported a pleural surface fluorescence method to measure net capillary-to-airspace water transport. To measure the osmotic water permeability across the microvascular endothelial barrier in intact lung, the airspace was filled with a water-immiscible fluorocarbon. The capillaries were perfused via the pulmonary artery with solutions of specified osmolalites containing a high-molecular-weight fluorescent dextran. An increase in perfusate osmolality produced a prompt decrease in surface fluorescence due to dye dilution in the capillaries, followed by a slower return to initial fluorescence as capillary and lung interstitial osmolality equilibrate. A mathematical model was developed to determine the osmotic water permeability coefficient (Pf) of lung microvessels from the time course of pleural surface fluorescence. As predicted, the magnitude of the prompt change in surface fluorescence increased with decreased pulmonary artery perfusion rate and increased osmotic gradient size. With raffinose used to induce the osmotic gradient, Pf was 0.03 cm/s at 23 degrees C and was reduced 54% by 0.5 mM HgCl2. Temperature dependence measurements gave an Arrhenius activation energy (Ea) of 5.4 kcal/mol (12-37 degrees C). The apparent Pf induced by the smaller osmolytes mannitol and glycine was 0.021 and 0.011 cm/s (23 degrees C). Immunoblot analysis showed approximately 1.4 x 10(12) aquaporin-1 water channels/cm2 of capillary surface, which accounted quantitatively for the high Pf. These results establish a novel method for measuring osmotically driven water permeability across microvessels in intact lung. The high Pf, low Ea, and mercurial inhibition indicate the involvement of molecular water channels in water transport across the lung endothelium. PMID:9545071

  15. Lung mechanics in the TIMP3 null mouse and its response to mechanical ventilation.

    PubMed

    Martin, Erica L; Truscott, Emily A; Bailey, Timothy C; Leco, Kevin J; McCaig, Lynda A; Lewis, James F; Veldhuizen, Ruud A W

    2007-03-01

    Tissue inhibitor of metalloproteinase-3 (TIMP3) null mice develop emphysema-like airspace enlargement due to an enzymatic imbalance. This study investigates how these abnormalities alter lung mechanics and the response to 2 different mechanical ventilation strategies. Phenotypically, TIMP3 null mice had increased compliance, and decreased resistance, tissue damping, and tissue elastance over wild-type controls. Decreased compliance and increased resistance were observed following the injurious ventilation strategy; however, the TIMP3 null response to both ventilation strategies was similar to wild-type mice. In conclusion, TIMP3 null mice have significant alterations in lung mechanics; however, this does not affect their response to ventilation.

  16. Differences in gene expression profiles from asbestos-treated SPARC-null and wild type mouse lungs

    PubMed Central

    Pershouse, Mark A.; Smartt, Aubrey M.; Schwanke, Corbin; Putnam, Elizabeth A.

    2009-01-01

    The role of SPARC in the in vivo lung response to crocidolite asbestos was addressed by instillation of crocidolite asbestos in a series of wild type or SPARC -null mice. Animals were sacrificed at one week, one month, and three months post-instillation to assess the impact of SPARC on multiple stages in the development of fibrosis. RNA was harvested from 10 animals/time point, pooled, and used to probe a mouse array containing ∼10,000 probes. Gene expression data was analyzed for fold-change, and for broader functional group alterations. As expected, the one-week time point displayed alterations in genes involved in immune recognition, energy utilization, and growth factor production. Later time points showed expression alterations for genes involved in protein degradation, Wnt receptor signaling, membrane protein activity, and transport. Molecules in the Wnt pathway have been implicated in bone growth, mediation of fibroblast activity, and have been directly linked to SPARC regulation. PMID:19446018

  17. A humanized microbiota mouse model of ovalbumin-induced lung inflammation.

    PubMed

    Arrieta, Marie-Claire; Sadarangani, Manish; Brown, Eric M; Russell, Shannon L; Nimmo, Michael; Dean, John; Turvey, Stuart E; Chan, Edmond S; Finlay, B Brett

    2016-07-03

    There is increasing evidence for a role of early life gut microbiota in later development of asthma in children. In our recent study, children with reduced abundance of the bacterial genera Lachnospira, Veillonella, Faecalibacterium, and Rothia had an increased risk of development of asthma and addition of these bacteria in a humanized mouse model reduced airway inflammation. In this Addendum, we provide additional data on the use of a humanized gut microbiota mouse model to study the development of asthma in children, highlighting the differences in immune development between germ-free mice colonized with human microbes compared to those colonized with mouse gut microbiota. We also demonstrate that there is no association between the composition of the gut microbiota in older children and the diagnosis of asthma, further suggesting the importance of the gut microbiota-immune system axis in the first 3 months of life.

  18. Efficacy and mechanism of action of yin lai tang (lung-stomach treatment) in dyspepsia mouse infected by FM1 virus.

    PubMed

    Liu, Tiegang; Yu, He; Zhang, Wang; Zhen, Jianhua; Li, Xiaofei; Lv, Guokai; Gu, Hong-Xiao; Murtaza, Ghulam

    2013-01-01

    The aim of this study was to assess the efficacy and elaborate the mechanism of action of Yin Lai Tang (Lung-Stomach Treatment) on dyspepsia mouse infected by FM1 virus. Ninety male, 4 week old Kunming mouse with 12-14 g weight, were randomly divided into 9 groups, i.e., normal, infected, dyspepsia, ribavirin, Shuanghuanglian, Children's indigestion tablet, YinLaiTang high dose, YinLaiTang middle dose and YinLaiTang low dose, and these groups had been treated by according drugs to get objectives. Compared with normal group, lung index significantly (p < 0.01) increased in all groups except ribavirin group where lung index obviously (p < 0.05) increased. There was non-significant (p > 0.05) difference in the values of lung homogenate virus titer between dyspepsia group and other groups. Compared to normal group, there was variable degree of inflammatory cell infiltrations in respiratory tract structures in the animals of other groups, and there was a significant (p < 0.01) increase in the level of serum IL-6, IL-10, and TNF-alpha in infected and dyspepsia group and significant (p < 0.01) decrease in the level of serum IFN-gamma was observed. Compared with single clearing stomach method and single clearing lung approach, lung-stomach treatment reduced the level of IL-6 with non-significant difference (p > 0.05) and increased the level of IL-10 obviously, and compared with the single clearing lung method, there was a significant difference (p < 0.05). Compared with the single clearing stomach method and the single clearing lung method, the lung-stomach treatment method had a better efficacy and showed effects on the expression of pro-inflammatory factor and anti-inflammatory factor.

  19. Characterization of a nose-only inhaled phosgene acute lung injury mouse model

    PubMed Central

    Plahovinsak, Jennifer L.; Perry, Mark R.; Knostman, Katherine A.; Segal, Robert; Babin, Michael C.

    2016-01-01

    Context Phosgene’s primary mode of action is as a pulmonary irritant characterized by its early latent phase where life-threatening, non-cardiogenic pulmonary edema is typically observed 6–24 h post-exposure. Objective To develop an inhaled phosgene acute lung injury (ALI) model in C57BL/6 mice that can be used to screen potential medical countermeasures. Methods A Cannon style nose-only inhalation exposure tower was used to expose mice to phosgene (8 ppm) or air (sham). An inhalation lethality study was conducted to determine the 8 ppm median lethal exposure (LCt50) at 24 and 48 h post-exposure. The model was then developed at 1.2 times the 24 h LCt50. At predetermined serial sacrifice time points, survivors were euthanized, body and lung weights collected, and lung tissues processed for histopathology. Additionally, post-exposure clinical observations were used to assess quality of life. Results and discussion The 24-hour LCt50 was 226ppm*min (8 ppm for 28.2 min) and the 48-hour LCt50 was 215ppm*min (8 ppm for 26.9 min). The phosgene exposed animals had a distinct progression of clinical signs, histopathological changes and increased lung/body weight ratios. Early indicators of a 1.2 times the 24-hour LCt50 phosgene exposure were significant changes in the lung-to-body weight ratios by 4 h post-exposure. The progression of clinical signs and histopathological changes were important endpoints for characterizing phosgene-induced ALI for future countermeasure studies. Conclusion An 8 ppm phosgene exposure for 34 min (1.2 × LCt50) is the minimum challenge recommended for evaluating therapeutic interventions. The predicted higher mortality in the phosgene-only controls will help demonstrate efficacy of candidate treatments and increase the probability that a change in survival rate is statistically significant PMID:26671199

  20. Deletion and differential expression of p16{sup INK4a} in mouse lung tumors

    SciTech Connect

    Belinsky, S.A.; Swafford, D.S.; Middleton, S.K.; Kennedy, C.H.; Tesfaigzi, J.

    1997-12-31

    Recent allelotyping of chemical-induced lung tumors in hybrid mice has detected loss of heterozygosity on chromosome 4 in a region involving the interferon-{alpha} (IFN-{alpha}) gene cluster that is syntenic to human chromosome 9p21-22, the location of the p16{sup INK4a}(p16) and (p15) tumor suppressor genes. The purpose of the current investigation was to characterize the expression of p16 and p15 in lung tumors and tumor-derived cell lines induced in Ad mice by exposure to the tobacco-specific nitrosamine, 4-methylnitrosamino-1-(3-pyridyl)-1-butanone (NNK). Expression of p16 and p15 was detected in all primary lung tumors; however, levels of expression of p16 differed by up to 15-fold between tumors. This is the first study to note a marked difference in the expression of the p16 gene in primary lung tumors. The apparent low levels of expression seen in approximately half of the tumors was not attributed to deletion, mutation or methylation of the p16 gene. Conversely, the high levels of p16 expression were not the result of effects on the retinoblastoma gene (Rb) or cyclin D1 proteins but most likely in response to a dysfunction elsewhere within this pathway. In contrast to the detection of p16 expression in primary tumors, this gene was deleted in all four cell lines. Three of four cell lines also showed loss of the p15 gene. Mapping of these homozygous deletions on chromosome 4 revealed that the p16 gene resides near the D4MIT77 marker, which is located approximately 12 cM proximal to the IFN-{alpha} gene cluster, thereby implicating the p16 gene as one of the targets within the allelic deletions detected previously in primary lung tumors from hybrid mice.

  1. Combination Effect of Regulatory T-Cell Depletion and Ionizing Radiation in Mouse Models of Lung and Colon Cancer

    SciTech Connect

    Son, Cheol-Hun; Bae, Jae-Ho; Shin, Dong-Yeok; Lee, Hong-Rae; Jo, Wol-Soon; Yang, Kwangmo; Park, You-Soo

    2015-06-01

    Purpose: To investigate the potential of low-dose cyclophosphamide (LD-CTX) and anti-CD25 antibody to prevent activation of regulatory T cells (Tregs) during radiation therapy. Methods and Materials: We used LD-CTX and anti-CD25 monoclonal antibody as a means to inhibit Tregs and improve the therapeutic effect of radiation in a mouse model of lung and colon cancer. Mice were irradiated on the tumor mass of the right leg and treated with LD-CTX and anti-CD25 antibody once per week for 3 weeks. Results: Combined treatment of LD-CTX or anti-CD25 antibody with radiation significantly decreased Tregs in the spleen and tumor compared with control and irradiation only in both lung and colon cancer. Combinatorial treatments resulted in a significant increase in the effector T cells, longer survival rate, and suppressed irradiated and distal nonirradiated tumor growth. Specifically, the combinatorial treatment of LD-CTX with radiation resulted in outstanding regression of local and distant tumors in colon cancer, and almost all mice in this group survived until the end of the study. Conclusions: Our results suggest that Treg depletion strategies may enhance radiation-mediated antitumor immunity and further improve outcomes after radiation therapy.

  2. Increased cytosine DNA-methyltransferase activity in A/J mouse lung cells following carcinogen exposure and during tumor progression

    SciTech Connect

    Belinsky, S.A.; Issa, J.-P.J.; Baylin, S.B.

    1994-11-01

    Considerable evidence has accumulated that 5-methylcytosine modification of mammalian DNA, both in exons and CpG rich islands located in promoter regions, is important in gene regulation. For example, a decrease of 5-methylcytosine in 5{prime} flanking regions or exons of genes has been associated with increased gene transcription. In addition, hypermethylation at specific regions of chromosomes 17p and 3p have also been observed in lung and colon cancer. During colon cancer development, these hypermethylation changes precede allelic loss. In addition, the activity of the enzyme which maintains the methylation status at CpG dinucleotides, DNA methyltransferase (MT), has been shown to increase during colon cancer progression. These observations suggest changes in methylation patterns within specific genes could result in either inappropriate gene expression or gene deletion, both of which would contribute to the establishment of the malignant phenotype. The purpose of this investigation was to determine if DNA MT activity is elevated in target (alveolar type II), but not in nontarget (Clara, endothelial, macrophage) lung cells isolated from the A/J mouse following exposure to nitrosamine 4-methylnitrosamino-1-(3-pyridyl)-1-butanone (NNK). In addition, the activity of this enzyme during tumor progression was examined.

  3. Mechanics, nonlinearity, and failure strength of lung tissue in a mouse model of emphysema: possible role of collagen remodeling.

    PubMed

    Ito, Satoru; Ingenito, Edward P; Brewer, Kelly K; Black, Lauren D; Parameswaran, Harikrishnan; Lutchen, Kenneth R; Suki, Béla

    2005-02-01

    Enlargement of the respiratory air spaces is associated with the breakdown and reorganization of the connective tissue fiber network during the development of pulmonary emphysema. In this study, a mouse (C57BL/6) model of emphysema was developed by direct instillation of 1.2 IU of porcine pancreatic elastase (PPE) and compared with control mice treated with saline. The PPE treatment caused 95% alveolar enlargement (P = 0.001) associated with a 29% lower elastance along the quasi-static pressure-volume curves (P < 0.001). Respiratory mechanics were measured at several positive end-expiratory pressures in the closed-chest condition. The dynamic tissue elastance was 19% lower (P < 0.001), hysteresivity was 9% higher (P < 0.05), and harmonic distortion, a measure of collagen-related dynamic nonlinearity, was 33% higher in the PPE-treated group (P < 0.001). Whole lung hydroxyproline content, which represents the total collagen content, was 48% higher (P < 0.01), and alpha-elastin content was 13% lower (P = 0.16) in the PPE-treated group. There was no significant difference in airway resistance (P = 0.7). The failure stress at which isolated parenchymal tissues break during stretching was 40% lower in the PPE-treated mice (P = 0.002). These findings suggest that, after elastolytic injury, abnormal collagen remodeling may play a significant role in all aspects of lung functional changes and mechanical forces, leading to progressive emphysema.

  4. Quantifying morphological parameters of the terminal branching units in a mouse lung by phase contrast synchrotron radiation computed tomography.

    PubMed

    Hwang, Jeongeun; Kim, Miju; Kim, Seunghwan; Lee, Jinwon

    2013-01-01

    An effective technique of phase contrast synchrotron radiation computed tomography was established for the quantitative analysis of the microstructures in the respiratory zone of a mouse lung. Heitzman's method was adopted for the whole-lung sample preparation, and Canny's edge detector was used for locating the air-tissue boundaries. This technique revealed detailed morphology of the respiratory zone components, including terminal bronchioles and alveolar sacs, with sufficiently high resolution of 1.74 µm isotropic voxel size. The technique enabled visual inspection of the respiratory zone components and comprehension of their relative positions in three dimensions. To check the method's feasibility for quantitative imaging, morphological parameters such as diameter, surface area and volume were measured and analyzed for sixteen randomly selected terminal branching units, each consisting of a terminal bronchiole and a pair of succeeding alveolar sacs. The four types of asymmetry ratios concerning alveolar sac mouth diameter, alveolar sac surface area, and alveolar sac volume are measured. This is the first ever finding of the asymmetry ratio for the terminal bronchioles and alveolar sacs, and it is noteworthy that an appreciable degree of branching asymmetry was observed among the alveolar sacs at the terminal end of the airway tree, despite the number of samples was small yet. The series of efficient techniques developed and confirmed in this study, from sample preparation to quantification, is expected to contribute to a wider and exacter application of phase contrast synchrotron radiation computed tomography to a variety of studies.

  5. Exposure to arsenic at levels found inU.S. drinking water modifies expression in the mouse lung.

    PubMed

    Andrew, Angeline S; Bernardo, Viviane; Warnke, Linda A; Davey, Jennifer C; Hampton, Thomas; Mason, Rebecca A; Thorpe, Jessica E; Ihnat, Michael A; Hamilton, Joshua W

    2007-11-01

    The mechanisms of action of drinking water arsenic in the lung and the threshold for biologic effects remain controversial. Our study utilizes Affymetrix 22,690 transcript oligonucleotide microarrays to assess the long-term effects of increasing doses of drinking water arsenic on expression levels in the mouse lung. Mice were exposed at levels commonly found in contaminated drinking water wells in the United States (0, 0.1, 1 ppb), as well as the 50 ppb former maximum contaminant level, for 5 weeks. The expression profiles revealed modification of a number of important signaling pathways, many with corroborating evidence of arsenic responsiveness. We observed statistically significant expression changes for transcripts involved in angiogenesis, lipid metabolism, oxygen transport, apoptosis, cell cycle, and immune response. Validation by reverse transcription-PCR and immunoblot assays confirmed expression changes for a subset of transcripts. These data identify arsenic-modified signaling pathways that will help guide investigations into mechanisms of arsenic's health effects and clarify the threshold for biologic effects and potential disease risk.

  6. Genetic requirement for Mycl and efficacy of RNA Pol I inhibition in mouse models of small cell lung cancer

    PubMed Central

    Kim, Dong-Wook; Wu, Nan; Kim, Young-Chul; Cheng, Pei Feng; Basom, Ryan; Kim, Dongkyoon; Dunn, Colin T.; Lee, Anastasia Y.; Kim, Keebeom; Lee, Chang Sup; Singh, Andrew; Gazdar, Adi F.; Harris, Chris R.; Eisenman, Robert N.; Park, Kwon-Sik; MacPherson, David

    2016-01-01

    Small cell lung cancer (SCLC) is a devastating neuroendocrine carcinoma. MYCL (L-Myc) is frequently amplified in human SCLC, but its roles in SCLC progression are poorly understood. We isolated preneoplastic neuroendocrine cells from a mouse model of SCLC and found that ectopic expression of L-Myc, c-Myc, or N-Myc conferred tumor-forming capacity. We focused on L-Myc, which promoted pre-rRNA synthesis and transcriptional programs associated with ribosomal biogenesis. Deletion of Mycl in two genetically engineered models of SCLC resulted in strong suppression of SCLC. The high degree of suppression suggested that L-Myc may constitute a therapeutic target for a broad subset of SCLC. We then used an RNA polymerase I inhibitor to target rRNA synthesis in an autochthonous Rb/p53-deleted mouse SCLC model and found significant tumor inhibition. These data reveal that activation of RNA polymerase I by L-Myc and other MYC family proteins provides an axis of vulnerability for this recalcitrant cancer. PMID:27298335

  7. Vitamin D Repletion Reduces the Progression of Premalignant Squamous Lesions in the NTCU Lung Squamous Cell Carcinoma Mouse Model

    PubMed Central

    Mazzilli, Sarah A.; Hershberger, Pamela A.; Reid, Mary E.; Bogner, Paul N.; Atwood, Kristopher; Trump, Donald L.; Johnson, Candace S.

    2015-01-01

    The chemopreventive actions of vitamin D were examined in the N-nitroso-tris-chloroethylurea (NTCU) mouse model, a progressive model of lung squamous cell carcinoma (SCC). SWR/J mice were fed a deficient diet (D) containing no vitamin D3, a sufficient diet (S) containing 2000 IU/kg vitamin D3, or the same diets in combination with the active metabolite of vitamin D, calcitriol (C) (80 μg/kg, weekly). The percentage (%) of the mucosal surface of large airways occupied by dysplastic lesions was determined in mice after treatment with a total dose of 15 or 25 μmol NTCU (N). After treatment with 15 μmol NTCU, the % of the surface of large airways containing high-grade dysplastic (HGD) lesions were vitamin D-deficient +NTCU (DN), 22.7 % (p<0.05 compared to vitamin D-sufficient +NTCU (SN)); DN + C, 12.3%; SN, 8.7%; and SN + C, 6.6%. The extent of HGD increased with NTCU dose in the DN group. Proliferation, assessed by Ki-67 labeling, increased upon NTCU treatment. The highest Ki-67 labeling index was seen in the DN group. As compared to SN mice, DN mice exhibited a 3-fold increase (p <0.005) in circulating white blood cells (WBC), a 20% (p <0.05) increase in IL-6 levels, and a 4 -fold (p <0.005) increase in WBC in bronchial lavages. Thus, vitamin D repletion reduces the progression of premalignant lesions, proliferation, and inflammation, and may thereby suppress development of lung SCC. Further investigations of the chemopreventive effects of vitamin D in lung SCC are warranted. PMID:26276745

  8. Concordance in Genomic Changes Between Mouse Lungs and Human Airway Epithelial Cells Exposed to Diesel Exhaust Particles

    EPA Science Inventory

    Human and animal toxicity studies have shown that exposure to diesel exhaust particles (DEP) or their constituents affect multiple biological processes including immune and inflammatory pathways, mutagenesis and in some cases carcinogenesis. This study compared genomic changes by...

  9. Hormonal and extracellular matrix components act as mediators for mouse fetal lung development

    SciTech Connect

    Smith, C.I.

    1988-01-01

    The concentration of disaturated phosphatidylcholine (DPPC) in 16 day lung tissue was measured after 5 days in culture. When grown in the absence of serum and hormones, levels of DPPC, assayed by phosphorus content, increased over 17 day in vivo controls. Treated with thyroxine and dexamethasone, DPPC levels were comparable to 2 day postnatal controls. Levels of DPPC increased in cultures containing dexamethasone alone while thyroxine alone had significantly less effect. 16- and 19-day fetal lung tissues were labeled with {sup 35}S-sulfate and {sup 3}H-glucosamine. Each pool was analyzed by DEAE-sepharose chromatography and by digestion with nitrous acid and chondroitinase. GAG synthesis was inhibited using {beta}-xyloside. The {beta}-xyloside inhibition of GAG synthesis was examined morphologically by transmission and scanning electron microscopy and functionally by autoradiography, sequential extraction, chromatography, and digestion as above.

  10. Genetic variation in HTR4 and lung function: GWAS follow-up in mouse.

    PubMed

    House, John S; Li, Huiling; DeGraff, Laura M; Flake, Gordon; Zeldin, Darryl C; London, Stephanie J

    2015-01-01

    Human genome-wide association studies (GWASs) have identified numerous associations between single nucleotide polymorphisms (SNPs) and pulmonary function. Proving that there is a causal relationship between GWAS SNPs, many of which are noncoding and without known functional impact, and these traits has been elusive. Furthermore, noncoding GWAS-identified SNPs may exert trans-regulatory effects rather than impact the proximal gene. Noncoding variants in 5-hydroxytryptamine (serotonin) receptor 4 (HTR4) are associated with pulmonary function in human GWASs. To gain insight into whether this association is causal, we tested whether Htr4-null mice have altered pulmonary function. We found that HTR4-deficient mice have 12% higher baseline lung resistance and also increased methacholine-induced airway hyperresponsiveness (AHR) as measured by lung resistance (27%), tissue resistance (48%), and tissue elastance (30%). Furthermore, Htr4-null mice were more sensitive to serotonin-induced AHR. In models of exposure to bacterial lipopolysaccharide, bleomycin, and allergic airway inflammation induced by house dust mites, pulmonary function and cytokine profiles in Htr4-null mice differed little from their wild-type controls. The findings of altered baseline lung function and increased AHR in Htr4-null mice support a causal relationship between genetic variation in HTR4 and pulmonary function identified in human GWAS.

  11. Ureaplasma in lung. 1. Localization by in situ hybridization in a mouse model.

    PubMed

    Benstein, Barbara D; Crouse, Dennis T; Shanklin, D Radford; Ourth, Donald D

    2003-10-01

    Ureaplasma urealyticum is a common inhabitant of mucosal surfaces but is also associated with a higher incidence of pneumonia and bronchopulmonary dysplasia in preterm infants. Culture and polymerase chain reaction demonstrate high isolation rates of ureaplasma in clinical specimens documenting their presence but do not associate the organism directly with the diseased tissue. In this study, lung tissue samples from newborn mice inoculated intranasally with U. urealyticum were used to develop an in situ hybridization (ISH) test for the organism. In situ hybridization allows the localization of gene expression for visualization within the context of tissue morphology. New techniques which use biotinyl-tyramide based signal amplification have been able to greatly enhance the sensitivity of ISH. Using the Dako GenPoint Catalyzed Signal Amplification system to detect a biotinylated DNA probe specific for an internal nucleotide sequence within the urease gene of U. urealyticum, the organism was detected within the infected murine lung tissues. Electron microscopy was used to verify the presence of the organisms in the positive ISH areas. The ISH procedure developed in this study can be used to analyze the presence of ureaplasma in human neonatal lung tissue with the corresponding histopathology.

  12. Activation of latent metastases in the lung after resection of a metastatic lymph node in a lymph node metastasis mouse model.

    PubMed

    Shao, Lenan; Ouchi, Tomoki; Sakamoto, Maya; Mori, Shiro; Kodama, Tetsuya

    2015-05-08

    Iatrogenic induction of regional and distant cancer metastases is a risk associated with clinical resection of tumor-positive sentinel lymph nodes. However, there have been no studies of this risk in a mouse model of cancer metastasis. Here, we report that resection of a tumor-bearing subiliac lymph node (SiLN) enhanced lung metastasis in a mouse model of lymph node metastasis. Bioluminescence imaging revealed that metastatic tumor cells in the secondary lymph node continued to grow after resection of the SiLN, and that the probability of metastasis to the lungs was increased when the interval between SiLN inoculation and resection was reduced. Futhermore, histological analysis demonstrated that latents in the lung were stimulated to grow after resection of the SiLN. Fluorescence imaging indicated that the route of tumor cell dissemination from SiLN to the lung was the venous system located over the SiLN. We speculate that our mouse model will be useful for studying the mechanisms of tumor cell latency, with a view to improving the detection and treatment of latent metastases.

  13. Cell Lineage Analysis of Mouse Prostate Carcinogenesis

    DTIC Science & Technology

    2014-07-01

    tamoxifen to induce genetic combination to mark luminal epithelial cells (month 24-30) Status: We are expecting the first experimental animals to be...born within the next 90 days. These animals will be ready for intraperitoneal injection of tamoxifen at 6 weeks of age. Expected revised timeline...clippings are taken for genotyping analyses at 21 days of age at weaning. C. Intraperitoneal injection of tamoxifen to induce genetic

  14. Cell Lineage Analysis of Mouse Prostate Carcinogenesis

    DTIC Science & Technology

    2015-09-01

    epithelial stem cells are efficient targets for prostate cancer initiation. Proceedings of the National Academy of Sciences of the United States of...America 2010, 107(6):2610-2615. 4. Dor Y, Brown J, Martinez OI, Melton DA: Adult pancreatic beta- cells are formed by self- duplication rather than stem ...Shen C, Shen MM: A luminal epithelial stem cell that is a cell of origin for prostate cancer. Nature 2009, 461(7263):495-500. 6. Liu J, Pascal LE

  15. Lycopene and Lung Cancer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although epidemiological studies have shown dietary intake of lycopene is associated with decreased risk of lung cancer, the effect of lycopene on lung carcinogenesis has not been well studied. A better understanding of lycopene metabolism and the mechanistic basis of lycopene chemoprevention must ...

  16. Dietary modifiers of carcinogenesis.

    PubMed Central

    Kohlmeier, L; Simonsen, N; Mottus, K

    1995-01-01

    Dietary components express a wide range of activities that can affect carcinogenesis. Naturally occurring substances in foods have been shown in laboratory experiments to serve as dietary antimutagens, either as bioantimutagens or as desmutagens. Dietary desmutagens may function as chemical inactivaters, enzymatic inducers, scavengers, or antioxidants. Dietary components may also act later in the carcinogenic process as tumor growth suppressors. Examples of dietary factors acting in each of these stages of carcinogenesis are presented, and potential anticarcinogens such as the carotenoids, tocopherols, phenolic compounds, glucosinolates, metal-binding proteins, phytoestrogens, and conjugated linoleic acid are discussed. Individual foods typically contain multiple potential anticarcinogens. Many of these substances can influence carcinogenesis through more than one mechanism. Some substances exhibit both anticarcinogenic and carcinogenic activity in vitro, depending on conditions. Epidemiologic research indicates that high fruit and vegetable consumption is associated with lower cancer risk. Little research has focused on the effects of single substances or single foods in man. Realization of the potential of foodborne substances to reduce the human burden of cancer will only be achieved with better measurement of dietary exposures and funding of multidisciplinary research in this area commensurate with its importance. PMID:8741780

  17. Metabolite signatures in hydrophilic extracts of mouse lungs exposed to cigarette smoke revealed by 1H NMR metabolomics investigation

    SciTech Connect

    Hu, Jian Z.; Wang, Xuan; Feng, Ju; Webb-Robertson, Bobbie-Jo M.; Waters, Katrina M.; Tilton, Susan C.; Pounds, Joel G.; Corley, Richard A.; Liu, Maili; Hu, Mary Y.

    2015-05-12

    Herein, 1H-NMR metabolomics are carried out to evaluate the changes of metabolites in lungs of mice exposed to cigarette smoke. It is found that the concentrations of adenosine derivatives (i.e. ATP, ADP and AMP), inosine and uridine are significantly fluctuated in the lungs of mice exposed to cigarette smoke compared with those of controls regardless the mouse is obese or regular weight. The decreased ATP, ADP, AMP and elevated inosine predict that the deaminases in charge of adenosine derivatives to inosine derivatives conversion are altered in lungs of mice exposed to cigarette smoke. Transcriptional analysis reveals that the concentrations of adenosine monophosphate deaminase and adenosine deaminase are different in the lungs of mice exposed to cigarette smoke, confirming the prediction from metabolomics studies. We also found, for the first time, that the ratio of glycerophosphocholine (GPC) to phosphocholine (PC) is significantly increased in the lungs of obese mice compared with regular weight mice. The ratio of GPC/PC is further elevated in the lungs of obese group by cigarette smoke exposure. Since GPC/PC ratio is a known biomarker for cancer, these results may suggest that obese group is more susceptible to lung cancer when exposed to cigarette smoke.

  18. Characterization of the cell of origin and propagation potential of the fibroblast growth factor 9-induced mouse model of lung adenocarcinoma.

    PubMed

    Arai, Daisuke; Hegab, Ahmed E; Soejima, Kenzo; Kuroda, Aoi; Ishioka, Kota; Yasuda, Hiroyuki; Naoki, Katsuhiko; Kagawa, Shizuko; Hamamoto, Junko; Yin, Yongjun; Ornitz, David M; Betsuyaku, Tomoko

    2015-03-01

    Fibroblast growth factor 9 (FGF9) is essential for lung development and is highly expressed in a subset of human lung adenocarcinomas. We recently described a mouse model in which FGF9 expression in the lung epithelium caused proliferation of the airway epithelium at the terminal bronchioles and led to rapid development of adenocarcinoma. Here, we used this model to characterize the effects of prolonged FGF9 induction on the proximal and distal lung epithelia, and examined the propagation potential of FGF9-induced lung tumours. We showed that prolonged FGF9 over-expression in the lung resulted in the development of adenocarcinomas arising from both alveolar type II and airway secretory cells in the lung parenchyma and airways, respectively. We found that tumour cells harboured tumour-propagating cells that were able to form secondary tumours in recipient mice, regardless of FGF9 expression. However, the highest degree of tumour propagation was observed when unfractionated tumour cells were co-administered with autologous, tumour-associated mesenchymal cells. Although the initiation of lung adenocarcinomas was dependent on activation of the FGF9-FGF receptor 3 (FGFR3) signalling axis, maintenance and propagation of the tumour was independent of this signalling. Activation of an alternative FGF-FGFR axis and the interaction with tumour stromal cells is likely to be responsible for the development of this independence. This study demonstrates the complex role of FGF-FGFR signalling in the initiation, growth and propagation of lung cancer. Our findings suggest that analysing the expressions of FGF-FGFRs in human lung cancer will be a useful tool for guiding customized therapy.

  19. Characterization of azoxymethane-induced colon tumor metastasis to lung in a mouse model relevant to human sporadic colorectal cancer and evaluation of grape seed extract efficacy.

    PubMed

    Derry, Molly M; Raina, Komal; Agarwal, Rajesh; Agarwal, Chapla

    2014-08-01

    The second leading cause of cancer-related deaths (both genders combined) in the United States is colorectal cancer (CRC). This emphasizes the need to develop both effective therapies for CRC patients and pre-clinical models mimicking human disease that carry translational potential in drug-development. Notably, at present there are no in situ models of CRC metastasis to lung. In our azoxymethane-induced colon tumorigenesis study in A/J mice assessing grape seed extract (GSE) efficacy, during necropsy we also found multiple lung nodules suggestive of colon tumor metastasis to lung that were significantly inhibited in GSE fed group. Both histopathological and molecular studies were performed to characterize and establish the origin of these lesions in lung. Histologically these nodules were determined as adenocarcinoma of mucin origin. Molecular analyses by immunohistochemistry (IHC) and RT-PCR revealed strong protein and transcript levels of colon specific markers CDX2 and CK20 in these lung nodules compared to uninvolved control lung tissue. Vis-à-vis, these nodules also showed minimally expressed lung specific biomarkers, specifically surfactant D and TTF-1, in IHC analysis. Additionally, 0.25% GSE supplementation in diet (w/w) decreased the incidence of these lung nodules by 53% and their total number by 66%. Together, the characterization of this unique in situ mouse model of CRC metastasis to lung provides translational opportunities in developing effective therapies to clinically manage and treat CRC at the advanced stage. Moreover, GSE efficacy in inhibiting CRC metastasis to lung in this model further supports its translational potential in controlling CRC growth, progression and metastasis in patients.

  20. Gremlin-1 Overexpression in Mouse Lung Reduces Silica-Induced Lymphocyte Recruitment – A Link to Idiopathic Pulmonary Fibrosis through Negative Correlation with CXCL10 Chemokine

    PubMed Central

    Koli, Katri; Sutinen, Eva; Rönty, Mikko; Rantakari, Pia; Fortino, Vittorio; Pulkkinen, Ville; Greco, Dario; Sipilä, Petra; Myllärniemi, Marjukka

    2016-01-01

    Idiopathic pulmonary fibrosis (IPF) is characterized by activation and injury of epithelial cells, the accumulation of connective tissue and changes in the inflammatory microenvironment. The bone morphogenetic protein (BMP) inhibitor protein gremlin-1 is associated with the progression of fibrosis both in human and mouse lung. We generated a transgenic mouse model expressing gremlin-1 in type II lung epithelial cells using the surfactant protein C (SPC) promoter and the Cre-LoxP system. Gremlin-1 protein expression was detected specifically in the lung after birth and did not result in any signs of respiratory insufficiency. Exposure to silicon dioxide resulted in reduced amounts of lymphocyte aggregates in transgenic lungs while no alteration in the fibrotic response was observed. Microarray gene expression profiling and analyses of bronchoalveolar lavage fluid cytokines indicated a reduced lymphocytic response and a downregulation of interferon-induced gene program. Consistent with reduced Th1 response, there was a downregulation of the mRNA and protein expression of the anti-fibrotic chemokine CXCL10, which has been linked to IPF. In human IPF patient samples we also established a strong negative correlation in the mRNA expression levels of gremlin-1 and CXCL10. Our results suggest that in addition to regulation of epithelial-mesenchymal crosstalk during tissue injury, gremlin-1 modulates inflammatory cell recruitment and anti-fibrotic chemokine production in the lung. PMID:27428020

  1. Vascular and epithelial damage in the lung of the mouse after X rays or neutrons

    SciTech Connect

    Law, M.P.; Ahier, R.G.

    1989-01-01

    The response of the lung was studied in CFLP mice after exposure of the whole thorax to X rays (250 kVp) or cyclotron neutrons (16 MeV deuterons on Be, mean energy 7.5 MeV). To measure blood volume and leakage of plasma proteins, 51Cr-labeled red blood cells and 125I-albumin were injected intravenously and 24 h later lungs were lavaged via the trachea. Radioactivities in lung tissue and lavage fluid were determined to estimate the accumulation of albumin in the interstitial and alveolar spaces indicating damage to blood vessels and alveolar epithelium respectively. Function of type II pneumonocytes was assessed by the amounts of surfactant (assayed as lipid phosphorous) released into the lavage fluid. During the first 6 weeks, lavage protein and surfactant were increased, the neutron relative biological effectiveness (RBE) being unity. During pneumonitis at 12-24 weeks, surfactant levels were normal, blood volume was decreased, and both interstitial and alveolar albumin were increased. Albumin levels then decreased. At late times after exposure (42-64 weeks) alveolar albumin returned to normal but interstitial albumin was still slightly elevated. Values of RBE for changes in blood volume and interstitial and alveolar albumin at 15 weeks and for changes in blood volume and interstitial albumin at 46 weeks were 1.4, comparable with that for animal survival at 180 days. The results indicate that surfactant production is not critical for animal survival. They suggest that changes in blood vessels and alveolar epithelium occur during acute pneumonitis; epithelial repair follows but some vascular damage may persist. The time course of the changes in albumin levels did not correlate with increases in collagen biosynthesis which have been observed as early as 1 month after exposure and persist for up to 1 year.

  2. The effect of synthetic surfactant Exosurf on gene transfer in mouse lung in vivo.

    PubMed

    Raczka, E; Kukowska-Latallo, J F; Rymaszewski, M; Chen, C; Baker, J R

    1998-10-01

    Gene transfer in the lung holds promise for the treatment of diseases such as pulmonary fibrosis, cystic fibrosis and asthma. Pulmonary surfactant has been reported to enhance expression from endobronchial, adenovirus-mediated gene transfer in experimental animals. This study examines the effect of exogenous synthetic surfactant (Exosurf) on gene expression from naked plasmid DNA administered endobronchially to adult mice. Transfection efficiency was evaluated by quantifying the expression of chloramphenicol acetyltransferase (CAT) and luciferase (Luc) genes in the lung. Endobronchial administration of either CAT or Luc expression plasmid DNA resulted in detectable concentrations of each reporter protein. CAT expression from plasmid DNA was monitored after endobronchial administration with the maximal expression observed at 3-5 days after administration and decreasing for 5 days thereafter. When DNA was delivered in a 50% suspension of Exosurf, the expression of either CAT or Luc was significantly reduced by 89.6 +/- 1.4% and 82.7 +/- 10.5%, respectively. The decrease in Luc expression was closely correlated (r = 0.99, P < 0.001) to log concentration of surfactant in the plasmid buffer solution (IC50 = 8.6%). CAT expression was not altered when surfactant was administered either 2 h before or after plasmid DNA instillation. Examination of the components of Exosurf revealed that two compounds, DPPC and tyloxapol, showed inhibitory effects on CAT expression. However, the inhibition caused by Exosurf appeared greater than that of either component. Our results suggest that the lung surfactant is a barrier to transfection of the endobronchial airway and may be partly responsible for the low expression of exogenous DNA in vivo in the bronchial tree.

  3. Alternatively activated RAW264.7 macrophages enhance tumor lymphangiogenesis in mouse lung adenocarcinoma.

    PubMed

    Zhang, Bicheng; Wang, Jun; Gao, Juan; Guo, Yan; Chen, Xi; Wang, Baocheng; Gao, Jianfei; Rao, Zhiguo; Chen, Zhengtang

    2009-05-01

    Tumor-associated macrophages (TAMs) have been implicated in promoting tumor progression and invasion. The onset and maintenance of tumor angiogenesis and lymphangiogenesis also seem to be partly driven by a group of polarized alternatively activated macrophages (aaMphi) in lung adenocarcinoma. Here, the aaMphi and classically activated macrophages (caMphi) were obtained using RAW264.7 cells via IL-4 and IFN-gamma + LPS treatment, respectively. Co-inoculation of aaMphi with Lewis lung carcinoma (LLC) cells promoted tumor growth, increased lymph node metastasis, and reduced the survival in C57BL/6 mice bearing LLC. Furthermore, the effects of the activated macrophages on the lymphangiogenesis-related properties of lymphatic endothelial cells (LECs) were investigated in vitro. When LECs were cultured in macrophages conditioned medium or in a co-culture system of macrophages and LECs, aaMphi significantly promoted proliferation, migration, and tube-like formation of LECs. We identified high VEGF-C expression in aaMphi and low expression in caMphi as well as unactivated macrophages by ELISA and Western blotting. In LECs, co-culture with aaMphi resulted in a significant increase of mRNA levels of specific lymphatic marker VEGF receptor-3 and the homeobox gene Prox-1, as well as lymphangiogenic factor VEGF-C rather than VEGF-D by quantitative RT-PCR. Furthermore, enhanced LECs migration and capillary formation by co-culture with aaMphi were significantly inhibited by rVEGF receptor-3/Fc chimera. In conclusion, these data show that aaMphi play a critical role in tumor-induced lymphangiogenesis through up-regulating VEGF-C and increasing lymphangiogenesis-related behavior of LECs, which may contribute to lymphatic invasion in lung adenocarcinoma.

  4. Inhibition of carcinogenesis by tea.

    PubMed

    Yang, Chung S; Maliakal, Pius; Meng, Xiaofeng

    2002-01-01

    Tea has received a great deal of attention because tea polyphenols are strong antioxidants, and tea preparations have inhibitory activity against tumorigenesis. The bioavailability and biotransformation of tea polyphenols, however, are key factors limiting these activities in vivo. The inhibition of tumorigenesis by green or black tea preparations has been demonstrated in animal models on different organ sites such as skin, lung, oral cavity, esophagus, forestomach, stomach, small intestine, colon, pancreas, and mammary gland. Epidemiological studies, however, have not yielded clear conclusions concerning the protective effects of tea consumption against cancer formation in humans. The discrepancy between the results from humans and animal models could be due to 1) the much higher doses of tea used in animals in comparison to human consumption, 2) the differences in causative factors between the cancers in humans and animals, and 3) confounding factors limiting the power of epidemiological studies to detect an effect. It is possible that tea may be only effective against specific types of cancer caused by certain etiological factors. Many mechanisms have been proposed for the inhibition of carcinogenesis by tea, including the modulation of signal transduction pathways that leads to the inhibition of cell proliferation and transformation, induction of apoptosis of preneoplastic and neoplastic cells, as well as inhibition of tumor invasion and angiogenesis. These mechanisms need to be evaluated and verified in animal models or humans in order to gain more understanding on the effect of tea consumption on human cancer.

  5. Dexmedetomidine attenuates acute lung injury induced by lipopolysaccharide in mouse through inhibition of MAPK pathway.

    PubMed

    Xu, Yingzhen; Zhang, Ruyi; Li, Chunli; Yin, Xue; Lv, Changjun; Wang, Yaoqi; Zhao, Wenxiang; Zhang, Xiuli

    2015-10-01

    Dexmedetomidine (Dex) is widely used for sedation in intensive care units and can be used as an adjunct to anesthetics. Previous studies have demonstrated that Dex has anti-inflammatory property. In this study, we aim to explore the potential therapeutic effects and mechanisms of Dex on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice. To induce ALI, mice were intraperitoneally injected with LPS, while Dex was treated 1 h before LPS injection. The inflammation of lung tissues was evaluated by HE stain, and bronchoalveolar lavage fluid (BALF) was obtained after 6 h to measure protein concentrations. We also used an enzyme-linked immunosorbent assay to detect the secretion levels of proinflammatory cytokines in the serum. Western blotting method was adopted to observe changes in mitogen-activated protein kinases and downstream nuclear transcription factors. The results showed that pretreatment with Dex considerably reduced neutrophil infiltration and pulmonary edema, and significantly reduced protein concentrations in the BALF, as well as suppressed LPS-induced elevation of proinflammatory cytokines (TNF-α and IL-1β) in the serum. In addition, we observed that the molecular mechanism of Dex-mediated anti-inflammation is associated with decreasing phosphorylation of MKK4, MMK3/6, ERK1/2, p38MAPK, and JNK, and diminishing activation of Elk-1, c-Jun, and ATF-2. Dex could attenuate ALI induced by LPS in mice, and this effect may be mediated through the inhibition of MAPK pathway.

  6. Effects of smoke inhalation on surfactant phospholipids and phospholipase A2 activity in the mouse lung.

    PubMed Central

    Oulton, M.; Moores, H. K.; Scott, J. E.; Janigan, D. T.; Hajela, R.

    1991-01-01

    The effects of smoke inhalation on the pulmonary surfactant system were examined in mice exposed for 30 minutes to smoke generated from the burning of polyurethane foam. At 8 or 12 hours after exposure, surfactants were isolated separately from lung lavage (extracellular surfactant) and residual lung tissue (intracellular surfactant) for phospholipid analysis. Calcium-dependent phospholipase A2 (PLA2) was measured on a microsomal fraction prepared from the tissue homogenate. Smoke inhalation produced a twofold increase in extracellular surfactant total phospholipid. While there was no change in the total phospholipid or phosphatidylcholine (PC) content of the intracellular surfactant, smoke inhalation significantly decreased the disaturated species of PC (DSPC). The specific activity of PLA2 was reduced by more than 50% in both groups of exposed mice. Smoke inhalation appears to result in selective depletion of the DSPC of intracellular surfactant and PLA2 involved in its synthesis. This depletion may be compensated for by increased secretion or slower breakdown of the material present in the extracellular compartment. Images Figure 1 PMID:1987765

  7. Detection of Sendai virus receptor, the ganglioside GDla, in target tissue (mouse lung)

    SciTech Connect

    Markwell, M.A.K.; Sato, E.

    1986-05-01

    Previously the authors had shown that the gangliosides GDla, GTlb, and GQlb derived from brain function as receptors for the paramyxovirus Sendai virus by their ability to induce infection when incubated with receptor-deficient cells. Analyses of MDBK, HeLa, and MDCK cells in culture demonstrated that these putative receptors were present in host cells in the quantities required for infection. The primary site of infection for Sendai virus in the whole animal is the respiratory tract, culminating in the lung. Therefore, the ganglioside content of this target organ was analyzed to determine the endogenous receptor population available to Sendai virus. The total ganglioside fraction of lung was resolved into individual species by HPTLC. Gangliosides of the gangliotetraose series were identified by the specific binding of /sup 125/I-labeled tetanus and cholera toxins before and after exposure with sialidase. In this manner one of the major resorcinol-positive bands was identified as GDla. Evidence of the more complex ganglioside receptors for Sendai virus was also seen.

  8. Antenatal maternal low protein diet: ACE-2 in the mouse lung and sexually dimorphic programming of hypertension.

    PubMed

    Goyal, Ravi; Van-Wickle, Jonathan; Goyal, Dipali; Longo, Lawrence D

    2015-05-14

    Elevated blood pressure is an important global health problem, and in-utero under-nutrition may be an important factor in the pathogenesis of hypertension. In the present study, we tested the hypothesis that antenatal maternal low protein diet (MLPD) leads to sexually dimorphic developmental programming of the components of the pulmonary renin-angiotensin system. This may be important in the antenatal MLPD-associated development of hypertension. In pregnant mice, we administered normal (control) and isocaloric 50% protein restricted diet, commencing one week before mating and continuing until delivery of the pups. From the 18th to 24th week postnatal, we measured blood pressure in the offspring by use of a non-invasive tail-cuff method. In the same mice, we examined the mRNA and protein expression of the key components of the pulmonary renin-angiotensin system. Also, we examined microRNA complementary to angiotensin converting enzymes (ACE) 2 in the offspring lungs. Our results demonstrate that as a consequence of antenatal MLPD: 1) pup birthweight was significantly reduced in both sexes. 2) female offspring developed hypertension, but males did not. 3) In female offspring, ACE-2 protein expression was significantly reduced without any change in the mRNA levels. 4) miRNA 429, which has a binding site on ACE-2 - 3' UTR was significantly upregulated in the female antenatal MLPD offspring. 5) In males, ACE-2 mRNA and protein expression were unaltered. We conclude that in the mouse, antenatal MLPD-induced reduction of ACE-2 in the female offspring lung may be an important mechanisms in sexually dimorphic programming of hypertension.

  9. Spores of Aspergillus versicolor isolated from indoor air of a moisture-damaged building provoke acute inflammation in mouse lungs.

    PubMed

    Jussila, Juha; Komulainen, Hannu; Kosma, Veli-Matti; Nevalainen, Aino; Pelkonen, Jukka; Hirvonen, Maija-Riitta

    2002-12-01

    Microbial growth in moisture-damaged buildings has been associated with respiratory health effects, and the spores of the mycotoxin producing fungus Aspergillus versicolor are frequently present in the indoor air. To characterize the potential of these spores to cause harmful respiratory effects, mice were exposed via intratracheal instillation to a single dose of the spores of A. versicolor (1 x 10(5), 1 x 10(6), 5 x 10(6), 1 x 10(7), or 1 x 10(8) spores), isolated from the indoor air of a moisture-damaged building. Inflammation and toxicity in lungs were evaluated 24 h later by assessment of biochemical markers and histopathology. The time course of the effects was investigated with the dose of 5 x 10(6) spores for up to 28 days. The exposure to the spores increased transiently proinflammatory cytokine levels (tumor necrosis factor [TNF] alpha and interleukin [IL]-6) in bronchoalveolar lavage fluid (BALF). The cytokine responses were dose and time dependent. The highest cytokine concentrations were measured at 6 h after the dose, and they returned to the control level by 3 days. Moreover, the spores of A. versicolor recruited inflammatory cells into airways: Neutrophils peaked transiently at 24 h, macrophages at 3 days, and lymphocytes at 7 days after the dosing. The inflammatory cell response did not completely disappear during the subsequent 28 days, though no histopathological changes were seen at that time point. The spores did not induce expression of inducible nitric oxide synthase in lavaged cells. Only the highest spore dose (1 x 10(8)) markedly increased serum IL-6, increased vascular leakage, and caused cytotoxicity (i.e., increased levels of albumin, total protein, lactate dehydrogenase [LDH], and hemoglobin in BALF) in the airways. In summary, the spores of A. versicolor caused acute inflammation in mouse lungs. This indicates that they have potential to provoke adverse health effects in the occupants of moisture-damaged buildings.

  10. Early alterations in extracellular matrix and transforming growth factor [beta] gene expression in mouse lung indicative of late radiation fibrosis

    SciTech Connect

    Finkelstein, J.N.; Johnston, C.J.; Baggs, R.; Rubin, P. )

    1994-02-01

    Fibrosis, characterized by the accumulation of collagen, is a late result of thoracic irradiation. The expression of late radiation injury can be found immediately after irradiation by measuring messenger RNA (mRNA) abundance. To determine if extracellular matrix mRNA and transforming growth factor beta abundance was affected acutely after irradiation, the authors measured mRNA levels of collagen I (CI), collagen III (CIII), collagen IV (CIV), fibronectin (FN), and transforming growth factor [beta] (TGF[beta][sub 1,2 3]) in mouse lungs on day 1 and day 14 after graded doses of radiation. C57BL/6 female mice were irradiated with a single dose to the thorax of 5 or 12.5 Gy. Total lung RNA was prepared and immobilized by Northern and slot blotting and hybridized with radiolabelled cDNA probes for CI, CIII, CIV, FN, TGF[beta][sub 1,2 3] and a control probe encoding for glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Autoradiographic data were quantified by video densitometry and results normalized to GAPDH. Changes in the expression of CI, CIII, CIV, FN and TGF[beta][sub 1,2 3] were observed as early as 1 day after exposure. Through 14 days, changes in mRNA up to 5-fold were seen for any one dose. Dose related changes as high as 10-fold were also evident. The CI:CIII ratio increased gradually for the 5 Gy dose at 14 days postirradiation while the CI:CII ratio for the 12.5 Gy dose decreased by approximately 4-fold as compared to the control. These studies suggest that alterations in expression of extracellular matrix and TGF[beta] mRNA occur very early after radiation injury even at low doses and may play a role in the development of chronic fibrosis. 37 refs., 6 figs.

  11. Stimulation of immature lung macrophages with intranasal interferon gamma in a novel neonatal mouse model of respiratory syncytial virus infection.

    PubMed

    Empey, Kerry M; Orend, Jacob G; Peebles, R Stokes; Egaña, Loreto; Norris, Karen A; Oury, Tim D; Kolls, Jay K

    2012-01-01

    Respiratory syncytial virus (RSV) is the leading cause of bronchiolitis and viral death in infants. Reduced CD8 T-cells and negligible interferon gamma (IFNγ) in the airway are associated with severe infant RSV disease, yet there is an abundance of alveolar macrophages (AM) and neutrophils. However, it is unclear, based on our current understanding of macrophage functional heterogeneity, if immature AM improve viral clearance or contribute to inflammation and airway obstruction in the IFNγ-deficient neonatal lung environment. The aim of the current study was to define the age-dependent AM phenotype during neonatal RSV infection and investigate their differentiation to classically activated macrophages (CAM) using i.n. IFNγ in the context of improving viral clearance. Neonatal and adult BALB/cJ mice were infected with 1×10(6) plaque forming units (PFU)/gram (g) RSV line 19 and their AM responses compared. Adult mice showed a rapid and robust CAM response, indicated by increases in major histocompatibility complex class II (MHC II), CD86, CCR7, and a reduction in mannose receptor (MR). Neonatal mice showed a delayed and reduced CAM response, likely due to undetectable IFNγ production. Intranasal (i.n.) treatment with recombinant mouse IFNγ (rIFNγ) increased the expression of CAM markers on neonatal AM, reduced viral lung titers, and improved weight gain compared to untreated controls with no detectable increase in CD4 or CD8 T-cell infiltration. In vitro infection of J774A.1 macrophages with RSV induced an alternatively activated macrophage (AAM) phenotype however, when macrophages were first primed with IFNγ, a CAM phenotype was induced and RSV spread to adjacent Hep-2 cells was reduced. These studies demonstrate that the neonatal AM response to RSV infection is abundant and immature, but can be exogenously stimulated to express the antimicrobial phenotype, CAM, with i.n. rIFNγ.

  12. Effects of nickel-oxide nanoparticle pre-exposure dispersion status on bioactivity in the mouse lung.

    PubMed

    Sager, Tina; Wolfarth, Michael; Keane, Michael; Porter, Dale; Castranova, Vincent; Holian, Andrij

    2016-01-01

    Nanotechnology is emerging as one of the world's most promising new technologies. From a toxicology perspective, nanoparticles possess two features that promote their bioactivity. The first involves physical-chemical characteristics of the nanoparticle, which include the surface area of the nanoparticle. The second feature is the ability of the nanoparticle to traverse cell membranes. These two important nanoparticle characteristics are greatly influenced by placing nanoparticles in liquid medium prior to animal exposure. Nanoparticles tend to agglomerate and clump in suspension, making it difficult to reproducibly deliver them for in vivo or in vitro experiments, possibly affecting experimental variability. Thus, we hypothesize that nanoparticle dispersion status will correlate with the in vivo bioactivity/toxicity of the particle. To test our hypothesis, nano-sized nickel oxide was suspended in four different dispersion media (phosphate-buffered saline (PBS), dispersion medium (DM), a combination of dipalmitoyl-phosphatidyl choline (DPPC) and albumin in concentrations that mimic diluted alveolar lining fluid), Survanta®, or pluronic (Pluronic F-68). Well-dispersed and poorly dispersed suspensions were generated in each media by varying sonication time on ice utilizing a Branson Sonifer 450 (25W continuous output, 20 min or 5 min, respectively). Mice (male, C57BL/6J, 7-weeks-old) were given 0-80 µg/mouse of nano-sized nickel oxide in the different states of dispersion via pharyngeal aspiration. At 1 and 7 d post-exposure, mice underwent whole lung lavage to assess pulmonary inflammation and injury as a function of dispersion status, dose and time. The results show that pre-exposure dispersion status correlates with pulmonary inflammation and injury. These results indicate that a greater degree of pre-exposure dispersion increases pulmonary inflammation and cytotoxicity, as well as decreases in the integrity of the blood-gas barrier in the lung.

  13. Rosiglitazone is a superior bronchodilator compared to chloroquine and β-adrenoceptor agonists in mouse lung slices

    PubMed Central

    2014-01-01

    Background Current therapy for relieving bronchoconstriction may be ineffective in severe asthma, particularly in the small airways. The aim of this study was to further characterise responses to the recently identified novel bronchodilators rosiglitazone (RGZ) and chloroquine (CQ) under conditions where β-adrenoceptor agonist efficacy was limited or impaired in mouse small airways within lung slices. Methods Relaxation to RGZ and CQ was assessed following submaximal methacholine (MCh) pre-contraction, in slices treated overnight with either RGZ, CQ or albuterol (ALB) (to induce β-adrenoceptor desensitization), and in slices treated with caffeine/ryanodine in which contraction is associated with increases in Ca2+ sensitivity in the absence of contractile agonist-induced Ca2+ oscillations. Furthermore, the effects of RGZ, CQ, ALB and isoproterenol (ISO) on the initiation and development of methacholine-induced contraction were also compared. Results RGZ and CQ, but not ALB or ISO, elicited complete relaxation with increasing MCh pre-contraction and maintained their potency and efficacy following β-adrenoceptor desensitization. RGZ, CQ and ALB maintained efficacy following overnight incubation with RGZ or CQ. Relaxation responses to all dilators were generally maintained but delayed after caffeine/ryanodine. Pre-treatment with RGZ, but not CQ, ALB or ISO, reduced MCh potency. Conclusions This study demonstrates the superior effectiveness of RGZ in comparison to CQ and β-adrenoceptor agonists as a dilator of mouse small airways. Further investigation of the mechanisms underlying the relatively greater efficacy of RGZ under these conditions are warranted and should be extended to include studies in human asthmatic airways. PMID:24621080

  14. Mouse lung inflammation after instillation of particulate matter collected from a working dairy barn

    SciTech Connect

    Wegesser, Teresa C.; Last, Jerold A.

    2009-05-01

    Coarse and fine particulate matter (PM{sub 2.5-10} and PM{sub 2.5}, respectively) are regulated ambient air pollutants thought to have major adverse health effects in exposed humans. The role of endotoxin and other bioaerosol components in the toxicity of PM from ambient air is controversial. This study evaluated the inflammatory lung response in mice instilled intratracheally with PM{sub 2.5-10} and PM{sub 2.5} emitted from a working dairy barn, a source presumed to have elevated concentrations of endotoxin. PM{sub 2.5-10} was more pro-inflammatory on an equal weight basis than was PM{sub 2.5}; both fractions elicited a predominantly neutrophilic response. The inflammatory response was reversible, with a peak response to PM{sub 2.5-10} observed at 24 h after instillation, and a return to control values by 72 h after instillation. The major active pro-inflammatory component in whole PM{sub 2.5-10}, but not in whole PM{sub 2.5}, is heat-labile, consistent with it being endotoxin. A heat treatment protocol for the gradual inactivation of biological materials in the PM fractions over a measurable time course was developed and optimized in this study using pure lipopolysaccharide (LPS) as a model system. The time course of heat inactivation of pure LPS and of endotoxin activity in PM{sub 2.5-10} as measured by Limulus bioassay is identical. The active material in both PM{sub 2.5-10} and PM{sub 2.5} remained in the insoluble fraction when the whole PM samples were extracted with physiological saline solution. Histological analysis of lung sections from mice instilled with PM{sub 2.5-10} or PM{sub 2.5} showed evidence of inflammation consistent with the cellular responses observed in lung lavage fluid. The major pro-inflammatory components present in endotoxin-rich PM were found in the insoluble fraction of PM{sub 2.5-10}; however, in contrast with PM{sub 2.5-10} isolated from ambient air in the Central Valley of California, the active components in the insoluble

  15. IDENTIFICATION OF STEREOCHEMICAL CONFIGURATIONS OF CYCLOPENTA[CD]PYRENE-DNA ADDUCTS IN STRAIN A/J MOUSE LUNG AND C3H10T1/2CL8 CELLS

    EPA Science Inventory

    Identification of Sterochemical Configurations of Cyclopent A[cd]Pyrene DNA Adducts in Strain A/J Mouse Lung and C3H10T1/2CL8 Cells.

    Four major and several minor DNA adducts were resolved by 32P-postlabeling analysis of DNA from strain A/J mouse lung and C3H10T1/2CL8 (C3H...

  16. Formylhydrazine carcinogenesis in mice.

    PubMed Central

    Toth, B.

    1978-01-01

    Administration of 0.125% formylhydrazine in drinking water to 6-week-old randomly bred Swiss albino mice for life, induced lung tumours. Compared to untreated controls, the lung-tumour incidence rose from 15 to 94% in the females and from 22 to 100% in the males. The treatment had no detectable tumorigenic effect in other organs. PMID:678435

  17. [Initiation, promotion, initiation experiments with radon and cigarette smoke: Lung tumors in rats]. Progress report

    SciTech Connect

    Moolgavkar, S.H.

    1994-10-01

    During the past several years, the authors have made considerable progress in modeling carcinogenesis in general, and in modeling radiation carcinogenesis, in particular. They present an overview of their progress in developing stochastic carcinogenesis models and applying them to experimental and epidemiologic data sets. Traditionally, cancer models have been used for the analysis of incidence (or prevalence) data in epidemiology and time to tumor data in experimental studies. The relevant quantities for the analysis of these data are the hazard function and the probability of tumor. The derivation of these quantities is briefly described here. More recently, the authors began to use these models for the analysis of data on intermediate lesions on the pathway to cancer. Such data are available in experimental carcinogenesis studies, in particular in initiation and promotion studies on the mouse skin and the rat liver. If however, quantitative information on intermediate lesions on the pathway to lung cancer were to be come available at some future date, the methods that they have developed for the analysis of initiation-promotion experiments could easily be applied to the analysis of these lesions. The mathematical derivations here are couched in terms of a particular two-mutation model of carcinogenesis. Extension to models postulating more than two mutations is not always straightforward.

  18. PR-Set7 is degraded in a conditional Cul4A transgenic mouse model of lung cancer

    SciTech Connect

    Wang, Yang; Xu, Zhidong; Mao, Jian -Hua; Hsieh, David; Au, Alfred; Jablons, David M.; Li, Hui; You, Lian

    2015-06-01

    Background and objective. Maintenance of genomic integrity is essential to ensure normal organismal development and to prevent diseases such as cancer. PR-Set7 (also known as Set8) is a cell cycle regulated enzyme that catalyses monomethylation of histone 4 at Lys20 (H4K20me1) to promote chromosome condensation and prevent DNA damage. Recent studies show that CRL4CDT2-mediated ubiquitylation of PR-Set7 leads to its degradation during S phase and after DNA damage. This might occur to ensure appropriate changes in chromosome structure during the cell cycle or to preserve genome integrity after DNA damage. Methods. We developed a new model of lung tumor development in mice harboring a conditionally expressed allele of Cul4A. We have therefore used a mouse model to demonstrate for the first time that Cul4A is oncogenic in vivo. With this model, staining of PR-Set7 in the preneoplastic and tumor lesions in AdenoCre-induced mouse lungs was performed. Meanwhile we identified higher protein level changes of γ-tubulin and pericentrin by IHC. Results. The level of PR-Set7 down-regulated in the preneoplastic and adenocarcinomous lesions following over-expression of Cul4A. We also identified higher levels of the proteins pericentrin and γ-tubulin in Cul4A mouse lungs induced by AdenoCre. Conclusion. PR-Set7 is a direct target of Cul4A for degradation and involved in the formation of lung tumors in the conditional Cul4A transgenic mouse model.

  19. Histochemical analyses and quantum dot imaging of microvascular blood flow with pulmonary edema in living mouse lungs by "in vivo cryotechnique".

    PubMed

    Saitoh, Yurika; Terada, Nobuo; Saitoh, Sei; Ohno, Nobuhiko; Jin, Takashi; Ohno, Shinichi

    2012-02-01

    Light microscopic imaging of blood vessels and distribution of serum proteins is essential to analyze hemodynamics in living animal lungs under normal respiration or respiratory diseases. In this study, to demonstrate dynamically changing morphology and immunohistochemical images of their living states, "in vivo cryotechnique" (IVCT) combined with freeze-substitution fixation was applied to anesthetized mouse lungs. By hematoxylin-eosin staining, morphological features, such as shapes of alveolar septum and sizes of alveolar lumen, reflected their respiratory conditions in vivo, and alveolar capillaries were filled with variously shaped erythrocytes. Albumin was usually immunolocalized in the capillaries, which was confirmed by double-immunostaining for aquaporin-1 of endothelium. To capture accurate time-courses of blood flow in peripheral pulmonary alveoli, glutathione-coated quantum dots (QDs) were injected into right ventricles, and then IVCT was performed at different time-points after the QD injection. QDs were localized in most arterioles and some alveolar capillaries at 1 s, and later in venules at 2 s, reflecting a typical blood flow direction in vivo. Three-dimensional QD images of microvascular networks were reconstructed by confocal laser scanning microscopy. It was also applied to lungs of acute pulmonary hypertension mouse model. Erythrocytes were crammed in blood vessels, and some serum components leaked into alveolar lumens, as confirmed by mouse albumin immunostaining. Some separated collagen fibers and connecting elastic fibers were still detected in edematous tunica adventitia near terminal bronchioles. Thus, IVCT combined with histochemical approaches enabled us to capture native images of dynamically changing structures and microvascular hemodynamics of living mouse lungs.

  20. Systemic chromosome instability in Shugoshin-1 mice resulted in compromised glutathione pathway, activation of Wnt signaling and defects in immune system in the lung

    PubMed Central

    Yamada, H Y; Kumar, G; Zhang, Y; Rubin, E; Lightfoot, S; Dai, W; Rao, C V

    2016-01-01

    Mitotic error-mediated chromosome instability (CIN) can lead to aneuploidy, chromothripsis, DNA damage and/or whole chromosome gain/loss. CIN may prompt rapid accumulation of mutations and genomic alterations. Thus, CIN can promote carcinogenesis. This CIN process results from a mutation in certain genes or environmental challenge such as smoking, and is highly prevalent in various cancers, including lung cancer. A better understanding of the effects of CIN on carcinogenesis will lead to novel methods for cancer prevention and treatment. Previously Shugoshin-1 (Sgo1−/+) mice, a transgenic mouse model of CIN, showed mild proneness to spontaneous lung and liver cancers. In this study, adoptive (T/B-cell based) immunity-deficient RAG1−/− Sgo1−/+ double mutant mice developed lung adenocarcinomas more aggressively than did Sgo1−/+ or RAG1−/− mice, suggesting immune system involvement in CIN-mediated lung carcinogenesis. To identify molecular causes of the lung adenocarcinoma, we used systems biology approach, comparative RNAseq, to RAG1−/− and RAG1−/− Sgo1−/+. The comparative RNAseq data and follow-up analyses in the lungs of naive Sgo1−/+ mice demonstrate that, (i) glutathione is depleted, making the tissue vulnerable to oxidative stress, (ii) spontaneous DNA damage is increased, (iii) oncogenic Wnt signaling is activated, (iv) both major branches of the immune system are weakened through misregulations in signal mediators such as CD80 and calreticulin and (v) the actin cytoskeleton is misregulated. Overall, the results show multi-faceted roles of CIN in lung carcinoma development in Sgo1−/+ mice. Our model presents various effects of CIN and will help to identify potential targets to prevent CIN-driven carcinogenesis in the lung. PMID:27526110

  1. Correlation between macrolide lung pharmacokinetics and therapeutic efficacy in a mouse model of pneumococcal pneumonia.

    PubMed

    Veber, B; Vallée, E; Desmonts, J M; Pocidalo, J J; Azoulay-Dupuis, E

    1993-09-01

    The correlation between the pharmacokinetics of erythromycin, roxithromycin, clarithromycin, spiramycin and azithromycin and their efficacy was investigated in two pneumococcal pneumonia models. Female Swiss and C57B1/6 mice were infected with Streptococcus pneumoniae strain P4241 by the intratracheal per oral route. This virulent strain produces acute pneumonia with death within 3-4 days (Swiss mice), or subacute pneumonia with death within 10 days (C57B1/6 mice) in untreated mice and the outcome of the disease is closely related to progressive weight loss. Swiss mice received three doses of each macrolide 50 mg/kg bd beginning 18 h post-infection. C57B1/6 mice received three doses of each macrolide 25 mg/kg, bd (except azithromycin was 12.5 mg/kg bd) beginning 48 h post-infection. Cure rates were evaluated on the basis of body weight variations recorded daily after the end of treatment. Pharmacokinetic parameters were determined in infected and non-infected mice after a single dose of each macrolide 50 mg/kg sc. The pharmacokinetics of azithromycin was also determined in leucopenic Swiss mice. We observed a hierarchy of in-vivo efficacy as follows: azithromycin > spiramycin = clarithromycin > roxithromycin = erythromycin which did not correlate with in-vitro MIC or MBC. The same hierarchy was found in terms of the lung T1/2. Lung T1/2s of macrolides could thus be predictive of their efficacy in respiratory tract infections. A reduced tissue AUC of azithromycin was seen in leucopenic mice suggesting leucocytes may help transport macrolides to sites of infection.

  2. In vivo treatment with aflatoxin B1 increases DNA oxidation, base excision repair activity and 8-oxoguanine DNA glycosylase 1 levels in mouse lung.

    PubMed

    Guindon-Kezis, Katherine A; Mulder, Jeanne E; Massey, Thomas E

    2014-07-03

    Carcinogenicity of the mycotoxin aflatoxin B1 (AFB1), which is produced by Aspergillus fungi, is associated with bioactivation of AFB1 to AFB1-8,9-exo-epoxide and formation of DNA adducts. However, AFB1 also causes 8-hydroxy-2'-deoxyguanosine (8-OHdG) formation in mouse lung DNA, suggesting that oxidative DNA damage may also contribute to AFB1 carcinogenicity. The oxidative DNA damage 5-hydroxy-2'-deoxycytidine (5-OHdC) may also contribute to AFB1 carcinogenicity. The objective of the present study was to determine the effect of treatment of mice with AFB1 on pulmonary and hepatic: 8-OHdG and 5-OHdC levels; base excision repair (BER, which repairs oxidative DNA damage) activities; and on levels of 8-oxoguanine DNA glycosylase (OGG1, the rate-limiting enzyme in the BER of 8-OHdG). Female A/J mice were treated with vehicle (dimethyl sulfoxide) or 50 mg/kg AFB1 ip. Oxidative DNA damage was measured using HPLC with electrochemical detection, BER activity was assessed using an in vitro assay that employs a substrate plasmid DNA with 8-OHdG lesions, and OGG1 protein levels were determined by immunoblotting. Two hours post treatment, AFB1 increased 8-OHdG levels in mouse lung DNA by approximately 69% relative to control (p<0.05), but did not alter 8-OHdG levels in liver or 5-OHdC levels in lung or liver (p>0.05). AFB1 treatment also increased BER activity in mouse lung by approximately 87% (p<0.05) but did not affect hepatic BER activity (p>0.05). Levels of OGG1 immunoreactive protein were increased in both lung (20%) and liver (60%) (p<0.05). These results are consistent with oxidative DNA damage contributing to the carcinogenicity of AFB1 in this model.

  3. Anti-metastatic effect of the TM4SF5-specific peptide vaccine and humanized monoclonal antibody on colon cancer in a mouse lung metastasis model

    PubMed Central

    Park, Byoung Kwon; Park, Sangkyu; Ha, Ji-Hee; Kim, Te Ha; Gautam, Avishekh; Kim, Jung Nam; Lee, Su In; Park, Han-Bum; Kim, Yong-Sung; Kwon, Hyung-Joo; Lee, Younghee

    2016-01-01

    Transmembrane 4 superfamily member 5 protein (TM4SF5) is a potential therapeutic target for hepatocellular carcinoma (HCC) and colon cancer. In a previous study, we demonstrated the prophylactic and therapeutic effects of a TM4SF5-specific peptide vaccine and monoclonal antibody in HCC and colon cancer in a mouse model. Here, we designed a cyclic peptide targeting TM4SF5. Cyclic peptide-specific antibodies were produced in mice after immunization with a complex of the peptide, CpG-DNA, and liposomes. Intravenous injection of the CT-26 mouse colon cancer cell line into mice induced tumors in the lung. Immunization with the peptide vaccine improved the survival rate and reduced the growth of lung tumors. We established a monoclonal antibody specific to the cyclic TM4SF5-based peptide and humanized the antibody sequence by complementarity determining region-grafting. The humanized antibody was reactive to the cyclic peptide and TM4SF5 protein. Treatment of CT-26 cells with the humanized antibody reduced cell motility in vitro. Furthermore, direct injection of the humanized anti-TM4SF5 antibody in vivo reduced growth of lung tumors in mouse metastasis model. Therefore, we conclude that the immunization with the cyclic peptide vaccine and injection of the TM4SF5-specifc humanized antibody have an anti-metastatic effect against colon cancer in mice. Importantly, the humanized antibody may serve as a starting platform for further development and application in clinical settings. PMID:27816969

  4. Mathematical modeling of tumor cell proliferation kinetics and label retention in a mouse model of lung cancer.

    PubMed

    Zheng, Yanyan; Moore, Helen; Piryatinska, Alexandra; Solis, Trinidad; Sweet-Cordero, E Alejandro

    2013-06-15

    Slowly cycling tumor cells that may be present in human tumors may evade cytotoxic therapies, which tend to be more efficient at destroying cells with faster growth rates. However, the proportion and growth rate of slowly cycling tumor cells is often unknown in preclinical model systems used for drug discovery. Here, we report a quantitative approach to quantitate slowly cycling malignant cells in solid tumors, using a well-established mouse model of Kras-induced lung cancer (Kras(G12D/+)). 5-Bromo-2-deoxyuridine (BrdUrd) was administered to tumor-bearing mice, and samples were collected at defined times during pulse and chase phases. Mathematical and statistical modeling of the label-retention data during the chase phase supported the existence of a slowly cycling label-retaining population in this tumor model and permitted the estimation of its proportion and proliferation rate within a tumor. The doubling time of the slowly cycling population was estimated at approximately 5.7 weeks, and this population represented approximately 31% of the total tumor cells in this model system. The mathematical modeling techniques implemented here may be useful in other tumor models where direct observation of cell-cycle kinetics is difficult and may help evaluate tumor cell subpopulations with distinct cell-cycling rates.

  5. Granzyme A Is Expressed in Mouse Lungs during Mycobacterium tuberculosis Infection but Does Not Contribute to Protection In Vivo

    PubMed Central

    Uranga, Santiago; Marinova, Dessislava; Martin, Carlos; Pardo, Julián; Aguilo, Nacho

    2016-01-01

    Granzyme A, a serine protease expressed in the granules of cytotoxic T and Natural Killer cells, is involved in the generation of pro-inflammatory cytokines by macrophages. Granzyme A has been described to induce in macrophages in vitro the activation of pro-inflammatory pathways that impair intracellular mycobacterial replication. In the present study, we explored the physiological relevance of Granzyme A in the control of pulmonary Mycobacterium tuberculosis infection in vivo. Our results show that, even though Granzyme A is expressed by cytotoxic cells from mouse lungs during pulmonary infection, its deficiency in knockout mice does not have an effect in the control of M. tuberculosis infection. In addition our findings indicate that absence of Granzyme A does not affect the protection conferred by the live-attenuated M. tuberculosis vaccine MTBVAC. Altogether, our findings are in apparent contradiction with previously published in vitro results and suggest that Granzyme A does not have a crucial role in vivo in the protective response to tuberculosis. PMID:27055232

  6. Mesothelial cell proliferation after instillation of long or short asbestos fibers into mouse lung.

    PubMed Central

    Adamson, I. Y.; Bakowska, J.; Bowden, D. H.

    1993-01-01

    The relationship of asbestos deposition in the lung to subsequent cell proliferation at the pleural surface is not clear. The present study examines DNA synthesis by various pulmonary cells, particularly those at the pleura after intratracheal injection of 0.1 mg crocidolite to mice using: 1) long fibers (> 20 mu), which are deposited in bronchiolar regions and induce fibrosis; 2) short fibers (< 1 mu), which reach alveoli but do not induce fibrosis. Mice also received 2 microCi/g tritiated thymidine 1 hour before death at intervals to 16 weeks. Short fibers induced only a small increase in labeling of bronchiolar epithelial and interstitial cells, which subsided by 5 days, when a small increase in labeled mesothelial and subpleural cells was seen. In contrast, long fibers damaged the bronchiolar epithelium and became incorporated into connective tissue. During regeneration, 12% of cells were labeled at 3 days and labeling was greater than controls to 4 weeks. Increased peribronchiolar labeling of fibroblasts and interstitial macrophages was seen around long fibers, and increased DNA synthesis by mesothelial and subpleural cells was found. Up to 2% of mesothelial cells were labeled 1 week after long fibers compared to near zero in controls. No long fibers were found at the pleura. Activation of interstitial macrophages in response to long crocidolite fibers is associated with fibroblast proliferation. It is now suggested that mesothelial cells may also be stimulated by cytokines from activated interstitial macrophages that diffuse across the interstitium, without requiring actual fiber translocation to the pleura. Images Figure 1 Figure 2 Figure 3 Figure 6 Figure 9 Figure 11 PMID:8475994

  7. Lack of contribution of covalent benzo[a]pyrene-7,8-quinone-DNA adducts in benzo[a]pyrene-induced mouse lung tumorigenesis.

    PubMed

    Nesnow, Stephen; Nelson, Garret; Padgett, William T; George, Michael H; Moore, Tanya; King, Leon C; Adams, Linda D; Ross, Jeffrey A

    2010-07-30

    Benzo[a]pyrene (B[a]P) is a potent human and rodent lung carcinogen. This activity has been ascribed in part to the formation of anti-trans-7,8-dihydroxy-7,8-dihydroB[a]P-9,10-epoxide (BPDE)-DNA adducts. Other carcinogenic mechanisms have been proposed: (1) the induction of apurinic sites from radical cation processes, and (2) the metabolic formation of B[a]P-7,8-quinone (BPQ) that can form covalent DNA adducts or reactive oxygen species which can damage DNA. The studies presented here sought to examine the role of stable BPQ-DNA adducts in B[a]P-induced mouse lung tumorigenesis. Male strain A/J mice were injected intraperitoneally once with BPQ or trans-7,8-dihydroxy-7,8-dihydroB[a]P (BP-7,8-diol) at 30, 10, 3, or 0mg/kg. Lungs and livers were harvested after 24h, the DNA extracted and subjected to (32)P-postlabeling analysis. Additional groups of mice were dosed once with BPQ or BP-7,8-diol each at 30 mg/kg and tissues harvested 48 and 72 h later, or with B[a]P (50mg/kg, a tumorigenic dose) and tissues harvested 72 h later. No BPQ or any other DNA adducts were observed in lung or liver tissues 24, 48, or 72 h after the treatment with 30 mg/kg BPQ. BP-7,8-diol gave BPDE-DNA adducts at all time points in both tissues and B[a]P treatment gave BPDE-DNA adducts in the lung. In each case, no BPQ-DNA adducts were detected. Mouse body weights significantly decreased over time after BPQ or BP-7,8-diol treatments suggesting that systemic toxicity was induced by both agents. Model studies with BPQ and N-acetylcysteine suggested that BPQ is rapidly inactivated by sulfhydryl-containing compounds and not available for DNA adduction. We conclude that under these treatment conditions BPQ does not form stable covalent DNA adducts in the lungs or livers of strain A/J mice, suggesting that stable BPQ-covalent adducts are not a part of the complex of mechanisms involved in B[a]P-induced mouse lung tumorigenesis.

  8. Shape-based tracking allows functional discrimination of two immune cell subsets expressing the same fluorescent tag in mouse lung explant.

    PubMed

    Fiole, Daniel; Touvrey, Cédric; Quesnel-Hellmann, Anne; Douady, Julien; Tournier, Jean-Nicolas

    2012-01-01

    Dendritic Cells (DC) represent a key lung immune cell population, which play a critical role in the antigen presenting process and initiation of the adaptive immune response. The study of DCs has largely benefited from the joint development of fluorescence microscopy and knock-in technology, leading to several mouse strains with constitutively labeled DC subsets. However, in the lung most transgenic mice do express fluorescent protein not only in DCs, but also in closely related cell lineages such as monocytes and macrophages. As an example, in the lungs of CX(3)CR1(+/gfp) mice the green fluorescent protein is expressed mostly by both CD11b conventional DCs and resident monocytes. Despite this non-specific staining, we show that a shape criterion can discriminate these two particular subsets. Implemented in a cell tracking code, this quantified criterion allows us to analyze the specific behavior of DCs under inflammatory conditions mediated by lipopolysaccharide on lung explants. Compared to monocytes, we show that DCs move slower and are more confined, while both populations do not have any chemotactism-associated movement. We could generalize from these results that DCs can be automatically discriminated from other round-shaped cells expressing the same fluorescent protein in various lung inflammation models.

  9. Shape-Based Tracking Allows Functional Discrimination of Two Immune Cell Subsets Expressing the Same Fluorescent Tag in Mouse Lung Explant

    PubMed Central

    Fiole, Daniel; Touvrey, Cédric; Quesnel-Hellmann, Anne

    2012-01-01

    Dendritic Cells (DC) represent a key lung immune cell population, which play a critical role in the antigen presenting process and initiation of the adaptive immune response. The study of DCs has largely benefited from the joint development of fluorescence microscopy and knock-in technology, leading to several mouse strains with constitutively labeled DC subsets. However, in the lung most transgenic mice do express fluorescent protein not only in DCs, but also in closely related cell lineages such as monocytes and macrophages. As an example, in the lungs of CX3CR1+/gfp mice the green fluorescent protein is expressed mostly by both CD11b conventional DCs and resident monocytes. Despite this non-specific staining, we show that a shape criterion can discriminate these two particular subsets. Implemented in a cell tracking code, this quantified criterion allows us to analyze the specific behavior of DCs under inflammatory conditions mediated by lipopolysaccharide on lung explants. Compared to monocytes, we show that DCs move slower and are more confined, while both populations do not have any chemotactism-associated movement. We could generalize from these results that DCs can be automatically discriminated from other round-shaped cells expressing the same fluorescent protein in various lung inflammation models. PMID:22745831

  10. Response modification in carcinogenesis.

    PubMed Central

    Cerutti, P A

    1989-01-01

    A major goal in multistep carcinogenesis research is the integration of recent findings obtained by sophisticated molecular-genetic and cytogenetic analysis of cancer into the more descriptive concepts of experimental pathology. It is proposed that the creation of a promotable cell in carcinogenic initiation requires a response modification to extracellular or intercellular signals. Different types of response modification can be distinguished: changes in the receptors for growth and differentiation factors and their cytoplasmic and nuclear signal transduction pathways; increased resistance of initiated cells to cytotoxic agents; alterations in junctional cell-to-cell communications. The challenge of a response-modified cell to an appropriate promoter results in its selection and clonal expansion, usually to a benign tumor. In addition, for malignancy, chromosomal changes are required that affect cellular functions that can play a role early or late in tumorigenesis. These concepts are illustrated with examples from oncogene research and oxidant promotion. PMID:2667983

  11. Nutritional factors in carcinogenesis.

    PubMed

    Wahlqvist, M L

    1993-09-01

    There have been varying estimates of the role of nutritional as opposed to other contributors to carcinogenesis. Several considerations probably account for the different estimates: (1) genetic overestimates because of foetal and early life rearing practices and the nutritional modulation of genetic expression (2) errors in food intake methodology (3) the limitations of nutrient carcinogenesis hypotheses, ie models which are too naive and do not allow for non-nutrients in food, food patterns and the overall package which is food culture (4) indirect pathways connecting nutrition and cancer such as that via immunosurveillance. Examples of cancers where rapid change in nutritional thinking is underway are breast, prostatic, colorectal and pancreatic. With breast cancer, weakly oestrogenic compounds from foods may be comparable to tamoxifen. Changing food culture away from that rich in phyto-oestrogens may increase the risk of prostatic cancer in men as well. Colorectal cancer incidence has continued at high rates in urbanized society despite an awareness of dietary contribution comparable to the knowledge of diet and coronary heart disease is the analysis sufficiently stratified for large bowel site or nutritionally sophisticated enough to allow for aggregate food pattern effects? Pancreatic cancer on the rise presents questions about unidentified changes continuing in the diets of industrialized societies, possibly from an early age, and even during infant feeding. Nutritional surveillance with mathematical modelling of food intake at a more sophisticated level will be required to understand present food-cancer relationships, and those which may emerge with newer food technologies, especially those related to designer foods.

  12. Inhibition of 11β-Hydroxysteroid Dehydrogenase Type II Suppresses Lung Carcinogenesis by Blocking Tumor COX-2 Expression as Well as the ERK and mTOR Signaling Pathways

    PubMed Central

    Yang, Shilin; Yao, Bing; Zhang, Bixiang; Chen, Xiaoping; Pozzi, Ambra; Zhang, Ming-Zhi

    2015-01-01

    Lung cancer is by far the leading cause of cancer death. Early diagnosis and prevention remain the best approach to reduce the overall morbidity and mortality. Experimental and clinical evidence have shown that cyclooxygenase-2 (COX-2) derived prostaglandin E2 (PGE2) contributes to lung tumorigenesis. COX-2 inhibitors suppress the development and progression of lung cancer. However, increased cardiovascular risks of COX-2 inhibitors limit their use in chemoprevention of lung cancers. Glucocorticoids are endogenous and potent COX-2 inhibitors, and their local actions are down-regulated by 11β–hydroxysteroid dehydrogenase type II (11ßHSD2)-mediated metabolism. We found that 11βHSD2 expression was increased in human lung cancers and experimental lung tumors. Inhibition of 11βHSD2 activity enhanced glucocorticoid-mediated COX-2 inhibition in human lung carcinoma cells. Furthermore, 11βHSD2 inhibition suppressed lung tumor growth and invasion in association with increased tissue active glucocorticoid levels, decreased COX-2 expression, inhibition of ERK and mTOR signaling pathways, increased tumor endoplasmic reticulum stress as well as increased lifespan. Therefore, 11βHSD2 inhibition represents a novel approach for lung cancer chemoprevention and therapy by increasing tumor glucocorticoid activity, which in turn selectively blocks local COX-2 activity and/or inhibits the ERK and mTOR signaling pathways. PMID:26011146

  13. Effects of Cigarette Smoke on the Activation of Oxidative Stress-Related Transcription Factors in Female A/J Mouse Lung

    PubMed Central

    Tharappel, Job C.; Cholewa, Jill; Espandiari, Parvaneh; Spear, Brett T.; Gairola, C. Gary; Glauert, Howard P.

    2010-01-01

    Cigarette smoke contains a high concentration of free radicals and induces oxidative stress in the lung and other tissues. Several transcription factors are known to be activated by oxidative stress, including nuclear factor-κB (NF-κB), activator protein-1 (AP-1), and hypoxia-inducible factor (HIF). Studies were therefore undertaken to examine if cigarette smoke could activate these transcription factors, as well as other transcription factors that may be important in lung carcinogenesis. Female A/J mice were exposed to cigarette smoke for 2, 5, 10, 15, 20, 42, or 56 days (6 hr/day, 5 days/wk). Cigarette smoke did not increase NF-κB activation at any of these times, but NF-κB DNA binding activity was lower after 15 days and 56 days of smoke exposure. The DNA binding activity of AP-1 was lower after 10 days and 56 days but was not changed after 42 days of smoke exposure. The DNA binding activity of HIF was quantitatively increased after 42 days of smoke exposure but decreased after 56 days. Whether the activation of other transcription factors in the lung could be altered after exposure to cigarette smoke was subsequently examined. The DNA binding activities of FoxF2, myc-CF1, RORE, and p53 were examined after 10 days of smoke exposure. The DNA binding activities of FoxF2 and p53 were quantitatively increased, but those of myc-CF1 and RORE were unaffected. These studies show that cigarette smoke exposure leads to quantitative increases in DNA binding activities of FoxF2 and p53, while the activations of NF-κB, AP-1, and HIF are largely unaffected or reduced. PMID:20711931

  14. Up-regulation of nucleotide excision repair in mouse lung and liver following chronic exposure to aflatoxin B{sub 1} and its dependence on p53 genotype

    SciTech Connect

    Mulder, Jeanne E.; Bondy, Genevieve S.; Mehta, Rekha; Massey, Thomas E.

    2014-03-01

    Aflatoxin B{sub 1} (AFB{sub 1}) is biotransformed in vivo into an epoxide metabolite that forms DNA adducts that may induce cancer if not repaired. p53 is a tumor suppressor gene implicated in the regulation of global nucleotide excision repair (NER). Male heterozygous p53 knockout (B6.129-Trp53{sup tm1Brd}N5, Taconic) and wild-type mice were exposed to 0, 0.2 or 1.0 ppm AFB{sub 1} for 26 weeks. NER activity was assessed with an in vitro assay, using AFB{sub 1}-epoxide adducted plasmid DNA as a substrate. For wild-type mice, repair of AFB{sub 1}–N7-Gua adducts was 124% and 96% greater in lung extracts from mice exposed to 0.2 ppm and 1.0 ppm AFB{sub 1} respectively, and 224% greater in liver extracts from mice exposed to 0.2 ppm AFB{sub 1} (p < 0.05). In heterozygous p53 knockout mice, repair of AFB{sub 1}–N7-Gua was only 45% greater in lung extracts from mice exposed to 0.2 ppm AFB{sub 1} (p < 0.05), and no effect was observed in lung extracts from mice treated with 1.0 ppm AFB{sub 1} or in liver extracts from mice treated with either AFB{sub 1} concentration. p53 genotype did not affect basal levels of repair. AFB{sub 1} exposure did not alter repair of AFB{sub 1}-derived formamidopyrimidine adducts in lung or liver extracts of either mouse genotype nor did it affect XPA or XPB protein levels. In summary, chronic exposure to AFB{sub 1} increased NER activity in wild-type mice, and this response was diminished in heterozygous p53 knockout mice, indicating that loss of one allele of p53 limits the ability of NER to be up-regulated in response to DNA damage. - Highlights: • Mice are chronically exposed to low doses of the mycotoxin aflatoxin B{sub 1} (AFB{sub 1}). • The effects of AFB{sub 1} and p53 status on nucleotide excision repair are investigated. • AFB{sub 1} increases nucleotide excision repair in wild type mouse lung and liver. • This increase is attenuated in p53 heterozygous mouse lung and liver. • Results portray the role of p53 in

  15. The role of hypoxia and neurogenic genes (Mash-1 and Prox-1) in the developmental programming and maturation of pulmonary neuroendocrine cells in fetal mouse lung.

    PubMed

    McGovern, Suzanne; Pan, Jie; Oliver, Guillermo; Cutz, Ernest; Yeger, Herman

    2010-02-01

    Pulmonary neuroendocrine cells (PNECs) are the first cell type to differentiate within the primitive airway epithelium, suggesting a possible role in lung development. The differentiation of PNECs in fetal lung is governed by proneural genes such as the mammalian homolog of the achaete-scute complex (Mash-1) and a related transcription factor, hairy and enhancer of split1 (Hes-1). We examined the expression of Mash-1 and a downstream transcription factor Prox-1 in the developing mouse lung of wild-type and respective knockout mouse models. During early stages (embryonic day 12, E12) of development, only some PNECs expressed Mash-1 and Prox-1, but by E15, all PNECs coexpressed both transcription factors. PNECs failed to develop in Mash-1 but not in Prox-1-null mice, indicating that Mash-1 is essential for the initiation of the PNEC phenotype, whereas Prox-1 is associated with the development of this phenotype. As lung develops within a low O(2) environment (fetal euoxia, pO(2) approximately 20 to 30 mm Hg), we examined the effects of hypoxia on PNEC differentiation. Organ cultures of fetal mouse lungs at E12 and E16 were maintained under either 20% O(2) (normoxia, Nox) or 5% O(2) (hypoxia, Hox) and were examined every 24 h for up to 6 days in culture. In E12 explants, Hox enhanced branching morphogenesis and increased cell proliferation, but PNEC numbers and Mash-1 expression were significantly reduced. This effect could be reversed by switching the explants back to Nox. In contrast, Hox had no apparent effect on Hes-1 expression. Similarly, Hox had no effect on airway branching, PNEC numbers, or Mash-1 expression in E16 explants, indicating locked-in developmental programming. We suggest that during early stages of lung development, pO(2) concentration in concert with neurogenic gene expression modulates PNEC phenotype. Thus, disturbances in intrauterine pO(2) homeostasis could alter the functional maturation of the PNEC system and hence be involved in the

  16. Keratinocyte p38δ loss inhibits Ras-induced tumor formation, while systemic p38δ loss enhances skin inflammation in the early phase of chemical carcinogenesis in mouse skin.

    PubMed

    Kiss, Alexi; Koppel, Aaron C; Anders, Joanna; Cataisson, Christophe; Yuspa, Stuart H; Blumenberg, Miroslav; Efimova, Tatiana

    2016-05-01

    p38δ expression and/or activity are increased in human cutaneous malignancies, including invasive squamous cell carcinoma (SCC) and head and neck SCC, but the role of p38δ in cutaneous carcinogenesis has not been well-defined. We have reported that mice with germline loss of p38δ exhibited a reduced susceptibility to skin tumor development compared with wild-type mice in the two-stage 7,12-dimethylbenz(a)anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA) chemical skin carcinogenesis model. Here, we report that p38δ gene ablation inhibited the growth of tumors generated from v-ras(Ha) -transformed keratinocytes in skin orthografts to nude mice, indicating that keratinocyte-intrinsic p38δ is required for Ras-induced tumorigenesis. Gene expression profiling of v-ras(Ha) -transformed p38δ-null keratinocytes revealed transcriptional changes associated with cellular responses linked to tumor suppression, such as reduced proliferation and increased differentiation, cell adhesion, and cell communications. Notably, a short-term DMBA/TPA challenge, modeling the initial stages of chemical skin carcinogenesis treatment, elicited an enhanced inflammation in p38δ-null skin compared with skin of wild-type mice, as assessed by measuring the expression of pro-inflammatory cytokines, including IL-1β, IL-6, IL-17, and TNFα. Additionally, p38δ-null skin and p38δ-null keratinocytes exhibited increased p38α activation and signaling in response to acute inflammatory challenges, suggesting a role for p38α in stimulating the elevated inflammatory response in p38δ-null skin during the initial phases of the DMBA/TPA treatment compared with similarly treated p38δ(+/+) skin. Altogether, our results indicate that p38δ signaling regulates skin carcinogenesis not only by keratinocyte cell-autonomous mechanisms, but also by influencing the interaction between between the epithelial compartment of the developing skin tumor and its stromal microenvironment.

  17. Impact and mechanism of non-steroidal anti-inflammatory drugs combined with chemotherapeutic drugs on human lung cancer-nude mouse transplanted tumors

    PubMed Central

    SUN, WEIYI; CHEN, GANG

    2016-01-01

    The present study aimed to investigate the impact of indomethacin treatment combined with oxaliplatin treatment on the expression of cluster of differentiation 44 variant 6 (CD44v6), matrix metalloproteinase-2 (MMP-2) and survivin in human lung cancer-nude mouse transplanted tumors. The human lung adenocarcinoma (A549)-nude mouse transplanted tumor model was established, and the mice were divided into a control group, an indomethacin treatment group, an oxaliplatin treatment group and an indomethacin-oxaliplatin combination treatment group. The tumor inhibition rate was calculated following sacrificing of the mice. Immunohistochemical staining and fluorescence reverse transcription-quantitative polymerase chain reaction were utilized to detect the protein and messenger (m)RNA expression of CD44v6, MMP-2 and survivin. The tumor inhibition rates of the indomethacin group, the oxaliplatin group and the combination group were 26.67, 47.70 and 68.88%, respectively. The protein and mRNA expression levels of CD44v6, MMP-2 and survivin in the transplanted tumors of each treatment group were reduced compared with the control group (P<0.05), and those of the combination group were lower compared with the single-drug treatment groups (P<0.05). Survivin and MMP-2, MMP-2 and CD44v6, and MMP-2 and CD44v6 all exhibited linear positive correlation. The present study provides evidence that the administration of indomethacin alone, or in combination with oxaliplatin, may significantly inhibit the growth of lung cancer-nude mouse transplanted tumors and the expression of CD44v6, MMP-2 and survivin inside the tumor. The combination of non-steroidal anti-inflammatory drugs with chemotherapeutic drugs may improve the antitumor effects. PMID:27313765

  18. Tumor growth affects the metabonomic phenotypes of multiple mouse non-involved organs in an A549 lung cancer xenograft model

    PubMed Central

    Xu, Shan; Tian, Yuan; Hu, Yili; Zhang, Nijia; Hu, Sheng; Song, Dandan; Wu, Zhengshun; Wang, Yulan; Cui, Yanfang; Tang, Huiru

    2016-01-01

    The effects of tumorigenesis and tumor growth on the non-involved organs remain poorly understood although many research efforts have already been made for understanding the metabolic phenotypes of various tumors. To better the situation, we systematically analyzed the metabolic phenotypes of multiple non-involved mouse organ tissues (heart, liver, spleen, lung and kidney) in an A549 lung cancer xenograft model at two different tumor-growth stages using the NMR-based metabonomics approaches. We found that tumor growth caused significant metabonomic changes in multiple non-involved organ tissues involving numerous metabolic pathways, including glycolysis, TCA cycle and metabolisms of amino acids, fatty acids, choline and nucleic acids. Amongst these, the common effects are enhanced glycolysis and nucleoside/nucleotide metabolisms. These findings provided essential biochemistry information about the effects of tumor growth on the non-involved organs. PMID:27329570

  19. Hypermutability in carcinogenesis.

    PubMed Central

    Strauss, B S

    1998-01-01

    The presence of numerous chromosomal changes and point mutations in tumors is well established. At least some of these changes play a role in the development of the tumors. It has been suggested that the number of these genetic changes requires that tumorigenesis involves an increase in mutation rate. However, the presence of numerous changes can also be accounted for by efficient selection. What is required to settle the issue is some measure of nonselected mutations in tumors. In order to determine whether the tumor suppressor TP53 (coding for the protein p53) is hypermutable at some stage of carcinogenesis, the frequency of silent and multiple mutations in this gene has been examined. Silent mutations make up approximately 3% of the total recorded but constitute 9.5% of the mutations found in tumors with multiple mutations. Multiple closely linked mutations are also observed. Such multiple mutations suggest the operation of an error-prone replication process in a subclass of cells. The published data indicate that TP53 is hypermutable at some stage of tumor development. It is not yet clear whether TP53 is unique or whether other genes display a similar pattern of silent and multiple mutations. PMID:9560381

  20. Growth and Metastases of Human Lung Cancer Are Inhibited in Mouse Xenografts by a Transition State Analogue of 5′-Methylthioadenosine Phosphorylase*

    PubMed Central

    Basu, Indranil; Locker, Joseph; Cassera, Maria B.; Belbin, Thomas J.; Merino, Emilio F.; Dong, Xinyuan; Hemeon, Ivan; Evans, Gary B.; Guha, Chandan; Schramm, Vern L.

    2011-01-01

    The S-adenosylmethionine (AdoMet) salvage enzyme 5′-methylthioadenosine phosphorylase (MTAP) has been implicated as both a cancer target and a tumor suppressor. We tested these hypotheses in mouse xenografts of human lung cancers. AdoMet recycling from 5′-methylthioadenosine (MTA) was blocked by inhibition of MTAP with methylthio-DADMe-Immucillin-A (MTDIA), an orally available, nontoxic, picomolar transition state analogue. Blood, urine, and tumor levels of MTA increased in response to MTDIA treatment. MTDIA treatment inhibited A549 (human non-small cell lung carcinoma) and H358 (human bronchioloalveolar non-small cell lung carcinoma cells) xenograft tumor growth in immunodeficient Rag2−/−γC−/− and NCr-nu mice. Systemic MTA accumulation is implicated as the tumor-suppressive metabolite because MTDIA is effective for in vivo treatment of A549 MTAP−/− and H358 MTAP+/+ tumors. Tumors from treated mice showed increased MTA and decreased polyamines but little alteration in AdoMet, methionine, or adenine levels. Gene expression profiles of A549 tumors from treated and untreated mice revealed only modest alterations with 62 up-regulated and 63 down-regulated mRNAs (≥3-fold). MTDIA antitumor activity in xenografts supports MTAP as a target for lung cancer therapy. PMID:21135097

  1. Chemoprevention of lung cancer by tea.

    PubMed

    Clark, Julie; You, Ming

    2006-02-01

    Tea is the second only to water as the most consumed beverage in the world. Both green and black teas have been studied for their health benefits for a variety of diseases, particularly cancer. Lung cancer is the predominant cause of cancer mortality in developed countries. Smokers' risk of lung cancer is 20 times that of persons who have never smoked. Epidemiological studies on the cancer-preventive effects of tea produce inconsistent results, which could in part be attributed to the lack of a universal standard for tea preparations. However, most animal studies indicate that tea has strong chemopreventive effects against lung tumorigenesis. The reported mechanisms for chemopreventive activity of green tea are antioxidation, induction of phase II enzymes, inhibition of TNFalpha expression and release, inhibition of cell proliferation, and induction of apoptosis. Cell cycle arrest and apoptosis induced by green tea are probably the two most significant factors. Future studies are needed to determine how green tea affects the genes associated with cell cycle regulation and apoptosis during the mouse lung carcinogenesis process.

  2. Benzo[b]fluoranthene: tumorigenicity in strain A/J mouse lungs, DNA adducts and mutations in the Ki-ras oncogene.

    PubMed

    Mass, M J; Abu-Shakra, A; Roop, B C; Nelson, G; Galati, A J; Stoner, G D; Nesnow, S; Ross, J A

    1996-08-01

    The polycyclic aromatic hydrocarbon benzo[b]fluoranthene (B[b]F) is a pervasive constituent of environmental combustion products. We sought to examine the lung tumorigenic activity of B[b]F in strain A/J mice, to study the relationship between formation and decay of B[b]F-DNA adducts and to examine mutations in the Ki-ras proto-oncogene in DNA from B[b]F-induced tumors. Mice were given i.p. injections of 0, 10, 50, 100 or 200 mg/kg body wt and lung adenomas were scored after 8 months. B[b]F induced significant numbers of mouse lung adenomas in a dose-related fashion, with the highest dose (200 mg/kg) yielding 6.95 adenomas/ mouse, with 100% of the mice exhibiting an adenoma. In mice given tricaprylin, the vehicle control, there were 0.60 adenomas/mouse, with 55% of the mice exhibiting an adenoma. Based on dose, B[b]F was less active than benzo[a]pyrene. DNA adducts were analyzed qualitatively and quantitatively by 32P-post-labeling in lungs of strain A/J mice 1, 3, 5, 7, 14 and 21 days after i.p. injection. Maximal levels of adduction occurred 5 days after treatment with the 200 mg/kg dose group, producing 1230 amol B[b]F-DNA adducts/microgram DNA. The major B[b]F-DNA adduct was identified by co-chromatography as trans-9, 10-dihydroxy-anti-11, 12-epoxy-5-hydroxy-9, 10, 11, 12-tetra-hydro-B[b]F-deoxyguanosine. Approximately 86% of the tumors had a mutation in codon 12 of the Ki-ras oncogene, as determined by direct DNA sequencing of PCR-amplified exon 1 and single-stranded conformation polymorphism analysis. Analysis of the Ki-ras mutation spectrum in 25 of 29 B[b]F-induced tumors revealed the predominant mutation to be a G-->T transversion in the first or second base of codon 12, congruous with the DNA adduct data. Our data are consistent with previous reports in mouse skin implicating a phenolic diol epoxide as the proximate carcinogenic form of B[b]F that binds to guanine.

  3. The Involvement of NRF2 in Lung Cancer

    PubMed Central

    Bauer, Alison K.; Hill, Thomas

    2013-01-01

    Nuclear factor, erythroid-derived 2, like 2 (NRF2) is a key regulator of antioxidants and cellular stress responses. The role of NRF2 in pulmonary neoplasia, a diverse disease for which few biomarkers exist, is complicated and appears to depend on several main factors including the existence of activating mutations in NRF2 and/or loss of function mutations in KEAP1 and the stage of carcinogenesis studied, particularly in the mouse models tested. Therapeutic strategies for lung cancer targeting NRF2 have observed mixed results, both anti- and protumorigenic effects; however, these differences seem to reflect the mutation status of NRF2 or KEAP1. In this paper, we will discuss the studies on human NRF2 and the mechanisms proposed, several mouse models using various mice deficient in NRF2, as well as xenograft models, and the chemotherapeutic strategies using the NRF2 pathway. PMID:23577226

  4. Tobacco Smoking and Lung Cancer

    PubMed Central

    Furrukh, Muhammad

    2013-01-01

    Tobacco smoking remains the most established cause of lung carcinogenesis and other disease processes. Over the last 50 years, tobacco refinement and the introduction of filters have brought a change in histology, and now adenocarcinoma has become the most prevalent subtype. Over the last decade, smoking also has emerged as a strong prognostic and predictive patient characteristic along with other variables. This article briefly reviews scientific facts about tobacco, and the process and molecular pathways involved in lung carcinogenesis in smokers and never-smokers. The evidence from randomised trials about tobacco smoking’s impact on lung cancer outcomes is also reviewed. PMID:23984018

  5. DIETARY FLAXSEED PREVENTS RADIATION-INDUCED OXIDATIVE LUNG DAMAGE, INFLAMMATION AND FIBROSIS IN A MOUSE MODEL OF THORACIC RADIATION INJURY

    PubMed Central

    Lee, James C.; Krochak, Ryan; Blouin, Aaron; Kanterakis, Stathis; Chatterjee, Shampa; Arguiri, Evguenia; Vachani, Anil; Solomides, Charalambos C.; Cengel, Keith A.; Christofidou-Solomidou, Melpo

    2009-01-01

    Flaxseed (FS) has high contents of omega-3 fatty acids and lignans with antioxidant properties. Its use in preventing thoracic X-ray radiation therapy (XRT)-induced pneumonopathy has never been evaluated. We evaluated FS supplementation given to mice given before and post-XRT. FS-derived lignans, known for their direct antioxidant properties, were evaluated in abrogating ROS generation in cultured endothelial cells following gamma radiation exposure. Mice were fed 10% FS or isocaloric control diet for three weeks and given 13.5 Gy thoracic XRT. Lungs were evaluated at 24 hours for markers of radiation-induced injury, three weeks for acute lung damage (lipid peroxidation, lung edema and inflammation), and at four months for late lung damage (inflammation and fibrosis). FS-Lignans blunted ROS generation in vitro, resulting from radiation in a dose-dependent manner. FS-fed mice had reduced expression of lung injury biomarkers (Bax, p21, and TGF-beta1) at 24 hours following XRT and reduced oxidative lung damage as measured by malondialdehyde (MDA) levels at 3 weeks following XRT. In addition, FS-fed mice had decreased lung fibrosis as determined by hydroxyproline content and decreased inflammatory cell influx into lungs at 4 months post XRT. Importantly, when Lewis Lung carcinoma cells were injected systemically in mice, FS dietary supplementation did not appear to protect lung tumors from responding to thoracic XRT. Dietary FS is protective against pulmonary fibrosis, inflammation and oxidative lung damage in a murine model. Moreover, in this model, tumor radioprotection was not observed. FS lignans exhibited potent radiation-induced ROS scavenging action. Taken together, these data suggest that dietary flaxseed may be clinically useful as an agent to increase the therapeutic index of thoracic XRT by increasing the radiation tolerance of lung tissues. PMID:18981722

  6. Acrylamide-induced carcinogenicity in mouse lung involves mutagenicity: cII gene mutations in the lung of big blue mice exposed to acrylamide and glycidamide for up to 4 weeks.

    PubMed

    Manjanatha, Mugimane G; Guo, Li-Wu; Shelton, Sharon D; Doerge, Daniel R

    2015-06-01

    Potential health risks for humans from exposure to acrylamide (AA) and its epoxide metabolite glycidamide (GA) have garnered much attention lately because substantial amounts of AA are present in a variety of fried and baked starchy foods. AA is tumorigenic in rodents, and a large number of in vitro and in vivo studies indicate that AA is genotoxic. A recent cancer bioassay on AA demonstrated that the lung was one of the target organs for tumor induction in mice; however, the mutagenicity of AA in this tissue is unclear. Therefore, to investigate whether or not gene mutation is involved in the etiology of AA- or GA-induced mouse lung carcinogenicity, we screened for cII mutant frequency (MF) in lungs from male and female Big Blue (BB) mice administered 0, 1.4, and 7.0 mM AA or GA in drinking water for up to 4 weeks (19-111 mg/kg bw/days). Both doses of AA and GA produced significant increases in cII MFs, with the high doses producing responses 2.7-5.6-fold higher than the corresponding controls (P ≤ 0.05; control MFs = 17.2 ± 2.2 and 15.8 ± 3.5 × 10(-6) in males and females, respectively). Molecular analysis of the mutants from high doses indicated that AA and GA produced similar mutation spectra and that these spectra were significantly different from the spectra in control mice (P ≤ 0.01). The predominant types of mutations in the lung cII gene from AA- and GA-treated mice were A:T → T:A, and G:C → C:G transversions, and -1/+1 frameshifts at a homopolymeric run of Gs. The MFs and types of mutations induced by AA and GA in the lung are consistent with AA exerting its genotoxicity via metabolism to GA. These results suggest that AA is a mutagenic carcinogen in mouse lungs and therefore further studies on its potential health risk to humans are warranted. Environ. Mol. Mutagen. 56:446-456, 2015. © 2015 Wiley Periodicals, Inc.

  7. Comparison of ribavirin and oseltamivir in reducing mortality and lung injury in mice infected with mouse adapted A/California/04/2009 (H1N1)

    PubMed Central

    Zarogiannis, Sotirios G.; Noah, James W.; Jurkuvenaite, Asta; Steele, Chad; Matalon, Sadis; Noah, Diana L.

    2016-01-01

    Aim To compare the efficacy of ribavirin and oseltamivir in reducing mortality, lung injury and cytokine response profile in pandemic influenza H1N1 (2009) infection. Main Methods We assessed survival, weight loss, lung viral load (by RT-PCR), lung injury (by protein content in bronchoalveolar lavage), and inflammation (cell counts, differentials and cytokines in the bronchoalveolar lavage) in BALB/c mice after infection with mouse-adapted pandemic influenza strain A/California/04/2009. Key Findings Our results indicate that ribavirin (80 mg kg−1) and oseltamivir (50 mg kg−1) are equally effective in improving survival (100% vs. 0% in water treated controls), while ribavirin proved to be more effective in significantly preventing weight loss. Both drugs diminished the injury of the alveolar-capillary barrier by decreasing the protein detected in the BAL to baseline levels, and they were also equally effective in reduction lung viral loads by 100-fold. Administration of either drug did not decrease the amount of inflammatory infiltrate in the lung, but ribavirin significantly reduced the percentage comprised of lymphocytes. This study shows that these antivirals differentially regulate inflammatory cytokines and chemokines with ribavirin significantly reducing most of the cytokines/chemokines measured. Ribavirin treatment leads to a Th1 cytokine response while oseltamivir leads to a Th2 cytokine response with significant increase in the levels of the anti-inflammatory cytokine IL-10. Significance This study reveals new mechanistic insights in the way that ribavirin and oseltamivir exert their antiviral activity and supports the theory that ribavirin could potentially serve as an efficacious therapeutic alternative for oseltamivir resistant pandemic H1N1 strains. PMID:22269828

  8. Olive oil prevents benzo(a)pyrene [B(a)P]-induced colon carcinogenesis through altered B(a)P metabolism and decreased oxidative damage in ApcMin mouse model

    PubMed Central

    Banks, Leah D.; Amoah, Priscilla; Niaz, Mohammad S.; Washington, Mary K.; Adunyah, Samuel E.; Ramesh, Aramandla

    2015-01-01

    Colon cancer ranks third in cancer related mortalities in the United States. Many studies have investigated factors that contribute to colon cancer in which dietary and environmental factors have been shown to play an integral role in the etiology of this disease. Specifically, human dietary intake of environmental carcinogens such as polycyclic aromatic hydrocarbons (PAHs) has generated interest in looking at how it exerts its effects in gastrointestinal carcinogenesis. Therefore, the objective of this study was to investigate the preventative effects of olive oil on benzo(a)pyrene [B(a)P]-induced colon carcinogenesis in adult ApcMin mice. Mice were assigned to a control (n =8) or treatment group (n =8) consisting of 25, 50 and 100 μg B(a)P/kg body weight (bw) dissolved in tricaprylin [B(a)P-only group] or olive oil daily via oral gavage for sixty days. Our studies showed that ApcMin mice exposed to B(a)P developed a significantly higher number (p< 0.05) of larger dysplastic adenomas compared to those exposed to B(a)P + olive oil. Treatment of mice with B(a)P and olive oil significantly altered (p< 0.05) the expression of drug metabolizing enzymes in both the colon and liver tissues. However, only GST activity was significantly higher (p< 0.05) in the liver of mice treated with 50 and 100 μg B(a)P/kg bw + olive oil. Lastly, olive oil promoted rapid detoxification of B(a)P by decreasing its organic metabolite concentrations and also decreasing the extent of DNA damage to colon and liver tissues (p< 0.05). These results suggest that olive oil has a protective effect against B(a)P-induced colon tumors. PMID:26878781

  9. Olive oil prevents benzo(a)pyrene [B(a)P]-induced colon carcinogenesis through altered B(a)P metabolism and decreased oxidative damage in Apc(Min) mouse model.

    PubMed

    Banks, Leah D; Amoah, Priscilla; Niaz, Mohammad S; Washington, Mary K; Adunyah, Samuel E; Ramesh, Aramandla

    2016-02-01

    Colon cancer ranks third in cancer-related mortalities in the United States. Many studies have investigated factors that contribute to colon cancer in which dietary and environmental factors have been shown to play an integral role in the etiology of this disease. Specifically, human dietary intake of environmental carcinogens such as polycyclic aromatic hydrocarbons has generated interest in looking at how it exerts its effects in gastrointestinal carcinogenesis. Therefore, the objective of this study was to investigate the preventative effects of olive oil on benzo(a)pyrene [B(a)P]-induced colon carcinogenesis in adult Apc(Min) mice. Mice were assigned to a control (n=8) or treatment group (n=8) consisting of 25, 50 and 100-μg B(a)P/kg body weight (bw) dissolved in tricaprylin [B(a)P-only group] or olive oil daily via oral gavage for 60 days. Our studies showed that Apc(Min) mice exposed to B(a)P developed a significantly higher number (P<0.05) of larger dysplastic adenomas compared to those exposed to B(a)P + olive oil. Treatment of mice with B(a)P and olive oil significantly altered (P<0.05) the expression of drug-metabolizing enzymes in both the colon and liver tissues. However, only GST activity was significantly higher (P<0.05) in the liver of mice treated with 50- and 100-μg B(a)P/kg bw + olive oil. Lastly, olive oil promoted rapid detoxification of B(a)P by decreasing its organic metabolite concentrations and also decreasing the extent of DNA damage to colon and liver tissues (P<0.05). These results suggest that olive oil has a protective effect against B(a)P-induced colon tumors.

  10. Smoking and hormesis as confounding factors in radiation pulmonary carcinogenesis.

    PubMed

    Sanders, Charles L; Scott, Bobby R

    2006-12-06

    Confounding factors in radiation pulmonary carcinogenesis are passive and active cigarette smoke exposures and radiation hormesis. Significantly increased lung cancer risk from ionizing radiation at lung doses < 1 Gy is not observed in never smokers exposed to ionizing radiations. Residential radon is not a cause of lung cancer in never smokers and may protect against lung cancer in smokers. The risk of lung cancer found in many epidemiological studies was less than the expected risk (hormetic effect) for nuclear weapons and power plant workers, shipyard workers, fluoroscopy patients, and inhabitants of high-dose background radiation. The protective effect was noted for low- and mixed high- and low-linear energy transfer (LET) radiations in both genders. Many studies showed a protection factor (PROFAC) > 0.40 (40% avoided) against the occurrence of lung cancer. The ubiquitous nature of the radiation hormesis response in cellular, animal, and epidemio-logical studies negates the healthy worker effect as an explanation for radiation hormesis. Low-dose radiation may stimulate DNA repair/apoptosis and immunity to suppress and eliminate cigarette-smoke-induced transformed cells in the lung, reducing lung cancer occurrence in smokers.

  11. Involvement of EZH2, SUV39H1, G9a and associated molecules in pathogenesis of urethane induced mouse lung tumors: Potential targets for cancer control

    SciTech Connect

    Pandey, Manuraj; Sahay, Satya; Tiwari, Prakash; Upadhyay, Daya S.; Sultana, Sarwat; Gupta, Krishna P.

    2014-10-15

    In the present study, we showed the correlation of EZH2, SUV39H1 or G9a expression and histone modifications with the urethane induced mouse lung tumorigenesis in the presence or absence of antitumor agent, inositol hexaphosphate (IP6). Tumorigenesis and the molecular events involved therein were studied at 1, 4, 12 or 36 weeks after the exposure. There were no tumors at 1 or 4 weeks but tumors started appearing at 12 weeks and grew further till 36 weeks after urethane exposure. Among the molecular events, upregulation of EZH2 and SUV39H1 expressions appeared to be time dependent, but G9a expression was altered significantly only at later stages of 12 or 36 weeks. Alteration in miR-138 expression supports the upregulation of its target, EZH2. H3K9me2, H3K27me3 or H4K20me3 was found to be altered at 12 or 36 weeks. However, ChIP analysis of p16 and MLH1 promoters showed their binding with H3K9me2 and H3K27me3 which was maximum at 36 weeks. Thus, histone modification and their interactions with gene promoter resulted in the reduced expression of p16 and MLH1. IP6 prevented the incidence and the size of urethane induced lung tumors. IP6 also prevented the urethane induced alterations in EZH2, SUV39H1, G9a expressions and histone modifications. Our results suggest that the alterations in the histone modification pathways involving EZH2 and SUV39H1 expressions are among the early events in urethane induced mouse lung tumorigenesis and could be exploited for cancer control. - Highlights: • Urethane induces mouse lung tumor in a time dependent manner. • EZH2, SUV39H1, G9a induced by urethane and progress with time • Downregulation of miRNA-138 supports the EZH2 upregulation. • Methylation of histones showed a consequence of upregulated EZH2, SUV39H1 and G9a. • IP6 inhibits urethane induced changes and prevents tumor development.

  12. Epidemiology of Lung Cancer

    PubMed Central

    Brock, Malcolm V.; Ford, Jean G.; Samet, Jonathan M.; Spivack, Simon D.

    2013-01-01

    Background: Ever since a lung cancer epidemic emerged in the mid-1900s, the epidemiology of lung cancer has been intensively investigated to characterize its causes and patterns of occurrence. This report summarizes the key findings of this research. Methods: A detailed literature search provided the basis for a narrative review, identifying and summarizing key reports on population patterns and factors that affect lung cancer risk. Results: Established environmental risk factors for lung cancer include smoking cigarettes and other tobacco products and exposure to secondhand tobacco smoke, occupational lung carcinogens, radiation, and indoor and outdoor air pollution. Cigarette smoking is the predominant cause of lung cancer and the leading worldwide cause of cancer death. Smoking prevalence in developing nations has increased, starting new lung cancer epidemics in these nations. A positive family history and acquired lung disease are examples of host factors that are clinically useful risk indicators. Risk prediction models based on lung cancer risk factors have been developed, but further refinement is needed to provide clinically useful risk stratification. Promising biomarkers of lung cancer risk and early detection have been identified, but none are ready for broad clinical application. Conclusions: Almost all lung cancer deaths are caused by cigarette smoking, underscoring the need for ongoing efforts at tobacco control throughout the world. Further research is needed into the reasons underlying lung cancer disparities, the causes of lung cancer in never smokers, the potential role of HIV in lung carcinogenesis, and the development of biomarkers. PMID:23649439

  13. Carcinogenesis mechanisms of Fusobacterium nucleatum.

    PubMed

    Gholizadeh, Pourya; Eslami, Hosein; Kafil, Hossein Samadi

    2017-03-07

    Transformed cells of cancers may be related to stromal cells, immune cells, and some bacteria such as Fusobacterium nucleatum. This review aimed to evaluate carcinogenesis mechanisms of Fusobacterium spp. in the oral cavity, pancreatic and colorectal cancers. These cancers are the three of the ten most prevalence cancer in the worldwide. Recent findings demonstrated that F. nucleatum could be considered as the risk factor for these cancers. The most important carcinogenesis mechanisms of F. nucleatum are chronic infection, interaction of cell surface molecules of these bacteria with immune system and stromal cells, immune evasion and immune suppression. However, there are some uncertainty carcinogenesis mechanisms about these bacteria, but this review evaluates almost all the known mechanisms. Well-characterized virulence factors of F. nucleatum such as FadA, Fap2, LPS and cell wall extracts may act as effector molecules in the shift of normal epithelial cells to tumor cells. These molecules may provide new targets, drugs, and strategies for therapeutic intervention.

  14. Transplacental chemical carcinogenesis in man.

    PubMed

    Miller, R W

    1971-12-01

    This editorial was prompted by the published association of maternal diethylstilbestrol (DES) ingestion during pregnancy and subsequent development of vaginal adenocarcinoma among female offspring, and explores various factors involved in transplacental chemical carcinogenesis in humans. Known prenatal determinants of carcinogenic transmission are 1) germ cells, 2) transplantation, and 3) ionizing radiation. Other chemicals besides DES which may be implicated in transplacental carcinogenesis are cytotoxic anticancer agents, such as therapy. The hypothesis of DES-associated maternal-fetal exchange was developed as a result of physician recognition of a cluster of cases with commonality; it is hoped that further epidemiological studies, more systemitized, will lead to hypotheses regarding the epidemiology of other in utero carcinogenesis.

  15. Silica Triggers Inflammation and Ectopic Lymphoid Neogenesis in the Lungs in Parallel with Accelerated Onset of Systemic Autoimmunity and Glomerulonephritis in the Lupus-Prone NZBWF1 Mouse

    PubMed Central

    Bates, Melissa A.; Brandenberger, Christina; Langohr, Ingeborg; Kumagai, Kazuyoshi; Harkema, Jack R.; Holian, Andrij; Pestka, James J.

    2015-01-01

    Genetic predisposition and environmental factors influence the development of human autoimmune disease. Occupational exposure to crystalline silica (cSiO2) has been etiologically linked to increased incidence of autoimmunity, including systemic lupus erythematosus (SLE), but the underlying mechanisms are poorly understood. The purpose of this study was to test the hypothesis that early repeated short-term cSiO2 exposure will modulate both latency and severity of autoimmunity in the lupus-prone female NZBWF1 mouse. Weekly intranasal exposure to cSiO2 (0.25 and 1.0 mg) for 4 wk beginning at 9 wk of age both reduced latency and increased intensity of glomerulonephritis. cSiO2 elicited robust inflammatory responses in the lungs as evidenced by extensive perivascular and peribronchial lymphoplasmacytic infiltration consisting of IgG-producing plasma cells, and CD45R+ and CD3+ lymphocytes that were highly suggestive of ectopic lymphoid tissue (ELT). In addition, there were elevated concentrations of immunoglobulins and the cytokines MCP-1, TNF-α and IL-6 in bronchoalveolar lavage fluid. cSiO2-associated kidney and lung effects paralleled dose-dependent elevations of autoantibodies and proinflammatory cytokines in plasma. Taken together, cSiO2-induced pulmonary inflammation and ectopic lymphoid neogenesis in the NZBWF1 mouse corresponded closely to systemic inflammatory and autoimmune responses as well as the early initiation of pathological outcomes in the kidney. These findings suggest that following airway exposure to crystalline silica, in mice genetically prone to SLE, the lung serves as a platform for triggering systemic autoimmunity and glomerulonephritis. PMID:25978333

  16. Validation of syngeneic mouse models of melanoma and non-small cell lung cancer for investigating the anticancer effects of the soy-derived peptide Lunasin

    PubMed Central

    Devapatla, Bharat; Shidal, Chris; Yaddanapudi, Kavitha; Davis, Keith R.

    2017-01-01

    Background: Lunasin is a naturally occurring peptide present in soybean that has both chemopreventive and therapeutic activities that can prevent cellular transformation and inhibit the growth of several human cancer types. Recent studies indicate that Lunasin has several distinct potential modes of action including suppressing integrin signaling and epigenetic effects driven by modulation of histone acetylation. In addition to direct effects on cancer cells, Lunasin also has effects on innate immunity that may contribute to its ability to inhibit tumor growth in vivo. Methods : Standard assays for cell proliferation and colony formation were used to assess Lunasin’s in vitro activity against murine Lewis lung carcinoma (LLC) and B16-F0 melanoma cells.  Lunasin’s in vivo activity was assessed by comparing the growth of tumors initiated by subcutaneous implantation of LLC or B16-F0 cells in Lunasin-treated and untreated C57BL/6 mice. Results : Lunasin was found to inhibit growth of murine LLC cells and murine B16-F0 melanoma cells in vitro and in wild-type C57BL/6 mice.  The effects of Lunasin in these two mouse models were very similar to those previously observed in studies of human non-small cell lung cancer and melanoma cell lines. Conclusions : We have now validated two established syngeneic mouse models as being responsive to Lunasin treatment.  The validation of these two in vivo syngeneic models will allow detailed studies on the combined therapeutic and immune effects of Lunasin in a fully immunocompetent mouse model. PMID:28299174

  17. FORMATION OF NON-INFECTIOUS INFLUENZA VIRUS IN MOUSE LUNGS: ITS DEPENDENCE UPON EXTENSIVE PULMONARY CONSOLIDATION INITIATED BY THE VIRAL INOCULUM

    PubMed Central

    Ginsberg, Harold S.

    1954-01-01

    Formation of non-infectious virus—particles which hemagglutinate red blood cells and react with antibody to fix complement but do not infect the chick embryo or mouse—occurred when large quantities of certain strains of influenza viruses were inoculated intranasally into mice. Dependent upon the agent employed, 106.5 to 108.5 E.I.D. was essential to elicit this phenomenon. To accomplish this unusual multiplication it was essential to use a strain of virus which effected extensive pulmonary consolidation; strains of virus which did not produce marked lung lesions, even when as much as 108.5 E.I.D. was inoculated, did not form non-infectious virus. The development of this viral form was directly dependent upon the extent of cell damage obtained: consolidation of more than 50 per cent of the lung volume was required. The majority of non-infectious particles developed during the initial cycle of viral multiplication, and concurrently with the formation of non-infectious virus there was a corresponding decrease in the number of infectious viral particles. Non-infectious virus could not be propagated on serial passage in mouse lungs: on second lung passage only fully infectious virus was detectable. The formation of the non-infectious viral form was not the result of interference with synthesis of infectious virus by inactivated virus in the inoculum; for inoculation of heated infected allantoic fluid which contained more than 99 per cent of non-infectious virus did not result in the development of new non-infectious virus. Although inoculation of a large quantity of virus resulted in infection which yielded a relatively low titer of infectious and high titer of non-infectious virus, inoculation of a small quantity of the agent resulted in a high yield of infectious virus and no non-infectious that was detectable. In both instances the total quantity of antigenic viral material synthesized in the mouse lungs was the same. These data do not support the hypothesis that

  18. Vapors Produced by Electronic Cigarettes and E-Juices with Flavorings Induce Toxicity, Oxidative Stress, and Inflammatory Response in Lung Epithelial Cells and in Mouse Lung

    PubMed Central

    Lerner, Chad A.; Sundar, Isaac K.; Yao, Hongwei; Gerloff, Janice; Ossip, Deborah J.; McIntosh, Scott; Robinson, Risa; Rahman, Irfan

    2015-01-01

    Oxidative stress and inflammatory response are the key events in the pathogenesis of chronic airway diseases. The consumption of electronic cigarettes (e-cigs) with a variety of e-liquids/e-juices is alarmingly increasing without the unrealized potential harmful health effects. We hypothesized that electronic nicotine delivery systems (ENDS)/e-cigs pose health concerns due to oxidative toxicity and inflammatory response in lung cells exposed to their aerosols. The aerosols produced by vaporizing ENDS e-liquids exhibit oxidant reactivity suggesting oxidants or reactive oxygen species (OX/ROS) may be inhaled directly into the lung during a “vaping” session. These OX/ROS are generated through activation of the heating element which is affected by heating element status (new versus used), and occurs during the process of e-liquid vaporization. Unvaporized e-liquids were oxidative in a manner dependent on flavor additives, while flavors containing sweet or fruit flavors were stronger oxidizers than tobacco flavors. In light of OX/ROS generated in ENDS e-liquids and aerosols, the effects of ENDS aerosols on tissues and cells of the lung were measured. Exposure of human airway epithelial cells (H292) in an air-liquid interface to ENDS aerosols from a popular device resulted in increased secretion of inflammatory cytokines, such as IL-6 and IL-8. Furthermore, human lung fibroblasts exhibited stress and morphological change in response to treatment with ENDS/e-liquids. These cells also secrete increased IL-8 in response to a cinnamon flavored e-liquid and are susceptible to loss of cell viability by ENDS e-liquids. Finally, exposure of wild type C57BL/6J mice to aerosols produced from a popular e-cig increase pro-inflammatory cytokines and diminished lung glutathione levels which are critical in maintaining cellular redox balance. Thus, exposure to e-cig aerosols/juices incurs measurable oxidative and inflammatory responses in lung cells and tissues that could lead to

  19. Involvement of regucalcin as a suppressor protein in human carcinogenesis: insight into the gene therapy.

    PubMed

    Yamaguchi, Masayoshi

    2015-08-01

    Regucalcin, which its gene is located on the X chromosome, plays a multifunctional role as a suppressor protein in cell signal transduction in various types of cells and tissues. The suppression of regucalcin gene expression has been shown to involve in carcinogenesis. Regucalcin gene expression was uniquely downregulated in carcinogenesis of rat liver in vivo, although the expression of other many genes was upregulated, indicating that endogenous regucalcin plays a suppressive role in the development of hepatocarcinogenesis. Overexpression of endogenous regucalcin was found to suppress proliferation of rat cloned hepatoma cells in vitro. Moreover, the regucalcin gene and its protein levels were demonstrated specifically to downregulate in human hepatocellular carcinoma by analysis with multiple gene expression profiles and proteomics. Regucalcin gene expression was also found to suppress in human tumor tissues including kidney, lung, brain, breast and prostate, suggesting that repressed regucalcin gene expression leads to the development of carcinogenesis in various tissues. Regucalcin may play a role as a suppressor protein in carcinogenesis. Overexpression of endogenous regucalcin is suggested to reveal preventive and therapeutic effects on carcinogenesis. Delivery of the regucalcin gene may be a novel useful tool in the gene therapy of carcinogenesis. This review will discuss regarding to an involvement of regucalcin as a suppressor protein in human carcinogenesis in insight into the gene therapy.

  20. X-Ray based Lung Function measurement–a sensitive technique to quantify lung function in allergic airway inflammation mouse models

    PubMed Central

    Dullin, C.; Markus, M. A.; Larsson, E.; Tromba, G.; Hülsmann, S.; Alves, F.

    2016-01-01

    In mice, along with the assessment of eosinophils, lung function measurements, most commonly carried out by plethysmography, are essential to monitor the course of allergic airway inflammation, to examine therapy efficacy and to correlate animal with patient data. To date, plethysmography techniques either use intubation and/or restraining of the mice and are thus invasive, or are limited in their sensitivity. We present a novel unrestrained lung function method based on low-dose planar cinematic x-ray imaging (X-Ray Lung Function, XLF) and demonstrate its performance in monitoring OVA induced experimental allergic airway inflammation in mice and an improved assessment of the efficacy of the common treatment dexamethasone. We further show that XLF is more sensitive than unrestrained whole body plethysmography (UWBP) and that conventional broncho-alveolar lavage and histology provide only limited information of the efficacy of a treatment when compared to XLF. Our results highlight the fact that a multi-parametric imaging approach as delivered by XLF is needed to address the combined cellular, anatomical and functional effects that occur during the course of asthma and in response to therapy. PMID:27805632

  1. X-Ray based Lung Function measurement-a sensitive technique to quantify lung function in allergic airway inflammation mouse models.

    PubMed

    Dullin, C; Markus, M A; Larsson, E; Tromba, G; Hülsmann, S; Alves, F

    2016-11-02

    In mice, along with the assessment of eosinophils, lung function measurements, most commonly carried out by plethysmography, are essential to monitor the course of allergic airway inflammation, to examine therapy efficacy and to correlate animal with patient data. To date, plethysmography techniques either use intubation and/or restraining of the mice and are thus invasive, or are limited in their sensitivity. We present a novel unrestrained lung function method based on low-dose planar cinematic x-ray imaging (X-Ray Lung Function, XLF) and demonstrate its performance in monitoring OVA induced experimental allergic airway inflammation in mice and an improved assessment of the efficacy of the common treatment dexamethasone. We further show that XLF is more sensitive than unrestrained whole body plethysmography (UWBP) and that conventional broncho-alveolar lavage and histology provide only limited information of the efficacy of a treatment when compared to XLF. Our results highlight the fact that a multi-parametric imaging approach as delivered by XLF is needed to address the combined cellular, anatomical and functional effects that occur during the course of asthma and in response to therapy.

  2. X-Ray based Lung Function measurement–a sensitive technique to quantify lung function in allergic airway inflammation mouse models

    NASA Astrophysics Data System (ADS)

    Dullin, C.; Markus, M. A.; Larsson, E.; Tromba, G.; Hülsmann, S.; Alves, F.

    2016-11-01

    In mice, along with the assessment of eosinophils, lung function measurements, most commonly carried out by plethysmography, are essential to monitor the course of allergic airway inflammation, to examine therapy efficacy and to correlate animal with patient data. To date, plethysmography techniques either use intubation and/or restraining of the mice and are thus invasive, or are limited in their sensitivity. We present a novel unrestrained lung function method based on low-dose planar cinematic x-ray imaging (X-Ray Lung Function, XLF) and demonstrate its performance in monitoring OVA induced experimental allergic airway inflammation in mice and an improved assessment of the efficacy of the common treatment dexamethasone. We further show that XLF is more sensitive than unrestrained whole body plethysmography (UWBP) and that conventional broncho-alveolar lavage and histology provide only limited information of the efficacy of a treatment when compared to XLF. Our results highlight the fact that a multi-parametric imaging approach as delivered by XLF is needed to address the combined cellular, anatomical and functional effects that occur during the course of asthma and in response to therapy.

  3. Aspect Ratio Plays a Role in the Hazard Potential of CeO2 Nanoparticles in Mouse Lung and Zebrafish Gastrointestinal Tract

    PubMed Central

    Lin, Sijie; Wang, Xiang; Ji, Zhaoxia; Chang, Chong Hyun; Dong, Yuan; Meng, Huan; Liao, Yu-Pei; Wang, Meiying; Song, Tze-Bin; Kohan, Sirus; Xia, Tian; Zink, Jeffrey I.; Lin, Shuo; Nel, André E.

    2014-01-01

    We have previously demonstrated that there is a relationship between the aspect ratio (AR) of CeO2 nanoparticles and in vitro hazard potential. CeO2 nanorods with AR ≥ 22 induced lysosomal damage and progressive effects on IL-1β production and cytotoxicity in the human myeloid cell line, THP-1. In order to determine whether this toxicological paradigm for long aspect ratio (LAR) CeO2 is also relevant in vivo, we performed comparative studies in the mouse lung and gastrointestinal tract (GIT) of zebrafish larvae. Although oropharyngeal aspiration could induce acute lung inflammation for CeO2 nanospheres and nanorods, only the nanorods with the highest AR (C5) induced significant IL-1β and TGF-β1 production in the bronchoalveolar lavage fluid (BALF) at 21 days but not inducing pulmonary fibrosis. However, after a longer duration (44 days) exposure to 4 mg/kg of the C5 nanorods, more collagen production was seen with CeO2 nanorods vs. nanospheres after correcting for Ce lung burden. Using an oral-exposure model in zebrafish larvae, we demonstrated that C5 nanorods also induced significant growth inhibition, a decrease in body weight, and delayed vertebral calcification. In contrast, CeO2 nanospheres and shorter nanorods had no effect. Histological and transmission electron microscopy (TEM) analyses showed that the key injury mechanism of C5 was in the epithelial lining of the GIT, which demonstrated blunted microvilli and compromised digestive function. All considered, these data demonstrate that, similar to cellular studies, LAR CeO2 nanorods exhibit more toxicity in the lung and GIT, which could be relevant to inhalation and environmental hazard potential. PMID:24720650

  4. Expression of genes involved in mouse lung cell differentiation/regulation after acute exposure to photons and protons with or without low-dose preirradiation.

    PubMed

    Tian, Jian; Zhao, WeiLing; Tian, Sisi; Slater, James M; Deng, Zhiyong; Gridley, Daila S

    2011-11-01

    The goal of this study was to compare the effects of acute 2 Gy irradiation with photons (0.8 Gy/min) or protons (0.9 Gy/min), both with and without pre-exposure to low-dose/low-dose-rate γ rays (0.01 Gy at 0.03 cGy/h), on 84 genes involved in stem cell differentiation or regulation in mouse lungs on days 21 and 56. Genes with a ≥1.5-fold difference in expression and P < 0.05 compared to 0 Gy controls are emphasized. Two proteins specific for lung stem cells/progenitors responsible for local tissue repair were also compared. Overall, striking differences were present between protons and photons in modulating the genes. More genes were affected by protons than by photons (22 compared to 2 and 6 compared to 2 on day 21 and day 56, respectively) compared to 0 Gy. Preirradiation with low-dose-rate γ rays enhanced the acute photon-induced gene modulation on day 21 (11 compared to 2), and all 11 genes were significantly downregulated on day 56. On day 21, seven genes (aldh2, bmp2, cdc2a, col1a1, dll1, foxa2 and notch1) were upregulated in response to most of the radiation regimens. Immunoreactivity of Clara cell secretory protein was enhanced by all radiation regimens. The number of alveolar type 2 cells positive for prosurfactant protein C in irradiated groups was higher on day 56 (12.4-14.6 cells/100) than on day 21 (8.5-11.2 cells/100) (P < 0.05). Taken together, these results showed that acute photons and protons induced different gene expression profiles in the lungs and that pre-exposure to low-dose-rate γ rays sometimes had modulatory effects. In addition, proteins associated with lung-specific stem cells/progenitors were highly sensitive to radiation.

  5. Aspect ratio plays a role in the hazard potential of CeO2 nanoparticles in mouse lung and zebrafish gastrointestinal tract.

    PubMed

    Lin, Sijie; Wang, Xiang; Ji, Zhaoxia; Chang, Chong Hyun; Dong, Yuan; Meng, Huan; Liao, Yu-Pei; Wang, Meiying; Song, Tze-Bin; Kohan, Sirus; Xia, Tian; Zink, Jeffrey I; Lin, Shuo; Nel, André E

    2014-05-27

    We have previously demonstrated that there is a relationship between the aspect ratio (AR) of CeO2 nanoparticles and in vitro hazard potential. CeO2 nanorods with AR ≥ 22 induced lysosomal damage and progressive effects on IL-1β production and cytotoxicity in the human myeloid cell line, THP-1. In order to determine whether this toxicological paradigm for long aspect ratio (LAR) CeO2 is also relevant in vivo, we performed comparative studies in the mouse lung and gastrointestinal tract (GIT) of zebrafish larvae. Although oropharyngeal aspiration could induce acute lung inflammation for CeO2 nanospheres and nanorods, only the nanorods with the highest AR (C5) induced significant IL-1β and TGF-β1 production in the bronchoalveolar lavage fluid at 21 days but did not induce pulmonary fibrosis. However, after a longer duration (44 days) exposure to 4 mg/kg of the C5 nanorods, more collagen production was seen with CeO2 nanorods vs nanospheres after correcting for Ce lung burden. Using an oral-exposure model in zebrafish larvae, we demonstrated that C5 nanorods also induced significant growth inhibition, a decrease in body weight, and delayed vertebral calcification. In contrast, CeO2 nanospheres and shorter nanorods had no effect. Histological and transmission electron microscopy analyses showed that the key injury mechanism of C5 was in the epithelial lining of the GIT, which demonstrated blunted microvilli and compromised digestive function. All considered, these data demonstrate that, similar to cellular studies, LAR CeO2 nanorods exhibit more toxicity in the lung and GIT, which could be relevant to inhalation and environmental hazard potential.

  6. Endostar enhances the antitumor effects of radiation by affecting energy metabolism and alleviating the tumor microenvironment in a Lewis lung carcinoma mouse model

    PubMed Central

    ZHENG, YONG-FA; GE, WEI; XU, HUI-LIN; CAO, DE-DONG; LIU, LIANG; MING, PING-PO; LI, CHANG-HU; XU, XI-MING; TAO, WEI-PING; TAO, ZE-ZHANG

    2015-01-01

    Lung cancer is a leading cause of morbidity and mortality. Previous studies have identified that an improvement in treatment efficacy was achieved using Endostar; however, the role of Endostar in lung cancer remains poorly understood. The present study investigated whether the enhanced antitumor effects of Endostar in combination with radiation involved changes in the metabolism and microenvironment in non-small cell lung cancer. A Lewis lung carcinoma mouse model was used, including the control, Endostar (ES), radiotherapy (RT) and Endostar plus radiotherapy (ES + RT) groups. The tumor inhibition rates and growth were described based on changes in tumor volume. In addition, ultraviolet enzymatic analysis was performed to determine the lactate level and reverse transcription-polymerase chain reaction was used to measure the mRNA expression of lactate dehydrogenase (LDH). A Meph-3 pH meter was used to detect the ranges of tumor interstitial tissue pH, and immunohistochemical analysis was adopted to examine hypoxia within the tumor microenvironment. The tumor inhibition rate of the ES + RT group was significantly higher compared with the other three groups (P<0.05). Following treatment, the lactate levels decreased in all three treatment groups compared with the control, particularly in the ES + RT group (P<0.05). Reduced LDH expression and hypoxic fraction in the tumor microenvironment were also observed in the ES + RT group (P<0.05). Furthermore, changes from acidic to alkaline pH in the tumor microenvironment were detected in the ES + RT group. The present study suggested that Endostar is involved in the regulation of metabolism and tumor microenvironment hypoxia, which may be responsible for the enhanced antitumor effect of Endostar in combination with radiotherapy. PMID:26722291

  7. Chronic NF-κB activation links COPD and lung cancer through generation of an immunosuppressive microenvironment in the lungs

    PubMed Central

    Zaynagetdinov, Rinat; Sherrill, Taylor P.; Gleaves, Linda A.; Hunt, Pierre; Han, Wei; McLoed, Allyson G.; Saxon, Jamie A.; Tanjore, Harikrishna; Gulleman, Peter M.; Young, Lisa R.; Blackwell, Timothy S.

    2016-01-01

    Nuclear Factor (NF)-κB is positioned to provide the interface between COPD and carcinogenesis through regulation of chronic inflammation in the lungs. Using a tetracycline-inducible transgenic mouse model that conditionally expresses activated IκB kinase β (IKKβ) in airway epithelium (IKTA), we found that sustained NF-κB signaling results in chronic inflammation and emphysema by 4 months. By 11 months of transgene activation, IKTA mice develop lung adenomas. Investigation of lung inflammation in IKTA mice revealed a substantial increase in M2-polarized macrophages and CD4+/CD25+/FoxP3+ regulatory T lymphocytes (Tregs). Depletion of alveolar macrophages in IKTA mice reduced Tregs, increased lung CD8+ lymphocytes, and reduced tumor numbers following treatment with the carcinogen urethane. Alveolar macrophages from IKTA mice supported increased generation of inducible Foxp3+ Tregs ex vivo through expression of TGFβ and IL-10. Targeting of TGFβ and IL-10 reduced the ability of alveolar macrophages from IKTA mice to induce Foxp3 expression on T cells. These studies indicate that sustained activation of NF-κB pathway links COPD and lung cancer through generation and maintenance of a pro-tumorigenic inflammatory environment consisting of alternatively activated macrophages and regulatory T cells. PMID:26756215

  8. Chronic NF-κB activation links COPD and lung cancer through generation of an immunosuppressive microenvironment in the lungs.

    PubMed

    Zaynagetdinov, Rinat; Sherrill, Taylor P; Gleaves, Linda A; Hunt, Pierre; Han, Wei; McLoed, Allyson G; Saxon, Jamie A; Tanjore, Harikrishna; Gulleman, Peter M; Young, Lisa R; Blackwell, Timothy S

    2016-02-02

    Nuclear Factor (NF)-κB is positioned to provide the interface between COPD and carcinogenesis through regulation of chronic inflammation in the lungs. Using a tetracycline-inducible transgenic mouse model that conditionally expresses activated IκB kinase β (IKKβ) in airway epithelium (IKTA), we found that sustained NF-κB signaling results in chronic inflammation and emphysema by 4 months. By 11 months of transgene activation, IKTA mice develop lung adenomas. Investigation of lung inflammation in IKTA mice revealed a substantial increase in M2-polarized macrophages and CD4+/CD25+/FoxP3+ regulatory T lymphocytes (Tregs). Depletion of alveolar macrophages in IKTA mice reduced Tregs, increased lung CD8+ lymphocytes, and reduced tumor numbers following treatment with the carcinogen urethane. Alveolar macrophages from IKTA mice supported increased generation of inducible Foxp3+ Tregs ex vivo through expression of TGFβ and IL-10. Targeting of TGFβ and IL-10 reduced the ability of alveolar macrophages from IKTA mice to induce Foxp3 expression on T cells. These studies indicate that sustained activation of NF-κB pathway links COPD and lung cancer through generation and maintenance of a pro-tumorigenic inflammatory environment consisting of alternatively activated macrophages and regulatory T cells.

  9. Radiation carcinogenesis: radioprotectors and photosensitizers

    SciTech Connect

    Fry, R.J.M.

    1982-01-01

    This paper outlines 1) some of the salient features of radiation carcinogenesis that are pertinent to the questions of how the carcinogenic effects might be influenced, 2) the effects of radioprotectors on ionizing radiation-induced cancer, and 3) the effect of photosensitizers on UVR-induced skin cancer.

  10. Secondary electrospray ionization-mass spectrometry (SESI-MS) breathprinting of multiple bacterial lung pathogens, a mouse model study

    PubMed Central

    Zhu, Jiangjiang; Bean, Heather D.; Jiménez-Díaz, Jaime

    2013-01-01

    Bacterial pneumonia is one of the leading causes of disease-related morbidity and mortality in the world, in part because the diagnostic tools for pneumonia are slow and ineffective. To improve the diagnosis success rates and treatment outcomes for bacterial lung infections, we are exploring the use of secondary electrospray ionization-mass spectrometry (SESI-MS) breath analysis as a rapid, noninvasive method for determining the etiology of lung infections in situ. Using a murine lung infection model, we demonstrate that SESI-MS breathprints can be used to distinguish mice that are infected with one of seven lung pathogens: Haemophilus influenzae, Klebsiella pneumoniae, Legionella pneumophila, Moraxella catarrhalis, Pseudomonas aeruginosa, Staphylococcus aureus, and Streptococcus pneumoniae, representing the primary causes of bacterial pneumonia worldwide. After applying principal components analysis, we observed that with the first three principal components (primarily comprised of data from 14 peaks), all infections were separable via SESI-MS breathprinting (P < 0.0001). Therefore, we have shown the potential of this SESI-MS approach for rapidly detecting and identifying acute bacterial lung infections in situ via breath analysis. PMID:23519230

  11. Antibody conjugated PLGA nanoparticles for targeted delivery of paclitaxel palmitate: efficacy and biofate in a lung cancer mouse model.

    PubMed

    Karra, Nour; Nassar, Taher; Ripin, Alina Nemirovski; Schwob, Ouri; Borlak, Jürgen; Benita, Simon

    2013-12-20

    Aberrant signaling of the epidermal growth factor receptor (EGFR) is common to a variety of human cancers and is also found to be over-expressed in most cases of non-small cell lung cancer. For the development of a molecularly targeted therapy, cetuximab-conjugated nanoparticles (immunonanoparticles, INPs) are designed and loaded with the lipophilic paclitaxel palmitate (pcpl) prodrug. Oleyl cysteineamide (OCA) is synthesized whereby its amphiphilic nature enables interfacial anchoring and thiol surface functionalization of PLGA NPs, facilitating bioconjugation to cetuximab by thioether bonds. It is demonstrated that the in vitro targeting efficiency and improved cellular internalization and cytotoxicity of this targeted delivery system in lung cancer cells over-expressing EGFR. A quantitative measure of the high binding affinity of INPs to EGFR is demonstrated using surface plasmon resonance. In vivo tolerability and enhanced efficacy of cetuximab pcpl INPs in a metastatic lung cancer model are reported. Its therapeutic efficacy in A549-luc-C8 lung tumors is shown using non-invasive bioluminescent imaging. Intravenous administration of cetuximab pcpl INPs to mice results in significantly higher inhibition of tumor growth and increased survival rates as compared to the non-targeted drug solution, drug-loaded nanoparticles or blank INPs. Pharmacokinetics and organ biodistribution of the prodrug and parent drug are evaluated by LC-MS/MS in lung tumor bearing mice. No enhanced total accumulation of nanoparticles or INPs is found at the tumor tissue. However, persistent pcpl levels with sustained conversion and release of paclitaxel are observed for the encapsulated prodrug possibly suggesting the formation of a drug reservoir. The overall results indicate the potential of this promising targeted platform for the improved treatment of lung cancer and other EGFR positive tumors.

  12. Amphiphilic polymer-coated CdSe/ZnS quantum dots induce pro-inflammatory cytokine expression in mouse lung epithelial cells and macrophages.

    PubMed

    Lee, Vivian; McMahan, Ryan S; Hu, Xiaoge; Gao, Xiaohu; Faustman, Elaine M; Griffith, William C; Kavanagh, Terrance J; Eaton, David L; McGuire, John K; Parks, William C

    2015-05-01

    Quantum dots (Qdots) are semiconductor nanoparticles with size-tunable fluorescence capabilities with diverse applications. Qdots typically contain cadmium or other heavy metals, hence raising concerns of their potential toxicity, especially in occupational settings where inhalation of nanomaterials may increase the risk of lung disease. Accordingly, we assessed the effects of tri-n-octylphosphine oxide, poly(maleic anhydride-alt-1-tetradecene) (TOPO-PMAT) coated CdSe/ZnS Qdots on mouse lung epithelial cells and macrophages. Mouse tracheal epithelial cells (MTEC), grown as organotypic cultures, bone marrow-derived macrophages (BMDM), and primary alveolar macrophages (AM) were derived from C57BL/6J or A/J mice and treated with TOPO-PMAT CdSe/ZnS Qdots (10-160 nM) for up to 24 h. Cadmium analysis showed that Qdots remained in the apical compartment of MTEC cultures, whereas they were avidly internalized by AM and BMDM, which did not differ between strains. In MTEC, Qdots selectively induced expression (mRNA and protein) of neutrophil chemokines CXCL1 and CXCL2 but only low to no detectable levels of other factors assessed. In contrast, 4 h exposure to Qdots markedly increased expression of CXCL1, IL6, IL12, and other pro-inflammatory factors in BMDM. Higher inflammatory response was seen in C57BL/6J than in A/J BMDM. Similar expression responses were observed in AM, although overall levels were less robust than in BMDM. MTEC from A/J mice were more sensitive to Qdot pro-inflammatory effects while macrophages from C57BL/6J mice were more sensitive. These findings suggest that patterns of Qdot-induced pulmonary inflammation are likely to be cell-type specific and genetic background dependent.

  13. Genome wide analysis of DNA methylation and gene expression changes in the mouse lung following subchronic arsenate exposure

    EPA Science Inventory

    Alterations in DNA methylation have been proposed as a mechanism for the complex toxicological effects of arsenic. In this study, whole genome DNA methylation and gene expression changes were evaluated in lungs from female mice exposed for 90 days to 50 ppm arsenate (As) in drink...

  14. Biodiesel versus diesel exposure: Enhanced pulmonary inflammation, oxidative stress, and differential morphological changes in the mouse lung

    SciTech Connect

    Yanamala, Naveena; Birch, M. Eileen; Kisin, Elena; Bugarski, Aleksandar D.

    2013-10-15

    The use of biodiesel (BD) or its blends with petroleum diesel (D) is considered to be a viable approach to reduce occupational and environmental exposures to particulate matter (PM). Due to its lower particulate mass emissions compared to D, use of BD is thought to alleviate adverse health effects. Considering BD fuel is mainly composed of unsaturated fatty acids, we hypothesize that BD exhaust particles could induce pronounced adverse outcomes, due to their ability to readily oxidize. The main objective of this study was to compare the effects of particles generated by engine fueled with neat BD and neat petroleum-based D. Biomarkers of tissue damage and inflammation were significantly elevated in lungs of mice exposed to BD particulates. Additionally, BD particulates caused a significant accumulation of oxidatively modified proteins and an increase in 4-hydroxynonenal. The up-regulation of inflammatory cytokines/chemokines/growth factors was higher in lungs upon BD particulate exposure. Histological evaluation of lung sections indicated presence of lymphocytic infiltrate and impaired clearance with prolonged retention of BD particulate in pigment laden macrophages. Taken together, these results clearly indicate that BD exhaust particles could exert more toxic effects compared to D. - Highlights: • Exposure of mice to BDPM caused higher pulmonary toxicity compared to DPM. • Oxidative stress and inflammation were higher in BD vs to D exposed mice. • Inflammatory lymphocyte infiltrates were seen only in lungs of mice exposed to BD. • Ineffective clearance, prolonged PM retention was present only after BD exposure.

  15. Summary Report: State-of-the-Science Workshop on Chemically-Induced Mouse Lung Tumors: Applications to Human Health Assessments

    EPA Science Inventory

    The EPA hosted a two-day, state-of-the-science workshop which covered a broad range of evidence from human, animal, and in vitro studies with a focus on specific chemicals (ethylbenzene, naphthalene, and styrene) that cause lung tumors in mice and are implicated in a proposed spe...

  16. CXC Receptor 1 and 2 and Neutrophil Elastase Inhibitors Alter Radiation-induced Lung Disease in the Mouse

    SciTech Connect

    Fox, Jessica; Haston, Christina K.

    2013-01-01

    Purpose: We previously reported increased numbers of neutrophils to be associated with the development of the radiation-induced lung responses of alveolitis (pneumonitis) and fibrosis in mice. In the present study we investigated whether CXC receptor 1 and 2 antagonism with DF2156A, a small molecule inhibitor of neutrophil chemotaxis, or the neutrophil elastase inhibitor sivelestat decreases the lung response to irradiation. Methods and Materials: KK/HIJ mice received 14 Gy whole-thorax irradiation, and a subset of them received drug treatment 3 times per week from the day of irradiation until they were killed because of respiratory distress symptoms. Results: Irradiated mice receiving sivelestat survived 18% longer than did mice receiving radiation alone (73 vs 60 days for female mice, 91 vs 79 days for male mice), whereas postirradiation survival times did not differ between the group of mice receiving DF2156A and the radiation-only group. The numbers of neutrophils in lung tissue and in bronchoalveolar lavage fluid did not differ among groups of irradiated mice, but they significantly exceeded the levels in unirradiated control mice. The extent of alveolitis, assessed histologically, did not differ between irradiated mice treated with either drug and those receiving radiation alone, when assessed at the end of the experiment, but it was significantly reduced, as were the neutrophil measures, in sivelestat-treated mice at the common kill time of 60 days after irradiation. Mice treated with radiation and DF2156A developed significantly less fibrosis than did mice receiving radiation alone, and this difference was associated with decreased expression of interleukin-13 in lung tissue. Conclusions: We conclude that neutrophil elastase inhibition affects alveolitis and prolongs survival, whereas CXCR1/2 antagonism reduces radiation-induced fibrotic lung disease in mice without affecting the onset of distress.

  17. 2′-(2-bromohexadecanoyl)-paclitaxel conjugate nanoparticles for the treatment of non-small cell lung cancer in an orthotopic xenograft mouse model

    PubMed Central

    Peng, Lei; Schorzman, Allison N; Ma, Ping; Madden, Andrew J; Zamboni, William C; Benhabbour, Soumya Rahima; Mumper, Russell J

    2014-01-01

    A nanoparticle (NP) formulation with 2′-(2-bromohexadecanoyl)-paclitaxel (Br-16-PX) conjugate was developed in these studies for the treatment of non-small cell lung cancer (NSCLC). The lipophilic paclitaxel conjugate Br-C16-PX was synthesized and incorporated into lipid NPs where the 16-carbon chain enhanced drug entrapment in the drug delivery system and improved in vivo pharmacokinetics. The electron-withdrawing bromine group was used to facilitate the conversion of Br-C16-PX to paclitaxel at the tumor site. The developed system was evaluated in luciferase-expressing A549 cells in vitro and in an orthotopic NSCLC mouse model. The results demonstrated that the Br-C16-PX NPs had a higher maximum tolerated dose (75 mg/kg) than Taxol® (19 mg/kg) and provided significantly longer median survival (88 days versus 70 days, P<0.05) in the orthotopic NSCLC model. An improved pharmacokinetic profile was observed for the Br-C16-PX NPs at 75 mg/kg compared to Taxol at 19 mg/kg. The area under the concentration versus time curve (AUC)0–96 h of Br-C16-PX from the NPs was 91.7-fold and 49.6-fold greater than Taxol in plasma and tumor-bearing lungs, respectively, which provided sustained drug exposure and higher antitumor efficacy in the NP-treated group. PMID:25114529

  18. Mouse Lung Fibroblast Resistance to Fas-Mediated Apoptosis Is Dependent on the Baculoviral Inhibitor of Apoptosis Protein 4 and the Cellular FLICE-Inhibitory Protein

    PubMed Central

    Predescu, Sanda A.; Zhang, Jian; Bardita, Cristina; Patel, Monal; Godbole, Varun; Predescu, Dan N.

    2017-01-01

    A characteristic feature of idiopathic pulmonary fibrosis (IPF) is accumulation of apoptotic resistant fibroblasts/myofibroblasts in the fibroblastic foci. As caveolin (Cav)-null mice develop pulmonary fibrosis (PF), we hypothesized that the participating fibroblasts display an apoptosis-resistant phenotype. To test this hypothesis and identify the molecular mechanisms involved we isolated lung fibroblasts from Cav-null mice and examined the expression of several inhibitors of apoptosis (IAPs), of c-FLIP, of Bcl-2 proteins and of the death receptor CD95/Fas. We found significant increase in XIAP and c-FLIP constitutive protein expression with no alteration of Bcl-2 and lower levels of CD95/Fas. The isolated fibroblasts were then treated with the CD95/Fas ligand (FasL) to induce apoptosis. While the morphological and biochemical alterations induced by FasL were similar in wild-type (wt) and Cav-null mouse lung fibroblasts, the time course and the extent of the alterations were greater in the Cav-null fibroblasts. Several salient features of Cav-null fibroblasts response such as loss of membrane potential, fragmentation of the mitochondrial continuum concurrent with caspase-8 activation, and subsequent Bid cleavage, prior to caspase-3 activation were detected. Furthermore, M30 antigen formation, phosphatidylserine expression and DNA fragmentation were caspase-3 dependent. SiRNA-mediated silencing of XIAP and c-FLIP, individually or combined, enhanced the sensitivity of lung fibroblasts to FasL-induced apoptosis. Pharmacological inhibition of Bcl-2 had no effect. Together our findings support a mechanism in which CD95/Fas engagement activates caspase-8, inducing mitochondrial apoptosis through Bid cleavage. XIAP and c-FLIP fine tune this process in a cell-type specific manner. PMID:28352235

  19. Carcinogenesis of Depleted Uranium Fragments

    DTIC Science & Technology

    2000-06-01

    later determined not to cause cancer in humans. Examples are certain food colorings (Grasso and Golberg , 1966), iron dextran (Baker et al., 1961), and...carcinogenesis caused by dyes 21 Contains unpublished data; limit distribution and food additives (Grasso and Golberg , 1966). It is also apparent that...subcutaneously in rats (Grasso and Golberg , 1966). Those compounds that produced tissue destruction with subsequent dense collagen formation invariably

  20. MWCNTs of different physicochemical properties cause similar inflammatory responses, but differences in transcriptional and histological markers of fibrosis in mouse lungs

    SciTech Connect

    Poulsen, Sarah S.; Saber, Anne T.; Williams, Andrew; Andersen, Ole; Købler, Carsten; Atluri, Rambabu; Pozzebon, Maria E.; Mucelli, Stefano P.; Simion, Monica; Rickerby, David; Mortensen, Alicja; Jackson, Petra; Kyjovska, Zdenka O.; and others

    2015-04-01

    Multi-walled carbon nanotubes (MWCNTs) are an inhomogeneous group of nanomaterials that vary in lengths, shapes and types of metal contamination, which makes hazard evaluation difficult. Here we present a toxicogenomic analysis of female C57BL/6 mouse lungs following a single intratracheal instillation of 0, 18, 54 or 162 μg/mouse of a small, curled (CNT{sub Small}, 0.8 ± 0.1 μm in length) or large, thick MWCNT (CNT{sub Large}, 4 ± 0.4 μm in length). The two MWCNTs were extensively characterized by SEM and TEM imaging, thermogravimetric analysis, and Brunauer–Emmett–Teller surface area analysis. Lung tissues were harvested 24 h, 3 days and 28 days post-exposure. DNA microarrays were used to analyze gene expression, in parallel with analysis of bronchoalveolar lavage fluid, lung histology, DNA damage (comet assay) and the presence of reactive oxygen species (dichlorodihydrofluorescein assay), to profile and characterize related pulmonary endpoints. Overall changes in global transcription following exposure to CNT{sub Small} or CNT{sub Large} were similar. Both MWCNTs elicited strong acute phase and inflammatory responses that peaked at day 3, persisted up to 28 days, and were characterized by increased cellular influx in bronchoalveolar lavage fluid, interstitial pneumonia and gene expression changes. However, CNT{sub Large} elicited an earlier onset of inflammation and DNA damage, and induced more fibrosis and a unique fibrotic gene expression signature at day 28, compared to CNT{sub Small}. The results indicate that the extent of change at the molecular level during early response phases following an acute exposure is greater in mice exposed to CNT{sub Large}, which may eventually lead to the different responses observed at day 28. - Highlights: • We evaluate the toxicogenomic response in mice following MWCNT instillation. • Two MWCNTs of different properties were examined and thoroughly characterized. • MWCNT exposure leads to increased pulmonary

  1. Inflammatory and cytotoxic responses in mouse lungs exposed to purified toxins from building isolated Penicillium brevicompactum Dierckx and P. chrysogenum Thom.

    PubMed

    Rand, Thomas G; Giles, S; Flemming, J; Miller, J David; Puniani, Eva

    2005-09-01

    In vitro and in vivo studies have shown that building-associated Penicillium spores and spore extracts can induce significant inflammatory responses in lung cells and animal models of lung disease. However, because spores and spore extracts comprise mixtures of bioactive constituents often including toxins, it is impossible to resolve which constituent mediates inflammatory responses. This study examined dose-response (0.5 nM, 2.5 nM, 5.0 nM, 12.5 nM/g body weight (BW) animal) and time-course (3, 6, 24 and 48 h post instillation (PI)) relationships associated with inflammatory and cytotoxic responses in mouse lungs intratracheally instilled with pure brevianamide A, mycophenolic acid, and roquefortine C. High doses (5.0 nM and/or 12.5 nM/g BW animal) of brevianamide A and mycophenolic acid, the dominant metabolites of P. brevicompactum, and roquefortine C, the dominant metabolite of P. chrysogenum, induced significant inflammatory responses within 6 h PI, expressed as differentially elevated macrophage, neutrophil, MIP-2, TNF, and IL-6 concentrations in the bronchioalveolar lavage fluid (BALF) of intratracheally exposed mice. Macrophage and neutrophil numbers were maximal at 24 h PI; responses of the other inflammatory markers were maximal at 6 h PI. Except for macrophage numbers in mycophenolic acid-treatment animals, cells exhibited significant dose-dependent-like responses; for the chemo-/cytokine markers, dose dependency was lacking except for MIP-2 concentration in brevianamide A-treatment animals. It was also found that brevianamide A induced cytotoxicity expressed as significantly increased LDH concentration in mouse BALF, at concentrations of 12.5 nM/g BW animal and at 6 and 24 h PI. Albumin concentrations, measured as a nonspecific marker of vascular leakage, were significantly elevated in the BALF of mice treated with 12.5 nM/g nM brevianamide A/animal from 6 to 24 h PI and in > or =5.0 nM/g mycophenolic acid-treated animals at 6 to 24 h PI. These results

  2. Pulmonary toxicity of trichloroethylene: induction of changes in surfactant phospholipids and phospholipase A2 activity in the mouse lung.

    PubMed

    Scott, J E; Forkert, P G; Oulton, M; Rasmusson, M G; Temple, S; Fraser, M O; Whitefield, S

    1988-08-01

    Trichloroethylene (TCE) is a common organic solvent in use as a dry cleaning agent as well as an inhalant anesthetic. Nevertheless the effects of this material on the pulmonary surfactant which prevents alveolar collapse at maximal expiration is not known. Therefore, we have examined the effect of TCE on the intra- and extracellular surfactant pools and the activity of phospholipase A2, an enzyme which controls the remodeling of phosphatidylcholine to dipalmitoylphosphatidylcholine, the primary constituent of the pulmonary surfactant. Male CD-1 mice were treated ip with 2500 or 3000 mg/kg TCE. Twenty-four hours later mice were anesthetized and the lungs lavaged. Mice were then killed, the lungs perfused and excised, and subcellular fractions including lamellar bodies prepared. Some lungs were prepared for ultrastructural examination. Phospholipase A2 was assayed in all subcellular fractions. Phospholipid was assayed in the lavage (extracellular surfactant) and the lamellar bodies (intracellular surfactant). TCE (2500 mg/kg) caused selective exfoliation of Clara cells. However, only the dose of 3000 mg/kg TCE produced a significant decrease in the intracellular surfactant phospholipid. Minimal changes occurred in the phospholipid profiles. Phospholipase A2 specific activity was significantly decreased at both dosages within the lung microsomal fraction. In addition after treatment with 3000 mg/kg TCE the enzyme activity in the lamellar body fraction was significantly increased. These data suggest that inhalation of TCE may damage the enzymes which are responsible for synthesizing the pulmonary surfactant resulting in lower amounts of surfactant being stored and available for secretion into the alveolus.

  3. Biodiesel versus diesel exposure: Enhanced pulmonary inflammation, oxidative stress, and differential morphological changes in the mouse lung

    PubMed Central

    Yanamala, Naveena; Hatfield, Meghan K.; Farcas, Mariana T.; Schwegler-Berry, Diane; Hummer, Jon A.; Shurin, Michael R.; Birch, M. Eileen; Gutkin, Dmitriy W.; Kisin, Elena; Kagan, Valerian E.; Bugarski, Aleksandar D.; Shvedova, Anna A.

    2015-01-01

    The use of biodiesel (BD) or its blends with petroleum diesel (D) is considered to be a viable approach to reduce occupational and environmental exposures to particulate matter (PM). Due to its lower particulate mass emissions compared to D, use of BD is thought to alleviate adverse health effects. Considering BD fuel is mainly composed of unsaturated fatty acids, we hypothesize that BD exhaust particles could induce pronounced adverse outcomes, due to their ability to readily oxidize. The main objective of this study was to compare the effects of particles generated by engine fueled with neat BD and neat petroleum-based D. Biomarkers of tissue damage and inflammation were significantly elevated in lungs of mice exposed to BD particulates. Additionally, BD particulates caused a significant accumulation of oxidatively modified proteins and an increase in 4-hydroxynonenal. The up-regulation of inflammatory cytokines/chemokines/growth factors was higher in lungs upon BD particulate exposure. Histological evaluation of lung sections indicated presence of lymphocytic infiltrate and impaired clearance with prolonged retention of BD particulate in pigment laden macrophages. Taken together, these results clearly indicate that BD exhaust particles could exert more toxic effects compared to D. PMID:23886933

  4. Identification of nuclear phosphoproteins as novel tobacco markers in mouse lung tissue following short-term exposure to tobacco smoke

    PubMed Central

    Niimori-Kita, Kanako; Ogino, Kiyoshi; Mikami, Sayaka; Kudoh, Shinji; Koizumi, Daikai; Kudoh, Noritaka; Nakamura, Fumiko; Misumi, Masahiro; Shimomura, Tadasuke; Hasegawa, Koki; Usui, Fumihiko; Nagahara, Noriyuki; Ito, Takaaki

    2014-01-01

    Smoking is a risk factor for lung diseases, including chronic obstructive pulmonary disease and lung cancer. However, the molecular mechanisms mediating the progression of these diseases remain unclear. Therefore, we sought to identify signaling pathways activated by tobacco-smoke exposure, by analyzing nuclear phosphoprotein expression using phosphoproteomic analysis of lung tissue from mice exposed to tobacco smoke. Sixteen mice were exposed to tobacco smoke for 1 or 7 days, and the expression of phosphorylated peptides was analyzed by mass spectrometry. A total of 253 phosphoproteins were identified, including FACT complex subunit SPT16 in the 1-day exposure group, keratin type 1 cytoskeletal 18 (K18), and adipocyte fatty acid-binding protein, in the 7-day exposure group, and peroxiredoxin-1 (OSF3) and spectrin β chain brain 1 (SPTBN1), in both groups. Semi-quantitative analysis of the identified phosphoproteins revealed that 33 proteins were significantly differentially expressed between the control and exposed groups. The identified phosphoproteins were classified according to their biological functions. We found that the identified proteins were related to inflammation, regeneration, repair, proliferation, differentiation, morphogenesis, and response to stress and nicotine. In conclusion, we identified proteins, including OSF3 and SPTBN1, as candidate tobacco smoke-exposure markers; our results provide insights into the mechanisms of tobacco smoke-induced diseases. PMID:25349779

  5. Shikonin Suppresses Skin Carcinogenesis via Inhibiting Cell Proliferation.

    PubMed

    Li, Wenjuan; Zhang, Chunjing; Ren, Amy; Li, Teena; Jin, Rong; Li, Guohong; Gu, Xin; Shi, Runhua; Zhao, Yunfeng

    2015-01-01

    The M2 isoform of pyruvate kinase M2 (PKM2) has been shown to be up-regulated in human skin cancers. To test whether PKM2 may be a target for chemoprevention, shikonin, a natural product from the root of Lithospermum erythrorhizon and a specific inhibitor of PKM2, was used in a chemically-induced mouse skin carcinogenesis study. The results revealed that shikonin treatment suppressed skin tumor formation. Morphological examinations and immunohistochemical staining of the skin epidermal tissues suggested that shikonin inhibited cell proliferation without inducing apoptosis. Although shikonin alone suppressed PKM2 activity, it did not suppress tumor promoter-induced PKM2 activation in the skin epidermal tissues at the end of the skin carcinogenesis study. To reveal the potential chemopreventive mechanism of shikonin, an antibody microarray analysis was performed, and the results showed that the transcription factor ATF2 and its downstream target Cdk4 were up-regulated by chemical carcinogen treatment; whereas these up-regulations were suppressed by shikonin. In a promotable skin cell model, the nuclear levels of ATF2 were increased during tumor promotion, whereas this increase was inhibited by shikonin. Furthermore, knockdown of ATF2 decreased the expression levels of Cdk4 and Fra-1 (a key subunit of the activator protein 1. In summary, these results suggest that shikonin, rather than inhibiting PKM2 in vivo, suppresses the ATF2 pathway in skin carcinogenesis.

  6. Stress and radiation carcinogenesis in mice.

    PubMed

    Kalisnik, M; Vraspir-Porenta, O; Kham-Lindtner, T; Logonder-Mlinsek, M; Skrk, J; Pajntar, M

    1981-01-01

    In the present experiment irritation consisting of a combination of an optic signal followed by a mild electroshock administered at regular intervals was started in 2 groups of animals at the age of 3 months. At 4 months of age, one of the irritated and one of the nonirritated groups were exposed to whole-body gamma irradiation at 20 daily doses of 0.5 Gy (50 rad(, 1.4 Gy/min (140 rad/min), while the other 2 groups were sham-irradiated. The animals were autopsied and the specimens were microscopically studied for the presence of malignant tumors. Malignant tumors involving particularly the testes and lungs and leukosis were found in 29% of males, whereas in females the tumor incidence with mammary, pulmonary and ovarian involvement and leukosis was 39%. The irradiation decreased the minimum latency time in the irritated males and both female groups. In males, the irritation lowered the cumulative prevalence of malignant tumors, a significant decrease being noted at the age of 15 months. In females, it was increased, with a significant rise observed to occur at the end of the experiment. The opposite effects of irritation on the radiation carcinogenesis in males and females can be attributed to the irradiation-induced specific alterations of the gonads in females and, in part, to a longer survival time observed in the irradiated females.

  7. Recent advances in lung cancer biology

    SciTech Connect

    Lechner, J.

    1995-12-31

    This paper provides an overview of carcinogenesis, especially as related to lung cancers. Various growth factors and their mutated forms as oncogenes are discussed with respect to gene location and their role in the oncogenic process. Finally the data is related to lung cancer induction in uranium miners and exposure to radon.

  8. Global expression profiling reveals gain-of-function onco-genic activity of a mutated thyroid hormone receptor in thyroid carcinogenesis

    PubMed Central

    Lu, Changxue; Mishra, Alok; Zhu, Yuelin J; Meltzer, Paul; Cheng, Sheue-yann

    2011-01-01

    Thyroid hormone receptors (TRs) are critical in regulating gene expression in normal physiological processes. Decreased expression and/or somatic mutations of TRs have been shown to be associated several types of human cancers including liver, breast, lung, and thyroid. To understand the molecular mechanisms by which mutated TRs promote carcinogenesis, an animal model of follicular thyroid carcinoma (FTC) (Thrbpv/pv mice) was used in the present study. The Thrbpv/pv mouse harbors a knockin dominant negative PV mutation, identified in a patient with resistance to thyroid hormone. To understand whether oncogenic actions of PV involve not only the loss of normal TR functions but also gain-of-function activities, we compared the gene expression profiles of thyroid lesions in Thrbpv/pv mice and Thra1-/- Thrb-/- mice that also spontaneously develop FTC, but with less severe malignancy. Analysis of the cDNA microarray data derived from microdissected thyroid tumor cells of these two mice showed contrasting global gene expression profiles. With stringent selection using 2.5-fold change (p<0.01) in cDNA microarray analysis, 241 genes with altered gene expression were identified. Nearly half of the genes (n=103: 42.7% of total) with altered gene expression in thyroid tumor cells of Thrbpv/pv mice were associated with tumorigenesis and metastasis; some of these genes function as oncogenes in human thyroid cancers. The remaining genes were found to function in transcriptional regulation, RNA processing, cell proliferation, apoptosis, angiogenesis, and cytoskeleton modification. These results indicate that the more aggressive thyroid tumor progression in Thrbpv/pv mice was not due simply to the loss of tumor suppressor functions of TR via mutation but also, importantly, to gain-of-function in the oncogenic activities of PV to drive thyroid carcinogenesis. Thus, the present study identifies a novel mechanism by which a mutated TRβ evolves with an oncogenic advantage to promote

  9. Lipopolysaccharide-induced endotoxemia in corn oil-preloaded mice causes an extended course of lung injury and repair and pulmonary fibrosis: A translational mouse model of acute respiratory distress syndrome

    PubMed Central

    Wu, Chaomin; Evans, Colin E.; Dai, Zhiyu; Huang, Xiaojia; Zhang, Xianming; Jin, Hua; Hu, Guochang; Song, Yuanlin; Zhao, You-Yang

    2017-01-01

    Acute respiratory distress syndrome (ARDS) is characterized by acute hypoxemia respiratory failure, bilateral pulmonary infiltrates, and pulmonary edema of non-cardiac origin. Effective treatments for ARDS patients may arise from experimental studies with translational mouse models of this disease that aim to delineate the mechanisms underlying the disease pathogenesis. Mouse models of ARDS, however, can be limited by their rapid progression from injured to recovery state, which is in contrast to the course of ARDS in humans. Furthermore, current mouse models of ARDS do not recapitulate certain prominent aspects of the pathogenesis of ARDS in humans. In this study, we developed an improved endotoxemic mouse model of ARDS resembling many features of clinical ARDS including extended courses of injury and recovery as well as development of fibrosis following i.p. injection of lipopolysaccharide (LPS) to corn oil-preloaded mice. Compared with mice receiving LPS alone, those receiving corn oil and LPS exhibited extended course of lung injury and repair that occurred over a period of >2 weeks instead of 3–5days. Importantly, LPS challenge of corn oil-preloaded mice resulted in pulmonary fibrosis during the repair phase as often seen in ARDS patients. In summary, this simple novel mouse model of ARDS could represent a valuable experimental tool to elucidate mechanisms that regulate lung injury and repair in ARDS patients. PMID:28333981

  10. Inhalation of ambroxol inhibits cigarette smoke-induced acute lung injury in a mouse model by inhibiting the Erk pathway.

    PubMed

    Ge, Ling-tian; Liu, Ya-nan; Lin, Xi-xi; Shen, Hui-juan; Jia, Yong-liang; Dong, Xin-wei; Sun, Yun; Xie, Qiang-min

    2016-04-01

    Oral and injection administration of ambroxol has been clinically used to treat airway disease. However, little is known about its potentials in inhalation therapy. In present studies, we tested the effects of ambroxol by inhalation with intravenous administration, and explored the underlying working mechanism. The mice received 10 cigarettes exposure every day for 4 days. Inhaled solution of ambroxol was aerosolized 20 min before the exposure of cigarette smoke (CS). The effect of ambroxol on the expression of mucoprotein 5 AC (MUC5AC) and proinflammatory cytokines in NCI-H292 cells stimulated with cigarette smoke extract (CSE). Four days of daily inhalation of ambroxol at 3.75 or 7.5mg/ml for 20 min suppressed the accumulation of neutrophils and macrophages in the bronchoalveolar lavage fluid (BALF) and lung tissues, and inhibited increases in the mRNA and protein levels of tumor necrosis factor (TNF)-α, CCL-2 and KC, but not interleukin (IL)-1β in the CS-exposed mice. Moreover, ambroxol at 3.75 or 7.5mg/ml facilitated airway mucosa cilia clearance, reduced glycosaminoglycans level in BALF and MUC5AC mRNA levels in lung tissues. The effects of ambroxol by inhalation at 7.5mg/ml was comparable to that of ambroxol at 20mg/kg i.v. and dexamethasone at 0.5mg/kg i.p. Using cultured lung epithelial cells, we demonstrated that pretreatment with ambroxol at 2 or 20 μM inhibited the CSE-induced up-regulation of MUC5AC, TNF-α, IL-1β mRNA levels, which was through inhibiting Erk signaling pathway. Our results demonstrate the beneficial effects of ambroxol as an inhalation replace systemic administration for COPD therapy.

  11. Combination treatment of human umbilical cord matrix stem cell-based interferon-beta gene therapy and 5-fluorouracil significantly reduces growth of metastatic human breast cancer in SCID mouse lungs.

    PubMed

    Rachakatla, Raja Shekar; Pyle, Marla M; Ayuzawa, Rie; Edwards, Sarah M; Marini, Frank C; Weiss, Mark L; Tamura, Masaaki; Troyer, Deryl

    2008-08-01

    Umbilical cord matrix stem (UCMS) cells that were engineered to express interferon-beta (IFN-beta) were transplanted weekly for three weeks into MDA 231 breast cancer xenografts bearing SCID mice in combination with 5-fluorouracil (5-FU). The UCMS cells were found within lung tumors but not in other tissues. Although both treatments significantly reduced MDA 231 tumor area in the SCID mouse lungs, the combined treatment resulted in a greater reduction in tumor area than by either treatment used alone. These results indicate that a combination treatment of UCMS-IFN-beta cells and 5-FU is a potentially effective therapeutic procedure for breast cancer.

  12. Use of /sup 51/Cr-labeled mononuclear cells for measuring the cellular immune response in mouse lungs

    SciTech Connect

    Zarkower, A.; Scheuchenzuber, W.J.; Ferguson, F.G.

    1981-02-01

    Spleen cells labeled with /sup 51/Cr were used in sensitized syngeneic mice to measure the degree of mononuclear cell infiltration into antigen-challenged tissues. With this method, increased cellular infiltration was found after footpad challenge of mice sensitized with sheep erythrocyte, Escherichia coli, and BCG antigens. Cellular response also was determined by using this technique in the lungs of mice sensitized with sheep erythrocytes and BCG. This procedure offers the opportunity to measure cellular infiltration, whether due to cellular or humoral influences, in tissues not easily accessible to conventional immunological manipulation.

  13. Use of 51Cr-labeled mononuclear cells for measuring the cellular immune response in mouse lungs

    SciTech Connect

    Zarkower, A.; Scheuchenzuber, W.J.; Ferguson, F.G.

    1981-02-01

    Spleen cells labeled with 51Cr were used in sensitized syngeneic mice to measure the degree of mononuclear cell infiltration into antigen-challenged tissues. With this method, increased cellular infiltration was found after footpad challenge of mice sensitized with sheep erythrocyte, Escherichia coli, and BCG antigens. Cellular response also was determined by using this technique in the lungs of mice sensitized with sheep erythrocytes and BCG. This procedure offers the opportunity to measure cellular infiltration, whether due to cellular or humoral influences, in tissues not easily accessible to conventional immunological manipulation.

  14. Response of extracellular matrix regulators in mouse lung after exposure to photons, protons and simulated solar particle event protons.

    PubMed

    Tian, Jian; Pecaut, Michael J; Coutrakon, George B; Slater, James M; Gridley, Daila S

    2009-07-01

    This study compared the effects of photons (gamma rays), protons and simulated solar particle event protons (sSPE) on the expression of profibrotic factors/extracellular matrix (ECM) regulators in lung tissue after whole-body irradiation. TGF-beta1, matrix metalloproteinase 2 and 9 (MMP-2, -9), and tissue inhibitor of metalloproteinase 1 and 2 (TIMP-1, -2) were assessed on days 4 and 21 in lungs from C57BL/6 mice exposed to 0 Gy or 2 Gy photons (0.7 Gy/min), protons (0.9 Gy/min) and sSPE (0.056 Gy/h). RT-PCR, histological and immunohistochemical techniques were used. The most striking changes included (1) up-regulation of TGF-beta1 by photons and sSPE, but not protons, at both times, (2) MMP-2 enhancement by photons and sSPEs, (3) TIMP-1 up-regulation by photons at both times, and (4) more collagen accumulation after exposure to either photons or sSPE than after exposure to protons. The findings demonstrate that expression of important ECM regulators was highly dependent upon the radiation regimen as well as the time after exposure. The data further suggest that irradiation during an SPE may increase an astronaut's risk for pulmonary complications. The greater perturbations after photon exposure compared to proton exposure have clinical implications and warrant further investigation.

  15. Role of Cyclooxygenase-2 on Intermittent Hypoxia-Induced Lung Tumor Malignancy in a Mouse Model of Sleep Apnea.

    PubMed

    Campillo, Noelia; Torres, Marta; Vilaseca, Antoni; Nonaka, Paula Naomi; Gozal, David; Roca-Ferrer, Jordi; Picado, César; Montserrat, Josep Maria; Farré, Ramon; Navajas, Daniel; Almendros, Isaac

    2017-03-16

    An adverse role for obstructive sleep apnea (OSA) in cancer epidemiology and outcomes has recently emerged from clinical and animal studies. In animals, intermittent hypoxia (IH) mimicking OSA promotes tumor malignancy both directly and via host immune alterations. We hypothesized that IH could potentiate cancer aggressiveness through activation of the cyclooxygenase-2 (COX-2) pathway and the concomitant increases in prostaglandin E2 (PGE2). The contribution of the COX-2 in IH-induced enhanced tumor malignancy was assessed using celecoxib as a COX-2 specific inhibitor in a murine model of OSA bearing Lewis lung carcinoma (LLC1) tumors. Exposures to IH accelerated tumor progression with a tumor associated macrophages (TAMs) shift towards a pro-tumoral M2 phenotype. Treatment with celecoxib prevented IH-induced adverse tumor outcomes by inhibiting IH-induced M2 polarization of TAMs. Furthermore, TAMs isolated from IH-exposed mice treated with celecoxib reduced the proliferation of LLC1 naïve cells, while the opposite occurred with placebo-treated IH-exposed mice. Finally, in vitro IH exposures of murine macrophages and LLC1 cells showed that both cell types increased PGE2 release in response to IH. These results suggest a crucial role for the COX-2 signaling pathway in the IH-exacerbated malignant processes, and designate macrophages and lung adenocarcinoma cells, as potential sources of PGE2.

  16. Role of Cyclooxygenase-2 on Intermittent Hypoxia-Induced Lung Tumor Malignancy in a Mouse Model of Sleep Apnea

    PubMed Central

    Campillo, Noelia; Torres, Marta; Vilaseca, Antoni; Nonaka, Paula Naomi; Gozal, David; Roca-Ferrer, Jordi; Picado, César; Montserrat, Josep Maria; Farré, Ramon; Navajas, Daniel; Almendros, Isaac

    2017-01-01

    An adverse role for obstructive sleep apnea (OSA) in cancer epidemiology and outcomes has recently emerged from clinical and animal studies. In animals, intermittent hypoxia (IH) mimicking OSA promotes tumor malignancy both directly and via host immune alterations. We hypothesized that IH could potentiate cancer aggressiveness through activation of the cyclooxygenase-2 (COX-2) pathway and the concomitant increases in prostaglandin E2 (PGE2). The contribution of the COX-2 in IH-induced enhanced tumor malignancy was assessed using celecoxib as a COX-2 specific inhibitor in a murine model of OSA bearing Lewis lung carcinoma (LLC1) tumors. Exposures to IH accelerated tumor progression with a tumor associated macrophages (TAMs) shift towards a pro-tumoral M2 phenotype. Treatment with celecoxib prevented IH-induced adverse tumor outcomes by inhibiting IH-induced M2 polarization of TAMs. Furthermore, TAMs isolated from IH-exposed mice treated with celecoxib reduced the proliferation of LLC1 naïve cells, while the opposite occurred with placebo-treated IH-exposed mice. Finally, in vitro IH exposures of murine macrophages and LLC1 cells showed that both cell types increased PGE2 release in response to IH. These results suggest a crucial role for the COX-2 signaling pathway in the IH-exacerbated malignant processes, and designate macrophages and lung adenocarcinoma cells, as potential sources of PGE2. PMID:28300223

  17. In vivo activity of plant-based interleukin-12 in the lung of Balb/c mouse

    PubMed Central

    2010-01-01

    Background In the last years, plants are being used for the production of a wide variety of biopharmaceuticals, including cytokines, and have the potential to serve as vehicles for mucosal administration of these molecules. We had previously reported the expression of a cytokine, interleukin-12 (IL-12), in transgenic tomato plants and had demonstrated that it retained its biologic activity in vitro. Findings In this work, we administered crude extracts of IL-12-containing tomato fruits to mice through the intratracheal route, measuring endogenous IL-12 and determining biologic activity by quantification of interferon-gamma (IFN-γ) in lungs and by histological analysis. IFN-γ expression in lungs, as well as histological analysis, indicate that tomato-expressed IL-12 retains its biologic activity and, most importantly, its effects are restricted to the site of administration. Conclusion Our results indicate that the functional activity of tomato-expressed IL-12 is comparable to that of commercial recombinant IL-12 when given via the mucosal route. This opens the possibility of using crude extracts prepared from tomatoes expressing IL-12 for certain immunotherapies. PMID:20507618

  18. Experimental mammary carcinogenesis - Rat models.

    PubMed

    Alvarado, Antonieta; Faustino-Rocha, Ana I; Colaço, Bruno; Oliveira, Paula A

    2017-03-15

    Mammary cancer is one of the most common cancers, victimizing more than half a million of women worldwide every year. Despite all the studies in this field, the current therapeutic approaches are not effective and have several devastating effects for patients. In this way, the need to better understand the mammary cancer biopathology and find effective therapies led to the development of several rodent models over years. With this review, the authors intended to provide the readers with an overview of the rat models used to study mammary carcinogenesis, with a special emphasis on chemically-induced models.

  19. Identification of cytochrome P450 enzymes critical for lung tumorigenesis by the tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK): insights from a novel Cyp2abfgs-null mouse.

    PubMed

    Li, Lei; Megaraj, Vandana; Wei, Yuan; Ding, Xinxin

    2014-11-01

    Cytochrome P450 (P450) enzymes encoded by the mouse Cyp2abfgs gene cluster are preferentially expressed in the respiratory tract. Previous studies have demonstrated that pulmonary P450-mediated bioactivation is necessary for lung tumorigenesis induced by the tobacco-specific lung procarcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), and that CYP2A5 mediates a noteworthy fraction, but not all, of NNK bioactivation in the lung. The aim of this study was to determine whether other P450s encoded by the Cyp2abfgs gene cluster also play significant roles in NNK lung tumorigenesis. A novel Cyp2abfgs-null mouse was generated, in which all Cyp2a, 2b, 2g, 2f and 2s genes are deleted. The Cyp2abfgs-null mouse was viable, fertile and without discernible physiological abnormalities or compensatory increases in the expression of other P450s. NNK bioactivation in vitro and NNK-induced DNA adduction and lung tumorigenesis in vivo were determined for wild-type (WT) and Cyp2abfgs-null mice; the results were compared with previous findings from Cyp2a5-null mice. The Cyp2abfgs-null mice exhibited significantly lower rates of NNK bioactivation in lung and liver microsomes, compared with either WT or Cyp2a5-null mice. The levels of lung O(6)-methyl guanine DNA adduct were also substantially reduced in Cyp2abfgs-null mice, compared with either WT or Cyp2a5-null mice. Moreover, the Cyp2abfgs-null mice were largely resistant to NNK-induced lung tumorigenesis at both low (50mg/kg) and high (200mg/kg) NNK doses, in contrast to the WT or Cyp2a5-null mice. These results indicate for the first time that, collectively, the CYP2A, 2B, 2F, 2G, and 2S enzymes are indispensable for NNK-induced lung tumorigenesis.

  20. Evaluation of propolis, honey, and royal jelly in amelioration of peripheral blood leukocytes and lung inflammation in mouse conalbumin-induced asthma model.

    PubMed

    El-Aidy, Waleed K; Ebeid, Ahmad A; Sallam, Abd El-Raouf M; Muhammad, Ibrahim E; Abbas, Ayman T; Kamal, M A; Sohrab, Sayed Sartaj

    2015-11-01

    Bee products have been used since ancient times to treat many diseases, including respiratory ailments. The present study aimed to examine the modulatory effect of honey, royal jelly, and propolis extract on peripheral blood leukocytes and lung inflammation in a mouse conalbumin-induced asthma model. The mice in group I were not sensitised or treated; they were kept as controls. The mice in group II were sensitised and challenged with conalbumin. Twenty-four hours after the first challenge with antigen, the mice in group III received 0.5 mg/kg of dexamethasone intraperitoneally per day for 18 consecutive days and kept as positive controls. The mice in groups IV, V, and VI received 650, 1000, and 30 mg/kg of honey, royal jelly, and propolis (aqueous and ethanolic extract), respectively, once per day for 18 consecutive days. Blood was collected from all of the mice for white blood cell differentiation, and the lungs were removed for histopathological studies. The groups treated with propolis extract exhibited considerable ameliorative effects against asthma, which might be explained by the flavonoids and phenolics found in propolis, which might have antioxidative effects. Otherwise, the sensitised and honey- or royal jelly-treated groups exhibited an increased incidence of asthma cascade events due to increased inflammatory cells. These results might be due to the immunostimulatory and vasodilatory effects of royal jelly and honey, which are antagonistic to bronchial asthma cases. Histopathological examination revealed that the sensitised treated propolis extract groups had significant decreases in inflammatory scores compared with other treatments and the sensitised untreated group. These results confirmed the previous data of peripheral blood cells.

  1. EGFR-targeted therapy results in dramatic early lung tumor regression accompanied by imaging response and immune infiltration in EGFR mutant transgenic mouse models

    PubMed Central

    Venugopalan, Abhilash; Lee, Min-Jung; Niu, Gang; Medina-Echeverz, José; Tomita, Yusuke; Lizak, Martin J.; Cultraro, Constance M.; Simpson, Robert Mark; Chen, Xiaoyuan; Trepel, Jane B.; Guha, Udayan

    2016-01-01

    Lung adenocarcinoma patients harboring kinase domain mutations in Epidermal growth factor receptor (EGFR) have significant clinical benefit from EGFR-targeted tyrosine kinase inhibitors (TKIs). Although a majority of patients experience clinical symptomatic benefit immediately, an objective response can only be demonstrated after 6-8 weeks of treatment. Evaluation of patient response by imaging shows that 30-40% of patients do not respond due to intrinsic resistance to these TKIs. We investigated immediate-early effects of EGFR-TKI treatment in mutant EGFR-driven transgenic mouse models by FDG-PET and MRI and correlated the effects on the tumor and the tumor microenvironment. Within 24 hours of erlotinib treatment we saw approximately 65% tumor regression in mice with TKI-sensitive EGFRL858R lung adenocarcinoma. However, mice with EGFRL858R/T790M-driven tumors did not respond to either erlotinib or afatinib monotherapy, but did show a significant tumor response to afatinib-cetuximab combination treatment. The imaging responses correlated with the inhibition of downstream EGFR signaling, increased apoptosis, and decreased proliferation in the tumor tissues. In EGFRL858R-driven tumors, we saw a significant increase in CD45+ leukocytes, NK cells, dendritic cells, macrophages and lymphocytes, particularly CD8+ T cells. In response to erlotinib, these dendritic cells and macrophages had significantly higher MHC class II expression, indicating increased antigen-presenting capabilities. Together, results of our study provide novel insight into the immediate-early therapeutic response to EGFR TKIs in vivo. PMID:27494838

  2. Chemical compositions responsible for inflammation and tissue damage in the mouse lung by coarse and fine particulate samples from contrasting air pollution in Europe.

    PubMed

    Happo, Mikko S; Hirvonen, Maija-Riitta; Halinen, Arja I; Jalava, Pasi I; Pennanen, Arto S; Sillanpaa, Markus; Hillamo, Risto; Salonen, Raimo O

    2008-11-01

    Inflammation is regarded as an important mechanism in mortality and morbidity associated with exposures of cardiorespiratory patients to urban air particulate matter. We investigated the association of the chemical composition and sources of urban air fine (PM(2.5-0.2)) and coarse (PM(10-2.5)) particulate samples with the inflammatory activity in the mouse lung. The particulate samples were collected during selected seasons in six European cities using a high-volume cascade impactor. Healthy C57BL/6J mice were intratracheally instilled with a single dose (10 mg/kg) of the particulate samples. At 4, 12, and 24 h after the exposure, the lungs were lavaged and the bronchoalveolar lavage fluid (BALF) was assayed for indicators of inflammation and tissue damage: cell number, total protein, and cytokines (tumor necrosis factor [TNF]-alpha, interleukin [IL]-6, and KC). Dicarboxylic acids and transition metals, especially Ni and V, in PM(2.5-0.2) correlated positively and some secondary inorganic ions (NO3(-), NH4(+)) negatively with the inflammatory activity. Total organic matter and SO4(2-) had no consistent correlations. In addition, the soil-derived constituents (Ca2+, Al, Fe, Si) showed positive correlations with the PM(2.5-0.2)-induced inflammatory activity, but their role in PM(10-2.5) remained obscure, possibly due to largely undefined biogenic material. Markers of poor biomass and coal combustion, i.e., monosaccharide anhydrides and As, were associated with elevated PAH contents in PM(2.5-0.2) and a consistent immunosuppressive effect. Overall, our results support epidemiological findings that the local sources of incomplete combustion and resuspended road dust are important in urban air particulate pollution-related health effects.

  3. Expression of a tumor necrosis factor-alpha transgene in murine lung causes lymphocytic and fibrosing alveolitis. A mouse model of progressive pulmonary fibrosis.

    PubMed Central

    Miyazaki, Y; Araki, K; Vesin, C; Garcia, I; Kapanci, Y; Whitsett, J A; Piguet, P F; Vassalli, P

    1995-01-01

    The murine TNF-alpha gene was expressed under the control of the human surfactant protein SP-C promoter in transgenic mice. A number of the SP-C TNF-alpha mice died at birth or after a few weeks with very severe lung lesions. Surviving mice transmitted a pulmonary disease to their offspring, the severity and evolution of which was related to the level of TNF-alpha mRNA in the lung; TNF-alpha RNA was detected in alveolar epithelium, presumably in type II epithelial cells. In a longitudinal study of two independent mouse lines, pulmonary pathology, at 1-2 mo of age, consisted of a leukocytic alveolitis with a predominance of T lymphocytes. Leukocyte infiltration was associated with endothelial changes and increased levels of mRNA for the endothelial adhesion molecule VCAM-1. In the following months, alveolar spaces enlarged in association with thickening of the alveolar walls due to an accumulation of desmin-containing fibroblasts, collagen fibers, and lymphocytes. Alveolar surfaces were lined by regenerating type II epithelial cells, and alveolar spaces contained desquamating epithelial cells in places. Platelet trapping in the damaged alveolar capillaries was observed. Pulmonary pathology in the SP-C TNF-alpha mice bears a striking resemblance to human idiopathic pulmonary fibrosis, in which increased expression of TNF-alpha in type II epithelial cells has also been noted. These mice provide a valuable animal model for understanding the pathogenesis of pulmonary fibrosis and exploring possible therapeutic approaches. Images PMID:7542280

  4. Chemically induced skin carcinogenesis: Updates in experimental models (Review)

    PubMed Central

    NEAGU, MONICA; CARUNTU, CONSTANTIN; CONSTANTIN, CAROLINA; BODA, DANIEL; ZURAC, SABINA; SPANDIDOS, DEMETRIOS A.; TSATSAKIS, ARISTIDIS M.

    2016-01-01

    Skin cancer is one of the most common malignancies affecting humans worldwide, and its incidence is rapidly increasing. The study of skin carcinogenesis is of major interest for both scientific research and clinical practice and the use of in vivo systems may facilitate the investigation of early alterations in the skin and of the mechanisms involved, and may also lead to the development of novel therapeutic strategies for skin cancer. This review outlines several aspects regarding the skin toxicity testing domain in mouse models of chemically induced skin carcinogenesis. There are important strain differences in view of the histological type, development and clinical evolution of the skin tumor, differences reported decades ago and confirmed by our hands-on experience. Using mouse models in preclinical testing is important due to the fact that, at the molecular level, common mechanisms with human cutaneous tumorigenesis are depicted. These animal models resemble human skin cancer development, in that genetic changes caused by carcinogens and pro-inflammatory cytokines, and simultaneous inflammation sustained by pro-inflammatory cytokines and chemokines favor tumor progression. Drugs and environmental conditions can be tested using these animal models. keeping in mind the differences between human and rodent skin physiology. PMID:26986013

  5. Interdependent TTF1 - ErbB4 interactions are critical for surfactant protein-B homeostasis in primary mouse lung alveolar type II cells.

    PubMed

    Marten, Elger; Nielsen, Heber C; Dammann, Christiane E L

    2015-09-01

    ErbB4 receptor and thyroid transcription factor (TTF)-1 are important modulators of fetal alveolar type II (ATII) cell development and injury. ErbB4 is an upstream regulator of TTF-1, promoting its expression in MLE-12 cells, an ATII cell line. Both proteins are known to promote surfactant protein-B gene (SftpB) and protein (SP-B) expression, but their feedback interactions on each other are not known. We hypothesized that TTF-1 expression has a feedback effect on ErbB4 expression in an in-vitro model of isolated mouse ATII cells. We tested this hypothesis by analyzing the effects of overexpressing HER4 and Nkx2.1, the genes of ErbB4 and TTF-1 on TTF-1 and ErbB4 protein expression, respectively, as well as SP-B protein expression in primary fetal mouse lung ATII cells. Transient ErbB4 protein overexpression upregulated TTF-1 protein expression in primary fetal ATII cells, similarly to results previously shown in MLE-12 cells. Transient TTF-1 protein overexpression down regulated ErbB4 protein expression in both cell types. TTF-1 protein was upregulated in primary transgenic ErbB4-depleted adult ATII cells, however SP-B protein expression in these adult transgenic ATII cells was not affected by the absence of ErbB4. The observation that TTF-1 is upregulated in fetal ATII cells by ErbB4 overexpression and also in ErbB4-deleted adult ATII cells suggests additional factors interact with ErbB4 to regulate TTF-1 levels. We conclude that the interdependency of TTF-1 and ErbB4 is important for surfactant protein levels. The interactive regulation of ErbB4 and TTF-1 needs further elucidation.

  6. Endostatin enhances antitumor effect of tumor antigen-pulsed dendritic cell therapy in mouse xenograft model of lung carcinoma

    PubMed Central

    Liang, Jing; Liu, Xiaolin; Xie, Qi; Chen, Guoling; Li, Xingyu; Jia, Yanrui; Yin, Beibei; Qu, Xun; Li, Yan

    2016-01-01

    Objective To investigate the antitumor effect of endostatin combined with tumor antigen-pulsed dendritic cell (DC)-T cell therapy on lung cancer. Methods Transplanted Lewis lung cancer (LLC) models of C57BL/6 mice were established by subcutaneous injection of LLC cells in left extremity axillary. Tumor antigen-pulsed DC-T cells from spleen cells and bone of mice were cultured in vitro. Tumor-bearing mice were randomly divided into three groups, including DC-T+endostatin group, DC-T group, and phosphate-buffered saline (PBS) control group. Microvessel density (MVD) of tumor tissue in tumor-bearing mice was determined by immunohistochemistry (IHC). The expressions of vascular endothelial growth factor (VEGF) and hypoxia-inducible factor-1α (HIF-1α) were determined by Western blotting and IHC staining. The proportions of CD8+ T cells, mature dendritic cells (mDC), tumor-associated macrophages [TAM (M1/M2)], and myeloid-derived suppressor cells (MDSC) in suspended cells of tumor tissue were determined by flow cytometry. The expressions of interleukin (IL)-6, IL-10, IL-17, transforming growth factor-β (TGF-β) and interferon-γ (IFN-γ) in suspended cells of tumor tissue were detected by enzyme-linked immune sorbent assay (ELISA). Results DC-T cells combined with endostatin remarkably suppressed tumor growth. MVD of mice in DC-T+endostatin group was significantly lower than that of the control group and DC-T monotherapy group. The expressions of VEGF, IL-6 and IL-17 in tumors were markedly decreased, but IFN-γ and HIF-1α increased after treating with DC-T cells combined with endostatin, compared to control group and DC-T group. In the DC-T+endostatin group, the proportions of MDSC and TAM (M2 type) were significantly decreased, mDC and TAM (M1 type) were up-regulated, and CD8+ T cells were recruited to infiltrate tumors, in contrast to PBS control and DC-T monotherapy. DC-T cells combined with endostatin potently reduced the expressions of IL-6, IL-10, TGF-β and

  7. Pancreatic carcinogenesis: apoptosis and angiogenesis.

    PubMed

    Onizuka, Shinya; Kawakami, Shunsuke; Taniguchi, Ken; Fujioka, Hikaru; Miyashita, Kosei

    2004-04-01

    Apoptosis and angiogenesis are critical biologic processes that are altered during carcinogenesis. Both apoptosis and angiogenesis may play an important role in pancreatic carcinogenesis. Despite numerous advances in the diagnosis and treatment of pancreatic cancer, its prognosis remains dismal and a new therapeutic approach is much needed. Recent research has revealed that apoptosis and angiogenesis are closely interrelated. Several reports show that a tumor suppresser gene that is expressed in pancreatic carcinoma and related to malignant potential can induce apoptosis and also inhibit angiogenesis. At present, it is generally accepted that tumor growth in cancers, including pancreatic cancer, depends on angiogenesis. We have identified 2 new angiogenesis inhibitors from a conditioned medium of human pancreatic carcinoma cell line (BxPC-3): antiangiogenic antithrombin III (aaAT-III) and vitamin D binding protein-macrophage activating factor (DBP-maf). These molecules were able to regress tumors in severe combined immunodeficiency disease (SCID) mice, demonstrating potent inhibition of endothelial cell proliferation. Moreover, the angiogenesis inhibitors induced tumor dormancy in the animal model. These results suggest that antiangiogenic therapy using angiogenesis inhibitors may become a new strategy for treatment of pancreatic cancer in the near future.

  8. Models of carcinogenesis: an overview

    PubMed Central

    Vineis, Paolo; Schatzkin, Arthur; Potter, John D.

    2010-01-01

    At least five coherent models of carcinogenesis have been proposed in the history of cancer research in the last century. Model 1 is mainly centered around mutations, and its main focus is on the chemical environment, radiation and viruses. Model 2 has to do mainly with genome instability and it focuses on familiality. Model 3 is based on non-genotoxic mechanisms, and clonal expansion and epigenetics are its main features. We propose a fourth model, which can encompass the previous three, based on the concept of a ‘Darwinian’ cell selection (we clarify that the term Darwinian needs to be used cautiously, being a short cut for ‘somatic cellular selection’). Finally, a fifth model has recently become popular, based on the concept of ‘tissue organization’. We describe examples of the five models and how they have been formalized mathematically. The five models largely overlap, both scientifically and historically, but for the sake of clarity, it is useful to treat them separately. We also argue that the five models can be included into a simpler scheme, i.e. two types of models: (i) biological changes in the epithelium alone lead to malignancy and (ii) changes in stroma/extracellular matrix are necessary (along with changes in epithelium) for malignancy. Our description, though simplified, looks realistic, it is able to capture the historical sequence of carcinogenesis theories in the last century and can serve as a frame to make research hypotheses more explicit. PMID:20430846

  9. Selenium inhibition of chemical carcinogenesis.

    PubMed

    Ip, C

    1985-06-01

    In this article I review the work of our laboratory concerning the relationship between dietary Se intake and susceptibility to mammary carcinogenesis induced by 7,12-dimethylbenz[a]anthracene in female rats. The effect of graded levels of Se in the diet was investigated, ranging from deficiency to excessive supplementation that produced marginal toxicity in the animals. In addition, the interdependence between Se status and fat intake was also explored. Further experiments were aimed at defining the role of Se in the initiation and promotion phases of chemical carcinogenesis. In view of the biochemical function of Se as an antioxidant, the chemopreventive efficacy of Se was compared to that of vitamin E in conjunction with their ability to inhibit lipid peroxidation. Results of this study indicated that the antitumorigenic activity of Se could not be accounted for by suppression of tissue peroxidation, although an environment with a lower oxidant stress might enhance the potency of Se in protecting against cancer. The possible mechanisms of action of Se based on the observations and characteristics of several tumor models are briefly discussed.

  10. Subchronic inhalation of soluble manganese induces expression of hypoxia-associated angiogenic genes in adult mouse lungs

    SciTech Connect

    Bredow, Sebastian . E-mail: sbredow@LRRI.org; Falgout, Melanie M.; March, Thomas H.; Yingling, Christin M.; Malkoski, Stephen P.; Aden, James; Bedrick, Edward J.; Lewis, Johnnye L.; Divine, Kevin K.

    2007-06-01

    Although the lung constitutes the major exposure route for airborne manganese (Mn), little is known about the potential pulmonary effects and the underlying molecular mechanisms. Transition metals can mimic a hypoxia-like response, activating the hypoxia inducible factor-1 (HIF-1) transcription factor family. Through binding to the hypoxia-response element (HRE), these factors regulate expression of many genes, including vascular endothelial growth factor (VEGF). Increases in VEGF, an important biomarker of angiogenesis, have been linked to respiratory diseases, including pulmonary hypertension. The objective of this study was to evaluate pulmonary hypoxia-associated angiogenic gene expression in response to exposure of soluble Mn(II) and to assess the genes' role as intermediaries of potential pulmonary Mn toxicity. In vitro, 0.25 mM Mn(II) altered morphology and slowed the growth of human pulmonary epithelial cell lines. Acute doses between 0.05 and 1 mM stimulated VEGF promoter activity up to 3.7-fold in transient transfection assays. Deletion of the HRE within the promoter had no effect on Mn(II)-induced VEGF expression but decreased cobalt [Co(II)]-induced activity 2-fold, suggesting that HIF-1 may not be involved in Mn(II)-induced VEGF gene transcription. Nose-only inhalation to 2 mg Mn(II)/m{sup 3} for 5 days at 6 h/day produced no significant pulmonary inflammation but induced a 2-fold increase in pulmonary VEGF mRNA levels in adult mice and significantly altered expression of genes associated with murine angiogenesis. These findings suggest that even short-term exposures to soluble, occupationally relevant Mn(II) concentrations may alter pulmonary gene expression in pathways that ultimately could affect the lungs' susceptibility to respiratory disease.

  11. Impacts of allergic airway inflammation on lung pathology in a mouse model of influenza A virus infection

    PubMed Central

    Kawaguchi, Akira; Ohara, Yuki; Takahashi, Kenta; Sato, Yuko; Ainai, Akira; Nagata, Noriyo; Tashiro, Masato; Hasegawa, Hideki

    2017-01-01

    Influenza A virus is the respiratory pathogen responsible for influenza. Infection by the 2009 pandemic influenza A (H1N1) virus caused severe lower airway inflammation and pneumonia. Asthma is a chronic inflammatory disorder of the airways that affects the entire brachial tree, and was one of the commonest underlying medical conditions among patients hospitalized with the 2009 pandemic influenza virus infection. Although respiratory virus infections are the major causes of asthma exacerbation, the mechanism by which influenza exacerbates asthma is poorly understood. Animal models of disease comorbidity are crucial to understanding host-pathogen interactions and elucidating complex pathologies. Existing murine models of influenza virus infection in asthmatics show that asthmatic mice are highly resistant to influenza virus infection, which contradicts clinical observations in humans. Here, we developed a murine model of influenza virus/asthma comorbidity using NC/Nga mice, which are highly sensitive to allergic reactions such as atopic dermatitis and allergic airway inflammation. This model was then used to examine the impact of allergic airway inflammation on lung pathology in the 2009 pandemic influenza virus infected mice. The results showed that induction of acute allergic airway inflammation in pre-existing influenza virus infection had additive effects on exacerbation of lung pathology, which mirrors findings in human epidemiological studies. In contrast, pre-existing allergic airway inflammation protected from subsequent influenza virus infection, which was compatible with those of previous murine models of influenza virus infection in asthmatic mice. These variable outcomes of this murine model indicate that the temporal relation between allergic airway inflammation and influenza virus infection might play a critical role in asthma and influenza comorbidity. Thus, this murine model will further our understanding of how influenza virus infection affects an

  12. Studies of styrene, styrene oxide and 4-hydroxystyrene toxicity in CYP2F2 knockout and CYP2F1 humanized mice support lack of human relevance for mouse lung tumors.

    PubMed

    Cruzan, G; Bus, J; Hotchkiss, J; Sura, R; Moore, C; Yost, G; Banton, M; Sarang, S

    2013-06-01

    Styrene (S) is lung tumorigenic in mice but not in rats. S and its alkene-oxidized metabolite styrene oxide (SO) were not lung toxic in CYP2F2(-/-) [knockout] mice, indicating S-induced mouse lung tumors are mediated through mouse-specific CYP2F2-generated ring-oxidized metabolite(s) in lung bronchioles. The human relevance of the CYP2F MOA was assessed by insertion of a human CYP2F1, 2A13, 2B6 transgene into CYP2F2(-/-) mice; CYP2F1 expression and activity were confirmed in the transgenic (TG) mice. No evidence of cytotoxicity or increased cell proliferation (BrdU labeling) was seen in TG mice treated with either S or SO (200mg/kg/day ip for 5days). In contrast to S and SO, 4HS (105mg/kg/day ip for 5days) increased BrdU labeling 5-10-fold in WT mice, <3-fold increase in KO mice and 2-4-fold in TG mice. The limited response of 4HS in KO and TG mice may result from intrinsic toxicity or from further metabolism; regardless of the MOA, these findings indicate that the CYP2F-mediated tumorigenic MOA in WT mice is not operative for S, SO, or for 4HS putatively derived from metabolism of S by CYP2F1 in humans, and thus S-induced mouse lung tumors are unlikely to be relevant to human risk.

  13. Explant culture of mouse embryonic whole lung, isolated epithelium, or mesenchyme under chemically defined conditions as a system to evaluate the molecular mechanism of branching morphogenesis and cellular differentiation.

    PubMed

    Del Moral, Pierre-Marie; Warburton, David

    2010-01-01

    Lung primordial specification as well as branching morphogenesis, and the formation of various pulmonary cell lineages, requires a specific interaction of the lung endoderm with its surrounding mesenchyme and mesothelium. Lung mesenchyme has been shown to be the source of inductive signals for lung branching morphogenesis. Epithelial-mesenchymal-mesothelial interactions are also critical to embryonic lung morphogenesis. Early embryonic lung organ culture is a very useful system to study epithelial-mesenchymal interactions. Both epithelial and mesenchymal morphogenesis proceed under specific conditions that can be readily manipulated in this system (in the absence of maternal influence and blood flow). More importantly this technique can be readily done in a serumless, chemically defined culture media. Gain and loss of function can be achieved using expressed proteins, recombinant viral vectors, and/or analysis of transgenic mouse strains, antisense RNA, as well as RNA interference gene knockdown. Additionally, to further study epithelial-mesenchymal interactions, the relative roles of epithelium versus mesenchyme signaling can also be determined using tissue recombination (e.g., epithelial and mesenchymal separation) and microbead studies.

  14. High-mobility group nucleosome-binding domain 2 protein inhibits the invasion of Klebsiella pneumoniae into mouse lungs in vivo.

    PubMed

    Zheng, Shuang; Ren, Laibin; Li, Heng; Shen, Xiaofei; Yang, Xiaolong; Li, Na; Wang, Xinyuan; Guo, Xiaojuan; Wang, Xiaoying; Huang, Ning

    2015-07-01

    Since bacterial invasion into host cells is a critical step in the infection process and the predominance of multiple-antibiotic-resistant Klebsiella (K.) pneumoniae strains, using molecular agents to interfere with K. pneumoniae invasion is an attractive approach for the prevention of infection and suppress the immune inflammatory response. In previous studies by our group, high-mobility group nucleosome-binding domain 2 (HMGN2) protein was shown to exhibit anti-bacterial activity in vitro. The objective of the present study was to investigate the effects of HMGN2 protein on the invasion of K. pneumoniae 03183 in vivo. The results showed that pre-treatment with 128 µg/ml HMGN2 significantly reduced K. pneumoniae 03183 invasion into mouse lungs and increased the mRNA expression of CXCL1 and LCN2 within 2 h. Immunohistochemical staining showed that F-actin expression was significantly decreased, and fluorescence microscopy and western blot analysis further demonstrated that HMGN2 significantly blocked K. pneumoniae 03183-induced actin polymerization. These changes implied that HMGN2 may provide protection against K. pneumoniae 03183 infection in vivo.

  15. Mouse lung-adapted mutation of E190G in hemagglutinin from H5N1 influenza virus contributes to attenuation in mice.

    PubMed

    Han, Pengfei; Hu, Yi; Sun, Wei; Zhang, Sen; Li, Yuchang; Wu, Xiaoyan; Yang, Yinhui; Zhu, Qingyu; Jiang, Tao; Li, Jing; Qin, Chengfeng

    2015-11-01

    The highly pathogenic H5N1 avian influenza virus is one of the greatest influenza pandemic threats since 2003. The association of the receptor binding domain (RBD) with the virulence of influenza virus is rarely addressed, particularly of H5N1 influenza viruses. In this study, BALB/c mice were intranasally infected with A/Vietnam/1194/2004 (VN1194, H5N1). The mouse lung-adapted variants were isolated and the mutation of E190G (H3 numbering) in the RBD was recognized. The recombinant virus, rVN-E190G carrying E190G in hemagglutinin (HA) was designed and rescued using reverse genetics techniques. The receptor binding activity, growth curve and pathogenicity in mice of the rVN-E190G were investigated. Results demonstrated that rVN-E190G virus increased the binding avidity to α2,6 SA (sialic acid) and reduced the affinity to α2,3 SA, meanwhile weakened the viral replication in vitro. Moreover, the virulence assessment demonstrated that rVN-E190G was attenuated in mice. These results indicated that the mutation E190G in HA decreases H5N1 viral replication in vitro and significantly attenuates virulence in vivo. These findings identify one of the determinants in RBD which can be associated with H5N1 virulence in mice.

  16. Impact of early versus later fluoroquinolone treatment on the clinical; microbiological and resistance outcomes in a mouse-lung model of Pasteurella multocida infection.

    PubMed

    Ferran, Aude A; Toutain, Pierre-Louis; Bousquet-Mélou, Alain

    2011-03-24

    The early curative uses of antimicrobial drugs such as fluoroquinolones before the onset of symptoms in veterinary medicine may be regarded as irrational antibiotic consumption. However, it should be stressed that in early curative antimicrobial treatment as in metaphylaxis, the bacterial burden at the infection site is often very low, and so the rapid eradication of the bacterial population could result. We investigated the impact of early versus later curative administrations of 1 or 40 mg/kg of marbofloxacin on the survival of mice, the eradication of the targeted pathogen and the selection of resistant bacteria in a mouse lung infection with Pasteurella multocida. In this model, for a given marbofloxacin dose, the clinical and bacteriological outcomes were better, and the selection of resistance less frequent, for the early rather than for the late treatment. Moreover, the early administration of 1mg/kg led to better clinical and similar bacteriological (eradication and selection of resistance) outcomes than the late administration of 40 mg/kg marbofloxacin. Our results suggest that the optimal doses for the animals' cure could be lower when administered early during the time course of the infection than when administered after the disease outbreak. As the main argument against early treatments such as metaphylaxis is the possible enhancement of resistance at the gut level, further studies should assess if lower doses of antibiotic administered to all the animals of a herd could have less impact on the commensal digestive flora than higher doses only administered to animals showing clinical symptoms.

  17. c-Myc targeted regulators of cell metabolism in a transgenic mouse model of papillary lung adenocarcinoma

    PubMed Central

    Ciribilli, Yari; Singh, Prashant; Inga, Alberto; Borlak, Jürgen

    2016-01-01

    c-Myc's role in pulmonary cancer metabolism is uncertain. We therefore investigated c-Myc activity in papillary lung adenocarcinomas (PLAC). Genomics revealed 90 significantly regulated genes (> 3-fold) coding for cell growth, DNA metabolism, RNA processing and ribosomal biogenesis and bioinformatics defined c-Myc binding sites (TFBS) at > 95% of up-regulated genes. EMSA assays at 33 novel TFBS evidenced DNA binding activity and ChIP-seq data retrieved from public repositories confirmed these to be c-Myc bound. Dual-luciferase gene reporter assays developed for RNA-Terminal-Phosphate-Cyclase-Like-1(RCL1), Ribosomal-Protein-SA(RPSA), Nucleophosmin/Nucleoplasmin-3(NPM3) and Hexokinase-1(HK1) confirmed c-Myc functional relevance and ChIP assays with HEK293T cells over-expressing ectopic c-Myc demonstrated enriched c-Myc occupancy at predicted TFBS for RCL1, NPM3, HK1 and RPSA. Note, c-Myc recruitment on chromatin was comparable to the positive controls CCND2 and CDK4. Computational analyses defined master regulators (MR), i.e. heterogeneous nuclear ribonucleoprotein A1, nucleolin, the apurinic/apyrimidinic endonuclease 1, triosephosphate-isomerase 1, folate transporter (SLC19A1) and nucleophosmin to influence activity of up to 90% of PLAC-regulated genes. Their expression was induced by 3-, 3-, 6-, 3-, 11- and 7-fold, respectively. STRING analysis confirmed protein-protein-interactions of regulated genes and Western immunoblotting of fatty acid synthase, serine hydroxyl-methyltransferase 1, arginine 1 and hexokinase 2 showed tumor specific induction. Published knock down studies confirmed these proteins to induce apoptosis by disrupting neoplastic lipogenesis, by endorsing uracil accumulation and by suppressing arginine metabolism and glucose-derived ribonucleotide biosynthesis. Finally, translational research demonstrated high expression of MR and of 47 PLAC up-regulated genes to be associated with poor survival in lung adenocarcinoma patients (HR 3.2 p < 0.001) thus

  18. Polycyclic aromatic hydrocarbons in carcinogenesis.

    PubMed Central

    Warshawsky, D

    1999-01-01

    A symposium on "Polycyclic Aromatic Hydrocarbons (PAHs) in Carcinogenesis" was presented at the third International Congress of Pathophysiology held in Lathi, Finland, 28 June-3 July 1998. The congress was also sponsored by the International Union of Biological Sciences and the International Society of Free Radical Research. Institutional support for the symposium included the Electric Power Research Institute, National Center for Toxicological Research, and EPA/National Health and Environmental Effects Research Laboratory and the Office of Solid Waste and Emergency Response. The symposium focused on the sources, carcinogenicity, genotoxicity, and risk assessment of individual and mixtures of PAHs that are found in solid wastes, Superfund sites, and other hazardous waste sites. Based on the occurrence of PAHs at numerous Superfund sites and the significant data gaps on the toxic potential of certain PAHs, the information developed during this symposium would be of value in assessing health risks of these chemicals at Superfund and other hazardous waste sites. PMID:10090712

  19. Stem cells and colorectal carcinogenesis

    PubMed Central

    Stoian, M; Stoica, V; Radulian, G

    2016-01-01

    Abstract Colorectal cancer represents an important cause of mortality and morbidity. Unfortunately, the physiopathology is still under study. There are theories about carcinogenesis and it is known that not only a single factor is responsible for the development of a tumor, but several conditions. Stem cells are a promising target for the treatment of colorectal cancer, along with the environment that has an important role. It has been postulated that mutations within the adult colonic stem cells may induce neoplastic changes. This theory is based on the observation that within a colon cancer, less than 1% of the neoplastic cells have the ability to regenerate the tumor and therefore they are responsible for recurrence. It is important to know that a new way of treatment needs to be found, since these cells are resistant to chemotherapy and radiotherapy. PMID:27713769

  20. Oxidative Stress and HPV Carcinogenesis

    PubMed Central

    De Marco, Federico

    2013-01-01

    Extensive experimental work has conclusively demonstrated that infection with certain types of human papillomaviruses, the so-called high-risk human papillomavirus (HR-HPV), represent a most powerful human carcinogen. However, neoplastic growth is a rare and inappropriate outcome in the natural history of HPV, and a number of other events have to concur in order to induce the viral infection into the (very rare) neoplastic transformation. From this perspective, a number of putative viral, host, and environmental co-factors have been proposed as potential candidates. Among them oxidative stress (OS) is an interesting candidate, yet comparatively underexplored. OS is a constant threat to aerobic organisms being generated during mitochondrial oxidative phosphorylation, as well as during inflammation, infections, ionizing irradiation, UV exposure, mechanical and chemical stresses. Epithelial tissues, the elective target for HPV infection, are heavily exposed to all named sources of OS. Two different types of cooperative mechanisms are presumed to occur between OS and HPV: I) The OS genotoxic activity and the HPV-induced genomic instability concur independently to the generation of the molecular damage necessary for the emergence of neoplastic clones. This first mode is merely a particular form of co-carcinogenesis; and II) OS specifically interacts with one or more molecular stages of neoplastic initiation and/or progression induced by the HPV infection. This manuscript was designed to summarize available data on this latter hypothesis. Experimental data and indirect evidences on promoting the activity of OS in viral infection and viral integration will be reviewe