Science.gov

Sample records for mouse lung oxidative

  1. Cell-Specific Oxidative Stress and Cytotoxicity after Wildfire Coarse Particulate Matter Instillation into Mouse Lung

    PubMed Central

    Williams, Keisha M.; Franzi, Lisa M.; Last, Jerold A.

    2012-01-01

    Our previous work has shown that coarse particulate matter (PM10-2.5) from wildfire smoke is more toxic to lung macrophages on an equal dose (by mass) basis than coarse PM isolated from normal ambient air, as evidenced by decreased numbers of macrophages in lung lavage fluid 6 and 24 hours after PM instillation into mouse lungs in vivo and by cytotoxicity to a macrophage cell line observed directly in vitro. We hypothesized that pulmonary macrophages from mice instilled with wildfire coarse PM would undergo more cytotoxicity than macrophages from controls, and that there would be an increase in oxidative stress in their lungs. Cytotoxicity was quantified as decreased viable macrophages and increased percentages of dead macrophages in the bronchoalveolar lavage fluid (BALF) of mice instilled with wildfire coarse PM. At one hour after PM instillation, we observed both decreased numbers of viable macrophages and increased dead macrophage percentages as compared to controls. An increase in free isoprostanes, an indicator of oxidative stress, from control values of 28.1±3.2 pg/mL to 83.9±12.2 pg/mL was observed a half-hour after PM instillation. By one hour after PM instillation, isoprostane values had returned to 30.4±7.6pg/mL, not significantly different from control concentrations. Lung sections from mice instilled with wildfire coarse PM showed rapid Clara cell responses, with decreased intracellular staining for the Clara cell secretory protein CCSP 1 hour after wildfire PM instillation. In conclusion, very rapid cytotoxicity occurs in pulmonary macrophages and oxidative stress responses are seen 0.5-1 hour after wildfire coarse PM instillation. These results define early cellular and biochemical events occurring in vivo and support the hypothesis that oxidative stress-mediated macrophage toxicity plays a key role in the initial response of the mouse lung to wildfire PM exposure. PMID:23142465

  2. Cell-specific oxidative stress and cytotoxicity after wildfire coarse particulate matter instillation into mouse lung

    SciTech Connect

    Williams, Keisha M.; Franzi, Lisa M.; Last, Jerold A.

    2013-01-01

    Our previous work has shown that coarse particulate matter (PM{sub 10-2.5}) from wildfire smoke is more toxic to lung macrophages on an equal dose (by mass) basis than coarse PM isolated from normal ambient air, as evidenced by decreased numbers of macrophages in lung lavage fluid 6 and 24 hours after PM instillation into mouse lungs in vivo and by cytotoxicity to a macrophage cell line observed directly in vitro. We hypothesized that pulmonary macrophages from mice instilled with wildfire coarse PM would undergo more cytotoxicity than macrophages from controls, and that there would be an increase in oxidative stress in their lungs. Cytotoxicity was quantified as decreased viable macrophages and increased percentages of dead macrophages in the bronchoalveolar lavage fluid (BALF) of mice instilled with wildfire coarse PM. At 1 hour after PM instillation, we observed both decreased numbers of viable macrophages and increased dead macrophage percentages as compared to controls. An increase in free isoprostanes, an indicator of oxidative stress, from control values of 28.1 ± 3.2 pg/mL to 83.9 ± 12.2 pg/mL was observed a half-hour after PM instillation. By 1 hour after PM instillation, isoprostane values had returned to 30.4 ± 7.6 pg/mL, not significantly different from control concentrations. Lung sections from mice instilled with wildfire coarse PM showed rapid Clara cell responses, with decreased intracellular staining for the Clara cell secretory protein CCSP 1 hour after wildfire PM instillation. In conclusion, very rapid cytotoxicity occurs in pulmonary macrophages and oxidative stress responses are seen 0.5–1 hour after wildfire coarse PM instillation. These results define early cellular and biochemical events occurring in vivo and support the hypothesis that oxidative stress-mediated macrophage toxicity plays a key role in the initial response of the mouse lung to wildfire PM exposure. -- Highlights: ► We studied very early events (0.5–1 hour) after

  3. Network Inference Algorithms Elucidate Nrf2 Regulation of Mouse Lung Oxidative Stress

    PubMed Central

    Singhal, Mudita; Malhotra, Deepti; Biswal, Shyam

    2008-01-01

    A variety of cardiovascular, neurological, and neoplastic conditions have been associated with oxidative stress, i.e., conditions under which levels of reactive oxygen species (ROS) are elevated over significant periods. Nuclear factor erythroid 2-related factor (Nrf2) regulates the transcription of several gene products involved in the protective response to oxidative stress. The transcriptional regulatory and signaling relationships linking gene products involved in the response to oxidative stress are, currently, only partially resolved. Microarray data constitute RNA abundance measures representing gene expression patterns. In some cases, these patterns can identify the molecular interactions of gene products. They can be, in effect, proxies for protein–protein and protein–DNA interactions. Traditional techniques used for clustering coregulated genes on high-throughput gene arrays are rarely capable of distinguishing between direct transcriptional regulatory interactions and indirect ones. In this study, newly developed information-theoretic algorithms that employ the concept of mutual information were used: the Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNE), and Context Likelihood of Relatedness (CLR). These algorithms captured dependencies in the gene expression profiles of the mouse lung, allowing the regulatory effect of Nrf2 in response to oxidative stress to be determined more precisely. In addition, a characterization of promoter sequences of Nrf2 regulatory targets was conducted using a Support Vector Machine classification algorithm to corroborate ARACNE and CLR predictions. Inferred networks were analyzed, compared, and integrated using the Collective Analysis of Biological Interaction Networks (CABIN) plug-in of Cytoscape. Using the two network inference algorithms and one machine learning algorithm, a number of both previously known and novel targets of Nrf2 transcriptional activation were identified. Genes predicted as

  4. A comprehensive analysis of oxidative stress in the ozone-induced lung inflammation mouse model.

    PubMed

    Wiegman, Coen H; Li, Feng; Clarke, Colin J; Jazrawi, Elen; Kirkham, Paul; Barnes, Peter J; Adcock, Ian M; Chung, Kian F

    2014-03-01

    Ozone is an oxidizing environmental pollutant that contributes significantly to respiratory health. Exposure to increased levels of ozone has been associated with worsening of symptoms of patients with asthma and COPD (chronic obstructive pulmonary disease). In the present study, we investigated the acute and chronic effects of ozone exposure-induced oxidative stress-related inflammation mechanics in mouse lung. In particular, we investigated the oxidative stress-induced effects on HDAC2 (histone deacetylase 2) modification and activation of the Nrf2 (nuclear factor erythroid-related factor 2) and HIF-1α (hypoxia-inducible factor-1α) signalling pathways. Male C57BL/6 mice were exposed to ozone (3 p.p.m.) for 3 h a day, twice a week for a period of 1, 3 or 6 weeks. Control mice were exposed to normal air. After the last exposure, mice were killed for BAL (bronchoalveolar lavage) fluid and lung tissue collection. BAL total cell counts were elevated at all of the time points studied. This was associated with increased levels of chemokines and cytokines in all ozone-exposed groups, indicating the presence of a persistent inflammatory environment in the lung. Increased inflammation and Lm (mean linear intercept) scores were observed in chronic exposed mice, indicating emphysematous changes were present in lungs of chronic exposed mice. The antioxidative stress response was active (indicated by increased Nrf2 activity and protein) after 1 week of ozone exposure, but this ability was lost after 3 and 6 weeks of ozone exposure. The transcription factor HIF-1α was elevated in 3- and 6-week ozone-exposed mice and this was associated with increased gene expression levels of several HIF-1α target genes including Hdac2 (histone deacetylase 2), Vegf (vascular endothelial growth factor), Keap1 (kelch-like ECH-associated protein 1) and Mif (macrophage migration inhibitory factor). HDAC2 protein was found to be phosphorylated and carbonylated in nuclear and cytoplasm fractions

  5. Inhaled Nitric Oxide Decreases Leukocyte Trafficking in the Neonatal Mouse Lung During Exposure to >95% Oxygen

    PubMed Central

    Rose, Melissa J.; Stenger, Michael R.; Joshi, Mandar S.; Welty, Stephen E.; Bauer, John Anthony; Nelin, Leif D.

    2010-01-01

    Chronic lung injury in the neonate is termed bronchopulmonary dysplasia (BPD). These patients generally require supplemental oxygen therapy, and hyperoxia has been implicated in the pathogenesis of BPD. The concomitant use of oxygen and inhaled nitric oxide (iNO) may result in the generation of reactive nitrogen species, or may have an anti-inflammatory effect in the neonatal lung. We tested the hypothesis that exposure to >95% O2 in neonatal mice would increase trafficking of leukocytes into the lung, and that the addition of iNO to >95% O2 would decrease this leukocyte trafficking. Hyperoxia resulted in fewer alveoli, increased presence of neutrophils and macrophages, and decreased number of mast cells within the lung parenchyma. Adding iNO to hyperoxia prevented the hyperoxia-induced changes and resulted in the numbers of alveoli, neutrophils, macrophages, and mast cells approximating those found in controls (room air exposure). Intercellular adhesion molecule (ICAM) and monocyte chemotactic protein-1 (MCP-1), two factors responsible for leukocyte recruitment, were upregulated by hyperoxic exposure, but the addition of iNO to the hyperoxic exposure prevented the hyperoxia-induced upregulation of ICAM and MCP-1. These data demonstrate that iNO alters the hyperoxia-induced recruitment of leukocytes into the lung. PMID:19915514

  6. Pharmacological and genetic reappraisals of protease and oxidative stress pathways in a mouse model of obstructive lung diseases

    PubMed Central

    Shuto, Tsuyoshi; Kamei, Shunsuke; Nohara, Hirofumi; Fujikawa, Haruka; Tasaki, Yukihiro; Sugahara, Takuya; Ono, Tomomi; Matsumoto, Chizuru; Sakaguchi, Yuki; Maruta, Kasumi; Nakashima, Ryunosuke; Kawakami, Taisei; Suico, Mary Ann; Kondo, Yoshitaka; Ishigami, Akihito; Takeo, Toru; Tanaka, Ken-ichiro; Watanabe, Hiroshi; Nakagata, Naomi; Uchimura, Kohei; Kitamura, Kenichiro; Li, Jian-Dong; Kai, Hirofumi

    2016-01-01

    Protease-antiprotease imbalance and oxidative stress are considered to be major pathophysiological hallmarks of severe obstructive lung diseases including chronic obstructive pulmonary disease (COPD) and cystic fibrosis (CF), but limited information is available on their direct roles in the regulation of pulmonary phenotypes. Here, we utilized βENaC-transgenic (Tg) mice, the previously established mouse model of severe obstructive lung diseases, to produce lower-mortality but pathophysiologically highly useful mouse model by backcrossing the original line with C57/BL6J mice. C57/BL6J-βENaC-Tg mice showed higher survival rates and key pulmonary abnormalities of COPD/CF, including mucous hypersecretion, inflammatory and emphysematous phenotypes and pulmonary dysfunction. DNA microarray analysis confirmed that protease- and oxidative stress-dependent pathways are activated in the lung tissue of C57/BL6J-βENaC-Tg mice. Treatments of C57/BL6J-βENaC-Tg mice with a serine protease inhibitor ONO-3403, a derivative of camostat methylate (CM), but not CM, and with an anti-oxidant N-acetylcystein significantly improved pulmonary emphysema and dysfunction. Moreover, depletion of a murine endogenous antioxidant vitamin C (VC), by genetic disruption of VC-synthesizing enzyme SMP30 in C57/BL6J-βENaC-Tg mice, exaggerated pulmonary phenotypes. Thus, these assessments clarified that protease-antiprotease imbalance and oxidative stress are critical pathways that exacerbate the pulmonary phenotypes of C57/BL6J-βENaC-Tg mice, consistent with the characteristics of human COPD/CF. PMID:27982104

  7. Pharmacological and genetic reappraisals of protease and oxidative stress pathways in a mouse model of obstructive lung diseases.

    PubMed

    Shuto, Tsuyoshi; Kamei, Shunsuke; Nohara, Hirofumi; Fujikawa, Haruka; Tasaki, Yukihiro; Sugahara, Takuya; Ono, Tomomi; Matsumoto, Chizuru; Sakaguchi, Yuki; Maruta, Kasumi; Nakashima, Ryunosuke; Kawakami, Taisei; Suico, Mary Ann; Kondo, Yoshitaka; Ishigami, Akihito; Takeo, Toru; Tanaka, Ken-Ichiro; Watanabe, Hiroshi; Nakagata, Naomi; Uchimura, Kohei; Kitamura, Kenichiro; Li, Jian-Dong; Kai, Hirofumi

    2016-12-16

    Protease-antiprotease imbalance and oxidative stress are considered to be major pathophysiological hallmarks of severe obstructive lung diseases including chronic obstructive pulmonary disease (COPD) and cystic fibrosis (CF), but limited information is available on their direct roles in the regulation of pulmonary phenotypes. Here, we utilized βENaC-transgenic (Tg) mice, the previously established mouse model of severe obstructive lung diseases, to produce lower-mortality but pathophysiologically highly useful mouse model by backcrossing the original line with C57/BL6J mice. C57/BL6J-βENaC-Tg mice showed higher survival rates and key pulmonary abnormalities of COPD/CF, including mucous hypersecretion, inflammatory and emphysematous phenotypes and pulmonary dysfunction. DNA microarray analysis confirmed that protease- and oxidative stress-dependent pathways are activated in the lung tissue of C57/BL6J-βENaC-Tg mice. Treatments of C57/BL6J-βENaC-Tg mice with a serine protease inhibitor ONO-3403, a derivative of camostat methylate (CM), but not CM, and with an anti-oxidant N-acetylcystein significantly improved pulmonary emphysema and dysfunction. Moreover, depletion of a murine endogenous antioxidant vitamin C (VC), by genetic disruption of VC-synthesizing enzyme SMP30 in C57/BL6J-βENaC-Tg mice, exaggerated pulmonary phenotypes. Thus, these assessments clarified that protease-antiprotease imbalance and oxidative stress are critical pathways that exacerbate the pulmonary phenotypes of C57/BL6J-βENaC-Tg mice, consistent with the characteristics of human COPD/CF.

  8. Flaxseed Mitigates Acute Oxidative Lung Damage in a Mouse Model of Repeated Radiation and Hyperoxia Exposure Associated with Space Exploration.

    PubMed

    Pietrofesa, Ralph A; Solomides, Charalambos C; Christofidou-Solomidou, Melpo

    Spaceflight missions may require crewmembers to conduct extravehicular activities (EVA). Pre-breathe protocols in preparation for an EVA entail 100% hyperoxia exposure that may last for a few hours and be repeated 2-3 times weekly. Each EVA is associated with additional challenges such as low levels of total body cosmic/galactic radiation exposure that may present a threat to crewmember health. We have developed a mouse model of total body radiation and hyperoxia exposure and identified acute damage of lung tissues. In the current study we evaluated the usefulness of dietary flaxseed (FS) as a countermeasure agent for such double-hit exposures. We evaluated lung tissue changes 2 weeks post-initiation of exposure challenges. Mouse cohorts (n=5/group) were pre-fed diets containing either 0% FS or 10% FS for 3 weeks and exposed to: a) normoxia (Untreated); b) >95% O2 (O2); c) 0.25Gy single fraction gamma radiation (IR); or d) a combination of O2 and IR (O2+IR) 3 times per week for 2 consecutive weeks, where 8-hour hyperoxia treatments were spanned by normoxic intervals. At 2 weeks post challenge, while control-diet fed mice developed significant lung injury and inflammation across all challenges, FS protected lung tissues by decreasing bronchoalveolar lavage fluid (BALF) neutrophils (p<0.003) and protein levels, oxidative tissue damage, as determined by levels of malondialdehyde (MDA) (p<0.008) and nitrosative stress as determined by nitrite levels. Lung hydroxyproline levels, a measure of lung fibrosis, were significantly elevated in mice fed 0% FS (p<0.01) and exposed to hyperoxia/radiation or the combination treatment, but not in FS-fed mice. FS also decreased levels of a pro-inflammatory, pro-fibrogenic cytokine (TGF-β1) gene expression levels in lung. Flaxseed mitigated adverse effects in lung of repeat exposures to radiation/hyperoxia. This data will provide useful information in the design of countermeasures to early tissue oxidative damage associated with

  9. Flaxseed Mitigates Acute Oxidative Lung Damage in a Mouse Model of Repeated Radiation and Hyperoxia Exposure Associated with Space Exploration

    PubMed Central

    Pietrofesa, Ralph A.; Solomides, Charalambos C.; Christofidou-Solomidou, Melpo

    2015-01-01

    Background Spaceflight missions may require crewmembers to conduct extravehicular activities (EVA). Pre-breathe protocols in preparation for an EVA entail 100% hyperoxia exposure that may last for a few hours and be repeated 2-3 times weekly. Each EVA is associated with additional challenges such as low levels of total body cosmic/galactic radiation exposure that may present a threat to crewmember health. We have developed a mouse model of total body radiation and hyperoxia exposure and identified acute damage of lung tissues. In the current study we evaluated the usefulness of dietary flaxseed (FS) as a countermeasure agent for such double-hit exposures. Methods We evaluated lung tissue changes 2 weeks post-initiation of exposure challenges. Mouse cohorts (n=5/group) were pre-fed diets containing either 0% FS or 10% FS for 3 weeks and exposed to: a) normoxia (Untreated); b) >95% O2 (O2); c) 0.25Gy single fraction gamma radiation (IR); or d) a combination of O2 and IR (O2+IR) 3 times per week for 2 consecutive weeks, where 8-hour hyperoxia treatments were spanned by normoxic intervals. Results At 2 weeks post challenge, while control-diet fed mice developed significant lung injury and inflammation across all challenges, FS protected lung tissues by decreasing bronchoalveolar lavage fluid (BALF) neutrophils (p<0.003) and protein levels, oxidative tissue damage, as determined by levels of malondialdehyde (MDA) (p<0.008) and nitrosative stress as determined by nitrite levels. Lung hydroxyproline levels, a measure of lung fibrosis, were significantly elevated in mice fed 0% FS (p<0.01) and exposed to hyperoxia/radiation or the combination treatment, but not in FS-fed mice. FS also decreased levels of a pro-inflammatory, pro-fibrogenic cytokine (TGF-β1) gene expression levels in lung. Conclusion Flaxseed mitigated adverse effects in lung of repeat exposures to radiation/hyperoxia. This data will provide useful information in the design of countermeasures to early

  10. Effects of nickel-oxide nanoparticle pre-exposure dispersion status on bioactivity in the mouse lung.

    PubMed

    Sager, Tina; Wolfarth, Michael; Keane, Michael; Porter, Dale; Castranova, Vincent; Holian, Andrij

    2016-01-01

    Nanotechnology is emerging as one of the world's most promising new technologies. From a toxicology perspective, nanoparticles possess two features that promote their bioactivity. The first involves physical-chemical characteristics of the nanoparticle, which include the surface area of the nanoparticle. The second feature is the ability of the nanoparticle to traverse cell membranes. These two important nanoparticle characteristics are greatly influenced by placing nanoparticles in liquid medium prior to animal exposure. Nanoparticles tend to agglomerate and clump in suspension, making it difficult to reproducibly deliver them for in vivo or in vitro experiments, possibly affecting experimental variability. Thus, we hypothesize that nanoparticle dispersion status will correlate with the in vivo bioactivity/toxicity of the particle. To test our hypothesis, nano-sized nickel oxide was suspended in four different dispersion media (phosphate-buffered saline (PBS), dispersion medium (DM), a combination of dipalmitoyl-phosphatidyl choline (DPPC) and albumin in concentrations that mimic diluted alveolar lining fluid), Survanta®, or pluronic (Pluronic F-68). Well-dispersed and poorly dispersed suspensions were generated in each media by varying sonication time on ice utilizing a Branson Sonifer 450 (25W continuous output, 20 min or 5 min, respectively). Mice (male, C57BL/6J, 7-weeks-old) were given 0-80 µg/mouse of nano-sized nickel oxide in the different states of dispersion via pharyngeal aspiration. At 1 and 7 d post-exposure, mice underwent whole lung lavage to assess pulmonary inflammation and injury as a function of dispersion status, dose and time. The results show that pre-exposure dispersion status correlates with pulmonary inflammation and injury. These results indicate that a greater degree of pre-exposure dispersion increases pulmonary inflammation and cytotoxicity, as well as decreases in the integrity of the blood-gas barrier in the lung.

  11. In vivo treatment with aflatoxin B1 increases DNA oxidation, base excision repair activity and 8-oxoguanine DNA glycosylase 1 levels in mouse lung.

    PubMed

    Guindon-Kezis, Katherine A; Mulder, Jeanne E; Massey, Thomas E

    2014-07-03

    Carcinogenicity of the mycotoxin aflatoxin B1 (AFB1), which is produced by Aspergillus fungi, is associated with bioactivation of AFB1 to AFB1-8,9-exo-epoxide and formation of DNA adducts. However, AFB1 also causes 8-hydroxy-2'-deoxyguanosine (8-OHdG) formation in mouse lung DNA, suggesting that oxidative DNA damage may also contribute to AFB1 carcinogenicity. The oxidative DNA damage 5-hydroxy-2'-deoxycytidine (5-OHdC) may also contribute to AFB1 carcinogenicity. The objective of the present study was to determine the effect of treatment of mice with AFB1 on pulmonary and hepatic: 8-OHdG and 5-OHdC levels; base excision repair (BER, which repairs oxidative DNA damage) activities; and on levels of 8-oxoguanine DNA glycosylase (OGG1, the rate-limiting enzyme in the BER of 8-OHdG). Female A/J mice were treated with vehicle (dimethyl sulfoxide) or 50 mg/kg AFB1 ip. Oxidative DNA damage was measured using HPLC with electrochemical detection, BER activity was assessed using an in vitro assay that employs a substrate plasmid DNA with 8-OHdG lesions, and OGG1 protein levels were determined by immunoblotting. Two hours post treatment, AFB1 increased 8-OHdG levels in mouse lung DNA by approximately 69% relative to control (p<0.05), but did not alter 8-OHdG levels in liver or 5-OHdC levels in lung or liver (p>0.05). AFB1 treatment also increased BER activity in mouse lung by approximately 87% (p<0.05) but did not affect hepatic BER activity (p>0.05). Levels of OGG1 immunoreactive protein were increased in both lung (20%) and liver (60%) (p<0.05). These results are consistent with oxidative DNA damage contributing to the carcinogenicity of AFB1 in this model.

  12. DIETARY FLAXSEED PREVENTS RADIATION-INDUCED OXIDATIVE LUNG DAMAGE, INFLAMMATION AND FIBROSIS IN A MOUSE MODEL OF THORACIC RADIATION INJURY

    PubMed Central

    Lee, James C.; Krochak, Ryan; Blouin, Aaron; Kanterakis, Stathis; Chatterjee, Shampa; Arguiri, Evguenia; Vachani, Anil; Solomides, Charalambos C.; Cengel, Keith A.; Christofidou-Solomidou, Melpo

    2009-01-01

    Flaxseed (FS) has high contents of omega-3 fatty acids and lignans with antioxidant properties. Its use in preventing thoracic X-ray radiation therapy (XRT)-induced pneumonopathy has never been evaluated. We evaluated FS supplementation given to mice given before and post-XRT. FS-derived lignans, known for their direct antioxidant properties, were evaluated in abrogating ROS generation in cultured endothelial cells following gamma radiation exposure. Mice were fed 10% FS or isocaloric control diet for three weeks and given 13.5 Gy thoracic XRT. Lungs were evaluated at 24 hours for markers of radiation-induced injury, three weeks for acute lung damage (lipid peroxidation, lung edema and inflammation), and at four months for late lung damage (inflammation and fibrosis). FS-Lignans blunted ROS generation in vitro, resulting from radiation in a dose-dependent manner. FS-fed mice had reduced expression of lung injury biomarkers (Bax, p21, and TGF-beta1) at 24 hours following XRT and reduced oxidative lung damage as measured by malondialdehyde (MDA) levels at 3 weeks following XRT. In addition, FS-fed mice had decreased lung fibrosis as determined by hydroxyproline content and decreased inflammatory cell influx into lungs at 4 months post XRT. Importantly, when Lewis Lung carcinoma cells were injected systemically in mice, FS dietary supplementation did not appear to protect lung tumors from responding to thoracic XRT. Dietary FS is protective against pulmonary fibrosis, inflammation and oxidative lung damage in a murine model. Moreover, in this model, tumor radioprotection was not observed. FS lignans exhibited potent radiation-induced ROS scavenging action. Taken together, these data suggest that dietary flaxseed may be clinically useful as an agent to increase the therapeutic index of thoracic XRT by increasing the radiation tolerance of lung tissues. PMID:18981722

  13. Suppression of basal and carbon nanotube-induced oxidative stress, inflammation and fibrosis in mouse lungs by Nrf2.

    PubMed

    Dong, Jie; Ma, Qiang

    2016-08-01

    The lungs are susceptible to oxidative damage by inhaled pathogenic agents, including multi-walled carbon nanotubes (MWCNT). The nuclear factor erythroid 2-related factor 2 (Nrf2) has been implicated in regulating the body's defense against oxidative stress. Here, we analyzed the function of Nrf2 in the lungs. Under a basal condition, Nrf2 knockout (KO) mice showed apparent pulmonary infiltration of granulocytes, macrophages and B and T lymphocytes, and elevated deposition of collagen fibers. Exposure to MWCNT (XNRI MWNT-7, Mitsui, Tokyo, Japan) by pharyngeal aspiration elicited rapid inflammatory and fibrotic responses in a dose (0, 5, 20 and 40 μg) and time (1, 3, 7 and 14 d)-dependent manner. The responses reached peak levels on day 7 post-exposure to 40 μg MWCNT, evidenced by massive inflammatory infiltration and formation of inflammatory and fibrotic foci, which were more evident in Nrf2 KO than wild-type (WT) lungs. At the molecular level, Nrf2 protein was detected at a low level under a basal condition, and was dramatically increased by MWCNT in WT, but not Nrf2 KO, lungs. Activation of Nrf2 was inversely correlated with induced expression of fibrosis marker genes and profibrotic cytokines. Furthermore, the levels of ROS and oxidative stress were remarkably higher in Nrf2 KO than WT lungs under a physiological condition, and were dramatically increased by MWCNT, with the increase significantly more striking in KO lungs. The findings reveal that Nrf2 plays an important role in suppressing the basal and MWCNT-induced oxidant production, inflammation and fibrosis in the lungs, thereby protecting against MWCNT lung toxicity.

  14. Biodiesel versus diesel exposure: Enhanced pulmonary inflammation, oxidative stress, and differential morphological changes in the mouse lung

    SciTech Connect

    Yanamala, Naveena; Birch, M. Eileen; Kisin, Elena; Bugarski, Aleksandar D.

    2013-10-15

    The use of biodiesel (BD) or its blends with petroleum diesel (D) is considered to be a viable approach to reduce occupational and environmental exposures to particulate matter (PM). Due to its lower particulate mass emissions compared to D, use of BD is thought to alleviate adverse health effects. Considering BD fuel is mainly composed of unsaturated fatty acids, we hypothesize that BD exhaust particles could induce pronounced adverse outcomes, due to their ability to readily oxidize. The main objective of this study was to compare the effects of particles generated by engine fueled with neat BD and neat petroleum-based D. Biomarkers of tissue damage and inflammation were significantly elevated in lungs of mice exposed to BD particulates. Additionally, BD particulates caused a significant accumulation of oxidatively modified proteins and an increase in 4-hydroxynonenal. The up-regulation of inflammatory cytokines/chemokines/growth factors was higher in lungs upon BD particulate exposure. Histological evaluation of lung sections indicated presence of lymphocytic infiltrate and impaired clearance with prolonged retention of BD particulate in pigment laden macrophages. Taken together, these results clearly indicate that BD exhaust particles could exert more toxic effects compared to D. - Highlights: • Exposure of mice to BDPM caused higher pulmonary toxicity compared to DPM. • Oxidative stress and inflammation were higher in BD vs to D exposed mice. • Inflammatory lymphocyte infiltrates were seen only in lungs of mice exposed to BD. • Ineffective clearance, prolonged PM retention was present only after BD exposure.

  15. Acute exposure to waterpipe tobacco smoke induces changes in the oxidative and inflammatory markers in mouse lung.

    PubMed

    Khabour, Omar F; Alzoubi, Karem H; Bani-Ahmad, Mohammed; Dodin, Arwa; Eissenberg, Thomas; Shihadeh, Alan

    2012-08-01

    Tobacco smoking represents a global public health threat, claiming approximately 5 million lives a year. Waterpipe tobacco use has become popular particularly among youth in the past decade, buttressed by the perception that the waterpipe "filters" the smoke, rendering it less harmful than cigarette smoke. In this study, we examined the acute exposure of waterpipe smoking on lung inflammation and oxidative stress in mice, and compared that to cigarette smoking. Mice were divided into three groups; fresh air control, cigarette and waterpipe. Animals were exposed to fresh air, cigarette, or waterpipe smoke using whole body exposure system one hour daily for 7 days. Both cigarette and waterpipe smoke exposure resulted in elevation of total white blood cell count, as well as absolute count of neutrophils, macrophages, and lymphocytes (P < 0.01). Both exposures also elevated proinflammatory markers such as TNF-α and IL-6 in BALF (P < 0.05), and oxidative stress markers including GPx activity in lungs (P < 0.05). Moreover, waterpipe smoke increased catalase activity in the lung (P < 0.05). However, none of the treatments altered IL-10 levels. Results of cigarette smoking confirmed previous finding. Waterpipe results indicate that, similar to cigarettes, exposure to waterpipe tobacco smoke is harmful to the lungs.

  16. Vapors Produced by Electronic Cigarettes and E-Juices with Flavorings Induce Toxicity, Oxidative Stress, and Inflammatory Response in Lung Epithelial Cells and in Mouse Lung

    PubMed Central

    Lerner, Chad A.; Sundar, Isaac K.; Yao, Hongwei; Gerloff, Janice; Ossip, Deborah J.; McIntosh, Scott; Robinson, Risa; Rahman, Irfan

    2015-01-01

    Oxidative stress and inflammatory response are the key events in the pathogenesis of chronic airway diseases. The consumption of electronic cigarettes (e-cigs) with a variety of e-liquids/e-juices is alarmingly increasing without the unrealized potential harmful health effects. We hypothesized that electronic nicotine delivery systems (ENDS)/e-cigs pose health concerns due to oxidative toxicity and inflammatory response in lung cells exposed to their aerosols. The aerosols produced by vaporizing ENDS e-liquids exhibit oxidant reactivity suggesting oxidants or reactive oxygen species (OX/ROS) may be inhaled directly into the lung during a “vaping” session. These OX/ROS are generated through activation of the heating element which is affected by heating element status (new versus used), and occurs during the process of e-liquid vaporization. Unvaporized e-liquids were oxidative in a manner dependent on flavor additives, while flavors containing sweet or fruit flavors were stronger oxidizers than tobacco flavors. In light of OX/ROS generated in ENDS e-liquids and aerosols, the effects of ENDS aerosols on tissues and cells of the lung were measured. Exposure of human airway epithelial cells (H292) in an air-liquid interface to ENDS aerosols from a popular device resulted in increased secretion of inflammatory cytokines, such as IL-6 and IL-8. Furthermore, human lung fibroblasts exhibited stress and morphological change in response to treatment with ENDS/e-liquids. These cells also secrete increased IL-8 in response to a cinnamon flavored e-liquid and are susceptible to loss of cell viability by ENDS e-liquids. Finally, exposure of wild type C57BL/6J mice to aerosols produced from a popular e-cig increase pro-inflammatory cytokines and diminished lung glutathione levels which are critical in maintaining cellular redox balance. Thus, exposure to e-cig aerosols/juices incurs measurable oxidative and inflammatory responses in lung cells and tissues that could lead to

  17. Biodiesel versus diesel exposure: Enhanced pulmonary inflammation, oxidative stress, and differential morphological changes in the mouse lung

    PubMed Central

    Yanamala, Naveena; Hatfield, Meghan K.; Farcas, Mariana T.; Schwegler-Berry, Diane; Hummer, Jon A.; Shurin, Michael R.; Birch, M. Eileen; Gutkin, Dmitriy W.; Kisin, Elena; Kagan, Valerian E.; Bugarski, Aleksandar D.; Shvedova, Anna A.

    2015-01-01

    The use of biodiesel (BD) or its blends with petroleum diesel (D) is considered to be a viable approach to reduce occupational and environmental exposures to particulate matter (PM). Due to its lower particulate mass emissions compared to D, use of BD is thought to alleviate adverse health effects. Considering BD fuel is mainly composed of unsaturated fatty acids, we hypothesize that BD exhaust particles could induce pronounced adverse outcomes, due to their ability to readily oxidize. The main objective of this study was to compare the effects of particles generated by engine fueled with neat BD and neat petroleum-based D. Biomarkers of tissue damage and inflammation were significantly elevated in lungs of mice exposed to BD particulates. Additionally, BD particulates caused a significant accumulation of oxidatively modified proteins and an increase in 4-hydroxynonenal. The up-regulation of inflammatory cytokines/chemokines/growth factors was higher in lungs upon BD particulate exposure. Histological evaluation of lung sections indicated presence of lymphocytic infiltrate and impaired clearance with prolonged retention of BD particulate in pigment laden macrophages. Taken together, these results clearly indicate that BD exhaust particles could exert more toxic effects compared to D. PMID:23886933

  18. Development of Mouse Lung Deposition Models

    DTIC Science & Technology

    2015-07-01

    Particle inhalability in mice was lower than that in rats . In contrast, deposition of the same size particle was higher in mice nasal passages than...that in rats . Thus, fewer particles entered the mouse lung in comparison with rat particle inhalation. The penetration was severely limited for...geometry that was previously developed for humans, rats , and rhesus monkeys [6], [7]. Inputs to the model included lung geometry and volumes, and

  19. Studies of styrene, styrene oxide and 4-hydroxystyrene toxicity in CYP2F2 knockout and CYP2F1 humanized mice support lack of human relevance for mouse lung tumors.

    PubMed

    Cruzan, G; Bus, J; Hotchkiss, J; Sura, R; Moore, C; Yost, G; Banton, M; Sarang, S

    2013-06-01

    Styrene (S) is lung tumorigenic in mice but not in rats. S and its alkene-oxidized metabolite styrene oxide (SO) were not lung toxic in CYP2F2(-/-) [knockout] mice, indicating S-induced mouse lung tumors are mediated through mouse-specific CYP2F2-generated ring-oxidized metabolite(s) in lung bronchioles. The human relevance of the CYP2F MOA was assessed by insertion of a human CYP2F1, 2A13, 2B6 transgene into CYP2F2(-/-) mice; CYP2F1 expression and activity were confirmed in the transgenic (TG) mice. No evidence of cytotoxicity or increased cell proliferation (BrdU labeling) was seen in TG mice treated with either S or SO (200mg/kg/day ip for 5days). In contrast to S and SO, 4HS (105mg/kg/day ip for 5days) increased BrdU labeling 5-10-fold in WT mice, <3-fold increase in KO mice and 2-4-fold in TG mice. The limited response of 4HS in KO and TG mice may result from intrinsic toxicity or from further metabolism; regardless of the MOA, these findings indicate that the CYP2F-mediated tumorigenic MOA in WT mice is not operative for S, SO, or for 4HS putatively derived from metabolism of S by CYP2F1 in humans, and thus S-induced mouse lung tumors are unlikely to be relevant to human risk.

  20. MALDI imaging MS of phospholipids in the mouse lung[S

    PubMed Central

    Berry, Karin A. Zemski; Li, Bilan; Reynolds, Susan D.; Barkley, Robert M.; Gijón, Miguel A.; Hankin, Joseph A.; Henson, Peter M.; Murphy, Robert C.

    2011-01-01

    Lipid mediators are important in lung biochemistry and are derived from the enzymatic oxidation of arachidonic and docosahexaenoic acids, which are PUFAs that are present in phospholipids in cell membranes. In this study, MALDI imaging MS was used to determine the localization of arachidonate- and docosahexaenoate-containing phospholipids in mouse lung. These PUFA-containing phospholipids were determined to be uniquely abundant at the lining of small and large airways, which were unequivocally identified by immunohistochemistry. In addition, it was found that the blood vessels present in the lung were characterized by sphingomyelin molecular species, and lung surfactant phospholipids appeared evenly distributed throughout the lung parenchyma, indicating alveolar localization. This technique revealed unexpected high concentrations of arachidonate- and docosahexaenoate-containing phospholipids lining the airways in pulmonary tissue, which could serve as precursors of lipid mediators affecting airways biology. PMID:21508254

  1. Antibodies to mouse lung capillary endothelium.

    PubMed

    Rorvik, M C; Allison, D P; Hotchkiss, J A; Witschi, H P; Kennel, S J

    1988-07-01

    We are interested in developing monoclonal antibodies (MoAbs) that recognize specific cell types in the lung of BALB/c mice. Normal mouse lung homogenate was used to immunize F344 rats and hybridomas were produced by fusion of rat spleen cells with mouse myeloma SP 2/0. Two hybridomas were selected which produced MoAbs active in immunohistochemistry of lung cells. MoAb 273-34A and 411-201B both show extensive peroxidase staining of capillary endothelial cells within alveolar walls of lungs at the light microscopic level. To demonstrate cell specificity, immunoelectron microscopy with gold-labeled antibody was performed. Lightly fixed lungs were frozen and thin-sectioned before staining with MoAb and 5-nm gold particles coupled to secondary antibody. Quantitative analyses of these cryosections show that both antibodies, used at optimal concentrations, are specific for binding to capillary endothelial cells. More than 95% of the gold particles are associated with capillary endothelial cells on the thin side of the alveolar wall. When capillaries adjoined thick septa containing interstitial cells, about two thirds of the gold particles were associated with endothelial cells and about one quarter with interstitial cells. These MoAbs should be useful in studying the role of endothelial cells in toxic lung injury.

  2. Lung Oxidative Damage by Hypoxia

    PubMed Central

    Araneda, O. F.; Tuesta, M.

    2012-01-01

    One of the most important functions of lungs is to maintain an adequate oxygenation in the organism. This organ can be affected by hypoxia facing both physiological and pathological situations. Exposure to this condition favors the increase of reactive oxygen species from mitochondria, as from NADPH oxidase, xanthine oxidase/reductase, and nitric oxide synthase enzymes, as well as establishing an inflammatory process. In lungs, hypoxia also modifies the levels of antioxidant substances causing pulmonary oxidative damage. Imbalance of redox state in lungs induced by hypoxia has been suggested as a participant in the changes observed in lung function in the hypoxic context, such as hypoxic vasoconstriction and pulmonary edema, in addition to vascular remodeling and chronic pulmonary hypertension. In this work, experimental evidence that shows the implied mechanisms in pulmonary redox state by hypoxia is reviewed. Herein, studies of cultures of different lung cells and complete isolated lung and tests conducted in vivo in the different forms of hypoxia, conducted in both animal models and humans, are described. PMID:22966417

  3. Lung oxidative damage by hypoxia.

    PubMed

    Araneda, O F; Tuesta, M

    2012-01-01

    One of the most important functions of lungs is to maintain an adequate oxygenation in the organism. This organ can be affected by hypoxia facing both physiological and pathological situations. Exposure to this condition favors the increase of reactive oxygen species from mitochondria, as from NADPH oxidase, xanthine oxidase/reductase, and nitric oxide synthase enzymes, as well as establishing an inflammatory process. In lungs, hypoxia also modifies the levels of antioxidant substances causing pulmonary oxidative damage. Imbalance of redox state in lungs induced by hypoxia has been suggested as a participant in the changes observed in lung function in the hypoxic context, such as hypoxic vasoconstriction and pulmonary edema, in addition to vascular remodeling and chronic pulmonary hypertension. In this work, experimental evidence that shows the implied mechanisms in pulmonary redox state by hypoxia is reviewed. Herein, studies of cultures of different lung cells and complete isolated lung and tests conducted in vivo in the different forms of hypoxia, conducted in both animal models and humans, are described.

  4. Oxidative Stress, Inflammatory Biomarkers, and Toxicity in Mouse Lung and Liver After Inhalation Exposure to 100% Biodiesel or Petroleum Diesel Emissions

    PubMed Central

    Shvedova, Anna A.; Yanamala, Naveena; Murray, Ashley R.; Kisin, Elena R.; Khaliullin, Timur; Hatfield, Meghan K.; Tkach, Alexey V.; Krantz, Q. T.; Nash, David; King, Charly; Gilmour, M. Ian; Gavett, Stephen H.

    2015-01-01

    Over the past decade, soy biodiesel (BD) has become a first alternative energy source that is economically viable and meets requirements of the Clean Air Act. Due to lower mass emissions and reduced hazardous compounds compared to diesel combustion emissions (CE), BD exposure is proposed to produce fewer adverse health effects. However, considering the broad use of BD and its blends in different industries, this assertion needs to be supported and validated by mechanistic and toxicological data. Here, adverse effects were compared in lungs and liver of BALB/cJ mice after inhalation exposure (0, 50, 150, or 500 μg/m3; 4 h/d, 5 d/wk, for 4 wk) to CE from 100% biodiesel (B100) and diesel (D100). Compared to D100, B100 CE produced a significant accumulation of oxidatively modified proteins (carbonyls), an increase in 4-hydroxynonenal (4-HNE), a reduction of protein thiols, a depletion of antioxidant gluthatione (GSH), a dose-related rise in the levels of biomarkers of tissue damage (lactate dehydrogenase, LDH) in lungs, and inflammation (myeloperoxidase, MPO) in both lungs and liver. Significant differences in the levels of inflammatory cytokines interleukin (IL)-6, IL-10, IL-12p70, monocyte chemoattractant protein (MCP)-1, interferon (IFN) γ, and tumor necrosis factor (TNF)-α were detected in lungs and liver upon B100 and D100 CE exposures. Overall, the tissue damage, oxidative stress, inflammation, and cytokine response were more pronounced in mice exposed to BD CE. Further studies are required to understand what combustion products in BD CE accelerate oxidative and inflammatory responses. PMID:24156694

  5. Effects of Cigarette Smoke on the Activation of Oxidative Stress-Related Transcription Factors in Female A/J Mouse Lung

    PubMed Central

    Tharappel, Job C.; Cholewa, Jill; Espandiari, Parvaneh; Spear, Brett T.; Gairola, C. Gary; Glauert, Howard P.

    2010-01-01

    Cigarette smoke contains a high concentration of free radicals and induces oxidative stress in the lung and other tissues. Several transcription factors are known to be activated by oxidative stress, including nuclear factor-κB (NF-κB), activator protein-1 (AP-1), and hypoxia-inducible factor (HIF). Studies were therefore undertaken to examine if cigarette smoke could activate these transcription factors, as well as other transcription factors that may be important in lung carcinogenesis. Female A/J mice were exposed to cigarette smoke for 2, 5, 10, 15, 20, 42, or 56 days (6 hr/day, 5 days/wk). Cigarette smoke did not increase NF-κB activation at any of these times, but NF-κB DNA binding activity was lower after 15 days and 56 days of smoke exposure. The DNA binding activity of AP-1 was lower after 10 days and 56 days but was not changed after 42 days of smoke exposure. The DNA binding activity of HIF was quantitatively increased after 42 days of smoke exposure but decreased after 56 days. Whether the activation of other transcription factors in the lung could be altered after exposure to cigarette smoke was subsequently examined. The DNA binding activities of FoxF2, myc-CF1, RORE, and p53 were examined after 10 days of smoke exposure. The DNA binding activities of FoxF2 and p53 were quantitatively increased, but those of myc-CF1 and RORE were unaffected. These studies show that cigarette smoke exposure leads to quantitative increases in DNA binding activities of FoxF2 and p53, while the activations of NF-κB, AP-1, and HIF are largely unaffected or reduced. PMID:20711931

  6. Multi-walled carbon nanotube-induced gene expression in the mouse lung: Association with lung pathology

    SciTech Connect

    Pacurari, M.; Qian, Y.; Porter, D.W.; Wolfarth, M.; Wan, Y.; Luo, D.; Ding, M.; Castranova, V.; Guo, N.L.

    2011-08-15

    Due to the fibrous shape and durability of multi-walled carbon nanotubes (MWCNT), concerns regarding their potential for producing environmental and human health risks, including carcinogenesis, have been raised. This study sought to investigate how previously identified lung cancer prognostic biomarkers and the related cancer signaling pathways are affected in the mouse lung following pharyngeal aspiration of well-dispersed MWCNT. A total of 63 identified lung cancer prognostic biomarker genes and major signaling biomarker genes were analyzed in mouse lungs (n = 80) exposed to 0, 10, 20, 40, or 80 {mu}g of MWCNT by pharyngeal aspiration at 7 and 56 days post-exposure using quantitative PCR assays. At 7 and 56 days post-exposure, a set of 7 genes and a set of 11 genes, respectively, showed differential expression in the lungs of mice exposed to MWCNT vs. the control group. Additionally, these significant genes could separate the control group from the treated group over the time series in a hierarchical gene clustering analysis. Furthermore, 4 genes from these two sets of significant genes, coiled-coil domain containing-99 (Ccdc99), muscle segment homeobox gene-2 (Msx2), nitric oxide synthase-2 (Nos2), and wingless-type inhibitory factor-1 (Wif1), showed significant mRNA expression perturbations at both time points. It was also found that the expression changes of these 4 overlapping genes at 7 days post-exposure were attenuated at 56 days post-exposure. Ingenuity Pathway Analysis (IPA) found that several carcinogenic-related signaling pathways and carcinogenesis itself were associated with both the 7 and 11 gene signatures. Taken together, this study identifies that MWCNT exposure affects a subset of lung cancer biomarkers in mouse lungs. - Research Highlights: > Multi-Walled Carbon Nanotubes affect lung cancer biomarkers in mouse lungs. > The results suggest potentially harmful effects of MWCNT exposure on human lungs. > The results could potentially be used for

  7. Treatment with the nitric oxide synthase inhibitor L-NAME provides a survival advantage in a mouse model of Kras mutation-positive, non-small cell lung cancer

    PubMed Central

    Xu, MengMeng; Counter, Christopher M.

    2016-01-01

    Oncogenic mutations in the gene KRAS are commonly detected in non-small cell lung cancer (NSCLC). This disease is inherently difficult to treat, and combinations involving platinum-based drugs remain the therapeutic mainstay. In terms of novel, pharmacologically actionable targets, nitric oxide synthases (NOS) have been implicated in the etiology of KRAS-driven cancers, including lung cancer, and small molecular weight NOS inhibitors have been developed for the treatment of other diseases. Thus, we evaluated the anti-neoplastic activity of the oral NOS inhibitor L-NAME in a randomized preclinical trial using a genetically engineered mouse model of Kras and p53 mutation-positive NSCLC. We report here that L-NAME decreased lung tumor growth in vivo, as assessed by sequential radiological imaging, and provided a survival advantage, perhaps the most difficult clinical parameter to improve upon. Moreover, L-NAME enhanced the therapeutic benefit afforded by carboplatin chemotherapy, provided it was administered as maintenance therapy after carboplatin. Collectively, these results support the clinical evaluation of L-NAME for the treatment of KRAS mutation-positive NSCLC. PMID:27285753

  8. A mouse model of orthotopic vascularized aerated lung transplantation.

    PubMed

    Okazaki, M; Krupnick, A S; Kornfeld, C G; Lai, J M; Ritter, J H; Richardson, S B; Huang, H J; Das, N A; Patterson, G A; Gelman, A E; Kreisel, D

    2007-06-01

    Outcomes after lung transplantation are markedly inferior to those after other solid organ transplants. A better understanding of cellular and molecular mechanisms contributing to lung graft injury will be critical to improve outcomes. Advances in this field have been hampered by the lack of a mouse model of lung transplantation. Here, we report a mouse model of vascularized aerated single lung transplantation utilizing cuff techniques. We show that syngeneic grafts have normal histological appearance with minimal infiltration of T lymphocytes. Allogeneic grafts show acute cellular rejection with infiltration of T lymphocytes and recipient-type antigen presenting cells. Our data show that we have developed a physiological model of lung transplantation in the mouse, which provides ample opportunity for the study of nonimmune and immune mechanisms that contribute to lung allograft injury.

  9. Micro-imaging of the Mouse Lung via MRI

    NASA Astrophysics Data System (ADS)

    Wang, Wei

    Quantitative measurement of lung microstructure is of great significance in assessment of pulmonary disease, particularly in the earliest stages. Conventional stereological assessment of ex-vivo fixed tissue specimens under the microscope has a long and successful tradition and is regarded as a gold standard, but the invasive nature limits its applications and the practicality of use in longitudinal studies. The technique for diffusion MRI-based 3He lung morphometry was previously developed and validated for human lungs, and was recently extended to ex-vivo mouse lungs. The technique yields accurate, quantitative information about the microstructure and geometry of acinar airways. In this dissertation, the 3He lung morphometry technique is for the first time successfully implemented for in-vivo studies of mice. It can generate spatially-resolved maps of parameters that reveal the microstructure of mouse lung. Results in healthy mice indicate excellent agreement between in-vivo morphometry via 3He MRI and microscopic morphometry after sacrifice. The implementation and validation of 3He morphometry in healthy mice open up new avenues for application of the technique as a precise, noninvasive, in-vivo biomarker of changes in lung microstructure, within various mouse models of lung disease. We have applied 3He morphometry to the Sendai mouse model of lung disease. Specifically, the Sendai-virus model of chronic obstructive lung disease has demonstrated an innate immune response in mouse airways that exhibits similarities to the chronic airway inflammation in human COPD and asthma, but the effect on distal lung parenchyma had not been investigated. We imaged the time course and regional distribution of mouse lung microstructural changes in vivo after Sendai virus (SeV) infection with 1H and 3He diffusion MRI. 1H MR images detected the SeV-induced pulmonary inflammation in vivo and 3He lung morphometry showed modest increase in alveolar duct radius distal to airway

  10. Chemically-induced Mouse Lung Tumors: Applications to ...

    EPA Pesticide Factsheets

    A state-of-the-science workshop on chemically-induced mouse lung tumors was conducted by U.S. Environmental Protection Agency to better understand the mouse lung tumor data’s role in human health assessments. Three environmental chemicals - naphthalene, styrene, and ethylbenzene were chosen for the analysis due to the commonality of mouse lung tumors in all three chemicals. The goals of the workshop were to: identify the evidence, from multiple scientific disciplines, regarding formation of chemically-induced lung tumors in mice; discuss analysis and interpretation of the evidence; discuss how such evidence informs human health assessments; and identify commonalities, linkages, or differences between the evidence from various disciplines and across the chemicals. Evidence informing the association between occupational exposure to styrene, ethylbenzene, or naphthalene and lung cancer; comparative biology of mouse lung tumors, associated pathologic effects, issues related to tissue and species concordance; mode of action analysis and biological mechanisms including pharmacokinetics and pharmacodynamics; and evidence from cellular, genetic and molecular toxicity was discussed. In summary, although consensus was not sought, the panelists agreed that available mouse lung tumor data should be considered for human health risk evaluation on an individual chemical basis. Key data gaps were identified that would assist in further understanding the mechanism and relevan

  11. Chemically-induced mouse lung tumors: applications to ...

    EPA Pesticide Factsheets

    A state-of-the-science workshop on chemically-induced mouse lung tumors was conducted by U.S. Environmental Protection Agency to discuss issues related to the use of mouse lung tumor data in human health assessments. Naphthalene, styrene, and ethylbenzene were chosen for the analysis due to the commonality of mouse lung tumors in all these three environmental chemicals. The goals of the workshop were to: identify the evidence, from multiple scientific disciplines, regarding formation of chemically-induced lung tumors in mice; discuss analysis and interpretation of the evidence; discuss how such evidence informs human health assessments; and identify commonalities, linkages, or differences between the evidence from various disciplines and across the chemicals. Evidence informing the association between occupational exposure to styrene, ethylbenzene, or naphthalene and lung cancer; comparative biology of mouse lung tumors, associated pathologic effects, issues related to tissue and species concordance; mode of action analysis and biological mechanisms including pharmacokinetics and pharmacodynamics; and evidence from cellular, genetic and molecular toxicity was discussed. In summary, although consensus was not sought, the panelists agreed that data showing mouse lung tumors with chemical exposures can be relevant for human health risk evaluation on an individual chemical basis. Key data gaps were identified that would assist in further understanding the mechanism

  12. Chemically-induced Mouse Lung Tumors: Applications to ...

    EPA Pesticide Factsheets

    A state-of-the-science workshop on chemically-induced mouse lung tumors was conducted by U.S. Environmental Protection Agency to better understand the mouse lung tumor data’s role in human health assessments. Three environmental chemicals - naphthalene, styrene, and ethylbenzene were chosen for the analysis due to the commonality of mouse lung tumors in all three chemicals. The goals of the workshop were to: identify the evidence, from multiple scientific disciplines, regarding formation of chemically-induced lung tumors in mice; discuss analysis and interpretation of the evidence; discuss how such evidence informs human health assessments; and identify commonalities, linkages, or differences between the evidence from various disciplines and across the chemicals. Evidence informing the association between occupational exposure to styrene, ethylbenzene, or naphthalene and lung cancer; comparative biology of mouse lung tumors, associated pathologic effects, issues related to tissue and species concordance; mode of action analysis and biological mechanisms including pharmacokinetics and pharmacodynamics; and evidence from cellular, genetic and molecular toxicity was discussed. In summary, although consensus was not sought, the panelists agreed that available mouse lung tumor data should be considered for human health risk evaluation on an individual chemical basis. Key data gaps were identified that would assist in further understanding the mechanism and relevan

  13. ESR measurement of radical clearance in lung of whole mouse

    SciTech Connect

    Takeshita, K.; Utsumi, H.; Hamada, A. )

    1991-06-14

    Clearance of the nitroxide radicals, hydroxy-TEMPO and carboxy-PROxYL, in whole-mouse lung was directly measured by in vivo ESR. After injecting a nitroxide radical, distribution of the nitroxide radical all over the lung was confirmed by ESR imaging. The ESR signal of hydroxy-TEMPO was reduced in the lung and the clearance obeyed first-order kinetics, whereas the signal of carboxy-PROxYL remained constant. Comparison of the clearance rates of live and dead mice indicated the presence of 2 different clearance systems in the lung: loss of its paramagnetism in the lung, and transfer from alveolar to the blood circulation system.

  14. Quantitative analysis of tumor burden in mouse lung via MRI.

    PubMed

    Tidwell, Vanessa K; Garbow, Joel R; Krupnick, Alexander S; Engelbach, John A; Nehorai, Arye

    2012-02-01

    Lung cancer is the leading cause of cancer death in the United States. Despite recent advances in screening protocols, the majority of patients still present with advanced or disseminated disease. Preclinical rodent models provide a unique opportunity to test novel therapeutic drugs for targeting lung cancer. Respiratory-gated MRI is a key tool for quantitatively measuring lung-tumor burden and monitoring the time-course progression of individual tumors in mouse models of primary and metastatic lung cancer. However, quantitative analysis of lung-tumor burden in mice by MRI presents significant challenges. Herein, a method for measuring tumor burden based upon average lung-image intensity is described and validated. The method requires accurate lung segmentation; its efficiency and throughput would be greatly aided by the ability to automatically segment the lungs. A technique for automated lung segmentation in the presence of varying tumor burden levels is presented. The method includes development of a new, two-dimensional parametric model of the mouse lungs and a multi-faceted cost function to optimally fit the model parameters to each image. Results demonstrate a strong correlation (0.93), comparable with that of fully manual expert segmentation, between the automated method's tumor-burden metric and the tumor burden measured by lung weight.

  15. Practical use of advanced mouse models for lung cancer.

    PubMed

    Safari, Roghaiyeh; Meuwissen, Ralph

    2015-01-01

    To date a variety of non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) mouse models have been developed that mimic human lung cancer. Chemically induced or spontaneous lung cancer in susceptible inbred strains has been widely used, but the more recent genetically engineered somatic mouse models recapitulate much better the genotype-phenotype correlations found in human lung cancer. Additionally, improved orthotopic transplantation of primary human cancer tissue fragments or cells into lungs of immune-compromised mice can be valuable tools for preclinical research such as antitumor drug tests. Here we give a short overview of most somatic mouse models for lung cancer that are currently in use. We accompany each different model with a description of its practical use and application for all major lung tumor types, as well as the intratracheal injection or direct injection of fresh or freeze-thawed tumor cells or tumor cell lines into lung parenchyma of recipient mice. All here presented somatic mouse models are based on the ability to (in) activate specific alleles at a time, and in a tissue-specific cell type, of choice. This spatial-temporal controlled induction of genetic lesions allows the selective introduction of main genetic lesions in an adult mouse lung as found in human lung cancer. The resulting conditional somatic mouse models can be used as versatile powerful tools in basic lung cancer research and preclinical translational studies alike. These distinctively advanced lung cancer models permit us to investigate initiation (cell of origin) and progression of lung cancer, along with response and resistance to drug therapy. Cre/lox or FLP/frt recombinase-mediated methods are now well-used techniques to develop tissue-restricted lung cancer in mice with tumor-suppressor gene and/or oncogene (in)activation. Intranasal or intratracheal administration of engineered adenovirus-Cre or lentivirus-Cre has been optimized for introducing Cre

  16. Differential Gene Expression in Chemically Induced Mouse Lung Adenomas1

    PubMed Central

    Yao, Ruisheng; Wang, Yian; Lubet, Ronald A; You, Ming

    2003-01-01

    Abstract Because of similarities in histopathology and tumor progression stages between mouse and human lung adenocarcinomas, the mouse lung tumor model with lung adenomas as the endpoint has been used extensively to evaluate the efficacy of putative lung cancer chemopreventive agents. In this study, a competitive cDNA library screening (CCLS) was employed to determine changes in the expression of mRNA in chemically induced lung adenomas compared with paired normal lung tissues. A total of 2555 clones having altered expression in tumors were observed following competitive hybridization between normal lung and lung adenomas after primary screening of over 160,000 clones from a mouse lung cDNA library. Among the 755 clones confirmed by dot blot hybridization, 240 clones were underexpressed, whereas 515 clones were overexpressed in tumors. Sixty-five clones with the most frequently altered expression in six individual tumors were confirmed by semiquantitative RT-PCR. When examining the 58 known genes, 39 clones had increased expression and 19 had decreased expression, whereas the 7 novel genes showed overexpression. A high percentage (>60%) of overexpressed or underexpressed genes was observed in at least two or three of the lesions. Reproducibly overexpressed genes included ERK-1, JAK-1, surfactant proteins A, B, and C, NFAT1, α-1 protease inhibitor, helix-loop-helix ubiquitous kinase (CHUK), α-adaptin, α-1 PI2, thioether S-methyltransferase, and CYP2C40. Reproducibly underexpressed genes included paroxanase, ALDH II, CC10, von Ebner salivary gland protein, and α- and β-globin. In addition, CCLS identified several novel genes or genes not previously associated with lung carcinogenesis, including a hypothetical protein (FLJ11240) and a guanine nucleotide exchange factor homologue. This study shows the efficacy of this methodology for identifying genes with altered expression. These genes may prove to be helpful in our understanding of the genetic basis of lung

  17. Asymmetric dimethylarginine potentiates lung inflammation in a mouse model of allergic asthma

    PubMed Central

    Klein, Elizabeth; Weigel, Jason; Buford, Mary C.; Holian, Andrij

    2010-01-01

    Nitric oxide (NO), formed by nitric oxide synthase (NOS), is an important mediator of lung inflammation in allergic asthma. Asymmetric dimethylarginine (ADMA), a competitive endogenous inhibitor of NOS, is metabolized by the enzyme dimethylarginine dimethylaminohydrolase (DDAH). Elevated ADMA has been shown to affect lung function in mice, and by inhibiting NOS it alters NO and reactive oxygen species production in mouse lung epithelial cells. However, the effects of altered ADMA levels during lung inflammation have not been explored. A model of allergen-induced airway inflammation was utilized in combination with the modulation of endogenous circulating ADMA levels in mice. Airway inflammation was assessed by quantifying inflammatory cell infiltrates in lung lavage and by histology. Lung DDAH expression was assessed by quantitative PCR and immunohistochemistry. Nitrite levels were determined in lung lavage fluid as a measure of NO production. iNOS expression was determined by immunohistochemistry, immunofluorescence, Western blot, and quantitative PCR. NF-κB binding activity was assessed by a transcription factor binding assay. Allergen-induced lung inflammation was potentiated in mice with elevated circulating ADMA and was reduced in mice overexpressing DDAH. Elevated ADMA reduced nitrite levels in lung lavage fluid in both allergen-challenged and control animals. ADMA increased iNOS expression in airway epithelial cells in vivo following allergen challenge and in vitro in stimulated mouse lung epithelial cells. ADMA also increased NF-κB binding activity in airway epithelial cells in vitro. These data support that ADMA may play a role in inflammatory airway diseases such as asthma through modulation of iNOS expression in lung epithelial cells. PMID:20889675

  18. Efficacy of a technique for exposing the mouse lung to particles aspirated from the pharynx.

    PubMed

    Rao, G V S; Tinkle, Sally; Weissman, David N; Antonini, James M; Kashon, Michael L; Salmen, Rebecca; Battelli, Lori A; Willard, Patsy A; Hoover, Mark D; Hubbs, Ann F

    2003-08-08

    Recent studies have demonstrated that the mouse lung can be exposed to soluble antigens by aspiration of these antigens from the pharynx. This simple technique avoids the trauma associated with intratracheal instillation. In this study, the pharyngeal aspiration technique was validated for exposing the mouse lung to respirable particles. Using respirable fluorescent amine-modified polystyrene latex beads and beryllium oxide particles, we investigated the localization of aspirated particles within the lung and the relationship between the amount of material placed in the pharynx and the amount deposited in the lung. For exposure, mice were anesthetized with isoflurane in a bell jar, placed on a slant board, and the tongue was gently held in full extension while a 50-microl suspension of particles was pipetted onto the base of the tongue. Tongue restraint was maintained until at least two breaths were completed. Less than a minute after exposure, all mice awoke from anesthesia without visible sequela. There were no significant differences in particle distribution between the left and right side of the lung (p=.16). Particles were widely disseminated in a peribronchiolar pattern within the alveolar region. There was a linear and significant correlation (r2=.99) between the amount administered and the amount deposited in the lung. In beryllium-exposed mice, measurable lung beryllium was 77.5 to 88.2% of the administered beryllium. These findings demonstrate that following aspiration of pharyngeal deposited particles, exposures to the deep lung are repeatable, technically simple, and highly correlated to the administered dose.

  19. Imaging mouse lung allograft rejection with 1H MRI

    PubMed Central

    Guo, Jinbang; Huang, Howard J.; Wang, Xingan; Wang, Wei; Ellison, Henry; Thomen, Robert P.; Gelman, Andrew E.; Woods, Jason C.

    2014-01-01

    Purpose To demonstrate that longitudinal, non-invasive monitoring via MRI can characterize acute cellular rejection (ACR) in mouse orthotopic lung allografts. Methods Nineteen Balb/c donor to C57BL/6 recipient orthotopic left lung transplants were performed, further divided into control-Ig vs anti-CD4/anti-CD8 treated groups. A two-dimensional multi-slice gradient-echo pulse sequence synchronized with ventilation was used on a small-animal MR scanner to acquire proton images of lung at post-operative days 3, 7 and 14, just before sacrifice. Lung volume and parenchymal signal were measured, and lung compliance was calculated as volume change per pressure difference between high and low pressures. Results Normalized parenchymal signal in the control-Ig allograft increased over time, with statistical significance between day 14 and day 3 post transplantation (0.046→0.789, P < 0.05), despite large inter-mouse variations; this was consistent with histopathologic evidence of rejection. Compliance of the control-Ig allograft decreased significantly over time (0.013→0.003, P < 0.05), but remained constant in mice treated with anti-CD4/anti-CD8 antibodies. Conclusion Lung allograft rejection in individual mice can be monitored by lung parenchymal signal changes and by lung compliance through MRI. Longitudinal imaging can help us better understand the time course of individual lung allograft rejection and response to treatment. PMID:24954886

  20. Preconditioning allows engraftment of mouse and human embryonic lung cells, enabling lung repair in mice.

    PubMed

    Rosen, Chava; Shezen, Elias; Aronovich, Anna; Klionsky, Yael Zlotnikov; Yaakov, Yasmin; Assayag, Miri; Biton, Inbal Eti; Tal, Orna; Shakhar, Guy; Ben-Hur, Herzel; Shneider, David; Vaknin, Zvi; Sadan, Oscar; Evron, Shmuel; Freud, Enrique; Shoseyov, David; Wilschanski, Michael; Berkman, Neville; Fibbe, Willem E; Hagin, David; Hillel-Karniel, Carmit; Krentsis, Irit Milman; Bachar-Lustig, Esther; Reisner, Yair

    2015-08-01

    Repair of injured lungs represents a longstanding therapeutic challenge. We show that human and mouse embryonic lung tissue from the canalicular stage of development (20-22 weeks of gestation for humans, and embryonic day 15-16 (E15-E16) for mouse) are enriched with progenitors residing in distinct niches. On the basis of the marked analogy to progenitor niches in bone marrow (BM), we attempted strategies similar to BM transplantation, employing sublethal radiation to vacate lung progenitor niches and to reduce stem cell competition. Intravenous infusion of a single cell suspension of canalicular lung tissue from GFP-marked mice or human fetal donors into naphthalene-injured and irradiated syngeneic or SCID mice, respectively, induced marked long-term lung chimerism. Donor type structures or 'patches' contained epithelial, mesenchymal and endothelial cells. Transplantation of differentially labeled E16 mouse lung cells indicated that these patches were probably of clonal origin from the donor. Recipients of the single cell suspension transplant exhibited marked improvement in lung compliance and tissue damping reflecting the energy dissipation in the lung tissues. Our study provides proof of concept for lung reconstitution by canalicular-stage human lung cells after preconditioning of the pulmonary niche.

  1. Lung regeneration by fetal lung tissue implantation in a mouse pulmonary emphysema model.

    PubMed

    Uyama, Koh; Sakiyama, Shoji; Yoshida, Mitsuteru; Kenzaki, Koichiro; Toba, Hiroaki; Kawakami, Yukikiyo; Okumura, Kazumasa; Takizawa, Hiromitsu; Kondo, Kazuya; Tangoku, Akira

    2016-01-01

    The mortality and morbidity of chronic obstructive pulmonary disease are high. However, no radical therapy has been developed to date. The purpose of this study was to evaluate whether fetal mouse lung tissue can grow and differentiate in the emphysematous lung. Fetal lung tissue from green fluorescent protein C57BL/6 mice at 16 days' gestation was used as donor material. Twelve-month-old pallid mice were used as recipients. Donor lungs were cut into small pieces and implanted into the recipient left lung by performing thoracotomy under anesthesia. The recipient mice were sacrificed at day 7, 14, and 28 after implantation and used for histological examination. Well-developed spontaneous pulmonary emphysema was seen in 12-month-old pallid mice. Smooth and continuous connection between implanted fetal lung tissue and recipient lung was recognized. Air space expansion and donor tissue differentiation were observed over time. We could clearly distinguish the border zones between injected tissue and native tissue by the green fluorescence of grafts. Fetal mouse lung fragments survived and differentiated in the emphysematous lung of pallid mice. Implantation of fetal lung tissue in pallid mice might lead to further lung regeneration research from the perspective of respiratory and exercise function. J. Med. Invest. 63: 182-186, August, 2016.

  2. Chronic hypercapnia alters lung matrix composition in mouse pups

    PubMed Central

    Heldt, Gregory P.; Nguyen, Mary; Gavrialov, Orit; Haddad, Gabriel G.

    2010-01-01

    Rationale: permissive hypercapnia, a stretch-limiting ventilation strategy, often results in high PaCO2. This strategy is associated with reduced morbidity and mortality in premature infants and its benefits have been attributed to diminished barotrauma. However, little is known about the independent effect of high CO2 levels during the lung development. Methods: mice were exposed to 8% CO2 or room air for 2 wk either from postnatal day 2 through 17 or as adults (∼2 mo of age). Lungs were excised and processed for protein, RNA, histology, and total lung volumes. Results: histologic analysis demonstrated that alveolar walls of CO2-exposed mouse pups were thinner than those of controls and had twice the total lung volume. Molecular analysis revealed that several matrix proteins in the lung were downregulated in mouse pups exposed to hypercapnia. Interstitial collagen type I α1, type III α1, elastin and fibronectin protein, and mRNA levels were less than half of controls while collagen IV α5 was unaffected. This decrease in interstitial collagen could thus account for the thinning of the interstitial matrix and the altered lung biomechanics. Matrix metalloproteinase (MMP)-8, a collagenase that has specificity for collagen types I and III, increased in hypercapnic mouse pups, suggesting increased collagen degradation. Moreover, tissue inhibitor of MMP (TIMP)-1, a potent inhibitor of MMP-8, was significantly decreased. However, unlike pups, adult mice exposed to hypercapnia demonstrated only a mild increase in total lung volumes and did not exhibit similar molecular or histologic changes. Conclusions: although permissive hypercapnia may prevent lung injury from barotrauma, our study revealed that exposure to hypercapnia may be an important factor in lung remodeling and function, especially in early life. PMID:20360436

  3. Surgical technique for lung retransplantation in the mouse

    PubMed Central

    Li, Wenjun; Goldstein, Daniel R.; Bribriesco, Alejandro C.; Nava, Ruben G.; Spahn, Jessica H.; Wang, Xingan; Gelman, Andrew E.; Krupnick, Alexander S.

    2013-01-01

    Microsurgical cuff techniques for orthotopic vascularized murine lung transplantation have allowed for the design of studies that examine mechanisms contributing to the high failure rate of pulmonary grafts. Here, we provide a detailed technical description of orthotopic lung retransplantation in mice, which we have thus far performed in 144 animals. The total time of the retransplantation procedure is approximately 55 minutes, 20 minutes for donor harvest and 35 minutes for the implantation, with a success rate exceeding 95%. The mouse lung retransplantation model represents a novel and powerful tool to examine how cells that reside in or infiltrate pulmonary grafts shape immune responses. PMID:23825768

  4. OXIDANTS AND THE PATHOGENESIS OF LUNG DISEASES

    PubMed Central

    Ciencewicki, Jonathan; Trivedi, Shweta; Kleeberger, Steven R.

    2009-01-01

    The increasing number of population-based and epidemiological associations between oxidant pollutant exposures and cardiopulmonary disease exacerbation, decrements in pulmonary function, and mortality underscores the important detrimental effects of oxidants on public health. Because inhaled oxidants initiate a number of pathologic processes, including inflammation of the airways which may contribute to the pathogenesis and/or exacerbation of airways disease, it is critical to understand the mechanisms through which exogenous and endogenous oxidants interact with molecules in the cells, tissues, and epithelial lining fluid (ELF) of the lung. Furthermore, it is clear that inter-individual variation in response to a given exposure also exists across an individual lifetime. Because of the potential impact that oxidant exposures may have on reproductive outcomes and infant, child, and adult health, identification of the intrinsic and extrinsic factors that may influence susceptibility to oxidants remains an important issue. In this review, we discuss mechanisms of oxidant stress in the lung, the role of oxidants in lung disease pathogenesis and exacerbation (e.g. asthma, COPD, and ARDS), and the potential risk factors (e.g. age, genetics) for enhanced susceptibility to oxidant-induced disease. PMID:18774381

  5. In vivo compartmental analysis of leukocytes in mouse lungs

    PubMed Central

    Patel, Brijesh V.; Tatham, Kate C.; Wilson, Michael R.; O'Dea, Kieran P.

    2015-01-01

    The lung has a unique structure consisting of three functionally different compartments (alveolar, interstitial, and vascular) situated in an extreme proximity. Current methods to localize lung leukocytes using bronchoalveolar lavage and/or lung perfusion have significant limitations for determination of location and phenotype of leukocytes. Here we present a novel method using in vivo antibody labeling to enable accurate compartmental localization/quantification and phenotyping of mouse lung leukocytes. Anesthetized C57BL/6 mice received combined in vivo intravenous and intratracheal labeling with fluorophore-conjugated anti-CD45 antibodies, and lung single-cell suspensions were analyzed by flow cytometry. The combined in vivo intravenous and intratracheal CD45 labeling enabled robust separation of the alveolar, interstitial, and vascular compartments of the lung. In naive mice, the alveolar compartment consisted predominantly of resident alveolar macrophages. The interstitial compartment, gated by events negative for both intratracheal and intravenous CD45 staining, showed two conventional dendritic cell populations, as well as a Ly6Clo monocyte population. Expression levels of MHCII on these interstitial monocytes were much higher than on the vascular Ly6Clo monocyte populations. In mice exposed to acid aspiration-induced lung injury, this protocol also clearly distinguished the three lung compartments showing the dynamic trafficking of neutrophils and exudative monocytes across the lung compartments during inflammation and resolution. This simple in vivo dual-labeling technique substantially increases the accuracy and depth of lung flow cytometric analysis, facilitates a more comprehensive examination of lung leukocyte pools, and enables the investigation of previously poorly defined “interstitial” leukocyte populations during models of inflammatory lung diseases. PMID:26254421

  6. Methods of in-vivo mouse lung micro-CT

    NASA Astrophysics Data System (ADS)

    Recheis, Wolfgang A.; Nixon, Earl; Thiesse, Jacqueline; McLennan, Geoffrey; Ross, Alan; Hoffman, Eric

    2005-04-01

    Micro-CT will have a profound influence on the accumulation of anatomical and physiological phenotypic changes in natural and transgenetic mouse models. Longitudinal studies will be greatly facilitated, allowing for a more complete and accurate description of events if in-vivo studies are accomplished. The purpose of the ongoing project is to establish a feasible and reproducible setup for in-vivo mouse lung micro-computed tomography (μCT). We seek to use in-vivo respiratory-gated μCT to follow mouse models of lung disease with subsequent recovery of the mouse. Methodologies for optimizing scanning parameters and gating for the in-vivo mouse lung are presented. A Scireq flexiVent ventilated the gas-anesthetized mice at 60 breaths/minute, 30 cm H20 PEEP, 30 ml/kg tidal volume and provided a respiratory signal to gate a Skyscan 1076 μCT. Physiologic monitoring allowed the control of vital functions and quality of anesthesia, e.g. via ECG monitoring. In contrary to longer exposure times with ex-vivo scans, scan times for in-vivo were reduced using 35μm pixel size, 158ms exposure time and 18μm pixel size, 316ms exposure time to reduce motion artifacts. Gating via spontaneous breathing was also tested. Optimal contrast resolution was achieved at 50kVp, 200μA, applying an aluminum filter (0.5mm). There were minimal non-cardiac related motion artifacts. Both 35μm and 1μm voxel size images were suitable for evaluation of the airway lumen and parenchymal density. Total scan times were 30 and 65 minutes respectively. The mice recovered following scanning protocols. In-vivo lung scanning with recovery of the mouse delivered reasonable image quality for longitudinal studies, e.g. mouse asthma models. After examining 10 mice, we conclude μCT is a feasible tool evaluating mouse models of lung pathology in longitudinal studies with increasing anatomic detail available for evaluation as one moves from in-vivo to ex-vivo studies. Further developments include automated

  7. Hyperpolarized helium-3 mouse lung MRI: Studies of lung structure and function

    NASA Astrophysics Data System (ADS)

    Dugas, Joseph Paul

    Hyperpolarized 3He magnetic resonance imaging (MRI) of human and animal lungs has displayed promising and useful applications to studies of lung structure and function in both healthy and diseased lungs. Hyperpolarized 3He MRI allows the visualization of gas in the gas-exchange spaces of the lungs (as opposed to tissue) and has proven especially effective in studying diseases that are characterized by ventilation defects, such as emphysema. In particular, in-vivo measurements of the 3He apparent diffusion coefficient (ADC) can quantify lung structure by measuring its restrictive effects on the motion of 3He spins. This allows for detection and longitudinal tracking of changes in micro-architecture that result from disease destruction of alveolar walls. Due, in part, to the difficulties inherent in administering and imaging hyperpolarized 3He within the small (0.5 cc volume) mouse lung, applications of hyperpolarized 3He MRI techniques to laboratory mice are scarce. We have been able to implement and improve the techniques of hyperpolarized 3He mouse lung MRI and subsequently apply them to studies of several mouse models of disease, including elastase-induced emphysema, smoking-induced emphysema, and lung cancer. Here we detail the design, development, and implementation of a versatile, electronically-controlled, small animal ventilator that is capable of delivering tiny volumes of hyperpolarized 3He, mixed with oxygen, to the mouse and is also compatible with both the easily depolarized 3He gas and the highly magnetic environment within and around an imaging magnet. Also described are NM techniques developed to improve the signal-to-noise ratio of our images and effectively utilize the gas hyperpolarization. Applications of these technologies and techniques to small animal models of disease are presented wherein we have measured up to a 35% increase in 3He ADC in mice with elastase-induced emphysema as compared to healthy mice. We also demonstrate the potential

  8. Differential responses in the lungs of newborn mouse pups exposed to 85% or >95% oxygen.

    PubMed

    Rogers, Lynette K; Tipple, Trent E; Nelin, Leif D; Welty, Stephen E

    2009-01-01

    Premature infants often develop serious clinical complications associated with respiratory failure and hyperoxic lung injury that includes lung inflammation and alterations in lung development. The goal of these studies is to test the hypothesis that there are differences in the course of lung injury in newborn mice exposed to 85% or >95% oxygen that provide models to address the differential effects of oxidation and inflammation. Our results indicate differences between the 85% and >95% O2 exposure groups by day 14 in weight gain and lung alveolarization. Inflammation, assessed by neutrophil counts, was observed in both hyperoxia groups by day 3 but was dramatically greater in the >95% O2-exposed groups by day 14 and associated with greater developmental deficits. Cytoplasmic phospholipase A2, cyclooxygenase-2, and 5-lipoxygenase levels were elevated but no patterns of differences were observed between exposure groups. Prostaglandins D2, E2, and F2alpha were increased in the tissues from mouse pups exposed to >95% O2 at 7 d indicating a differential expression of cyclooxygenase-2 products. Our data indicate that there are differences in the models of 85% or >95% O2 exposure and these differences may provide mechanistic insights into hyperoxic lung injury in an immature system.

  9. Failure of catalase to protect against aflatoxin B{sub 1}-induced mouse lung tumorigenicity

    SciTech Connect

    Guindon, Katherine A.; Foley, Julie F.; Maronpot, Robert R.; Massey, Thomas E.

    2008-03-01

    The carcinogenic mycotoxin aflatoxin B{sub 1} (AFB{sub 1}) induces 8-hydroxy-2'-deoxyguanosine (8-OHdG) formation in mouse lung, an effect that can be prevented by treatment with polyethylene glycol-conjugated catalase (PEG-CAT). G {yields} T transversion mutation in K-ras, an early event in AFB{sub 1}-induced mouse lung carcinogenesis, is thought to result from AFB{sub 1}-8,9-exo-epoxide binding to DNA to form AFB{sub 1}-N{sup 7}-guanine, but may also result from formation of 8-OHdG. Therefore, oxidative DNA damage may be important in AFB{sub 1} carcinogenicity. The objective of this study was to determine whether PEG-CAT would prevent AFB{sub 1} tumorigenicity. Mouse lung tumorigenesis was assessed following treatment of female A/J mice with 300 kU/kg PEG-CAT ip and/or 50 mg/kg AFB{sub 1}. Mice were killed 7 months post-treatment and tumors greater than 1 mm in diameter were excised. Unexpectedly, the mean number of tumors per mouse in the PEG-CAT + AFB{sub 1} group (8.81 {+-} 3.64, n = 47) was greater than that of the group treated with AFB{sub 1} alone (7.05 {+-} 3.45, n = 42) (P < 0.05). The tumors obtained from mice treated with PEG-CAT + AFB{sub 1} were larger than those from mice treated with AFB{sub 1} alone (P < 0.05). There was no difference in K-ras exon 1 mutation spectrum or in the histological diagnosis of tumors between AFB{sub 1} and PEG-CAT + AFB{sub 1} groups (P > 0.05). In vitro incubation with mouse liver catalase (CAT) resulted in conversion of [{sup 3}H]AFB{sub 1} into a DNA-binding species, a possible explanation for the results observed in vivo. These results demonstrate that PEG-CAT is not protective against AFB{sub 1} carcinogenicity in mouse lung despite preventing DNA oxidation.

  10. Oxidative Lipidomics of γ-Radiation-Induced Lung Injury: Mass Spectrometric Characterization of Cardiolipin and Phosphatidylserine Peroxidation

    PubMed Central

    Tyurina, Yulia Y.; Tyurin, Vladimir A.; Kapralova, Valentyna I.; Wasserloos, Karla; Mosher, Mackenzie; Epperly, Michael W.; Greenberger, Joel S.; Pitt, Bruce R.; Kagan, Valerian E.

    2011-01-01

    Oxidative damage plays a significant role in the pathogenesis of γ-radiation-induced lung injury. Endothelium is a preferred target for early radiation-induced damage and apoptosis. Given the newly discovered role of oxidized phospholipids in apoptotic signaling, we performed oxidative lipidomics analysis of phospholipids in irradiated mouse lungs and cultured mouse lung endothelial cells. C57BL/6NHsd female mice were subjected to total-body irradiation (10 Gy, 15 Gy) and euthanized 24 h thereafter. Mouse lung endothelial cells were analyzed 48 h after γ irradiation (15 Gy). We found that radiation-induced apoptosis in vivo and in vitro was accompanied by non-random oxidation of phospholipids. Cardiolipin and phosphatidylserine were the major oxidized phospholipids, while more abundant phospholipids (phosphatidylcholine, phosphatidylethanolamine) remained non-oxidized. Electrospray ionization mass spectrometry analysis revealed the formation of cardiolipin and phosphatidylserine oxygenated molecular species in the irradiated lung and cells. Analysis of fatty acids after hydrolysis of cardiolipin and phosphatidylserine by phospholipase A2 revealed the presence of mono-hydroperoxy and/or mono-hydroxy/mono-epoxy, mono-hydroperoxy/mono-oxo molecular species of linoleic acid. We speculate that cyt c-driven oxidations of cardiolipin and phosphatidylserine associated with the execution of apoptosis in pulmonary endothelial cells are important contributors to endothelium dysfunction in γ-radiation-induced lung injury. PMID:21338246

  11. Gene expression profiling in mouse lung following polymeric hexamethylene diisocyanate exposure

    SciTech Connect

    Lee, C.-T.; Ylostalo, Joni; Friedman, Mitchell; Hoyle, Gary W. . E-mail: ghoyle@tulane.edu

    2005-05-15

    Isocyanates are a common cause of occupational lung disease. Hexamethylene diisocyanate (HDI), a component of polyurethane spray paints, can induce respiratory symptoms, inflammation, lung function impairment, and isocyanate asthma. The predominant form of HDI in polyurethane paints is a nonvolatile polyisocyanate known as HDI biuret trimer (HDI-BT). Exposure of mice to aerosolized HDI-BT results in pathological effects, including pulmonary edema, lung inflammation, cellular proliferation, and fibrotic lesions, which occur with distinct time courses following exposure. To identify genes that mediate lung pathology in the distinct temporal phases after exposure, gene expression profiles in HDI-BT-exposed C57BL/6J mouse lungs were analyzed. RNase protection assay (RPA) of genes involved in apoptosis, cell survival, and inflammation revealed increased expression of I{kappa}B{alpha}, Fas, Bcl-X{sub L}, TNF{alpha}, KC, MIP-2, IL-6, and GM-CSF following HDI-BT exposure. Microarray analysis of approximately 10 000 genes was performed on lung RNA collected from mice 6, 18, and 90 h after HDI-BT exposure and from unexposed mice. Classes of genes whose expression was increased 6 h after exposure included those involved in stress responses (particularly oxidative stress and thiol redox balance), growth arrest, apoptosis, signal transduction, and inflammation. Types of genes whose expression was increased at 18 h included proteinases, anti-proteinases, cytoskeletal molecules, and inflammatory mediators. Transcripts increased at 90 h included extracellular matrix components, transcription factors, inflammatory mediators, and cell cycle regulators. This characterization of the gene expression profile in lungs exposed to HDI-BT will provide a basis for investigating injury and repair pathways that are operative during isocyanate-induced lung disease.

  12. Nitric oxide and hyperoxic acute lung injury

    PubMed Central

    Liu, Wen-wu; Han, Cui-hong; Zhang, Pei-xi; Zheng, Juan; Liu, Kan; Sun, Xue-jun

    2016-01-01

    Hyperoxic acute lung injury (HALI) refers to the damage to the lungs secondary to exposure to elevated oxygen partial pressure. HALI has been a concern in clinical practice with the development of deep diving and the use of normobaric as well as hyperbaric oxygen in clinical practice. Although the pathogenesis of HALI has been extensively studied, the findings are still controversial. Nitric oxide (NO) is an intercellular messenger and has been considered as a signaling molecule involved in many physiological and pathological processes. Although the role of NO in the occurrence and development of pulmonary diseases including HALI has been extensively studied, the findings on the role of NO in HALI are conflicting. Moreover, inhalation of NO has been approved as a therapeutic strategy for several diseases. In this paper, we briefly summarize the role of NO in the pathogenesis of HALI and the therapeutic potential of inhaled NO in HALI. PMID:27867474

  13. Measuring the lung function in the mouse: the challenge of size

    PubMed Central

    Irvin, Charles G; Bates, Jason HT

    2003-01-01

    Measurement of the effects of drugs, mediators and infectious agents on various models of lung disease, as well as assessment of lung function in the intact mouse has the potential for significantly advancing our knowledge of lung disease. However, the small size of the mouse presents significant challenges for the assessment of lung function. Because of compromises made between precision and noninvasiveness, data obtained may have an uncertain bearing on the mechanical response of the lung. Nevertheless, considerable recent progress has been made in developing valid and useful measures of mouse lung function. These advances, resulting in our current ability to measure sophisticated indices of lung function in laboratory animals, are likely to lead to important insights into the mechanisms of lung disease. PMID:12783622

  14. Protective effect of 4,4'-diaminodiphenylsulfone against paraquat-induced mouse lung injury.

    PubMed

    Cho, Sung Chun; Rhim, Ji Heon; Choi, Hae Ri; Son, Young Hoon; Lee, Seok Jin; Song, Kye Yong; Park, Sang Chul

    2011-09-30

    Although 4,4'-diaminodiphenylsulfone (DDS, dapsone) has been used to treat several dermatologic conditions, including Hansen disease, for the past several decades, its mode of action has remained a topic of debate. We recently reported that DDS treatment significantly extends the lifespan of the nematode C. elegans by decreasing the generation of reactive oxygen species. Additionally, in in vitro experiments using non-phagocytic human fibroblasts, we found that DDS effectively counteracted the toxicity of paraquat (PQ). In the present study, we extended our work to test the protective effect of DDS against PQ in vivo using a mouse lung injury model. Oral administration of DDS to mice significantly attenuated the lung tissue damage caused by subsequent administration of PQ. Moreover, DDS reduced the local expression of mRNA transcripts encoding inflammation-related molecules, including endothelin-1 (ET-1), macrophage inflammatory protein-1α (MIP-1α), and transforming growth factor-β (TGF-β). In addition, DDS decreased the PQ-induced expression of NADPH oxidase mRNA and activation of protein kinase Cμ (PKCμ). DDS treatment also decreased the PQ-induced generation of superoxide anions in mouse lung fibroblasts. Taken together, these data suggest the novel efficacy of DDS as an effective protective agent against oxidative stress-induced tissue damages.

  15. A novel SCID mouse model for studying spontaneous metastasis of human lung cancer to human tissue.

    PubMed

    Teraoka, S; Kyoizumi, S; Seyama, T; Yamakido, M; Akiyama, M

    1995-05-01

    We established a novel severe combined immunodeficient (SCID) mouse model for the study of human lung cancer metastasis to human lung. Implantation of both human fetal and adult lung tissue into mammary fat pads of SCID mice showed a 100% rate of engraftment, but only fetal lung implants revealed normal morphology of human lung tissue. Using these chimeric mice, we analyzed human lung cancer metastasis to both mouse and human lungs by subcutaneous inoculation of human squamous cell carcinoma and adenocarcinoma cell lines into the mice. In 60 to 70% of SCID mice injected with human-lung squamous-cell carcinoma, RERF-LC-AI, cancer cells were found to have metastasized to both mouse lungs and human fetal lung implants but not to human adult lung implants 80 days after cancer inoculation. Furthermore, human-lung adenocarcinoma cells, RERF-LC-KJ, metastasized to the human lung implants within 90 days in about 40% of SCID mice, whereas there were no metastases to the lungs of the mice. These results demonstrate the potential of this model for the in vivo study of human lung cancer metastasis.

  16. Activation of proto-oncogenes in human and mouse lung tumors

    SciTech Connect

    Reynolds, S.H.; Anderson, M.W. )

    1991-06-01

    Lung cancer is a leading cause of cancer-related deaths in several nations. Epidemiological studies have indicated that 85% of all lung cancer deaths and 30% of all cancer deaths in the US are associated with tobacco smoking. Various chemicals in tobacco smoke are thought to react with DNA and to ultimately yield heritable mutations. In an effort to understand the molecular mechanisms involved in lung tumorigenesis, the authors have analyzed proto-oncogene activation in a series of human lung tumors from smokers and spontaneously occurring and chemically induced lung tumors in mice. Approximately 86% of the human lung tumors and > 90% of the mouse lung tumors were found to contain activated oncogenes. ras Oncogenes activated by point mutations were detected in many of the human lung adenocarcinomas and virtually all of the mouse lung adenomas and adenocarcinomas. The mutation profiles of the activated K-ras genes detected in the chemically induced mouse lung tumors suggest that the observed mutations result from genotoxic effects of the chemicals. Comparison of the K-ras mutations observed in the human lung adenocarcinomas with mutation profiles observed in the mouse lung tumors suggest that bulky hydrophobic DNA adducts may be responsible for the majority of the mutations observed in the activated human K-ras genes. Other data indicate that approximately 20% of human lung tumors contain potentially novel transforming genes that may also be targets for mutagens in cigarette smoke.

  17. Atorvastatin and Simvastatin Promoted Mouse Lung Repair After Cigarette Smoke-Induced Emphysema.

    PubMed

    Pinho-Ribeiro, Vanessa; Melo, Adriana Correa; Kennedy-Feitosa, Emanuel; Graca-Reis, Adriane; Barroso, Marina Valente; Cattani-Cavalieri, Isabella; Carvalho, Giovanna Marcella Cavalcante; Zin, Walter Araújo; Porto, Luis Cristóvão; Gitirana, Lycia Brito; Lanzetti, Manuella; Valença, Samuel Santos

    2017-03-01

    Cigarette smoke (CS) induces pulmonary emphysema by inflammation, oxidative stress, and metalloproteinase (MMP) activation. Pharmacological research studies have not focused on tissue repair after the establishment of emphysema but have instead focused on inflammatory stimulation. The aim of our study was to analyze the effects of atorvastatin and simvastatin on mouse lung repair after emphysema caused by CS. Male mice (C57BL/6, n = 45) were divided into the following groups: control (sham-exposed), CSr (mice exposed to 12 cigarettes a day for 60 days and then treated for another 60 days with the vehicle), CSr+A (CSr mice treated with atorvastatin for 60 days), and CSr+S (CSr mice treated with simvastatin for 60 days). The treatment with atorvastatin and simvastatin was administered via inhalation (15 min with 1 mg/mL once a day). Mice were sacrificed 24 h after the completion of the 120-day experimental procedure. We performed biochemical, morphological, and physiological analyses. We observed decreased levels of leukocytes and cytokines in statin-treated mice, accompanied by a reduction in oxidative stress markers. We also observed a morphological improvement confirmed by a mean linear intercept counting in statin-treated mice. Finally, statins also ameliorated lung function. We conclude that inhaled atorvastatin and simvastatin improved lung repair after cigarette smoke-induced emphysema in mice.

  18. Cadmium stimulates myofibroblast differentiation and mouse lung fibrosis.

    PubMed

    Hu, Xin; Fernandes, Jolyn; Jones, Dean P; Go, Young-Mi

    2017-03-21

    Increasing evidence suggests that Cd at levels found in the human diet can cause oxidative stress and activate redox-sensitive transcription factors in inflammatory signaling. Following inflammation, tissue repair often involves activation of redox-sensitive transcription factors in fibroblasts. In lungs, epithelial barrier remodeling is required to restore gas exchange and barrier function, and aberrant myofibroblast differentiation leads to pulmonary fibrosis. Contributions of exogenous exposures, such as dietary Cd, to pulmonary fibrosis remain incompletely defined. In the current study, we tested whether Cd activates fibrotic signaling in human fetal lung fibroblasts (HFLF) at micromolar and submicromolar Cd concentrations that do not cause cell death. Exposure of HFLF to low-dose Cd (≤1.0μM) caused an increase in stress fibers and increased protein levels of myofibroblast differentiation markers, including α-smooth muscle actin (α-SMA) and extra-domain-A-containing fibronectin (ED-A-FN). Assay of transcription factor (TF) activity using a 45-TF array showed that Cd increased activity of 12 TF, including SMAD2/3/4 (mothers against decapentaplegic homolog) signaling differentiation and fibrosis. Results were confirmed by real-time PCR and supported by increased expression of target genes of SMAD2/3/4. Immunocytochemistry of lungs of mice exposed to low-dose Cd (0.3 and 1.0mg/L in drinking water) showed increased α-SMA protein level with lung Cd accumulation similar to lung Cd in non-smoking humans. Together, the results show that relatively low Cd exposures stimulate pulmonary fibrotic signaling and myofibroblast differentiation by activating SMAD2/3/4-dependent signaling. The results indicate that dietary Cd intake could be an important variable contributing to pulmonary fibrosis in humans.

  19. Alterations of lung microbiota in a mouse model of LPS-induced lung injury

    PubMed Central

    Meng, Fanyong; Meliton, Angelo; Afonyushkin, Taras; Ulanov, Alexander; Semenyuk, Ekaterina; Latif, Omar; Tesic, Vera; Birukova, Anna A.; Birukov, Konstantin G.

    2015-01-01

    Acute lung injury (ALI) and the more severe acute respiratory distress syndrome are common responses to a variety of infectious and noninfectious insults. We used a mouse model of ALI induced by intratracheal administration of sterile bacterial wall lipopolysaccharide (LPS) to investigate the changes in innate lung microbiota and study microbial community reaction to lung inflammation and barrier dysfunction induced by endotoxin insult. One group of C57BL/6J mice received LPS via intratracheal injection (n = 6), and another received sterile water (n = 7). Bronchoalveolar lavage (BAL) was performed at 72 h after treatment. Bacterial DNA was extracted and used for qPCR and 16S rRNA gene-tag (V3–V4) sequencing (Illumina). The bacterial load in BAL from ALI mice was increased fivefold (P = 0.03). The community complexity remained unchanged (Simpson index, P = 0.7); the Shannon diversity index indicated the increase of community evenness in response to ALI (P = 0.07). Principal coordinate analysis and analysis of similarity (ANOSIM) test (P = 0.005) revealed a significant difference between microbiota of control and ALI groups. Bacteria from families Xanthomonadaceae and Brucellaceae increased their abundance in the ALI group as determined by Metastats test (P < 0.02). In concordance with the 16s-tag data, Stenotrohomonas maltophilia (Xanthomonadaceae) and Ochrobactrum anthropi (Brucellaceae) were isolated from lungs of mice from both groups. Metabolic profiling of BAL detected the presence of bacterial substrates suitable for both isolates. Additionally, microbiota from LPS-treated mice intensified IL-6-induced lung inflammation in naive mice. We conclude that the morbid transformation of ALI microbiota was attributed to the set of inborn opportunistic pathogens thriving in the environment of inflamed lung, rather than the external infectious agents. PMID:25957290

  20. Alterations of lung microbiota in a mouse model of LPS-induced lung injury.

    PubMed

    Poroyko, Valeriy; Meng, Fanyong; Meliton, Angelo; Afonyushkin, Taras; Ulanov, Alexander; Semenyuk, Ekaterina; Latif, Omar; Tesic, Vera; Birukova, Anna A; Birukov, Konstantin G

    2015-07-01

    Acute lung injury (ALI) and the more severe acute respiratory distress syndrome are common responses to a variety of infectious and noninfectious insults. We used a mouse model of ALI induced by intratracheal administration of sterile bacterial wall lipopolysaccharide (LPS) to investigate the changes in innate lung microbiota and study microbial community reaction to lung inflammation and barrier dysfunction induced by endotoxin insult. One group of C57BL/6J mice received LPS via intratracheal injection (n = 6), and another received sterile water (n = 7). Bronchoalveolar lavage (BAL) was performed at 72 h after treatment. Bacterial DNA was extracted and used for qPCR and 16S rRNA gene-tag (V3-V4) sequencing (Illumina). The bacterial load in BAL from ALI mice was increased fivefold (P = 0.03). The community complexity remained unchanged (Simpson index, P = 0.7); the Shannon diversity index indicated the increase of community evenness in response to ALI (P = 0.07). Principal coordinate analysis and analysis of similarity (ANOSIM) test (P = 0.005) revealed a significant difference between microbiota of control and ALI groups. Bacteria from families Xanthomonadaceae and Brucellaceae increased their abundance in the ALI group as determined by Metastats test (P < 0.02). In concordance with the 16s-tag data, Stenotrohomonas maltophilia (Xanthomonadaceae) and Ochrobactrum anthropi (Brucellaceae) were isolated from lungs of mice from both groups. Metabolic profiling of BAL detected the presence of bacterial substrates suitable for both isolates. Additionally, microbiota from LPS-treated mice intensified IL-6-induced lung inflammation in naive mice. We conclude that the morbid transformation of ALI microbiota was attributed to the set of inborn opportunistic pathogens thriving in the environment of inflamed lung, rather than the external infectious agents.

  1. Carbon black nanoparticle instillation induces sustained inflammation and genotoxicity in mouse lung and liver

    PubMed Central

    2012-01-01

    Background Widespread occupational exposure to carbon black nanoparticles (CBNPs) raises concerns over their safety. CBNPs are genotoxic in vitro but less is known about their genotoxicity in various organs in vivo. Methods We investigated inflammatory and acute phase responses, DNA strand breaks (SB) and oxidatively damaged DNA in C57BL/6 mice 1, 3 and 28 days after a single instillation of 0.018, 0.054 or 0.162 mg Printex 90 CBNPs, alongside sham controls. Bronchoalveolar lavage (BAL) fluid was analyzed for cellular composition. SB in BAL cells, whole lung and liver were assessed using the alkaline comet assay. Formamidopyrimidine DNA glycosylase (FPG) sensitive sites were assessed as an indicator of oxidatively damaged DNA. Pulmonary and hepatic acute phase response was evaluated by Saa3 mRNA real-time quantitative PCR. Results Inflammation was strongest 1 and 3 days post-exposure, and remained elevated for the two highest doses (i.e., 0.054 and 0.162 mg) 28 days post-exposure (P < 0.001). SB were detected in lung at all doses on post-exposure day 1 (P < 0.001) and remained elevated at the two highest doses until day 28 (P < 0.05). BAL cell DNA SB were elevated relative to controls at least at the highest dose on all post-exposure days (P < 0.05). The level of FPG sensitive sites in lung was increased throughout with significant increases occurring on post-exposure days 1 and 3, in comparison to controls (P < 0.001-0.05). SB in liver were detected on post-exposure days 1 (P < 0.001) and 28 (P < 0.001). Polymorphonuclear (PMN) cell counts in BAL correlated strongly with FPG sensitive sites in lung (r = 0.88, P < 0.001), whereas no such correlation was observed with SB (r = 0.52, P = 0.08). CBNP increased the expression of Saa3 mRNA in lung tissue on day 1 (all doses), 3 (all doses) and 28 (0.054 and 0.162 mg), but not in liver. Conclusions Deposition of CBNPs in lung induces inflammatory and genotoxic effects in mouse lung that persist considerably after the

  2. Lung Cancer Signatures in Plasma Based on Proteome Profiling of Mouse Tumor Models

    PubMed Central

    Taguchi, Ayumu; Politi, Katerina; Pitteri, Sharon J.; Lockwood, William W.; Faça, Vitor M.; Kelly-Spratt, Karen; Wong, Chee-Hong; Zhang, Qing; Chin, Alice; Park, Kwon-Sik; Goodman, Gary; Gazdar, Adi F.; Sage, Julien; Dinulescu, Daniela M.; Kucherlapati, Raju; DePinho, Ronald A.; Kemp, Christopher J.; Varmus, Harold E.; Hanash, Samir M.

    2012-01-01

    SUMMARY We investigated the potential of in-depth quantitative proteomics to reveal plasma protein signatures that reflect lung tumor biology. We compared plasma protein profiles of four mouse models of lung cancer with profiles of models of pancreatic, ovarian, colon, prostate, and breast cancer and two models of inflammation. A protein signature for Titf1/Nkx2-1, a known lineage-survival oncogene in lung cancer, was found in plasmas of mouse models of lung adenocarcinoma. An EGFR signature was found in plasma of an EGFR mutant model, and a distinct plasma signature related to neuroendocrine development was uncovered in the small-cell lung cancer model. We demonstrate relevance to human lung cancer of the protein signatures identified on the basis of mouse models. PMID:21907921

  3. Nontypeable Haemophilus influenzae Induces Sustained Lung Oxidative Stress and Protease Expression

    PubMed Central

    King, Paul T.; Sharma, Roleen; O’Sullivan, Kim; Selemidis, Stavros; Lim, Steven; Radhakrishna, Naghmeh; Lo, Camden; Prasad, Jyotika; Callaghan, Judy; McLaughlin, Peter; Farmer, Michael; Steinfort, Daniel; Jennings, Barton; Ngui, James; Broughton, Bradley R. S.; Thomas, Belinda; Essilfie, Ama-Tawiah; Hickey, Michael; Holmes, Peter W.; Hansbro, Philip; Bardin, Philip G.; Holdsworth, Stephen R.

    2015-01-01

    Nontypeable Haemophilus influenzae (NTHi) is a prevalent bacterium found in a variety of chronic respiratory diseases. The role of this bacterium in the pathogenesis of lung inflammation is not well defined. In this study we examined the effect of NTHi on two important lung inflammatory processes 1), oxidative stress and 2), protease expression. Bronchoalveolar macrophages were obtained from 121 human subjects, blood neutrophils from 15 subjects, and human-lung fibroblast and epithelial cell lines from 16 subjects. Cells were stimulated with NTHi to measure the effect on reactive oxygen species (ROS) production and extracellular trap formation. We also measured the production of the oxidant, 3-nitrotyrosine (3-NT) in the lungs of mice infected with this bacterium. NTHi induced widespread production of 3-NT in mouse lungs. This bacterium induced significantly increased ROS production in human fibroblasts, epithelial cells, macrophages and neutrophils; with the highest levels in the phagocytic cells. In human macrophages NTHi caused a sustained, extracellular production of ROS that increased over time. The production of ROS was associated with the formation of macrophage extracellular trap-like structures which co-expressed the protease metalloproteinase-12. The formation of the macrophage extracellular trap-like structures was markedly inhibited by the addition of DNase. In this study we have demonstrated that NTHi induces lung oxidative stress with macrophage extracellular trap formation and associated protease expression. DNase inhibited the formation of extracellular traps. PMID:25793977

  4. Oxidative Lung Damage Resulting from Repeated Exposure to Radiation and Hyperoxia Associated with Space Exploration

    PubMed Central

    Pietrofesa, Ralph A; Turowski, Jason B; Arguiri, Evguenia; Milovanova, Tatyana N; Solomides, Charalambos C; Thom, Stephen R; Christofidou-Solomidou, Melpo

    2013-01-01

    Background Spaceflight missions may require crewmembers to conduct Extravehicular Activities (EVA) for repair, maintenance or scientific purposes. Pre-breathe protocols in preparation for an EVA entail 100% hyperoxia exposure that may last for a few hours (5-8 hours), and may be repeated 2-3 times weekly. Each EVA is associated with additional challenges such as low levels of total body cosmic/galactic radiation exposure that may present a threat to crewmember health and therefore, pose a threat to the success of the mission. We have developed a murine model of combined, hyperoxia and radiation exposure (double-hit) in the context of evaluating countermeasures to oxidative lung damage associated with space flight. In the current study, our objective was to characterize the early and chronic effects of repeated single and double-hit challenge on lung tissue using a novel murine model of repeated exposure to low-level total body radiation and hyperoxia. This is the first study of its kind evaluating lung damage relevant to space exploration in a rodent model. Methods Mouse cohorts (n=5-15/group) were exposed to repeated: a) normoxia; b) >95% O2 (O2); c) 0.25Gy single fraction gamma radiation (IR); or d) a combination of O2 and IR (O2+IR) given 3 times per week for 4 weeks. Lungs were evaluated for oxidative damage, active TGFβ1 levels, cell apoptosis, inflammation, injury, and fibrosis at 1, 2, 4, 8, 12, 16, and 20 weeks post-initiation of exposure. Results Mouse cohorts exposed to all challenge conditions displayed decreased bodyweight compared to untreated controls at 4 and 8 weeks post-challenge initiation. Chronic oxidative lung damage to lipids (malondialdehyde levels), DNA (TUNEL, cleaved Caspase 3, cleaved PARP positivity) leading to apoptotic cell death and to proteins (nitrotyrosine levels) was elevated all treatment groups. Importantly, significant systemic oxidative stress was also noted at the late phase in mouse plasma, BAL fluid, and urine. Importantly

  5. Oxidative Lung Damage Resulting from Repeated Exposure to Radiation and Hyperoxia Associated with Space Exploration.

    PubMed

    Pietrofesa, Ralph A; Turowski, Jason B; Arguiri, Evguenia; Milovanova, Tatyana N; Solomides, Charalambos C; Thom, Stephen R; Christofidou-Solomidou, Melpo

    2013-09-30

    Spaceflight missions may require crewmembers to conduct Extravehicular Activities (EVA) for repair, maintenance or scientific purposes. Pre-breathe protocols in preparation for an EVA entail 100% hyperoxia exposure that may last for a few hours (5-8 hours), and may be repeated 2-3 times weekly. Each EVA is associated with additional challenges such as low levels of total body cosmic/galactic radiation exposure that may present a threat to crewmember health and therefore, pose a threat to the success of the mission. We have developed a murine model of combined, hyperoxia and radiation exposure (double-hit) in the context of evaluating countermeasures to oxidative lung damage associated with space flight. In the current study, our objective was to characterize the early and chronic effects of repeated single and double-hit challenge on lung tissue using a novel murine model of repeated exposure to low-level total body radiation and hyperoxia. This is the first study of its kind evaluating lung damage relevant to space exploration in a rodent model. Mouse cohorts (n=5-15/group) were exposed to repeated: a) normoxia; b) >95% O2 (O2); c) 0.25Gy single fraction gamma radiation (IR); or d) a combination of O2 and IR (O2+IR) given 3 times per week for 4 weeks. Lungs were evaluated for oxidative damage, active TGFβ1 levels, cell apoptosis, inflammation, injury, and fibrosis at 1, 2, 4, 8, 12, 16, and 20 weeks post-initiation of exposure. Mouse cohorts exposed to all challenge conditions displayed decreased bodyweight compared to untreated controls at 4 and 8 weeks post-challenge initiation. Chronic oxidative lung damage to lipids (malondialdehyde levels), DNA (TUNEL, cleaved Caspase 3, cleaved PARP positivity) leading to apoptotic cell death and to proteins (nitrotyrosine levels) was elevated all treatment groups. Importantly, significant systemic oxidative stress was also noted at the late phase in mouse plasma, BAL fluid, and urine. Importantly, however, late oxidative

  6. Phenotyping mouse pulmonary function in vivo with the lung diffusing capacity.

    PubMed

    Limjunyawong, Nathachit; Fallica, Jonathan; Ramakrishnan, Amritha; Datta, Kausik; Gabrielson, Matthew; Horton, Maureen; Mitzner, Wayne

    2015-01-06

    The mouse is now the primary animal used to model a variety of lung diseases. To study the mechanisms that underlie such pathologies, phenotypic methods are needed that can quantify the pathologic changes. Furthermore, to provide translational relevance to the mouse models, such measurements should be tests that can easily be done in both humans and mice. Unfortunately, in the present literature few phenotypic measurements of lung function have direct application to humans. One exception is the diffusing capacity for carbon monoxide, which is a measurement that is routinely done in humans. In the present report, we describe a means to quickly and simply measure this diffusing capacity in mice. The procedure involves brief lung inflation with tracer gases in an anesthetized mouse, followed by a 1 min gas analysis time. We have tested the ability of this method to detect several lung pathologies, including emphysema, fibrosis, acute lung injury, and influenza and fungal lung infections, as well as monitoring lung maturation in young pups. Results show significant decreases in all the lung pathologies, as well as an increase in the diffusing capacity with lung maturation. This measurement of lung diffusing capacity thus provides a pulmonary function test that has broad application with its ability to detect phenotypic structural changes with most of the existing pathologic lung models.

  7. Oral recombinant human or mouse lactoferrin reduces Mycobacterium tuberculosis TDM induced granulomatous lung pathology.

    PubMed

    Hwang, Shen-An; Kruzel, Marian L; Actor, Jeffrey K

    2017-02-01

    Trehalose 6'6-dimycolate (TDM) is the most abundant glycolipid on the cell wall of Mycobacterium tuberculosis (MTB). TDM is capable of inducing granulomatous pathology in mouse models that resembles those induced by MTB infection. Using the acute TDM model, this work investigates the effect of recombinant human and mouse lactoferrin to reduce granulomatous pathology. C57BL/6 mice were injected intravenously with TDM at a dose of 25 μg·mouse(-1). At day 4 and 6, recombinant human or mouse lactoferrin (1 mg·(100 μL)(-1)·mouse(-1)) were delivered by gavage. At day 7 after TDM injection, mice were evaluated for lung pathology, cytokine production, and leukocyte populations. Mice given human or mouse lactoferrin had reduced production of IL-12p40 in their lungs. Mouse lactoferrin increased IL-6 and KC (CXCL1) in lung tissue. Increased numbers of macrophages were observed in TDM-injected mice given human or mouse lactoferrin. Granulomatous pathology, composed of mainly migrated leukocytes, was visually reduced in mice that received human or mouse lactoferrin. Quantitation of granulomatous pathology demonstrated a significant decrease in mice given human or mouse lactoferrin compared with TDM control mice. This report is the first to directly compare the immune modulatory effects of both heterologous recombinant human and homologous mouse lactoferrin on the development of TDM-induced granulomas.

  8. Ozone-related fluorescent compounds in mouse liver and lung

    SciTech Connect

    Csallany, A.S.; Manwaring, J.D.; Menken, B.Z.

    1985-08-01

    Groups of ten female, weanling mice were fed a basal, vitamin E-deficient diet or a basal diet supplemented with RRR-alpha-tocopheryl acetate for 14 months. During the last month one group from each dietary regimen was exposed for 30-60 min/day to 1.5 ppm ozone (25 hr total ozone exposure) and the remaining groups to control ambient air. The liver and lung tissues were homogenized and extracted with 2:1 chloroform:methanol and water. Excitation and emission wavelengths for the eluting fractions were determined by continuous emission scans from 250 to 600 nm for each excitation wavelength between 250 and 500 nm. Ozone exposure did not effect the concentration of any of the fluorescent materials examined in the lung, but it resulted in a significant increase in two of four water-soluble compounds in the liver with excitation wavelength maxima/emission wavelength maxima of 270 nm/310 nm and 275 nm/350 nm (smaller molecular weight material) suggesting in vivo lipid oxidation.

  9. Refraction-enhanced tomography of mouse and rabbit lungs

    SciTech Connect

    Sera, T.; Uesugi, K.; Yagi, N.

    2005-09-15

    In order to evaluate the effectiveness of edge enhancement by refraction in computed tomography, images of a cross section of a euthanized mouse thorax were recorded at low (20 keV) and high (72 keV) x-ray energies at a spatial resolution of about 40 {mu}m. Compared with the images obtained with the detector at 30 cm from an object, when the object was located at 113 cm from the detector, the contrast between tissues and air was improved at both energies. The improvement was more pronounced at 72 keV where the absorption contrast was weaker. This effect was due to refraction at the surfaces of alveolar membranes and small airways which creates areas with apparently high and low linear attenuation coefficients within tissues. The edge enhancement by refraction was also effective in images of a euthanized rabbit thorax at x-ray energies of 40 and 70 keV at a spatial resolution of about 0.15 mm. These results raise the possibility that the refraction contrast may be utilized to obtain a high-resolution tomographic image of human lung and bone with low dose.

  10. Metabolism of the anti-tuberculosis drug ethionamide by mouse and human FMO1, FMO2 and FMO3 and mouse and human lung microsomes

    SciTech Connect

    Henderson, Marilyn C.; Siddens, Lisbeth K.; Morre, Jeffrey T.; Krueger, Sharon K.; Williams, David E.

    2008-12-15

    Tuberculosis (TB) results from infection with Mycobacterium tuberculosis and remains endemic throughout the world with one-third of the world's population infected. The prevalence of multi-drug resistant strains necessitates the use of more toxic second-line drugs such as ethionamide (ETA), a pro-drug requiring bioactivation to exert toxicity. M. tuberculosis possesses a flavin monooxygenase (EtaA) that oxygenates ETA first to the sulfoxide and then to 2-ethyl-4-amidopyridine, presumably through a second oxygenation involving sulfinic acid. ETA is also a substrate for mammalian flavin-containing monooxygenases (FMOs). We examined activity of expressed human and mouse FMOs toward ETA, as well as liver and lung microsomes. All FMOs converted ETA to the S-oxide (ETASO), the first step in bioactivation. Compared to M. tuberculosis, the second S-oxygenation to the sulfinic acid is slow. Mouse liver and lung microsomes, as well as human lung microsomes from an individual expressing active FMO, oxygenated ETA in the same manner as expressed FMOs, confirming this reaction functions in the major target organs for therapeutics (lung) and toxicity (liver). Inhibition by thiourea, and lack of inhibition by SKF-525A, confirm ETASO formation is primarily via FMO, particularly in lung. ETASO production was attenuated in a concentration-dependent manner by glutathione. FMO3 in human liver may contribute to the toxicity and/or affect efficacy of ETA administration. Additionally, there may be therapeutic implications of efficacy and toxicity in human lung based on the FMO2 genetic polymorphism, though further studies are needed to confirm that suggestion.

  11. Developing Novel Therapeutic Approaches in Small Cell Lung Carcinoma Using Genetically Engineered Mouse Models and Human Circulating Tumor Cells

    DTIC Science & Technology

    2015-10-01

    Using Genetically Engineered Mouse Models and Human Circulating Tumor Cells PRINCIPAL INVESTIGATOR: Jeffrey Engelman MD PhD CONTRACTING...SUBTITLE Developiing Novel Therapeutic Approaches in Small Cell Lung 5a. CONTRACT NUMBER Carcinoma Using Genetically Engineered Mouse Models and 5b...biomarkers. 15. SUBJECT TERMS Small cell lung cancer (SCLC), Genetically engineered mouse model (GEMM), BH3 mimetic, TORC inhibitor, Apoptosis

  12. Role of Nitric Oxide Isoforms in Vascular and Alveolar Development and Lung Injury in Vascular Endothelial Growth Factor Overexpressing Neonatal Mice Lungs.

    PubMed

    Syed, Mansoor A; Choo-Wing, Rayman; Homer, Robert J; Bhandari, Vineet

    2016-01-01

    The role of vascular endothelial growth factor (VEGF)-induced 3 different nitric oxide synthase (NOS) isoforms in lung development and injury in the newborn (NB) lung are not known. We hypothesized that VEGF-induced specific NOS pathways are critical regulators of lung development and injury. We studied NB wild type (WT), lung epithelial cell-targeted VEGF165 doxycycline-inducible overexpressing transgenic (VEGFTG), VEGFTG treated with a NOS1 inhibitor (L-NIO), VEGFTG x NOS2-/- and VEGFTG x NOS3+/- mice in room air (RA) for 7 postnatal (PN) days. Lung morphometry (chord length), vascular markers (Ang1, Ang2, Notch2, vWF, CD31 and VE-cadherin), cell proliferation (Ki67), vascular permeability, injury and oxidative stress markers (hemosiderin, nitrotyrosine and 8-OHdG) were evaluated. VEGF overexpression in RA led to increased chord length and vascular markers at PN7, which were significantly decreased to control values in VEGFTG x NOS2-/- and VEGFTG x NOS3+/- lungs. However, we found no noticeable effect on chord length and vascular markers in the VEGFTG / NOS1 inhibited group. In the NB VEGFTG mouse model, we found VEGF-induced vascular permeability in the NB murine lung was partially dependent on NOS2 and NOS3-signaling pathways. In addition, the inhibition of NOS2 and NOS3 resulted in a significant decrease in VEGF-induced hemosiderin, nitrotyrosine- and 8-OHdG positive cells at PN7. NOS1 inhibition had no significant effect. Our data showed that the complete absence of NOS2 and partial deficiency of NOS3 confers protection against VEGF-induced pathologic lung vascular and alveolar developmental changes, as well as injury markers. Inhibition of NOS1 does not have any modulating role on VEGF-induced changes in the NB lung. Overall, our data suggests that there is a significant differential regulation in the NOS-mediated effects of VEGF overexpression in the developing mouse lung.

  13. Oxidative Stress in Genetic Mouse Models of Parkinson's Disease

    PubMed Central

    Varçin, Mustafa; Bentea, Eduard; Michotte, Yvette; Sarre, Sophie

    2012-01-01

    There is extensive evidence in Parkinson's disease of a link between oxidative stress and some of the monogenically inherited Parkinson's disease-associated genes. This paper focuses on the importance of this link and potential impact on neuronal function. Basic mechanisms of oxidative stress, the cellular antioxidant machinery, and the main sources of cellular oxidative stress are reviewed. Moreover, attention is given to the complex interaction between oxidative stress and other prominent pathogenic pathways in Parkinson's disease, such as mitochondrial dysfunction and neuroinflammation. Furthermore, an overview of the existing genetic mouse models of Parkinson's disease is given and the evidence of oxidative stress in these models highlighted. Taken into consideration the importance of ageing and environmental factors as a risk for developing Parkinson's disease, gene-environment interactions in genetically engineered mouse models of Parkinson's disease are also discussed, highlighting the role of oxidative damage in the interplay between genetic makeup, environmental stress, and ageing in Parkinson's disease. PMID:22829959

  14. Curcumin Inhibits Transforming Growth Factor β Induced Differentiation of Mouse Lung Fibroblasts to Myofibroblasts

    PubMed Central

    Liu, Daishun; Gong, Ling; Zhu, Honglan; Pu, Shenglan; Wu, Yang; Zhang, Wei; Huang, Guichuan

    2016-01-01

    Transforming growth factor β (TGF-β) induced differentiation of lung fibroblasts to myofibroblasts is a key event in the pathogenesis of pulmonary fibrosis. This study aimed to evaluate the effect of curcumin on TGF-β induced differentiation of lung fibroblasts to myofibroblasts and explore the underlying mechanism. Mouse lung fibroblasts were cultured and treated with TGF-β2 and curcumin or rosiglitazone. Cell vitality was examined by MTT assay. The secretion of collagen-1 was assessed by ELISA. α smooth muscle actin (α-SMA) was visualized by immunofluorescence technique. The expression of peroxisome proliferator activated receptor γ (PPAR-γ) and platelet derived growth factor R β (PDGFR-β) was detected by PCR and Western blot analysis. We found that curcumin and rosiglitazone inhibited the proliferation and TGF-β induced differentiation of mouse lung fibroblasts. In addition, curcumin and rosiglitazone inhibited collagen-1 secretion and α-SMA expression in mouse lung fibroblasts. Furthermore, curcumin and rosiglitazone upregulated PPAR-γ and downregulated PDGFR-β expression in mouse lung fibroblasts. In conclusion, our study reveals novel mechanism by which curcumin inhibits TGF-β2 driven differentiation of lung fibroblasts to myofibroblasts. Curcumin could potentially be used for effective treatment of pulmonary fibrosis. PMID:27877129

  15. Regulation of IL-33 by Oncostatin M in Mouse Lung Epithelial Cells

    PubMed Central

    Izakelian, Laura; Dubey, Anisha; Zhang, Grace; Wong, Steven; Kwofie, Karen; Qureshi, Aatif; Botelho, Fernando

    2016-01-01

    IL-33 modulates both innate and adaptive immune responses at tissue sites including lung and may play critical roles in inflammatory lung disease. Although IL-33 expression can be altered upon NF-Kappa B activation, here we examine regulation by Oncostatin M, a gp130 cytokine family member, in mouse lung tissue. Responses were assessed in BALB/c mouse lung at day 7 of transient overexpression using endotracheally administered adenovirus encoding OSM (AdOSM) or empty vector (AdDel70). Whole lung extracts showed induction of IL-33 mRNA (>20-fold) and protein (10-fold increase in immunoblots) by AdOSM relative to AdDel70. Immunohistochemistry for IL-33 indicated a marked induction of nuclear staining in alveolar epithelial cells in vivo. Oncostatin M stimulated IL-33 mRNA and IL-33 full length protein in C10 mouse type 2 alveolar epithelial cells in culture in time-dependent and dose-dependent fashion, whereas IL-6, LIF, IL-31, IL-4, or IL-13 did not, and TGFβ repressed IL-33. IL-33 induction was associated with activation of STAT3, and pharmacological inhibition of STAT3 ameliorated IL-33 levels. These results indicate Oncostatin M as a potent inducer of IL-33 in mouse lung epithelial cells and suggest that an OSM/IL-33 axis may participate in innate immunity and inflammatory conditions in lung. PMID:27703303

  16. Unbalanced oxidant-induced DNA damage and repair in COPD: a link towards lung cancer.

    PubMed

    Caramori, Gaetano; Adcock, Ian M; Casolari, Paolo; Ito, Kazuhiro; Jazrawi, Elen; Tsaprouni, Loukia; Villetti, Gino; Civelli, Maurizio; Carnini, Chiara; Chung, Kian Fan; Barnes, Peter J; Papi, Alberto

    2011-06-01

    Chronic obstructive pulmonary disease (COPD) is characterised by oxidative stress and increased risk of lung carcinoma. Oxidative stress causes DNA damage which can be repaired by DNA-dependent protein kinase complex. To investigate DNA damage/repair balance and DNA-dependent protein kinase complex in COPD lung and in an animal model of smoking-induced lung damage and to evaluate the effects of oxidative stress on Ku expression and function in human bronchial epithelial cells. Protein expression was quantified using immunohistochemistry and/or western blotting. DNA damage/repair was measured using colorimetric assays. 8-OH-dG, a marker of oxidant-induced DNA damage, was statistically significantly increased in the peripheral lung of smokers (with and without COPD) compared with non-smokers, while the number of apurinic/apyrimidinic (AP) sites (DNA damage and repair) was increased in smokers compared with non-smokers (p = 0.0012) and patients with COPD (p < 0.0148). Nuclear expression of Ku86, but not of DNA-PKcs, phospho-DNA-PKcs, Ku70 or γ-H2AFX, was reduced in bronchiolar epithelial cells from patients with COPD compared with normal smokers and non-smokers (p < 0.039). Loss of Ku86 expression was also observed in a smoking mouse model (p < 0.012) and prevented by antioxidants. Oxidants reduced (p < 0.0112) Ku86 expression in human bronchial epithelial cells and Ku86 knock down modified AP sites in response to oxidative stress. Ineffective DNA repair rather than strand breakage per se accounts for the reduced AP sites observed in COPD and this is correlated with a selective decrease of the expression of Ku86 in the bronchiolar epithelium. DNA damage/repair imbalance may contribute to increased risk of lung carcinoma in COPD.

  17. Nitric oxide synthase 3 contributes to ventilator-induced lung injury

    PubMed Central

    Vaporidi, Katerina; Francis, Roland C.; Bloch, Kenneth D.

    2010-01-01

    Nitric oxide synthase (NOS) depletion or inhibition reduces ventilator-induced lung injury (VILI), but the responsible mechanisms remain incompletely defined. The aim of this study was to elucidate the role of endothelial NOS, NOS3, in the pathogenesis of VILI in an in vivo mouse model. Wild-type and NOS3-deficient mice were ventilated with high-tidal volume (HVT; 40 ml/kg) for 4 h, with and without adding NO to the inhaled gas. Additional wild-type mice were pretreated with tetrahydrobiopterin and ascorbic acid, agents that can prevent NOS-generated superoxide production. Arterial blood gas tensions, histology, and lung mechanics were evaluated after 4 h of HVT ventilation. The concentration of protein, IgM, cytokines, malondialdehyde, and 8-isoprostane were measured in bronchoalveolar lavage fluid (BALF). Myeloperoxidase activity, total and oxidized glutathione levels, and NOS-derived superoxide production were measured in lung tissue homogenates. HVT ventilation induced VILI in wild-type mice, as reflected by decreased lung compliance, increased concentrations of protein and cytokines in BALF, and oxidative stress. All indices of VILI were ameliorated in NOS3-deficient mice. Augmenting pulmonary NO levels by breathing NO during mechanical ventilation did not increase lung injury in NOS3-deficient mice. HVT ventilation increased NOS-inhibitable superoxide production in lung extracts from wild-type mice but not in those from NOS3-deficient mice. Administration of tetrahydrobiopterin and ascorbic acid ameliorated VILI in wild-type mice. Our results indicate that NOS3 contributes to ventilator-induced lung injury via increased production of superoxide. PMID:20453164

  18. Prenatal exposure to bisphenol A disrupts mouse fetal lung development.

    PubMed

    Hijazi, Ayten; Guan, Haiyan; Cernea, Maria; Yang, Kaiping

    2015-12-01

    Developmental exposure to bisphenol A (BPA) is associated with lung dysfunction and diseases. However, it is unknown if this association has a fetal origin. The present study addressed this important question by examining the effects of BPA on fetal lung development. BPA was administered to pregnant mice via diet from embryonic day (E) 7.5 to E18.5. Fetal lungs were analyzed at E18.5 for changes in structure and expression of key molecular markers of lung maturation. Our main findings were as follows: BPA severely retards fetal lung maturation, as evidenced by diminished alveolar airspace (15% of control) and thickened septa, hallmarks of lung immaturity; this immaturity is characterized by aberrant alveolar epithelial type I cell differentiation because expression of the type I cell marker, aquaporin 5, but not type II cell markers, is dramatically reduced (16% of control); and the effects of BPA are likely mediated through the glucocorticoid signaling pathway because the expression of epithelial sodium channel γ and glutathione peroxidase, 2 well-known glucocorticoid target genes, is down-regulated in BPA-exposed fetal lungs, and, importantly, maternal dexamethasone administration rescues the lung immaturity phenotype. Taken together, these findings demonstrate that BPA disrupts fetal lung maturation, thus suggesting a fetal origin for BPA-induced lung diseases. © FASEB.

  19. A Novel Nontoxic Inhibitor of the Activation of NADPH Oxidase Reduces Reactive Oxygen Species Production in Mouse LungS⃞

    PubMed Central

    Lee, Intae; Dodia, Chandra; Chatterjee, Shampa; Zagorski, John; Mesaros, Clementina; Blair, Ian A.; Feinstein, Sheldon I.; Jain, Mahendra

    2013-01-01

    1-Hexadecyl-3-trifluoroethylglycero-sn-2-phosphomethanol (MJ33) is a fluorinated phospholipid analog that inhibits the phospholipase A2 (PLA2) activity of peroxiredoxin 6 (Prdx6). Prdx6 PLA2 activity is required for activation of NADPH oxidase 2 and subsequent generation of reactive oxygen species (ROS). In vitro, MJ33 inhibited agonist-stimulated production of ROS by the isolated perfused mouse lung, lung microvascular endothelial cells, and polymorphonuclear leukocytes. MJ33 (0.02–0.5 µmol MJ33/kg body weight) in mixed unilamellar liposomes was administered to C57BL/6 mice by either intratracheal (i.t.) or i.v. routes. Lung MJ33 content, measured by liquid chromatography/mass spectroscopy, showed uptake of 67–87% of the injected dose for i.t. and 23–42% for i.v. administration at 4 hours postinjection. PLA2 activity of lung homogenates was markedly inhibited (>85%) at 4 hours postadministration. Both MJ33 content and PLA2 activity gradually returned to near control levels over the subsequent 24–72 hours. Mice treated with MJ33 at 12.5–25 µmol/kg did not show changes (compared with control) in clinical symptomatology, body weight, hematocrit, and histology of lung, liver, and kidney during a 30- to 50-day observation period. Thus, the toxic dose of MJ33 was >25 µmol/kg, whereas the PLA2 inhibitory dose was approximately 0.02 µmol/kg, indicating a high margin of safety. MJ33 administered to mice prior to lung isolation markedly reduced ROS production and tissue lipid and protein oxidation during ischemia followed by reperfusion. Thus, MJ33 could be useful as a therapeutic agent to prevent ROS-mediated tissue injury associated with lung inflammation or in harvested lungs prior to transplantation. PMID:23475902

  20. Stereotactic Body Radiation Therapy Delivery in a Genetically Engineered Mouse Model of Lung Cancer

    PubMed Central

    Du, Shisuo; Lockamy, Virginia; Zhou, Lin; Xue, Christine; LeBlanc, Justin; Glenn, Shonna; Shukla, Gaurav; Yu, Yan; Dicker, Adam P.; Leeper, Dennis B.; Lu, You; Lu, Bo

    2016-01-01

    Purpose To implement clinical stereotactic body radiation therapy (SBRT) using a small animal radiation research platform (SARRP) in a genetically engineered mouse model of lung cancer. Methods and Materials A murine model of multinodular Kras-driven spontaneous lung tumors was used for this study. High-resolution cone beam computed tomography (CBCT) imaging was used to identify and target peripheral tumor nodules, whereas off-target lung nodules in the contralateral lung were used as a nonirradiated control. CBCT imaging helps localize tumors, facilitate high-precision irradiation, and monitor tumor growth. SBRT planning, prescription dose, and dose limits to normal tissue followed the guidelines set by RTOG protocols. Pathologic changes in the irradiated tumors were investigated using immunohistochemistry. Results The image guided radiation delivery using the SARRP system effectively localized and treated lung cancer with precision in a genetically engineered mouse model of lung cancer. Immunohistochemical data confirmed the precise delivery of SBRT to the targeted lung nodules. The 60 Gy delivered in 3 weekly fractions markedly reduced the proliferation index, Ki-67, and increased apoptosis per staining for cleaved caspase-3 in irradiated lung nodules. Conclusions It is feasible to use the SARRP platform to perform dosimetric planning and delivery of SBRT in mice with lung cancer. This allows for preclinical studies that provide a rationale for clinical trials involving SBRT, especially when combined with immunotherapeutics. PMID:27681749

  1. Influence of glutathione-S-transferase (GST) inhibition on lung epithelial cell injury: role of oxidative stress and metabolism.

    PubMed

    Fletcher, Marianne E; Boshier, Piers R; Wakabayashi, Kenji; Keun, Hector C; Smolenski, Ryszard T; Kirkham, Paul A; Adcock, Ian M; Barton, Paul J; Takata, Masao; Marczin, Nandor

    2015-06-15

    Oxidant-mediated tissue injury is key to the pathogenesis of acute lung injury. Glutathione-S-transferases (GSTs) are important detoxifying enzymes that catalyze the conjugation of glutathione with toxic oxidant compounds and are associated with acute and chronic inflammatory lung diseases. We hypothesized that attenuation of cellular GST enzymes would augment intracellular oxidative and metabolic stress and induce lung cell injury. Treatment of murine lung epithelial cells with GST inhibitors, ethacrynic acid (EA), and caffeic acid compromised lung epithelial cell viability in a concentration-dependent manner. These inhibitors also potentiated cell injury induced by hydrogen peroxide (H2O2), tert-butyl-hydroperoxide, and hypoxia and reoxygenation (HR). SiRNA-mediated attenuation of GST-π but not GST-μ expression reduced cell viability and significantly enhanced stress (H2O2/HR)-induced injury. GST inhibitors also induced intracellular oxidative stress (measured by dihydrorhodamine 123 and dichlorofluorescein fluorescence), caused alterations in overall intracellular redox status (as evidenced by NAD(+)/NADH ratios), and increased protein carbonyl formation. Furthermore, the antioxidant N-acetylcysteine completely prevented EA-induced oxidative stress and cytotoxicity. Whereas EA had no effect on mitochondrial energetics, it significantly altered cellular metabolic profile. To explore the physiological impact of these cellular events, we used an ex vivo mouse-isolated perfused lung model. Supplementation of perfusate with EA markedly affected lung mechanics and significantly increased lung permeability. The results of our combined genetic, pharmacological, and metabolic studies on multiple platforms suggest the importance of GST enzymes, specifically GST-π, in the cellular and whole lung response to acute oxidative and metabolic stress. These may have important clinical implications. Copyright © 2015 the American Physiological Society.

  2. AKT1E¹⁷K Is Oncogenic in Mouse Lung and Cooperates with Chemical Carcinogens in Inducing Lung Cancer.

    PubMed

    Malanga, Donatella; Belmonte, Stefania; Colelli, Fabiana; Scarfò, Marzia; De Marco, Carmela; Oliveira, Duarte Mendes; Mirante, Teresa; Camastra, Caterina; Gagliardi, Monica; Rizzuto, Antonia; Mignogna, Chiara; Paciello, Orlando; Papparella, Serenella; Fagman, Henrik; Viglietto, Giuseppe

    2016-01-01

    The hotspot AKT1E17K mutation in the pleckstrin homology domain of AKT1 occurs in approximately 0.6-2% of human lung cancers. Recently, we have demonstrated that AKT1E17K transforms immortalized human bronchial cells. Here by use of a transgenic Cre-inducible murine strain in the wild type Rosa26 (R26) locus (R26-AKT1E17K mice) we demonstrate that AKT1E17K is a bona-fide oncogene and plays a role in the development of lung cancer in vivo. In fact, we report that mutant AKT1E17K induces bronchial and/or bronchiolar hyperplastic lesions in murine lung epithelium, which progress to frank carcinoma at very low frequency, and accelerates tumor formation induced by chemical carcinogens. In conclusion, AKT1E17K induces hyperplasia of mouse lung epithelium in vivo and cooperates with urethane to induce the fully malignant phenotype.

  3. Chromosomal changes in high- and low-invasive mouse lung adenocarcinoma cell strains derived from early passage mouse lung adenocarcinoma cell strains

    SciTech Connect

    Sargent, Linda M. Ensell, Mang X.; Ostvold, Anne-Carine; Baldwin, Kimberly T.; Kashon, Michael L.; Lowry, David T.; Senft, Jamie R.; Jefferson, Amy M.; Johnson, Robert C.; Li Zhi; Tyson, Frederick L.; Reynolds, Steven H.

    2008-11-15

    The incidence of adenocarcinoma of the lung is increasing in the United States, however, the difficulties in obtaining lung cancer families and representative samples of early to late stages of the disease have lead to the study of mouse models for lung cancer. We used Spectral Karyotyping (SKY), mapping with fluorescently labeled genomic clones (FISH), comparative genomic hybridization (CGH) arrays, gene expression arrays, Western immunoblot and real time polymerase chain reaction (PCR) to analyze nine pairs of high-invasive and low-invasive tumor cell strains derived from early passage mouse lung adenocarcinoma cells to detect molecular changes associated with tumor invasion. The duplication of chromosomes 1 and 15 and deletion of chromosome 8 were significantly associated with a high-invasive phenotype. The duplication of chromosome 1 at band C4 and E1/2-H1 were the most significant chromosomal changes in the high-invasive cell strains. Mapping with FISH and CGH array further narrowed the minimum region of duplication of chromosome 1 to 71-82 centimorgans (cM). Expression array analysis and confirmation by real time PCR demonstrated increased expression of COX-2, Translin (TB-RBP), DYRK3, NUCKS and Tubulin-{alpha}4 genes in the high-invasive cell strains. Elevated expression and copy number of these genes, which are involved in inflammation, cell movement, proliferation, inhibition of apoptosis and telomere elongation, were associated with an invasive phenotype. Similar linkage groups are altered in invasive human lung adenocarcinoma, implying that the mouse is a valid genetic model for the study of the progression of human lung adenocarcinoma.

  4. Mechanical properties of acellular mouse lungs after sterilization by gamma irradiation.

    PubMed

    Uriarte, Juan J; Nonaka, Paula N; Campillo, Noelia; Palma, Renata K; Melo, Esther; de Oliveira, Luis V F; Navajas, Daniel; Farré, Ramon

    2014-12-01

    Lung bioengineering using decellularized organ scaffolds is a potential alternative for lung transplantation. Clinical application will require donor scaffold sterilization. As gamma-irradiation is a conventional method for sterilizing tissue preparations for clinical application, the aim of this study was to evaluate the effects of lung scaffold sterilization by gamma irradiation on the mechanical properties of the acellular lung when subjected to the artificial ventilation maneuvers typical within bioreactors. Twenty-six mouse lungs were decellularized by a sodium dodecyl sulfate detergent protocol. Eight lungs were used as controls and 18 of them were submitted to a 31kGy gamma irradiation sterilization process (9 kept frozen in dry ice and 9 at room temperature). Mechanical properties of acellular lungs were measured before and after irradiation. Lung resistance (RL) and elastance (EL) were computed by linear regression fitting of recorded signals during mechanical ventilation (tracheal pressure, flow and volume). Static (Est) and dynamic (Edyn) elastances were obtained by the end-inspiratory occlusion method. After irradiation lungs presented higher values of resistance and elastance than before irradiation: RL increased by 41.1% (room temperature irradiation) and 32.8% (frozen irradiation) and EL increased by 41.8% (room temperature irradiation) and 31.8% (frozen irradiation). Similar increases were induced by irradiation in Est and Edyn. Scanning electron microscopy showed slight structural changes after irradiation, particularly those kept frozen. Sterilization by gamma irradiation at a conventional dose to ensure sterilization modifies acellular lung mechanics, with potential implications for lung bioengineering.

  5. Oxidative Stress and Therapeutic Development in Lung Diseases

    PubMed Central

    Villegas, Leah; Stidham, Timothy; Nozik-Grayck, Eva

    2016-01-01

    Oxidative stress has many implications in the pathogenesis of lung diseases. In this review, we provide an overview of Reactive Oxygen Species (ROS) and nitrogen (RNS) species and antioxidants, how they relate to normal physiological function and the pathophysiology of different lung diseases, and therapeutic strategies. The production of ROS/RNS from endogenous and exogenous sources is first discussed, followed by antioxidant systems that restore oxidative balance and cellular homeostasis. The contribution of oxidant/antioxidant imbalance in lung disease pathogenesis is also discussed. An overview of therapeutic strategies is provided, such as augmenting NO bioactivity, blocking the production of ROS/RNS and replacement of deficient antioxidants. The limitations of current strategies and failures of clinical trials are then addressed, followed by discussion of novel experimental approaches for the development of improved antioxidant therapies. PMID:27019769

  6. Oxidative Stress and Therapeutic Development in Lung Diseases.

    PubMed

    Villegas, Leah; Stidham, Timothy; Nozik-Grayck, Eva

    2014-08-01

    Oxidative stress has many implications in the pathogenesis of lung diseases. In this review, we provide an overview of Reactive Oxygen Species (ROS) and nitrogen (RNS) species and antioxidants, how they relate to normal physiological function and the pathophysiology of different lung diseases, and therapeutic strategies. The production of ROS/RNS from endogenous and exogenous sources is first discussed, followed by antioxidant systems that restore oxidative balance and cellular homeostasis. The contribution of oxidant/antioxidant imbalance in lung disease pathogenesis is also discussed. An overview of therapeutic strategies is provided, such as augmenting NO bioactivity, blocking the production of ROS/RNS and replacement of deficient antioxidants. The limitations of current strategies and failures of clinical trials are then addressed, followed by discussion of novel experimental approaches for the development of improved antioxidant therapies.

  7. TACE in perinatal mouse lung epithelial cells promotes lung saccular formation

    PubMed Central

    Xu, Wei; Liu, Chengyu; Kaartinen, Vesa; Chen, Hui; Lu, Chi-Han; Zhang, Wenming; Luo, Yongfeng

    2013-01-01

    Tumor necrosis factor-α converting enzyme (TACE) is a cell membrane sheddase, expressed in both developmental lung epithelia and mesenchyme. Global abrogation of TACE results in neonatal lethality and multiple organ developmental abnormalities, including dysplastic lung. To further define the roles of TACE in regulating lung development, lung epithelial and/or mesenchymal specific TACE conditional knockout mice were generated. Blockade of TACE function in developing lung epithelial cells caused reduced saccular formation, decreased cell proliferation, and reduced mid-distal lung epithelial cell differentiation. In contrast, mesenchymal TACE knockout did not have any phenotypic change in developing lung. Simultaneous abrogation of TACE in both lung epithelial and mesenchymal cells did not result in a more severe lung abnormality. Interestingly, these lung-specific TACE conditional knockout mice were not neonatal lethal, and their lung structures were essentially normal after alveolarization. In addition, TACE conditional knockout in developing cardiomyocytes resulted in noncompaction of ventricular myocardium, as seen in TACE conventional knockout mice. However, these mice were also not neonatal lethal. In conclusion, lung epithelial TACE is essential for promoting fetal lung saccular formation, but not postnatal lung alveolarization in mice. Because the developmental abnormality of either lung or heart induced by TACE deficiency does not directly lead to neonatal lethality, the neonatal death of TACE conventional knockout mice is likely a result of synergistic effects of multiple organ abnormalities. PMID:24142516

  8. Radiation-enhanced lung cancer progression in a transgenic mouse model of lung cancer is predictive of outcomes in human lung and breast cancer.

    PubMed

    Delgado, Oliver; Batten, Kimberly G; Richardson, James A; Xie, Xian-Jin; Gazdar, Adi F; Kaisani, Aadil A; Girard, Luc; Behrens, Carmen; Suraokar, Milind; Fasciani, Gail; Wright, Woodring E; Story, Michael D; Wistuba, Ignacio I; Minna, John D; Shay, Jerry W

    2014-03-15

    Carcinogenesis is an adaptive process between nascent tumor cells and their microenvironment, including the modification of inflammatory responses from antitumorigenic to protumorigenic. Radiation exposure can stimulate inflammatory responses that inhibit or promote carcinogenesis. The purpose of this study is to determine the impact of radiation exposure on lung cancer progression in vivo and assess the relevance of this knowledge to human carcinogenesis. K-ras(LA1) mice were irradiated with various doses and dose regimens and then monitored until death. Microarray analyses were performed using Illumina BeadChips on whole lung tissue 70 days after irradiation with a fractionated or acute dose of radiation and compared with age-matched unirradiated controls. Unique group classifiers were derived by comparative genomic analysis of three experimental cohorts. Survival analyses were performed using principal component analysis and k-means clustering on three lung adenocarcinoma, three breast adenocarcinoma, and two lung squamous carcinoma annotated microarray datasets. Radiation exposure accelerates lung cancer progression in the K-ras(LA1) lung cancer mouse model with dose fractionation being more permissive for cancer progression. A nonrandom inflammatory signature associated with this progression was elicited from whole lung tissue containing only benign lesions and predicts human lung and breast cancer patient survival across multiple datasets. Immunohistochemical analyses suggest that tumor cells drive predictive signature. These results demonstrate that radiation exposure can cooperate with benign lesions in a transgenic model of cancer by affecting inflammatory pathways, and that clinically relevant similarities exist between human lung and breast carcinogenesis. ©2014 AACR.

  9. Gremlin negatively modulates BMP-4 induction of embryonic mouse lung branching morphogenesis.

    PubMed

    Shi, W; Zhao, J; Anderson, K D; Warburton, D

    2001-05-01

    Bone morphogenetic protein-4 (BMP-4) is a key morphogen for embryonic lung development that is expressed at high levels in the peripheral epithelium, but the mechanisms that modulate BMP-4 function in early mouse lung branching morphogenesis are unclear. Here, we studied the BMP-4 antagonist Gremlin, which is a member of the DAN family of BMP antagonists that can bind and block BMP-2/4 activity. The expression level of gremlin in embryonic mouse lungs is highest in the early embryonic pseudoglandular stage [embryonic days (E) 11.5-14.5] and is reduced during fetal lung maturation (E18.5 to postnatal day 1). In situ hybridization indicates that gremlin is diffusely expressed in peripheral lung mesenchyme and epithelium, but relatively high epithelial expression occurs in branching buds at E11.5 and in large airways after E16.5. In E11.5 lung organ culture, we found that exogenous BMP-4 dramatically enhanced peripheral lung epithelial branching morphogenesis, whereas reduction of endogenous gremlin expression with antisense oligonucleotides achieved the same gain-of-function phenotype as exogenous BMP-4, including increased epithelial cell proliferation and surfactant protein C expression. On the other hand, adenoviral overexpression of gremlin blocked the stimulatory effects of exogenous BMP-4. Therefore, our data support the hypothesis that Gremlin is a physiologically negative regulator of BMP-4 in lung branching morphogenesis.

  10. Cerium oxide nanoparticles protect rodent lungs from hypobaric hypoxia-induced oxidative stress and inflammation.

    PubMed

    Arya, Aditya; Sethy, Niroj Kumar; Singh, Sushil Kumar; Das, Mainak; Bhargava, Kalpana

    2013-01-01

    Cerium oxide nanoparticles (nanoceria) are effective at quenching reactive oxygen species (ROS) in cell culture and animal models. Although nanoceria reportedly deposit in lungs, their efficacy in conferring lung protection during oxidative stress remains unexplored. Thus, the study evaluated the protective efficacy of nanoceria in rat lung tissue during hypobaric hypoxia. A total of 48 animals were randomly divided into four equal groups (control [C], nanoceria treated [T], hypoxia [H], and nanoceria treated plus hypoxia [T+H]). Animals were injected intraperitoneally with either a dose of 0.5 μg/kg body weight/week of nanoceria (T and T+H groups) or vehicle (C and H groups) for 5 weeks. After the final dose, H and T+H animals were challenged with hypobaric hypoxia, while C and T animals were maintained at normoxia. Lungs were isolated and homogenate was obtained for analysis of ROS, lipid peroxidation, glutathione, protein carbonylation, and 4-hydroxynonenal-adduct formation. Plasma was used for estimating major inflammatory cytokines using enzyme-linked immunosorbent assay. Intact lung tissues were fixed and both transmission electron microscopy and histopathological examinations were carried out separately for detecting internalization of nanoparticles as well as altered lung morphology. Spherical nanoceria of 7-10 nm diameter were synthesized using a microemulsion method, and the lung protective efficacy of the nanoceria evaluated during hypobaric hypoxia. With repeated intraperitoneal injections of low micromole concentration, we successfully localized the nanoceria in rodent lung without any inflammatory response. The lung-deposited nanoceria limited ROS formation, lipid peroxidation, and glutathione oxidation, and prevented oxidative protein modifications like nitration and carbonyl formation during hypobaric hypoxia. We also observed reduced lung inflammation in the nanoceria-injected lungs, supporting the anti-inflammatory properties of nanoceria

  11. Lessons learned using different mouse models during space radiation-induced lung tumorigenesis experiments

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Zhang, Xiangming; Wang, Ping; Wang, Xiang; Farris, Alton B.; Wang, Ya

    2016-06-01

    Unlike terrestrial ionizing radiation, space radiation, especially galactic cosmic rays (GCR), contains high energy charged (HZE) particles with high linear energy transfer (LET). Due to a lack of epidemiologic data for high-LET radiation exposure, it is highly uncertain how high the carcinogenesis risk is for astronauts following exposure to space radiation during space missions. Therefore, using mouse models is necessary to evaluate the risk of space radiation-induced tumorigenesis; however, which mouse model is better for these studies remains uncertain. Since lung tumorigenesis is the leading cause of cancer death among both men and women, and low-LET radiation exposure increases human lung carcinogenesis, evaluating space radiation-induced lung tumorigenesis is critical to enable safe Mars missions. Here, by comparing lung tumorigenesis obtained from different mouse strains, as well as miR-21 in lung tissue/tumors and serum, we believe that wild type mice with a low spontaneous tumorigenesis background are ideal for evaluating the risk of space radiation-induced lung tumorigenesis, and circulating miR-21 from such mice model might be used as a biomarker for predicting the risk.

  12. Lessons learned using different mouse models during space radiation-induced lung tumorigenesis experiments.

    PubMed

    Wang, Jian; Zhang, Xiangming; Wang, Ping; Wang, Xiang; Farris, Alton B; Wang, Ya

    2016-06-01

    Unlike terrestrial ionizing radiation, space radiation, especially galactic cosmic rays (GCR), contains high energy charged (HZE) particles with high linear energy transfer (LET). Due to a lack of epidemiologic data for high-LET radiation exposure, it is highly uncertain how high the carcinogenesis risk is for astronauts following exposure to space radiation during space missions. Therefore, using mouse models is necessary to evaluate the risk of space radiation-induced tumorigenesis; however, which mouse model is better for these studies remains uncertain. Since lung tumorigenesis is the leading cause of cancer death among both men and women, and low-LET radiation exposure increases human lung carcinogenesis, evaluating space radiation-induced lung tumorigenesis is critical to enable safe Mars missions. Here, by comparing lung tumorigenesis obtained from different mouse strains, as well as miR-21 in lung tissue/tumors and serum, we believe that wild type mice with a low spontaneous tumorigenesis background are ideal for evaluating the risk of space radiation-induced lung tumorigenesis, and circulating miR-21 from such mice model might be used as a biomarker for predicting the risk.

  13. Hyperoxia decreases glycolytic capacity, glycolytic reserve and oxidative phosphorylation in MLE-12 cells and inhibits complex I and II function, but not complex IV in isolated mouse lung mitochondria.

    PubMed

    Das, Kumuda C

    2013-01-01

    High levels of oxygen (hyperoxia) are frequently used in critical care units and in conditions of respiratory insufficiencies in adults, as well as in infants. However, hyperoxia has been implicated in a number of pulmonary disorders including bronchopulmonary dysplasia (BPD) and adult respiratory distress syndrome (ARDS). Hyperoxia increases the generation of reactive oxygen species (ROS) in the mitochondria that could impair the function of the mitochondrial electron transport chain. We analyzed lung mitochondrial function in hyperoxia using the XF24 analyzer (extracellular flux) and optimized the assay for lung epithelial cells and mitochondria isolated from lungs of mice. Our data show that hyperoxia decreases basal oxygen consumption rate (OCR), spare respiratory capacity, maximal respiration and ATP turnover in MLE-12 cells. There was significant decrease in glycolytic capacity and glycolytic reserve in MLE-12 cells exposed to hyperoxia. Using mitochondria isolated from lungs of mice exposed to hyperoxia or normoxia we have shown that hyperoxia decreased the basal, state 3 and state3 μ (respiration in an uncoupled state) respirations. Further, using substrate or inhibitor of a specific complex we show that the OCR via complex I and II, but not complex IV was decreased, demonstrating that complexes I and II are specific targets of hyperoxia. Further, the activities of complex I (NADH dehydrogenase, NADH-DH) and complex II (succinate dehydrogenase, SDH) were decreased in hyperoxia, but the activity of complex IV (cytochrome oxidase, COX) remains unchanged. Taken together, our study show that hyperoxia impairs glycolytic and mitochondrial energy metabolism in in tact cells, as well as in lungs of mice by selectively inactivating components of electron transport system.

  14. Genetically manipulated mouse models of lung disease: potential and pitfalls

    PubMed Central

    Choi, Alexander J. S.; Owen, Caroline A.; Choi, Augustine M. K.

    2012-01-01

    Gene targeting in mice (transgenic and knockout) has provided investigators with an unparalleled armamentarium in recent decades to dissect the cellular and molecular basis of critical pathophysiological states. Fruitful information has been derived from studies using these genetically engineered mice with significant impact on our understanding, not only of specific biological processes spanning cell proliferation to cell death, but also of critical molecular events involved in the pathogenesis of human disease. This review will focus on the use of gene-targeted mice to study various models of lung disease including airways diseases such as asthma and chronic obstructive pulmonary disease, and parenchymal lung diseases including idiopathic pulmonary fibrosis, pulmonary hypertension, pneumonia, and acute lung injury. We will attempt to review the current technological approaches of generating gene-targeted mice and the enormous dataset derived from these studies, providing a template for lung investigators. PMID:22198907

  15. Nitric Oxide as a Mediator of Oxidant Lung Injury Due to Paraquat

    NASA Astrophysics Data System (ADS)

    Berisha, Hasan I.; Pakbaz, Hedayatollah; Absood, Afaf; Said, Sami I.

    1994-08-01

    At low concentrations, nitric oxide is a physiological transmitter, but in excessive concentrations it may cause cell and tissue injury. We report that in acute oxidant injury induced by the herbicide paraquat in isolated guinea pig lungs, nitric oxide synthesis was markedly stimulated, as evidenced by increased levels of cyclic GMP in lung perfusate and of nitrite and L-citrulline production in lung tissue. All signs of injury, including increased airway and perfusion pressures, pulmonary edema, and protein leakage into the airspaces, were dose-dependently attenuated or totally prevented by either N^G-nitro-L-arginine methyl ester or N^ω-nitro-L-arginine, selective and competitive inhibitors of nitric oxide synthase. Protection was reversed by excess L-arginine but not by its enantiomer D-arginine. When blood was added to the lung perfusate, the paraquat injury was moderated or delayed as it was when paraquat was given to anesthetized guinea pigs. The rapid onset of injury and its failure to occur in the absence of Ca2+ suggest that constitutive rather than inducible nitric oxide synthase was responsible for the stimulated nitric oxide synthesis. The findings indicate that nitric oxide plays a critical role in the production of lung tissue injury due to paraquat, and it may be a pathogenetic factor in other forms of oxidant tissue injury.

  16. Wnt/β-catenin signaling accelerates mouse lung tumorigenesis by imposing an embryonic distal progenitor phenotype on lung epithelium.

    PubMed

    Pacheco-Pinedo, Eugenia C; Durham, Amy C; Stewart, Kathleen M; Goss, Ashley M; Lu, Min Min; Demayo, Francesco J; Morrisey, Edward E

    2011-05-01

    Although mutations in Kras are present in 21% of lung tumors, there is a high level of heterogeneity in phenotype and outcome among patients with lung cancer bearing similar mutations, suggesting that other pathways are important. Wnt/β-catenin signaling is a known oncogenic pathway that plays a well-defined role in colon and skin cancer; however, its role in lung cancer is unclear. We have shown here that activation of Wnt/β-catenin in the bronchiolar epithelium of the adult mouse lung does not itself promote tumor development. However, concurrent activation of Wnt/β-catenin signaling and expression of a constitutively active Kras mutant (KrasG12D) led to a dramatic increase in both overall tumor number and size compared with KrasG12D alone. Activation of Wnt/β-catenin signaling altered the KrasG12D tumor phenotype, resulting in a phenotypic switch from bronchiolar epithelium to the highly proliferative distal progenitors found in the embryonic lung. This was associated with decreased E-cadherin expression at the cell surface, which may underlie the increased metastasis of tumors with active Wnt/β-catenin signaling. Together, these data suggest that activation of Wnt/β-catenin signaling can combine with other oncogenic pathways in lung epithelium to produce a more aggressive tumor phenotype by imposing an embryonic distal progenitor phenotype and by decreasing E-cadherin expression.

  17. OXIDATIVE STRESS PARTICIPATES IN PARTICULATE MATTER (PM) INDUCED LUNG INJURY

    EPA Science Inventory

    Oxidative stress participates in particulate matter (PM) induced acute lung injury.
    Elizabeth S. Roberts1, Judy L. Richards2, Kevin L. Dreher2. 1College of Veterinary Medicine, NC State University, Raleigh, NC, 2US Environmental Protection Agency, NHEERL, RTP, NC.
    Epidemiol...

  18. OXIDATIVE STRESS PARTICIPATES IN PARTICULATE MATTER (PM) INDUCED LUNG INJURY

    EPA Science Inventory

    Oxidative stress participates in particulate matter (PM) induced acute lung injury.
    Elizabeth S. Roberts1, Judy L. Richards2, Kevin L. Dreher2. 1College of Veterinary Medicine, NC State University, Raleigh, NC, 2US Environmental Protection Agency, NHEERL, RTP, NC.
    Epidemiol...

  19. Lung vitamin E transport processes are affected by both age and environmental oxidants in mice

    SciTech Connect

    Valacchi, Giuseppe . E-mail: gvalacchi@ucdavis.edu; Vasu, Vihas T.; Yokohama, Wallace; Corbacho, Ana M.; Phung, Anh; Lim, Yunsook; Aung, Hnin Hnin; Cross, Carroll E.; Davis, Paul A.

    2007-07-15

    Despite the physiological importance of alpha-tocopherol (AT), the molecular mechanisms involved in maintaining cellular and tissue tocopherol levels remain to be fully characterized. Scavenger receptor B1 (SRB1), one of a large family of scavenger receptors, has been shown to facilitate AT transfer from HDL to peripheral tissues via apo A-1-mediated processes and to be important in the delivery of AT to the lung cells. In the present studies the effects of age and two environmental oxidants ozone (O{sub 3}) (0.25 ppm 6 h/day) and cigarette smoke (CS) (60 mg/m{sup 3} 6 h/day) for 4 days on selected aspects of AT transport in murine lung tissues were assessed. While AT levels were 25% higher (p < 0.05) and 15% lower (p < 0.05) in plasma and lung tissue, respectively, in aged versus young mice, acute environmental exposure to O{sub 3} or CS at the doses used had no effect. Gene expression levels, determined by RT-PCR of AT transport protein (ATTP), SRB1, CD36, ATP binding cassette 3 (ABCA3) and ABCA1 and protein levels, determined by Western blots for SRB1, ATTP and ABCA1 were assessed. Aged mouse lung showed a lower levels of ATTP, ABCA3 and SRB1 and a higher level CD36 and ABCA1. Acute exposure to either O{sub 3} or CS induced declines in ATTP and SRB1 in both aged and young mice lung. CD36 increased in both young and aged mice lung upon exposure to O{sub 3} and CS. These findings suggest that both age and environmental oxidant exposure affect pathways related to lung AT homeostasis and do so in a way that favors declines in lung AT. However, given the approach taken, the effects cannot be traced to changes in these pathways or AT content in any specific lung associated cell type and thus highlight the need for further follow-up studies looking at specific lung associated cell types.

  20. Mechanotransduction via TRPV4 regulates inflammation and differentiation in fetal mouse distal lung epithelial cells.

    PubMed

    Nayak, Pritha S; Wang, Yulian; Najrana, Tanbir; Priolo, Lauren M; Rios, Mayra; Shaw, Sunil K; Sanchez-Esteban, Juan

    2015-05-27

    Mechanical ventilation plays a central role in the injury of premature lungs. However, the mechanisms by which mechanical signals trigger an inflammatory cascade to promote lung injury are not well-characterized. Transient receptor potential vanilloid 4 (TRPV4), a calcium-permeable mechanoreceptor channel has been shown to be a major determinant of ventilator-induced acute lung injury in adult models. However, the role of these channels as modulators of inflammation in immature lungs is unknown. In this study, we tested the hypothesis that TRPV4 channels are important mechanotransducers in fetal lung injury. Expression of TRPV4 in the mouse fetal lung was investigated by immunohistochemistry, Western blot and qRT-PCR. Isolated fetal epithelial cells were exposed to mechanical stimulation using the Flexcell Strain Unit and inflammation and differentiation were analyzed by ELISA and SP-C mRNA, respectively. TRPV4 is developmentally regulated in the fetal mouse lung; it is expressed in the lung epithelium and increases with advanced gestation. In contrast, in isolated epithelial cells, TRPV4 expression is maximal at E17-E18 of gestation. Mechanical stretch increases TRPV4 in isolated fetal epithelial cells only during the canalicular stage of lung development. Using the TRPV4 agonist GSK1016790A, the antagonist HC-067047, and the cytokine IL-6 as a marker of inflammation, we observed that TRPV4 regulates release of IL-6 via p38 and ERK pathways. Interestingly, stretch-induced differentiation of fetal epithelial cells was also modulated by TRPV4. These studies demonstrate that TRPV4 may play an important role in the transduction of mechanical signals in the fetal lung epithelium by modulating not only inflammation but also the differentiation of fetal epithelial cells.

  1. CD11b immunophenotyping identifies inflammatory profiles in the mouse and human lungs.

    PubMed

    Duan, M; Steinfort, D P; Smallwood, D; Hew, M; Chen, W; Ernst, M; Irving, L B; Anderson, G P; Hibbs, M L

    2016-03-01

    The development of easily accessible tools for human immunophenotyping to classify patients into discrete disease endotypes is advancing personalized therapy. However, no systematic approach has been developed for the study of inflammatory lung diseases with often complex and highly heterogeneous disease etiologies. We have devised an internally standardized flow cytometry approach that can identify parallel inflammatory alveolar macrophage phenotypes in both the mouse and human lungs. In mice, lung innate immune cell alterations during endotoxin challenge, influenza virus infection, and in two genetic models of chronic obstructive lung disease could be segregated based on the presence or absence of CD11b alveolar macrophage upregulation and lung eosinophilia. Additionally, heightened alveolar macrophage CD11b expression was a novel feature of acute lung exacerbations in the SHIP-1(-/-) model of chronic obstructive lung disease, and anti-CD11b antibody administration selectively blocked inflammatory CD11b(pos) but not homeostatic CD11b(neg) alveolar macrophages in vivo. The identification of analogous profiles in respiratory disease patients highlights this approach as a translational avenue for lung disease endotyping and suggests that heterogeneous innate immune cell phenotypes are an underappreciated component of the human lung disease microenvironment.

  2. Morphological analysis of mouse lungs after treatment with magnetite-based magnetic fluid stabilized with DMSA

    NASA Astrophysics Data System (ADS)

    Garcia, Mônica Pereira; Miranda Parca, Renata; Braun Chaves, Sacha; Paulino Silva, Luciano; Djalma Santos, Antonio; Guerrero Marques Lacava, Zulmira; César Morais, Paulo; Azevedo, Ricardo Bentes

    2005-05-01

    Mouse lungs injected with magnetic fluids based on magnetite nanoparticles stabilized by 2,3-dimercaptosuccinic acid were studied. We observed clusters of magnetic nanoparticles inside blood vessels, within the organ parenchyma and cells, as well as increased numbers of leukocytes in the organ. Both the particle concentration and organ inflammation diminished in a time-dependent manner.

  3. Longitudinal in vivo microcomputed tomography of mouse lungs: No evidence for radiotoxicity

    PubMed Central

    Vande Velde, Greetje; De Langhe, Ellen; Poelmans, Jennifer; Bruyndonckx, Peter; d'Agostino, Emiliano; Verbeken, Erik; Bogaerts, Ria; Himmelreich, Uwe

    2015-01-01

    Before microcomputed tomography (micro-CT) can be exploited to its full potential for longitudinal monitoring of transgenic and experimental mouse models of lung diseases, radiotoxic side effects such as inflammation or fibrosis must be considered. We evaluated dose and potential radiotoxicity to the lungs for long-term respiratory-gated high-resolution micro-CT protocols. Free-breathing C57Bl/6 mice underwent four different retrospectively respiratory gated micro-CT imaging schedules of repeated scans during 5 or 12 wk, followed by ex vivo micro-CT and detailed histological and biochemical assessment of lung damage. Radiation exposure, dose, and absorbed dose were determined by ionization chamber, thermoluminescent dosimeter measurements and Monte Carlo calculations. Despite the relatively large radiation dose delivered per micro-CT acquisition, mice did not show any signs of radiation-induced lung damage or fibrosis when scanned weekly during 5 and up to 12 wk. Doubling the scanning frequency and once tripling the radiation dose as to mimic the instant repetition of a failed scan also stayed without detectable toxicity after 5 wk of scanning. Histological analyses confirmed the absence of radiotoxic damage to the lungs, thereby demonstrating that long-term monitoring of mouse lungs using high-resolution micro-CT is safe. This opens perspectives for longitudinal monitoring of (transgenic) mouse models of lung diseases and therapeutic response on an individual basis with high spatial and temporal resolution, without concerns for radiation toxicity that could potentially influence the readout of micro-CT-derived lung biomarkers. This work further supports the introduction of micro-CT for routine use in the preclinical pulmonary research field where postmortem histological approaches are still the gold standard. PMID:26024893

  4. Lung tumor promotion by chromium-containing welding particulate matter in a mouse model.

    PubMed

    Zeidler-Erdely, Patti C; Meighan, Terence G; Erdely, Aaron; Battelli, Lori A; Kashon, Michael L; Keane, Michael; Antonini, James M

    2013-09-05

    Epidemiology suggests that occupational exposure to welding particulate matter (PM) may increase lung cancer risk. However, animal studies are lacking to conclusively link welding with an increased risk. PM derived from stainless steel (SS) welding contains carcinogenic metals such as hexavalent chromium and nickel. We hypothesized that welding PM may act as a tumor promoter and increase lung tumor multiplicity in vivo. Therefore, the capacity of chromium-containing gas metal arc (GMA)-SS welding PM to promote lung tumors was evaluated using a two-stage (initiation-promotion) model in lung tumor susceptible A/J mice. Male mice (n = 28-30/group) were treated either with the initiator 3-methylcholanthrene (MCA;10 μg/g; IP) or vehicle (corn oil) followed by 5 weekly pharyngeal aspirations of GMA-SS (340 or 680 μg/exposure) or PBS. Lung tumors were enumerated at 30 weeks post-initiation. MCA initiation followed by GMA-SS welding PM exposure promoted tumor multiplicity in both the low (12.1 ± 1.5 tumors/mouse) and high (14.0 ± 1.8 tumors/mouse) exposure groups significantly above MCA/sham (4.77 ± 0.7 tumors/mouse; p = 0.0001). Multiplicity was also highly significant (p < 0.004) across all individual lung regions of GMA-SS-exposed mice. No exposure effects were found in the corn oil groups at 30 weeks. Histopathology confirmed the gross findings and revealed increased inflammation and a greater number of malignant lesions in the MCA/welding PM-exposed groups. GMA-SS welding PM acts as a lung tumor promoter in vivo. Thus, this study provides animal evidence to support the epidemiological data that show welders have an increased lung cancer risk.

  5. Lung tumor promotion by chromium-containing welding particulate matter in a mouse model

    PubMed Central

    2013-01-01

    Background Epidemiology suggests that occupational exposure to welding particulate matter (PM) may increase lung cancer risk. However, animal studies are lacking to conclusively link welding with an increased risk. PM derived from stainless steel (SS) welding contains carcinogenic metals such as hexavalent chromium and nickel. We hypothesized that welding PM may act as a tumor promoter and increase lung tumor multiplicity in vivo. Therefore, the capacity of chromium-containing gas metal arc (GMA)-SS welding PM to promote lung tumors was evaluated using a two-stage (initiation-promotion) model in lung tumor susceptible A/J mice. Methods Male mice (n = 28-30/group) were treated either with the initiator 3-methylcholanthrene (MCA;10 μg/g; IP) or vehicle (corn oil) followed by 5 weekly pharyngeal aspirations of GMA-SS (340 or 680 μg/exposure) or PBS. Lung tumors were enumerated at 30 weeks post-initiation. Results MCA initiation followed by GMA-SS welding PM exposure promoted tumor multiplicity in both the low (12.1 ± 1.5 tumors/mouse) and high (14.0 ± 1.8 tumors/mouse) exposure groups significantly above MCA/sham (4.77 ± 0.7 tumors/mouse; p = 0.0001). Multiplicity was also highly significant (p < 0.004) across all individual lung regions of GMA-SS-exposed mice. No exposure effects were found in the corn oil groups at 30 weeks. Histopathology confirmed the gross findings and revealed increased inflammation and a greater number of malignant lesions in the MCA/welding PM-exposed groups. Conclusions GMA-SS welding PM acts as a lung tumor promoter in vivo. Thus, this study provides animal evidence to support the epidemiological data that show welders have an increased lung cancer risk. PMID:24107379

  6. Longitudinal in vivo microcomputed tomography of mouse lungs: No evidence for radiotoxicity.

    PubMed

    Vande Velde, Greetje; De Langhe, Ellen; Poelmans, Jennifer; Bruyndonckx, Peter; d'Agostino, Emiliano; Verbeken, Erik; Bogaerts, Ria; Lories, Rik; Himmelreich, Uwe

    2015-08-01

    Before microcomputed tomography (micro-CT) can be exploited to its full potential for longitudinal monitoring of transgenic and experimental mouse models of lung diseases, radiotoxic side effects such as inflammation or fibrosis must be considered. We evaluated dose and potential radiotoxicity to the lungs for long-term respiratory-gated high-resolution micro-CT protocols. Free-breathing C57Bl/6 mice underwent four different retrospectively respiratory gated micro-CT imaging schedules of repeated scans during 5 or 12 wk, followed by ex vivo micro-CT and detailed histological and biochemical assessment of lung damage. Radiation exposure, dose, and absorbed dose were determined by ionization chamber, thermoluminescent dosimeter measurements and Monte Carlo calculations. Despite the relatively large radiation dose delivered per micro-CT acquisition, mice did not show any signs of radiation-induced lung damage or fibrosis when scanned weekly during 5 and up to 12 wk. Doubling the scanning frequency and once tripling the radiation dose as to mimic the instant repetition of a failed scan also stayed without detectable toxicity after 5 wk of scanning. Histological analyses confirmed the absence of radiotoxic damage to the lungs, thereby demonstrating that long-term monitoring of mouse lungs using high-resolution micro-CT is safe. This opens perspectives for longitudinal monitoring of (transgenic) mouse models of lung diseases and therapeutic response on an individual basis with high spatial and temporal resolution, without concerns for radiation toxicity that could potentially influence the readout of micro-CT-derived lung biomarkers. This work further supports the introduction of micro-CT for routine use in the preclinical pulmonary research field where postmortem histological approaches are still the gold standard.

  7. Stable isotope resolved metabolomics of lung cancer in a SCID mouse model.

    PubMed

    Fan, Teresa W-M; Lane, Andrew N; Higashi, Richard M; Yan, Jun

    2011-06-01

    We have determined the time course of [U-(13)C]-glucose utilization and transformations in SCID mice via bolus injection of the tracer in the tail vein. Incorporation of (13)C into metabolites extracted from mouse blood plasma and several tissues (lung, heart, brain, liver, kidney, and skeletal muscle) were profiled by NMR and GC-MS, which helped ascertain optimal sampling times for different target tissues. We found that the time for overall optimal (13)C incorporation into tissue was 15-20 min but with substantial differences in (13)C labeling patterns of various organs that reflected their specific metabolism. Using this stable isotope resolved metabolomics (SIRM) approach, we have compared the (13)C metabolite profile of the lungs in the same mouse with or without an orthotopic lung tumor xenograft established from human PC14PE6 lung adenocarcinoma cells. The (13)C metabolite profile shows considerable differences in [U-(13)C]-glucose transformations between the two lung tissues, demonstrating the feasibility of applying SIRM to investigate metabolic networks of human cancer xenograft in the mouse model.

  8. Studies using structural analogs and inbred strain differences to support a role for quinone methide metabolites of butylated hydroxytoluene (BHT) in mouse lung tumor promotion.

    PubMed

    Thompson, J A; Carlson, T J; Sun, Y; Dwyer-Nield, L D; Malkinson, A M

    2001-03-07

    Chronic treatment of BALB and GRS mice with BHT (2,6-di-tert-butyl-4-methylphenol) following a single urethane injection increases lung tumor multiplicity, but this does not occur in CXB4 mice. Previous data suggest that promotion requires the conversion of BHT to a tert-butyl-hydroxylated metabolite (BHTOH) in lung and the subsequent oxidation of this species to an electrophilic quinone methide. To obtain additional evidence for the importance of quinone methide formation, structural analogs that form less reactive quinone methides were tested and found to lack promoting activity in BHT-responsive mice. The possibility that promotion-unresponsive strains are unable to form BHTOH was tested by substituting this compound for BHT in the promotion protocol using CXB4 mice. No promotion occurred, and in-vitro work demonstrated that CXB4 mice are, in fact, capable of producing BHTOH and its quinone methide, albeit in smaller quantities. Incubations with BALB lung microsomes and radiolabeled substrates confirmed that more covalent binding to protein occurs with BHTOH than with BHT and, in addition, BHTOH quinone methide is considerably more toxic to mouse lung epithelial cells than BHT quinone methide. These data are consistent with the hypothesis that a two-step oxidation process, i.e. hydroxylation and quinone methide formation, is required for the promotion of mouse lung tumors by BHT.

  9. Maternally imprinted microRNAs are differentially expressed during mouse and human lung development

    PubMed Central

    Williams, Andrew E.; Moschos, Sterghios A.; Perry, Mark M.; Barnes, Peter J.; Lindsay, Mark A.

    2008-01-01

    MicroRNAs (miRNAs) are a recently discovered class of non-coding genes that regulate the translation of target mRNA. More than 300 miRNAs have now been discovered in humans, although the function of most is still unknown. A highly sensitive, semi-quantitative RT-PCR method was utilised to reveal the differential expression of a number of miRNAs during the development of both mouse and human lung. Of note was the upregulation in neonatal mouse and fetal human lung of a maternally imprinted miRNA cluster located at human chromosome 14q32.21 (mouse chromosome 12F2), which includes the miR-154 and miR-335 families and is situated within the Gtl2-Dio3 domain. Conversely, several miRNAs were upregulated in adult compared to neonatal/fetal lung including miR-29a and miR-29b. Differences in the spatial expression patterns of miR-154, miR-29a and miR-26a was demonstrated using in situ hybridisation of mouse neonatal and adult tissue using miRNA-specific LNA probes. Interestingly, miR-154 appeared to be localised to the stroma of fetal but not adult lungs. The overall expression profile was similar for mouse and human tissue suggesting evolutionary conservation of miRNA expression during lung development and demonstrating the importance of maternally imprinted miRNAs in the developmental process. PMID:17191223

  10. Melamine Induces Oxidative Stress in Mouse Ovary.

    PubMed

    Dai, Xiao-Xin; Duan, Xing; Cui, Xiang-Shun; Kim, Nam-Hyung; Xiong, Bo; Sun, Shao-Chen

    2015-01-01

    Melamine is a nitrogen heterocyclic triazine compound which is widely used as an industrial chemical. Although melamine is not considered to be acutely toxic with a high LD50 in animals, food contaminated with melamine expose risks to the human health. Melamine has been reported to be responsible for the renal impairment in mammals, its toxicity on the reproductive system, however, has not been adequately assessed. In the present study, we examined the effect of melamine on the follicle development and ovary formation. The data showed that melamine increased reactive oxygen species (ROS) levels, and induced granulosa cell apoptosis as well as follicle atresia. To further analyze the mechanism by which melamine induces oxidative stress, the expression and activities of two key antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GPX) were analyzed, and the concentration of malondialdehyde (MDA) were compared between control and melamine-treated ovaries. The result revealed that melamine changed the expression and activities of SOD and GPX in the melamine-treated mice. Therefore, we demonstrate that melamine causes damage to the ovaries via oxidative stress pathway.

  11. Melamine Induces Oxidative Stress in Mouse Ovary

    PubMed Central

    Dai, Xiao-Xin; Duan, Xing; Cui, Xiang-Shun; Kim, Nam-Hyung; Xiong, Bo; Sun, Shao-Chen

    2015-01-01

    Melamine is a nitrogen heterocyclic triazine compound which is widely used as an industrial chemical. Although melamine is not considered to be acutely toxic with a high LD50 in animals, food contaminated with melamine expose risks to the human health. Melamine has been reported to be responsible for the renal impairment in mammals, its toxicity on the reproductive system, however, has not been adequately assessed. In the present study, we examined the effect of melamine on the follicle development and ovary formation. The data showed that melamine increased reactive oxygen species (ROS) levels, and induced granulosa cell apoptosis as well as follicle atresia. To further analyze the mechanism by which melamine induces oxidative stress, the expression and activities of two key antioxidant enzymes superoxide dismutase (SOD) and glutathi-one peroxidase (GPX) were analyzed, and the concentration of malondialdehyde (MDA) were compared between control and melamine-treated ovaries. The result revealed that melamine changed the expression and activities of SOD and GPX in the melamine-treated mice. Therefore, we demonstrate that melamine causes damage to the ovaries via oxidative stress pathway. PMID:26545251

  12. Slit and robo expression in the developing mouse lung.

    PubMed

    Greenberg, James M; Thompson, Felisa Y; Brooks, Sherry K; Shannon, John M; Akeson, Ann L

    2004-06-01

    Mammalian lung development is mediated through complex interactions between foregut endoderm and surrounding mesenchyme. As airway branching progresses, the mesenchyme undergoes dramatic remodeling and differentiation. Little is understood about the mechanisms that direct mesenchymal organization during lung development. A screen for candidate genes mediating this process identified Slit, a ligand for the Roundabout (Robo) receptor previously associated with guidance of axonal projections during central nervous system development. Here, we demonstrate by in situ hybridization that two Slit genes (Slit-2 and Slit-3) and two Robo genes (Robo-1 and Robo-2) are expressed in fetal lung mesenchyme. Slit-2 and Robo-1 expression is present throughout mesenchyme at midgestation and is not detectable by newborn day 1. Slit-3 and Robo-2 expression is restricted to specific, complementary subsets of mesenchyme. Robo-2 is expressed in mesenchymal cells immediately adjacent to large airways, whereas Slit-3 expression predominates in mesenchyme remote from airway epithelium. The temporal and spatial distribution of Slit and Robo mRNAs indicate that these genes may direct the functional organization and differentiation of fetal lung mesenchyme.

  13. Plasminogen activator inhibitor-1 in acute hyperoxic mouse lung injury.

    PubMed Central

    Barazzone, C; Belin, D; Piguet, P F; Vassalli, J D; Sappino, A P

    1996-01-01

    Hyperoxia-induced lung disease is associated with prominent intraalveolar fibrin deposition. Fibrin turnover is tightly regulated by the concerted action of proteases and antiproteases, and inhibition of plasmin-mediated proteolysis could account for fibrin accumulation in lung alveoli. We show here that lungs of mice exposed to hyperoxia overproduce plasminogen activator inhibitor-1 (PAI-1), and that PAI-1 upregulation impairs fibrinolytic activity in the alveolar compartment. To explore whether increased PAI-1 production is a causal or only a correlative event for impaired intraalveolar fibrinolysis and the development of hyaline membrane disease, we studied mice genetically deficient in PAI-1. We found that these mice fail to develop intraalveolar fibrin deposits in response to hyperoxia and that they are more resistant to the lethal effects of hyperoxic stress. These observations provide clear and novel evidence for the pathogenic contribution of PAI-1 in the development of hyaline membrane disease. They identify PAI-1 as a major deleterious mediator of hyperoxic lung injury. PMID:8981909

  14. Mouse lung-tumor assay: a final report

    SciTech Connect

    Smith, L.H.; Witschi, H.P.

    1983-05-01

    The objective was to validate a lung tumor assay. Agents evaluated included 5 complex mixtures from modern synfuel processes, 8 nitrated toluenes and 30 compounds which had been tested previously in a standard 2-year NCI-type carcinogenesis bioassay. Male A/Jax mice were injected 3 times a week, for eight consecutive weeks, with different test substances. After the last injection, the animals were left undisturbed for another 4 months, and then they were killed. The carcinogenic potential of the substances was evaluated by counting the number of visible tumors on the lung surface. The average number of tumors per lung was calculated for each group (tumor multiplicity). Tumor incidence and tumor multiplicity for each treatment group was compared to appropriate vehicle control groups. Statistical tests used were Chi-square for tumor incidence and Student's t-test for tumor multiplicity; a p value of 0.05 or less was considered to be significant. Very few of the substances tested were found to give an unequivocally positive response. Shale oil and two of its derivatives and two tar mixtures from a coal gasifier were clearly positive. No positives were found in a series of nitrated toluenes. Out of 18 compounds known with certainty to be animal or human carcinogens, the lung tumor assay correctly identified only 5 as having carcinogenic potential. In view of these data we concluded that the lung tumor assay, as developed and advocated (Advances in Cancer Research 21, 1 to 58, 1975), was not sensitive or accurate enough to serve as a short-term in vivo screening procedure for carcinogens.

  15. Genotoxicity of 3-nitrobenzanthrone and 3-aminobenzanthrone in MutaMouse and lung epithelial cells derived from MutaMouse.

    PubMed

    Arlt, Volker M; Gingerich, John; Schmeiser, Heinz H; Phillips, David H; Douglas, George R; White, Paul A

    2008-11-01

    FE1 lung epithelial cells derived from MutaMouse are a new model system to provide in vitro mutagenicity data with the potential to predict the outcome of an in vivo MutaMouse test. 3-Nitrobenzanthrone (3-NBA) is a potent mutagen and suspected human carcinogen identified in diesel exhaust and urban air pollution. We investigated the mutagenicity and DNA binding of 3-NBA and its main metabolite 3-aminobenzanthrone (3-ABA) in vitro and in vivo in the MutaMouse assay. Mice were treated with 3-NBA or 3-ABA (0, 2 or 5 mg/kg body weight/day) by gavage for 28 days and 28 days later lacZ mutant frequency (MF) was determined in liver, lung and bone marrow. For both compounds, dose-related increases in MF were seen in liver and bone marrow, but not in lung; mutagenic activity was approximately 2-fold lower for 3-ABA than for 3-NBA. With 3-NBA, highest DNA adduct levels (measured by (32)P-post-labelling) were found in liver (approximately 230 adducts per 10(8) nucleotides) with levels 20- to 40-fold lower in bone marrow and lung. With 3-ABA, DNA adduct levels were again highest in the liver, but approximately 4-fold lower than for 3-NBA. FE1 cells were exposed to up to 10 microg/ml 3-NBA or 3-ABA for 6 h with or without exogenous activation (S9) and harvested after 3 days. For 3-NBA, there was a dose-related increase in MF both with and without S9 mix, which was >10 times higher than observed in vivo. At the highest concentration of 3-ABA (10 microg/ml), we found only around a 2-fold increase in MF relative to controls. DNA adduct formation in FE1 cells was dose-dependent for both compounds, but 10- to 20-fold higher for 3-NBA compared to 3-ABA. Collectively, our data indicate that MutaMouse FE1 cells are well suited for cost-effective testing of suspected mutagens with different metabolic activation pathways as a guide for subsequent in vivo MutaMouse testing.

  16. BIIL 284 reduces neutrophils numbers but increases P. aeruginosa bacteraemia and inflammation in mouse lungs

    PubMed Central

    Döring, Gerd; Bragonzi, Alessandra; Paroni, Moira; Aktürk, Firdevs-Fatma; Cigana, Cristina; Schmidt, Annika; Gilpin, Deirdre; Heyder, Susanne; Born, Torsten; Smaczny, Christina; Kohlhäufl, Martin; Wagner, Thomas O. F.; Loebinger, Michael R.; Bilton, Diana; Tunney, Michael M.; Elborn, J. Stuart; Pier, Gerald B.; Konstan, Michael W.; Ulrich, Martina

    2014-01-01

    Background A clinical study to investigate the leukotriene B4 (LTB4)-receptor antagonist BIIL 284 in cystic fibrosis (CF) patients was prematurely terminated due to a significantly increased risk of adverse pulmonary events. We aimed to establish the effect of BIIL284 in models of Pseudomonas aeruginosa lung infection, thereby contributing to a better understanding of what could have led to adverse pulmonary events in CF patients. Methods P. aeruginosa DNA in the blood of CF patients during and after acute pulmonary exacerbations and in stable patients with non-CF bronchiectasis (NCFB) and healthy individuals was assessed by PCR. The effect of BIIL 284 treatment was tested in an agar beads murine model of Pseudomonas aeruginosa lung infection. Bacterial count and inflammation were evaluated in lung and other organs. Result Most CF patients (98%) and all patients with NCFB and healthy individuals had negative P. aeruginosa DNA in their blood. Similarly, the P. aeruginosa-infected mice showed bacterial counts in the lung but not blood or spleen. BIIL 284 treatment decreased pulmonary neutrophils and increased P. aeruginosa numbers in mouse lungs leading to significantly higher bacteremia rates and lung inflammation compared to placebo treated animals. Conclusions Decreased airway neutrophils induced lung proliferation and severe bacteraemia in a murine model of P. aeruginosa lung infection. These data suggest that caution should be taken when administering anti-inflammatory compounds to patients with bacterial infections. PMID:24183915

  17. BIIL 284 reduces neutrophil numbers but increases P. aeruginosa bacteremia and inflammation in mouse lungs.

    PubMed

    Döring, Gerd; Bragonzi, Alessandra; Paroni, Moira; Aktürk, Firdevs-Fatma; Cigana, Cristina; Schmidt, Annika; Gilpin, Deirdre; Heyder, Susanne; Born, Torsten; Smaczny, Christina; Kohlhäufl, Martin; Wagner, Thomas O F; Loebinger, Michael R; Bilton, Diana; Tunney, Michael M; Elborn, J Stuart; Pier, Gerald B; Konstan, Michael W; Ulrich, Martina

    2014-03-01

    A clinical study to investigate the leukotriene B(4) (LTB(4))-receptor antagonist BIIL 284 in cystic fibrosis (CF) patients was prematurely terminated due to a significantly increased risk of adverse pulmonary events. We aimed to establish the effect of BIIL284 in models of Pseudomonas aeruginosa lung infection, thereby contributing to a better understanding of what could have led to adverse pulmonary events in CF patients. P. aeruginosa DNA in the blood of CF patients during and after acute pulmonary exacerbations and in stable patients with non-CF bronchiectasis (NCFB) and healthy individuals was assessed by PCR. The effect of BIIL 284 treatment was tested in an agar bead murine model of P. aeruginosa lung infection. Bacterial count and inflammation were evaluated in lung and other organs. Most CF patients (98%) and all patients with NCFB and healthy individuals had negative P. aeruginosa DNA in their blood. Similarly, the P. aeruginosa-infected mice showed bacterial counts in the lung but not in the blood or spleen. BIIL 284 treatment decreased pulmonary neutrophils and increased P. aeruginosa numbers in mouse lungs leading to significantly higher bacteremia rates and lung inflammation compared to placebo treated animals. Decreased airway neutrophils induced lung proliferation and severe bacteremia in a murine model of P. aeruginosa lung infection. These data suggest that caution should be taken when administering anti-inflammatory compounds to patients with bacterial infections. © 2013.

  18. Cold stress aggravates inflammatory responses in an LPS-induced mouse model of acute lung injury

    NASA Astrophysics Data System (ADS)

    Joo, Su-Yeon; Park, Mi-Ju; Kim, Kyun-Ha; Choi, Hee-Jung; Chung, Tae-Wook; Kim, Yong Jin; Kim, Joung Hee; Kim, Keuk-Jun; Joo, Myungsoo; Ha, Ki-Tae

    2016-08-01

    Although the relationship between environmental cold temperature and susceptibility to respiratory infection is generally accepted, the effect of ambient cold temperature on host reactivity in lung inflammation has not been fully studied. To examine the function of ambient cold temperature on lung inflammation, mice were exposed to 4 °C for 8 h each day for 14 days. In the lungs of mice exposed to cold stress, inflammatory cells in bronchoalveolar lavage (BAL) fluid and lung tissues were slightly increased by about twofold. However, the structures of pulmonary epithelial cells were kept within normal limits. Next, we examined the effect of cold stress on the inflammatory responses in a lipopolysaccharide (LPS)-induced acute lung injury (ALI) mouse model. The infiltration of neutrophils and inflammation of lung tissue determined by histology were significantly increased by exposure to ambient cold temperature. In addition, the production of pro-inflammatory cytokines including interleukin (IL)-12, IL-17, and monokine induced by gamma interferon (MIG) was elevated by exposure to cold stress. Therefore, we suggest that cold stress is a factor that exacerbates lung inflammation including ALI. To our knowledge, this is the first report on the relationship between cold stress and severity of lung inflammation.

  19. The Fas/FasL pathway impairs the alveolar fluid clearance in mouse lungs

    PubMed Central

    Herrero, Raquel; Tanino, Mishie; Smith, Lincoln S.; Kajikawa, Osamu; Wong, Venus A.; Mongovin, Steve; Matute-Bello, Gustavo

    2013-01-01

    Alveolar epithelial damage is a critical event that leads to protein-rich edema in acute lung injury (ALI), but the mechanisms leading to epithelial damage are not completely understood. Cell death by necrosis and apoptosis occurs in alveolar epithelial cells in the lungs of patients with ALI. Fas activation induces apoptosis of alveolar epithelial cells, but its role in the formation of lung edema is unclear. The main goal of this study was to determine whether activation of the Fas/Fas ligand pathway in the lungs could alter the function of the lung epithelium, and the mechanisms involved. The results show that Fas activation alters the alveolar barrier integrity and impairs the ability of the lung alveolar epithelium to reabsorb fluid from the air spaces. This result was dependent on the presence of a normal Fas receptor and was not affected by inflammation induced by Fas activation. Alteration of the fluid transport properties of the alveolar epithelium was partially restored by β-adrenergic stimulation. Fas activation also caused apoptosis of alveolar endothelial cells, but this effect was less pronounced than the effect on the alveolar epithelium. Thus, activation of the Fas pathway impairs alveolar epithelial function in mouse lungs by mechanisms involving caspase-dependent apoptosis, suggesting that targeting apoptotic pathways could reduce the formation of lung edema in ALI. PMID:23812636

  20. Significance of Stat3 Signaling in Epithelial Cell Differentiation of Fetal Mouse Lungs

    PubMed Central

    Kameyama, Hiroki; Kudoh, Shinji; Hatakeyama, Jun; Matuo, Akira; Ito, Takaaki

    2017-01-01

    To study the significance of signal transducer and activator of transcription (Stat) 3 in lung epithelial development of fetal mice, we examined fetal mouse lungs, focusing on the expression of Clara cell secretory protein (CCSP), Forkhead box protein J1 (Foxj1), calcitonin gene-related peptide (CGRP), phosphorylated Stat3 (Tyr705), and hairy/enhancer of split (Hes) 1, and observed cultured fetal lungs upon treatment with IL-6, a Stat3 activator, or cucurbitacin I, a Stat3 inhibitor. Moreover, the interaction of Stat3 signaling and Hes1 was studied using Hes1 gene-deficient mice. Phosphorylated Stat3 was detected in fetal lungs and, immunohistochemically, phosphorylated Stat3 was found to be co-localized in developing Clara cells, but not in ciliated cells. In the organ culture studies, upon treatment with IL-6, quantitative RT-PCR revealed that CCSP mRNA increased with increasing Stat3 phosphorylation, while cucurbitacin I decreased Hes1, CCSP, Foxj1 and CGRP mRNAs with decreasing Stat3 phosphorylation. In the lungs of Hes1 gene-deficient mice, Stat3 phosphorylation was not markedly different from wild-type mice, the expression of CCSP and CGRP was enhanced, and the treatment of IL-6 or cucurbitacin I induced similar effects on mouse lung epithelial differentiation regardless of Hes1 expression status. Stat3 signaling acts in fetal mouse lung development, and seems to regulate Clara cell differentiation positively. Hes1 could regulate Clara cell differentiation in a manner independent from Stat3 signaling. PMID:28386145

  1. Nanoparticles, Lung Injury, and the Role of Oxidant Stress

    PubMed Central

    Madl, Amy K.; Plummer, Laurel E.; Carosino, Christopher; Pinkerton, Kent E.

    2015-01-01

    The emergence of engineered nanoscale materials has provided significant advancements in electronic, biomedical, and material science applications. Both engineered nanoparticles and nanoparticles derived from combustion or incidental processes exhibit a range of physical and chemical properties, which have been shown to induce inflammation and oxidative stress in biologic systems. Oxidative stress reflects the imbalance between the generation of reaction oxygen species (ROS) and the biochemical mechanisms to detoxify and repair resulting damage of reactive intermediates. This review examines current research incidental and engineered nanoparticles in terms of their health effects on the lungs and mechanisms by which oxidative stress via physicochemical characteristics influence toxicity or biocompatibility. Although oxidative stress has generally been thought of as an adverse biological outcome, this review will also briefly discuss some of the potential emerging technologies to use nanoparticle-induced oxidative stress to treat disease in a site specific fashion. PMID:24215442

  2. Exercise increases mitochondrial glutamate oxidation in the mouse cerebral cortex.

    PubMed

    Herbst, Eric A F; Holloway, Graham P

    2016-07-01

    The present study investigated the impact of acute exercise on stimulating mitochondrial respiratory function in mouse cerebral cortex. Where pyruvate-stimulated respiration was not affected by acute exercise, glutamate respiration was enhanced following the exercise bout. Additional assessment revealed that this affect was dependent on the presence of malate and did not occur when substituting glutamine for glutamate. As such, our results suggest that glutamate oxidation is enhanced with acute exercise through activation of the malate-aspartate shuttle.

  3. Role of Nitric Oxide Isoforms in Vascular and Alveolar Development and Lung Injury in Vascular Endothelial Growth Factor Overexpressing Neonatal Mice Lungs

    PubMed Central

    Syed, Mansoor A.; Choo-Wing, Rayman; Homer, Robert J.; Bhandari, Vineet

    2016-01-01

    Background The role of vascular endothelial growth factor (VEGF)-induced 3 different nitric oxide synthase (NOS) isoforms in lung development and injury in the newborn (NB) lung are not known. We hypothesized that VEGF-induced specific NOS pathways are critical regulators of lung development and injury. Methodology We studied NB wild type (WT), lung epithelial cell-targeted VEGF165 doxycycline-inducible overexpressing transgenic (VEGFTG), VEGFTG treated with a NOS1 inhibitor (L-NIO), VEGFTG x NOS2-/- and VEGFTG x NOS3+/- mice in room air (RA) for 7 postnatal (PN) days. Lung morphometry (chord length), vascular markers (Ang1, Ang2, Notch2, vWF, CD31 and VE-cadherin), cell proliferation (Ki67), vascular permeability, injury and oxidative stress markers (hemosiderin, nitrotyrosine and 8-OHdG) were evaluated. Results VEGF overexpression in RA led to increased chord length and vascular markers at PN7, which were significantly decreased to control values in VEGFTG x NOS2−/− and VEGFTG x NOS3+/- lungs. However, we found no noticeable effect on chord length and vascular markers in the VEGFTG / NOS1 inhibited group. In the NB VEGFTG mouse model, we found VEGF-induced vascular permeability in the NB murine lung was partially dependent on NOS2 and NOS3-signaling pathways. In addition, the inhibition of NOS2 and NOS3 resulted in a significant decrease in VEGF-induced hemosiderin, nitrotyrosine- and 8-OHdG positive cells at PN7. NOS1 inhibition had no significant effect. Conclusion Our data showed that the complete absence of NOS2 and partial deficiency of NOS3 confers protection against VEGF-induced pathologic lung vascular and alveolar developmental changes, as well as injury markers. Inhibition of NOS1 does not have any modulating role on VEGF-induced changes in the NB lung. Overall, our data suggests that there is a significant differential regulation in the NOS-mediated effects of VEGF overexpression in the developing mouse lung. PMID:26799210

  4. Radiation-enhanced Lung Cancer Progression in a Transgenic Mouse Model of Lung Cancer is Predictive of Outcomes in Human Lung and Breast Cancer

    PubMed Central

    Delgado, Oliver; Batten, Kimberly G.; Richardson, James A.; Xie, Xian-Jin; Gazdar, Adi F.; Kaisani, Aadil A.; Girard, Luc; Behrens, Carmen; Suraokar, Milind; Fasciani, Gail; Wright, Woodring E.; Story, Michael D.; Wistuba, Ignacio I.; Minna, John D.; Shay, Jerry W.

    2014-01-01

    Purpose Carcinogenesis is an adaptive process between nascent tumor cells and their microenvironment including the modification of inflammatory responses from anti-tumorigenic to pro-tumorigenic. Radiation exposure can stimulate inflammatory responses that inhibit or promote carcinogenesis. The purpose of this study is to determine the impact of radiation exposure on lung cancer progression in vivo and assess the relevance of this knowledge to human carcinogenesis. Experimental Design K-rasLA1 mice were irradiated with various doses and dose regimens and then monitored till death. Microarray analyses were performed using Illumina® BeadChips on whole lung tissue 70 days post-irradiation with a fractionated or acute dose of radiation and compared to age-matched unirradiated controls. Unique group classifiers were derived by comparative genomic analysis of three experimental cohorts. Survival analyses were performed using principal component analysis and k-means clustering on three lung adenocarcinoma, three breast adenocarcinoma, and two lung squamous carcinoma annotated microarray datasets. Results Radiation exposure accelerates lung cancer progression in the K-rasLA1 lung cancer mouse model with dose fractionation being more permissive for cancer progression. A non-random inflammatory signature associated with this progression was elicited from whole lung tissue containing only benign lesions and predicts human lung and breast cancer patient survival across multiple datasets. Immunohistochemical analyses suggest that tumor cells drive predictive signature. Conclusions These results demonstrate that radiation exposure can cooperate with benign lesions in a transgenic model of cancer by impacting inflammatory pathways, and that clinically relevant similarities exist between human lung and breast carcinogenesis. PMID:24486591

  5. Effects of microcystin-LR on mouse lungs.

    PubMed

    Soares, Raquel M; Cagido, Viviane R; Ferraro, Rodrigo B; Meyer-Fernandes, José Roberto; Rocco, Patrícia R M; Zin, Walter A; Azevedo, Sandra M F O

    2007-09-01

    Toxic cyanobacteria blooms in drinking water supplies have been an increasing public health concern all over the world. Human populations can be exposed to microcystins, an important family of cyanotoxins, mainly by oral ingestion. However, inhalation from recreational water and hemodialysis can represent other routes. This study investigated changes in respiratory mechanics, histology, protein phosphatase (PP) 1 and 2A activity and microcystin in lung of adult mice injected intraperitoneally (i.p.) with microcystin-LR. Thirty-six mice were divided into control (CTRL) and test (CYANO) groups. CTRL group received an i.p. injection of saline and the CYANO group received 40 microg MCYST-LR/kg i.p. After 2 and 8 h, and 1, 2 and 4 days after toxin injection, six mice from each group were sampled for analyses. Resistive and viscoelastic pressures, static and dynamic elastances augmented at 2 h in CYANO and so remained until day 4. Alveolar collapse and inflammatory cell infiltration were found 2h after the injection, reaching peak values at 8 h. However, no microcystin or inhibition of PPases could be detected in mice lungs. In conclusion, MCYST-LR led to a rapid increase in lung impedance and an inflammatory response with interstitial edema and inflammatory cell recruitment in mice.

  6. Alterations of mouse lung tissue dimensions during processing for morphometry: a comparison of methods.

    PubMed

    Schneider, Jan Philipp; Ochs, Matthias

    2014-02-15

    Preservation of original tissue dimensions is an essential prerequisite for morphometric studies. Shrinkage occurring during tissue processing for histology may severely influence the appearance of structures seen under the microscope and stereological calculations. Therefore, shrinkage has to be avoided so that estimates obtained by application of unbiased stereology are indeed unbiased. The present study investigates the alterations of tissue dimensions of mouse lung samples during processing for histology. Different fixatives as well as embedding protocols are considered. Mouse lungs were fixed by instillation of either 4% formalin or a mixture of 1.5% glutaraldehyde/1.5% formaldehyde. Tissue blocks were sampled according to principles of stereology for embedding in paraffin, glycol methacrylate without treatment with osmium tetroxide and uranyl acetate, and glycol methacrylate including treatment with osmium tetroxide and uranyl acetate before dehydration. Shrinkage was investigated by stereological measurements of dimensional changes of tissue cut faces. Results show a shrinkage of the cut face areas of roughly 40% per lung during paraffin embedding, 30% during "simple" glycol methacrylate embedding, and <3% during osmium tetroxide/uranyl acetate/glycol methacrylate embedding. Furthermore, the superiority of the glutaraldehyde-containing fixative regarding shrinkage is demonstrated. In conclusion, the use of a glutaraldehyde-containing fixative and embedding in glycol methacrylate with previous treatment of the samples with osmium tetroxide and uranyl acetate before dehydration is recommended for stereological studies of the mouse lung.

  7. Lung arginase expression and activity is increased in cystic fibrosis mouse models.

    PubMed

    Jaecklin, Thomas; Duerr, Julia; Huang, Hailu; Rafii, Mahroukh; Bear, Christine E; Ratjen, Felix; Pencharz, Paul; Kavanagh, Brian P; Mall, Marcus A; Grasemann, Hartmut

    2014-08-01

    The activity of arginase is increased in airway secretions of patients with cystic fibrosis (CF). Downstream products of arginase activity may contribute to CF lung disease. We hypothesized that pulmonary arginase expression and activity would be increased in mouse models of CF and disproportionally increased in CF mice with Pseudomonas aeruginosa pneumonia. Expression of arginase isoforms in lung tissue was quantified with reverse transcriptase-PCR in naive cystic fibrosis transmembrane conductance regulator (Cftr)-deficient mice and β-epithelial sodium channel-overexpressing [β-ENaC-transgenic (Tg)] mice. An isolated lung stable isotope perfusion model was used to measure arginase activity in Cftr-deficient mice before and after intratracheal instillation of Pseudomonas aeruginosa. The expression of arginase-2 in lung was increased in adult Cftr-deficient animals and in newborn β-ENaC-Tg. Arginase-1 lung expression was normal in Cftr-deficient and in newborn β-ENaC-Tg mice, but was increased in β-ENaC-Tg mice at age 1, 3, and 6 wk. Arginase activity was significantly higher in lung (5.0 ± 0.7 vs. 3.2 ± 0.3 nmol·(-1)·h(-1), P = 0.016) and airways (204.6 ± 49.8 vs. 79.3 ± 17.2 nmol·(-1)·h(-1), P = 0.045) of naive Cftr-deficient mice compared with sex-matched wild-type littermate controls. Infection with Pseudomonas aeruginosa resulted in a far greater increase in lung arginase activity in Cftr-deficient mice (10-fold) than in wild-type controls (6-fold) (P = 0.01). This is the first ex vivo characterization of arginase expression and activity in CF mouse lung and airways. Our data show that pulmonary arginase expression and activity is increased in CF mice, especially with Pseudomonas aeruginosa infections.

  8. A Mechanistic Model for Predicting Lung Inflammogenicity of Oxide Nanoparticles.

    PubMed

    Burello, Enrico

    2017-10-01

    This study presents a mechanistic model for identifying oxide nanoparticles that induce a high level of neutrophils in the bronchoalveolar lavage fluid, an important marker for lung inflammogenicity. The model is based on 4 nanoparticles' physicochemical properties, ie, the reactivity, surface charge, wettability, and dissolution. First, I calculate these properties and show that theoretical values reproduce acceptably the experimental measurements. Then, I combine these properties with mechanistic knowledge to build a classification model for the prediction of acute invivo lung inflammogenicity, measured as the total number of polymorphonuclear neutrophils. The model uses reactivity and dissolution properties of nanoparticles as toxicological initiating events, whereas surface charge and wettability are characteristics involved in the interactions between the nanoparticles and the lung surfactant, eventually leading to increased cellular uptake and bioaccumulation. The model is validated on a set of 43 oxide nanoparticles tested invivo to confirm that acute lung inflammation can be described using this mechanistic framework. In addition, I also develop a linear regression model for insoluble nanoparticles to quantitatively predict the polymorphonuclear neutrophil count as a function of reactivity and surface charge. The proposed models are based on mechanistic knowledge and can support the development of adverse outcome pathways, risk assessment frameworks and safe design strategies at early stages of material's R&D. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Ablating all three retinoblastoma family members in mouse lung leads to neuroendocrine tumor formation

    PubMed Central

    Lázaro, Sara; Pérez-Crespo, Miriam; Enguita, Ana Belén; Hernández, Pilar; Martínez-Palacio, Jesús; Oteo, Marta; Sage, Julien; Paramio, Jesús M.; Santos, Mirentxu

    2017-01-01

    Lung cancer is a deadly disease with increasing cases diagnosed worldwide and still a very poor prognosis. While mutations in the retinoblastoma (RB1) tumor suppressor have been reported in lung cancer, mainly in small cell lung carcinoma, the tumor suppressive role of its relatives p107 and p130 is still a matter of debate. To begin to investigate the role of these two Rb family proteins in lung tumorigenesis, we have generated a conditional triple knockout mouse model (TKO) in which the three Rb family members can be inactivated in adult mice. We found that ablation of all three family members in the lung of mice induces tumorlets, benign neuroendocrine tumors that are remarkably similar to their human counterparts. Upon chemical carcinogenesis, DHPN and urethane accelerate tumor development; the TKO model displays increased sensitivity to DHPN, and urethane increases malignancy of tumors. All the tumors developing in TKO mice (spontaneous and chemically induced) have neuroendocrine features but do not progress to fully malignant tumors. Thus, loss of Rb and its family members confers partial tumor susceptibility in neuroendocrine lineages in the lungs of mice. Our data also imply the requirement of other oncogenic signaling pathways to achieve full transformation in neuroendocrine lung lesions mutant for the Rb family. PMID:27966456

  10. Identification of candidate lung cancer susceptibility genes in mouse using oligonucleotide arrays

    PubMed Central

    Lemon, W; Bernert, H; Sun, H; Wang, Y; You, M

    2002-01-01

    We applied microarray gene expression profiling to lungs from mouse strains having variable susceptibility to lung tumour development as a means to identify, within known quantitative trait loci (QTLs), candidate genes responsible for susceptibility or resistance to lung cancer. At least eight chromosomal regions of mice have been mapped and verified to be linked with lung tumour susceptibility or resistance. In this study, high density oligonucleotide arrays were used to measure the relative expression levels of >36 000 genes and ESTs in lung tissues of A/J, BALB/cJ, SM/J, C3H/HeJ, and C57BL/6J mice. A number of differentially expressed genes were found in each of the lung cancer susceptibility QTLs. Bioinformatic analysis of the differentially expressed genes located within QTLs produced 28 susceptibility candidates and 22 resistance candidates. These candidates may be extremely helpful in the ultimate identification of the precise genes responsible for lung tumour susceptibility or resistance in mice and, through follow up, humans. Complete data sets are available at http://thinker.med.ohio-state.edu. PMID:12205107

  11. Novel Mouse Model of Chronic Pseudomonas aeruginosa Lung Infection Mimicking Cystic Fibrosis

    PubMed Central

    Hoffmann, Nadine; Rasmussen, Thomas Bovbjerg; Jensen, PeterØstrup; Stub, Charlotte; Hentzer, Morten; Molin, Søren; Ciofu, Oana; Givskov, Michael; Johansen, Helle Krogh; Høiby, Niels

    2005-01-01

    Pseudomonas aeruginosa causes a chronic infection in the lungs of cystic fibrosis (CF) patients by establishing an alginate-containing biofilm. The infection has been studied in several animal models; however, most of the models required artificial embedding of the bacteria. We present here a new pulmonary mouse model without artificial embedding. The model is based on a stable mucoid CF sputum isolate (NH57388A) with hyperproduction of alginate due to a deletion in mucA and functional N-acylhomoserine lactone (AHL)-based quorum-sensing systems. Chronic lung infection could be established in both CF mice (CftrtmlUnc−/−) and BALB/c mice, as reflected by the detection of a high number of P. aeruginosa organisms in the lung homogenates at 7 days postinfection and alginate biofilms, surrounded by polymorphonuclear leukocytes in the alveoli. In comparison, both an AHL-producing nonmucoid revertant (NH57388C) from the mucoid isolate (NH57388A) and a nonmucoid isolate (NH57388B) deficient in AHL were almost cleared from the lungs of the mice. This model, in which P. aeruginosa is protected against the defense system of the lung by alginate, is similar to the clinical situation. Therefore, the mouse model provides an improved method for evaluating the interaction between mucoid P. aeruginosa, the host, and antibacterial therapy. PMID:15784597

  12. Regulation of mouse lung development by the extracellular calcium-sensing receptor, CaR.

    PubMed

    Finney, Brenda A; del Moral, Pierre M; Wilkinson, William J; Cayzac, Sebastien; Cole, Martin; Warburton, David; Kemp, Paul J; Riccardi, Daniela

    2008-12-15

    Postnatal lung function is critically dependent upon optimal embryonic lung development. As the free ionized plasma calcium concentration ([Ca(2+)](o)) of the fetus is higher than that of the adult, the process of lung development occurs in a hypercalcaemic environment. In the adult, [Ca(2+)](o) is monitored by the G-protein coupled, extracellular calcium-sensing receptor (CaR), but neither its ontogeny nor its potential role in lung development are known. Here, we demonstrate that CaR is expressed in the mouse lung epithelium, and that its expression is developmentally regulated, with a peak of expression at embryonic day 12.5 (E12.5) and a subsequent decrease by E18, after which the receptor is absent. Experiments carried out using the lung explant culture model in vitro show that lung branching morphogenesis is sensitive to [Ca(2+)](o), being maximal at physiological adult [Ca(2+)](o) (i.e. 1.0-1.3 mM) and lowest at the higher, fetal (i.e. 1.7 mM) [Ca(2+)](o). Administration of the specific CaR positive allosteric modulator, the calcimimetic R-568, mimics the suppressive effects of high [Ca(2+)](o) on branching morphogenesis while both phospholipase C and PI3 kinase inhibition reverse these effects. CaR activation suppresses cell proliferation while it enhances intracellular calcium signalling, lung distension and fluid secretion. Conditions which are restrictive either to branching or to secretion can be rescued by manipulating [Ca(2+)](o) in the culture medium. In conclusion, fetal Ca(2+)(o), acting through a developmentally regulated CaR, is an important extrinsic factor that modulates the intrinsic lung developmental programme. Our observations support a novel role for the CaR in preventing hyperplastic lung disease in utero.

  13. Quantification of Lung Metastases from In Vivo Mouse Models.

    PubMed

    Chang, Joan; Erler, Janine T

    2016-01-01

    Cancer research has made significant progress in terms of understanding and targeting primary tumors; however, the challenge remains for the successful treatment of metastatic cancers. This highlights the importance to use in vivo models to study the metastatic process, as well as for preclinical testing of compounds that could inhibit metastasis. As a result, proper quantification of metastases from in vivo models is of the utmost significance. Here, we provide a detailed protocol for collecting and handling lung tissues from mice, and guidance for subsequent analysis of metastases, as well as interpretation of data.

  14. AKT1E17K Is Oncogenic in Mouse Lung and Cooperates with Chemical Carcinogens in Inducing Lung Cancer

    PubMed Central

    Malanga, Donatella; Belmonte, Stefania; Colelli, Fabiana; Scarfò, Marzia; De Marco, Carmela; Oliveira, Duarte Mendes; Mirante, Teresa; Camastra, Caterina; Gagliardi, Monica; Rizzuto, Antonia; Mignogna, Chiara; Paciello, Orlando; Papparella, Serenella; Fagman, Henrik; Viglietto, Giuseppe

    2016-01-01

    The hotspot AKT1E17K mutation in the pleckstrin homology domain of AKT1 occurs in approximately 0.6–2% of human lung cancers. Recently, we have demonstrated that AKT1E17K transforms immortalized human bronchial cells. Here by use of a transgenic Cre-inducible murine strain in the wild type Rosa26 (R26) locus (R26-AKT1E17K mice) we demonstrate that AKT1E17K is a bona-fide oncogene and plays a role in the development of lung cancer in vivo. In fact, we report that mutant AKT1E17K induces bronchial and/or bronchiolar hyperplastic lesions in murine lung epithelium, which progress to frank carcinoma at very low frequency, and accelerates tumor formation induced by chemical carcinogens. In conclusion, AKT1E17K induces hyperplasia of mouse lung epithelium in vivo and cooperates with urethane to induce the fully malignant phenotype. PMID:26859676

  15. Circadian disruption alters mouse lung clock gene expression and lung mechanics.

    PubMed

    Hadden, Hélène; Soldin, Steven J; Massaro, Donald

    2012-08-01

    Most aspects of human physiology and behavior exhibit 24-h rhythms driven by a master circadian clock in the brain, which synchronizes peripheral clocks. Lung function and ventilation are subject to circadian regulation and exhibit circadian oscillations. Sleep disruption, which causes circadian disruption, is common in those with chronic lung disease, and in the general population; however, little is known about the effect on the lung of circadian disruption. We tested the hypothesis circadian disruption alters expression of clock genes in the lung and that this is associated with altered lung mechanics. Female and male mice were maintained on a 12:12-h light/dark cycle (control) or exposed for 4 wk to a shifting light regimen mimicking chronic jet lag (CJL). Airway resistance (Rn), tissue damping (G), and tissue elastance (H) did not differ between control and CJL females. Rn at positive end-expiratory pressure (PEEP) of 2 and 3 cmH(2)O was lower in CJL males compared with controls. G, H, and G/H did not differ between CJL and control males. Among CJL females, expression of clock genes, Bmal1 and Rev-erb alpha, was decreased; expression of their repressors, Per2 and Cry 2, was increased. Among CJL males, expression of Clock was decreased; Per 2 and Rev-erb alpha expression was increased. We conclude circadian disruption alters lung mechanics and clock gene expression and does so in a sexually dimorphic manner.

  16. Early recognition of lung cancer by integrin targeted imaging in K-ras mouse model.

    PubMed

    Ermolayev, Vladimir; Mohajerani, Pouyan; Ale, Angelique; Sarantopoulos, Athanasios; Aichler, Michaela; Kayser, Gian; Walch, Axel; Ntziachristos, Vasilis

    2015-09-01

    Non-small cell lung cancer is characterized by slow progression and high heterogeneity of tumors. Integrins play an important role in lung cancer development and metastasis and were suggested as a tumor marker; however their role in anticancer therapy remains controversial. In this work, we demonstrate the potential of integrin-targeted imaging to recognize early lesions in transgenic mouse model of lung cancer based on spontaneous introduction of mutated human gene bearing K-ras mutation. We conducted ex vivo and fluorescence molecular tomography-X-ray computed tomography (FMT-XCT) in vivo imaging and analysis for specific targeting of early lung lesions and tumors in rodent preclinical model for lung cancer. The lesions and tumors were characterized by histology, immunofluorescence and immunohistochemistry using a panel of cancer markers. Ex vivo, the integrin-targeted fluorescent signal significantly differed between wild type lung tissue and K-ras pulmonary lesions (PL) at all ages studied. The panel of immunofluorescence experiments demonstrated that PL, which only partially show cancer cell features were detected by αvβ3-integrin targeted imaging. Human patient material analysis confirmed the specificity of target localization in different lung cancer types. Most importantly, small tumors in the lungs of 4-week-old animals could be noninvasively detected in vivo on the fluorescence channel of FMT-XCT. Our findings demonstrated αvβ3-integrin targeted fluorescent imaging to specifically detect premalignant pleural lesions in K-ras mice. Integrin targeted imaging may find application areas in preclinical research and clinical practice, such as early lung cancer diagnostics, intraoperative assistance or therapy monitoring.

  17. Scale dependence of structure-function relationship in the emphysematous mouse lung

    PubMed Central

    Sato, Susumu; Bartolák-Suki, Erzsébet; Parameswaran, Harikrishnan; Hamakawa, Hiroshi; Suki, Béla

    2015-01-01

    The purpose of this study was to determine how the initial distribution of elastase in mouse lungs determines the time course of tissue destruction and how structural heterogeneity at different spatial scales influences lung function. We evaluated lung function and alveolar structure in normal and emphysematous C57BL/6 mice at 2 and 21 days following orotracheal treatment with porcine pancreatic elastase (PPE). Initial distribution of elastase 1 h after treatment was assessed using red fluorescently labeled PPE (f-PPE) by laser scanning confocal microscopy. From measured input impedance of the respiratory system, the global lung compliance, and the variability of regional compliance were obtained. Lungs were fixed and equivalent airspace diameters were measured in four lobes of the right lung and three regions of the left lung. At day 2 and day 21, the mean airspace diameter of each region was significantly enlarged which was accompanied by an increased inter-regional heterogeneity. The deposition of f-PPE on day 0 was much more heterogeneous than the inter-regional diameters at both day 2 and day 21 and, at day 21, this reached statistical significance (p < 0.05). Microscale heterogeneity characterized by the overall variability of airspace diameters correlated significantly better with compliance than macroscale or inter-regional heterogeneity. Furthermore, while the spatial distribution of the inflammatory response does not seem to follow that of the elastase deposition, it correlates with the strongest regional determinant of lung function. These results may help interpret lung function decline in terms of structural deterioration in human patients with emphysema. PMID:26029115

  18. Scale dependence of structure-function relationship in the emphysematous mouse lung.

    PubMed

    Sato, Susumu; Bartolák-Suki, Erzsébet; Parameswaran, Harikrishnan; Hamakawa, Hiroshi; Suki, Béla

    2015-01-01

    The purpose of this study was to determine how the initial distribution of elastase in mouse lungs determines the time course of tissue destruction and how structural heterogeneity at different spatial scales influences lung function. We evaluated lung function and alveolar structure in normal and emphysematous C57BL/6 mice at 2 and 21 days following orotracheal treatment with porcine pancreatic elastase (PPE). Initial distribution of elastase 1 h after treatment was assessed using red fluorescently labeled PPE (f-PPE) by laser scanning confocal microscopy. From measured input impedance of the respiratory system, the global lung compliance, and the variability of regional compliance were obtained. Lungs were fixed and equivalent airspace diameters were measured in four lobes of the right lung and three regions of the left lung. At day 2 and day 21, the mean airspace diameter of each region was significantly enlarged which was accompanied by an increased inter-regional heterogeneity. The deposition of f-PPE on day 0 was much more heterogeneous than the inter-regional diameters at both day 2 and day 21 and, at day 21, this reached statistical significance (p < 0.05). Microscale heterogeneity characterized by the overall variability of airspace diameters correlated significantly better with compliance than macroscale or inter-regional heterogeneity. Furthermore, while the spatial distribution of the inflammatory response does not seem to follow that of the elastase deposition, it correlates with the strongest regional determinant of lung function. These results may help interpret lung function decline in terms of structural deterioration in human patients with emphysema.

  19. H2S Attenuates LPS-Induced Acute Lung Injury by Reducing Oxidative/Nitrative Stress and Inflammation.

    PubMed

    Zhang, Hong-Xia; Liu, Shu-Juan; Tang, Xiao-Lu; Duan, Guo-Li; Ni, Xin; Zhu, Xiao-Yan; Liu, Yu-Jian; Wang, Chang-Nan

    2016-01-01

    Hydrogen sulfide (H2S), known as the third endogenous gaseous transmitter, has received increasing attention because of its diverse effects, including angiogenesis, vascular relaxation and myocardial protection.We aimed to investigate the role of H2S in oxidative/nitrative stress and inflammation in acute lung injury (ALI) induced by endotoxemia. Male ICR mice were divided in six groups: (1) Control group; (2) GYY4137treatment group; (3) L-NAME treatment group; (4) lipopolysaccharide (LPS) treatment group; (5) LPS with GYY4137 treatment group; and (6) LPS with L-NAME treatment group. The lungs were analysed by histology, NO production in the mouse lungs determined by modified Griess (Sigma-Aldrich) reaction, cytokine levels utilizing commercialkits, and protein abundance by Western blotting. GYY4137, a slowly-releasing H2S donor, improved the histopathological changes in the lungs of endotoxemic mice. Treatment with NG-nitro-L-arginine methyl ester (L-NAME), a nitric oxide synthase (NOS) inhibitor, increased anti-oxidant biomarkers such as thetotal antioxidant capacity (T-AOC) and theactivities of catalase (CAT) and superoxide dismutase (SOD) but decreased a marker of peroxynitrite (ONOO-) action and 3-nitrotyrosine (3-NT) in endotoxemic lung. L-NAME administration also suppressed inflammation in endotoxemic lung, as evidenced by the decreased pulmonary levels of interleukin (IL)-6, IL-8, and myeloperoxidase (MPO) and the increased level of anti-inflammatory cytokine IL-10. GYY4137 treatment reversed endotoxin-induced oxidative/nitrative stress, as evidenced by a decrease in malondialdehyde (MDA), hydrogenperoxide (H2O2) and 3-NT and an increase in the antioxidant biomarker ratio of reduced/oxidized glutathione(GSH/GSSG ratio) and T-AOC, CAT and SOD activity. GYY4137 also attenuated endotoxin-induced lung inflammation. Moreover, treatment with GYY4137 inhibited inducible NOS (iNOS) expression and nitric oxide (NO) production in the endotoxemia lung. GYY4137

  20. Modeling of the Nitric Oxide Transport in the Human Lungs

    PubMed Central

    Karamaoun, Cyril; Van Muylem, Alain; Haut, Benoît

    2016-01-01

    In the human lungs, nitric oxide (NO) acts as a bronchodilatator, by relaxing the bronchial smooth muscles and is closely linked to the inflammatory status of the lungs, owing to its antimicrobial activity. Furthermore, the molar fraction of NO in the exhaled air has been shown to be higher for asthmatic patients than for healthy patients. Multiple models have been developed in order to characterize the NO dynamics in the lungs, owing to their complex structure. Indeed, direct measurements in the lungs are difficult and, therefore, these models are valuable tools to interpret experimental data. In this work, a new model of the NO transport in the human lungs is proposed. It belongs to the family of the morphological models and is based on the morphometric model of Weibel (1963). When compared to models published previously, its main new features are the layered representation of the wall of the airways and the possibility to simulate the influence of bronchoconstriction (BC) and of the presence of mucus on the NO transport in lungs. The model is based on a geometrical description of the lungs, at rest and during a respiratory cycle, coupled with transport equations, written in the layers composing an airway wall and in the lumen of the airways. First, it is checked that the model is able to reproduce experimental information available in the literature. Second, the model is used to discuss some features of the NO transport in healthy and unhealthy lungs. The simulation results are analyzed, especially when BC has occurred in the lungs. For instance, it is shown that BC can have a significant influence on the NO transport in the tissues composing an airway wall. It is also shown that the relation between BC and the molar fraction of NO in the exhaled air is complex. Indeed, BC might lead to an increase or to a decrease of this molar fraction, depending on the extent of the BC and on the possible presence of mucus. This should be confirmed experimentally and might

  1. The Nicotinic Receptor Alpha7 Impacts the Mouse Lung Response to LPS through Multiple Mechanisms

    PubMed Central

    Enioutina, Elena Y.; Myers, Elizabeth J.; Tvrdik, Petr; Hoidal, John R.; Rogers, Scott W.; Gahring, Lorise C.

    2015-01-01

    The nicotinic acetylcholine receptor alpha7 (α7) is expressed by neuronal and non-neuronal cells throughout the body. We examined the mechanisms of the lung inflammatory response to intranasal (i.n.) lipopolysaccharide (LPS) regulated by α7. This was done in mice using homologous recombination to introduce a point mutation in the α7 receptor that replaces the glutamate residue 260 that lines the pore with alanine (α7E260A), which has been implicated in controlling the exceptional calcium ion conductance of this receptor. The α7E260A mice exhibit normal inflammatory cell recruitment to the blood in response to i.n. LPS administration. This differs from the α7knock-out (α7KO) in which upstream signaling to initiate the recruitment to the blood following i.n. LPS is significantly impaired. While hematopoietic cells are recruited to the bloodstream in the α7E260A mouse, they fail to be recruited efficiently into both the interstitium and alveolar spaces of the lung. Bone marrow reconstitution experiments demonstrate that the responsiveness of both CD45+ and CD45- cells of the α7E260A mouse are impaired. The expression of several pro-inflammatory cytokine and chemokine RNAs including TNFα, IL-1α, Ccl2 and Cxcl10 are decreased in the α7E260A mouse. However, there is a substantial increase in IL-13 expression by CD45- lung interstitial cells in the α7E260A mouse. Our results support the conclusion that α7 functional pleiotropy contributes to modulating the tissue response to an inflammatory insult through impacting upon a variety of mechanisms reflecting the individual cell composition of the lung. PMID:25803612

  2. [Distribution of compact bone mesenchymal stem cells in lung tissue and bone marrow of mouse].

    PubMed

    Wang, Rui-Ping; Wu, Ren-Na; Guo, Yu-Qing; Zhang, Bin; Chen, Hu

    2014-02-01

    This study was aimed to investigate the distribution of compact bone mesenchymal stem cells(MSC) marked with lentiviral plasmid pGC FU-RFP-LV in lung tissue and bone marrow of mouse. The MSC were infected by lentivirus with infection efficiency 78%, the infected MSC were injected into BALB/c mice via tail veins in concentration of 1×10(6) /mouse. The mice were randomly divided into 4 group according to 4 time points as 1, 2, 5 and 7 days. The lung tissue and bone marrow were taken and made of frozen sections and smears respectively in order to observed the distributions of MSC. The results indicated that the lentiviral infected MSC displayed phenotypes and biological characteristics which conformed to MSC by immunophenotyping analysis and induction differentiation detection. After the MSC were infected with optimal viral titer MOI = 50, the cell growth no significantly changed; the fluorescent microscopy revealed that the distributions of MSC in bone marrow on day 1, 2, 5 and 7 were 0.50 ± 0.20, 0.67 ± 0.23, 0.53 ± 0.14, 0.33 ± 0.16; those in lung tissue were 0.55 ± 0.15, 0.47 ± 0.13, 0.29 ± 0.13, 0.26 ± 0.08. It is concluded that the distribution of MSC in lung tissue reaches a peak on day 1, while distribution of MSC in bone marrow reaches a peak on day 2. The distribution of mouse MSC relates with RFP gene expression and implantation of MSC in lung tissue and bone marrow.

  3. Susceptibility to quantum dot induced lung inflammation differs widely among the Collaborative Cross founder mouse strains

    PubMed Central

    Scoville, David K.; White, Collin C.; Botta, Dianne; McConnachie, Lisa A.; Zadworny, Megan E.; Schmuck, Stefanie C.; Hu, Xiaoge; Gao, Xiaohu; Yu, Jianbo; Dills, Russell L.; Sheppard, Lianne; Delaney, Martha A.; Griffith, William C.; Beyer, Richard P.; Zangar, Richard C.; Pounds, Joel G.; Faustman, Elaine M.; Kavanagh, Terrance J.

    2015-01-01

    Quantum dots (QDs) are engineered semiconductor nanoparticles with unique physicochemical properties that make them potentially useful in clinical, research and industrial settings. However, a growing body of evidence indicates that like other engineered nanomaterials, QDs have the potential to be respiratory hazards, especially in the context of the manufacture of QDs and products containing them, as well as exposures to consumers using these products. The overall goal of this study was to investigate the role of mouse strain in determining susceptibility to QD-induced pulmonary inflammation and toxicity. Male mice from 8 genetically diverse inbred strains (the Collaborative Cross founder strains) were exposed to CdSe–ZnS core–shell QDs stabilized with an amphiphilic polymer. QD treatment resulted in significant increases in the percentage of neutrophils and levels of cytokines present in bronchoalveolar lavage fluid (BALF) obtained from NOD/ShiLtJ and NZO/HlLtJ mice relative to their saline (Sal) treated controls. Cadmium measurements in lung tissue indicated strain-dependent differences in disposition of QDs in the lung. Total glutathione levels in lung tissue were significantly correlated with percent neutrophils in BALF as well as with lung tissue Cd levels. Our findings indicate that QD-induced acute lung inflammation is mouse strain dependent, that it is heritable, and that the choice of mouse strain is an important consideration in planning QD toxicity studies. These data also suggest that formal genetic analyses using additional strains or recombinant inbred strains from these mice could be useful for discovering potential QD-induced inflammation susceptibility loci. PMID:26476918

  4. Oxidative lipidomics of hyperoxic acute lung injury: mass spectrometric characterization of cardiolipin and phosphatidylserine peroxidation

    PubMed Central

    Tyurin, Vladimir A.; Kaynar, A. Murat; Kapralova, Valentyna I.; Wasserloos, Karla; Li, Jin; Mosher, Mackenzie; Wright, Lindsay; Wipf, Peter; Watkins, Simon; Pitt, Bruce R.; Kagan, Valerian E.

    2010-01-01

    Reactive oxygen species have been shown to play a significant role in hyperoxia-induced acute lung injury, in part, by inducing apoptosis of pulmonary endothelium. However, the signaling roles of phospholipid oxidation products in pulmonary endothelial apoptosis have not been studied. Using an oxidative lipidomics approach, we identified individual molecular species of phospholipids involved in the apoptosis-associated peroxidation process in a hyperoxic lung. C57BL/6 mice were killed 72 h after exposure to hyperoxia (100% oxygen). We found that hyperoxia-induced apoptosis (documented by activation of caspase-3 and -7 and histochemical terminal deoxynucleotidyl transferase dUTP-mediated nick-end labeling staining of pulmonary endothelium) was accompanied by nonrandom oxidation of pulmonary lipids. Two anionic phospholipids, mitochondria-specific cardiolipin (CL) and extramitochondrial phosphatidylserine (PS), were the two major oxidized phospholipids in hyperoxic lung. Using electrospray ionization mass spectrometry, we identified several oxygenation products in CL and PS. Quantitative assessments revealed a significant decrease of CL and PS molecular species containing C18:2, C20:4, C22:5, and C22:6 fatty acids. Similarly, exposure of mouse pulmonary endothelial cells (MLEC) to hyperoxia (95% oxygen; 72 h) resulted in activation of caspase-3 and -7 and significantly decreased the content of CL molecular species containing C18:2 and C20:4 as well as PS molecular species containing C22:5 and C22:6. Oxygenated molecular species were found in the same two anionic phospholipids, CL and PS, in MLEC exposed to hyperoxia. Treatment of MLEC with a mitochondria-targeted radical scavenger, a conjugate of hemi-gramicidin S with nitroxide, XJB-5-131, resulted in significantly lower oxidation of both CL and PS and a decrease in hyperoxia-induced changes in caspase-3 and -7 activation. We speculate that cytochrome c driven oxidation of CL and PS is associated with the signaling

  5. Effect of ozone oxidative preconditioning in preventing early radiation-induced lung injury in rats.

    PubMed

    Bakkal, B H; Gultekin, F A; Guven, B; Turkcu, U O; Bektas, S; Can, M

    2013-09-01

    Ionizing radiation causes its biological effects mainly through oxidative damage induced by reactive oxygen species. Previous studies showed that ozone oxidative preconditioning attenuated pathophysiological events mediated by reactive oxygen species. As inhalation of ozone induces lung injury, the aim of this study was to examine whether ozone oxidative preconditioning potentiates or attenuates the effects of irradiation on the lung. Rats were subjected to total body irradiation, with or without treatment with ozone oxidative preconditioning (0.72 mg/kg). Serum proinflammatory cytokine levels, oxidative damage markers, and histopathological analysis were compared at 6 and 72 h after total body irradiation. Irradiation significantly increased lung malondialdehyde levels as an end-product of lipoperoxidation. Irradiation also significantly decreased lung superoxide dismutase activity, which is an indicator of the generation of oxidative stress and an early protective response to oxidative damage. Ozone oxidative preconditioning plus irradiation significantly decreased malondialdehyde levels and increased the activity of superoxide dismutase, which might indicate protection of the lung from radiation-induced lung injury. Serum tumor necrosis factor alpha and interleukin-1 beta levels, which increased significantly following total body irradiation, were decreased with ozone oxidative preconditioning. Moreover, ozone oxidative preconditioning was able to ameliorate radiation-induced lung injury assessed by histopathological evaluation. In conclusion, ozone oxidative preconditioning, repeated low-dose intraperitoneal administration of ozone, did not exacerbate radiation-induced lung injury, and, on the contrary, it provided protection against radiation-induced lung damage.

  6. Using gene expression profiling to evaluate cellular responses in mouse lungs exposed to V2O5 and a group of other mouse lung tumorigens and non-tumorigens.

    PubMed

    Black, Michael B; Dodd, Darol E; McMullen, Patrick D; Pendse, Salil; MacGregor, Judith A; Gollapudi, B Bhaskar; Andersen, Melvin E

    2015-10-01

    Many compounds test positive for lung tumors in two-year NTP carcinogenicity bioassays in B6C3F1 mice. V2O5 was identified as a lung carcinogen in this assay, leading to its IARC (International Agency for Research on Cancer) classification as group 2b or a "possible" human carcinogen. To assess potential tumorigenic mode of action of V2O5, we compared gene expression and gene ontology enrichment in lung tissue of female B6C3F1 mice exposed for 13 weeks to a V2O5 particulate aerosol at a tumorigenic level (2.0 mg/m(3)). Relative to 12 other compounds also tested for carcinogenicity in 2-year bioassays in mice, there were 1026 differentially expressed genes with V2O5, of which 483 were unique to V2O5. Ontology analysis of the 1026 V2O5 differentially expressed genes showed enrichment for hyaluronan and sphingolipid metabolism, adenylate cyclase functions, c-AMP signaling and PKA activation/signaling. Enrichment of lipids/lipoprotein metabolism and inflammatory pathways were consistent with previously reported clinical findings. Enrichment of c-AMP and PKA signaling pathways may arise due to inhibition of phosphatases, a known biological action of vanadate. We saw no enrichment for DNA-damage, oxidative stress, cell cycle, or apoptosis pathway signaling in mouse lungs exposed to V2O5 which is in contrast with past studies evaluating in vivo gene expression in target tissues of other carcinogens (arsenic, formaldehyde, naphthalene and chloroprene). Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Two Nested Developmental Waves Demarcate a Compartment Boundary in the Mouse Lung

    PubMed Central

    Alanis, Denise Martinez; Chang, Daniel R.; Akiyama, Haruhiko; Krasnow, Mark A.; Chen, Jichao

    2014-01-01

    The lung is a branched tubular network with two distinct compartments — the proximal conducting airways and the peripheral gas exchange region — separated by a discrete boundary termed the bronchoalveolar duct junction (BADJ). Here we image the developing mouse lung in three dimensions and show that two nested developmental waves demarcate the BADJ under the control of a global hormonal signal. A first wave of branching morphogenesis progresses throughout embryonic development, generating branches for both compartments. A second wave of conducting airway differentiation follows the first wave but terminates earlier, specifying the proximal compartment and setting the BADJ. The second wave is terminated by a glucocorticoid signaling: premature activation or loss of glucocorticoid signaling causes a proximal or distal shift, respectively, in BADJ location. The results demonstrate a novel mechanism of boundary formation in complex, three-dimensional organs and provide new insights into glucocorticoid therapies for lung defects in premature birth. PMID:24879355

  8. GATA2 is epigenetically repressed in human and mouse lung tumors and is not requisite for survival of KRAS mutant lung cancer

    PubMed Central

    Tessema, Mathewos; Yingling, Christin M.; Snider, Amanda M.; Do, Kieu; Juri, Daniel E.; Picchi, Maria A.; Zhang, Xiequn; Liu, Yushi; Leng, Shuguang; Tellez, Carmen S.; Belinsky, Steven A.

    2014-01-01

    Introduction GATA2 was recently described as a critical survival factor and therapeutic target for KRAS mutant non-small cell lung cancer (NSCLC). However, whether this role is affected by epigenetic repression of GATA2 in lung cancer is unclear. Methods GATA2 expression and promoter CpG island methylation were evaluated using human and mouse NSCLC cell lines and tumor-normal pairs. In vitro assays were used to study GATA2 repression on cell survival and during tobacco carcinogen-induced transformation. Results GATA2 expression in KRAS wild-type (n=15) and mutant (n=10) NSCLC cell lines and primary lung tumors (n=24) was significantly lower, 1.3–33.6-fold (p=2.2×10−9), compared to corresponding normal lung. GATA2 promoter was unmethylated in normal lung (0/10) but frequently methylated in lung tumors (96%, 159/165) and NSCLC cell lines (97%, 30/31). This highly prevalent aberrant methylation was independently validated using TCGA data for 369 NSCLC tumor-normal pairs. In vitro studies using an established carcinogen-induced pre-malignancy model revealed that GATA2 expression was initially repressed by chromatin remodeling followed by cytosine methylation during transformation. Similarly, expression of Gata2 in NNK-induced mouse lung tumors (n=6) and cell lines (n=5) was 5-fold and 100-fold lower, respectively, than normal mouse lung. Finally, siRNA-mediated knockdown of GATA2 in KRAS mutant [human (n=4) and murine (n=5)] and wild-type [human (n=4)] NSCLC cell lines showed that further reduction of expression (up to 95%) does not induce cell death. Conclusion GATA2 is epigenetically repressed in human and mouse lung tumors and its further inhibition is not a valid therapeutic strategy for KRAS mutant lung cancer. PMID:24807155

  9. Desferrioxamine reduces oxidative stress in the lung contusion.

    PubMed

    Basaran, Umit Nusret; Ayvaz, Suleyman; Aksu, Burhan; Karaca, Turan; Cemek, Mustafa; Karaboga, Ihsan; Inan, Mustafa; Aksu, Feyza; Pul, Mehmet

    2013-01-01

    Our hypothesis in this study is that desferrioxamine (DFX) has therapeutic effects on experimental lung contusions in rats. The rats were divided into four groups (n = 8): control, control+DFX, contusion, and contusion+DFX. In the control+DFX and contusion+DFX groups, 100 mg/kg DFX was given intraperitoneally once a day just after the contusion and the day after the contusion. Contusions led to a meaningful rise in the malondialdehyde (MDA) level in lung tissue. MDA levels in the contusion+DFX group experienced a significant decline. Glutathione levels were significantly lower in the contusion group than in the control group and significantly higher in the contusion+DFX group. Glutathione peroxidase (GPx) and superoxide dismutase (SOD) levels in the contusion group were significantly lower than those in the control group. In the contusion+DFX group, SOD and GPx levels were significantly higher than those in the contusion group. In light microscopic evaluation, the contusion and contusion+DFX groups showed edema, hemorrhage, alveolar destruction, and leukocyte infiltration. However, histological scoring of the contusion+DFX group was significantly more positive than that of the contusion group. The iNOS staining in the contusion group was significantly more intensive than that in all other groups. DFX reduced iNOS staining significantly in comparison to the contusion group. This study showed that DFX reduced oxidative stress in lung contusions in rats and histopathologically ensured the recovery of the lung tissue.

  10. Desferrioxamine Reduces Oxidative Stress in the Lung Contusion

    PubMed Central

    Basaran, Umit Nusret; Ayvaz, Suleyman; Aksu, Burhan; Karaca, Turan; Cemek, Mustafa; Karaboga, Ihsan; Inan, Mustafa; Aksu, Feyza; Pul, Mehmet

    2013-01-01

    Our hypothesis in this study is that desferrioxamine (DFX) has therapeutic effects on experimental lung contusions in rats. The rats were divided into four groups (n = 8): control, control+DFX, contusion, and contusion+DFX. In the control+DFX and contusion+DFX groups, 100 mg/kg DFX was given intraperitoneally once a day just after the contusion and the day after the contusion. Contusions led to a meaningful rise in the malondialdehyde (MDA) level in lung tissue. MDA levels in the contusion+DFX group experienced a significant decline. Glutathione levels were significantly lower in the contusion group than in the control group and significantly higher in the contusion+DFX group. Glutathione peroxidase (GPx) and superoxide dismutase (SOD) levels in the contusion group were significantly lower than those in the control group. In the contusion+DFX group, SOD and GPx levels were significantly higher than those in the contusion group. In light microscopic evaluation, the contusion and contusion+DFX groups showed edema, hemorrhage, alveolar destruction, and leukocyte infiltration. However, histological scoring of the contusion+DFX group was significantly more positive than that of the contusion group. The iNOS staining in the contusion group was significantly more intensive than that in all other groups. DFX reduced iNOS staining significantly in comparison to the contusion group. This study showed that DFX reduced oxidative stress in lung contusions in rats and histopathologically ensured the recovery of the lung tissue. PMID:23983631

  11. Nitrofurantoin: evidence for the oxidant injury of lung parenchymal cells.

    PubMed

    Martin, W J

    1983-04-01

    Nitrofurantoin, a commonly used urinary antiseptic, is associated with significant pulmonary toxicity. This study used a 51Cr rat lung explant cytotoxicity assay to demonstrate that nitrofurantoin (10(-3) M), when incubated with lung parenchymal cells for 12 h at 37 degrees C, resulted in significant lung cell injury (cytotoxic index of 43 +/- 2). This injury could be reduced (p less than 0.05) by several antioxidants, including superoxide dismutase, 300 U/ml (37 +/- 2); catalase, 1,100 U/ml (27 +/- 2); alpha tocopherol, 10 micrograms/ml (30 +/- 2); ascorbic acid 50 micrograms/ml (37 +/- 2); ethanol, 0.1% (35 +/- 2); dimethyl sulfoxide, 1.0% (37 +/- 2). Additionally, the nitrofurantoin-induced injury could be accelerated in the presence of hyperoxia (95% O2) from 45 +/- 2 to 62 +/- 1, p less than 0.01. These data suggest that nitrofurantoin can directly injure lung parenchymal cells, probably through oxidant mechanisms, and this might suggest alternative approaches in the evaluation and therapy of patients with this disorder.

  12. CYCLOPENTA-FUSED POLYCYCLIC AROMATIC HYDROCARBONS IN STRAIN A/J MOUSE LUNG: DNA ADDUCTS, ONCOGENE MUTATIONS, & TUMORIGENESIS

    EPA Science Inventory

    Cyclopenta-fused Polycyclic Aromatic Hydrocarbons in Strain AJJ Mouse Lung: DNA Adducts, Oncogene Mutations, and Tumorigenesis.

    We have examined the relationships between DNA adducts, Ki-ras oncogene mutations, DNA adducts, and adenoma induction in the lungs of strain A/J...

  13. CYCLOPENTA-FUSED POLYCYCLIC AROMATIC HYDROCARBONS IN STRAIN A/J MOUSE LUNG: DNA ADDUCTS, ONCOGENE MUTATIONS, & TUMORIGENESIS

    EPA Science Inventory

    Cyclopenta-fused Polycyclic Aromatic Hydrocarbons in Strain AJJ Mouse Lung: DNA Adducts, Oncogene Mutations, and Tumorigenesis.

    We have examined the relationships between DNA adducts, Ki-ras oncogene mutations, DNA adducts, and adenoma induction in the lungs of strain A/J...

  14. Effect of urethane, dimethylnitrosamine, paraquat, and butylated hydroxytoluene on the activities of glycolytic key enzymes in mouse lung

    SciTech Connect

    Arany, I.; Rady, P.; Bojan, I.; Kertai, P.

    1981-12-01

    Effects of carcinogens and noncarcinogenic pulmonary toxicants on the activities of glycolytic key enzymes in the mouse lung were investigated. The carcinogens urethane (URTH) and dimethylnitrosamine (DMN) permanently enhanced, and the noncarcinogenic pulmonary toxicants paraquat (PAR) and butylated hydroxytoluene (BHT) temporarily, enhanced the activities of hexokinase (HK), phosphofructokinase (PFK), and pyruvate kinase (PK) in the lungs of mice.

  15. Mycobacterium terrae isolated from indoor air of a moisture-damaged building induces sustained biphasic inflammatory response in mouse lungs.

    PubMed

    Jussila, Juha; Komulainen, Hannu; Huttunen, Kati; Roponen, Marjut; Iivanainen, Eila; Torkko, Pirjo; Kosma, Veli-Matti; Pelkonen, Jukka; Hirvonen, Maija-Riitta

    2002-11-01

    Occupants in moisture-damaged buildings suffer frequently from respiratory symptoms. This may be partly due to the presence of abnormal microbial growth or the altered microbial flora in the damaged buildings. However, the specific effects of the microbes on respiratory health and the way they provoke clinical manifestations are poorly understood. In the present study, we exposed mice via intratracheal instillation to a single dose of Mycobacterium terrae isolated from the indoor air of a moisture-damaged building (1 X 10(7), 5 X 10(7), or 1 X 10(8) microbes). Inflammation and toxicity in lungs were evaluated 2 hr later. The time course of the effects was assessed with the dose of 1 X 10(8) bacterial cells for up to 28 days. M. terrae caused a sustained biphasic inflammation in mouse lungs. The characteristic features for the first phase, which lasted from 6 hr to 3 days, were elevated proinflammatory cytokine [i.e., tumor necrosis factor alpha (TNF-alpha) and interleukin-6 (IL-6)] levels in the bronchoalveolar lavage fluid (BALF). TNF-alpha was produced in the lungs more intensively than was IL-6. Neutrophils were the most abundant cells in the airways during the first phase, although their numbers in BALF remained elevated up to 21 days. The characteristics of the second phase, which lasted from 7 to 28 days, were elevated TNF-alpha levels in BALF, expression of inducible nitric oxide synthase in BAL cells, and recruitment of mononuclear cells such as lymphocytes and macrophages into the airways. Moreover, total protein, albumin, and lactate dehydrogenase concentrations were elevated in both phases in BALF. The bacteria were detected in lungs up to 28 days. In summary, these observations indicate that M. terrae is capable of provoking a sustained, biphasic inflammation in mouse lungs and can cause a moderate degree of cytotoxicity. Thus, M. terrae can be considered a species with potential to adversely affect the health of the occupants of moisture

  16. Propofol attenuates oxidant-induced acute lung injury in an isolated perfused rabbit-lung model.

    PubMed

    Yumoto, Masato; Nishida, Osamu; Nakamura, Fujio; Katsuya, Hirotada

    2005-01-01

    Reactive oxygen species have been strongly implicated in the pathogenesis of acute lung injury (ALI). Some animal studies suggest that free radical scavengers inhibit the onset of oxidant-induced ALI. Propofol (2,6-diisopropylphenol) is chemically similar to phenol-based free radical scavengers such as the endogenous antioxidant vitamin E. Both in vivo and in vitro studies have suggested that propofol has antioxidant potential. We hypothesized that propofol may attenuate ALI by acting as a free-radical scavenger. We investigated the effects of propofol on oxidant-induced ALI induced by purine and xanthine oxidase (XO), in isolated perfused rabbit lung, in two series of experiments. In series 1, we examined the relationship between the severity of ALI and the presence of hydrogen peroxide (H2O2). In series 2, we evaluated the effects of propofol on attenuating ALI and the dose dependence of these effects. The lungs were perfused for 90 min, and we evaluated the effects on the severity of ALI by monitoring the pulmonary capillary filtration coefficient (Kfc), pulmonary arterial pressure (Ppa), and the pulmonary capillary hydrostatic pressure (Ppc). In series 1, treatment with catalase (an H2O2 scavenger) prior to the addition of purine and XO resulted in complete prevention of ALI, suggesting that H2O2 may be involved closely in the pathogenesis of ALI. In series 2, pretreatment with propofol at concentrations in excess of 0.5 mM significantly inhibited the increases in the Kfc values, and that in excess of 0.75 mM significantly inhibited the increase in the Ppa values. Propofol attenuates oxidant-induced ALI in an isolated perfused rabbit lung model, probably due to its antioxidant action.

  17. Mouse lung infection model to assess Rhodococcus equi virulence and vaccine protection.

    PubMed

    González-Iglesias, Patricia; Scortti, Mariela; MacArthur, Iain; Hapeshi, Alexia; Rodriguez, Héctor; Prescott, John F; Vazquez-Boland, José A

    2014-08-06

    The pathogenic actinomycete Rhodococcus equi causes severe purulent lung infections in foals and immunocompromised people. Although relatively unsusceptible to R. equi, mice are widely used for in vivo studies with this pathogen. The most commonly employed mouse model is based on systemic (intravenous) infection and determination of R. equi burdens in spleen and liver. Here, we investigated the murine lung for experimental infection studies with R. equi. Using a 10(7)CFU intranasal challenge in BALB/c mice, virulent R. equi consistently survived in quantifiable numbers up to 10 days in the lungs whereas virulence-deficient R. equi bacteria were rapidly cleared. An internally controlled virulence assay was developed in which the test R. equi strains are co-inoculated and monitored in the same mouse. Isogenic R. equi bacteria lacking either the plasmid vapA gene or the entire virulence plasmid were compared using this competitive assay. Both strains showed no significant differences in in vivo fitness in the lung, indicating that the single loss of the virulence factor VapA was sufficient to account for the full attenuation seen in the absence of the virulence plasmid. To test the adequacy of the lung infection model for monitoring R. equi vaccine efficacy, BALB/c mice were immunized with live R. equi and challenged intranasally. Vaccination conferred protection against acute pulmonary challenge with virulent R. equi. Our data indicate that the murine lung infection model provides a useful tool for both R. equi virulence and vaccine studies. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Glial Fibrillary Acidic Protein-Expressing Glia in the Mouse Lung

    PubMed Central

    Suarez-Mier, Gabriela B.

    2015-01-01

    Autonomic nerves regulate important functions in visceral organs, including the lung. The postganglionic portion of these nerves is ensheathed by glial cells known as non-myelinating Schwann cells. In the brain, glia play important functional roles in neurotransmission, neuroinflammation, and maintenance of the blood brain barrier. Similarly, enteric glia are now known to have analogous roles in gastrointestinal neurotransmission, inflammatory response, and barrier formation. In contrast to this, very little is known about the function of glia in other visceral organs. Like the gut, the lung forms a barrier between airborne pathogens and the bloodstream, and autonomic lung innervation is known to affect pulmonary inflammation and lung function. Lung glia are described as non-myelinating Schwann cells but their function is not known, and indeed no transgenic tools have been validated to study them in vivo. The primary goal of this research was, therefore, to investigate the relationship between non-myelinating Schwann cells and pulmonary nerves in the airways and vasculature and to validate existing transgenic mouse tools that would be useful for studying their function. We focused on the glial fibrillary acidic protein promoter, which is a cognate marker of astrocytes that is expressed by enteric glia and non-myelinating Schwann cells. We describe the morphology of non-myelinating Schwann cells in the lung and verify that they express glial fibrillary acidic protein and S100, a classic glial marker. Furthermore, we characterize the relationship of non-myelinating Schwann cells to pulmonary nerves. Finally, we report tools for studying their function, including a commercially available transgenic mouse line. PMID:26442852

  19. Preclinical evaluation of human secretoglobin 3A2 in mouse models of lung development and fibrosis

    PubMed Central

    Cai, Yan; Winn, Melissa E.; Zehmer, John K.; Gillette, William K.; Lubkowski, Jacek T.; Pilon, Aprile L.

    2013-01-01

    Secretoglobin (SCGB) 3A2 is a member of the SCGB gene superfamily of small secreted proteins, predominantly expressed in lung airways. We hypothesize that human SCGB3A2 may exhibit anti-inflammatory, growth factor, and antifibrotic activities and be of clinical utility. Recombinant human SCGB3A2 was expressed, purified, and biochemically characterized as a first step to its development as a therapeutic agent in clinical settings. Human SCGB3A2, as well as mouse SCGB3A2, readily formed a dimer in solution and exhibited novel phospholipase A2 inhibitory activity. This is the first demonstration of any quantitative biochemical measurement for the evaluation of SCGB3A2 protein. In the mouse as an experimental animal, human SCGB3A2 exhibited growth factor activity by promoting embryonic lung development in both ex vivo and in vivo systems and antifibrotic activity in the bleomycin-induced lung fibrosis model. The results suggested that human SCGB3A2 can function as a growth factor and an antifibrotic agent in humans. When SCGB3A2 was administered to pregnant female mice through the tail vein, the protein was detected in the dam's serum and lung, as well as the placenta, amniotic fluids, and embryonic lungs at 10 min postadministration, suggesting that SCGB3A2 readily crosses the placenta. The results warrant further development of recombinant SCGB3A2 as a therapeutic agent in treating patients suffering from lung diseases or preterm infants with respiratory distress. PMID:24213919

  20. Lung Pathologies in a Chronic Inflammation Mouse Model Are Independent of Eosinophil Degranulation.

    PubMed

    Jacobsen, Elizabeth A; Ochkur, Sergei I; Doyle, Alfred D; LeSuer, William E; Li, Wen; Protheroe, Cheryl A; Colbert, Dana; Zellner, Katie R; Shen, HuaHao H; Irvin, Charles G; Lee, James J; Lee, Nancy A

    2017-05-15

    The release of eosinophil granule proteins in the lungs of patients with asthma has been dogmatically linked with lung remodeling and airway hyperresponsiveness. However, the demonstrated inability of established mouse models to display the eosinophil degranulation occurring in human subjects has prevented a definitive in vivo test of this hypothesis. To demonstrate in vivo causative links between induced pulmonary histopathologies/lung dysfunction and eosinophil degranulation. A transgenic mouse model of chronic T-helper cell type 2-driven inflammation overexpressing IL-5 from T cells and human eotaxin 2 in the lung (I5/hE2) was used to test the hypothesis that chronic histopathologies and the development of airway hyperresponsiveness occur as a consequence of extensive eosinophil degranulation in the lung parenchyma. Studies targeting specific inflammatory pathways in I5/hE2 mice surprisingly showed that eosinophil-dependent immunoregulative events and not the release of individual secondary granule proteins are the central contributors to T-helper cell type 2-induced pulmonary remodeling and lung dysfunction. Specifically, our studies highlighted a significant role for eosinophil-dependent IL-13 expression. In contrast, extensive degranulation leading to the release of major basic protein-1 or eosinophil peroxidase was not causatively linked to many of the induced pulmonary histopathologies. However, these studies did define a previously unappreciated link between the release of eosinophil peroxidase (but not major basic protein-1) and observed levels of induced airway mucin. These data suggest that improvements observed in patients with asthma responding to therapeutic strategies ablating eosinophils may occur as a consequence of targeting immunoregulatory mechanisms and not by simply eliminating the destructive activities of these purportedly end-stage effector cells.

  1. Effects of ultrafine particles-induced oxidative stress on Clara cells in allergic lung inflammation

    PubMed Central

    2010-01-01

    Background Clara cell protein (CC16), the main secretory product of bronchiolar Clara cells, plays an important protective role in the respiratory tract against oxidative stress and inflammation. The purpose of the study was to investigate the role of elemental carbon ultrafine particles (EC-UFP)-induced oxidative stress on Clara cells and CC16 in a mouse model of allergic lung inflammation. Methods Ovalbumin (OVA)-sensitized mice were exposed to EC-UFP (507 μg/m3 for 24 h) or filtered air immediately prior to allergen challenge and systemically treated with N-acetylcysteine (NAC) or vehicle prior and during EC-UFP inhalation. CC16 was measured up to one week after allergen challenge in bronchoalveolar lavage fluid (BALF) and in serum. The relative expression of CC16 and TNF-α mRNA were measured in lung homogenates. A morphometrical analysis of mucus hypersecretion and electron microscopy served to investigate goblet cell metaplasia and Clara cell morphological alterations. Results In non sensitized mice EC-UFP inhalation caused alterations in CC16 concentration, both at protein and mRNA level, and induced Clara cell hyperplasia. In sensitized mice, inhalation of EC-UFP prior to OVA challenge caused most significant alterations of BALF and serum CC16 concentration, BALF total protein and TNF-α relative expression compared to relevant controls; their Clara cells displayed the strongest morphological alterations and strongest goblet cell metaplasia occurred in the small airways. NAC strongly reduced both functional and morphological alterations of Clara cells. Conclusion Our findings demonstrate that oxidative stress plays an important role in EC-UFP-induced augmentation of functional and morphological alterations of Clara cells in allergic lung inflammation. PMID:20420656

  2. Effects of ultrafine particles-induced oxidative stress on Clara cells in allergic lung inflammation.

    PubMed

    Alessandrini, Francesca; Weichenmeier, Ingrid; van Miert, Erik; Takenaka, Shinji; Karg, Erwin; Blume, Cornelia; Mempel, Martin; Schulz, Holger; Bernard, Alfred; Behrendt, Heidrun

    2010-04-26

    Clara cell protein (CC16), the main secretory product of bronchiolar Clara cells, plays an important protective role in the respiratory tract against oxidative stress and inflammation. The purpose of the study was to investigate the role of elemental carbon ultrafine particles (EC-UFP)-induced oxidative stress on Clara cells and CC16 in a mouse model of allergic lung inflammation. Ovalbumin (OVA)-sensitized mice were exposed to EC-UFP (507 microg/m(3) for 24 h) or filtered air immediately prior to allergen challenge and systemically treated with N-acetylcysteine (NAC) or vehicle prior and during EC-UFP inhalation. CC16 was measured up to one week after allergen challenge in bronchoalveolar lavage fluid (BALF) and in serum. The relative expression of CC16 and TNF-alpha mRNA were measured in lung homogenates. A morphometrical analysis of mucus hypersecretion and electron microscopy served to investigate goblet cell metaplasia and Clara cell morphological alterations. In non sensitized mice EC-UFP inhalation caused alterations in CC16 concentration, both at protein and mRNA level, and induced Clara cell hyperplasia. In sensitized mice, inhalation of EC-UFP prior to OVA challenge caused most significant alterations of BALF and serum CC16 concentration, BALF total protein and TNF-alpha relative expression compared to relevant controls; their Clara cells displayed the strongest morphological alterations and strongest goblet cell metaplasia occurred in the small airways. NAC strongly reduced both functional and morphological alterations of Clara cells. Our findings demonstrate that oxidative stress plays an important role in EC-UFP-induced augmentation of functional and morphological alterations of Clara cells in allergic lung inflammation.

  3. Generation of Multipotent Lung and Airway Progenitors from Mouse ESCs and Patient-Specific Cystic Fibrosis iPSCs

    PubMed Central

    Mou, Hongmei; Zhao, Rui; Sherwood, Richard; Ahfeldt, Tim; Lapey, Allen; Wain, John; Sicilian, Leonard; Izvolsky, Konstantin; Lau, Frank H.; Musunuru, Kiran; Cowan, Chad; Rajagopal, Jayaraj

    2012-01-01

    SUMMARY Deriving lung progenitors from patient-specific pluripotent cells is a key step in producing differentiated lung epithelium for disease modeling and transplantation. By mimicking the signaling events that occur during mouse lung development, we generated murine lung progenitors in a series of discrete steps. Definitive endoderm derived from mouse embryonic stem cells (ESCs) was converted into foregut endoderm, then into replicating Nkx2.1+ lung endoderm, and finally into multipotent embryonic lung progenitor and airway progenitor cells. We demonstrated that precisely-timed BMP, FGF, and WNT signaling are required for NKX2.1 induction. Mouse ESC-derived Nkx2.1+ progenitor cells formed respiratory epithelium (tracheospheres) when transplanted subcutaneously into mice. We then adapted this strategy to produce disease-specific lung progenitor cells from human Cystic Fibrosis induced pluripotent stem cells (iPSCs), creating a platform for dissecting human lung disease. These disease-specific human lung progenitors formed respiratory epithelium when subcutaneously engrafted into immunodeficient mice. PMID:22482504

  4. Expression and function of the ion channel TRPA1 in vagal afferent nerves innervating mouse lungs.

    PubMed

    Nassenstein, Christina; Kwong, Kevin; Taylor-Clark, Thomas; Kollarik, Marian; Macglashan, Donald M; Braun, Armin; Undem, Bradley J

    2008-03-15

    Transient receptor potential (TRP) A1 and TRPM8 are ion channels that have been localized to afferent nociceptive nerves. These TRP channels may be of particular relevance to respiratory nociceptors in that they can be activated by various inhaled irritants and/or cold air. We addressed the hypothesis that mouse vagal sensory nerves projecting to the airways express TRPA1 and TRPM8 and that they can be activated via these receptors. Single cell RT-PCR analysis revealed that TRPA1 mRNA, but not TRPM8, is uniformly expressed in lung-labelled TRPV1-expressing vagal sensory neurons. Neither TRPA1 nor TRPM8 mRNA was expressed in TRPV1-negative neurons. Capsaicin-sensitive, but not capsaicin-insensitive, lung-specific neurons responded to cinnamaldehyde, a TRPA1 agonist, with increases in intracellular calcium. Menthol, a TRPM8 agonist, was ineffective at increasing cellular calcium in lung-specific vagal sensory neurons. Cinnamaldehyde also induced TRPA1-like inward currents (as measured by means of whole cell patch clamp recordings) in capsaicin-sensitive neurons. In an ex vivo vagal innervated mouse lung preparation, cinnamaldehyde evoked action potential discharge in mouse vagal C-fibres with a peak frequency similar to that observed with capsaicin. Cinnamaldehyde inhalation in vivo mimicked capsaicin in eliciting strong central-reflex changes in breathing pattern. Taken together, our results support the hypothesis that TRPA1, but not TRPM8, is expressed in vagal sensory nerves innervating the airways. TRPA1 activation provides a mechanism by which certain environmental stimuli may elicit action potential discharge in airway afferent C-fibres and the consequent nocifensor reflexes.

  5. Antibodies against benzo[a]pyrene in immunized mouse and in lung cancer patients.

    PubMed

    Ustinov, V A; Matveeva, V A; Kostyanko, M A; Glushkov, A N

    2013-09-01

    To evaluate the production of antibodies against benzo[a]pyrene (BP) (Ab1) and corresponding antiidiotypic antibodies (Ab2) in mice after immunization with BP-protein conjugate and in lung cancer patients. The Ab1 and Ab2 levels were measured by non-competitive ELISA in blood serum of 10 mice immunized with BP-protein conjugate, and in blood serum of 288 healthy persons and 165 lung cancer patients. The Ab1 level of was 2-fold higher than Ab2 level in blood serum of BP-immunized mice. In lung cancer patients the Ab1 level was almost 3 times higher and the Ab2 level was by 30% higher than these indexes in healthy individuals. The Ab1/Ab2 ratio was 2 in BP-immunized mice and healthy individuals and 1 in lung cancer patients. Our data have shown that the Ab1/Ab2 ratio in lung cancer patients differ from that in healthy individuals and is close to the Ab1/Ab2 ratio in BP-immunized mouse.

  6. CpG-ODN increases the release of VEGF in a mouse model of lung carcinoma.

    PubMed

    Sorrentino, Rosalinda; Morello, Silvana; Giordano, Maria Grazia; Arra, Claudio; Maiolino, Piera; Adcock, Ian M; Pinto, Aldo

    2011-06-15

    Vascular endothelial-derived growth factor (VEGF) plays a fundamental role in the formation of new vessels within the tumour mass. Increasing evidence has highlighted the involvement of Toll-like receptors (TLRs) in cancer. Of interest, TLR9 is over-expressed in human lung carcinoma tissues. The aim of our study was to determine whether TLR9 activation could alter VEGF release in a mouse model of lung carcinoma. Lewis lung carcinoma cells were intravenously (i.v.) inoculated and 10 days later, tumour-bearing mice were treated with CpG-ODN (CpG, a TLR9 ligand) or PBS. CpG administration enhanced VEGF release, which was associated with increased tumour lesions in the lung. CpG induced high levels of IL-6 expression and activation of STAT3 in tumour-bearing mice. Moreover, CpG induced VEGF release from primary fibroblasts and endothelial cells, which correlated with IL-6 and TGFβ production. This may explain the large influx of fibroblasts and the production of basic fibroblast growth factor (bFGF) in the tumour mass. The administration of a monoclonal antibody against VEGF A arrested tumour progression and induced a Th1-like response in CpG-treated tumour-bearing mice. In conclusion, our study demonstrates that the combination of CpG with anti-VEGF monoclonal antibody could be of potential therapeutic in lung carcinoma.

  7. Ezh2 restricts the smooth muscle lineage during mouse lung mesothelial development.

    PubMed

    Snitow, Melinda; Lu, MinMin; Cheng, Lan; Zhou, Su; Morrisey, Edward E

    2016-10-15

    During development, the lung mesoderm generates a variety of cell lineages, including airway and vascular smooth muscle. Epigenetic changes in adult lung mesodermal lineages are thought to contribute towards diseases such as idiopathic pulmonary fibrosis and chronic obstructive pulmonary disease, although the factors that regulate early lung mesoderm development are unknown. We show in mouse that the PRC2 component Ezh2 is required to restrict smooth muscle differentiation in the developing lung mesothelium. Mesodermal loss of Ezh2 leads to the formation of ectopic smooth muscle in the submesothelial region of the developing lung mesoderm. Loss of Ezh2 specifically in the developing mesothelium reveals a mesothelial cell-autonomous role for Ezh2 in repression of the smooth muscle differentiation program. Loss of Ezh2 derepresses expression of myocardin and Tbx18, which are important regulators of smooth muscle differentiation from the mesothelium and related cell lineages. Together, these findings uncover an Ezh2-dependent mechanism to restrict the smooth muscle gene expression program in the developing mesothelium and allow appropriate cell fate decisions to occur in this multipotent mesoderm lineage. © 2016. Published by The Company of Biologists Ltd.

  8. Pharmacokinetic and Genomic Effects of Arsenite in Drinking Water on Mouse Lung in a 30-Day Exposure

    PubMed Central

    Chilakapati, Jaya; Wallace, Kathleen; Hernandez-Zavala, Araceli; Moore, Tanya; Ren, Hongzu

    2015-01-01

    The 2 objectives of this subchronic study were to determine the arsenite drinking water exposure dependent increases in female C3H mouse liver and lung tissue arsenicals and to characterize the dose response (to 0, 0.05, 0.25, 1, 10, and 85 ppm arsenite in drinking water for 30 days and a purified AIN-93M diet) for genomic mouse lung expression patterns. Mouse lungs were analyzed for inorganic arsenic, monomethylated, and dimethylated arsenicals by hydride generation atomic absorption spectroscopy. The total lung mean arsenical levels were 1.4, 22.5, 30.1, 50.9, 105.3, and 316.4 ng/g lung tissue after 0, 0.05, 0.25, 1, 10, and 85 ppm, respectively. At 85 ppm, the total mean lung arsenical levels increased 14-fold and 131-fold when compared to either the lowest noncontrol dose (0.05 ppm) or the control dose, respectively. We found that arsenic exposure elicited minimal numbers of differentially expressed genes (DEGs; 77, 38, 90, 87, and 87 DEGs) after 0.05, 0.25, 1, 10, and 85 ppm, respectively, which were associated with cardiovascular disease, development, differentiation, apoptosis, proliferation, and stress response. After 30 days of arsenite exposure, this study showed monotonic increases in mouse lung arsenical (total arsenic and dimethylarsinic acid) concentrations but no clear dose-related increases in DEG numbers. PMID:26674514

  9. Pharmacokinetic and Genomic Effects of Arsenite in Drinking Water on Mouse Lung in a 30-Day Exposure.

    PubMed

    Chilakapati, Jaya; Wallace, Kathleen; Hernandez-Zavala, Araceli; Moore, Tanya; Ren, Hongzu; Kitchin, Kirk T

    2015-01-01

    The 2 objectives of this subchronic study were to determine the arsenite drinking water exposure dependent increases in female C3H mouse liver and lung tissue arsenicals and to characterize the dose response (to 0, 0.05, 0.25, 1, 10, and 85 ppm arsenite in drinking water for 30 days and a purified AIN-93M diet) for genomic mouse lung expression patterns. Mouse lungs were analyzed for inorganic arsenic, monomethylated, and dimethylated arsenicals by hydride generation atomic absorption spectroscopy. The total lung mean arsenical levels were 1.4, 22.5, 30.1, 50.9, 105.3, and 316.4 ng/g lung tissue after 0, 0.05, 0.25, 1, 10, and 85 ppm, respectively. At 85 ppm, the total mean lung arsenical levels increased 14-fold and 131-fold when compared to either the lowest noncontrol dose (0.05 ppm) or the control dose, respectively. We found that arsenic exposure elicited minimal numbers of differentially expressed genes (DEGs; 77, 38, 90, 87, and 87 DEGs) after 0.05, 0.25, 1, 10, and 85 ppm, respectively, which were associated with cardiovascular disease, development, differentiation, apoptosis, proliferation, and stress response. After 30 days of arsenite exposure, this study showed monotonic increases in mouse lung arsenical (total arsenic and dimethylarsinic acid) concentrations but no clear dose-related increases in DEG numbers.

  10. Toxicity of Cerium Oxide Nanoparticles in Human Lung Cancer Cells

    SciTech Connect

    Weisheng, Lin; Huang, Yue-wern; Zhou, Xiao Dong; Ma, Yinfa

    2006-12-31

    With the fast development of nanotechnology, the nanomaterials start to cause people's attention for potential toxic effect. In this paper, the cytotoxicity and oxidative stress caused by 20-nm cerium oxide (CeO2) nanoparticles in cultured human lung cancer cells was investigated. The sulforhodamine B method was employed to assess cell viability after exposure to 3.5, 10.5, and 23.3 μg/ml of CeO2 nanoparticles for 24, 48, and 72 h. Cell viability decreased significantly as a function of nanoparticle dose and exposure time. Indicators of oxidative stress and cytotoxicity, including total reactive oxygen species, glutathione, malondialdehyde, α-tocopherol, and lactate dehydrogenase, were quantitatively assessed. It is concluded from the results that free radicals generated by exposure to 3.5 to 23.3 μg/ml CeO2 nanoparticles produce significant oxidative stress in the cells, as reflected by reduced glutathione and α-tocopherol levels; the toxic effects of CeO2 nanoparticles are dose dependent and time dependent; elevated oxidative stress increases the production of malondialdehyde and lactate dehydrogenase, which are indicators of lipid peroxidation and cell membrane damage, respectively.

  11. Impact of Cigarette Smoke on the Human and Mouse Lungs: A Gene-Expression Comparison Study

    PubMed Central

    Morissette, Mathieu C.; Lamontagne, Maxime; Bérubé, Jean-Christophe; Gaschler, Gordon; Williams, Andrew; Yauk, Carole; Couture, Christian; Laviolette, Michel; Hogg, James C.; Timens, Wim; Halappanavar, Sabina; Stampfli, Martin R.; Bossé, Yohan

    2014-01-01

    Cigarette smoke is well known for its adverse effects on human health, especially on the lungs. Basic research is essential to identify the mechanisms involved in the development of cigarette smoke-related diseases, but translation of new findings from pre-clinical models to the clinic remains difficult. In the present study, we aimed at comparing the gene expression signature between the lungs of human smokers and mice exposed to cigarette smoke to identify the similarities and differences. Using human and mouse whole-genome gene expression arrays, changes in gene expression, signaling pathways and biological functions were assessed. We found that genes significantly modulated by cigarette smoke in humans were enriched for genes modulated by cigarette smoke in mice, suggesting a similar response of both species. Sixteen smoking-induced genes were in common between humans and mice including six newly reported to be modulated by cigarette smoke. In addition, we identified a new conserved pulmonary response to cigarette smoke in the induction of phospholipid metabolism/degradation pathways. Finally, the majority of biological functions modulated by cigarette smoke in humans were also affected in mice. Altogether, the present study provides information on similarities and differences in lung gene expression response to cigarette smoke that exist between human and mouse. Our results foster the idea that animal models should be used to study the involvement of pathways rather than single genes in human diseases. PMID:24663285

  12. Cell kinetics in mouse lung following administration of carcinogens and butylated hydroxytoluene

    SciTech Connect

    Witschi, H.P.; Morse, C.C.

    1985-01-01

    A series of experiments is described which was designed to test the hypothesis that, in mouse lung, enhancement of tumor development could occur independently of overall alveolar cell hyperplasia. Male A/J mice were given 1000 mg/kg of urethane or 10 mg/kg of 3-methylcholanthrene (MCA). Alveolar cells were labeled through continuous infusion of (TH)thymidine for 6 weeks after administration of the carcinogen. Urethane produced a significant hyperplasia of the type II alveolar cell population, whereas MCA had no such effect. Five repeated injections of 300 mg/kg of butylated hydroxytoluene (BHT), a procedure known to enhance lung tumor development, produced cell hyperplasia only during the first 2 weeks; later the mice became resistant to the action of BHT. In animals treated with piperonyl butoxide prior to BHT, cell proliferation was abolished. BHT still had a small but significant enhancing effect on tumor development. However, this effect was dwarfed by the observation that piperonyl butoxide alone greatly inhibited tumor development. The data do not allow exclusion of alveolar cell hyperplasia as a mechanism in BHT-mediated enhancement of mouse lung tumor development. 19 references, 4 figures, 3 tables.

  13. Morphological and Cytochemical Characterization of Cells Infiltrating Mouse Lungs After Influenza Infection

    PubMed Central

    Wyde, Philip R.; Peavy, Duane L.; Cate, Thomas R.

    1978-01-01

    To initiate evaluation of the cell-mediated immunological response to influenza virus in a major site of disease, lung cells were obtained by transpleural lavage from lungs of uninfected mice and from those infected 3 or 6 days previously with 5 50% mouse infectious doses (MID50) of avirulent (P3) or virulent (P9) influenza A Hong Kong (H3N2) virus. The number of cells recovered by lavage was dependent on the dose, time after inoculation, and the type of virus used for inoculation. Although lavage pools were shown to contain peripheral blood leukocytes, this contamination was shown to be consistently less than 5% of the total leukocytes harvested. Among the ca. 0.75 × 106 lavage cells obtained from each uninfected mouse, about 90% were macrophages or lymphocytes in approximately equal proportion. T, B, and null (lyphocytes lacking theta or surface immunoglobulin markers) lymphocytes averaged 23, 9, and 7% of cells in these suspensions, respectively. After infection with either P3 or P9 virus, increased numbers of activated macrophages and lymphoblasts were observed. The major change during P3 infection was an increase in absolute numbers of null lymphocytes. In contrast, during P9 infection, T and B lymphocytes and macrophages progressively increased in absolute numbers while null cells decreased. These data suggest that cell-mediated immunological responses to influenza virus occur in the lung during infection, but that the responses to virulent and avirulent variants may differ both qualitatively and quantitatively. PMID:711312

  14. The "Goldilocks Effect" in Cystic Fibrosis: identification of a lung phenotype in the cftr knockout and heterozygous mouse

    PubMed Central

    Craig Cohen, J; Lundblad, Lennart KA; Bates, Jason HT; Levitzky, Michael; Larson, Janet E

    2004-01-01

    Background Cystic Fibrosis is a pleiotropic disease in humans with primary morbidity and mortality associated with a lung disease phenotype. However, knockout in the mouse of cftr, the gene whose mutant alleles are responsible for cystic fibrosis, has previously failed to produce a readily, quantifiable lung phenotype. Results Using measurements of pulmonary mechanics, a definitive lung phenotype was demonstrated in the cftr-/- mouse. Lungs showed decreased compliance and increased airway resistance in young animals as compared to cftr+/+ littermates. These changes were noted in animals less than 60 days old, prior to any long term inflammatory effects that might occur, and are consistent with structural differences in the cftr-/- lungs. Surprisingly, the cftr+/- animals exhibited a lung phenotype distinct from either the homozygous normal or knockout genotypes. The heterozygous mice showed increased lung compliance and decreased airway resistance when compared to either homozygous phenotype, suggesting a heterozygous advantage that might explain the high frequency of this mutation in certain populations. Conclusions In the mouse the gene dosage of cftr results in distinct differences in pulmonary mechanics of the adult. Distinct phenotypes were demonstrated in each genotype, cftr-/-, cftr +/-, and cftr+/+. These results are consistent with a developmental role for CFTR in the lung. PMID:15279681

  15. Plasmacytoid dendritic cells alter the antitumor activity of CpG-oligodeoxynucleotides in a mouse model of lung carcinoma.

    PubMed

    Sorrentino, Rosalinda; Morello, Silvana; Luciano, Antonio; Crother, Timothy R; Maiolino, Piera; Bonavita, Eduardo; Arra, Claudio; Adcock, Ian M; Arditi, Moshe; Pinto, Aldo

    2010-10-15

    The effect of CpG-oligodeoxynucleotides (CpG) has been studied on a number of tumors. Although CpG may facilitate tumor regression in mouse models of melanoma, its activity in lung cancer is unclear. The aim of our study was to elucidate the effect of CpG (0.5-50 μg/mouse) in a mouse model of Lewis lung carcinoma cell-induced lung cancer. Lung tumor growth increased at 3 and 7 d after a single administration of CpG. This was associated with a greater influx of plasmacytoid dendritic cells (pDCs), immature myeloid dendritic cells, and greater recruitment of regulatory T cells. Depletion of pDCs using a specific Ab (m927) reversed the immune-suppressive environment and resulted in a decreased lung tumor burden, accompanied by a greater influx of active myeloid dendritic cells and CD8(+) T cells, and a higher production of Th1- and Th17-like cytokines. Furthermore, the rate of apoptosis in the lungs of mice treated with CpG increased following the depletion of pDCs. CpG treatment alone does not lead to tumor regression in the lung. However, ablation of pDCs renders CpG a good adjuvant for lung cancer chemotherapy in this experimental model.

  16. A new monoclonal antibody to study mouse macrophage antigen during BHT-induced lung injury and repair.

    PubMed

    Kennel, S J; Lankford, T; Galloway, P; Witschi, H P

    1989-04-01

    A rat monoclonal antibody 133-13A to a mouse lung carcinoma cell line was found to react with macrophages in mouse lung [1]. This monoclonal antibody is different from previously described antibodies to macrophages. Immunogold electron-microscopy and immunoperoxidase light microscopy have been used to show that MoAb 133-13A binds specifically to macrophages in normal and in BHT treated mouse lungs. This MoAb recognizes a protein of approximately 100 kDa (P100) on cultured lung carcinoma cells and a 87 kDa protein on macrophages from lung or the peritoneal cavity which is different from other macrophage antigens. The surface glycoprotein has been purified from cultured cells using immunoaffinity chromatography. The purified protein was radioiodinated and MoAb 133-13A was used to develop a competition radioimmunoassay to quantitate P100. Spleen, intestines, lung, skin and uterus all have high levels of P100. P100 on peritoneal macrophages has been determined to be about 94,000 molecules/cell. Analyses of lung lavage and whole lung homogenates from mice treated with BHT, BHT plus 70% O2, and 70% O2 alone show that treated animals have elevated P100 content compared to corn oil treated mice.

  17. Hyaluronan mediates airway hyperresponsiveness in oxidative lung injury

    PubMed Central

    Lazrak, Ahmed; Creighton, Judy; Yu, Zhihong; Komarova, Svetlana; Doran, Stephen F.; Aggarwal, Saurabh; Emala, Charles W.; Stober, Vandy P.; Trempus, Carol S.; Garantziotis, Stavros

    2015-01-01

    Chlorine (Cl2) inhalation induces severe oxidative lung injury and airway hyperresponsiveness (AHR) that lead to asthmalike symptoms. When inhaled, Cl2 reacts with epithelial lining fluid, forming by-products that damage hyaluronan, a constituent of the extracellular matrix, causing the release of low-molecular-weight fragments (L-HA, <300 kDa), which initiate a series of proinflammatory events. Cl2 (400 ppm, 30 min) exposure to mice caused an increase of L-HA and its binding partner, inter-α-trypsin-inhibitor (IαI), in the bronchoalveolar lavage fluid. Airway resistance following methacholine challenge was increased 24 h post-Cl2 exposure. Intratracheal administration of high-molecular-weight hyaluronan (H-HA) or an antibody against IαI post-Cl2 exposure decreased AHR. Exposure of human airway smooth muscle (HASM) cells to Cl2 (100 ppm, 10 min) or incubation with Cl2-exposed H-HA (which fragments it to L-HA) increased membrane potential depolarization, intracellular Ca2+, and RhoA activation. Inhibition of RhoA, chelation of intracellular Ca2+, blockade of cation channels, as well as postexposure addition of H-HA, reversed membrane depolarization in HASM cells. We propose a paradigm in which oxidative lung injury generates reactive species and L-HA that activates RhoA and Ca2+ channels of airway smooth muscle cells, increasing their contractility and thus causing AHR. PMID:25747964

  18. Oxidative Stress Mediates Radiation Lung Injury by Inducing Apoptosis

    SciTech Connect

    Zhang Yu; Zhang Xiuwu; Rabbani, Zahid N.; Jackson, Isabel L.; Vujaskovic, Zeljko

    2012-06-01

    Purpose: Apoptosis in irradiated normal lung tissue has been observed several weeks after radiation. However, the signaling pathway propagating cell death after radiation remains unknown. Methods and Materials: C57BL/6J mice were irradiated with 15 Gy to the whole thorax. Pro-apoptotic signaling was evaluated 6 weeks after radiation with or without administration of AEOL10150, a potent catalytic scavenger of reactive oxygen and nitrogen species. Results: Apoptosis was observed primarily in type I and type II pneumocytes and endothelium. Apoptosis correlated with increased PTEN expression, inhibition of downstream PI3K/AKT signaling, and increased p53 and Bax protein levels. Transforming growth factor-{beta}1, Nox4, and oxidative stress were also increased 6 weeks after radiation. Therapeutic administration of AEOL10150 suppressed pro-apoptotic signaling and dramatically reduced the number of apoptotic cells. Conclusion: Increased PTEN signaling after radiation results in apoptosis of lung parenchymal cells. We hypothesize that upregulation of PTEN is influenced by Nox4-derived oxidative stress. To our knowledge, this is the first study to highlight the role of PTEN in radiation-induced pulmonary toxicity.

  19. Exhaled Nitric Oxide in Systemic Sclerosis Lung Disease

    PubMed Central

    Kozij, Natalie K.; Silkoff, Philip E.; Thenganatt, John; Chakravorty, Shobha

    2017-01-01

    Background. Exhaled nitric oxide (eNO) is a potential biomarker to distinguish systemic sclerosis (SSc) associated pulmonary arterial hypertension (PAH) and interstitial lung disease (ILD). We evaluated the discriminative validity, feasibility, methods of eNO measurement, and magnitude of differences across lung diseases, disease-subsets (SSc, systemic lupus erythematosus), and healthy-controls. Methods. Consecutive subjects in the UHN Pulmonary Hypertension Programme were recruited. Exhaled nitric oxide was measured at 50 mL/s intervals using chemiluminescent detection. Alveolar and conducting airway NO were partitioned using a two-compartment model of axial diffusion (CMAD) and the trumpet model of axial diffusion (TMAD). Results. Sixty subjects were evaluated. Using the CMAD model, control subjects had lower median (IQR) alveolar NO than all PAH subjects (2.0 (1.5, 2.5) versus 3.14 ppb (2.3, 4.0), p = 0.008). SSc-ILD had significantly lower median conducting airway NO compared to controls (1009.5 versus 1342.1 ml⁎ppb/s, p = 0.04). SSc-PAH had increased median (IQR) alveolar NO compared to controls (3.3 (3.0, 5.7) versus 2.0 ppb (1.5, 2.5), p = 0.01). SSc-PAH conducting airway NO inversely correlated with DLCO (r −0.88 (95% CI −0.99, −0.26)). Conclusion. We have demonstrated feasibility, identified that CMAD modeling is preferred in SSc, and reported the magnitude of differences across cases and controls. Our data supports discriminative validity of eNO in SSc lung disease. PMID:28293128

  20. Vasodilator-Stimulated Phosphoprotein Deficiency Potentiates PAR-1-induced Increase in Endothelial Permeability in Mouse Lungs

    PubMed Central

    Profirovic, Jasmina; Han, Jingyan; Andreeva, Alexandra V.; Neamu, Radu F.; Pavlovic, Sasha; Vogel, Stephen M.; Walter, Ulrich; Voyno-Yasenetskaya, Tatyana A.

    2010-01-01

    Vasodilator-stimulated phosphoprotein (VASP) is implicated in the protection of the endothelial barrier in vitro and in vivo. VASP function in thrombin signaling in the endothelial cells (ECs) is not known. For the first time we studied the effects of VASP deficiency on EC permeability and pulmonary vascular permeability in response to thrombin receptor stimulation. We provided the evidence that VASP deficiency potentiates the increase in endothelial permeability induced by activation of thrombin receptor in cultured human umbilical vein endothelial cells (HUVECs) and isolated mouse lungs. Using transendothelial resistance measurement, we showed that siRNA-mediated VASP downregulation in HUVECs leads to a potentiation of thrombin- and protease-activated receptor 1 (PAR-1) agonist-induced increase in endothelial permeability. Compared to control cells, VASP-deficient HUVECs had delayed endothelial junctional reassembly and abrogated VE-cadherin cytoskeletal anchoring in the recovery phase after thrombin stimulation, as demonstrated by immunofluorescence studies and cell fractionation analysis, respectively. Measurement of the capillary filtration coefficient in isolated mouse lungs demonstrated that VASP−/− mice have increased microvascular permeability in response to infusion with PAR-1 agonist compared to wild type mice. Lack of VASP led to decreased Rac1 activation both in VASP-deficient HUVECs after thrombin stimulation and VASP−/− mouse lungs after PAR-1 agonist infusion, indicating that VASP effects on thrombin signaling may correlated with changes in Rac1 activity. This study demonstrates that VASP may play critical and complex role in the regulation of thrombin-dependent disruption of the endothelial barrier function. PMID:20945373

  1. Impaired Pulmonary Defense Against Pseudomonas aeruginosa in VEGF Gene Inactivated Mouse Lung

    PubMed Central

    Breen, Ellen C.; Malloy, Jaret L.; Tang, Kechun; Xia, Feng; Fu, Zhenxing; Hancock, Robert E. W.; Overhage, Joerg; Wagner, Peter D.; Spragg, Roger G.

    2012-01-01

    Repeated bacterial and viral infections are known to contribute to worsening lung function in several respiratory diseases, including asthma, cystic fibrosis and chronic obstructive pulmonary disease (COPD). Previous studies have reported alveolar wall cell apoptosis and parenchymal damage in adult pulmonary VEGF gene ablated mice. We hypothesized that VEGF expressed by type II cells is also necessary to provide an effective host defense against bacteria in part by maintaining surfactant homeostasis. Therefore, Pseudomonas aeruginosa (PAO1) levels were evaluated in mice following lung-targeted VEGF gene inactivation, and alterations in VEGF-dependent type II cell function were evaluated by measuring surfactant homeostasis in mouse lungs and isolated type II cells. In VEGF-deficient lungs increased PAO1 levels and pro-inflammatory cytokines, TNFα and IL-6, were detected 24 hours after bacterial instillation compared to control lungs. In vivo lung-targeted VEGF gene deletion (57% decrease in total pulmonary VEGF) did not alter alveolar surfactant or tissue disaturated phosphatidylcholine (DSPC) levels. However, sphingomyelin content, choline phosphate cytidylyltransferase (CCT) mRNA and SP-D expression were decreased. In isolated type II cells an 80% reduction of VEGF protein resulted in decreases in total phospholipids (PL), DSPC, DSPC synthesis, surfactant associated proteins (SP)-B and -D, and the lipid transporters, ABCA1 and Rab3D. TPA-induced DSPC secretion and apoptosis were elevated in VEGF-deficient type II cells. These results suggest a potential protective role for type II cell-expressed VEGF against bacterial initiated infection. PMID:22718316

  2. High Inorganic Phosphate Intake Promotes Tumorigenesis at Early Stages in a Mouse Model of Lung Cancer

    PubMed Central

    Lee, Somin; Kim, Ji-Eun; Hong, Seong-Ho; Lee, Ah-Young; Park, Eun-Jung; Seo, Hwi Won; Chae, Chanhee; Doble, Philip; Bishop, David; Cho, Myung-Haing

    2015-01-01

    Inorganic phosphate (Pi) is required by all living organisms for the development of organs such as bone, muscle, brain, and lungs, regulating the expression of several critical genes as well as signal transduction. However, little is known about the effects of prolonged dietary Pi consumption on lung cancer progression. This study investigated the effects of a high-phosphate diet (HPD) in a mouse model of adenocarcinoma. K-rasLA1 mice were fed a normal diet (0.3% Pi) or an HPD (1% Pi) for 1, 2, or 4 months. Mice were then sacrificed and subjected to inductively coupled plasma mass/optical emission spectrometry and laser ablation inductively coupled plasma mass-spectrometry analyses, western blot analysis, histopathological, immunohistochemical, and immunocytochemical analyses to evaluate tumor formation and progression (including cell proliferation, angiogenesis, and apoptosis), changes in ion levels and metabolism, autophagy, epithelial-to-mesenchymal transition, and protein translation in the lungs. An HPD accelerated tumorigenesis, as evidenced by increased adenoma and adenocarcinoma rates as well as tumor size. However, after 4 months of the HPD, cell proliferation was arrested, and marked increases in liver and lung ion levels and in energy production via the tricarboxylic acid cycle in the liver were observed, which were accompanied by increased autophagy and decreased angiogenesis and apoptosis. These results indicate that an HPD initially promotes but later inhibits lung cancer progression because of metabolic adaptation leading to tumor cell quiescence. Moreover, the results suggest that carefully regulated Pi consumption are effective in lung cancer prevention. PMID:26285136

  3. Proteomic Study of Differential Protein Expression in Mouse Lung Tissues after Aerosolized Ricin Poisoning

    PubMed Central

    Guo, Zhendong; Han, Chao; Du, Jiajun; Zhao, Siyan; Fu, Yingying; Zheng, Guanyu; Sun, Yucheng; Zhang, Yi; Liu, Wensen; Wan, Jiayu; Qian, Jun; Liu, Linna

    2014-01-01

    Ricin is one of the most poisonous natural toxins from plants and is classified as a Class B biological threat pathogen by the Centers for Disease Control and Prevention (CDC) of U.S.A. Ricin exposure can occur through oral or aerosol routes. Ricin poisoning has a rapid onset and a short incubation period. There is no effective treatment for ricin poisoning. In this study, an aerosolized ricin-exposed mouse model was developed and the pathology was investigated. The protein expression profile in the ricin-poisoned mouse lung tissue was analyzed using proteomic techniques to determine the proteins that were closely related to the toxicity of ricin. 2D gel electrophoresis, mass spectrometry and subsequent biological functional analysis revealed that six proteins including Apoa1 apolipoprotein, Ywhaz 14-3-3 protein, Prdx6 Uncharacterized Protein, Selenium-binding protein 1, HMGB1, and DPYL-2, were highly related to ricin poisoning. PMID:24786090

  4. Proteomic study of differential protein expression in mouse lung tissues after aerosolized ricin poisoning.

    PubMed

    Guo, Zhendong; Han, Chao; Du, Jiajun; Zhao, Siyan; Fu, Yingying; Zheng, Guanyu; Sun, Yucheng; Zhang, Yi; Liu, Wensen; Wan, Jiayu; Qian, Jun; Liu, Linna

    2014-04-28

    Ricin is one of the most poisonous natural toxins from plants and is classified as a Class B biological threat pathogen by the Centers for Disease Control and Prevention (CDC) of U.S.A. Ricin exposure can occur through oral or aerosol routes. Ricin poisoning has a rapid onset and a short incubation period. There is no effective treatment for ricin poisoning. In this study, an aerosolized ricin-exposed mouse model was developed and the pathology was investigated. The protein expression profile in the ricin-poisoned mouse lung tissue was analyzed using proteomic techniques to determine the proteins that were closely related to the toxicity of ricin. 2D gel electrophoresis, mass spectrometry and subsequent biological functional analysis revealed that six proteins including Apoa1 apolipoprotein, Ywhaz 14-3-3 protein, Prdx6 Uncharacterized Protein, Selenium-binding protein 1, HMGB1, and DPYL-2, were highly related to ricin poisoning.

  5. The Effect of Different Doses of Cigarette Smoke in a Mouse Lung Tumor Model

    PubMed Central

    Santiago, Ludmilla Nadir; de Camargo Fenley, Juliana; Braga, Lúcia Campanario; Cordeiro, José Antônio; Cury, Patrícia M.

    2009-01-01

    Few studies have used Balb/c mice as an animal model for lung carcinogenesis. In this study, we investigated the effect of different doses of cigarette smoking in the urethane-induced Balb/c mouse lung cancer model. After injection of 3mg/kg urethane intraperitoneally, the mice were then exposed to tobacco smoke once or twice a day, five times a week, in a closed chamber. The animals were randomly divided into four groups. The control group (G0) received urethane only. The experimental groups (G1, G2 and G3) received urethane and exposure to the smoke of 3 cigarettes for 10 minutes once a day, 3 cigarettes for 10 minutes twice a day, and 6 cigarettes for 10 minutes twice a day, respectively. The mice were sacrificed after 16 weeks of exposure, and the number of nodules and hyperplasia in the lungs was counted. The results showed no statistically significant difference in the mean number of nodules and hyperplasia among the different groups, suggesting that the Balb/c mice are not suitable to study the pathogenesis of tobacco smoking-induced tumor progression in the lungs. PMID:19079653

  6. Autocrine growth factors are involved in branching morphogenesis of mouse lung epithelium.

    PubMed

    Okada, Kimiko; Noda, Masatsugu; Nogawa, Hiroyuki

    2013-01-01

    The current model for branching morphogenesis of mouse lung proposes that the epithelium bifurcates as cells pursue separate sources of fibroblast growth factor (FGF) 10, secreted from mesenchymal tissue through interactions with epithelial tissue. If so, it may be assumed that the lung epithelium will grow into a uniform, expanding ball (without branching) when uniformly exposed to a constant concentration of FGF10. To test this hypothesis, we cultured Matrigel-embedded lung epithelium explants in FGF10-supplemented medium while shaking the culture dishes. Shaking cultures with FGF10 resulted in inferior epithelial branching compared to control cultures at rest. However, this effect was unexpectedly accompanied by poor growth rather than by ball-like expansion. When using FGF1, epithelial cultures grew and branched similarly well under either culture condition. Thus, we hypothesized that FGF10 signaling must be mediated by autocrine FGFs, such as FGF1, which might easily diffuse through the culture medium in the shaking culture. Reverse transcription-polymerase chain reaction analyses showed that FGF9 as well as FGF1 were expressed in the epithelium in vivo and in FGF10-stimulated epithelium in vitro, and FGF9 induced epithelial branching at a much lower concentration than FGF10. These results suggest that FGF1 and FGF9 may mediate FGF10 signaling and induce branching in the lung epithelium via autocrine signaling.

  7. Thyroid hormone drives the expression of mouse carbonic anhydrase Car4 in kidney, lung and brain.

    PubMed

    Vujovic, Milica; Dudazy-Gralla, Susi; Hård, Joanna; Solsjö, Peter; Warner, Amy; Vennström, Björn; Mittag, Jens

    2015-11-15

    Thyroid hormone is a well-known regulator of brain, lung and kidney development and function. However, the molecular mechanisms by which the hormone exerts its function have remained largely enigmatic, and only a limited set of target genes have been identified in these tissues. Using a mouse model with a mutation in thyroid hormone receptor α1 (TRα1), we here demonstrate that the expression of carbonic anhydrase 4 in lung and brain of the adult animal depends on intact TRα1 signaling. In the kidney, carbonic anhydrase 4 mRNA and protein are not affected by the mutant TRα1, but are acutely repressed by thyroid hormone. However, neither lung function--as measured by respiration rate and oxygen saturation--nor urine pH levels were affected by altered carbonic anhydrase 4 levels, suggesting that other carbonic anhydrases are likely to compensate. Taken together, our findings identify a previously unknown marker of TRα1 action in brain and lung, and provide a novel negatively regulated target gene to assess renal thyroid hormone status. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Mechanical ventilation enhances lung inflammation and caspase activity in a model of mouse pneumovirus infection.

    PubMed

    Bem, Reinout A; van Woensel, Job B M; Bos, Albert P; Koski, Amy; Farnand, Alex W; Domachowske, Joseph B; Rosenberg, Helene F; Martin, Thomas R; Matute-Bello, Gustavo

    2009-01-01

    Severe infection with respiratory syncytial virus (RSV) in children can progress to respiratory distress and acute lung injury (ALI). Accumulating evidence suggests that mechanical ventilation (MV) is an important cofactor in the development of ALI by modulating the host immune responses to bacteria. This study investigates whether MV enhances the host response to pneumonia virus of mice (PVM), a mouse pneumovirus that has been used as a model for RSV infection in humans. BALB/c mice were inoculated intranasally with diluted clarified lung homogenates from mice infected with PVM strain J3666 or uninfected controls. Four days after inoculation, the mice were subjected to 4 h of MV (tidal volume, 10 ml/kg) or allowed to breathe spontaneously. When compared with that of mice inoculated with PVM only, the administration of MV to PVM-infected mice resulted in increased bronchoalveolar lavage fluid concentrations of the cytokines macrophage inflammatory protein (MIP)-2, MIP-1alpha (CCL3), and IL-6; increased alveolar-capillary permeability to high molecular weight proteins; and increased caspase-3 activity in lung homogenates. We conclude that MV enhances the activation of inflammatory and caspase cell death pathways in response to pneumovirus infection. We speculate that MV potentially contributes to the development of lung injury in patients with RSV infection.

  9. Evaluation of Lung Metastasis in Mouse Mammary Tumor Models by Quantitative Real-time PCR

    PubMed Central

    Abt, Melissa A.; Grek, Christina L.; Ghatnekar, Gautam S.; Yeh, Elizabeth S.

    2016-01-01

    Metastatic disease is the spread of malignant tumor cells from the primary cancer site to a distant organ and is the primary cause of cancer associated death 1. Common sites of metastatic spread include lung, lymph node, brain, and bone 2. Mechanisms that drive metastasis are intense areas of cancer research. Consequently, effective assays to measure metastatic burden in distant sites of metastasis are instrumental for cancer research. Evaluation of lung metastases in mammary tumor models is generally performed by gross qualitative observation of lung tissue following dissection. Quantitative methods of evaluating metastasis are currently limited to ex vivo and in vivo imaging based techniques that require user defined parameters. Many of these techniques are at the whole organism level rather than the cellular level 3–6. Although newer imaging methods utilizing multi-photon microscopy are able to evaluate metastasis at the cellular level 7, these highly elegant procedures are more suited to evaluating mechanisms of dissemination rather than quantitative assessment of metastatic burden. Here, a simple in vitro method to quantitatively assess metastasis is presented. Using quantitative Real-time PCR (QRT-PCR), tumor cell specific mRNA can be detected within the mouse lung tissue. PMID:26862835

  10. Evaluation of Lung Metastasis in Mouse Mammary Tumor Models by Quantitative Real-time PCR.

    PubMed

    Abt, Melissa A; Grek, Christina L; Ghatnekar, Gautam S; Yeh, Elizabeth S

    2016-01-29

    Metastatic disease is the spread of malignant tumor cells from the primary cancer site to a distant organ and is the primary cause of cancer associated death. Common sites of metastatic spread include lung, lymph node, brain, and bone. Mechanisms that drive metastasis are intense areas of cancer research. Consequently, effective assays to measure metastatic burden in distant sites of metastasis are instrumental for cancer research. Evaluation of lung metastases in mammary tumor models is generally performed by gross qualitative observation of lung tissue following dissection. Quantitative methods of evaluating metastasis are currently limited to ex vivo and in vivo imaging based techniques that require user defined parameters. Many of these techniques are at the whole organism level rather than the cellular level. Although newer imaging methods utilizing multi-photon microscopy are able to evaluate metastasis at the cellular level, these highly elegant procedures are more suited to evaluating mechanisms of dissemination rather than quantitative assessment of metastatic burden. Here, a simple in vitro method to quantitatively assess metastasis is presented. Using quantitative Real-time PCR (QRT-PCR), tumor cell specific mRNA can be detected within the mouse lung tissue.

  11. Curcumin reduces lung inflammation via Wnt/β-catenin signaling in mouse model of asthma.

    PubMed

    Yang, Xia; Lv, Jian-Ning; Li, Hui; Jiao, Bo; Zhang, Qiu-Hong; Zhang, Yong; Zhang, Jie; Liu, Yan-Qin; Zhang, Ming; Shan, Hu; Zhang, Jin-Zhao; Wu, Run-Miao; Li, Ya-Li

    2017-05-01

    Asthma is a chronic inflammatory, heterogeneous airway disease affecting millions of people around the world. Curcumin has been found to have anti-inflammatory and antifibrosis effects. Researchers reported that curcumin regulated Wnt/β-catenin signaling in lots of cells. However, whether curcumin regulates the levels of Wnt/β-Catenin signaling in lung tissues and DCs (dendritic cells) remains unclear. In this study, we assessed the effects of curcumin on DCs and asthma. C57BL/6 mice immunized with OVA (ovalbumin) were challenged thrice with an aerosol of OVA every second day for 8 days. Dexamethasone or curcumin was administered intraperitoneally to OVA-immunized C57BL/6 mice on day 24 once a day for 9 days. Mice were analyzed for effects of curcumin on asthma, inflammatory cell infiltration and cytokine levels in lung tissue. DCs were isolated from mouse bone morrow. The surface markers CD40, CD86 and CD11c of DCs was detected by FACS (fluorescence activated cell sorting) and the function of DCs was detected by mixed lymphocyte reaction. The expression of GSK-3β and β-catenin was detected by Western Blot. Results showed that OVA increased the number of inflammatory factors in BALF (bronchoalveolar lavage fluid), elevated lung inflammation scores in mice. Curcumin dose-dependently reversed the alterations induced by OVA in the asthmatic mice. Curcumin activated Wnt/β-catenin signaling pathway in DCs and asthmatic mouse lungs. Curcumin could influence the morphology and function of DCs, ease asthma symptom and inflammatory reaction through the activation of Wnt/β-catenin signaling. These results provide new evidence new evidence for application of curcumin on asthma.

  12. Acute inflammation decreases the expression of connexin 40 in mouse lung.

    PubMed

    Rignault, Stéphanie; Haefliger, Jacques-Antoine; Waeber, Bernard; Liaudet, Lucas; Feihl, François

    2007-07-01

    Transmigration of neutrophil polymorphonuclear leukocytes through the microvascular endothelium is a cardinal event of acute inflammation. In vitro, this process can be restricted by gap junctional intercellular communication, but whether it also occurs in vivo is unknown. Connexin 40 (Cx40) is a gap junctional protein abundantly present in the lung, notably in vascular endothelium. We hypothesized that acute lung inflammation would be aggravated in knockout mice genetically deficient in Cx40. This hypothesis was tested in two different models: 1) intranasal instillation of LPS at either supramaximal (50 microg/mouse) or inframaximal dose (0.01 microg/mouse) and 2) pulmonary inflammation as a distant consequence of an abdominal infection caused by cecal ligation and perforation. Pulmonary transmigration of neutrophils was assessed by counting these cells in bronchoalveolar lavage fluid (LPS model) or with the myeloperoxidase assay in homogenates of blood-free tissue (cecal ligation and perforation model). Pulmonary content in Cx40 and Cx43 was evaluated with immunoblots. In wild-type mice, there was a time-dependent decrease of Cx40 expression in both models. The time points for studies with the knockout mice were chosen in such a manner that inflammation was clearly present and Cx40 still largely expressed in wild-type animals. In either model, the development of lung inflammation did not differ between wild-type and Cx40-deficient mice. In conclusion, the pulmonary expression of the Cx40 protein is progressively and markedly decreased in two different murine models of acute lung inflammation, but there is no causal relationship between this process and the pulmonary transmigration of neutrophils.

  13. Occurrence of oxidized metabolites of arachidonic acid esterified to phospholipids in murine lung tissue.

    PubMed

    Nakamura, T; Henson, P M; Murphy, R C

    1998-08-15

    Isolation and characterization of murine pulmonary phospholipids revealed the normal occurrence of 10 isobaric eicosanoids corresponding to the incorporation of one oxygen atom into the arachidonate esterified to glycerophospholipids. Lungs from mice were removed and lipids were extracted and then separated into free carboxylic acid and phospholipids. Phospholipids were hydrolyzed to yield the free carboxylic acids prior to analysis. Reverse-phase HPLC and electrospray tandem mass spectrometry were used to identify and quantitate six monohydroxyeicosatetraenoic (HETE) and four epoxyeicosatetraenoic (EET) acid regioisomers using d8-HETE as internal standard. HETEs esterified to phospholipids were found to increase following intratracheal administration of tBuOOH (36 mg/kg), but not the levels of esterified EETs. Chiral analysis of esterified 15-HETE revealed an R/S ratio of 0.96, suggesting operation of a free radical mechanism responsible for generation of this monohydroxy arachidonate phospholipid, and this enantiomeric ratio was 1.10 following treatment of the mouse lung with tBuOOH. These results are consistent with a free-radical-based mechanism of oxidation of pulmonary glycerophospholipids containing arachidonate.

  14. Longitudinal assessment of lung cancer progression in the mouse using in vivo micro-CT imaging

    PubMed Central

    Namati, Eman; Thiesse, Jacqueline; Sieren, Jessica C.; Ross, Alan; Hoffman, Eric A.; McLennan, Geoffrey

    2010-01-01

    Purpose: Small animal micro-CT imaging is being used increasingly in preclinical biomedical research to provide phenotypic descriptions of genomic models. Most of this imaging is coincident with animal death and is used to show the extent of disease as an end point. Longitudinal imaging overcomes the limitation of single time-point imaging because it enables tracking of the natural history of disease and provides qualitative and, where possible, quantitative assessments of the effects of an intervention. The pulmonary system is affected by many disease conditions, such as lung cancer, chronic obstructive pulmonary disease, asthma, and granulomatous disorders. Noninvasive imaging can accurately assess the lung phenotype within the living animal, evaluating not only global lung measures, but also regional pathology. However, imaging the lung in the living animal is complicated by rapid respiratory motion, which leads to image based artifacts. Furthermore, no standard mouse lung imaging protocols exist for longitudinal assessment, with each group needing to develop their own systematic approach. Methods: In this article, the authors present an outline for performing longitudinal breath-hold gated micro-CT imaging for the assessment of lung nodules in a mouse model of lung cancer. The authors describe modifications to the previously published intermittent isopressure breath-hold technique including a new animal preparation and anesthesia protocol, implementation of a ring artifact reduction, variable scanner geometry, and polynomial beam hardening correction. In addition, the authors describe a multitime-point data set registration and tumor labeling and tracking strategy. Results:In vivo micro-CT data sets were acquired at months 2, 3, and 4 posturethane administration in cancer mice (n=5) and simultaneously in control mice (n=3). 137 unique lung nodules were identified from the cancer mice while no nodules were detected in the control mice. A total of 411 nodules

  15. AMP-activated protein kinase deficiency reduces ozone-induced lung injury and oxidative stress in mice

    PubMed Central

    2011-01-01

    Background Acute ozone exposure causes lung oxidative stress and inflammation leading to lung injury. At least one mechanism underlying the lung toxicity of ozone involves excessive production of reactive oxygen and nitrogen intermediates such as peroxynitrite. In addition and beyond its major prooxidant properties, peroxynitrite may nitrate tyrosine residues altering phosphorylation of many protein kinases involved in cell signalling. It was recently proposed that peroxynitrite activates 5'-AMP-activated kinase (AMPK), which regulates metabolic pathways and the response to cell stress. AMPK activation as a consequence of ozone exposure has not been previously evaluated. First, we tested whether acute ozone exposure in mice would impair alveolar fluid clearance, increase lung tissue peroxynitrite production and activate AMPK. Second, we tested whether loss of AMP-activated protein kinase alpha1 subunit in mouse would prevent enhanced oxidative stress and lung injury induced by ozone exposure. Methods Control and AMPKα1 deficient mice were exposed to ozone at a concentration of 2.0 ppm for 3 h in glass cages. Evaluation was performed 24 h after ozone exposure. Alveolar fluid clearance (AFC) was evaluated using fluorescein isothiocyanate tagged albumin. Differential cell counts, total protein levels, cytokine concentrations, myeloperoxidase activity and markers of oxidative stress, i.e. malondialdehyde and peroxynitrite, were determined in bronchoalveolar lavage (BAL) and lung homogenates (LH). Levels of AMPK-Thr172 phosphorylation and basolateral membrane Na(+)-K(+)-ATPase abundance were determined by Western blot. Results In control mice, ozone exposure induced lung inflammation as evidence by increased leukocyte count, protein concentration in BAL and myeloperoxidase activity, pro-inflammatory cytokine levels in LH. Increases in peroxynitrite levels (3 vs 4.4 nM, p = 0.02) and malondialdehyde concentrations (110 vs 230 μmole/g wet tissue) were detected in LH

  16. New Role of Adult Lung c-kit+ Cells in a Mouse Model of Airway Hyperresponsiveness

    PubMed Central

    Cappetta, Donato; Urbanek, Konrad; Esposito, Grazia; Matteis, Maria; Sgambato, Manuela; Tartaglione, Gioia; Rossi, Francesco

    2016-01-01

    Structural changes contribute to airway hyperresponsiveness and airflow obstruction in asthma. Emerging evidence points to the involvement of c-kit+ cells in lung homeostasis, although their potential role in asthma is unknown. Our aim was to isolate c-kit+ cells from normal mouse lungs and to test whether these cells can interfere with hallmarks of asthma in an animal model. Adult mouse GFP-tagged c-kit+ cells, intratracheally delivered in the ovalbumin-induced airway hyperresponsiveness, positively affected airway remodeling and improved airway function. In bronchoalveolar lavage fluid of cell-treated animals, a reduction in the number of inflammatory cells and in IL-4, IL-5, and IL-13 release, along with an increase of IL-10, was observed. In MSC-treated mice, the macrophage polarization to M2-like subset may explain, at least in part, the increment in the level of anti-inflammatory cytokine IL-10. After in vitro stimulation of c-kit+ cells with proinflammatory cytokines, the indoleamine 2,3-dioxygenase and TGFβ were upregulated. These data, together with the increased apoptosis of inflammatory cells in vivo, indicate that c-kit+ cells downregulate immune response in asthma by influencing local environment, possibly by cell-to-cell contact combined to paracrine action. In conclusion, intratracheally administered c-kit+ cells reduce inflammation, positively modulate airway remodeling, and improve function. These data document previously unrecognized properties of c-kit+ cells, able to impede pathophysiological features of experimental airway hyperresponsiveness. PMID:28090152

  17. Phase-contrast zoom tomography reveals precise locations of macrophages in mouse lungs

    NASA Astrophysics Data System (ADS)

    Krenkel, Martin; Markus, Andrea; Bartels, Matthias; Dullin, Christian; Alves, Frauke; Salditt, Tim

    2015-05-01

    We have performed x-ray phase-contrast tomography on mouse lung tissue. Using a divergent x-ray beam generated by nanoscale focusing, we used zoom tomography to produce three-dimensional reconstructions with selectable magnification, resolution, and field of view. Thus, macroscopic tissue samples extending over several mm can be studied in sub-cellular-level structural detail. The zoom capability and, in particular, the high dose efficiency are enabled by the near-perfect exit wavefront of an optimized x-ray waveguide channel. In combination with suitable phase-retrieval algorithms, challenging radiation-sensitive and low-contrast samples can be reconstructed with minimal artefacts. The dose efficiency of the method is demonstrated by the reconstruction of living macrophages both with and without phagocytized contrast agents. We also used zoom tomography to visualize barium-labelled macrophages in the context of morphological structures in asthmatic and healthy mouse lung tissue one day after intratracheal application. The three-dimensional reconstructions showed that the macrophages predominantly localized to the alveoli, but they were also found in bronchial walls, indicating that these cells might be able to migrate from the lumen of the bronchi through the epithelium.

  18. Phase-contrast zoom tomography reveals precise locations of macrophages in mouse lungs

    PubMed Central

    Krenkel, Martin; Markus, Andrea; Bartels, Matthias; Dullin, Christian; Alves, Frauke; Salditt, Tim

    2015-01-01

    We have performed x-ray phase-contrast tomography on mouse lung tissue. Using a divergent x-ray beam generated by nanoscale focusing, we used zoom tomography to produce three-dimensional reconstructions with selectable magnification, resolution, and field of view. Thus, macroscopic tissue samples extending over several mm can be studied in sub-cellular-level structural detail. The zoom capability and, in particular, the high dose efficiency are enabled by the near-perfect exit wavefront of an optimized x-ray waveguide channel. In combination with suitable phase-retrieval algorithms, challenging radiation-sensitive and low-contrast samples can be reconstructed with minimal artefacts. The dose efficiency of the method is demonstrated by the reconstruction of living macrophages both with and without phagocytized contrast agents. We also used zoom tomography to visualize barium-labelled macrophages in the context of morphological structures in asthmatic and healthy mouse lung tissue one day after intratracheal application. The three-dimensional reconstructions showed that the macrophages predominantly localized to the alveoli, but they were also found in bronchial walls, indicating that these cells might be able to migrate from the lumen of the bronchi through the epithelium. PMID:25966338

  19. Phase-contrast zoom tomography reveals precise locations of macrophages in mouse lungs.

    PubMed

    Krenkel, Martin; Markus, Andrea; Bartels, Matthias; Dullin, Christian; Alves, Frauke; Salditt, Tim

    2015-05-12

    We have performed x-ray phase-contrast tomography on mouse lung tissue. Using a divergent x-ray beam generated by nanoscale focusing, we used zoom tomography to produce three-dimensional reconstructions with selectable magnification, resolution, and field of view. Thus, macroscopic tissue samples extending over several mm can be studied in sub-cellular-level structural detail. The zoom capability and, in particular, the high dose efficiency are enabled by the near-perfect exit wavefront of an optimized x-ray waveguide channel. In combination with suitable phase-retrieval algorithms, challenging radiation-sensitive and low-contrast samples can be reconstructed with minimal artefacts. The dose efficiency of the method is demonstrated by the reconstruction of living macrophages both with and without phagocytized contrast agents. We also used zoom tomography to visualize barium-labelled macrophages in the context of morphological structures in asthmatic and healthy mouse lung tissue one day after intratracheal application. The three-dimensional reconstructions showed that the macrophages predominantly localized to the alveoli, but they were also found in bronchial walls, indicating that these cells might be able to migrate from the lumen of the bronchi through the epithelium.

  20. Protein damage from electrophiles and oxidants in lungs of mice chronically exposed to the tumor promoter butylated hydroxytoluene.

    PubMed

    Shearn, Colin T; Fritz, Kristofer S; Thompson, John A

    2011-07-15

    The food additive butylated hydroxytoluene (BHT) promotes tumorigenesis in mouse lung. Chronic BHT exposure is accompanied by pulmonary inflammation and several studies indicate that elevated levels of reactive oxygen species (ROS) are involved in its promoting activity. The link between BHT and elevated ROS involves formation of quinone methide (QM) metabolites; these electrophiles form adducts with a variety of lung proteins including several enzymes that protect cells from oxidative stress. Studies in vitro demonstrated that QM alkylation of cytoprotective enzymes is accompanied by inactivation, so an objective of the present investigation was to determine if inactivation also occurs in vivo. Two groups of mice were exposed to BHT by intraperitoneal injection, one for 10 days and the other for 24 days, and proteins from lung cytosols were examined for damage. Analysis by Western blotting demonstrated that BHT treatment caused substantial increases in protein carbonylation, nitration and adduction by 4-hydroxynonenal, confirming the occurrence of sustained oxidative and nitrosative stress over the treatment period required for tumor promotion. Effects of BHT on the activities and/or levels of a representative group of antioxidant/protective enzymes in mouse lung also were assessed; NAD(P)H:quinone reductase and glutathione reductase were unaffected, however carbonyl reductase activity decreased 50-60%. Superoxide dismutase and glutathione peroxidase activities increased 2- and 1.5-fold, respectively, and glutamate-cysteine ligase catalytic subunit expression increased 32-39% relative to untreated mice. Glutathione S-transferase (GST) activity decreased 50-60% but concentrations of the predominant isoforms, GSTM1 and P1, were not affected. GSTP1 was substantially more susceptible than M1 to adduction and inhibition by treatment with BHT-QM in vitro, suggesting that lower GST activity in mice after BHT treatment is due to adduction of the P1 isoform. The results of

  1. INDUCTION OF DNA ADDUCTS, TUMORS, AND KI-RAS ONCOGENE MUTATIONS IN STRAIN A/J MOUSE LUNG BY IP. ADMINISTRATION OF DIBENZ[A,H]ANTHRACENE

    EPA Science Inventory

    Induction of DNA adducts, tumors, and Ki-ras oncogene mutations in strain AlJ mouse lung by ip. administration of dibenz[a,h]anthracene

    Previous studies of polycyclic aromatic hydrocarbon (P AH) induced lung tumors in the strain NJ mouse model system have demonstrated qua...

  2. INDUCTION OF DNA ADDUCTS, TUMORS, AND KI-RAS ONCOGENE MUTATIONS IN STRAIN A/J MOUSE LUNG BY IP. ADMINISTRATION OF DIBENZ[A,H]ANTHRACENE

    EPA Science Inventory

    Induction of DNA adducts, tumors, and Ki-ras oncogene mutations in strain AlJ mouse lung by ip. administration of dibenz[a,h]anthracene

    Previous studies of polycyclic aromatic hydrocarbon (P AH) induced lung tumors in the strain NJ mouse model system have demonstrated qua...

  3. Fetal calcium regulates branching morphogenesis in the developing human and mouse lung: involvement of voltage-gated calcium channels.

    PubMed

    Brennan, Sarah C; Finney, Brenda A; Lazarou, Maria; Rosser, Anne E; Scherf, Caroline; Adriaensen, Dirk; Kemp, Paul J; Riccardi, Daniela

    2013-01-01

    Airway branching morphogenesis in utero is essential for optimal postnatal lung function. In the fetus, branching morphogenesis occurs during the pseudoglandular stage (weeks 9-17 of human gestation, embryonic days (E)11.5-16.5 in mouse) in a hypercalcaemic environment (~1.7 in the fetus vs. ~1.1-1.3 mM for an adult). Previously we have shown that fetal hypercalcemia exerts an inhibitory brake on branching morphogenesis via the calcium-sensing receptor. In addition, earlier studies have shown that nifedipine, a selective blocker of L-type voltage-gated Ca(2+) channels (VGCC), inhibits fetal lung growth, suggesting a role for VGCC in lung development. The aim of this work was to investigate the expression of VGCC in the pseudoglandular human and mouse lung, and their role in branching morphogenesis. Expression of L-type (CaV1.2 and CaV1.3), P/Q type (CaV2.1), N-type (CaV2.2), R-type (CaV2.3), and T-type (CaV3.2 and CaV3.3) VGCC was investigated in paraffin sections from week 9 human fetal lungs and E12.5 mouse embryos. Here we show, for the first time, that Cav1.2 and Cav1.3 are expressed in both the smooth muscle and epithelium of the developing human and mouse lung. Additionally, Cav2.3 was expressed in the lung epithelium of both species. Incubating E12.5 mouse lung rudiments in the presence of nifedipine doubled the amount of branching, an effect which was partly mimicked by the Cav2.3 inhibitor, SNX-482. Direct measurements of changes in epithelial cell membrane potential, using the voltage-sensitive fluorescent dye DiSBAC2(3), demonstrated that cyclic depolarisations occur within the developing epithelium and coincide with rhythmic occlusions of the lumen, driven by the naturally occurring airway peristalsis. We conclude that VGCC are expressed and functional in the fetal human and mouse lung, where they play a role in branching morphogenesis. Furthermore, rhythmic epithelial depolarisations evoked by airway peristalsis would allow for branching to match

  4. Streptococcus pneumoniae-Induced Oxidative Stress in Lung Epithelial Cells Depends on Pneumococcal Autolysis and Is Reversible by Resveratrol.

    PubMed

    Zahlten, Janine; Kim, Ye-Ji; Doehn, Jan-Moritz; Pribyl, Thomas; Hocke, Andreas C; García, Pedro; Hammerschmidt, Sven; Suttorp, Norbert; Hippenstiel, Stefan; Hübner, Ralf-Harto

    2015-06-01

    Streptococcus pneumoniae is the most common cause of community-acquired pneumonia worldwide. During pneumococcal pneumonia, the human airway epithelium is exposed to large amounts of H2O2 as a product of host and pathogen oxidative metabolism. Airway cells are known to be highly vulnerable to oxidant damage, but the pathophysiology of oxidative stress induced by S. pneumoniae and the role of nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated antioxidant systems of the host are not well characterized. For gluthation/gluthathion disulfide analysis BEAS-2B cells, primary broncho-epithelial cells (pBEC), explanted human lung tissue and mouse lungs were infected with different S. pneumoniae strains (D39, A66, R6x, H2O2/pneumolysin/LytA- deficient mutants of R6x). Cell death was proven by LDH assay and cell viability by IL-8 ELISA. The translocation of Nrf2 and the expression of catalase were shown via Western blot. The binding of Nrf2 at the catalase promoter was analyzed by ChIP. We observed a significant induction of oxidative stress induced by S. pneumoniae in vivo, ex vivo, and in vitro. Upon stimulation, the oxidant-responsive transcription factor Nrf2 was activated, and catalase was upregulated via Nrf2. The pneumococci-induced oxidative stress was independent of S. pneumoniae-derived H2O2 and pneumolysin but depended on the pneumococcal autolysin LytA. The Nrf2 inducer resveratrol, as opposed to catalase, reversed oxidative stress in lung epithelial cells. These observations indicate a H2O2-independent induction of oxidative stress in lung epithelial cells via the release of bacterial factors of S. pneumoniae. Resveratrol might be an option for prevention of acute lung injury and inflammatory responses observed in pneumococcal pneumonia. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Deuterium depleted water effects on survival of lung cancer patients and expression of Kras, Bcl2, and Myc genes in mouse lung.

    PubMed

    Gyöngyi, Zoltán; Budán, Ferenc; Szabó, István; Ember, István; Kiss, István; Krempels, Krisztina; Somlyai, Ildikó; Somlyai, Gábor

    2013-01-01

    Although advances in cancer therapies continue to develop, the shortness of the survival of lung cancer patients is still disappointing. Therefore, finding new adjuvant strategies is within the focus of cancer cure. Based on observations that deuterium depletion inhibits the growth of cancer cell lines and suppresses certain proto-oncogenes, we have conducted a clinical study in 129 patients with small cell and nonsmall cell lung cancers who consumed deuterium-depleted drinking water (DDW) as a nontoxic agent in addition to conventional chemotherapy and radiotherapy. Median survival time (MST) was 25.9 mo in males and 74.1 mo in female patients; the difference between genders was statistically significant (p < 0.05). Median survival of subjects with brain metastasis was 27.1 mo. Cumulative 5-yr survival probabilities were 19%, 52%, and 33% in males, females, and all patients with brain metastasis, respectively. Gene expression analysis in mouse lung indicated that DDW attenuates 7,12-dimethylbenz(a)anthracene (DMBA)-induced expression of Bcl2, Kras, and Myc in females. In conclusion, DDW counteracts the DMBA-induced overexpression of Bcl2, Kras and Myc genes in mouse lung, and it may extend survival of lung cancer patients as a nontoxic anticancer dietary supplement, especially for women with tumors overexpressing cancer-related genes, because MST of DDW-consuming group was 2-4 times longer than it is generally observed in lung cancer patients.

  6. Deuterium Depleted Water Effects on Survival of Lung Cancer Patients and Expression of Kras, Bcl2, and Myc Genes in Mouse Lung

    PubMed Central

    Gyöngyi, Zoltán; Budán, Ferenc; Szabó, István; Ember, István; Kiss, István; Krempels, Krisztina; Somlyai, Ildikó; Somlyai, Gábor

    2013-01-01

    Although advances in cancer therapies continue to develop, the shortness of the survival of lung cancer patients is still disappointing. Therefore, finding new adjuvant strategies is within the focus of cancer cure. Based on observations that deuterium depletion inhibits the growth of cancer cell lines and suppresses certain proto-oncogenes, we have conducted a clinical study in 129 patients with small cell and nonsmall cell lung cancers who consumed deuterium-depleted drinking water (DDW) as a nontoxic agent in addition to conventional chemotherapy and radiotherapy. Median survival time (MST) was 25.9 mo in males and 74.1 mo in female patients; the difference between genders was statistically significant (p < 0.05). Median survival of subjects with brain metastasis was 27.1 mo. Cumulative 5-yr survival probabilities were 19%, 52%, and 33% in males, females, and all patients with brain metastasis, respectively. Gene expression analysis in mouse lung indicated that DDW attenuates 7,12-dimethylbenz(a)anthracene (DMBA)-induced expression of Bcl2, Kras, and Myc in females. In conclusion, DDW counteracts the DMBA-induced overexpression of Bcl2, Kras and Myc genes in mouse lung, and it may extend survival of lung cancer patients as a nontoxic anticancer dietary supplement, especially for women with tumors overexpressing cancer-related genes, because MST of DDW-consuming group was 2–4 times longer than it is generally observed in lung cancer patients. PMID:23441611

  7. Enhanced reseeding of decellularized rodent lungs with mouse embryonic stem cells

    PubMed Central

    Lecht, Shimon; Stabler, Collin T.; Rylander, Alexis L.; Chiaverelli, Rachel; Schulman, Edward S.; Marcinkiewicz, Cezary; Lelkes, Peter I.

    2016-01-01

    Repopulation of decellularized lung scaffolds (DLS) is limited due to alterations in the repertoire and ratios of the residual extracellular matrix (ECM) proteins, characterized by e.g., the retention of type I collagen and loss of glycoproteins. We hypothesized that pre-treatment of decellularized matrices with defined ECM proteins, which match the repertoire of integrin receptors expressed by the cells to be seeded (e.g., embryonic stem cells) can increase the efficacy of the reseeding process. To test this hypothesis, we first determined the integrin receptors profile of mouse embryonic stem cells (mESCs). Mouse ESCs express α3, α5, α6, α9 and β1, but not α1, α2 and α4 integrin subunits, as established by Western blotting and adhesion to laminin and fibronectin, but not to collagens type I and IV. Reseeding of DLS with mESCs was inefficient (6.9 ± 0.5%), but was significantly enhanced (2.3 ± 0.1 fold) by pre-treating the scaffolds with media conditioned by A549 human lung adenocarcinoma cells, which we found to contain ~5 μg/ml laminin. Furthermore, pre-treatment with A549-conditioned media resulted in a significantly more uniform distribution of the seeded mESCs throughout the engineered organ as compared to untreated DLS. Our study may advance whole lung engineering by stressing the importance of matching the integrin receptor repertoire of the seeded cells and the cell binding motifs of DLS. PMID:24439414

  8. Gene expression profiling in the lung and liver of PFOA-exposed mouse fetuses.

    PubMed

    Rosen, Mitchell B; Thibodeaux, Julie R; Wood, Carmen R; Zehr, Robert D; Schmid, Judith E; Lau, Christopher

    2007-09-24

    Perfluorooctanoic acid (PFOA) is a stable perfluoroalkyl acid used to synthesize fluoropolymers during the manufacture of a wide variety of products. Concerns have been raised over the potential health effects of PFOA because it is persistent in the environment and can be detected in blood and other tissues of many animal species, including humans. PFOA has also been shown to induce growth deficits and mortality in murine neonates. To better understand the mechanism of PFOA induced developmental toxicity, lung and liver gene expression profiling was conducted in PFOA-exposed full-term mouse fetuses. Thirty timed-pregnant CD-1 mice were orally dosed from gestation days 1-17 with either 0, 1, 3, 5, or 10mg/(kgday) PFOA in water. At term, fetal lung and liver were collected, total RNA prepared, and samples pooled from three fetuses per litter. Five biological replicates consisting of individual litter samples were then evaluated for each treatment group using Affymetrix mouse 430_2 microarrays. The expression of genes related to fatty acid catabolism was altered in both the fetal liver and lung. In the fetal liver, the effects of PFOA were robust and also included genes associated with lipid transport, ketogenesis, glucose metabolism, lipoprotein metabolism, cholesterol biosynthesis, steroid metabolism, bile acid biosynthesis, phospholipid metabolism, retinol metabolism, proteosome activation, and inflammation. These changes are consistent with transactivation of PPARalpha, although, with regard to bile acid biosynthesis and glucose metabolism, non-PPARalpha related effects were suggested as well. Additional studies will be needed to more thoroughly address the role of PPARalpha, and other nuclear receptors, in PFOA mediated developmental toxicity.

  9. In Vivo Measurements of T2 Relaxation Time of Mouse Lungs during Inspiration and Expiration

    PubMed Central

    Hockings, Paul D.

    2016-01-01

    Purpose The interest in measurements of magnetic resonance imaging relaxation times, T1, T2, T2*, with intention to characterize healthy and diseased lungs has increased recently. Animal studies play an important role in this context providing models for understanding and linking the measured relaxation time changes to the underlying physiology or disease. The aim of this work was to study how the measured transversal relaxation time (T2) in healthy lungs is affected by normal respiration in mouse. Method T2 of lung was measured in anaesthetized freely breathing mice. Image acquisition was performed on a 4.7 T, Bruker BioSpec with a multi spin-echo sequence (Car-Purcell-Meiboom-Gill) in both end-expiration and end-inspiration. The echo trains consisted of ten echoes of inter echo time 3.5 ms or 4.0 ms. The proton density, T2 and noise floor were fitted to the measured signals of the lung parenchyma with a Levenberg-Marquardt least-squares three-parameter fit. Results T2 in the lungs was longer (p<0.01) at end-expiration (9.7±0.7 ms) than at end-inspiration (9.0±0.8 ms) measured with inter-echo time 3.5 ms. The corresponding relative proton density (lung/muscle tissue) was higher (p<0.001) during end-expiration, (0.61±0.06) than during end-inspiration (0.48±0.05). The ratio of relative proton density at end-inspiration to that at end-expiration was 0.78±0.09. Similar results were found for inter-echo time 4.0 ms and there was no significant difference between the T2 values or proton densities acquired with different interecho times. The T2 value increased linearly (p< 0.001) with proton density. Conclusion The measured T2 in-vivo is affected by diffusion across internal magnetic susceptibility gradients. In the lungs these gradients are modulated by respiration, as verified by calculations. In conclusion the measured T2 was found to be dependent on the size of the alveoli. PMID:27936061

  10. Strain-dependent Damage in Mouse Lung After Carbon Ion Irradiation

    SciTech Connect

    Moritake, Takashi; Fujita, Hidetoshi; Yanagisawa, Mitsuru; Nakawatari, Miyako; Imadome, Kaori; Nakamura, Etsuko; Iwakawa, Mayumi; Imai, Takashi

    2012-09-01

    Purpose: To examine whether inherent factors produce differences in lung morbidity in response to carbon ion (C-ion) irradiation, and to identify the molecules that have a key role in strain-dependent adverse effects in the lung. Methods and Materials: Three strains of female mice (C3H/He Slc, C57BL/6J Jms Slc, and A/J Jms Slc) were locally irradiated in the thorax with either C-ion beams (290 MeV/n, in 6 cm spread-out Bragg peak) or with {sup 137}Cs {gamma}-rays as a reference beam. We performed survival assays and histologic examination of the lung with hematoxylin-eosin and Masson's trichrome staining. In addition, we performed immunohistochemical staining for hyaluronic acid (HA), CD44, and Mac3 and assayed for gene expression. Results: The survival data in mice showed a between-strain variance after C-ion irradiation with 10 Gy. The median survival time of C3H/He was significantly shortened after C-ion irradiation at the higher dose of 12.5 Gy. Histologic examination revealed early-phase hemorrhagic pneumonitis in C3H/He and late-phase focal fibrotic lesions in C57BL/6J after C-ion irradiation with 10 Gy. Pleural effusion was apparent in C57BL/6J and A/J mice, 168 days after C-ion irradiation with 10 Gy. Microarray analysis of irradiated lung tissue in the three mouse strains identified differential expression changes in growth differentiation factor 15 (Gdf15), which regulates macrophage function, and hyaluronan synthase 1 (Has1), which plays a role in HA metabolism. Immunohistochemistry showed that the number of CD44-positive cells, a surrogate marker for HA accumulation, and Mac3-positive cells, a marker for macrophage infiltration in irradiated lung, varied significantly among the three mouse strains during the early phase. Conclusions: This study demonstrated a strain-dependent differential response in mice to C-ion thoracic irradiation. Our findings identified candidate molecules that could be implicated in the between-strain variance to early

  11. Mutational landscape of EGFR-, MYC-, and Kras-driven genetically engineered mouse models of lung adenocarcinoma

    PubMed Central

    McFadden, David G.; Politi, Katerina; Bhutkar, Arjun; Chen, Frances K.; Song, Xiaoling; Pirun, Mono; Santiago, Philip M.; Kim-Kiselak, Caroline; Platt, James T.; Lee, Emily; Hodges, Emily; Rosebrock, Adam P.; Bronson, Roderick T.; Socci, Nicholas D.; Hannon, Gregory J.; Jacks, Tyler; Varmus, Harold

    2016-01-01

    Genetically engineered mouse models (GEMMs) of cancer are increasingly being used to assess putative driver mutations identified by large-scale sequencing of human cancer genomes. To accurately interpret experiments that introduce additional mutations, an understanding of the somatic genetic profile and evolution of GEMM tumors is necessary. Here, we performed whole-exome sequencing of tumors from three GEMMs of lung adenocarcinoma driven by mutant epidermal growth factor receptor (EGFR), mutant Kirsten rat sarcoma viral oncogene homolog (Kras), or overexpression of MYC proto-oncogene. Tumors from EGFR- and Kras-driven models exhibited, respectively, 0.02 and 0.07 nonsynonymous mutations per megabase, a dramatically lower average mutational frequency than observed in human lung adenocarcinomas. Tumors from models driven by strong cancer drivers (mutant EGFR and Kras) harbored few mutations in known cancer genes, whereas tumors driven by MYC, a weaker initiating oncogene in the murine lung, acquired recurrent clonal oncogenic Kras mutations. In addition, although EGFR- and Kras-driven models both exhibited recurrent whole-chromosome DNA copy number alterations, the specific chromosomes altered by gain or loss were different in each model. These data demonstrate that GEMM tumors exhibit relatively simple somatic genotypes compared with human cancers of a similar type, making these autochthonous model systems useful for additive engineering approaches to assess the potential of novel mutations on tumorigenesis, cancer progression, and drug sensitivity. PMID:27702896

  12. Characterization of FGF family growth factors concerning branching morphogenesis of mouse lung epithelium.

    PubMed

    Goto, Asami; Yamazaki, Naohiro; Nogawa, Hiroyuki

    2014-05-01

    Mouse lung rudiments express eight members of fibroblast growth factor (FGF) family genes from embryonic day 10 (E10) to E13. Some of these are expressed in either the epithelium or mesenchyme, while others are expressed in both. Incorporating the results of our previous study, we characterized the branch-inducing activities of all of FGFs expressed in the early lung rudiment. Of these, FGF1, FGF2, FGF7, FGF9 and FGF10 induced branching morphogenesis in Matrigel-embedded E11 epithelium, and their effective concentrations varied (10 nM, 10 nM, 3 nM, 1 nM, and 100 nM, respectively). Whereas shaking culture dishes containing medium supplemented with FGF7 or FGF10 showed reduced branching morphogenesis, those supplemented with FGF1, FGF2, or FGF9 did not, suggesting the involvement of autocrine growth factor(s) in branching morphogenesis induced by FGF7 or FGF10. In the presence of heparin, a well-known activator of FGF signaling, cystic morphology with lumen expansion was observed in cultures containing FGF1, FGF7, or FGF10, but growth arrest was observed in cultures containing FGF2 or FGF9. These results indicate that several paracrine and autocrine FGFs function during branching morphogenesis of lung epithelium.

  13. Caffeine induces alveolar apoptosis in the hyperoxia-exposed developing mouse lung

    PubMed Central

    Dayanim, Sara; Lopez, Benjamin; Maisonet, Tiffany M.; Grewal, Sungat; Londhe, Vedang A.

    2014-01-01

    Background Caffeine is a nonspecific adenosine receptor antagonist used in premature neonates to treat apnea of prematurity. While its use may reduce the incidence of bronchopulmonary dysplasia (BPD), the precise mechanisms remain unknown. Evidence of increased adenosine levels are noted in chronic lung diseases including tracheal aspirates of infants with BPD. Utilizing a well characterized newborn mouse model of alveolar hypoplasia, we hypothesized that hyperoxia-induced alveolar inflammation and hypoplasia is associated with alterations in the adenosine signaling pathway. Methods Newborn murine pups were exposed to a 14-day period of hyperoxia and daily caffeine administration followed by a 14-day recovery period in room air. Lungs were collected at both time points for bronchoalveolar fluid (BAL) analysis as well as histopathology and mRNA and protein expression. Results Caffeine treatment increased inflammation and worsened alveolar hypoplasia in hyperoxia exposed newborn mice. These changes were associated with decreased alveolar type II cell numbers, increased cell apoptosis, and decreased expression of A2A receptors. Following discontinuation of caffeine and hyperoxia, lung histology returned to baseline levels comparable to hyperoxia exposure alone. Conclusion Results of this study suggest a potentially adverse role of caffeine on alveolar development in a murine model of hyperoxia-induced alveolar hypoplasia. PMID:24321990

  14. Toxoplasma gondii tachyzoite-infected peripheral blood mononuclear cells are enriched in mouse lungs and liver.

    PubMed

    Unno, Akihiro; Kachi, Seira; Batanova, Tatiana A; Ohno, Tamio; Elhawary, Nagwa; Kitoh, Katsuya; Takashima, Yasuhiro

    2013-06-01

    The intracellular parasite Toxoplasma gondii is thought to disseminate throughout the host by circulation of tachyzoite-infected leukocytes in the blood, and adherence and migration of such leukocytes into solid tissues. However, it is unclear whether T. gondii-infected leukocytes can migrate to solid organs via the general circulation. In this study, we developed a real-time quantitative PCR (qRT-PCR) method to determine the rate of infection of peripheral blood mononuclear cells (PBMCs) flowing into and remaining within solid organs in mice. A transgenic T. gondii parasite line derived from the PLK strain that expresses DsRed Express, and transgenic green fluorescent protein-positive PBMCs, were used for these experiments. Tachyzoite-infected PBMCs were injected into mouse tail veins and qRT-PCR was used to measure the infection rates of the PBMCs remaining in the lungs, liver, spleen and brain. We found that the PBMCs in the lungs and liver had statistically higher infection rates than that of the original inoculum; this difference was statistically significant. However, the PBMC infection rate in the spleen showed no such enhancement. These results show that tachyzoite-infected PBMCs in the general circulation remain in the lungs and liver more effectively than non-infected PBMCs.

  15. Lung cancer: what are the links with oxidative stress, physical activity and nutrition.

    PubMed

    Filaire, Edith; Dupuis, Carmen; Galvaing, Géraud; Aubreton, Sylvie; Laurent, Hélène; Richard, Ruddy; Filaire, Marc

    2013-12-01

    Oxidative stress appears to play an essential role as a secondary messenger in the normal regulation of a variety of physiological processes, such as apoptosis, survival, and proliferative signaling pathways. Oxidative stress also plays important roles in the pathogenesis of many diseases, including aging, degenerative disease, and cancer. Among cancers, lung cancer is the leading cause of cancer in the Western world. Lung cancer is the commonest fatal cancer whose risk is dependent on the number of cigarettes smoked per day as well as the number of years smoking, some components of cigarette smoke inducing oxidative stress by transmitting or generating oxidative stress. It can be subdivided into two broad categories, small cell lung cancer and non-small-cell lung cancer, the latter is the most common type. Distinct measures of primary and secondary prevention have been investigated to reduce the risk of morbidity and mortality caused by lung cancer. Among them, it seems that physical activity and nutrition have some beneficial effects. However, physical activity can have different influences on carcinogenesis, depending on energy supply, strength and frequency of exercise loads as well as the degree of exercise-mediated oxidative stress. Micronutrient supplementation seems to have a positive impact in lung surgery, particularly as an antioxidant, even if the role of micronutrients in lung cancer remains controversial. The purpose of this review is to examine lung cancer in relation to oxidative stress, physical activity, and nutrition.

  16. Assessment of the lung toxicity of copper oxide nanoparticles: current status.

    PubMed

    Ahamed, Maqusood; Akhtar, Mohd Javed; Alhadlaq, Hisham A; Alrokayan, Salman A

    2015-01-01

    Copper oxide nanoparticles (CuO NPs) are being used in several industrial and commercial products. Inhalation is one of the most significant routes of metal oxide NP exposure. Hence, the toxicity of CuO NPs in lung tissues is of great concern. In vitro studies have indicated that CuO NPs induce cytotoxicity, oxidative stress and genetic toxicity in cultivated human lung cells. Leaching of Cu ions, reactive oxygen species generation and autophagy appear to be the underlying mechanisms of Cu NP toxicity in lung cells. In vivo studies on the lung toxicity of CuO NPs are largely lacking. Some studies have shown that intratracheal instillation of CuO NPs induced oxidative stress, inflammation and neoplastic lesions in rats. This review critically assessed the current findings of the toxicity of CuO NPs in the lung.

  17. Longitudinal micro-CT provides biomarkers of lung disease that can be used to assess the effect of therapy in preclinical mouse models, and reveal compensatory changes in lung volume.

    PubMed

    Vande Velde, Greetje; Poelmans, Jennifer; De Langhe, Ellen; Hillen, Amy; Vanoirbeek, Jeroen; Himmelreich, Uwe; Lories, Rik J

    2016-01-01

    In vivo lung micro-computed tomography (micro-CT) is being increasingly embraced in pulmonary research because it provides longitudinal information on dynamic disease processes in a field in which ex vivo assessment of experimental disease models is still the gold standard. To optimize the quantitative monitoring of progression and therapy of lung diseases, we evaluated longitudinal changes in four different micro-CT-derived biomarkers [aerated lung volume, lung tissue (including lesions) volume, total lung volume and mean lung density], describing normal development, lung infections, inflammation, fibrosis and therapy. Free-breathing mice underwent micro-CT before and repeatedly after induction of lung disease (bleomycin-induced fibrosis, invasive pulmonary aspergillosis, pulmonary cryptococcosis) and therapy (imatinib). The four lung biomarkers were quantified. After the last time point, we performed pulmonary function tests and isolated the lungs for histology. None of the biomarkers remained stable during longitudinal follow-up of adult healthy mouse lungs, implying that biomarkers should be compared with age-matched controls upon intervention. Early inflammation and progressive fibrosis led to a substantial increase in total lung volume, which affects the interpretation of aerated lung volume, tissue volume and mean lung density measures. Upon treatment of fibrotic lung disease, the improvement in aerated lung volume and function was not accompanied by a normalization of the increased total lung volume. Significantly enlarged lungs were also present in models of rapidly and slowly progressing lung infections. The data suggest that total lung volume changes could partly reflect a compensatory mechanism that occurs during disease progression in mice. Our findings underscore the importance of quantifying total lung volume in addition to aerated lung or lesion volumes to accurately document growth and potential compensatory mechanisms in mouse models of lung

  18. Expression of inducible nitric oxide in human lung epithelial cells.

    PubMed

    Robbins, R A; Barnes, P J; Springall, D R; Warren, J B; Kwon, O J; Buttery, L D; Wilson, A J; Geller, D A; Polak, J M

    1994-08-30

    Nitric oxide (NO) is increased in the exhaled air of subjects with several airway disorders. To determine if cytokines could stimulate epithelial cells accounting for the increased NO, the capacity of the proinflammatory cytokines (cytomix: tumor necrosis factor-alpha, interleukin-1 beta, and interferon-gamma) to increase inducible nitric oxide synthase (iNOS) was investigated in A549 and primary cultures of human bronchial epithelial cells. Cytomix induced a time-dependent increase in nitrite levels in culture supernatant fluids (p < 0.05). Increased numbers of cells stained for iNOS and increased iNOS mRNA was detected in the cytokine-stimulated cells compared to control (p < 0.05). Dexamethasone diminished the cytokine-induced increase in nitrite, iNOS by immunocytochemistry, and iNOS mRNA. These data demonstrate that cytokines, such as those released by mononuclear cells, can induce lung epithelial iNOS expression and NO release, and that this is attenuated by dexamethasone.

  19. Effect of aerosol particles generated by ultrasonic humidifiers on the lung in mouse

    PubMed Central

    2013-01-01

    Background Ultrasonic humidifiers silently generate water droplets as a cool fog and produce most of the dissolved minerals in the fog in the form of an aerosolized “white dust.” However, the health effect of these airborne particles is largely unknown. This study aimed to characterize the aerosol particles generated by ultrasonic humidifiers and to investigate their effect on the lung tissue of mice. Methods An ultrasonic humidifier was operated with tap water, high-silica water, ultrapure water, or other water types. In a chamber (0.765 m3, ventilation ratio 11.5 m3/hr), male ICR mice (10-week-old) were exposed by inhalation to an aerosol-containing vapor generated by the humidifier. After exposure for 7 or 14 days, lung tissues and bronchoalveolar lavage fluid (BALF) were collected from each mouse and examined by microarray, quantitative reverse transcription-polymerase chain reaction, and light and electron microscopy. Results Particles generated from the humidifier operated with tap water had a mass concentration of 0.46 ± 0.03 mg/m3, number concentration of (5.0 ± 1.1) × 104/cm3, and peak size distribution of 183 nm. The particles were phagocytosed by alveolar macrophages in the lung of mice. Inhalation of particles caused dysregulation of genes related to mitosis, cell adhesion molecules, MHC molecules and endocytosis, but did not induce any signs of inflammation or tissue injury in the lung. Conclusion These results indicate that aerosol particles released from ultrasonic humidifiers operated with tap water initiated a cellular response but did not cause severe acute inflammation in pulmonary tissue. Additionally, high mineral content tap water is not recommended and de-mineralized water should be recommended in order to exclude any adverse effects. PMID:24359587

  20. Light cigarette smoke-induced emphysema and NFκB activation in mouse lung

    PubMed Central

    Santos Valenca, Samuel; Castro, Paulo; Alves Pimenta, Wagner; Lanzetti, Manuella; Vargas Silva, Simone; Barja-Fidalgo, Cristina; Gonçalves Koatz, Vera Lúcia; Porto, Luís Cristóvão

    2006-01-01

    Light cigarette (LC) exposure is supposed to be less hazardous with a decreased incidence of cancer and tobacco-associated diseases. C57BL/6 mouse groups were subjected to smoke from 3, 6 or 12 LC for 60 days and compared with mice exposed to ambient air (EAA) in order to study lung injury by morphometrical and biochemical methods. Bronchoalveolar lavage (BAL) analysis and histology and stereology were performed. Tissue from the right lung was used for measuring thiobarbituric acid reactive substances (TBARS) and Western blot analysis. One way anova was performed followed by the Student–Newman Keuls post-test (P < 0.05). The cellular content of BAL was 95% alveolar macrophages in all groups except in mice exposed to 3 LC, where 23% neutrophils were observed. Emphysema was not observed in three and 6 LC, but it was found in 12 LC parallel to increased volume density (Vv) of airspaces from 61.0 ± 0.6 (EAA) to 80.9 ± 1.0 (12 LC) and decreased Vv of elastic fibres from 17.8 ± 0.9 (EAA) to 11.8 ± 0.6 (12 LC). All exposed groups to LC showed low TBARS levels compared with mice EAA. Lung tissue from animals exposed to 12 LC showed decreased tissue inhibitor of metalloprotease-2 and increased matrix metalloprotease-12 detection, which suggests an imbalance in extracellular matrix (ECM). Increased tumour necrosis factor-α and nuclear factor-κB detection were observed in exposed groups to LC when compared with mice EAA. The data suggest that LC is so dangerous to lungs as full-flavour cigarettes inducing ECM imbalance and emphysema. PMID:16965565

  1. Comparison of inflammatory responses in mouse lungs exposed to atranones A and C from Stachybotrys chartarum.

    PubMed

    Rand, Thomas G; Flemming, J; David Miller, J; Womiloju, Taiwo O

    2006-07-01

    Stachybotrys chartarum isolates can be separated into two distinct chemotypes based on the toxins they produce. One chemotype produces macrocyclic trichothecenes; the other produces atranones (and sometimes simple trichothecenes, e.g., trichodermol and trichodermin). Studies using in vivo models of lung disease revealed that exposure to spores of the atranone producing S. chartarum isolates led to a variety of immunotoxic, inflammatory, and other pathological changes. However, it is unclear from these studies what role the pure atranone toxins sequestered in spores of these isolates exert on lung disease onset. This study examined dose-response (0.2, 1.0, 2.0, 5.0, or 20 microg atranone/animal) and time-course (3, 6, 24, and 48 h postinstillation [PI]) relationships associated with inflammatory cell and proinflammatory chemokine/cytokine responses in mouse lungs intratracheally instilled with two pure atranones (either A or C) isolated from S. chartarum. High doses (2.0 to 20 microg toxin/animal) of atranone A and C induced significant inflammatory responses manifested as differentially elevated macrophage, neutrophil, macrophage inflammatory protein (MIP)-2, tumor necrosis factor (TNF) and interleukin (IL)-6 concentrations in the bronchioalveolar lavage fluid (BALF) of intratracheally exposed mice. Compared to controls, BALF macrophage and neutrophil numbers were increased to significant levels from 6 to 48 h (PI). Except for macrophage numbers in atranone A treatment animals, cells exhibited significant dose dependent-like responses. The chemokine/cytokine marker responses were significantly and dose-dependently increased from 3 to 24 h PI and declined to nonsignificant levels at 48 h PI. The results suggest not only that atranones are inflammatory but also that they exhibit different inflammatory potency with different toxicokinetics. Data also suggest that exposure to these toxins in spores of S. chartarum in contaminated building environments could contribute

  2. Indium oxide (In2O3) nanoparticles induce progressive lung injury distinct from lung injuries by copper oxide (CuO) and nickel oxide (NiO) nanoparticles.

    PubMed

    Jeong, Jiyoung; Kim, Jeongeun; Seok, Seung Hyeok; Cho, Wan-Seob

    2016-04-01

    Indium is an essential element in the manufacture of liquid crystal displays and other electronic devices, and several forms of indium compounds have been developed, including nanopowders, films, nanowires, and indium metal complexes. Although there are several reports on lung injury caused by indium-containing compounds, the toxicity of nanoscale indium oxide (In2O3) particles has not been reported. Here, we compared lung injury induced by a single exposure to In2O3 nanoparticles (NPs) to that caused by benchmark high-toxicity nickel oxide (NiO) and copper oxide (CuO) NPs. In2O3 NPs at doses of 7.5, 30, and 90 cm(2)/rat (50, 200, and 600 µg/rat) were administered to 6-week-old female Wistar rats via pharyngeal aspiration, and lung inflammation was evaluated 1, 3, 14, and 28 days after treatment. Neutrophilic inflammation was observed on day 1 and worsened until day 28, and severe pulmonary alveolar proteinosis (PAP) was observed on post-aspiration days 14 and 28. In contrast, pharyngeal aspiration of NiO NPs showed severe neutrophilic inflammation on day 1 and lymphocytic inflammation with PAP on day 28. Pharyngeal aspiration of CuO NPs showed severe neutrophilic inflammation on day 1, but symptoms were completely resolved after 14 days and no PAP was observed. The dose of In2O3 NPs that produced progressive neutrophilic inflammation and PAP was much less than the doses of other toxic particles that produced this effect, including crystalline silica and NiO NPs. These results suggest that occupational exposure to In2O3 NPs can cause severe lung injury.

  3. (-)-Epicatechin enhances fatigue resistance and oxidative capacity in mouse muscle.

    PubMed

    Nogueira, Leonardo; Ramirez-Sanchez, Israel; Perkins, Guy A; Murphy, Anne; Taub, Pam R; Ceballos, Guillermo; Villarreal, Francisco J; Hogan, Michael C; Malek, Moh H

    2011-09-15

    The flavanol (-)-epicatechin, a component of cacao (cocoa), has been shown to have multiple health benefits in humans. Using 1-year-old male mice, we examined the effects of 15 days of (-)-epicatechin treatment and regular exercise on: (1) exercise performance, (2) muscle fatigue, (3) capillarity, and (4) mitochondrial biogenesis in mouse hindlimb and heart muscles. Twenty-five male mice (C57BL/6N) were randomized into four groups: (1) water, (2) water-exercise (W-Ex), (3) (-)-epicatechin ((-)-Epi), and (4) (-)-epicatechin-exercise ((-)-Epi-Ex). Animals received 1 mg kg(-1) of (-)-epicatechin or water (vehicle) via oral gavage (twice daily). Exercise groups underwent 15 days of treadmill exercise. Significant increases in treadmill performance (∼50%) and enhanced in situ muscle fatigue resistance (∼30%) were observed with (-)-epicatechin. Components of oxidative phosphorylation complexes, mitofilin, porin, nNOS, p-nNOS, and Tfam as well as mitochondrial volume and cristae abundance were significantly higher with (-)-epicatechin treatment for hindlimb and cardiac muscles than exercise alone. In addition, there were significant increases in skeletal muscle capillarity. The combination of (-)-epicatechin and exercise resulted in further increases in oxidative phosphorylation-complex proteins, mitofilin, porin and capillarity than (-)-epicatechin alone. These findings indicate that (-)-epicatechin alone or in combination with exercise induces an integrated response that includes structural and metabolic changes in skeletal and cardiac muscles resulting in greater endurance capacity. These results, therefore, warrant the further evaluation of the underlying mechanism of action of (-)-epicatechin and its potential clinical application as an exercise mimetic.

  4. Impaired nitric oxide-mediated vasodilation in transgenic sickle mouse.

    PubMed

    Kaul, D K; Liu, X D; Fabry, M E; Nagel, R L

    2000-06-01

    Transgenic sickle mice expressing human beta(S)- and beta(S-Antilles)-globins show intravascular sickling, red blood cell adhesion, and attenuated arteriolar constriction in response to oxygen. We hypothesize that these abnormalities and the likely endothelial damage, also reported in sickle cell anemia, alter nitric oxide (NO)-mediated microvascular responses and hemodynamics in this mouse model. Transgenic mice showed a lower mean arterial pressure (MAP) compared with control groups (90 +/- 7 vs. 113 +/- 8 mmHg, P < 0.00001), accompanied by increased endothelial nitric oxide synthase (eNOS) expression. N(G)-nitro-L-arginine methyl ester (L-NAME), a nonselective inhibitor of NOS, caused an approximately 30% increase in MAP and approximately 40% decrease in the diameters of cremaster muscle arterioles (branching orders: A2 and A3) in both control and transgenic mice, confirming NOS activity; these changes were reversible after L-arginine administration. Aminoguanidine, an inhibitor of inducible NOS, had no effect. Transgenic mice showed a decreased (P < 0.02-0.01) arteriolar dilation in response to NO-mediated vasodilators, i.e., ACh and sodium nitroprusside (SNP). Indomethacin did not alter the responses to ACh and SNP. Forskolin, a cAMP-activating agent, caused a comparable dilation of A2 and A3 vessels ( approximately 44 and 70%) in both groups of mice. Thus in transgenic mice, an increased eNOS/NO activity results in lower blood pressure and diminished arteriolar responses to NO-mediated vasodilators. Although the increased NOS/NO activity may compensate for flow abnormalities, it may also cause pathophysiological alterations in vascular tone.

  5. Selective phosphodiesterase 3 inhibitor olprinone attenuates meconium-induced oxidative lung injury.

    PubMed

    Mokra, Daniela; Drgova, Anna; Pullmann, Rudolf; Calkovska, Andrea

    2012-06-01

    Since inflammation and oxidation play a key role in the pathophysiology of neonatal meconium aspiration syndrome, various anti-inflammatory drugs have been tested in the treatment. This study evaluated whether the phosphodiesterase (PDE) 3 inhibitor olprinone can alleviate meconium-induced inflammation and oxidative lung injury. Oxygen-ventilated rabbits intratracheally received 4 ml/kg of meconium (25 mg/ml) or saline. Thirty minutes after meconium/saline instillation, meconium-instilled animals were treated by intravenous olprinone (0.2 mg/kg) or were left without treatment. All animals were oxygen-ventilated for an additional 5 h. A bronchoalveolar lavage (BAL) of the left lungs was performed and differential leukocyte count in the sediment was estimated. The right lungs were used to determine lung edema by wet/dry weight ratio, as well as to detect oxidative damage to the lungs. In the lung tissue homogenate, total antioxidant status (TAS) was determined. In isolated lung mitochondria, the thiol group content, conjugated dienes, thiobarbituric acid-reactive substances (TBARS), dityrosine, lysine-lipid peroxidation products, and activity of cytochrome c oxidase (COX) were estimated. To evaluate the effects of meconium instillation and olprinone treatment on the systemic level, TBARS and TAS were determined in the blood plasma, as well. Meconium instillation increased the relative numbers of neutrophils and eosinophils in the BAL fluid, increased edema formation and concentrations of oxidation markers, and decreased TAS. Treatment with olprinone reduced the numbers of polymorphonuclears in the BAL fluid, decreased the formation of most oxidation markers in the lungs, reduced lung edema and prevented a decrease in TAS in the lung homogenate compared to non-treated animals. In the blood plasma, olprinone decreased TBARS and increased TAS compared to the non-treated group. Conclusion, the selective PDE3 inhibitor olprinone has shown potent antioxidative and anti

  6. Smoking-promoted oxidative DNA damage response is highly correlated to lung carcinogenesis.

    PubMed

    Cao, Chao; Lai, Tianwen; Li, Miao; Zhou, Hongbin; Lv, Dan; Deng, Zaichun; Ying, Songmin; Chen, Zhihua; Li, Wen; Shen, Huahao

    2016-04-05

    Oxidative stress induced by tobacco smoking is one of the main causes of DNA damage and is known to be involved in various cancers. Smoking is the leading cause of lung cancer, while the role of cigarette smoke-induced oxidative DNA damage response during lung carcinogenesis is largely unknown. In this study, we investigated oxidative DNA damage response levels in smoking and nonsmoking patients with lung cancer, and evaluated the potential diagnostic value of 8-OHdG for lung cancer. We observed a higher level of 8-OHdG expression and secretion in airways of lung cancer patients than that of noncancer controls. 8-OHdG expression was associated with the TNM stages. Additionally, cigarette smoke-induced oxidative DNA damage response was observed in bronchial epithelial cells in vitro and in vivo. A statistical significance correlation was found between the levels of 8-OHdG and smoking index. With a cut-off value of 2.86 ng/ml, 8-OHdG showed a sensitivity and specificity of 70.0% and 73.7%, respectively, to identify a patient with lung cancer. These findings not only underscore the importance of smoking in oxidative DNA damage response of lung cancer patients, but also suggest 8-OHdG as a potential diagnostic biomarker for lung cancer.

  7. Cytokines induce nitric oxide production in mouse osteoblasts.

    PubMed

    Damoulis, P D; Hauschka, P V

    1994-06-15

    MC3T3-E1 mouse clonal osteogenic cells were incubated with interferon-gamma, interleukin-1 beta, tumor necrosis factor-alpha, and E. coli lipopolysaccharide. TNF alpha, IL-1 beta, and LPS caused a dose- and time-dependent increase of nitrite (NO2-), the stable metabolite of nitric oxide (NO), in conditioned media over 48 hours, while IFN gamma had a minimal effect. Different combinations of the same factors caused a synergistic enhancement of NO2- accumulation, except for IL-1 beta with LPS. The earliest detectable NO2- production was at 6-9 hours, with continued accumulation over 48 hours. NO2- production was inhibited dose-dependently by three arginine analogs known to be specific inhibitors of NO synthase, as well as by actinomycin D, cycloheximide, and dexamethasone; EGTA or indomethacin had a small inhibitory effect. It is concluded that osteoblast-like cells can be induced by proinflammatory cytokines and bacterial endotoxin to produce NO, which can play an important role in bone pathophysiology.

  8. Spores of Aspergillus versicolor isolated from indoor air of a moisture-damaged building provoke acute inflammation in mouse lungs.

    PubMed

    Jussila, Juha; Komulainen, Hannu; Kosma, Veli-Matti; Nevalainen, Aino; Pelkonen, Jukka; Hirvonen, Maija-Riitta

    2002-12-01

    Microbial growth in moisture-damaged buildings has been associated with respiratory health effects, and the spores of the mycotoxin producing fungus Aspergillus versicolor are frequently present in the indoor air. To characterize the potential of these spores to cause harmful respiratory effects, mice were exposed via intratracheal instillation to a single dose of the spores of A. versicolor (1 x 10(5), 1 x 10(6), 5 x 10(6), 1 x 10(7), or 1 x 10(8) spores), isolated from the indoor air of a moisture-damaged building. Inflammation and toxicity in lungs were evaluated 24 h later by assessment of biochemical markers and histopathology. The time course of the effects was investigated with the dose of 5 x 10(6) spores for up to 28 days. The exposure to the spores increased transiently proinflammatory cytokine levels (tumor necrosis factor [TNF] alpha and interleukin [IL]-6) in bronchoalveolar lavage fluid (BALF). The cytokine responses were dose and time dependent. The highest cytokine concentrations were measured at 6 h after the dose, and they returned to the control level by 3 days. Moreover, the spores of A. versicolor recruited inflammatory cells into airways: Neutrophils peaked transiently at 24 h, macrophages at 3 days, and lymphocytes at 7 days after the dosing. The inflammatory cell response did not completely disappear during the subsequent 28 days, though no histopathological changes were seen at that time point. The spores did not induce expression of inducible nitric oxide synthase in lavaged cells. Only the highest spore dose (1 x 10(8)) markedly increased serum IL-6, increased vascular leakage, and caused cytotoxicity (i.e., increased levels of albumin, total protein, lactate dehydrogenase [LDH], and hemoglobin in BALF) in the airways. In summary, the spores of A. versicolor caused acute inflammation in mouse lungs. This indicates that they have potential to provoke adverse health effects in the occupants of moisture-damaged buildings.

  9. CD8(+)IL-17(+) T Cells Mediate Neutrophilic Airway Obliteration in T-bet-Deficient Mouse Lung Allograft Recipients.

    PubMed

    Lendermon, Elizabeth A; Dodd-o, Jeffrey M; Coon, Tiffany A; Miller, Hannah L; Ganguly, Sudipto; Popescu, Iulia; O'Donnell, Christopher P; Cardenes, Nayra; Levine, Melanie; Rojas, Mauricio; Weathington, Nathaniel M; Zhao, Jing; Zhao, Yutong; McDyer, John F

    2015-05-01

    Acute cellular rejection is a known risk factor for the development of obliterative bronchiolitis, which limits the long-term survival of lung transplant recipients. However, the T cell effector mechanisms in both of these processes remain incompletely understood. Using the mouse orthotopic lung transplant model, we investigated whether C57BL/6 T-bet(-/-) recipients of major histocompatibility complex (MHC)-mismatched BALB/c lung grafts develop rejection pathology and allospecific cytokine responses that differ from wild-type mice. T-bet(-/-) recipients demonstrated vigorous allograft rejection at 10 days, characterized by neutrophilic inflammation and predominantly CD8(+) T cells producing allospecific IL-17 and/or IFN-γ, in contrast to IFN-γ-dominant responses in WT mice. CD4(+) T cells produced IL-17 but not IFN-γ responses in T-bet(-/-) recipients, in contrast to WT controls. Costimulation blockade using anti-CD154 Ab significantly reduced allospecific CD8(+)IFN-γ(+) responses in both T-bet(-/-) and WT mice but had no attenuating effect on lung rejection pathology in T-bet(-/-) recipients or on the development of obliterative airway inflammation that occurred only in T-bet(-/-) recipients. However, neutralization of IL-17A significantly attenuated costimulation blockade-resistant rejection pathology and airway inflammation in T-bet(-/-) recipients. In addition, CXCL1 (neutrophil chemokine) was increased in T-bet(-/-) allografts, and IL-17 induced CXCL1 from mouse lung epithelial cells in vitro. Taken together, our data show that T-bet-deficient recipients of complete MHC-mismatched lung allografts develop costimulation blockade-resistant rejection characterized by neutrophilia and obliterative airway inflammation that is predominantly mediated by CD8(+)IL-17(+) T cells. Our data support T-bet-deficient mouse recipients of lung allografts as a viable animal model to study the immunopathogenesis of small airway injury in lung transplantation.

  10. Cerium Oxide Nanoparticles in Lung Acutely Induce Oxidative Stress, Inflammation, and DNA Damage in Various Organs of Mice.

    PubMed

    Nemmar, Abderrahim; Yuvaraju, Priya; Beegam, Sumaya; Fahim, Mohamed A; Ali, Badreldin H

    2017-01-01

    CeO2 nanoparticles (CeO2 NPs) which are used as a diesel fuel additive are emitted in the particulate phase in the exhaust, posing a health concern. However, limited information exists regarding the in vivo acute toxicity of CeO2 NPs on multiple organs. Presently, we investigated the acute (24 h) effects of intratracheally instilled CeO2 NPs in mice (0.5 mg/kg) on oxidative stress, inflammation, and DNA damage in major organs including lung, heart, liver, kidneys, spleen, and brain. Lipid peroxidation measured by malondialdehyde production was increased in the lungs only, and reactive oxygen species were increased in the lung, heart, kidney, and brain. Superoxide dismutase activity was decreased in the lung, liver, and kidney, whereas glutathione increased in lung but it decreased in the kidney. Total nitric oxide was increased in the lung and spleen but it decreased in the heart. Tumour necrosis factor-α increased in all organs studied. Interleukin- (IL-) 6 increased in the lung, heart, liver, kidney, and spleen. IL-1β augmented in the lung, heart, kidney, and spleen. Moreover, CeO2 NPs induced DNA damage, assessed by COMET assay, in all organs studied. Collectively, these findings indicate that pulmonary exposure to CeO2 NPs causes oxidative stress, inflammation, and DNA damage in multiple organs.

  11. Cerium Oxide Nanoparticles in Lung Acutely Induce Oxidative Stress, Inflammation, and DNA Damage in Various Organs of Mice

    PubMed Central

    Yuvaraju, Priya; Beegam, Sumaya; Fahim, Mohamed A.; Ali, Badreldin H.

    2017-01-01

    CeO2 nanoparticles (CeO2 NPs) which are used as a diesel fuel additive are emitted in the particulate phase in the exhaust, posing a health concern. However, limited information exists regarding the in vivo acute toxicity of CeO2 NPs on multiple organs. Presently, we investigated the acute (24 h) effects of intratracheally instilled CeO2 NPs in mice (0.5 mg/kg) on oxidative stress, inflammation, and DNA damage in major organs including lung, heart, liver, kidneys, spleen, and brain. Lipid peroxidation measured by malondialdehyde production was increased in the lungs only, and reactive oxygen species were increased in the lung, heart, kidney, and brain. Superoxide dismutase activity was decreased in the lung, liver, and kidney, whereas glutathione increased in lung but it decreased in the kidney. Total nitric oxide was increased in the lung and spleen but it decreased in the heart. Tumour necrosis factor-α increased in all organs studied. Interleukin- (IL-) 6 increased in the lung, heart, liver, kidney, and spleen. IL-1β augmented in the lung, heart, kidney, and spleen. Moreover, CeO2 NPs induced DNA damage, assessed by COMET assay, in all organs studied. Collectively, these findings indicate that pulmonary exposure to CeO2 NPs causes oxidative stress, inflammation, and DNA damage in multiple organs. PMID:28392888

  12. Relationships of microRNA expression in mouse lung with age and exposure to cigarette smoke and light

    PubMed Central

    Izzotti, Alberto; Calin, George A.; Steele, Vernon E.; Croce, Carlo M.; De Flora, Silvio

    2009-01-01

    MicroRNAs provide a formidable tool not only in cancer research but also to investigate physiological mechanisms and to assess the effect of environmental exposures in healthy tissues. Collectively, cigarette smoke and sunlight have been estimated to account for 40% of all human cancers, and not only smoke but also, surprisingly, UV light induced genomic and postgenomic alterations in mouse lung. Here we evaluated by microarray the expression of 484 microRNAs in the lungs of CD-1 mice, including newborns, postweanling males and females, and their dams, either untreated or exposed to environmental cigarette smoke and/or UV-containing light. The results obtained highlighted age-related variations in microRNA profiles, especially during the weanling period, due to perinatal stress and postnatal maturation of the lung. UV light alone did not affect pulmonary microRNAs, whereas smoke produced dramatic changes, mostly in the sense of down-regulation, reflecting both adaptive mechanisms and activation of pathways involved in the pathogenesis of pulmonary diseases. Both gender and age affected smoke-related microRNA dysregulation in mice. The data presented provide supporting evidence that microRNAs play a fundamental role in both physiological and pathological changes occurring in mouse lung.—Izzotti, A., Calin, G. A., Vernon E. St., Croce, G. M., De Flora, S. Relationships of microRNA expression in mouse lung with age and exposure to cigarette smoke and light. PMID:19465468

  13. Phase-contrast computed tomography for quantification of structural changes in lungs of asthma mouse models of different severity.

    PubMed

    Dullin, Christian; Larsson, Emanuel; Tromba, Giuliana; Markus, Andrea M; Alves, Frauke

    2015-07-01

    Lung imaging in mouse disease models is crucial for the assessment of the severity of airway disease but remains challenging due to the small size and the high porosity of the organ. Synchrotron inline free-propagation phase-contrast computed tomography (CT) with its intrinsic high soft-tissue contrast provides the necessary sensitivity and spatial resolution to analyse the mouse lung structure in great detail. Here, this technique has been applied in combination with single-distance phase retrieval to quantify alterations of the lung structure in experimental asthma mouse models of different severity. In order to mimic an in vivo situation as close as possible, the lungs were inflated with air at a constant physiological pressure. Entire mice were embedded in agarose gel and imaged using inline free-propagation phase-contrast CT at the SYRMEP beamline (Synchrotron Light Source, `Elettra', Trieste, Italy). The quantification of the obtained phase-contrast CT data sets revealed an increasing lung soft-tissue content in mice correlating with the degree of the severity of experimental allergic airways disease. In this way, it was possible to successfully discriminate between healthy controls and mice with either mild or severe allergic airway disease. It is believed that this approach may have the potential to evaluate the efficacy of novel therapeutic strategies that target airway remodelling processes in asthma.

  14. Phase-contrast computed tomography for quantification of structural changes in lungs of asthma mouse models of different severity

    PubMed Central

    Dullin, Christian; Larsson, Emanuel; Tromba, Giuliana; Markus, Andrea M.; Alves, Frauke

    2015-01-01

    Lung imaging in mouse disease models is crucial for the assessment of the severity of airway disease but remains challenging due to the small size and the high porosity of the organ. Synchrotron inline free-propagation phase-contrast computed tomography (CT) with its intrinsic high soft-tissue contrast provides the necessary sensitivity and spatial resolution to analyse the mouse lung structure in great detail. Here, this technique has been applied in combination with single-distance phase retrieval to quantify alterations of the lung structure in experimental asthma mouse models of different severity. In order to mimic an in vivo situation as close as possible, the lungs were inflated with air at a constant physiological pressure. Entire mice were embedded in agarose gel and imaged using inline free-propagation phase-contrast CT at the SYRMEP beamline (Synchrotron Light Source, ‘Elettra’, Trieste, Italy). The quantification of the obtained phase-contrast CT data sets revealed an increasing lung soft-tissue content in mice correlating with the degree of the severity of experimental allergic airways disease. In this way, it was possible to successfully discriminate between healthy controls and mice with either mild or severe allergic airway disease. It is believed that this approach may have the potential to evaluate the efficacy of novel therapeutic strategies that target airway remodelling processes in asthma. PMID:26134818

  15. Inhaled nitric oxide aggravates phosgene model of acute lung injury.

    PubMed

    Li, Wen-Li; Hai, Chun-Xu; Pauluhn, Jürgen

    2011-11-01

    The principal acute mode of action of inhaled phosgene gas is related to an increase alveolar fluid exudation under pathologic conditions. This paper considers some aspects in modeling phosgene-induced acute lung injury (ALI) in an acute rat bioassay and whether edema formation can be modulated by inhaled nitric oxide (iNO). Protein analysis in bronchoalveolar lavage (BAL) fluid is amongst the most sensitive method to quantify the phosgene-induced non-cardiogenic, pulmonary high-permeability edema following acute inhalation exposure. Maximum concentrations in BAL-protein occur within one day postexposure, typically within a latency period up to about 15 h as a consequence of an increasingly exhausted lymphatic drainage. An almost similar sensitivity was given by the functional endpoint 'enhanced pause (Penh)' when measured by non-invasive whole-body barometric plethysmography over a time period of 20 h. The magnitude of edema formation follows a concentration x time (C¹xt) relationship, although animal model-specific deviations may occur at very short exposure durations (1-20 min) due to a rodent-specific, reflexively induced transient decreased ventilation. This has to be accounted for when simulating accidental exposure scenarios to study the mechanisms involved in pharmacological modulation of fluid transport in this type of ALI. Therefore, a special focus has to be given to the dosimetry of inhaled phosgene, otherwise any change in effect magnitude, as a result of under-dosing of phosgene, may be misconceived as promising therapy. This study demonstrates that accidental exposures can be modeled best in rats by exposure durations of at least 20-30 min. Lung function measurements (Penh) show that pathophysiological effects appear to occur concomitant with the exposure to phosgene; however, its full clinical manifestation requires a gross imbalance of pulmonary fluid clearance. When applying this concept, post-phosgene exposure iNO at 1.5 ppm × 6 h or

  16. Detection of Phenolic Metabolites of Styrene in Mouse Liver and Lung Microsomal IncubationsS⃞

    PubMed Central

    Shen, Shuijie; Zhang, Fan; Gao, Lingbo; Zeng, Su

    2010-01-01

    Metabolic activation is considered to be a critical step for styrene-induced pulmonary toxicity. Styrene-7,8-oxide is a primary oxidative metabolite generated by vinyl epoxidation of styrene. In addition, urinary 4-vinylphenol (4-VP), a phenolic metabolite formed by aromatic hydroxylation, has been detected in workers and experimental animals after exposure to styrene. In the present study, new oxidative metabolites of styrene, including 2-vinylphenol (2-VP), 3-vinylphenol (3-VP), vinyl-1,4-hydroquinone, and 2-hydroxystyrene glycol were detected in mouse liver microsomal incubations. The production rates of 2-VP, 3-VP, 4-VP, and styrene glycol were 0.0527 ± 0.0045, 0.0019 ± 0.0006, 0.0053 ± 0.0002, and 4.42 ± 0.33 nmol/(min · mg protein) in mouse liver microsomes, respectively. Both disulfiram (100 μM) and 5-phenyl-1-pentyne (5 μM) significantly inhibited the formation of the VPs and styrene glycol. 2-VP, 3-VP, and 4-VP were metabolized in mouse liver microsomes at rates of 2.50 ± 0.30, 2.63 ± 0.13, and 3.45 ± 0.11 nmol/(min · mg protein), respectively. The three VPs were further metabolized to vinylcatechols and/or vinyl-1,4-hydroquinone and the corresponding glycols. Pulmonary toxicity of 2-VP, 3-VP, and 4-VP was evaluated in CD-1 mice, and 4-VP was found to be more toxic than 2-VP and 3-VP. PMID:20724499

  17. Hyperinsulinemia Promotes Metastasis to the Lung in a Mouse Model of Her2-mediated Breast Cancer

    PubMed Central

    Ferguson, Rosalyn; Gallagher, Emily; Cohen, Dara; Tobin-Hess, Aviva; Alikhani, Nyosha; Novosyadlyy, Ruslan; Haddad, Nadine; Yakar, Shoshana; LeRoith, Derek

    2014-01-01

    The Her2 oncogene is expressed in approximately 25% of human breast cancers and is associated with metastatic progression and poor outcome. Epidemiological studies report that breast cancer incidence and mortality rates are higher in women with type 2 diabetes. Here we use a mouse model of Her2-mediated breast cancer on a background of hyperinsulinemia to determine how elevated circulating insulin levels affect Her2-mediated primary tumor growth and lung metastasis. Hyperinsulinemic (MKR+/+) mice were crossed with doxycycline-inducible NeuNT (MTB/TAN) mice to produce the MTB/TAN/MKR+/+ mouse model. Both MTB/TAN and MTB/TAN/MKR+/+ mice were administered doxycycline in drinking water to induce NeuNT mammary tumor formation. In tumor tissues removed at two, four and six weeks of Neu-NT overexpression, we observed increased tumor mass and higher phosphorylation of the insulin receptor (IR)/insulin-like growth factor receptor 1 (IGF-1R), suggesting that activation of these receptors in conditions of hyperinsulinemia could contribute to the increased growth of mammary tumors. After 12 weeks on doxycycline, although no significant further increase in tumor weight was observed in MTB/TAN/MKR+/+ compared to MTB/TAN mice, the number of lung metastases was significantly higher in MTB/TAN/MKR+/+ mice compared to controls (MTB/TAN/MKR+/+ 16.41 ± 4.18 vs. MTB/TAN 5.36 ± 2.72). In tumors at the six week time-point, we observed an increase in vimentin, a cytoskeletal protein and marker of mesenchymal cells, associated with epithelial-to-mesenchymal transition and cancer associated fibroblasts. We conclude that hyperinsulinemia in MTB/TAN/MKR+/+ mice resulted in larger primary tumors, with more mesenchymal cells and therefore, more aggressive tumors with more numerous pulmonary metastases. PMID:23572162

  18. Interactions between ethanol and cigarette smoke in a mouse lung carcinogenesis model.

    PubMed

    Balansky, Roumen; Ganchev, Gancho; Iltcheva, Marietta; Nikolov, Manasi; La Maestra, S; Micale, Rosanna T; Steele, Vernon E; De Flora, Silvio

    2016-12-12

    Both ethanol and cigarette smoke are classified as human carcinogens. They can synergize, especially in tissues of the upper aerodigestive tract that are targeted by both agents. The main objective of the present study was to evaluate the individual and combined effects of ethanol and smoke in the respiratory tract, either following transplacental exposure and/or postnatal exposure. We designed two consecutive studies in mouse models by exposing Swiss H mice to oral ethanol and/or inhaled mainstream cigarette smoke for up to 4 months, at various prenatal and postnatal life stages. Clastogenic effects and histopathological alterations were evaluated after 4 and 8 months, respectively. Ethanol was per se devoid of clastogenic effects in mouse peripheral blood erythrocytes. However, especially in mice exposed both transplacentally throughout pregnancy and in the postnatal life, ethanol administration was associated not only with liver damage but also with pro-angiogenetic effects in the lung by stimulating the proliferation of blood vessels. In addition, these mice developed pulmonary emphysema, alveolar epithelial hyperplasias, microadenomas, and benign tumors. On the other hand, ethanol interfered in the lung carcinogenesis process resulting from the concomitant exposure of mice to smoke. In fact, ethanol significantly attenuated some smoke-related preneoplastic and neoplastic lesions in the respiratory tract, such as alveolar epithelial hyperplasia, microadenomas, and even malignant tumors. In addition, ethanol attenuated cigarette smoke clastogenicity. In conclusion, preclinical studies provide evidence that, in spite of its pulmonary toxicity, ethanol may mitigate some noxious effects of cigarette smoke in the respiratory tract. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Systems biology-based identification of Mycobacterium tuberculosis persistence genes in mouse lungs.

    PubMed

    Dutta, Noton K; Bandyopadhyay, Nirmalya; Veeramani, Balaji; Lamichhane, Gyanu; Karakousis, Petros C; Bader, Joel S

    2014-02-18

    Identifying Mycobacterium tuberculosis persistence genes is important for developing novel drugs to shorten the duration of tuberculosis (TB) treatment. We developed computational algorithms that predict M. tuberculosis genes required for long-term survival in mouse lungs. As the input, we used high-throughput M. tuberculosis mutant library screen data, mycobacterial global transcriptional profiles in mice and macrophages, and functional interaction networks. We selected 57 unique, genetically defined mutants (18 previously tested and 39 untested) to assess the predictive power of this approach in the murine model of TB infection. We observed a 6-fold enrichment in the predicted set of M. tuberculosis genes required for persistence in mouse lungs relative to randomly selected mutant pools. Our results also allowed us to reclassify several genes as required for M. tuberculosis persistence in vivo. Finally, the new results implicated additional high-priority candidate genes for testing. Experimental validation of computational predictions demonstrates the power of this systems biology approach for elucidating M. tuberculosis persistence genes. Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), has a genetic repertoire that permits it to persist in the face of host immune responses. Identification of such persistence genes could reveal novel drug targets and elucidate mechanisms by which the organism eludes the immune system and resists drugs. Genetic screens have identified a total of 31 persistence genes, but to date only 15% of the ~4,000 M. tuberculosis genes have been tested experimentally. In this paper, as an alternative to brute force experimental screens, we describe computational methods that predict new persistence genes by combining known examples with growing databases of biological networks. Experimental testing demonstrated that these predictions are highly accurate, validating the computational approach and providing new information

  20. Multi-walled carbon nanotube-induced gene signatures in the mouse lung: potential predictive value for human lung cancer risk and prognosis

    PubMed Central

    Guo, Nancy L; Wan, Ying-Wooi; Denvir, James; Porter, Dale W; Pacurari, Maricica; Wolfarth, Michael G; Castranova, Vincent; Qian, Yong

    2012-01-01

    Concerns over the potential for multi-walled carbon nanotubes (MWCNT) to induce lung carcinogenesis have emerged. This study sought to (1) identify gene expression signatures in the mouse lungs following pharyngeal aspiration of well-dispersed MWCNT and (2) determine if these genes were associated with human lung cancer risk and progression. Genome-wide mRNA expression profiles were analyzed in mouse lungs (n=160) exposed to 0, 10, 20, 40, or 80 µg of MWCNT by pharyngeal aspiration at 1, 7, 28, and 56 days post-exposure. By using pairwise-Statistical Analysis of Microarray (SAM) and linear modeling, 24 genes were selected, which have significant changes in at least two time points, have a more than 1.5 fold change at all doses, and are significant in the linear model for the dose or the interaction of time and dose. Additionally, a 38-gene set was identified as related to cancer from 330 genes differentially expressed at day 56 post-exposure in functional pathway analysis. Using the expression profiles of the cancer-related gene set in 8 mice at day 56 post-exposure to 10 µg of MWCNT, a nearest centroid classification accurately predicts human lung cancer survival with a significant hazard ratio in training set (n=256) and test set (n=186). Furthermore, both gene signatures were associated with human lung cancer risk (n=164) with significant odds ratios. These results may lead to development of a surveillance approach for early detection of lung cancer and prognosis associated with MWCNT in the workplace. PMID:22891886

  1. Nonmucoid Pseudomonas aeruginosa Expresses Alginate in the Lungs of Patients with Cystic Fibrosis and in a Mouse Model

    PubMed Central

    Bragonzi, Alessandra; Worlitzsch, Dieter; Pier, Gerald B.; Timpert, Petra; Ulrich, Martina; Hentzer, Morten; Andersen, Jens Bo; Givskov, Michael; Conese, Massimo; Döring, Gerd

    2005-01-01

    Background. In patients with cystic fibrosis (CF), lung infection with mucoid Pseudomonas aeruginosa strains overexpressing the exopolysaccaride alginate is preceded by colonization with nonmucoid strains. We investigated the kinetics, impact of environmental signals, and genetics of P. aeruginosa alginate expression in a mouse model and in patients with CF. Methods. Using indirect immunofluorescence, microarray technology and real-time reverse-transcriptionpolymerase chain reaction, we assessed alginate gene expression during aerobic and anaerobic growth of the nonmucoid strain PAO1 in vitro, in a mouse lung-infection model and in sputum specimens from patients with CF infected with nonmucoid or mucoid P. aeruginosa strains. Results. Anaerobic conditions increased the transcription of alginate genes in vitro and in murine lungs within 24 h. Alginate production by PAO1 in murine lungs and by nonmucoid P. aeruginosa strains in patients with CF was reversible after in vitro culture under aerobic conditions. A subpopulation of P. aeruginosa clones revealing stable alginate production was detected in murine lungs 2 weeks after infection. Conclusions. Anaerobiosis and lung infection rapidly induce alginate production by gene regulation in nonmucoid P. aeruginosa. This trait may contribute to early persistence, leading to chronic P. aeruginosa infection once stable mucoid strains are generated. PMID:15995954

  2. Nonmucoid Pseudomonas aeruginosa expresses alginate in the lungs of patients with cystic fibrosis and in a mouse model.

    PubMed

    Bragonzi, Alessandra; Worlitzsch, Dieter; Pier, Gerald B; Timpert, Petra; Ulrich, Martina; Hentzer, Morten; Andersen, Jens Bo; Givskov, Michael; Conese, Massimo; Doring, Gerd

    2005-08-01

    In patients with cystic fibrosis (CF), lung infection with mucoid Pseudomonas aeruginosa strains overexpressing the exopolysaccaride alginate is preceded by colonization with nonmucoid strains. We investigated the kinetics, impact of environmental signals, and genetics of P. aeruginosa alginate expression in a mouse model and in patients with CF. Using indirect immunofluorescence, microarray technology and real-time reverse-transcription polymerase chain reaction, we assessed alginate gene expression during aerobic and anaerobic growth of the nonmucoid strain PAO1 in vitro, in a mouse lung-infection model and in sputum specimens from patients with CF infected with nonmucoid or mucoid P. aeruginosa strains. Anaerobic conditions increased the transcription of alginate genes in vitro and in murine lungs within 24 h. Alginate production by PAO1 in murine lungs and by nonmucoid P. aeruginosa strains in patients with CF was reversible after in vitro culture under aerobic conditions. A subpopulation of P. aeruginosa clones revealing stable alginate production was detected in murine lungs 2 weeks after infection. Anaerobiosis and lung infection rapidly induce alginate production by gene regulation in nonmucoid P. aeruginosa. This trait may contribute to early persistence, leading to chronic P. aeruginosa infection once stable mucoid strains are generated.

  3. Differential role of FGF9 on epithelium and mesenchyme in mouse embryonic lung.

    PubMed

    del Moral, Pierre-Marie; De Langhe, Stijn P; Sala, Frédéric G; Veltmaat, Jacqueline M; Tefft, Denise; Wang, Kasper; Warburton, David; Bellusci, Savério

    2006-05-01

    Mesothelial Fibroblast Growth Factor 9 (Fgf9) has been demonstrated by inactivation studies in mouse to be critical for the proliferation of the mesenchyme. We now show that Fgf9 is also expressed at significant levels in the distal epithelium from the mid-pseudoglandular stages. Using mesenchymal-free lung endoderm culture, we show that FGF9 triggers the proliferation of the distal epithelium leading to the formation of a cyst-like structure. On embryonic Fgfr2b-/- lungs, FGF9 induces proliferation of the mesenchyme but fails to trigger a similar effect on the epithelium, therefore involving the FGFR2b receptor in the proliferative response of the epithelium to FGF9. While FGF9 inhibits the differentiation of the mesenchyme, the epithelium appears to differentiate normally. At the molecular level, FGF9 up-regulates Fgf10 expression in the mesenchyme likely via increased expression of Tbx4 and 5 and controls the transcription of Hedgehog targets Ptc and Gli-1 in a Hedgehog-independent manner. We also show that FGF9 inhibits the activation of the canonical Wnt pathway in the epithelium by increasing Dkk1 expression, a canonical Wnt antagonist. Our work shows for the first time that FGF9 acts on the epithelium involving FGFR2b to control its proliferation but not its differentiation and contributes to the regulation of canonical Wnt signaling in the epithelium.

  4. Proteoglycans maintain lung stability in an elastase-treated mouse model of emphysema.

    PubMed

    Takahashi, Ayuko; Majumdar, Arnab; Parameswaran, Harikrishnan; Bartolák-Suki, Erzsébet; Suki, Béla

    2014-07-01

    Extracellular matrix remodeling and tissue rupture contribute to the progression of emphysema. Lung tissue elasticity is governed by the tensile stiffness of fibers and the compressive stiffness of proteoglycans. It is not known how proteoglycan remodeling affects tissue stability and destruction in emphysema. The objective of this study was to characterize the role of remodeled proteoglycans in alveolar stability and tissue destruction in emphysema. At 30 days after treatment with porcine pancreatic elastase, mouse lung tissue stiffness and alveolar deformation were evaluated under varying tonicity conditions that affect the stiffness of proteoglycans. Proteoglycans were stained and measured in the alveolar walls. Computational models of alveolar stability and rupture incorporating the mechanical properties of fibers and proteoglycans were developed. Although absolute tissue stiffness was only 24% of normal, changes in relative stiffness and alveolar shape distortion due to changes in tonicity were increased in emphysema (P < 0.01 and P < 0.001). Glycosaminoglycan amount per unit alveolar wall length, which is responsible for proteoglycan stiffness, was higher in emphysema (P < 0.001). Versican expression increased in the tissue, but decorin decreased. Our network model predicted that the rate of tissue deterioration locally governed by mechanical forces was reduced when proteoglycan stiffness was increased. Consequently, this general network model explains why increasing proteoglycan deposition protects the alveolar walls from rupture in emphysema. Our results suggest that the loss of proteoglycans observed in human emphysema contributes to disease progression, whereas treatments that promote proteoglycan deposition in the extracellular matrix should slow the progression of emphysema.

  5. PCR detection of retinoblastoma gene deletions in radiation-induced mouse lung adenocarcinomas

    SciTech Connect

    Churchill, M.E.; Gemmell, M.A.; Woloschak, G.E.

    1994-05-01

    From 1971--1986, Argonne National Laboratory conducted a series of large-scale studies of tumor incidence in 40,000 BCF{sub 1} mice irradiated with {sup 60}Co {gamma}-rays or JANUS fission-spectrum neutrons. Polymerase chain reaction (PCR) technique was used to detect deletions in the mouse retinoblastoma (mRb) gene. Six mRb gene exon fragments were amplified in a 40-cycle, 3-temperature PCR protocol. Absence of any of these fragments on a Southern blot indicated a deletion of that portion of the mRb gene. Tumors chosen for analysis were lung adenocarcinomas that were judged to be the cause of death in post-mortem analyses. Spontaneous tumors as well as those from irradiated mice were analyzed for mRb deletions. In all normal mouse tissues studies all six mRb exon fragments were present on Southern blots. Tumors in six neutron-irradiated mice also had no mRb deletions. However, 1 of 6 tumors from {gamma}-irradiated mice and 6 of 18 spontaneous tumors from unirradiated mice showed a deletion in one or both mRb alleles. All deletions detected were in the 5{prime} region of the mRb gene.

  6. Comparison of two methods used to prepare smears of mouse lung tissue for detection of Pneumocystis carinii.

    PubMed Central

    Thomson, R B; Smith, T F; Wilson, W R

    1982-01-01

    The laboratory diagnosis of Pneumocystis carinii pneumonia in humans includes the identification of cysts in stained lung tissue impression smears. By using a mouse model, we compared the number of cysts in lung tissue impression smears with those contained in a concentrate of homogenized lung tissue. Eleven C3H/HEN mice developed P. carinii infection after corticosteroid injections, a low protein (8%) diet, and tetracycline administered in drinking water. Impression smears were prepared with freshly bisected lung tissue. Smears of concentrates were prepared with sediment from centrifuged lung tissue homogenates. All smears were made in duplicate, stained with toluidine blue O or methenamine silver, coded, randomized, and examined. The concentrate preparations contained more cysts per microscopic field than the impression preparations (P less than 0.01). Concentrates prepared by grinding with a mortar and pestle contained more cysts than concentrates prepared by blending with a Stomacher (P less than 0.05). Cysts were detected equally well with either the toluidine blue O or silver stain (not significant). Lung tissue concentrates were superior to lung tissue impressions for detecting P. carinii cysts in mice. Use of lung tissue concentrates should be considered for the diagnosis of human P. carinii infection. PMID:6181088

  7. Phenotypical and ultrastructural features of Oct4-positive cells in the adult mouse lung

    PubMed Central

    Galiger, Celimene; Kostin, Sawa; Golec, Anita; Ahlbrecht, Katrin; Becker, Sven; Gherghiceanu, Mihaela; Popescu, Laurentiu M; Morty, Rory E; Seeger, Werner; Voswinckel, Robert

    2014-01-01

    Octamer binding trascription factor 4 (Oct4) is a transcription factor of POU family specifically expressed in embryonic stem cells (ESCs). A role for maintaining pluripotency and self-renewal of ESCs is assigned to Oct4 as a pluripotency marker. Oct4 can also be detected in adult stem cells such as bone marrow-derived mesenchymal stem cells. Several studies suggest a role for Oct4 in sustaining self-renewal capacity of adult stem cells. However, Oct4 gene ablation in adult stem cells revealed no abnormalities in tissue turnover or regenerative capacity. In the present study we have conspicuously found pulmonary Oct4-positive cells closely resembling the morphology of telocytes (TCs). These cells were found in the perivascular and peribronchial areas and their presence and location were confirmed by electron microscopy. Moreover, we have used Oct4-GFP transgenic mice which revealed a similar localization of the Oct4-GFP signal. We also found that Oct4 co-localized with several described TC markers such as vimentin, Sca-1, platelet-derived growth factor receptor-beta C-kit and VEGF. By flow cytometry analyses carried out with Oct4-GFP reporter mice, we described a population of EpCAMneg/CD45neg/Oct4-GFPpos that in culture displayed TC features. These results were supported by qRT-PCR with mRNA isolated from lungs by using laser capture microdissection. In addition, Oct4-positive cells were found to express Nanog and Klf4 mRNA. It is concluded for the first time that TCs in adult lung mouse tissue comprise Oct4-positive cells, which express pluripotency-related genes and represent therefore a population of adult stem cells which might contribute to lung regeneration. PMID:24889158

  8. The composition of cigarette smoke determines inflammatory cell recruitment to the lung in COPD mouse models.

    PubMed

    John, Gerrit; Kohse, Katrin; Orasche, Jürgen; Reda, Ahmed; Schnelle-Kreis, Jürgen; Zimmermann, Ralf; Schmid, Otmar; Eickelberg, Oliver; Yildirim, Ali Önder

    2014-02-01

    COPD (chronic obstructive pulmonary disease) is caused by exposure to toxic gases and particles, most often CS (cigarette smoke), leading to emphysema, chronic bronchitis, mucus production and a subsequent decline in lung function. The disease pathogenesis is related to an abnormal CS-induced inflammatory response of the lungs. Similar to active (mainstream) smoking, second hand (sidestream) smoke exposure severely affects respiratory health. These processes can be studied in vivo in models of CS exposure of mice. We compared the acute inflammatory response of female C57BL/6 mice exposed to two concentrations [250 and 500 mg/m3 TPM (total particulate matter)] of sidestream and mainstream CS for 3 days and interpreted the biological effects based on physico-chemical differences in the gas and particulate phase composition of CS. BAL (bronchoalveolar lavage fluid) was obtained to perform differential cell counts and to measure cytokine release. Lung tissue was used to determine mRNA and protein expression of proinflammatory genes and to assess tissue inflammation. A strong acute inflammatory response characterized by neutrophilic influx, increased cytokine secretion [KC (keratinocyte chemoattractant), TNF-α (tumour necrosis factor α), MIP-2 (macrophage inflammatory protein 2), MIP-1α and MCP-1 (monocyte chemoattractant protein-1)], pro-inflammatory gene expression [KC, MIP-2 and MMP12 (matrix metalloproteinase 12)] and up-regulated GM-CSF (granulocyte macrophage colony-stimulating factor) production was observed in the mainstream model. After sidestream exposure there was a dampened inflammatory reaction consisting only of macrophages and diminished GM-CSF levels, most likely caused by elevated CO concentrations. These results demonstrate that the composition of CS determines the dynamics of inflammatory cell recruitment in COPD mouse models. Different initial inflammatory processes might contribute to COPD pathogenesis in significantly varying ways, thereby

  9. The composition of cigarette smoke determines inflammatory cell recruitment to the lung in COPD mouse models

    PubMed Central

    John, Gerrit; Kohse, Katrin; Orasche, Jürgen; Reda, Ahmed; Schnelle-Kreis, Jürgen; Zimmermann, Ralf; Schmid, Otmar; Eickelberg, Oliver; Yildirim, Ali Önder

    2013-01-01

    COPD (chronic obstructive pulmonary disease) is caused by exposure to toxic gases and particles, most often CS (cigarette smoke), leading to emphysema, chronic bronchitis, mucus production and a subsequent decline in lung function. The disease pathogenesis is related to an abnormal CS-induced inflammatory response of the lungs. Similar to active (mainstream) smoking, second hand (sidestream) smoke exposure severely affects respiratory health. These processes can be studied in vivo in models of CS exposure of mice. We compared the acute inflammatory response of female C57BL/6 mice exposed to two concentrations [250 and 500 mg/m3 TPM (total particulate matter)] of sidestream and mainstream CS for 3 days and interpreted the biological effects based on physico-chemical differences in the gas and particulate phase composition of CS. BAL (bronchoalveolar lavage fluid) was obtained to perform differential cell counts and to measure cytokine release. Lung tissue was used to determine mRNA and protein expression of proinflammatory genes and to assess tissue inflammation. A strong acute inflammatory response characterized by neutrophilic influx, increased cytokine secretion [KC (keratinocyte chemoattractant), TNF-α (tumour necrosis factor α), MIP-2 (macrophage inflammatory protein 2), MIP-1α and MCP-1 (monocyte chemoattractant protein-1)], pro-inflammatory gene expression [KC, MIP-2 and MMP12 (matrix metalloproteinase 12)] and up-regulated GM-CSF (granulocyte macrophage colony-stimulating factor) production was observed in the mainstream model. After sidestream exposure there was a dampened inflammatory reaction consisting only of macrophages and diminished GM-CSF levels, most likely caused by elevated CO concentrations. These results demonstrate that the composition of CS determines the dynamics of inflammatory cell recruitment in COPD mouse models. Different initial inflammatory processes might contribute to COPD pathogenesis in significantly varying ways, thereby

  10. Interactions between the otitis media gene, Fbxo11, and p53 in the mouse embryonic lung.

    PubMed

    Tateossian, Hilda; Morse, Susan; Simon, Michelle M; Dean, Charlotte H; Brown, Steve D M

    2015-12-01

    Otitis media with effusion (OME) is the most common cause of hearing loss in children, and tympanostomy (ear tube insertion) to alleviate the condition remains the commonest surgical intervention in children in the developed world. Chronic and recurrent forms of otitis media (OM) are known to have a very substantial genetic component; however, until recently, little was known of the underlying genes involved. The Jeff mouse mutant carries a mutation in the Fbxo11 gene, a member of the F-box family, and develops deafness due to a chronic proliferative OM. We previously reported that Fbxo11 is involved in the regulation of transforming growth factor beta (TGF-β) signalling by regulating the levels of phospho-Smad2 in the epithelial cells of palatal shelves, eyelids and airways of the lungs. It has been proposed that FBXO11 regulates the cell's response to TGF-β through the ubiquitination of CDT2. Additional substrates for FBXO11 have been identified, including p53. Here, we have studied both the genetic and biochemical interactions between FBXO11 and p53 in order to better understand the function of FBXO11 in epithelial development and its potential role in OM. In mice, we show that p53 (also known as Tp53) homozygous mutants and double heterozygous mutants (Jf/+ p53/+) exhibit similar epithelial developmental defects to Fbxo11 homozygotes. FBXO11 and p53 interact in the embryonic lung, and mutation in Fbxo11 prevents the interaction with p53. Both p53 and double mutants show raised levels of pSMAD2, recapitulating that seen in Fbxo11 homozygotes. Overall, our results support the conclusion that FBXO11 regulates the TGF-β pathway in the embryonic lung via cross-talk with p53.

  11. Curcumin inhibits paraquat induced lung inflammation and fibrosis by extracellular matrix modifications in mouse model.

    PubMed

    Tyagi, Namitosh; Dash, D; Singh, Rashmi

    2016-12-01

    Paraquat (PQ), a potent herbicide can cause severe toxicity. We report here that fibroproliferation phase of acute lung injury (ALI) is initiated much earlier (within 48 h) after PQ intoxication than previously reported (after 2 weeks) and we aimed to study the protective effects of intranasal curcumin as new therapeutic strategy in mouse model. Mice (Park's strain) were divided into five experimental groups (I) control, received only saline (0.9 % NaCl) (II) PQ, mice intoxicated with PQ (50 mg/kg, i.p., single dose); (III) curcumin, treated with curcumin (5 mg/kg, i.n) an hour before PQ administration; (IV)Veh, DMSO (equal volume to curcumin) given an hour before PQ exposure; (V) DEXA, mice treated with dexamethasone (1 mg/kg, i.p) before an hour of PQ intoxication. After 48 h of the PQ exposure, all mice were sacrificed and samples were analyzed. Pretreatment with intranasal curcumin (5 mg/kg) could modify the PQ-intoxication (50 mg/kg, i.p) induced structural remodeling of lung parenchyma at an early phase of acute lung injury. Significant increase in inflammatory cell count, reactive oxygen species and hydroxyproline levels were decreased after curcumin pretreatment (all p < 0.05). Histological examination and zymography results were also found consistent. Our results show that curcumin pretreatment decreased the expression of alpha smooth muscle actin (α-SMA), matrix metalloproteinases-9 (MMP-9) and changed the expression of tissue inhibitors of metalloproteinase (TIMP-1) after PQ intoxication. Single toxic dose of PQ has initiated fibroproliferation within 48 h and intranasal curcumin may prove as new therapeutic strategy for PQ induced ALI and fibroproliferation.

  12. The sickle cell mouse lung: pro-inflammatory and primed for allergic inflammation

    PubMed Central

    Andemariam, Biree; Adami, Alexander J.; McNamara, Jeffrey T.; Secor, Eric R.; Guernsey, Linda A.; Thrall, Roger S.

    2015-01-01

    Co-morbid asthma in sickle cell disease (SCD) confers higher rates of vaso-occlusive pain and mortality, yet the physiological link between these two distinct diseases remains puzzling. We utilized a mouse model of SCD to study pulmonary immunology and physiology before and after the induction of allergic airway disease (AAD). SCD mice were sensitized with ovalbumin (OVA) and aluminum hydroxide by the intraperitoneal (IP) route followed by daily, nose-only OVA-aerosol challenge to induce AAD. The lungs of naive SCD mice showed signs of inflammatory and immune processes: (1) histologic and cytochemical evidence of airway inflammation as compared to naïve wildtype mice; (2) bronchoalveolar lavage fluid (BAL) contained increased total lymphocytes, %CD8+ T cells, G-CSF, IL-5, IL-7, and CXCL1, and (3) lung tissue and hilar lymph node (HLN) had increased CD4+, CD8+, and regulatory T cells (Tregs). Further, SCD mice at AAD demonstrated significant changes compared to the naïve state: (1) BAL with increased %CD4+ T cells and Tregs, lower %CD8+ T cells, and decreased IFNγ, CXCL10, CCL2, and IL-17, (2) serum with increased OVA-specific IgE, IL-6, and IL-13, and decreased IL-1α and CXCL10, (3) no increase in Tregs in the lung tissue or HLN, and (4) hypo-responsiveness to methacholine challenge. In conclusion, SCD mice have an altered immunologic pulmonary milieu and physiologic responsiveness. These findings suggest that the clinical phenotype of AAD in SCD mice differs from that of wildtype mice and suggests that individuals with SCD may also have a unique, divergent phenotype perhaps amenable to a different therapeutic approach. PMID:25843670

  13. Interactions between the otitis media gene, Fbxo11, and p53 in the mouse embryonic lung

    PubMed Central

    Tateossian, Hilda; Morse, Susan; Simon, Michelle M.; Dean, Charlotte H.; Brown, Steve D. M.

    2015-01-01

    ABSTRACT Otitis media with effusion (OME) is the most common cause of hearing loss in children, and tympanostomy (ear tube insertion) to alleviate the condition remains the commonest surgical intervention in children in the developed world. Chronic and recurrent forms of otitis media (OM) are known to have a very substantial genetic component; however, until recently, little was known of the underlying genes involved. The Jeff mouse mutant carries a mutation in the Fbxo11 gene, a member of the F-box family, and develops deafness due to a chronic proliferative OM. We previously reported that Fbxo11 is involved in the regulation of transforming growth factor beta (TGF-β) signalling by regulating the levels of phospho-Smad2 in the epithelial cells of palatal shelves, eyelids and airways of the lungs. It has been proposed that FBXO11 regulates the cell's response to TGF-β through the ubiquitination of CDT2. Additional substrates for FBXO11 have been identified, including p53. Here, we have studied both the genetic and biochemical interactions between FBXO11 and p53 in order to better understand the function of FBXO11 in epithelial development and its potential role in OM. In mice, we show that p53 (also known as Tp53) homozygous mutants and double heterozygous mutants (Jf/+ p53/+) exhibit similar epithelial developmental defects to Fbxo11 homozygotes. FBXO11 and p53 interact in the embryonic lung, and mutation in Fbxo11 prevents the interaction with p53. Both p53 and double mutants show raised levels of pSMAD2, recapitulating that seen in Fbxo11 homozygotes. Overall, our results support the conclusion that FBXO11 regulates the TGF-β pathway in the embryonic lung via cross-talk with p53. PMID:26471094

  14. Genetically determined heterogeneity of lung disease in a mouse model of airway mucus obstruction.

    PubMed

    Livraghi-Butrico, Alessandra; Grubb, Barbara R; Kelly, Elizabeth J; Wilkinson, Kristen J; Yang, Huifang; Geiser, Marianne; Randell, Scott H; Boucher, Richard C; O'Neal, Wanda K

    2012-04-15

    Mucus clearance is an important airway innate defense mechanism. Airway-targeted overexpression of the epithelial Na(+) channel β-subunit [encoded by sodium channel nonvoltage gated 1, beta subunit (Scnn1b)] in mice [Scnn1b-transgenic (Tg) mice] increases transepithelial Na(+) absorption and dehydrates the airway surface, which produces key features of human obstructive lung diseases, including mucus obstruction, inflammation, and air-space enlargement. Because the first Scnn1b-Tg mice were generated on a mixed background, the impact of genetic background on disease phenotype in Scnn1b-Tg mice is unknown. To explore this issue, congenic Scnn1b-Tg mice strains were generated on C57BL/6N, C3H/HeN, BALB/cJ, and FVB/NJ backgrounds. All strains exhibited a two- to threefold increase in tracheal epithelial Na(+) absorption, and all developed airway mucus obstruction, inflammation, and air-space enlargement. However, there were striking differences in neonatal survival, ranging from 5 to 80% (FVB/NJlung atelectasis. The spontaneous occurrence of a high surviving BALB/cJ line, which exhibited delayed onset of Na(+) hyperabsorption, provided evidence that: 1) air-space enlargement and postnatal death were only present when Na(+) hyperabsorption occurred early, and 2) inflammation and mucus obstruction developed whenever Na(+) hyperabsorption was expressed. In summary, the genetic context and timing of airway innate immune dysfunction critically determines lung disease phenotype. These mouse strains may be useful to identify key modifier genes and pathways.

  15. PCR detection of retinoblastoma gene deletions in radiation-induced mouse lung adenocarcinomas

    SciTech Connect

    Churchill, M.E.; Gemmell, M.A.; Woloschak, G.E.

    1993-04-01

    From 1971 to 1986, Argonne National Laboratory conducted a series of large-scale studies of tumor incidence in 40,000 BCF{sub 1} mice irradiated with {sup 60}Co {gamma} rays or JANUS fission-spectrum neutrons; normal and tumor tissues from mice in these studies were preserved in paraffin blocks. A polymerase chain reaction (PCR) technique has been developed to detect deletions in the mouse retinoblastoma (mRb) gene in the paraffin-embedded tissues. Microtomed sections were used as the DNA source in PCR reaction mixtures. Six mRb gene exon fragments were amplified in a 40-cycle, 3-temperature PCR protocol. The absence of any of these fragments (relative to control PCR products) on a Southern blot indicated a deletion of that portion of the mRb gene. The tumors chosen for analysis were lung adenocarcinomas that were judged to be the cause of death in post-mortem analyses. Spontaneous tumors as well as those from irradiated mice (569 cGy of {sup 60}Co {gamma} rays or 60 cGy of JANUS neutrons, doses that have been found to have approximately equal biological effectiveness in the BCF, mouse) were analyzed for mRb deletions. In all normal mouse tissues studies, all six mRb exon fragments were present on Southem blots. Tumors in six neutron-irradiated mice also had no mRb deletions. However, I of 6 tumors from {gamma}-irradiated mice and 6 of 18 spontaneous tumors from unirradiated mice had a deletion in one or both mRb alleles. All deletions detected were in the 5{prime} region of the mRb gene.

  16. PCR detection of retinoblastoma gene deletions in radiation-induced mouse lung adenocarcinomas

    SciTech Connect

    Churchill, M.E.; Gemmell, M.A.; Woloschak, G.E.

    1993-01-01

    From 1971 to 1986, Argonne National Laboratory conducted a series of large-scale studies of tumor incidence in 40,000 BCF[sub 1] mice irradiated with [sup 60]Co [gamma] rays or JANUS fission-spectrum neutrons; normal and tumor tissues from mice in these studies were preserved in paraffin blocks. A polymerase chain reaction (PCR) technique has been developed to detect deletions in the mouse retinoblastoma (mRb) gene in the paraffin-embedded tissues. Microtomed sections were used as the DNA source in PCR reaction mixtures. Six mRb gene exon fragments were amplified in a 40-cycle, 3-temperature PCR protocol. The absence of any of these fragments (relative to control PCR products) on a Southern blot indicated a deletion of that portion of the mRb gene. The tumors chosen for analysis were lung adenocarcinomas that were judged to be the cause of death in post-mortem analyses. Spontaneous tumors as well as those from irradiated mice (569 cGy of [sup 60]Co [gamma] rays or 60 cGy of JANUS neutrons, doses that have been found to have approximately equal biological effectiveness in the BCF, mouse) were analyzed for mRb deletions. In all normal mouse tissues studies, all six mRb exon fragments were present on Southem blots. Tumors in six neutron-irradiated mice also had no mRb deletions. However, I of 6 tumors from [gamma]-irradiated mice and 6 of 18 spontaneous tumors from unirradiated mice had a deletion in one or both mRb alleles. All deletions detected were in the 5[prime] region of the mRb gene.

  17. In vitro radiation sensitivity of mouse lung fibroblasts isolated by flow cytometry

    SciTech Connect

    Keng, P.C.; Phipps, R.; Penney, D.P.

    1995-02-01

    Recently, we have isolated two major fibroblast cells (Thy-1{sup +}, Thy-1{sup {minus}}) from mouse LAF1 lung tissue using the anti-Thy-1 antibody expression and fluorescence activated cell sorter. To examine the possibility that x- or {gamma}-ray-induced pulmonary fibrosis at the late stage of injury could arise from radioresistant cell subpopulations, the radiation sensitivities of Thy-1{sup +} and Thy-1{sup {minus}} cells were evaluated by the colony forming assay. Cell survival curves, repair of potentially lethal damage (PLD) and sublethal damage (SLD), and cell-age response curves were obtained after Cs-137 {gamma}-ray irradiation. The cell survival curves measured after 0-10 Gy {gamma}-ray showed that Thy-1{sup +} cells were slightly more radioresistant than Thy-1{sup {minus}} cells. The D{sub 0}, n, alpha, and beta values measured from the survival curves also confirmed this observation. After a single dose of 10 Gy, a small amount of PLD repair was observed in Thy-1{sup {minus}} cells, while no PLD repair was found in Thy-1{sup +} cells. Although the initial cell survival level of Thy-1{sup {minus}} cells was lower, the final survival levels of Thy-1{sup +} and Thy-1{sup {minus}} cells became identical at 8 h after irradiation due to the PLD repair. After split-dose irradiation of 4 Gy followed by 4 Gy, a similar extent and rate of SLD repair was found in Thy-1{sup +} and Thy-1{sup {minus}} cells. Cell-age response curves were obtained from irradiated G{sub 0}/G{sub 1}, S, and G{sub 2}/M cells separated by centrifugal elutriation and irradiated with 8 Gy gamma-ray. The results indicated that Thy-1{sup +} and Thy-1{sup {minus}} cells had a similar S resistant, and G{sub 1}, G{sub 2}M-sensitive radiation cell-age response curve. This study suggests that the selection of radioresistant lung fibroblast may not be responsible for the development of lung fibrosis in irradiated LAF{sub 1} mouse. 16 refs., 4 figs., 1 tab.

  18. Lung endothelial barrier protection by resveratrol involves inhibition of HMGB1 release and HMGB1-induced mitochondrial oxidative damage via an Nrf2-dependent mechanism.

    PubMed

    Dong, Wen-Wen; Liu, Yu-Jian; Lv, Zhou; Mao, Yan-Fei; Wang, Ying-Wei; Zhu, Xiao-Yan; Jiang, Lai

    2015-11-01

    High-mobility group box 1 (HMGB1) contributes to lung vascular hyperpermeability during ventilator-induced lung injury. We aimed to determine whether the natural antioxidant resveratrol protected against HMGB1-induced endothelial hyperpermeability both in vitro and in vivo. We found that HMGB1 decreased vascular endothelial (VE)-cadherin expression and increased endothelial permeability, leading to mitochondrial oxidative damage in primary cultured mouse lung vascular endothelial cells (MLVECs). Both the mitochondrial superoxide dismutase 2 mimetic MnTBAP and resveratrol blocked HMGB1-induced mitochondrial oxidative damage, VE-cadherin downregulation, and endothelial hyperpermeability. In in vivo studies, anesthetized male ICR mice were ventilated for 4h using low tidal volume (6 ml/kg) or high tidal volume (HVT; 30 ml/kg) ventilation. The mice were injected intraperitoneally with resveratrol immediately before the onset of ventilation. We found that resveratrol attenuated HVT-associated lung vascular hyperpermeability and HMGB1 production. HVT caused a significant increase in nuclear factor-erythroid 2-related factor 2 (Nrf2) nuclear translocation and Nrf2 target gene expression in lung tissues, which was further enhanced by resveratrol treatment. HMGB1 had no effect on Nrf2 activation, whereas resveratrol treatment activated the Nrf2 signaling pathway in HMGB1-treated MLVECs. Moreover, Nrf2 knockdown reversed the inhibitory effects of resveratrol on HMGB1-induced mitochondrial oxidative damage and endothelial hyperpermeability. The inhibitory effect of resveratrol on cyclic stretch-induced HMGB1 mRNA expression in primary cultured MLVECs was also abolished by Nrf2 knockdown. In summary, this study demonstrates that resveratrol protects against lung endothelial barrier dysfunction initiated by HVT. Lung endothelial barrier protection by resveratrol involves inhibition of mechanical stretch-induced HMGB1 release and HMGB1-induced mitochondrial oxidative damage

  19. The relation between oxidative stress, inflammation, and neopterin in the paraquat-induced lung toxicity.

    PubMed

    Toygar, M; Aydin, I; Agilli, M; Aydin, F N; Oztosun, M; Gul, H; Macit, E; Karslioglu, Y; Topal, T; Uysal, B; Honca, M

    2015-02-01

    Paraquat (PQ) is a well-known quaternary nitrogen herbicide. The major target organ in PQ poisoning is the lung. Reactive oxygen species (ROS) and inflammation play a crucial role in the development of PQ-induced pulmonary injury. Neopterin is synthesized in macrophage by interferon γ and other cytokines. We aimed to evaluate the utility of neopterin as a diagnostic marker in PQ-induced lung toxicity. Sprague Dawley rats were randomly divided into two groups (sham and PQ), administered intraperitoneally 1 mL saline and PQ (15 mg/kg/mL) respectively. Blood samples and lungs were collected for analyses. Lung injury and fibrosis were seen in the PQ group. Serum total antioxidant capacity, lactate dehydrogenase (LDH), and lung transforming growth factor-1β (TGF-1β) levels were significantly higher than the sham group (in all, p < 0.001). In addition, in the PQ group, serum neopterin and lung malondialdehyde (MDA) levels were also significantly higher than the sham group (in all, p = 0.001). Serum neopterin levels were correlated with LDH activities, lung MDA, lung TGF-1β levels, and the degree of lung injury. These findings demonstrated that oxidative stress, reduction of antioxidant capacity, and inflammation play a crucial role in the PQ-induced lung injury. Elevated serum neopterin levels may be a prognostic parameter to determine extends of PQ-induced lung toxicity. Further studies may be performed to clarify the role of neopterin by different doses of PQ. © The Author(s) 2015.

  20. Effect of nitric oxide on the development of nitrofen-induced fetal hypoplastic lung explants.

    PubMed

    Shinkai, Masato; Shinkai, Toko; Pirker, Martina E; Montedonico, Sandra; Puri, Prem

    2005-01-01

    Nitric oxide (NO) is an important cell-signaling molecule, and its generators, nitric oxide synthases, are expressed temporospatially in fetal rat lung. Recently, NO has been reported to modulate branching of the fetal rat lung lobe in vitro. We designed this study to evaluate the effect of NO on the morphogenesis of hypoplastic lung using nitrofen-induced rat lung explant model. A hypoplastic fetal lung model and a normal control lung model were induced by feeding a pregnant rat with nitrofen (100 mg) or olive oil on day 9.5 of gestation, respectively. Fetal lungs were harvested on day 13.5 and placed in organ culture containing serum-free medium Dulbecco modified Eagle medium. An NO donor, DETA NONOate (DETA/NO), was added daily in the culture medium. The lung cultures were divided into 4 groups: group 1 (n = 8), normal controls without DETA/NO; group 2 (n = 22), normal controls with DETA/NO; group 3 (n = 13), hypoplastic lungs without DETA/NO; group 4 (n = 22), hypoplastic lungs with DETA/NO. The fetal lungs were incubated for 48 hours at 37 degrees C with 5% CO2. Lung bud count and area of the specimens were measured under computer-assisted digital tracings. The rate of increase in bud count and lung area was calculated as the ratio of each value at 48 hours minus each value at 0 hour, divided by the value at 0 hour. The lung bud count was significantly increased in group 2 compared with group 1 at a concentration of 50 micromol/L DETA/NO (P < .05). In the nitrofen group, the lung bud count was significantly increased in group 4 compared with group 3 at 100 micromol/L DETA/NO added (P < .05). There was no significant difference in the rate of increase in whole lung area among the 4 groups. The peak increase rates of lung area and bud count were significantly lower in group 4 compared with group 2. This study demonstrates that the NO donor, DETA/NO, promotes branching of the nitrofen-induced hypoplastic fetal lung explant. These data suggest that NO may modulate

  1. Romo1 expression contributes to oxidative stress-induced death of lung epithelial cells

    SciTech Connect

    Shin, Jung Ar; Chung, Jin Sil; Cho, Sang-Ho; Kim, Hyung Jung; Yoo, Young Do

    2013-09-20

    Highlights: •Romo1 mediates oxidative stress-induced mitochondrial ROS production. •Romo1 induction by oxidative stress plays an important role in oxidative stress-induced apoptosis. •Romo1 overexpression correlates with epithelial cell death in patients with IPF. -- Abstract: Oxidant-mediated death of lung epithelial cells due to cigarette smoking plays an important role in pathogenesis in lung diseases such as idiopathic pulmonary fibrosis (IPF). However, the exact mechanism by which oxidants induce epithelial cell death is not fully understood. Reactive oxygen species (ROS) modulator 1 (Romo1) is localized in the mitochondria and mediates mitochondrial ROS production through complex III of the mitochondrial electron transport chain. Here, we show that Romo1 mediates mitochondrial ROS production and apoptosis induced by oxidative stress in lung epithelial cells. Hydrogen peroxide (H{sub 2}O{sub 2}) treatment increased Romo1 expression, and Romo1 knockdown suppressed the cellular ROS levels and cell death triggered by H{sub 2}O{sub 2} treatment. In immunohistochemical staining of lung tissues from patients with IPF, Romo1 was mainly localized in hyperplastic alveolar and bronchial epithelial cells. Romo1 overexpression was detected in 14 of 18 patients with IPF. TUNEL-positive alveolar epithelial cells were also detected in most patients with IPF but not in normal controls. These findings suggest that Romo1 mediates apoptosis induced by oxidative stress in lung epithelial cells.

  2. [A experiment research of beryllium oxide induced oxidative lung injury and the protective effects of LBP in rats].

    PubMed

    Liu, Zhihong; Zhang, Qingfeng; Wang, Yao; Wei, Conghui; Yan, Qing; Gong, Aihong; Guo, Xiong

    2015-07-01

    To explore beryllium oxide induced oxidative lung injury and the protective effects of LBP. Intoxication of animals were induced by once intratracheal injection and LBP intervention by intragastric administration. The content of HIF-1, VEGF and HO-1 of lung tissues were measured by kits. The pathological changes of lung tissue were showed by pathological section. The changes of lung ultrastructure were observed by electron microscope. Pathological changes of the lung tissue in beryllium oxide exposure group rats were in line with the characteristics of beryllium disease in human. Compared with the control group, HO-1 was increased in beryllium oxide exposure 40 d group and low doses of LBP group, compared with the control group, HO-1 was increased in beryllium oxide exposure 80d group and LBP treatment groups (P < 0.05 or P < 0.01). Compared with the control group, HIF-1 was increased in beryllium oxide exposure 40 d group, LBP treatment groups, beryllium oxide exposure 60 d and 80 d groups (P < 0.05 or P < 0.01). Compared with the control group, VEGF was increased of all phases, especially in beryllium oxide exposure 40d and 80 groups, LBP treatment groups and beryllium oxide exposure 60 d (P < 0.05 or P < 0.01). The content of HO-1 of beryllium oxide exposure group was higher than the LBP treatment for 40d group but below LBP treatment for 80 d group (P < 0.05). The content of HIF1 of beryllium oxide exposure group was higher than high dose of LBP treatment for 60d group and LBP treatment for 80 d group (P < 0.01). The content of VEGF of beryllium oxide exposure group was higher than LBP treatment for 40 d group and high dose of LBP treatment for 60 d (P < 0.05 or P < 0.01). BeO can cause abnormal expression of related genes of lung tissue in rats, LBP has protective effects on BeO caused lung injury.

  3. Contribution of Human Lung Parenchyma and Leukocyte Influx to Oxidative Stress and Immune System-Mediated Pathology following Nipah Virus Infection.

    PubMed

    Escaffre, Olivier; Saito, Tais B; Juelich, Terry L; Ikegami, Tetsuro; Smith, Jennifer K; Perez, David D; Atkins, Colm; Levine, Corri B; Huante, Matthew B; Nusbaum, Rebecca J; Endsley, Janice J; Freiberg, Alexander N; Rockx, Barry

    2017-08-01

    Nipah virus (NiV) is a zoonotic emerging paramyxovirus that can cause fatal respiratory illness or encephalitis in humans. Despite many efforts, the molecular mechanisms of NiV-induced acute lung injury (ALI) remain unclear. We previously showed that NiV replicates to high titers in human lung grafts in NOD-SCID/γ mice, resulting in a robust inflammatory response. Interestingly, these mice can undergo human immune system reconstitution by the bone marrow, liver, and thymus (BLT) reconstitution method, in addition to lung tissue engraftment, giving altogether a realistic model to study human respiratory viral infections. Here, we characterized NiV Bangladesh strain (NiV-B) infection of human lung grafts from human immune system-reconstituted mice in order to identify the overall effect of immune cells on NiV pathogenesis of the lung. We show that NiV-B replicated to high titers in human lung grafts and caused similar cytopathic effects irrespective of the presence of human leukocytes in mice. However, the human immune system interfered with virus spread across lung grafts, responded to infection by leukocyte migration to small airways and alveoli of the lung grafts, and accelerated oxidative stress in lung grafts. In addition, the presence of human leukocytes increased the expression of cytokines and chemokines that regulate inflammatory influx to sites of infection and tissue damage. These results advance our understanding of how the immune system limits NiV dissemination and contributes to ALI and inform efforts to identify therapeutic targets.IMPORTANCE Nipah virus (NiV) is an emerging paramyxovirus that can cause a lethal respiratory and neurological disease in humans. Only limited data are available on NiV pathogenesis in the human lung, and the relative contribution of the innate immune response and NiV to acute lung injury (ALI) is still unknown. Using human lung grafts in a human immune system-reconstituted mouse model, we showed that the NiV Bangladesh

  4. Metabolite signatures in hydrophilic extracts of mouse lungs exposed to cigarette smoke revealed by 1H NMR metabolomics investigation

    DOE PAGES

    Hu, Jian Z.; Wang, Xuan; Feng, Ju; ...

    2015-05-12

    Herein, 1H-NMR metabolomics are carried out to evaluate the changes of metabolites in lungs of mice exposed to cigarette smoke. It is found that the concentrations of adenosine derivatives (i.e. ATP, ADP and AMP), inosine and uridine are significantly fluctuated in the lungs of mice exposed to cigarette smoke compared with those of controls regardless the mouse is obese or regular weight. The decreased ATP, ADP, AMP and elevated inosine predict that the deaminases in charge of adenosine derivatives to inosine derivatives conversion are altered in lungs of mice exposed to cigarette smoke. Transcriptional analysis reveals that the concentrations ofmore » adenosine monophosphate deaminase and adenosine deaminase are different in the lungs of mice exposed to cigarette smoke, confirming the prediction from metabolomics studies. We also found, for the first time, that the ratio of glycerophosphocholine (GPC) to phosphocholine (PC) is significantly increased in the lungs of obese mice compared with regular weight mice. The ratio of GPC/PC is further elevated in the lungs of obese group by cigarette smoke exposure. Since GPC/PC ratio is a known biomarker for cancer, these results may suggest that obese group is more susceptible to lung cancer when exposed to cigarette smoke.« less

  5. Bioluminescent Orthotopic Mouse Models of Human Localized Non-Small Cell Lung Cancer: Feasibility and Identification of Circulating Tumour Cells

    PubMed Central

    Lahon, Benoit; Castier, Yves; Lesèche, Guy; Soria, Jean-Charles; Vozenin, Marie-Catherine; Decraene, Charles; Deutsch, Eric

    2011-01-01

    Background Preclinical models of non-small cell lung cancer (NSCLC) require better clinical relevance to study disease mechanisms and innovative therapeutics. We sought to compare and refine bioluminescent orthotopic mouse models of human localized NSCLC. Methods Athymic nude mice underwent subcutaneous injection (group 1-SC, n = 15, control), percutaneous orthotopic injection (group 2-POI, n = 30), surgical orthotopic implantation of subcutaneously grown tumours (group 3-SOI, n = 25), or transpleural orthotopic injection (group 4-TOI, n = 30) of A549-luciferase cells. Bioluminescent in vivo imaging was then performed weekly. Circulating tumour cells (CTCs) were searched using Cellsearch® system in SC and TOI models. Results Group 2-POI was associated with unexpected direct pleural spreading of the cellular solution in 53% of the cases, forbidding further evaluation of any localized lung tumour. Group 3-SOI was characterized by high perioperative mortality, initially localized lung tumours, and local evolution. Group 4-TOI was associated with low perioperative mortality, initially localized lung tumours, loco regional extension, and distant metastasis. CTCs were detected in 83% of nude mice bearing subcutaneous or orthotopic NSCLC tumours. Conclusions Transpleural orthotopic injection of A549-luc cells in nude mouse lung induces localized tumour, followed by lymphatic extension and specific mortality, and allowed the first time identification of CTCs in a NSCLC mice model. PMID:22022511

  6. The glucocorticoid-glucocorticoid receptor signal transduction pathway, transforming growth factor-beta, and embryonic mouse lung development in vivo.

    PubMed

    Jaskoll, T; Choy, H A; Melnick, M

    1996-05-01

    Lung morphogenesis has been shown to be regulated by glucocorticoids (CORT). Because CORT has been primarily thought to affect fetal lung development, previous studies have focused on the role of CORT receptor (GR)-mediated regulation of fetal lung development. Although endogenous CORT increases during embryonic and fetal stages and exogenous CORT treatment in vivo and in vitro clearly accelerates embryonic lung development, little is known about the morphoregulatory role of the embryonic CORT-GR signal transduction pathway during lung development. In this study, we characterize the embryonic mouse CORT-GR pathway and demonstrate: stage-specific in situ patterns of GR immunolocalization; similarity in GR relative mobility with progressive (E13 --> E17) development; that embryonic GR can be activated to bind a GR response element (GRE); significantly increasing levels of functional GR with increasing lung maturation; and the presence of heat shock protein (hsp) 70 and hsp90 from early (E13) to late (E17) developmental stages. These results support the purported importance of the embryonic CORT-GR signal transduction pathway in progressive lung differentiation. To demonstrate that the embryonic CORT-GR directed pathway plays a role in lung development, early embryonic (E12) lungs were exposed to CORT in utero and surfactant-associated protein A (SP-A) expression was analyzed; CORT treatment up-regulates SP-A mRNA expression and spatiotemporal protein distribution. Finally, to determine whether CORT-GR-directed pulmonary morphogenesis in vivo involves the modulation of growth factors, we studied the effect of CORT on TGF-beta gene expression. Northern analysis of TGF-beta 1, TGF-beta 2, and TGF-beta 3 transcript levels in vivo indicates that CORT regulates the rate of lung morpho- and histodifferentiation by down-regulating TGF-beta 3 gene expression.

  7. ROCK activation in lung of idiopathic pulmonary fibrosis with oxidative stress.

    PubMed

    Shimizu, Y; Dobashi, K; Sano, T; Yamada, M

    2014-01-01

    The Rho-associated coiled-coil containing protein kinase, (Rho-kinase or ROCK) undergoes activation by oxidative stress. ROCK-II, which is an isoform of ROCK, is activated in a murine model of lung fibrosis. The present study evaluated the level of oxidative stress and activation of ROCK-II in patients with idiopathic pulmonary fibrosis (IPF). The ROCK-II level and the phosphorylation of myosin phosphatase subunit-1 (p-MYPT-1), a hallmark of ROCK activation, were examined by immunohistochemistry of lung tissue sections. The 8-iso prostaglandin-F2alpha (8-isoPGF2alpha) level, as a marker of oxidative stress, of exhaled breath condensate was significantly higher in IPF patients than in control patients. In IPF lungs, ROCK-II was predominantly expressed by bronchial epithelial cells, as well as at a lower level by airway smooth muscle cells, vascular smooth muscle cells, and the fibroblasts of fibroblastic foci (FF). In addition, there was moderate p-MYPT-1 expression in these cells of IPF lungs. In control lungs, ROCK-II was expressed by these cells. p-MYPT-1 was weakly expressed by the bronchial epithelial cells. In conclusion, ROCK-II was activated in various lung cells of IPF patients along with oxidative stress detected by 8-isoPGF2alpha elevation. The ROCK pathway may play a role in the development of IPF oxidative stress.

  8. Iron supplementation at high altitudes induces inflammation and oxidative injury to lung tissues in rats

    SciTech Connect

    Salama, Samir A.; Omar, Hany A.; Maghrabi, Ibrahim A.; AlSaeed, Mohammed S.; EL-Tarras, Adel E.

    2014-01-01

    Exposure to high altitudes is associated with hypoxia and increased vulnerability to oxidative stress. Polycythemia (increased number of circulating erythrocytes) develops to compensate the high altitude associated hypoxia. Iron supplementation is, thus, recommended to meet the demand for the physiological polycythemia. Iron is a major player in redox reactions and may exacerbate the high altitudes-associated oxidative stress. The aim of this study was to explore the potential iron-induced oxidative lung tissue injury in rats at high altitudes (6000 ft above the sea level). Iron supplementation (2 mg elemental iron/kg, once daily for 15 days) induced histopathological changes to lung tissues that include severe congestion, dilatation of the blood vessels, emphysema in the air alveoli, and peribronchial inflammatory cell infiltration. The levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), lipid peroxidation product and protein carbonyl content in lung tissues were significantly elevated. Moreover, the levels of reduced glutathione and total antioxidant capacity were significantly reduced. Co-administration of trolox, a water soluble vitamin E analog (25 mg/kg, once daily for the last 7 days of iron supplementation), alleviated the lung histological impairments, significantly decreased the pro-inflammatory cytokines, and restored the oxidative stress markers. Together, our findings indicate that iron supplementation at high altitudes induces lung tissue injury in rats. This injury could be mediated through excessive production of reactive oxygen species and induction of inflammatory responses. The study highlights the tissue injury induced by iron supplementation at high altitudes and suggests the co-administration of antioxidants such as trolox as protective measures. - Highlights: • Iron supplementation at high altitudes induced lung histological changes in rats. • Iron induced oxidative stress in lung tissues of rats at high altitudes. • Iron

  9. Modeling gas phase nitric oxide release in lung epithelial cells

    PubMed Central

    Jiang, Jingjing; George, Steven C.

    2012-01-01

    Nitric oxide (NO) is present in exhaled breath and is generally considered to be a noninvasive marker of airway inflammation, and is thus of particular relevance to monitoring asthma. NO is produced when l-arginine is converted to l-citrulline by NO synthase (NOS); however, l-arginine is also the substrate for arginase and both enzymes are upregulated in asthma. Recent reports have speculated that enhanced expression of one or both enzymes could lead to a limitation in substrate availability, and hence impact downstream targets or markers such as exhaled NO. The non-linear nature and vastly different kinetics of the enzymes make predictions difficult, particularly over the wide range of enzyme activity between baseline and inflammation. In this study, we developed a steady state model of l-arginine transmembrane transport, NO production, diffusion, and gas phase NO release from lung epithelial cells. We validated our model with experimental results of gas phase NO release and intracellular l-arginine concentration in A549 cells, and then performed a sensitivity analysis to determine relative impact of each enzyme on NO production. Our model predicts intracellular l-arginine and gas phase NO release over a wide range of initial extracellular l-arginine concentrations following stimulation with cytomix (10 ng/ml TNF-α, IL-1β, and INF-γ). Relative sensitivity analysis demonstrates that enhanced arginase activity has little impact on l-arginine bioavailability for NOS. In addition, NOS activity is the dominant parameter which impacts gas phase NO release. PMID:21550413

  10. Short-term cigarette smoke exposure induces reversible changes in energy metabolism and cellular redox status independent of inflammatory responses in mouse lungs.

    PubMed

    Agarwal, Amit R; Zhao, Liqin; Sancheti, Harsh; Sundar, Isaac K; Rahman, Irfan; Cadenas, Enrique

    2012-11-15

    Cigarette smoking leads to alteration in cellular redox status, a hallmark in the pathogenesis of chronic obstructive pulmonary disease. This study examines the role of cigarette smoke (CS) exposure in the impairment of energy metabolism and, consequently, mitochondrial dysfunction. Male A/J mice were exposed to CS generated by a smoking machine for 4 or 8 wk. A recovery group was exposed to CS for 8 wk and allowed to recover for 2 wk. Acute CS exposure altered lung glucose metabolism, entailing a decrease in the rate of glycolysis and an increase in the pentose phosphate pathway, as evidenced by altered expression and activity of GAPDH and glucose-6-phosphate dehydrogenase, respectively. Impairment of GAPDH was found to be due to glutathionylation of its catalytic site cysteines. Metabolic changes were associated with changes in cellular and mitochondrial redox status, assessed in terms of pyridine nucleotides and glutathione. CS exposure elicited an upregulation of the expression of complexes II, III, IV, and V and of the activity of complexes II, IV, and V. Microarray analysis of gene expression in mouse lungs after exposure to CS for 8 wk revealed upregulation of a group of genes involved in metabolism, electron transfer chain, oxidative phosphorylation, mitochondrial transport and dynamics, and redox regulation. These changes occurred independently of inflammatory responses. These findings have implications for the early onset of alterations in energy and redox metabolism upon acute lung exposure to CS.

  11. Modulation of radiation-induced alterations in oxidative stress and cytokine expression in lung tissue by Panax ginseng extract.

    PubMed

    Jang, Seong Soon; Kim, Hyeong Geug; Han, Jong Min; Lee, Jin Seok; Choi, Min Kyung; Huh, Gil Ja; Son, Chang Gue

    2015-02-01

    We investigated the modulating effect of Panax ginseng extract (PGE) on radiation-induced lung injury (RILI) by measuring early changes in oxidative stress levels, cytokine expression, and the histopathology of mouse lung tissue treated with high dose of X-ray radiation. The mice were pretreated with 25, 50, and 100-mg/kg doses of PGE orally for four consecutive days, and their thoraces were then exposed to 15-Gy X-ray radiation 1 h after the last administration of PGE on day 4. The pretreatments with 50 and 100 mg/kg PGE led to significant reductions in the elevation of lipid peroxidation levels at 2 and 10 days, respectively, after irradiation. The mice pretreated with PGE exhibited dose-dependent reductions in the irradiation-induced production of tumor necrosis factor α and transforming growth factor β1 cytokines 10 days after irradiation, with these reductions nearly reaching the control levels after the 100-mg/kg dose. Furthermore, together with providing significant protection against reductions in catalase activity and glutathione content, pretreatment with 100 mg/kg PGE resulted in a marked attenuation of the severity of inflammatory changes in lung tissue 10 days after irradiation. A high pretreatment dose of PGE may be a useful pharmacological approach for protection against RILI.

  12. Inhaled nitric oxide exacerbated phorbol-induced acute lung injury in rats.

    PubMed

    Lin, Hen I; Chu, Shi Jye; Hsu, Kang; Wang, David

    2004-01-01

    In this study, we determined the effect of inhaled nitric oxide (NO) on the acute lung injury induced by phorbol myristate acetate (PMA) in isolated rat lung. Typical acute lung injury was induced successfully by PMA during 60 min of observation. PMA (2 microg/kg) elicited a significant increase in microvascular permeability, (measured using the capillary filtration coefficient Kfc), lung weight gain, lung weight/body weight ratio, pulmonary arterial pressure (PAP) and protein concentration of the bronchoalveolar lavage fluid. Pretreatment with inhaled NO (30 ppm) significantly exacerbated acute lung injury. All of the parameters reflective of lung injury increased significantly except PAP (P<0.05). Coadministration of Nomega-nitro-L-arginine methyl ester (L-NAME) (5 mM) attenuated the detrimental effect of inhaled NO in PMA-induced lung injury, except for PAP. In addition, L-NAME (5 mM) significantly attenuated PMA-induced acute lung injury except for PAP. These experimental data suggest that inhaled NO significantly exacerbated acute lung injury induced by PMA in rats. L-NAME attenuated the detrimental effect of inhaled NO.

  13. Role of inhaled nitric oxide in ischaemia-reperfusion injury in the perfused rabbit lung.

    PubMed

    Ishibe, Y; Liu, R; Ueda, M; Mori, K; Miura, N

    1999-09-01

    We have tested if inhaled nitric oxide (NO) is beneficial in ischaemia-reperfusion (IR) lung injury using an isolated perfused rabbit lung model. Ischaemia for 60 min was followed by reperfusion and ventilation with nitric oxide 40 ppm (n = 6) or without nitric oxide ventilation (n = 6) for 60 min. In the control group (n = 6), the lungs were perfused continuously for 120 min. Permeability coefficient (Kfc) and vascular resistance (PVR) were measured serially for 60 min after reperfusion. We also determined the left lung W/D ratio and measured nitric oxide metabolites (NOx) and cGMP concentrations in bronchoalveolar lavage (BAL) fluid from the right lung. IR increased Kfc, PVR and W/D followed by decreased cGMP. Ventilation with nitric oxide restored these changes by preventing the decrease in cGMP. Differences in NOx concentrations in BAL fluid between the control and IR groups were not statistically significant. Our results indicate that IR impaired pulmonary vascular function and resulted in microvascular constriction and leakage. Ventilation with nitric oxide from the beginning of the reperfusion period improved pulmonary dysfunction such as vasoconstriction and capillary leak by restoring cGMP concentrations.

  14. Low oxygen tension enhances the generation of lung progenitor cells from mouse embryonic and induced pluripotent stem cells

    PubMed Central

    Garreta, Elena; Melo, Esther; Navajas, Daniel; Farré, Ramon

    2014-01-01

    Abstract Whole‐organ decellularization technology has emerged as a new alternative for the fabrication of bioartificial lungs. Embryonic stem cells (ESC) and induced pluripotent stem cells (iPSC) are potentially useful for recellularization since they can be directed to express phenotypic marker genes of lung epithelial cells. Normal pulmonary development takes place in a low oxygen environment ranging from 1 to 5%. By contrast, in vitro ESC and iPSC differentiation protocols are usually carried out at room‐air oxygen tension. Here, we sought to determine the role played by oxygen tension on the derivation of Nkx2.1+ lung/thyroid progenitor cells from mouse ESC and iPSC. A step‐wise differentiation protocol was used to generate Nkx2.1+ lung/thyroid progenitors under 20% and 5% oxygen tension. On day 12, gene expression analysis revealed that Nkx2.1 and Foxa2 (endodermal and early lung epithelial cell marker) were significantly upregulated at 5% oxygen tension in ESC and iPSC differentiated cultures compared to 20% oxygen conditions. In addition, quantification of Foxa2+Nkx2.1+Pax8‐ cells corresponding to the lung field, with exclusion of the potential thyroid fate identified by Pax8 expression, confirmed that the low physiologic oxygen tension exerted a significant positive effect on early pulmonary differentiation of ESC and iPSC. In conclusion, we found that 5% oxygen tension enhanced the derivation of lung progenitors from mouse ESC and iPSC compared to 20% room‐air oxygen tension. PMID:25347858

  15. [Effect of thalidomide in a mouse model of paraquat-induced acute lung injury and the underlying mechanisms].

    PubMed

    Zhao, Guangju; Cai, Xiaoxia; She, Xingrong; Li, Dong; Hong, Guangliang; Wu, Bin; Li, Mengfang; Lu, Zhongqiu

    2014-11-01

    To investigate the effects of thalidomide in a mouse model of paraquat-induced acute lung injury and the mechanisms underlying the properties of thalidomide. Male ICR mice were randomly allocated into four groups: nomal control group (n = 30), thalidomide control group (n = 30), paraquat poisioning group (n = 30) and thalidomide treatment group (n = 90). Mice were sacrificed at 1d, 3d and 7d after paraquat poisioning. The level of (MDA) malondialdehyde, Superoxidedi-smutase (SOD) and glutathione (GSH) in the lung tissue were measuerd by chemical colorimetry. The expression of Nrf2 mRNA was determined by RT-PCR; Nuclear protein Nrf2 was abserved by Western blotting; Pathological changes of lung tissue were observed under light microscope by HE stain; the lung apoptosis cells were detected by TUNEL. The levels of MDA, SOD and the expressions Nrf2 mRNA and protein Nrf2 in lung tissue were all markedly increased in mice of paraquat poisioning group than those in nomal group at 1 d, 3 d, 7 d. In contrast, the levels of GSH were decreaseel (P<0.05). Compared with paraquat poisioning group, the pulmonary SOD, Nrf2 mRNA and protein were increased and the lung wet dry ratio were all significantly decreased in mice of THD treatment group at 1 d, 3 d, 7 d (P<0.05). THD alleviated the pulmonary damage in the lightmicroscope at 3d after paraquat poisioning. The apoptosis index was markedly decreased in THD treatment groups comparing to paraquat piosioning group (P<0.05). Lipid peroxide damage was one of the mechanisms of paraquat poisioning, thalidomide could attenuate paraquat-induced acute lung injury and its mechanism may be activating the Nrf2-ARE signaling pathway to protect mouse from Lipid peroxide damage.

  16. Proteoglycans Maintain Lung Stability in an Elastase-Treated Mouse Model of Emphysema

    PubMed Central

    Takahashi, Ayuko; Majumdar, Arnab; Parameswaran, Harikrishnan; Bartolák-Suki, Erzsébet

    2014-01-01

    Extracellular matrix remodeling and tissue rupture contribute to the progression of emphysema. Lung tissue elasticity is governed by the tensile stiffness of fibers and the compressive stiffness of proteoglycans. It is not known how proteoglycan remodeling affects tissue stability and destruction in emphysema. The objective of this study was to characterize the role of remodeled proteoglycans in alveolar stability and tissue destruction in emphysema. At 30 days after treatment with porcine pancreatic elastase, mouse lung tissue stiffness and alveolar deformation were evaluated under varying tonicity conditions that affect the stiffness of proteoglycans. Proteoglycans were stained and measured in the alveolar walls. Computational models of alveolar stability and rupture incorporating the mechanical properties of fibers and proteoglycans were developed. Although absolute tissue stiffness was only 24% of normal, changes in relative stiffness and alveolar shape distortion due to changes in tonicity were increased in emphysema (P < 0.01 and P < 0.001). Glycosaminoglycan amount per unit alveolar wall length, which is responsible for proteoglycan stiffness, was higher in emphysema (P < 0.001). Versican expression increased in the tissue, but decorin decreased. Our network model predicted that the rate of tissue deterioration locally governed by mechanical forces was reduced when proteoglycan stiffness was increased. Consequently, this general network model explains why increasing proteoglycan deposition protects the alveolar walls from rupture in emphysema. Our results suggest that the loss of proteoglycans observed in human emphysema contributes to disease progression, whereas treatments that promote proteoglycan deposition in the extracellular matrix should slow the progression of emphysema. PMID:24450478

  17. Acinetobacter baumannii Infection Inhibits Airway Eosinophilia and Lung Pathology in a Mouse Model of Allergic Asthma

    PubMed Central

    Qiu, Hongyu; KuoLee, Rhonda; Harris, Greg; Zhou, Hongyan; Miller, Harvey; Patel, Girishchandra B.; Chen, Wangxue

    2011-01-01

    Allergic asthma is a dysregulation of the immune system which leads to the development of Th2 responses to innocuous antigens (allergens). Some infections and microbial components can re-direct the immune response toward the Th1 response, or induce regulatory T cells to suppress the Th2 response, thereby inhibiting the development of allergic asthma. Since Acinetobacter baumannii infection can modulate lung cellular and cytokine responses, we studied the effect of A. baumannii in modulating airway eosinophilia in a mouse model of allergic asthma. Ovalbumin (OVA)-sensitized mice were treated with live A. baumannii or phosphate buffered saline (PBS), then intranasally challenged with OVA. Compared to PBS, A. baumannii treatment significantly reduced pulmonary Th2 cytokine and chemokine responses to OVA challenge. More importantly, the airway inflammation in A. baumannii-treated mice was strongly suppressed, as seen by the significant reduction of the proportion and the total number of eosinophils in the bronchoalveolar lavage fluid. In addition, A. baumannii-treated mice diminished lung mucus overproduction and pathology. However, A. baumannii treatment did not significantly alter systemic immune responses to OVA. Serum OVA-specific IgE, IgG1 and IgG2a levels were comparable between A. baumannii- and PBS-treated mice, and tracheobronchial lymph node cells from both treatment groups produced similar levels of Th1 and Th2 cytokines in response to in vitro OVA stimulation. Moreover, it appears that TLR-4 and IFN-γ were not directly involved in the A. baumannii-induced suppression of airway eosinophilia. Our results suggest that A. baumannii inhibits allergic airway inflammation by direct suppression of local pulmonary Th2 cytokine responses to the allergen. PMID:21789200

  18. Lung macrophages "digest" carbon nanotubes using a superoxide/peroxynitrite oxidative pathway.

    PubMed

    Kagan, Valerian E; Kapralov, Alexandr A; St Croix, Claudette M; Watkins, Simon C; Kisin, Elena R; Kotchey, Gregg P; Balasubramanian, Krishnakumar; Vlasova, Irina I; Yu, Jaesok; Kim, Kang; Seo, Wanji; Mallampalli, Rama K; Star, Alexander; Shvedova, Anna A

    2014-06-24

    In contrast to short-lived neutrophils, macrophages display persistent presence in the lung of animals after pulmonary exposure to carbon nanotubes. While effective in the clearance of bacterial pathogens and injured host cells, the ability of macrophages to "digest" carbonaceous nanoparticles has not been documented. Here, we used chemical, biochemical, and cell and animal models and demonstrated oxidative biodegradation of oxidatively functionalized single-walled carbon nanotubes via superoxide/NO* → peroxynitrite-driven oxidative pathways of activated macrophages facilitating clearance of nanoparticles from the lung.

  19. Supplementary catechins attenuate cooking-oil-fumes-induced oxidative stress in rat lung.

    PubMed

    Yang, Chao-Huei; Lin, Chun-Yao; Yang, Joan-Hwa; Liou, Shaw-Yih; Li, Ping-Chia; Chien, Chiang-Ting

    2009-06-30

    Cooking-oil-fumes containing toxic components may induce reactive oxygen species (ROS) to oxidize macromolecules and lead to acute lung injury. Our previous study showed that a decaffineated green tea extract containing (+)-catechin, (-)-epicatechin, (+)-gallocatechin, (-)-epigallocatechin, (-)-epicatechin gallate, and (-)-epigallocatechin gallate can inhibit oxidation, inflammation, and apoptosis. We determined whether the catechins supplement may reduce cooking-oil-fumes-induced acute lung injury in rat. In the urethane-anesthetized Wistar rat subjected to 30-120 min of cooking-oil-fumes exposure, blood ROS significantly increased in the recovery stage. After 30-min cooking-oil-fumes exposure, the enhanced blood ROS level further increased in a time-dependent manner during the recovery stage (321 +/- 69 counts/10 s after 1 h, 540 +/- 89 counts/10 s after 2 h, and 873 +/- 112 counts/10 s after 4 h). Four hours after 30-min cooking-oil-fumes exposure, lung lavage neutrophils and ROS as well as lung tissue dityrosine and 4-hydroxy-2-nonenal increased significantly. Two weeks of catechins supplememnt significantly reduced the enhanced lavage ROS, lung dityrosine and 4-hydroxy-2-nonenal level. Cooking-oil-fumes-induced oxidative stress decreased lung Bcl-2/Bax ratio and HSP70 expression, but catechins treatment preserved the downregulation of Bcl-2/Bax ratio and HSP70 expression. We conclude that catechins supplement attenuates cooking-oil-fumes-induced acute lung injury via the preservation of oil-smoke induced downregulation of antioxidant, antiapoptosis, and chaperone protein expression.

  20. Stereological assessment of mouse lung parenchyma via nondestructive, multiscale micro-CT imaging validated by light microscopic histology.

    PubMed

    Vasilescu, Dragos M; Klinge, Christine; Knudsen, Lars; Yin, Leilei; Wang, Ge; Weibel, Ewald R; Ochs, Matthias; Hoffman, Eric A

    2013-03-15

    Quantitative assessment of the lung microstructure using standard stereological methods such as volume fractions of tissue, alveolar surface area, or number of alveoli, are essential for understanding the state of normal and diseased lung. These measures are traditionally obtained from histological sections of the lung tissue, a process that ultimately destroys the three-dimensional (3-D) anatomy of the tissue. In comparison, a novel X-ray-based imaging method that allows nondestructive sectioning and imaging of fixed lungs at multiple resolutions can overcome this limitation. Scanning of the whole lung at high resolution and subsequent regional sampling at ultrahigh resolution without physically dissecting the organ allows the application of design-based stereology for assessment of the whole lung structure. Here we validate multiple stereological estimates performed on micro-computed tomography (μCT) images by comparing them with those obtained via conventional histology on the same mouse lungs. We explore and discuss the potentials and limitations of the two approaches. Histological examination offers higher resolution and the qualitative differentiation of tissues by staining, but ultimately loses 3-D tissue relationships, whereas μCT allows for the integration of morphometric data with the spatial complexity of lung structure. However, μCT has limited resolution satisfactory for the sterological estimates presented in this study but not for differentiation of tissues. We conclude that introducing stereological methods in μCT studies adds value by providing quantitative information on internal structures while not curtailing more complex approaches to the study of lung architecture in the context of physiological or pathological studies.

  1. Stereological assessment of mouse lung parenchyma via nondestructive, multiscale micro-CT imaging validated by light microscopic histology

    PubMed Central

    Vasilescu, Dragoş M.; Klinge, Christine; Knudsen, Lars; Yin, Leilei; Wang, Ge; Weibel, Ewald R.; Ochs, Matthias

    2013-01-01

    Quantitative assessment of the lung microstructure using standard stereological methods such as volume fractions of tissue, alveolar surface area, or number of alveoli, are essential for understanding the state of normal and diseased lung. These measures are traditionally obtained from histological sections of the lung tissue, a process that ultimately destroys the three-dimensional (3-D) anatomy of the tissue. In comparison, a novel X-ray-based imaging method that allows nondestructive sectioning and imaging of fixed lungs at multiple resolutions can overcome this limitation. Scanning of the whole lung at high resolution and subsequent regional sampling at ultrahigh resolution without physically dissecting the organ allows the application of design-based stereology for assessment of the whole lung structure. Here we validate multiple stereological estimates performed on micro–computed tomography (μCT) images by comparing them with those obtained via conventional histology on the same mouse lungs. We explore and discuss the potentials and limitations of the two approaches. Histological examination offers higher resolution and the qualitative differentiation of tissues by staining, but ultimately loses 3-D tissue relationships, whereas μCT allows for the integration of morphometric data with the spatial complexity of lung structure. However, μCT has limited resolution satisfactory for the sterological estimates presented in this study but not for differentiation of tissues. We conclude that introducing stereological methods in μCT studies adds value by providing quantitative information on internal structures while not curtailing more complex approaches to the study of lung architecture in the context of physiological or pathological studies. PMID:23264542

  2. PR-Set7 is degraded in a conditional Cul4A transgenic mouse model of lung cancer

    DOE PAGES

    Wang, Yang; Xu, Zhidong; Mao, Jian -Hua; ...

    2015-06-01

    Background and objective. Maintenance of genomic integrity is essential to ensure normal organismal development and to prevent diseases such as cancer. PR-Set7 (also known as Set8) is a cell cycle regulated enzyme that catalyses monomethylation of histone 4 at Lys20 (H4K20me1) to promote chromosome condensation and prevent DNA damage. Recent studies show that CRL4CDT2-mediated ubiquitylation of PR-Set7 leads to its degradation during S phase and after DNA damage. This might occur to ensure appropriate changes in chromosome structure during the cell cycle or to preserve genome integrity after DNA damage. Methods. We developed a new model of lung tumor developmentmore » in mice harboring a conditionally expressed allele of Cul4A. We have therefore used a mouse model to demonstrate for the first time that Cul4A is oncogenic in vivo. With this model, staining of PR-Set7 in the preneoplastic and tumor lesions in AdenoCre-induced mouse lungs was performed. Meanwhile we identified higher protein level changes of γ-tubulin and pericentrin by IHC. Results. The level of PR-Set7 down-regulated in the preneoplastic and adenocarcinomous lesions following over-expression of Cul4A. We also identified higher levels of the proteins pericentrin and γ-tubulin in Cul4A mouse lungs induced by AdenoCre. Conclusion. PR-Set7 is a direct target of Cul4A for degradation and involved in the formation of lung tumors in the conditional Cul4A transgenic mouse model.« less

  3. Grape seed and skin extract protects against bleomycin-induced oxidative stress in rat lung.

    PubMed

    Khazri, Olfa; Charradi, Kamel; Limam, Ferid; El May, Michelle Veronique; Aouani, Ezzedine

    2016-07-01

    Lung fibrosis is a common side effect of the chemotherapeutic agent bleomycin and current evidence suggests that reactive oxygen species play a key role in the development of lung injury. We examined whether grape seed and skin extract (GSSE), a polyphenolic mixture exhibiting antioxidant properties, is able to protect against bleomycin-induced lung oxidative stress and injury. Rats were pre-treated during three weeks either with vehicle (ethanol 10% control) or GSSE (4g/kg), then administered with a single high dose bleomycin (15mg/kg) at the 7th day. Bleomycin increased lung lipoperoxidation, carbonylation and decreased antioxidant enzyme activities as catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx). Bleomycin also induced copper depletion from the lung and iron accumulation within the lung, but had no effect on either zinc nor manganese. Correlatively bleomycin decreased the copper associated enzyme tyrosinase, increased the zinc dependent lactate dehydrogenase (LDH) and did not affect the manganese dependent glutamine synthetase. GSSE efficiently counteracted almost all bleomycin-induced oxidative stress, biochemical and morphological changes of lung tissue. Data suggest that GSSE exerts potent antioxidant properties that could find potential application in the protection against bleomycin-induced lung fibrosis. Copyright © 2016. Published by Elsevier Masson SAS.

  4. Caryocar brasiliense camb protects against genomic and oxidative damage in urethane-induced lung carcinogenesis

    PubMed Central

    Colombo, N.B.R.; Rangel, M.P.; Martins, V.; Hage, M.; Gelain, D.P.; Barbeiro, D.F.; Grisolia, C.K.; Parra, E.R.; Capelozzi, V.L.

    2015-01-01

    The antioxidant effects of Caryocar brasiliense Camb, commonly known as the pequi fruit, have not been evaluated to determine their protective effects against oxidative damage in lung carcinogenesis. In the present study, we evaluated the role of pequi fruit against urethane-induced DNA damage and oxidative stress in forty 8-12 week old male BALB/C mice. An in vivo comet assay was performed to assess DNA damage in lung tissues and changes in lipid peroxidation and redox cycle antioxidants were monitored for oxidative stress. Prior supplementation with pequi oil or its extract (15 µL, 60 days) significantly reduced urethane-induced oxidative stress. A protective effect against DNA damage was associated with the modulation of lipid peroxidation and low protein and gene expression of nitric oxide synthase. These findings suggest that the intake of pequi fruit might protect against in vivo genotoxicity and oxidative stress. PMID:26200231

  5. Mouse lung slices: An ex vivo model for the evaluation of antiviral and anti-inflammatory agents against influenza viruses.

    PubMed

    Liu, Rui; An, Liwei; Liu, Ge; Li, Xiaoyu; Tang, Wei; Chen, Xulin

    2015-08-01

    The influenza A virus is notoriously known for its ability to cause recurrent epidemics and global pandemics. Antiviral therapy is effective when treatment is initiated within 48h of symptom onset, and delaying treatment beyond this time frame is associated with decreased efficacy. Research on anti-inflammatory therapy to ameliorate influenza-induced inflammation is currently underway and seems important to the impact on the clinical outcome. Both antiviral and anti-inflammatory drugs with novel mechanisms of action are urgently needed. Current methods for evaluating the efficacy of anti-influenza drugs rely mostly on transformed cells and animals. Transformed cell models are distantly related to physiological and pathological conditions. Although animals are the best choices for preclinical drug testing, they are not time- or cost-efficient. In this study, we established an ex vivo model using mouse lung slices to evaluate both antiviral and anti-inflammatory agents against influenza virus infection. Both influenza virus PR8 (H1N1) and A/Human/Hubei/3/2005 (H3N2) can replicate efficiently in mouse lung slices and trigger significant cytokine and chemokine responses. The induction of selected cytokines and chemokines were found to have a positive correlation between ex vivo and in vivo experiments, suggesting that the ex vivo cultured lung slices may closely resemble the lung functionally in an in vivo configuration when challenged by influenza virus. Furthermore, a set of agents with known antiviral and/or anti-inflammatory activities were tested to validate the ex vivo model. Our results suggested that mouse lung slices provide a robust, convenient and cost-efficient model for the assessment of both antiviral and anti-inflammatory agents against influenza virus infection in one assay. This ex vivo model may predict the efficacy of drug candidates' antiviral and anti-inflammatory activities in vivo.

  6. Ion-Current-Based Temporal Proteomic Profiling of Influenza-A-Virus-Infected Mouse Lungs Revealed Underlying Mechanisms of Altered Integrity of the Lung Microvascular Barrier.

    PubMed

    Shen, Shichen; Li, Jun; Hilchey, Shannon; Shen, Xiaomeng; Tu, Chengjian; Qiu, Xing; Ng, Andrew; Ghaemmaghami, Sina; Wu, Hulin; Zand, Martin S; Qu, Jun

    2016-02-05

    Investigation of influenza-A-virus (IAV)-infected lung proteomes will greatly promote our understanding on the virus-host crosstalk. Using a detergent-cocktail extraction and digestion procedure and a reproducible ion-current-based method, we performed the first comprehensive temporal analysis of mouse IAV infection. Mouse lung tissues at three time points post-inoculation were compared with controls (n = 4/group), and >1600 proteins were quantified without missing value in any animal. Significantly changed proteins were identified at 4 days (n = 144), 7 days (n = 695), and 10 days (n = 396) after infection, with low false altered protein rates (1.73-8.39%). Functional annotation revealed several key biological processes involved in the systemic host responses. Intriguingly, decreased levels of several cell junction proteins as well as increased levels of tissue metalloproteinase MMP9 were observed, reflecting the IAV-induced structural breakdown of lung epithelial barrier. Supporting evidence of MMP9 activation came from immunoassays examining the abundance and phosphorylation states of all MAPKs and several relevant molecules. Importantly, IAV-induced MMP gelatinase expression was suggested to be specific to MMP9, and p38 MAPK may contribute predominantly to MMP9 elevation. These findings help to resolve the long-lasting debate regarding the signaling pathways of IAV-induced MMP9 expression and shed light on the molecular mechanisms underlying pulmonary capillary-alveolar leak syndrome that can occur during influenza infection.

  7. Nitric oxide plays a minimal role in hypoxic pulmonary vasoconstriction in isolated rat lungs.

    PubMed

    Hakim, T S; Pedoto, A; Mangar, D; Camporesi, E M

    2013-10-01

    The goal of this study was to elucidate the importance of nitric oxide production during hypoxic pulmonary vasoconstriction (HPV). One group of Sprague Dawley rats received an ip injection of saline (controls), while a second group received an ip injection of Escherichia coli lipopolysacharides (LPS-treated) to render them septic. Three hours later, the animals were anesthetized and prepared for the isolated lung experiment. The lungs were ventilated and perfused with diluted autologous blood (Hct 23%) at constant flow rate while monitoring pulmonary arterial pressure (Pa). Nitric oxide production from the lungs was monitored by measuring its concentration in the mixed exhaled gas (NOe) offline. NOe in the isolated lungs was 2 ppb in controls and 90 ppb in the LPS treated lungs. Hypoxia caused Pa to rise from 10 to 17 mmHg in control lungs, and from 10 to 27 mmHg in the LPS treated lungs. NO production was then manipulated to determine if it affects HPV. NOe was increased by adding L-arginine to the blood, and was blocked by adding nitro-L-arginine (LNA). L-Arginine had minimal effect on NOe in control lungs, but increased NOe in LPS treated lungs, and yet HPV was similar in the 2 groups. Despite inhibition of NO synthesis with nitro-L-arginine (LNA), HPV was potentiated equally in control and in LPS treated lungs (Pa rose by 23 mmHg). Thus NO production did not affect the difference in HPV between control and LPS treated lungs. The results suggest that NO does not plays a primary role in HPV.

  8. The Shc 66 and 46 kD isoforms are differentially downregulated at parturition in the fetal mouse lung.

    PubMed

    Lee, M K; Zhao, J; Smith, S M; Tefft, J D; Bringas, P; Hwang, C; Warburton, D

    1998-12-01

    Many of the signaling pathways regulating fetal lung mesenchymal cell proliferation are mediated by the Shc intracellular signaling proteins. Shc is expressed as three isoforms: 52 kD and 46 kD proteins (Shc 52 and Shc 46, respectively) translated from the same mRNA, and a 66 kD form (Shc 66) translated from a separate mRNA. Shc 52 is an activator of Ras and mitogen-activated protein kinase, whereas Shc 66 antagonizes Ras activation. The function of Shc 46 is unclear. We hypothesized that the Shc isoforms are differentially regulated during fetal mouse lung morphogenesis. Relative Shc 66 and Shc 46 protein expression are high until parturition (term = 18.5 d), when a dramatic decrease begins; by postconceptual d 20, relative Shc 66 and Shc 46 expression have fallen by 75 and 69%, respectively. A similar pattern of decreasing Shc 66 mRNA expression in the peripartum period was detected by reverse transcription and competitive polymerase chain reaction during the same period. By isoform-specific immunohistochemistry, Shc 66 is widely distributed in the embryonic lung but becomes restricted to the bronchial smooth muscle and overlying epithelia, periarterial smooth muscle, and the interlobar pleura late in gestation. After parturition, Shc 66 is virtually absent from the lung. All three Shc isoforms are phosphorylated by epidermal growth factor stimulation in fetal lung mesenchymal cells, indicating that Shc 66 is functional in these cells. These data indicate that Shc isoforms are differentially regulated during lung development.

  9. In vivo tomographic imaging of lung colonization of tumour in mouse with simultaneous fluorescence and X-ray CT.

    PubMed

    Zhang, Bin; Gao, Fuping; Wang, Mengjiao; Cao, Xu; Liu, Fei; Wang, Xin; Luo, Jianwen; Wang, Guangzhi; Bai, Jing

    2014-01-01

    Non-invasive in vivo imaging of diffuse and wide-spread colonization within the lungs, rather than distinct solid primary tumors, is still a challenging work. In this work, a lung colonization mouse model bearing A549 human lung tumor was simultaneously scanned by a dual-modality fluorescence molecular tomography (FMT) and X-ray computed tomography (CT) system in vivo. A two steps method which incorporates CT structural information into the FMT reconstruction procedure is employed to provide concurrent anatomical and functional information. By using the target-specific fluorescence agent, the fluorescence tomographic results show elevated fluorescence intensity deep within the lungs which is colonized with diffuse and wide-spread tumors. The results were confirmed with ex vivo fluorescence reflectance imaging and histological examination of the lung tissues. With FMT reconstruction combined with the CT information, the dual-modality FMT/micro-CT system is expected to offer sensitive and noninvasive imaging of diffuse tumor colonization within the lungs in vivo. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. DNA vaccine elicits an efficient antitumor response by targeting the mutant Kras in a transgenic mouse lung cancer model.

    PubMed

    Weng, T-Y; Yen, M-C; Huang, C-T; Hung, J-J; Chen, Y-L; Chen, W-C; Wang, C-Y; Chang, J-Y; Lai, M-D

    2014-10-01

    Mutant Kras (V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog) is observed in more than 20% of non-small-cell lung cancers; however, no effective Kras target therapy is available at present. The Kras DNA vaccine may represent as a novel immunotherapeutic agent in lung cancer. In this study, we investigated the antitumor efficacy of the Kras DNA vaccine in a genetically engineered inducible mouse lung tumor model driven by Kras(G12D). Lung tumors were induced by doxycycline, and the therapeutic effects of Kras DNA vaccine were evaluated with delivery of Kras(G12D) plasmids. Mutant Kras(G12D) DNA vaccine significantly decreased the tumor nodules. A dominant-negative mutant Kras(G12D)N17, devoid of oncogenic activity, achieved similar therapeutic effects. The T-helper 1 immune response was enhanced in mice treated with Kras DNA vaccine. Splenocytes from mice receiving Kras DNA vaccine presented an antigen-specific response by treatment with peptides of Kras but not Hras or OVA. The number of tumor-infiltrating CD8(+) T cells increased after Kras vaccination. In contrast, Kras DNA vaccine was not effective in the lung tumor in transgenic mice, which was induced by mutant L858R epidermal growth factor receptor. Overall, these results indicate that Kras DNA vaccine produces an effective antitumor response in transgenic mice, and may be useful in treating lung cancer-carrying Ras mutation.

  11. Nanomaterial induction of oxidative stress in lung epithelial cells and macrophages

    NASA Astrophysics Data System (ADS)

    Wang, Lin; Pal, Anoop K.; Isaacs, Jacqueline A.; Bello, Dhimiter; Carrier, Rebecca L.

    2014-09-01

    Oxidative stress in the lung epithelial A549 cells and macrophages J774A.1 due to contact with commercially important nanomaterials [i.e., nano-silver (nAg), nano-alumina (nAl2O3), single-wall carbon nanotubes (CNT), and nano-titanium oxide anatase (nTiO2)] was evaluated. Nanomaterial-induced intracellular oxidative stress was analyzed by both H2DCFDA fluorescein probe and GSH depletion, extracellular oxidative stress was assessed by H2HFF fluorescein probes, and the secretion of chemokine IL-8 by A549 cells due to elevation of cellular oxidative stress was also monitored, in order to provide a comprehensive in vitro study on nanomaterial-induced oxidative stress in lung. In addition, results from this study were also compared with an acellular "ferric reducing ability of serum" (FRAS) assay and a prokaryotic cell-based assay in evaluating oxidative damage caused by the same set of nanomaterials, for comparison purposes. In general, it was found that nanomaterial-induced oxidative stress is highly cell-type dependent. In A549 lung epithelial cells, nAg appeared to induce highest level of oxidative stress and cell death followed by CNT, nTiO2, and nAl2O3. Different biological oxidative damage (BOD) assays' (i.e., H2DCFA, GSH, and IL-8 release) results generally agreed with each other, and the same trends of nanomaterial-induced BOD were also observed in acellular FRAS and prokaryotic E. coli K12-based assay. In macrophage J774A.1 cells, nAl2O3 and nTiO2 appeared to induce highest levels of oxidative stress. These results suggest that epithelial and macrophage cell models may provide complimentary information when conducting cell-based assays to evaluate nanomaterial-induced oxidative damage in lung.

  12. Effects of surfactant/budesonide therapy on oxidative modifications in the lung in experimental meconium-induced lung injury.

    PubMed

    Mikolka, P; Kopincova, J; Tomcikova Mikusiakova, L; Kosutova, P; Antosova, M; Calkovska, A; Mokra, D

    2016-02-01

    Meconium aspiration syndrome (MAS) is a serious condition, which can be treated with exogenous surfactant and mechanical ventilation. However, meconium-induced inflammation, lung edema and oxidative damage may inactivate delivered surfactant and thereby reduce effectiveness of the therapy. As we presumed that addition of anti-inflammatory agent into the surfactant may alleviate inflammation and enhance efficiency of the therapy, this study was performed to evaluate effects of surfactant therapy enriched with budesonide versus surfactant-only therapy on markers of oxidative stress in experimental model of MAS. Meconium suspension (25 mg/ml, 4 ml/kg) was instilled into the trachea of young rabbits, whereas one group of animals received saline instead of meconium (C group, n = 6). In meconium-instilled animals, respiratory failure developed within 30 min. Then, meconium-instilled animals were divided into 3 groups according to therapy (n = 6 each): with surfactant therapy (M + S group), with surfactant + budesonide therapy (M + S + B), and without therapy (M group). Surfactant therapy consisted of two bronchoalveolar lavages (BAL) with diluted surfactant (Curosurf, 5 mg phospholipids/ml, 10 ml/kg) followed by undiluted surfactant (100 mg phospholipids/kg), which was in M + S + B group enriched with budesonide (Pulmicort, 0.5 mg/ml). Animals were oxygen-ventilated for additional 5 hours. At the end of experiment, blood sample was taken for differential white blood cell (WBC) count. After euthanizing animals, left lung was saline-lavaged and cell differential in BAL was determined. Oxidative damage, i.e. oxidation of lipids (thiobarbituric acid reactive substance (TBARS) and conjugated dienes) and proteins (dityrosine and lysine-lipoperoxidation products) was estimated in lung homogenate and isolated mitochondria. Total antioxidant capacity was evaluated in lung homogenate and plasma. Meconium instillation increased transmigration of neutrophils and production of free

  13. Cationic amphiphiles with fatty acyl chain asymmetry of coconut oil deliver genes selectively to mouse lung.

    PubMed

    Chandrashekhar, Voshavar; Srujan, Marepally; Prabhakar, Rairala; Reddy, Rakesh C; Sreedhar, Bojja; Rentam, Kiran K R; Kanjilal, Sanjit; Chaudhuri, Arabinda

    2011-03-16

    Recent structure-activity studies have revealed a dramatic influence of hydrophobic chain asymmetry in enhancing gene delivery efficacies of synthetic cationic amphiphiles (Nantz, M. H. et al. Mol. Pharmaceutics2010, 7, 786-794; Koynova, R. et al. Mol. Pharmaceutics2009, 6, 951-958). The present findings demonstrate for the first time that such a transfection enhancing influence of asymmetric hydrocarbon chains observed in pure synthetic cationic amphiphiles also works for cationic amphiphiles designed with natural, asymmetric fatty acyl chains of a food-grade oil. Herein, we demonstrate that cationic amphiphiles designed with the natural fatty acyl chain asymmetry of food-grade coconut oil are less cytotoxic and deliver genes selectively to mouse lung. Despite lauroyl chains being the major fatty acyl chains of coconut oil, both the in vitro and In vivo gene transfer efficiencies of such cationic amphiphiles were found to be remarkably superior (>4-fold) to those of their pure dilauroyl analogue. Mechanistic studies involving the technique of fluorescence resonance energy transfer (FRET) revealed higher biomembrane fusibility of the cationic liposomes of the coconut amphiphiles than that of the symmetric dilauroyl analogue. AFM study revealed pronounced fusogenic nonlamellar structures of the liposomes of coconut amphiphiles. Findings in the FRET and cellular uptake study, taken together, support the notion that the higher cellular uptake resulting from the more fusogenic nature of the liposomes of coconut amphiphiles 1 are likely to play a dominant role in making the coconut amphiphiles transfection competent.

  14. Arsenic trioxide inhibits lung metastasis of mouse colon cancer via reducing the infiltration of regulatory T cells.

    PubMed

    Wang, Lei; Hu, Xiang; Xu, Yingxin; Liu, Zhong

    2016-11-01

    The purpose of this study was to investigate the effects of arsenic trioxide (As2O3) on the infiltration of regulatory T cells (Tregs) in the local lung metastasis of mouse colon cancer in vivo and the regulation of Tregs in cytokine-induced killer cells (CIKs) in vitro. A high Tregs infiltration mouse colon cancer lung metastasis model was established by intravenous injection of CT26 murine colon carcinoma cells. Tumor-bearing mice were randomly divided into three groups: control group, low-dose As2O3 group, and high-dose As2O3 group. For in vitro studies, CIKs were treated with vehicle control or 0.1, 1, or 5 μM As2O3. The level of Tregs was detected via flow cytometry, Foxp3 expression was assessed by immunohistochemistry and reverse transcription-polymerase chain reaction (RT-PCR), the level of interferon gamma (IFN-γ) was evaluated by enzyme-linked immunoassay (ELISA), and the cytotoxic activity of As2O3-treated CIKs was assessed through a lactate dehydrogenase (LDH) release assay. Obvious lung metastasis was observed 3 days after CT26 murine colon carcinoma cell injection. The numbers of Tregs in the lungs and spleens of tumor-bearing mice were significantly higher than those of the normal group (p < 0.01). As2O3 treatment increased the mouse weight as well as reduced the number of metastatic lung nodules and the lung/body weight ratio (p < 0.01). Moreover, As2O3 treatment significantly reduced the Tregs proportion and the Foxp3 messenger RNA (mRNA) levels in metastatic lung tissues (p < 0.01). In vitro, As2O3 significantly reduced the Tregs proportion and the Foxp3 mRNA levels (p < 0.01) and significantly increased the cytotoxic activity of CIKs and the IFN-γ levels in the supernatant of cultured CIKs (p < 0.01). As2O3 might inhibit lung metastasis of colon cancer by reducing the local infiltration of Tregs and increase the cytotoxic activity of CIKs by suppressing Tregs.

  15. Airway segmentation and analysis for the study of mouse models of lung disease using micro-CT

    NASA Astrophysics Data System (ADS)

    Artaechevarria, X.; Pérez-Martín, D.; Ceresa, M.; de Biurrun, G.; Blanco, D.; Montuenga, L. M.; van Ginneken, B.; Ortiz-de-Solorzano, C.; Muñoz-Barrutia, A.

    2009-11-01

    Animal models of lung disease are gaining importance in understanding the underlying mechanisms of diseases such as emphysema and lung cancer. Micro-CT allows in vivo imaging of these models, thus permitting the study of the progression of the disease or the effect of therapeutic drugs in longitudinal studies. Automated analysis of micro-CT images can be helpful to understand the physiology of diseased lungs, especially when combined with measurements of respiratory system input impedance. In this work, we present a fast and robust murine airway segmentation and reconstruction algorithm. The algorithm is based on a propagating fast marching wavefront that, as it grows, divides the tree into segments. We devised a number of specific rules to guarantee that the front propagates only inside the airways and to avoid leaking into the parenchyma. The algorithm was tested on normal mice, a mouse model of chronic inflammation and a mouse model of emphysema. A comparison with manual segmentations of two independent observers shows that the specificity and sensitivity values of our method are comparable to the inter-observer variability, and radius measurements of the mainstem bronchi reveal significant differences between healthy and diseased mice. Combining measurements of the automatically segmented airways with the parameters of the constant phase model provides extra information on how disease affects lung function.

  16. Immunohistochemical and immunocytochemical detection of SchS34 antigen in Stachybotrys chartarum spores and spore impacted mouse lungs.

    PubMed

    Rand, Thomas G; Miller, J David

    2008-02-01

    The purpose of this study was to evaluate the distribution of a 34 kD antigen isolated from S. chartarum sensu lato in spores and in the mouse lung 48 h after intra-tracheal instillation of spores by immuno-histochemistry. This antigen was localized in spore walls, primarily in the outer and inner wall layers and on the external wall surfaces with modest labelling observed in cytoplasm. Immuno-histochemistry revealed that in spore impacted mouse lung, antigen was again observed in spore walls, along the outside surface of the outer wall and in the intercellular space surrounding spores. In lung granulomas the labelled antigen formed a diffusate, some 2-3x the size of the long axis of spores, with highest concentrations nearest to spores. Collectively, these observations indicated that this protein not only displayed a high degree of specificity with respect to its location in spores and wall fragments, but also that it slowly diffuses into surrounding lungs.

  17. Kinase domain activation of FGFR2 yields high-grade lung adenocarcinoma sensitive to a Pan-FGFR inhibitor in a mouse model of NSCLC.

    PubMed

    Tchaicha, Jeremy H; Akbay, Esra A; Altabef, Abigail; Mikse, Oliver R; Kikuchi, Eiki; Rhee, Kevin; Liao, Rachel G; Bronson, Roderick T; Sholl, Lynette M; Meyerson, Matthew; Hammerman, Peter S; Wong, Kwok-Kin

    2014-09-01

    Somatic mutations in FGFR2 are present in 4% to 5% of patients diagnosed with non-small cell lung cancer (NSCLC). Amplification and mutations in FGFR genes have been identified in patients with NSCLCs, and clinical trials are testing the efficacy of anti-FGFR therapies. FGFR2 and other FGFR kinase family gene alterations have been found in both lung squamous cell carcinoma and lung adenocarcinoma, although mouse models of FGFR-driven lung cancers have not been reported. Here, we generated a genetically engineered mouse model (GEMM) of NSCLC driven by a kinase domain mutation in FGFR2. Combined with p53 ablation, primary grade 3/4 adenocarcinoma was induced in the lung epithelial compartment exhibiting locally invasive and pleiotropic tendencies largely made up of multinucleated cells. Tumors were acutely sensitive to pan-FGFR inhibition. This is the first FGFR2-driven lung cancer GEMM, which can be applied across different cancer indications in a preclinical setting.

  18. Radiation-induced lung fibrosis in a tumor-bearing mouse model is associated with enhanced Type-2 immunity.

    PubMed

    Chen, Jing; Wang, Yacheng; Mei, Zijie; Zhang, Shimin; Yang, Jie; Li, Xin; Yao, Ye; Xie, Conghua

    2016-03-01

    Lung fibrosis may be associated with Type-2 polarized inflammation. Herein, we aim to investigate whether radiation can initiate a Type-2 immune response and contribute to the progression of pulmonary fibrosis in tumor-bearing animals. We developed a tumor-bearing mouse model with Lewis lung cancer to receive either radiation therapy alone or radiation combined with Th1 immunomodulator unmethylated cytosine-phosphorothioate-guanine containing oligodeoxynucleotide (CpG-ODN). The Type-2 immune phenotype in tumors and the histological grade of lung fibrosis were evaluated in mice sacrificed three weeks after irradiation. Mouse lung tissues were analyzed for hydroxyproline and the expression of Type-1/Type-2 key transcription factors (T-bet/GATA-3). The concentration of Type-1/Type-2 cytokines in serum was measured by cytometric bead array. Lung fibrosis was observed to be more serious in tumor-bearing mice than in normal mice post-irradiation. The fibrosis score in irradiated tumor-bearing mice on Day 21 was 4.33 ± 0.82, which was higher than that of normal mice (2.00 ± 0.63; P < 0.05). Hydroxyproline and GATA-3 expression were increased in the lung tissues of tumor-bearing mice following irradiation. CpG-ODN attenuated fibrosis by markedly decreasing GATA-3 expression. Serum IL-13 and IL-5 were elevated, whereas INF-γ and IL-12 expression were decreased in irradiated tumor-bearing mice. These changes were reversed after CpG-ODN treatment. Thus, Type-2 immunity in tumors appeared to affect the outcome of radiation damage and might be of interest for future studies on developing approaches in which Type-1-related immunotherapy and radiotherapy are used in combination. © The Author 2015. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  19. Airway and systemic oxidant-antioxidant dysregulation in asthma: a possible scenario of oxidants spill over from lung into blood.

    PubMed

    Nadeem, A; Siddiqui, N; Alharbi, Naif O; Alharbi, Mohamed M

    2014-10-01

    Asthma is characterized by repeated episodes of airway obstruction and an ongoing cycle of airway inflammation. Reactive oxygen species (ROS) produced by inflammatory cells in the lung play a key role in the pathogenesis as well as amplification of inflammation in asthmatic airways. Several enzymatic and non-enzymatic antioxidants are available in the lung and systemic circulation to counteract ROS-mediated damage on various biomolecules such as lipid membranes, proteins, and DNA; however during asthmatic inflammation these defenses are overwhelmed due to excessive production of ROS thereby leading to inflammatory events in the airways/systemic circulation. ROS-mediated damage may result in increased vascular permeability, mucus hypersecretion, smooth muscle contraction, epithelial shedding and impairment in the responsiveness of β-adrenergic receptors. Strategies aimed to boost the endogenous antioxidants either through dietary or pharmacological intervention to redress oxidant-antioxidant imbalance in asthma is the current area of research in many laboratories throughout the world. This review aims at providing a comprehensive overview of the available literature on oxidative stress and antioxidants imbalance in asthma with a focus both on lung and blood components and bring forth correlations between lung/blood oxidative stress/antioxidant parameters and lung function. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Transalveolar osmotic and diffusional water permeability in intact mouse lung measured by a novel surface fluorescence method.

    PubMed

    Carter, E P; Matthay, M A; Farinas, J; Verkman, A S

    1996-09-01

    A surface fluorescence method was developed to measure transalveolar transport of water, protons, and solutes in intact perfused lungs. Lungs from c57 mice were removed and perfused via the pulmonary artery (approximately 2 ml/min). The airspace was filled via the trachea with physiological saline containing a membrane-impermeant fluorescent indicator (FITC-dextran or aminonapthalene trisulfonic acid, ANTS). Because fluorescence is detected only near the lung surface due to light absorption by lung tissue, the surface fluorescence signal is directly proportional to indicator concentration. Confocal microscopy confirmed that the fluorescence signal arises from fluorophores in alveoli just beneath the pleural surface. Osmotic water permeability (Pf) was measured from the time course of intraalveolar FITC-dextran fluorescence in response to changes in perfusate osmolality. Transalveolar Pf was 0.017 +/- 0.001 cm/s at 23 degrees C, independent of the solute used to induce osmosis (sucrose, NaCl, urea), independent of osmotic gradient size and direction, weakly temperature dependent (Arrhenius activation energy 5.3 kcal/mol) and inhibited by HgCl2. Pf was not affected by cAMP activation but was decreased by 43% in lung exposed to hyperoxia for 5 d. Diffusional water permeability (Pd) and Pf were measured in the same lung from intraalveolar ANTS fluorescence, which increased by 1.8-fold upon addition of 50% D2O to the perfusate, Pd was 1.3 x 10(-5) cm/s at 23 degrees C. Transalveolar proton transport was measured from FITC-dextran fluorescence upon switching perfusate pH between 7.4 and 5.6; alveolar pH half-equilibrated in 1.9 and 1.0 min without and with HCO3-, respectively. These results indicate high transalveolar water permeability in mouse lung, implicating the involvement of molecular water channels, and establish a quantitative surface fluorescence method to measure water and solute permeabilities in intact lung.

  1. OPTICAL IMAGING OF LIPOPOLYSACCHARIDE-INDUCED OXIDATIVE STRESS IN ACUTE LUNG INJURY FROM HYPEROXIA AND SEPSIS

    PubMed Central

    SEPEHR, REYHANEH; AUDI, SAID H.; MALEKI, SEPIDEH; STANISZEWSKI, KEVIN; EIS, ANNIE L.; KONDURI, GIRIJA G.; RANJI, MAHSA

    2014-01-01

    Reactive oxygen species (ROS) have been implicated in the pathogenesis of many acute and chronic pulmonary disorders such as acute lung injury (ALI) in adults and bronchopulmonary dysplasia (BPD) in premature infants. Bacterial infection and oxygen toxicity, which result in pulmonary vascular endothelial injury, contribute to impaired vascular growth and alveolar simplification seen in the lungs of premature infants with BPD. Hyperoxia induces ALI, reduces cell proliferation, causes DNA damage and promotes cell death by causing mitochondrial dysfunction. The objective of this study was to use an optical imaging technique to evaluate the variations in fluorescence intensities of the auto-fluorescent mitochondrial metabolic coenzymes, NADH and FAD in four different groups of rats. The ratio of these fluorescence signals (NADH/FAD), referred to as NADH redox ratio (NADH RR) has been used as an indicator of tissue metabolism in injuries. Here, we investigated whether the changes in metabolic state can be used as a marker of oxidative stress caused by hyperoxia and bacterial lipopolysaccharide (LPS) exposure in neonatal rat lungs. We examined the tissue redox states of lungs from four groups of rat pups: normoxic (21% O2) pups, hyperoxic (90% O2) pups, pups treated with LPS (normoxic + LPS), and pups treated with LPS and hyperoxia (hyperoxic + LPS). Our results show that hyperoxia oxidized the respiratory chain as reflected by a ~31% decrease in lung tissue NADH RR as compared to that for normoxic lungs. LPS treatment alone or with hyperoxia had no significant effect on lung tissue NADH RR as compared to that for normoxic or hyperoxic lungs, respectively. Thus, NADH RR serves as a quantitative marker of oxidative stress level in lung injury caused by two clinically important conditions: hyperoxia and LPS exposure. PMID:24672581

  2. OPTICAL IMAGING OF LIPOPOLYSACCHARIDE-INDUCED OXIDATIVE STRESS IN ACUTE LUNG INJURY FROM HYPEROXIA AND SEPSIS.

    PubMed

    Sepehr, Reyhaneh; Audi, Said H; Maleki, Sepideh; Staniszewski, Kevin; Eis, Annie L; Konduri, Girija G; Ranji, Mahsa

    2013-07-01

    Reactive oxygen species (ROS) have been implicated in the pathogenesis of many acute and chronic pulmonary disorders such as acute lung injury (ALI) in adults and bronchopulmonary dysplasia (BPD) in premature infants. Bacterial infection and oxygen toxicity, which result in pulmonary vascular endothelial injury, contribute to impaired vascular growth and alveolar simplification seen in the lungs of premature infants with BPD. Hyperoxia induces ALI, reduces cell proliferation, causes DNA damage and promotes cell death by causing mitochondrial dysfunction. The objective of this study was to use an optical imaging technique to evaluate the variations in fluorescence intensities of the auto-fluorescent mitochondrial metabolic coenzymes, NADH and FAD in four different groups of rats. The ratio of these fluorescence signals (NADH/FAD), referred to as NADH redox ratio (NADH RR) has been used as an indicator of tissue metabolism in injuries. Here, we investigated whether the changes in metabolic state can be used as a marker of oxidative stress caused by hyperoxia and bacterial lipopolysaccharide (LPS) exposure in neonatal rat lungs. We examined the tissue redox states of lungs from four groups of rat pups: normoxic (21% O2) pups, hyperoxic (90% O2) pups, pups treated with LPS (normoxic + LPS), and pups treated with LPS and hyperoxia (hyperoxic + LPS). Our results show that hyperoxia oxidized the respiratory chain as reflected by a ~31% decrease in lung tissue NADH RR as compared to that for normoxic lungs. LPS treatment alone or with hyperoxia had no significant effect on lung tissue NADH RR as compared to that for normoxic or hyperoxic lungs, respectively. Thus, NADH RR serves as a quantitative marker of oxidative stress level in lung injury caused by two clinically important conditions: hyperoxia and LPS exposure.

  3. Ibuprofen prevents oxidant lung injury and in vitro lipid peroxidation by chelating iron.

    PubMed Central

    Kennedy, T P; Rao, N V; Noah, W; Michael, J R; Jafri, M H; Gurtner, G H; Hoidal, J R

    1990-01-01

    Because ibuprofen protects from septic lung injury, we studied the effect of ibuprofen in oxidant lung injury from phosgene. Lungs from rabbits exposed to 2,000 ppm-min phosgene were perfused with Krebs-Henseleit buffer at 50 ml/min for 60 min. Phosgene caused no increase in lung generation of cyclooxygenase metabolites and no elevation in pulmonary arterial pressure, but markedly increased transvascular fluid flux (delta W = 31 +/- 5 phosgene vs. 8 +/- 1 g unexposed, P less than 0.001), permeability to albumin (125I-HSA) lung leak index 0.274 +/- 0.035 phosgene vs. 0.019 +/- 0.001 unexposed, P less than 0.01; 125I-HSA lavage leak index 0.352 +/- 0.073 phosgene vs. 0.008 +/- 0.001 unexposed, P less than 0.01), and lung malondialdehyde (50 +/- 7 phosgene vs. 24 +/- 0.7 mumol/g dry lung unexposed, P less than 0.01). Ibuprofen protected lungs from phosgene (delta W = 10 +/- 2 g; lung leak index 0.095 +/- 0.013; lavage leak index 0.052 +/- 0.013; and malondialdehyde 16 +/- 3 mumol/g dry lung, P less than 0.01). Because iron-treated ibuprofen failed to protect, we studied the effect of ibuprofen in several iron-mediated reactions in vitro. Ibuprofen attenuated generation of .OH by a Fenton reaction and peroxidation of arachidonic acid by FeCl3 and ascorbate. Ibuprofen also formed iron chelates that lack the free coordination site required for iron to be reactive. Thus, ibuprofen may prevent iron-mediated generation of oxidants or iron-mediated lipid peroxidation after phosgene exposure. This suggests a new mechanism for ibuprofen's action. PMID:2173723

  4. Dietary supplementation of omega-3 fatty acid-containing fish oil suppresses F2-isoprostanes but enhances inflammatory cytokine response in a mouse model of ovalbumin-induced allergic lung inflammation.

    PubMed

    Yin, Huiyong; Liu, Wei; Goleniewska, Kasia; Porter, Ned A; Morrow, Jason D; Peebles, R Stokes

    2009-09-01

    Epidemiological and clinical evidence has suggested that increased dietary intake of fish oil containing omega-3 fatty acids including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) may be associated with a reduced risk of asthma. However, interventional studies on these effects have been equivocal and controversial. Free radical oxidation products of lipids and cyclooxygenases-derived prostaglandins are believed to play an important role in asthma, and fish oil supplementation may modulate the levels of these critical lipid mediators. We employed a murine model of allergic inflammation produced by sensitization to ovalbumin (OVA) to study the effects of fish oil supplementation on airway inflammation. Our studies demonstrated that omega-3 fatty acids were dose dependently incorporated into mouse lung tissue after dietary supplementation. We examined the oxidative stress status by measuring the levels of isoprostanes (IsoPs), the gold standard for oxidative stress in vivo. OVA challenge caused significant increase of F(2)-IsoPs in mouse lung, suggesting an elevated level of oxidative stress. Compared to the control group, fish oil supplementation led to a significant reduction of F(2)-IsoP (from arachidonic acid) with a concomitant increase of F(3)-IsoPs (from EPA) and F(4)-IsoPs (from DHA). Surprisingly, however, fish oil supplementation enhanced production of proinflammatory cytokine IL-5 and IL-13. Furthermore, fish oil supplementation suppressed the production of pulmonary protective PGE(2) in the bronchoalveolar lavage (BAL) while the level of urinary metabolites of the PGE(2) was increased. Our data suggest that augmented lung inflammation after fish oil supplementation may be due to the reduction of PGE(2) production in the lung and these dichotomous results bring into question the role of fish oil supplementation in the treatment of asthma.

  5. Oxidative Stress and Lung Ischemia-Reperfusion Injury

    PubMed Central

    Ferrari, Renata Salatti; Andrade, Cristiano Feijó

    2015-01-01

    Ischemia-reperfusion (IR) injury is directly related to the formation of reactive oxygen species (ROS), endothelial cell injury, increased vascular permeability, and the activation of neutrophils and platelets, cytokines, and the complement system. Several studies have confirmed the destructiveness of the toxic oxygen metabolites produced and their role in the pathophysiology of different processes, such as oxygen poisoning, inflammation, and ischemic injury. Due to the different degrees of tissue damage resulting from the process of ischemia and subsequent reperfusion, several studies in animal models have focused on the prevention of IR injury and methods of lung protection. Lung IR injury has clinical relevance in the setting of lung transplantation and cardiopulmonary bypass, for which the consequences of IR injury may be devastating in critically ill patients. PMID:26161240

  6. Effect of oxidized arachidonic acid and hexanal on the mouse taste perception of bitterness and umami.

    PubMed

    Yamaguchi, Susumu; Fujiwara, Hidenori; Tashima, Ikukazu; Iwanaga, Daigo; Ushio, Hideki

    2010-01-01

    The oxidization of fatty acids generates many volatile compounds forming an aroma, but little is known whether mammals use gustatory sense to detect the oxidized products as a taste or only use olfactory sense to detect as an aroma. We examined in this study the effect of aqueous extracts of the compounds from autoxidized arachidonic acid (AA) ethyl ester or hexanal which is the predominant component generated from oxidized AA by the anosmic mouse licking performance to a tastant. The addition of the water extract from oxidized AA or hexanal to a quinine hydrochloride (QHCl) solution decreased the anosmic mice licking frequency at several concentrations of QHCl. Hexanal also reduced the licking frequency of anosmic mice conditioned to avoid MSG at several concentrations of monosodium glutamate (MSG). These results suggest that hexanal would affect mouse taste perception to QHCl and MSG via the gustatory sensation.

  7. Macrophages mediate lung inflammation in a mouse model of ischemic acute kidney injury

    PubMed Central

    Altmann, Christopher; Andres-Hernando, Ana; McMahan, Rachel H.; Ahuja, Nilesh; He, Zhibin; Rivard, Chris J.; Edelstein, Charles Louis; Barthel, Lea; Janssen, William J.

    2012-01-01

    Serum IL-6 is increased in acute kidney injury (AKI) and inhibition of IL-6 reduces AKI-mediated lung inflammation. We hypothesized that circulating monocytes produce IL-6 and that alveolar macrophages mediate lung inflammation after AKI via chemokine (CXCL1) production. To investigate systemic and alveolar macrophages in lung injury after AKI, sham operation or 22 min of renal pedicle clamping (AKI) was performed in three experimental settings: 1) systemic macrophage depletion via diphtheria toxin (DT) injection to CD11b-DTR transgenic mice, 2) DT injection to wild-type mice, and 3) alveolar macrophage depletion via intratracheal (IT) liposome-encapsulated clodronate (LEC) administration to wild-type mice. In mice with AKI and systemic macrophage depletion (CD11b-DTR transgenic administered DT) vs. vehicle-treated AKI, blood monocytes and lung interstitial macrophages were reduced, renal function was similar, serum IL-6 was increased, lung inflammation was improved, lung CXCL1 was reduced, and lung capillary leak was increased. In wild-type mice with AKI administered DT vs. vehicle, serum IL-6 was increased. In mice with AKI and alveolar macrophage depletion (IT-LEC) vs. AKI with normal alveolar macrophage content, blood monocytes and lung interstitial macrophages were similar, alveolar macrophages were reduced, renal function was similar, lung inflammation was improved, lung CXCL1 was reduced, and lung capillary leak was increased. In conclusion, administration of DT in AKI is proinflammatory, limiting the use of the DTR-transgenic model to study systemic effects of AKI. Mice with AKI and either systemic mononuclear phagocyte depletion or alveolar macrophage depletion had reduced lung inflammation and lung CXCL1, but increased lung capillary leak; thus, mononuclear phagocytes mediate lung inflammation, but they protect against lung capillary leak after ischemic AKI. Since macrophage activation and chemokine production are key events in the development of acute

  8. Molecular and functional characterization of a calcium-sensitive chloride channel from mouse lung.

    PubMed

    Gandhi, R; Elble, R C; Gruber, A D; Schreur, K D; Ji, H L; Fuller, C M; Pauli, B U

    1998-11-27

    A protein (mCLCA1) has been cloned from a mouse lung cDNA library that bears strong sequence homology with the recently described bovine tracheal, Ca2+-sensitive chloride channel protein (bCLCA1), bovine lung endothelial cell adhesion molecule-1 (Lu-ECAM-1), and the human intestinal Ca2+-sensitive chloride channel protein (hCLCA1). In vitro, its 3.1-kilobase message translates into a 100-kDa protein that can be glycosylated to an approximately 125-kDa product. SDS-polyacrylamide gel electrophoresis from lysates of mCLCA1 cDNA-transfected transformed human embryonic kidney cells (HEK293) reveals proteins of 130, 125, and 90 kDa as well as a protein triplet in the 32-38 kDa size range. Western analyses with antisera raised against Lu-ECAM-1 peptides show that the N-terminal region of the predicted open reading frame is present only in the larger size proteins (i.e. 130, 125, and 90 kDa), whereas the C-terminal region of the open reading frame is observed in the 32-38 kDa size proteins, suggesting a posttranslational, proteolytic processing of a precursor protein (125/130 kDa) into 90 kDa and 32-38 kDa components similar to that reported for Lu-ECAM-1. Hydrophobicity analyses predict four transmembrane domains for the 90-kDa protein. The mCLCA1 mRNA is readily detected by Northern analysis and by in situ hybridization in the respiratory epithelia of trachea and bronchi. Transient expression of mCLCA1 in HEK293 cells was associated with an increase in whole cell Cl- current that could be activated by Ca2+ and ionomycin and inhibited by 4, 4'-diisothiocyanatostilbene-2,2'-disulfonic acid, dithiothreitol, and niflumic acid. The discovery of mCLCA1 opens the door for further investigating the possible contribution of a Ca2+-sensitive chloride conductance to the pathogenesis of cystic fibrosis.

  9. Analysis of the pathological lesions of the lung in a mouse model of cutaneous infection with Streptococcus pyogenes.

    PubMed

    Minami, Masaaki; Sobue, Sayaka; Ichihara, Masatoshi; Hasegawa, Tadao

    2012-02-01

    Invasive diseases such as toxic shock syndrome caused by Streptococcus pyogenes (S. pyogenes) are re-emerging infectious diseases. The mechanism of pathogenesis is not completely understood although the virulence of this organism has been analyzed using animal model systems, particularly using mice. The analysis of the progression of infection, however, is difficult. Computed tomography (CT) scanning is an extremely powerful technique that we applied to the mouse model of cutaneous infection with S. pyogenes. Two or three days after subcutaneous administration of bacteria, high density reticular areas were detected in the lung by CT. Histopathological examination of the lung was performed to examine the results of CT. Increased numbers of cytokeratin-positive epithelial cells, probably alveolar type II epithelial cells, were detected but no remarkable increase of inflammatory cell infiltrates was observed. Our results show that the pathological lesions of the lung in this model, wherein relatively few numbers of neutrophils were in the alveoli, are well correlated with the lung of a part of streptococcal toxic shock syndrome patients. Therefore, CT may be useful in assessing the progression of S. pyogenes infection, particularly in the pathological lesions of the lung in this model. © 2011 The Authors. Pathology International © 2011 Japanese Society of Pathology and Blackwell Publishing Asia Pty Ltd.

  10. Effects of High-Intensity Swimming on Lung Inflammation and Oxidative Stress in a Murine Model of DEP-Induced Injury.

    PubMed

    Ávila, Leonardo C M; Bruggemann, Thayse R; Bobinski, Franciane; da Silva, Morgana Duarte; Oliveira, Regiane Carvalho; Martins, Daniel Fernandes; Mazzardo-Martins, Leidiane; Duarte, Marta Maria Medeiros Frescura; de Souza, Luiz Felipe; Dafre, Alcir; Vieira, Rodolfo de Paula; Santos, Adair Roberto Soares; Bonorino, Kelly Cattelan; Hizume Kunzler, Deborah de C

    2015-01-01

    Studies have reported that exposure to diesel exhaust particles (DEPs) induces lung inflammation and increases oxidative stress, and both effects are susceptible to changes via regular aerobic exercise in rehabilitation programs. However, the effects of exercise on lungs exposed to DEP after the cessation of exercise are not clear. Therefore, the aim of this study was to evaluate the effects of high-intensity swimming on lung inflammation and oxidative stress in mice exposed to DEP concomitantly and after exercise cessation. Male Swiss mice were divided into 4 groups: Control (n = 12), Swimming (30 min/day) (n = 8), DEP (3 mg/mL-10 μL/mouse) (n = 9) and DEP+Swimming (n = 8). The high-intensity swimming was characterized by an increase in blood lactate levels greater than 1 mmoL/L between 10th and 30th minutes of exercise. Twenty-four hours after the final exposure to DEP, the anesthetized mice were euthanized, and we counted the number of total and differential inflammatory cells in the bronchoalveolar fluid (BALF), measured the lung homogenate levels of IL-1β, TNF-α, IL-6, INF-ϫ, IL-10, and IL-1ra using ELISA, and measured the levels of glutathione, non-protein thiols (GSH-t and NPSH) and the antioxidant enzymes catalase and glutathione peroxidase (GPx) in the lung. Swimming sessions decreased the number of total cells (p<0.001), neutrophils and lymphocytes (p<0.001; p<0.05) in the BALF, as well as lung levels of IL-1β (p = 0.002), TNF-α (p = 0.003), IL-6 (p = 0.0001) and IFN-ϫ (p = 0.0001). However, the levels of IL-10 (p = 0.01) and IL-1ra (p = 0.0002) increased in the swimming groups compared with the control groups, as did the CAT lung levels (p = 0.0001). Simultaneously, swimming resulted in an increase in the GSH-t and NPSH lung levels in the DEP group (p = 0.0001 and p<0.002). We concluded that in this experimental model, the high-intensity swimming sessions decreased the lung inflammation and oxidative stress status during DEP-induced lung

  11. Effects of High-Intensity Swimming on Lung Inflammation and Oxidative Stress in a Murine Model of DEP-Induced Injury

    PubMed Central

    Ávila, Leonardo C. M.; Bruggemann, Thayse R.; Bobinski, Franciane; da Silva, Morgana Duarte; Oliveira, Regiane Carvalho; Martins, Daniel Fernandes; Mazzardo-Martins, Leidiane; Duarte, Marta Maria Medeiros Frescura; de Souza, Luiz Felipe; Dafre, Alcir; Vieira, Rodolfo de Paula; Santos, Adair Roberto Soares; Bonorino, Kelly Cattelan; Hizume Kunzler, Deborah de C.

    2015-01-01

    Studies have reported that exposure to diesel exhaust particles (DEPs) induces lung inflammation and increases oxidative stress, and both effects are susceptible to changes via regular aerobic exercise in rehabilitation programs. However, the effects of exercise on lungs exposed to DEP after the cessation of exercise are not clear. Therefore, the aim of this study was to evaluate the effects of high-intensity swimming on lung inflammation and oxidative stress in mice exposed to DEP concomitantly and after exercise cessation. Male Swiss mice were divided into 4 groups: Control (n = 12), Swimming (30 min/day) (n = 8), DEP (3 mg/mL—10 μL/mouse) (n = 9) and DEP+Swimming (n = 8). The high-intensity swimming was characterized by an increase in blood lactate levels greater than 1 mmoL/L between 10th and 30th minutes of exercise. Twenty-four hours after the final exposure to DEP, the anesthetized mice were euthanized, and we counted the number of total and differential inflammatory cells in the bronchoalveolar fluid (BALF), measured the lung homogenate levels of IL-1β, TNF-α, IL-6, INF-ϫ, IL-10, and IL-1ra using ELISA, and measured the levels of glutathione, non-protein thiols (GSH-t and NPSH) and the antioxidant enzymes catalase and glutathione peroxidase (GPx) in the lung. Swimming sessions decreased the number of total cells (p<0.001), neutrophils and lymphocytes (p<0.001; p<0.05) in the BALF, as well as lung levels of IL-1β (p = 0.002), TNF-α (p = 0.003), IL-6 (p = 0.0001) and IFN-ϫ (p = 0.0001). However, the levels of IL-10 (p = 0.01) and IL-1ra (p = 0.0002) increased in the swimming groups compared with the control groups, as did the CAT lung levels (p = 0.0001). Simultaneously, swimming resulted in an increase in the GSH-t and NPSH lung levels in the DEP group (p = 0.0001 and p<0.002). We concluded that in this experimental model, the high-intensity swimming sessions decreased the lung inflammation and oxidative stress status during DEP-induced lung

  12. Long term ethanol consumption leads to lung tissue oxidative stress and injury.

    PubMed

    Das, Subir Kumar; Mukherjee, Sukhes

    2010-01-01

    Alcohol abuse is a systemic disorder. The deleterious health effects of alcohol consumption may result in irreversible organ damage. By contrast, there currently is little evidence for the toxicity of chronic alcohol use on lung tissue. Hence, in this study we investigated long term effects of ethanol in the lung. Though body weight of rats increased significantly with duration of exposure compared to its initial weight, but there was no significant change in relative weight (g/100 g body weight) of lung due to ethanol exposure. The levels of thiobarbituric acid reactive substances (TBARS), nitrite, protein carbonyl, oxidized glutathione (GSSG), redox ratio (GSSG/GSH) and GST activity elevated; while reduced glutathione (GSH) level and activities of glutathione reductase (GR), glutathione peroxidase (GPx), catalase, superoxide dismutase (SOD) and Na(+)K(+) ATPase reduced significantly with duration of ethanol exposure in the lung homogenate compared to the control group. Total matrix metalloproteinase activity elevated in the lung homogenate with time of ethanol consumption. Histopathologic examination also demonstrated that severity of lung injury enhanced with duration of ethanol exposure. 16-18 weeks old male albino Wistar strain rats weighing 200-220 g were fed with ethanol (1.6 g/ kg body weight/ day) up to 36 weeks. At the end of the experimental period, blood samples were collected from reteroorbital plexus to determine blood alcohol concentration, and the animals were sacrificed. Various oxidative stress related biochemical parameters, total matrix metalloproteinase activity and histopathologic examinations of the lung tissues were performed. Results of this study indicate that long term ethanol administration aggravates systemic and local oxidative stress, which may be associated with lung tissue injury.

  13. [Oxidative damage of gasoline engine exhausts to rat lung tissues].

    PubMed

    Che, Wang-Jun; Wang, Ling; Luo, Qing-Ying; Wu, Mei; Zhang, Zun-Zhen

    2009-01-01

    To study the effects of extracts of condensate, particulates and semivolatile organic compounds from gasoline engine exhaust on DNA damage, 8-oxoguanine DNA glycosylase-1 (OGG1) expression, and changes of ultra-structures in lungs of rats. Organic extracts of gasoline engine exhaust (GEE) was intratrachealy instilled into rat lungs at 0, 5.6, 16.7, and 50.0 L/kg body weight, respectively, once a week for a month. The single DNA strand break was measured by comet assay. The OGG1 was determined using immunohistochemistry method. The ultrastructure of lung cells was observed with electronic microscope. The rates of tailed cells detected by the comet assay increased significantly when the rats were exposed to 16.7 and 50.0 L/kg of GEE compared with those exposed to solvent only (P < 0.05). However, the tail length did not differ significantly between the groups. Similarly, exposure to 16.7 and 50.0 L/kg of GEE led to increased OGG1 significantly. Significant changes of mitochondria in type I and II alveolar cells as well as respiratory bronchiole epithelial cells were observed, which included decrease of numbers, pyknosis and swelling. Gasoline engine exhausts induce single DNA strand break, increase OGG1 expression, decrease numbers of mitochondria, and destroy ultrastructures of mitochondria in various lung cells of rats.

  14. Initial Binding and Recellularization of Decellularized Mouse Lung Scaffolds with Bone Marrow-Derived Mesenchymal Stromal Cells

    PubMed Central

    Daly, Amanda B.; Wallis, John M.; Borg, Zachary D.; Bonvillain, Ryan W.; Deng, Bin; Ballif, Bryan A.; Jaworski, Diane M.; Allen, Gilman B.

    2012-01-01

    Recellularization of whole decellularized lung scaffolds provides a novel approach for generating functional lung tissue ex vivo for subsequent clinical transplantation. To explore the potential utility of stem and progenitor cells in this model, we investigated recellularization of decellularized whole mouse lungs after intratracheal inoculation of bone marrow-derived mesenchymal stromal cells (MSCs). The decellularized lungs maintained structural features of native lungs, including intact vasculature, ability to undergo ventilation, and an extracellular matrix (ECM) scaffold consisting primarily of collagens I and IV, laminin, and fibronectin. However, even in the absence of intact cells or nuclei, a number of cell-associated (non-ECM) proteins were detected using mass spectroscopy, western blots, and immunohistochemistry. MSCs initially homed and engrafted to regions enriched in types I and IV collagen, laminin, and fibronectin, and subsequently proliferated and migrated toward regions enriched in types I and IV collagen and laminin but not provisional matrix (fibronectin). MSCs cultured for up to 1 month in either basal MSC medium or in a small airways growth media (SAGM) localized in both parenchymal and airway regions and demonstrated several different morphologies. However, while MSCs cultured in basal medium increased in number, MSCs cultured in SAGM decreased in number over 1 month. Under both media conditions, the MSCs predominantly expressed genes consistent with mesenchymal and osteoblast phenotype. Despite a transient expression of the lung precursor TTF-1, no other airway or alveolar genes or vascular genes were expressed. These studies highlight the power of whole decellularized lung scaffolds to study functional recellularization with MSCs and other cells. PMID:21756220

  15. Toxicogenomics analysis of mouse lung responses following exposure to titanium dioxide nanomaterials reveal their disease potential at high doses

    PubMed Central

    Rahman, Luna; Wu, Dongmei; Johnston, Michael; William, Andrew; Halappanavar, Sabina

    2017-01-01

    Titanium dioxide nanoparticles (TiO2NPs) induce lung inflammation in experimental animals. In this study, we conducted a comprehensive toxicogenomic analysis of lung responses in mice exposed to six individual TiO2NPs exhibiting different sizes (8, 20 and 300nm), crystalline structure (anatase, rutile or anatase/rutile) and surface modifications (hydrophobic or hydrophilic) to investigate whether the mechanisms leading to TiO2NP-induced lung inflammation are property specific. A detailed histopathological analysis was conducted to investigate the long-term disease implications of acute exposure to TiO2NPs. C57BL/6 mice were exposed to 18, 54, 162 or 486 µg of TiO2NPs/mouse via single intratracheal instillation. Controls were exposed to dispersion medium only. Bronchoalveolar lavage fluid (BALF) and lung tissue were sampled on 1, 28 and 90 days post-exposure. Although all TiO2NPs induced lung inflammation as measured by the neutrophil influx in BALF, rutile-type TiO2NPs induced higher inflammation with the hydrophilic rutile TiO2NP showing the maximum increase. Accordingly, the rutile TiO2NPs induced higher number of differentially expressed genes. Histopathological analysis of lung sections on Day 90 post-exposure showed increased collagen staining and fibrosis-like changes following exposure to the rutile TiO2NPs at the highest dose tested. Among the anatase, the smallest TiO2NP of 8nm showed the maximum response. The anatase TiO2NP of 300nm was the least responsive of all. The results suggest that the severity of lung inflammation is property specific; however, the underlying mechanisms (genes and pathways perturbed) leading to inflammation were the same for all particle types. While the particle size clearly influenced the overall acute lung responses, a combination of small size, crystalline structure and hydrophilic surface contributed to the long-term pathological effects observed at the highest dose (486 µg/mouse). Although the dose at which the

  16. Immunostaining of Oxidized DJ-1 in Human and Mouse Brains

    PubMed Central

    Saito, Yoshiro; Miyasaka, Tomohiro; Hatsuta, Hiroyuki; Takahashi-Niki, Kazuko; Hayashi, Kojiro; Mita, Yuichiro; Kusano-Arai, Osamu; Iwanari, Hiroko; Ariga, Hiroyoshi; Hamakubo, Takao; Yoshida, Yasukazu; Niki, Etsuo; Murayama, Shigeo; Ihara, Yasuo; Noguchi, Noriko

    2014-01-01

    Abstract DJ-1, the product of a causative gene of a familial form of Parkinson disease, undergoes preferential oxidation of Cys106 (cysteine residue at position 106) under oxidative stress. Using specific monoclonal antibodies against Cys106 oxidized DJ-1 (oxDJ-1), we examined oxDJ-1 immunoreactivity in brain sections from DJ-1 knockout and wild-type mice and in human brain sections from cases classified into different Lewy body stages of Parkinson disease and Parkinson disease with dementia. Oxidized DJ-1 immunoreactivity was prominently observed in neuromelanin-containing neurons and neuron processes of the substantia nigra; Lewy bodies also showed oxDJ-1 immunoreactivity. Oxidized DJ-1 was also detected in astrocytes in the striatum, in neurons and glia in the red nucleus, and in the inferior olivary nucleus, all of which are related to regulation of movement. These observations suggest the relevance of DJ-1 oxidation to homeostasis in multiple brain regions, including neuromelanin-containing neurons of the substantia nigra, and raise the possibility that oxDJ-1 levels might change during the progression of Lewy body–associated neurodegenerative diseases. PMID:24918637

  17. Bioenergetic Defects and Oxidative Damage in Transgenic Mouse Models of Neurodegenerative Disorders.

    DTIC Science & Technology

    1999-10-01

    This study aims to determine what roles bioenergetic dysfunction and oxidative stress play in the etiology of neurodegeneration in Huntington’s ... disease (HE) and familial amyotrophic lateral sclerosis (FALS), using transgenic mouse models. Studies in this first year employed C-14-2-deoxyglucose in

  18. OXIDATIVE STRESS INDUCES CELL DEATH IN CD-1 MOUSE CRANIAL NEURAL CREST CELLS IN VITRO

    EPA Science Inventory

    OXIDATIVE STRESS INDUCES CELL DEATH IN CD-1 MOUSE CRANIAL NEURAL CREST CELLS IN VITRO. J.B. Smith, K.K. Sulik, E.S. Hunter III. University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.
    The induction of craniofacial defects by ethanol exposure is mediated in part by...

  19. OXIDATIVE STRESS INDUCES CELL DEATH IN CD-1 MOUSE CRANIAL NEURAL CREST CELLS IN VITRO

    EPA Science Inventory

    OXIDATIVE STRESS INDUCES CELL DEATH IN CD-1 MOUSE CRANIAL NEURAL CREST CELLS IN VITRO. J.B. Smith, K.K. Sulik, E.S. Hunter III. University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.
    The induction of craniofacial defects by ethanol exposure is mediated in part by...

  20. Inhaled nitric oxide in chronic obstructive lung disease

    SciTech Connect

    Tiihonen, J.; Hakola, P.; Paanila, J.; Turtiainen . Dept. of Forensic Psychiatry)

    1993-01-30

    During an investigation of the effect of nitric oxide on the pulmonary circulation the authors had the opportunity to give nitric oxide to a patient with longstanding obstructive airway disease, with successful results. A 72-year-old man with chronic obstructive pulmonary disease was referred to the institution for assessment of pulmonary vascular reactivity to acetylcholine and nitric oxide. Acetylcholine was infused into the main pulmonary artery followed 15 min later by an inhalation of 80 parts per million (ppm) nitric oxide. Heart rate and systemic arterial and pulmonary arterial pressures were continuously monitored. Throughout the study the inspired oxygen concentration was kept constant at 98%. Nitrogen dioxide and nitric oxide concentrations were monitored while nitric oxide was delivered. The infusion of acetylcholine resulted in a small increase in pulmonary artery pressure and pulmonary vascular resistance. Nitric oxide produced a substantial fall in pulmonary artery pressure and pulmonary vascular resistance with a concomitant increase in systemic arterial oxygen tension. These results suggest that endothelium-dependent relaxation of the pulmonary vasculature was impaired in the patient and that exogenous nitric oxide was an effective pulmonary vasodilator. In-vitro investigation of explanted airways disease suggests not only that endothelium-dependent pulmonary artery relaxation is impaired but also that the dysfunction is related to pre-existing hypoxemia and hypercapnia. Nitric oxide inhibits proliferation of cultured vascular smooth muscle cells and might alter the pulmonary vascular remodeling characteristic of patients with chronic obstructive airways disease.

  1. Phosphatidylinositol 3-Kinase Mediates Bronchioalveolar Stem Cell Expansion in Mouse Models of Oncogenic K-ras-Induced Lung Cancer

    PubMed Central

    Yang, Yanan; Iwanaga, Kentaro; Raso, Maria Gabriela; Wislez, Marie; Hanna, Amy E.; Wieder, Eric D.; Molldrem, Jeffrey J.; Wistuba, Ignacio I.; Powis, Garth; Demayo, Francesco J.; Kim, Carla F.; Kurie, Jonathan M.

    2008-01-01

    Background Non-small cell lung cancer (NSCLC) is the most common cause of cancer-related death in Western countries. Developing more effective NSCLC therapeutics will require the elucidation of the genetic and biochemical bases for this disease. Bronchioalveolar stem cells (BASCs) are a putative cancer stem cell population in mouse models of oncogenic K-ras-induced lung adenocarcinoma, an histologic subtype of NSCLC. The signals activated by oncogenic K-ras that mediate BASC expansion have not been fully defined. Methodology/Principal Findings We used genetic and pharmacologic approaches to modulate the activity of phosphatidylinositol 3-kinase (PI3K), a key mediator of oncogenic K-ras, in two genetic mouse models of lung adenocarcinoma. Oncogenic K-ras-induced BASC accumulation and tumor growth were blocked by treatment with a small molecule PI3K inhibitor and enhanced by inactivation of phosphatase and tensin homologue deleted from chromosome 10, a negative regulator of PI3K. Conclusions/Significance We conclude that PI3K is a critical regulator of BASC expansion, supporting treatment strategies to target PI3K in NSCLC patients. PMID:18493606

  2. TH-E-BRF-07: Raman Spectroscopy for Radiation Treatment Response Assessment in a Lung Metastases Mouse Model

    SciTech Connect

    Devpura, S; Barton, K; Brown, S; Siddiqui, F; Chetty, I; Sethi, S; Klein, M

    2014-06-15

    Purpose: Raman spectroscopy is an optical spectroscopic method used to probe chemical information about a target tissue. Our goal was to investigate whether Raman spectroscopy is able to distinguish lung tumors from normal lung tissue and whether this technique can identify the molecular changes induced by radiation. Methods: 4T1 mouse breast cancer cells were implanted subcutaneously into the flanks of 6 Balb/C female mice. Four additional mice were used as “normal lung” controls. After 14 days, 3 mice bearing tumors received 6Gy to the left lung with 6MV photons and the other three were treated as “unirradiated tumor” controls. At a 24-hour time point, lungs were excised and the specimens were sectioned using a cryostat; alternating sections were either stained with hematoxylin and eosin (H and E) for evaluation by a pathologist or unstained for Raman measurements. 240 total Raman spectra were collected; 84 from normal lung controls; 63 from unirradiated tumors and 64 from tumors irradiated with 6Gy in a single fraction. Raman spectra were also collected from normal lung tissues of mice with unirradiated tumors. Principal component analysis (PCA) and discriminant function analysis (DFA) were performed to analyze the data. Results: Raman bands assignable to DNA/RNA showed prominent contributions in tumor tissues while Raman bands associated with hemoglobin showed strong contributions in normal lung tissue. PCA/DFA analysis identified normal lung tissue and tumor with 100% and 98.4% accuracy, respectively, relative to pathologic scoring. Additionally, normal lung tissues from unirradiated mice bearing tumors were classified as normal with 100% accuracy. In a model consisting of unirradiated and irradiated tumors identification accuracy was 79.4% and 93.8% respectively, relative to pathologic assessment. Conclusion: Initial results demonstrate the promise for Raman spectroscopy in the diagnosis normal vs. lung metastases as well as the assessment of

  3. The cysteine dioxgenase knockout mouse: altered cysteine metabolism in nonhepatic tissues leads to excess H2S/HS(-) production and evidence of pancreatic and lung toxicity.

    PubMed

    Roman, Heather B; Hirschberger, Lawrence L; Krijt, Jakub; Valli, Alessandro; Kožich, Viktor; Stipanuk, Martha H

    2013-10-20

    To define the consequences of loss of cysteine dioxygenase (CDO) on cysteine metabolism at the tissue level, we determined levels of relevant metabolites and enzymes and evidence of H2S/HS(-) (gaseous hydrogen sulfide and its conjugate base) toxicity in liver, pancreas, kidney, and lung of CDO(-/-) mice that were fed either a taurine-free or taurine-supplemented diet. CDO(-/-) mice had low tissue and serum taurine and hypotaurine levels and high tissue levels of cysteine, consistent with the loss of CDO. CDO(-/-) mice had elevated urinary excretion of thiosulfate, high tissue and serum cystathionine and lanthionine levels, and evidence of inhibition and destabilization of cytochrome c oxidase, which is consistent with excess production of H2S/HS(-). Accumulation of cystathionine and lanthionine appeared to result from cystathionine β-synthase (CBS)-mediated cysteine desulfhydration. Very high levels of hypotaurine in pancreas of wild-type mice and very high levels of cystathionine and lanthionine in pancreas of CDO(-/-) mice were observed, suggesting a unique cysteine metabolism in the pancreas. The CDO(-/-) mouse model provides new insights into tissue-specific cysteine metabolism, particularly the role of pancreas in metabolism of excess cysteine by CBS-catalyzed reactions, and will be a useful model for studying the effects of excess endogenous production of H2S/HS(-). The CDO(-/-) mouse clearly demonstrates that H2S/HS(-) production in tissues can exceed the capacity of the animal to oxidize sulfide to sulfate and demonstrates that pancreas and lung are more susceptible to toxicity from endogenous H2S/HS(-)production than are liver and kidney.

  4. Amphiphilic Polymer-coated CdSe/ZnS Quantum Dots Induce Pro-inflammatory Cytokine Expression in Mouse Lung Epithelial Cells and Macrophages

    PubMed Central

    Lee, Vivian; McMahan, Ryan S.; Hu, Xiaoge; Gao, Xiaohu; Faustman, Elaine M.; Griffith, William C.; Kavanagh, Terrance J.; Eaton, David L.; McGuire, John K.; Parks, William C.

    2015-01-01

    Quantum dots (Qdots) are semiconductor nanoparticles with size-tunable fluorescence capabilities with diverse applications. Qdots typically contain cadmium or other heavy metals, hence raising concerns of their potential toxicity, especially in occupational settings where inhalation of nanomaterials may increase the risk of lung disease. Accordingly, we assessed the effects of tri-n-octylphosphine oxide, poly(maleic anhydride-alt-1-tetradecene) (TOPO-PMAT) coated CdSe/ZnS Qdots on mouse lung epithelial cells and macrophages. Mouse tracheal epithelial cells (MTEC), grown as organotypic cultures, bone marrow-derived macrophages (BMDM), and primary alveolar macrophages (AM) were derived from C57BL/6J or A/J mice and treated with TOPO-PMAT CdSe/ZnS Qdots (10–160 nM) for up to 24 h. Cadmium analysis showed that Qdots remained in the apical compartment of MTEC cultures, whereas they were avidly internalized by AM and BMDM, which did not differ between strains. In MTEC, Qdots selectively induced expression (mRNA and protein) of neutrophil chemokines CXCL1 and CXCL2 but only low to no detectable levels of other factors assessed. In contrast, 4 h exposure to Qdots markedly increased expression of CXCL1, IL6, IL12, and other pro-inflammatory factors in BMDM. Higher inflammatory response was seen in C57BL/6J than in A/J BMDM. Similar expression responses were observed in AM, although overall levels were less robust than in BMDM. MTEC from A/J mice were more sensitive to Qdot pro-inflammatory effects while macrophages from C57BL/6J mice were more sensitive. These findings suggest that patterns of Qdot-induced pulmonary inflammation are likely to be cell type specific and genetic background dependent. PMID:24983898

  5. The Cysteine Dioxgenase Knockout Mouse: Altered Cysteine Metabolism in Nonhepatic Tissues Leads to Excess H2S/HS− Production and Evidence of Pancreatic and Lung Toxicity

    PubMed Central

    Roman, Heather B.; Hirschberger, Lawrence L.; Krijt, Jakub; Valli, Alessandro; Kožich, Viktor

    2013-01-01

    Abstract Aims: To define the consequences of loss of cysteine dioxygenase (CDO) on cysteine metabolism at the tissue level, we determined levels of relevant metabolites and enzymes and evidence of H2S/HS− (gaseous hydrogen sulfide and its conjugate base) toxicity in liver, pancreas, kidney, and lung of CDO−/− mice that were fed either a taurine-free or taurine-supplemented diet. Results: CDO−/− mice had low tissue and serum taurine and hypotaurine levels and high tissue levels of cysteine, consistent with the loss of CDO. CDO−/− mice had elevated urinary excretion of thiosulfate, high tissue and serum cystathionine and lanthionine levels, and evidence of inhibition and destabilization of cytochrome c oxidase, which is consistent with excess production of H2S/HS−. Accumulation of cystathionine and lanthionine appeared to result from cystathionine β-synthase (CBS)-mediated cysteine desulfhydration. Very high levels of hypotaurine in pancreas of wild-type mice and very high levels of cystathionine and lanthionine in pancreas of CDO−/− mice were observed, suggesting a unique cysteine metabolism in the pancreas. Innovation: The CDO−/− mouse model provides new insights into tissue-specific cysteine metabolism, particularly the role of pancreas in metabolism of excess cysteine by CBS-catalyzed reactions, and will be a useful model for studying the effects of excess endogenous production of H2S/HS−. Conclusion: The CDO−/− mouse clearly demonstrates that H2S/HS− production in tissues can exceed the capacity of the animal to oxidize sulfide to sulfate and demonstrates that pancreas and lung are more susceptible to toxicity from endogenous H2S/HS−production than are liver and kidney. Antioxid. Redox Signal. 19, 1321–1336. PMID:23350603

  6. Amphiphilic polymer-coated CdSe/ZnS quantum dots induce pro-inflammatory cytokine expression in mouse lung epithelial cells and macrophages.

    PubMed

    Lee, Vivian; McMahan, Ryan S; Hu, Xiaoge; Gao, Xiaohu; Faustman, Elaine M; Griffith, William C; Kavanagh, Terrance J; Eaton, David L; McGuire, John K; Parks, William C

    2015-05-01

    Quantum dots (Qdots) are semiconductor nanoparticles with size-tunable fluorescence capabilities with diverse applications. Qdots typically contain cadmium or other heavy metals, hence raising concerns of their potential toxicity, especially in occupational settings where inhalation of nanomaterials may increase the risk of lung disease. Accordingly, we assessed the effects of tri-n-octylphosphine oxide, poly(maleic anhydride-alt-1-tetradecene) (TOPO-PMAT) coated CdSe/ZnS Qdots on mouse lung epithelial cells and macrophages. Mouse tracheal epithelial cells (MTEC), grown as organotypic cultures, bone marrow-derived macrophages (BMDM), and primary alveolar macrophages (AM) were derived from C57BL/6J or A/J mice and treated with TOPO-PMAT CdSe/ZnS Qdots (10-160 nM) for up to 24 h. Cadmium analysis showed that Qdots remained in the apical compartment of MTEC cultures, whereas they were avidly internalized by AM and BMDM, which did not differ between strains. In MTEC, Qdots selectively induced expression (mRNA and protein) of neutrophil chemokines CXCL1 and CXCL2 but only low to no detectable levels of other factors assessed. In contrast, 4 h exposure to Qdots markedly increased expression of CXCL1, IL6, IL12, and other pro-inflammatory factors in BMDM. Higher inflammatory response was seen in C57BL/6J than in A/J BMDM. Similar expression responses were observed in AM, although overall levels were less robust than in BMDM. MTEC from A/J mice were more sensitive to Qdot pro-inflammatory effects while macrophages from C57BL/6J mice were more sensitive. These findings suggest that patterns of Qdot-induced pulmonary inflammation are likely to be cell-type specific and genetic background dependent.

  7. Nitric oxide modulation of pulmonary vascular resistance is red blood cell dependent in isolated rat lungs.

    PubMed

    Uncles, D R; Daugherty, M O; Frank, D U; Roos, C M; Rich, G F

    1996-12-01

    Nitric oxide (NO) or endothelium-derived relaxing factor may play an important role in modulating pulmonary vascular resistance (PVR), although previous studies have produced conflicting results. Endogenous NO inhibition causes an increase in PVR in intact animals but not in saline-perfused isolated lungs. We hypothesized that blood is essential for NO to serve as a modulator of PVR. Therefore, the effects of endogenous NO inhibition (N omega-nitro-L-arginine methyl ester [L-NAME]) were determined in isolated rat lungs as related to the presence of different blood components under normoxic conditions and after 1 wk of hypoxia (fraction of inspired oxygen [FIO2] = 10%). Exogenously administered inhaled NO was evaluated in isolated lungs from normoxic and hypoxic rats. In normoxic rats, L-NAME (10-100 microM) caused a dose-dependent increase in PVR in whole (hematocrit [Hct] 40%) and diluted (Hct 12%) blood-perfused lungs. L-NAME (10-800 microM) had no effect in isolated lungs perfused with a modified salt solution of equal viscosity to blood either alone, or containing plasma (50%) or free oxyhemoglobin (10 microM). In whole blood perfused lungs, L-NAME (100 microM) increased PVR more in hypoxic versus normoxic isolated lungs (141% vs 100%). Inhaled NO decreased PVR in isolated lungs from hypoxic rats and partially reversed the effects of L-NAME, but had no effect in normoxic lungs. In conclusion, endogenous and inhaled NO modulate PVR in isolated rat lungs and this role is increased by prolonged hypoxia. The response to inhibition of endogenous NO is dependent on the presence of red blood cells and is independent of the changes in viscosity or the presence of oxyhemoglobin or plasma.

  8. Titanium oxide nanoparticle instillation induces inflammation and inhibits lung development in mice.

    PubMed

    Ambalavanan, Namasivayam; Stanishevsky, Andrei; Bulger, Arlene; Halloran, Brian; Steele, Chad; Vohra, Yogesh; Matalon, Sadis

    2013-02-01

    Nanoparticles are used in an increasing number of biomedical, industrial, and food applications, but their safety profiles in developing organisms, including the human fetus and infant, have not been evaluated. Titanium oxide (TiO(2)) nanoparticles, which are commonly used in cosmetics, sunscreens, paints, and food, have been shown to induce emphysema and lung inflammation in adult mice. We hypothesized that exposure of newborn mice to TiO(2) would induce lung inflammation and inhibit lung development. C57BL/6 mice were exposed to TiO(2) (anatase; 8-10 nm) nanoparticles by intranasal instillation as a single dose on postnatal day 4 (P4) or as three doses on postnatal days 4, 7, and 10 (each dose = 1 μg/g body wt). Measurements of lung function (compliance and resistance), development (morphometry), inflammation (histology; multiplex analysis of bronchoalveolar lavage fluid for cytokines; PCR array and multiplex analysis of lung homogenates for cytokines) was performed on postnatal day 14. It was observed that a single dose of TiO(2) nanoparticles led to inflammatory cell influx, and multiple doses led to increased inflammation and inhibition of lung development without significant effects on lung function. Macrophages were noted to take up the TiO(2) nanoparticles, followed by polymorphonuclear infiltrate. Multiple cytokines and matrix metalloproteinase-9 were increased in lung homogenates, and VEGF was reduced. These results suggest that exposure of the developing lung to nanoparticles may lead to ineffective clearance by macrophages and persistent inflammation with resulting effects on lung development and may possibly impact the risk of respiratory disorders in later life.

  9. A crucial role of nitric oxide in acute lung injury secondary to the acute necrotizing pancreatitis.

    PubMed

    Cheng, Shi; Yan, Wen-Mao; Yang, Bin; Shi, Jing-dong; Song, Mao-min; Zhao, Yuqian

    2010-04-01

    To investigate the role of nitric oxide (NO) in acute lung inflammation and injury secondary to acute necrotizing pancreatitis (ANP), 5% sodium taurocholate was retrogradely injected into the biliopancreatic duct of rats to ANP model. These ANP rats were given L-Arginine (L-Arg, 100 mg/kg), L-NAME (10 mg/kg), or their combination by intraperitoneal injection 30 min prior to ANP induction. At 1, 3, 6, and 12 hours after ANP induction, lung NO production, and inducible NO synthase (iNOS) expression were measured. Lung histopathological changes, bronchoalveolar lavage (BAL) protein concentration, proinflammatory mediators tumor necrotic factor alpha (TNF-alpha), and lung tissue myeloperoxidase (MPO) activity were examined. Results showed that NO production and iNOS mRNA expression in alveolar macrophages (AMs) were significantly increased along with significant increases in lung histological abnormalities and BAL proteins in the ANP group, all of which were further enhanced by pretreatment with L-Arg and attenuated by pretreatment with L-NAME, respectively. These markers were slightly attenuated by pretreatment with combination of L-Arg + L-NAME, suggesting that NO is required for initiating the acute lung damage in ANP rats, and also that L-Arg-enhanced lung injury is mediated by its NO generation rather than its direct effect. MPO activity and TNF-alpha expression in lung were upregulated in the ANP rats and further enhanced by pretreatment with L-Arg and attenuated by pretreatment with L-NAME, respectively. These results suggest that overproduction of NO mediated by iNOS in the lung is required for the acute lung inflammation and damage secondary to ANP.

  10. Osteopontin protects against hyperoxia-induced lung injury by inhibiting nitric oxide synthases.

    PubMed

    Zhang, Xiang-Feng; Liu, Shuang; Zhou, Yu-Jie; Zhu, Guang-Fa; Foda, Hussein D

    2010-04-05

    Exposure of adult mice to more than 95% O(2) produces a lethal injury by 72 hours. Nitric oxide synthase (NOS) is thought to contribute to the pathophysiology of murine hyperoxia-induced acute lung injury (ALI). Osteopontin (OPN) is a phosphorylated glycoprotein produced principally by macrophages. OPN inhibits inducible nitric oxide synthase (iNOS), which generates large amounts of nitric oxide production. However, the relationship between nitric oxide and endogenous OPN in lung tissue during hyperoxia-induced ALI has not yet been elucidated, thus we examined the role that OPN plays in the hyperoxia-induced lung injury and its relationships with NOS. One hundred and forty-four osteopontin knock-out (KO) mice and their matched wild type background control (WT) were exposed in sealed cages > 95% oxygen or room air for 24- 72 hours, and the severity of lung injury was assessed; expression of OPN, endothelial nitric oxide synthase (eNOS) and iNOS mRNA in lung tissues at 24, 48 and 72 hours of hyperoxia were studied by reverse transcription-polymerase chain reaction (RT-PCR); immunohistochemistry (IHC) was performed for the detection of iNOS, eNOS, and OPN protein in lung tissues. OPN KO mice developed more severe acute lung injury at 72 hours of hyperoxia. The wet/dry weight ratio increased to 6.85 +/- 0.66 in the KO mice at 72 hours of hyperoxia as compared to 5.31 +/- 0.92 in the WT group (P < 0.05). iNOS mRNA (48 hours: 1.04 +/- 0.08 vs. 0.63 +/- 0.09, P < 0.01; 72 hours: 0.89 +/- 0.08 vs. 0.72 +/- 0.09, P < 0.05) and eNOS mRNA (48 hours: 0.62 +/- 0.08 vs. 0.43 +/- 0.09, P < 0.05; 72 hours: 0.67 +/- 0.08 vs. 0.45 +/- 0.09, P < 0.05) expression was more significantly increased in OPN KO mice than their matched WT mice when exposed to hyperoxia. IHC study showed higher expression of iNOS (20.54 +/- 3.18 vs. 12.52 +/- 2.46, P < 0.05) and eNOS (19.83 +/- 5.64 vs. 9.45 +/- 3.82, P < 0.05) in lung tissues of OPN KO mice at 72 hours of hyperoxia. OPN can protect against

  11. Respiratory symptoms, exhaled nitric oxide, and lung function among workers in Tanzanian coffee factories.

    PubMed

    Sakwari, Gloria; Mamuya, Simon H D; Bråtveit, Magne; Moen, Bente E

    2013-05-01

    To compare chronic respiratory symptoms, fractional exhaled nitric oxide (FENO), and lung function between Robusta and Arabica coffee workers and a control group. Chronic respiratory symptoms were assessed by a questionnaire (n = 138 coffee workers and n = 120 controls). The FENO was measured by NIOX MINO device (Aerocrine AB, Solna, Sweden). Lung function was examined by a portable spirometer. Coffee workers had higher prevalence of chronic respiratory and asthma symptoms than controls. Robusta coffee workers were exposed to higher levels of endotoxin and had more asthma symptoms than Arabica coffee workers (38% vs. 18%). Coffee workers had reduced lung function associated with cumulative exposure to total dust and endotoxin. Work in coffee factories is associated with small but significant lung function impairment. These changes were not associated with the level of FENO.

  12. Minimizing Oxidation and Stable Nanoscale Dispersion Improves the Biocompatibility of Graphene in the Lung

    PubMed Central

    Duch, Matthew C.; Scott Budinger, G. R.; Liang, Yu Teng; Soberanes, Saul; Urich, Daniela; Chiarella, Sergio E.; Campochiaro, Laura A; Gonzalez, Angel; Chandel, Navdeep S.; Hersam, Mark C.; Mutlu, Gökhan M.

    2011-01-01

    To facilitate the proposed use of graphene and its derivative graphene oxide (GO) in widespread applications, we explored strategies that improve the biocompatibility of graphene nanomaterials in the lung. In particular, solutions of aggregated graphene, Pluronic dispersed graphene, and GO were administered directly into the lungs of mice. The introduction of GO resulted in severe and persistent lung injury. Furthermore, in cells, GO increased the rate of mitochondrial respiration and the generation of reactive oxygen species, activating inflammatory and apoptotic pathways. In contrast, this toxicity was significantly reduced in the case of pristine graphene after liquid phase exfoliation, and was further minimized when the unoxidized graphene was well-dispersed with the block copolymer Pluronic. Our results demonstrate that the covalent oxidation of graphene is a major contributor to its pulmonary toxicity and suggest that dispersion of pristine graphene in Pluronic provides a pathway for the safe handling and potential biomedical application of two-dimensional carbon nanomaterials. PMID:22023654

  13. An endothelial TLR4-VEGFR2 pathway mediates lung protection against oxidant-induced injury.

    PubMed

    Takyar, Seyedtaghi; Zhang, Yi; Haslip, Maria; Jin, Lei; Shan, Peiying; Zhang, Xuchen; Lee, Patty J

    2016-03-01

    TLR4 deficiency causes hypersusceptibility to oxidant-induced injury. We investigated the role of TLR4 in lung protection, using used bone marrow chimeras; cell-specific transgenic modeling; and lentiviral delivery in vivo to knock down or express TLR4 in various lung compartments; and lung-specific VEGF transgenic mice to investigate the effect of TLR4 on VEGF-mediated protection. C57/BL6 mice were exposed to 100% oxygen in an enclosed chamber and assessed for survival and lung injury. Primary endothelial cells were stimulated with recombinant VEGF and exposed to hyperoxia or hydrogen peroxide. Endothelium-specific expression of human TLR4 (as opposed to its expression in epithelium or immune cells) increased the survival of TLR4-deficent mice in hyperoxia by 24 h and decreased LDH release and lung cell apoptosis after 72 h of exposure by 30%. TLR4 expression was necessary and sufficient for the protective effect of VEGF in the lungs and in primary endothelial cells in culture. TLR4 knockdown inhibited VEGF signaling through VEGF receptor 2 (VEGFR2), Akt, and ERK pathways in lungs and primary endothelial cells and decreased the availability of VEGFR2 at the cell surface. These findings demonstrate a novel mechanism through which TLR4, an innate pattern receptor, interacts with an endothelial survival pathway.

  14. Bronchoconstriction and endogenous nitric oxide in isolated lungs of spontaneously hypertensive rats.

    PubMed

    Kwasniewski, Fábio H; Landgraf, Richardt Gama; Bakhle, Yeshwant S; Jancar, Sonia

    2004-03-19

    Bronchoconstrictor responses were measured in lungs isolated from spontaneously hypertensive (SHR) and normotensive rats, perfused via the airways. Lungs from SHRs were more responsive than lungs from normotensive rats to methacholine, 5-hydroxytryptamine (5-HT), arachidonic acid or prostaglandin H(2). The responses of SHR airways to methacholine or 5-HT were unaffected by pretreatment in vivo with an inhibitor of nitric oxide (NO) synthase, N(omega)-nitro-L-arginine methyl ester hydrochloride (L-NAME, 30 mg kg(-1)), although responses in normotensive airways to methacholine, but not to 5-HT, were enhanced. Antigen challenge of isolated lungs from actively sensitized rats elicited bronchoconstriction, not different between strains. Pretreatment with L-NAME increased the response to antigen challenge only in normotensive lungs. Compound 48/80 induced bronchoconstriction in lungs from either strain, equally. These responses to compound 48/80 were unaffected by L-NAME pretreatment. Thus, SHR airways lack relaxing factors and degranulation of mast cells in SHR lungs was not affected by endogenous NO.

  15. Resolution of experimental lung injury by Monocyte-derived inducible nitric oxide synthase (iNOS)

    PubMed Central

    D’Alessio, Franco R.; Tsushima, Kenji; Aggarwal, Neil R.; Mock, Jason R.; Eto, Yoshiki; Garibaldi, Brian T.; Files, Daniel C.; Avalos, Claudia R.; Rodriguez, Jackie V.; Waickman, Adam T.; Reddy, Sekhar P.; Pearse, David B.; Sidhaye, Venkataramana K.; Hassoun, Paul M.; Crow, Michael T.; King, Landon S.

    2012-01-01

    While early events in the pathogenesis of acute lung injury (ALI) have been defined, little is known about mechanisms mediating resolution. To search for determinants of resolution, we exposed wild type (WT) mice to intratracheal lipopolysacaccharide (i.t. LPS) and assessed the response at intervals to day 10, when injury had resolved. Inducible nitric oxide synthase (iNOS) was significantly upregulated in the lung at day 4 after LPS. When iNOS−/− mice were exposed to i.t. LPS, early lung injury was attenuated, however recovery was markedly impaired compared to wild type (WT) mice. iNOS−/− mice had increased mortality and sustained increases in markers of lung injury. Adoptive transfer of WT (iNOS+/+) bone marrow-derived monocytes or direct adenoviral gene delivery of iNOS into injured iNOS−/− mice restored resolution of ALI. Irradiated bone marrow chimeras confirmed the protective effects of myeloid-derived iNOS, but not of epithelial iNOS. Alveolar macrophages exhibited sustained expression of co-signalling molecule CD86 in iNOS−/− mice compared to WT mice. Antibody-mediated blockade of CD86 in iNOS−/− mice improved survival and enhanced resolution of lung inflammation. Our findings show that monocyte-derived iNOS plays a pivotal role in mediating resolution of ALI by modulating lung immune responses, thus facilitating clearance of alveolar inflammation and promoting lung repair. PMID:22844117

  16. Pentoxifylline attenuates nitrogen mustard-induced acute lung injury, oxidative stress and inflammation.

    PubMed

    Sunil, Vasanthi R; Vayas, Kinal N; Cervelli, Jessica A; Malaviya, Rama; Hall, LeRoy; Massa, Christopher B; Gow, Andrew J; Laskin, Jeffrey D; Laskin, Debra L

    2014-08-01

    Nitrogen mustard (NM) is a toxic alkylating agent that causes damage to the respiratory tract. Evidence suggests that macrophages and inflammatory mediators including tumor necrosis factor (TNF)α contribute to pulmonary injury. Pentoxifylline is a TNFα inhibitor known to suppress inflammation. In these studies, we analyzed the ability of pentoxifylline to mitigate NM-induced lung injury and inflammation. Exposure of male Wistar rats (150-174 g; 8-10 weeks) to NM (0.125 mg/kg, i.t.) resulted in severe histopathological changes in the lung within 3d of exposure, along with increases in bronchoalveolar lavage (BAL) cell number and protein, indicating inflammation and alveolar-epithelial barrier dysfunction. This was associated with increases in oxidative stress proteins including lipocalin (Lcn)2 and heme oxygenase (HO)-1 in the lung, along with pro-inflammatory/cytotoxic (COX-2(+) and MMP-9(+)), and anti-inflammatory/wound repair (CD163+ and Gal-3(+)) macrophages. Treatment of rats with pentoxifylline (46.7 mg/kg, i.p.) daily for 3d beginning 15 min after NM significantly reduced NM-induced lung injury, inflammation, and oxidative stress, as measured histologically and by decreases in BAL cell and protein content, and levels of HO-1 and Lcn2. Macrophages expressing COX-2 and MMP-9 also decreased after pentoxifylline, while CD163+ and Gal-3(+) macrophages increased. This was correlated with persistent upregulation of markers of wound repair including pro-surfactant protein-C and proliferating nuclear cell antigen by Type II cells. NM-induced lung injury and inflammation were associated with alterations in the elastic properties of the lung, however these were largely unaltered by pentoxifylline. These data suggest that pentoxifylline may be useful in treating acute lung injury, inflammation and oxidative stress induced by vesicants.

  17. Chloroquine attenuates paraquat-induced lung injury in mice by altering inflammation, oxidative stress and fibrosis.

    PubMed

    Shen, Haitao; Wu, Na; Wang, Yu; Zhao, Hongyu; Zhang, Lichun; Li, Tiegang; Zhao, Min

    2017-05-01

    Paraquat is one of the most extensively used herbicides and has high toxicity for humans and animals. However, there is no effective treatment for paraquat poisoning. The aim of the present study was to evaluate the effects of chloroquine on paraquat-induced lung injury in mice. Mice received a single intraperitoneal injection of paraquat and a daily intraperitoneal injection of the indicated dosages of chloroquine or dexamethasone. The histological changes, inflammation and oxidative stress in the lungs were examined at day 3, and the degree of pulmonary fibrosis was examined at day 28. H&E staining showed that chloroquine markedly attenuated lung injury induced by paraquat. In addition, the inflammatory responses induced by paraquat were inhibited after treatment with chloroquine, as indicated by the decreased number of leukocytes, the reduced levels of TNF-α, IL-1β and IL-6 in the bronchoalveolar lavage fluid, the reduced NO content, and downregulation of iNOS expression in lung tissues. No different effect was found between high-dose chloroquine and dexamethasone. Additionally, the treatment with chloroquine increased the activity of SOD and decreased the level of MDA in the lung tissues. The expressions of the anti-oxidative proteins, Nrf2, HO-1 and NQO1, were also upregulated by chloroquine treatment. The high-dose chloroquine was more effective than dexamethasone in its anti-oxidation ability. Finally, the results of Masson's staining illustrated that chloroquine markedly attenuated fibrosis in the paraquat-exposed lungs. Immunohistochemistry staining showed that the expressions of the pro-fibrotic proteins TGF-β and α-SMA were downregulated after treatment with chloroquine. In conclusion, chloroquine effectively attenuated paraquat-induced lung injury in mice. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. INCORPORATION OF LABELED NITRIC OXIDE INTO RESPIRATORY TRACT LINING FLUIDS AND BLOOD PLASMA DURING LUNG INFLAMMATION

    EPA Science Inventory

    Incorporation of labeled nitric oxide (N18O) into respiratory tract lining fluids and blood plasma during lung inflammation. Slade, R., Norwood, J., Crissman, K., McKee, J., Hatch, G. PTB, ETD, NHEERL, ORD, USEPA, Res. Tri. Pk., NC

    Our earlier studies have demonstrated t...

  19. INCORPORATION OF LABELED NITRIC OXIDE INTO RESPIRATORY TRACT LINING FLUIDS AND BLOOD PLASMA DURING LUNG INFLAMMATION

    EPA Science Inventory

    Incorporation of labeled nitric oxide (N18O) into respiratory tract lining fluids and blood plasma during lung inflammation. Slade, R., Norwood, J., Crissman, K., McKee, J., Hatch, G. PTB, ETD, NHEERL, ORD, USEPA, Res. Tri. Pk., NC

    Our earlier studies have demonstrated t...

  20. Age-Dependent Decline in Mouse Lung Regeneration with Loss of Lung Fibroblast Clonogenicity and Increased Myofibroblastic Differentiation

    PubMed Central

    Paxson, Julia A.; Gruntman, Alisha; Parkin, Christopher D.; Mazan, Melissa R.; Davis, Airiel; Ingenito, Edward P.; Hoffman, Andrew M.

    2011-01-01

    While aging leads to a reduction in the capacity for regeneration after pneumonectomy (PNX) in most mammals, this biological phenomenon has not been characterized over the lifetime of mice. We measured the age-specific (3, 9, 24 month) effects of PNX on physiology, morphometry, cell proliferation and apoptosis, global gene expression, and lung fibroblast phenotype and clonogenicity in female C57BL6 mice. The data show that only 3 month old mice were fully capable of restoring lung volumes by day 7 and total alveolar surface area by 21 days. By 9 months, the rate of regeneration was slower (with incomplete regeneration by 21 days), and by 24 months there was no regrowth 21 days post-PNX. The early decline in regeneration rate was not associated with changes in alveolar epithelial cell type II (AECII) proliferation or apoptosis rate. However, significant apoptosis and lack of cell proliferation was evident after PNX in both total cells and AECII cells in 24 mo mice. Analysis of gene expression at several time points (1, 3 and 7 days) post-PNX in 9 versus 3 month mice was consistent with a myofibroblast signature (increased Tnc, Lox1, Col3A1, Eln and Tnfrsf12a) and more alpha smooth muscle actin (αSMA) positive myofibroblasts were present after PNX in 9 month than 3 month mice. Isolated lung fibroblasts showed a significant age-dependent loss of clonogenicity. Moreover, lung fibroblasts isolated from 9 and 17 month mice exhibited higher αSMA, Col3A1, Fn1 and S100A expression, and lower expression of the survival gene Mdk consistent with terminal differentiation. These data show that concomitant loss of clonogenicity and progressive myofibroblastic differentiation contributes to the age-dependent decline in the rate of lung regeneration. PMID:21912590

  1. An endothelial TLR4-VEGFR2 pathway mediates lung protection against oxidant-induced injury

    PubMed Central

    Takyar, Seyedtaghi; Zhang, Yi; Haslip, Maria; Jin, Lei; Shan, Peiying; Zhang, Xuchen; Lee, Patty J.

    2015-01-01

    TLR4 deficiency causes hypersusceptibility to oxidant-induced injury. We investigated the role of TLR4 in lung protection, using used bone marrow chimeras; cell-specific transgenic modeling; and lentiviral delivery in vivo to knock down or express TLR4 in various lung compartments; and lung-specific VEGF transgenic mice to investigate the effect of TLR4 on VEGF-mediated protection. C57/BL6 mice were exposed to 100% oxygen in an enclosed chamber and assessed for survival and lung injury. Primary endothelial cells were stimulated with recombinant VEGF and exposed to hyperoxia or hydrogen peroxide. Endothelium-specific expression of human TLR4 (as opposed to its expression in epithelium or immune cells) increased the survival of TLR4-deficent mice in hyperoxia by 24 h and decreased LDH release and lung cell apoptosis after 72 h of exposure by 30%. TLR4 expression was necessary and sufficient for the protective effect of VEGF in the lungs and in primary endothelial cells in culture. TLR4 knockdown inhibited VEGF signaling through VEGF receptor 2 (VEGFR2), Akt, and ERK pathways in lungs and primary endothelial cells and decreased the availability of VEGFR2 at the cell surface. These findings demonstrate a novel mechanism through which TLR4, an innate pattern receptor, interacts with an endothelial survival pathway.—Takyar, S., Zhang, Y., Haslip, M., Jin L., Shan P., Zhang, X., Lee, P. J. An endothelial TLR4-VEGFR2 pathway mediates lung protection against oxidant-induced injury. PMID:26655705

  2. The effects of exogenous surfactant administration on ventilation-induced inflammation in mouse models of lung injury

    PubMed Central

    2013-01-01

    Background Mechanical ventilation (MV) is an essential supportive therapy for acute lung injury (ALI); however it can also contribute to systemic inflammation. Since pulmonary surfactant has anti-inflammatory properties, the aim of the study was to investigate the effect of exogenous surfactant administration on ventilation-induced systemic inflammation. Methods Mice were randomized to receive an intra-tracheal instillation of a natural exogenous surfactant preparation (bLES, 50 mg/kg) or no treatment as a control. MV was then performed using the isolated and perfused mouse lung (IPML) set up. This model allowed for lung perfusion during MV. In experiment 1, mice were exposed to mechanical ventilation only (tidal volume =20 mL/kg, 2 hours). In experiment 2, hydrochloric acid or air was instilled intra-tracheally four hours before applying exogenous surfactant and ventilation (tidal volume =5 mL/kg, 2 hours). Results For both experiments, exogenous surfactant administration led to increased total and functional surfactant in the treated groups compared to the controls. Exogenous surfactant administration in mice exposed to MV only did not affect peak inspiratory pressure (PIP), lung IL-6 levels and the development of perfusate inflammation compared to non-treated controls. Acid injured mice exposed to conventional MV showed elevated PIP, lung IL-6 and protein levels and greater perfusate inflammation compared to air instilled controls. Instillation of exogenous surfactant did not influence the development of lung injury. Moreover, exogenous surfactant was not effective in reducing the concentration of inflammatory cytokines in the perfusate. Conclusions The data indicates that exogenous surfactant did not mitigate ventilation-induced systemic inflammation in our models. Future studies will focus on altering surfactant composition to improve its immuno-modulating activity. PMID:24256698

  3. Tissue optical clearing, three-dimensional imaging, and computer morphometry in whole mouse lungs and human airways.

    PubMed

    Scott, Gregory D; Blum, Emily D; Fryer, Allison D; Jacoby, David B

    2014-07-01

    In whole adult mouse lung, full identification of airway nerves (or other cellular/subcellular objects) has not been possible due to patchy distribution and micron-scale size. Here we describe a method using tissue clearing to acquire the first complete image of three-dimensional (3D) innervation in the lung. We then created a method to pair analysis of nerve (or any other colabeled epitope) images with identification of 3D tissue compartments and airway morphometry by using fluorescent casting and morphometry software (which we designed and are making available as open-source). We then tested our method to quantify a sparse heterogeneous nerve population by examining visceral pleural nerves. Finally, we demonstrate the utility of our method in human tissue to image full thickness innervation in irregular 3D tissue compartments and to quantify sparse objects (intrinsic airway ganglia). Overall, this method can uniquely pair the advantages of whole tissue imaging and cellular/subcellular fluorescence microscopy.

  4. The genetic basis of strain-dependent differences in the early phase of radiation injury in mouse lung

    SciTech Connect

    Franko, A.J.; Sharplin, J.; Ward, W.F.; Hinz, J.M. )

    1991-06-01

    Substantial differences between mouse strains have been reported in the lesions present in the lung during the early phase of radiation injury. Some strains show only classical pneumonitis, while other strains develop substantial fibrosis and hyaline membranes which contribute appreciably to respiratory insufficiency, in addition to pneumonitis. Other strains are intermediate between these extremes. These differences correlate with intrinsic differences in activities of lung plasminogen activator and angiotensin converting enzyme. The genetic basis of these differences was assessed by examining histologically the early reaction in lungs of seven murine hybrids available commercially after whole-thorax irradiation. Crosses between fibrosing and nonfibrosing parents were uniformly nonfibrosing, and crosses between fibrosing and intermediate parents were uniformly intermediate. No evidence of sex linkage was seen. Thus the phenotype in which fibrosis is found is controlled by autosomal recessive determinants. Strains prone to radiation-induced pulmonary fibrosis and hyaline membranes exhibited intrinsically lower activities of lung plasminogen activator and angiotensin converting enzyme than either the nonfibrosing strains or the nonfibrosing hybrid crosses. The median time of death of the hybrids was genetically determined primarily by the longest-lived parent regardless of the types of lesions expressed.

  5. Azithromycin Attenuates Lung Inflammation in a Mouse Model of Ventilator-Associated Pneumonia by Multidrug-Resistant Acinetobacter baumannii

    PubMed Central

    Yamada, Koichi; Kaku, Norihito; Harada, Yosuke; Migiyama, Yohei; Nagaoka, Kentaro; Morinaga, Yoshitomo; Nakamura, Shigeki; Imamura, Yoshifumi; Miyazaki, Taiga; Izumikawa, Koichi; Kakeya, Hiroshi; Hasegawa, Hiroo; Mikamo, Hiroshige; Kohno, Shigeru

    2013-01-01

    Acinetobacter baumannii is one of the main pathogens that cause ventilator-associated pneumonia (VAP) and is associated with a high rate of mortality. Little is known about the efficacy of macrolides against A. baumannii. In order to confirm the efficacy of azithromycin (AZM) against VAP caused by multidrug-resistant A. baumannii (MDRAB), we used a mouse model that mimics VAP by placement of a plastic tube in the bronchus. AZM (10 and 100 mg/kg of body weight) was administered subcutaneously every 24 h beginning at 3 h after inoculation. Phosphate-buffered saline was administered as the control. Survival was evaluated over 7 days. At 48 h postinfection, mice were sacrificed and the numbers of viable bacteria in lungs and bronchoalveolar lavage fluid were compared. Histopathological analysis of lung specimens was also performed. The treatment groups displayed significantly longer survival than the control group (P < 0.05). AZM did not have an antimicrobial effect. Histopathological examination of lung specimens indicated that the progression of lung inflammation was prevented in the AZM-treated groups. Furthermore, total cell and neutrophil counts, as well as cytokine levels, in bronchoalveolar lavage fluid were significantly decreased (P < 0.05) in the AZM-treated groups. AZM may have a role for the treatment of VAP with MDRAB because of its anti-inflammatory effects. PMID:23733468

  6. Anti-tumor activity of fenretinide complexed with human serum albumin in lung cancer xenograft mouse model.

    PubMed

    Durante, Sandra; Orienti, Isabella; Teti, Gabriella; Salvatore, Viviana; Focaroli, Stefano; Tesei, Anna; Pignatta, Sara; Falconi, Mirella

    2014-07-15

    Sufficient knowledge regarding cellular and molecular basis of lung cancer progression and metastasis would help in the development of novel and effective strategies for the treatment of lung cancer. 4HPR is a synthetic retinoid with potential anti-tumor activity but is still limited because of its poor bioavailability. The use of albumin as a complexing agent for a hydrophobic drug is expected to improve the water solubility and consequently their bioavailability.This study investigated the antitumor activity of a novel complex between albumin and 4-HPR in a mouse model of human lung cancer and focuses on role and mechanism of Cav-1 mainly involved in regulating cancer and ACSVL3 mainly connected with tumor growth. Their expressions were assayed by immunohistochemistry and qRT-PCR, to demonstrate the reduction of the tumor growth following the drug treatment. Our results showed a high antitumor activity of 4HPR-HSA by reduction of the volume of tumor mass and the presence of a high level of apoptotic cell by TUNEL assay. The downregulation of Cav-1 and ACSVL3 suggested a reduction of tumor growth. In conclusion, we demonstrated the great potential of 4HPR-HSA in the treatment of lung cancer. More data about the mechanism of drug delivery the 4HPR-HSA are necessary.

  7. Feasibility Assessment of a MALDI FTICR Imaging Approach for the 3D Reconstruction of a Mouse Lung

    NASA Astrophysics Data System (ADS)

    Jones, E. Ellen; Quiason, Cristine; Dale, Stephanie; Shahidi-Latham, Sheerin K.

    2017-08-01

    Matrix assisted laser desorption ionization imaging mass spectrometry (MALDI IMS) has proven to be a quick, robust, and label-free tool to produce two-dimensional (2D) ion-density maps representing the distribution of a variety of analytes across a tissue section of interest. In addition, three-dimensional (3D) imaging mass spectrometry workflows have been developed that are capable of visualizing these same analytes throughout an entire volume of a tissue rather than a single cross-section. Until recently, the use of Fourier transform ion cyclotron resonance (FTICR) mass spectrometers for 3D volume reconstruction has been impractical due to software limitations, such as inadequate capacity to manipulate the extremely large data files produced during an imaging experiment. Fortunately with recent software and hardware advancements, 3D reconstruction from MALDI FTICR IMS datasets is now feasible. Here we describe the first proof of principle study for a 3D volume reconstruction of an entire mouse lung using data collected on a FTICR mass spectrometer. Each lung tissue section was analyzed with high mass resolution and mass accuracy, and considered as an independent dataset. Each subsequent lung section image, or lung dataset, was then co-registered to its adjacent section to reconstruct a 3D volume. Volumes representing various endogenous lipid species were constructed, including sphingolipids and phosphatidylcholines (PC), and species confirmation was performed with on-tissue collision induced dissociation (CID).

  8. A novel mouse model of conditional IRAK-M deficiency in myeloid cells: application in lung Pseudomonas aeruginosa infection.

    PubMed

    Jiang, Di; Matsuda, Jennifer; Berman, Reena; Schaefer, Niccolette; Stevenson, Connor; Gross, James; Zhang, Bicheng; Sanchez, Amelia; Li, Liwu; Chu, Hong Wei

    2017-02-01

    Myeloid cells such as macrophages are critical to innate defense against infection. IL-1 receptor-associated kinase M (IRAK-M) is a negative regulator of TLR signaling during bacterial infection, but the role of myeloid cell IRAK-M in bacterial infection is unclear. Our goal was to generate a novel conditional knockout mouse model to define the role of myeloid cell IRAK-M during bacterial infection. Myeloid cell-specific IRAK-M knockout mice were generated by crossing IRAK-M floxed mice with LysM-Cre knock-in mice. The resulting LysM-Cre(+)/IRAK-M(fl/wt) and control (LysM-Cre(-)/IRAK-M(fl/wt)) mice were intranasally infected with Pseudomonas aeruginosa (PA). IRAK-M deletion, inflammation, myeloperoxidase (MPO) activity and PA load were measured in leukocytes, bronchoalveolar lavage (BAL) fluid and lungs. PA killing assay with BAL fluid was performed to determine mechanisms of IRAK-M-mediated host defense. IRAK-M mRNA and protein levels in alveolar and lung macrophages were significantly reduced in LysM-Cre(+)/IRAK-M(fl/wt) mice compared with control mice. Following PA infection, LysM-Cre(+)/IRAK-M(fl/wt) mice have enhanced lung neutrophilic inflammation, including MPO activity, but reduced PA load. The increased lung MPO activity in LysM-Cre(+)/IRAK-M(fl/wt) mouse BAL fluid reduced PA load. Generation of IRAK-M conditional knockout mice will enable investigators to determine precisely the function of IRAK-M in myeloid cells and other types of cells during infection and inflammation.

  9. Gene Profiles in a Smoke-Induced COPD Mouse Lung Model Following Treatment with Mesenchymal Stem Cells.

    PubMed

    Kim, You-Sun; Kokturk, Nurdan; Kim, Ji-Young; Lee, Sei Won; Lim, Jaeyun; Choi, Soo Jin; Oh, Wonil; Oh, Yeon-Mok

    2016-10-01

    Mesenchymal stem cells (MSCs) effectively reduce airway inflammation and regenerate the alveolus in cigarette- and elastase-induced chronic obstructive pulmonary disease (COPD) animal models. The effects of stem cells are thought to be paracrine and immune-modulatory because very few stem cells remain in the lung one day after their systemic injection, which has been demonstrated previously. In this report, we analyzed the gene expression profiles to compare mouse lungs with chronic exposure to cigarette smoke with non-exposed lungs. Gene expression profiling was also conducted in a mouse lung tissue with chronic exposure to cigarette smoke following the systemic injection of human cord blood-derived mesenchymal stem cells (hCB-MSCs). Globally, 834 genes were differentially expressed after systemic injection of hCB-MSCs. Seven and 21 genes, respectively, were up-and downregulated on days 1, 4, and 14 after HCB-MSC injection. The Hbb and Hba, genes with oxygen transport and antioxidant functions, were increased on days 1 and 14. A serine protease inhibitor was also increased at a similar time point after injection of hCB-MSCs. Gene Ontology analysis indicated that the levels of genes related to immune responses, metabolic processes, and blood vessel development were altered, indicating host responses after hCB-MSC injection. These gene expression changes suggest that MSCs induce a regeneration mechanism against COPD induced by cigarette smoke. These analyses provide basic data for understanding the regeneration mechanisms promoted by hCB-MSCs in cigarette smoke-induced COPD.

  10. Gene Profiles in a Smoke-Induced COPD Mouse Lung Model Following Treatment with Mesenchymal Stem Cells

    PubMed Central

    Kim, You-Sun; Kokturk, Nurdan; Kim, Ji-Young; Lee, Sei Won; Lim, Jaeyun; Choi, Soo Jin; Oh, Wonil; Oh, Yeon-Mok

    2016-01-01

    Mesenchymal stem cells (MSCs) effectively reduce airway inflammation and regenerate the alveolus in cigarette- and elastase-induced chronic obstructive pulmonary disease (COPD) animal models. The effects of stem cells are thought to be paracrine and immune-modulatory because very few stem cells remain in the lung one day after their systemic injection, which has been demonstrated previously. In this report, we analyzed the gene expression profiles to compare mouse lungs with chronic exposure to cigarette smoke with non-exposed lungs. Gene expression profiling was also conducted in a mouse lung tissue with chronic exposure to cigarette smoke following the systemic injection of human cord blood-derived mesenchymal stem cells (hCB-MSCs). Globally, 834 genes were differentially expressed after systemic injection of hCB-MSCs. Seven and 21 genes, respectively, were up-and downregulated on days 1, 4, and 14 after HCB-MSC injection. The Hbb and Hba, genes with oxygen transport and antioxidant functions, were increased on days 1 and 14. A serine protease inhibitor was also increased at a similar time point after injection of hCB-MSCs. Gene Ontology analysis indicated that the levels of genes related to immune responses, metabolic processes, and blood vessel development were altered, indicating host responses after hCB-MSC injection. These gene expression changes suggest that MSCs induce a regeneration mechanism against COPD induced by cigarette smoke. These analyses provide basic data for understanding the regeneration mechanisms promoted by hCB-MSCs in cigarette smoke-induced COPD. PMID:27802588

  11. Proteases and oxidant stress control organic dust induction of inflammatory gene expression in lung epithelial cells.

    PubMed

    Natarajan, Kartiga; Gottipati, Koteswara R; Berhane, Kiflu; Samten, Buka; Pendurthi, Usha; Boggaram, Vijay

    2016-10-22

    Persistant inflammatory responses to infectious agents and other components in organic dust underlie lung injury and development of respiratory diseases. Organic dust components responsible for eliciting inflammation and the mechanisms by which they cause lung inflammation are not fully understood. We studied the mechanisms by which protease activities in poultry dust extracts and intracellular oxidant stress induce inflammatory gene expression in A549 and Beas2B lung epithelial cells. The effects of dust extracts on inflammatory gene expression were analyzed by quantitative polymerase chain reaction (qPCR), enzyme linked immunosorbent (ELISA) and western blot assays. Oxidant stress was probed by dihydroethidium (DHE) labeling, and immunostaining for 4-hydroxynonenal (4-HNE). Effects on interleukin-8 (IL-8) promoter regulation were determined by transient transfection assay. Dust extracts contained trypsin and elastase activities, and activated protease activated receptor (PAR)-1 and -2. Serine protease inhibitors and PAR-1 or PAR-2 knockdown suppressed inflammatory gene induction. Dust extract induction of IL-8 gene expression was associated with increased DHE-fluorescence and 4-HNE staining, and antioxidants suppressed inflammatory gene induction. Protease inhibitors and antioxidants suppressed protein kinase C and NF-κB activation and induction of IL-8 promoter activity in cells exposed to dust extract. Our studies demonstrate that proteases and intracellular oxidants control organic dust induction of inflammatory gene expression in lung epithelial cells. Targeting proteases and oxidant stress may serve as novel approaches for the treatment of organic dust induced lung diseases. This is the first report on the involvement of oxidant stress in the induction of inflammatory gene expression by organic dust.

  12. Transgenic Mouse Model for Reducing Oxidative Damage in Bone

    NASA Technical Reports Server (NTRS)

    Schreurs, Ann-Sofie; Torres, S.; Truong, T.; Moyer, E. L.; Kumar, A.; Tahimic, Candice C. G.; Alwood, J. S.; Limoli, C. L.; Globus, R. K.

    2016-01-01

    Bone loss can occur due to many challenges such age, radiation, microgravity, and Reactive Oxygen Species (ROS) play a critical role in bone resorption by osteoclasts (Bartell et al. 2014). We hypothesize that suppression of excess ROS in skeletal cells, both osteoblasts and osteoclasts, regulates skeletal growth and remodeling. To test our hypothesis, we used transgenic mCAT mice which overexpress the human anti-oxidant catalase gene targeted to the mitochondria, the main site for endogenous ROS production. mCAT mice have a longer life-span than wildtype controls and have been used to study various age-related disorders. To stimulate remodeling, 16 week old mCAT mice or wildtype mice were exposed to treatment (hindlimb-unloading and total body-irradiation) or sham treatment conditions (control). Tissues were harvested 2 weeks later for skeletal analysis (microcomputed tomography), biochemical analysis (gene expression and oxidative damage measurements), and ex vivo bone marrow derived cell culture (osteoblastogenesis and osteoclastogenesis). mCAT mice expressed the transgene and displayed elevated catalase activity in skeletal tissue and marrow-derived osteoblasts and osteoclasts grown ex vivo. In addition, when challenged with treatment, bone tissues from wildtype mice showed elevated levels of malondialdehyde (MDA), indicating oxidative damage) whereas mCAT mice did not. Correlation analysis revealed that increased catalase activity significantly correlated with decreased MDA levels and that increased oxidative damage correlated with decreased percent bone volume (BVTV). In addition, ex-vivo cultured osteoblast colony growth correlated with catalase activity in the osteoblasts. Thus, we showed that these transgenic mice can be used as a model to study the relationship between markers of oxidative damage and skeletal properties. mCAT mice displayed reduced BVTV and trabecular number relative to wildtype mice, as well as increased structural model index in the

  13. Optical imaging of tissue mitochondrial redox state in intact rat lungs in two models of pulmonary oxidative stress

    PubMed Central

    Sepehr, Reyhaneh; Staniszewski, Kevin; Maleki, Sepideh; Jacobs, Elizabeth R.; Audi, Said

    2012-01-01

    Abstract. Ventilation with enhanced fractions of O2 (hyperoxia) is a common and necessary treatment for hypoxemia in patients with lung failure, but prolonged exposure to hyperoxia causes lung injury. Ischemia-reperfusion (IR) injury of lung tissue is common in lung transplant or crush injury to the chest. These conditions are associated with apoptosis and decreased survival of lung tissue. The objective of this work is to use cryoimaging to evaluate the effect of exposure to hyperoxia and IR injury on lung tissue mitochondrial redox state in rats. The autofluorescent mitochondrial metabolic coenzymes nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) are electron carriers in ATP generation. These intrinsic fluorophores were imaged for rat lungs using low-temperature fluorescence imaging (cryoimaging). Perfused lungs from four groups of rats were studied: normoxia (control), control perfused with an mitochondrial complex IV inhibitor (potassium cyanide, KCN), rats exposed to hyperoxia (85% O2) for seven days, and from rats subjected to lung IR in vivo 24 hours prior to study. Each lung was sectioned sequentially in the transverse direction, and the images were used to reconstruct a three-dimensional (3-D) rendering. In KCN perfused lungs the respiratory chain was more reduced, whereas hyperoxic and IR lung tissue have a more oxidized respiratory chain than control lung tissue, consistent with previously measured mitochondrial dysfunction in both hyperoxic and IR lungs. PMID:22559688

  14. Optical imaging of tissue mitochondrial redox state in intact rat lungs in two models of pulmonary oxidative stress

    NASA Astrophysics Data System (ADS)

    Sepehr, Reyhaneh; Staniszewski, Kevin; Maleki, Sepideh; Jacobs, Elizabeth R.; Audi, Said; Ranji, Mahsa

    2012-04-01

    Ventilation with enhanced fractions of O2 (hyperoxia) is a common and necessary treatment for hypoxemia in patients with lung failure, but prolonged exposure to hyperoxia causes lung injury. Ischemia-reperfusion (IR) injury of lung tissue is common in lung transplant or crush injury to the chest. These conditions are associated with apoptosis and decreased survival of lung tissue. The objective of this work is to use cryoimaging to evaluate the effect of exposure to hyperoxia and IR injury on lung tissue mitochondrial redox state in rats. The autofluorescent mitochondrial metabolic coenzymes nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) are electron carriers in ATP generation. These intrinsic fluorophores were imaged for rat lungs using low-temperature fluorescence imaging (cryoimaging). Perfused lungs from four groups of rats were studied: normoxia (control), control perfused with an mitochondrial complex IV inhibitor (potassium cyanide, KCN), rats exposed to hyperoxia (85% O2) for seven days, and from rats subjected to lung IR in vivo 24 hours prior to study. Each lung was sectioned sequentially in the transverse direction, and the images were used to reconstruct a three-dimensional (3-D) rendering. In KCN perfused lungs the respiratory chain was more reduced, whereas hyperoxic and IR lung tissue have a more oxidized respiratory chain than control lung tissue, consistent with previously measured mitochondrial dysfunction in both hyperoxic and IR lungs.

  15. Understanding Lung Deposition of Alpha-1 Antitrypsin in Acute Experimental Mouse Lung Injury Model Using Fluorescence Microscopy

    PubMed Central

    Zhan, Yutian; Chen, Jianqing; Rong, Haojing; O'Neil, Shawn P.; Ghosh, Brahma; Nguyen, Vuong; Li, Xianfeng

    2016-01-01

    Human plasma-derived α1-antitrypsin (AAT) delivered by intravenous infusion is used as augmentation therapy in patients with emphysema who have a genetic mutation resulting in deficiency of AAT. Inhalation is an alternative route of administration that can potentially increase the efficacy and convenience of treatment. This study was conducted to determine whether delivery to the lungs, initially via the intratracheal (IT) route of administration, would deliver efficacious levels of a recombinant AAT (rAAT) to the site of action in the lungs in mice. 125I-radiolabeled rAAT, fluorophore-conjugated rAAT (rAAT-Alexa488), and NE680 (neutrophil elastase 680, a silent fluorescent substrate of neutrophil elastase which fluoresces in the near-infrared range upon activation by neutrophil elastase) were used to characterize the pharmacokinetics and tissue distribution profile, distribution of rAAT within the lung, and efficacy of rAAT to inhibit neutrophil elastase at the site of action, respectively. The study has demonstrated that rAAT was able to gain access to locations where neutrophil elastase was localized. The histochemical quantification of rAAT activity relative to dose at the site of action provided here will improve confidence in predicting the human dose via the inhalation route. PMID:28050284

  16. δ-Aminolevulinate dehydratase activity in lung cancer patients and its relationship with oxidative stress.

    PubMed

    Zanini, Daniela; Pelinson, Luana Paula; Schmatz, Roberta; Belmonte Pereira, Luciane; Curry Martins, Caroline; Baldissareli, Jucimara; Pires Amaral, Guilherme; Antunes Soares, Félix Alexandre; Brenner Reetz, Luiz Gustavo; Araújo, Maria do Carmo; Chiesa, Juarez; Morsch, Vera Maria; Bitencourt Rosa Leal, Daniela; Schetinger, Maria Rosa Chitolina

    2014-06-01

    This study investigated the δ-aminolevulinate dehydratase (δ-ALA-D) activity in whole blood as well as the parameters of oxidative stress, such as reactive species (RS) levels in serum, thiobarbituric acid reactive substances (TBARS) levels, the superoxide dismutase (SOD) and catalase (CAT) activities, as well as total thiols (T-SH) and non-protein thiols (NPSH) levels in platelets. Moreover, the content of vitamin C and E in plasma and serum, respectively, in lung cancer patients was also investigated. We collected blood samples from patients (n=28) previously treated for lung cancer with chemotherapy. Patients were classified as stage IIIb and IV according to the Union for International Cancer Control (UICC). Results showed a decrease of 37% in δ-ALA-D activity in patients with lung cancer when compared to the control group. RS and TBARS levels were 8% and 99% higher in the patient group, respectively. The activity of SOD and CAT as well as the vitamin C content were 41%, 35% and 127% lower in patients when compared with controls, respectively. However, T-SH and vitamin E levels were 27% and 44% higher in lung cancer patients, respectively. Results show that the overproduction of reactive species in patients with lung cancer may be interfering with the activity of δ-ALA-D. Likewise, the decrease in the activity of this enzyme may be contributing for the oxidative stress. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  17. Lung function and exhaled nitric oxide in healthy unsedated African infants.

    PubMed

    Gray, Diane; Willemse, Lauren; Visagie, Ane; Smith, Emilee; Czövek, Dorottya; Sly, Peter D; Hantos, Zoltán; Hall, Graham L; Zar, Heather J

    2015-10-01

    Population-appropriate lung function reference data are essential to accurately identify respiratory disease and measure response to interventions. There are currently no reference data in African infants. The aim was to describe normal lung function in healthy African infants. Lung function was performed on healthy South African infants enrolled in a birth cohort study, the Drakenstein child health study. Infants were excluded if they were born preterm or had a history of neonatal respiratory distress or prior respiratory tract infection. Measurements, made during natural sleep, included the forced oscillation technique, tidal breathing, exhaled nitric oxide and multiple breath washout measures. Three hundred sixty-three infants were tested. Acceptable and repeatable measurements were obtained in 356 (98%) and 352 (97%) infants for tidal breathing analysis and exhaled nitric oxide outcomes, 345 (95%) infants for multiple breath washout and 293 of the 333 (88%) infants for the forced oscillation technique. Age, sex and weight-for-age z score were significantly associated with lung function measures. This study provides reference data for unsedated infant lung function in African infants and highlights the importance of using population-specific data. © 2015 The Authors. Respirology published by Wiley Publishing Asia Pty Ltd on behalf of Asian Pacific Society of Respirology.

  18. Effects of acute and chronic administration of methylprednisolone on oxidative stress in rat lungs* **

    PubMed Central

    Torres, Ronaldo Lopes; Torres, Iraci Lucena da Silva; Laste, Gabriela; Ferreira, Maria Beatriz Cardoso; Cardoso, Paulo Francisco Guerreiro; Belló-Klein, Adriane

    2014-01-01

    Objective: To determine the effects of acute and chronic administration of methylprednisolone on oxidative stress, as quantified by measuring lipid peroxidation (LPO) and total reactive antioxidant potential (TRAP), in rat lungs. Methods: Forty Wistar rats were divided into four groups: acute treatment, comprising rats receiving a single injection of methylprednisolone (50 mg/kg i.p.); acute control, comprising rats i.p. injected with saline; chronic treatment, comprising rats receiving methylprednisolone in drinking water (6 mg/kg per day for 30 days); and chronic control, comprising rats receiving normal drinking water. Results: The levels of TRAP were significantly higher in the acute treatment group rats than in the acute control rats, suggesting an improvement in the pulmonary defenses of the former. The levels of lung LPO were significantly higher in the chronic treatment group rats than in the chronic control rats, indicating oxidative damage in the lung tissue of the former. Conclusions: Our results suggest that the acute use of corticosteroids is beneficial to lung tissue, whereas their chronic use is not. The chronic use of methylprednisolone appears to increase lung LPO levels. PMID:25029646

  19. Inhomogeneity of local stiffness in the extracellular matrix scaffold of fibrotic mouse lungs.

    PubMed

    Melo, Esther; Cárdenes, Nayra; Garreta, Elena; Luque, Tomas; Rojas, Mauricio; Navajas, Daniel; Farré, Ramon

    2014-09-01

    Lung disease models are useful to study how cell engraftment, proliferation and differentiation are modulated in lung bioengineering. The aim of this work was to characterize the local stiffness of decellularized lungs in aged and fibrotic mice. Mice (2- and 24-month old; 14 of each) with lung fibrosis (N=20) and healthy controls (N=8) were euthanized after 11 days of intratracheal bleomycin (fibrosis) or saline (controls) infusion. The lungs were excised, decellularized by a conventional detergent-based (sodium-dodecyl sulfate) procedure and slices of the acellular lungs were prepared to measure the local stiffness by means of atomic force microscopy. The local stiffness of the different sites in acellular fibrotic lungs was very inhomogeneous within the lung and increased according to the degree of the structural fibrotic lesion. Local stiffness of the acellular lungs did not show statistically significant differences caused by age. The group of mice most affected by fibrosis exhibited local stiffness that were ~2-fold higher than in the control mice: from 27.2±1.64 to 64.8±7.1kPa in the alveolar septa, from 56.6±4.6 to 99.9±11.7kPa in the visceral pleura, from 41.1±8.0 to 105.2±13.6kPa in the tunica adventitia, and from 79.3±7.2 to 146.6±28.8kPa in the tunica intima. Since acellular lungs from mice with bleomycin-induced fibrosis present considerable micromechanical inhomogeneity, this model can be a useful tool to better investigate how different degrees of extracellular matrix lesion modulate cell fate in the process of organ bioengineering from decellularized lungs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Protein Oxidation in the Lungs of C57BL/6J Mice Following X-Irradiation

    PubMed Central

    Barshishat-Kupper, Michal; McCart, Elizabeth A.; Freedy, James G.; Tipton, Ashlee J.; Nagy, Vitaly; Kim, Sung-Yop; Landauer, Michael R.; Mueller, Gregory P.; Day, Regina M.

    2015-01-01

    Damage to normal lung tissue is a limiting factor when ionizing radiation is used in clinical applications. In addition, radiation pneumonitis and fibrosis are a major cause of mortality following accidental radiation exposure in humans. Although clinical symptoms may not develop for months after radiation exposure, immediate events induced by radiation are believed to generate molecular and cellular cascades that proceed during a clinical latent period. Oxidative damage to DNA is considered a primary cause of radiation injury to cells. DNA can be repaired by highly efficient mechanisms while repair of oxidized proteins is limited. Oxidized proteins are often destined for degradation. We examined protein oxidation following 17 Gy (0.6 Gy/min) thoracic X-irradiation in C57BL/6J mice. Seventeen Gy thoracic irradiation resulted in 100% mortality of mice within 127–189 days postirradiation. Necropsy findings indicated that pneumonitis and pulmonary fibrosis were the leading cause of mortality. We investigated the oxidation of lung proteins at 24 h postirradiation following 17 Gy thoracic irradiation using 2-D gel electrophoresis and OxyBlot for the detection of protein carbonylation. Seven carbonylated proteins were identified using mass spectrometry: serum albumin, selenium binding protein-1, alpha antitrypsin, cytoplasmic actin-1, carbonic anhydrase-2, peroxiredoxin-6, and apolipoprotein A1. The carbonylation status of carbonic anhydrase-2, selenium binding protein, and peroxiredoxin-6 was higher in control lung tissue. Apolipoprotein A1 and serum albumin carbonylation were increased following X-irradiation, as confirmed by OxyBlot immunoprecipitation and Western blotting. Our findings indicate that the profile of specific protein oxidation in the lung is altered following radiation exposure. PMID:28248270

  1. Characterizing dynamic regulatory programs in mouse lung development and their potential association with tumourigenesis via miRNA-TF-mRNA circuits.

    PubMed

    Liu, Juan; Ye, Xinghuo; Wu, Fang-Xiang

    2013-01-01

    In dynamic biological processes, genes, transcription factors(TF) and microRNAs(miRNAs) play vital regulation roles. Many researchers have focused on the transcription factors or miRNAs in transcriptional or post transcriptional stage, respectively. However, the transcriptional regulation and post transcriptional regulation is not isolated in the whole dynamic biological processes, there are few reserchers who have tried to consider the network composed by genes, miRNAs and TFs in this dynamic biological processes, especially in the mouse lung development. Moreover, it is widely acknowledged that cancer is a kind of developmental disorders, and some of pathways involved in tissue development might be also implicated in causing cancer. Although it has been found that many genes differentially expressed during mouse lung development are also differentially expressed in lung cancer, very little work has been reported to elucidate the combinational regulatory programs of such kind of associations. In order to investigate the association of transcriptional and post-transcriptional regulating activities in the mouse lung development, we define the significant triple relations among miRNAs, TFs and mRNAs as circuits. From the lung development time course data GSE21053, we mine 142610 circuit candidates including 96 TFs, 129 miRNAs and 13403 genes. After removing genes with little variation along different time points, we finally find 64760 circuit candidates, containing 8299 genes, 50 TFs, and 118 miRNAs in total. Further analysis on the circuits shows that the circuits vary in different stages of the lung development and play different roles. By investigating the circuits in the context of lung specific genes, we identify out the regulatory combinations for lung specific genes, as well as for those lung non-specific genes. Moreover, we show that the lung non-specific genes involved circuits are functionally related to the lung development. Noticing that some tissue

  2. Exhaled Nitric Oxide, Lung Function, and Exacerbations in Wheezy Infants and Toddlers

    PubMed Central

    Debley, Jason S.; Stamey, David C.; Cochrane, Elizabeth S.; Gama, Kim L.; Redding, Gregory J.

    2010-01-01

    Background There are limited data assessing the relationship between fractional concentration of exhaled nitric oxide (FENO) and lung function or exacerbations in infants with recurrent wheezing. Objectives In a longitudinal pilot study of children < 2 years old we assessed whether baseline FENO was associated with lung function, bronchodilator responsiveness, changes in lung function, or subsequent exacerbations of wheezing. Methods Forced expiratory flows and volumes using the raised-volume rapid thoracic compression method were measured in 44 infants and toddlers (mean age 15.7 mos.) with recurrent wheezing. Single-breath exhaled nitric oxide (SB-eNO) was measured at 50 mL/sec. Lung function was again measured 6 months after enrollment. Results At enrollment FEV0.5, FEF25-75, and FEF75 z-scores for the cohort were significantly less than zero. There was no correlation between enrollment SB-eNO and enrollment lung function measures. SB-eNO was higher in infants with bronchodilator responsiveness (46.1 vs. 23.6 ppb, p<0.001), and was associated with a decline in FEV0.5 (r = -.54, P = 0.001), FEF25-75 (r = -0.6, P < 0.001), and FEF75 (r = -0.55, P = 0.001) over 6 months. A 10ppb increase in SB-eNO was associated with a 0.4 z-score decline in FEV0.5, a 0.4 z-score decline in FEF25-75, and a 0.42 z-score decline in FEF75. SB-eNO was superior to lung function and bronchodilator responsivenss in predicting subsequent wheezing treated with systemic steroids. Conclusions SB-eNO may predict changes in lung function and risk of future wheezing, and holds promise as a biomarker to predict asthma in wheezy infants and toddlers. PMID:20462633

  3. Combined exogenous surfactant and inhaled nitric oxide therapy for lung ischemia-reperfusion injury in minipigs.

    PubMed

    Warnecke, G; Strüber, M; Fraud, S; Hohlfeld, J M; Haverich, A

    2001-05-15

    The combined application of exogenous surfactant and inhaled nitric oxide was evaluated for prevention of ischemia-reperfusion injury of the lung. Left lungs were selectively perfused in 18 minipigs in situ with cold preservation solution. After 90 min of warm ischemia, the lungs were reperfused and the right pulmonary artery and bronchus were ligated (control group, n=6). Exogenous surfactant was instilled via bronchoscopy during ischemia (surfactant group, n=6). In a third group, surfactant was applied, followed by administration of inhaled nitric oxide (surfactant+NO group, n=6). Hemodynamic and respiratory parameters were recorded for 7 hr, and bronchoalveolar lavage fluid (BALF) was obtained before and after reperfusion for measurement of surface tension, small aggregate/large aggregate ratio, protein and phospholipid contents, and a differential cell count. Control group animals survived for 3.7+/-1.4 hr. In both surfactant-treated groups, five out of six animals survived the observation period (P<0.001). Dynamic compliance of the lung was decreased in control animals (P<0.001). In the surfactant+NO group, arterial PO2 was higher than in both other groups (P<0.001). BALF cell count and histology showed reduced neutrophil infiltration in surfactant+NO-treated lungs. Surface tension assessed in BALF with a pulsating bubble surfactometer was severely impaired in control animals (gammamin, 14.82+/-9.95 mN/m), but maintained in surfactant-treated (gammamin, 1.11+/-0.56 mN/m) and surfactant+NO-treated animals (gammamin, 3.90+/-2.35 mN/m, P=0.02). Administration of exogenous surfactant in lung reperfusion injury results in improved lung compliance. The addition of inhaled NO improves arterial oxygenation and reduces neutrophil extravasation compared with surfactant treatment alone.

  4. Depletion of tumor-associated macrophages slows the growth of chemically induced mouse lung adenocarcinomas.

    PubMed

    Fritz, Jason M; Tennis, Meredith A; Orlicky, David J; Lin, Hao; Ju, Cynthia; Redente, Elizabeth F; Choo, Kevin S; Staab, Taylor A; Bouchard, Ronald J; Merrick, Daniel T; Malkinson, Alvin M; Dwyer-Nield, Lori D

    2014-01-01

    Chronic inflammation is a risk factor for lung cancer, and low-dose aspirin intake reduces lung cancer risk. However, the roles that specific inflammatory cells and their products play in lung carcinogenesis have yet to be fully elucidated. In mice, alveolar macrophage numbers increase as lung tumors progress, and pulmonary macrophage programing changes within 2 weeks of carcinogen exposure. To examine how macrophages specifically affect lung tumor progression, they were depleted in mice bearing urethane-induced lung tumors using clodronate-encapsulated liposomes. Alveolar macrophage populations decreased to ≤50% of control levels after 4-6 weeks of liposomal clodronate treatment. Tumor burden decreased by 50% compared to vehicle treated mice, and tumor cell proliferation, as measured by Ki67 staining, was also attenuated. Pulmonary fluid levels of insulin-like growth factor-I, CXCL1, IL-6, and CCL2 diminished with clodronate liposome treatment. Tumor-associated macrophages expressed markers of both M1 and M2 programing in vehicle and clodronate liposome-treated mice. Mice lacking CCR2 (the receptor for macrophage chemotactic factor CCL2) had comparable numbers of alveolar macrophages and showed no difference in tumor growth rates when compared to similarly treated wild-type mice suggesting that while CCL2 may recruit macrophages to lung tumor microenvironments, redundant pathways can compensate when CCL2/CCR2 signaling is inactivated. Depletion of pulmonary macrophages rather than inhibition of their recruitment may be an advantageous strategy for attenuating lung cancer progression.

  5. Nicotine does not enhance tumorigenesis in mutant K-ras-driven mouse models of lung cancer.

    PubMed

    Maier, Colleen R; Hollander, M Christine; Hobbs, Evthokia A; Dogan, Irem; Linnoila, R Ilona; Dennis, Phillip A

    2011-11-01

    Smoking is the leading cause of preventable cancer deaths in the United States. Nicotine replacement therapies (NRT) have been developed to aid in smoking cessation, which decreases lung cancer incidence. However, the safety of NRT is controversial because numerous preclinical studies have shown that nicotine enhances tumor cell growth in vitro and in vivo. We modeled NRT in mice to determine the effects of physiologic levels of nicotine on lung tumor formation, tumor growth, or metastasis. Nicotine administered in drinking water did not enhance lung tumorigenesis after treatment with the tobacco carcinogen, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). Tumors that develop in this model have mutations in K-ras, which is commonly observed in smoking-related, human lung adenocarcinomas. In a transgenic model of mutant K-ras-driven lung cancer, nicotine did not increase tumor number or size and did not affect overall survival. Likewise, in a syngeneic model using lung cancer cell lines derived from NNK-treated mice, oral nicotine did not enhance tumor growth or metastasis. These data show that nicotine does not enhance lung tumorigenesis when given to achieve levels comparable with those of NRT, suggesting that nicotine has a dose threshold, below which it has no appreciable effect. These studies are consistent with epidemiologic data showing that NRT does not enhance lung cancer risk in former smokers.

  6. Nicotine does not enhance tumorigenesis in mutant K-Ras-driven mouse models of lung cancer

    PubMed Central

    Maier, Colleen R.; Hollander, M. Christine; Hobbs, Evthokia A.; Dogan, Irem; Dennis, Phillip A.

    2011-01-01

    Smoking is the leading cause of preventable cancer deaths in the United States. Nicotine replacement therapies (NRT) have been developed to aid in smoking cessation, which decreases lung cancer incidence. However, the safety of NRT is controversial because numerous preclinical studies have shown that nicotine enhances tumor cell growth in vitro and in vivo. We modeled NRT in mice to determine the effects of physiological levels of nicotine on lung tumor formation, tumor growth or metastasis. Nicotine administered in drinking water did not enhance lung tumorigenesis after treatment with the tobacco carcinogen, NNK. Tumors that develop in this model have mutations in K-ras, which is a commonly observed in smoking-related, human lung adenocarcinomas. In a transgenic model of mutant K-ras-driven lung cancer, nicotine did not increase tumor number or size, and did not affect overall survival. Likewise, in a syngeneic model of lung cancer cell lines derived from NNK-treated mice, oral nicotine did not enhance tumor growth or metastasis. These data show that nicotine does not enhance lung tumorigenesis when given to achieve levels comparable to those of NRT, suggesting that nicotine has a dose threshold, below which it has no appreciable effect. These studies are consistent with epidemiological data showing that NRT does not enhance lung cancer risk in former smokers. PMID:22027685

  7. Solubility of indium-tin oxide in simulated lung and gastric fluids: Pathways for human intake.

    PubMed

    Andersen, Jens Christian Østergård; Cropp, Alastair; Paradise, Diane Caroline

    2017-02-01

    From being a metal with very limited natural distribution, indium (In) has recently become disseminated throughout the human society. Little is known of how In compounds behave in the natural environment, but recent medical studies link exposure to In compounds to elevated risk of respiratory disorders. Animal tests suggest that exposure may lead to more widespread damage in the body, notably the liver, kidneys and spleen. In this paper, we investigate the solubility of the most widely used In compound, indium-tin oxide (ITO) in simulated lung and gastric fluids in order to better understand the potential pathways for metals to be introduced into the bloodstream. Our results show significant potential for release of In and tin (Sn) in the deep parts of the lungs (artificial lysosomal fluid) and digestive tract, while the solubility in the upper parts of the lungs (the respiratory tract or tracheobronchial tree) is very low. Our study confirms that ITO is likely to remain as solid particles in the upper parts of the lungs, but that particles are likely to slowly dissolve in the deep lungs. Considering the prolonged residence time of inhaled particles in the deep lung, this environment is likely to provide the major route for uptake of In and Sn from inhaled ITO nano- and microparticles. Although dissolution through digestion may also lead to some uptake, the much shorter residence time is likely to lead to much lower risk of uptake. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Prevention of ischemia-reperfusion lung injury by inhaled nitric oxide in neonatal piglets.

    PubMed

    Barbotin-Larrieu, F; Mazmanian, M; Baudet, B; Détruit, H; Chapelier, A; Libert, J M; Dartevelle, P; Hervé, P

    1996-03-01

    Lung ischemia-reperfusion results in a decrease in the release of nitric oxide (NO) by the pulmonary endothelium. NO may have lung-protective effects by decreasing neutrophil accumulation in the lung. We tested whether NO inhalation would attenuate reperfusion-induced endothelial dysfunction and increases in microvascular permeability and total pulmonary vascular resistance (RT) by preventing neutrophil lung accumulation. After baseline determinations of RT, coefficient of filtration (Kfc), and circulating neutrophil counts, isolated neonatal piglet lungs were subjected to a 1-h period of ischemia followed by a 1-h period of blood reperfusion and reventilation with or without addition of NO (10 ppm). NO prevented reperfusion-induced increases in RT and Kfc, as well as the decrease in circulating neutrophils. After reperfusion, increases in Kfc were correlated with decreases in circulating neutrophils. NO prevented reperfusion-induced decrease in endothelium-dependent relaxation in precontracted pulmonary arterial rings. This demonstrates that inhaled NO prevents microvascular injury, endothelial dysfunction, and pulmonary neutrophil accumulation in a neonatal piglet model of lung ischemia-reperfusion.

  9. Nitric oxide and endothelin-1 release after one-lung ventilation during thoracoabdominal esophagectomy.

    PubMed

    Lund, M; Ny, L; Malmström, R E; Lundberg, J O; Öst, Å; Björnstedt, M; Lundell, L; Tsai, J A

    2013-01-01

    One-lung ventilation (OLV) is applied during esophagectomy to improve exposure during the thoracic part of the operation. Collapse of lung tissue, shunting of pulmonary blood flow, and changes in alveolar oxygenation during and after OLV may possibly induce an ischemia-reperfusion response in the lung, which may affect the pulmonary endothelium. Such a reaction might thereby contribute to the frequently occurring respiratory complications among these patients. In this small trial, 30 patients were randomized to either OLV (n= 16) or two-lung ventilation (TLV, n= 14) during esophagectomy. Central venous and arterial plasma samples were taken before and after OLV/TLV for analysis of nitrite and a metabolite of nitric oxide (NO), and also during the 1st, 2nd, 3rd, and 10th postoperative day for analysis of endothelin, another endothelium-derived vasoactive mediator. Lung biopsies were taken before and after OLV or TLV, and analyzed regarding immunofluorescence for isoform of NO synthase, a protein upregulated during inflammatory response and also vascular congestion. No changes in lung isoform of NO synthase immunofluorescence or vascular congestion were registered after neither OLV nor TLV. Plasma nitrite and endothelin levels were similar in the two study groups. We conclude that OLV does not seem to have any influence on key regulators of pulmonary vascular tone and inflammation, i.e. NO and endothelin. From this perspective, OLV seems to be a safe method, which defends its clinical position to facilitate surgical exposure during thoracoabdominal esophagectomy.

  10. Pten Inactivation Accelerates Oncogenic K-ras-Initiated Tumorigenesis in a Mouse Model of Lung Cancer

    PubMed Central

    Iwanaga, Kentaro; Yang, Yanan; Raso, Maria Gabriela; Ma, Lijiang; Hanna, Amy E.; Thilaganathan, Nishan; Moghaddam, Seyed; Evans, Christopher M.; Li, Huaiguang; Cai, Wei-Wen; Sato, Mitsuo; Minna, John D.; Wu, Hong; Creighton, Chad J.; Demayo, Francesco J.; Wistuba, Ignacio I.; Kurie, Jonathan M.

    2009-01-01

    Phosphatase and tensin homologue deleted from chromosome 10 (Pten) is expressed aberrantly in non-small cell lung cancer cells, but the role of Pten in lung neoplasia has not been fully elucidated. In this study, we used a genetic approach to inactivate Pten in the bronchial epithelium of mice. Although, by itself, Pten inactivation had no discernible effect on bronchial epithelial histology, it accelerated lung tumorigenesis initiated by oncogenic K-ras, causing more rapid lethality than that induced by oncogenic K-ras alone (8 weeks versus 24 weeks of median duration of survival, respectively). Lung tumors arose in K-ras mutant, Pten-deficient mice that rapidly obstructed bronchial lumina and replaced alveolar spaces. Relative to K-ras mutant tumors, the K-ras mutant, Pten-deficient tumors exhibited more advanced histologic severity and more prominent inflammation and vascularity. Thus, Pten inactivation cooperated with oncogenic K-ras in promoting lung tumorigenesis. PMID:18281487

  11. Surfactant protein secreted by the maturing mouse fetal lung acts as a hormone that signals the initiation of parturition.

    PubMed

    Condon, Jennifer C; Jeyasuria, Pancharatnam; Faust, Julie M; Mendelson, Carole R

    2004-04-06

    Parturition is timed to begin only after the developing embryo is sufficiently mature to survive outside the womb. It has been postulated that the signal for the initiation of parturition arises from the fetus although the nature and source of this signal remain obscure. Herein, we provide evidence that this signal originates from the maturing fetal lung. In the mouse, secretion of the major lung surfactant protein, surfactant protein A (SP-A), was first detected in amniotic fluid (AF) at 17 days postcoitum, rising progressively to term (19 days postcoitum). Expression of IL-1beta in AF macrophages and activation of NF-kappaB in the maternal uterus increased with the gestational increase in SP-A. SP-A stimulated IL-1beta and NF-kappaB expression in cultured AF macrophages. Studies using Rosa 26 Lac-Z (B6;129S-Gt(rosa)26Sor) (Lac-Z) mice revealed that fetal AF macrophages migrate to the uterus with the gestational increase in AF SP-A. Intraamniotic (i.a.) injection of SP-A caused preterm delivery of fetuses within 6-24 h. By contrast, injection of an SP-A antibody or NF-kappaB inhibitor into AF delayed labor by >24 h. We propose that augmented production of SP-A by the fetal lung near term causes activation and migration of fetal AF macrophages to the maternal uterus, where increased production of IL-1beta activates NF-kappaB, leading to labor. We have revealed a response pathway that ties augmented surfactant production by the maturing fetal lung to the initiation of labor. We suggest that SP-A secreted by the fetal lung serves as a hormone of parturition.

  12. Oxidative damage induced by cigarette smoke exposure in mice: impact on lung tissue and diaphragm muscle*,**

    PubMed Central

    de Carlos, Samanta Portão; Dias, Alexandre Simões; Forgiarini, Luiz Alberto; Patricio, Patrícia Damiani; Graciano, Thaise; Nesi, Renata Tiscoski; Valença, Samuel; Chiappa, Adriana Meira Guntzel; Cipriano, Gerson; de Souza, Claudio Teodoro; Chiappa, Gaspar Rogério da Silva

    2014-01-01

    OBJECTIVE: To evaluate oxidative damage (lipid oxidation, protein oxidation, thiobarbituric acid-reactive substances [TBARS], and carbonylation) and inflammation (expression of phosphorylated AMP-activated protein kinase and mammalian target of rapamycin [p-AMPK and p-mTOR, respectively]) in the lung parenchyma and diaphragm muscles of male C57BL-6 mice exposed to cigarette smoke (CS) for 7, 15, 30, 45, or 60 days. METHODS: Thirty-six male C57BL-6 mice were divided into six groups (n = 6/group): a control group; and five groups exposed to CS for 7, 15, 30, 45, and 60 days, respectively. RESULTS: Compared with control mice, CS-exposed mice presented lower body weights at 30 days. In CS-exposed mice (compared with control mice), the greatest differences (increases) in TBARS levels were observed on day 7 in diaphragm-muscle, compared with day 45 in lung tissue; the greatest differences (increases) in carbonyl levels were observed on day 7 in both tissue types; and sulfhydryl levels were lower, in both tissue types, at all time points. In lung tissue and diaphragm muscle, p-AMPK expression exhibited behavior similar to that of TBARS. Expression of p-mTOR was higher than the control value on days 7 and 15 in lung tissue, as it was on day 45 in diaphragm muscle. CONCLUSION: Our data demonstrate that CS exposure produces oxidative damage, not only in lung tissue but also (primarily) in muscle tissue, having an additional effect on respiratory muscle, as is frequently observed in smokers with COPD. PMID:25210964

  13. (-)-Epicatechin Attenuates Degradation of Mouse Oxidative Muscle Following Hindlimb Suspension.

    PubMed

    Lee, Icksoo; Hüttemann, Maik; Malek, Moh H

    2016-01-01

    The purpose of this study was to conduct a 14-day hindlimb suspension (HS) with and without (-)-epicatechin supplementation to determine whether (-)-epicatechin treatment can attenuate the loss in muscle degradation, angiogenesis, and mitochondrial signaling in oxidative skeletal muscle. Adult mice were randomized into 3 groups: (a) control (C); (b) HS with vehicle (HS-V); and (c) HS with (-)-epicatechin (HS-(-)-Epi). Animals in the HS-(-)-Epi group received (-)-epicatechin (1.0 mg · kg(-1) of body mass) twice daily through oral gavage. For markers related to muscle degradation, the HS-V group had significantly higher protein expression compared with the control and HS-(-)-Epi groups. Moreover, protein expression for myosin heavy chain type I was significantly reduced by approximately 45% in the HS-V group compared with the control and HS-(-)-Epi groups. In addition, capillarity contact and capillary-to-fiber ratio were significantly higher in the HS-(-)-Epi group compared with the HS-V group. Furthermore, protein expression for thrombospondin-1 was significantly higher in HS-V group compared with the control and HS-(-)-Epi groups. Hindlimb suspension also significantly reduced protein expression for mitochondrial signaling compared with the control and HS-(-)-Epi groups. These findings suggest that (-)-epicatechin supplementation attenuates degradation in oxidative muscles after HS.

  14. Effects of sphingosylphosphorylcholine against oxidative stress and acute lung ınjury ınduced by pulmonary contusion in rats.

    PubMed

    Aksu, Burhan; Ayvaz, Süleyman; Aksu, Feyza; Karaca, Turan; Cemek, Mustafa; Ayaz, Ahmet; Demirtaş, Selim

    2015-04-01

    The goal of this study was to evaluate effects of exogenous sphingosylphosphorylcholine (SPC) administration on acute lung injury induced by pulmonary contusion in rats. Eight animals were included in each of the following five groups: control, contusion, contusion phosphate-buffered solution (PBS), contusion SPC 2, contusion SPC 10. SPC was administered 3 days at a daily two different doses of 2 μm/ml and 10 μm/ml intraperitoneally. The severity of lung injury was determined by the neutrophil activation and histological and immunohistochemical changes in the lung. Malondialdehyde (MDA), nitric oxide (NO), superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione (GSH) were determined to evaluate the oxidative status in the lung tissue. Treatment with 2 μM SPC inhibited the increase in lung MDA and NO levels significantly and also attenuated the depletion of SOD, GPx, and GSH in the lung injury induced by pulmonary contusion. These data were supported by histopathological findings. The inducible nitric oxide synthase (iNOS) positive cells and apoptotic cells in the lung tissue were observed to be reduced with the 2 μM SPC treatment. But, the 10 μM SPC treatment did not provide similar effects. In conclusion, these findings suggested that 2 μM SPC can attenuate lung damage in pulmonary contusion by prevention of oxidative stress, inflammatory process and apoptosis. All these findings suggest that low dose SPC may be a promising new therapeutic agent for acute lung injury. Copyright © 2015. Published by Elsevier Inc.

  15. Characterization of a genetic mouse model of lung cancer: a promise to identify Non-Small Cell Lung Cancer therapeutic targets and biomarkers

    PubMed Central

    2014-01-01

    Background Non-small cell lung cancer (NSCLC) accounts for 81% of all cases of lung cancer and they are often fatal because 60% of the patients are diagnosed at an advanced stage. Besides the need for earlier diagnosis, there is a high need for additional effective therapies. In this work, we investigated the feasibility of a lung cancer progression mouse model, mimicking features of human aggressive NSCLC, as biological reservoir for potential therapeutic targets and biomarkers. Results We performed RNA-seq profiling on total RNA extracted from lungs of a 30 week-old K-rasLA1/p53R172HΔg and wild type (WT) mice to detect fusion genes and gene/exon-level differential expression associated to the increase of tumor mass. Fusion events were not detected in K-rasLA1/p53R172HΔg tumors. Differential expression at exon-level detected 33 genes with differential exon usage. Among them nine, i.e. those secreted or expressed on the plasma membrane, were used for a meta-analysis of more than 500 NSCLC RNA-seq transcriptomes. None of the genes showed a significant correlation between exon-level expression and disease prognosis. Differential expression at gene-level allowed the identification of 1513 genes with a significant increase in expression associated to tumor mass increase. 74 genes, i.e. those secreted or expressed on the plasma membrane, were used for a meta-analysis of two transcriptomics datasets of human NSCLC samples, encompassing more than 900 samples. SPP1 was the only molecule whose over-expression resulted statistically related to poor outcome regarding both survival and metastasis formation. Two other molecules showed over-expression associated to poor outcome due to metastasis formation: GM-CSF and ADORA3. GM-CSF is a secreted protein, and we confirmed its expression in the supernatant of a cell line derived by a K-rasLA1/p53R172HΔg mouse tumor. ADORA3 is instead involved in the induction of p53-mediated apoptosis in lung cancer cell lines. Since in our

  16. Aberrant lung remodeling in a mouse model of surfactant dysregulation induced by modulation of the Abca3 gene✩

    PubMed Central

    Beers, Michael F.; Knudsen, Lars; Tomer, Yaniv; Maronn, Julian; Zhao, Ming; Ochs, Matthias; Mulugeta, Surafel

    2017-01-01

    The lipid transporter, ATP binding cassette class A3 (ABCA3), plays a critical role in the biogenesis of alveolar type 2 (AT2) cell lamellar bodies (LBs). A relatively large number of mutations in the ABCA3 gene have been identified in association with diffuse parenchymal lung disease (DPLD), the most common of which is a missense mutation (valine substitution for lysine at residue 292 (ABCA3E292V)) that leads to functional impairment of the transporter in vitro. The consequences of ABCA3E292V gene expression in vivo are unknown. To address this question, we developed mouse models expressing ABCA3E292V knocked-in to the endogenous mouse locus. The parental (F1) mouse line (mAbca3E292V) that retained an intronic pgk-Neo selection cassette (inserted in reverse orientation) (mAbca3E292V–rNeo) demonstrated an allele dependent extracellular surfactant phospholipid (PL) deficiency. We hypothesize that this PL deficiency leads to aberrant parenchymal remodeling contributing to the pathophysiology of the DPLD phenotype. Compared to wild type littermates, baseline studies of mice homozygous for the pgk-Neo insert (mAbca3E292V–rNeo+/+) revealed nearly 50% reduction in bronchoalveolar lavage (BAL) PL content that was accompanied by quantitative reduction in AT2 LB size with a compensatory increase in LB number. The phenotypic alteration in surfactant lipid homeostasis resulted in an early macrophage predominant alveolitis which peaked at 8 weeks of age. This was followed by age-dependent development of histological DPLD characterized initially by peribronchial inflammatory cell infiltration and culminating in both an emphysema-like phenotype (which included stereologically quantifiable reductions in both alveolar septal surface area and volume of septal wall tissue) plus foci of trichrome-positive collagen deposition together with substantial proliferation of hyperplastic AT2 cells. In addition to spontaneous lung remodeling, mABCA3E292V–rNeo mice were rendered more

  17. Aberrant lung remodeling in a mouse model of surfactant dysregulation induced by modulation of the Abca3 gene.

    PubMed

    Beers, Michael F; Knudsen, Lars; Tomer, Yaniv; Maronn, Julian; Zhao, Ming; Ochs, Matthias; Mulugeta, Surafel

    2017-03-01

    The lipid transporter, ATP binding cassette class A3 (ABCA3), plays a critical role in the biogenesis of alveolar type 2 (AT2) cell lamellar bodies (LBs). A relatively large number of mutations in the ABCA3 gene have been identified in association with diffuse parenchymal lung disease (DPLD), the most common of which is a missense mutation (valine substitution for lysine at residue 292 (ABCA3(E292V))) that leads to functional impairment of the transporter in vitro. The consequences of ABCA3(E292)(V) gene expression in vivo are unknown. To address this question, we developed mouse models expressing ABCA3(E292V) knocked-in to the endogenous mouse locus. The parental (F1) mouse line (mAbca3(E292)(V)) that retained an intronic pgk-Neo selection cassette (inserted in reverse orientation) (mAbca3(E292)(V)-rNeo) demonstrated an allele dependent extracellular surfactant phospholipid (PL) deficiency. We hypothesize that this PL deficiency leads to aberrant parenchymal remodeling contributing to the pathophysiology of the DPLD phenotype. Compared to wild type littermates, baseline studies of mice homozygous for the pgk-Neo insert (mAbca3(E292)(V)-rNeo(+/)(+)) revealed nearly 50% reduction in bronchoalveolar lavage (BAL) PL content that was accompanied by quantitative reduction in AT2 LB size with a compensatory increase in LB number. The phenotypic alteration in surfactant lipid homeostasis resulted in an early macrophage predominant alveolitis which peaked at 8 weeks of age. This was followed by age-dependent development of histological DPLD characterized initially by peribronchial inflammatory cell infiltration and culminating in both an emphysema-like phenotype (which included stereologically quantifiable reductions in both alveolar septal surface area and volume of septal wall tissue) plus foci of trichrome-positive collagen deposition together with substantial proliferation of hyperplastic AT2 cells. In addition to spontaneous lung remodeling, mABCA3(E292V)-rNeo mice

  18. Transgenic Mouse Model for Reducing Oxidative Damage in Bone

    NASA Technical Reports Server (NTRS)

    Schreurs, A.-S.; Torres, S.; Truong, T.; Kumar, A.; Alwood, J. S.; Limoli, C. L.; Globus, R. K.

    2014-01-01

    Exposure to musculoskeletal disuse and radiation result in bone loss; we hypothesized that these catabolic treatments cause excess reactive oxygen species (ROS), and thereby alter the tight balance between bone resorption by osteoclasts and bone formation by osteoblasts, culminating in bone loss. To test this, we used transgenic mice which over-express the human gene for catalase, targeted to mitochondria (MCAT). Catalase is an anti-oxidant that converts the ROS hydrogen peroxide into water and oxygen. MCAT mice were shown previously to display reduced mitochondrial oxidative stress and radiosensitivity of the CNS compared to wild type controls (WT). As expected, MCAT mice expressed the transgene in skeletal tissue, and in marrow-derived osteoblasts and osteoclast precursors cultured ex vivo, and also showed greater catalase activity compared to wildtype (WT) mice (3-6 fold). Colony expansion in marrow cells cultured under osteoblastogenic conditions was 2-fold greater in the MCAT mice compared to WT mice, while the extent of mineralization was unaffected. MCAT mice had slightly longer tibiae than WT mice (2%, P less than 0.01), although cortical bone area was slightly lower in MCAT mice than WT mice (10%, p=0.09). To challenge the skeletal system, mice were treated by exposure to combined disuse (2 wk Hindlimb Unloading) and total body irradiation Cs(137) (2 Gy, 0.8 Gy/min), then bone parameters were analyzed by 2-factor ANOVA to detect possible interaction effects. Treatment caused a 2-fold increase (p=0.015) in malondialdehyde levels of bone tissue (ELISA) in WT mice, but had no effect in MCAT mice. These findings indicate that the transgene conferred protection from oxidative damage caused by treatment. Unexpected differences between WT and MCAT mice emerged in skeletal responses to treatment.. In WT mice, treatment did not alter osteoblastogenesis, cortical bone area, moment of inertia, or bone perimeter, whereas in MCAT mice, treatment increased these

  19. Aryl hydrocarbon receptor protects lung adenocarcinoma cells against cigarette sidestream smoke particulates-induced oxidative stress

    SciTech Connect

    Cheng, Ya-Hsin; Huang, Su-Chin; Lin, Chun-Ju; Cheng, Li-Chuan; Li, Lih-Ann

    2012-03-15

    Environmental cigarette smoke has been suggested to promote lung adenocarcinoma progression through aryl hydrocarbon receptor (AhR)-signaled metabolism. However, whether AhR facilitates metabolic activation or detoxification in exposed adenocarcinoma cells remains ambiguous. To address this question, we have modified the expression level of AhR in two human lung adenocarcinoma cell lines and examined their response to an extract of cigarette sidestream smoke particulates (CSSP). We found that overexpression of AhR in the CL1-5 cell line reduced CSSP-induced ROS production and oxidative DNA damage, whereas knockdown of AhR expression increased ROS level in CSSP-exposed H1355 cells. Oxidative stress sensor Nrf2 and its target gene NQO1 were insensitive to AhR expression level and CSSP treatment in human lung adenocarcinoma cells. In contrast, induction of AhR expression concurrently increased mRNA expression of xenobiotic-metabolizing genes CYP1B1, UGT1A8, and UGT1A10 in a ligand-independent manner. It appeared that AhR accelerated xenobiotic clearing and diminished associated oxidative stress by coordinate regulation of a set of phase I and II metabolizing genes. However, the AhR-signaled protection could not shield cells from constant oxidative stress. Prolonged exposure to high concentrations of CSSP induced G0/G1 cell cycle arrest via the p53–p21–Rb1 signaling pathway. Despite no effect on DNA repair rate, AhR facilitated the recovery of cells from growth arrest when CSSP exposure ended. AhR-overexpressing lung adenocarcinoma cells exhibited an increased anchorage-dependent and independent proliferation when recovery from exposure. In summary, our data demonstrated that AhR protected lung adenocarcinoma cells against CSSP-induced oxidative stress and promoted post-exposure clonogenicity. -- Highlights: ► AhR expression level influences cigarette sidestream smoke-induced ROS production. ► AhR reduces oxidative stress by coordinate regulation of

  20. Synergistic Effect of Bolus Exposure to Zinc Oxide Nanoparticles on Bleomycin-Induced Secretion of Pro-Fibrotic Cytokines without Lasting Fibrotic Changes in Murine Lungs

    PubMed Central

    Wu, Wenting; Ichihara, Gaku; Hashimoto, Naozumi; Hasegawa, Yoshinori; Hayashi, Yasuhiko; Tada-Oikawa, Saeko; Suzuki, Yuka; Chang, Jie; Kato, Masashi; D’Alessandro-Gabazza, Corina N.; Gabazza, Esteban C.; Ichihara, Sahoko

    2014-01-01

    Zinc oxide (ZnO) nanoparticles are widely used in various products, and the safety evaluation of this manufactured material is important. The present study investigated the inflammatory and fibrotic effects of pulmonary exposure to ZnO nanoparticles in a mouse model of pulmonary fibrosis. Pulmonary fibrosis was induced by constant subcutaneous infusion of bleomycin (BLM). Female C57BL/6Jcl mice were divided into BLM-treated and non-treated groups. In each treatment group, 0, 10, 20 or 30 µg of ZnO nanoparticles were delivered into the lungs through pharyngeal aspiration. Bronchoalveolar lavage fluid (BALF) and the lungs were sampled at Day 10 or 14 after administration. Pulmonary exposure by a single bolus of ZnO nanoparticles resulted in severe, but transient inflammatory infiltration and thickening of the alveolar septa in the lungs, along with the increase of total and differential cell counts in BLAF. The BALF level of interleukin (IL)-1β and transforming growth factor (TGF)-β was increased at Day 10 and 14, respectively. At Day 10, the synergistic effect of BLM and ZnO exposure was detected on IL-1β and monocyte chemotactic protein (MCP)-1 in BALF. The present study demonstrated the synergistic effect of pulmonary exposure to ZnO nanoparticles and subcutaneous infusion of BLM on the secretion of pro-fibrotic cytokines in the lungs. PMID:25561223

  1. Inhaled resveratrol treatments slow ageing-related degenerative changes in mouse lung.

    PubMed

    Navarro, Sonia; Reddy, Raghava; Lee, Jooeun; Warburton, David; Driscoll, Barbara

    2017-05-01

    Lung ageing, a significant risk factor for chronic human lung diseases such as COPD and emphysema, is characterised by airspace enlargement and decreasing lung function. Likewise, in prematurely ageing telomerase null (terc-/-) mice, p53 stabilisation within diminishing numbers of alveolar epithelial type 2 cells (AEC2) accompanies reduced lung function. Resveratrol (RSL) is a plant phytoalexin that has previously showed efficacy in enhancing invertebrate longevity and supporting mammalian muscle metabolism when delivered orally. Here, we tested whether inhaled RSL could protect young, terc-/- mice from accelerated ageing of the lung. terc-/- mice aged 2 months inhaled 1 mg/kg RSL that was instilled intratracheally once per month for 3 months. One month after the last inhalation, whole lung function, structure and cellular DNA damage were evaluated and AEC2 survival was assessed by western blotting for survival pathway gene expression. RSL treatments delayed the loss of lung compliance (p<0.05), maintained lung structure (p<0.001) and blocked parenchymal cell DNA damage as measured by TdT Nick-End Labeling (TUNEL). RSL, a known agonist of deacetylase SIRT1, supported AEC2 survival by stimulating SIRT1 expression, promoting p53 destabilisation and decreasing Bax expression and by maintaining expression levels of Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), activated p-Akt and p-Mdm2 and inactivated Phospho-Phosphatase and tensin homolog (p-PTEN). RSL prophylaxis by inhalation is a potential approach for slowing ageing-related deterioration of lung function and structure by maintaining AEC2 integrity. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  2. Influence of dietary selenium on mouse lung biochemical response and tolerance to ozone inhalation

    SciTech Connect

    Elsayed, N.M.

    1983-01-01

    This study examined whether altered selenium (Se) intake with or without ozone (O/sub 3/) stress would result in a possible 1) dose-response relationship between lung Se and glutathione peroxidase, 2) influence of Se on other lung parameters, 3) interrelationship between lung Se and vitamin E contents, and 4) alteration of lung sensitivity or tolerance to O/sub 3/. The results showed the following: 1) Omission of dietary Se resulted in a drastic decline in GP activity but did not affect the other enzyme activities studied. 2) A stimulation of the PPC and CAC activites with low-level O/sub 3/ exposure occurred only in Se-supplemented mice. The stimulation was greater in the lungs of mice fed 1.0 ppm Se compared to 0.15 ppm, i.e., the response was Se-dose dependent in this range. 3) Diminished GP activity possibly resulted in a decreased demand for NADPH produced via not only the PPC but also the CAC. 4) An inverse relationship was observed between Se and vitamin E contents in lung tissue, showing that a compensatory relationship existed between the two. 5) After each O/sub 3/ exposure Se content increased in lung tissue of both dietary groups, suggesting a possible mobilization of Se to the lung under O/sub 3/ stress. 6) Decreased GP activity due to Se deficiency and the ensuring lack of stimulated NADPH production in the lung did not alter the animal sensitivity to O/sub 3/, suggesting that GP reaction and NADPH production cycles were not crucial for animal tolerance.

  3. Pharmacokinetics/Pharmacodynamics of Pulmonary Delivery of Colistin against Pseudomonas aeruginosa in a Mouse Lung Infection Model.

    PubMed

    Lin, Yu-Wei; Zhou, Qi Tony; Cheah, Soon-Ee; Zhao, Jinxin; Chen, Ke; Wang, Jiping; Chan, Hak-Kim; Li, Jian

    2017-03-01

    Colistin is often administered by inhalation and/or the parenteral route for the treatment of respiratory infections caused by multidrug-resistant (MDR) Pseudomonas aeruginosa However, limited pharmacokinetic (PK) and pharmacodynamic (PD) data are available to guide the optimization of dosage regimens of inhaled colistin. In the present study, PK of colistin in epithelial lining fluid (ELF) and plasma was determined following intratracheal delivery of a single dose of colistin solution in neutropenic lung-infected mice. The antimicrobial efficacy of intratracheal delivery of colistin against three P. aeruginosa strains (ATCC 27853, PAO1, and FADDI-PA022; MIC of 1 mg/liter for all strains) was examined in a neutropenic mouse lung infection model. Dose fractionation studies were conducted over 2.64 to 23.8 mg/kg of body weight/day. The inhibitory sigmoid model was employed to determine the PK/PD index that best described the antimicrobial efficacy of pulmonary delivery of colistin. In both ELF and plasma, the ratio of the area under the unbound concentration-time profile to MIC (fAUC/MIC) was the PK/PD index that best described the antimicrobial effect in mouse lung infection (R(2) = 0.60 to 0.84 for ELF and 0.64 to 0.83 for plasma). The fAUC/MIC targets required to achieve stasis against the three strains were 684 to 1,050 in ELF and 2.15 to 3.29 in plasma. The histopathological data showed that pulmonary delivery of colistin reduced infection-caused pulmonary inflammation and preserved the integrity of the lung epithelium, although colistin introduced mild pulmonary inflammation in healthy mice. This study showed pulmonary delivery of colistin provides antimicrobial effects against MDR P. aeruginosa lung infections superior to those of parenteral administrations. For the first time, our results provide important preclinical PK/PD information for optimization of inhaled colistin therapy. Copyright © 2017 American Society for Microbiology.

  4. Conditional Induction of Oxidative Stress in RPE: A Mouse Model of Progressive Retinal Degeneration.

    PubMed

    Biswal, Manas R; Ildefonso, Cristhian J; Mao, Haoyu; Seo, Soo Jung; Wang, Zhaoyang; Li, Hong; Le, Yun Z; Lewin, Alfred S

    2016-01-01

    An appropriate animal model is essential to screening drugs or designing a treatment strategy for geographic atrophy. Since oxidative stress contributes to the pathological changes of the retinal pigment epithelium (RPE), we are reporting a new mouse AMD model of retinal degeneration by inducing mitochondrial oxidative stress in RPE. Sod2 the gene for manganese superoxide dismutase (MnSOD) was deleted in RPE layer using conditional knockout strategy. Fundus microscopy, SD-OCT and electroretinography were used to monitor retinal structure and function in living animals and microscopy was used to assess pathology post mortem. Tissue specific deletion of Sod2 caused elevated signs of oxidative stress, RPE dysfunction and showed some key features of AMD. Due to induction of oxidative stress, the conditional knockout mice show progressive reduction in ERG responses and thinning of outer nuclear layer (ONL) compared to non-induced littermates.

  5. Combination Effects of Chloral Hydrate and Nitrous Oxide/Oxygen in the Mouse Staircase Test

    PubMed Central

    Pruhs, Ronald J.; Kalbfleisch, John H.; Quock, Raymond M.

    1988-01-01

    The effects of chloral hydrate and/or nitrous oxide were assessed in the mouse staircase test. In this paradigm, the number of steps ascended is thought to reflect locomotor activity, whereas the number of rears is an index of anxiety. Chloral hydrate alone produced a dose-dependent decrease in the number of rears but no change in the number of steps ascended except at the highest dose. Nitrous oxide alone produced a concentration-related increase in the number of steps ascended but no change in rearing. When the two drugs were combined, nitrous oxide appeared to potentiate the rearing suppressant activity of chloral hydrate. Analysis of our experimental findings suggests that chloral hydrate exerts a specific anxiolytic drug effect that can be potentiated by concurrent treatment with nitrous oxide. PMID:3166349

  6. A natural protective function of invariant NKT cells in a mouse model of innate-cell-driven lung inflammation.

    PubMed

    Bourgeois, Elvire A; Levescot, Anaïs; Diem, Séverine; Chauvineau, Angélique; Bergès, Hortense; Milpied, Pierre; Lehuen, Agnès; Damotte, Diane; Gombert, Jean-Marc; Schneider, Elke; Girard, Jean-Philippe; Gourdy, Pierre; Herbelin, André

    2011-02-01

    Activation of invariant natural killer T (iNKT) cells by treatment with their α-galactosyl ceramide ligand provides therapeutic benefits in several immune inflammatory settings. Given the artificial nature of this stimulation, the natural regulatory functions of iNKT remain uncertain. Addressing this issue in a mouse model of innate-cell-driven lung inflammation induced by the cytokine/alarmin IL-33 that targets iNKT cells, we found that eosinophil and neutrophil recruitment was markedly increased in treated iNKT cell-deficient (Jα18 KO) mice, as was the local production of eotaxin and keratinocyte chemoattractant chemokines. By contrast, lung inflammation decreased after adoptive transfer of iNKT cells, which restored the WT inflammatory response in Jα18 KO mice. Finally, we established that this natural anti-inflammatory function of iNKT cells depends on their IFN-γ production and on endogenous IL-12. Our study provides the first evidence of a protective role of iNKT cells during lung inflammation that does not require pharmacological TCR engagement.

  7. A cell-impermeable cyclosporine A derivative reduces pathology in a mouse model of allergic lung inflammation.

    PubMed

    Balsley, Molly A; Malesevic, Miroslav; Stemmy, Erik J; Gigley, Jason; Jurjus, Rosalyn A; Herzog, Dallen; Bukrinsky, Michael I; Fischer, Gunter; Constant, Stephanie L

    2010-12-15

    Although the main regulators of leukocyte trafficking are chemokines, another family of chemotactic agents is cyclophilins. Intracellular cyclophilins function as peptidyl-prolyl cis-trans isomerases and are targets of the immunosuppressive drug cyclosporine A (CsA). Cyclophilins can also be secreted in response to stress factors, with elevated levels of extracellular cyclophilins detected in several inflammatory diseases. Extracellular cyclophilins are known to have potent chemotactic properties, suggesting that they might contribute to inflammatory responses by recruiting leukocytes into tissues. The objective of the present study was to determine the impact of blocking cyclophilin activity using a cell-impermeable derivative of CsA to specifically target extracellular pools of cyclophilins. In this study, we show that treatment with this compound in a mouse model of allergic lung inflammation demonstrates up to 80% reduction in inflammation, directly inhibits the recruitment of Ag-specific CD4(+) T cells, and works equally well when delivered at 100-fold lower doses directly to the airways. Our findings suggest that cell-impermeable analogs of CsA can effectively reduce inflammatory responses by targeting leukocyte recruitment mediated by extracellular cyclophilins. Specifically blocking the extracellular functions of cyclophilins may provide an approach for inhibiting the recruitment of one of the principal immune regulators of allergic lung inflammation, Ag-specific CD4(+) T cells, into inflamed airways and lungs.

  8. A Cell-Impermeable Cyclosporine A Derivative Reduces Pathology in a Mouse Model of Allergic Lung Inflammation

    PubMed Central

    Balsley, Molly A.; Malesevic, Miroslav; Stemmy, Erik J.; Gigley, Jason; Jurjus, Rosalyn A.; Herzog, Dallen; Bukrinsky, Michael I.; Fischer, Gunter; Constant, Stephanie L.

    2013-01-01

    Although the main regulators of leukocyte trafficking are chemokines, another family of chemotactic agents is cyclophilins. Intracellular cyclophilins function as peptidyl-protyl cis-trans isomerases and are targets of the immunosuppressive drug, cyclosporine A (CsA). Cyclophilins can also be secreted in response to stress factors, with elevated levels of extracellular cyclophilins detected in several inflammatory diseases. Extracellular cyclophilins are known to have potent chemotactic properties, suggesting they might contribute to inflammatory responses by recruiting leukocytes into tissues. The objective of the current study was to determine the impact of blocking cyclophilin activity using a cell-impermeable derivative of CsA, MM218, to specifically target extracellular pools of cyclophilins. We show that treatment with this compound in a mouse model of allergic lung inflammation: 1) demonstrates up to 80% reduction in inflammation, 2) directly inhibits the recruitment of antigen-specific CD4+ T cells, and 3) works equally well when delivered at 100-fold lower doses to the airways. Our findings suggest that cell-impermeable analogs of CsA can effectively reduce inflammatory responses by targeting leukocyte recruitment mediated by extracellular cyclophilins. Specifically blocking the extracellular function(s) of cyclophilins may provide a novel approach for inhibiting the recruitment of one of the principal immune regulators of allergic lung inflammation, antigen-specific CD4+ T cells, into inflamed airways and lungs. PMID:21057089

  9. Aerosolized bovine lactoferrin reduces neutrophils and pro-inflammatory cytokines in mouse models of Pseudomonas aeruginosa lung infections.

    PubMed

    Valenti, Piera; Frioni, Alessandra; Rossi, Alice; Ranucci, Serena; De Fino, Ida; Cutone, Antimo; Rosa, Luigi; Bragonzi, Alessandra; Berlutti, Francesca

    2017-02-01

    Lactoferrin (Lf), an iron-chelating glycoprotein of innate immunity, produced by exocrine glands and neutrophils in infection/inflammation sites, is one of the most abundant defence molecules in airway secretions. Lf, a pleiotropic molecule, exhibits antibacterial and anti-inflammatory functions. These properties may play a relevant role in airway infections characterized by exaggerated inflammatory response, as in Pseudomonas aeruginosa lung infection in cystic fibrosis (CF) subjects. To verify the Lf role in Pseudomonas aeruginosa lung infection, we evaluated the efficacy of aerosolized bovine Lf (bLf) in mouse models of P. aeruginosa acute and chronic lung infections. C57BL/6NCrl mice were challenged with 10(6) CFUs of P. aeruginosa PAO1 (acute infection) or MDR-RP73 strain (chronic infection) by intra-tracheal administration. In both acute and chronic infections, aerosolized bLf resulted in nonsignificant reduction of bacterial load but significant decrease of the neutrophil recruitment and pro-inflammatory cytokine levels. Moreover, in chronic infection the bLf-treated mice recovered body weight faster and to a higher extent than the control mice. These findings add new insights into the benefits of bLf as a mediator of general health and its potential therapeutic applications.

  10. Determination of Fatty Acid Oxidation and Lipogenesis in Mouse Primary Hepatocytes.

    PubMed

    Akie, Thomas E; Cooper, Marcus P

    2015-08-27

    Lipid metabolism in liver is complex. In addition to importing and exporting lipid via lipoproteins, hepatocytes can oxidize lipid via fatty acid oxidation, or alternatively, synthesize new lipid via de novo lipogenesis. The net sum of these pathways is dictated by a number of factors, which in certain disease states leads to fatty liver disease. Excess hepatic lipid accumulation is associated with whole body insulin resistance and coronary heart disease. Tools to study lipid metabolism in hepatocytes are useful to understand the role of hepatic lipid metabolism in certain metabolic disorders. In the liver, hepatocytes regulate the breakdown and synthesis of fatty acids via β-fatty oxidation and de novo lipogenesis, respectively. Quantifying metabolism in these pathways provides insight into hepatic lipid handling. Unlike in vitro quantification, using primary hepatocytes, making measurements in vivo is technically challenging and resource intensive. Hence, quantifying β-fatty acid oxidation and de novo lipogenesis in cultured mouse hepatocytes provides a straight forward method to assess hepatocyte lipid handling. Here we describe a method for the isolation of primary mouse hepatocytes, and we demonstrate quantification of β-fatty acid oxidation and de novo lipogenesis, using radiolabeled substrates.

  11. Clinical application of exhaled nitric oxide measurement in pediatric lung diseases

    PubMed Central

    2012-01-01

    Summary Fractional exhaled nitric oxide (FeNO) is a non invasive method for assessing the inflammatory status of children with airway disease. Different ways to measure FeNO levels are currently available. The possibility of measuring FeNO levels in an office setting even in young children, and the commercial availability of portable devices, support the routine use of FeNO determination in the daily pediatric practice. Although many confounding factors may affect its measurement, FeNO is now widely used in the management of children with asthma, and seems to provide significantly higher diagnostic accuracy than lung function or bronchial challenge tests. The role of FeNO in airway infection (e.g. viral bronchiolitis and common acquired pneumonia), in bronchiectasis, or in cases with diffuse lung disease is less clear. This review focuses on the most recent advances and the current clinical applications of FeNO measurement in pediatric lung disease. PMID:23273317

  12. A Novel Strategy for Surface Modification of Superparamagnetic Iron Oxide Nanoparticles for Lung Cancer Imaging

    PubMed Central

    Huang, Gang; Zhang, Chunfu; Li, Shunzi; Khemtong, Chalermchai; Yang, Su-Geun; Tian, Ruhai; Minna, John D.; Brown, Kathlynn C.

    2010-01-01

    Superparamagnetic iron oxide (SPIO) nanoparticles are widely used in magnetic resonance imaging (MRI) as versatile ultra-sensitive nanoprobes for cellular and molecular imaging of cancer. In this study, we report a one-step procedure for the surface functionalization of SPIO nanoparticles with a lung cancer-targeting peptide. The hydrophobic surfactants on the as-synthesized SPIO are displaced by the peptide containing a poly(ethylene glycol)-tethered cysteine residue through ligand exchange. The resulting SPIO particles are biocompatible and demonstrate high T2 relaxivity. The nanoprobes are specific in targeting αvβ6–expressing lung cancer cells as demonstrated by MR imaging and Prussian blue staining. This facile surface chemistry and the functional design of the proposed SPIO system may provide a powerful nanoplatform for the molecular diagnosis of lung cancer. PMID:20505790

  13. Multiplicative effect of inhaled plutonium oxide and benzo (a) pyrene on lung carcinogenesis in rats.

    PubMed Central

    Métivier, H.; Wahrendorf, J.; Masse, R.

    1984-01-01

    This study describes the effect of intratracheal instillations (2 X 5 mg) of benzo(a)pyrene (B(a)P) on lung carcinogenesis in rats which had previously inhaled different levels of 239 plutonium oxide (220, 630, 6300 Bq, initial lung burden). Survival decreased with increasing PuO2 exposure and additional B(a)P exposure. The incidence of malignant lung tumours, adjusted for differences in survival, increased in a dose-related fashion with PuO2 dose and was elevated in the presence of additional B(a)P exposure. A multiplicative relative risk model was found to describe reasonably well the observed joint effect. The practical implications of these findings are discussed. PMID:6087866

  14. Resveratrol protects mouse oocytes from methylglyoxal-induced oxidative damage.

    PubMed

    Liu, Yu; He, Xiao-Qin; Huang, Xin; Ding, Lu; Xu, Lin; Shen, Yu-Ting; Zhang, Fei; Zhu, Mao-Bi; Xu, Bai-Hui; Qi, Zhong-Quan; Wang, Hai-Long

    2013-01-01

    Methylglyoxal, a reactive dicarbonyl compound, is mainly formed from glycolysis. Methylglyoxal can lead to the dysfunction of mitochondria, the depletion of cellular anti-oxidation enzymes and the formation of advanced glycation ends. Previous studies showed that the accumulation of methylglyoxal and advanced glycation ends can impair the oocyte maturation and reduce the oocyte quality in aged and diabetic females. In this study, we showed that resveratrol, a kind of phytoalexin found in the skin of grapes, red wine and other botanical extracts, can alleviate the adverse effects caused by methylglyoxal, such as inhibition of oocyte maturation and disruption of spindle assembly. Besides, methylglyoxal-treated oocytes displayed more DNA double strands breaks and this can also be decreased by treatment of resveratrol. Further investigation of these processes revealed that methylglyoxal may affect the oocyte quality by resulting in excessive reactive oxygen species production, aberrant mitochondrial distribution and high level lipid peroxidation, and resveratrol can block these cytotoxic changes. Collectively, our results showed that resveratrol can protect the oocytes from methylglyoxal-induced cytotoxicity and this was mainly through the correction of the abnormity of cellular reactive oxygen species metabolism.

  15. Ukrain (NSC 631570) ameliorates intestinal ischemia-reperfusion-induced acute lung injury by reducing oxidative stress

    PubMed Central

    Kocak, Cengiz; Kocak, Fatma Emel; Akcilar, Raziye; Akcilar, Aydin; Savran, Bircan; Zeren, Sezgin; Bayhan, Zulfu; Bayat, Zeynep

    2016-01-01

    Intestinal ischemia-reperfusion (I/R) causes severe destruction in remote organs. Lung damage is a frequently seen complication after intestinal I/R. Ukrain (NSC 631570) is a synthetic thiophosphate derivative of alkaloids from the extract of the celandine (Chelidonium majus L.) plant. We investigated the effect of Ukrain in animals with lung injury induced by intestinal I/R. Adult male Spraque-Dawley rats were randomly divided into four groups: control, Ukrain, I/R, I/R with Ukrain. Before intestinal I/R was induced, Ukrain was administered intraperitoneally at a dose of 7.0 mg/body weight. After 1 h ischemia and 2 h reperfusion period, lung tissues were excised. Tissue levels of total oxidative status (TOS), total antioxidant status (TAS) were measured and oxidative stress indices (OSI) were calculated. Lung tissues were also examined histopathologically. TOS and OSI levels markedly increased and TAS levels decreased in the I/R group compared to the control group (P < 0.05). TOS and OSI levels markedly decreased and TAS levels increased in the I/R with Ukrain group compared with the group subjected to IR only (P < 0.05). Severe hemorrhage, alveolar septal thickening, and leukocyte infiltration were observed in the I/R group. In the I/R with Ukrain group, morphologic changes occurring as a result of lung damage attenuated and histopathological scores reduced compared to the I/R group (P < 0.05). Our results suggest that Ukrain pretreatment could reduce lung injury induced by intestinal I/R induced via anti-inflammatory and antioxidant effects. PMID:26773189

  16. 4-Methoxyestradiol-induced oxidative injuries in human lung epithelial cells

    SciTech Connect

    Cheng Yahsin; Chang, Louis W.; Cheng Lichuan; Tsai, M.-H.; Lin Pinpin . E-mail: pplin@nhri.org.tw

    2007-05-01

    Epidemiological studies indicated that people exposed to dioxins were prone to the development of lung diseases including lung cancer. Animal studies demonstrated that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) increased liver tumors and promoted lung metaplasia in females. Metabolic changes in 17{beta}-estradiol (E{sub 2}) resulted from an interaction between TCDD and E{sub 2} could be associated with gender difference. Previously, we reported that methoxylestradiols (MeOE{sub 2}), especially 4-MeOE{sub 2}, accumulated in human lung cells (BEAS-2B) co-treated with TCDD and E{sub 2}. In the present study, we demonstrate unique accumulation of 4-MeOE{sub 2}, as a result of TCDD/E{sub 2} interaction and revealed its bioactivity in human lung epithelial cell line (H1355). 4-Methoxyestradiol treatment significantly decreased cell growth and increased mitotic index. Elevation of ROS and SOD activity, with a concomitant decrease in the intracellular GSH/GSSG ratio, was also detected in 4-MeOE{sub 2}-treated cells. Quantitative comet assay showed increased oxidative DNA damage in the 4-MeOE{sub 2}-treated H1355 cells, which could be significantly reduced by the anti-oxidant N-acetylcysteine (NAC). However, inhibition of cell growth and increase in mitotic arrest induced by 4-MeOE{sub 2} were unaffected by NAC. We concluded that 4-MeOE{sub 2} accumulation resulting from TCDD and E{sub 2} interaction would contribute to the higher vulnerability on lung pathogenesis in females when exposed to TCDD.

  17. Low-dose nicotine does not promote lung tumors in mouse models

    Cancer.gov

    Experiments in mice show that low levels of exposure to nicotine, equivalent to those in humans who use nicotine replacement therapy (NRT) to help them quit smoking, did not promote lung tumor growth.

  18. Carvacrol and Pomegranate Extract in Treating Methotrexate-Induced Lung Oxidative Injury in Rats

    PubMed Central

    Şen, Hadice Selimoğlu; Şen, Velat; Bozkurt, Mehtap; Türkçü, Gül; Güzel, Abdulmenap; Sezgi, Cengizhan; Abakay, Özlem; Kaplan, Ibrahim

    2014-01-01

    Background This study was designed to evaluate the effects of carvacrol (CRV) and pomegranate extract (PE) on methotrexate (MTX)-induced lung injury in rats. Material/Methods A total of 32 male rats were subdivided into 4 groups: control (group I), MTX treated (group II), MTX+CRV treated (group III), and MTX+PE treated (group IV). A single dose of 73 mg/kg CRV was administered intraperitoneally to rats in group III on Day 1 of the investigation. To group IV, a dose of 225 mg/kg of PE was administered via orogastric gavage once daily over 7 days. A single dose of 20 mg/kg of MTX was given intraperitoneally to groups II, III, and IV on Day 2. The total duration of experiment was 8 days. Malondialdehyde (MDA), total oxidant status (TOS), total antioxidant capacity (TAC), and oxidative stress index (OSI) were measured from rat lung tissues and cardiac blood samples. Results Serum and lung specimen analyses demonstrated that MDA, TOS, and OSI levels were significantly greater in group II relative to controls. Conversely, the TAC level was significantly reduced in group II when compared to the control group. Pre-administering either CRV or PE was associated with decreased MDA, TOS, and OSI levels and increased TAC levels compared to rats treated with MTX alone. Histopathological examination revealed that lung injury was less severe in group III and IV relative to group II. Conclusions MTX treatment results in rat lung oxidative damage that is partially counteracted by pretreatment with either CRV or PE. PMID:25326861

  19. Modulation of Lung Function by Increased Nitric Oxide Production

    PubMed Central

    Yadav, Ram Lochan; Yadav, Prakash Kumar

    2017-01-01

    Introduction Cigarette smoking reduces endogenous Nitric Oxide (NO) production by reducing Nitric Oxide Synthase (NOS) activity, which is one of the probable reason for increased rate of pulmonary diseases in smokers. Nitric oxide/oxygen blends are used in critical care to promote capillary and pulmonary dilation to treat several pulmonary vascular diseases. Among several supplements, the highest NOS activation has been proved for garlic with its unique mechanism of action. Aim To investigate the effect of dietary supplementation of NO producing garlic on pulmonary function of smokers. Materials and Methods The study was conducted on 40 healthy non-smoker (Group A) and 40 chronic smoker (Group B) males with matched age, height and weight. The pulmonary function tests- Forced Vital Capacity (FVC), Forced Expiratory Volume in one second (FEV1), FEV1/FVC ratio and Peak Expiratory Flow Rate (PEFR) were performed in non-smokers (Group A), smokers (Group B) and smokers after supplementation of approximately 4 gm of raw garlic (2 garlic cloves) per day for three months (Group C). Endogenous NO production was studied in smokers before and after garlic supplementation and in non-smokers without supplementation. The data obtained were compared between the groups using unpaired student’s t-test. The p-value considered significant at <0.05. Results Our results showed that FVC, FEV1, FEV1/FVC ratio and PEFR were reduced significantly along with a significant decreased NOS activity among smokers (Group B) when compared with non-smokers (Group A). Garlic supplementation significantly improved the pulmonary function tests in Group C in comparison to Group B by increasing NOS activity. Conclusion Dietary supplementation of garlic, which might be by increasing NOS activity, has significantly improved pulmonary functions in smokers. PMID:28764150

  20. Biosynthesis and degradation of collagen in X-irradiated mouse lung

    SciTech Connect

    Walklin, C.M.; Freedman, R.B.; Law, M.P.

    1987-11-01

    Fibrosis, characterized by accumulation of collagen, is a delayed result of radiation injury in many tissues, including lung. To investigate its development, synthesis and degradation of collagen were measured in lungs of mice after X irradiation of the whole thorax. The ratio of type I (coarse fibered) to type III (meshwork) collagen was also determined. Synthesis of procollagen, measured as the activities of prolyl-4-hydroxylase and protein disulfide isomerase in lung tissue, was increased at 2 months after X-ray doses of 5, 7.5, and 9 Gy. Maximal increases were observed 6 to 7 months after doses of 9 Gy and persisted up to 15 months after exposure. Increases after 5 and 7.5 Gy were more gradual, but by 1 year after irradiation they had reached levels similar to those after 9 Gy. X irradiation had no effect on the degradation of collagen as assessed by collagenase activity in lung. The ratio of type I to type III collagen, analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of collagen-derived cyanogen bromide peptides, was the same in irradiated lungs as in age-matched controls. Therefore, increased synthesis of procollagen, rather than decreased degradation of collagen or changes in collagen type, is an important factor in the accumulation of collagen in irradiated lung.

  1. Mouse mammary tumor virus-like gene sequences are present in lung patient specimens.

    PubMed

    Trejo-Avila, Laura M; Zapata-Benavides, Pablo; Barrera-Rodríguez, Raúl; Badillo-Almaráz, Isaías; Saavedra-Alonso, Santiago; Zamora-Avila, Diana E; Morán-Santibañez, Karla; Garza-Sáenz, Jorge A; Tamez-Guerra, Reyes; Rodríguez-Padilla, Cristina

    2011-09-24

    Previous studies have reported on the presence of Murine Mammary Tumor Virus (MMTV)-like gene sequences in human cancer tissue specimens. Here, we search for MMTV-like gene sequences in lung diseases including carcinomas specimens from a Mexican population. This study was based on our previous study reporting that the INER51 lung cancer cell line, from a pleural effusion of a Mexican patient, contains MMTV-like env gene sequences. The MMTV-like env gene sequences have been detected in three out of 18 specimens studied, by PCR using a specific set of MMTV-like primers. The three identified MMTV-like gene sequences, which were assigned as INER6, HZ101, and HZ14, were 99%, 98%, and 97% homologous, respectively, as compared to GenBank sequence accession number AY161347. The INER6 and HZ-101 samples were isolated from lung cancer specimens, and the HZ-14 was isolated from an acute inflammatory lung infiltrate sample. Two of the env sequences exhibited disruption of the reading frame due to mutations. In summary, we identified the presence of MMTV-like gene sequences in 2 out of 11 (18%) of the lung carcinomas and 1 out of 7 (14%) of acute inflamatory lung infiltrate specimens studied of a Mexican Population.

  2. Mouse mammary tumor virus-like gene sequences are present in lung patient specimens

    PubMed Central

    2011-01-01

    Background Previous studies have reported on the presence of Murine Mammary Tumor Virus (MMTV)-like gene sequences in human cancer tissue specimens. Here, we search for MMTV-like gene sequences in lung diseases including carcinomas specimens from a Mexican population. This study was based on our previous study reporting that the INER51 lung cancer cell line, from a pleural effusion of a Mexican patient, contains MMTV-like env gene sequences. Results The MMTV-like env gene sequences have been detected in three out of 18 specimens studied, by PCR using a specific set of MMTV-like primers. The three identified MMTV-like gene sequences, which were assigned as INER6, HZ101, and HZ14, were 99%, 98%, and 97% homologous, respectively, as compared to GenBank sequence accession number AY161347. The INER6 and HZ-101 samples were is