Science.gov

Sample records for mouse mesencephalon effects

  1. Neurotropin(®) inhibits calpain activity upregulated by specific alternation of rhythm in temperature in the mesencephalon of rats.

    PubMed

    Fujisawa, Hiroki; Numazawa, Takumi; Kawamura, Minoru; Naiki, Mitsuru

    2017-02-15

    Neurotropin® (NTP), an analgesic for chronic pain, has antihyperalgesic effects in specific alternation of rhythm in temperature (SART)-stressed rats. Previous studies have shown that SART stress induces hyperalgesia, as well as post-translational modification of proteins (including substrates for calpain, a calcium-dependent cysteine protease) in the mesencephalon of rats. To better understand the mechanism of action of NTP, we investigated whether SART stress activates calpain in the mesencephalon of rats and whether NTP inhibits this activation. Wistar rats were exposed to SART stress for 5days. NTP (200NU/kg/day) was administered intraperitoneally every day from the onset of SART stress. The mechanical pain threshold was measured using the Randall-Selitto test on the 6th day. Thereafter, the rat mesencephalon was immediately collected and calpain activity was examined using western blot analysis with a calpain cleavage site-specific antibody. SART stress induced hyperalgesia and increased the calpain activity in the mesencephalon of rats. In contrast, NTP treatment attenuated the hyperalgesia and prevented the increase in calpain activity in the mesencephalon of SART-stressed rats. Interestingly, a negative correlation was identified between calpain activity and mechanical pain threshold in SART-stressed rats treated with or without NTP. Furthermore, NTP inhibited calpain activity on mammalian uncoordinated-18 in rat mesencephalon homogenate and Ac-LLY-AFC as substrates in an in vitro cell-free system. Our data demonstrate that NTP treatment prevents SART stress-induced calpain activation in the mesencephalon of rats and suggests that NTP-mediated antihyperalgesia is associated with an inhibition of calpain activity in the mesencephalon. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Isolated Medial Rectus Palsy: Rare Presentation of Mesencephalon Infarction.

    PubMed

    Yao, Yindan; Hong, Wenke; Fan, Zhenyi; Li, Da; Chang, Xianchao; Fan, Weinv

    2017-04-01

    Isolated medial rectus palsy due to mesencephalon lesion is extremely rare. We here describe a patient of midbrain infarction involving the medial rectus subnuclei presenting as isolated medial rectus palsy. Axial diffusion-weighted and coronal T2-weighted magnetic resonance imaging showed acute ischemic lesion in mesencephalon. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  3. β-catenin is required in the neural crest and mesencephalon for pituitary gland organogenesis.

    PubMed

    Davis, Shannon W; Mortensen, Amanda H; Keisler, Jessica L; Zacharias, Amanda L; Gage, Philip J; Yamamura, Ken-Ichi; Camper, Sally A

    2016-05-16

    The pituitary gland is a highly vascularized tissue that requires coordinated interactions between the neural ectoderm, oral ectoderm, and head mesenchyme during development for proper physiological function. The interactions between the neural ectoderm and oral ectoderm, especially the role of the pituitary organizer in shaping the pituitary precursor, Rathke's pouch, are well described. However, less is known about the role of head mesenchyme in pituitary organogenesis. The head mesenchyme is derived from definitive mesoderm and neural crest, but the relative contributions of these tissues to the mesenchyme adjacent to the pituitary are not known. We carried out lineage tracing experiments using two neural crest-specific mouse cre lines, Wnt1-cre and P0-cre, and determined that the head mesenchyme rostral to the pituitary gland is neural crest derived. To assess the role of the neural crest in pituitary development we ablated it, using Wnt1-cre to delete Ctnnb1 (β-catenin), which is required for neural crest development. The Wnt1-cre is active in the neural ectoderm, principally in the mesencephalon, but also in the posterior diencephalon. Loss of β-catenin in this domain causes a rostral shift in the ventral diencephalon, including the pituitary organizer, resulting in pituitary dysmorphology. The neural crest deficient embryos have abnormally dilated pituitary vasculature due to a loss of neural crest derived pericytes. β-catenin in the Wnt1 expression domain, including the neural crest, plays a critical role in regulation of pituitary gland growth, development, and vascularization.

  4. CEREBELLAR AND MESENCEPHALON NEOPLASIA IN A NILE HIPOPPOTAMUS (HIPPOPOTAMUS AMPHIBIOUS).

    PubMed

    Schiaffino, Francesca; Sander, Samantha J; Bacares, Marcia E Pereira; Barnes, Katie J; Kiupel, Matti; Walsh, Timothy; Murray, Suzan

    2016-12-01

    A 52-yr-old female Nile hippopotamus ( Hippopotamus amphibious ) was presented for acute onset anorexia, depression, lethargy, instability, and weakness in the pelvic limbs. Clinical signs were rapidly progressive, despite empiric therapy with anti-inflammatory medications, resulting in the death of the animal. Gross necropsy evaluation revealed two tan, firm masses in the cerebellum and mesencephalon and a single mass in the right cranial adrenal gland. All three masses had a similar histologic morphology, and immunohistochemical investigation confirmed the general diagnosis of an adenocarcinoma, but the exact cell of origin remains unclear. In addition, there was evidence of neuroendocrine differentiation in the adrenal gland and not in the brain. These findings suggest either two distinct neoplastic populations or a metastasizing adenocarcinoma with focal endocrine differentiation. In dogs, anal sac and clitoral adenocarcinomas have been reported to undergo focal endocrine differentiation, and both can cause widespread metastasis while the primary lesion can be small. A small neoplasm of these glands may have been missed on gross examination.

  5. Fetal porcine ventral mesencephalon grafts: dissection procedure and cellular characterization in culture.

    PubMed

    van Roon, W M; Copray, J C; Hogenesch, R I; Kema, I; Meyer, E M; Molenaar, G; Lugard, C; Staal, M J; Go, K G

    1995-01-01

    The objective of this study was to develop an optimal dissection procedure for fetal porcine ventral mesencephalon (VM) grafts and to characterize the cellular composition of such an explant, in particular with respect to the dopaminergic and GABAergic components. We have used a monolayer cell culture system to study and identify the various VM cell types. The in vitro development of the fetal VM cells and the effect of the addition of brain-derived neurotrophic factor (BDNF) was investigated during a culture period of 5 days. Extracellular dopamine levels were measured by means of high performance liquid chromatography (HPLC) with electrochemical detection (LCEC). Our results indicate that the ratio of dopaminergic to GABAergic neurons changed in favour of the dopaminergic component when a more selective dissection technique was used. Although addition of BDNF to the cultures appeared to exert trophic influences on all the cellular components of pig fetal VM, this effect was most pronounced on the TH-positive cells. Highest extracellular DA levels were found in the VM culture with the addition of BDNF and when a more selective dissection method was used. Our in vitro findings suggest that porcine fetal dopaminergic cells retain their potential for development and outgrowth after proper explantation and dissociation. Anticipating on the results of ongoing transplantation studies in rat, they suggest that pig fetal VM can be a suitable alternative for the use of fetal human VM as a graft for Parkinson's disease.

  6. Fetal homotransplants (ventral mesencephalon and adrenal tissue) to the striatum of parkinsonian subjects.

    PubMed

    Madrazo, I; Franco-Bourland, R; Ostrosky-Solis, F; Aguilera, M; Cuevas, C; Zamorano, C; Morelos, A; Magallon, E; Guizar-Sahagun, G

    1990-12-01

    Fetal ventral mesencephalon and fetal adrenal tissue grafted to the caudate nucleus of four and three parkinsonian patients, respectively, have been shown to be an alternative treatment for the amelioration of the signs of the disease. The ventral mesencephalon patients had a significant amelioration of rigidity, bradykinesia, postural imbalance, gait disturbance, and facial expression. Three of these four patients have returned to work. The fatal adrenal group only showed amelioration of rigidity and bradykinesia. Though these patients are now able to perform their basic daily living activities, and one of them has renewed her household tasks, the other two have not yet been able to return to work. The differences observed between the ventral mesencephalon- and the fetal adrenal-transplanted patients may be related to the heterogeneity of their disease and/or the type of graft implanted. However encouraging our results may be, this experimental procedure obviously requires further studies, and should not be practiced outside of highly qualified clinical research centers.

  7. Differential expression of tyrosine hydroxylase mRNA in the developing rat mesencephalon.

    PubMed

    Solberg, Y; Pollack, Y; Silverman, W F

    1992-12-01

    1. With respect to the mesostriatal projection, the mesencephalon is composed of two dopaminergic (DA) cell populations, called dorsal tier and ventral tier. Strong evidence suggests differences in both the spatial and the temporal sequence of the innervation of the striatum between the two groups, with the ventral tier neurons innervating striatal patches prenatally and dorsal tier cells innervating striatal matrix postnatally. 2. Using in situ hybridization, we have examined the expression of the gene coding for tyrosine hydroxylase (TH) in mesencephalic DA neurons with respect to their postnatal development. Two ontogenic patterns of expression were observed: (a) dorsal tier neurons of the medial mesencephalon exhibited a sharp increase in expression beginning after birth, peaking on day 14, then decreasing and, finally, stabilizing; and (b) ventral tier neurons and dorsal tier cells from the lateral and the medial-dorsal mesencephalon showed only a slight increase in TH mRNA, reaching a plateau at P10. 3. The time course of the observed increase in TH gene expression in the first group, generally parallels the innervation of their target cells in the striatal matrix, suggesting that TH gene expression in these cells may be influenced by their postsynaptic cells or by the innervation process.

  8. Diversity matters - heterogeneity of dopaminergic neurons in the ventral mesencephalon and its relation to Parkinson's Disease.

    PubMed

    Vogt Weisenhorn, Daniela Maria; Giesert, Florian; Wurst, Wolfgang

    2016-10-01

    Dopaminergic neurons in the ventral mesencephalon (the ventral mesencephalic dopaminergic complex) are known for their role in a multitude of behaviors, including cognition, reward, addiction and voluntary movement. Dysfunctions of these neurons are the underlying cause of various neuropsychiatric disorders, such as depression, addiction and schizophrenia. In addition, Parkinson's disease (PD), which is the second most common degenerative disease in developed countries, is characterized by the degeneration of dopaminergic neurons, leading to the core motor symptoms of the disease. However, only a subset of dopaminergic neurons in the ventral mesencephalon is highly vulnerable to the disease process. Indeed, research over several decades revealed that the neurons in the ventral mesencephalic dopaminergic complex do not form a homogeneous group with respect to anatomy, physiology, function, molecular identity or vulnerability/dysfunction in different diseases. Here, we review how the concept of dopaminergic neuron diversity, assisted by the advent and application of new technologies, evolved and was refined over time and how it shaped our understanding of PD pathogenesis. Understanding this diversity of neurons in the ventral mesencephalic dopaminergic complex at all levels is imperative for the development of new and more selective drugs for both PD and various other neuropsychiatric diseases. Several decades of research revealed that the neurons in the ventral mesencephalic dopaminergic complex do not form a homogeneous group in respect to anatomy, physiology, function, molecular identity or vulnerability/dysfunction in diseases like Parkinson's disease (PD). Here, we review how this concept evolved and was refined over time and how it shaped our understanding of the pathogenesis of PD. Source of the midbrain image: www.wikimd.org/wiki/index.php/The_Midbrain_or_Mesencephalon; downloaded 28.01.2016. See also Figures and of the paper. This article is part of a

  9. Misexpression of Gbx2 throughout the mesencephalon by a conditional gain-of-function transgene leads to deletion of the midbrain and cerebellum in mice

    PubMed Central

    Sunmonu, N. Abimbola; Chen, Li; Li, James Y.H.

    2009-01-01

    Summary The mouse homeobox gene, Gbx2, is expressed in discreet domains in the neural tube and plays a key role in forebrain and hindbrain development. Previous studies have demonstrated that mutual inhibition between Gbx2 and Otx2, which are respectively expressed in the anterior and posterior parts of the neural plate, positions the prospective midbrain-hindbrain junction. We describe here a conditional Gbx2 gain-of-function transgenic mouse line, Gbx2-GOF, which expresses Gbx2 and red fluorescence protein, mCherry, upon Cre-mediated recombination. In the absence of Cre, β-galactosidase is broadly expressed in mouse embryos and adult brains carrying the transgene. By combining Gbx2-GOF and En1Cre knock-in allele, we activated expression of Gbx2 and mCherry throughout the mesencephalon (mes) and rhombomere 1 (r1). The ectopic expression of Gbx2 causes an anterior shift of the mes/r1 junction at embryonic day 10.5. Interestingly, we found that persistent expression of Gbx2 throughout the mes/r1 region largely abolishes expression of the isthmic organizer gene Fgf8, leading to deletion of the midbrain and cerebellum at later stages. Our data suggest that the juxtaposition of the expression domains of Gbx2 and Otx2 within the mes/r1 area is essential for the maintenance of Fgf8 expression. Furthermore, the Gbx2-GOF transgenic line is suitable for functional study of Gbx2 during development. PMID:19603509

  10. Subtemporal transtentorial resection of cavernous malformations involving the pyramidal tract in the upper pons and mesencephalon.

    PubMed

    Steňo, Juraj; Bízik, Ivan; Steňová, Jana; Timárová, Gabriela

    2011-10-01

    Lateral approaches to the brain stem for the resection of the cavernous malformations are preferred in order to avoid the structures within the floor of the fourth ventricle. The entry behind the pyramidal tract (PT) is usually carried out through the posterolateral surface of the brain stem. The more straightforward lateral approach below the temporal lobe is used rarely because of potential risks. The outcome after resection of the cavernomas involving the PT in the mesencephalon and the upper pons via the subtemporal transtentorial approach in nine patients was analysed. Mapping of the PT by direct electrical stimulation was used in the last four patients. The subtemporal transtentorial approach enabled adequate exposure of the lateral and anterolateral surface of the midbrain and the upper pons. No adverse events from the elevation of the temporal lobe were encountered. Direct electrical stimulation using a bipolar electrode with the parameters of 100 Hz, 1 ms, and 3-9 mA evoked motor responses in three of four patients. It allowed placing the incision in the lateral surface of the midbrain behind the PT or between the fibres of the upper and the lower extremity. No worsening of the PT functions was observed in the series. The subtemporal transtentorial approach enables adequate exposure of the lateral and the anterolateral surface of the mesencephalon and upper pons, allowing neurophysiological mapping of the PT and thus avoiding its damage during removal of the cavernoma.

  11. Effects of alphafetoprotein on isolated mouse oocytes.

    PubMed

    Lambert, J C; Seralini, G E; Stora, C; Vallette, G; Vranckx, R; Nunez, E A

    1986-01-01

    The supposition of an effect of alphafetoprotein (AFP) on female germinal cells is put forward. The spontaneous in vitro maturation of adult mouse oocytes is significantly inhibited when mouse AFP replaces albumin in culture medium. Furthermore, the very unusual degenerative appearance of the cells subjected to AFP seems to indicate that this meiotic inhibition is linked to a premature degeneration of the oocytes rather than to a blockage of the cells at an earlier stage of maturation. Accordingly AFP, perhaps through its ligands, may play a role in reducing the number of gonocytes during fetal and immediate post-natal life rather than in stopping oocyte meiosis at the diplotene stage.

  12. Effects of verbenalin on prostatitis mouse model

    PubMed Central

    Miao, Mingsan; Guo, Lin; Yan, Xiaoli; Wang, Tan; Li, Zuming

    2015-01-01

    The aim of this study was to observe the treatment characteristics of verbenalin on a prostatitis mouse model. Give Xiaozhiling injection in the prostate locally to make a prostatitis mouse model. High, medium and low doses of verbenalin were each given to different mouse groups. The amount of water was determined in 14th, 28th. The number of white cells and lecithin corpuscle density in prostatic fluid were determined. Morphological changes in the prostate, testis, epididymis and kidney were detected. Compared with the model control group, the mice treated with high, medium and low doses of verbenalin had significantly increased amounts of water, and prostate white blood cell count and prostate volume density (Vv) were decreased significantly, the density of lecithin corpuscle score increased, and pathologic prostatitis changes were significantly reduced. Pathological change in the testis was significantly reduced and the change in the epididymis was obviously reduced. The thymic cortex thickness and the number of lymphocytes increased significantly and could reduce the renal pathological changes in potential. Verbenalin has a good therapeutic effect on the prostatitis mouse model. PMID:26858560

  13. Dopamine antagonists reduce spontaneous electrical activity in cultured mammalian neurons from ventral mesencephalon.

    PubMed

    Heyer, E J

    1986-09-24

    Mammalian neurons from ventral mesencephalon (VM) were grown in primary dissociated cell (PDC) culture. These neurons are predominantly non-dopaminergic. Many of these non-dopaminergic neurons have dopamine agonist and antagonist binding sites. Intracellular recordings were obtained from these neurons. When bathed in phosphate-buffered saline (PBS) solution they generated action potentials spontaneously. However, in the presence of haloperidol dissolved in PBS solution, the percentage of neurons which generated action potentials spontaneously was reduced in a dose-dependent manner (1-10 microM). This response was also obtained with (+) butaclamol (1 microM) but not with (-) butaclamol (1 microM). This neuroleptic inhibition of spontaneously generated action potentials was specific for neurons in PDC cultures of VM since neurons in PDC cultures of spinal cord did not demonstrate this phenomenon.

  14. Intrastriatal grafts of fetal ventral mesencephalon improve allodynia-like withdrawal response to mechanical stimulation in a rat model of Parkinson's disease.

    PubMed

    Takeda, Ryuichiro; Ishida, Yasushi; Ebihara, Kosuke; Abe, Hiroshi; Matsuo, Hisae; Ikeda, Tetsuya; Koganemaru, Go; Kuramashi, Aki; Funahashi, Hideki; Magata, Yasuhiro; Kawai, Keiichi; Nishimori, Toshikazu

    2014-06-24

    We previously reported that a unilateral 6-hydroxydopamine (6-OHDA) rat model of Parkinson's disease showed allodynia-like withdrawal response to mechanical stimulation of the ipsilateral side of the rat hindpaw. The goal of this study was to investigate the effect of intrastriatal grafts of fetal ventral mesencephalon (VM) on the withdrawal response in 6-OHDA rats. The withdrawal threshold in response to the mechanical stimulation of the rat hindpaw was measured using von Frey filaments. In the ipsilateral side of the 6-OHDA lesions, the withdrawal threshold in response to mechanical stimulation significantly increased in 6-OHDA rats with VM grafts compared with those with sham grafts, but did not change in the contralateral side at 5 weeks after transplantation. The present results suggest that the intrastriatal grafts of fetal VM may relieve pain sensation induced by mechanical stimulation in 6-OHDA rats. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  15. Directing Dopaminergic Fiber Growth Along a Preformed Molecular Pathway From Embryonic Ventral Mesencephalon Transplants in the Rat Brain

    PubMed Central

    Jin, Y.; Zhang, C.; Ziemba, K.S.; Goldstein, G.A.; Sullivan, P.G.; Smith, G.M.

    2012-01-01

    To identify guidance molecules to promote long-distance growth of dopaminergic axons from transplanted embryonic ventral mesencephalon (VM) tissue, three pathways were created by expressing green fluorescent protein (GFP), glial cell line-derived neurotrophic factor (GDNF), or a combination of GDNF/GDNF receptor α1 (GFRα1) along the corpus callosum. To generate the guidance pathway, adenovirus encoding these transcripts was injected at four positions along the corpus callosum. In all groups, GDNF adenovirus was also injected on the right side 2.5 mm from the midline at the desired transplant site. Four days later, a piece of VM tissue from embryonic day 14 rats was injected at the transplant site. All rats also received daily subcutaneous injections of N-acetyl-L-cysteinamide (NACA; 100 μg per rat) as well as chondroitinase ABC at transplant site (10 U/ml, 2 μl). Two weeks after transplantation, the rats were perfused and the brains dissected out. Coronal sections were cut and immunostained with antibody to tyrosine hydroxylase (TH) to identify and count dopaminergic fibers in the corpus callosum. In GFP-expressing pathways, TH+ fibers grew out of the transplants for a short distance in the corpus callosum. Very few TH+ fibers grew across the midline. However, pathways expressing GDNF supported more TH+ fiber growth across the midline into the contralateral hemisphere. Significantly greater numbers of TH+ fibers grew across the midline in animals expressing a combination of GDNF and GFRα1 in the corpus callosum. These data suggest that expression of GDNF or a combination of GDNF and GFRα1 can support the long-distance dopaminergic fiber growth from a VM transplant, with the combination having a superior effect. PMID:21337366

  16. Misexpression of Gbx2 throughout the mesencephalon by a conditional gain-of-function transgene leads to deletion of the midbrain and cerebellum in mice.

    PubMed

    Sunmonu, N Abimbola; Chen, Li; Li, James Y H

    2009-10-01

    The mouse homeobox gene, Gbx2, is expressed in discreet domains in the neural tube and plays a key role in forebrain and hindbrain development. Previous studies have demonstrated that mutual inhibition between Gbx2 and Otx2, which are respectively expressed in the anterior and posterior parts of the neural plate, positions the prospective midbrain-hindbrain junction. We describe here a conditional Gbx2 gain-of-function transgenic mouse line, Gbx2-GOF, which expresses Gbx2 and red fluorescence protein, mCherry, upon Cre-mediated recombination. In the absence of Cre, beta-galactosidase is broadly expressed in mouse embryos and adult brains carrying the transgene. By combining Gbx2-GOF and En1(Cre) knock-in allele, we activated expression of Gbx2 and mCherry throughout the mesencephalon (mes) and rhombomere 1 (r1). The ectopic expression of Gbx2 causes an anterior shift of the mes/r1 junction at embryonic day 10.5. Interestingly, we found that persistent expression of Gbx2 throughout the mes/r1 region largely abolishes expression of the isthmic organizer gene Fgf8, leading to deletion of the midbrain and cerebellum at later stages. Our data suggest that the juxtaposition of the expression domains of Gbx2 and Otx2 within the mes/r1 area is essential for the maintenance of Fgf8 expression. Furthermore, the Gbx2-GOF transgenic line is suitable for functional study of Gbx2 during development. (c) 2009 Wiley-Liss, Inc.

  17. Neural Precursors Derived from Embryonic Stem Cells, but Not Those from Fetal Ventral Mesencephalon, Maintain the Potential to Differentiate into Dopaminergic Neurons After Expansion In Vitro

    PubMed Central

    Chung, Sangmi; Shin, Byoung-Soo; Hwang, Michelle; Lardaro, Thomas; Kang, Un Jung; Isacson, Ole; Kima, Kwang-Soo

    2008-01-01

    Neural precursors (NPs) derived from ventral mesencephalon (VM) normally generate dopaminergic (DA) neurons in vivo but lose their potential to differentiate into DA neurons during mitogenic expansion in vitro, hampering their efficient use as a transplantable and experimental cell source. Because embryonic stem (ES) cell-derived NPs (ES NP) do not go through the same maturation process during in vitro expansion, we hypothesized that expanded ES NPs may maintain their potential to differentiate into DA neurons. To address this, we expanded NPs derived from mouse embryonic day-12.5 (E12.5) VM or ES cells and compared their developmental properties. Interestingly, expanded ES NPs fully sustain their ability to differentiate to the neuronal as well as to the DA fate. In sharp contrast, VM NPs almost completely lost their ability to become neurons and tyrosine hydroxylase-positive (TH+) neurons after expansion. Expanded ES NP-derived TH+ neurons coexpressed additional DA markers such as dopa decarboxylase and DAT (dopamine transporter). Furthermore, they also expressed other midbrain DA markers, including Nurr1 and Pitx3, and released significant amounts of DA. We also found that these ES NPs can be cryopreserved without losing their proliferative and developmental potential. Finally, we tested the in vivo characteristics of the expanded NPs derived from J1 ES cells with low passage number. When transplanted into the mouse striatum, the expanded NPs as well as control NPs efficiently generated DA neurons expressing mature DA markers, with approximately 10% tumor formation in both cases. We conclude that ES NPs maintain their developmental potential during in vitro expansion, whereas mouse E12.5 VM NPs do not. PMID:16543488

  18. The volume effect in irradiated mouse colorectum

    NASA Astrophysics Data System (ADS)

    Skwarchuk, Mark William

    1997-11-01

    Damage of the colorectum is the dose-limiting normal tissue complication following radiotherapy of prostate and cervical cancers. One approach for decreasing complications is to physically reduce the treatment volume. Mathematical models have been previously developed to describe the change in associated toxicity with a change in irradiated volume, i.e. the 'volume effect', for serial-type normal tissues including the colorectum. The first goal of this thesis was to test the hypothesis that there would not be a threshold length in the development of obstruction after irradiation of mouse colorectum, as predicted by the Probability model of the volume effect. The second goal was to examine if there were differences in the threshold and in the incidence of colorectal obstruction after irradiation of two mouse strains, C57B1/6 (C57) and C3Hf/Kam (C3H), previously found to be fibrosis-prone and-resistant, respectively, after lung irradiation due, in part, to genetic differences. The hypothesis examined was that differences in incidence between strains were due to the differential expression of the fibrogenic cytokines TGF/beta and TNF/alpha. Various lengths of C57 and C3H mouse colorectum were irradiated and the incidence of colorectal obstruction was followed up to 15 months. A threshold length was observed for both mouse strains, in contradiction of model predictions. The mechanism of the threshold was epithelial regeneration after irradiation. C57 mice had significantly higher incidence of colorectal obstruction compared to C3H mice, especially at smaller irradiated lengths. Colorectal tissue was obtained at various times after irradiation and prepared for histology, immunohistochemistry and RNase protection assay for measurement of TGF/beta 1, 2, 3 and TNF/alpha mRNA. Distinct strain differences in the histological time of appearance and spatial locations of fibrosis were observed. However, there were no consistent strain difference in mRNA levels or

  19. Cytogenetic effect of griseofulvin in mouse spermatocytes.

    PubMed

    Fahmy, M A; Hassan, N H

    1996-01-01

    The genotoxic effects of griseofulvin (GF) in mouse primary spermatocytes at diakinesis metaphase I of meiosis were investigated. Griseofulvin was administered orally as a single dose of 500, 1000, 1500 and 2000 mg kg-1 body wt. and a multiple treatment with a daily dose of 1000 mg kg-1 body wt. for three and five successive doses. Both single and multiple treatment induced a statistically significant increase in the percentage of chromosomal aberrations which have a dose and time-dependent relationship. The frequency of chromosomal aberrations peaked 6 and 12 h post treatment; with the highest dose of the drug it reached 27.8% +/- 0.87 and 27.66% +/- 0.48 6 and 12 h respectively, compared with 5.6% +/- 0.39 and 5.2% +/- 0.48 for the control. The types of aberrations recorded were structural, including X-Y and autosomal univalent, gaps, breaks, fragments, chain IV and numerical in the form of diploid, triploid, tetraploid and aneuploid. The results of this study suggest that griseofulvin has a genotoxic effect in mouse spermatocytes.

  20. Combinatorial effects of odorants on mouse behavior

    PubMed Central

    Saraiva, Luis R.; Kondoh, Kunio; Ye, Xiaolan; Yoon, Kyoung-hye; Hernandez, Marcus; Buck, Linda B.

    2016-01-01

    The mechanisms by which odors induce instinctive behaviors are largely unknown. Odor detection in the mouse nose is mediated by >1, 000 different odorant receptors (ORs) and trace amine-associated receptors (TAARs). Odor perceptions are encoded combinatorially by ORs and can be altered by slight changes in the combination of activated receptors. However, the stereotyped nature of instinctive odor responses suggests the involvement of specific receptors and genetically programmed neural circuits relatively immune to extraneous odor stimuli and receptor inputs. Here, we report that, contrary to expectation, innate odor-induced behaviors can be context-dependent. First, different ligands for a given TAAR can vary in behavioral effect. Second, when combined, some attractive and aversive odorants neutralize one another’s behavioral effects. Both a TAAR ligand and a common odorant block aversion to a predator odor, indicating that this ability is not unique to TAARs and can extend to an aversive response of potential importance to survival. In vitro testing of single receptors with binary odorant mixtures indicates that behavioral blocking can occur without receptor antagonism in the nose. Moreover, genetic ablation of a single receptor prevents its cognate ligand from blocking predator odor aversion, indicating that the blocking requires sensory input from the receptor. Together, these findings indicate that innate odor-induced behaviors can depend on context, that signals from a single receptor can block innate odor aversion, and that instinctive behavioral responses to odors can be modulated by interactions in the brain among signals derived from different receptors. PMID:27208093

  1. Effects of endotoxin on the lactating mouse

    SciTech Connect

    Carr, J.K.

    1985-01-01

    The regulation of endogenous mouse mammary tumor virus (MMTV) sequences in trans by a host gene, the Lps locus on mouse chromosome 4, was suspected from a genetic linkage analysis. The Lps locus mediates the mouse's response to the injection of lipopolysaccharide (LPS) in the responder mouse while mice with the deficient allele are incapable of responding. Others have found that endotoxin exposure reduces milk production in lactating animals. This observation was confirmed in mice and extended by examining /sup 125/I-prolactin binding to liver membranes of lactating mice. Endotoxin treatment of responder mice increases liver prolactin binding within 15 minutes, followed by a decline over 6 hours. Scatchard analysis shows that the immediate increase comes from both increased affinity and abundance of the prolactin receptor. No such change in prolactin binding is seen in the non-responder following endotoxin treatment nor in /sup 125/I-insulin binding in responders.

  2. Expression of Trefoil Factor 1 in the Developing and Adult Rat Ventral Mesencephalon

    PubMed Central

    Jensen, Pia; Heimberg, Michel; Ducray, Angelique D.; Widmer, Hans R.; Meyer, Morten

    2013-01-01

    Trefoil factor 1 (TFF1) belongs to a family of secreted peptides with a characteristic tree-looped trefoil structure. TFFs are mainly expressed in the gastrointestinal tract where they play a critical role in the function of the mucosal barrier. TFF1 has been suggested as a neuropeptide, but not much is known about its expression and function in the central nervous system. We investigated the expression of TFF1 in the developing and adult rat midbrain. In the adult ventral mesencephalon, TFF1-immunoreactive (-ir) cells were predominantly found in the substantia nigra pars compacta (SNc), the ventral tegmental area (VTA) and in periaqueductal areas. While around 90% of the TFF1-ir cells in the SNc co-expressed tyrosine hydroxylase (TH), only a subpopulation of the TH-ir neurons expressed TFF1. Some TFF1-ir cells in the SNc co-expressed the calcium-binding proteins calbindin or calretinin and nearly all were NeuN-ir confirming a neuronal phenotype, which was supported by lack of co-localization with the astroglial marker glial fibrillary acidic protein (GFAP). Interestingly, at postnatal (P) day 7 and P14, a significantly higher proportion of TH-ir neurons in the SNc co-expressed TFF1 as compared to P21. In contrast, the proportion of TFF1-ir cells expressing TH remained unchanged during postnatal development. Furthermore, significantly more TH-ir neurons expressed TFF1 in the SNc, compared to the VTA at all four time-points investigated. Injection of the tracer fluorogold into the striatum of adult rats resulted in retrograde labeling of several TFF1 expressing cells in the SNc showing that a significant fraction of the TFF1-ir cells were projection neurons. This was also reflected by unilateral loss of TFF1-ir cells in SNc of 6-hydroxylase-lesioned hemiparkinsonian rats. In conclusion, we show for the first time that distinct subpopulations of midbrain dopaminergic neurons express TFF1, and that this expression pattern is altered in a rat model of Parkinson

  3. Expression of TRPM8 in the distal cerebrospinal fluid-contacting neurons in the brain mesencephalon of rats

    PubMed Central

    Du, Jing; Yang, Xinwei; Zhang, Licai; Zeng, Yin-ming

    2009-01-01

    Background It has been shown that distal cerebrospinal fluid-contacting neurons (dCSF-CNs) exist near the ventral midline of the midbrain aqueduct and also in the grey matter of the inferior third ventricle and the fourth ventricle floor in the superior segment of the pons. The dCSF-CNs communicate between the cerebrospinal fluid (CSF) and the brain parenchyma and may participate in the transduction and regulation of pain signals. The cold sensation receptor channel, TRPM8 is involved in analgesia for neuropathic pain, but whether the TRPM8 receptor exists on dCSF-CNs remains unknown. However, there is preliminary evidence that TRPM8 is expressed in dCSF-CNs and may participate in the transmission and regulation of sensory information between brain parenchyma and cerebrospinal fluid (CSF) in rats. Methods Retrograde tracing of the cholera toxin subunit B labeled with horseradish peroxidase (CB-HRP) injected into the lateral ventricle was used to identify dCSF-CNs. A double-labeled immunofluorescent technique and laser scanning confocal microscopy were used to identify the expression of TRPM8 in dCSF-CNs. Software Image-Pro Plus was used to count the number of neurons in three sections where CB-HRP positive neurons were located in the mesencephalon of six rats. Results The cell bodies of CB-HRP-positive dCSF-CNs were found in the brain parenchyma near the midline of the ventral Aq, also in the grey of the 3V, and the 4V floor in the superior segment of the pons. In the mesencephalon their processes extended into the CSF. TRPM8 labeled neurons were also found in the same area as were CB-HRP/TRPM8 double-labeled neurons. CB-HRP/TRPM8 double-labeled neurons were found in 42.9 ± 2.3% of neurons labeled by TRPM8, and all CB-HRP-labeled neurons were also labeled with TPRM8. Conclusion This study has demonstrated that the cold sensation receptor channel, TRPM8, is localised within the dCSF-CNs of the mesencephalon. TRPM8 acts as receptor of dCSF-CNs for sensation

  4. Dissociation between the panicolytic effect of cannabidiol microinjected into the substantia nigra, pars reticulata, and fear-induced antinociception elicited by bicuculline administration in deep layers of the superior colliculus: The role of CB1-cannabinoid receptor in the ventral mesencephalon.

    PubMed

    da Silva, Juliana Almeida; Biagioni, Audrey Francisco; Almada, Rafael Carvalho; de Souza Crippa, José Alexandre; Cecílio Hallak, Jaime Eduardo; Zuardi, Antônio Waldo; Coimbra, Norberto Cysne

    2015-07-05

    Many studies suggest that the substantia nigra, pars reticulata (SNpr), a tegmental mesencephalic structure rich in γ-aminobutyric acid (GABA)- and cannabinoid receptor-containing neurons, is involved in the complex control of defensive responses through the neostriatum-nigral disinhibitory and nigro-tectal inhibitory GABAergic pathways during imminently dangerous situations. The aim of the present work was to investigate the role played by CB1-cannabinoid receptor of GABAergic pathways terminal boutons in the SNpr or of SNpr-endocannabinoid receptor-containing interneurons on the effect of intra-nigral microinjections of cannabidiol in the activity of nigro-tectal inhibitory pathways. GABAA receptor blockade in the deep layers of the superior colliculus (dlSC) elicited vigorous defensive behaviour. This explosive escape behaviour was followed by significant antinociception. Cannabidiol microinjection into the SNpr had a clear anti-aversive effect, decreasing the duration of defensive alertness, the frequency and duration of defensive immobility, and the frequency and duration of explosive escape behaviour, expressed by running and jumps, elicited by transitory GABAergic dysfunction in dlSC. However, the innate fear induced-antinociception was not significantly changed. The blockade of CB1 endocannabinoid receptor in the SNpr decreased the anti-aversive effect of canabidiol based on the frequency and duration of defensive immobility, the frequency of escape expressed by running, and both the frequency and duration of escape expressed by jumps. These findings suggest a CB1 mediated endocannabinoid signalling in cannabidiol modulation of panic-like defensive behaviour, but not of innate fear-induced antinociception evoked by GABAA receptor blockade with bicuculline microinjection into the superior colliculus, with a putative activity in nigro-collicular GABAergic pathways. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Identification of the 187 bp EphA7 Genomic DNA as the Dorsal Midline-Specific Enhancer of the Diencephalon and Mesencephalon

    PubMed Central

    Kim, Yujin; Park, Eunjeong; Park, Soochul

    2015-01-01

    EphA7 is a key molecule in regulating the development of the dien- and mesencephalon. To get insight into the mechanism of how EphA7 gene expression is regulated during the dorsal specification of the dien- and mesencephalon, we investigated the cis-acting regulatory sequence driving EphA7 to the dorsal midline of the dien- and mesencephalon. Transgenic LacZ reporter analysis, using overlapping EphA7 BACs, was used to narrow down the dorsal midline-specific enhancer, revealing the 25.3 kb genomic region as the enhancer candidate. Strikingly, this genomic DNA was located far downstream of the EphA7 transcription start site, +302.6 kb to +327.9 kb. Further enhancer mapping, using comparative genomic analysis and transgenic methods, showed that the 187 bp genomic DNA alone, approximately 305 kb downstream of the EphA7 transcription start site, was sufficient to act as the dorsal midline-specific enhancer of EphA7. Importantly, our results indicate that the 187 bp dorsal midline-specific enhancer is critically regulated by homeobox transcription factors during the development of the dien- and mesencephalon. PMID:26537192

  6. Survival and functional restoration of human fetal ventral mesencephalon following transplantation in a rat model of Parkinson's disease.

    PubMed

    Rath, Anika; Klein, Alexander; Papazoglou, Anna; Pruszak, Jan; Garcia, Joanna; Krause, Martin; Maciaczyk, Jaroslaw; Dunnett, Stephen B; Nikkhah, Guido

    2013-01-01

    Cell replacement therapy by intracerebral transplantation of fetal dopaminergic neurons has become a promising therapeutic option for patients suffering from Parkinson's disease during the last decades. However, limited availability of human fetal tissue as well as ethical issues, lack of alternative nonfetal donor cells, and the absence of standardized transplantation protocols have prevented neurorestorative therapies from becoming a routine procedure in patients suffering from neurodegenerative diseases. Improvement of graft survival, surgery techniques, and identification of the optimal target area are imperative for further optimization of this novel treatment. In the present study, human primary fetal ventral mesencephalon-derived tissue from 7- to 9-week-old human fetuses was transplanted into 6-hydroxydopamine-lesioned adult Sprague-Dawley rats. Graft survival, fiber outgrowth, and drug-induced rotational behavior up to 14 weeks posttransplantation were compared between different intrastriatal transplantation techniques (full single cell suspension vs. partial tissue pieces suspension injected by glass capillary or metal cannula) and the intranigral glass capillary injection of a full (single cell) suspension. The results demonstrate a higher survival rate of dopamine neurons, a greater reduction in amphetamine-induced rotations (overcompensation), and more extensive fiber outgrowth for the intrastriatally transplanted partial (tissue pieces) suspension compared to all other groups. Apomorphine-induced rotational bias was significantly reduced in all groups including the intranigral group. The data confirm that human ventral mesencephalon-derived cells serve as a viable cell source, survive in a xenografting paradigm, and functionally integrate into the host tissue. In contrast to rat donor cells, keeping the original (fetal) neuronal network by preparing only a partial suspension containing tissue pieces seems to be beneficial for human cells, although a

  7. Electrophoretically pure mouse interferon exerts multiple biologic effects.

    PubMed Central

    Gresser, I; De Maeyer-Guignard, J; Tovey, M G; De Maeyer, E

    1979-01-01

    Electrophoretically pure mouse interferon was examined for a number of biologic effects previously ascribed to crude or partially purified interferon preparations. These effects include: inhibition of the growth of a transplantable tumor in mice; inhibition of cell multiplication of mouse tumor cells in vitro; enhancement of the expression of histocompatibility antigens on mouse tumor cells in vitro; inhibition of antibody formation in vitro; inhibition of sensitization to sheep erythrocytes and the expression of delayed type hypersensitivity in mice; enhancement of natural killer cell activity in vivo and in vitro; enhancement of cell sensitivity to the toxicity of poly(I)-poly(C); and enhanced production ("priming") of interferon production in vitro. Our results establish that the molecules responsible for the antiviral action of interferon are also responsible for these varied biologic effects. PMID:291948

  8. Effects of morphine in the isolated mouse urinary bladder.

    PubMed

    Acevedo, C G; Tamayo, L; Contreras, E

    1986-01-01

    Acute morphine increased the responses to acetylcholine of the isolated mouse urinary bladder. A chronic morphine treatment did not change the responses of the urinary bladder to acetylcholine or ATP. The acute administration of morphine did not modify the contractile response to ATP in the urinary bladders from untreated or chronically morphine treated mice. Methadone and ketocyclazocine decreased the responses to the electrical stimulation of the urinary bladder. These depressant effects were not modified by naloxone. The results suggest the nonexistence of opiate receptors in the mouse urinary bladder and the lack of direct effects of morphine on the neuroeffector junction.

  9. EFFECTS OF PERFLUOROOCTANOIC ACID EXPOSURE DURING PREGNANCY IN THE MOUSE

    EPA Science Inventory


    Title:

    Effects Of Perfluorooctanoic Acid Exposure During Pregnancy In The Mouse

    Authors & affiliations:
    Lau, C., J.R. Thibodeaux*, R.G. Hanson* and J.M. Rogers. Reproductive Toxicology Division, NHEERL, ORD, U.S. EPA, Research Triangle Park, NC
    Abstract:<...

  10. EFFECTS OF PERFLUOROOCTANOIC ACID EXPOSURE DURING PREGNANCY IN THE MOUSE

    EPA Science Inventory


    Title:

    Effects Of Perfluorooctanoic Acid Exposure During Pregnancy In The Mouse

    Authors & affiliations:
    Lau, C., J.R. Thibodeaux*, R.G. Hanson* and J.M. Rogers. Reproductive Toxicology Division, NHEERL, ORD, U.S. EPA, Research Triangle Park, NC
    Abstract:<...

  11. Curcumin shows excellent therapeutic effect on psoriasis in mouse model.

    PubMed

    Kang, Di; Li, Bowen; Luo, Lei; Jiang, Wenbing; Lu, Qiumin; Rong, Mingqing; Lai, Ren

    2016-04-01

    Curcumin is an active herbal ingredient possessing surprisingly wide range of beneficial properties, including anti-inflammatory, antioxidant, chemopreventive and chemotherapeutic activity. Recently, it has been reported to exhibit inhibitory activity on potassium channel subtype Kv1.3. As Kv1.3 channels are mainly expressed in T cells and play a key role in psoriasis, the effects of curcumin were investigated on inflammatory factors secretion in T cells and psoriasis developed in keratin (K) 14-vascular endothelial growth factor (VEGF) transgenic mouse model. Results showed that, 10 μM of curcumin significantly inhibited secretion of inflammatory factors including interleukin (IL)-17,IL-22, IFN-γ, IL-2, IL-8 and TNF-α in T cells by 30-60% in vitro. Notably, more than 50% of T cells proliferation was inhibited by application of 100 μM curcumin. Compared with severe psoriatic symptoms observed in the negative control mice, all psoriasis indexes including ear redness, weight, thickness and lymph node weight were significantly improved by oral application of curcumin in treatment mouse group. Histological examination indicated that curcumin had anti-inflammatory function in the experimental animals. More than 50% level of inflammatory factors including TNF-α, IFN-γ, IL-2, IL-12, IL-22 and IL-23 in mouse serum was decreased by curcumin treatment as well as cyclosporine. Compared with renal fibrosis observed in the mouse group treated by cyclosporine, no obvious side effect in mouse kidney was found after treated by curcumin. Taken together, curcumin, with high efficacy and safety, has a great potential to treat psoriasis.

  12. Toxoplasma gondii strain-dependent effects on mouse behaviour.

    PubMed

    Kannan, Geetha; Moldovan, Krisztina; Xiao, Jian-Chun; Yolken, Robert H; Jones-Brando, Lorraine; Pletnikov, Mikhail V

    2010-06-01

    Toxoplasma gondii reportedly manipulates rodent behaviour to increase transmission to its definitive feline host. We compared the effects of mouse infection by two Type II strains of T. gondii, Prugniaud (PRU) and ME49, on attraction to cat odour, locomotor activity, anxiety, sensorimotor gating, and spatial working and recognition memory 2 months post-infection (mpi). Attraction to cat odour was reassessed 7 mpi. At 2 mpi, mice infected with either strain exhibited significantly more attraction to cat odour than uninfected animals did, but only PRU-infected mice exhibited this behaviour 7 mpi. PRU-infected mice had significantly greater body weights and hyperactivity, while ME49-infected mice exhibited impaired spatial working memory. No differences in parasite antibody titres were seen between PRU- and ME49-infected mice. The present data suggest the effect of T. gondii infection on mouse behaviour is parasite strain-dependent.

  13. Teratogenic effects of silymarin on mouse fetuses

    PubMed Central

    Gholami, Mahbobe; Moallem, Seyed Adel; Afshar, Mohammad; Amoueian, Sakineh; Etemad, Leila; Karimi, Gholamreza

    2016-01-01

    Objective: Silybum marianum has been used for centuries in herbal medicine for treatment of liver diseases. Currently, there is no data available on the possible effects of silymarin on fetal development. This study aimed to investigate the teratogenic effect of silymarin on BALB/c mice fetuses. Materials and Methods: A total of 40 pregnant mice were divided into 4 groups of 10 mice each. Three groups received silymarin at three different doses of 50, 100 and 200 mg/kg/day during gestational days (GDs). The control group received normal saline and tween (solvent). Dams were sacrificed on GD 18 and all fetuses were examined for gross malformations, size and body weight. Malformed fetuses were double stained with alizarin red and alcian blue. Results: Silymarin administration at all doses resulted in reduction of the mean fetal body weights. The abnormalities included limb, vertebral column and craniofacial malformations. Craniofacial malformations were the most common abnormalities, but they were not observed in a dose-dependent manner. The percentage of fetal resorption significantly increased (up to 15%) in all treatment groups. Conclusion: Based on our results, silymarin, especially at high doses can lead to fetal resorption, intrauterine growth retardation and limb, vertebral column and craniofacial abnormalities. More precise studies should be conducted about the teratogenic effects of herbal medicine investigating the underlying mechanisms. Thus, caution should be taken when administering S. marianum to pregnant woman. PMID:27761424

  14. Toxic effect of lithium in mouse brain

    SciTech Connect

    Dixit, P.K.; Smithberg, M.

    1988-01-01

    The effect of lithium ion on glucose oxidation in the cerebrum and cerebellum of mice was measured in vitro by the conversion of isotopic glucose into /sup 14/CO/sub 2//mg wet weight. Glucose utilization is unaffected by lowest lithium dosage but is inhibited by high lithium concentrations (197-295 mM). Chronic administration of lithium to adult mice decreased the DNA content of the cerebrum and cerebellum at concentrations of 80 and 108 mM. The DNA content of selected postnatal stages of cerebrum and cerebellum was measured starting on Day 1 or 2. This served as another parameter to evaluate glucose oxidation studies at these ages. On the basis of wet weight, both brain parts of neonates of ages 1 and 10 days were approximately one-half that of the adult counterparts. On the basis of DNA content, the cerebrum enhanced its glucose utilization twofold from Day 1 to Day 10 and tripled its utilization from Day 10 to Day 20. The glucose utilization by cerebrum at Day 20 is similar to adult values. In contrast, glucose oxidation in the cerebellum remained relatively constant throughout the postnatal growth. The relative susceptibility of the two brain parts is discussed.

  15. Host Genetic and Environmental Effects on Mouse Cecum Microbiota

    SciTech Connect

    Campbell, James H; Foster, Carmen M; Vishnivetskaya, Tatiana A; Campbell, Alisha G; Yang, Zamin Koo; Wymore, Ann; Palumbo, Anthony Vito; Podar, Mircea

    2012-01-01

    The mammalian gut harbors complex and variable microbial communities, across both host phylogenetic space and conspecific individuals. A synergy of host genetic and environmental factors shape these communities and account for their variability, but their individual contributions and the selective pressures involved are still not well understood. We employed barcoded pyrosequencing of V1-2 and V4 regions of bacterial small subunit ribosomal RNA genes to characterize the effects of host genetics and environment on cecum assemblages in 10 genetically distinct, inbred mouse strains. Eight of these strains are the foundation of the Collaborative Cross (CC), a panel of mice derived from a genetically diverse set of inbred founder strains, designed specifically for complex trait analysis. Diversity of gut microbiota was characterized by complementing phylogenetic and distance-based, sequence-clustering approaches. Significant correlations were found between the mouse strains and their gut microbiota, reflected by distinct bacterial communities. Cohabitation and litter had a reduced, although detectable effect, and the microbiota response to these factors varied by strain. We identified bacterial phylotypes that appear to be discriminative and strain-specific to each mouse line used. Cohabitation of different strains of mice revealed an interaction of host genetic and environmental factors in shaping gut bacterial consortia, in which bacterial communities became more similar but retained strain specificity. This study provides a baseline analysis of intestinal bacterial communities in the eight CC progenitor strains and will be linked to integrated host genotype, phenotype and microbiota research on the resulting CC panel.

  16. Dual effects of fluoxetine on mouse early embryonic development

    SciTech Connect

    Kim, Chang-Woon; Choe, Changyong; Kim, Eun-Jin; Lee, Jae-Ik; Yoon, Sook-Young; Cho, Young-Woo; Han, Sunkyu; Tak, Hyun-Min; Han, Jaehee; Kang, Dawon

    2012-11-15

    Fluoxetine, a selective serotonin reuptake inhibitor, regulates a variety of physiological processes, such as cell proliferation and apoptosis, in mammalian cells. Little is known about the role of fluoxetine in early embryonic development. This study was undertaken to investigate the effect of fluoxetine during mouse early embryonic development. Late two-cell stage embryos (2-cells) were cultured in the presence of various concentrations of fluoxetine (1 to 50 μM) for different durations. When late 2-cells were incubated with 5 μM fluoxetine for 6 h, the percentage that developed into blastocysts increased compared to the control value. However, late 2-cells exposed to fluoxetine (5 μM) over 24 h showed a reduction in blastocyst formation. The addition of fluoxetine (5 μM) together with KN93 or KN62 (calcium/calmodulin-dependent protein kinase II (CaMKII) inhibitors) failed to increase blastocyst formation. Fluoxetine treatment inhibited TREK-1 and TREK-2, members of the two-pore domain K{sup +} channel family expressed in mouse embryos, activities, indicating that fluoxetine-induced membrane depolarization in late 2-cells might have resulted from TREK inhibition. In addition, long-term exposure to fluoxetine altered the TREK mRNA expression levels. Furthermore, injection of siRNA targeting TREKs significantly decreased blastocyst formation by ∼ 30% compared to injection of scrambled siRNA. Long-term exposure of fluoxetine had no effect on blastocyst formation of TREK deficient embryos. These results indicate that low-dose and short-term exposures of late 2-cells to fluoxetine probably increase blastocyst formation through activation of CaMKII-dependent signal transduction pathways, whereas long-term exposure decreases mouse early embryonic development through inhibition of TREK channel gating. Highlights: ► Short-term exposure of 2-cells to fluoxetine enhances mouse blastocyst formation. ► The enhancive effect of fluoxetine is resulted from Ca

  17. [Effect of thrombopoietin II on exsanguine thrombocytopenia mouse death rate].

    PubMed

    Chen, Y; Zhong, L; Zhong, X

    2001-09-01

    To study the effect of thrombopoietin II (TPO II) on the exsanguine thrombocytopenia mouse death rate. After the normal peripheral platelet counts were done on the samples obtained from the tail vein of purebred Babl/c mice before experiment, the purified ligand I of TPO II, artificial compound ligand II of TPO II and rhTPO were injected intraperitoneally once a day for 7 days. On d 7 and d 14, platelet counts were performed on 0.5 ml samples obtained from the supra-orbital vein, with the condition of the mouse death monitored daily. On d 7, ligand I of TPO II group platelet counts were higher than that of the negative control group (P < 0.05), while not being significantly different from that of rhTPO group (P > 0.05). On d 14, the platelet counts of two TPO II groups increased significantly as compared with the negative control group (P < 0.01), showing no significant difference from that of rhTPO group (P > 0.05). Moreover, the platelet counts of mice in two TPO II groups and the positive group had shown an increasing tendency in the days following experiment. In addition, mouse death occurred in all groups of mice following their phlebotomy from the supraorbital vein on d 7. But the death rate of negative control group was evidently higher than that of any other groups (P < 0.05). TPO II's biological activity obviously increases platelet production, thereby reducing the exsanguine thrombopenia mouse death rate.

  18. Effects of benzene on erythropoiesis in the fetal mouse

    SciTech Connect

    Mizens, M.

    1981-01-01

    Benzene toxicity in humans and adult animals appears as a functional disturbance of hematopoiesis. The work presented here examined the effects of benzene on the fetal mouse and its blood forming organ, the liver. The study includes the effects on macromolecular synthesis in the fetal liver erythropoietic cells and the general effects of benzene on the development of the fetus. Although biochemical changes were noted in the liver of the fetus when the female was exposed to benzene, no histopathologic changes were found. The effects on DNA and heme synthesis in the fetal liver cell population suggest disturbances in the proliferation and maturation phases of the developing red blood cell. The biochemical perturbations observed in the erythropoietic activity of the fetal mouse liver appeared to have no long term effects on the fetus. It is suggested that the temporary effect on the fetus may be the result of inteplay between an increase in the females' rate of metabolism of benzene and the ability of the fetal liver to recover rapidly from disturbances in the erythropoietic cell cycle. Only when the dosing period was extended from day 11 of gestation to term, and the maternal health appeared to be deteriorating, was the viability of the litter affected.

  19. Cocaine Causes Apoptotic Death in Rat Mesencephalon and Striatum Primary Cultures

    PubMed Central

    Lepsch, Lucilia B.; Planeta, Cleopatra S.; Scavone, Critoforo

    2015-01-01

    To study cocaine's toxic effects in vitro, we have used primary mesencephalic and striatal cultures from rat embryonic brain. Treatment with cocaine causes a dramatic increase in DNA fragmentation in both primary cultures. The toxicity induced by cocaine was paralleled with a concomitant decrease in the microtubule associated protein 2 (MAP2) and/or neuronal nucleus protein (NeuN) staining. We also observed in both cultures that the cell death caused by cocaine was induced by an apoptotic mechanism, confirmed by TUNEL assay. Therefore, the present paper shows that cocaine causes apoptotic cell death and inhibition of the neurite prolongation in striatal and mesencephalic cell culture. These data suggest that if similar neuronal damage could be produced in the developing human brain, it could account for the qualitative or quantitative defects in neuronal pathways that cause a major handicap in brain function following prenatal exposure to cocaine. PMID:26295051

  20. Cocaine Causes Apoptotic Death in Rat Mesencephalon and Striatum Primary Cultures.

    PubMed

    Lepsch, Lucilia B; Planeta, Cleopatra S; Scavone, Critoforo

    2015-01-01

    To study cocaine's toxic effects in vitro, we have used primary mesencephalic and striatal cultures from rat embryonic brain. Treatment with cocaine causes a dramatic increase in DNA fragmentation in both primary cultures. The toxicity induced by cocaine was paralleled with a concomitant decrease in the microtubule associated protein 2 (MAP2) and/or neuronal nucleus protein (NeuN) staining. We also observed in both cultures that the cell death caused by cocaine was induced by an apoptotic mechanism, confirmed by TUNEL assay. Therefore, the present paper shows that cocaine causes apoptotic cell death and inhibition of the neurite prolongation in striatal and mesencephalic cell culture. These data suggest that if similar neuronal damage could be produced in the developing human brain, it could account for the qualitative or quantitative defects in neuronal pathways that cause a major handicap in brain function following prenatal exposure to cocaine.

  1. Genetics of primary and timing effects in the mnd mouse

    SciTech Connect

    Messer, A.; Plummer, J.; MacMillen, M.C.

    1995-06-05

    The mnd mouse shows a spontaneous adult-onset hereditary neurological disease, with motor abnormality by 6 months of age, progressing to severe spastic paralysis and premature death. The disease is autosomal recessive, with heterozygote effects seen under stress. It maps to mouse chromosome (chr) 8. Histopathology with Nissl stains documents substantial abnormalities of upper and lower motor neurons, and there is retinal degeneration beginning in the first month, even without light exposure. Increasing levels of autofluorescent lipopigment are found in both neuronal and non-neuronal tissues as the mnd mice age. Recently, NCL-like inclusions and accumulating subunit c have also been described. When mnd is outcrossed to the AKR/J genetic background, ca. 40% of the mnd/mnd F2 progeny show early onset (onset by 4.5-5 months and death by 7 months). This accelerated timing effect seems to be strain-specific, and unlinked to the mnd gene itself. Our current working hypothesis is that the timing effect is due to 2 or 3 unlinked dominant genes with incomplete penetrance at any single locus. In a combined RFLP/PCR fragment genetic analysis, the strongest deviation from the expected ratio of AKR vs B6 alleles occurs with markers on proximal half of chr 1. Additional loci on chrs 5 and 10 may also be involved. The mechanism of interaction of these modifying genes with the primary mnd gene may offer new therapeutic avenues. 22 refs., 2 tabs.

  2. Light and electron microscopic study of an avian pretectal nucleus, the lentiform nucleus of the mesencephalon, magnocellular division.

    PubMed

    Gottlieb, M D; McKenna, O C

    1986-06-01

    Using several light microscopic methods we have identified the lentiform nucleus of the mesencephalon, magnocellular division, by its position in the pretectum, its cellular composition, and its complement of retinal afferents and have distinguished it from neighboring structures. At the light microscopic level large neurons (approximately 30 X 21 microns) and small neurons (approximately 13 X 9 microns), which are more numerous, are seen interspersed among myelinated axons. The large neurons are generally ovoid and contain an eccentrically located nucleus and large clumps of Nissl-stained material. In the electron microscope the most notable feature of these neurons is the presence of ribosome rosettes and many parallel arrays of rough endoplasmic reticulum (RER). On the basis of cytological and ultrastructural features, we conclude that only one class of large neuron is present. Although in the light microscope the small neurons appear to be similar, at the ultrastructural level three neuron types have been distinguished: (1) ovoid shape with cytoplasm densely packed with organelles especially RER, (2) round shape with very little cytoplasm with few organelles, and (3) triangular shape with a pale cytoplasmic matrix with some RER. Subsurface membrane configurations are often seen in the somata of all neuron types. In addition, axon terminals, some containing flat vesicles, and other less frequent ones containing round vesicles are seen terminating on the somata of all neuronal cell types. In the neuropil, three types of presynaptic profiles can be identified. Two of these profiles are axodendritic and the third is dendrodendritic. The type R profile, which is often as large as 4 micron 2, is the most numerous, contains large round synaptic vesicles, and is often seen synapsing on several dendritic profiles. The type F profile contains flat vesicles and a relatively dense cytoplasm, and is smaller in area than type R. The third profile, which contains small

  3. Topographical Fos induction within the ventral midbrain and projection sites following self-stimulation of the posterior mesencephalon.

    PubMed

    Marcangione, C; Rompré, P-P

    2008-07-17

    Rats will readily perform an operant response to self-administer electrical stimulation to the posterior mesencephalon (PM). Previous results show that axons that support self-stimulation travel between the PM and the ventral tegmental area (VTA) and that their activation increases firing of VTA neurons. The present work sought to extend these findings by describing the distribution of ventral midbrain neurons affected by PM self-stimulation. In Experiment 1, ventral midbrain Fos-immunoreactivity (IR) was assessed in three groups of rats implanted with a monopolar electrode; two groups were trained to self-administer stimulation, but only one was allowed to self-stimulate on the test day, whereas the third was never trained or tested. Self-stimulation induced prominent Fos-IR that was differentially distributed within the VTA and substantia nigra (SN). Control rats showed only sparse labeling. In Experiment 2, ventral midbrain Fos-IR was assessed with three additional groups trained to self-administer PM stimulation and tested as follows: Group-1 was allowed to self-stimulate, Group-2 received stimulation at parameters that failed to support self-stimulation (deemed non-rewarding) "yoked" to the rate of responding of Group-1, and Group-3 received no stimulation. PM self-stimulation induced Fos-IR throughout the rostral-caudal VTA and within the SN reticulata. Non-rewarding stimulation induced sparse Fos-IR, comparable to no stimulation. Fos-IR specific to PM self-stimulation was also observed within the bed nucleus of the stria terminalis (BNST) and nucleus accumbens (NAS)-shell, but not within NAS-core, caudate putamen, medial prefrontal or orbital cortices. These findings are consistent with evidence that reward or positive reinforcement can be triggered by chemical and electrical stimulation over a large rostral-caudal extent of the VTA. They suggest that among ventral midbrain projection sites, the BNST and NAS-shell constitute important components of the

  4. Maternal effect for DNA mismatch repair in the mouse.

    PubMed Central

    Gurtu, Vanessa E; Verma, Shelly; Grossmann, Allie H; Liskay, R Michael; Skarnes, William C; Baker, Sean M

    2002-01-01

    DNA mismatch repair (DMR) functions to maintain genome stability. Prokaryotic and eukaryotic cells deficient in DMR show a microsatellite instability (MSI) phenotype characterized by repeat length alterations at microsatellite sequences. Mice deficient in Pms2, a mammalian homolog of bacterial mutL, develop cancer and display MSI in all tissues examined, including the male germ line where a frequency of approximately 10% was observed. To determine the consequences of maternal DMR deficiency on genetic stability, we analyzed F(1) progeny from Pms2(-/-) female mice mated with wild-type males. Our analysis indicates that MSI in the female germ line was approximately 9%. MSI was also observed in paternal alleles, a surprising result since the alleles were obtained from wild-type males and the embryos were therefore DMR proficient. We propose that mosaicism for paternal alleles is a maternal effect that results from Pms2 deficiency during the early cleavage divisions. The absence of DMR in one-cell embryos leads to the formation of unrepaired replication errors in early cell divisions of the zygote. The occurrence of postzygotic mutation in the early mouse embryo suggests that Pms2 deficiency is a maternal effect, one of a limited number identified in the mouse and the first to involve a DNA repair gene. PMID:11805062

  5. Effects of clinostat rotation on mouse meiotic maturation in vitro

    NASA Technical Reports Server (NTRS)

    Wolgemuth, D. J.; Grills, G. S.

    1984-01-01

    The effects of microgravity on meiosis, fertilization, and early embryonic development in mammals are being examined by using a clinostat to reorient the cells with respect to the gravity vector. A clinostat capable of supporting mammalian cells in tissue culture has been developed. Initial studies have focused on examining the effects of clinostat rotation on meiotic maturation in mouse oocytes. Oocytes recovered from ovarian follicles were subjected to clinostat rotation on a horizontal or vertical axis or to static conditions for a 16 hr period. No gross morphological changes and no effects on germinal vesicle breakdown were observed under any rotation conditions (1/4, 1, 10, 30, 100 RPM). Success of meiotic progression to Metaphase II was comparable among experimental and control groups except at 100 RPM, where a slight inhibition was observed.

  6. Biochemical effects of chlorpromazine on mouse neuroblastoma cells.

    PubMed

    Andres, M I; Repetto, G; Sanz, P; Repetto, M

    1999-10-01

    Chlorpromazine and other phenothiazine derivatives are neuroleptic drugs of widespread use for clinical situations beyond the realm of psychiatry, such as to control nausea, vomiting and intractable hiccups. The present study investigated in vitro different cytotoxic effects of chlorpromazine in cultures of mouse neuroblastoma cell line Neuro-2a exposed to different concentrations of this compound. Indicators assessed were cell proliferation by quantification of total protein content of the cell culture, lysosomal function evaluated by the relative uptake of neutral red cytosolic phosphofructokinase (PFK) and enolase (ENL) activities in glycolysis, mitochondrial succinate dehydrogenase (SDH) activity in the citric acid cycle, lysosomal beta-galactosidase (GAL) activity, and neuronal acetylcholinesterase activity. Marked inhibitory effects were found for cell proliferation and relative neutral red uptake; PFK, ENL and GAL activities had no significant differences from control. Stimulation was specifically detected on SDH and the Krebs cycle at concentrations up to 30 microM. Chlorpromazine did not have high toxicity for cytotoxic effects on lysosomes.

  7. Effects of clinostat rotation on mouse meiotic maturation in vitro.

    PubMed

    Wolgemuth, D J; Grills, G S

    1984-01-01

    The effects of microgravity on meiosis, fertilization, and early embryonic development in mammals are being examined by using a clinostat to reorient the cells with respect to the gravity vector. A clinostat capable of supporting mammalian cells in tissue culture has been developed. Initial studies have focused on examining the effects of clinostat rotation on meiotic maturation in mouse oocytes. Oocytes recovered from ovarian follicles were subjected to clinostat rotation on a horizontal or vertical axis or to static conditions for a 16 hr period. No gross morphological changes and no effects on germinal vesicle breakdown were observed under any rotation conditions (1/4, 1, 10, 30, 100 RPM). Success of meiotic progression to Metaphase II was comparable among experimental and control groups except at 100 RPM, where a slight inhibition was observed.

  8. Pleiotropic effects of 5-aminolevulinic acid in mouse brain.

    PubMed

    Lavandera, Jimena; Rodríguez, Jorge; Ruspini, Silvina; Meiss, Roberto; Zuccoli, Johanna Romina; Martínez, María Del Carmen; Gerez, Esther; Batlle, Alcira; Buzaleh, Ana María

    2016-08-01

    5-Aminolevulinic acid (ALA) seems to be responsible for the neuropsychiatric manifestations of acute intermittent porphyria (AIP). Our aim was to study the effect of ALA on the different metabolic pathways in the mouse brain to enhance our knowledge about the action of this heme precursor on the central nervous system. Heme metabolism, the cholinergic system, the defense enzyme system, and nitric oxide metabolism were evaluated in the encephalon of CF-1 mice receiving a single (40 mg/kg body mass) or multiple doses of ALA (40 mg/kg, every 48 h for 14 days). We subsequently found ALA accumulation in the encephalon of the mice. ALA also altered the brain cholinergic system. After one dose of ALA, a decrease in superoxide dismutase activity and a reduction in glutathione levels were detected, whereas malondialdehyde levels and catalase activity were increased. Heme oxygenase was also increased as an antioxidant response to protect the encephalon against injury. All nitric oxide synthase isoforms were induced by ALA, these changes were more significant for the inducible isoform in glial cells. In conclusion, ALA affected several metabolic pathways in mouse encephalon. Data indicate that a rapid response to oxidative stress was developed; however, with long-term intoxication, the redox balance was probably restored, thereby minimizing oxidative damage.

  9. Effects of cannabinoids on the activities of mouse brain lipases.

    PubMed

    Hunter, S A; Burstein, S; Renzulli, L

    1986-09-01

    Cannabinoids were found to augment phospholipase activities and modify lipid levels of mouse brain synaptosomes, myelin and mitochondria. Delta-1-tetra-hydrocannabinol (delta 1-THC) and several of its metabolites induced a dose-dependent (0.32-16 microM) stimulation of phospholipase A2 (PLA2) activity resulting in the increased release of free arachidonic acid from exogenous [1-14C]phosphatidylcholine (PC). The potencies of the cannabinoids in modulating PLA2 activity were approximately of the order: 7-OH-delta 1-THC greater than delta 1-THC greater than 7-oxo-delta 1-THC greater than delta 1-THC-7-oic acid = 6 alpha OH-delta 1-THC much greater than 6 beta-OH-delta 1-THC. The hydrolysis of phosphatidylinositol (PI) by synaptosomal phospholipase C (PLC) was enhanced significantly by delta 1-THC and promoted diacylglyceride levels by greater than 100 percent compared to control values. In contrast, arachidonate was the major product resulting from phospholipase activities of a 20,000 g pellet. Synaptosomal diacylglyceride lipase activity was inhibited by delta 1-THC. [1-14C]Arachidonic acid was readily incorporated into subcellular membrane phospholipids and after exposure to cannabinoids led to diminished phosphoglyceride levels and concomitant increases in released neutral lipid products. These data suggest that cannabinoids control phospholipid turnover and metabolism in mouse brain preparations by the activation of phospholipases and, through this mechanism, may exert some of their effects.

  10. Immunohistochemical localization of nerve growth factor, glial fibrillary acidic protein and ciliary neurotrophic factor in mesencephalon, rhombencephalon, and spinal cord of developing mongolian gerbil.

    PubMed

    Park, Il-Kwon; Lee, Kyoug-Youl; Song, Chi-Won; Kwon, Hyo-Jung; Park, Mi-Sun; Lee, Mi-Young; Lee, Keun-Jwa; Jeong, Young-Gil; Lee, Chul-Ho; Ha, Kwon-Soo; Rhee, Man-Hee; Lee, Kang-Yi; Kim, Moo-Kang

    2002-09-01

    The distribution of the nerve growth factor (NGF), the glial fibrillary acidic protein (GFAP) and the ciliary neurotrohic factor (CNTF) was performed in coronal sections of the mesencephalon, rhombencephalon and spinal cord in the developing Mongolian gerbils. Generally, NGF specifically recognizes neurons with the NGF receptor, whereas GFAP does the glia, and CNTF does the motor neurons. The receptor expression was examined separately in gerbils between embryonic days 15 (E15) and postnatal weeks 3 (PNW 3). The NGF-IR was first observed in the spinal cord at E21, which might be related to the maturation. The GFAP reactivity was peaked at the postnatal days 2 (PND2), while the highest CNTF-reaction was expressed at PNW 2. The GFAP stains were observed in the aqueduct and the spinal cord, which appeared to project laterally at E19. The CNTF was observed only after the birth and found in both the neurons and neuroglia of the substantia nigra, mesencephalon, cerebellum and the spinal cord from PND1 to PNW3. These results suggest that NGF, GFAP and CNTF are important for the development of the neurons and the neuroglia in the central nervous system at the late prenatal and postnatal stages.

  11. Formaldehyde in cryoprotectant propanediol and effect on mouse zygotes.

    PubMed

    Mahadevan, M M; McIntosh, Q; Miller, M M; Breckinridge, S M; Maris, M; Moutos, D M

    1998-04-01

    Cryopreservation of human zygotes and embryos has been routinely performed by in-vitro fertilization clinics for many years. Karran and Legge (1996) first reported that formaldehyde (FA) present in the cryoprotective solutions can have a deleterious effect on mouse oocytes. FA is a cytotoxic, carcinogenic and mutagenic chemical. The effect of FA on mouse zygotes was investigated. In addition, the concentrations of FA in propanediol (PROH) obtained from various sources were determined. Pooled 1-cell embryos were dispensed into droplets of modified Ham's F10 or human tubal fluid containing various concentrations of FA. Since bovine serum albumin (BSA) may minimize toxicity additional trials were done as above in the absence of BSA. FA concentration in the standard 1.5 M PROH, from different sources in water, was measured in the same assay using a standard curve of 0-100 microM FA. FA in a complex medium had a significant deleterious effect on embryo development and hatching but only at 1 mM concentration (P < 0.000001; see Tables I-III). There was no significant effect of FA at 100 microM. However, in a simple medium even 50 microM FA decreased embryo hatching. FA was present in 1.5 M PROH from different sources (range 1.0-35.3 microM concentration). It appears that FA concentrations do not increase with storage because FA concentrations were low even after opening and storage for 3 years on the shelf. This suggests that FA is a contaminant during the manufacturing process and may vary from manufacturer to manufacturer and batch to batch. Until further studies are done to confirm the lack of toxicity to embryos during cryopreservation (with or without FA scavengers) it may be prudent to screen all batches of cryoprotectants for FA as part of quality control.

  12. The effect of diet on bone shape in the mouse.

    PubMed Central

    Johnson, D R; O'Higgins, P; McAndrew, T J

    1990-01-01

    The effects of four deficient diets (oats, barley, wheat, buckwheat) on the shape of first and second cervical vertebrae and scapulae in C57BL mice have been measured using Fourier analysis. Bone shape was found to be robust, and only minimally affected by dietary change. The significance of this lack of change is discussed in the light of changes induced by diet in non-metrical variants in the skeleton. The study further emphasises the dangers of using certain non-metrical characters in taxonomic studies and indicates that the shapes of mouse bones are affected to a lesser degree by dietary influences than are the incidences of certain non-metrical character states. PMID:2272903

  13. Effects of microgravity on the mouse triceps brachii muscle.

    PubMed

    Ishihara, Akihiko; Nagatomo, Fumiko; Terada, Masahiro; Fujino, Hidemi; Kondo, Hiroyo; Ishioka, Noriaki

    2015-07-01

    In this study we investigated the effects of microgravity on the fiber properties of the mouse triceps brachii, a forelimb muscle that has no antigravity function. Mice (n = 7) were exposed to microgravity for 13 days on the space shuttle Atlantis (Space Transportation System-135). The fiber cross-sectional area (CSA) and succinate dehydrogenase (SDH) staining intensity of the triceps brachii muscle were compared with those of controls (n = 7). SDH activity in this muscle was also estimated. Microgravity did not affect the body weight, muscle weight, or fiber CSA, but there was reduced SDH staining intensity of all types of fibers, irrespective of the muscle region (P < 0.05). Microgravity also reduced muscle SDH activity (P < 0.05). Short-term exposure to microgravity induced a decrease in oxidative capacity, but not atrophy, in the triceps brachii muscle of mice. © 2014 Wiley Periodicals, Inc.

  14. Effect of Cadmium on Cellular Ultrastructure in Mouse Ovary.

    PubMed

    Wang, Ying; Wang, Xuejuan; Wang, Yanwu; Fan, Rong; Qiu, Chao; Zhong, Shan; Wei, Lei; Luo, Daji

    2015-01-01

    This study aimed at analyzing the cytotoxicity and pathological effects of cadmium on the ovary. Our studies revealed that cadmium was deposited in the mouse ovary after 8 d cadmium injection in vivo. Also, the increase in the rate of body weight was slowed, while the gonadosomatic index was reduced in the CdCl2 group, compared with the control group. Meanwhile, cadmium affected the maturation of follicles, the degradation of corpus luteum, the arrangement of follicles and corpus luteum, and increased the number of atresia follicles. Besides, under the electron microscope, chromatin margination, karopyknosis, swelling of mature cisternae of Golgi apparatus, mitochondrial cristae disappearance, and swelling of the rough endoplasmic reticulum can be observed in the CdCl2 group mice. Collectively, our findings elucidated the morphological mechanism that the exposure of cadmium changed the ultrastructure of cells in ovary tissues.

  15. Embryotoxic effects of chlorobutanol in cultured mouse embryos.

    PubMed

    Smoak, I W

    1993-03-01

    Chlorobutanol (CB) is a commonly used preservative which is added to numerous pharmaceutical preparations, and it is the active ingredient in certain oral sedatives and topical anesthetics. Chlorobutanol has demonstrated adverse effects in adult tissues, but CB has not been previously investigated for its effect on the developing whole embryo. The method of whole-embryo culture was used in this study to expose mouse embryos during two stages of organogenesis to CB at final concentrations of 0 (control), 10, 25, 50, 100, and 200 micrograms/ml. Embryos were evaluated for heart rate (HR), malformations, and somite number, and embryos and visceral yolk sacs (VYSs) were assayed for total protein content as a measure of overall growth. Neurulating (3-6 somite) embryos were malformed and growth retarded by exposure to CB concentrations > or = 25 micrograms/ml, with decreased VYS growth at > or = 50 micrograms/ml and decreased HR at > or = 100 micrograms/ml CB. Early limb-bud stage (20-25 somite) embryos were malformed at CB concentrations > or = 50 micrograms/ml and growth retarded at > or = 100 micrograms/ml, with decreased VYS growth at 200 micrograms/ml and decreased HR at > or = 100 micrograms/ml CB. Thus, CB produces dysmorphogenesis in mouse embryos in vitro, and neurulating embryos are somewhat less sensitive than early limb-bud stage embryos. The concentrations of CB that interfere with normal embryonic development are within the range of human blood levels measured following multiple doses of CB. Preparations containing CB should be used with caution during pregnancy, particularly when repeated dosing may allow accumulation of CB to potentially embryotoxic levels.

  16. Effects of Computer Skill on Mouse Move and Click Performance

    ERIC Educational Resources Information Center

    Panagiotakopoulos, Chris; Sarris, Menelaos

    2008-01-01

    This study focuses on the use of computers in the field of education. It reports a series of experimental mouse move and click tasks on constant and moving stimuli. These experiments attempt to explore the efficiency with which individuals of different skill level and age group perform using a mouse. Differences in performance between high-skill…

  17. Effects of 810 nm laser on mouse primary cortical neurons

    NASA Astrophysics Data System (ADS)

    Kharkwal, Gitika B.; Sharma, Sulbha K.; Huang, Ying-Ying; De Taboada, Luis; McCarthy, Thomas; Hamblin, Michael R.

    2011-03-01

    In the past four decades numerous studies have reported the efficacy of low level light (laser) therapy (LLLT) as a treatment for diverse diseases and injuries. Recent studies have shown that LLLT can biomodulate processes in the central nervous system and has been extensively studied as a stroke treatment. However there is still a lack of knowledge on the effects of LLLT at the cellular level in neurons. The present study aimed to study the effect of 810 nm laser on several cellular processes in primary cortical neurons cultured from mouse embryonic brains. Neurons were irradiated with light dose of 0.03, 0.3, 3, 10 and 30 J/cm2 and intracellular levels of reactive oxygen species, nitric oxide and calcium were measured. The changes in mitochondrial function in response to light were studied in terms of adenosine triphosphate (ATP) and mitochondrial membrane potential (MMP). Light induced a significant increase in calcium, ATP and MMP at lower fluences and a decrease at higher fluence. ROS was induced significantly by light at all light doses. Nitric oxide levels also showed an increase on treatment with light. The results of the present study suggest that LLLT at lower fluences is capable of inducing mediators of cell signaling process which in turn may be responsible for the biomodulatory effects of the low level laser. At higher fluences beneficial mediators are reduced but potentially harmful mediators are increased thus offering an explanation for the biphasic dose response.

  18. Effects of Tetrodotoxin in Mouse Models of Visceral Pain

    PubMed Central

    González-Cano, Rafael; Tejada, Miguel Ángel; Artacho-Cordón, Antonia; Nieto, Francisco Rafael; Entrena, José Manuel; Wood, John N.; Cendán, Cruz Miguel

    2017-01-01

    Visceral pain is very common and represents a major unmet clinical need for which current pharmacological treatments are often insufficient. Tetrodotoxin (TTX) is a potent neurotoxin that exerts analgesic actions in both humans and rodents under different somatic pain conditions, but its effect has been unexplored in visceral pain. Therefore, we tested the effects of systemic TTX in viscero-specific mouse models of chemical stimulation of the colon (intracolonic instillation of capsaicin and mustard oil) and intraperitoneal cyclophosphamide-induced cystitis. The subcutaneous administration of TTX dose-dependently inhibited the number of pain-related behaviors in all evaluated pain models and reversed the referred mechanical hyperalgesia (examined by stimulation of the abdomen with von Frey filaments) induced by capsaicin and cyclophosphamide, but not that induced by mustard oil. Morphine inhibited both pain responses and the referred mechanical hyperalgesia in all tests. Conditional nociceptor‑specific Nav1.7 knockout mice treated with TTX showed the same responses as littermate controls after the administration of the algogens. No motor incoordination after the administration of TTX was observed. These results suggest that blockade of TTX-sensitive sodium channels, but not Nav1.7 subtype alone, by systemic administration of TTX might be a potential therapeutic strategy for the treatment of visceral pain. PMID:28635651

  19. Effects of Tetrodotoxin in Mouse Models of Visceral Pain.

    PubMed

    González-Cano, Rafael; Tejada, Miguel Ángel; Artacho-Cordón, Antonia; Nieto, Francisco Rafael; Entrena, José Manuel; Wood, John N; Cendán, Cruz Miguel

    2017-06-21

    Visceral pain is very common and represents a major unmet clinical need for which current pharmacological treatments are often insufficient. Tetrodotoxin (TTX) is a potent neurotoxin that exerts analgesic actions in both humans and rodents under different somatic pain conditions, but its effect has been unexplored in visceral pain. Therefore, we tested the effects of systemic TTX in viscero-specific mouse models of chemical stimulation of the colon (intracolonic instillation of capsaicin and mustard oil) and intraperitoneal cyclophosphamide-induced cystitis. The subcutaneous administration of TTX dose-dependently inhibited the number of pain-related behaviors in all evaluated pain models and reversed the referred mechanical hyperalgesia (examined by stimulation of the abdomen with von Frey filaments) induced by capsaicin and cyclophosphamide, but not that induced by mustard oil. Morphine inhibited both pain responses and the referred mechanical hyperalgesia in all tests. Conditional nociceptor‑specific Nav1.7 knockout mice treated with TTX showed the same responses as littermate controls after the administration of the algogens. No motor incoordination after the administration of TTX was observed. These results suggest that blockade of TTX-sensitive sodium channels, but not Nav1.7 subtype alone, by systemic administration of TTX might be a potential therapeutic strategy for the treatment of visceral pain.

  20. Effects of Angiopoietin-2 on Transplanted Mouse Ovarian Tissue

    PubMed Central

    Youm, Hye Won; Lee, Jaewang; Kim, Eun Jung; Kong, Hyun Sun; Suh, Chang Suk; Kim, Seok Hyun

    2016-01-01

    Transplantation of ovarian tissue (OT) is currently the only clinical option to restore fertility with cryopreserved OT. However, follicle loss caused by ischemia and slow revascularization occurs in transplanted OT. To shorten the ischemic period and promote angiogenesis, some angiogenic factors have been used. Angiopoietin-2 (Ang2) is one of the major angiogenic factors and has been reported to promote blood vessels and increase vascular permeability in ischemic and/or hypoxic environment. This study was performed to investigate the effects of Ang2 on follicle integrity and revascularization of transplanted mouse OT. Five-week-old B6D2F1 female mice were divided into a control group and two Ang2 groups, followed by ovary collection and vitrification. After warming, the ovaries were autotransplanted into kidney capsules with/without Ang2 injection (50 or 500 ng/kg), and then the mice were sacrificed at days 2, 7, 21, and 42 after transplantation. A total 2,437 follicles in OT grafts were assessed for follicular density, integrity, and classification by using hematoxylin and eosin staining. Apoptosis and revascularization were evaluated by using TUNEL assay and CD31 immunohistochemistry, respectively. Serum follicle-stimulating hormone (FSH) levels were measured by using enzyme-linked immunosorbent assay. Both Ang2 groups showed remarkable increase in morphologically intact follicle ratio across all grafting durations except D21. The numbers of CD31(+) vessels were significantly increased in both Ang2 groups compared with the control group at all durations, except in the 50 ng Ang2 group at D42. However, the mean numbers of follicles of the grafts, apoptosis ratios, and serum FSH levels showed no significant differences among the groups. Our results show that Ang2 treatment significantly increased the intact follicle ratios and the number of blood vessels of the mouse OT grafts. However, further studies performed with large animal or human OT are necessary before

  1. Bimodal effects of cinnamaldehyde and camphor on mouse TRPA1.

    PubMed

    Alpizar, Yeranddy A; Gees, Maarten; Sanchez, Alicia; Apetrei, Aurelia; Voets, Thomas; Nilius, Bernd; Talavera, Karel

    2013-06-01

    TRPA1 is a nonselective cation channel activated by a wide variety of noxious chemicals. Intriguingly, several TRPA1 modulators induce a bimodal effect, activating the channel at micromolar concentrations and inhibiting it at higher concentrations. Here we report the bimodal action of cinnamaldehyde (CA) and camphor, which are thus far reported as agonist and antagonist of TRPA1, respectively. Whole-cell patch-clamp experiments in TRPA1-expressing CHO cells revealed that, as previously reported, extracellular application of 100 μM CA strongly stimulates TRPA1 currents. However, subsequent application of 3 mM CA induced fast and reversible current inhibition. Application of 3 mM CA in basal conditions induced a rather small current increase, followed by current inhibition and a dramatic rebound of current amplitude upon washout. These observations are reminiscent of the effects of TRPA1 modulators having bimodal effects, e.g., menthol and nicotine. In line with previous reports, extracellular application of 1 mM camphor induced a decrease of basal TRPA1 currents. However, the current amplitude showed a significant overshoot upon washout. On the other hand, application of 100 μM camphor induced a 3-fold increase of the basal current amplitude measured at -75 mV. The bimodal effects of CA and camphor on TRPA1 were also observed in microfluorimetric measurements of intracellular Ca(2+) in intact TRPA1-expressing CHO cells and in primary cultures of mouse dorsal root ganglion neurons. These findings are essential for the understanding of the complex sensory properties of these compounds, as well as their utility when used to study the pathophysiological relevance of TRPA1.

  2. Lack of influence of the phase of estrus cycle or treatment with steroid contraceptive drugs on cholinergic parameters in mouse and rat brain.

    PubMed

    Ladinsky, H; Consolo, S; Bianchi, S; Peri, G; Garattini, S

    1976-01-01

    Acetylcholine and choline levels were found not to fluctuate with the phase of the estrus cycle in the cerebral hemispheres, deincephalon and mesencephalon in the rat and mouse. Choline acetyltransferase activity was not altered in these brain areas in the mouse while in the rat there was a small but significant decrease in the cerebral hemispheres during proestrus (p less than 0.01), and in the mesencephalon during estrus (p less than 0.05), both with respect to diestrus. Chronic 30-day treatment with steroid contraceptive drug combinations (lynestrenol, 5 mg/kg+ mestranol, 0.3 mg/kg; lynestrenol, 2.5 mg/kg+ mestranol, 0.15 mg/kg; norethindrone, 4 mg/kg+ mestranol, 0.2 mg/kg; norethynodrel, 4 mg/kg+ mestranol, 0.06 mg/kg) did not alter cholinergic parameters in the brain areas of these two species except for minor changes in rare instances.

  3. Chlorambucil effectively induces deletion mutations in mouse germ cells.

    PubMed Central

    Russell, L B; Hunsicker, P R; Cacheiro, N L; Bangham, J W; Russell, W L; Shelby, M D

    1989-01-01

    The chemotherapeutic agent chlorambucil was found to be more effective than x-rays or any chemical investigated to date in inducing high yields of mouse germ-line mutations that appear to be deletions or other structural changes. Induction of mutations involving seven specific loci was studied after exposures of various male germ-cell stages to chlorambucil at 10-25 mg/kg. A total of 60,750 offspring was scored. Mutation rates in spermatogonial stem cells were not significantly increased over control values; this negative result is not attributable to selective elimination of mutant cells. Mutations were, however, clearly induced in treated post-stem-cell stages, among which marked variations in mutational response were found. Maximum yield occurred after exposure of early spermatids, with approximately 1% of all offspring carrying a specific-locus mutation in the 10 mg/kg group. The stage-response pattern for chlorambucil differs from that of all other chemicals investigated to date in the specific-locus test. Thus far, all but one of the tested mutations induced by chlorambucil in post-stem-cell stages have been proved deletions or other structural changes by genetic, cytogenetic, and/or molecular criteria. Deletion mutations have recently been useful for molecular mapping and for structure-function correlations of genomic regions. For generating presumed large-lesion germ-line mutations at highest frequencies, chlorambucil may be the mutagen of choice. Images PMID:2726748

  4. Chlorambucil effectively induces deletion mutations in mouse germ cells

    SciTech Connect

    Russell, L.B.; Hunsicker, P.R.; Cacheiro, N.L.A.; Bangham, J.W.; Russell, W.L.; Shelby, M.D. )

    1989-05-01

    The chemotherapeutic agent chlorambucil was found to be more effective than x-rays or any chemical investigated to data in inducing high yields of mouse germ-line mutations that appear to be deletions or other structural changes. Induction of mutations involving seven specific loci was studied after exposures of various male germ-cell stages to chlorambucil at 10-25 mg/kg. A total of 60,750 offspring was scored. Mutation rates in spermatogonial stem cells were not significantly increased over control values; this negative result is not attributable to selective elimination of mutant cells. Mutations were, however, clearly induced in treated post-stem-cell stages, among which marked variations in mutational response were found. Maximum yield occurred after exposure of early spermatids, with {approx} 1% of all offspring carrying a specific-locus mutation in the 10 mg/kg group. The stage-response pattern for chlorambucil differs from that of all other chemicals investigated to date in the specific-locus test. Thus far, all but one of the tested mutations induced by chlorambucil in post-stem-cell stages have been proved deletions or other structural changes by genetic, cytogenetic, and/or molecular criteria. Deletion mutations have recently been useful for molecular mapping and for structure-function correlations of genomic regions. For generating presumed large-lesion germline mutations at highest frequencies, chlorambucil may be the mutagen of choice.

  5. Distinct effects of IPSU and suvorexant on mouse sleep architecture

    PubMed Central

    Hoyer, Daniel; Dürst, Thomas; Fendt, Markus; Jacobson, Laura H.; Betschart, Claudia; Hintermann, Samuel; Behnke, Dirk; Cotesta, Simona; Laue, Grit; Ofner, Silvio; Legangneux, Eric; Gee, Christine E.

    2013-01-01

    Dual orexin receptor (OXR) antagonists (DORAs) such as almorexant, SB-649868, suvorexant (MK-4305), and filorexant (MK-6096), have shown promise for the treatment of insomnias and sleep disorders. Whether antagonism of both OX1R and OX2R is necessary for sleep induction has been a matter of some debate. Experiments using knockout mice suggest that it may be sufficient to antagonize only OX2R. The recent identification of an orally bioavailable, brain penetrant OX2R preferring antagonist 2-((1H-Indol-3-yl)methyl)-9-(4-methoxypyrimidin-2-yl)-2,9-diazaspiro[5.5]undecan-1-one (IPSU) has allowed us to test whether selective antagonism of OX2R may also be a viable strategy for induction of sleep. We previously demonstrated that IPSU and suvorexant increase sleep when dosed during the mouse active phase (lights off); IPSU inducing sleep primarily by increasing NREM sleep, suvorexant primarily by increasing REM sleep. Here, our goal was to determine whether suvorexant and IPSU affect sleep architecture independently of overall sleep induction. We therefore tested suvorexant (25 mg/kg) and IPSU (50 mg/kg) in mice during the inactive phase (lights on) when sleep is naturally more prevalent and when orexin levels are normally low. Whereas IPSU was devoid of effects on the time spent in NREM or REM, suvorexant substantially disturbed the sleep architecture by selectively increasing REM during the first 4 h after dosing. At the doses tested, suvorexant significantly decreased wake only during the first hour and IPSU did not affect wake time. These data suggest that OX2R preferring antagonists may have a reduced tendency for perturbing NREM/REM architecture in comparison with DORAs. Whether this effect will prove to be a general feature of OX2R antagonists vs. DORAs remains to be seen. PMID:24368893

  6. Effects of electromagnetic pulse on polydactyly of mouse fetuses.

    PubMed

    Yang, Ming-Juan; Liu, Jun-Ye; Wang, Ya-Feng; Lang, Hai-Yang; Miao, Xia; Zhang, Li-Yan; Zeng, Li-Hua; Guo, Guo-Zhen

    2013-07-01

    There is an increasing public concern regarding potential health impacts from electromagnetic radiation exposure. Embryonic development is sensitive to the external environment, and limb development is vital for life quality. To determine the effects of electromagnetic pulse (EMP) on polydactyly of mouse fetuses, pregnant mice were sham-exposed or exposed to EMP (400 kV/m with 400 pulses) from Days 7 to 10 of pregnancy (Day 0 = day of detection of vaginal plug). As a positive control, mice were treated with 5-bromodeoxyuridine on Days 9 and 10. On Days 11 or 18, the fetuses were isolated. Compared with the sham-exposed group, the group exposed to EMP had increased rates of polydactyly fetuses (5.1% vs. 0.6%, P < 0.05) and abnormal gene expression (22.2% vs. 2.8%, P < 0.05). Ectopic expression of Fgf4 was detected in the apical ectodermal ridge, whereas overexpression and ectopic expression of Shh were detected in the zone of polarizing activity of limbs in the EMP-exposed group and in the positive control group. However, expression of Gli3 decreased in mesenchyme cells in those two groups. The percentages of programmed cell death of limbs in EMP-exposed and positive control group were decreased (3.57% and 2.94%, respectively, P < 0.05, compared with 7.76% in sham-exposed group). In conclusion, polydactyly induced by EMP was accompanied by abnormal expression of the above-mentioned genes and decreased percentage of programmed cell death during limb development. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. EFFECTS OF PERFLUOROOCTANOIC ACID EXPOSURE DURING PREGNANCY IN THE MOUSE

    EPA Science Inventory

    Perfluorooctanoic acid (PFOA), a member of the perfluoroalkyl acids that have wide commercial applications, has recently been detected in humans and wildlife. The current study characterizes the developmental toxicity of PFOA in the mouse. Timed pregnant CD-1 mice were given 1,...

  8. EFFECTS OF PERFLUOROOCTANOIC ACID EXPOSURE DURING PREGNANCY IN THE MOUSE

    EPA Science Inventory

    Perfluorooctanoic acid (PFOA), a member of the perfluoroalkyl acids that have wide commercial applications, has recently been detected in humans and wildlife. The current study characterizes the developmental toxicity of PFOA in the mouse. Timed pregnant CD-1 mice were given 1,...

  9. Preventive effect of antihistaminics on mouse skin photosensitization with hematoporphyrin derivative

    NASA Astrophysics Data System (ADS)

    Fu, Nai-wu; Yan, Li-xue

    1993-03-01

    Beta-carotene 100 mg/kg per day or vitamin C 50 mg/kg per day was administered orally for two days and did not prevent mouse skin photosensitization caused by hematoporphyrin derivative (HpD). However, (beta) -carotene 100 mg/kg per day administered intramuscularly for two days prevented mouse skin reaction. Cimetidine and benadryl 10 mg/kg per day, P.O.X 2, effectively prevented mouse skin reaction. This suggests histamine may be involved in skin photoreaction induced by HpD.

  10. Further study of trichosanthin's effect on mouse embryos with confocal laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Xu, Hui; Zhang, Chunyang; Ma, Hui; Chen, Die Yan

    2001-09-01

    Trichosanthin(TCS), a ribosome inactivating protein extracted from the root tuber of a traditional Chinese medicine herb Tian Huo Fen(THF), possessed abortifacient, anti-tumor and anti-human immunodeficiency virus(HIV) activities. For centuries in China, THF has been used as an effective folk medicine to terminate early and midtrimester pregnancies and to treat ectopic pregnancies, hydatidiform moles and trophoblastic tumor. We observed the changes in reactive oxygen species and intracellular calcium in mouse embryos induced by TCS with confocal laser scanning microscopy in combination with the fluorescene diacetate (DCFHDA) and Fluo-3-AM. The results indicated that TCS induced increase in intracellular calcium and production of reactive oxygen species in mouse embryos , and TCS inhibited the development of mouse embryos effectively. Mouse embryos of different developmental stages before implantation are used in the experiments. This provides new insight into mechanism for abortifacient activity of TCS.

  11. Effects of simulated microgravity on mouse Sertoli cells in culture

    NASA Astrophysics Data System (ADS)

    Angela, Masini Maria; Prato, Paola; Linda, Scarabelli; Lanza, Cristina; Palmero, Silvio; Pointis, Georges; Ricci, Franco; Strollo, Felice

    With the advent of space flights questions concerning the effects of microgravity (0xG) on hu-man reproduction physiology have got priority Spermatogenesis is a complex, highly ordered process of cell division and differentiation by which spermatogonial cells give rise to mature spermatozoa. Sertoli cells play a crucial role in the development of germ cells and the regulation of spermatogenesis. In this study the influence of 0xG on Sertoli cells was evaluated. A Sertoli cell line from mouse testis (42GPA9) was analyzed for cytoskeletal (using the 3D reconstruction generated from a stack of confocal images) and SHBG changes by immunohistochemistry, for antioxidant agents by RT-PCR and for culture medium lactate concentrations by wet chemistry. Cells were cultured for 6, 24 and 48 hrs on a three-dimensional Random Positioning Machine (3D-RPM); static controls (1xG) were positioned on the supporting frame. At the end of each experiment, cultured cells were either fixed in paraformaldehyde or RNA-extracted or used for culture medium lactate measurements as needed. At 0xG Sertoli cytoskeleton got disorganized, microtubules fragmented and SHBG undetectable already after 24 hrs, with alterations wors-ening further until 48 hrs; various antioxidant systems (SOD, GST, PARP, MTs) appreciably increased during the first 24 hrs but significantly decreased at 48 hrs. No changes occurred in 1xG samples. At least initially, 0xG seems to perturb antioxidant protection strategies allowing the testes to support sperm production, thus generating an aging-like state of oxidative stress. Lactate production at 0xG slightly decreased only after 24 hrs. Further experiments need to be carried out in space to investigate upon steroidogenesis and germ cell differentiation within the testis, to rule out eventually pending male infertility consequences, which would be a problem nowadays, when life expectancy increases and male fertility might become a social issue often extending into 60 years

  12. Effects of CHO-expressed recombinant lactoferrins on mouse dendritic cell presentation and function.

    PubMed

    Hwang, Shen-An; Kruzel, Marian L; Actor, Jeffrey K

    2015-07-01

    Lactoferrin (LF), a natural iron-binding protein, has previously demonstrated effectiveness in enhancing the Bacillus Calmette-Guérin (BCG) tuberculosis vaccine. This report investigates immune modulatory effects of Chinese hamster ovary (CHO) cell-expressed recombinant mouse and human LFs on mouse bone marrow-derived dendritic cells (BMDCs), comparing homologous and heterologous functions. BCG-infected BMDCs were cultured with LF, and examined for class II presentation molecule expression. Culturing of BCG-infected BMDCs with either LF decreased the class II molecule-expressing population. Mouse LF significantly increased the production of IL-12p40, IL-1β and IL-10, while human LF-treated BMDCs increased only IL-1β and IL-10. Overlaying naïve CD4 T-cells onto BCG-infected BMDCs cultured with mouse LF increased IFN-γ, whereas the human LF-exposed group increased IFN-γ and IL-17 from CD4 T cells. Overlay of naïve CD8 T cells onto BCG-infected BMDCs treated with mouse LF increased the production of IFN-γ and IL-17, while similar experiments using human LF only increased IL-17. This report is the first to examine mouse and human recombinant LFs in parallel experiments to assess murine DC function. These results detail the efficacy of the human LF counterpart used in a heterologous system to understand LF-mediated events that confer BCG efficacy against Mycobacterium tuberculosis challenge.

  13. Effects of stress on mouse β-defensin-3 expression in the upper digestive mucosa.

    PubMed

    Kawashima, Rie; Shimizu, Tomoko; To, Masahiro; Saruta, Juri; Jinbu, Yoshinori; Kusama, Mikio; Tsukinoki, Keiichi

    2014-03-01

    Gastrointestinal integrity and immune surveillance are affected by stress. Stress also adversely affects mucosal barrier function. β-defensins constitute an integral component of the innate immune system as antimicrobial peptides, serving as the first line of defense against microbial pathogens at the epithelial surfaces of the upper digestive mucosa. The primary objective of this study was to determine the effects of stress on the expression profile of mouse β-defensin-3 in the upper digestive mucosa of mice with diabetes. We established a mouse model of restraint stress by using NSY/Hos mice with type 2 diabetes mellitus. We used real-time polymerase chain reaction, in situ hybridization, and immunohistochemistry to investigate the effects of stress and glucocorticoid administration on mouse β-defensin-3 expression in the upper digestive mucosa of the gingiva, esophagus, and stomach. Mouse β-defensin-3 mRNA expression was higher in the esophagus than in the gingiva or stomach (p<0.05). In the esophagus, mouse β-defensin-3 mRNA expression was lower in stressed mice than in non-stressed mice (p<0.05). Furthermore, immunoreactivity to mouse β-defensin-3 protein was lower in the esophagus of stressed mice than non-stressed mice, consistent with the results of mRNA expression analysis. Systemic glucocorticoid administration also downregulated esophageal mouse β-defensin-3 mRNA expression. Our novel findings show that stress decreases mouse β-defensin-3 expression in the esophagus of mice with diabetes, possibly due to increased endogenous glucocorticoid production. It appears to be highly likely that stress management may normalize mucosal antimicrobial defenses in patients with diabetes.

  14. Effects of Stress on Mouse β-Defensin-3 Expression in the Upper Digestive Mucosa

    PubMed Central

    Kawashima, Rie; Shimizu, Tomoko; To, Masahiro; Saruta, Juri; Jinbu, Yoshinori; Kusama, Mikio

    2014-01-01

    Purpose Gastrointestinal integrity and immune surveillance are affected by stress. Stress also adversely affects mucosal barrier function. β-defensins constitute an integral component of the innate immune system as antimicrobial peptides, serving as the first line of defense against microbial pathogens at the epithelial surfaces of the upper digestive mucosa. The primary objective of this study was to determine the effects of stress on the expression profile of mouse β-defensin-3 in the upper digestive mucosa of mice with diabetes. Materials and Methods We established a mouse model of restraint stress by using NSY/Hos mice with type 2 diabetes mellitus. We used real-time polymerase chain reaction, in situ hybridization, and immunohistochemistry to investigate the effects of stress and glucocorticoid administration on mouse β-defensin-3 expression in the upper digestive mucosa of the gingiva, esophagus, and stomach. Results Mouse β-defensin-3 mRNA expression was higher in the esophagus than in the gingiva or stomach (p<0.05). In the esophagus, mouse β-defensin-3 mRNA expression was lower in stressed mice than in non-stressed mice (p<0.05). Furthermore, immunoreactivity to mouse β-defensin-3 protein was lower in the esophagus of stressed mice than non-stressed mice, consistent with the results of mRNA expression analysis. Systemic glucocorticoid administration also downregulated esophageal mouse β-defensin-3 mRNA expression. Conclusion Our novel findings show that stress decreases mouse β-defensin-3 expression in the esophagus of mice with diabetes, possibly due to increased endogenous glucocorticoid production. It appears to be highly likely that stress management may normalize mucosal antimicrobial defenses in patients with diabetes. PMID:24532508

  15. Proinflammatory Effects of Interferon Gamma in Mouse Adenovirus 1 Myocarditis

    PubMed Central

    McCarthy, Mary K.; Procario, Megan C.; Twisselmann, Nele; Wilkinson, J. Erby; Archambeau, Ashley J.; Michele, Daniel E.; Day, Sharlene M.

    2014-01-01

    ABSTRACT Adenoviruses are frequent causes of pediatric myocarditis. Little is known about the pathogenesis of adenovirus myocarditis, and the species specificity of human adenoviruses has limited the development of animal models, which is a significant barrier to strategies for prevention or treatment. We have developed a mouse model of myocarditis following mouse adenovirus 1 (MAV-1) infection to study the pathogenic mechanisms of this important cause of pediatric myocarditis. Following intranasal infection of neonatal C57BL/6 mice, we detected viral replication and induction of interferon gamma (IFN-γ) in the hearts of infected mice. MAV-1 caused myocyte necrosis and induced substantial cellular inflammation that was composed predominantly of CD3+ T lymphocytes. Depletion of IFN-γ during acute infection reduced cardiac inflammation in MAV-1-infected mice without affecting viral replication. We observed decreased contractility during acute infection of neonatal mice, and persistent viral infection in the heart was associated with cardiac remodeling and hypertrophy in adulthood. IFN-γ is a proinflammatory mediator during adenovirus-induced myocarditis, and persistent adenovirus infection may contribute to ongoing cardiac dysfunction. IMPORTANCE Studying the pathogenesis of myocarditis caused by different viruses is essential in order to characterize both virus-specific and generalized factors that contribute to disease. Very little is known about the pathogenesis of adenovirus myocarditis, which is a significant impediment to the development of treatment or prevention strategies. We used MAV-1 to establish a mouse model of human adenovirus myocarditis, providing the means to study host and pathogen factors contributing to adenovirus-induced cardiac disease during acute and persistent infection. The MAV-1 model will enable fundamental studies of viral myocarditis, including IFN-γ modulation as a therapeutic strategy. PMID:25320326

  16. Oncogenic Radiation Abscopal Effects In Vivo: Interrogating Mouse Skin

    SciTech Connect

    Mancuso, Mariateresa; Leonardi, Simona; Giardullo, Paola; Pasquali, Emanuela; Tanori, Mirella; De Stefano, Ilaria; Casciati, Arianna; Naus, Christian C.; Pazzaglia, Simonetta; Saran, Anna

    2013-08-01

    Purpose: To investigate the tissue dependence in transmission of abscopal radiation signals and their oncogenic consequences in a radiosensitive mouse model and to explore the involvement of gap junction intercellular communication (GJIC) in mediating radiation tumorigenesis in off-target mouse skin. Methods and Materials: Patched1 heterozygous (Ptch1{sup +/−}) mice were irradiated at postnatal day 2 (P2) with 10 Gy of x-rays. Individual lead cylinders were used to protect the anterior two-thirds of the body, whereas the hindmost part was directly exposed to radiation. To test the role of GJICs and their major constituent connexin43 (Cx43), crosses between Ptch1{sup +/−} and Cx43{sup +/−} mice were similarly irradiated. These mouse groups were monitored for their lifetime, and skin basal cell carcinomas (BCCs) were counted and recorded. Early responses to DNA damage - Double Strand Breaks (DSBs) and apoptosis - were also evaluated in shielded and directly irradiated skin areas. Results: We report abscopal tumor induction in the shielded skin of Ptch1{sup +/−} mice after partial-body irradiation. Endpoints were induction of early nodular BCC-like tumors and macroscopic infiltrative BCCs. Abscopal tumorigenesis was significantly modulated by Cx43 status, namely, Cx43 reduction was associated with decreased levels of DNA damage and oncogenesis in out-of-field skin, suggesting a key role of GJIC in transmission of oncogenic radiation signals to unhit skin. Conclusions: Our results further characterize the nature of abscopal responses and the implications they have on pathologic processes in different tissues, including their possible underlying mechanistic bases.

  17. Effects of hyperthermia and radiation on mouse testis stem cells

    SciTech Connect

    Reid, B.O.; Mason, K.A.; Withers, H.R.; West, J.

    1981-11-01

    The response of mouse testis stem cells to hyperthermia and combined hyperthermia-radiation treatments was assayed by spermatogenic colony regrowth, sperm head counts, testis weight loss, and fertility. With the use of spermatogenic colony assay, thermal enhancement ratios at an isosurvival level of 0.1 were 1.27 at 41 degrees, 1.80 at 42 degrees, and 3.97 at 43 degrees for testes exposed to heat for 30 min prior to irradiation. Sperm head counts were reduced by heat alone from a surviving fraction of 0.58 at 41 degrees to 0.003 at 42.5-43.5 degrees. Curves for sperm head survival measured 56 days after the testes had been heated for 30 min prior to irradiation were biphasic and showed a progressive downward displacement to lower survival with increasing temperature. The 41, 42, and 43 degrees curves were displaced downward by factors of 2, 58, and 175, respectively. The proportion of animals remaining sterile after 30 min of heat (41-43 degrees) and the median sterility period in days increased with increasing temperature. The minimum sperm count necessary to regain fertility was 13% of the normal mouse level.

  18. In vivo field recordings effectively monitor the mouse cortex and hippocampus under isoflurane anesthesia

    PubMed Central

    Yin, Yi-qing; Wang, Li-fang; Chen, Chao; Gao, Teng; Zhao, Zi-fang; Li, Cheng-hui

    2016-01-01

    Isoflurane is a widely used inhaled anesthetic in the clinical setting. However, the mechanism underlying its effect on consciousness is under discussion. Therefore, we investigated the effect of isoflurane on the hippocampus and cortex using an in vivo field recording approach. Our results showed that 1.3%, 0.8%, and 0.4% isoflurane exerted an inhibitory influence on the mouse hippocampus and cortex. Further, high frequency bands in the cortex and hippocampus showed greater suppression with increasing isoflurane concentration. Our findings suggest that in vivo field recordings can monitor the effect of isoflurane anesthesia on the mouse cortex and hippocampus. PMID:28197191

  19. Evidences for the agmatine involvement in antidepressant like effect of bupropion in mouse forced swim test.

    PubMed

    Kotagale, Nandkishor R; Tripathi, Sunil J; Aglawe, Manish M; Chopde, Chandrabhan T; Umekar, Milind J; Taksande, Brijesh G

    2013-06-01

    Although bupropion has been widely used in the treatment of depression, the precise mechanism of its therapeutic actions is not fully understood. The present study investigated the role of agmatine in an antidepressant like effect of bupropion in mouse forced swim test. The antidepressant like effect of bupropion was potentiated by pretreatment with agmatine (10-20mg/kg, ip) and by the drugs known to increase endogenous agmatine levels in brain viz., l-arginine (40 μg/mouse, icv), an agmatine biosynthetic precursor, ornithine decarboxylase inhibitor, dl-α-difluoromethyl ornithine hydrochloride, DFMO (12.5 μg/mouse, icv), diamine oxidase inhibitor, aminoguanidine (6.5 μg/mouse, icv) and agmatinase inhibitor, arcaine (50 μg/mouse, icv) as well as imidazoline I1 receptor agonists, moxonidine (0.25mg/kg, ip) and clonidine (0.015 mg/kg, ip) and imidazoline I2 receptor agonist, 2-(2-benzofuranyl)-2-imidazoline hydrochloride, 2-BFI (5mg/kg, ip). Conversely, prior administration of I1 receptor antagonist, efaroxan (1mg/kg, ip) and I2 receptor antagonist, idazoxan (0.25mg/kg, ip) blocked the antidepressant like effect of bupropion and its synergistic combination with agmatine. These results demonstrate involvement of agmatine in the antidepressant like effect of bupropion and suggest agmatine and imidazoline receptors as a potential therapeutic target for the treatment of depressive disorders.

  20. Town Mouse or Country Mouse: Identifying a Town Dislocation Effect in Chinese Urbanization

    PubMed Central

    Wang, Fei; Li, Shu; Bai, Xin-Wen; Ren, Xiao-Peng; Rao, Li-Lin; Li, Jin-Zhen; Liu, Huan; Liu, Hong-Zhi; Wu, Bin; Zheng, Rui

    2015-01-01

    Understanding urbanization and evaluating its impact are vital for formulating global sustainable development. The results obtained from evaluating the impact of urbanization, however, depend on the kind of measurement used. With the goal of increasing our understanding of the impact of urbanization, we developed direct and indirect subjective indicators to measure how people assess their living situation. The survey revealed that the projected endorsements and perceived social ambiance of people toward living in different types of settlements did not improve along with the urbanization level in China. The assessment scores from the city dwellers were not significantly different from those from the country areas and, more surprisingly, both were significantly higher than the assessment scores of the town dwellers, which we had expected to fall between the assessment scores of the country and city dwellers. Instead their scores were the lowest. We dubbed this V-shaped relationship the “town dislocation effect.” When searching for a potential explanation for this effect, we found additional town dislocation effects in social support, loss aversion, and receptivity toward genetically modified food. Further analysis showed that only social support mediated the relationship between the three tiers of settlements (cities, country areas, and towns) and the subjective indicator. The projected endorsements yielded significant subjective assessments that could enhance our understanding of Chinese urbanization. Towns posed specific problems that require special attention. PMID:25973960

  1. Town mouse or country mouse: identifying a town dislocation effect in Chinese urbanization.

    PubMed

    Wang, Fei; Li, Shu; Bai, Xin-Wen; Ren, Xiao-Peng; Rao, Li-Lin; Li, Jin-Zhen; Liu, Huan; Liu, Hong-Zhi; Wu, Bin; Zheng, Rui

    2015-01-01

    Understanding urbanization and evaluating its impact are vital for formulating global sustainable development. The results obtained from evaluating the impact of urbanization, however, depend on the kind of measurement used. With the goal of increasing our understanding of the impact of urbanization, we developed direct and indirect subjective indicators to measure how people assess their living situation. The survey revealed that the projected endorsements and perceived social ambiance of people toward living in different types of settlements did not improve along with the urbanization level in China. The assessment scores from the city dwellers were not significantly different from those from the country areas and, more surprisingly, both were significantly higher than the assessment scores of the town dwellers, which we had expected to fall between the assessment scores of the country and city dwellers. Instead their scores were the lowest. We dubbed this V-shaped relationship the "town dislocation effect." When searching for a potential explanation for this effect, we found additional town dislocation effects in social support, loss aversion, and receptivity toward genetically modified food. Further analysis showed that only social support mediated the relationship between the three tiers of settlements (cities, country areas, and towns) and the subjective indicator. The projected endorsements yielded significant subjective assessments that could enhance our understanding of Chinese urbanization. Towns posed specific problems that require special attention.

  2. Protective effects of black rice bran against chemically-induced inflammation of mouse skin

    USDA-ARS?s Scientific Manuscript database

    We investigated the inhibitory effects of black rice (cv. LK1-3-6-12-1-1) bran against 12-O-tetradecanolylphorbol-13-acetate (TPA)-induced skin edema and 2,4-dinitroflurobenzene (DNFB)-induced allergic contact dermatitis (ACD) in inflammatory mouse models. We also determined the effects of the bran...

  3. Inhibitory effects of whisky congeners on melanogenesis in mouse B16 melanoma cells.

    PubMed

    Ohguchi, Kenji; Koike, Minako; Suwa, Yoshihide; Koshimizu, Seiichi; Mizutani, Yuki; Nozawa, Yoshinori; Akao, Yukihiro

    2008-04-01

    We examined the effect of whisky congeners, substances other than ethanol in whisky, on melanogenesis in mouse B16 melanoma cells. Treatment with whisky congeners significantly blocked melanogenesis. Our results indicate that the inhibitory effects of whisky congeners on melanogenesis is due to direct inhibition of tyrosinase activity and to suppression of tyrosinase protein levels.

  4. New Mouse Model May Aid in Developing Effective Therapies for Ovarian Cancer | Poster

    Cancer.gov

    By Frank Blanchard, Staff Writer A new genetically engineered mouse model appears promising as an effective tool for preclinical testing of novel therapies for ovarian cancer, which tends to be diagnosed in late stage. There are few effective treatments for the disease.

  5. New Mouse Model May Aid in Developing Effective Therapies for Ovarian Cancer | Poster

    Cancer.gov

    By Frank Blanchard, Staff Writer A new genetically engineered mouse model appears promising as an effective tool for preclinical testing of novel therapies for ovarian cancer, which tends to be diagnosed in late stage. There are few effective treatments for the disease.

  6. [Effect of alpha-fetoprotein on isolated mouse oocytes].

    PubMed

    Lambert, J C; Vallette, G; Seralini, G E; Vranckx, R; Nunez, E; Stora, C

    1986-01-01

    Data are presented which indicate a possible action of alpha-fetoprotein (AFP) on female germinal cells. The in vitro maturation of mature mice oocytes was significantly inhibited when mouse AFP replaced albumin in the culture medium. In addition, the degenerative aspect of oocytes cultured with AFP seemed to indicate that this meïotic inhibition was caused by a premature degeneration of oocytes rather than by a blockage at a specific stage of maturation. Thus AFP, perhaps through its ligands, may play a role in the reduction of germinal cells during fetal and immediate post-natal life rather than in the arrest of meïosis at the diplotene stage.

  7. Therapeutic Effects of Resveratrol in a Mouse Model of LPS and Cigarette Smoke-Induced COPD.

    PubMed

    Chen, Jinlong; Yang, Xu; Zhang, Weiya; Peng, Danhua; Xia, Yanan; Lu, Yi; Han, Xiaodong; Song, Guangjie; Zhu, Jing; Liu, Renping

    2016-12-01

    This study was designed to examine whether resveratrol exerts the protective effects on LPS and cigarette smoke (LC)-induced COPD in a murine model. In lung histopathological studies, H&E, Masson's trichrome, and AB-PAS staining were performed. The cytokines (IL-6, IL-17, TGF-β, and TNF-α) and inflammatory cells in BALF were determined. The Beclin1 level in the lungs of mouse was analyzed. Compared with the LC-induced mouse, the level of inflammatory cytokines (IL-17, IL-6, TNF-α, and TGF-β) of the BALF in the resveratrol + cigarette smoke-treated mouse had obviously decreased. Histological examination of the lung tissue revealed that the resveratrol treatment attenuated the fibrotic response and mucus hypersecretion. In addition, resveratrol inhibited the expression of the Beclin1 protein in mouse lungs. The presented findings collectively suggest that resveratrol has a therapeutic effect on mouse LC-induced COPD, and its mechanism of action might be related to reducing the production of the Beclin1 protein.

  8. Embryonic substantia nigra grafts in the mesencephalon send neurites to the host striatum in non-human primate after overexpression of GDNF.

    PubMed

    Redmond, D E; Elsworth, J D; Roth, R H; Leranth, C; Collier, T J; Blanchard, B; Bjugstad, K B; Samulski, R J; Aebischer, P; Sladek, J R

    2009-07-01

    In spite of partial success in treating Parkinson's disease by using ectopically placed grafts of dopamine-producing cells, restoration of the original neuroanatomical circuits, if possible, might work better. Previous evidence of normal anatomic projections from ventral mesencephalic (VM) grafts placed in the substantia nigra (SN) has been limited to neonatal rodents and double grafting or bridging procedures. This study attempted to determine whether injection of a potent growth-promoting factor, glial cell line-derived neurotrophic factor (GDNF), into the target regions or placement of fetal striatal co-grafts in the nigrostriatal pathway might elicit neuritic outgrowth to the caudate nucleus. Four adult St. Kitts green monkeys received embryonic VM grafts into the rostral mesencephalon near the host SN, and injections of adeno-associated virus 2 (AAV2)/GDNF or equine infectious anemia virus (EIAV)/GDNF into the caudate. Three adult monkeys were co-grafted with fetal VM tissue near the SN and fetal striatal grafts (STR) 2.5 mm rostral in the nigrostriatal pathway. Before sacrifice, the striatal target regions were injected with the retrograde tracer Fluoro-Gold (FG). FG label was found in tyrosine hydroxylase-labeled neurons in VM grafts in the SN of only those monkeys that received AAV2/GDNF vector injections into the ipsilateral striatum. All monkeys showed FG labeling in the host SN when FG labeling was injected on the same side. These data show that grafted dopaminergic neurons can extend neurites to a distant target releasing an elevated concentration of GDNF, and suggest that grafted neurons can be placed into appropriate loci for potential tract reconstruction. Copyright 2009 Wiley-Liss, Inc.

  9. Effect of Rhodopsin Phosphorylation on Dark Adaptation in Mouse Rods.

    PubMed

    Berry, Justin; Frederiksen, Rikard; Yao, Yun; Nymark, Soile; Chen, Jeannie; Cornwall, Carter

    2016-06-29

    Rhodopsin is a prototypical G-protein-coupled receptor (GPCR) that is activated when its 11-cis-retinal moiety is photoisomerized to all-trans retinal. This step initiates a cascade of reactions by which rods signal changes in light intensity. Like other GPCRs, rhodopsin is deactivated through receptor phosphorylation and arrestin binding. Full recovery of receptor sensitivity is then achieved when rhodopsin is regenerated through a series of steps that return the receptor to its ground state. Here, we show that dephosphorylation of the opsin moiety of rhodopsin is an extremely slow but requisite step in the restoration of the visual pigment to its ground state. We make use of a novel observation: isolated mouse retinae kept in standard media for routine physiologic recordings display blunted dephosphorylation of rhodopsin. Isoelectric focusing followed by Western blot analysis of bleached isolated retinae showed little dephosphorylation of rhodopsin for up to 4 h in darkness, even under conditions when rhodopsin was completely regenerated. Microspectrophotometeric determinations of rhodopsin spectra show that regenerated phospho-rhodopsin has the same molecular photosensitivity as unphosphorylated rhodopsin and that flash responses measured by trans-retinal electroretinogram or single-cell suction electrode recording displayed dark-adapted kinetics. Single quantal responses displayed normal dark-adapted kinetics, but rods were only half as sensitive as those containing exclusively unphosphorylated rhodopsin. We propose a model in which light-exposed retinae contain a mixed population of phosphorylated and unphosphorylated rhodopsin. Moreover, complete dark adaptation can only occur when all rhodopsin has been dephosphorylated, a process that requires >3 h in complete darkness. G-protein-coupled receptors (GPCRs) constitute the largest superfamily of proteins that compose ∼4% of the mammalian genome whose members share a common membrane topology. Signaling by

  10. Effect of Rhodopsin Phosphorylation on Dark Adaptation in Mouse Rods

    PubMed Central

    Berry, Justin; Frederiksen, Rikard; Yao, Yun; Nymark, Soile

    2016-01-01

    Rhodopsin is a prototypical G-protein-coupled receptor (GPCR) that is activated when its 11-cis-retinal moiety is photoisomerized to all-trans retinal. This step initiates a cascade of reactions by which rods signal changes in light intensity. Like other GPCRs, rhodopsin is deactivated through receptor phosphorylation and arrestin binding. Full recovery of receptor sensitivity is then achieved when rhodopsin is regenerated through a series of steps that return the receptor to its ground state. Here, we show that dephosphorylation of the opsin moiety of rhodopsin is an extremely slow but requisite step in the restoration of the visual pigment to its ground state. We make use of a novel observation: isolated mouse retinae kept in standard media for routine physiologic recordings display blunted dephosphorylation of rhodopsin. Isoelectric focusing followed by Western blot analysis of bleached isolated retinae showed little dephosphorylation of rhodopsin for up to 4 h in darkness, even under conditions when rhodopsin was completely regenerated. Microspectrophotometeric determinations of rhodopsin spectra show that regenerated phospho-rhodopsin has the same molecular photosensitivity as unphosphorylated rhodopsin and that flash responses measured by trans-retinal electroretinogram or single-cell suction electrode recording displayed dark-adapted kinetics. Single quantal responses displayed normal dark-adapted kinetics, but rods were only half as sensitive as those containing exclusively unphosphorylated rhodopsin. We propose a model in which light-exposed retinae contain a mixed population of phosphorylated and unphosphorylated rhodopsin. Moreover, complete dark adaptation can only occur when all rhodopsin has been dephosphorylated, a process that requires >3 h in complete darkness. SIGNIFICANCE STATEMENT G-protein-coupled receptors (GPCRs) constitute the largest superfamily of proteins that compose ∼4% of the mammalian genome whose members share a common membrane

  11. Rodent Habitat On ISS: Spaceflight Effects On Mouse Behavior

    NASA Technical Reports Server (NTRS)

    Ronca, A. E.; Moyer, E. L.; Talyansky, Y.; Padmanabhan, S.; Choi, S.; Gong, C.; Globus, R. K.

    2016-01-01

    The NASA Decadal Survey (2011), Recapturing a Future for Space Exploration: Life and Physical Sciences Research for a New Era, emphasized the importance of expanding NASA life sciences research to long duration, rodent experiments on the International Space Station (ISS). To accomplish this objective, flight hardware, operations, and science capabilities supporting mouse studies in space were developed at NASA Ames Research Center. The first flight experiment carrying mice, Rodent Research Hardware and Operations Validation (Rodent Research-1), was launched on Sept 21, 2014 in an unmanned Dragon Capsule, SpaceX4, exposing the mice to a total of 37 days in space. Ground control groups were maintained in environmental chambers at Kennedy Space Center. Mouse health and behavior were monitored for the duration of the experiment via video streaming. Here we present behavioral analysis of two groups of five C57BL/6 female adult mice viewed via fixed camera views compared with identically housed Ground Controls. Flight (Flt) and Ground Control (GC) mice exhibited the same range of behaviors, including eating, drinking, exploratory behavior, self- and allo-grooming, and social interactions at similar or greater levels of occurrence. Mice propelled themselves freely and actively throughout the Habitat using their forelimbs to push off or by floating from one cage area to another, and they quickly learned to anchor themselves using tails and/or paws. Overall activity was greater in Flt as compared to GC mice, with spontaneous ambulatory behavior including the development of organized ‘circling’ or ‘race-tracking’ behavior that emerged within the first few days of flight and encompassed the primary dark cycle activity for the remainder of the experiment. We quantified the bout frequency, duration and rate of circling with respect to characteristic behaviors observed in the varying stages of the progressive development of circling: flipping utilizing two sides of the

  12. Effects of radiation on the visual appearance and mechanical properties of mouse skin.

    PubMed

    Burlin, T E; Challoner, A V; Hutton, W C; Magnus, I A; Ranu, H S; Spittle, M

    1977-02-01

    A study of the long term effects of radiation on the visual appearance and mechanical properties of mouse skin is presented. The effects associated with the hair follicle (greying and alopecia) increase monotonically with exposure. Other effects (load, extension and stress at rupture and scarring of the skin) all show a reversal at the highest exposures. The skin thickness changes little with exposure, while the skin stiffness exhibits a shoulder on the response curve. Possible mechanisms underlying these effects are discussed.

  13. Radiation effect in mouse skin: Dose fractionation and wound healing

    SciTech Connect

    Gorodetsky, R.; Mou, X.D.; Fisher, D.R.; Taylor, J.M.; Withers, H.R. )

    1990-05-01

    Radiation induced dermal injury was measured by the gain in the physical strength of healing wounds in mouse skin. A sigmoid dose response for the inhibition of wound healing 14 days after surgery was found for single doses of X rays. The sparing of dermal damage from fractionation of the X-ray dose was quantified in terms of the alpha/beta ratio in the linear-quadratic (LQ) model, at a wide range of doses per fraction reaching as low as about 1 Gy. The fit and the appropriateness of the LQ model for the skin wound healing assay was examined with the use of the Fe-plot in which inverse total dose is plotted versus dose per fraction for wound strength isoeffects. The alpha/beta ratio of the skin was about 2.5 Gy (95% confidence of less than +/- 1 Gy) and was appropriate over a dose range of 1 Gy to about 8 Gy. The low alpha/beta value is typical for a late responding tissue. This assay, therefore, has the advantage of measuring and forecasting late radiation responses of the dermis within a short time after irradiation.

  14. Therapeutic effects of mouse bone marrow-derived clonal mesenchymal stem cells in a mouse model of inflammatory bowel disease

    PubMed Central

    Park, Jin Seok; Yi, Tac-Ghee; Park, Jong-Min; Han, Young Min; Kim, Jun-Hyung; Shin, Dong-Hee; Tak, Seon Ji; Lee, Kyuheon; Lee, Youn Sook; Jeon, Myung-Shin; Hahm, Ki-Baik; Song, Sun U; Park, Seok Hee

    2015-01-01

    Mouse bone marrow-derived clonal mesenchymal stem cells (mcMSCs), which were originated from a single cell by a subfractionation culturing method, are recognized as new paradigm for stem cell therapy featured with its homogenous cell population. Next to proven therapeutic effects against pancreatitis, in the current study we demonstrated that mcMSCs showed significant therapeutic effects in dextran sulfate sodium (DSS)-induced experimental colitis model supported with anti-inflammatory and restorative activities. mcMSCs significantly reduced the disease activity index (DAI) score, including weight loss, stool consistency, and intestinal bleeding and significantly increased survival rates. The pathological scores were also significantly improved with mcMSC. We have demonstrated that especial mucosal regeneration activity accompanied with significantly lowered level of apoptosis as beneficiary actions of mcMSCs in UC models. The levels of inflammatory cytokines including TNF-α, IFN-γ, IL-1β, IL-6, and IL-17 were all significantly concurrent with significantly repressed NF-κB activation compared to the control group and significantly decreased infiltrations of responsible macrophage and neutrophil. Conclusively, our findings provide the rationale that mcMSCs are applicable as a potential source of cell-based therapy in inflammatory bowel diseases, especially contributing either to prevent relapse or to accelerate healing as solution to unmet medical needs in IBD therapy. PMID:26566304

  15. THE EFFECT OF TESTICLE EXTRACT ON THE GROWTH OF TRANSPLANTABLE MOUSE TUMORS

    PubMed Central

    Tanzer, Radford C.

    1932-01-01

    Grafts of a transplantable mouse sarcoma designated as No. 180, and those of an attenuated strain of a more malignant Sarcoma S/37, treated with testicle extract, either fail to grow on inoculation or result in tumors of a lower growth rate than the controls. Autografts of spontaneous mouse tumors so treated show little if any effect, while the Bashford adenocarcinoma and the unattenuated S/37 are unaffected. The factor in testicle extract responsible for the retarding activity passes readily through a Berkefeld filter and is thermostable. PMID:19870004

  16. The Effect of Glutamate Receptor Agonists on Mouse Retinal Astrocyte [Ca2+]i

    PubMed Central

    Blandford, Stephanie N.

    2016-01-01

    Calcium-imaging techniques were used to determine if mouse retinal astrocytes in situ respond to agonists of ionotropic (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, AMPA; N-methyl-D-aspartate, NMDA) and metabotropic (S-3,5-dihydroxyphenylglycine, DHPG; trans-1-amino-1,3-cyclopentanedicarboxylic acid, ACPD) glutamate receptors. In most cases we found no evidence that retinal astrocyte intracellular calcium ion concentration ([Ca2+]i) increased in response to these glutamate agonists. The one exception was AMPA that increased [Ca2+]i in some, but not all, mouse retinal astrocytes in situ. However, AMPA did not increase [Ca2+]i in mouse retinal astrocytes in vitro, suggesting that the effect of AMPA in situ may be indirect. PMID:27413752

  17. The Effect of Glutamate Receptor Agonists on Mouse Retinal Astrocyte [Ca(2+)]i.

    PubMed

    Blandford, Stephanie N; Baldridge, William H

    2016-01-01

    Calcium-imaging techniques were used to determine if mouse retinal astrocytes in situ respond to agonists of ionotropic (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, AMPA; N-methyl-D-aspartate, NMDA) and metabotropic (S-3,5-dihydroxyphenylglycine, DHPG; trans-1-amino-1,3-cyclopentanedicarboxylic acid, ACPD) glutamate receptors. In most cases we found no evidence that retinal astrocyte intracellular calcium ion concentration ([Ca(2+)]i) increased in response to these glutamate agonists. The one exception was AMPA that increased [Ca(2+)]i in some, but not all, mouse retinal astrocytes in situ. However, AMPA did not increase [Ca(2+)]i in mouse retinal astrocytes in vitro, suggesting that the effect of AMPA in situ may be indirect.

  18. Development of an invitro technique to use mouse embryonic stem cell in evaluating effects of xenobiotics

    EPA Science Inventory

    Our goal has been to develop a high-throughput, in vitro technique for evaluating the effects of xenobiotics using mouse embryonic stem cells (mESCs). We began with the Embryonic Stem Cell Test (EST), which is used to predict the embryotoxic potential of a test compound by combin...

  19. GPR30 Mediates the Fast Effect of Estrogen on Mouse Blastocyst and its Role in Implantation.

    PubMed

    Yu, Lin-lin; Qu, Ting; Zhang, Shi-mao; Yuan, Dong-zhi; Xu, Qian; Zhang, Jin-hu; He, Ya-ping; Yue, Li-min

    2015-10-01

    Our previous work demonstrated that estrogen could rapidly increase intracellular Ca(2+) in dormant mouse blastocysts. The purpose of the present study is to investigate the physiological relevance of G protein-coupled receptor 30 (GPR30) in the fast effect of estrogen on mouse blastocyst and in embryo implantation. We used reverse transcription-polymerase chain reaction, immunofluorescence, embryo coculture with Ishikawa uterine epithelial cell line, and embryo transfer technology to detect the expression of GPR30 in mouse embryos and the nongenomic effects of estrogen via GPR30 on blastocyst. We found that GPR30 is expressed in the mouse blastocyst, and its location is mostly consistent with the binding site of estrogen. Both estrogen and GPR30-specific agonist G-1 rapidly increase the intracellular Ca(2+) and phospholipase C activation in blastocyst cells, while GPR30-specific antagonist G-15 blocked this effect of estrogen. The pretreatment of G-15 on blastocysts lead to a lower attachment rate and implantation rate. Our data collectively suggested that GPR30 can mediate the fast effect of estrogen on blastocysts and play an important role in embryo implantation.

  20. The enhancing effect of fucoidan derived from Undaria pinnatifida on immunoglobulin production by mouse spleen lymphocytes.

    PubMed

    Takai, Mika; Miyazaki, Yoshiyuki; Tachibana, Hirofumi; Yamada, Koji

    2014-01-01

    In this study, we revealed that a Mekabu (Udaria pinnantifida) extract enhanced immunoglobulin (Ig) production of mouse spleen lymphocytes. Furthermore, it was suggested that water-soluble and high molecular weight ingredients in the Mekabu extract have significant enhancing effect on Ig production. Therefore, fucoidan was estimated as the active component.

  1. Development of an invitro technique to use mouse embryonic stem cell in evaluating effects of xenobiotics

    EPA Science Inventory

    Our goal has been to develop a high-throughput, in vitro technique for evaluating the effects of xenobiotics using mouse embryonic stem cells (mESCs). We began with the Embryonic Stem Cell Test (EST), which is used to predict the embryotoxic potential of a test compound by combin...

  2. Timing is Essential for Rapid Effects of Corticosterone on Synaptic Potentiation in the Mouse Hippocampus

    ERIC Educational Resources Information Center

    Joels, Marian; Krugers, Harm; Wiegert, Olof

    2006-01-01

    Stress facilitates memory formation, but only when the stressor is closely linked to the learning context. These effects are, at least in part, mediated by corticosteroid hormones. Here we demonstrate that corticosterone rapidly facilitates synaptic potentiation in the mouse hippocampal CA1 area when high levels of the hormone and high-frequency…

  3. Timing is Essential for Rapid Effects of Corticosterone on Synaptic Potentiation in the Mouse Hippocampus

    ERIC Educational Resources Information Center

    Joels, Marian; Krugers, Harm; Wiegert, Olof

    2006-01-01

    Stress facilitates memory formation, but only when the stressor is closely linked to the learning context. These effects are, at least in part, mediated by corticosteroid hormones. Here we demonstrate that corticosterone rapidly facilitates synaptic potentiation in the mouse hippocampal CA1 area when high levels of the hormone and high-frequency…

  4. Cytotoxic effects of propiconazole and its metabolites in mouse and human hepatoma cells and primary mouse hepatocytes

    EPA Science Inventory

    Abstract: Propiconazole is a triazole-containing fungicide that is used agriculturally on grasses, fruits, grains, seeds, hardwoods, and conifers. Propiconazole is a mouse liver hepatotoxicant and a hepatocarcinogen and has adverse reproductive and developmental toxicities in exp...

  5. Cytotoxic effects of propiconazole and its metabolites in mouse and human hepatoma cells and primary mouse hepatocytes

    EPA Science Inventory

    Abstract: Propiconazole is a triazole-containing fungicide that is used agriculturally on grasses, fruits, grains, seeds, hardwoods, and conifers. Propiconazole is a mouse liver hepatotoxicant and a hepatocarcinogen and has adverse reproductive and developmental toxicities in exp...

  6. Inhibitory effect of beta-thujaplicin on ultraviolet B-induced apoptosis in mouse keratinocytes.

    PubMed

    Baba, T; Nakano, H; Tamai, K; Sawamura, D; Hanada, K; Hashimoto, I; Arima, Y

    1998-01-01

    Sunburn cells are thought to represent ultraviolet B-induced apoptotic keratinocytes. It has been demonstrated that enzymatic and nonenzymatic antioxidants effectively suppress sunburn cell formation, indicating that reactive oxygen species may play a role in the progression of ultraviolet B-induced apoptosis. Metallothionein, a cytosol protein, has antioxidant activity, and overexpression of metallothionein has been reported to reduce the number of sunburn cells in mouse skin. We have also demonstrated that overexpression of metallothionein inhibits ultraviolet B-induced DNA ladder formation in mouse keratinocytes. These findings support the hypothesis that cellular metallothionein may play an important role in the inhibition of ultraviolet B-induced apoptosis in keratinocytes through its antioxidant activity. In the present study, we investigated the effects of beta-thujaplicin, an extract from the woods of Thuja plicata D. Don. and Chamaecyparis obtuse, Sieb. et Zucc., on ultraviolet B-induced apoptosis in keratinocytes and on metallothionein induction. Topical application of beta-thujaplicin decreased the number of ultraviolet B-mediated sunburn cells and terminal deoxynucleotidyl transferase (TdT)-mediated dUTP-biotin nick end labeling-positive cells in mouse ear skin. Incubation with beta-thujaplicin suppressed ultraviolet B-induced DNA ladder formation in cultured mouse keratinocytes. Histochemical analysis showed that topical application of beta-thujaplicin induced metallothionein protein in mouse skin. Northern analysis and western blotting revealed significant induction of metallothionein mRNA and metallothionein protein, respectively, in beta-thujaplicin-treated cultured mouse keratinocytes. These findings indicate that beta-thujaplicin inhibits ultraviolet B-induced apoptosis in keratinocytes and strongly suggest that the inhibitory mechanism is due to the antioxidant activity of metallothionein induced by the agent.

  7. Effects and Responses to Spaceflight in the Mouse Retina

    NASA Technical Reports Server (NTRS)

    Zanello, Susana B.; Theriot, Corey; Westby, Christian; Boyle, Richard

    2011-01-01

    Several stress environmental factors are combined in a unique fashion during spaceflight, affecting living beings widely across their physiological systems. Recently, attention has been placed on vision changes in astronauts returning from long duration missions. Alterations include hyperoptic shift, globe flattening, choroidal folds and optic disc edema, which are probably associated with increased intracranial pressure. These observations justify a better characterization of the ocular health risks associated with spaceflight. This study investigates the impact of spaceflight on the biology of the mouse retina. Within a successful tissue sharing effort, eyes from albino Balb/cJ mice aboard STS-133 were collected for histological analysis and gene expression profiling of the retina at 1 and 7 days after landing. Both vivarium and AEM (Animal Enclosure Module) mice were used as ground controls. Oxidative stress-induced DNA damage was higher in the flight samples compared to controls on R+1, and decreased on R+7. A trend toward higher oxidative and cellular stress response gene expression was also observed on R+1 compared to AEM controls, and these levels decreased on R+7. Several genes coding for key antioxidant enzymes, namely, heme-oxygenase-1, peroxiredoxin, and catalase, were among those upregulated after flight. Likewise, NF B and TGFbeta1, were upregulated in one flight specimen that overall showed the most elevated oxidative stress markers on R+1. In addition, retinas from vivarium control mice evidenced higher oxidative stress markers, NF B and TGFbeta1, likely due to the more intense illumination in vivarium cages versus the AEM. These preliminary data suggest that spaceflight represents a source of environmental stress that translates into oxidative and cellular stress in the retina, which is partially reversible upon return to Earth. Further work is needed to dissect the contribution of the various spaceflight factors (microgravity, radiation) and to

  8. Teratogenic effects of amniotic sac puncture: a mouse model.

    PubMed Central

    MacIntyre, D J; Chang, H H; Kaufman, M H

    1995-01-01

    The possibility of an association between chorionic villus sampling (cvs) and limb abnormalities has prompted a review of the relevant experimental data. Although a vascular aetiology is favoured by many at present, the possibility exists that a proportion of cases may be caused by oligohydramnios secondary to inadvertent amniotic sac puncture. A mouse model of amniotic puncture syndrome has been developed to study the craniofacial and limb abnormalities produced by this procedure. Pregnant mice were anaesthetised and a laparotomy performed. One uterine horn was exteriorised, and the amniotic sacs punctured through the wall of the uterus with either a 21 gauge or a 25 gauge needle. The conceptuses in the contralateral uterine horn acted as controls. The mice were all killed on d 19 of pregnancy (day of finding a vaginal plug = d 1 of pregnancy) by cervical dislocation, and the morphological features of the embryos examined in detail. In a preliminary study, amniotic sac puncture was carried out on d 12, 13, 14, 15 or 16 of pregnancy, with either a 21 or a 25 gauge needle. Since the highest rates of palatal defects and limb deformities were observed following amniotic sac puncture using a 21 gauge needle, when this procedure was carried out on either d 13 or 14 of pregnancy, the main study was undertaken using a 21 gauge needle on these two days of pregnancy. Of 102 embryos in which amniotic sac puncture was carried out on d 13, 53% survived to d 19. Of the latter, 35% had a cleft palate, 61% had one or more morphologically abnormal limbs, and 43% had an abnormal tail. When amniotic sac puncture was carried out on d 14 of pregnancy, of 83 embryos subjected to this procedure, 81% survived to d 19. Of the latter, 27% had a cleft palate, 39% had one or more morphologically abnormal limbs, and 19% had an abnormal tail. In the controls, of 86 and 61 embryos isolated respectively from the d 13 and 14 mice, the survival rates were 97 and 90%, respectively. Palatal, limb

  9. Mouse strain-dependent effect of amantadine on motility and brain biogenic amines.

    PubMed

    Messiha, F S

    1989-01-01

    The effect of amantadine hydrochloride, injected i.p. in 6 increments of 100 mg/kg each over 30 hr, on mouse motility and whole brain content of selected biogenic amines and major metabolites was studied in 4 strains of mice. These were the albino Sprague-Dawley ICR and BALB/C, the black C57BL/6 and the brown CDF-I mouse strains. Amantadine treatment produced a biphasic effect on mouse motility. The initial dose of amantadine depressed locomotor activity in all mouse strains studied with the BALB/C mice being the most sensitive. Subsequent amantadine treatments produced enhancement of motility from corresponding control in all mouse strains with the BALB/C mice being the least sensitive. The locomotor activity was decreased from corresponding controls in all strains studied, except for the ICR mice, during an overnight drug-free period following the fourth amantadine treatment. Readministration of amantadine, after a drug-free overnight period, increased motility from respective saline control in all strains with exception of the BALB/C mice where suppression of motility occurred. Treatment with amantadine did not alter whole brain dopamine levels but decreased the amounts of 3,4-dihydroxyphenylacetic acid in the BALB/C mice compared to saline control. Conversely, brain normetanephrine concentration was increased from saline control by amantadine in the BALB/C mice. The results suggest a strain-dependent effect of amantadine on motility and indicate a differential response to the acute and multiple dose regimens used. The BALB/C mouse was the most sensitive strain and could serve as the strain of choice for evaluating the side effects of amantadine. The biochemical results of brain biogenic amines of BALB/C mouse strain suggest a probable decrease of catecholamine turnover rate and/or metabolism by monoamine oxidase and a resulting increase in O-methylation of norepinephrine which may account for a behavioral depression caused by amantadine in the BALB/C mice.

  10. Anti-tumor effects of peptide analogs targeting neuropeptide hormone receptors on mouse pheochromocytoma cells.

    PubMed

    Ziegler, C G; Ullrich, M; Schally, A V; Bergmann, R; Pietzsch, J; Gebauer, L; Gondek, K; Qin, N; Pacak, K; Ehrhart-Bornstein, M; Eisenhofer, G; Bornstein, S R

    2013-05-22

    Pheochromocytoma is a rare but potentially lethal chromaffin cell tumor with currently no effective treatment. Peptide hormone receptors are frequently overexpressed on endocrine tumor cells and can be specifically targeted by various anti-tumor peptide analogs. The present study carried out on mouse pheochromocytoma cells (MPCs) and a more aggressive mouse tumor tissue-derived (MTT) cell line revealed that these cells are characterized by pronounced expression of the somatostatin receptor 2 (sst2), growth hormone-releasing hormone (GHRH) receptor and the luteinizing hormone-releasing hormone (LHRH) receptor. We further demonstrated significant anti-tumor effects mediated by cytotoxic somatostatin analogs, AN-162 and AN-238, by LHRH antagonist, Cetrorelix, by the cytotoxic LHRH analog, AN-152, and by recently developed GHRH antagonist, MIA-602, on MPC and for AN-152 and MIA-602 on MTT cells. Studies of novel anti-tumor compounds on these mouse cell lines serve as an important basis for mouse models of metastatic pheochromocytoma, which we are currently establishing. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  11. The effects of walking and cycling computer workstations on keyboard and mouse performance.

    PubMed

    Straker, Leon; Levine, James; Campbell, Amity

    2009-12-01

    This study aimed to determine the effects of active workstation designs on speed and error during typing, mouse pointing, and combined type and mouse-use tasks. Office ergonomics has focused on musculoskeletal disorder prevention; however, increasing computer-based work also increases health risks associated with inactivity. Workstations allowing computer users to walk or cycle while performing computer tasks have been shown to demand sufficient energy expenditure to result in significant health benefits. However the performance effects of being active while using a computer have not been documented. Thirty office workers (16 female, 15 touch typists) performed standardized computer tasks in six workstation conditions: sitting, standing, walking at 1.6 km/h and 3.2 km/h, and cycling at 5 and 30 watts. Performance, perceived performance, and heart rate were measured. Computer task performance was lower when walking and slightly lower when cycling, compared with chair sitting. Standing performance was not different from sitting performance. Mouse performance was more affected than typing performance. Performance decrements were equal for females and males and for touch typists and nontouch typists. Performance decrements maybe related to both biomechanical and cognitive processes. Active workstations may be less suitable for mouse-intensive work and susceptible users. Although active workstations may result in some decrement in performance, their ability to increase daily energy expenditure may make them a feasible solution for workplace inactivity.

  12. Anti-tumor effects of peptide analogs targeting neuropeptide hormone receptors on mouse pheochromocytoma cells

    PubMed Central

    Ziegler, CG; Ullrich, M; Schally, AV; Bergmann, R; Pietzsch, J; Gebauer, L; Gondek, K; Qin, N; Pacak, K; Ehrhart-Bornstein, M; Eisenhofer, G; Bornstein, SR

    2013-01-01

    Pheochromocytoma is a rare but potentially lethal chromaffin cell tumor with currently no effective treatment. Peptide hormone receptors are frequently overexpressed on endocrine tumor cells and can be specifically targeted by various anti-tumor peptide analogs. The present study carried out on mouse pheochromocytoma cells (MPC) and a more aggressive mouse tumor tissue-derived (MTT) cell line revealed that these cells are characterized by pronounced expression of the somatostatin receptor 2 (sst2), growth hormone-releasing hormone (GHRH) receptor and the luteinizing hormone-releasing hormone (LHRH) receptor. We further demonstrated significant anti-tumor effects mediated by cytotoxic somatostatin analogs, AN-162 and AN-238, by LHRH antagonist, Cetrorelix, by the cytotoxic LHRH analog, AN-152, and by recently developed GHRH antagonist, MIA-602, on MPC and for AN-152 and MIA-602 on MTT cells. Studies of novel anti-tumor compounds on these mouse cell lines serve as an important basis for mouse models of metastatic pheochromocytoma, which we are currently establishing. PMID:23267837

  13. [Effect of PON1 overexpression on mouse diaphragmatic muscle cells injury caused by acute dichlorvos poisoning].

    PubMed

    Wu, Bin; Wang, Fei; Zhou, Jue; Hou, Yuehui; Hong, Guangliang; Zhao, Guangju; Ge, Yun; Liu, Yao; Qiu, Qiaomeng; Lu, Zhongqiu

    2015-09-22

    To investigate the effect of paraoxonase1 (PON1) overexpression on mouse diaphragmatic muscle cells injury caused by acute dichlorvos poisoning. Mouse diaphragmatic muscle cells were cultured routinely and infected with overexpression lentivirus. Cells were divided into normal control group, DDVP group, LV-GFP + DDVP group, LV-PON1 + DDVP group. Cell viability was determined by CCK-8 assay. Flow cytometry was used to detect cell apoptosis. The mRNA and protein expression of PON1 and Nrf2 in mouse diaphragmatic muscle cells was measured by RT-PCR and Western blot. Enzyme-linked immunosorbent assay was used to determine levels of acetyl cholinesterase (AchE), heme oxygenase 1 (HO-1) and quinone oxidoreductase-1 (NQO-1) in mouse diaphragmatic muscle cells. The activity of superoxide dismutase (SOD) and catalase (CAT) as well as malondialdehyde (MDA) content in cells was measured by chemical colorimetry. After induced by 0, 80, 160, 320, 640 µmol/L DDVP for 24 hours, the viability of mouse diaphragmatic muscle cells was (100 ± 3.82)%, (82.13 ± 2.60)%, (53.57 ± 5.05)%, (30.77 ± 3.30)%, (14.20 ± 2.19)% respectively, changing in a concentration-dependent manner (P < 0.05). After induced by 160 µmol/L DDVP for 0, 6, 12, 24 hours, the viability of mouse diaphragmatic muscle cells was (100.17 ± 2.74)%, (76.13 ± 6.01)%, (66.53 ± 3.55)%, (53.57 ± 5.05)%, changing in a time-dependent manner (P < 0.05). The PON1 protein level in LV-PON1 group was higher than that of blank control group (0.370 ± 0.015 vs 0.232 ± 0.004, 0.197 ± 0.015 vs 0.037 ± 0.003, P < 0.05). The cell viability of LV-PON1 group is higher than that of DDVP group at different time point after induction of DDVP (P < 0.05). After induced by DDVP for 24 hours, the cell apoptosis rate and MDA content in LV-PON1 group were lower than those of DDVP group (P < 0.05). While levels of AchE, PON1 and Nrf2 protein expression, SOD and CAT, HO-1 and NQO-1 were higher than those of DDVP group (P < 0.05). The

  14. Effect of environmental intervention on mouse allergen levels in homes of inner-city Boston children with asthma

    PubMed Central

    Cronin, Beth; Wood, Robert A.; Eggleston, Peyton A.; Shih, Mei-Chiung; Song, Leslie; Tachdjian, Raffi; Oettgen, Hans C.

    2005-01-01

    Background: Recent studies have suggested that mouse allergen exposure and sensitization are common in urban children with asthma. The effectiveness of environmental intervention in reducing mouse allergen exposure has not been established. Objective: To evaluate whether environmental intervention of mouse extermination and cleaning results in a reduction in mouse allergen levels. Methods: Eighteen homes of children with positive mouse allergen skin test results and at least mild persistent asthma in urban Boston, MA, with evidence of mouse infestation or exposure were randomized in a 2:1 ratio (12 intervention and 6 control homes). The intervention homes received an integrated pest management intervention, which consisted of filling holes with copper mesh, vacuuming and cleaning, and using low-toxicity pesticides and traps. Dust samples were collected and analyzed for major mouse allergen (Mus m 1) and cockroach allergen (Bla g 1) at baseline and 1, 3, and 5 months after the intervention was started and compared with control homes. Results: Mouse allergen levels were significantly decreased compared with control homes by the end of the intervention period at month 5 in the kitchen and bedroom (kitchen intervention, 78.8% reduction; control, 319% increase; P = .02; bedroom intervention, 77.3% reduction; control, 358% increase; P < .01; and living room intervention, 67.6% reduction; control, 32% reduction; P = .07). Conclusions: Mouse allergen levels were significantly reduced during a 5-month period using an integrated pest management intervention. PMID:15104193

  15. Effect of environmental intervention on mouse allergen levels in homes of inner-city Boston children with asthma.

    PubMed

    Phipatanakul, Wanda; Cronin, Beth; Wood, Robert A; Eggleston, Peyton A; Shih, Mei-Chiung; Song, Leslie; Tachdjian, Raffi; Oettgen, Hans C

    2004-04-01

    Recent studies have suggested that mouse allergen exposure and sensitization are common in urban children with asthma. The effectiveness of environmental intervention in reducing mouse allergen exposure has not been established. To evaluate whether environmental intervention of mouse extermination and cleaning results in a reduction in mouse allergen levels. Eighteen homes of children with positive mouse allergen skin test results and at least mild persistent asthma in urban Boston, MA, with evidence of mouse infestation or exposure were randomized in a 2:1 ratio (12 intervention and 6 control homes). The intervention homes received an integrated pest management intervention, which consisted of filling holes with copper mesh, vacuuming and cleaning, and using low-toxicity pesticides and traps. Dust samples were collected and analyzed for major mouse allergen (Mus m 1) and cockroach allergen (Bla g 1) at baseline and 1, 3, and 5 months after the intervention was started and compared with control homes. Mouse allergen levels were significantly decreased compared with control homes by the end of the intervention period at month 5 in the kitchen and bedroom (kitchen intervention, 78.8% reduction; control, 319% increase; P = .02; bedroom intervention, 77.3% reduction; control, 358% increase; P < .01; and living room intervention, 67.6% reduction; control, 32% reduction; P = .07). Mouse allergen levels were significantly reduced during a 5-month period using an integrated pest management intervention.

  16. Blockade of Extracellular ATP Effect by Oxidized ATP Effectively Mitigated Induced Mouse Experimental Autoimmune Uveitis (EAU)

    PubMed Central

    Zhao, Ronglan; Liang, Dongchun; Sun, Deming

    2016-01-01

    Various pathological conditions are accompanied by ATP release from the intracellular to the extracellular compartment. Extracellular ATP (eATP) functions as a signaling molecule by activating purinergic P2 purine receptors. The key P2 receptor involved in inflammation was identified as P2X7R. Recent studies have shown that P2X7R signaling is required to trigger the Th1/Th17 immune response, and oxidized ATP (oxATP) effectively blocks P2X7R activation. In this study we investigated the effect of oxATP on mouse experimental autoimmune uveitis (EAU). Our results demonstrated that induced EAU in B6 mice was almost completely abolished by the administration of small doses of oxATP, and the Th17 response, but not the Th1 response, was significantly weakened in the treated mice. Mechanistic studies showed that the therapeutic effects involve the functional change of a number of immune cells, including dendritic cells (DCs), T cells, and regulatory T cells. OxATP not only directly inhibits the T cell response; it also suppresses T cell activation by altering the function of DCs and Foxp3+ T cell. Our results demonstrated that inhibition of P2X7R activation effectively exempts excessive autoimmune inflammation, which may indicate a possible therapeutic use in the treatment of autoimmune diseases. PMID:27196432

  17. Blockade of Extracellular ATP Effect by Oxidized ATP Effectively Mitigated Induced Mouse Experimental Autoimmune Uveitis (EAU).

    PubMed

    Zhao, Ronglan; Liang, Dongchun; Sun, Deming

    2016-01-01

    Various pathological conditions are accompanied by ATP release from the intracellular to the extracellular compartment. Extracellular ATP (eATP) functions as a signaling molecule by activating purinergic P2 purine receptors. The key P2 receptor involved in inflammation was identified as P2X7R. Recent studies have shown that P2X7R signaling is required to trigger the Th1/Th17 immune response, and oxidized ATP (oxATP) effectively blocks P2X7R activation. In this study we investigated the effect of oxATP on mouse experimental autoimmune uveitis (EAU). Our results demonstrated that induced EAU in B6 mice was almost completely abolished by the administration of small doses of oxATP, and the Th17 response, but not the Th1 response, was significantly weakened in the treated mice. Mechanistic studies showed that the therapeutic effects involve the functional change of a number of immune cells, including dendritic cells (DCs), T cells, and regulatory T cells. OxATP not only directly inhibits the T cell response; it also suppresses T cell activation by altering the function of DCs and Foxp3+ T cell. Our results demonstrated that inhibition of P2X7R activation effectively exempts excessive autoimmune inflammation, which may indicate a possible therapeutic use in the treatment of autoimmune diseases.

  18. Chronodependent effect of interleukin-2 on mouse spleen cells in the model of cyclophosphamide immunosuppression.

    PubMed

    Shurlygina, A V; Mel'nikova, E V; Trufakin, V A

    2015-02-01

    We studied the chronodependent effect of IL-2 in the experimental model of immunodeficiency, cyclophosphamide-induced immunosuppression in mice. IL-2 in a dose of 100 U/ mouse was administered at 10.00 and 16.00 for 3 days after injection of cyclophosphamide. In contrast to the morning treatment with the cytokine, evening administration produced antiapoptotic effect on splenocytes and stimulated proliferation to a greater extent. This was accompanied by an increase in the number of CD4(+), CD25(+) and CD4(+)25(+) cells in the spleen to a level of intact mice. More pronounced effect of the evening mode of IL-2 administration on the proliferation and subpopulation composition of mouse spleen cells in the studied model can be associated with high blood level of CD25(+) cells at this time of the day.

  19. Effects of several salt marsh plants on mouse spleen and thymus cell proliferation using mtt assay

    NASA Astrophysics Data System (ADS)

    Seo, Youngwan; Lee, Hee-Jung; Kim, You Ah; Youn, Hyun Joo; Lee, Burm-Jong

    2005-12-01

    In the present study, we have tested the effects of 21 salt marsh plants on cell proliferation of mouse immune cells (spleen and thymus) using MTT assay in culture. The methanolic extracts of six salt marsh plants ( Rosa rugosa, Ixeris tamagawaensis, Artemisia capillaris, Tetragonia tetragonoides, Erigeron annus, and Glehnia littoralis) showed very powerful suppressive effects of mouse immune cell death and significant activities of cell proliferation in vitro. Especially, the methanolic extract of Rosa rugosa was found to have fifteen times compared to the control treatment, demonstrating that Rosa rugosa may have a potent stimulation effect on immune cell proliferation. These results suggest that several salt marsh plants including Rosa rugosa could be useful for further study as an immunomodulating agent.

  20. Early effect of interferon on mouse leukemia cells cultivated in a chemostat.

    PubMed Central

    Tovey, M; Brouty-Boyé, D; Gresser, I

    1975-01-01

    Mouse interferon preparations inhibited the multiplication of mouse leukemia L 1210 cells cultivated under steady-state conditions in a chemostat. The use of this sensitive and controlled system led to the detection of a rapid inhibition in the incorporation of (3-H)thymidine into cellular acid-precipitable material 2 hr after the addition of interferon, whereas an effect on cell multiplication was not detected until 22 hr later. Interferon exerted only a transitory effect on the incorporation of (3-H)uridine into acid-precipitable material and no effect on the incorporation of 14-C-amino acids into cellular protein. It is suggested that the chemostat offers many advantages for the investigation of those physiologic factors or chemotherapeutic substances that modify cell division. PMID:1056030

  1. Toxic effects of Carthamus tinctorius L. (Safflower) extract on mouse spermatogenesis.

    PubMed

    Mirhoseini, Mehri; Mohamadpour, Masoomeh; Khorsandi, Layasadat

    2012-05-01

    To evaluate the effects of aqueous extract of Carthamus tinctorius L., also named safflower, on mouse spermatogenesis. Sixteen adult male NMRI mice were used. Experimental group received Carthamus tinctorius L. extract at the dose of 200 mg/kg for 35 consecutive days and control group received only distilled water. Testicular histopathology, morphometric analysis and spermatogenesis assessments were performed for evaluation of the Carthamus tinctorius L. extract effects on testis. Histopathological criteria such as epithelial vacuolization, sloughing of germ and detachment were significantly decreased in Carthamus tinctorius L. treated mice (p < 0.001). Carthamus tinctorius L. extract induced formation of multinucleated giant cells in the germinal epithelium. Carthamus tinctorius L. extract also caused a significant decrease in seminiferous tubule diameter, seminiferous epithelium height and maturation arrest (p < 0.001). Carthamus tinctorius L. extract has toxic effects on mouse testicular tissue, and recommended to use it with caution if there is a reproductive problem.

  2. Effect of cyanobacteria extract on some associated enzymes in mouse liver in vivo

    NASA Astrophysics Data System (ADS)

    Chen, Jianzhong; Liu, Zhili; Zhou, Guoqing; Han, Zhiping; Zhang, Haiyang; Zhang, Yixiang

    2010-11-01

    Blooms of toxin-producing cyanobacteria have become increasingly common in the surface water of the world. In this study, we studied the dose- and time-dependent effects of a microcystin (MC) extract of cyanobacteria from Dianchi Lake in China on liver weight/body weight ratio and superoxide dismutase (SOD), lactate dehydrogenase (LDH) and glutathione peroxidase (GSH-Px) activities in mouse liver. We found that exposure to the cyanobacterial extract (CE) resulted in increase in liver weight/body weight ratio in a dose-dependent manner, and the mouse liver reached the maximum size at 1 h post-exposure (pe). SOD activity in mouse liver decreased in a dose-dependent manner, and time course study indicated that it decreased significantly at 1 and 2 h pe, and resumed at 3 h pe as compared to control. CE caused LDH activity in the livers of mice to decrease in a dose- and time-dependent manner except a small increase in 30 min pe mice. GSH-Px activity increased in a dose-dependent manner, and was higher than that in the control over the 3 h observation period. The present findings suggest that oxidative damage may be involved in the toxicity of microcystins on mouse.

  3. Effect of ICSI on gene expression and development of mouse preimplantation embryos

    PubMed Central

    Giritharan, G.; Li, M.W.; De Sebastiano, F.; Esteban, F.J.; Horcajadas, J.A.; Lloyd, K.C.K.; Donjacour, A.; Maltepe, E.; Rinaudo, P.F.

    2010-01-01

    BACKGROUND In vitro culture (IVC) and IVF of preimplantation mouse embryos are associated with changes in gene expression. It is however not known whether ICSI has additional effects on the transcriptome of mouse blastocysts. METHODS We compared gene expression and development of mouse blastocysts produced by ICSI and cultured in Whitten's medium (ICSIWM) or KSOM medium with amino acids (ICSIKSOMaa) with control blastocysts flushed out of the uterus on post coital Day 3.5 (in vivo). In addition, we compared gene expression in embryos generated by IVF or ICSI using WM. Global pattern of gene expression was assessed using the Affymetrix 430 2.0 chip. RESULTS Blastocysts from ICSI fertilization have a reduction in the number of trophoblastic and inner cell mass cells compared with embryos generated in vivo. Approximately 1000 genes are differentially expressed between ICSI blastocyst and in vivo blastocysts; proliferation, apoptosis and morphogenetic pathways are the most common pathways altered after IVC. Unexpectedly, expression of only 41 genes was significantly different between embryo cultured in suboptimal conditions (WM) or optimal conditions (KSOMaa). CONCLUSIONS Our results suggest that fertilization by ICSI may play a more important role in shaping the transcriptome of the developing mouse embryo than the culture media used. PMID:20889529

  4. Effect of diet on the survival and phenotype of a mouse model for spinal muscular atrophy.

    PubMed

    Butchbach, Matthew E R; Rose, Ferrill F; Rhoades, Sarah; Marston, John; McCrone, John T; Sinnott, Rachel; Lorson, Christian L

    2010-01-01

    Proximal spinal muscular atrophy (SMA) is a leading genetic cause of infant death. Patients with SMA lose alpha-motor neurons in the ventral horn of the spinal cord which leads to skeletal muscle weakness and atrophy. SMA is the result of reduction in Survival Motor Neuron (SMN) expression. Transgenic mouse models of SMA have been generated and are extremely useful in understanding the mechanisms of motor neuron degeneration in SMA and in developing new therapeutic candidates for SMA patients. Several research groups have reported varying average lifespans of SMNDelta7 SMA mice (SMN2(+/+);SMNDelta7(+/+);mSmn(-/-)), the most commonly used mouse model for preclinical therapeutic candidate testing. One environmental factor that varied between research groups was maternal diet. In this study, we compared the effects of two different commercially available rodent chows (PicoLab20 Mouse diet and Harlan-Teklad 22/5 diet) on the survival and motor phenotype of the SMNDelta7 mouse model of SMA. Specifically, the PicoLab20 diet significantly extends the average lifespan of the SMNDelta7 SMA mice by approximately 25% and improved the motor phenotype as compared to the Harlan diet. These findings indicate that maternal diet alone can have considerable impact on the SMA phenotype. Copyright 2009 Elsevier Inc. All rights reserved.

  5. Hazardous Apoptotic Effects of 2-Bromopropane on Maturation of Mouse Oocytes, Fertilization, and Fetal Development

    PubMed Central

    Chan, Wen-Hsiung

    2010-01-01

    2-Bromopropane (2-BP) is used as an alternative to ozone-depleting cleaning solvents. Previously, we reported that 2-BP has cytotoxic effects on mouse blastocysts and is associated with defects in subsequent development. Here, we further investigate the effects of 2-BP on oocyte maturation and subsequent pre- and post-implantation development, both in vitro and in vivo. Notably, 2-BP induced a significant reduction in the rates of oocyte maturation, fertilization, and in vitro embryonic development. Treatment of oocytes with 2-BP during in vitro maturation (IVM) resulted in increased resorption of postimplantation embryos and decreased fetal weights. Experiments with a mouse model disclosed that consumption of drinking water containing 20 μM 2-BP led to decreased oocyte maturation in vivo and fertilization in vitro, as well as impairment of early embryonic development. Interestingly, pretreatment with a caspase-3-specific inhibitor effectively prevented 2-BP-triggered hazardous effects, suggesting that embryonic impairment by 2-BP occurs via a caspase-dependent apoptotic process. A study using embryonic stem cells as the assay model conclusively demonstrated that 2-BP induces cell death processes through apoptosis and not necrosis, and inhibits early embryo development in mouse embryonic stem cells. These results collectively confirm the hazardous effects of 2-BP on embryos derived from pretreated oocytes. PMID:21151443

  6. l-Cys/CSE/H2S pathway modulates mouse uterus motility and sildenafil effect.

    PubMed

    Mitidieri, Emma; Tramontano, Teresa; Donnarumma, Erminia; Brancaleone, Vincenzo; Cirino, Giuseppe; D Emmanuele di Villa Bianca, Roberta; Sorrentino, Raffaella

    2016-09-01

    Sildenafil, a selective phosphodiesterase type 5 (PDE5) inhibitor, commonly used in the oral treatment for erectile dysfunction, relaxes smooth muscle of human bladder through the activation of hydrogen sulfide (H2S) signaling. H2S is an endogenous gaseous transmitter with myorelaxant properties predominantly formed from l-cysteine (l-Cys) by cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE). Sildenafil also relaxes rat and human myometrium during preterm labor but the underlying mechanism is still unclear. In the present study we investigated the possible involvement of H2S as a mediator of sildenafil-induced effect in uterine mouse contractility. We firstly demonstrated that both enzymes, CBS and CSE were expressed, and able to convert l-Cys into H2S in mouse uterus. Thereafter, sildenafil significantly increased H2S production in mouse uterus and this effect was abrogated by CBS or CSE inhibition. In parallel, l-Cys, sodium hydrogen sulfide or sildenafil but not d-Cys reduced spontaneous uterus contractility in a functional study. The blockage of CBS and CSE reduced this latter effect even if a major role for CSE than CBS was observed. This data was strongly confirmed by using CSE(-/-) mice. Indeed, the increase in H2S production mediated by l-Cys or by sildenafil was not found in CSE(-/-) mice. Besides, the effect of H2S or sildenafil on spontaneous contractility was reduced in CSE(-/-) mice. A decisive proof for the involvement of H2S signaling in sildenafil effect in mice uterus was given by the measurement of cGMP. Sildenafil increased cGMP level that was significantly reduced by CSE inhibition. In conclusion, l-Cys/CSE/H2S signaling modulates the mouse uterus motility and the sildenafil effect. Therefore the study may open different therapeutical approaches for the management of the uterus abnormal contractility disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Antitumor effect of kigamicin D on mouse tumor models.

    PubMed

    Masuda, Toru; Ohba, Shunichi; Kawada, Manabu; Osono, Michiyo; Ikeda, Daishiro; Esumi, Hiroyasu; Kunimoto, Setsuko

    2006-04-01

    Kigamicin D is a novel anticancer agent that was identified using a new screening strategy that targets the tolerance of cancer cells to nutrient starvation [1, 2]. Oral administration of kigamicin D was previously described to show a strong antitumor effect in human tumor xenograft models of pancreatic tumors [2]. In this paper we describe that kigamicin D shows the same selective cytotoxicity against normal human cells such as lung fibroblast and prostate stromal cells under nutrient starved condition as against cancer cells. Kigamicin D inhibited tumor cell-induced angiogenesis in a dorsal air sac assay. On the basis of these results we tested other human tumor xenograft models and transplantable syngeneic tumor models in order to determine the spectrum of activity of kigamicin D against various cancers. Kigamicin D showed a weak antitumor effect against LX-1 and DMS-273 lung cancers, but had no effect on DLD-1 colon cancers. When tested against syngeneic tumors, kigamicin D showed a weak antitumor effect against colon26, but showed augmentation of tumor growth on IMC carcinoma at a broad dosage level. Kigamicin D does not show good antitumor activity against human xenograft tumors except pancreatic tumors and murine syngeneic tumors. We found that kigamicin D has excellent antitumor effect specific to pancreatic cancers. Surprisingly, high dosage of kigamicin D increased tumor growth of IMC carcinoma by than 200%. The phenomenon suggests that kigamicin D may cause some immunological response to the tumor.

  8. The antidepressant-like effects of paeoniflorin in mouse models

    PubMed Central

    QIU, FENGMEI; ZHONG, XIAOMING; MAO, QINGQIU; HUANG, ZHEN

    2013-01-01

    Peony is often used in Chinese herbal medicine for the treatment of depression-like disorders. Our previous studies have demonstrated that the total glycosides of peony exert antidepressant-like effects in animal models. Paeoniflorin is the main active glycoside of peony. The aim of this study was to evaluate the antidepressant-like effects of paeoniflorin in mice, as well as its active mechanisms. The results revealed that intraperitoneally injected paeoniflorin significantly reduced the duration of immobility in forced swimming and tail suspension tests. The doses that affected the immobility response did not affect locomotor activity. Furthermore, paeoniflorin antagonized reserpine-induced ptosis, akinesia and hypothermia. Paeoniflorin also significantly increased the levels of serotonin (5-HT) and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) in the hippocampus. These results suggest that the upregulation of serotonergic systems may be an important mechanism for the antidepressant-like effects of paeoniflorin in mice. PMID:23599734

  9. Lack of effect of dibromochloropropane on the mouse testis

    SciTech Connect

    Oakberg, E.F.; Cummings, C.C.

    1984-01-01

    A single intraperitoneal injection of male mice with 110 mg/kg of 1,2-dibromo-3-chloropropane (DBCP) showed no effect on spermatogonial stem cells or on differentiating spermatogonia as measured by cell counts made 3, 5, and 8 days after injection.

  10. Effects of ochratoxin a on mouse oocyte maturation and fertilization, and apoptosis during fetal development.

    PubMed

    Huang, Fu-Jen; Chan, Wen-Hsiung

    2016-06-01

    We previously reported that ochratoxin A (OTA), a mycotoxin found in many foods worldwide, causes nephrotoxicity, hepatotoxicity, and immunotoxicity, and is a risk factor for abnormal embryonic development. More specifically, OTA triggers apoptotic processes in the inner cell mass of mouse blastocysts, decreasing cell viability and embryonic development. In the current study, we investigated the deleterious effects of OTA on mouse oocyte maturation, in vitro fertilization (IVF), and subsequent pre- and postimplantation development both in vitro and in vivo. Notably, OTA significantly impaired mouse oocyte maturation, decreased IVF rates, and inhibited subsequent embryonic development in vitro. Preincubation of oocytes with OTA during in vitro maturation increased postimplantation embryonic resorption and decreased mouse fetal weight. In an in vivo animal model, provision of 1-10 μM OTA in the drinking water or intravenous injection of 1 or 2 mg/kg body weight of OTA decreased oocyte maturation and IVF, and had deleterious effects on early embryonic development. Importantly, preincubation of oocytes with a caspase-3-specific inhibitor effectively blocked these OTA-triggered deleterious effects, suggesting that the embryonic injury induced by OTA is mediated via a caspase-dependent apoptotic mechanism. Furthermore, OTA upregulated the levels of p53 and p21 in blastocyst cells derived from OTA-pretreated oocytes, indicating that such cells undergo apoptosis via p53-, p21-, and caspase-3-dependent regulatory mechanisms. This could have deleterious effects on embryonic implantation and fetal survival rates, as seen in our animal models. © 2014 Wiley Periodicals, Inc. Environ Toxicol 31: 724-735, 2016.

  11. Effects of gypenosides on anxiety disorders in MPTP-lesioned mouse model of Parkinson's disease.

    PubMed

    Shin, Keon Sung; Zhao, Ting Ting; Choi, Hyun Sook; Hwang, Bang Yeon; Lee, Chong Kil; Lee, Myung Koo

    2014-06-03

    Ethanol extract (GP-EX) of Gynostemma pentaphyllum (GP) ameliorates chronic stress-induced anxiety in mice. The present study investigated the effects of gypenoside-enriched components (GPS), GP-EX and water extract of GP (GP-WX) on MPTP lesion-induced affective disorders in C57BL/6 mice. GPS (50mg/kg) and GP-EX (50mg/kg) for 21 day-treatment period improved the symptom of anxiety disorders in the MPTP-lesioned mouse model of PD with or without L-DOPA treatment, which was examined by the elevated plus-maze and marble burying tests. In these states, treatments with GPS (50mg/kg) and GP-EX (50mg/kg) significantly increased the brain levels of dopamine and serotonin in the MPTP-lesioned mouse model of PD with or without l-DOPA treatment. In addition, treatments with GPS (50mg/kg) and GP-EX (50mg/kg) showed protective effects on dopaminergic neurons in MPTP-lesioned mouse model of PD with or without L-DOPA treatment. In contrast, GPS (30 mg/kg) and GP-WX (50mg/kg) showed anxiolytic effects in the same animal models, but it was not significant. These results suggest that GPS (50mg/kg) and GP-EX (50mg/kg) showed anxiolytic effects on affective disorders and protective effects on dopaminergic neurons by modulating the brain levels of dopamine and serotonin in the MPTP-lesioned mouse model of PD with or without l-DOPA treatment. Clinical trials of GPS and GP-EX need to be conducted further so as to develop adjuvant therapeutic agents for PD patients. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Synergistic effect of lidocaine with pingyangmycin for treatment of venous malformation using a mouse spleen model

    PubMed Central

    Bai, Nan; Chen, Yuan-Zheng; Mao, Kai-Ping; Fu, Yanjie; Lin, Qiang; Xue, Yan

    2014-01-01

    Aims: To explore whether lidocaine has the synergistic effect with pingyangmycin (PYM) in the venous malformations (VMs) treatment. Methods: The mouse spleen was chosen as a VM model and injected with different concentration of lidocaine or PYM or jointly treated with lidocaine and PYM. After 2, 5, 8 or 14 days, the mouse spleen tissues were acquired for hematoxylin-eosin (HE) staining, transmission electron microscopy (TEM) analysis, TUNEL assay and quantitative RT-PCR analysis to examine the toxicological effects of lidocaine and PYM on splenic vascular endothelial cells. Results: 0.4% of lidocaine mildly promoted the apoptosis of endothelial cells, while 2 mg/ml PYM significantly elevated the apoptotic ratios. However, the combination of 0.2% lidocaine and 0.5 mg/ml PYM notably elevated the apoptotic ratios of splenic cells and severely destroyed the configuration of spleen, compared to those of treatment with 0.5 mg/ml PYM alone. Conclusion: Lidocaine exerts synergistic effects with PYM in promoting the apoptosis of mouse splenic endothelial cells, indicating that lidocaine possibly promotes the therapeutic effects of PYM in VMs treatment via synergistically enhancing the apoptosis of endothelial cells of malformed venous lesions. PMID:24966943

  13. The effect of interferon-{beta} on mouse neural progenitor cell survival and differentiation

    SciTech Connect

    Hirsch, Marek; Knight, Julia; Tobita, Mari; Soltys, John; Panitch, Hillel; Mao-Draayer, Yang

    2009-10-16

    Interferon-{beta} (IFN-{beta}) is a mainstay therapy for relapse-remitting multiple sclerosis (MS). However, the direct effects of IFN-{beta} on the central nervous system (CNS) are not well understood. To determine whether IFN-{beta} has direct neuroprotective effects on CNS cells, we treated adult mouse neural progenitor cells (NPCs) in vitro with IFN-{beta} and examined the effects on proliferation, apoptosis, and differentiation. We found that mouse NPCs express high levels of IFN{alpha}/{beta} receptor (IFNAR). In response to IFN-{beta} treatment, no effect was observed on differentiation or proliferation. However, IFN-{beta} treated mouse NPCs demonstrated decreased apoptosis upon growth factor withdrawal. Pathway-specific polymerase chain reaction (PCR) arrays demonstrated that IFN-{beta} treatment upregulated the STAT 1 and 2 signaling pathway, as well as GFRA2, NOD1, Caspases 1 and 12, and TNFSF10. These results suggest that IFN-{beta} can directly affect NPC survival, possibly playing a neuroprotective role in the CNS by modulating neurotrophic factors.

  14. Temporally controlled modulation of FGF/ERK signaling directs midbrain dopaminergic neural progenitor fate in mouse and human pluripotent stem cells.

    PubMed

    Jaeger, Ines; Arber, Charles; Risner-Janiczek, Jessica R; Kuechler, Judit; Pritzsche, Diana; Chen, I-Cheng; Naveenan, Thulasi; Ungless, Mark A; Li, Meng

    2011-10-01

    Effective induction of midbrain-specific dopamine (mDA) neurons from stem cells is fundamental for realizing their potential in biomedical applications relevant to Parkinson's disease. During early development, the Otx2-positive neural tissues are patterned anterior-posteriorly to form the forebrain and midbrain under the influence of extracellular signaling such as FGF and Wnt. In the mesencephalon, sonic hedgehog (Shh) specifies a ventral progenitor fate in the floor plate region that later gives rise to mDA neurons. In this study, we systematically investigated the temporal actions of FGF signaling in mDA neuron fate specification of mouse and human pluripotent stem cells and mouse induced pluripotent stem cells. We show that a brief blockade of FGF signaling on exit of the lineage-primed epiblast pluripotent state initiates an early induction of Lmx1a and Foxa2 in nascent neural progenitors. In addition to inducing ventral midbrain characteristics, the FGF signaling blockade during neural induction also directs a midbrain fate in the anterior-posterior axis by suppressing caudalization as well as forebrain induction, leading to the maintenance of midbrain Otx2. Following a period of endogenous FGF signaling, subsequent enhancement of FGF signaling by Fgf8, in combination with Shh, promotes mDA neurogenesis and restricts alternative fates. Thus, a stepwise control of FGF signaling during distinct stages of stem cell neural fate conversion is crucial for reliable and highly efficient production of functional, authentic midbrain-specific dopaminergic neurons. Importantly, we provide evidence that this novel, small-molecule-based strategy applies to both mouse and human pluripotent stem cells.

  15. Temporally controlled modulation of FGF/ERK signaling directs midbrain dopaminergic neural progenitor fate in mouse and human pluripotent stem cells

    PubMed Central

    Jaeger, Ines; Arber, Charles; Risner-Janiczek, Jessica R.; Kuechler, Judit; Pritzsche, Diana; Chen, I-Cheng; Naveenan, Thulasi; Ungless, Mark A.; Li, Meng

    2011-01-01

    Effective induction of midbrain-specific dopamine (mDA) neurons from stem cells is fundamental for realizing their potential in biomedical applications relevant to Parkinson’s disease. During early development, the Otx2-positive neural tissues are patterned anterior-posteriorly to form the forebrain and midbrain under the influence of extracellular signaling such as FGF and Wnt. In the mesencephalon, sonic hedgehog (Shh) specifies a ventral progenitor fate in the floor plate region that later gives rise to mDA neurons. In this study, we systematically investigated the temporal actions of FGF signaling in mDA neuron fate specification of mouse and human pluripotent stem cells and mouse induced pluripotent stem cells. We show that a brief blockade of FGF signaling on exit of the lineage-primed epiblast pluripotent state initiates an early induction of Lmx1a and Foxa2 in nascent neural progenitors. In addition to inducing ventral midbrain characteristics, the FGF signaling blockade during neural induction also directs a midbrain fate in the anterior-posterior axis by suppressing caudalization as well as forebrain induction, leading to the maintenance of midbrain Otx2. Following a period of endogenous FGF signaling, subsequent enhancement of FGF signaling by Fgf8, in combination with Shh, promotes mDA neurogenesis and restricts alternative fates. Thus, a stepwise control of FGF signaling during distinct stages of stem cell neural fate conversion is crucial for reliable and highly efficient production of functional, authentic midbrain-specific dopaminergic neurons. Importantly, we provide evidence that this novel, small-molecule-based strategy applies to both mouse and human pluripotent stem cells. PMID:21880784

  16. Individual and combined effects of deoxynivalenol and zearalenone on mouse kidney.

    PubMed

    Liang, Zhen; Ren, Zhihua; Gao, Shuang; Chen, Yun; Yang, Yanyi; Yang, Dan; Deng, Junliang; Zuo, Zhicai; Wang, Ya; Shen, Liuhong

    2015-11-01

    This study was performed to investigate the individual and combined toxic effects of deoxynivalenol (DON) and zearalenone (ZEA) on mouse kidney. A total of 360 female mice were divided into nine groups. Each group received intraperitoneal injection of solvent (control), DON, ZEA, or DON+ZEA four times for 12d. Results showed that ZEA and/or DON increased the apoptosis rate in the kidney, as well as the levels of serum creatinine and blood urea nitrogen. DON and/or ZEA also induced renal oxidative stress as indicated by increased malondialdehyde concentration and nitric oxide level and reduced superoxide dismutase enzyme activity and hydroxyl radical inhibiting capacity. The observed changes were dose and time dependent. This study reports that DON and/or ZEA induced apoptosis, dysfunction, and oxidative stress in mouse kidney. Furthermore, the combination of DON+ZEA exhibited a sub-additive nephrotoxic effect.

  17. The genotoxic effect of radiofrequency waves on mouse brain.

    PubMed

    Karaca, Emin; Durmaz, Burak; Aktug, Huseyin; Altug, Huseyin; Yildiz, Teoman; Guducu, Candan; Irgi, Melis; Koksal, Mehtap Gulcihan Cinar; Ozkinay, Ferda; Gunduz, Cumhur; Cogulu, Ozgur

    2012-01-01

    Concerns about the health effects of radiofrequency (RF) waves have been raised because of the gradual increase in usage of cell phones, and there are scientific questions and debates about the safety of those instruments in daily life. The aim of this study is to evaluate the genotoxic effects of RF waves in an experimental brain cell culture model. Brain cell cultures of the mice were exposed to 10.715 GHz with specific absorbtion rate (SAR) 0.725 W/kG signals for 6 h in 3 days at 25°C to check for the changes in the micronucleus (MNi) assay and in the expression of 11 proapoptotic and antiapoptotic genes. It was found that MNi rate increased 11-fold and STAT3 expression decreased 7-fold in the cell cultures which were exposed to RF. Cell phones which spread RF may damage DNA and change gene expression in brain cells.

  18. Effect of Desiccating Stress on Mouse Meibomian Gland Function

    PubMed Central

    Suhalim, Jeffrey L.; Parfitt, Geraint J.; Xie, Yilu; De Pavia, Cintia S.; Pflugfelder, Stephen C.; Shah, Tejas N.; Potma, Eric O.; Brown, Donald J.; Jester, James V.

    2013-01-01

    Purpose Mice exposed to standardized desiccating environmental stress to induce dry eye-like symptoms have been used as a model to study the underlying mechanisms of evaporative dry eye. While studies have shown marked inflammatory and immune changes, the effect of such stress on meibomian gland function remains largely unknown. We sought to evaluate the effects of desiccating stress on meibocyte proliferation and meibum quality. Methods Ten mice were treated with scopolamine and subjected to a drafty low humidity environment (30–35%). Five and ten days after treatment, eyelids were harvested and cryosections stained with Ki67 antibody to identify cycling cells. Sections were also imaged using stimulated Raman scattering (SRS) microscopy to characterize the gland compositional changes by detecting the vibrational signatures of methylene (lipid) and amide-I (protein). Results Desiccating stress caused a 3-fold increase in basal acinar cell proliferation from 18.3 ± 11.1% in untreated mice to 64.4 ± 19.9% and 66.6 ± 13.4% after 5 and 10 days exposure, respectively (P < .001). In addition, SRS analysis showed a wider variation in the protein-to-lipid ratio throughout the gland, suggesting alterations in meibocyte differentiation and lipid synthesis. Conclusions These data are consistent with a model that a desiccating environment may have a direct effect on meibomian gland function, leading to a significant increase in basal acinar cell proliferation, abnormal meibocyte differentiation, and altered lipid production. PMID:24439047

  19. Effect of soman on the cholinergic system in mouse brain

    SciTech Connect

    Tripathi, H.L.; Szakal, A.R.; Little, D.M.; Dewey, W.L.

    1986-03-05

    The effects of soman on levels of acetylcholine (ACh) and choline (Ch) and turnover rate of ACh have been studied in whole brain and brain regions (cerebellum, medulla-pons, midbrain, corpus striatum, hippocampus and cortex) of mice. Animals were injected with saline or a dose of soman up to 80..mu..g/kg, i.v. and were sacrificed by focussed microwave irradiation of the head. The tracer, /sup 3/H-Ch was injected (i.v.) 2 min prior to sacrifice and turnover rate of ACh was quantitated by using HPLC with electrochemical detection. A behaviorally effective dose of 80 ..mu..g/kg soman increased the levels of ACh significantly in whole brain (57.5%), corpus striatum (42.8%), hippocampus (24.1%) and cortex (43.1%). The levels of Ch were also increased in cerebellum (80.1%), midbrain (75.7%), corpus striatum (86.0%) and cortex (52.5%). The turnover rate of ACh was decreased in whole brain (53.8%), cerebellum (80.4%), medulla-pons (66.8%), midbrain (57.0%), corpus striatum (62.1%) and cortex (52.6%). The duration of these effects lasted more than 1 hr and the results indicate that the decrease in ACh turnover is not due necessarily to an increase in brain levels of ACh and/or Ch.

  20. Effects of environmental enrichment on the amyotrophic lateral sclerosis mouse model.

    PubMed

    Sorrells, A D; Corcoran-Gomez, K; Eckert, K A; Fahey, A G; Hoots, B L; Charleston, L B; Charleston, J S; Roberts, C R; Markowitz, H

    2009-04-01

    The manner in which an animal's environment is furnished may have significant implications for animal welfare as well as research outcomes. We evaluated four different housing conditions to determine the effects of what has been considered standard rodent enrichment and the exercise opportunities those environments allow on disease progression in the amyotrophic lateral sclerosis mouse model. Forty-eight copper/zinc superoxide dismutase mice (strain: B6SJL-TgN [SOD1-G931]1Gur) (SOD1) and 48 control (C) (strain: B6SJL-TgN[SOD1]2Gur) male mice were randomly assigned to four different conditions where 12 SOD1 and 12 C animals were allotted to each condition (n = 96). Conditions tested the effects of standard housing, a forced exercise regime, access to a mouse house and opportunity for ad libitum exercise on a running wheel. In addition to the daily all-occurrence behavioural sampling, mice were weighed and tested twice per week on gait and Rotor-Rod performance until the mice reached the age of 150 days (C) or met the criteria for our humane endpoint (SOD1). The SOD1 mice exposed to the forced exercise regime and wheel access did better in average lifespan and Rotor-Rod performance, than SOD1 mice exposed to the standard cage and mouse house conditions. In SOD1 mice, stride length remained longest throughout the progression of the disease in mice exposed to the forced exercise regime compared with other SOD1 conditions. Within the control group, mice in the standard cage and forced exercise regime conditions performed significantly less than the mice with the mouse house and wheels on the Rotor-Rod. Alpha motor neuron counts were highest in mice with wheels and in mice exposed to forced exercise regime in both mouse strains. All SOD1 mice had significantly lower alpha neuron counts than controls (P < 0.05). These data show that different enrichment strategies affect behaviour and disease progression in a transgenic mouse model, and may have implications for the

  1. Effect of Fenbendazole on an Autoimmune Mouse Model

    PubMed Central

    Cray, Carolyn; Watson, Toshiba; Zaias, Julia; Altman, Norman H

    2013-01-01

    Fenbendazole is an anthelmintic drug widely used to treat and prevent pinworm infection in laboratory rodents. Data regarding possible side effects of fenbendazole on the immune system are conflicting, potentially due to the design of treatment protocols. The purpose of the current study was to determine the effects of 2 fenbendazole therapeutic regimens (continuous for 5 wk and alternating weeks [that is, 1 wk on, 1 wk off] for 9 wk) on the development of autoimmune disease in (NZB × NZW)F1 mice. No significant differences in survival curves or weight were observed between the treatment groups and cohort mice receiving nonmedicated feed. At the termination of the experiment, there were no differences in tissue pathology. Hematocrit decreased and BUN increased over time in all groups, but no significant differences were present between groups. After the cessation of treatment, mice fed the medicated diet continuously for 5 wk showed an increase in antiDNA antibody. Although this difference was significant, it did not affect survival curves or disease-related tissue or blood changes. These data indicate that common protocols of fenbendazole treatment do not alter the progression of autoimmune disease in (NZB × NZW)F1 mice. PMID:23849411

  2. Effect of cyclophosphamide and electromagnetic fields on mouse bone marrow

    SciTech Connect

    Cadossi, R.; Zucchini, P.; Emilia, G.; Torelli, G. )

    1990-02-26

    The authors have previously shown that the exposure to low frequency pulsing electromagnetic fields (PEMF) of mice X-ray irradiated resulted in an increased damage to the bone marrow. The series of experiments here reported were designed to investigate the effect of PEMF exposure after intraperitoneum injection of 200mg/kg of cyclophosphamide (CY). Control mice were CY injected only; experimental mice were CY injected and then exposed to PEMF. Exposure to PEMF (24 hours/day) increased the rate of decline of white blood cells in peripheral blood. Spleen weight was statistically higher among control mice than among mice exposed to PEMF at day 6, 8 and 10 after CY injection. Spleen autoradiography proved to be higher among PEMF exposed mice than among controls at day 8 and 9 after CY injection. The grafting efficiency of the bone marrow obtained from control mice was higher than the grafting efficiency of the bone marrow recovered from mice exposed to PEMF. All these data indicate that the exposure to PEMF increases the cytotoxic effect of CY.

  3. Effect of fenbendazole on an autoimmune mouse model.

    PubMed

    Cray, Carolyn; Watson, Toshiba; Zaias, Julia; Altman, Norman H

    2013-01-01

    Fenbendazole is an anthelmintic drug widely used to treat and prevent pinworm infection in laboratory rodents. Data regarding possible side effects of fenbendazole on the immune system are conflicting, potentially due to the design of treatment protocols. The purpose of the current study was to determine the effects of 2 fenbendazole therapeutic regimens (continuous for 5 wk and alternating weeks [that is, 1 wk on, 1 wk off] for 9 wk) on the development of autoimmune disease in (NZB × NZW)F1 mice. No significant differences in survival curves or weight were observed between the treatment groups and cohort mice receiving nonmedicated feed. At the termination of the experiment, there were no differences in tissue pathology. Hematocrit decreased and BUN increased over time in all groups, but no significant differences were present between groups. After the cessation of treatment, mice fed the medicated diet continuously for 5 wk showed an increase in antiDNA antibody. Although this difference was significant, it did not affect survival curves or disease-related tissue or blood changes. These data indicate that common protocols of fenbendazole treatment do not alter the progression of autoimmune disease in (NZB × NZW)F1 mice.

  4. Genetic background differences and nonassociative effects in mouse trace fear conditioning.

    PubMed

    Smith, Dani R; Gallagher, Michela; Stanton, Mark E

    2007-09-01

    Fear conditioning, including variants such as delay and trace conditioning that depend on different neural systems, is widely used to behaviorally characterize genetically altered mice. We present data from three strains of mice, C57/BL6 (C57), 129/SvlmJ (129), and a hybrid strain of the two (F(1) hybrids), trained on various versions of a trace fear-conditioning protocol. The initial version was taken from the literature but included unpaired control groups to assess nonassociative effects on test performance. We observed high levels of nonassociative freezing in both contextual and cued test conditions. In particular, nonassociative freezing in unpaired control groups was equivalent to freezing shown by paired groups in the tests for trace conditioning. A number of pilot studies resulted in a new protocol that yielded strong context conditioning and low levels of nonassociative freezing in all mouse strains. During the trace-CS test in this protocol, freezing in unpaired controls remained low in all strains, and both the C57s and F(1) hybrids showed reliable associative trace fear conditioning. Trace conditioning, however, was not obtained in the 129 mice. Our findings indicate that caution is warranted in interpreting mouse fear-conditioning studies that lack control conditions to address nonassociative effects. They also reveal a final set of parameters that are important for minimizing such nonassociative effects and demonstrate strain differences across performance in mouse contextual and trace fear conditioning.

  5. Uranium in drinking water: effects on mouse oocyte quality.

    PubMed

    Kundt, Miriam S; Martinez-Taibo, Carolina; Muhlmann, Maria C; Furnari, Juan C

    2009-05-01

    The aim of this work was to evaluate the reproductive toxicological effects of uranium (U) at 2.5, 5, and 10 mgU/kg/d chronically administered in drinking water for 40 d. Swiss female control mice (n = 28) and mice chronically contaminated with uranyl nitrate in drinking water (n = 36) were tested. The number and quality of ovulated oocytes, chromatin organization, and nuclear integrity were evaluated. No significant differences were obtained in the numbers of ovulated oocytes between the different groups. Nevertheless, in 1,520 of the oocytes examined, dysmorphism increased from 11.99% in the control group to 27.99%, 27.19%, and 27.43% in each of the contaminated groups, respectively, in a dose-independent manner. On the other hand, morphological chromatin organization from 880 oocytes examined showed an increase in metaphase plate abnormalities from 37.20% (+/-7.21) in the control group to 55.13% (+/-21.36), 58.29% (+/-21.72), and 64.10% (+/-12.62) in each of the contaminated groups, respectively. Cumulus cell (CC) micronucleation, a parameter of nuclear integrity, increased from 0.21% (+/-0.31) in the control group to 1.92 (+/-0.95), 2.98 (+/-0.97), and 3.2 (+/-0.98), respectively. Both metaphase plate abnormalities and CC micronucleation showed an increase in a dose-dependent manner (r = 0.9; p < 0.001). The oocyte and its microenvironment showed high sensitivity to uranium contamination by drinking water. The lowest observed adverse effect level for this system is estimated at a level below 2.5 mgU/kg/d for female mice.

  6. Calea zacatechichi dichloromethane extract exhibits antidiarrheal and antinociceptive effects in mouse models mimicking irritable bowel syndrome.

    PubMed

    Sałaga, M; Kowalczuk, A; Zielinska, M; Błażewicz, A; Fichna, J

    2015-10-01

    Calea zacatechichi Schltdl. (Asteraceae alt. Compositae) is a Mexican plant commonly used in folk medicine to treat respiratory and gastrointestinal (GI) disorders. The objective of this study is to characterize the effect of C. zacatechichi extracts in mouse models mimicking the symptoms of irritable bowel syndrome (IBS). Powdered C. zacatechichi herb (leaves, stems, and flowers) was extracted with methanol. Methanolic extract was filtered and evaporated giving methanolic fraction. The residue was extracted with dichloromethane (DCM). Methanolic and DCM (200 mg/kg, per os) extracts were screened for their effect on GI motility in several in vitro tests, and the antidiarrheal and antinociceptive effects were assessed using mouse models. The influence of the DCM extract on motoric parameters and exploratory behaviors was also assessed. Finally, the composition of C. zacatechichi DCM extract was qualitatively analyzed using liquid chromatography-mass spectrometry (LC-MS) method. C. zacatechichi DCM extract significantly inhibited the contractility of mouse colon in vitro (IC50 = 17 ± 2 μg/ml). Administration of the DCM extract in vivo (200 mg/kg, per os) significantly prolonged the time of whole GI transit (46 ± 1 vs. 117 ± 27 min for control and DCM-treated animals, respectively; P = 0.0023), inhibited hypermotility, and reduced pain in mouse models mimicking functional GI disorders. Our findings suggest that constituents of the C. zacatechichi DCM extract exhibit antidiarrheal and analgesic activity. The extract may thus become an attractive material for isolation of compounds that may be used as a supplementary treatment for pain and diarrhea associated with IBS in the future.

  7. The effects of aging on the BTBR mouse model of autism spectrum disorder

    PubMed Central

    Jasien, Joan M.; Daimon, Caitlin M.; Wang, Rui; Shapiro, Bruce K.; Martin, Bronwen; Maudsley, Stuart

    2014-01-01

    Autism spectrum disorder (ASD) is a complex heterogeneous neurodevelopmental disorder characterized by alterations in social functioning, communicative abilities, and engagement in repetitive or restrictive behaviors. The process of aging in individuals with autism and related neurodevelopmental disorders is not well understood, despite the fact that the number of individuals with ASD aged 65 and older is projected to increase by over half a million individuals in the next 20 years. To elucidate the effects of aging in the context of a modified central nervous system, we investigated the effects of age on the BTBR T + tf/j mouse, a well characterized and widely used mouse model that displays an ASD-like phenotype. We found that a reduction in social behavior persists into old age in male BTBR T + tf/j mice. We employed quantitative proteomics to discover potential alterations in signaling systems that could regulate aging in the BTBR mice. Unbiased proteomic analysis of hippocampal and cortical tissue of BTBR mice compared to age-matched wild-type controls revealed a significant decrease in brain derived neurotrophic factor and significant increases in multiple synaptic markers (spinophilin, Synapsin I, PSD 95, NeuN), as well as distinct changes in functional pathways related to these proteins, including “Neural synaptic plasticity regulation” and “Neurotransmitter secretion regulation.” Taken together, these results contribute to our understanding of the effects of aging on an ASD-like mouse model in regards to both behavior and protein alterations, though additional studies are needed to fully understand the complex interplay underlying aging in mouse models displaying an ASD-like phenotype. PMID:25225482

  8. Effects of melatonin on oocyte maturation in PCOS mouse model.

    PubMed

    Nikmard, Fatemeh; Hosseini, Elham; Bakhtiyari, Mehrdad; Ashrafi, Mahnaz; Amidi, Fardin; Aflatoonian, Reza

    2017-04-01

    The purpose of oocyte in vitro maturation is generation of mature oocytes that could support future development. Efforts have been made to enhance oocyte developmental competence by developing optimal culture conditions. The present study is conducted to determine melatonin effects on quality of polycystic ovarian syndrome (PCOS) oocytes when it has been added during in vitro maturation, and immature oocytes were cultured in defined conditioned medium with and without different melatonin concentrations. Melatonin could significantly improve nuclear maturation of PCOS oocytes (81.1% vs. 56.3%, P < 0.05 were achieved with 10(-6) mol/L concentration). Cleavage rate was significantly higher in 10(-5) mol/L concentration compared to untreated oocytes in PCOS (54% vs. 35%, respectively) and it was significantly higher with 10(-6) mol/L concentration in the control group, 55% versus 38%, compared to untreated oocytes. This study showed that melatonin has the potential to induce oocyte nuclear maturation and guarantee fertilization potential. © 2016 Japanese Society of Animal Science.

  9. Stereoselective Effects of 4-Hydroxynonenal in Cultured Mouse Hepatocytes

    PubMed Central

    Dabrowski, Michael J.; Zolnerciks, Joseph K.; Balogh, Larissa M.; Greene, Robert J.; Kavanagh, Terrance J.; Atkins, William M.

    2010-01-01

    4-Hydroxynonenal (HNE) is produced from arachidonic acid or linoleic acid during oxidative stress. Although HNE is formed in tissues as a racemate, enantiospecific HNE effects have not been widely documented, nor considered. Therefore, a panel of cellular responses was compared after treatment with (R)-HNE, (S)-HNE, or racemic HNE. The phosphorylation status of Jun kinase (JNK) or Akt increased 28-fold or 2-3-fold, respectively, after treatment with 100 μM (S)-HNE and racemic HNE compared to (R)-HNE. In contrast, the increase in phosphorylation of MAPK was greatest for (R)-HNE. caspase-3-dependent cleavage of glutamate cysteine ligase (GCL) catalytic subunit and focal adhesion kinase (FAK) were greater in cells treated with (S)-HNE at 48 hrs. (S)-HNE also caused a greater number of subG1 nuclei, a hallmark of apoptosis, at 30 hours after treatment. Together, the results demonstrate different dose- and time-dependent responses to (R)-HNE and (S)-HNE. The results further suggest that HNE enantiomers could differentially contribute to the progression of different diseases or contribute by different mechanisms. PMID:20873854

  10. Effects of deuteration on hematopoiesis in the mouse

    SciTech Connect

    Adams, W.H.; Adams, D.G.

    1988-02-01

    Mice ingesting 30 to 50% D/sub 2/O (heavy water, deuterium oxide) developed a dose-dependent depression of formed peripheral blood elements in 4 to 9 days. The principal mechanism of anemia and thrombocytopenia is impaired hematopoiesis. Despite pancytopenia in the peripheral blood, bone marrow cellularity and morphology remained normal. Upon replacement of D/sub 2/O with tap water, platelet and neutrophil concentrations returned to normal within 48 to 72 hr. In contrast, blood lymphocyte concentrations remained low for several weeks. B-lymphocytes may be more affected by deuteration than other lymphocyte subsets. In vivo reticuloendothelial cell function, as assessed by /sup 51/Cr-labeled sheep erythrocyte clearance, was unaffected by D/sub 2/O. Although a dose-dependent decrease in fluid intake occurred during deuteration, hematocytopenia was not a consequence of dehydration. In view of the known kinetics of D/sub 2/O in biological systems, the rapid response of myeloid elements to deuteration must be due primarily to the solvent (nonmetabolic) isotope effect. Prolonged deuteration has proven toxic when included in regimens for treatment of neoplasia, including leukemia, in animal models. The present study shows that modulation of hematopoiesis by D/sub 2/O is possible without invoking the toxicities associated with prolonged deuteration.

  11. Effect of exercise on mouse liver and brain bioenergetic infrastructures.

    PubMed

    E, Lezi; Lu, Jianghua; Burns, Jeffrey M; Swerdlow, Russell H

    2013-01-01

    To assess the effects of exercise on liver and brain bioenergetic infrastructures, we exposed C57BL/6 mice to 6 weeks of moderate-intensity treadmill exercise. During the training period, fasting blood glucose was lower in exercised mice than in sedentary mice, but serum insulin levels were not reduced. At week 6, trained mice showed a paradoxical decrease in plasma lactate during exercise, which was accompanied by an increase in the liver monocarboxylate transporter 2 protein level (∼30%, P < 0.05). Exercise increased liver peroxisomal proliferator-activated receptor-γ coactivator 1α expression (approximately twofold, P < 0.001), NAD-dependent deacetylase sirtuin-1 protein (∼30%, P < 0.05), p38 protein (∼15%, P < 0.05), cytochrome c oxidase subunit 4 isoform 1 protein (∼50%, P < 0.05) and AMP-activated protein kinase phosphorylation (∼40%, P < 0.05). Despite this, liver mitochondrial DNA copy number (∼30%, P = 0.05), mitochondrial transcription factor A expression (∼15%, P < 0.05), cytochrome c oxidase subunit 2 expression (∼10%, P < 0.05), cAMP-response element binding protein phosphorylation (∼60%, P < 0.05) and brain-derived neurotrophic factor expression (∼40%, P < 0.05) were all reduced, while cytochrome oxidase and citrate synthase activities were unchanged. The only altered brain parameter observed was a reduction in tumour necrosis factor α expression (∼35%, P < 0.05); tumour necrosis factor α expression was unchanged in liver. Our data suggest that lactate produced by exercising muscle modifies the liver bioenergetic infrastructure, and enhanced liver uptake may in turn limit the ability of exercise-generated lactate to modify brain bioenergetics. Also, it appears that, at least in the liver, a dissociated mitochondrial biogenesis, in which some components are strategically enhanced while others are minimized, can occur.

  12. Inhibitory effects of pre- and posttest drugs on mouse-killing by rats.

    PubMed

    Gay, P E; Leaf, R C; Arble, F B

    1975-01-01

    Mouse-killing in rats was gradually inhibited by repeated posttest injections of d-amphetamine (1.5 mg/kg), l-amphetamine (1.5 mg/kg) or pilocarpine (7.5 mg/kg), but not by control substances. Of these drugs, only d-amphetamine inhibited killing when given prior to a mouse-killing test. Further experiments suggested that anorexia per se did not contribute to drug-induced inhibitory effects, but that changes in internal state were important to the development of inhibition. Pretest injections appear to inhibit predatory killing by a direct pharmacological action on some target site or sites, while posttest injections produce a learned aversion to predatory killing.

  13. Effect of oxidized arachidonic acid and hexanal on the mouse taste perception of bitterness and umami.

    PubMed

    Yamaguchi, Susumu; Fujiwara, Hidenori; Tashima, Ikukazu; Iwanaga, Daigo; Ushio, Hideki

    2010-01-01

    The oxidization of fatty acids generates many volatile compounds forming an aroma, but little is known whether mammals use gustatory sense to detect the oxidized products as a taste or only use olfactory sense to detect as an aroma. We examined in this study the effect of aqueous extracts of the compounds from autoxidized arachidonic acid (AA) ethyl ester or hexanal which is the predominant component generated from oxidized AA by the anosmic mouse licking performance to a tastant. The addition of the water extract from oxidized AA or hexanal to a quinine hydrochloride (QHCl) solution decreased the anosmic mice licking frequency at several concentrations of QHCl. Hexanal also reduced the licking frequency of anosmic mice conditioned to avoid MSG at several concentrations of monosodium glutamate (MSG). These results suggest that hexanal would affect mouse taste perception to QHCl and MSG via the gustatory sensation.

  14. Type 1 diabetes attenuates the modulatory effects of endomorphins on mouse colonic motility.

    PubMed

    Wang, Chang-lin; Wang, Xiang; Yu, Ye; Cui, Yun; Liu, Hong-mei; Lai, Lu-hao; Guo, Chao; Liu, Jing; Wang, Rui

    2008-02-01

    Our previous studies have shown that endomorphins (EMs), endogenous ligands for mu-opioid receptor, display a significant potentiation effect on mouse colonic motility. In the present study, to assess whether diabetes alters these modulatory effects of EMs on colonic motility, we investigated the effects of EMs in type 1 diabetic mouse colon in vitro. At 4 weeks after the onset of diabetes, carbachol-induced contractions in the longitudinal muscle of distal colon were significantly reduced compared to those of non-diabetic mice. Furthermore, the contractile effects induced by EMs in the longitudinal muscle of distal colon and in the circular muscle of proximal colon were also significantly reduced by type 1 diabetes. It is noteworthy that EMs-induced longitudinal muscle contractions were not significantly affected by atropine, Nomega-nitro-l-arginine methylester (l-NAME), phentolamine, propranolol, hexamethonium, methysergide and naltrindole. On the other hand, tetrodotoxin, indomethacin, naloxone, beta-funaltrexamine, naloxonazine and nor-binaltorphimine completely abolished these effects. These mechanisms responsible for EMs-induced modulatory effects in type 1 diabetes were in good agreement with those of non-diabetes, indicating similar mechanisms in both diabetes and non-diabetes. At 8 weeks after the onset of diabetes, both carbachol- and EMs-induced longitudinal muscle contractions were similar to those of short-time (4 weeks) diabetic mice. In summary, all the results indicated that type 1 diabetes significantly attenuated the modulatory effects of EMs on the mouse colonic motility, but the mechanisms responsible for these effects were not significantly altered.

  15. Antifibrotic effect of pirfenidone in a mouse model of human nonalcoholic steatohepatitis

    PubMed Central

    Komiya, Chikara; Tanaka, Miyako; Tsuchiya, Kyoichiro; Shimazu, Noriko; Mori, Kentaro; Furuke, Shunsaku; Miyachi, Yasutaka; Shiba, Kumiko; Yamaguchi, Shinobu; Ikeda, Kenji; Ochi, Kozue; Nakabayashi, Kazuhiko; Hata, Ken-ichiro; Itoh, Michiko; Suganami, Takayoshi; Ogawa, Yoshihiro

    2017-01-01

    Non-alcoholic steatohepatitis (NASH) is characterized by steatosis with lobular inflammation and hepatocyte injury. Pirfenidone (PFD) is an orally bioavailable pyridone derivative that has been clinically used for the treatment of idiopathic pulmonary fibrosis. However, it remains unknown whether PFD improves liver fibrosis in a mouse model with human NASH-like phenotypes. In this study, we employed melanocortin 4 receptor-deficient (MC4R-KO) mice as a mouse model with human NASH-like phenotypes to elucidate the effect and action mechanisms of PFD on the development of NASH. PFD markedly attenuated liver fibrosis in western diet (WD)-fed MC4R-KO mice without affecting metabolic profiles or steatosis. PFD prevented liver injury and fibrosis associated with decreased apoptosis of liver cells in WD-fed MC4R-KO mice. Pretreatment of PFD inhibited the tumor necrosis factor-α (TNF-α)-induced liver injury and fibrogenic responses associated with decreased apoptosis of liver cells in wild-type mice. PFD also prevented TNF-α-induced hepatocyte apoptosis in vitro with reduced activation of caspase-8 and -3. This study provides evidence for the antifibrotic effect of PFD in a mouse model of human NASH. The data of this study highlight hepatocyte apoptosis as a potential therapeutic target, and suggest that PFD can be repositioned as an antifibrotic drug for human NASH. PMID:28303974

  16. The effect of molybdenum on the in vitro development of mouse preimplantation embryos.

    PubMed

    Bi, Cong-Ming; Zhang, Yu-Ling; Liu, Feng-Jun; Zhou, Tie-Zhong; Yang, Zi-Jun; Gao, Shen-Yang; Wang, Shu-De; Chen, Xiao-Li; Zhai, Xiao-Wei; Ma, Xue-Gang; Jin, Li-Jun; Wang, Shen

    2013-04-01

    The object of this study was to investigate the effect of molybdenum on the development of mouse preimplantation embryos cultured in vitro. Zygotes were flushed from one outbred mouse strain (Kunming), and then were cultured in potassium simplex optimized medium (KSOM) containing 0, 5, 10, 20, 40, 80, 120, and 160 µg/ml of molybdenum for 5 days until the mid-blastocyst stage. The addition of ≤ 20 µg/ml molybdenum did not affect the blastocyst and birth rates. Molybdenum at doses of 40 µg/ml and higher significantly decreased the cleavage, blastocyst and birth rates, the average cell number, and significantly increased the proportion of degenerative blastocysts. At 120 µg/ml molybdenum inhibited the blastocysts development to birth. At 160 µg/ml molybdenum caused overall developmental arrest (up to 16-cells) of embryos and their massive degeneration. In conclusion, molybdenum negatively affected the development of embryos in a dose-dependent manner. With lower doses (≤ 20 µg/ml), mouse embryos were not apparently damaged. With very high doses (≥ 40 µg/ml), embryo quality significantly decreased. This assessment of the effect of molybdenum on the preimplantation embryo is an initial survey of toxicological risk.

  17. Effects of T-2 toxin on the regulation of steroidogenesis in mouse Leydig cells.

    PubMed

    Yang, Jian Ying; Zhang, Yong Fa; Li, Yuan Xiao; Guan, Gui Ping; Kong, Xiang Feng; Liang, Ai Min; Ma, Kai Wang; Da Li, Guang; Bai, Xue Fei

    2016-10-01

    T-2 toxin is one of the mycotoxins, a group of type A trichothecenes produced by several fungal genera including Fusarium species, which may lead to the decrease of testosterone secretion in primary Leydig cells derived from mouse testis. The previous study demonstrated T-2 toxin decrease the testosterone biosynthesis in the primary Leydig cells derived from the mouse testis directly. In this study, we further examined the direct biological effects of T-2 toxin on the process of steroidogenesis, primarily in Leydig cells of mice. Leydig cells of mature mouse were purified by Percoll gradient centrifugation and the cell purity was determined by 3β-hydroxysteroid dehydrogenase (3β-HSD) staining. To examine the decrease in T-2 toxin-induced testosterone secretion, we measured the transcription level of three key steroidogenic enzymes including 3β-HSD-1, cytochrome P450 side-chain cleavage (P450scc) enzyme, and steroidogenic acute regulatory (StAR) protein in T-2 toxin/human chorionic gonadotropin (hCG) co-treated cells. Our previous study showed that T-2 toxin (10(-7), 10(-8), and 10(-9) M) significantly suppressed hCG (10 ng/ml)-induced testosterone secretion. The studies demonstrated that the suppressive effect is correlated with a decrease in the level of transcription of 3β-HSD-1, P450scc, and StAR (p < 0.05).

  18. Immunostimulatory effect of spinach aqueous extract on mouse macrophage-like J774.1 cells and mouse primary peritoneal macrophages.

    PubMed

    Ishida, Momoko; Ose, Saya; Nishi, Kosuke; Sugahara, Takuya

    2016-07-01

    We herein report the immunostimulatory effect of spinach aqueous extract (SAE) on mouse macrophage-like J774.1 cells and mouse primary peritoneal macrophages. SAE significantly enhanced the production of interleukin (IL)-6 and tumor necrosis factor-α by both J774.1 cells and peritoneal macrophages by enhancing the expression levels of these cytokine genes. In addition, the phagocytosis activity of J774.1 cells was facilitated by SAE. Immunoblot analysis revealed that SAE activates mitogen-activated protein kinase and nuclear factor-κB cascades. It was found that SAE activates macrophages through not only TLR4, but also other receptors. The production of IL-6 was significantly enhanced by peritoneal macrophages from SAE-administered BALB/c mice, suggesting that SAE has a potential to stimulate macrophage activity in vivo. Taken together, these data indicate that SAE would be a beneficial functional food with immunostimulatory effects on macrophages.

  19. [Effect of anti-arrhythmia drugs on mouse arrhythmia induced by Bufonis Venenum].

    PubMed

    Lu, Wen-juan; Zhou, Jing; Ma, Hong-yue; Lü, Gao-hong; You, Fen-qiang; Ding, An-wei; Duan, Jin-ao

    2011-10-01

    This study is to investigate the effects of phenytoin sodium, lidocaine (sodium channel blockers), propranolol (beta-adrenergic receptor antagonist), amiodarone (drugs prolonging the action potential duration) and verapamil (calcium channel blockers) on arrhythmia of mice induced by Bufonis Venenum (Chansu) and isolated mouse hearts lethal dose of Chansu. Arrhythmia of mice were induced by Chansu and then electrocardiograms (ECGs) were recorded. The changes of P-R interval, QRS complex, Q-T interval, T wave amplitude, heart rate (HR) were observed. Moreover, arrhythmia rate, survival rate and arrhythmia score were counted. Isolated mouse hearts were prefused, and the lethal dose of Chansu was recorded. Compared with control group, after pretreatment with phenytoin sodium, broadening of QRS complex and HR were inhibited, and the incidence of ventricular arrhythmia was reduced dramatically, while survival rate was improved; the isolated mouse hearts lethal dose of Chansu was increased significantly. After pretreatment with lidocaine, the prolongation of P-R interval and broadening of QRS complex were inhibited, and the incidences of ventricular arrhythmia were reduced dramatically, while survival rate was improved; the isolated mouse hearts lethal dose of Chansu was increased significantly. After pretreatment with propranolol, prolongation of P-R interval, broadening of QRS complex, prolongation of Q-T interval and HR were inhibited, and the incidences of both supraventricular and ventricular arrhythmias were reduced dramatically, while survival rate was improved. After pretreatment with amiodarone, HR was inhibited, the incidences of ventricular tachycardia were reduced dramatically. Lastly, after pretreatment with verapamil, the prolongation of P-R interval and Q-T interval were inhibited and the incidences of both supraventricular and ventricular arrhythmias were reduced dramatically; the isolated mouse hearts lethal dose of Chansu was reduced significantly. In in

  20. Regulatory T cells exhibit neuroprotective effect in a mouse model of traumatic brain injury

    PubMed Central

    Yu, Yunhu; Cao, Fang; Ran, Qishan; Sun, Xiaochuan

    2016-01-01

    Traumatic brain injury (TBI) is a major health and socioeconomic problem as it is associated with high rates of mortality and morbidity worldwide. Regulatory T cells (Tregs) have been reported to reduce inflammatory response in several diseases, including myasthenia gravis, viral myocarditis and cerebral infarction. The present study investigated the role of Tregs in mediating neuro-protective effects in a mouse model of TBI. Initially, Treg levels were determined, and compared between the controlled cortical impact (CCI) model for moderate TBI and the sham group, by using flow cytometry and ELISA. Afterwards, the number of Tregs was upregulated (by injection) and downregulated (by depletion), respectively, to elucidate the effect of Tregs in the presence of an inflammatory reaction and a deficient neurological function and consequently, in the prognosis of TBI in the mouse. The expression of pro-inflammatory cytokines [tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6)] and anti-inflammatory cytokines [IL-10, transforming growth factor (TGF)-β] in blood and brain tissues was also measured in the five groups: Μice receiving a saline injection, mice experiencing Treg depletion, small-dose (SD Tregs, 1.25×105), and mice receiving different doses of Tregs: Moderate-dose (MD Tregs, 2.5×105) and large-dose (LD Tregs, 5×105), using ELISA and PCR. Co-cultures of Tregs and microglia were performed to evaluate the expression of pro-inflammatory cytokines and observe the interaction between the two types of cells. The regulation patterns in JNK-NF-κB pathway by Tregs were also evaluated by western blot analysis. Treg levels were significantly reduced in TBI mouse group on the 3rd day after TBI (P<0.05). In the mouse model of TBI, the expression of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6) was enhanced, while the expression of anti-inflammatory cytokines (IL-10, TGF-β) was reduced (P<0.05). Tregs exhibited a suppressive effect on inflammatory reactions

  1. Regulatory T cells exhibit neuroprotective effect in a mouse model of traumatic brain injury.

    PubMed

    Yu, Yunhu; Cao, Fang; Ran, Qishan; Sun, Xiaochuan

    2016-12-01

    Traumatic brain injury (TBI) is a major health and socioeconomic problem as it is associated with high rates of mortality and morbidity worldwide. Regulatory T cells (Tregs) have been reported to reduce inflammatory response in several diseases, including myasthenia gravis, viral myocarditis and cerebral infarction. The present study investigated the role of Tregs in mediating neuro‑protective effects in a mouse model of TBI. Initially, Treg levels were determined, and compared between the controlled cortical impact (CCI) model for moderate TBI and the sham group, by using flow cytometry and ELISA. Afterwards, the number of Tregs was upregulated (by injection) and downregulated (by depletion), respectively, to elucidate the effect of Tregs in the presence of an inflammatory reaction and a deficient neurological function and consequently, in the prognosis of TBI in the mouse. The expression of pro‑inflammatory cytokines [tumor necrosis factor (TNF)‑α, interleukin (IL)‑1β, IL‑6)] and anti‑inflammatory cytokines [IL‑10, transforming growth factor (TGF)‑β] in blood and brain tissues was also measured in the five groups: Μice receiving a saline injection, mice experiencing Treg depletion, small‑dose (SD Tregs, 1.25x105), and mice receiving different doses of Tregs: Moderate‑dose (MD Tregs, 2.5x105) and large‑dose (LD Tregs, 5x105), using ELISA and PCR. Co‑cultures of Tregs and microglia were performed to evaluate the expression of pro‑inflammatory cytokines and observe the interaction between the two types of cells. The regulation patterns in JNK‑NF‑κB pathway by Tregs were also evaluated by western blot analysis. Treg levels were significantly reduced in TBI mouse group on the 3rd day after TBI (P<0.05). In the mouse model of TBI, the expression of pro‑inflammatory cytokines (TNF‑α, IL‑1β, IL‑6) was enhanced, while the expression of anti‑inflammatory cytokines (IL‑10, TGF‑β) was reduced (P<0.05). Tregs exhibited a

  2. Mouse phenotyping.

    PubMed

    Fuchs, Helmut; Gailus-Durner, Valérie; Adler, Thure; Aguilar-Pimentel, Juan Antonio; Becker, Lore; Calzada-Wack, Julia; Da Silva-Buttkus, Patricia; Neff, Frauke; Götz, Alexander; Hans, Wolfgang; Hölter, Sabine M; Horsch, Marion; Kastenmüller, Gabi; Kemter, Elisabeth; Lengger, Christoph; Maier, Holger; Matloka, Mikolaj; Möller, Gabriele; Naton, Beatrix; Prehn, Cornelia; Puk, Oliver; Rácz, Ildikó; Rathkolb, Birgit; Römisch-Margl, Werner; Rozman, Jan; Wang-Sattler, Rui; Schrewe, Anja; Stöger, Claudia; Tost, Monica; Adamski, Jerzy; Aigner, Bernhard; Beckers, Johannes; Behrendt, Heidrun; Busch, Dirk H; Esposito, Irene; Graw, Jochen; Illig, Thomas; Ivandic, Boris; Klingenspor, Martin; Klopstock, Thomas; Kremmer, Elisabeth; Mempel, Martin; Neschen, Susanne; Ollert, Markus; Schulz, Holger; Suhre, Karsten; Wolf, Eckhard; Wurst, Wolfgang; Zimmer, Andreas; Hrabě de Angelis, Martin

    2011-02-01

    Model organisms like the mouse are important tools to learn more about gene function in man. Within the last 20 years many mutant mouse lines have been generated by different methods such as ENU mutagenesis, constitutive and conditional knock-out approaches, knock-down, introduction of human genes, and knock-in techniques, thus creating models which mimic human conditions. Due to pleiotropic effects, one gene may have different functions in different organ systems or time points during development. Therefore mutant mouse lines have to be phenotyped comprehensively in a highly standardized manner to enable the detection of phenotypes which might otherwise remain hidden. The German Mouse Clinic (GMC) has been established at the Helmholtz Zentrum München as a phenotyping platform with open access to the scientific community (www.mousclinic.de; [1]). The GMC is a member of the EUMODIC consortium which created the European standard workflow EMPReSSslim for the systemic phenotyping of mouse models (http://www.eumodic.org/[2]). Copyright © 2010 Elsevier Inc. All rights reserved.

  3. Effect of different cryoprotectant agents on spermatogenesis efficiency in cryopreserved and grafted neonatal mouse testicular tissue.

    PubMed

    Yildiz, Cengiz; Mullen, Brendan; Jarvi, Keith; McKerlie, Colin; Lo, Kirk C

    2013-08-01

    Restoration of male fertility associated with use of the cryopreserved testicular tissue would be a significant advance in human and animal assisted reproductive technology. The purpose of this study was to test the effects of four different cryoprotectant agents (CPA) on spermatogenesis and steroidogenesis in cryopreserved and allotransplanted neonatal mouse testicular tissue. Hank's balanced salt solution (HBSS) with 5% fetal bovine serum including either 0.7 M dimethyl sulfoxide (DMSO), 0.7 M propylene glycol (PrOH), 0.7 M ethylene glycol (EG), or glycerol was used as the cryoprotectant solution. Donor testes were collected and dissected from neonatal pups of CD-1 mice (one day old). Freezing and seeding of the testicular whole tissues was performed using an automated controlled-rate freezer. Four fresh (non-frozen) or frozen-thawed pieces of testes were subcutaneously grafted onto the hind flank of each castrated male NCr nude recipient mouse and harvested after 3 months. Fresh neonatal testes grafts recovered from transplant sites had the most advanced rate of spermatogenesis with elongated spermatid and spermatozoa in 46.6% of seminiferous tubules and had higher levels of serum testosterone compared to all other frozen-thawed-graft groups (p<0.05). Fresh grafts and frozen-thawed grafts in the DMSO group had the highest rate of tissue survival compared to PrOH, EG, and glycerol after harvesting (p>0.05). The most effective CPA for the freezing and thawing of neonatal mouse testes was DMSO in comparison with EG (p<0.05) in both pre-grafted and post-grafted tissues based on histopathological evaluation. Likewise, the highest level of serum testosterone was obtained from the DMSO CPA group compared to all other cryoprotectants evaluated (p<0.05). The typical damage observed in the frozen-thawed grafts included disruption of the interstitial stroma, intercellular connection ruptures, and detachment of spermatogonia from the basement membrane. These findings

  4. Rett syndrome treatment in mouse models: searching for effective targets and strategies.

    PubMed

    Ricceri, Laura; De Filippis, Bianca; Laviola, Giovanni

    2013-05-01

    Rett syndrome (RTT) is a pervasive developmental disorder, primarily affecting girls with a prevalence of 1 in every 10,000 births; it represents the second most common cause of intellectual disability in females. Mutations in the gene encoding methyl-CpG-binding protein 2 (MECP2) have been identified as clear etiological factors in more than 90% of classical RTT cases. Whereas the mechanisms leading to the severe, progressive and specific neurological dysfunctions when this gene is mutated still remain to be elucidated, a series of different mouse models have been generated, bearing different Mecp2 mutation. Neurobehavioural analysis in these mouse lines have been carried out and phenotyping analysis can be now utilised to preclinically evaluate the effects of potential RTT treatments. This review summarizes the different results achieved in this research field taking into account different key targets identified to ameliorate RTT phenotype in mouse models, including those not directly downstream of MeCP2 and those limited to the early phases of postnatal development. This article is part of the Special Issue entitled 'Neurodevelopmental Disorders'.

  5. Effect of mycotoxin-containing diets on epigenetic modifications of mouse oocytes by fluorescence microscopy analysis.

    PubMed

    Zhu, Cheng-Cheng; Hou, Yan-Jun; Han, Jun; Liu, Hong-Lin; Cui, Xiang-Shun; Kim, Nam-Hyung; Sun, Shao-Chen

    2014-08-01

    Mycotoxins, such as aflatoxin (AF), fumonisin B1, zearalenone (ZEA), and deoxynivalenol (DON), are commonly found in many food commodities. Mycotoxins have been shown to increase DNA methylation levels in a human intestinal cell line. We previously showed that the developmental competence of oocytes was affected in mice that had been fed a mycotoxin-containing diet. In this study, we explored possible mechanisms of low mouse oocyte developmental competence after mycotoxin treatment in an epigenetic modification perspective. Mycotoxin-contaminated maize (DON at 3,875 μg/kg, ZEA at 1,897 μg/kg, and AF at 806 μg/kg) was included in diets at three different doses (mass percentage: 0, 15, and 30%) and fed to mice for 4 weeks. The fluorescence intensity analysis showed that the general DNA methylation levels increased in oocytes from high dose mycotoxin-fed mice. Mouse oocyte histone methylation was also altered. H3K9me3 and H4K20me3 level increased in oocytes from mycotoxin-fed mice, whereas H3K27me3 and H4K20me2 level decreased in oocytes from mycotoxin-fed mice. Thus, our results indicate that naturally occurring mycotoxins have effects on epigenetic modifications in mouse oocytes, which may be one of the reasons for reduced oocyte developmental competence.

  6. Tumour effect on arginine/ornithine metabolic relationship in hypertrophic mouse kidney.

    PubMed

    Manteuffel-Cymborowska, M; Chmurzyńska, W; Peska, M; Grzelakowska-Sztabert, B

    1997-03-01

    The presence of a tumour significantly changes nitrogen metabolism, including that of amino acids and polyamines, in host animals. In this study, we examine whether developing tumours affect the metabolic relationship of arginine and ornithine, precursors of polyamines, in the testosterone-induced hypertrophic mouse kidney model. Androgen-induced changes in the activity of enzymes involved with ornithine biosynthesis (arginase), its consumption (ornithine aminotransferase, OAT and ornithine decarboxylase, ODC) and the hypertrophy of host mouse kidney were not affected by the presence of an ascitic tumour (EAC) and only slightly by a mammary carcinoma (MaCa). The HPLC determined renal level of arginine and ornithine showed a striking homeostasis and was disturbed neither by testosterone nor EAC. The effect of MaCa and testosterone on the levels of both amino acids, although significant, was not very pronounced. Developing tumours, especially ascitic, altered the renal activity of OAT and ODC, but not of arginase, in testosterone-untreated mice. All examined tumours, EAC, L 1210 and MaCa actively metabolized arginine and ornithine. the tumour content of arginine which coincided with the activity of arginase, resulted in a marked increase of the ornithine/arginine ratio in tumours, when compared with kidneys. These results indicate that the androgen-induced anabolic response in mouse kidney is preserved, in spite of tumour requirements for essential metabolites.

  7. Short-Term Peripheral Auditory Effects of Cranial Irradiation: A Mouse Model

    PubMed Central

    Gasser Rutledge, Krysta L.; Prasad, Kumar G.; Emery, Kara R.; Mikulec, Anthony A.; Varvares, Mark; Gratton, Michael Anne

    2015-01-01

    Objectives Assess post-cranial irradiation short-term threshold shift short-term peripheral auditory histopathology the mouse as an experimental model Methods Adult mice were exposed to single-dose radiation of 10 – 60 Gy. Pre- and post-irradiation (baseline, 2 – 8 days) audiometric brainstem response data were recorded with analysis of cochlear ultrastructure. Results Significant threshold shift occurred at all test frequencies in mice exposed to ≥ 20 Gy at 4 – 6 days post-irradiation. Ultrastructurally in Rosenthal’s canal and the spiral lamina, neuronal density and extracellular matrix decreased dramatically. There was overall preservation of hair cells, stria vascularis, and vasculature. No difference within Gy group was noted in the frequency or severity of pathology along the length of the cochlea. Conclusions The initial impact of radiation in the first week post-exposure focuses on spiral ganglion cell bodies and peripheral projections, resulting in significant threshold shift for irradiation dosages ≥ 20 Gy. This study demonstrates that the mouse is a viable model for study of short-term peripheral auditory effects using single-dose cranial irradiation. Additionally, with access to a precise animal irradiator, the mouse may be used as an experimental model for a fractionated irradiation dosage of 10 Gy, simulating stereotactic therapeutic cranial irradiation. PMID:26085370

  8. [Inhibitory effect on male mouse procreation and chemical composition analysis of Rhynchosia volubilis ethyl acetate extract].

    PubMed

    Wang, Jian-gang; Xiong, Cheng-liang; Yin, Wei-ping; Wang, Shu-ying; Wu, Yin-ping; Qian, Xin

    2007-06-01

    To study the effect of Rhynchosia volubilis Lour ethyl acetate extract (RVLEAE) on male mouse procreation and analyse their chemical composition. With the method of solvent extraction, RVLEAE was extracted and concentrated. In the experiment of mice, 80 male mice were randomly and equally divided into four groups: Normal Saline control, positive control with 0.1% triperygium wilfordii glycoside, 100 mg x kg(-1) x d(-1) RVLEAE and 400 mg x kg(-1) x d(-1) RVLEAE. Every mouse was fed with drug 0.01 mL x g(-1), once a day, ig, for eleven consecutive weeks. After two and 10 weeks, male and female mouse naturally mated for one week. The pregnancy rate, number of fetus and nonviable fetus, the viability of spermatozoon in the epididymis cauda, pathological change of testis and epididymis were observed in this experiment. In the analysis of chemical composition, RVLEAE were separated with column chromatography, and chemical compositions were identified with thinlayer chromatography, infrared chromatography and nuclear magnetic resonance. The pregnancy rate of mice was markedly decreased. The number and viability of spermatozoon were slightly reduced in I and II after two and 10 weeks, but the pathological changes of testis and epididymis were markedly occurred. Main chemical compositions were identified as saccharide, glycosides especially analog of fucose, alcohols, and phenols. RVLEAE can inhibit the procreation of male mice, and inhibitory target tissue may be the epididymis. Active mechanism of RVLEAE may be that glycosides interfere the maturation of spermatozoon in the epididymis cauda.

  9. The regulatory effects of L. plantarum peptidoglycan microspheres on innate and humoral immunity in mouse.

    PubMed

    Li, Xiuliang; Sun, Quan; Wang, Yawei; Han, Dequan; Fan, Jiahui; Zhang, Jialing; Yang, Chunhai; Ma, Xiaoxiong; Sun, Qingshen

    2017-09-13

    To study the effects of Lactobacillus Plantarum cell wall peptidoglycan (LPG) microspheres on mouse intestinal flora changes, peptidoglycan recognitions protein (PGRP) and cytokines expression levels. Plate counting was used for enumeration of the intestinal flora. Real-time PCR was used for quantification PGRP in different tissues. Cytokines content were determined by ELISA kits. The mouse administered orally with LPG microspheres showed significantly higher number of Lactobacillus and Bifidobacterium in caecum contents (p < 0.01). The amount of PGRP expression in different organs was highest in LPG microspheres-treated group. IL-4, 12, IFN-γ, TNF-α contents in serum from LPG microspheres-treated mouse were significantly higher than those in normal saline-treated group (p < 0.01). This study shows that the LPG microspheres can regulate intestinal flora imbalance and improve systemic immunity, improve both Th1 and Th2 immune response, which provide some basis for the use of LPG as potential adjuvants.

  10. The Effect of D-Aspartate on Spermatogenesis in Mouse Testis.

    PubMed

    Tomita, Keiji; Tanaka, Hiroyuki; Kageyama, Susumu; Nagasawa, Masayuki; Wada, Akinori; Murai, Ryosuke; Kobayashi, Kenichi; Hanada, Eiki; Agata, Yasutoshi; Kawauchi, Akihiro

    2016-02-01

    Spermatogenesis is controlled by hormonal secretions from the hypothalamus and pituitary gland, by factors produced locally in the testis, and by direct interaction between germ cells and Sertoli cells in seminiferous tubules. Although the mammalian testis contains high levels of D-aspartate (D-Asp), and D-Asp is known to stimulate the secretion of testosterone in cultured Leydig cells, its role in testis is unclear. We describe here biochemical, immunohistochemical, and flow cytometric studies designed to elucidate developmental changes in testicular D-Asp levels and the direct effect of D-Asp on germ cells. We found that the concentration of D-Asp in mouse testis increased with growth and that fluctuations in D-Asp levels were controlled in part by its degradative enzyme, D-aspartate oxidase expressed in Sertoli cells. In vitro sperm production studies showed that mitosis in premeiotic germ cells was strongly inhibited by the addition of D-Asp to the culture medium. Moreover, immunohistochemical analysis demonstrated that d-Asp accumulated in the differentiated spermatids, indicating either transport of D-Asp to spermatids or its de novo synthesis in these cells. Such compartmentation seems to prevent premeiotic germ cells in mouse testis from being exposed to the excess amount of D-Asp. In concert, our results indicate that in mouse testis, levels of D-Asp are regulated in a spatiotemporal manner and that D-Asp functions as a modulator of spermatogenesis.

  11. Application of mouse model for effective evaluation of foot-and-mouth disease vaccine.

    PubMed

    Lee, Seo-Yong; Ko, Mi-Kyeong; Lee, Kwang-Nyeong; Choi, Joo-Hyung; You, Su-Hwa; Pyo, Hyun-Mi; Lee, Myoung-Heon; Kim, Byounghan; Lee, Jong-Soo; Park, Jong-Hyeon

    2016-07-19

    Efficacy evaluation of foot-and-mouth disease (FMD) vaccines has been conducted in target animals such as cows and pigs. In particular, handling FMD virus requires a high level of biosafety management and facilities to contain the virulent viruses. The lack of a laboratory animal model has resulted in inconvenience when it comes to using target animals for vaccine evaluation, bringing about increased cost, time and labor for the experiments. The FMD mouse model has been studied, but most FMD virus (FMDV) strains are not known to cause disease in adult mice. In the present study, we created a series of challenge viruses that are lethal to adult C57BL/6 mice. FMDV types O, A, and Asia1, which are related to frequent FMD outbreaks, were adapted for mice and the pathogenesis of each virus was evaluated in the mouse model. Challenge experiments after vaccination using in-house and commercial vaccines demonstrated vaccine-mediated protection in a dose-dependent manner. In conclusion, we propose that FMD vaccine evaluation should be carried out using mouse-adapted challenge viruses as a swift, effective efficacy test of experimental or commercial vaccines.

  12. Chemopreventive effects of Paullinia cupana Mart var. sorbilis, the guaraná, on mouse hepatocarcinogenesis.

    PubMed

    Fukumasu, Heidge; da Silva, Tereza Cristina; Avanzo, José Luis; de Lima, Cyntia Esteves; Mackowiak, Ivone Isabel; Atroch, André; de Souza Spinosa, Helenice; Moreno, Fernando Salvador; Dagli, Maria Lucia Zaidan

    2006-02-20

    Guaraná (Paullinia cupana) is originally from Amazon, Brazil. Its effects on mouse hepatocarcinogenesis have been investigated in this study. Mice were treated with N-nitrosodiethylamine (DEN), received three different doses of P. cupana added to commercial food, and euthanized after 25 weeks. Gross lesions were quantified, and preneoplastic lesions (PNL) were histologically measured. Cellular proliferation was evaluated by immunobloting for the proliferating cell nuclear antigen (PCNA). The incidence and multiplicity of macroscopic lesions were reduced. The PNL number and PCNA expression were reduced in the highest P. cupana dose. According to these results, guaraná presented inhibitory effects on DEN hepatocarcinogenesis in mice.

  13. Identification of Aminopyridazine-Derived Antineuroinflammatory Agents Effective in an Alzheimer's Mouse Model

    PubMed Central

    2012-01-01

    Targeting neuroinflammation may be a new strategy to combat Alzheimer's disease. An aminopyridazine 1b previously reported as a novel antineuroinflammatory agent was considered to have a potential therapeutic effect for Alzheimer's disease. In this study, we further explored the chemical space to identify more potent antineuroinflammatory agents and validate their in vivo efficacy in an animal model. Compound 14 was finally identified as an effective agent with comparable in vivo efficacy to the marketed drug donepezil in counteracting spatial learning and working memory impairment in an Aβ-induced Alzheimer's mouse model. PMID:24900405

  14. Effect of intermittent fasting on prostate cancer tumor growth in a mouse model.

    PubMed

    Thomas, J A; Antonelli, J A; Lloyd, J C; Masko, E M; Poulton, S H; Phillips, T E; Pollak, M; Freedland, S J

    2010-12-01

    Caloric restriction (CR) has been shown to have anti-cancer properties. However, CR may be difficult to apply in humans secondary to compliance and potentially deleterious effects. An alternative is intermittent CR, or in the extreme case intermittent fasting (IF). In a previous small pilot study, we found 2 days per week of IF with ad libitum feeding on the other days resulted in trends toward prolonged survival of mice bearing prostate cancer xenografts. We sought to confirm these findings in a larger study. A total of 100 (7- to 8-week-old) male severe combined immunodeficiency mice were injected subcutaneously with 1 × 10(5) LAPC-4 prostate cancer cells. Mice were randomized to either ad libitum Western Diet (44% carbohydrates, 40% fat and 16% protein) or ad libitum Western Diet with twice-weekly 24 h fasts (IF). Tumor volumes and mouse bodyweights were measured twice weekly. Mice were killed when tumor volumes reached 1000 mm(3). Serum and tumor were collected for analysis of the insulin/insulin-like growth factor 1 (IGF-1) hormonal axis. Overall, there was no difference in mouse survival (P=0.37) or tumor volumes (P ≥ 0.10) between groups. Mouse body weights were similar between arms (P=0.84). IF mice had significantly higher serum IGF-1 levels and IGF-1/IGFBP-3 ratios at killing (P<0.001). However, no difference was observed in serum insulin, IGFBP-3 or tumor phospho-Akt levels (P ≥ 0.39). IF did not improve mouse survival nor did it delay prostate tumor growth. This may be secondary to metabolic adaptations to the 24 h fasting periods. Future studies are required to optimize CR for application in humans.

  15. Effect of Sildenafil on Pre-Eclampsia-Like Mouse Model Induced By L-Name.

    PubMed

    Motta, C; Grosso, C; Zanuzzi, C; Molinero, D; Picco, N; Bellingeri, R; Alustiza, F; Barbeito, C; Vivas, A; Romanini, M C

    2015-08-01

    N(omega)-nitro-L-arginine methyl ester (L-NAME) decreases the vasodilator effect of nitric oxide (NO) and induces pre-eclampsia in mouse. Sildenafil inhibits the degradation of nitric oxide and increases vasodilation. This study aimed to determine the effects of sildenafil citrate on angiogenesis and oxidative stress at the maternal foetal interface on pre-eclampsia-like mouse model induced by L-NAME. Twenty pregnant mice were divided into four groups: (i) vehicle control; (ii) L-NAME; (iii) sildenafil; (4) L-NAME+sildenafil. L-NAME was administered from day 7 of pregnancy and sildenafil from day 8 until day 16; animals were euthanized on day 17. Placental and foetal sizes and weights were measured; lipid peroxide levels and catalase activity in placental homogenates were determined, and placental vascular endothelia were identified by lectin-histochemistry using BSA-I lectin. Western blot analysis was used to determine VEGF expression in placental homogenates. No changes were seen in placental and foetal development in mice with normal pregnancies treated with sildenafil. Treatments with L-NAME reduced significantly the placental weight and average height and decreased the percentage of the endothelial surface. These alterations may be mediated by the reduction of NO levels in trophoblastic cells, due to the inhibitory effect of L-NAME on nitric oxide synthase (NOS) synthesis. This effect was offset by the treatment with sildenafil, with an increase in the percentage of the endothelial surface. In conclusion, our results indicate that treatment with sildenafil on pre-eclampsia mouse model can be used without adverse effects on the concept and its use in the treatment of pre-eclampsia is promising.

  16. Effect of sclerostin antibody treatment in a mouse model of severe osteogenesis imperfecta.

    PubMed

    Roschger, Andreas; Roschger, Paul; Keplingter, Petra; Klaushofer, Klaus; Abdullah, Sami; Kneissel, Michaela; Rauch, Frank

    2014-09-01

    Osteogenesis imperfecta (OI) is a heritable bone fragility disorder that is usually caused by mutations affecting collagen type I production in osteoblasts. Stimulation of bone formation through sclerostin antibody treatment (Sost-ab) has shown promising results in mouse models of relatively mild OI. We assessed the effect of once-weekly intravenous Sost-ab injections for 4weeks in male Col1a1(Jrt)/+mice, a model of severe dominant OI, starting either at 4weeks (growing mice) or at 20weeks (adult mice) of age. Sost-ab had no effect on weight or femur length. In OI mice, no significant treatment-associated differences in serum markers of bone formation (alkaline phosphatase activity, procollagen type I N-propeptide) or resorption (C-telopeptide of collagen type I) were found. Micro-CT analyses at the femur showed that Sost-ab treatment was associated with higher trabecular bone volume and higher cortical thickness in wild type mice at both ages and in growing OI mice, but not in adult OI mice. Three-point bending tests of the femur showed that in wild type but not in OI mice, Sost-ab was associated with higher ultimate load and work to failure. Quantitative backscattered electron imaging of the femur did not show any effect of Sost-ab on CaPeak (the most frequently occurring calcium concentration in the bone mineral density distribution), regardless of genotype, age or measurement location. Thus, Sost-ab had a larger effect in wild type than in Col1a1(Jrt)/+mice. Previous studies had found marked improvements of Sost-ab on bone mass and strength in an OI mouse model with a milder phenotype. Our data therefore suggest that Sost-ab is less effective in a more severely affected OI mouse model. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Effect of Delta-9-tetrahydrocannabinol on mouse resistance to systemic Candida albicans infection.

    PubMed

    Blumstein, Gideon W; Parsa, Arya; Park, Anthony K; McDowell, Beverly L P; Arroyo-Mendoza, Melissa; Girguis, Marie; Adler-Moore, Jill P; Olson, Jon; Buckley, Nancy E

    2014-01-01

    Delta-9-tetrahydrocannabinol (Δ9-THC), the psychoactive component of marijuana, is known to suppress the immune responses to bacterial, viral and protozoan infections, but its effects on fungal infections have not been studied. Therefore, we investigated the effects of chronic Δ9-THC treatment on mouse resistance to systemic Candida albicans (C. albicans) infection. To determine the outcome of chronic Δ9-THC treatment on primary, acute systemic candidiasis, c57BL/6 mice were given vehicle or Δ9-THC (16 mg/kg) in vehicle on days 1-4, 8-11 and 15-18. On day 19, mice were infected with 5×10(5) C. albicans. We also determined the effect of chronic Δ9-THC (4-64 mg/kg) treatment on mice infected with a non-lethal dose of 7.5×10(4) C. albicans on day 2, followed by a higher challenge with 5×10(5) C. albicans on day 19. Mouse resistance to the infection was assessed by survival and tissue fungal load. Serum cytokine levels were determine to evaluate the immune responses. In the acute infection, chronic Δ9-THC treatment had no effect on mouse survival or tissue fungal load when compared to vehicle treated mice. However, Δ9-THC significantly suppressed IL-12p70 and IL-12p40 as well as marginally suppressed IL-17 versus vehicle treated mice. In comparison, when mice were given a secondary yeast infection, Δ9-THC significantly decreased survival, increased tissue fungal burden and suppressed serum IFN-γ and IL-12p40 levels compared to vehicle treated mice. The data showed that chronic Δ9-THC treatment decreased the efficacy of the memory immune response to candida infection, which correlated with a decrease in IFN-γ that was only observed after the secondary candida challenge.

  18. Metabolic Effects of Bariatric Surgery in Mouse Models of Circadian Disruption

    PubMed Central

    Arble, Deanna M.; Sandoval, Darleen A.; Turek, Fred W.; Woods, Stephen C.; Seeley, Randy J.

    2015-01-01

    Background/Objectives Mounting evidence supports a link between circadian disruption and metabolic disease. Humans with circadian disruption (e.g., night-shift workers) have an increased risk of obesity and cardiometabolic diseases compared to the non-disrupted population. However, it is unclear if the obesity and obesity-related disorders associated with circadian disruption respond to therapeutic treatments as well as individuals with other types of obesity. Subjects/Methods Here, we test the effectiveness of the commonly used bariatric surgical procedure, Vertical Sleeve Gastrectomy (VSG) in mouse models of genetic and environmental circadian disruption. Results VSG led to a reduction in body weight and fat mass in both ClockΔ19 mutant and constant-light mouse models (P < .05), resulting in an overall metabolic improvement independent of circadian disruption. Interestingly, the decrease in body weight occurred without altering diurnal feeding or activity patterns (P > .05). Within circadian-disrupted models, VSG also led to improved glucose tolerance and lipid handling (P < .05). Conclusions Together these data demonstrate that VSG is an effective treatment for the obesity associated with circadian disruption, and that the potent effects of bariatric surgery are orthogonal to circadian biology. However, since the effects of bariatric surgery are independent of circadian disruption, VSG cannot be considered a cure for circadian disruption. These data have important implications for circadian-disrupted obese patients. Moreover, these results reveal new information about the metabolic pathways governing the effects of bariatric surgery as well as of circadian disruption. PMID:25869599

  19. Visualization of laser tattoo removal treatment effects in a mouse model by two-photon microscopy.

    PubMed

    Jang, Won Hyuk; Yoon, Yeoreum; Kim, Wonjoong; Kwon, Soonjae; Lee, Seunghun; Song, Duke; Choi, Jong Woon; Kim, Ki Hean

    2017-08-01

    Laser tattoo removal is an effective method of eliminating tattoo particles in the skin. However, laser treatment cannot always remove the unwanted tattoo completely, and there are risks of either temporary or permanent side effects. Studies using preclinical animal models could provide detailed information on the effects of laser treatment in the skin, and might help to minimize side effects in clinical practices. In this study, two-photon microscopy (TPM) was used to visualize the laser treatment effects on tattoo particles in both phantom specimens and in vivo mouse models. Fluorescent tattoo ink was used for particle visualization by TPM, and nanosecond (ns) and picosecond (ps) lasers at 532 nm were used for treatment. In phantom specimens, TPM characterized the fragmentation of individual tattoo particles by tracking them before and after the laser treatment. These changes were confirmed by field emission scanning electron microscopy (FE-SEM). TPM was used to measure the treatment efficiency of the two lasers at different laser fluences. In the mouse model, TPM visualized clusters of tattoo particles in the skin and detected their fragmentation after the laser treatment. Longitudinal TPM imaging observed the migration of cells containing tattoo particles after the laser treatment. These results show that TPM may be useful for the assessment of laser tattoo removal treatment in preclinical studies.

  20. Visualization of laser tattoo removal treatment effects in a mouse model by two-photon microscopy

    PubMed Central

    Jang, Won Hyuk; Yoon, Yeoreum; Kim, Wonjoong; Kwon, Soonjae; Lee, Seunghun; Song, Duke; Choi, Jong Woon; Kim, Ki Hean

    2017-01-01

    Laser tattoo removal is an effective method of eliminating tattoo particles in the skin. However, laser treatment cannot always remove the unwanted tattoo completely, and there are risks of either temporary or permanent side effects. Studies using preclinical animal models could provide detailed information on the effects of laser treatment in the skin, and might help to minimize side effects in clinical practices. In this study, two-photon microscopy (TPM) was used to visualize the laser treatment effects on tattoo particles in both phantom specimens and in vivo mouse models. Fluorescent tattoo ink was used for particle visualization by TPM, and nanosecond (ns) and picosecond (ps) lasers at 532 nm were used for treatment. In phantom specimens, TPM characterized the fragmentation of individual tattoo particles by tracking them before and after the laser treatment. These changes were confirmed by field emission scanning electron microscopy (FE-SEM). TPM was used to measure the treatment efficiency of the two lasers at different laser fluences. In the mouse model, TPM visualized clusters of tattoo particles in the skin and detected their fragmentation after the laser treatment. Longitudinal TPM imaging observed the migration of cells containing tattoo particles after the laser treatment. These results show that TPM may be useful for the assessment of laser tattoo removal treatment in preclinical studies. PMID:28856046

  1. Prenatal pharmacotherapy rescues brain development in a Down's syndrome mouse model.

    PubMed

    Guidi, Sandra; Stagni, Fiorenza; Bianchi, Patrizia; Ciani, Elisabetta; Giacomini, Andrea; De Franceschi, Marianna; Moldrich, Randal; Kurniawan, Nyoman; Mardon, Karine; Giuliani, Alessandro; Calzà, Laura; Bartesaghi, Renata

    2014-02-01

    Intellectual impairment is a strongly disabling feature of Down's syndrome, a genetic disorder of high prevalence (1 in 700-1000 live births) caused by trisomy of chromosome 21. Accumulating evidence shows that widespread neurogenesis impairment is a major determinant of abnormal brain development and, hence, of intellectual disability in Down's syndrome. This defect is worsened by dendritic hypotrophy and connectivity alterations. Most of the pharmacotherapies designed to improve cognitive performance in Down's syndrome have been attempted in Down's syndrome mouse models during adult life stages. Yet, as neurogenesis is mainly a prenatal event, treatments aimed at correcting neurogenesis failure in Down's syndrome should be administered during pregnancy. Correction of neurogenesis during the very first stages of brain formation may, in turn, rescue improper brain wiring. The aim of our study was to establish whether it is possible to rescue the neurodevelopmental alterations that characterize the trisomic brain with a prenatal pharmacotherapy with fluoxetine, a drug that is able to restore post-natal hippocampal neurogenesis in the Ts65Dn mouse model of Down's syndrome. Pregnant Ts65Dn females were treated with fluoxetine from embryonic Day 10 until delivery. On post-natal Day 2 the pups received an injection of 5-bromo-2-deoxyuridine and were sacrificed after either 2 h or after 43 days (at the age of 45 days). Untreated 2-day-old Ts65Dn mice exhibited a severe neurogenesis reduction and hypocellularity throughout the forebrain (subventricular zone, subgranular zone, neocortex, striatum, thalamus and hypothalamus), midbrain (mesencephalon) and hindbrain (cerebellum and pons). In embryonically treated 2-day-old Ts65Dn mice, precursor proliferation and cellularity were fully restored throughout all brain regions. The recovery of proliferation potency and cellularity was still present in treated Ts65Dn 45-day-old mice. Moreover, embryonic treatment restored

  2. Effects of Opsonization and Gamma Interferon on Growth of Brucella Melitensis 16M in Mouse Peritoneal Macrophages In Vitro

    DTIC Science & Technology

    2000-01-01

    SUBTITLE Effects of Opsonization and Gamma Interferon on Growth of Brucella , melitensis 16M in Mouse Peritoneal Microphages rom In Vitro 3. REPORT...with Brucella melitensis 16M treated with complement- and/or antibody-rich serum. Mouse serum rich in antibody against Brucella lipopolysaccnaride...pathogens of humans and livestock. Brucella meli- tensis usually infects sheep, goats , and camels and is the most pathogenic species for humans (1). Like

  3. Effects of cartap on isolated mouse phrenic nerve diaphragm and its related mechanism.

    PubMed

    Liao, J W; Kang, J J; Liu, S H; Jeng, C R; Cheng, Y W; Hu, C M; Tsai, S F; Wang, S C; Pang, V F

    2000-06-01

    Cartap, a nereistoxin analogue pesticide, is reported to have no irritation to eyes in rabbits. However, we have demonstrated recently that cartap could actually cause acute death in rabbits via ocular exposure. Our preliminary study with isolated mouse phrenic nerve diaphragms has shown that instead of neuromuscular blockade, cartap caused muscular contracture. The objective of the study was to examine the effect of cartap on the neuromuscular junction in more detail and to investigate its possible underlying mechanism with isolated mouse phrenic nerve diaphragms and sarcoplasmic reticulum (SR) vesicles. Cartap or nereistoxin at various concentrations was added in the organ bath with isolated mouse phrenic nerve diaphragm and both nerve- and muscle-evoked twitches were recorded. Instead of blocking the neuromuscular transmission as nereistoxin did, cartap caused contracture in stimulated or quiescent isolated mouse phrenic nerve diaphragm. Both the cartap-induced muscular contracture force and the time interval to initiate the contracture were dose-dependent. The contracture induced by cartap was not affected by the pretreatment of the diaphragm with the acetylcholine receptor blocker alpha-bungarotoxin; the Na(+) channel blocker tetrodotoxin; or various Ca(2+) channel blockers, NiCl(2), verapamil, and nifedipine. On the contrary, the contracture was significantly inhibited when the diaphragm was pretreated with ryanodine or EGTA containing Ca(2+)-free Krebs solution or in combination. This suggested that both internal and extracellular Ca(2+) might participate in cartap-induced skeletal muscle contracture. Moreover, cartap inhibited the [(3)H]-ryanodine binding to the Ca(2+) release channel of SR in a dose-dependent manner. Additionally, cartap could induce a significant reduction in Ca(2+)-ATPase activity of SR vesicles at a relatively high dose. The results suggested that cartap might cause the influx of extracellular Ca(2+) and the release of internal Ca(2

  4. The effect of tetrabromobisphenol A on protamine content and DNA integrity in mouse spermatozoa.

    PubMed

    Zatecka, E; Castillo, J; Elzeinova, F; Kubatova, A; Ded, L; Peknicova, J; Oliva, R

    2014-11-01

    Tetrabromobisphenol A (TBBPA) is a widely used brominated flame retardant of increasing concern to human health because of its action as an endocrine disruptor. We have previously demonstrated that TBBPA is able to increase apoptosis of testicular cells and other changes in the first and second generations of mice exposed to TBBPA. However, the potential effects of TBBPA on mouse epididymal spermatozoa have not yet been investigated. Therefore, we initiated this study to determine whether TBBPA exposure could also result in increased DNA fragmentation in epididymal spermatozoa and whether it had an effect on the protamines as the major nuclear proteins. C57Bl/6J mouse pups (n = 10) were exposed to TBBPA (experimental group) during the gestation, lactation, pre-pubertal and pubertal periods up to the age of 70 days as previously described and compared to control mouse pups (n = 10) that were not exposed. The results demonstrate that TBBPA treatment results in a significantly decreased protamine 1/protamine 2 ratio (0.362 vs. 0.494; p < 0.001), increased total protamine/DNA ratio (0.517 vs. 0.324; p < 0.001) and increased number of terminal deoxynucleotidyl transferase dUTP nick end labelling positive spermatozoa (39.5% vs. 21.2%; p < 0.05) observed between TBBPA and control mice respectively. These findings indicate that TBBPA exposure, in addition to the resulting increased sperm DNA damage, also has the potential to alter the epigenetic marking of sperm chromatin through generation of an anomalous content and distribution of protamines. The possibility is now open to study whether the detected altered protamine content and DNA integrity are related to the previously observed second-generation effects upon TBBPA exposure. © 2014 American Society of Andrology and European Academy of Andrology.

  5. Effect of Short-Term Hypergravity Treatment on Mouse 2-Cell Embryo Development

    NASA Astrophysics Data System (ADS)

    Ning, Li-Na; Lei, Xiao-Hua; Cao, Yu-Jing; Zhang, Yun-Fang; Cao, Zhong-Hong; Chen, Qi; Duan, En-Kui

    2015-11-01

    Though there are numerous biological experiments, which have been performed in a space environment, to study the physiological effect of space travel on living organisms, while the potential effect of weightlessness or short-term hypergravity on the reproductive system in most species, particularly in mammalian is still controversial and unclear. In our previous study, we investigated the effect of space microgravity on the development of mouse 4-cell embryos by using Chinese SJ-8. .Unexpectedly, we did not get any developed embryo during the space-flight. Considering that the process of space experiment is quite different from most experiments done on earth in several aspects such as, the vibration and short-term hypergravity during the rock launching and landing. Thus we want to know whether the short-term hypergravity produced by the launch process affect the early embryo development in mice, and howthe early embryos respond to the hypergravity. In present study, we are mimicking the short-term hypergravity during launch by using a centrifuge to investigate its influence on the development of early embryo (2-cell) in mice. We also examined the actin filament distribution in 2-cell embryos by immunostaining to test their potential capacity of development under short-term hypergravity exposure. Our results showed that most 2-cell embryos in the hypergravity exposure groups developed into blastocysts with normal morphology after 72h cultured in vitro, and there is no obvious difference in the development rate of blastocyst formation compared to the control. Moreover, there were no statistically significant differences in birth rates after oviduct transfer of 2-cell mouse embryos exposed on short-term hypergravity compared with 1 g condition. In addition, the well-organized actin distribution appeared in 2-cell embryos after exposed on hypergravity and also in the subsequent developmental blastocysts. Taken together, our data shows that short-term exposure in

  6. Combined effects of social stress and liver fluke infection in a mouse model.

    PubMed

    Avgustinovich, Damira F; Marenina, Mariya K; Zhanaeva, Svetlana Ya; Tenditnik, Mikhail V; Katokhin, Alexey V; Pavlov, Konstantin S; Sivkov, Anton Yu; Vishnivetskaya, Galina B; Lvova, Maria N; Tolstikova, Tatiana G; Mordvinov, Viatcheslav A

    2016-03-01

    The effects of two influences, social stress and acute opisthorchiasis, were investigated in inbred C57BL/6J male mice. In the model of social stress, mice were repeatedly attacked and defeated by aggressive outbred ICR male mice and were in continuous sensory contact with an aggressive conspecific mouse in their home cage for 20 days. Acute opisthorchiasis was provoked by invasion of Opisthorchis felineus (50 larvae per animal) on the fourth day after the social stress was induced. Simultaneous action of both factors caused the hypertrophy of adrenal glands, as well as elevated the activity of cathepsins B and L in the spleen. This effect on the activity of the cysteine proteases in the hippocampus and hypothalamus following O. felineus invasion was the predominant result of simultaneous action with social stress. Acute opisthorchiasis, social stress, and their combination caused an increase in the level of blood IL-6 in approximately 30% of the animals. Social stress induced a more pronounced effect on mouse plus-maze behavior than O. felineus invasion. Our results suggest a more severe negative effect of the simultaneous influence of both factors on most of the parameters that were investigated. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Injurious Effects of Emodin on Maturation of Mouse Oocytes, Fertilization and Fetal Development via Apoptosis

    PubMed Central

    Chang, Mei-Hui; Chang, Shao-Chung; Chan, Wen-Hsiung

    2012-01-01

    Emodin (1,3,8-trihydroxy-6-methylanthraquinone), a major constituent of rhubarb, has a wide range of therapeutic applications. Previous studies have established that emodin induces apoptosis in the inner cell mass and trophectoderm of mouse blastocysts and leads to decreased embryonic development and viability, indicating a role as an injury risk factor for normal embryonic development. However, the mechanisms underlying its hazardous effects have yet to be characterized. In the current study, we further investigated the effects of emodin on oocyte maturation and subsequent pre- and post-implantation development, both in vitro and in vivo. Notably, emodin induced a significant reduction in the rates of oocyte maturation, fertilization, and in vitro embryonic development. Treatment of oocytes with emodin during in vitro maturation (IVM) led to increased resorption of postimplantation embryos and decreased fetal weight. Experiments using an in vivo mouse model disclosed that consumption of drinking water containing 20–40 μM emodin led to decreased oocyte maturation and in vitro fertilization, as well as early embryonic developmental injury. Notably, pretreatment with a caspase-3-specific inhibitor effectively prevented emodin-triggered injury effects, suggesting that impairment of embryo development occurs via a caspase-dependent apoptotic process. PMID:23203041

  8. Relative biological effectiveness of fast neutrons compared with X-rays: Prenatal mortality in the mouse

    NASA Technical Reports Server (NTRS)

    Friedberg, W.; Hanneman, G. D.; Faulkner, D. N.; Darden, E. B., Jr.

    1972-01-01

    The effects of fission neutrons and of X-rays on the mouse zygote are discussed. Seven-week-old virgin mice were allowed a 12-hour mating opportunity beginning at 7:00 P.M. Between 1:30 and 4:00 P.M., except where indicated otherwise, the females which had mated (vaginal plug) during the night were either irradiated or sham-irradiated. At the time of irradiation the zygotes were in a pronuclear stage. Sixteen days later the mice were killed and the uteri dissected. The number of dead embryos, live embryos, and gross anomalies were determined. Dead embryos were classified as to stage of development.

  9. Effects of dietary supplementation on autoimmunity in the MRL/lpr mouse: a preliminary investigation.

    PubMed

    Godfrey, D G; Stimson, W H; Watson, J; Belch, J F; Sturrock, R D

    1986-12-01

    The effects of dietary fatty acid supplementation on various disease parameters in the spontaneously autoimmune MRL-mp-lpr/lpr mouse model of systemic lupus erythematosus before onset of disease were investigated. A fat deficient diet was supplemented with the following oils: olive oil, sunflower oil, evening primrose oil (EPO), fish oil, and a fish oil/EPO mixture. The mice receiving a diet enriched with EPO showed an increase in survival, as did those receiving the fish oil/EPO mixture. These results, taken together with those of the other parameters monitored, suggest that EPO may be of benefit in alleviating the murine form of the disease.

  10. Effects of dietary supplementation on autoimmunity in the MRL/lpr mouse: a preliminary investigation.

    PubMed Central

    Godfrey, D G; Stimson, W H; Watson, J; Belch, J F; Sturrock, R D

    1986-01-01

    The effects of dietary fatty acid supplementation on various disease parameters in the spontaneously autoimmune MRL-mp-lpr/lpr mouse model of systemic lupus erythematosus before onset of disease were investigated. A fat deficient diet was supplemented with the following oils: olive oil, sunflower oil, evening primrose oil (EPO), fish oil, and a fish oil/EPO mixture. The mice receiving a diet enriched with EPO showed an increase in survival, as did those receiving the fish oil/EPO mixture. These results, taken together with those of the other parameters monitored, suggest that EPO may be of benefit in alleviating the murine form of the disease. PMID:3492970

  11. X chromosome effect on maternal recombination and meiotic drive in the mouse.

    PubMed Central

    de La Casa-Esperón, Elena; Loredo-Osti, J Concepción; Pardo-Manuel de Villena, Fernando; Briscoe, Tammi L; Malette, Jan Michel; Vaughan, Joe E; Morgan, Kenneth; Sapienza, Carmen

    2002-01-01

    We observed that maternal meiotic drive favoring the inheritance of DDK alleles at the Om locus on mouse chromosome 11 was correlated with the X chromosome inactivation phenotype of (C57BL/6-Pgk1(a) x DDK)F(1) mothers. The basis for this unexpected observation appears to lie in the well-documented effect of recombination on meiotic drive that results from nonrandom segregation of chromosomes. Our analysis of genome-wide levels of meiotic recombination in females that vary in their X-inactivation phenotype indicates that an allelic difference at an X-linked locus is responsible for modulating levels of recombination in oocytes. PMID:12196408

  12. Effects of subacute exposure to 1,2-dichloroethane on mouse behavior and the related mechanisms.

    PubMed

    Wang, G; Qi, Y; Gao, L; Li, G; Lv, X; Jin, Y P

    2013-09-01

    The aim of this study was to explore the effects of subacute exposure to 1,2-dichloroethane (1,2-DCE) on mouse behavior and the related mechanisms focusing on alteration of oxidative stress and amino acid neurotransmitters in the brain. Mouse behavior was examined by open field test. Levels of nitric oxide (NO), malondialdehyde (MDA) and nonprotein sulfhydryl (NPSH) and activity of inducible nitric oxide synthase (iNOS) and superoxide dismutase (SOD) were determined by colorimetric method. Contents of glutamate (Glu), aspartate (Asp) and gamma-aminobutyric acid (GABA) were evaluated by high-performance liquid chromatography. Reduced locomotor and exploratory activities and increased anxiety were found in 0.45 and 0.9 g/m(3) 1,2-DCE-treated mice. In contrast, increased excitability was found in 0.225 g/m(3) 1,2-DCE-treated mice. Compensatory antioxidant status and increased NOS activity and NO level in the brain were found in 1,2-DCE-treated mice. Moreover, Glu contents in 1,2-DCE-treated mice and GABA contents in 0.9 g/m(3) 1,2-DCE-treated mice increased, whereas GABA contents in 0.225 g/m(3) 1,2-DCE-treated mice decreased significantly compared with control. Taken together, our results suggested that mouse behavior could be disturbed by subacute exposure to 1,2-DCE, and the changes of amino acid neurotransmitter in the brain might be related to the behavioral effects.

  13. Effects of mouse genotype on bone wound healing and irradiation-induced delay of healing.

    PubMed

    Glowacki, Julie; Mizuno, Shuichi; Kung, Jason; Goff, Julie; Epperly, Michael; Dixon, Tracy; Wang, Hong; Greenberger, Joel S

    2014-01-01

    We tested the effects of mouse genotype (C57BL/6NHsd, NOD/SCID, SAMR1, and SAMP6) and ionizing irradiation on bone wound healing. Unicortical wounds were made in the proximal tibiae, and the time course of spontaneous healing and effects of irradiation were monitored radiographically and histologically. There was reproducible healing beginning with intramedullary osteogenesis, subsequent bone resorption by osteoclasts, gradual bridging of the cortical wound, and re-population of medullary hematopoietic cells. The most rapid wound closure was noted in SAMR1 mice, followed by SAMP6, C57BL/6NHsd, and NOD/SCID. Ionizing irradiation (20 Gy) to the leg significantly delayed bone wound healing in mice of all four genotypes. Mice with genetically-determined predisposition to early osteopenia (SAMP6) or with immune deficiency (NOD/SCID) had impairments in bone wound healing. These mouse models should be valuable for determining the effects of irradiation on bone healing and also for the design and testing of novel bone growth-enhancing drugs and mitigators of ionizing irradiation.

  14. Effect of conspecific and heterospecific urine odors on the foraging behavior of the golden spiny mouse.

    PubMed

    Baudoin, Claude; Haim, Abraham; Durand, Jean-Luc

    2013-04-01

    The common spiny mouse (Acomys cahirinus) inhibits the foraging activity of the golden spiny mouse (A. russatus). These two sympatric species of spiny mice, which are considered habitat competitors, occur in extreme arid environments. To test this theory of competition, the influence of urinary odors of both conspecific and heterospecific mice on the foraging behavior of A. russatus was studied under controlled laboratory conditions. Twenty adult males, born in captivity and unfamiliar to the odors of the donor mice, were tested in 3 experimental conditions choosing between 2 seed patches that were scented with urine of either heterospecifics (A. cahirinus), conspecifics (A. russatus) or controls (odors of the tested individual). Of the 20 males, 12 were also tested with urine of unfamiliar gerbils, bushy-tailed jird, considered as competitors in the field. Both conspecific and heterospecific urine samples from Acomys significantly reduced foraging behavior of A. russatus when compared to the control odor. The inhibitory effect of the Acomys urine does not result from the novelty of chemical stimuli of the urine because no effect was shown with unfamiliar gerbil urine. The findings are in accordance with the general theory that A. cahirinus dominates the foraging activity of A. russatus. We hypothesize that chemical cues in the urine of Acomys spp. might induce a negative effect on the foraging behavior of A. russatus.

  15. Effect of nitroimidazoles on glucose utilization and lactate accumulation in mouse brain

    SciTech Connect

    Chao, C.F.; Subjeck, J.R.; Brody, H.; Shen, J.; Johnson, R.J.R.

    1984-01-01

    The radiation sensitizers misonidazole (MISO) and desmethylmisonidazole (DMM) can produce central and peripheral neuropathy in patients and laboratory animals. Nitroimidazoles can also interfere with glycolysis in vitro under aerobic and anaerobic conditions. In the present work, the authors studied the effect of MISO or DMM on lactate production and glucose utilization in mouse brain. It is observed that these compounds result in a 25% inhibition of lactate production in brain slices relative to the control at a 10 mM level. Additionally, MISO (1.0 mg/g/day) or DMM (1.4 mg/g/day) were administered daily (oral) for 1, 4, 7, or 14 days to examine the effect of these two drugs on the regional glucose utilization in C3Hf mouse brain. Five microcuries of 2-deoxy(/sup 14/C)glucose was given following the last drug dose and autoradiographs of serial brain sections were made and analyzed by a densitometer. Following a single dose of either MISO or DMM, no significant differences in glucose uptake were observed when compared with controls. However, following 4, 7, and 14 doses the rate of glucose utilization was significantly reduced in the intoxicated animals. Larger reductions were measured in specific regions including the posterior colliculus, cochlear nuclei, vestibular nuclei, and pons with increasing effects observed at later stages. These results share a degree of correspondence with the regional brain pathology produced by these nitroimidazoles.

  16. Development Shapes a Consistent Inbreeding Effect in Mouse Crania of Different Line Crosses.

    PubMed

    Pavličev, Mihaela; Mitteroecker, Philipp; Gonzalez, Paula M; Rolian, Campbell; Jamniczky, Heather; Villena, Fernando Pardo-Manuel; Marcucio, Ralph; Spritz, Richard; Hallgrimsson, Benedikt

    2016-12-01

    Development translates genetic variation into a multivariate pattern of phenotypic variation, distributing it among traits in a nonuniform manner. As developmental processes are largely shared within species, this suggests that heritable phenotypic variation will be patterned similarly, in spite of the different segregating alleles. To investigate developmental effect on the variational pattern in the shape of the mouse skull across genetically differentiated lines, we employed the full set of reciprocal crosses (a.k.a. diallel) between eight inbred mouse strains of the Collaborative Cross Project. We used geometric morphometrics and multivariate analysis to capture cranial size and shape changes in 8 parentals and their 54 F1 crosses. The high heterozygosity generated in the F1 crosses allowed us to compare the multivariate deviations of the F1 phenotypes from the expected midparental phenotypes in different haplotype combinations. In contrast to body weight, we found a high degree of nonadditive deviation in craniofacial shape. Whereas the phenotypic and genetic divergence of parental strains manifested in high dimensionality of additive effects, the nonadditive deviations exhibited lesser dimensionality and in particular a strikingly coherent direction in shape space. We interpret this finding as evidence for a strong structuring effect of a relatively small set of developmental processes on the mapping of genetic to phenotypic variation. © 2017 Wiley Periodicals, Inc.

  17. Toxic pulmonary effects of photodynamic therapy (PDT) in a mouse model

    NASA Astrophysics Data System (ADS)

    Luketich, James D.; Perry, Yaron; Wong, Hsien; Epperly, Michael W.

    2002-06-01

    A major limitation of PDT for Barrett's esophagus is the development of esophageal strictures. This report summarizes the effects of PDT delivered to mouse esophagus. Sixty-two C3H/Nsd mice were injected with Photofrin (2-10mg/Kg) intraperitoneally. Forty-eight hours later a 1 cm laser probe was passed orally to the mid-esophagus. Light energy (630nm) ranged from 0 to 400 Joules/cm (J). Animals were sacrificed if death was imminent, otherwise at 6 weeks and 3 months. Gross and microscopic exams were performed on paraffin embedded esophagus and lung specimens. Exposure to 400J as a single fraction, 125 X 3 or 150 X 3 fractions resulted in a lethal pulmonary injury in 90% of mice within 48 hours. There was no esophageal mucosal damage at this early time point. Lower doses caused minor pulmonary injury allowing long-term survival but no change in the esophageal endothelium and no stricture. In the mouse, this histopathologic study demonstrates that pulmonary toxicity is the limiting factor following esophageal PDT. At lower PDT doses, minimal pulmonary damage occurred but no effect was observed on the esophagus. We believe the 5 mm depth of PDT injury leads to lethal pulmonary damage preventing subsequent study of the effects on the esophagus.

  18. Effects of caffeine on mouse skeletal muscle power output during recovery from fatigue.

    PubMed

    James, Rob S; Wilson, Robbie S; Askew, Graham N

    2004-02-01

    The effects of 10 mM (high) and 70 microM (physiologically relevant) caffeine on force, work output, and power output of isolated mouse extensor digitorum longus (EDL) and soleus muscles were investigated in vitro during recovery from fatigue at 35 degrees C. To monitor muscle performance during recovery from fatigue, we regularly subjected the muscle to a series of cyclical work loops. Force, work, and power output during shortening were significantly higher after treatment with 10 mM caffeine, probably as a result of increased Ca2+ release from the sarcoplasmic reticulum. However, the work required to relengthen the muscle also increased in the presence of 10 mM caffeine. This was due to a slowing of relaxation and an increase in muscle stiffness. The combination of increased work output during shortening and increased work input during lengthening had different effects on the two muscles. Net power output of mouse soleus muscle decreased as a result of 10 mM caffeine exposure, whereas net power output of the EDL muscle showed a transient, significant increase. Treatment with 70 microM caffeine had no significant effect on force, work, or power output of EDL or soleus muscles, suggesting that the plasma concentrations found when caffeine is used to enhance performance in human athletes might not directly affect the contractile performance of fatigued skeletal muscle.

  19. Effect of light on global gene expression in the neuroglobin-deficient mouse retina

    PubMed Central

    ILMJÄRV, STEN; REIMETS, RIIN; HUNDAHL, CHRISTIAN ANSGAR; LUUK, HENDRIK

    2014-01-01

    Several previous studies have raised controversy over the functional role of neuroglobin (Ngb) in the retina. Certain studies indicate a significant impact of Ngb on retinal physiology, whereas others are conflicting. The present is an observational study that tested the effect of Ngb deficiency on gene expression in dark- and light-adapted mouse retinas. Large-scale gene expression profiling was performed using GeneChip® Mouse Exon 1.0 ST arrays and the results were compared to publicly available data sets. The lack of Ngb was found to have a minor effect on the light-induced retinal gene expression response. In addition, there was no increase in the expression of marker genes associated with hypoxia, endoplasmic reticulum-stress and oxidative stress in the Ngb-deficient retina. By contrast, several genes were identified that appeared to be differentially expressed between the genotypes when the effect of light was ignored. The present study indicates that Ngb deficiency does not lead to major alternations in light-dependent gene expression response, but leads to subtle systemic differences of a currently unknown functional significance. PMID:25279145

  20. Effects of Trichostatin A on Cumulus Expansion during Mouse Oocyte Maturation.

    PubMed

    Du, Ming; Fu, Xiangwei; Zhou, Yanhua; Zhu, Shien

    2013-11-01

    This study was conducted to investigate the effects of Trichostatin A (TSA) on cumulus expansion during mouse oocyte maturation. TSA treatment inhibited cumulus expansion and significantly reduced the cumulus expansion index (CEI) (p<0.05). To determine the underlying mechanism, the expression levels of several key factors that play crucial roles in cumulus expansion including components of extracellular matrix (ECM) (Has2, Ptgs2, Ptx3, and Tnfaip6) and Growth differentiation factor 9 (GDF9) were measured in control and TSA treated samples by real-time PCR. The effect of TSA on ERK phosphorylation (p-ERK1/2) in cumulus cells and GDF9 protein level in fully grown oocytes (FGOs) were detected by Western blotting. The expression levels of the ECM genes were significantly decreased (p<0.05) by TSA treatment while GDF9 expression did not response to TSA (p>0.05). TSA treatment blocked the activation of ERK1/2 (p<0.05) and had no significant effect on GDF9 protein expression (p>0.05). Collectively, these results suggested that TSA treatment altered ECM gene expression and blocked ERK1/2 activation to inhibit cumulus expansion in the mouse.

  1. Protective effect of 4,4'-diaminodiphenylsulfone against paraquat-induced mouse lung injury.

    PubMed

    Cho, Sung Chun; Rhim, Ji Heon; Choi, Hae Ri; Son, Young Hoon; Lee, Seok Jin; Song, Kye Yong; Park, Sang Chul

    2011-09-30

    Although 4,4'-diaminodiphenylsulfone (DDS, dapsone) has been used to treat several dermatologic conditions, including Hansen disease, for the past several decades, its mode of action has remained a topic of debate. We recently reported that DDS treatment significantly extends the lifespan of the nematode C. elegans by decreasing the generation of reactive oxygen species. Additionally, in in vitro experiments using non-phagocytic human fibroblasts, we found that DDS effectively counteracted the toxicity of paraquat (PQ). In the present study, we extended our work to test the protective effect of DDS against PQ in vivo using a mouse lung injury model. Oral administration of DDS to mice significantly attenuated the lung tissue damage caused by subsequent administration of PQ. Moreover, DDS reduced the local expression of mRNA transcripts encoding inflammation-related molecules, including endothelin-1 (ET-1), macrophage inflammatory protein-1α (MIP-1α), and transforming growth factor-β (TGF-β). In addition, DDS decreased the PQ-induced expression of NADPH oxidase mRNA and activation of protein kinase Cμ (PKCμ). DDS treatment also decreased the PQ-induced generation of superoxide anions in mouse lung fibroblasts. Taken together, these data suggest the novel efficacy of DDS as an effective protective agent against oxidative stress-induced tissue damages.

  2. Altered regional connectivity reflecting effects of different anaesthesia protocols in the mouse brain.

    PubMed

    Wu, Tong; Grandjean, Joanes; Bosshard, Simone C; Rudin, Markus; Reutens, David; Jiang, Tianzi

    2017-04-01

    Studies in mice using resting-state functional magnetic resonance imaging (rs-fMRI) have provided opportunities to investigate the effects of pharmacological manipulations on brain function and map the phenotypes of mouse models of human brain disorders. Mouse rs-fMRI is typically performed under anaesthesia, which induces both regional suppression of brain activity and disruption of large-scale neural networks. Previous comparative studies using rodents investigating various drug effects on long-distance functional connectivity (FC) have reported agent-specific FC patterns, however, effects of regional suppression are sparsely explored. Here we examined changes in regional connectivity under six different anaesthesia conditions using mouse rs-fMRI with the goal of refining the framework of understanding the brain activation under anaesthesia at a local level. Regional homogeneity (ReHo) was used to map local synchronization in the brain, followed by analysis of several brain areas based on ReHo maps. The results revealed high local coherence in most brain areas. The primary somatosensory cortex and caudate-putamen showed agent-specific properties. Lower local coherence in the cingulate cortex was observed under medetomidine, particularly when compared to the combination of medetomidine and isoflurane. The thalamus was associated with retained local coherence across anaesthetic levels and multiple nuclei. These results show that anaesthesia induced by the investigated anaesthetics through different molecular targets promote agent-specific regional connectivity. In addition, ReHo is a data-driven method with minimum user interaction, easy to use and fast to compute. Given that examination of the brain at a local level is widely applied in human rs-fMRI studies, our results show its sensitivity to extract information on varied neuronal activity under six different regimens relevant to mouse functional imaging. These results, therefore, will inform future rs

  3. Phage Therapy Is Effective in a Mouse Model of Bacterial Equine Keratitis

    PubMed Central

    Furusawa, Takaaki; Hiyashimizu, Yutaro; Matsubara, Kazuki; Higuchi, Hidetoshi; Nagahata, Hajime; Niwa, Hidekazu; Katayama, Yoshinari; Kinoshita, Yuta; Hagiwara, Katsuro; Iwasaki, Tomohito; Tanji, Yasunori; Yokota, Hiroshi; Tamura, Yutaka

    2016-01-01

    ABSTRACT Bacterial keratitis of the horse is mainly caused by staphylococci, streptococci, and pseudomonads. Of these bacteria, Pseudomonas aeruginosa sometimes causes rapid corneal corruption and, in some cases, blindness. Antimicrobial resistance can make treatment very difficult. Therefore, new strategies to control bacterial infection are required. A bacteriophage (phage) is a virus that specifically infects and kills bacteria. Since phage often can lyse antibiotic-resistant bacteria because the killing mechanism is different, we examined the use of phage to treat horse bacterial keratitis. We isolated Myoviridae or Podoviridae phages, which together have a broad host range. They adsorb efficiently to host bacteria; more than 80% of the ΦR18 phage were adsorbed to host cells after 30 s. In our keratitis mouse model, the administration of phage within 3 h also could kill bacteria and suppress keratitis. A phage multiplicity of infection of 100 times the host bacterial number could kill host bacteria effectively. A cocktail of two phages suppressed bacteria in the keratitis model mouse. These data demonstrated that the phages in this study could completely prevent the keratitis caused by P. aeruginosa in a keratitis mouse model. Furthermore, these results suggest that phage may be a more effective prophylaxis for horse keratitis than the current preventive use of antibiotics. Such treatment may reduce the use of antibiotics and therefore antibiotic resistance. Further studies are required to assess phage therapy as a candidate for treatment of horse keratitis. IMPORTANCE Antibiotic-resistant bacteria are emerging all over the world. Bacteriophages have great potential for resolution of this problem. A bacteriophage, or phage, is a virus that infects bacteria specifically. As a novel therapeutic strategy against racehorse keratitis caused by Pseudomonas aeruginosa, we propose the application of phages for treatment. Phages isolated in this work had in vitro

  4. Effects of mesenchymal stromal cells on human myeloid dendritic cell differentiation and maturation in a humanized mouse model.

    PubMed

    Chen, Ping; Huang, Yanfei; Womer, Karl L

    2015-12-01

    Mesenchymal stromal cells (MSCs) have shown promise as cellular therapy in allogeneic transplantation, although the precise mechanisms underlying their benefit in clinical trials are difficult to study. We previously demonstrated that MSCs exert immunoregulatory effects in mouse bone marrow-derived dendritic cell (DC) culture. Since mouse studies do not reliably reproduce human events, we used a humanized mouse model to study the immunomodulatory effects of human MSCs on human DC immunobiology. Humanized mice were established by injection of cord blood CD34(+) cells into NOD.Cg-Prkdc(scid) Il2rg(tm1Wjl/SzJ) (NOD scid gamma, NSG) mice. Human cells were detected in the mouse bone marrow, blood, and spleen 12weeks after transplantation. Human DCs were differentiated from humanized mouse bone marrow cells during human MSC co-culture. MSCs inhibited DC differentiation and kept DCs in an immature state as demonstrated by phenotype and function. In conclusion, humanized mouse models represent a useful method to study the function of human MSCs on human DC immunobiology.

  5. Contribution of dietary and loading changes to the effects of suspension on mouse femora

    NASA Technical Reports Server (NTRS)

    Simske, S. J.; Broz, J. J.; Fleet, M. L.; Schmeister, T. A.; Gayles, E. C.; Luttges, M. W.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    The present study assessed the contributions of feeding changes and unloading to the overall measured effects of 2-wk hindlimb (Tail) suspension on the mouse femora. Feeding changes were addressed by considering the effects of matched feeding among suspended and control mice. The effects of hind limb unloading were considered by comparing suspended mice to mice equipped identically (though not suspended) and matched-fed. The feeding and unloading aspects of suspension appear to cause distinctly differing effects on the stereotypic modeling of the femora. Matched-feeding was accompanied by increased resorption surface in comparison to suspended mice, while unloading led to reduced bone formation at the mid-diaphysis of the femora. Reduced mineral content was observed in the bones of suspended mice when compared to the other mice groups, but without increased resorption surface. Thus, the unloading aspects of the antiorthostatic suspension protocol apparently causes reduced formation and mineralization in the femur.

  6. Contribution of dietary and loading changes to the effects of suspension on mouse femora

    NASA Technical Reports Server (NTRS)

    Simske, S. J.; Broz, J. J.; Fleet, M. L.; Schmeister, T. A.; Gayles, E. C.; Luttges, M. W.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    The present study assessed the contributions of feeding changes and unloading to the overall measured effects of 2-wk hindlimb (Tail) suspension on the mouse femora. Feeding changes were addressed by considering the effects of matched feeding among suspended and control mice. The effects of hind limb unloading were considered by comparing suspended mice to mice equipped identically (though not suspended) and matched-fed. The feeding and unloading aspects of suspension appear to cause distinctly differing effects on the stereotypic modeling of the femora. Matched-feeding was accompanied by increased resorption surface in comparison to suspended mice, while unloading led to reduced bone formation at the mid-diaphysis of the femora. Reduced mineral content was observed in the bones of suspended mice when compared to the other mice groups, but without increased resorption surface. Thus, the unloading aspects of the antiorthostatic suspension protocol apparently causes reduced formation and mineralization in the femur.

  7. Effects of Tremella mesenterica on steroidogenesis in MA-10 mouse Leydig tumor cells.

    PubMed

    Lo, H-C; Chen, Y-W; Chien, C-H; Tseng, C-Y; Kuo, Y-M; Huang, B-M

    2005-01-01

    Tremella mesenterica (TM), a yellow jelly mushroom, has been traditionally used as food and crude medicine to improve several kinds of symptoms in Chinese society for a long time. Recent studies have illustrated that the fractions of fruiting bodies of TM exhibit a significant hypoglycemic activity in diabetic mouse models, which usually suffer from sexual dysfunction. In a previous study, we showed that TM reduced plasma testosterone production in normal rats without any positive effect in diabetic rats. It evolved a question of TM directly regulating Leydig cell steroidogenesis. In this study, MA-10 mouse Leydig tumor cells were treated with vehicle, different dosages of TM with or without human chorionic gonadotropin (hCG 50 ng/ml) to clarify the effects. Results showed that TM at different dosages (0.01-10 mg/ml) did not have any effect on MA-10 cell steroidogenesis (p > 0.05). In the presence of hCG, there was an inhibitory trend that TA suppressed MA-10 cell progesterone production at 3 hr treatment with a statistically significant difference by the 10 mg/ml TM (p < 0.05). In time course effect, TM alone did not have any effect on MA-10 cell steroidogenesis from at 1, 2, 3, 6 and 12 hr (p > 0.05). However, TM did reduce hCG-treated MA-10 cell progesterone production at 1, 2 and 3 hr (p < 0.05), respectively. To determine whether TM would have adverse effects on MA-10 cell steroidogenesis in the presence of hCG, MTT assay and recovery studies were conducted. MTT assay indicated that TM had no effect on surviving cells. In addition, with the removal of TM, and then the addition of hCG (2 and 4 hr), progesterone levels were restored within 4 hr. Taken together, present studies suggested that TM suppressed hCG-treated steroidogenesis in MA-10 cells without any toxicity effect.

  8. Effects of heavy ion to the primary culture of mouse brain cells

    NASA Technical Reports Server (NTRS)

    Nojima, Kumie; Nakadai, Taeko; Kohno, Yukio; Vazquez, Marcelo E.; Yasuda, Nakahiro; Nagaoka, Shunji

    2004-01-01

    To investigate effects of low dose heavy particle radiation to CNS system, we adopted mouse neonatal brain cells in culture being exposed to heavy ions by HIMAC at NIRS and NSRL at BNL. The applied dose varied from 0.05 Gy up to 2.0 Gy. The subsequent biological effects were evaluated by an induction of apoptosis and neuron survival focusing on the dependencies of the animal strains, SCID, B6, B6C3F1, C3H, used for brain cell culture, SCID was the most sensitive and C3H the least sensitive to particle radiation as evaluated by 10% apoptotic criterion. The LET dependency was compared with using SCID and B6 cells exposing to different ions (H, C, Ne, Si, Ar, and Fe). Although no detectable LET dependency was observed in the high LET (55-200 keV/micrometers) and low dose (<0.5 Gy) regions. The survivability profiles of the neurons were different in the mouse strains and ions. In this report, a result of memory and learning function to adult mice after whole-body and brain local irradiation at carbon ion and iron ion.

  9. Anticlastogenic effects of galangin against bleomycin-induced chromosomal aberrations in mouse spleen lymphocytes.

    PubMed

    Heo, M Y; Lee, S J; Kwon, C H; Kim, S W; Sohn, D H; Au, W W

    1994-12-01

    Galangin, a flavonoid derivative, was tested for its anticlastogenic effect against the induction of chromosome aberrations by bleomycin. For an in vitro assay, galangin (0, 2 x 10(-8), 2 x 10(-7), and 2 x 10(-6) M) was added to mouse spleen lymphocyte cultures together with bleomycin (3 microgram/ml) at 24 h after Con A initiation of cultures. In an in vivo/in vitro experiment, galangin (0, 0.1, 1, 10, and 100 mg/kg) was administered to mice orally twice with a 24-h interval. Mice were killed 8 h later. Spleen lymphocytes were isolated and cultures were made. Bleomycin (3 microgram/ml) was added to the mouse spleen lymphocyte cultures at 24 h after Con A initiation. Both in vitro and in vivo/in vitro cultures were harvested at 42 h after initiation. The harvested cells were used for cytogenetic analyses. The results showed that in vitro or in vivo treatment of lymphocytes with galangin suppressed the induction of chromosome aberrations by bleomycin in a galangin dose-dependent manner. The galangin doses used were non-clastogenic to cells. The data from our in vitro and in vivo/in vitro studies confirmed each other and indicate that galangin is an anticlastogenic agent. The in vivo/in vitro protocol may be a useful means to assay the chemoprotective effects of chemicals in humans.

  10. Anticonvulsant effects of a triheptanoin diet in two mouse chronic seizure models

    PubMed Central

    Willis, Sarah; Stoll, James; Sweetman, Lawrence; Borges, Karin

    2010-01-01

    We hypothesized that in epileptic brains citric acid cycle intermediate levels may be deficient leading to hyperexcitability. Anaplerosis is the metabolic refilling of deficient metabolites. Our goal was to determine the anticonvulsant effects of feeding triheptanoin, the triglyceride of anaplerotic heptanoate. CF1 mice were fed 0-35% calories from triheptanoin. Body weights and dietary intake were similar in mice fed triheptanoin vs. standard diet. Triheptanoin feeding increased blood propionyl-carnitine levels, signifying its metabolism. 35%, but not 20%, triheptanoin delayed development of corneal kindled seizures. After pilocarpine-induced status epilepticus (SE), triheptanoin feeding increased the pentylenetetrazole tonic seizure threshold during the chronically epileptic stage. Mice in the chronically epileptic stage showed various changes in brain metabolite levels, including a reduction in malate. Triheptanoin feeding largely restored a reduction in propionyl-CoA levels and increased methylmalonyl-CoA levels in SE mice. In summary, triheptanoin was anticonvulsant in two chronic mouse models and increased levels of anaplerotic precursor metabolites in epileptic mouse brains. The mechanisms of triheptanoin's effects and its efficacy in humans suffering from epilepsy remain to be determined. PMID:20691264

  11. Protective effect of [6]-gingerol on the ethanol-induced teratogenesis of cultured mouse embryos.

    PubMed

    Yon, Jung-Min; Baek, In-Jeoung; Lee, Se-Ra; Kim, Mi-Ra; Hong, Jin Tae; Yong, Hwanyul; Lee, Beom Jun; Yun, Young Won; Nam, Sang-Yoon

    2012-01-01

    Excessive ethanol consumption during pregnancy causes fetal alcohol syndrome. We investigated the effect of [6]-gingerol on ethanol-induced embryotoxicity using a whole embryo culture system. The morphological changes of embryos and the gene expression patterns of the antioxidant enzymes cytosolic glutathione peroxidase (cGPx), cytoplasmic Cu/Zn superoxide dismutase (SOD1), and Mn-SOD (SOD2), and SOD activity were examined in the cultured mouse embryos exposed to ethanol (5 μL/3 mL) and/or [6]-gingerol (1×10(-8) or 1×10(-7) μg/mL) for 2 days. In ethanol-exposed embryos, the standard morphological score of embryos was significantly decreased compared with those of the control (vehicle) group. However, cotreatment of embryos with [6]-gingerol and ethanol significantly improved all of the developmental parameters except crownrump length and head length, compared with those of the ethanol alone group. The mRNA expression levels of cGPx and SOD2, not SOD1, were decreased consistently, SOD activity were significantly decreased compared with the control group. However, the decreases in mRNA levels of antioxidant enzymes and SOD activity were significantly restored to the control levels by [6]-gingerol supplement. These results indicate that [6]-gingerol has a protective effect against ethanol-induced teratogenicity during mouse embryogenesis.

  12. Beneficial Effects of Prebiotic Saccharomyces cerevisiae Mannan on Allergic Asthma Mouse Models

    PubMed Central

    Michael, Christie F.; Overbeck, Tracie; Robinson, W. Scout; Rohman, Erin L.; Lehman, Jeffrey M.; Patel, Jennifer K.; Eiseman, Brandi; LeMessurier, Kim S.; Samarasinghe, Amali E.

    2017-01-01

    One of the unmet needs for asthma management is a new therapeutic agent with both anti-inflammatory and anti-smooth muscle (ASM) remodeling effects. The mannose receptor (MR) family plays an important role in allergen uptake and processing of major allergens Der p 1 and Fel d 1. We have previously reported that ASM cells express a mannose receptor (ASM-MR) and that mannan derived from Saccharomyces cerevisiae (SC-MN) inhibits mannosyl-rich lysosomal hydrolase-induced bovine ASM cell proliferation. Using a humanized transgenic mouse strain (huASM-MRC2) expressing the human MRC2 receptor in a SM tissue-specific manner, we have demonstrated that ASM hyperplasia/hypertrophy can occur as early as 15 days after allergen challenge in this mouse model and this phenomenon is preventable with SC-MN treatment. This proof-of-concept study would facilitate future development of a potential asthma therapeutic agent with dual function of anti-inflammatory and anti-smooth muscle remodeling effects. PMID:28835901

  13. Effects of Varied Housing Density on a Hybrid Mouse Strain Followed for 20 Months

    PubMed Central

    Currer, Joanne M.

    2016-01-01

    To evaluate the effect of increased housing density in a hybrid mouse strain, we evaluated a panel of physiological and behavioral traits in animals that were housed in groups of 3, 5, 8, or 12, using cages that provide 78.1 in2 of floor space. Such groupings resulted in cage densities that ranged from half to almost twice the density recommended by the Guide for the Care and Use of Laboratory Animals. While previous studies have investigated physiological effects of increased housing density using inbred mouse strains, including C57BL/6J and 129S1/SvImJ, this study tested an F1 hybrid population of C57BL/6J x 129S1/SvImJ for changes resulting from either decreased or increased housing density. Mice were followed until they were 20 months old, a substantially longer duration than has been used in previous density studies. We evaluated mortality, growth, home cage behavior, blood pressure, body composition, clinical plasma chemistries, immune function, and organ weights (heart, kidney, adrenal glands, and testes) as endpoints of chronic stress that may arise from sub-optimal housing conditions. Few statistically different parameters were observed in this study, none of which describe chronic stress and all within normal physiological ranges for research mice, suggesting that this hybrid strain was not adversely affected by housing at twice the density currently recommended. PMID:26900840

  14. Edge effects on morphometrics and body mass in two sympatric species of mouse lemurs in Madagascar.

    PubMed

    Burke, Ryan J; Lehman, Shawn M

    2014-01-01

    Edge effects are an inevitable and important consequence of forest loss and fragmentation. These effects include changes in species biology and biogeography. Here we examine variations in body mass and morphometrics for 2 sympatric species of mouse lemurs (Microcebus murinus and M. ravelobensis) between edge and interior habitats in the dry deciduous forest at Ankarafantsika National Park. Between May and August 2012, we conducted mark-recapture experiments on mouse lemurs trapped along edge and interior forest transects within continuous forest adjacent to a large savannah. Of the 34 M. murinus captured during our study, 82% (n = 28) were trapped in interior habitats. Conversely, 72% (n = 47) of M. ravelobensis were captured in edge habitats. We found that mean body mass of M. murinus and M. ravelobensis did not differ between edge and interior habitats. However, female M. ravelobensis weighed significantly more in edge habitats (56.09 ± 1.74 g) than in interior habitats (48.14 ± 4.44 g). Our study provides some of the first evidence of sex differences in edge responses for a primate species.

  15. Acute pathophysiological effects of muscle-expressed Dp71 transgene on normal and dystrophic mouse muscle.

    PubMed

    Wieneke, Sascha; Heimann, Peter; Leibovitz, Sigalit; Nudel, Uri; Jockusch, Harald

    2003-11-01

    products of the dystrophin gene range from the 427-kDa full-length dystrophin to the 70.8-kDa Dp71. Dp427 is expressed in skeletal muscle, where it links the actin cytoskeleton with the extracellular matrix via a complex of dystrophin-associated proteins (DAPs). Dystrophin deficiency disrupts the DAP complex and causes muscular dystrophy in humans and the mdx mouse. Dp71, the major nonmuscle product, consists of the COOH-terminal part of dystrophin, including the binding site for the DAP complex but lacks binding sites for microfilaments. Dp71 transgene (Dp71tg) expressed in mdx muscle restores the DAP complex but does not prevent muscle degeneration. In wild-type (WT) mouse muscle, Dp71tg causes a mild muscular dystrophy. In this study, we tested, using isolated extensor digitorum longus muscles, whether Dp71tg exerts acute influences on force generation and sarcolemmal stress resistance. In WT muscles, there was no effect on isometric twitch and tetanic force generation, but with a cytomegalovirus promotor-driven transgene, contraction with stretch led to sarcolemmal ruptures and irreversible loss of tension. In MDX muscle, Dp71tg reduced twitch and tetanic tension but did not aggravate sarcolemmal fragility. The adverse effects of Dp71 in muscle are probably due to its competition with dystrophin and utrophin (in MDX muscle) for binding to the DAP complex.

  16. Effects of age and psychomotor ability on kinematics of mouse-mediated aiming movement.

    PubMed

    Cheong, Yuenkeen; Shehab, Randa L; Ling, Chen

    2013-01-01

    The objective of this research is to understand the influence of age and age-related psychomotor ability on the process of mouse-mediated aiming movement. It is premised on the notions that (1) mouse-mediated aiming movements can be better understood via studying its kinematics and (2) age is a surrogate variable in kinematic differences, and that age-influenced fundamental factors such as psychomotor ability may have a more direct effect. As expected, age kinematic differences were detected. However, when comparing with age, age-influenced psychomotor ability (i.e. manual dexterity) contributed more substantially to the variances of kinematics in the ballistic phase. For homing phase, in addition to manual dexterity, age-influenced wrist-finger speed was also a significant contributor. In future studies, it is suggested that components of visual processing should be included for better understanding of its role as an age-influenced fundamental ability in aiming movements. Applications of this research are discussed. This paper presents empirical data showing age effects in movement kinematics are chiefly mediated by age-related changes in psychomotor ability. Our findings provide additional data for existing and newer performance enhancement solutions, especially for those targeting older adults.

  17. Modafinil Abrogates Methamphetamine-Induced Neuroinflammation and Apoptotic Effects in the Mouse Striatum

    PubMed Central

    Goitia, Belen; Garcia-Rill, Edgar; Krasnova, Irina N.; Cadet, Jean Lud; Urbano, Francisco J.; Bisagno, Veronica

    2012-01-01

    Methamphetamine is a drug of abuse that can cause neurotoxic damage in humans and animals. Modafinil, a wake-promoting compound approved for the treatment of sleeping disorders, is being prescribed off label for the treatment of methamphetamine dependence. The aim of the present study was to investigate if modafinil could counteract methamphetamine-induced neuroinflammatory processes, which occur in conjunction with degeneration of dopaminergic terminals in the mouse striatum. We evaluated the effect of a toxic methamphetamine binge in female C57BL/6 mice (4×5 mg/kg, i.p., 2 h apart) and modafinil co-administration (2×90 mg/kg, i.p., 1 h before the first and fourth methamphetamine injections) on glial cells (microglia and astroglia). We also evaluated the striatal expression of the pro-apoptotic BAX and anti-apoptotic Bcl-2 proteins, which are known to mediate methamphetamine-induced apoptotic effects. Modafinil by itself did not cause reactive gliosis and counteracted methamphetamine-induced microglial and astroglial activation. Modafinil also counteracted the decrease in tyrosine hydroxylase and dopamine transporter levels and prevented methamphetamine-induced increases in the pro-apoptotic BAX and decreases in the anti-apoptotic Bcl-2 protein expression. Our results indicate that modafinil can interfere with methamphetamine actions and provide protection against dopamine toxicity, cell death, and neuroinflammation in the mouse striatum. PMID:23056363

  18. Effects of heavy ion to the primary culture of mouse brain cells

    NASA Technical Reports Server (NTRS)

    Nojima, Kumie; Nakadai, Taeko; Kohno, Yukio; Vazquez, Marcelo E.; Yasuda, Nakahiro; Nagaoka, Shunji

    2004-01-01

    To investigate effects of low dose heavy particle radiation to CNS system, we adopted mouse neonatal brain cells in culture being exposed to heavy ions by HIMAC at NIRS and NSRL at BNL. The applied dose varied from 0.05 Gy up to 2.0 Gy. The subsequent biological effects were evaluated by an induction of apoptosis and neuron survival focusing on the dependencies of the animal strains, SCID, B6, B6C3F1, C3H, used for brain cell culture, SCID was the most sensitive and C3H the least sensitive to particle radiation as evaluated by 10% apoptotic criterion. The LET dependency was compared with using SCID and B6 cells exposing to different ions (H, C, Ne, Si, Ar, and Fe). Although no detectable LET dependency was observed in the high LET (55-200 keV/micrometers) and low dose (<0.5 Gy) regions. The survivability profiles of the neurons were different in the mouse strains and ions. In this report, a result of memory and learning function to adult mice after whole-body and brain local irradiation at carbon ion and iron ion.

  19. Dose-Related Estrogen Effects on Gene Expression in Fetal Mouse Prostate Mesenchymal Cells

    PubMed Central

    Taylor, Julia A.; Richter, Catherine A.; Suzuki, Atsuko; Watanabe, Hajime; Iguchi, Taisen; Coser, Kathryn R.; Shioda, Toshihiro; vom Saal, Frederick S.

    2012-01-01

    Developmental exposure of mouse fetuses to estrogens results in dose-dependent permanent effects on prostate morphology and function. Fetal prostatic mesenchyme cells express estrogen receptor alpha (ERα) and androgen receptors and convert stimuli from circulating estrogens and androgens into paracrine signaling to regulate epithelial cell proliferation and differentiation. To obtain mechanistic insight into the role of different doses of estradiol (E2) in regulating mesenchymal cells, we examined E2-induced transcriptomal changes in primary cultures of fetal mouse prostate mesenchymal cells. Urogenital sinus mesenchyme cells were obtained from male mouse fetuses at gestation day 17 and exposed to 10 pM, 100 pM or 100 nM E2 in the presence of a physiological concentration of dihydrotestosterone (0.69 nM) for four days. Gene ontology studies suggested that low doses of E2 (10 pM and 100 pM) induce genes involved in morphological tissue development and sterol biosynthesis but suppress genes involved in growth factor signaling. Genes involved in cell adhesion were enriched among both up-regulated and down-regulated genes. Genes showing inverted-U-shape dose responses (enhanced by E2 at 10 pM E2 but suppressed at 100 pM) were enriched in the glycolytic pathway. At the highest dose (100 nM), E2 induced genes enriched for cell adhesion, steroid hormone signaling and metabolism, cytokines and their receptors, cell-to-cell communication, Wnt signaling, and TGF- β signaling. These results suggest that prostate mesenchymal cells may regulate epithelial cells through direct cell contacts when estrogen level is low whereas secreted growth factors and cytokines might play significant roles when estrogen level is high. PMID:23144751

  20. Effects of Shen'an granules on Wnt signaling pathway in mouse models of diabetic nephropathy.

    PubMed

    Zou, Xin-Rong; Wang, Xiao-Qin; Hu, Ying-Lin; Zhou, Hui-Lan

    2016-12-01

    The effect of Shen'an granules on the Wnt signaling pathway in renal tissues of mouse models of streptozotocin (STZ)-induced diabetic nephropathy was investigated in the present study. A total of 62 BALB/c mice were randomly divided into the normal control (A group), model (B group), losartan (C group), low-dose Shen'an granules (D group), and high-dose Shen'an granules (E group) groups. The mouse model of diabetic nephropathy was established by a single intraperitoneal injection of STZ (150 mg/kg). The animals were treated with drugs for 8 weeks, and blood creatinine, blood urea nitrogen, triglycerides (TG), and total cholesterol (CHOL) were measured prior to and after treatment. PAS staining was performed for observation of glomerular microstructure by light microscope, and western blot analysis was performed to detect Wnt1 protein and β-catenin protein. The results indicated that the quantification of 24-h microalbuminuria, and levels of blood creatinine, urea nitrogen, TG, and CHOL were significantly lower in the high- and low-dose Shen'an granules groups than those in the model group (p<0.05). The expression levels of Wnt1 protein and β-catenin protein in the high- and low-dose Shen'an granules groups were significantly lower than those in the model group (p<0.05). In conclusion, proteinuria, renal dysfunction, and dyslipidemias are closely associated with the abnormal activation of the Wnt signaling pathway in the mouse model of diabetic nephropathy. The mechanism by which Shen'an granules regulate proteinuria, renal function, and blood lipids may be associated with inhibition of the abnormally activated Wnt signaling pathway.

  1. Contractile effect of TRPA1 receptor agonists in the isolated mouse intestine.

    PubMed

    Penuelas, Angelica; Tashima, Kimihito; Tsuchiya, Shizuko; Matsumoto, Kenjiro; Nakamura, Tomonori; Horie, Syunji; Yano, Shingo

    2007-12-08

    TRPA1 is a member of the transient receptor potential (TRP) channel family expressed in sensory neurons. The present study focused on the effects of TRPA1 activation on contractile responses in isolated mouse intestine preparations. The jejunum, ileum, and proximal and distal colon were surgically isolated from male ddY mice. Intestinal motility was recorded as changes in isotonic tension. TRPA1, TRPM8, and TRPV1 expressions were examined by reverse transcription-polymerase chain reaction (RT-PCR). A TRPA1 agonist allyl isothiocyanate (AITC) dose-dependently induced contractions in the proximal and distal colon, whereas in the jejunum and ileum, even 100 muM AITC caused very little contraction. Likewise, a TRPA1 and TRPM8 agonist icilin, a TRPA1 agonist allicin, and a TRPV1 agonist capsaicin induced contractions in the colon. However, a TRPM8 agonist menthol induced long-lasting relaxation in the colon. Repeated exposure to AITC produced desensitization of its own contraction in the colon. Moreover, contractions induced by AITC generate cross-desensitization with icilin and capsaicin. Tetrodotoxin completely abolished AITC-induced contractions in the colon, whereas atropine significantly attenuated AITC-induced contractions in the distal colon, but not in the proximal colon. Menthol-induced relaxation in the colon was not inhibited by tetrodotoxin and atropine. RT-PCR analysis revealed the expression of TRPA1 and TRPV1, but not TRPM8, throughout the mouse intestine. These results suggest that TRPA1, but not TRPM8, are functionally expressed in the enteric nervous system throughout the mouse intestine on neurons that may also co-express TRPV1, yet the contractile responses to TRPA1 activation differ depending on their location along the intestine.

  2. Effects of Shen'an granules on Wnt signaling pathway in mouse models of diabetic nephropathy

    PubMed Central

    Zou, Xin-Rong; Wang, Xiao-Qin; Hu, Ying-Lin; Zhou, Hui-Lan

    2016-01-01

    The effect of Shen'an granules on the Wnt signaling pathway in renal tissues of mouse models of streptozotocin (STZ)-induced diabetic nephropathy was investigated in the present study. A total of 62 BALB/c mice were randomly divided into the normal control (A group), model (B group), losartan (C group), low-dose Shen'an granules (D group), and high-dose Shen'an granules (E group) groups. The mouse model of diabetic nephropathy was established by a single intraperitoneal injection of STZ (150 mg/kg). The animals were treated with drugs for 8 weeks, and blood creatinine, blood urea nitrogen, triglycerides (TG), and total cholesterol (CHOL) were measured prior to and after treatment. PAS staining was performed for observation of glomerular microstructure by light microscope, and western blot analysis was performed to detect Wnt1 protein and β-catenin protein. The results indicated that the quantification of 24-h microalbuminuria, and levels of blood creatinine, urea nitrogen, TG, and CHOL were significantly lower in the high- and low-dose Shen'an granules groups than those in the model group (p<0.05). The expression levels of Wnt1 protein and β-catenin protein in the high- and low-dose Shen'an granules groups were significantly lower than those in the model group (p<0.05). In conclusion, proteinuria, renal dysfunction, and dyslipidemias are closely associated with the abnormal activation of the Wnt signaling pathway in the mouse model of diabetic nephropathy. The mechanism by which Shen'an granules regulate proteinuria, renal function, and blood lipids may be associated with inhibition of the abnormally activated Wnt signaling pathway. PMID:28105085

  3. Effect of Acinetobacter glutaminase-asparaginase treatment on free amino acids in mouse tissues.

    PubMed

    Holcenberg, J S; Tang, E; Dolowy, W C

    1975-05-01

    Acinetobacter glutaminase-asparaginase (AGA) and Escherichia coli asparaginase were compared for their effects on plasma and tissue levels of amino acids, ammonia, and glutamyl transferase activity in the mouse. Free asparagine was depleted similarly in plasma and tissues by both enzymes. AGA treatment produced partial depletion of glutamine concentrations in muscle, spleen, small intestine, and liver. Brain and kidney glutamine concentrations actually rose with treatment. Despite over 100-fold increase in plasma glutamate, only the kidney showed a substantial increase in free glutamate levels during AGA treatment. Glutamine biosynthesis measured by glutamyl transferase activity showed an appreciable increase only in the kidney. Ammonia levels in tissues and plasma rose 1.3- to 4.3-fold. In general, E. coli asparaginase treatment had much less effect on these measurements than did AGA. The changes in these levels are discussed in relation to sites of possible toxicity and antitumor effects.

  4. Early effect of mosquito larvae extract on mouse cells proliferation in vivo.

    PubMed

    Ronderos, J R

    1996-04-01

    It has been demonstrated that mosquito larvae crude extract has an inhibiting effect on the mitotic rate of several mouse cell populations. The sampling period was 16-24 h after treatment, when mitotic peak normally occurs. The present paper reports the effect of mosquito larvae crude extract on the proliferation of hepatocytes, renocytes, Lieberkhün crypt enterocytes, and sialocytes. In this case, the sampling period covered the dark phase of the day, during the first 12 h after treatment. Colchicine-arrested metaphases were controlled at 20/04, 00/08 and 04/12 (Time of Day/Time Post Injection). The mitotic rate was significantly increased in hepatocytes and renocytes and inhibited in duodenum enterocytes. In view of the time chosen to administer the treatments and the time elapsed until sampling, we conclude a probable effect of the extract at the G2-M point of the cell cycle.

  5. Effect of the Fusarium toxins, zearalenone and deoxynivalenol, on the mouse brain.

    PubMed

    Ren, Z H; Deng, H D; Deng, Y T; Deng, J L; Zuo, Z C; Yu, S M; Shen, L H; Cui, H M; Xu, Z W; Hu, Y C

    2016-09-01

    The aim of this study was to find effects of Fusarium toxins on brain injury in mice. We evaluated the individual and combined effect of the Fusarium toxins zearalenone and deoxynivalenol on the mouse brain. We examined brain weight, protein, antioxidant indicators, and apoptosis. After 3 and 5days of treatment, increased levels of nitric oxide, total nitric oxide synthase, hydroxyl radical scavenging, and malondialdehyde were observed in the treatment groups. This was accompanied by reduced levels of brain protein, superoxide dismutase (apart from the low-dose zearalenone groups), glutathione, glutathione peroxidase activity, and percentage of apoptotic cells. By day 12, most of these indicators had returned to control group levels. The effects of zearalenone and deoxynivalenol were dose-dependent, and were synergistic in combination. Our results suggest that brain function is affected by zearalenone and deoxynivalenol.

  6. Effect of wood creosote and loperamide on propulsive motility of mouse colon and small intestine.

    PubMed

    Ogata, N; Ataka, K; Morino, H; Shibata, T

    1999-10-01

    To elucidate a mechanism of the antidiarrheal activity of wood creosote, its effect on the propulsive motility of mouse colon and small intestine was studied using a charcoal meal test and a colonic bead expulsion test. The effect was compared with that of loperamide. At an ordinary therapeutic dose, wood creosote inhibited the propulsive motility of colon, but not of small intestine. On the other hand, loperamide inhibited the propulsive motility of small intestine, but not of colon. The results indicate that at least a part of the antidiarrheal activity of wood creosote and loperamide is attributable to their antikinetic effect predominantly on colon of the former and predominantly on small intestine of the latter.

  7. Effects of trifluoperazine and promethazine on the release of transmitter quanta at the mouse neuromuscular junction.

    PubMed

    Nishimura, M; Komatsu, R; Taquahashi, Y; Shimizu, Y; Satoh, E

    1998-01-01

    The present experiments examined the effects of phenothiazine derivatives, such as trifluoperazine and promethazine, on the release of transmitter quanta in preparations of the mouse diaphragm. The frequency (F, s-1) of miniature end-plate potentials and the quantal content (m) of endplate potentials were measured intracellularly at the same endplate in a bathing solution that contained 0.5-0.8 mM Ca2+ ions and 5 mM Mg2+ ions. Trifluoperazine (4 microM) significantly reduced both F and m. The inhibitory effect on m, but not on F, was subject to competition by Ca2+ ions. Promethazine at 48 microM, but not at 16 microM, reduced the quantal release. It was apparent that the effect of trifluoperazine was competitively antagonized by Ca2+ ions at motor nerve terminals.

  8. Effects of anticonvulsants in vivo on high affinity choline uptake in vitro in mouse hippocampal synaptosomes.

    PubMed Central

    Miller, J. A.; Richter, J. A.

    1985-01-01

    The effects of several anticonvulsant drugs on sodium-dependent high affinity choline uptake (HACU) in mouse hippocampal synaptosomes was investigated. HACU was measured in vitro after in vivo administration of the drug to mice. HACU was inhibited by drugs which have in common the ability to facilitate gamma-aminobutyric acid (GABA) transmission, pentobarbitone, phenobarbitone, barbitone, diazepam, chloridiazepoxide, and valproic acid. Dose-response relationships were determined for these drugs and the drugs' potencies at inhibiting HACU correlated well with their anticonvulsant potencies. Clonazepam, ethosuximide, carbamazepine, and barbituric acid had no effect on HACU in the doses used while phenytoin and trimethadione stimulated HACU. These results suggest that certain anticonvulsants may elicit a part of their anticonvulsant activity by modulating cholinergic neurones. This effect may be mediated through a GABA mechanism. PMID:3978310

  9. Effects of baicalin cream in two mouse models: 2,4-dinitrofluorobenzene-induced contact hypersensitivity and mouse tail test for psoriasis

    PubMed Central

    Wu, Jie; Li, Hong; Li, Ming

    2015-01-01

    Background:Scutellaria baicalensis is a Chinese herbal medicine that has been used for centuries to treat psoriasis. Baicalin is one of the major flavonoids and bioactive components of S. baicalensis and is responsible for the pharmacologic actions of the plant. Objective: This study aimed to investigate the anti-inflammatory effect and keratinocyte differentiation-inducing activity of baicalin in vivo. Methods: Baicalin was formulated into topical creams at concentrations of 1%, 3%, and 5%. The anti-inflammatory effect of baicalin cream was evaluated in 2,4-dinitrofluorobenzene (DNFB)-induced contact hypersensitivity (CHS) mice, and its keratinocyte-modulating action was assessed using the mouse tail model for psoriasis. Results: During the topical application of baicalin cream, no evidence of irritant effect was observed in both tests. In the inflammation model, mice exposed to baicalin cream displayed a reduction in DNFB-induced CHS responses compared with vehicle-treated animals, showing that the topical application of baicalin cream exerted an anti-inflammatory effect. In the second model, baicalin cream dose-dependently increased the orthokeratosis of granular layers and the relative epidermal thickness of mouse tail skin, indicative of the keratinocyte differentiation-inducing activity of this topical preparation. Conclusions: Taking the in vivo findings together, the present study indicated that baicalin cream may be a promising antipsoriatic agent worthy of further investigation for psoriasis treatment. PMID:25932143

  10. Effects of baicalin cream in two mouse models: 2,4-dinitrofluorobenzene-induced contact hypersensitivity and mouse tail test for psoriasis.

    PubMed

    Wu, Jie; Li, Hong; Li, Ming

    2015-01-01

    Scutellaria baicalensis is a Chinese herbal medicine that has been used for centuries to treat psoriasis. Baicalin is one of the major flavonoids and bioactive components of S. baicalensis and is responsible for the pharmacologic actions of the plant. This study aimed to investigate the anti-inflammatory effect and keratinocyte differentiation-inducing activity of baicalin in vivo. Baicalin was formulated into topical creams at concentrations of 1%, 3%, and 5%. The anti-inflammatory effect of baicalin cream was evaluated in 2,4-dinitrofluorobenzene (DNFB)-induced contact hypersensitivity (CHS) mice, and its keratinocyte-modulating action was assessed using the mouse tail model for psoriasis. During the topical application of baicalin cream, no evidence of irritant effect was observed in both tests. In the inflammation model, mice exposed to baicalin cream displayed a reduction in DNFB-induced CHS responses compared with vehicle-treated animals, showing that the topical application of baicalin cream exerted an anti-inflammatory effect. In the second model, baicalin cream dose-dependently increased the orthokeratosis of granular layers and the relative epidermal thickness of mouse tail skin, indicative of the keratinocyte differentiation-inducing activity of this topical preparation. Taking the in vivo findings together, the present study indicated that baicalin cream may be a promising antipsoriatic agent worthy of further investigation for psoriasis treatment.

  11. Effect of marine coral prostanoids, clavulones, on spontaneous beating rate of cultured myocardial cells from fetal mouse hearts.

    PubMed

    Honda, A; Hong, S; Yamada, Y; Mori, Y

    1991-06-01

    We examined effects of newly discovered marine coral prostanoids, clavulones, isolated from the Japanese stolonifer Clavularia viridis, on the spontaneous beating rate of cultured myocardial cells from fetal mouse hearts. Clavulone caused positive chronotropic action at 2-5 min after addition of clavulone (0.45 microM) to the reaction media of cardiac cells. This effect induced by clavulone was clearly different from the positive inotropic effects of ouabain (10 microM) and Bay K 8644 (0.1 microM) as judged by photoelectric recordings of beating. These results suggest a new biological action of clavulone that has positive chronotropic action on the cultured mouse myocyte preparation.

  12. Novel anticonvulsive effects of progesterone in a mouse model of hippocampal electrical kindling.

    PubMed

    Jeffrey, M; Lang, M; Gane, J; Chow, E; Wu, C; Zhang, L

    2014-01-17

    Progesterone is a known anticonvulsant, with its inhibitory effects generally attributed to its secondary metabolite, 5α,3α-tetrahydroprogesterone (THP), and THP's enhancement of GABAA receptor activity. Accumulating evidence, however, suggests that progesterone may have non-genomic actions independent of the GABAA receptor. In this study, we explored THP/GABAA-independent anticonvulsive actions of progesterone in a mouse model of hippocampal kindling and in mouse entorhinal slices in vitro. Specifically, we examined the effects of progesterone in kindled mice with or without pretreatments with finasteride, a 5α-reductase inhibitor known to block the metabolism of progesterone to THP. In addition, we examined the effects of progesterone on entorhinal epileptiform potentials in the presence of a GABAA receptor antagonist picrotoxin and finasteride. Adult male mice were kindled via a daily stimulation protocol. Electroencephalographic (EEG) discharges were recorded from the hippocampus or cortex to assess "focal" or "generalized" seizure activity. Kindled mice were treated with intra-peritoneal injections of progesterone (10, 35, 100 and 160mg/kg) with or without finasteride pretreatment (50 or 100mg/kg), THP (1, 3.5, 10 and 30mg/kg), midazolam (2mg/kg) and carbamazepine (50mg/kg). Entorhinal cortical slices were prepared from naïve young mice, and repetitive epileptiform potentials were induced by 4-aminopyridine (100μM), picrotoxin (100μM) and finasteride (1μM). Pretreatment with finasteride did not abolish the anticonvulsant effects of progesterone. In finasteride-pretreated mice, progesterone at 100 and 160mg/kg decreased cortical but not hippocampal afterdischarges (ADs). Carbamazepine mimicked the effects of progesterone with finasteride pretreatments in decreasing cortical discharges and motor seizures, whereas midazolam produced effects similar to progesterone alone or THP in decreasing hippocampal ADs and motor seizures. In brain slices, progesterone

  13. Olfactory regulation of the sexual behavior and reproductive physiology of the laboratory mouse: effects and neural mechanisms.

    PubMed

    Kelliher, Kevin R; Wersinger, Scott R

    2009-01-01

    In many species, chemical compounds emitted by conspecifics exert profound effects on reproductive physiology and sexual behavior. This is particularly true in the mouse, where such cues advance and delay puberty, suppress and facilitate estrous cycles, and cause the early termination of pregnancy. They also facilitate sexual behavior and inform mate selection. The mouse has a rich and complex repertoire of social behaviors. The technologies of molecular genetics are well developed in the mouse. Gene expression can be experimentally manipulated in the mouse relatively easily and in a time- and tissue-specific manner. Thus, the mouse is an excellent model in which to investigate the genetic, neural, and hormonal bases by which chemical compounds released by other mice affect physiology and behavior. These chemical cues are detected and processed by the olfactory system and other specialized but less well characterized sensory organs. The sensory information reaches brain regions that regulate hormone levels as well as those that are involved in behavior and alters the function of these brain regions. The effects of these chemical compounds have important implications for the laboratory animal facility as well as for researchers. We begin with an overview of the basic structure and function of the olfactory system and of the connections among brain regions that receive olfactory stimuli. We discuss the effects of chemosensory cues on the behavior and physiology of the organism along with what is known about the neural and hormonal mechanisms underlying these effects. We also describe some of the implications for the laboratory animal facility.

  14. Effect of treppe on isovolumic function in the isolated blood-perfused mouse heart.

    PubMed

    Brooks, W W; Apstein, C S

    1996-08-01

    The effects of treppe on left ventricular function in the isolated mouse heart perfused with physiological buffer or with erythrocyte-rich buffer were compared. Left ventricular systolic and diastolic pressures were measured in the isovolumically contracting (balloon in the left ventricle) mouse hearts. Hearts were isolated from 12 adult Swiss-Webster mice and perfused at constant pressure (approximately 85 mmHg) via the aorta. Perfusate consisted of non-recirculating oxygenated Krebs-Henseleit (KH) solution without or with washed cow red blood cells at a hematocrit of 20% (KH-RBC20). The measured ionized calcium concentration of the perfusates were adjusted to 2.2 mmol/l and the temperature held constant at 37 degrees C. Left ventricular systolic pressure, its derivative and diastolic pressures were recorded via a pressure transducer attached to a small latex balloon which was placed in the left ventricle through a left atrial incision. The balloon volume was adjusted to achieve an end-diastolic pressure of 4-8 mmHg. Left ventricular (LV) developed pressure averaged 111 +/- 4 (mean +/- S.E.M.) with KH alone and 108 +/- 4 mmHg with KH-RBC20 while the coronary flows were 3.1 +/- 0.18 and 0.95 +/- 0.15 ml/min respectively. In both KH solution alone and KH-RBC20, developed pressure remained relatively stable from 3 to 5 Hz while +/- dp/dt increased approximately 10% above values observed at 3 Hz. During KH perfusion with increasing stimulation rates, left ventricular pressure and +/- dP/dt, to a lesser extent, decreased while end-diastolic pressure markedly increased at stimulation rates higher than 5 Hz. However, KH-RBC20 perfusion prevented the marked increase in diastolic pressure with increasing stimulation rates (from 5 to 10 Hz). No significant difference in left ventricular developed pressure or +/dP/dt response to treppe were in evidence between groups. These results demonstrate that diastolic function of the isovolumically contracting mouse heart is sensitive

  15. [Effects of alkaloids from Coptidis Rhizoma on mouse peritoneal macrophages in vitro].

    PubMed

    Zhou, Xia; Peng, Yao-zong; Huang, Tao; Li, Ling; Mou, Shao-xia; Kou, Shu-ming; Li, Xue-gang

    2015-12-01

    This work was mainly studied the effects of the four alkaloids from Coptidis Rhizoma on the mouse peritoneal macrophages in vitro and preliminarily discussed the regulating mechanisms. The effect of alkaloids from Coptidis Rhizoma on the vitality of macrophages was measured by the MTT assay. The effect of alkaloids on the phagocytosis of macrophages was determined by neutral red trial and respiratory burst activity was tested by NBT. The expressions of respiratory-burst-associated genes influenced by alkaloids were detected by qRT-PCR. The conformation change of membrane protein in macrophages by the impact of alkaloids was studied by fluorospectro-photometer. Results showed that the four alkaloids from Coptidis Rhizoma could increase the phagocytosis of macrophages in different level and berberine had the best effect. Berberine, coptisine and palmatine had up-regulation effects on respiratory burst activity of mouse peritoneal macrophages stimulated by PMA and regulatory activity on the mRNA expression of PKC, p40phox or p47phox, whereas the epiberberine had no significant influence on respiratory burst. Moreover, alkaloids from Coptidis Rhizoma could change the conformation of membrane protein and the berberine showed the strongest activity. The results suggested that the four alkaloids from Coptidis Rhizoma might activate macrophages through changing the conformation of membrane protein of macrophages and then enhanced the phagocytosis and respiratory burst activity of macrophages. Furthermore, the regulatory mechanism of alkaloids on the respiratory burst activity of macrophages may be also related to the expression level of PKC, p40phox and p47phox.

  16. Flavanone silibinin treatment attenuates nitrogen mustard-induced toxic effects in mouse skin.

    PubMed

    Jain, Anil K; Tewari-Singh, Neera; Inturi, Swetha; Kumar, Dileep; Orlicky, David J; Agarwal, Chapla; White, Carl W; Agarwal, Rajesh

    2015-05-15

    Currently, there is no effective antidote to prevent skin injuries by sulfur mustard (SM) and nitrogen mustard (NM), which are vesicating agents with potential relevance to chemical warfare, terrorist attacks, or industrial/laboratory accidents. Our earlier report has demonstrated the therapeutic efficacy of silibinin, a natural flavanone, in reversing monofunctional alkylating SM analog 2-chloroethyl ethyl sulfide-induced toxic effects in mouse skin. To translate this effect to a bifunctional alkylating vesicant, herein, efficacy studies were carried out with NM. Topical application of silibinin (1 or 2mg) 30 min after NM exposure on the dorsal skin of male SKH-1 hairless mice significantly decreased NM-induced toxic lesions at 24, 72 or 120 h post-exposure. Specifically, silibinin treatment resulted in dose-dependent reduction of NM-induced increase in epidermal thickness, dead and denuded epidermis, parakeratosis and microvesication. Higher silibinin dose also caused a 79% and 51%reversal in NM-induced increases in myeloperoxidase activity and COX-2 levels, respectively. Furthermore, silibinin completely prevented NM-induced H2A.X phosphorylation, indicating reversal of DNA damage which could be an oxidative DNA damage as evidenced by high levels of 8-oxodG in NM-exposed mouse skin that was significantly reversed by silibinin. Together, these findings suggest that attenuation of NM-induced skin injury by silibinin is due to its effects on the pathways associated with DNA damage, inflammation, vesication and oxidative stress. In conclusion, results presented here support the optimization of silibinin as an effective treatment of skin injury by vesicants.

  17. Therapeutic effects of adipose-derived stem cells pretreated with pioglitazone in an emphysema mouse model

    PubMed Central

    Hong, Yoonki; Kim, You-Sun; Hong, Seok-Ho; Oh, Yeon-Mok

    2016-01-01

    There is no therapy currently available that influences the natural history of disease progression in patients with chronic obstructive pulmonary disease (COPD). Although stem cell therapy is considered a potential therapeutic option in COPD, there are no clinical trials proving definitive therapeutic effects in patients with COPD. Recently, it was reported that pioglitazone might potentiate the therapeutic effects of stem cells in patients with heart or liver disease. To test the capacity of pioglitazone pretreatment of stem cells for emphysema repair, we evaluated the therapeutic effects of pioglitazone-pretreated human adipose-derived mesenchymal stem cells (ASCs) on elastase-induced or cigarette smoke-induced emphysema in mice. We also investigated the mechanisms of action of pioglitazone-pretreated ASCs. Pioglitazone-pretreated ASCs had a more potent therapeutic effect than non-pretreated ASCs in the repair of both elastase-induced and smoke-induced emphysema models (mean linear intercept, 78.1±2.5 μm vs 83.2±2.6 μm in elastase models and 75.6±1.4 μm vs 80.5±3.2 μm in smoke models, P<0.05). Furthermore, we showed that pioglitazone-pretreated ASCs increased vascular endothelial growth factor (VEGF) production both in vitro and in mouse lungs in the smoke-induced emphysema model. Pioglitazone-pretreated ASCs may have more potent therapeutic effects than non-pretreated ASCs in emphysema mouse models. PMID:27765950

  18. Flavanone silibinin treatment attenuates nitrogen mustard-induced toxic effects in mouse skin

    PubMed Central

    Jain, Anil K; Tewari-Singh, Neera; Inturi, Swetha; Kumar, Dileep; Orlicky, David J; Agarwal, Chapla; White, Carl W; Agarwal, Rajesh

    2015-01-01

    Currently, there is no effective antidote to prevent skin injuries by sulfur mustard (SM) and nitrogen mustard (NM), which are vesicating agents with potential relevance to chemical warfare, terrorist attacks, or industrial/laboratory accidents. Our earlier report has demonstrated the therapeutic efficacy of silibinin, a natural flavanone, in reversing monofunctional alkylating SM analog 2-chloroethyl ethyl sulfide-induced toxic effects in mouse skin. To translate this effect to a bifunctional alkylating vesicant, herein, efficacy studies were carried out with NM. Topical application of silibinin (1 or 2 mg) 30 min after NM exposure on the dorsal skin of male SKH-1 hairless mice significantly decreased NM-induced toxic lesions at 24, 72 or 120 h post-exposure. Specifically, silibinin treatment resulted in dose-dependent reduction of NM-induced increase in epidermal thickness, dead and denuded epidermis, parakeratosis and microvesication. Higher silibinin dose also caused a 79% and 51% reversal in NM-induced increases in myeloperoxidase activity and COX-2 levels, respectively. Furthermore, silibinin completely prevented NM-induced H2A.X phosphorylation, indicating reversal of DNA damage which could be an oxidative DNA damage as evidenced by high levels of 8-oxodG in NM-exposed mouse skin that was significantly reversed by silibinin. Together, these findings suggest that attenuation of NM-induced skin injury by silibinin is due to its effects on the pathways associated with DNA damage, inflammation, vesication and oxidative stress. In conclusion, results presented here support the optimization of silibinin as an effective treatment of skin injury by vesicants. PMID:25791923

  19. Therapeutic effects of adipose-derived stem cells pretreated with pioglitazone in an emphysema mouse model.

    PubMed

    Hong, Yoonki; Kim, You-Sun; Hong, Seok-Ho; Oh, Yeon-Mok

    2016-10-21

    There is no therapy currently available that influences the natural history of disease progression in patients with chronic obstructive pulmonary disease (COPD). Although stem cell therapy is considered a potential therapeutic option in COPD, there are no clinical trials proving definitive therapeutic effects in patients with COPD. Recently, it was reported that pioglitazone might potentiate the therapeutic effects of stem cells in patients with heart or liver disease. To test the capacity of pioglitazone pretreatment of stem cells for emphysema repair, we evaluated the therapeutic effects of pioglitazone-pretreated human adipose-derived mesenchymal stem cells (ASCs) on elastase-induced or cigarette smoke-induced emphysema in mice. We also investigated the mechanisms of action of pioglitazone-pretreated ASCs. Pioglitazone-pretreated ASCs had a more potent therapeutic effect than non-pretreated ASCs in the repair of both elastase-induced and smoke-induced emphysema models (mean linear intercept, 78.1±2.5 μm vs 83.2±2.6 μm in elastase models and 75.6±1.4 μm vs 80.5±3.2 μm in smoke models, P<0.05). Furthermore, we showed that pioglitazone-pretreated ASCs increased vascular endothelial growth factor (VEGF) production both in vitro and in mouse lungs in the smoke-induced emphysema model. Pioglitazone-pretreated ASCs may have more potent therapeutic effects than non-pretreated ASCs in emphysema mouse models.

  20. Flavanone silibinin treatment attenuates nitrogen mustard-induced toxic effects in mouse skin

    SciTech Connect

    Jain, Anil K.; Tewari-Singh, Neera; Inturi, Swetha; Kumar, Dileep; Orlicky, David J.; Agarwal, Chapla; White, Carl W.; Agarwal, Rajesh

    2015-05-15

    Currently, there is no effective antidote to prevent skin injuries by sulfur mustard (SM) and nitrogen mustard (NM), which are vesicating agents with potential relevance to chemical warfare, terrorist attacks, or industrial/laboratory accidents. Our earlier report has demonstrated the therapeutic efficacy of silibinin, a natural flavanone, in reversing monofunctional alkylating SM analog 2-chloroethyl ethyl sulfide-induced toxic effects in mouse skin. To translate this effect to a bifunctional alkylating vesicant, herein, efficacy studies were carried out with NM. Topical application of silibinin (1 or 2 mg) 30 min after NM exposure on the dorsal skin of male SKH-1 hairless mice significantly decreased NM-induced toxic lesions at 24, 72 or 120 h post-exposure. Specifically, silibinin treatment resulted in dose-dependent reduction of NM-induced increase in epidermal thickness, dead and denuded epidermis, parakeratosis and microvesication. Higher silibinin dose also caused a 79% and 51%reversal in NM-induced increases in myeloperoxidase activity and COX-2 levels, respectively. Furthermore, silibinin completely prevented NM-induced H2A.X phosphorylation, indicating reversal of DNA damage which could be an oxidative DNA damage as evidenced by high levels of 8-oxodG in NM-exposed mouse skin that was significantly reversed by silibinin. Together, these findings suggest that attenuation of NM-induced skin injury by silibinin is due to its effects on the pathways associated with DNA damage, inflammation, vesication and oxidative stress. In conclusion, results presented here support the optimization of silibinin as an effective treatment of skin injury by vesicants. - Highlights: • Silibinin treatment attenuated nitrogen mustard (NM)-induced skin injury. • Silibinin affects pathways associated with DNA damage, inflammation and vesication. • The efficacy of silibinin could also be associated with oxidative stress. • These results support testing and optimization of

  1. Cellular and subcellular aquaporin-4 distribution in the mouse neurohypophysis and the effects of osmotic stimulation.

    PubMed

    Mesbah-Benmessaoud, Ouahiba; Benabdesselam, Roza; Hardin-Pouzet, Hélène; Dorbani-Mamine, Latifa; Grange-Messent, Valérie

    2011-01-01

    Water channel aquaporin-4 (AQP4) is the most abundant water channel in the rodent brain and is mainly expressed in cerebral areas involved in central osmoreception and osmoregulation. The neurohypophysis is the release site of hypothalamic neurohormones vasopressin and oxytocin, which are involved in the regulation of the water balance. The authors investigated the cellular and subcellular distribution of AQP4 in the mouse neurohypophysis before and after chronic osmotic stimulation, using immunofluorescence microscopy and immunoperoxidase electron microscopy. They showed that AQP4 was abundant in the mouse hypophysis, mainly in the neural lobe. AQP4 was discontinuously distributed along pituicytes plasma membranes, in the dense neurosecretory granules and microvesicles of nerve endings and fibers, and along the luminal and abluminal membranes of fenestrated capillary endothelial cells. After chronic osmotic stimulation, AQP4 immunolabeling was enhanced. Taken together, these results suggest that AQP4 could be involved in the pituicyte sensor effect during osmoregulation, the modification and/or maturation mechanism of neurosecretory granules during neurohormone release, and the blood perfusion of the hypophysis.

  2. Galvanotactic response of mouse epididymal sperm: in vitro effects of zinc and diethyldithiocarbamate.

    PubMed

    Zhang, X; Jin, L; Takenaka, I

    2000-01-01

    This study was conducted to evaluate the galvanotactic response of mouse epididymal sperm as well as the in vitro effects of Zn-acetate and diethyldithiocarbamate (DEDTC) on the galvanotaxis of sperm. The galvanotaxis of sperm was observed in a direct current (DC) electric field between 0 and 10 V/cm. The sperm were treated with Zn-acetate or DEDTC at concentrations of 0.02, 0.20, and 2.00 mM before the observations. The sperm exhibited galvanotaxis toward both cathode and anode in the fields between 1 and 9 V/cm. The number of sperm that accumulated at both electrodes was found to reach the highest level between 5 and 7 V/cm. In comparison with the results from untreated sperm, the number of accumulated sperm at the electrodes increased with the addition of 0.20 and 2.00 mM Zn-acetate, but decreased with the addition of DEDTC at all 3 concentrations. The galvanotaxis of mouse epididymal sperm is related to the field strengths, and the guidance of sperm migration may be influenced by the sex chromosomes. The galvanotaxis of the sperm may be improved by addition of Zn-acetate but depressed by DEDTC in the presence of DC electric fields.

  3. The effect of handling method on the mouse grimace scale in two strains of laboratory mice.

    PubMed

    Miller, Amy L; Leach, Matthew C

    2016-08-01

    Pain assessment in laboratory animals is an ethical and legal requirement. The mouse grimace scale (MGS) is a new method of pain assessment deemed to be both accurate and reliable, and observers can be rapidly trained to use it. In order for a new pain assessment technique to be effective, we must ensure that the score awarded by the technique is only influenced by pain and not by other husbandry or non-painful but integral aspects of research protocols. Here, we studied 16 male mice, housed under standard laboratory conditions. Eight mice were randomly assigned to tail handling and eight to tube handling on arrival at the unit. On each occasion the mice were removed from their cage for routine husbandry, they were picked up using their assigned handling method. Photographs of the mouse faces were then scored by treatment-blind observers as per the MGS manual (see Nature Methods 2010, Vol. 7, pp 447-449), and scores from the two groups were compared. There was no significant difference in MGS scores between the mice that had been handled using a tube compared with the tail. Consequently, these methods of handling did not influence the baseline grimace score given, suggesting that these handling techniques are not confounding factors when establishing baseline MGS scores, further validating this technique.

  4. Effect of Acrylamide on Oocyte Nuclear Maturation and Cumulus Cells Apoptosis in Mouse In Vitro

    PubMed Central

    Liu, Shuzhen; Jiang, Ligang; Zhong, Tao; Kong, Shuhui; Zheng, Rongbin; Kong, Fengyun; Zhang, Cong; Zhang, Lei; An, Liguo

    2015-01-01

    Acrylamide (ACR) is a chemical compound with severe neurotoxicity, genotoxicity, carcinogenicity and reproductive toxicity. Recent studies showed that ACR impairs the function of reproductive organs, e.g., epididymis and testes. In vitro maturation of mouse oocyte is a sensitive assay to identify potential chemical hazard to female fertility. The aim of this study was to evaluate the adverse effects of ACR on the nuclear maturation and cumulus cells apoptosis of mouse oocytes in vitro. Cumulus–oocyte complexes were incubated in a maturation medium containing 0, 5, 10 and 20 μM of ACR. Chromosome alignment and spindle morphology of oocytes was determined by immunofluorescence and confocal microscopy. Our results showed that oocytes exposed to different doses of ACR in vitro were associated with a significant decrease of oocyte maturation, significant increase of chromosome misalignment rate, occurrence of abnormal spindle configurations, and the inhibition of oocyte parthenogenetic activation. Furthermore, apoptosis of cumulus cells was determined by TUNEL and CASPASE-3 assay. Results showed that apoptosis in cumulus cells was enhanced and the expression of CASPASE-3 was increased after cumulus–oocyte complexes were exposed to ACR. Therefore, ACR may affect the nuclear maturation of oocytes via the apoptosis of cumulus cells in vitro. PMID:26275143

  5. Effect of chronic intermittent hypoxia on theophylline metabolism in mouse liver.

    PubMed

    Chen, Xiao-yang; Zeng, Yi-ming; Zhang, Yi-xiang; Wang, Wan-yu; Wu, Run-hua

    2013-01-01

    Chronic intermittent hypoxia (CIH) has been associated with abnormalities in the liver, which is the most important organ for drug metabolism. This study aimed to investigate the effect of CIH on theophylline metabolism in mouse liver. Eight C57BL/6J mice were exposed to CIH for 12 weeks. Eight C57BL/6J mice were exposed to room air as a control group. Serum levels of alanine aminotransferase and aspartate aminotransferase were measured. Liver histology was observed by light and electron microscopy. Total hepatic cytochrome P450 concentration was measured. Hepatocytes were isolated and incubated with 15 mg/ml theophylline for four hours. After incubation, the theophylline concentration in the supernatant was measured and the theophylline metabolism rate was calculated. CIH did not affect the serum transaminase levels. Livers from mice exposed to CIH showed hepatocellular edema, and liver cells had fuzzy rough endoplasmic reticulum under the electron microscope. The theophylline metabolism rate was significantly inhibited by CIH compared with controls; (16.60 ± 2.43)% vs. (21.58 ± 4.52)% (P = 0.02). The total liver cytochrome P450 concentration in the CIH group was significantly lower than in the control group; (0.83 ± 0.08) vs. (1.13 ± 0.21) mol/mg microsomal protein (P = 0.004). CIH decreases theophylline metabolism by mouse hepatocytes, which may correlate with the downregulation of cytochrome P450 expression by CIH.

  6. Protective effect of butylated hydroxylanisole against hydrogen peroxide-induced apoptosis in primary cultured mouse hepatocytes.

    PubMed

    Hwang, Geun Hye; Jeon, Yu Jin; Han, Ho Jae; Park, Soo Hyun; Baek, Kyoung Min; Chang, Woochul; Kim, Joong Sun; Kim, Lark Kyun; Lee, You-Mie; Lee, Sangkyu; Bae, Jong-Sup; Jee, Jun-Goo; Lee, Min Young

    2015-01-01

    Butylated hydroxyanisole (BHA) is a synthetic phenolic compound consisting of a mixture of two isomeric organic compounds: 2-tert-butyl-4-hydroxyanisole and 3-tert-butyl-4-hydroxyanisole. We examined the effect of BHA against hydrogen peroxide (H2O2)-induced apoptosis in primary cultured mouse hepatocytes. Cell viability was significantly decreased by H2O2 in a dose-dependent manner. Additionally, H2O2 treatment increased Bax, decreased Bcl-2, and promoted PARP-1 cleavage in a dose-dependent manner. Pretreatment with BHA before exposure to H2O2 significantly attenuated the H2O2-induced decrease of cell viability. H2O2 exposure resulted in an increase of intracellular reactive oxygen species (ROS) generation that was significantly inhibited by pretreatment with BHA or N-acetyl-cysteine (NAC, an ROS scavenger). H2O2-induced decrease of cell viability was also attenuated by pretreatment with BHA and NAC. Furthermore, H2O2-induced increase of Bax, decrease of Bcl-2, and PARP-1 cleavage was also inhibited by BHA. Taken together, results of this investigation demonstrated that BHA protects primary cultured mouse hepatocytes against H2O2-induced apoptosis by inhibiting ROS generation.

  7. Effect of Acrylamide on Oocyte Nuclear Maturation and Cumulus Cells Apoptosis in Mouse In Vitro.

    PubMed

    Liu, Shuzhen; Jiang, Ligang; Zhong, Tao; Kong, Shuhui; Zheng, Rongbin; Kong, Fengyun; Zhang, Cong; Zhang, Lei; An, Liguo

    2015-01-01

    Acrylamide (ACR) is a chemical compound with severe neurotoxicity, genotoxicity, carcinogenicity and reproductive toxicity. Recent studies showed that ACR impairs the function of reproductive organs, e.g., epididymis and testes. In vitro maturation of mouse oocyte is a sensitive assay to identify potential chemical hazard to female fertility. The aim of this study was to evaluate the adverse effects of ACR on the nuclear maturation and cumulus cells apoptosis of mouse oocytes in vitro. Cumulus-oocyte complexes were incubated in a maturation medium containing 0, 5, 10 and 20 μM of ACR. Chromosome alignment and spindle morphology of oocytes was determined by immunofluorescence and confocal microscopy. Our results showed that oocytes exposed to different doses of ACR in vitro were associated with a significant decrease of oocyte maturation, significant increase of chromosome misalignment rate, occurrence of abnormal spindle configurations, and the inhibition of oocyte parthenogenetic activation. Furthermore, apoptosis of cumulus cells was determined by TUNEL and CASPASE-3 assay. Results showed that apoptosis in cumulus cells was enhanced and the expression of CASPASE-3 was increased after cumulus-oocyte complexes were exposed to ACR. Therefore, ACR may affect the nuclear maturation of oocytes via the apoptosis of cumulus cells in vitro.

  8. Effects of inhalable microparticle of flower of Lonicera japonica in a mouse model of COPD.

    PubMed

    Park, Yang-Chun; Jin, Mirim; Kim, Seung-Hyung; Kim, Min-Hee; Namgung, Uk; Yeo, Yoon

    2014-01-01

    Flower of Lonicera japonica (FLJ) is a traditional herbal medicine widely used in East Asia as an anti-inflammatory and anti-oxidative agent. The purpose of this study is to develop an inhalable powder formulation of FLJ and to evaluate its biological effects in a mouse model of chronic obstructive pulmonary disease (COPD). Inhalable dry powder containing FLJ was produced by spray-drying with leucine as an excipient. Its aerodynamic properties and anti-inflammatory activities were evaluated using the Anderson cascade impactor (ACI) and a mouse model of COPD, respectively. FLJ microparticle (FLJmp) had a hollow spherical shape in electron microscopy and showed aerodynamic properties suitable for inhalation (fine particle fraction of 54.0 ± 4.68% and mass median aerodynamic diameter of 4.6 ± 0.34μm). FLJmp decreased TNF-α and IL-6 expression in RAW264.7 cells activated by lipopolysaccharide (LPS). In mice challenged with LPS and cigarette smoke solution (CSS) to develop COPD, FLJmp decreased the levels of TNF-α and IL-6 in bronchoalveolar fluidas well as the number of inflammatory cells including neutrophils in peripheral blood. In addition, FLJmp induced recovery of elastin and collagen distribution, reduction of caspase-3 expression in lung tissues of COPD mice. Inhalational delivery of FLJ using a microparticle system is a promising strategy for the treatment of COPD. © 2013 Elsevier Ireland Ltd. All rights reserved.

  9. Effects of Lizhong Tang on cultured mouse small intestine interstitial cells of Cajal

    PubMed Central

    Hwang, Min Woo; Kim, Jung Nam; Song, Ho Jun; Lim, Bora; Kwon, Young Kyu; Kim, Byung Joo

    2013-01-01

    AIM: To investigate the effects of Lizhong Tang, an herbal product used in traditional Chinese medicine, on mouse small intestine interstitial cells of Cajal (ICCs). METHODS: Enzymatic digestions were used to dissociate ICCs from mouse small intestine tissues. The ICCs were morphologically distinct from other cell types in culture and were identified using phase contrast microscopy after verification with anti c-kit antibody. A whole-cell patch-clamp configuration was used to record potentials (current clamp) from cultured ICCs. All of the experiments were performed at 30-32  °C. RESULTS: ICCs generated pacemaker potentials, and Lizhong Tang produced membrane depolarization in current-clamp mode. The application of flufenamic acid (a nonselective cation channel blocker) abolished the generation of pacemaker potentials by Lizhong Tang. Pretreatment with thapsigargin (a Ca2+-ATPase inhibitor in the endoplasmic reticulum) also abolished the generation of pacemaker potentials by Lizhong Tang. However, pacemaker potentials were completely abolished in the presence of an external Ca2+-free solution, and under this condition, Lizhong Tang induced membrane depolarizations. Furthermore, When GDP-β-S (1 mmol/L) was in the pipette solution, Lizhong Tang still induced membrane depolarizations. In addition, membrane depolarizations were not inhibited by chelerythrine or calphostin C, which are protein kinase C inhibitors, but were inhibited by U-73122, an active phospholipase C inhibitors. CONCLUSION: These results suggest that Lizhong Tang might affect gastrointestinal motility by modulating pacemaker activity in interstitial cells of Cajal. PMID:23599652

  10. Protective effect of butylated hydroxylanisole against hydrogen peroxide-induced apoptosis in primary cultured mouse hepatocytes

    PubMed Central

    Hwang, Geun Hye; Jeon, Yu Jin; Han, Ho Jae; Park, Soo Hyun; Baek, Kyoung Min; Chang, Woochul; Kim, Joong Sun; Kim, Lark Kyun; Lee, You-Mie; Lee, Sangkyu; Bae, Jong-Sup; Jee, Jun-Goo

    2015-01-01

    Butylated hydroxyanisole (BHA) is a synthetic phenolic compound consisting of a mixture of two isomeric organic compounds: 2-tert-butyl-4-hydroxyanisole and 3-tert-butyl-4-hydroxyanisole. We examined the effect of BHA against hydrogen peroxide (H2O2)-induced apoptosis in primary cultured mouse hepatocytes. Cell viability was significantly decreased by H2O2 in a dose-dependent manner. Additionally, H2O2 treatment increased Bax, decreased Bcl-2, and promoted PARP-1 cleavage in a dose-dependent manner. Pretreatment with BHA before exposure to H2O2 significantly attenuated the H2O2-induced decrease of cell viability. H2O2 exposure resulted in an increase of intracellular reactive oxygen species (ROS) generation that was significantly inhibited by pretreatment with BHA or N-acetyl-cysteine (NAC, an ROS scavenger). H2O2-induced decrease of cell viability was also attenuated by pretreatment with BHA and NAC. Furthermore, H2O2-induced increase of Bax, decrease of Bcl-2, and PARP-1 cleavage was also inhibited by BHA. Taken together, results of this investigation demonstrated that BHA protects primary cultured mouse hepatocytes against H2O2-induced apoptosis by inhibiting ROS generation. PMID:25798044

  11. Effects of housing conditions on the development of wet skin lesions in the NOA mouse.

    PubMed

    Kondo, Taizo; Kondo, Toshio; Shiomoto, Yasuhisa; Momii, Akira

    2005-04-01

    The effects of housing on the onset time and prevalence of wet skin lesions were investigated in NOA mice, which spontaneously develop these lesions at a high rate. Wet skin lesions developed earliest in mice that were housed individually. For mice that were housed in groups, the lesions developed earlier in mice with non-littermate group housing than in mice with littermate group housing. The prevalence of lesions was in the following order: individual housing > non-littermate group housing > littermate group housing. These results suggest that socio-psychological factors are involved in the etiology of wet skin lesions in the NOA mouse. Under individual housing conditions, two other novel characters of the NOA mouse were also observed, specifically, development of dry skin and wet skin lesions at the tail root. These characteristics developed early and with high prevalence and were easily observed on external examination. Therefore, these novel characteristics observed in NOA mice are potential markers of the psychological state of the animals.

  12. Mouse models to study the effect of cardiovascular risk factors on brain structure and cognition

    PubMed Central

    Bink, Diewertje I; Ritz, Katja; Aronica, Eleonora; van der Weerd, Louise; Daemen, Mat JAP

    2013-01-01

    Recent clinical data indicates that hemodynamic changes caused by cardiovascular diseases such as atherosclerosis, heart failure, and hypertension affect cognition. Yet, the underlying mechanisms of the resulting vascular cognitive impairment (VCI) are poorly understood. One reason for the lack of mechanistic insights in VCI is that research in dementia primarily focused on Alzheimer's disease models. To fill in this gap, we critically reviewed the published data and various models of VCI. Typical findings in VCI include reduced cerebral perfusion, blood–brain barrier alterations, white matter lesions, and cognitive deficits, which have also been reported in different cardiovascular mouse models. However, the tests performed are incomplete and differ between models, hampering a direct comparison between models and studies. Nevertheless, from the currently available data we conclude that a few existing surgical animal models show the key features of vascular cognitive decline, with the bilateral common carotid artery stenosis hypoperfusion mouse model as the most promising model. The transverse aortic constriction and myocardial infarction models may be good alternatives, but these models are as yet less characterized regarding the possible cerebral changes. Mixed models could be used to study the combined effects of different cardiovascular diseases on the deterioration of cognition during aging. PMID:23963364

  13. Differential effects of triclosan on the activation of mouse and human peroxisome proliferator-activated receptor alpha.

    PubMed

    Wu, Yuanfeng; Wu, Qiangen; Beland, Frederick A; Ge, Peter; Manjanatha, Mugimane G; Fang, Jia-Long

    2014-11-18

    Triclosan is an anti-bacterial agent used in many personal care products, household items, medical devices, and clinical settings. Liver tumors occur in mice exposed to triclosan, a response attributed to peroxisome proliferator-activated receptor alpha (PPARα) activation; however, the effects of triclosan on mouse and human PPARα have not been fully evaluated. We compared the effects of triclosan on mouse and human PPARα using PPARα reporter assays and on downstream events of PPARα activation using mouse hepatoma Hepa1c1c7 cells and human hepatoma HepG2 cells. PPARα transcriptional activity was increased by triclosan in a mouse PPARα reporter assay and decreased in a human PPARα reporter assay. Concentrations of triclosan inhibiting 50% cell growth were similar in both human and mouse hepatoma cells. Western blotting analysis showed that triclosan increased acyl-coenzyme A oxidase (ACOX1), a PPARα target, in Hepa1c1c7 cells but decreased the level in HepG2 cells. Treatment of Hepa1c1c7 cells with triclosan enhanced DNA synthesis and suppressed transforming growth factor beta-mediated apoptosis. This did not occur in HepG2 cells. These data demonstrate that triclosan had similar cytotoxicity in Hepa1c1c7 and HepG2 cells, but differential effects on the activation of PPARα, the expression of ACOX1, and downstream events including DNA synthesis and apoptosis.

  14. The effect of space flight on monoclonal antibody synthesis in a hybridoma mouse cell line

    NASA Technical Reports Server (NTRS)

    Smiley, S. A.; Gillock, E. T.; Black, M. C.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1997-01-01

    The hybridoma cell line, 3G10G5, producing a monoclonal antibody to the major capsid protein VP1 from the avian polyomavirus budgerigar fledgling disease virus, was produced from a Balb/C mouse. This cell line was used to test the effects of microgravity on cellular processes, specifically protein synthesis. A time course study utilizing incorporation of [35S]methionine into newly synthesized monoclonal antibody was performed on STS-77. After 5.5 days, it was observed that cell counts for the samples exposed to microgravity were lower than those of ground-based samples. However, radiolabel incorporation of the synthesized monoclonal antibody was similar in both orbiter and ground control samples. Overall, microgravity does not seem to have an effect on this cell line's ability to synthesize IgG protein.

  15. The effects of plasma from patients with Graves' disease on foetal mouse hearts in organ culture.

    PubMed Central

    Nathan, A. W.; Longmore, D. B.; Havard, C. W.; Dandona, P.

    1983-01-01

    Plasma, obtained during plasma exchange therapy, from 3 euthyroid patients with Graves' disease and severe progressive exophthalmos induced an increase in heart rate and then early death when applied to foetal mouse hearts maintained in isolated organ culture. All plasma samples which induced an increase in foetal heart rate had high titres of thyroid stimulating immunoglobulins. Plasma samples obtained after exchange had a much diminished effect. These studies may indicate a previously unrecognized non-thyroidal action of the abnormal immunoglobulins associated with Graves' disease and suggest that chronic thyroid heart disease may be due, at least in part, to the effect of these immunoglobulins especially when not associated with elevated thyroid hormones concentrations. PMID:6139124

  16. Effects of brevetoxin-B on motor nerve terminals of mouse skeletal muscle.

    PubMed Central

    Tsai, M. C.; Chen, M. L.

    1991-01-01

    1. The effects of brevetoxin-B, a red tide toxin, on motor nerve terminal activity were assessed on mouse triangularis sterni nerve-muscle preparations. The perineural waveforms were recorded with extracellular electrodes placed in the perineural sheaths of motor nerves. 2. At 0.11 microM, brevetoxin-B increased the components of waveforms associated with sodium and potassium currents while it decreased the calcium activated potassium current and the slow calcium current of the nerve terminal. The fast calcium current and slow potassium current were not affected. 3. At 1.11 microM, brevetoxin-B decreased all of the components of waveforms associated with sodium, potassium and calcium currents. 4. It is concluded that brevetoxin-B affects sodium, potassium as well as calcium currents in the nerve terminal. The effects may contribute to its pharmacological actions on synaptic transmission. PMID:1652340

  17. Positive effects of bisphosphonates on bone and muscle in a mouse model of Duchenne muscular dystrophy.

    PubMed

    Yoon, Sung-Hee; Sugamori, Kim S; Grynpas, Marc D; Mitchell, Jane

    2016-01-01

    Patients with Duchenne muscular dystrophy are at increased risk of decreased bone mineral density and bone fracture as a result of inactivity. To determine if antiresorptive bisphosphonates could improve bone quality and their effects on muscle we studied the Mdx mouse, treated with pamidronate during peak bone growth at 5 and 6 weeks of age, and examined the outcome at 13 weeks of age. Pamidronate increased cortical bone architecture and strength in femurs with increased resistance to fracture. While overall long bone growth was not affected by pamidronate, there was significant inhibition of remodeling in metaphyseal trabecular bone with evidence of residual calcified cartilage. Pamidronate treatment had positive effects on skeletal muscle in the Mdx mice with decreased serum and muscle creatine kinase and evidence of improved muscle histology and grip strength.

  18. Effects of alpha-cyano-4-hydroxycinnamic acid on fatigue and recovery of isolated mouse muscle.

    PubMed

    Clarke, P D; Clift, D L; Dooldeniya, M; Burnett, C A; Curtin, N A

    1995-12-01

    Fatigue and recovery of mouse soleus and extensor digitorum longus muscles were investigated in standard saline and in saline containing the lactate + hydrogen ion transport blocker, alpha-cyano-4-hydroxycinnamic acid (cinnamate). The fatigue protocol was a series of brief isometric tetani which reduced isometric force by about 25%. Recovery was monitored by test tetani during recovery. Both muscles recovered completely in standard saline. Soleus muscle also recovered completely in the presence of cinnamate, whereas extensor digitorum longus hardly recovered at all. Force during fatigue and recovery can be described in a mathematical simulation in which force depends on intracellular inorganic phosphate and pH, and the only effect of cinnamate is to block lactate + hydrogen ion transport. The results of the simulation suggest that during the fatiguing series of tetani pH changes are small and have a negligible effect on force, but pH is a major determinant of the timecourse of recovery in extensor digitorum longus.

  19. Effect of Immunosuppressive Agents on Normal Phage-neutralizing Antibody in the Mouse

    PubMed Central

    Karp, R. D.; Bradley, S. G.

    1968-01-01

    The actions of three immunosuppressive drugs on normal antibody synthesis in the adult mouse were determined. Inbred mice were given daily intraperitoneal injections of actinomycin D, uracil mustard, or cyclophosphamide for extended periods. The sera of treated and untreated mice were assayed for phage-neutralizing activity to monitor the effect of each drug on the amount of circulating normal antibody. Except for an initial decrease in titer of normal anti-phage MSP2 activity, actinomycin D had no significant effect on normal antibody activity. Uracil mustard caused alternating elevation and depression of normal antibody titers. Cyclophosphamide caused a prolonged depression of normal antibody. The response patterns to the three immunosuppressive agents were the same for both induced and normal antibody. PMID:5724964

  20. The effect of space flight on monoclonal antibody synthesis in a hybridoma mouse cell line

    NASA Technical Reports Server (NTRS)

    Smiley, S. A.; Gillock, E. T.; Black, M. C.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1997-01-01

    The hybridoma cell line, 3G10G5, producing a monoclonal antibody to the major capsid protein VP1 from the avian polyomavirus budgerigar fledgling disease virus, was produced from a Balb/C mouse. This cell line was used to test the effects of microgravity on cellular processes, specifically protein synthesis. A time course study utilizing incorporation of [35S]methionine into newly synthesized monoclonal antibody was performed on STS-77. After 5.5 days, it was observed that cell counts for the samples exposed to microgravity were lower than those of ground-based samples. However, radiolabel incorporation of the synthesized monoclonal antibody was similar in both orbiter and ground control samples. Overall, microgravity does not seem to have an effect on this cell line's ability to synthesize IgG protein.

  1. ACE overexpression in myelomonocytic cells: effect on a mouse model of Alzheimer's disease.

    PubMed

    Koronyo-Hamaoui, Maya; Shah, Kandarp; Koronyo, Yosef; Bernstein, Ellen; Giani, Jorge F; Janjulia, Tea; Black, Keith L; Shi, Peng D; Gonzalez-Villalobos, Romer A; Fuchs, Sebastien; Shen, Xiao Z; Bernstein, Kenneth E

    2014-07-01

    While it is well known that angiotensin converting enzyme (ACE) plays an important role in blood pressure control, ACE also has effects on renal function, hematopoiesis, reproduction, and aspects of the immune response. ACE 10/10 mice overexpress ACE in myelomonocytic cells. Macrophages from these mice have an increased polarization towards a pro-inflammatory phenotype that results in a very effective immune response to challenge by tumors or bacterial infection. In a mouse model of Alzheimer's disease (AD), the ACE 10/10 phenotype provides significant protection against AD pathology, including reduced inflammation, reduced burden of the neurotoxic amyloid-β protein and preserved cognitive function. Taken together, these studies show that increased myelomonocytic ACE expression in mice alters the immune response to better defend against many different types of pathologic insult, including the cognitive decline observed in an animal model of AD.

  2. Combination Effects of Chloral Hydrate and Nitrous Oxide/Oxygen in the Mouse Staircase Test

    PubMed Central

    Pruhs, Ronald J.; Kalbfleisch, John H.; Quock, Raymond M.

    1988-01-01

    The effects of chloral hydrate and/or nitrous oxide were assessed in the mouse staircase test. In this paradigm, the number of steps ascended is thought to reflect locomotor activity, whereas the number of rears is an index of anxiety. Chloral hydrate alone produced a dose-dependent decrease in the number of rears but no change in the number of steps ascended except at the highest dose. Nitrous oxide alone produced a concentration-related increase in the number of steps ascended but no change in rearing. When the two drugs were combined, nitrous oxide appeared to potentiate the rearing suppressant activity of chloral hydrate. Analysis of our experimental findings suggests that chloral hydrate exerts a specific anxiolytic drug effect that can be potentiated by concurrent treatment with nitrous oxide. PMID:3166349

  3. Rhein Induces Oxidative Stress and Apoptosis in Mouse Blastocysts and Has Immunotoxic Effects during Embryonic Development.

    PubMed

    Huang, Chien-Hsun; Chan, Wen-Hsiung

    2017-09-20

    Rhein, a glucoside chemical compound found in a traditional Chinese medicine derived from the roots of rhubarb, induces cell apoptosis and is considered to have high potential as an antitumor drug. Several previous studies showed that rhein can inhibit cell proliferation and trigger mitochondria-related or endoplasmic reticulum (ER) stress-dependent apoptotic processes. However, the side effects of rhein on pre- and post-implantation embryonic development remain unclear. Here, we show that rhein has cytotoxic effects on blastocyst-stage mouse embryos and induces oxidative stress and immunotoxicity in mouse fetuses. Blastocysts incubated with 5-20 μM rhein showed significant cell apoptosis, as well as decreases in their inner cell mass cell numbers and total cell numbers. An in vitro development assay showed that rhein affected the developmental potentials of both pre- and post-implantation embryos. Incubation of blastocysts with 5-20 μM rhein was associated with increased resorption of post-implantation embryos and decreased fetal weight in an embryo transfer assay. Importantly, in an in vivo model, intravenous injection of dams with rhein (1, 3, and 5 mg/kg body weight/day) for four days resulted in apoptosis of blastocyst-stage embryos, early embryonic developmental injury, and decreased fetal weight. Intravenous injection of dams with 5 mg/kg body weight/day rhein significantly increased the total reactive oxygen species (ROS) content of fetuses and the transcription levels of antioxidant proteins in fetal livers. Additional work showed that rhein induced apoptosis through ROS generation, and that prevention of apoptotic processes effectively rescued the rhein-induced injury effects on embryonic development. Finally, the transcription levels of the innate-immunity related genes, CXCL1, IL-1β and IL-8, were down-regulated in the fetuses of dams that received intravenous injections of rhein. These results collectively show that rhein has the potential to induce

  4. Stochastic changes over time and not founder effects drive cage effects in microbial community assembly in a mouse model

    PubMed Central

    McCafferty, Jonathan; Mühlbauer, Marcus; Gharaibeh, Raad Z; Arthur, Janelle C; Perez-Chanona, Ernesto; Sha, Wei; Jobin, Christian; Fodor, Anthony A

    2013-01-01

    Maternal transmission and cage effects are powerful confounding factors in microbiome studies. To assess the consequences of cage microenvironment on the mouse gut microbiome, two groups of germ-free (GF) wild-type (WT) mice, one gavaged with a microbiota harvested from adult WT mice and another allowed to acquire the microbiome from the cage microenvironment, were monitored using Illumina 16S rRNA sequencing over a period of 8 weeks. Our results revealed that cage effects in WT mice moved from GF to specific pathogen free (SPF) conditions take several weeks to develop and are not eliminated by the initial gavage treatment. Initial gavage influenced, but did not eliminate a successional pattern in which Proteobacteria became less abundant over time. An analysis in which 16S rRNA sequences are mapped to the closest sequenced whole genome suggests that the functional potential of microbial genomes changes significantly over time shifting from an emphasis on pathogenesis and motility early in community assembly to metabolic processes at later time points. Functionally, mice allowed to naturally acquire a microbial community from their cage, but not mice gavaged with a common biome, exhibit a cage effect in Dextran Sulfate Sodium-induced inflammation. Our results argue that while there are long-term effects of the founding community, these effects are mitigated by cage microenvironment and successional community assembly over time, which must both be explicitly considered in the interpretation of microbiome mouse experiments. PMID:23823492

  5. Prosocial effects of oxytocin in two mouse models of autism spectrum disorders

    PubMed Central

    Teng, Brian L.; Nonneman, Randal J.; Agster, Kara L.; Nikolova, Viktoriya D.; Davis, Tamara T.; Riddick, Natallia V.; Baker, Lorinda K.; Pedersen, Cort A.; Jarstfer, Michael B.; Moy, Sheryl S.

    2013-01-01

    Clinical evidence suggests that oxytocin treatment improves social deficits and repetitive behavior in autism spectrum disorders (ASDs). However, the neuropeptide has a short plasma half-life and poor ability to penetrate the blood-brain barrier. In order to facilitate the development of more bioavailable oxytocinergic compounds as therapeutics to treat core ASD symptoms, small animal models must be validated for preclinical screens. This study examined the preclinical utility of two inbred mouse strains, BALB/cByJ and C58/J, that exhibit phenotypes relevant to core ASD symptoms. Mice from both strains were intraperitoneally administered oxytocin, using either acute or sub-chronic regimens. Acute oxytocin did not increase sociability in BALB/cByJ; however, sub-chronic oxytocin had significant prosocial effects in both BALB/cByJ and C58/J. Increased sociability was observed 24 hours following the final oxytocin dose in BALB/cByJ, while prosocial effects of oxytocin emerged 1–2 weeks post-treatment in C58/J. Furthermore, acute oxytocin decreased motor stereotypy in C58/J and did not induce hypoactivity or anxiolytic-like effects in an open field test. This study demonstrates that oxytocin administration can attenuate social deficits and repetitive behavior in mouse models of ASD, dependent on dose regimen and genotype. These findings provide validation of the BALB/cByJ and C58/J models as useful platforms for screening novel drugs for intervention in ASDs and for elucidating the mechanisms contributing to the prosocial effects of oxytocin. PMID:23643748

  6. Effects of Subretinal Gene Transfer at Different Time Points in a Mouse Model of Retinal Degeneration

    PubMed Central

    Dai, Xufeng; Zhang, Hua; Han, Juanjuan; He, Ying; Zhang, Yangyang; Qi, Yan; Pang, Ji-jing

    2016-01-01

    Lysophosphatidylcholine acyltransferase 1 (LPCAT1) is necessary for photoreceptors to generate an important lipid component of their membranes. The absence of LPCAT1 results in early and rapid rod and cone degeneration. Retinal degeneration 11 (rd11) mice carry a mutation in the Lpcat1 gene, and are an excellent model of early-onset rapid retinal degeneration (RD). To date, no reports have documented gene therapy administration in the rd11 mouse model at different ages. In this study, the AAV8 (Y733F)-smCBA-Lpcat1 vector was subretinally injected at postnatal day (P) 10, 14, 18, or 22. Four months after injection, immunohistochemistry and analysis of retinal morphology showed that treatment at P10 rescued about 82% of the wild-type retinal thickness. However, the diffusion of the vector and the resulting rescue were limited to an area around the injection site that was only 31% of the total retinal area. Injection at P14 resulted in vector diffusion that covered approximately 84% of the retina, and we found that gene therapy was more effective against RD when exposure to light was limited before and after treatment. We observed long-term preservation of electroretinogram (ERG) responses, and preservation of retinal structure, indicating that early treatment followed by limited light exposure can improve gene therapy effectiveness for the eyes of rd11 mice. Importantly, delayed treatment still partially preserved M-cones, but not S-cones, and M-cones in the rd11 retina appeared to have a longer window of opportunity for effective preservation with gene therapy. These results provide important information regarding the effects of subretinal gene therapy in the mouse model of LPCAT1-deficiency. PMID:27228218

  7. Prosocial effects of oxytocin in two mouse models of autism spectrum disorders.

    PubMed

    Teng, Brian L; Nonneman, Randal J; Agster, Kara L; Nikolova, Viktoriya D; Davis, Tamara T; Riddick, Natallia V; Baker, Lorinda K; Pedersen, Cort A; Jarstfer, Michael B; Moy, Sheryl S

    2013-09-01

    Clinical evidence suggests that oxytocin treatment improves social deficits and repetitive behavior in autism spectrum disorders (ASDs). However, the neuropeptide has a short plasma half-life and poor ability to penetrate the blood-brain barrier. In order to facilitate the development of more bioavailable oxytocinergic compounds as therapeutics to treat core ASD symptoms, small animal models must be validated for preclinical screens. This study examined the preclinical utility of two inbred mouse strains, BALB/cByJ and C58/J, that exhibit phenotypes relevant to core ASD symptoms. Mice from both strains were intraperitoneally administered oxytocin, using either acute or sub-chronic regimens. Acute oxytocin did not increase sociability in BALB/cByJ; however, sub-chronic oxytocin had significant prosocial effects in both BALB/cByJ and C58/J. Increased sociability was observed 24 h following the final oxytocin dose in BALB/cByJ, while prosocial effects of oxytocin emerged 1-2 weeks post-treatment in C58/J. Furthermore, acute oxytocin decreased motor stereotypy in C58/J and did not induce hypoactivity or anxiolytic-like effects in an open field test. This study demonstrates that oxytocin administration can attenuate social deficits and repetitive behavior in mouse models of ASD, dependent on dose regimen and genotype. These findings provide validation of the BALB/cByJ and C58/J models as useful platforms for screening novel drugs for intervention in ASDs and for elucidating the mechanisms contributing to the prosocial effects of oxytocin.

  8. The effect of pentoxifylline on spontaneous and experimental metastasis of the mouse Neuro2a neuroblastoma.

    PubMed

    Amirkhosravi, A; Warnes, G; Biggerstaff, J; Malik, Z; May, K; Francis, J L

    1997-07-01

    Pentoxifylline (PTX) has been reported to have both direct and indirect anti-tumor effects in experimental tumor models. We studied the effect of PTX on (1) the proliferation of Neuro2a mouse neuroblastoma cells in vitro and in vivo, (2) spontaneous and experimental metastasis, (3) tumor cell membrane fluidity and (4) adhesion to a fibronectin-coated surface. PTX significantly reduced the proliferation of Neuro2a cells in vitro as determined by DNA measurement (P < 0.01) and total cell count (P < 0.02). In vivo, PTX reduced the growth of subcutaneously transplanted primary tumors in syngeneic A/J mice (P < 0.01; n = 15). All seven animals (100%) receiving intravenous tumor cells developed extensive liver metastasis. In contrast, only 1/11 (9%) of animals pre-treated with oral PTX and injected with PTX-treated cells developed liver metastases. Of five mice receiving PTX-treated cells without oral pretreatment of PTX, two out of five (40%) developed liver metastases. There was a slight, but not significant (P = 0.08) increase in both experimental and spontaneous lung metastases formation in PTX-treated animals. However, tumor nodule formation on the lung surface was inefficient. PTX also increased membrane fluidity of the Neuro2a cells and significantly decreased tumor cell adhesion to fibronectin-coated microtiter wells (P < 0.01). We conclude that PTX has a cytostatic effect on the Neuro2a mouse neuroblastoma and exerts an anti-tumor effect on liver metastases following intravenous administration of neuroblastoma cells. Whether these results are directly related to the changes in membrane properties caused by pentoxifylline remains to be established.

  9. The effect of midazolam on mouse Leydig cell steroidogenesis and apoptosis.

    PubMed

    So, Edmund Cheung; Chang, Ya-Ting; Hsing, Chung-His; Poon, Paul Wai-Fung; Leu, Sew-Fen; Huang, Bu-Miin

    2010-02-01

    The peripheral-type benzodiazepine receptor (PBR), a putative receptor in Leydig cells, modulates steroidogenesis. Since benzodiazepines are commonly used in regional anesthesia, their peripheral effects need to be defined. Therefore, this study set out to investigate in vitro effects of the benzodiazepine midazolam (MDZ) on Leydig cell steroidogenesis, and the possible underlying mechanisms. The effects of MDZ on steroidogenesis in primary mouse Leydig cells and MA-10 Leydig tumor cells were determined by radioimmunoassay. PBR, P450scc, 3beta-HSD and StAR protein expression induced by MDZ was determined by Western blotting. Inhibitors of the signal transduction pathway and a MDZ antagonist were used to investigate the intracellular cascades activated by MDZ. In both cell types, MDZ-stimulated steroidogenesis in dose- and time-dependent manners, and induced the expression of PBR and StAR proteins, but had no effect on P450scc and 3beta-HSD expressions. Moreover, H89 (PKA inhibitor) and GF109203X (PKC inhibitor) attenuated MDZ-stimulated steroid production. Interestingly, the MDZ antagonist (flumazenil) did not decrease MDZ-induced steroid production in both cell types. These results highly indicated that MDZ-induced steroidogenesis in mouse Leydig cells via PKA and PKC pathways, along with the expression of PBR and StAR proteins. In addition, MDZ at high dosages induced rounding-up, membrane blebbing, and then death in MA-10 cells. In conclusion, midazolam could induce Leydig tumor cell steroidogenesis, and high dose of midazolam could induce apoptosis in Leydig tumor cells.

  10. Effect of Lactobacillus salivarius bacteriocin Abp118 on the mouse and pig intestinal microbiota.

    PubMed

    Riboulet-Bisson, Eliette; Sturme, Mark H J; Jeffery, Ian B; O'Donnell, Michelle M; Neville, B Anne; Forde, Brian M; Claesson, Marcus J; Harris, Hugh; Gardiner, Gillian E; Casey, Patrick G; Lawlor, Peadar G; O'Toole, Paul W; Ross, R Paul

    2012-01-01

    Lactobacilli are gram-positive bacteria that are a subdominant element in the human gastrointestinal microbiota, and which are commonly used in the food industry. Some lactobacilli are considered probiotic, and have been associated with health benefits. However, there is very little culture-independent information on how consumed probiotic microorganisms might affect the entire intestinal microbiota. We therefore studied the impact of the administration of Lactobacillus salivarius UCC118, a microorganism well characterized for its probiotic properties, on the composition of the intestinal microbiota in two model animals. UCC118 has anti-infective activity due to production of the bacteriocin Abp118, a broad-spectrum class IIb bacteriocin, which we hypothesized could impact the microbiota. Mice and pigs were administered wild-type (WT) L. salivarius UCC118 cells, or a mutant lacking bacteriocin production. The microbiota composition was determined by pyrosequencing of 16S rRNA gene amplicons from faeces. The data show that L. salivarius UCC118 administration had no significant effect on proportions of major phyla comprising the mouse microbiota, whether the strain was producing bacteriocin or not. However, L. salivarius UCC118 WT administration led to a significant decrease in Spirochaetes levels, the third major phylum in the untreated pig microbiota. In both pigs and mice, L. salivarius UCC118 administration had an effect on Firmicutes genus members. This effect was not observed when the mutant strain was administered, and was thus associated with bacteriocin production. Surprisingly, in both models, L. salivarius UCC118 administration and production of Abp118 had an effect on gram-negative microorganisms, even though Abp118 is normally not active in vitro against this group of microorganisms. Thus L. salivarius UCC118 administration has a significant but subtle impact on mouse and pig microbiota, by a mechanism that seems at least partially bacteriocin-dependent.

  11. Rifaximin exerts beneficial effects in PI-IBS mouse model beyond gut microbiota.

    PubMed

    Jin, Yu; Ren, Xiaoyang; Li, Gangping; Li, Ying; Zhang, Lei; Wang, Huan; Qian, Wei; Hou, Xiaohua

    2017-06-01

    Rifaximin is a minimally absorbed antibiotic which has shown efficacy in irritable bowel syndrome (IBS) patients. However, the mechanism how it effects in IBS is still incompletely defined. In this study, we used Trichinella spiralis infected PI-IBS mouse model, to assess the action of rifaximin on visceral hypersensitivity, barrier function, gut inflammation and microbiota. PI-IBS model was established by Trichinella spiralis infection in mice. Rifaximin were administered to post-infectious IBS (PI-IBS) mice for 7 consecutive days. The abdominal withdrawal reflex and threshold of colorectal distention were employed to evaluate visceral sensitivity. Smooth muscle contractile response was recorded in the organ bath. Intestinal permeability was measured by Ussing chamber. Expression of tight junction protein and cytokines were measured by Western blotting. Ilumina miseq platform was used to analyze bacterial 16S ribosomal RNA. PI-IBS mice treated with rifaximin exhibited decreased AWR score, increased threshold, reduced contractile response and intestinal permeability. Rifaximin also suppressed the expression of IL-12 and IL-17, and promoted the expression of the major TJ protein occludin. Furthermore, rifaximin did not change the composition and diversity, and we reavealed that rifaximin had a tiny effect on the relative abundance of Lactobacillus and Bifidobacterium in this PI-IBS model. Rifaximin alleviated visceral hypersensitivity, recoverd intestinal barrier function and inhibited low-grade inflammation in colon and ileum of PI-IBS mouse model. Moreover, rifaximin exerts anti-inflammatory effects with only a minimal effect on the overall composition and diversity of the gut microbiota in this model. This article is protected by copyright. All rights reserved.

  12. Zinc enhances the inhibitory effects of strychnine-sensitive glycine receptors in mouse hippocampal neurons.

    PubMed

    Zhang, Hai Xia; Thio, Liu Lin

    2007-12-01

    Although extracellular Zn(2+) is an endogenous biphasic modulator of strychnine-sensitive glycine receptors (GlyRs), the physiological significance of this modulation remains poorly understood. Zn(2+) modulation of GlyR may be especially important in the hippocampus where presynaptic Zn(2+) is abundant. Using cultured embryonic mouse hippocampal neurons, we examined whether 1 microM Zn(2+), a potentiating concentration, enhances the inhibitory effects of GlyRs activated by sustained glycine applications. Sustained 20 microM glycine (EC(25)) applications alone did not decrease the number of action potentials evoked by depolarizing steps, but they did in 1 microM Zn(2+). At least part of this effect resulted from Zn(2+) enhancing the GlyR-induced decrease in input resistance. Sustained 20 microM glycine applications alone did not alter neuronal bursting, a form of hyperexcitability induced by omitting extracellular Mg(2+). However, sustained 20 microM glycine applications depressed neuronal bursting in 1 microM Zn(2+). Zn(2+) did not enhance the inhibitory effects of sustained 60 microM glycine (EC(70)) applications in these paradigms. These results suggest that tonic GlyR activation could decrease neuronal excitability. To test this possibility, we examined the effect of the GlyR antagonist strychnine and the Zn(2+) chelator tricine on action potential firing by CA1 pyramidal neurons in mouse hippocampal slices. Co-applying strychnine and tricine slightly but significantly increased the number of action potentials fired during a depolarizing current step and decreased the rheobase for action potential firing. Thus Zn(2+) may modulate neuronal excitability normally and in pathological conditions such as seizures by potentiating GlyRs tonically activated by low agonist concentrations.

  13. Effect of mouse strain as a background for Alzheimer's disease models on the clearance of amyloid-β.

    PubMed

    Qosa, Hisham; Kaddoumi, Amal

    2016-04-01

    Novel animal models of Alzheimer's disease (AD) are relentlessly being developed and existing ones are being fine-tuned; however, these models face multiple challenges associated with the complexity of the disease where most of these models do not reproduce the full phenotypical disease spectrum. Moreover, different AD models express different phenotypes that could affect their validity to recapitulate disease pathogenesis and/or response to a drug. One of the most important and understudied differences between AD models is differences in the phenotypic characteristics of the background species. Here, we used the brain clearance index (BCI) method to investigate the effect of strain differences on the clearance of amyloid β (Aβ) from the brains of four mouse strains. These mouse strains, namely C57BL/6, FVB/N, BALB/c and SJL/J, are widely used as a background for the development of AD mouse models. Findings showed that while Aβ clearance across the blood-brain barrier (BBB) was comparable between the 4 strains, levels of LRP1, an Aβ clearance protein, was significantly lower in SJL/J mice compared to other mouse strains. Furthermore, these mouse strains showed a significantly different response to rifampicin treatment with regard to Aβ clearance and effect on brain level of its clearance-related proteins. Our results provide for the first time an evidence for strain differences that could affect ability of AD mouse models to recapitulate response to a drug, and opens a new research avenue that requires further investigation to successfully develop mouse models that could simulate clinically important phenotypic characteristics of AD.

  14. EFFECT OF HELIUM ON THE RESPIRATION AND GLYCOLYSIS OF MOUSE LIVER SLICES

    PubMed Central

    South, Frank E.; Cook, Sherburne F.

    1953-01-01

    It has been shown that helium has the ability to affect variously the rates of certain metabolic reactions in vitro as compared to nitrogen. An attempt has been made to approximate the sites of action in mouse liver preparations. The following results have been obtained by the substitution of a mixture of 80 per cent helium and 20 per cent oxygen for air: (a) An increase in the rate of oxygen consumption and carbon dioxide production to the same degree, the respiratory quotient remaining unchanged. (b) A decrease in the magnitude of cyanide inhibition. The effectiveness of helium increases with the degree of the cyanide inhibition. (c) No effect on the activity of slices which have been poisoned with fluoride when either lactate or pyruvate has been added as a substrate. (d) A change in the rate, and the slope of the curve of oxygen consumption in liver homogenates which are utilizing pyruvate as a substrate. The use of helium relative to nitrogen under anaerobic conditions causes: (a) A depression of the glycolytic rates in both mouse liver slices and diaphragm. (b) An increase in the carbon dioxide evolution and lactic acid production of mouse liver homogenates oxidizing either glucose and hexose diphosphate, or hexose diphosphate alone. In neither slices nor homogenates does the addition of fluoride and the use of pyruvate as the hydrogen acceptor alter the fundamental response of the preparations. The following hypotheses have been advanced and discussed in order to explain the observed phenomena: 1. Helium does not alter the substrate utilized by the tissue. 2. The gas interferes in some way with the cyanide-cytochrome oxidase bond, but may not affect cytochrome oxidase in the absence of cyanide. 3. The citric acid cycle is not subject to the influence of helium in tissue slices, but is altered in an unexplained fashion in homogenates. It is postulated that a rearrangement of particulate surfaces may be the significant factor here. 4. The glycolytic cycle is

  15. The effect of polymer dots on bioactivity of mouse sperm in vitro

    NASA Astrophysics Data System (ADS)

    Feng, Gang; Chen, Qiang; Zhai, Peng; Wang, Xiaomei; Lin, Guimiao; Xu, Gaixia; Chen, Danni

    2014-09-01

    Objective: In recent years, semiconducting polymer dots (Pdots)have caught considerable attention for their outstanding optical characteristics in biomedical imaging applications. Not as semiconductor quantum dots, Pdots are composed of nonmetallic material and their biological effects remain unclear. In this work, we investigated the effects of a band new polymer dots on bioactivity of mouse sperm using a computer-aided sperm analysis system(CASA) and an in vitro fertilization (IVF) model. Methods: The semiconducting polymer dots used in this study is CN-PPV Pdots, which emits in the orange wavelength range with high brightness. Epididymal mouse sperm were collected from 7-8weeks old Balb/c mouse. Firstly, CN-PPV Pdots was added into the Human Tubal Fluid (HTF) media at various concentrations (0, 1, 10, 100 nmol/L respectively ), then sperm bioactivity and vitality were evaluated every 10 minutes. Secondly, the treated sperm were co-cultured with matured oocytes in HTF media, fertilization rate and oocytes development were recorded after 24 hours co-incubation. Results: Sperm viability in the control group (0 nmol/L) and experimental group (1, 10,100 nmol/L) were 57.20+/-4.51%, 58.17+/-4.81%, 55.50+/-4.52%, 46.26%+/-3.83%, respectively. Fertilization rate in different groups showed no obvious differences, control group (0 nmol/L) and experimental group (1, 10, 100 nmol/L) were 38.75+/-1.71%, 37.01+/-4.69%, 32.75+/-1.71%, 35.24+/-2.37%, respectively. Conclusion: Our data indicated that the CN-PPV Pdots had a very high biocompatibility on sperm in both the activation and the IVF process, even in extreme high Pdots concentration,the sperm bioactivity only got slight restrained. The effect of CN-PPV Pdots seems has no or little toxicity,and the long-term embryonic development has yet to be verified.

  16. Biphasic effect of 1,25-dihydroxyvitamin D3 on primary mouse epidermal keratinocyte proliferation.

    PubMed

    Bollag, W B; Ducote, J; Harmon, C S

    1995-05-01

    1,25-Dihydroxyvitamin D3 [1,25(OH)2D3] has been proposed as a physiologic regulator of keratinocyte growth and differentiation. Utilizing a proliferative serum-free culture system, we have found that a physiologic (picomolar) concentrations this hormone stimulated proliferation of primary mouse epidermal keratinocytes; at higher (nanomolar to micromolar) doses, growth was inhibited by 1,25(OH)2D3. We investigated the nature of the signal transduction mechanism underlying the response to 1,25(OH)2D3 and observed little or no effect of either low or high concentrations of the hormone on cytosolic calcium levels or Fos expression. Furthermore, the protein kinase C inhibitor, Ro 31-7549, had very little effect on the growth inhibition induced by a high dose (1 microM) of 1,25(OH)2D3. This lack of rapid signal transduction events was consistent with the inability of a short (4-hour) exposure to 1,25(OH)2D3 to initiate a complete growth-inhibitory response as measured using [3H]thymidine incorporation. Our results indicate that physiologic concentrations of 1,25(OH)2D3 are required for optimal keratinocyte growth. Furthermore, we found no evidence of rapid effects of 1,25(OH)2D3 and suggest that in mouse epidermal keratinocytes, the response to this hormone is mediated by a slow transduction pathway, such as that activated by the intracellular 1,25(OH)2D3 receptor (VDR).

  17. Effects of perinatal stress on the anxiety-related behavior of the adolescence mouse.

    PubMed

    Nishio, H; Tokumo, K; Hirai, T

    2006-06-01

    We evaluated the effects of sound noise or forced swim stress applied to pregnant mice or to neonatal mice on the anxiety-related behavior using the elevated plus-maze test performed during the age of 5 weeks. The forced swim stress applied at the late gestation period, days 10-18 of pregnancy, caused a significant reduction of the body weight gain of the dams. However, the anxiety-related behavior of the male and female offspring were not affected by the antenatal stress treatment. When the forced swim stress was applied to the neonatal mice during the late lactation period, 14-18 days after birth, the male mice showed an elevated level of anxiolytic behavior accompanying the reduction of the emotion-related motor activity. The anxiety-related behavior of the female mice was not affected by the stress treatment. Furthermore, we applied the sound noise or forced swim stress to the neonatal mice immediately after the weaning, 21-25 days after birth. The stress applied after the weaning period had no effect on the anxiety-related behavior. These results suggested that the stress applied during the lactation period, but not that during the antenatal period, nor after the weaning period, might have gender-dependently reduced the anxiety level of the male mouse. It was shown that the effects of perinatal stress on the anxiety-related behavior of the adolescent mouse varied according to the period of application and gender. The hypothesis that gender-dependent abnormalities in neurodevelopment might be caused by the excess stress applied to the breast-fed infant is of importance in elucidating the relationship between the psychoneurotic disorder in childhood and the environment stress of the breast-fed infant.

  18. Effects of colistin on amino acid neurotransmitters and blood-brain barrier in the mouse brain.

    PubMed

    Wang, Jian; Yi, Meishuang; Chen, Xueping; Muhammad, Ishfaq; Liu, Fangping; Li, Rui; Li, Jian; Li, Jichang

    2016-01-01

    Neurotoxicity is one of the major potential side effects of colistin therapy. However, the mechanistic aspects of colistin-induced neurotoxicity remain largely unknown. The objective of this study was to examine the effects of colistin on the blood-brain barrier (BBB) and amino acid neurotransmitters in the cerebral cortex of mouse. Mice were divided into four groups (n=5) and were administrated intravenously with 15mg/kg/day of colistin sulfate for 1, 3 and 7days successively while the control group was administrated intravenously with saline solution. The permeability and ultrastructure of the BBB were detected using the Evans blue (EB) dye and transmission electron microscopy (TEM), and the expression of Claudin-5 were determined by real-time PCR examination and western blotting. The brain uptake of colistin was measured by high-performance liquid chromatography (HPLC). The effects of colistin on amino acid neurotransmitters and their receptors were also examined by HPLC and real-time PCR. The results of EB extravasation, TEM and expression of Claudin-5 showed that colistin treatment did not affect the BBB integrity. In addition, multiple doses of colistin could induce accumulation of this compound in the brain parenchyma although there was poor brain uptake of colistin. Moreover, colistin exposure significantly increased the contents of glutamate (Glu) and gamma aminobutyric acid (GABA), and enhanced the mRNA expression levels of gamma aminobutyric acid type A receptor (GABAAR), gamma aminobutyric acid type B receptor (GABABR), N-methyl-d-aspartate 1 receptor (NR1), N-methyl-d-aspartate 2A receptor (NR2A) and N-methyl-d-aspartate 2B receptor (NR2B) in the cerebral cortex. Our data demonstrate that colistin is able to accumulate in the mouse brain and elevate the levels of amino acid neurotransmitters. These findings may be associated with colistin-induced neurotoxicity.

  19. Effective biomedical document classification for identifying publications relevant to the mouse Gene Expression Database (GXD).

    PubMed

    Jiang, Xiangying; Ringwald, Martin; Blake, Judith; Shatkay, Hagit

    2017-01-01

    The Gene Expression Database (GXD) is a comprehensive online database within the Mouse Genome Informatics resource, aiming to provide available information about endogenous gene expression during mouse development. The information stems primarily from many thousands of biomedical publications that database curators must go through and read. Given the very large number of biomedical papers published each year, automatic document classification plays an important role in biomedical research. Specifically, an effective and efficient document classifier is needed for supporting the GXD annotation workflow. We present here an effective yet relatively simple classification scheme, which uses readily available tools while employing feature selection, aiming to assist curators in identifying publications relevant to GXD. We examine the performance of our method over a large manually curated dataset, consisting of more than 25 000 PubMed abstracts, of which about half are curated as relevant to GXD while the other half as irrelevant to GXD. In addition to text from title-and-abstract, we also consider image captions, an important information source that we integrate into our method. We apply a captions-based classifier to a subset of about 3300 documents, for which the full text of the curated articles is available. The results demonstrate that our proposed approach is robust and effectively addresses the GXD document classification. Moreover, using information obtained from image captions clearly improves performance, compared to title and abstract alone, affirming the utility of image captions as a substantial evidence source for automatically determining the relevance of biomedical publications to a specific subject area. www.informatics.jax.org.

  20. Effects of hydroxamate metalloendoprotease inhibitors on botulinum neurotoxin A poisoned mouse neuromuscular junctions

    PubMed Central

    Thyagarajan, Baskaran; Potian, Joseph G.; Garcia, Carmen C.; Hognason, Kormakur; Čapková, Kateřina; Moe, Scott T.; Jacobson, Alan R.; Janda, Kim D.; McArdle, Joseph J.

    2010-01-01

    Summary Currently the only therapy for botulinum neurotoxin A (BoNT/A) poisoning is antitoxin. Antidotes that are effective after BoNT/A has entered the motor nerve terminals would dramatically benefit BoNT/A therapy. Inhibition of proteolytic activity of BoNT/A light chain by metalloendoprotease inhibitors (MEIs) is under development. We tested the effects of MEIs on in vitro as well as in vivo BoNT/A poisoned mouse nerve muscle preparations (NMPs). The Ki for inhibition of BoNT/A metalloendoprotease was 0.40 and 0.36 μM, respectively, for 2, 4 – dichlorocinnamic acid hydroxamate (DCH) and its methyl derivative, ABS 130. Acute treatment of nerve muscle preparations with 10 pM BoNT/A inhibited nerve evoked muscle twitches, reduced mean quantal content, and induced failures of endplate currents (EPCs). Bath application of 10 μM DCH or 5 μM ABS 130 reduced failures, increased the quantal content of EPCs, and partially restored muscle twitches after a delay of 40 to 90 min. The restorative effects of DCH and ABS 130, as well as 3,4 diaminopyridine (DAP) on twitch tension were greater at 22 °C compared to 37 °C. Unlike DAP, neither DCH nor ABS 130 increased Ca2+ levels in cholinergic Neuro 2a cells. Injection of MEIs into mouse hind limbs before or after BoNT/A injection neither prevented the toe spread reflex inhibition nor improved muscle functions. We suggest that hydroxamate MEIs partially restore neurotransmission of acutely BoNT/A poisoned nerve muscle preparations in vitro in a temperature dependent manner without increasing the Ca2+ levels within motor nerve endings. PMID:20211192

  1. Carcinine has 4-hydroxynonenal scavenging property and neuroprotective effect in mouse retina.

    PubMed

    Marchette, Lea D; Wang, Huaiwen; Li, Feng; Babizhayev, Mark A; Kasus-Jacobi, Anne

    2012-06-20

    Oxidative stress induces retinal damage and contributes to vision loss in progressive retinopathies. Carcinine (β-alanyl-histamine) is a natural imidazole-containing peptide derivative with antioxidant activity. It is predicted to scavenge 4-hydroxynonenal (4-HNE), a toxic product of lipid oxidation. The aim of this study was to confirm the 4-HNE scavenging effect and evaluate the neuroprotective effect of carcinine in mouse retina subjected to oxidative stress. HPLC coupled with mass spectrometry was used to analyze carcinine and 4-HNE-carcinine adduct. Protection of retinal proteins from modification by 4-HNE was tested by incubating carcinine with retinal protein extract and 4-HNE. Modified retinal proteins were quantified by dot-blot analysis. Mice were treated with carcinine (intravitreal injection and gavage) and exposed to bright light to induce oxidative damage in the retina. Photoreceptor degeneration was measured by histology and electroretinography. Retinal levels of retinol dehydrogenase 12 (RDH12) were measured by immunoblot analysis, after exposure to bright light and in retinal explants after exposure to 4-HNE. The ability of carcinine to form an adduct with 4-HNE, as well as to prevent and even reverse the adduction of retinal proteins by the toxic aldehyde was demonstrated in vitro. Carcinine, administered by intravitreal injection or gavage, strongly protected mouse retina against light-induced photoreceptor degeneration and had a protective effect on RHD12, a protein found specifically in photoreceptor cells. This study suggests that carcinine can be administered noninvasively to efficiently protect photoreceptor cells from oxidative damage. Carcinine could be administered daily to prevent vision loss in progressive retinopathies.

  2. Carcinine Has 4-Hydroxynonenal Scavenging Property and Neuroprotective Effect in Mouse Retina

    PubMed Central

    Marchette, Lea D.; Wang, Huaiwen; Li, Feng; Babizhayev, Mark A.; Kasus-Jacobi, Anne

    2012-01-01

    Purpose. Oxidative stress induces retinal damage and contributes to vision loss in progressive retinopathies. Carcinine (β-alanyl-histamine) is a natural imidazole-containing peptide derivative with antioxidant activity. It is predicted to scavenge 4-hydroxynonenal (4-HNE), a toxic product of lipid oxidation. The aim of this study was to confirm the 4-HNE scavenging effect and evaluate the neuroprotective effect of carcinine in mouse retina subjected to oxidative stress. Methods. HPLC coupled with mass spectrometry was used to analyze carcinine and 4-HNE-carcinine adduct. Protection of retinal proteins from modification by 4-HNE was tested by incubating carcinine with retinal protein extract and 4-HNE. Modified retinal proteins were quantified by dot-blot analysis. Mice were treated with carcinine (intravitreal injection and gavage) and exposed to bright light to induce oxidative damage in the retina. Photoreceptor degeneration was measured by histology and electroretinography. Retinal levels of retinol dehydrogenase 12 (RDH12) were measured by immunoblot analysis, after exposure to bright light and in retinal explants after exposure to 4-HNE. Results. The ability of carcinine to form an adduct with 4-HNE, as well as to prevent and even reverse the adduction of retinal proteins by the toxic aldehyde was demonstrated in vitro. Carcinine, administered by intravitreal injection or gavage, strongly protected mouse retina against light-induced photoreceptor degeneration and had a protective effect on RHD12, a protein found specifically in photoreceptor cells. Conclusions. This study suggests that carcinine can be administered noninvasively to efficiently protect photoreceptor cells from oxidative damage. Carcinine could be administered daily to prevent vision loss in progressive retinopathies. PMID:22577078

  3. Multi-faced neuroprotective effects of Ginsenoside Rg1 in an Alzheimer mouse model.

    PubMed

    Fang, Fang; Chen, Xiaochun; Huang, Tianwen; Lue, Lih-Fen; Luddy, John S; Yan, Shirley Shidu

    2012-02-01

    There has been no extensive characterization of the effects of Ginsenoside Rg1, a pharmacological active component purified from the nature product ginseng, in an Alzheimer's disease mouse model. The well-characterized transgenic Alzheimer disease (AD) mice over expressing amyloid precursor protein (APP)/Aβ (Tg mAPP) and nontransgenic (nonTg) littermates at age of 6 and 9 months were treated with Rg 1 for three months via intraperitoneal injection. Mice were then evaluated for changes in amyloid pathology, neuropathology and behavior. Tg mAPP treated with Rg1 showed a significant reduction of cerebral Aβ levels, reversal of certain neuropathological changes, and preservation of spatial learning and memory, as compared to vehicle-treated mice. Rg1 treatment inhibited activity of γ-secretase in both Tg mAPP mice and B103-APP cells, indicating the involvement of Rg1 in APP regulation pathway. Furthermore, administration of Rg1 enhanced PKA/CREB pathway activation in mAPP mice and in cultured cortical neurons exposed to Aβ or glutamate-mediated synaptic stress. Most importantly, the beneficial effects on attenuation of cerebral Aβ accumulation, improvement in neuropathological and behavioral changes can be extended to the aged mAPP mice, even to 12-13 months old mice that had extensive amyloid pathology and severe neuropathological and cognitive malfunction. These studies indicate that Rg1 has profound multi-faced and neuroprotective effects in an AD mouse model. Rg1 induces neuroprotection through ameliorating amyloid pathology, modulating APP process, improving cognition, and activating PKA/CREB signaling. These findings provide a new perspective for the treatment of AD and demonstrate potential for a new class of drugs for AD treatment. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Effective biomedical document classification for identifying publications relevant to the mouse Gene Expression Database (GXD)

    PubMed Central

    Ringwald, Martin; Blake, Judith; Shatkay, Hagit

    2017-01-01

    Abstract The Gene Expression Database (GXD) is a comprehensive online database within the Mouse Genome Informatics resource, aiming to provide available information about endogenous gene expression during mouse development. The information stems primarily from many thousands of biomedical publications that database curators must go through and read. Given the very large number of biomedical papers published each year, automatic document classification plays an important role in biomedical research. Specifically, an effective and efficient document classifier is needed for supporting the GXD annotation workflow. We present here an effective yet relatively simple classification scheme, which uses readily available tools while employing feature selection, aiming to assist curators in identifying publications relevant to GXD. We examine the performance of our method over a large manually curated dataset, consisting of more than 25 000 PubMed abstracts, of which about half are curated as relevant to GXD while the other half as irrelevant to GXD. In addition to text from title-and-abstract, we also consider image captions, an important information source that we integrate into our method. We apply a captions-based classifier to a subset of about 3300 documents, for which the full text of the curated articles is available. The results demonstrate that our proposed approach is robust and effectively addresses the GXD document classification. Moreover, using information obtained from image captions clearly improves performance, compared to title and abstract alone, affirming the utility of image captions as a substantial evidence source for automatically determining the relevance of biomedical publications to a specific subject area. Database URL: www.informatics.jax.org PMID:28365740

  5. Exposure of mouse skin to organic peroxides: subchronic effects related to carcinogenic potential.

    PubMed

    Hanausek, Margaret; Walaszek, Zbigniew; Viaje, Aurora; LaBate, Michael; Spears, Erick; Farrell, David; Henrich, Richard; Tveit, Ann; Walborg, Earl F; Slaga, Thomas J

    2004-03-01

    Screening of newly synthesized organic peroxides for tumor initiating/promoting activity would be greatly facilitated if predictive methodologies could be developed using topical exposures shorter than those required for definitive tumor assessment in mouse skin models. Nine organic peroxides [benzoyl peroxide (BZP), di-t-butyl peroxide (DTBP), t-butyl peroxybenzoate (TBPB), p-t-butyl isopropylbenzene hydroperoxide (TBIBHP), cumene hydroperoxide (CHP), dicetyl peroxydicarbonate (DPD), dicumyl peroxide (DCP), methyl ethyl ketone peroxide (MEKP) and O,O-t-butyl-O-(2-ethylhexyl) monoperoxycarbonate (TBEC)] were evaluated for their ability to increase biomarkers of tumor promotion in mouse skin, i.e. sustained epidermal hyperplasia, dermal inflammation and oxidative DNA damage. Evaluations were performed using SENCAR mice exposed topically for 4 weeks. The organic peroxides varied in their effects on these biomarkers. BZP, TBPB and TBIBHP exhibited significant increases in all three biomarkers associated with tumor promoting activity, CHP produced increases only in sustained epidermal hyperplasia and dermal inflammation, MEKP and DCP produced increases only in sustained epidermal hyperplasia and TBEC produced an increase only in dermal inflammation. DTBP and DPD had no effect on the three parameters studied. TBPB and TBIBHP were selected for further examination of their ability to produce mutations in codons 12, 13 and 61 of the c-Ha-ras protooncogene, i.e. those mutations known to be involved in the initiation of mouse skin tumors, because they were the only peroxides to exhibit significant positive results in all assays except the Ha-ras mutation following 4 weeks of exposure. Evaluations were performed using SENCAR mice dosed topically for 8 or 12 weeks in a complete carcinogenesis protocol or 16 weeks in an initiation/promotion protocol using 7,12-dimethylbenz[a]anthracene, urethane, benzo[a]pyrene and N-methyl-N'-nitro-N-nitrosoguanidine as positive controls

  6. Synergistic deleterious effect of chronic stress and sodium azide in the mouse hippocampus.

    PubMed

    Delgado-Cortés, María José; Espinosa-Oliva, Ana M; Sarmiento, Manuel; Argüelles, Sandro; Herrera, Antonio J; Mauriño, Raquel; Villarán, Ruth F; Venero, José L; Machado, Alberto; de Pablos, Rocío M

    2015-04-20

    Alzheimer's disease is the most common cause of dementia in the elderly. Although the primary cause of the disease is presently unknown, to date several risk factors have been described. Evidence suggests that one of these risk factors could be chronic stress. The aim of this work is to demonstrate that chronic stress is able to induce Alzheimer's disease features after the administration of nontoxic doses of sodium azide. We found that chronic stress increases the levels of several proteins involved in Alzheimer's disease pathogenesis, such as presenilin 1, presenilin 2, and S100β, besides inducing the aggregation of Tau, ubiquitin, and β-amyloid proteins in the hippocampus. More important, our work shows a synergistic effect of stress and sodium azide treatment leading to significant neuronal death in the mouse hippocampus. Our results point out that chronic stress is a risk factor contributing to amplify and accelerate Alzheimer's disease features in the hippocampus.

  7. Effects of Tritrichomonas muris on the mouse intestine: a proteomic analysis.

    PubMed

    Kashiwagi, Akiko; Kurosaki, Hajime; Luo, Hong; Yamamoto, Hiroshi; Oshimura, Mitsuo; Shibahara, Toshiyuki

    2009-10-01

    Although Tritrichomonas muris is a common parasite often detected in experimental animals including mice, its pathogenesis in host animals remains unclear. Proteomics can be used to specifically analyze biochemical host-parasite interaction and immune responses of the host to parasites. However, proteomics have not yet been applied to T. muris studies. Here, the effects of T. muris on the host were analyzed by proteomics. We found that 10 different proteins were expressed in T. muris-infected mice intestines compared with non-infected intestines. The identified proteins represented several functions mainly related to stress, immune response, metabolism and signal transduction. The results suggest that T. muris infection may affect processes that are acclimatizing to the environmental changes caused by the infection in the mouse intestine.

  8. Temperature regulation in the mouse, Peromyscus leucopus: Effects of various photoperiods, pinealectomy and melatonin administration

    NASA Astrophysics Data System (ADS)

    Lynch, G. R.; Sullivan, J. K.; Gendler, S. L.

    1980-03-01

    The white-footed mouse, Peromyscus leucopus, exhibits two responses to a decreasing series of photoperiods. The “winter” molt and reproductive regression occur in mice maintained on a photoperiods of 12 hours of light per day or less. Daily torpor and weight of lipid-free brown fat increase gradually between photoperiods of LD 13:11 — LD 12:12 and LD 10:14 — 9:15 LD. Pinealectomized mice maintained on a LD 9:15 photoperiod fail to exhibit the extent of daily torpor and increased nesting which are characteristic of sham-operated animals. Replacement therapy with chronically implanted beeswax pellets containing 3 mg of melatonin reverses the effects of pinealectomy.

  9. The effect of caffeine on MDMA-induced hydroxyl radical production in the mouse striatum.

    PubMed

    Górska, Anna Maria; Noworyta-Sokołowska, Karolina; Gołembiowska, Krystyna

    2014-08-01

    The psychostimulant 3,4-methylenedioxymethamphetamine (MDMA) with a strong addictive potential is widely used as a recreational drug. Neurotoxicity of MDMA is related with the generation of highly reactive free radicals. MDMA was given in doses of 20 and 40mg/kg ip alone or in combination with caffeine (CAF) 10mg/kg ip. Extracellular concentration of hydroxyl radical was measured using microdialysis in freely moving mice and was assayed by HPLC with electrochemical detection. MDMA dose-dependently increased production of hydroxyl radical in the mouse striatum and its effect was reversed by caffeine. The data show that caffeine may have neuroprotective properties as it decreased oxidative stress induced by MDMA. Copyright © 2014 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  10. The effect of tequila in the synaptonemal complex structure of mouse spermatocytes.

    PubMed

    Tapia, F; Madrigal-Bujaidar, E; Aguirre, S

    1992-04-01

    The effect of tequila in the synaptonemal complex (SC) of mouse spermatocytes was determined. We tested 3 dosages (2.1, 4.2 and 8.4 g/kg) administered in a single intraperitoneal inoculation. The frequency of SC alterations was established in pachytenic nuclei 5 days after the administration using a silver impregnation technique. Three types of alterations were observed (desynapses, breaks and multiaxials) and the rate of each alteration was compared with that obtained with appropriate controls, including cyclophosphamide (CP) (150 mg/kg). The results showed a significant increase induced by tequila only in the frequency of desynapses. This damage began at the second highest dose (4.2 g/kg). The other SC alterations were in the control range. CP, however, induced a significant increase in all 3 types of SC alterations.

  11. Effect of mitochondria poisoning by FCCP on Ca2+ signaling in mouse skeletal muscle fibers.

    PubMed

    Caputo, Carlo; Bolaños, Pura

    2008-01-01

    We have studied the effects of mitochondria poisoning by carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP) on Ca(2+) signaling in enzymatically dissociated mouse flexor digitorum brevis (FDB) muscle fibers. We used Fura-2AM to measure resting [Ca(2+)](i) and MagFluo-4AM to measure Ca(2+) transients. Exposure to FCCP (2 microM, 2 min) caused a continuous increase in [Ca(2+)](i) at a rate of 0.60 nM/s and a drastic reduction of electrically elicited Ca(2+) transients without much effect on their decay phase. Half of the maximal effect occurred at [Ca(2+)](i) = 220 nM. This effect was partially reversible after long recuperation and was not diminished by Tiron, a reactive oxygen species (ROS) scavenger. FCCP had no effects on fiber excitability as shown by the generation of action potentials. 4CmC, an agonist of ryanodine receptors, induced a massive Ca(2+) release. FCCP diminished the rate but not the amount of Ca(2+) released, indicating that depletion of Ca(2+) stores did not cause the decrease in Ca(2+) transient amplitude. Ca(2+) transient amplitude could also be diminished, but to a lesser degree, by increases in [Ca(2+)](i) induced by repetitive stimulation of fibers treated with ciclopiazonic acid. This suggests an important role for Ca(2+) in the FCCP effect on transient amplitude.

  12. Nicotine enhances the hypnotic and hypothermic effects of alcohol in the mouse

    PubMed Central

    Slater, Cassandra A.; Jackson, Asti; Muldoon, Pretal P.; Dawson, Anton; O’Brien, Megan; Soll, Lindsey G.; Abdullah, Rehab; Carroll, F. Ivy; Tapper, Andrew R.; Miles, Michael F.; Banks, Matthew L.; Bettinger, Jill C.; Damaj, M. Imad

    2015-01-01

    Background Ethanol and nicotine abuse are two leading causes of preventable mortality in the world, but little is known about the pharmacological mechanisms mediating co-abuse. Few studies have examined the interaction of the acute effects of ethanol and nicotine. Here, we examine the effects of nicotine administration on the duration of ethanol-induced loss of righting reflex (LORR) and characterize the nature of their pharmacological interactions in C57BL/6J mice. Methods We assessed the effects of ethanol and nicotine and the nature of their interaction in the LORR test using isobolographic analysis after acute injection in C57BL/6J male mice. Next, we examined the importance of receptor efficacy using nicotinic partial agonists varenicline and sazetidine. We evaluated the involvement of major nAChR subtypes using nicotinic antagonist mecamylamine and nicotinic α4 and α7 knockout mice. The selectivity of nicotine’s actions on ethanol-induced LORR was examined by testing nicotine’s effects on the hypnotic properties of ketamine and pentobarbital. We also assessed the development of tolerance after repeated nicotine exposure. Lastly, we assessed if the effects of nicotine on ethanol-induced LORR extends to hypothermia and ethanol intake in the Drinking in the Dark (DID) paradigm. Results We found that acute nicotine injection enhances ethanol’s hypnotic effects in a synergistic manner and that receptor efficacy plays an important role in this interaction. Furthermore, tolerance developed to the enhancement of ethanol’s hypnotic effects by nicotine after repeated exposure of the drug. α4* and α7 nAChRs seem to play an important role in nicotine-ethanol interaction in the LORR test. In addition, the magnitude of ethanol-induced LORR enhancement by nicotine was more pronounced in C57BL/6J than DBA/2J mice. Furthermore, acute nicotine enhanced ketamine and pentobarbital hypnotic effects in the mouse. Finally, nicotine enhanced ethanol-induced hypothermia

  13. Nicotine Enhances the Hypnotic and Hypothermic Effects of Alcohol in the Mouse.

    PubMed

    Slater, Cassandra A; Jackson, Asti; Muldoon, Pretal P; Dawson, Anton; O'Brien, Megan; Soll, Lindsey G; Abdullah, Rehab; Carroll, F Ivy; Tapper, Andrew R; Miles, Michael F; Banks, Matthew L; Bettinger, Jill C; Damaj, Imad M

    2016-01-01

    Ethanol (EtOH) and nicotine abuse are 2 leading causes of preventable mortality in the world, but little is known about the pharmacological mechanisms mediating co-abuse. Few studies have examined the interaction of the acute effects of EtOH and nicotine. Here, we examine the effects of nicotine administration on the duration of EtOH-induced loss of righting reflex (LORR) and characterize the nature of their pharmacological interactions in C57BL/6J mice. We assessed the effects of EtOH and nicotine and the nature of their interaction in the LORR test using isobolographic analysis after acute injection in C57BL/6J male mice. Next, we examined the importance of receptor efficacy using nicotinic partial agonists varenicline and sazetidine. We evaluated the involvement of major nicotinic acetylcholine receptor (nAChR) subtypes using nicotinic antagonist mecamylamine and nicotinic α4- and α7-knockout mice. The selectivity of nicotine's actions on EtOH-induced LORR was examined by testing nicotine's effects on the hypnotic properties of ketamine and pentobarbital. We also assessed the development of tolerance after repeated nicotine exposure. Last, we assessed whether the effects of nicotine on EtOH-induced LORR extend to hypothermia and EtOH intake in the drinking in the dark (DID) paradigm. We found that acute nicotine injection enhances EtOH's hypnotic effects in a synergistic manner and that receptor efficacy plays an important role in this interaction. Furthermore, tolerance developed to the enhancement of EtOH's hypnotic effects by nicotine after repeated exposure of the drug. α4* and α7 nAChRs seem to play an important role in nicotine-EtOH interaction in the LORR test. In addition, the magnitude of EtOH-induced LORR enhancement by nicotine was more pronounced in C57BL/6J than DBA/2J mice. Furthermore, acute nicotine enhanced ketamine and pentobarbital hypnotic effects in the mouse. Finally, nicotine enhanced EtOH-induced hypothermia but decreased EtOH intake

  14. The effects of silibin administration for different time periods on mouse liver with Ehrlich ascites carcinoma.

    PubMed

    Beydogan, Alisa Bahar; Bolkent, Sema

    2016-06-01

    Ehrlich ascites carcinoma is the one of the animal cancer models having high malignancy and rapid growth resistance. Silibin has reported to be an antioxidant in previous studies. We aimed to investigate the effects of silibin on mouse liver with Ehrlich ascites tumor (EAT) cells in different time periods. Balb/c mice were divided into five groups. Group I (Control): The saline buffer (sb) was injected intraperitoneally (ip) to the mice for 15 days. Group II (Silibin): 150mg/kg silibin was injected ip for 15 days. Group III (Ehrlich): 2×10(5) cells were transferred from the donor mouse to healthy mice on first day. Group IV (Ehrlich+Silibin): Silibin was given between 5th and 15th days to mice inoculated with EAT. Group V (Silibin+Ehrlich): Silibin was injected for 15 days after EAT cells. The liver sections were stained with matrix metalloproteinase-2 and -9 (MMP-2 and MMP-9), caspase 3, caspase 8, and proliferating cell nuclear antigen (PCNA) antibodies by the streptavidin-biotin-peroxidase technique. Biochemical analysis and Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling (TUNEL) method were performed in the liver. Superoxide dismutase levels of liver increased in Ehrlich+Silibin group compared with Ehrlich group. Malondialdehyde levels significantly decreased in Silibin+Ehrlich group compared with Ehrlich+Silibin. MMP-2 and MMP-9 immunopositive cells increased in Silibin+Ehrlich compared with Ehrlich group. Caspase 3 and TUNEL signals significantly increased in Silibin+Ehrlich group compared with Ehrlich group. PCNA positive signals significantly increased in Ehrlich+Silibin group compared with Ehrlich group. According to our findings, we suggest that silibin treatment after EAT cells inoculation has more effective than concurrently EAT and silibin treatment. Copyright © 2015 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  15. Disease Progression-Dependent Effects of TREM2 Deficiency in a Mouse Model of Alzheimer's Disease

    PubMed Central

    Jay, Taylor R.; Hirsch, Anna M.; Broihier, Margaret L.; Miller, Crystal M.; Neilson, Lee E.; Ransohoff, Richard M.; Lamb, Bruce T.

    2017-01-01

    Neuroinflammation is an important contributor to Alzheimer's disease (AD) pathogenesis, as underscored by the recent identification of immune-related genetic risk factors for AD, including coding variants in the gene TREM2 (triggering receptor expressed on myeloid cells 2). Understanding TREM2 function promises to provide important insights into how neuroinflammation contributes to AD pathology. However, studies so far have produced seemingly conflicting results, with reports that amyloid pathology can be both decreased and increased in TREM2-deficient AD mouse models. In this study, we unify these previous findings by demonstrating that TREM2 deficiency ameliorates amyloid pathology early, but exacerbates it late in disease progression in the APPPS1–21 mouse model of AD. We also demonstrate that TREM2 deficiency decreases plaque-associated myeloid cell accumulation by reducing cell proliferation, specifically late in pathology. In addition, TREM2 deficiency reduces myeloid cell internalization of amyloid throughout pathology, but decreases inflammation-related gene transcript levels selectively late in disease progression. Together, these results suggest that TREM2 plays distinct functional roles at different stages in AD pathology. SIGNIFICANCE STATEMENT Alzheimer's disease (AD) is a devastating neurodegenerative disorder and there are currently no effective treatments that modify disease progression. However, the recent identification of genetic risk factors for AD promises to provide new insight into AD biology and possible new therapeutic targets. Among these risk factors, variants in the gene TREM2 (triggering receptor expressed on myeloid cells 2) confer greatly elevated risk for developing the disease. We demonstrate that TREM2 deficiency has opposing effects on AD-related pathologies at early and late stages of disease progression, unifying previous work in the field. In addition, we examine how TREM2 affects the function of the brain immune cell

  16. Pharmacometabolomic Signature of Ataxia SCA1 Mouse Model and Lithium Effects

    PubMed Central

    Wikoff, William R.; Gatchel, Jennifer R.; Wang, Lu; Barupal, Dinesh K.; Crespo-Barreto, Juan; Fiehn, Oliver

    2013-01-01

    We have shown that lithium treatment improves motor coordination in a spinocerebellar ataxia type 1 (SCA1) disease mouse model (Sca1154Q/+). To learn more about disease pathogenesis and molecular contributions to the neuroprotective effects of lithium, we investigated metabolomic profiles of cerebellar tissue and plasma from SCA1-model treated and untreated mice. Metabolomic analyses of wild-type and Sca1154Q/+ mice, with and without lithium treatment, were performed using gas chromatography time-of-flight mass spectrometry and BinBase mass spectral annotations. We detected 416 metabolites, of which 130 were identified. We observed specific metabolic perturbations in Sca1154Q/+ mice and major effects of lithium on metabolism, centrally and peripherally. Compared to wild-type, Sca1154Q/+ cerebella metabolic profile revealed changes in glucose, lipids, and metabolites of the tricarboxylic acid cycle and purines. Fewer metabolic differences were noted in Sca1154Q/+ mouse plasma versus wild-type. In both genotypes, the major lithium responses in cerebellum involved energy metabolism, purines, unsaturated free fatty acids, and aromatic and sulphur-containing amino acids. The largest metabolic difference with lithium was a 10-fold increase in ascorbate levels in wild-type cerebella (p<0.002), with lower threonate levels, a major ascorbate catabolite. In contrast, Sca1154Q/+ mice that received lithium showed no elevated cerebellar ascorbate levels. Our data emphasize that lithium regulates a variety of metabolic pathways, including purine, oxidative stress and energy production pathways. The purine metabolite level, reduced in the Sca1154Q/+ mice and restored upon lithium treatment, might relate to lithium neuroprotective properties. PMID:23936457

  17. Protective effect of dieckol against chemical hypoxia-induced cytotoxicity in primary cultured mouse hepatocytes.

    PubMed

    Jeon, Yu Jin; Kim, Hyoung Seok; Song, Kyung-Sik; Han, Ho Jae; Park, Soo Hyun; Chang, Woochul; Lee, Min Young

    2015-04-01

    Hepatic ischemic injury is a major complication arising from liver surgery, transplantation, or other ischemic diseases, and both reactive oxygen species (ROS) and pro-inflammatory mediators play the role of key mediators in hepatic ischemic injury. In this study, we examined the effect of dieckol in chemical hypoxia-induced injury in mouse hepatocytes. Cell viability was significantly decreased after treatment with cobalt chloride (CoCl2), a well-known hypoxia mimetic agent in a time- and dose-dependent manner. Pretreatment with dieckol before exposure to CoCl2 significantly attenuated the CoCl2-induced decrease of cell viability. Additionally, pretreatment with dieckol potentiated the CoCl2-induced decrease of Bcl-2 expression and attenuated the CoCl2-induced increase in the expression of Bax and caspase-3. Treatment with CoCl2 resulted in an increased intracellular ROS generation, which is inhibited by dieckol or N-acetyl cysteine (NAC, a ROS scavenger), and p38 MAPK phosphorylation, which is also blocked by dieckol or NAC. In addition, dieckol and SB203580 (p38 MAPK inhibitor) increased the CoCl2-induced decrease of Bcl-2 expression and decreased the CoCl2-induced increase of Bax and caspase-3 expressions. CoCl2-induced decrease of cell viability was attenuated by pretreatment with dieckol, NAC, and SB203580. Furthermore, dieckol attenuated CoCl2-induced COX-2 expression. Similar to the effect of dieckol, NAC also blocked CoCl2-induced COX-2 expression. Additionally, CoCl2-induced decrease of cell viability was attenuated not only by dieckol and NAC but also by NS-398 (a selective COX-2 inhibitor). In conclusion, dieckol protects primary cultured mouse hepatocytes against CoCl2-induced cell injury through inhibition of ROS-activated p38 MAPK and COX-2 pathway.

  18. Mouse models of cystathionine β-synthase deficiency reveal significant threshold effects of hyperhomocysteinemia

    PubMed Central

    Gupta, Sapna; Kühnisch, Jirko; Mustafa, Aladdin; Lhotak, Sarka; Schlachterman, Alexander; Slifker, Michael J.; Klein-Szanto, Andres; High, Katherine A.; Austin, Richard C.; Kruger, Warren D.

    2009-01-01

    Untreated cystathionine β-synthase (CBS) deficiency in humans is characterized by extremely elevated plasma total homocysteine (tHcy>200 μM), with thrombosis as the major cause of morbidity. Treatment with vitamins and diet leads to a dramatic reduction in thrombotic events, even though patients often still have severe elevations in tHcy (>80 μM). To understand the difference between extreme and severe hyperhomocysteinemia, we have examined two mouse models of CBS deficiency: Tg-hCBS Cbs−/− mice, with a mean serum tHcy of 169 μM, and Tg-I278T Cbs−/− mice, with a mean tHcy of 296 μM. Only Tg-I278T Cbs−/− animals exhibited strong biological phenotypes, including facial alopecia, osteoporosis, endoplasmic reticulum (ER) stress in the liver and kidney, and a 20% reduction in mean survival time. Metabolic profiling of serum and liver reveals that Tg-I278T Cbs−/− mice have significantly elevated levels of free oxidized homocysteine but not protein-bound homocysteine in serum and elevation of all forms of homocysteine and S-adenosylhomocysteine in the liver compared to Tg-hCBS Cbs−/− mice. RNA profiling of livers indicate that Tg-I278T Cbs−/− and Tg-hCBS Cbs−/− mice have unique gene signatures, with minimal overlap. Our results indicate that there is a clear pathogenic threshold effect for tHcy and bring into question the idea that mild elevations in tHcy are directly pathogenic. Gupta, S., Kühnisch, J., Mustafa, A., Lhotak, S., Schlachterman, A., Slifker, M. J., Klein-Szanto, A., High, K. A., Austin, R. C., Kruger, W. D. Mouse models of cystathionine β-synthase deficiency reveal significant threshold effects of hyperhomocysteinemia. PMID:18987302

  19. The Effectiveness of Ferritin as a Contrast Agent for Cell Tracking MRI in Mouse Cancer Models

    PubMed Central

    Lee, Chan Wha; Choi, Sun Il; Lee, Sang Jin; Oh, Young Taek; Park, Gunwoo; Park, Na Yeon; Yoon, Kyoung-Ah; Kim, Sunshin; Suh, Jin-Suck

    2017-01-01

    Purpose We aimed to investigate the effectiveness of ferritin as a contrast agent and a potential reporter gene for tracking tumor cells or macrophages in mouse cancer models. Materials and Methods Adenoviral human ferritin heavy chain (Ad-hFTH) was administrated to orthotopic glioma models and subcutaneous colon cancer mouse models using U87MG and HCT116 cells, respectively. Brain MR images were acquired before and daily for up to 6 days after the intracranial injection of Ad-hFTH. In the HCT116 tumor model, MR examinations were performed before and at 6, 24, and 48 h after intratumoral injection of Ad-hFTH, as well as before and every two days after intravenous injection of ferritin-labeled macrophages. The contrast effect of ferritin in vitro was measured by MR imaging of cell pellets. MRI examinations using a 7T MR scanner comprised a T1-weighted (T1w) spin-echo sequence, T2-weighted (T2w) relaxation enhancement sequence, and T2*-weighted (T2*w) fast low angle shot sequence. Results Cell pellet imaging of Ad-hFTH in vitro showed a strong negatively enhanced contrast in T2w and T2*w images, presenting with darker signal intensity in high concentrations of Fe. T2w images of glioma and subcutaneous HCT116 tumor models showed a dark signal intensity around or within the Ad-hFTH tumor, which was distinct with time and apparent in T2*w images. After injection of ferritin-labeled macrophages, negative contrast enhancement was identified within the tumor. Conclusion Ferritin could be a good candidate as an endogenous MR contrast agent and a potential reporter gene that is capable of maintaining cell labeling stability and cellular safety. PMID:27873495

  20. Immunomodulatory effects of Lactobacillus casei administration in a mouse model of gliadin-sensitive enteropathy.

    PubMed

    D'Arienzo, R; Stefanile, R; Maurano, F; Mazzarella, G; Ricca, E; Troncone, R; Auricchio, S; Rossi, M

    2011-10-01

    Coeliac disease (CD) is a very common food-sensitive enteropathy, which is triggered by gluten ingestion and is mediated by CD4(+) T cells. In addition, alterations in the intestinal microbiota that is normally involved in the homeostasis of GALT (gut-associated lymphoid tissue) seem to play a role in CD. In accordance with these findings, we previously reported that Lactobacillus casei can induce a strong enhancement of the T cell-mediated response to gliadin without inducing enteropathy. In this study, we analysed the effects of L. casei administration in a mouse model of gliadin-induced villous damage that was recently developed and involves the inhibition of cyclo-oxygenase (COX) activities in gliadin-sensitized HLA-DQ8 transgenic mice. To address the issue, we assessed the weight loss, the intestinal cytokine pattern, the density of CD25(+) cells and morphometry of the gut mucosa. We confirmed that COX inhibition in sensitized mice caused villus blunting, dysregulated expression of tumour necrosis factor (TNF)-α and reduced gliadin-specific IL-2 production. Notably, the administration of probiotic strain induced a complete recovery of villus blunting. This finding was associated with a delay in weight decrease and a recovery of basal TNF-α levels, whereas the numbers of CD25(+) cells and the levels of IL-2 remained unchanged. In conclusion, our data suggest that the administration of L. casei can be effective in rescuing the normal mucosal architecture and GALT homeostasis in a mouse model of gliadin-induced enteropathy. © 2011 The Authors. Scandinavian Journal of Immunology © 2011 Blackwell Publishing Ltd.

  1. Differential effects of the neuroprotectant lubeluzole on bovine and mouse chromaffin cell calcium channel subtypes

    PubMed Central

    Hernández-Guijo, Jesús M; Gandía, Luis; de Pascual, Ricardo; García, Antonio G

    1997-01-01

    The effects of lubeluzole (a neuroprotective benzothiazole derivative) and its (−) enantiomer R91154 on whole-cell currents through Ca2+ channels, with 10 mM Ba2+ as charge carrier (IBa), have been studied in bovine and mouse voltage-clamped adrenal chromaffin cells. Currents generated by applying 50 ms depolarizing test pulses to 0 mV, from a holding potential of −80 mV, at 10 s intervals had an average magnitude of 1 nA. Lubeluzole and R91154 blocked the peak IBa of bovine chromaffin cells in a time and concentration-dependent manner; their IC50s were 1.94 μM for lubeluzole and 2.54 μM for R91154. In a current-voltage protocol, lubeluzole (3 μM) inhibited peak IBa at all test potentials. However, no obvious shifts of the I-V curve were detected. After 10 min exposure to 3 μM lubeluzole, the late current (measured at the end of the pulse) was inhibited more than the peak current. Upon wash out of the drug, the inactivation reversed first and then the peak current recovered. Blockade of peak current was greater at more depolarizing holding potentials (i.e. 35% at −110 mV and 87% at −50 mV, after 10 min superfusion with lubeluzole). Inactivation of the current was pronounced at −110 mV, decreased at −80 mV and did not occur at −50 mV. Intracellular dialysis of bovine voltage-clamped chromaffin cells with 3 μM lubeluzole caused neither blockade nor inactivation of IBa. The external application of 3 μM lubeluzole to those dialysed cells produced inhibition as well as inactivation of IBa. The effects of lubeluzole (3 μM) on IBa in mouse chromaffin cells were similar to those in bovine chromaffin cells. At −80 mV holding potential, a pronounced inactivation of the current led to greater blockade of the late IBa (66%) as compared with peak IBa (46% after 10 min superfusion with lubeluzole). In mouse chromaffin cells approximately half of the whole-cell IBa was sensitive to 3 μM nifedipine (L-type Ca2

  2. Effects of model inducers on thyroxine UDP-glucuronosyl-transferase activity in vitro in rat and mouse hepatocyte cultures.

    PubMed

    Viollon-Abadie, C; Bigot-Lasserre, D; Nicod, L; Carmichael, N; Richert, L

    2000-12-01

    Thyroxine (T(4))-UDP-glucuronosyltransferase (UGT) activity was measured directly in cultured male Sprague-Dawley rat and OF-1 mouse hepatocyte monolayers. The activity of T(4)-UGT (pmol/min/g liver) in vitro in hepatocyte cultures was, after 24 hr in culture, equivalent to that previously measured in vivo in rat and mouse liver microsomes (Viollon-Abadie et al., 1999). A progressive decline in T(4)-UGT activity occurred over time in both rat and mouse hepatocyte cultures. Treatment of cultures with various model inducers such as phenobarbital (PB), beta-naphthoflavone (NF) and clofibric acid (CLO) induced a strong increase in T(4)-UGT activity in rat hepatocyte monolayers. In addition, and as expected from available in vivo data, treatment of rat hepatocyte cultures with NF also increased p-nitrophenol (PNP)-UGT activity and treatment with PB or CLO increased bilirubin (Bili)-UGT activity. In contrast, T(4)-UGT activity in mouse hepatocyte monolayers was not affected by the treatments, neither were PNP- and Bili- UGT activities. These in vitro data confirm our previous in vivo observations that these inducers increase rat but not mouse liver T(4)-UGT activities (Viollon-Abadie et al., 1999). The present study thus demonstrates that hepatocyte monolayers are appropriated for the evaluation and inter-species comparison of the effects of xenobiotics on T(4)-UGT activities.

  3. Effect of amantadine on motility of reserpinized mice as a function of brain biogenic amines and mouse strains.

    PubMed

    Messiha, F S

    1989-01-01

    The effect of amantadine, reserpine or both on locomotor activity and whole brain content of selected biogenic amines and major metabolites was studied as a function of mouse strain. Successive administration of small dose regimens of reserpine, 0.2 mg/kg IP, did not alter motility from corresponding saline control. Administration of amantadine, 100 mg/kg, IP, prior to each of the reserpine treatments produced either stimulation of motor activity in the albino ICR and black C57BL/6 mice or caused inhibition from reserpine in the albino BALB/C and the brown CDF-1 mouse strains. This suggests a genotype strain sensitivity to the amantadine and reserpine interaction on the motor behavior of the mouse. The amantadine treatment did not alter brain dopamine concentration but increased its immediate acid metabolite, 3,4-dihydroxyphenylacetic acid, in the C57BL/6 mice as contrasted with reduction of the same in the BALB/C mouse strain. Both BALB/C and C57BL/6 mice showed changes in brain normetanephrine levels as a consequence of the pharmacologic intervention used which suggest catecholaminergic sensitivity. The only changes produced by the agents studied in brain serotonin or 5-hydroxyindoleacetic acid levels were confined to the BALB/C mouse strain. No changes occurred in brain levels of the compounds measured from corresponding controls in the CDF-1 mice. The results indicate differential sensitivity of the serotonergic and dopaminergic systems to drug-drug interaction studied which appears to be strain dependent.

  4. [Effects of ethanol extracts of herbal medicines on dermatitis in an atopic dermatitis mouse model].

    PubMed

    Takano, Norikazu; Inokuchi, Yuki; Kurachi, Michio

    2011-04-01

    Atopic dermatitis is a chronic and relapsing inflammatory skin disease that is characterized by highly pruritic, eczematous skin lesions. Our previous study elucidated that nerve growth factor (NGF) plays an important role in the pathogenesis of skin lesions and inhibition of the physiological effects of NGF can moderate skin lesions in atopic dermatitis. In this study, we investigated the effects of ethanol extracts of herbal medicines on neuritic outgrowth induced by NGF. Four herbal extracts (Geranium thunbergii, Humulus lupulus, Rosmarinus officinalis and Salvia officinalis L.) inhibited NGF-induced neuritic outgrowth in PC12 cells. We also investigated the effects of each herbal extract on dermatitis in NC/Nga, an atopic dermatitis mouse model. The skin lesions of the NC/Nga mice were significantly inhibited by repeated applications of each herbal extract. These results suggested that the four herbal extracts can prevent and moderate the symptoms of atopic dermatitis, and these effects might be appeared by inhibiting the effect of NGF on neuritic outgrowth in lesional skin.

  5. Mouse tracking traces the "Camrbidge Unievrsity" effects in monolingual and bilingual minds.

    PubMed

    Lin, Yu-Cheng; Lin, Pei-Ying

    2016-06-01

    Previous monolingual studies have consistently suggested that there was flexibility of letter position encoding in different alphabetic writing systems. This robust letter transposition was named the "Cambridge University" effect. However, to date whether the orthographic neighborhood and cross-language script similarity would modulate the magnitude of the Cambridge University effect during the second-language word recognition in bilingual minds was unknown. We address this question using a mouse-tracking experimental paradigm to trace the internal lexical matching processes underlying the lexical access. Our linear mixed effects models and growth curve analyses revealed that a low orthographic neighborhood can trigger a large magnitude of the Cambridge University effect for monolinguals and bilinguals on their hand trajectories. We also found that different-script bilinguals (Chinese-English bilinguals) exhibited a greater Cambridge University effect than similar-script bilinguals (Spanish-English bilinguals) and English monolinguals. The findings offer compelling evidence that a human lexical match criterion of recognition system can be modified by neighborhood density and cross-language script similarity of readers.

  6. Selective inhibitory effects of 50-nm gold nanoparticles on mouse macrophage and spleen cells.

    PubMed

    Kingston, Micah; Pfau, Jean C; Gilmer, John; Brey, Richard

    2016-01-01

    Nanoparticles (NP) are significant to multiple industrial processes, consumer products and medical applications today. The health effects of many different types of NP, however, are largely unknown. The purpose of this study was to test the effects of 50-nm gold NP coated with poly-N-vinylpyrrolidone (PVP) on mouse macrophage and spleen cells with and without lipopolysaccharide (LPS), testing the hypothesis that the NP would modulate immune responses without being overtly toxic. Gold NP had no effect on macrophage viability and, in the absence of LPS, they had no effect on tumor necrosis factor (TNF)-α production as measured by ELISA. The presence of LPS significantly increased the release of TNFα from the macrophages above no-treatment controls, but increasing gold NP concentration led to decreasing release of TNFα. The reactive oxygen species (ROS) produced by exposed macrophages were also reduced compared to untreated controls, both with and without LPS, suggesting some kind of oxygen radical scavenging. In splenocyte cultures, gold NP had no effect alone, but significantly reduced the release of interleukin (IL)-17 and TNFα triggered by LPS. These results suggest that the gold NP used here are not cytotoxic to immune cells at these concentrations, but may affect cellular responses to infection or inflammation by altering the balance of cytokines.

  7. Anti-arrhythmic effects of hypercalcemia in hyperkalemic, Langendorff-perfused mouse hearts

    PubMed Central

    Tse, Gary; Sun, Bing; Wong, Sheung Ting; Tse, Vivian; Yeo, Jie Ming

    2016-01-01

    The present study examined the ventricular arrhythmic and electrophysiological properties during hyperkalemia (6.3 mM [K+] vs. 4 mM in normokalemia) and anti-arrhythmic effects of hypercalcemia (2.2 mM [Ca2+]) in Langendorff-perfused mouse hearts. Monophasic action potential recordings were obtained from the left ventricle during right ventricular pacing. Hyperkalemia increased the proportion of hearts showing provoked ventricular tachycardia (VT) from 0 to 6 of 7 hearts during programmed electrical stimulation (Fisher's exact test, P<0.05). It shortened the epicardial action potential durations (APDx) at 90, 70, 50 and 30% repolarization and ventricular effective refractory periods (VERPs) (analysis of variance, P<0.05) without altering activation latencies. Endocardial APDx and VERPs were unaltered. Consequently, ∆APDx (endocardial APDx-epicardial APDx) was increased, VERP/latency ratio was decreased and critical intervals for reexcitation (APD90-VERP) were unchanged. Hypercalcemia treatment exerted anti-arrhythmic effects during hyperkalemia, reducing the proportion of hearts showing VT to 1 of 7 hearts. It increased epicardial VERPs without further altering the remaining parameters, returning VERP/latency ratio to normokalemic values and also decreased the critical intervals. In conclusion, hyperkalemia exerted pro-arrhythmic effects by shortening APDs and VERPs. Hypercalcemia exerted anti-arrhythmic effects by reversing VERP changes, which scaled the VERP/latency ratio and critical intervals. PMID:27588173

  8. Effects of 50 Hz magnetic fields on mouse spermatogenesis monitored by flow cytometric analysis

    SciTech Connect

    Vita, R. de; Cavallo, D.; Raganella, L.; Eleuteri, P.; Grollino, M.G.; Calugi, A.

    1995-12-01

    Flow cytometry (FCM) was performed to monitor the cellular effects of extremely-low-frequency magnetic field on mouse spermatogenesis. Groups of five male hybrid F1 mice aged 8--10 weeks were exposed to 50 Hz magnetic field. The strength of the magnetic field was 1.7 mT. Exposure times of 2 and 4 h were chosen. FCM measurements were performed 7, 14, 21, 28, 35, and 42 days after treatment. For each experimental point, a sham-treated group was used as a control. The possible effects were studied by analyzing the DNA content distribution of the different cell types involved in spermatogenesis and using the elongated spermatids as the reference population. The relative frequencies of the various testicular cell types were calculated using specific software. In groups exposed for 2 h, no effects were observed. In groups exposed for 4 h, a statistically significant (P < 0.001) decrease in elongated spermatids was observed at 28 days after treatment. This change suggests a possible cytotoxic and/or cytostatic effect on differentiating spermatogonia. However, further studies are being carried out to investigate the effects of longer exposure times.

  9. Effect of human milk as a treatment for dry eye syndrome in a mouse model

    PubMed Central

    Diego, Jose L.; Bidikov, Luke; Pedler, Michelle G.; Kennedy, Jeffrey B.; Quiroz-Mercado, Hugo; Gregory, Darren G.; Petrash, J. Mark

    2016-01-01

    -reduced milk but continued to increase in eyes treated with nopal-derived materials. Conclusions Whole and fat-reduced human milk showed promising effects in the prevention of BAK-induced loss of corneal epithelial thickness and epithelial damage in this mouse model. Further studies are required to determine whether human milk may be safely used to treat dry eye in patients. PMID:27667918

  10. Effect of human milk as a treatment for dry eye syndrome in a mouse model.

    PubMed

    Diego, Jose L; Bidikov, Luke; Pedler, Michelle G; Kennedy, Jeffrey B; Quiroz-Mercado, Hugo; Gregory, Darren G; Petrash, J Mark; McCourt, Emily A

    increase in eyes treated with nopal-derived materials. Whole and fat-reduced human milk showed promising effects in the prevention of BAK-induced loss of corneal epithelial thickness and epithelial damage in this mouse model. Further studies are required to determine whether human milk may be safely used to treat dry eye in patients.

  11. Nutritive evaluation and effect of Moringa oleifera pod on clastogenic potential in the mouse.

    PubMed

    Promkum, Chadamas; Kupradinun, Piengchai; Tuntipopipat, Siriporn; Butryee, Chaniphun

    2010-01-01

    Moringa oleifera Lam (horseradish tree; tender pod or fruits) has been consumed as a vegetable and utilized as a major ingredient of healthy Thai cuisine. Previous studies have shown that M. oleifera pod extracts act as bifunctional inducers along with displaying antioxidant properties and also inhibiting skin papillomagenesis in mice. This study was aimed to determine the nutritive value, and clastogenic and anticlastogenic potentials of M. oleifera pod. The nutritive value was determined according to AOAC methods. The clastogenic and anticlastogenic potentials were determined using the in vivo erythrocyte micronucleus assay in the mouse. Eighty male mice were fed semi-purified diets containing 1.5%, 3.0% and 6.0% of ground freeze-dried boiled M. oleifera pod (bMO) for 2 weeks prior to administration of both direct-acting (mitomycin C, MMC) and indirect-acting (7, 12-dimethylbenz(a)anthracene, DMBA), clastogens. Blood samples were collected at 0, 24, 48 and 72 h, dropped on acridine orange-coated slides, and then counted for reticulocytes both with and without micronuclei by fluorescence microscopy. The nutritive value of 100 g bMO consisted of: moisture content, 8.2 g; protein, 19.2 g; fat, 3.9 g; carbohydrate (dietary fiber included), 60.5 g; dietary fiber, 37.5 g; ash, 8.1 g and energy, 354 kcal. Freeze-dried boiled M. oleifera had no clastogenic activity in the mouse while it possessed anticlastogenic activity against both direct and indirect-acting clastogens. Freeze-dried boiled M. oleifera pod at 1.5%, 3.0% and 6.0% in the diets decreased the number of micronucleated peripheral reticulocytes (MNRETs) induced by both MMC and DMBA. However, the effect was statistically significant in the dose dependent manner only in the MMC-treated group. In conclusion, the present study demonstrated that bMO has no clastogenicity and possesses anticlastogenic potential against clastogens, and particularly a direct-acting clastogen in the mouse.

  12. Effect of glucagon on digestive enzyme synthesis, transport and secretion in mouse pancreatic acinar cells.

    PubMed Central

    Singh, M

    1980-01-01

    1. Effect of glucagon on amylase secretion and lactic dehydrogenase (LDH) release from functionally intact dissociated pancreatic acinar cells and acini was studied. 2. In dissociated rat pancreatic acinar cells, the rate of amylase secretion was increased by 70% with bethanechol (maximally effective concentration, 10(-4) M) and 125% with A23187 (10(-5) M), but the response to cholecystokinin-pancreozymin (CCK-PZ) was inconsistent. In dissociated cells from mouse pancreas, the increases amounted to 78% with bethanechol (10(-4) M), 134% with A23187 (10(-5) M) and 82% with CCK-PZ (maximally effective concentration, 0 . 01 u. ml.-1). Glucagon in concentrations ranging from 10(-7) to 10(-4) M increased amylase secretion by 3, 26, 67 and 80%, whereas secretin (10(-8)--10(-5) M) increased amylase secretion by 8, 39, 88 and 138%. LDH release was increased with A23187 in concentrations greater than 10(-6) M. 3. CCK-PZ, bethanechol and A23187 used in maximal concentrations potentiated the effect of a submaximal dose of glucagon whereas secretin did not have an additive or a potentiating effect. 4. Pancreatic acini were approximately 3 times more responsive to secretagogues than cells. The dose--response curves to bethanechol, glucagon and CCK-PZ for increase in amylase secretion were similar. LDH release was not increased by these agents. Cytochalasin B (5 microgram ml.-1) which is known to disrupt the integrity of luminal membrane inhibited the amylase secretion stimulated by glucagon, bethanechol and CCK-PZ. 5. Glucagon inhibited incorporation of a mixture of fifteen 14C-labelled amino acids (algal profile, Schwarz Mann) into perchloric acid precipitable proteins in dissociated mouse pancreatic acini within 30 min. 6. In 'pulse-chase' experiments, glucagon decreased the specific activity of zymogen granules isolated by differential centrifugation, from pancreatic lobules (120 min) and increased the specific activity of radiolabelled proteins in the medium (60 and 120 min

  13. EFFECTS OF 2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN (TCDD) ON FETAL MOUSE URINARY TRACT EPITHELIUM IN VITRO

    EPA Science Inventory

    2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), produces hydronephrosis by altering the differentiation and proliferation of ureteric epithelial cells in the embryonic C57BL/6N mouse urinary tract. This study examines the effects of TCDD on late gestation fetal urinary tract cells u...

  14. Effect of urethane, dimethylnitrosamine, paraquat, and butylated hydroxytoluene on the activities of glycolytic key enzymes in mouse lung

    SciTech Connect

    Arany, I.; Rady, P.; Bojan, I.; Kertai, P.

    1981-12-01

    Effects of carcinogens and noncarcinogenic pulmonary toxicants on the activities of glycolytic key enzymes in the mouse lung were investigated. The carcinogens urethane (URTH) and dimethylnitrosamine (DMN) permanently enhanced, and the noncarcinogenic pulmonary toxicants paraquat (PAR) and butylated hydroxytoluene (BHT) temporarily, enhanced the activities of hexokinase (HK), phosphofructokinase (PFK), and pyruvate kinase (PK) in the lungs of mice.

  15. β-asarone and levodopa co-administration protects against 6-hydroxydopamine-induced damage in parkinsonian rat mesencephalon by regulating autophagy: down-expression Beclin-1 and light chain 3B and up-expression P62.

    PubMed

    Huang, Li-Ping; Deng, Min-Zhen; He, Yu-Ping; Fang, Yong-Qi

    2015-03-01

    In this study, we investigated Beclin-1, light chain (LC)3B, and p62 expression in 6-hydroxydopamine (6-OHDA)-induced parkinsonian rats after β-asarone and levodopa (l-dopa) co-administration. Unilateral 6-OHDA injection into the medial forebrain bundle was used to create the models, except in sham-operated rats. Rats were divided into eight groups: sham-operated group; 6-OHDA model group; madopar group (75 mg/kg, per os (p.o.)); l-dopa group (60 mg/kg, p.o.); β-asarone group (15 mg/kg, p.o.); β-asarone + l-dopa co-administered group (15 mg/kg + 60 mg/kg, p.o.); 3-methyladenine group (500 nmol, intraperitoneal injection); and rapamycin group (1 mg/kg, intraperitoneal injection). Then, Beclin-1, LC3B, and p62 expression in the mesencephalon were detected. The mesencephalon was also observed by transmission electron microscope. The results showed that Beclin-1 and LC3B expression decreased and that p62 expression increased significantly in the madopar, l-dopa, β-asarone, and co-administered groups when compared with the 6-OHDA model. Beclin-1 and LC3B expression in the β-asarone and co-administered groups were less than in the madopar or l-dopa groups, whereas p62 expression in the β-asarone and co-administered groups was higher than in the madopar or l-dopa groups. In addition, a significant decrease in autophagosome was exhibited in the β-asarone and co-administered groups when compared with the 6-OHDA group. Our findings indicate that Beclin-1 and LC3B expression decreased, whereas p62 expression increased after co-administration treatment. In sum, all data suggest that the co-administration of β-asarone and l-dopa may contribute to the treatment of 6-OHDA-induced damage in rats by inhibiting autophagy activity.

  16. LW-AFC Effects on N-glycan Profile in Senescence-Accelerated Mouse Prone 8 Strain, a Mouse Model of Alzheimer's Disease.

    PubMed

    Wang, Jianhui; Cheng, Xiaorui; Zeng, Ju; Yuan, Jiangbei; Wang, Zhongfu; Zhou, Wenxia; Zhang, Yongxiang

    2017-02-01

    Glycosylation is one of the most common eukaryotic post-translational modifications, and aberrant glycosylation has been linked to many diseases. However, glycosylation and glycome analysis is a significantly challenging task. Although several lines of evidence have indicated that protein glycosylation is defective in Alzheimer's disease (AD), only a few studies have focused on AD glycomics. The etiology of AD is unclear and there are no effective disease-modifying treatments for AD. In this study, we found that the object recognition memory, passive avoidance, and spatial learning and memory of senescence-accelerated mouse prone 8 (SAMP8) strain, an AD animal model, were deficient, and LW-AFC, which was prepared from the traditional Chinese medicine prescription Liuwei Dihuang decoction, showed beneficial effects on the deterioration of cognitive capability in SAMP8 mice. Forty-three and 56 N-glycan were identified in the cerebral cortex and serum of SAMP8 mice, respectively. The N-glycan profile in SAMP8 mice was significantly different from that of senescence accelerated mouse resistant 1 (SAMR1) strains, the control of SAMP8 mice. Treatment with LW-AFC modulated the abundance of 21 and 6 N-glycan in the cerebral cortex and serum of SAMP8 mice, respectively. The abundance of (Hex)3(HexNAc)5(Fuc)1(Neu5Ac)1 and (Hex)2(HexNAc)4 decreased in the cerebral cortex and serum of SAMP8 mice compared with SAMR1 mice, decreases that were significantly correlated with learning and memory measures. The administration of LW-AFC could reverse or increase these levels in SAMP8 mice. These results indicated that the effects of LW-AFC on cognitive impairments in SAMP8 mice might be through modulation of N-glycan patterns, and LW-AFC may be a potential anti-AD agent.

  17. LW-AFC Effects on N-glycan Profile in Senescence-Accelerated Mouse Prone 8 Strain, a Mouse Model of Alzheimer’s Disease

    PubMed Central

    Wang, Jianhui; Cheng, Xiaorui; Zeng, Ju; Yuan, Jiangbei; Wang, Zhongfu; Zhou, Wenxia; Zhang, Yongxiang

    2017-01-01

    Glycosylation is one of the most common eukaryotic post-translational modifications, and aberrant glycosylation has been linked to many diseases. However, glycosylation and glycome analysis is a significantly challenging task. Although several lines of evidence have indicated that protein glycosylation is defective in Alzheimer’s disease (AD), only a few studies have focused on AD glycomics. The etiology of AD is unclear and there are no effective disease-modifying treatments for AD. In this study, we found that the object recognition memory, passive avoidance, and spatial learning and memory of senescence-accelerated mouse prone 8 (SAMP8) strain, an AD animal model, were deficient, and LW-AFC, which was prepared from the traditional Chinese medicine prescription Liuwei Dihuang decoction, showed beneficial effects on the deterioration of cognitive capability in SAMP8 mice. Forty-three and 56 N-glycan were identified in the cerebral cortex and serum of SAMP8 mice, respectively. The N-glycan profile in SAMP8 mice was significantly different from that of senescence accelerated mouse resistant 1 (SAMR1) strains, the control of SAMP8 mice. Treatment with LW-AFC modulated the abundance of 21 and 6 N-glycan in the cerebral cortex and serum of SAMP8 mice, respectively. The abundance of (Hex)3(HexNAc)5(Fuc)1(Neu5Ac)1 and (Hex)2(HexNAc)4 decreased in the cerebral cortex and serum of SAMP8 mice compared with SAMR1 mice, decreases that were significantly correlated with learning and memory measures. The administration of LW-AFC could reverse or increase these levels in SAMP8 mice. These results indicated that the effects of LW-AFC on cognitive impairments in SAMP8 mice might be through modulation of N-glycan patterns, and LW-AFC may be a potential anti-AD agent. PMID:28203484

  18. Manifestations of diabetes mellitus on mouse preimplantation development: effect of elevated concentration of metabolic intermediates.

    PubMed

    Moley, K H; Vaughn, W K; Diamond, M P

    1994-01-01

    The metabolic derangements of pregnancies complicated by diabetes mellitus, specifically hyperglycaemia and hyperketonaemia, are known to be teratogenic during the period of organogenesis in animals. We have shown previously that poorly controlled diabetes mellitus impairs in-vivo and in-vitro mouse preimplantation embryo growth, and that culturing embryos in elevated glucose concentrations only partially recreates this developmental delay. To extend this observation we examined the effect on mouse preimplantation embryo growth of elevated concentrations of other metabolic intermediates, which may be deranged in diabetes mellitus, namely lipids, lactate, glycerol, amino acids, and ketones. Two-cell embryos from ovulation-induced B6C3F1 mice were cultured for 72 h in the presence of added lipids (250 mg/dl), lactate (5 mM), glycerol (160 microM) or mixed amino acids (8.5% travasol, 7 mM) and showed no significant difference in growth over 72 h versus their control groups. However, growth of preimplantation embryos in acetoacetate (10 mM) or in the racemic mixture of DL-beta-hydroxybutyrate (16 and 32 mM) revealed marked retardation versus controls when assessed either by distribution of developmental stages over time (24, 48, 72 h, P < 0.001) or by the difference in the average rank of sums indicating a delay in maturation (P < 0.0001). We conclude that elevated ketone concentrations adversely affect preimplantation embryo development. These findings extend previous studies which correlate uncontrolled diabetes mellitus as well as hyperglycaemia with abnormal organogenesis, and demonstrate that exposure to metabolic derangements may also hinder reproductive performance at even earlier stages in gestation.

  19. Neuroprotective Effects of Voluntary Exercise in an Inherited Retinal Degeneration Mouse Model

    PubMed Central

    Hanif, Adam M.; Lawson, Eric C.; Prunty, Megan; Gogniat, Marissa; Aung, Moe H.; Chakraborty, Ranjay; Boatright, Jeffrey H.; Pardue, Machelle T.

    2015-01-01

    Purpose Our previous investigations showed that involuntary treadmill exercise is neuroprotective in a light-induced retinal degeneration mouse model, and it may act through activation of tropomyosin-related kinase B (TrkB) receptors. This study investigated whether voluntary running wheel exercise can be neuroprotective in an inheritable model of the retinal degenerative disease retinitis pigmentosa (RP), rd10 mice. Methods Breeding pairs of rd10 and C57BL/6J mice were given free-spinning (active) or locked (inactive) running wheels. Pups were weaned into separate cages with their parents' respective wheel types, and visual function was tested with ERG and a virtual optokinetic system at 4, 5, and 6 weeks of age. Offspring were killed at 6 weeks of age and retinal cross-sections were prepared for photoreceptor nuclei counting. Additionally, separate cohorts of active and inactive rd10 pups were injected daily for 14 days after eye opening with a selective TrkB receptor antagonist (ANA-12) or vehicle solution and assessed as described above. Results Mice in the rd10 active group exhibited significant preservation of visual acuity, cone nuclei, and total photoreceptor nuclei number. Injection with ANA-12 precluded the preservation of visual acuity and photoreceptor nuclei number in rd10 mice. Conclusions Voluntary running partially protected against the retinal degeneration and vision loss that otherwise occurs in the rd10 mouse model of RP. This protection was prevented by injection of ANA-12, suggesting that TrkB activation mediates exercise's preservation of the retina. Exercise may serve as an effective, clinically translational intervention against retinal degeneration. PMID:26567796

  20. Genotoxic effects of 1 GeV/amu Fe ions in mouse kidney epithelial cells

    NASA Astrophysics Data System (ADS)

    Kronenberg, A.; Gauny, S. S.; Connolly, L.; Turker, M.

    Human exploration of space places individuals in environments where they are exposed to charged particle radiation. The goal of our studies is to assess the genotoxic and mutagenic effects of high energy Fe ions (1 GeV/amu) in kidney epithelial cells of the mouse irradiated either in vitro or in vivo. The initial study focused on establishing the toxicity of these heavy ions (LET=159 keV/micron) in two Aprt heterozygous kidney epithelial cell lines: K06 cells derived from a C57BL6/129Sv animal, and clone 4a cells derived from a C57BL6/DBA2 animal. Cells were exposed in vitro to graded doses of Fe ions (0-300 cGy) and the toxicity of the treatment was established using colony forming assays. Experiments were performed in triplicate at the NASA Space Radiation Laboratory at Brookhaven National Laboratory. The results indicate that Fe ions are toxic to mouse kidney epithelial cells and that no shoulder is observed on the survival curve for cells from either genetic background. The clone 4a cells were more sensitive to Fe ion exposures than the K06 cells. The D(37) for clone 4a cells was 92 cGy and the D(10) was 212 cGy. The more resistant K06 cells had a D(37) of 192 cGy and an estimated D(10) of 388 cGy. Parallel experiments are underway to establish the RBE's for cell killing for these two cell lines. Supported by NASA grant T-403X to A. Kronenberg

  1. [Effect of phytohemagglutinin (PHA) from Yunnan white kidney bean on development of mouse embryos].

    PubMed

    Zhang, Lifen; Wang, Changmei; Yang, Mingjie; Zhang, Tian; Wang, Minkang

    2011-06-01

    To study the effect of different concentration of phytohemagglutinin (PHA) on mouse embryo development. In experiment 1, crude and purified PHA extracted from Yunnan white kidney bean with different concentration were added into M16 culture medium, the final concentration of PHA were: 50, 100, 200, 500, 1 000, 2 000 and 5 000 mg x L(-1) respectively. 2-cell stage embryos were collected and cultured in PHA containing or control medium for 72-96 h and their development were recorded. In experiment 2, different stage of embryos from 1-cell to blastocyst were treated by different concentrations of PHA same as experiment 1 and 10 000 mg x L(-1) in culture medium for 24 h before washing and cultured in M16 + PVA without PHA to blastocyst or hatching blastocyst stage. Low concentrations PHA at 50-100 mg x L(-1) promoted embryo development and increased the number of blastocyst stage embryos. In contrast, high concentrations of PHA (> 1 000 mg x L(-1)) blocked the embryos development from 1-cell to blastocyst stage and showed apoptosis morphology or death. Depending on the concentrations, PHA from white kidney bean shown promotion or inhibition on mouse embryo development. 1-cell stage embryo shown more sensitive to PHA treatment than that of later stage embryos. Pretreatment 24 h in PHA containing medium can influence the further development of embryos. Low concentrations of PHA is benefit to embryo development, but high concentrations of PHA (> 1 000 mg x L(-1)) will block of the development of embryos.

  2. Metabolic Substrates Exhibit Differential Effects on Functional Parameters of Mouse Sperm Capacitation1

    PubMed Central

    Goodson, Summer G.; Qiu, Yunping; Sutton, Keith A.; Xie, Guoxiang; Jia, Wei; O'Brien, Deborah A.

    2012-01-01

    ABSTRACT Although substantial evidence exists that sperm ATP production via glycolysis is required for mammalian sperm function and male fertility, conflicting reports involving multiple species have appeared regarding the ability of individual glycolytic or mitochondrial substrates to support the physiological changes that occur during capacitation. Several mouse models with defects in the signaling pathways required for capacitation exhibit reductions in sperm ATP levels, suggesting regulatory interactions between sperm metabolism and signal transduction cascades. To better understand these interactions, we conducted quantitative studies of mouse sperm throughout a 2-h in vitro capacitation period and compared the effects of single substrates assayed under identical conditions. Multiple glycolytic and nonglycolytic substrates maintained sperm ATP levels and comparable percentages of motility, but only glucose and mannose supported hyperactivation. These monosaccharides and fructose supported the full pattern of tyrosine phosphorylation, whereas nonglycolytic substrates supported at least partial tyrosine phosphorylation. Inhibition of glycolysis impaired motility in the presence of glucose, fructose, or pyruvate but not in the presence of hydroxybutyrate. Addition of an uncoupler of oxidative phosphorylation reduced motility with pyruvate or hydroxybutyrate as substrates but unexpectedly stimulated hyperactivation with fructose. Investigating differences between glucose and fructose in more detail, we demonstrated that hyperactivation results from the active metabolism of glucose. Differences between glucose and fructose appeared to be downstream of changes in intracellular pH, which rose to comparable levels during incubation with either substrate. Sperm redox pathways were differentially affected, with higher levels of associated metabolites and reactive oxygen species generated during incubations with fructose than during incubations with glucose. PMID

  3. [Effects of electromagnetic pulses on apoptosis and TGF-β3 expression of mouse testis tissue].

    PubMed

    Luo, Yaning; Ding, Guirong; Chen, Yongbin; Xu, Shenglong; Wang, Xiaowu

    2014-04-01

    To investigate the effects of electromagnetic pulses (EMP) on the apoptosis and transforming growth factor beta 3 (TGF-β3) expression of mouse testis tissue. Thirty-two male BALB/c mice were randomly and equally divided into one control group and three EMP treated groups, which were whole-body exposed to EMP at 200 kV/m with 100, 200, and 400 pulses, respectively. The control group received no treatment. The pathological changes and cell apoptosis in testis tissue were analyzed by TUNEL assay. The mRNA expression of TGF-β3 in testis tissue was determined by RT-PCR, and the protein expression of TGF-β3 was determined by immunohistochemistry and Western blot. No obvious pathological changes were found in testis tissue after EMP exposure at 200 kV/m with 100 and 200 pulses. However, after EMP exposure with 400 pulses, degeneration and shedding of testis tissue, accompanied by significant increase in apoptosis rate (P < 0.05), was observed. The RT-PCR, immunohistochemistry, and Western blot showed that the expression of TGF-β3 mRNA and protein increased significantly after EMP exposure with 400 pulses as compared with that of the control group (P < 0.05). EMP exposure at 200 kV/m with 400 pulses increases the incidence of apoptosis and expression of TGF-β3 in mouse testis tissue, which is potentially one of the mechanisms by which EMP increases blood-testis barrier permeability in mice.

  4. Effect of light on the development of the circadian rhythm of motor activity in the mouse.

    PubMed

    Canal-Corretger, M M; Vilaplana, J; Cambras, T; Díez-Noguera, A

    2001-07-01

    In previous experiments, we found that rats raised in constant light (LL) manifested a more robust circadian rhythm of motor activity in LL and showed longer phase shifts after a light pulse in constant darkness (DD) than chose raised under constant darkness. In addition, we observed that the effects produced by constant light differed depending on the time of postnatal development in which it was given. These results suggest that both sensitivity to light and the functioning of the circadian pacemaker of the rat could be affected by the environmental conditions experienced during postembryonic development. Thus, the present experiment aimed to study whether postnatal exposure to light could also affect the circadian system of the mouse. Three groups of mice were formed: One group was raised under constant darkness during lactation (DD group), the second under constant light (LL group), and the third under light-dark cycles (LD group). After lactation, the three groups were submitted first to constant light of high intensity, then to LD cycles, and finally to constant darkness. In the DD stage, a light pulse was given. Finally, mice were submitted to constant light of low intensity. We observed that the circadian rhythm of the DD group was more disturbed under constant light than the rhythm of the LL group, and that, when light intensity increased, the period of the rhythm of the DD group lengthened more than that of the LL group. No significant differences among the groups were found in the phase shift induced by the light pulse. Therefore, it appears that DD mice are more sensitive to light than their LL counterparts. However, at present there is no evidence to affirm that the light environment experienced by the mouse during postnatal development affects the circadian pacemaker.

  5. Effects of experimental conditions on the release of 45calcium from prelabeled fetal mouse long bones.

    PubMed

    van Beek, E; Oostendorp-van de Ruit, M; van der Wee-Pals, L; Bloys, H; van de Bent, C; Papapoulos, S; Löwik, C

    1995-07-01

    Embryonic/neonatal bones in culture are commonly used for the study of osteoclastic resorption in vitro. For this purpose, the release of 45calcium (45Ca) from prelabeled bones is measured as an index of resorption. We studied 45Ca release from two types of long bone explants after different preparation methods: 17-day-old fetal mouse radii/ulnae with and without cartilage ends (intact radii/ulnae and shafts, respectively), and intact 18-day old metacarpals/metatarsals. In addition, we examined the effect of different culture conditions, such as cultures performed under the surface of the medium or at the interphase of medium and air, on 45Ca release and histology. When intact radii/ulnae were cultured under the surface of the medium, there was always a significant amount (10%) of net basal 45Ca release (corrected for physicochemical exchange) that was not due to osteoclastic resorption, as it could not be suppressed by inhibitors of resorption even at high concentrations. Moreover, histologically TRAcP-positive cells were almost absent after culture and the bone marrow/stromal cells in the center of the bone appeared necrotic, possibly due to a lack of oxygen. Under these culture conditions, osteoclasts could survive in shafts as well as in PTH-stimulated intact radii/ulnae, but a constant amount of 10% 45Ca, not due to resorption, was still released in the medium. When these explants were cultured at the interphase of medium and air, basal and stimulated 45Ca release originated from osteoclastic resorption. In contrast, in 18-day-old fetal mouse metacarpals/metatarsals, the experimental conditions applied did not affect 45Ca release, which was always due to resorption of the explants by osteoclasts.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Amino acid-permeable anion channels in early mouse embryos and their possible effects on cleavage.

    PubMed

    Sonoda, Momoyo; Okamoto, Fujio; Kajiya, Hiroshi; Inoue, Yoshihito; Honjo, Ko; Sumii, Yoshinari; Kawarabayashi, Tatsuhiko; Okabe, Koji

    2003-03-01

    Effects of several Cl(-) channel blockers on ionic currents in mouse embryos were studied using whole-cell patch-clamp and microelectrode methods. Microelectrode measurements showed that the resting membrane potential of early embryonic cells (1-cell stage) was -23 mV and that reduction of extracellular Cl(-) concentration depolarized the membrane, suggesting that Cl(-) conductance is a major contributor for establishing the resting membrane potential. Membrane currents recorded by whole-cell voltage clamp showed outward rectification and confirmed that a major component of these embryonic currents are carried by Cl(-) ions. A Cl(-) channel blocker, 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), suppressed the outward rectifier current in a voltage- and concentration-dependent manner. Other Cl(-) channel blockers (5-nitro-2-[3-phenylpropyl-amino] benzoic acid and 2-[3-(trifluoromethyl)-anilino] nicotinic acid [niflumic acid]) similarly inhibited this current. Simultaneous application of niflumic acid with DIDS further suppressed the outward rectifier current. Under high osmotic condition, niflumic acid, but not DIDS, inhibited the Cl(-)current, suggesting the presence of two types of Cl(-) channels: a DIDS-sensitive (swelling-activated) channel, and a DIDS-insensitive (niflumic acid-sensitive) Cl(-) channel. Anion permeability of the DIDS-insensitive Cl(-) current differed from that of the compound Cl(-) current: Rank order of anion permeability of the DIDS-sensitive Cl(-) channels was I(-) = Br(-) > Cl(-) > gluconate(-), whereas that of the DIDS-insensitive Cl(-) channel was I(-) = Br(-) > Cl(-) > gluconate(-). These results indicate that early mouse embryos have a Cl(-) channel that is highly permeable to amino acids, which may regulate intracellular amino acid concentration.

  7. Anxiolytic-like effects of alverine citrate in experimental mouse models of anxiety.

    PubMed

    Gupta, Deepali; Radhakrishnan, Mahesh; Kurhe, Yeshwant

    2014-11-05

    Anxiety disorders are widely spread psychiatric illnesses that are a cause of major concern. Despite a consistent increase in anxiolytics, the prevalence of anxiety is static; this necessitates the development of new compounds with potential activity and minimum unwanted effects. A serotonergic (5HT) system plays an important role in pathogenesis of anxiety and predominantly involves 5HT1A receptor action in mediating anxiety-like behavior; the antagonism of 5HT1A receptor has demonstrated to produce anxiolytic-like effects. Alverine citrate (AVC) is reported as a 5HT1A antagonist; however, its effects on anxiety-like behavior are not investigated. Thus, the present study, by utilizing a neurobehavioral approach, examined the anxiolytic-like effects of AVC in experimental mouse models of anxiety. Mice were acutely treated with AVC (5-20mg/kg, i.p.)/diazepam (DIA, 2mg/kg, i.p.) and subjected to four validated anxiety models viz. elevated plus-maze (EPM), light/dark (L/D), hole-board (HB) and marble burying (MB) tests. AVC (15-20mg/kg) and DIA significantly increased open arm activity in EPM, exploration in light chamber in L/D test, exploratory behavior in HB and reduced MB behavior in marble burying test. AVC (5mg/kg) had no effect on all behavioral tests, while AVC (10mg/kg) produced partial effects. It revealed anxiolytic-like effects of AVC. Furthermore, anxiolytic-like effects of AVC at higher doses (15-20mg/kg) were more pronounced than lower doses (10mg/kg) and were quite similar to the standard drug DIA. The present finding demonstrates, for the first time, the anxiolytic-like effects of AVC, which may be an alternative approach for management of anxiety-related disorders. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Gene expression profiling of rewarding effect in methamphetamine treated Bax-deficient mouse.

    PubMed

    Ryu, Na Kyung; Yang, Moon Hee; Jung, Min Seok; Jeon, Jeong Ok; Kim, Kee Won; Park, Jong Hoon

    2007-07-31

    Methamphetamine is an illicit drug that is often abused and can cause neuropsychiatric and neurotoxic damage. Repeated administration of psychostimulants such as methamphetamine induces a behavioral sensitization. According to a previous study, Bax was involved in neurotoxicity by methamphetamine, but the function of Bax in rewarding effect has not yet been elucidated. Therefore, we have studied the function of Bax in a rewarding effect model. In the present study, we treated chronic methamphetamine exposure in a Bax-deficient mouse model and examined behavioral change using a conditioned place preference (CPP) test. The CPP score in Bax knockout mice was decreased compared to that of wild-type mice. Therefore, we screened for Bax-related genes that are involved in rewarding effect using microarray technology. In order to confirm microarray data, we applied the RT-PCR method to observe relative changes of Bcl2, a pro-apoptotic family gene. As a result, using our experiment microarray, we selected genes that were associated with Bax in microarray data, and eventually selected the Tgfbr2 gene. Expression of the Tgfbr2 gene was decreased by methamphetamine in Bax knockout mice, and the gene was overexpressed in Bax wild-type mice. Additionally, we confirmed that Creb, FosB, and c-Fos were related to rewarding effect and Bax using immunohistochemistry.

  9. Effect of mitomycin C on the neural tube defects of the curly-tail mouse.

    PubMed

    Seller, M J; Perkins, K J

    1986-06-01

    Around 60% of the mouse mutants called curly-tail, have tail aberrations in the form of a coil or a kink, with or without lumbosacral spina bifida, and rarely, exencephaly. These neural tube defects (NTD) are the result of an incompletely penetrant recessive gene. A single injection of various doses (1-6 mg/kg) of the DNA inhibitor mitomycin C was given to pregnant curly-tail mice on day 7, 8, or 9 of gestation, and its effect on the NTD of the embryos was noted. No dose used was lethal to the embryo. When given on day 7 or day 8, mitomycin C markedly increased the number of exencephalics, and additionally, on day 8, it reduced the number of posterior abnormalities. However, on day 9, no exencephaly was produced, and there was a drastic reduction in the number of tail and spinal defects, the overall incidence of NTD being as low as 15% with 2 mg/kg. A twofold effect of mitomycin C on the curly-tail embryos was thus observed--according to the time in development it was administered, firstly, a teratogenic effect, and later, a "remedial" or preventive effect.

  10. Limited Effect of Chronic Valproic Acid Treatment in a Mouse Model of Machado-Joseph Disease.

    PubMed

    Esteves, Sofia; Duarte-Silva, Sara; Naia, Luana; Neves-Carvalho, Andreia; Teixeira-Castro, Andreia; Rego, Ana Cristina; Silva-Fernandes, Anabela; Maciel, Patrícia

    2015-01-01

    Machado-Joseph disease (MJD) is an inherited neurodegenerative disease, caused by a CAG repeat expansion within the coding region of ATXN3 gene, and which currently lacks effective treatment. In this work we tested the therapeutic efficacy of chronic treatment with valproic acid (VPA) (200mg/kg), a compound with known neuroprotection activity, and previously shown to be effective in cell, fly and nematode models of MJD. We show that chronic VPA treatment in the CMVMJD135 mouse model had limited effects in the motor deficits of these mice, seen mostly at late stages in the motor swimming, beam walk, rotarod and spontaneous locomotor activity tests, and did not modify the ATXN3 inclusion load and astrogliosis in affected brain regions. However, VPA chronic treatment was able to increase GRP78 protein levels at 30 weeks of age, one of its known neuroprotective effects, confirming target engagement. In spite of limited results, the use of another dosage of VPA or of VPA in a combined therapy with molecules targeting other pathways, cannot be excluded as potential strategies for MJD therapeutics.

  11. Effects of suspension-induced osteopenia on the mechanical behaviour of mouse long bones

    NASA Technical Reports Server (NTRS)

    Simske, S. J.; Greenberg, A. R.; Luttges, M. W.; Spooner, B. S. (Principal Investigator)

    1991-01-01

    Whereas most studies of tail-suspension induced osteopenia have utilized rat femora, the present study investigated the effects of a 14 day tail-suspension on the mechanical behaviour of mice femora, tibiae and humeri. Force-deflection properties were obtained via three-point bending for long bones from suspended and control mice. Whole bone behaviour was characterized by converting the force-deflection values to stiffness, strength, ductility and energy parameters which were not normalized for specimen geometry. The effects of a systematic variation in the deflection rate over the range 0.1-10 mm min-1 were also evaluated. Statistical analysis indicated that the primary effect of the tail-suspension period was lowered bone mass which was manifested mechanically through lower values of the bone strength parameters. These effects were similar in the bones of both the fore and hind limbs. The results also demonstrated that the stiffness, ductility and energy characteristics were much less influenced by the tail-suspension. Whereas a significant dependence of the bone strength values upon deflection rate was observed for the femora and humeri, the other mechanical parameters were less sensitive. Based upon the nature of the physical and mechanical changes observed in the long bones following tail-suspension, the mouse appears to be a suitable animal model for the study of osteopenia.

  12. A Novel Drug-Mouse Phenotypic Similarity Method Detects Molecular Determinants of Drug Effects.

    PubMed

    Prinz, Jeanette; Vogt, Ingo; Adornetto, Gianluca; Campillos, Mónica

    2016-09-01

    The molecular mechanisms that translate drug treatment into beneficial and unwanted effects are largely unknown. We present here a novel approach to detect gene-drug and gene-side effect associations based on the phenotypic similarity of drugs and single gene perturbations in mice that account for the polypharmacological property of drugs. We scored the phenotypic similarity of human side effect profiles of 1,667 small molecules and biologicals to profiles of phenotypic traits of 5,384 mouse genes. The benchmarking with known relationships revealed a strong enrichment of physical and indirect drug-target connections, causative drug target-side effect links as well as gene-drug links involved in pharmacogenetic associations among phenotypically similar gene-drug pairs. The validation by in vitro assays and the experimental verification of an unknown connection between oxandrolone and prokineticin receptor 2 reinforces the ability of this method to provide new molecular insights underlying drug treatment. Thus, this approach may aid in the proposal of novel and personalized treatments.

  13. Limited Effect of Chronic Valproic Acid Treatment in a Mouse Model of Machado-Joseph Disease

    PubMed Central

    Esteves, Sofia; Duarte-Silva, Sara; Naia, Luana; Neves-Carvalho, Andreia; Teixeira-Castro, Andreia; Rego, Ana Cristina; Silva-Fernandes, Anabela; Maciel, Patrícia

    2015-01-01

    Machado-Joseph disease (MJD) is an inherited neurodegenerative disease, caused by a CAG repeat expansion within the coding region of ATXN3 gene, and which currently lacks effective treatment. In this work we tested the therapeutic efficacy of chronic treatment with valproic acid (VPA) (200mg/kg), a compound with known neuroprotection activity, and previously shown to be effective in cell, fly and nematode models of MJD. We show that chronic VPA treatment in the CMVMJD135 mouse model had limited effects in the motor deficits of these mice, seen mostly at late stages in the motor swimming, beam walk, rotarod and spontaneous locomotor activity tests, and did not modify the ATXN3 inclusion load and astrogliosis in affected brain regions. However, VPA chronic treatment was able to increase GRP78 protein levels at 30 weeks of age, one of its known neuroprotective effects, confirming target engagement. In spite of limited results, the use of another dosage of VPA or of VPA in a combined therapy with molecules targeting other pathways, cannot be excluded as potential strategies for MJD therapeutics. PMID:26505994

  14. Effects of drugs affecting the noradrenergic system on convulsions in the quaking mouse.

    PubMed

    Chermat, R; Doaré, L; Lachapelle, F; Simon, P

    1981-12-01

    Handling-induced convulsions in the quaking mouse can be blocked by: phenobarbital, pentobarbital or phenytoin; postsynaptic alpha-adrenoceptor agonists (noradrenaline, phenylephrine, CRL 40028); presynaptic alpha-adrenoceptor blockers (yohimbine, mianserine); catecholamine liberating agent (amphetamine); noradrenaline reuptake inhibitors (cocaine, imipramine, desipramine). Moreover, the protective effect of yohimbine was antagonized by clonidine, prazosin or alpha-methylparatyrosine, and the protective effect of CRL 40028 was antagonized by prazosin but not by alpha-methyltyrosine. Drugs acting by other mechanisms (pilocarpine, atropine, trihexyphenidyl, (--)-5-HTP, methysergide, pimozide, clonidine, alpha-methyl DOPA, prazosin, isoprenaline, salbutamol) did not protect against convulsions. A slight protection was obtained with high doses of apomorphine and also with (+/-)-propranolol. This effect is probably not related to blockade of beta-adrenoceptors because the same effect was obtained with (+)propranolol. In young quaking mice, where susceptibility to convulsions is low, both postsynaptic alpha-adrenoceptor blockers and presynaptic alpha-adrenoceptor antagonist lowered the convulsive threshold. Thus, this seems to constitute an interesting model for the in vivo study of substances which affect the central alpha-adrenoceptors either pre- or postsynaptically.

  15. A Novel Drug-Mouse Phenotypic Similarity Method Detects Molecular Determinants of Drug Effects

    PubMed Central

    Prinz, Jeanette; Vogt, Ingo; Adornetto, Gianluca; Campillos, Mónica

    2016-01-01

    The molecular mechanisms that translate drug treatment into beneficial and unwanted effects are largely unknown. We present here a novel approach to detect gene-drug and gene-side effect associations based on the phenotypic similarity of drugs and single gene perturbations in mice that account for the polypharmacological property of drugs. We scored the phenotypic similarity of human side effect profiles of 1,667 small molecules and biologicals to profiles of phenotypic traits of 5,384 mouse genes. The benchmarking with known relationships revealed a strong enrichment of physical and indirect drug-target connections, causative drug target-side effect links as well as gene-drug links involved in pharmacogenetic associations among phenotypically similar gene-drug pairs. The validation by in vitro assays and the experimental verification of an unknown connection between oxandrolone and prokineticin receptor 2 reinforces the ability of this method to provide new molecular insights underlying drug treatment. Thus, this approach may aid in the proposal of novel and personalized treatments. PMID:27673331

  16. Effects of suspension-induced osteopenia on the mechanical behaviour of mouse long bones

    NASA Technical Reports Server (NTRS)

    Simske, S. J.; Greenberg, A. R.; Luttges, M. W.; Spooner, B. S. (Principal Investigator)

    1991-01-01

    Whereas most studies of tail-suspension induced osteopenia have utilized rat femora, the present study investigated the effects of a 14 day tail-suspension on the mechanical behaviour of mice femora, tibiae and humeri. Force-deflection properties were obtained via three-point bending for long bones from suspended and control mice. Whole bone behaviour was characterized by converting the force-deflection values to stiffness, strength, ductility and energy parameters which were not normalized for specimen geometry. The effects of a systematic variation in the deflection rate over the range 0.1-10 mm min-1 were also evaluated. Statistical analysis indicated that the primary effect of the tail-suspension period was lowered bone mass which was manifested mechanically through lower values of the bone strength parameters. These effects were similar in the bones of both the fore and hind limbs. The results also demonstrated that the stiffness, ductility and energy characteristics were much less influenced by the tail-suspension. Whereas a significant dependence of the bone strength values upon deflection rate was observed for the femora and humeri, the other mechanical parameters were less sensitive. Based upon the nature of the physical and mechanical changes observed in the long bones following tail-suspension, the mouse appears to be a suitable animal model for the study of osteopenia.

  17. Anti-influenza effect of Cordyceps militaris through immunomodulation in a DBA/2 mouse model.

    PubMed

    Lee, Hwan Hee; Park, Heejin; Sung, Gi-Ho; Lee, Kanghyo; Lee, Taeho; Lee, Ilseob; Park, Man-seong; Jung, Yong Woo; Shin, Yu Su; Kang, Hyojeung; Cho, Hyosun

    2014-08-01

    The immune-modulatory as well as anti-influenza effects of Cordyceps extract were investigated using a DBA/2 mouse model. Three different concentrations of Cordyceps extract, red ginseng extract, or drinking water were orally administered to mice for seven days, and then the mice were intranasally infected with 2009 pandemic influenza H1N1 virus. Body weight changes and survival rate were measured daily post-infection. Plasma IL-12, TNF-α, and the frequency of natural killer (NK) cells were measured on day 4 post-infection. The DBA/2 strain was highly susceptible to H1N1 virus infection. We also found that Cordyceps extract had an anti-influenza effect that was associated with stable body weight and reduced mortality. The anti-viral effect of Cordyceps extract on influenza infection was mediated presumably by increased IL-12 expression and greater number of NK cells. However, high TNF-α expression after infection of H1N1 virus in mice not receiving treatment with Cordyceps extract suggested a two-sided effect of the extract on host immune regulation.

  18. Neuroprotective effect of yokukansan against cytotoxicity induced by corticosterone on mouse hippocampal neurons.

    PubMed

    Nakatani, Yoshihiko; Tsuji, Minoru; Amano, Taku; Miyagawa, Kazuya; Miyagishi, Hiroko; Saito, Atsumi; Imai, Taro; Takeda, Kotaro; Ishii, Daisuke; Takeda, Hiroshi

    2014-09-25

    Yokukansan, a traditional Japanese herbal medicine, has been used for the management of neurodegenerative disorders and for the treatment of neurosis, insomnia, and behavioral and psychological symptoms of dementia. Recently, several studies have shown that yokukansan has a neuroprotective effect. The aim of this study was to examine the neuroprotective effect of yokukansan on hippocampal neurons from embryonic mouse brain against the effects of corticosterone, which is considered to be a stress hormone and to be cytotoxic toward neurons. The cell survival rates were measured by the WST-8 assay and LDH assay. Twenty-four hours after treatment with corticosterone, cell numbers were significantly decreased compared with the control or treatment with vehicle in a dose-dependent manner. When cells were treated with 30 μM corticosterone, the decrease in the number of cells was significantly recovered by treatment with yokukansan (100-1,000 μg/ml) in a dose-dependent manner. However, yokukansan did not suppress the decrease in cell numbers that was induced by treatment with 100 μM corticosterone. In the LDH assay, treatment with yokukansan at a high concentration (500-1,000 μg/ml) suppressed the LDH concentration induced by treatment with both 30 μM and 100 μM corticosterone compared to treatment with corticosterone alone, respectively. These results suggest that yokukansan protects against the cytotoxic effect of a low concentration of corticosterone on hippocampal neurons. Copyright © 2014 Elsevier GmbH. All rights reserved.

  19. Beneficial effects of interleukin-6 in neonatal mouse models of group B streptococcal disease.

    PubMed Central

    Mancuso, G; Tomasello, F; Migliardo, M; Delfino, D; Cochran, J; Cook, J A; Teti, G

    1994-01-01

    Previous studies have shown that tumor necrosis factor alpha (TNF-alpha) plays a pathophysiologic role in sepsis induced in rat pups by group B streptococci (GBS). In this model, TNF-alpha is also partially responsible for the induction of interleukin-6 (IL-6). The present study was undertaken to investigate the role of IL-6 in neonatal BALB/c mice infected with type III GBS. The effect of anti-IL-6 monoclonal antibodies and recombinant IL-6 on lethality and TNF-alpha production was investigated. In mouse pups infected with GBS strain COH1, plasma IL-6 reached levels of 3,067 +/- 955 and 1,923 +/- 891 U/ml when measured at 22 and 48 h, respectively (P < 0.05 compared with uninfected controls). Pretreatment with 25 micrograms of anti-IL-6 antibodies totally prevented the increase in circulating IL-6 bioactivity at both 22 and 48 h after infection (P < 0.05). Treatment with anti-IL-6 also induced a moderate decrease in survival time of mice infected with lethal doses of strains COH1 and COH31, as evidenced by increased lethality (P < 0.05) at 24 to 48 h but not at 96 h. Mouse recombinant IL-6 (12,500 U) given 6 h before challenge with strains COH1 and COH31 consistently increased survival time, as evidenced by decreased (P < 0.05) lethality at 48 to 72 h but not at 96 h. The effects of IL-6 pretreatment were dose dependent, since no protection was observed with doses lower than 12,500 U. In addition, no effects on lethality were noted when IL-6 was given at the time of challenge or at later times. TNF-alpha elevations (P < 0.05 compared with uninfected controls) were measured at 12, 22, and 48 h after challenge with strain COH1 (68 +/- 28, 233 +/- 98, and 98 +/- 34 U, respectively). Pretreatment with IL-6 significantly (P < 0.05) decreased plasma TNF-alpha levels at 12 and 22 h, with 55 and 69% inhibitions, respectively. Anti-IL-6 had an opposite effect, as evidenced by a 145% increase (P < 0.05) in TNF-alpha levels at 48 h after challenge. Collectively, our data are

  20. Metabolic and Blood Pressure Effects of Walnut Supplementation in a Mouse Model of the Metabolic Syndrome

    PubMed Central

    Scott, Nicola J. A.; Ellmers, Leigh J.; Pilbrow, Anna P.; Thomsen, Lotte; Richards, Arthur Mark; Frampton, Chris M.; Cameron, Vicky A.

    2017-01-01

    There is extensive evidence that walnut consumption is protective against cardiovascular disease and diabetes in the healthy population, but the beneficial effects of walnut consumption in individuals with the metabolic syndrome (MetS) remain uncertain. We compared a range of cardio-metabolic traits and related tissue gene expression associated with 21 weeks of dietary walnut supplementation in a mouse model of MetS (MetS-Tg) and wild-type (WT) mice (n = 10 per genotype per diet, equal males and females). Compared to standard diet, walnuts did not significantly alter food consumption or body weight trajectory of either MetS-Tg or WT mice. In MetS-Tg mice, walnuts were associated with reductions in oral glucose area under the curve (gAUC, standard diet 1455 ± 54, walnut 1146 ± 91, p = 0.006) and mean arterial blood pressure (MAP, standard diet 100.6 ± 1.9, walnut 73.2 ± 1.8 mmHg, p < 0.001), with neutral effects on gAUC and MAP in WT mice. However, in MetS-Tg mice, walnuts were also associated with trends for higher plasma cholesterol (standard diet 4.73 ± 0.18, walnut 7.03 ± 1.99 mmol/L, p = 0.140) and triglyceride levels (standard diet 2.4 ± 0.5, walnut 5.4 ± 1.6 mmol/L, p = 0.061), despite lowering cholesterol and having no effect on triglycerides in WT mice. Moreover, in both MetS-Tg and WT mice, walnuts were associated with significantly increased liver expression of genes associated with metabolism (Fabp1, Insr), cell stress (Atf6, Ddit3, Eif2ak3), fibrosis (Hgf, Sp1, Timp1) and inflammation (Tnf, Ptpn22, Pparg). In conclusion, dietary walnuts were associated with modest favourable effects in WT mice, but a combination of beneficial and adverse effects in MetS-Tg mice, and up-regulation of hepatic pro-fibrotic and pro-inflammatory genes in both mouse strains. PMID:28686204

  1. Metabolic and Blood Pressure Effects of Walnut Supplementation in a Mouse Model of the Metabolic Syndrome.

    PubMed

    Scott, Nicola J A; Ellmers, Leigh J; Pilbrow, Anna P; Thomsen, Lotte; Richards, Arthur Mark; Frampton, Chris M; Cameron, Vicky A

    2017-07-07

    There is extensive evidence that walnut consumption is protective against cardiovascular disease and diabetes in the healthy population, but the beneficial effects of walnut consumption in individuals with the metabolic syndrome (MetS) remain uncertain. We compared a range of cardio-metabolic traits and related tissue gene expression associated with 21 weeks of dietary walnut supplementation in a mouse model of MetS (MetS-Tg) and wild-type (WT) mice (n = 10 per genotype per diet, equal males and females). Compared to standard diet, walnuts did not significantly alter food consumption or body weight trajectory of either MetS-Tg or WT mice. In MetS-Tg mice, walnuts were associated with reductions in oral glucose area under the curve (gAUC, standard diet 1455 ± 54, walnut 1146 ± 91, p = 0.006) and mean arterial blood pressure (MAP, standard diet 100.6 ± 1.9, walnut 73.2 ± 1.8 mmHg, p < 0.001), with neutral effects on gAUC and MAP in WT mice. However, in MetS-Tg mice, walnuts were also associated with trends for higher plasma cholesterol (standard diet 4.73 ± 0.18, walnut 7.03 ± 1.99 mmol/L, p = 0.140) and triglyceride levels (standard diet 2.4 ± 0.5, walnut 5.4 ± 1.6 mmol/L, p = 0.061), despite lowering cholesterol and having no effect on triglycerides in WT mice. Moreover, in both MetS-Tg and WT mice, walnuts were associated with significantly increased liver expression of genes associated with metabolism (Fabp1, Insr), cell stress (Atf6, Ddit3, Eif2ak3), fibrosis (Hgf, Sp1, Timp1) and inflammation (Tnf, Ptpn22, Pparg). In conclusion, dietary walnuts were associated with modest favourable effects in WT mice, but a combination of beneficial and adverse effects in MetS-Tg mice, and up-regulation of hepatic pro-fibrotic and pro-inflammatory genes in both mouse strains.

  2. The Effects of LW-AFC on the Hippocampal Transcriptome in Senescence-Accelerated Mouse Prone 8 Strain, a Mouse Model of Alzheimer's Disease.

    PubMed

    Wang, Jianhui; Liu, Yang; Cheng, Xiaorui; Zhang, Xiaorui; Liu, Feng; Liu, Gang; Qiao, Shanyi; Ni, Ming; Zhou, Wenxia; Zhang, Yongxiang; Li, Fei

    2017-01-01

    The senescence-accelerated mouse prone 8 (SAMP8) strain is considered a robust experimental model for developing preventative and therapeutic treatments for Alzheimer's disease (AD), a neurodegenerative disease which cannot be effectively prevented, halted, or cured. Our previous studies showed that LW-AFC, a new formula derived from the classical traditional Chinese medicinal prescription Liuwei Dihuang decoction, ameliorates cognitive deterioration in PrP-hAβPPswe/PS1ΔE9 transgenic mice and SAMP8 mice. This study aims to investigate the mechanism that mediates how LW-AFC improves cognitive deficit on the basis of the transcriptome. We conducted a genome-wide survey of gene expression in the hippocampus in mice from the senescence accelerated mouse resistant 1 (SAMR1) strain, from SAMP8 and from LW-AFC treated SAMP8. The results showed that LW-AFC reversed the transcriptome in the hippocampus of SAMP8 mice. The specific investigation of altered gene expression in subtypes defined by cognitive profiles indicated that the systemic lupus erythematosus pathway, spliceosomes, amyotrophic lateral sclerosis, and the insulin signaling were involved in the improvement of cognitive ability by LW-AFC. The expression of genes Enpp2, Etnk1, Epdr1, and Gm5900 in the hippocampus were correlated with that of LW-AFC's ameliorating cognitive impairment in SAMP8 mice. Because LW-AFC is composed of polysaccharides, glycosides, and oligosaccharides, we infer that LW-AFC has direct or indirect effects on altering gene expressions and regulating pathways in the hippocampus of SAMP8 mice. These data are helpful for the enhanced identification of LW-AFC as new therapeutic modalities to AD.

  3. Effects of heat shock on survival, proliferation and differentiation of mouse neural stem cells.

    PubMed

    Omori, Hiroyuki; Otsu, Masahiro; Suzuki, Asami; Nakayama, Takashi; Akama, Kuniko; Watanabe, Masaru; Inoue, Nobuo

    2014-02-01

    Hyperthermia during pregnancy is a significant cause of reproductive problems ranging from abortion to congenital defects of the central nervous system (CNS), including neural tube defects and microcephaly. Neural stem cells (NSCs) can proliferate and differentiate into neurons and glia, playing a key role in the formation of the CNS. Here, we examined the effects of heat shock on homogeneous proliferating NSCs derived from mouse embryonic stem cells. After heat shock at 42 °C for 20 min, the proliferating NSCs continued to proliferate, although subtle changes were observed in gene expression and cell survival and proliferation. In contrast, heat shock at 43 °C caused a variety of responses: the up-regulation of genes encoding heat shock proteins (HSP), induction of apoptosis, temporal inhibition of cell proliferation and retardation of differentiation. Finally, effects of heat shock at 44 °C were severe, with almost all cells disappearing and the remaining cells losing the capacity to proliferate and differentiate. These temperature-dependent effects of heat shock on NSCs may be valuable in elucidating the mechanisms by which hyperthermia during pregnancy causes various reproductive problems.

  4. Longitudinal Effects of Ketamine on Dendritic Architecture In Vivo in the Mouse Medial Frontal Cortex123

    PubMed Central

    Phoumthipphavong, Victoria; Barthas, Florent; Hassett, Samantha

    2016-01-01

    Abstract A single subanesthetic dose of ketamine, an NMDA receptor antagonist, leads to fast-acting antidepressant effects. In rodent models, systemic ketamine is associated with higher dendritic spine density in the prefrontal cortex, reflecting structural remodeling that may underlie the behavioral changes. However, turnover of dendritic spines is a dynamic process in vivo, and the longitudinal effects of ketamine on structural plasticity remain unclear. The purpose of the current study is to use subcellular resolution optical imaging to determine the time course of dendritic alterations in vivo following systemic ketamine administration in mice. We used two-photon microscopy to visualize repeatedly the same set of dendritic branches in the mouse medial frontal cortex (MFC) before and after a single injection of ketamine or saline. Compared to controls, ketamine-injected mice had higher dendritic spine density in MFC for up to 2 weeks. This prolonged increase in spine density was driven by an elevated spine formation rate, and not by changes in the spine elimination rate. A fraction of the new spines following ketamine injection was persistent, which is indicative of functional synapses. In a few cases, we also observed retraction of distal apical tuft branches on the day immediately after ketamine administration. These results indicate that following systemic ketamine administration, certain dendritic inputs in MFC are removed immediately, while others are added gradually. These dynamic structural modifications are consistent with a model of ketamine action in which the net effect is a rebalancing of synaptic inputs received by frontal cortical neurons. PMID:27066532

  5. Effects of type of light on mouse circadian behaviour and stress levels.

    PubMed

    Alves-Simoes, Marta; Coleman, Georgia; Canal, Maria Mercè

    2016-02-01

    Light is the principal synchronizing environmental factor for the biological clock. Light quantity (intensity), and light quality (type of light source) can have different effects. The aim of this study was to determine the effects of the type of light experienced from the time of birth on mouse growth, circadian behaviour and stress levels. We raised pigmented and albino mice under 24 h light-dark cycles of either fluorescent or white light-emitting diode (LED) light source during the suckling stage, and the animals were then exposed to various light environments after weaning and their growth rate, locomotor activity and plasma corticosterone concentration were measured. We found that the type of light the animals were exposed to did not affect the animals' growth rates or stress levels. However, we observed significant effects on the expression of the locomotor activity rhythm under low contrast light-dark cycles in pigmented mice, and under constant light in both albino and pigmented mice. These results highlight the importance of environmental light quality (light source) on circadian behavioural rhythms, and the need for close monitoring of light environments in animal facilities.

  6. Effects of Multimodal Analgesia on the Success of Mouse Embryo Transfer Surgery

    PubMed Central

    Parker, John M.; Austin, Jamie; Wilkerson, James; Carbone, Larry

    2011-01-01

    Multimodal analgesia is promoted as the best practice pain management for invasive animal research procedures. Universal acceptance and incorporation of multimodal analgesia requires assessing potential effects on study outcome. The focus of this study was to assess effects on embryo survival after multimodal analgesia comprising an opioid and nonsteroidal antiinflammatory drug (NSAID) compared with opioid-only analgesia during embryo transfer procedures in transgenic mouse production. Mice were assigned to receive either carprofen (5 mg/kg) with buprenorphine (0.1 mg/kg; CB) or vehicle with buprenorphine (0.1 mg/kg; VB) in a prospective, double-blinded placebo controlled clinical trial. Data were analyzed in surgical sets of 1 to 3 female mice receiving embryos chimeric for a shared targeted embryonic stem-cell clone and host blastocyst cells. A total of 99 surgical sets were analyzed, comprising 199 Crl:CD1 female mice and their 996 offspring. Neither yield (pups weaned per embryo implanted in the surgical set) nor birth rate (average number of pups weaned per dam in the set) differed significantly between the CB and VB conditions. Multimodal opioid–NSAID analgesia appears to have no significant positive or negative effect on the success of producing novel lines of transgenic mice by blastocyst transfer. PMID:21838973

  7. GDNF-Transfected Macrophages Produce Potent Neuroprotective Effects in Parkinson's Disease Mouse Model

    PubMed Central

    Zhao, Yuling; Haney, Matthew J.; Gupta, Richa; Bohnsack, John P.; He, Zhijian; Kabanov, Alexander V.; Batrakova, Elena V.

    2014-01-01

    The pathobiology of Parkinson's disease (PD) is associated with the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) projecting to the striatum. Currently, there are no treatments that can halt or reverse the course of PD; only palliative therapies, such as replacement strategies for missing neurotransmitters, exist. Thus, the successful brain delivery of neurotrophic factors that promote neuronal survival and reverse the disease progression is crucial. We demonstrated earlier systemically administered autologous macrophages can deliver nanoformulated antioxidant, catalase, to the SNpc providing potent anti-inflammatory effects in PD mouse models. Here we evaluated genetically-modified macrophages for active targeted brain delivery of glial cell-line derived neurotropic factor (GDNF). To capitalize on the beneficial properties afforded by alternatively activated macrophages, transfected with GDNF-encoded pDNA cells were further differentiated toward regenerative M2 phenotype. A systemic administration of GDNF-expressing macrophages significantly ameliorated neurodegeneration and neuroinflammation in PD mice. Behavioral studies confirmed neuroprotective effects of the macrophage-based drug delivery system. One of the suggested mechanisms of therapeutic effects is the release of exosomes containing the expressed neurotropic factor followed by the efficient GDNF transfer to target neurons. Such formulations can serve as a new technology based on cell-mediated active delivery of therapeutic proteins that attenuate and reverse progression of PD, and ultimately provide hope for those patients who are already significantly disabled by the disease. PMID:25229627

  8. Neurotoxic effects of ochratoxin A on the subventricular zone of adult mouse brain.

    PubMed

    Paradells, Sara; Rocamonde, Brenda; Llinares, Cristina; Herranz-Pérez, Vicente; Jimenez, Misericordia; Garcia-Verdugo, Jose Manuel; Zipancic, Ivan; Soria, Jose Miguel; Garcia-Esparza, Ma Angeles

    2015-07-01

    Ochratoxin A (OTA), a mycotoxin that was discovered as a secondary metabolite of the fungal species Aspergillus and Penicillium, is a common contaminant in food and animal feed. This mycotoxin has been described as teratogenic, carcinogenic, genotoxic, immunotoxic and has been proven a potent neurotoxin. Other authors have previously reported the effects of OTA in different structures of the central nervous system as well as in some neurogenic regions. However, the impact of OTA exposure in the subventricular zone (SVZ) has not been assessed yet. To elucidate whether OTA affects neural precursors of the mouse SVZ we investigated, in vitro and in vivo, the effects of OTA exposure on the SVZ and on the neural precursors obtained from this neurogenic niche. In this work, we prove the cumulative effect of OTA exposure on proliferation, differentiation and depletion of neural stem cells cultured from the SVZ. In addition, we corroborated these results in vivo by immunohistochemistry and electron microscopy. As a result, we found a significant alteration in the proliferation process, which was evidenced by a decrease in the number of 5-bromo-2-deoxyuridine-positive cells and glial cells, as well as, a significant decrease in the number of neuroblasts in the SVZ. To summarize, in this study we demonstrate how OTA could be a threat to the developing and the adult SVZ through its impact in cell viability, proliferation and differentiation in a dose-dependent manner. Copyright © 2014 John Wiley & Sons, Ltd.

  9. Effects of progesterone on hyperoxia-induced damage in mouse C8-D1A astrocytes.

    PubMed

    Weber, Friederike; Endesfelder, Stefanie; Bührer, Christoph; Berns, Monika

    2016-03-01

    The birth of most mammals features a dramatic increase in oxygen while placenta-derived hormones such as β-estradiol and progesterone plummet. In experimental newborn animals, transiently elevated oxygen concentrations cause death of neurons, astrocytes, and oligodendrocyte precursors. High oxygen has been associated with cerebral palsy in human preterm infants while progesterone is being used to prevent preterm delivery and investigated as a neuroprotective agent. In this study, we investigated the effects of hyperoxia (80% O2 for 24, 48, and 72 h) on cultured C8-D1A astrocytes in the presence or absence of progesterone at concentrations ranging from 10(-9) to 10(-5) mol/L. Hyperoxia measured by methytetrazolium assay (MTT) reduced cell viability, increased release of lactate dehydrogenase (LDH), reduced carboxyfluorescein diacetate succinimidyl ester (CFSE)-assessed cell proliferation, and downregulated Cylin D2 expression. Progesterone did not affect any of these hyperoxia-mediated indicators of cell death or malfunctioning. Real-time PCR analysis showed that hyperoxia caused downregulation of the progesterone receptors PR-AB und PR-B. Our experiments showed that there was no protective effect of progesterone on hyperoxia-inducted cell damage on mouse C8-D1A astrocytes. Down regulation of the progesterone receptors might be linked to the lack of protective effects.

  10. Longitudinal Effects of Ketamine on Dendritic Architecture In Vivo in the Mouse Medial Frontal Cortex.

    PubMed

    Phoumthipphavong, Victoria; Barthas, Florent; Hassett, Samantha; Kwan, Alex C

    2016-01-01

    A single subanesthetic dose of ketamine, an NMDA receptor antagonist, leads to fast-acting antidepressant effects. In rodent models, systemic ketamine is associated with higher dendritic spine density in the prefrontal cortex, reflecting structural remodeling that may underlie the behavioral changes. However, turnover of dendritic spines is a dynamic process in vivo, and the longitudinal effects of ketamine on structural plasticity remain unclear. The purpose of the current study is to use subcellular resolution optical imaging to determine the time course of dendritic alterations in vivo following systemic ketamine administration in mice. We used two-photon microscopy to visualize repeatedly the same set of dendritic branches in the mouse medial frontal cortex (MFC) before and after a single injection of ketamine or saline. Compared to controls, ketamine-injected mice had higher dendritic spine density in MFC for up to 2 weeks. This prolonged increase in spine density was driven by an elevated spine formation rate, and not by changes in the spine elimination rate. A fraction of the new spines following ketamine injection was persistent, which is indicative of functional synapses. In a few cases, we also observed retraction of distal apical tuft branches on the day immediately after ketamine administration. These results indicate that following systemic ketamine administration, certain dendritic inputs in MFC are removed immediately, while others are added gradually. These dynamic structural modifications are consistent with a model of ketamine action in which the net effect is a rebalancing of synaptic inputs received by frontal cortical neurons.

  11. Ret is essential to mediate GDNF's neuroprotective and neuroregenerative effect in a Parkinson disease mouse model

    PubMed Central

    Drinkut, Anja; Tillack, Karsten; Meka, Durga P; Schulz, Jorg B; Kügler, Sebastian; Kramer, Edgar R

    2016-01-01

    Glial cell line-derived neurotrophic factor (GDNF) is a potent survival and regeneration-promoting factor for dopaminergic neurons in cell and animal models of Parkinson disease (PD). GDNF is currently tested in clinical trials on PD patients with so far inconclusive results. The receptor tyrosine kinase Ret is the canonical GDNF receptor, but several alternative GDNF receptors have been proposed, raising the question of which signaling receptor mediates here the beneficial GDNF effects. To address this question we overexpressed GDNF in the striatum of mice deficient for Ret in dopaminergic neurons and subsequently challenged these mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Strikingly, in this established PD mouse model, the absence of Ret completely abolished GDNF's neuroprotective and regenerative effect on the midbrain dopaminergic system. This establishes Ret signaling as absolutely required for GDNF's effects to prevent and compensate dopaminergic system degeneration and suggests Ret activation as the primary target of GDNF therapy in PD. PMID:27607574

  12. Protective effects of Mentha haplocalyx ethanol extract (MH) in a mouse model of allergic asthma.

    PubMed

    Lee, Mee-Young; Lee, Jin-Ah; Seo, Chang-Seob; Ha, Hyekyung; Lee, Nam-Hun; Shin, Hyeun-Kyoo

    2011-06-01

    Mentha haplocalyx Briq., a commonly used herb in traditional Oriental medicine, has a variety of known pharmacological properties. However, neither the protective effects of Mentha haplocalyx ethanol extract (MH) against inflammation of the airway in an asthmatic model nor the mechanisms involved, have previously been reported. In the present study, an ovalbumin (OVA)-induced mouse model of allergic asthma was used to investigate whether MH was effective against the disease through regulation of airway inflammation. The MH treatment significantly inhibited increases in immunoglobulin (Ig) E and T-helper 2 (Th2)-type cytokines such as IL-4 and IL-5 in bronchoalveolar lavage fluid (BALF) and lung tissue. Inflammatory cell infiltration of the airway in mice treated with MH was effectively alleviated when compared with infiltration seen in the OVA-induced group. These data indicated that decreased cytokine levels are the result of the decreased number of invaded leukocytes. Also, the generation of reactive oxygen species (ROS) in BALF was diminished by MH treatment. Taken together, these findings indicate that the administration of MH may have potential therapeutic value in the treatment of inflammatory disease.

  13. [Effect of cadmium chloride on immigration of mouse neural stem cell].

    PubMed

    Zhang, Yuyuan; Wang, Qunan; Chai, Xiaoyu; Shen, Zhongzhou; Gao, Liuwei

    2015-01-01

    To investigate the effects of cadmium chloride on cytoactive and immigration of mouse neural stem cell (mNSC). MTT assay was used to detect cytoactive at 24 hours. The immigration of mNSC was determined by immunofluorescence staining. Compared with control, CdCl2 treatment at 10.0 μmol/L for 24 h resulted in a decrease in cellular viability (70.08 ± 6.21)% (P < 0.05). Compared with control, Aa/Ab and Dm/Db display decreasing tendency in a dose-dependent manner (r(s Aa/Ab) = - 0.90, γ(s Dm/Db) = - 0.90, P < 0.05) after CdCl2 treatment at 0.1 - 10.0 μmol/L for 24 h. Cadmium chloride treatment inhibits immigration of mNSC, and shows negative effect on cell viability. Meanwhile, the effect of cadmium chloride on immigration is more obvious than cell viability at the same concentration for same treatment time.

  14. Effect of oral calcium and calcium + fluoride treatments on mouse bone properties during suspension

    NASA Technical Reports Server (NTRS)

    Simske, S. J.; Luttges, M. W.; Allen, K. A.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    The bone effects of oral dosages of calcium chloride with or without supplementary sodium fluoride were assessed in antiorthostatically suspended mice. Two calcium dosages were used to replace half (3.1 mM) or all(6.3 mM) of the dietary calcium lost due to reduced food intake by the suspended mice. Two groups of 6.3 mM CaCl2-treated mice were additionally treated with 0.25 or 2.5 mM NaF. The results indicate that supplementation of the mouse drinking water with calcium salts prevents bone changes induced by short-term suspension, while calcium salts in combination with fluoride are less effective as fluoride dosage increases. However, the calcium supplements change the relationship between the femur mechanical properties and the mineral composition of the bone. Because of this, it appears that oral calcium supplements are effective through a mechanism other than simple dietary supplementation and may indicate a dependence of bone consistency on systemic and local fluid conditions.

  15. Chemopreventive effects of the juice of Vitis coignetiae Pulliat on two-stage mouse skin carcinogenesis.

    PubMed

    Arimoto-Kobayashi, Sakae; Zhang, Xiaomeng; Yuhara, Yuta; Kamiya, Tomonori; Negishi, Tomoe; Okamoto, Goro

    2013-01-01

    Our study revealed the inhibitory effect of Vitis coignetiae Pulliat, known as Yamabudo in Japan, at the stages of multi-step carcinogenesis. The juice of Vitis coignetiae (Y-grape juice) was antimutagenic toward dimethylbenzo[a]anthracene (DMBA), aflatoxin B1, and benzo[a]pyrene in the Ames test. The Y-grape juice was also antigenotoxic in the micronucleus test using HepG2 cells toward DMBA and aflatoxin B1. Topical and oral administration of the Y-grape juice to mice inhibited the induction of inflammation of 12-O-tetradecanoylphorbol-13-acetate (TPA). Topical and oral administration of the Y-grape juice significantly decreased the incidence and mean number of tumors in mice skin with the 2-stage tumorigenesis protocol. To elucidate the mechanisms underlying the antiinflammatory and antitumor promotion activity of the Y-grape juice, the effect of Y-grape juice on cyclooxygenase-2 (COX-2) activity in mouse ear treated with TPA was studied. Both topical and oral application of the Y-grape juice inhibited the TPA-induced increase in COX-2 activity. Caftaric acid, isolated and identified from the Y-grape juice, was antimutagenic toward DMBA and prevented TPA-induced inflammation in mice, suggesting caftaric acid participates in chemopreventive effect/activities of Y-grape juice.

  16. Effect of oral calcium and calcium + fluoride treatments on mouse bone properties during suspension

    NASA Technical Reports Server (NTRS)

    Simske, S. J.; Luttges, M. W.; Allen, K. A.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    The bone effects of oral dosages of calcium chloride with or without supplementary sodium fluoride were assessed in antiorthostatically suspended mice. Two calcium dosages were used to replace half (3.1 mM) or all(6.3 mM) of the dietary calcium lost due to reduced food intake by the suspended mice. Two groups of 6.3 mM CaCl2-treated mice were additionally treated with 0.25 or 2.5 mM NaF. The results indicate that supplementation of the mouse drinking water with calcium salts prevents bone changes induced by short-term suspension, while calcium salts in combination with fluoride are less effective as fluoride dosage increases. However, the calcium supplements change the relationship between the femur mechanical properties and the mineral composition of the bone. Because of this, it appears that oral calcium supplements are effective through a mechanism other than simple dietary supplementation and may indicate a dependence of bone consistency on systemic and local fluid conditions.

  17. Effect of aqueous extract of Ipomoea carnea leaf on isolated frog and mouse heart.

    PubMed

    Bachhav, K V; Burande, M D; Rangari, V D; Mehta, J K

    1999-11-01

    Ipomoea carnea fam. Convolvulaceae is a poisonous plant and its toxicity is supposed to be due to the cardiac and respiratory failure. The present paper describes the cardiac effect of aqueous extract of the fresh leaves of I. carnea using mouse and frog heart. The aqueous extract produced an initial blockade of isolated frog heart for 5-10 sec followed by dose dependent increase in both amplitude and rate that lasts up to 2 min. Atropine (1 microgram/ml) blocked the initial depressant phase and potentiated the stimulant effect of the aqueous extract. The dose dependent increase in cardiac contractility of aqueous extract was not altered by propranolol or calcium channel blockers like nifedipine or diltiazem. The decrease in sodium chloride concentration or increase in potassium chloride concentration or calcium chloride concentration in physiological salt solution inhibited the responses to aqueous extract while an increase in sodium chloride concentration or decrease in potassium chloride or calcium chloride concentration in physiological salt solution potentiated the responses to the aqueous extract of I. carnea. It may be suggested from the data that aqueous extract of I. carnea produces positive inotropic effect on isolate frog heart possibly by sodium extrusion or release of the intracellular calcium.

  18. Neuroprotective effects of geniposide in the MPTP mouse model of Parkinson's disease.

    PubMed

    Chen, YiMei; Zhang, Yanfang; Li, Lin; Hölscher, Christian

    2015-12-05

    Parkinson's disease (PD) is a chronic neurodegenerative disease, and there is no cure for it at present. We tested the drug Geniposide, an active component of Gardenia jasminoides Ellis which is used in traditional Chinese medicine. Geniposide has shown neuroprotective and growth-factor like effects in several in vivo and in vitro studies. In the present study, Geniposide had been tested in an acute PD mouse model induced by four 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) intraperitoneal injections. Geniposide treatment (100mg/kg ip.) for 8 days after MPTP treatment (30mg/kg ip.) improved the locomotor and exploratory activity of mice (open field), and improved bradykinesia and movement balance of mice (rotarod, swim test). Geniposide treatment also restored tyrosine hydroxylase (TH) positive dopaminergic neuron numbers in the substantia nigra pars compacta. Drug treatment also increased levels of growth factor signaling molecule Bax and reduced the apoptosis signaling molecule Bcl-2. Caspase 3 activation was also reduced in the substantia nigra. We conclude that Geniposide exerted its neuroprotective effect by enhancing growth factor signaling and the reduction of apoptosis. Geniposide is an ingredient in Chinese traditional medicine with few known side effects and shows potential as a drug treatment for Parkinson's disease. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Effects of Chung-Pae Inhalation Therapy on a Mouse Model of Chronic Obstructive Pulmonary Disease.

    PubMed

    Hwang, Joon-Ho; Lee, Beom-Joon; Jung, Hee Jae; Kim, Kwan-Il; Choi, Jun-Yong; Joo, Myungsoo; Jung, Sung-Ki

    2015-01-01

    Chung-pae (CP) inhalation therapy is a method frequently used in Korea to treat lung disease, especially chronic obstructive pulmonary disease (COPD). This study investigated the effects of CP inhalation on a COPD animal model. C57BL/6 mice received porcine pancreatic elastase (PPE) and lipopolysaccharide (LPS) alternately three times for 3 weeks to induce COPD. Then, CP (5 or 20 mg/kg) was administered every 2 h after the final LPS administration. The effect of CP was evaluated by bronchoalveolar lavage (BAL) fluid analysis, histological analysis of lung tissue, and reverse transcription polymerase chain reaction analysis of mRNA of interleukin- (IL-) 1β, tumor necrosis factor- (TNF-) α, IL-6, and tumor growth factor- (TGF-) β. Intratracheal CP administration reduced the number of leukocytes and neutrophils in BAL fluid, inhibited the histological appearance of lung damage, and decreased the mRNA levels of the proinflammatory cytokines IL-1β, TNF-α, IL-6, and TGF-β. Intratracheal CP administration effectively decreased the chronic inflammation and pathological changes in a PPE- and LPS-induced COPD mouse model. Therefore, we suggest that CP is a promising strategy for COPD.

  20. Proteoglycan metabolism associated with mouse metanephric development: morphologic and biochemical effects of beta-D-xyloside

    SciTech Connect

    Platt, J.L.; Brown, D.M.; Granlund, K.; Oegema, T.R.; Klein, D.J.

    1987-10-01

    Morphology and de novo incorporation of (/sup 35/S)sulfate into proteoglycans were studied in fetal mouse kidneys at the onset of organogenesis. Branching morphogenesis and nephron development in organ culture and in vivo were associated with de novo synthesis of chondroitin-SO/sub 4/ and heparan-SO/sub 4/ proteoglycans. The role of proteoglycan metabolism in metanephrogenesis was then studied by analysis of the effects of p-nitrophenyl-beta-D-xylopyranoside (beta-D-xyloside) on renal development and proteoglycan metabolism. Incubation of fetal kidneys in beta-D-xyloside at concentrations of 1.0 and 0.5 mM, but not at 0.1 mM, caused inhibition of ureteric branching and markedly diminished synthesis of a large Mr 2.0 X 10(6) Da chondroitin-SO/sub 4/ proteoglycan. Incorporation of (/sup 35/S)sulfate was stimulated at all beta-D-xyloside concentrations, reflecting synthesis of xyloside initiated dermatan-/sup 35/SO/sub 4/ chains. In contrast to dramatic effects on chondroitin-SO/sub 4/ synthesis and ureteric branching, beta-D-xyloside had no effect on heparan-SO/sub 4/ synthesis or on development of the glomerulus and glomerular basement membrane. We thus characterize the proteoglycans synthesized early in the course of renal organogenesis and describe observations which suggest an association between metabolism of chondroitin-SO/sub 4/ proteoglycan and development of the ureter.

  1. Therapeutic Effect of Berberine on Huntington’s Disease Transgenic Mouse Model

    PubMed Central

    Jiang, Wenxiao; Wei, Wenjie; Gaertig, Marta A.; Li, Shihua; Li, Xiao-Jiang

    2015-01-01

    Huntington disease (HD) represents a family of neurodegenerative diseases that are caused by misfolded proteins. The misfolded proteins accumulate in the affected brain regions in an age-dependent manner to cause late-onset neurodegeneration. Transgenic mouse models expressing the HD protein, huntingtin, have been widely used to identify therapeutics that may retard disease progression. Here we report that Berberine (BBR), an organic small molecule isolated from plants, has protective effects on transgenic HD (N171-82Q) mice. We found that BBR can reduce the accumulation of mutant huntingtin in cultured cells. More importantly, when given orally, BBR could effectively alleviate motor dysfunction and prolong the survival of transgenic N171-82Q HD mice. We found that BBR could promote the degradation of mutant huntingtin by enhancing autophagic function. Since BBR is an orally-taken drug that has been safely used to treat a number of diseases, our findings suggest that BBR can be tested on different HD animal models and HD patients to further evaluate its therapeutic effects. PMID:26225560

  2. The effect of pentoxifylline on mouse in-vitro fertilization and early embryonic development.

    PubMed

    Tournaye, H; Van der Linden, M; Van den Abbeel, E; Devroey, P; Van Steirteghem, A

    1994-10-01

    This study was designed to assess the effect of pentoxifylline (PTX) on fertilization and early embryonic development in the mouse. Oocytes from superovulated B6CBA female mice were inseminated in vitro with spermatozoa from B6CBA males incubated with PTX according to different protocols, i.e. (i) 3.6 and 7.2 mM PTX washed out prior to insemination, (ii) 3.6 and 7.2 mM PTX diluted six times in the insemination medium and (iii) PTX present at 3.6 and 7.2 mM in the insemination medium. After insemination and washing, fertilization was assessed by the presence of 2-cell stage embryos. These were further cultured up to the blastocyst or egg-cylinder stage to assess embryonic development. Parthenogenetic activation was evaluated by exposing post-ovulatory oocytes to 3.6 and 7.2 mM PTX. If spermatozoa were washed free from PTX before insemination, no effect on either fertilization or subsequent development was found. If PTX was not washed out, fertilization was reduced significantly, yet development of fertilized oocytes was unaffected. If insemination was performed in the presence of PTX both fertilization and development were impaired. Parthenogenetic activation was not increased by PTX exposure. We conclude that if used in in-vitro fertilization, exposure of oocytes and/or zygotes to PTX has to be avoided by washing out the compound thoroughly to prevent adverse effects on early embryonic development.

  3. Hybrid vigor and transgenerational epigenetic effects on early mouse embryo phenotype.

    PubMed

    Han, Zhiming; Mtango, Namdori R; Patel, Bela G; Sapienza, Carmen; Latham, Keith E

    2008-10-01

    Mouse embryos display a strain-dependent propensity for blastomere cytofragmentation at the two-cell stage. The maternal pronucleus exerts a predominant, transcription-dependent effect on this phenotype, with lesser effects of the ooplasm and the paternal pronucleus. A parental origin effect has been observed as an inequality in the cytofragmentation rate of embryos produced through genetic crosses of reciprocal F(1) hybrid females. To understand the basis for this, we conducted an extensive series of pronuclear transfer studies employing different combinations of inbred and F(1) hybrid maternal and paternal genotypes. We find that the parental origin effect is the result of a transgenerational epigenetic modification, whereby the inherited maternal grandpaternal contribution interacts with the fertilizing paternal genome and the ooplasm. This result indicates that some epigenetic information related to grandparental origins of chromosomes (i.e., imprinting of chromosomes in the mother) is retained through oogenesis and transmitted to progeny, where it affects gene expression from the maternal pronucleus and subsequent embryo phenotype. These results reveal for the first time that mammalian embryonic development can be affected by the epigenotype of at least three individuals. Additionally, we observe a significant suppression of fragmentation by F(1) hybrid ooplasm when it is separated from the F(1) hybrid maternal pronucleus. This latter effect is a striking example of heterosis in the early mammalian embryo, and it provides a new opportunity for examining the molecular mechanisms of heterosis. These results are relevant to our understanding of the mechanisms of epigenetic effects on development and the possible fertility effects of genetic and epigenetic interactions in reproductive medicine.

  4. Therapeutic effects of intranasal cyclosporine for eosinophilic rhinosinusitis with nasal polyps in a mouse model.

    PubMed

    Chang, Dong-Yeop; Joo, Yeon-Hee; Kim, Seong-Jae; Kim, Jin Hyun; Jung, Myeong Hee; Kim, Dae Woo; Jeon, Sea-Yuong; Kim, Sang-Wook

    2015-01-01

    Chronic rhinosinusitis (CRS) with nasal polyps (CRSwNP) is a principally type 2 T helper cell (Th2)-mediated inflammatory disease. Systemic corticosteroids currently represent the most effective treatment for CRSwNP, but their long-term use is constrained due to their detrimental side effects. Long-term use of topical steroids is safe, but their efficacy is often limited. Topical cyclosporine has proven to be safe and effective for Th2-mediated diseases such as allergic conjunctivitis. It was hypothesized that topical cyclosporine would be an effective novel drug for the treatment of CRSwNP; its therapeutic efficacy was assessed using a previously established mouse model. After induction of eosinophilic CRSwNP in four-week-old BALB/c mice according to previous protocols, the therapeutic effects of intranasal cyclosporine were evaluated and compared with those of triamcinolone acetonide (TAC). Histopathologic changes were evaluated using hematoxylin and eosin for polyp formation and Sirius red staining for eosinophilic infiltration. The production of cytokines in sinonasal tissues, including tumor necrosis factor (TNF), interleukin (IL)-2, interferon (IFN)-γ, IL-4, IL-5, IL-13, and IL-17A, was measured using a cytometric bead array. The number of polyp-like lesions was reduced significantly only by systemic TAC, but the degree of eosinophilic infiltration was decreased significantly by topical cyclosporine, the potency of which was similar to that of topical or systemic TAC. Except for IFN-γ, the majority of measured cytokines were reduced significantly by topical cyclosporine, although their effects on IL-2 and IL-13 were less potent than those of systemic TAC. Topical cyclosporine might be an effective drug for the management of CRSwNP.

  5. Technical note: Milk composition in mice--methodological aspects and effects of mouse strain and lactation day.

    PubMed

    Görs, S; Kucia, M; Langhammer, M; Junghans, P; Metges, C C

    2009-02-01

    Analysis in individual mouse milk samples is restricted by small sample volumes and hindered by high fat contents. Miniaturized methods were developed for the analysis of dry matter (DM), crude fat, crude protein (CP), and lactose in individual samples of mouse milk and used to compare milk from the mouse strain DU6, the largest growth-selected mouse line worldwide, with unselected mice (CON) on lactation d 3, 14, and 18. Individual milk samples were collected by means of a self-constructed milking machine. Aliquots of 10 microL of milk were used to measure DM [coefficient of variation (CV) <2.1%], which was subsequently used to analyze nitrogen for calculation of CP (CV 2.7%). Crude fat was determined in 100 microL via a miniaturized Röse-Gottlieb method (CV 2.8%). An HPLC protocol was used to analyze lactose in 20 microL of diluted whey (CV 5.3%). The miniaturized methods gave similar results compared with conventional approaches. Homogenization was the most important factor affecting milk composition and its reproducibility. Milk storage at -20 degrees C had no effect on composition. Irrespective of the mouse strain, maximum values of 45.5% DM, 29.8% fat, and 12.7% CP were observed at d 14. The greatest lactose contents were found on d 18 (2.41%). Milk lactose concentration at d 3 was lower in DU6 (1.13 +/- 0.10%) than CON (1.67 +/- 0.18%). The method provides an accurate assessment of mouse milk composition.

  6. Effect of Male House Mouse Pheromone Components on Behavioral Responses of Mice in Laboratory and Field Experiments.

    PubMed

    Musso, Antonia E; Gries, Regine; Zhai, Huimin; Takács, Stephen; Gries, Gerhard

    2017-03-01

    Urine of male house mice, Mus musculus, is known to have primer pheromone effects on the reproductive physiology of female mice. Urine-mediated releaser pheromone effects that trigger certain behavioral responses are much less understood, and no field studies have investigated whether urine deposits by male or female mice, or synthetic mouse pheromone, increase trap captures of mice. In field experiments, we baited traps with bedding soiled with urine and feces of caged female or male mice, and recorded captures of mice in these and in control traps containing clean bedding. Traps baited with female bedding preferentially captured adult males, whereas traps baited with male bedding preferentially captured juvenile and adult females, indicating the presence of male- and female-specific sex pheromones in soiled bedding. Analyses of headspace volatiles emanating from soiled bedding by gas chromatography/mass spectrometry revealed that 3,4-dehydro-exo-brevicomin (DEB) was seven times more prevalent in male bedding and that 2-sec-butyl-4,5-dihydrothiazole (DHT) was male-specific. In a follow-up field experiment, traps baited with DEB and DHT captured 4 times more female mice than corresponding control traps, thus indicating that DEB and DHT are sex attractant pheromone components of house mouse males. Our study provides impetus to identify the sex attractant pheromone of female mice, and to develop synthetic mouse pheromone as a lure to enhance the efficacy of trapping programs for mouse control.

  7. Differential effects of platelet rich plasma and washed platelets on the proliferation of mouse MSC cells.

    PubMed

    Duan, Jianmin; Kuang, Wei; Tan, Jiali; Li, Hongtao; Zhang, Yi; Hirotaka, Kikuchi; Tadashi, Katayama

    2011-04-01

    Multipotent mesenchymal stem cell (MSC) therapies are being tested clinically for a variety of disorders. However, despite the remarkable clinical advancements in this field, most applications still use traditional culture media containing fetal bovine serum. Platelet-rich plasma (PRP) appears as a novel application for tissue engineering and its effect on bone healing is thought to be mainly dependent on the proliferation promoting function, with the molecular mechanisms largely unknown. In this study, mouse osteogenic progenitor mesenchymal stem cells (MSCs) were cultured in PRP or washed platelet (WPLT)-treated wells or in untreated wells, and analyzed on cycloxygenase 2 (COX2) expression (qRT-PCR), cell growth (MTT assay) and cell differentiation (alkaline phosphatase activity). The results showed that PRP and WPLT stimulated cell growth similarly in the first 6 days, together with the steady induction of COX2 and PGE2. 10 μmol/l celecoxib (an inhibitor of COX2) significantly inhibited the pro-proliferation effects. Interestingly, WPLT had stronger effects than PRP in proliferation at the later time points (6-9 days). ALP activity assay and collagen 1a expression revealed PRP had a mild but statistically significant pro-differentiation effect, while no obvious effects observed in WLPT group. In summary, PRP stimulates initial growth of MSCs in a COX2 partially dependent manner and the less obvious osteogenic differentiation promoting effects of WPLT strongly indicates WPLT rather than the PRP should be the optional choice for expanding MSCs in vitro for clinical use.

  8. Time course of the effects of histamine, thioperamide and EEDQ on H3 receptors in the mouse brain.

    PubMed

    Detzner, M; Kathmann, M; Schlicker, E

    1994-06-01

    The effects of histamine, thioperamide and EEDQ (N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline) at the noradrenaline release-modulating H3 receptor in the mouse brain were examined. In superfused mouse brain cortex slices preincubated with 3H-noradrenaline, the inhibitory effect of histamine on the electrically (0.3 Hz) evoked tritium overflow was virtually identical when the time of exposure was 30, 80 or 130 min; after withdrawal of histamine, the evoked overflow recovered within 80 min. The attenuation of the effect of histamine by thioperamide was reversible within 50 min after withdrawal of the antagonist, whereas the attenuation produced by EEDQ remained constant for at least 80 min. In conclusion, the effects of histamine and thioperamide at the H3 receptor are readily reversible, whereas EEDQ appears to be an irreversible antagonist; desensitization of the H3 receptor does not occur.

  9. The A9 dopamine neuron component in grafts of ventral mesencephalon is an important determinant for recovery of motor function in a rat model of Parkinson’s disease

    PubMed Central

    Grealish, Shane; Jönsson, Marie E.; Li, Meng; Kirik, Deniz; Björklund, Anders

    2010-01-01

    Grafts of foetal ventral mesencephalon, used in cell replacement therapy for Parkinson’s disease, are known to contain a mix of dopamine neuronal subtypes including the A9 neurons of the substantia nigra and the A10 neurons of the ventral tegmental area. However, the relative importance of these subtypes for functional repair of the brain affected by Parkinson’s disease has not been studied thoroughly. Here, we report results from a series of grafting experiments where the anatomical and functional properties of grafts either selectively lacking in A9 neurons, or with a typical A9/A10 composition were compared. The results show that the A9 component of intrastriatal grafts is of critical importance for recovery in tests on motor performance, in a rodent model of Parkinson’s disease. Analysis at the histological level indicates that this is likely to be due to the unique ability of A9 neurons to innervate and functionally activate their target structure, the dorsolateral region of the host striatum. The findings highlight dopamine neuronal subtype composition as a potentially important parameter to monitor in order to understand the variable nature of functional outcome better in transplantation studies. Furthermore, the results have interesting implications for current efforts in this field to generate well-characterized and standardized preparations of transplantable dopamine neuronal progenitors from stem cells. PMID:20123725

  10. Effects of melatonin on in vitro development of mouse two-cell embryos cultured in HTF medium.

    PubMed

    Tian, Xiu-Zhi; Wen, Qing; Shi, Jian-Min; Liang-Wang; Zeng, Shen-Ming; Tian, Jian-Hui; Zhou, Guang-Bin; Zhu, Shi-En; Liu, Guo-Shi

    2010-01-01

    Melatonin is capable of improving the developmental capacity of ovine, porcine and bovine embryos in vitro. However, whether melatonin possesses similar benefits to the in vitro mouse embryonic development has yet to be determined. In this study, we assessed the effects of various concentrations of melatonin (10-13 to 10-3 M) on the in-vitro development of mouse embryos cultured in HTF medium for 96 hr; embryos cultured without melatonin were used as control. The in vitro development of mouse two-cell embryos significantly benefited from treatment with melatonin in a concentration-dependent manner. The effects of melatonin on the rates of blastocyst formation, hatching/hatched blastocysts and cell number per blastocyst were bi-phasic; all significantly increased by melatonin at 10-13 to 10-5 M and decreased by melatonin at 10-3 M. Maximal benefit of melatonin on in vitro mouse 2-cell embryo development was achieved at a concentration of 10-9 M. In comparison to control, 10-9 M melatonin increased blastocyst formation rate from 48.08 +/- 5.25% to 82.08 +/- 2.34% (p < 0.05), hatched blastocyst rate from 25.65 +/- 11.79% to 66.47 +/- 4.94% (p < 0.05), and cell number per blastocyst 62.71 +/- 5.97 to 77.91 +/- 10.63 (p < 0.05). Thus, our datas demonstrated firstly that melatonin has beneficial effects on the in vitro development of 2-cell mouse embryos cultured in HTF medium.

  11. Effects of whole genome duplication on cell size and gene expression in mouse embryonic stem cells

    PubMed Central

    IMAI, Hiroyuki; FUJII, Wataru; KUSAKABE, Ken Takeshi; KISO, Yasuo; KANO, Kiyoshi

    2016-01-01

    Alterations in ploidy tend to influence cell physiology, which in the long-term, contribute to species adaptation and evolution. Polyploid cells are observed under physiological conditions in the nerve and liver tissues, and in tumorigenic processes. Although tetraploid cells have been studied in mammalian cells, the basic characteristics and alterations caused by whole genome duplication are still poorly understood. The purpose of this study was to acquire basic knowledge about the effect of whole genome duplication on the cell cycle, cell size, and gene expression. Using flow cytometry, we demonstrate that cell cycle subpopulations in mouse tetraploid embryonic stem cells (TESCs) were similar to those in embryonic stem cells (ESCs). We performed smear preparations and flow cytometric analysis to identify cell size alterations. These indicated that the relative cell volume of TESCs was approximately 2.2–2.5 fold that of ESCs. We also investigated the effect of whole genome duplication on the expression of housekeeping and pluripotency marker genes using quantitative real-time PCR with external RNA. We found that the target transcripts were 2.2 times more abundant in TESCs than those in ESCs. This indicated that gene expression and cell volume increased in parallel. Our findings suggest the existence of a homeostatic mechanism controlling the cytoplasmic transcript levels in accordance with genome volume changes caused by whole genome duplication. PMID:27569766

  12. Differential effects of targeting Notch receptors in a mouse model of liver cancer.

    PubMed

    Huntzicker, Erik G; Hötzel, Kathy; Choy, Lisa; Che, Li; Ross, Jed; Pau, Gregoire; Sharma, Neeraj; Siebel, Christian W; Chen, Xin; French, Dorothy M

    2015-03-01

    Primary liver cancer encompasses both hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA). The Notch signaling pathway, known to be important for the proper development of liver architecture, is also a potential driver of primary liver cancer. However, with four known Notch receptors and several Notch ligands, it is not clear which Notch pathway members play the predominant role in liver cancer. To address this question, we utilized antibodies to specifically target Notch1, Notch2, Notch3, or jagged1 (Jag1) in a mouse model of primary liver cancer driven by v-akt murine thymoma viral oncogene homolog and neuroblastoma RAS viral oncogene homolog (NRas). We show that inhibition of Notch2 reduces tumor burden by eliminating highly malignant HCC- and CCA-like tumors. Inhibition of the Notch ligand, Jag1, had a similar effect, consistent with Jag1 acting in cooperation with Notch2. This effect was specific to Notch2, because Notch3 inhibition did not decrease tumor burden. Unexpectedly, Notch1 inhibition altered the relative proportion of tumor types, reducing HCC-like tumors but dramatically increasing CC-like tumors. Finally, we show that Notch2 and Jag1 are expressed in, and Notch2 signaling is activated in, a subset of human HCC samples. These findings underscore the distinct roles of different Notch receptors in the liver and suggest that inhibition of Notch2 signaling represents a novel therapeutic option in the treatment of liver cancer. © 2014 by the American Association for the Study of Liver Diseases.

  13. Androgen actions in mouse wound healing: Minimal in vivo effects of local antiandrogen delivery.

    PubMed

    Wang, Yiwei; Simanainen, Ulla; Cheer, Kenny; Suarez, Francia G; Gao, Yan Ru; Li, Zhe; Handelsman, David; Maitz, Peter

    2016-05-01

    The aims of this work were to define the role of androgens in female wound healing and to develop and characterize a novel wound dressing with antiandrogens. Androgens retard wound healing in males, but their role in female wound healing has not been established. To understand androgen receptor (AR)-mediated androgen actions in male and female wound healing, we utilized the global AR knockout (ARKO) mouse model, with a mutated AR deleting the second zinc finger to disrupt DNA binding and transcriptional activation. AR inactivation enhanced wound healing rate in males by increasing re-epithelialization and collagen deposition even when wound contraction was eliminated. Cell proliferation and migration in ARKO male fibroblasts was significantly increased compared with wild-type (WT) fibroblasts. However, ARKO females showed a similar healing rate compared to WT females. To exploit local antiandrogen effects in wound healing, while minimizing off-target systemic effects, we developed a novel electrospun polycaprolactone (PCL) scaffold wound dressing material for sustained local antiandrogen delivery. Using the antiandrogen hydroxyl flutamide (HF) at 1, 5, and 10 mg/mL in PCL scaffolds, controlled HF delivery over 21 days significantly enhanced in vitro cell proliferation of human dermal fibroblasts and human keratinocytes. HF-PCL scaffolds also promoted in vivo wound healing in mice compared with open wounds but not to PCL scaffolds. © 2016 by the Wound Healing Society.

  14. Effects of oxidized and reduced forms of methylthioninium in two transgenic mouse tauopathy models.

    PubMed

    Melis, Valeria; Magbagbeolu, Mandy; Rickard, Janet E; Horsley, David; Davidson, Kathleen; Harrington, Kathleen A; Goatman, Keith; Goatman, Elizabeth A; Deiana, Serena; Close, Steve P; Zabke, Claudia; Stamer, Karsten; Dietze, Silke; Schwab, Karima; Storey, John M D; Harrington, Charles R; Wischik, Claude M; Theuring, Franz; Riedel, Gernot

    2015-06-01

    Given the repeated failure of amyloid-based approaches in Alzheimer's disease, there is increasing interest in tau-based therapeutics. Although methylthioninium (MT) treatment was found to be beneficial in tau transgenic models, the brain concentrations required to inhibit tau aggregation in vivo are unknown. The comparative efficacy of methylthioninium chloride (MTC) and leucomethylthioninium salts (LMTX; 5-75 mg/kg; oral administration for 3-8 weeks) was assessed in two novel transgenic tau mouse lines. Behavioural (spatial water maze, RotaRod motor performance) and histopathological (tau load per brain region) proxies were applied. Both MTC and LMTX dose-dependently rescued the learning impairment and restored behavioural flexibility in a spatial problem-solving water maze task in Line 1 (minimum effective dose: 35 mg MT/kg for MTC, 9 mg MT/kg for LMTX) and corrected motor learning in Line 66 (effective doses: 4 mg MT/kg). Simultaneously, both drugs reduced the number of tau-reactive neurons, particularly in the hippocampus and entorhinal cortex in Line 1 and in a more widespread manner in Line 66. MT levels in the brain followed a sigmoidal concentration-response relationship over a 10-fold range (0.13-1.38 μmol/l). These data establish that diaminophenothiazine compounds, like MT, can reverse both spatial and motor learning deficits and reduce the underlying tau pathology, and therefore offer the potential for treatment of tauopathies.

  15. Distinct metabolic and vascular effects of dietary triglycerides and cholesterol in atherosclerotic and diabetic mouse models.

    PubMed

    Laplante, Marc-André; Charbonneau, Alexandre; Avramoglu, Rita Kohen; Pelletier, Patricia; Fang, Xiangping; Bachelard, Hélène; Ylä-Herttuala, Seppo; Laakso, Markku; Després, Jean-Pierre; Deshaies, Yves; Sweeney, Gary; Mathieu, Patrick; Marette, André

    2013-09-01

    Cholesterol and triglyceride-rich Western diets are typically associated with an increased occurrence of type 2 diabetes and vascular diseases. This study aimed to assess the relative impact of dietary cholesterol and triglycerides on glucose tolerance, insulin sensitivity, atherosclerotic plaque formation, and endothelial function. C57BL6 wild-type (C57) mice were compared with atherosclerotic LDLr(-/-) ApoB(100/100) (LRKOB100) and atherosclerotic/diabetic IGF-II × LDLr(-/-) ApoB(100/100) (LRKOB100/IGF) mice. Each group was fed either a standard chow diet, a 0.2% cholesterol diet, a high-fat diet (HFD), or a high-fat 0.2% cholesterol diet for 6 mo. The triglyceride-rich HFD increased body weight, glucose intolerance, and insulin resistance but did not alter endothelial function or atherosclerotic plaque formation. Dietary cholesterol, however, increased plaque formation in LRKOB100 and LRKOB100/IGF animals and decreased endothelial function regardless of genotype. However, cholesterol was not associated with an increase of insulin resistance in LRKOB100 and LRKOB100/IGF mice and, unexpectedly, was even found to reduce the insulin-resistant effect of dietary triglycerides in these animals. Our data indicate that dietary triglycerides and cholesterol have distinct metabolic and vascular effects in obese atherogenic mouse models resulting in dissociation between the impairment of glucose homeostasis and the development of atherosclerosis.

  16. Hormetic Effect of Chronic Hypergravity in a Mouse Model of Allergic Asthma and Rhinitis

    NASA Astrophysics Data System (ADS)

    Jang, Tae Young; Jung, Ah-Yeoun; Kim, Young Hyo

    2016-06-01

    We aimed to evaluate the effect of chronic hypergravity in a mouse model of allergic asthma and rhinitis. Forty BALB/c mice were divided as: group A (n = 10, control) sensitized and challenged with saline, group B (n = 10, asthma) challenged by intraperitoneal and intranasal ovalbumin (OVA) to induce allergic asthma and rhinitis, and groups C (n = 10, asthma/rotatory control) and D (n = 10, asthma/hypergravity) exposed to 4 weeks of rotation with normogravity (1G) or hypergravity (5G) during induction of asthma/rhinitis. Group D showed significantly decreased eosinophils, neutrophils, and lymphocytes in their BAL fluid compared with groups B and C (p < 0.05). In real-time polymerase chain reaction using lung homogenate, the expression of IL-1β was significantly upregulated (p < 0.001) and IL-4 and IL-10 significantly downregulated (p < 0.05) in group D. Infiltration of inflammatory cells into lung parenchyma and turbinate, and the thickness of respiratory epithelium was significantly reduced in group D (p < 0.05). The expression of Bcl-2 and heme oxygenase-1 were significantly downregulated, Bax and extracellular dismutase significantly upregulated in Group D. Therefore, chronic hypergravity could have a hormetic effect for allergic asthma and rhinitis via regulation of genes involved in antioxidative and proapoptotic pathways. It is possible that we could use hypergravity machinery for treating allergic respiratory disorders.

  17. Beneficial effect of supplemental lipoic acid on diabetes-induced pregnancy loss in the mouse.

    PubMed

    Padmanabhan, Rengasamy; Mohamed, Shafiullah; Singh, Sarabjit

    2006-11-01

    Uncontrolled diabetes mellitus (DM) is an etiological factor for recurrent pregnancy loss, fetal growth disorders, and major congenital malformations in the offspring. Antioxidant therapy has been advocated to overcome the oxidant-antioxidant disequilibrium inherent in diabetes. The objective of this article was to evaluate the beneficial effects of alpha-lipoic acid (LA) on fetal outcome in a mouse model of streptozotocin (STZ)-induced DM. Timed pregnant mice were made diabetic by intraperitoneal (IP) injection of a single dose of STZ (200 mg/kg) on gestation day (GD) 2. Diabetic animals were supplemented daily with an IP injection of 15 mg/kg of LA starting on GD 4 and continued through GD 12. Fetuses were examined on GD 18 for malformations and growth restriction. Some diabetic mice injected with Evans blue were examined on GD 3.5 and GD 6.5 to evaluate frequency of implantations. STZ-treated mice had all cardinal signs of DM. LA treatment did not normalize blood glucose levels of DM mice. Rates of pregnancy in saline control, DM, and DM + LA groups were 90%, 28%, and 64%, respectively, indicating that LA promotes pregnancy in DM animals. However, postimplantation resorption showed a threefold increase in the DM + LA group. Rates of intrauterine growth restriction and major congenital malformations were also augmented thus indicating that the interaction between DM and LA has deleterious effects on postimplantation embryos.

  18. Effects of the Yangjing Capsule Extract on Steroidogenesis and Apoptosis in Mouse Leydig Cells

    PubMed Central

    Sun, Dalin; Cui, Yugui; Jin, Baofang; Zhang, Xindong; Yang, Xiaoyu; Gao, Chao

    2012-01-01

    Objectives. This study aimed to explore the effect and mechanism of Yangjing capsule on testosterone secretion in mouse Leydig tumor cells (MLTC-1). Methods. MLTC-1 cells were treated with the Yangjing capsule extract for 24 h. The testosterone level in medium was measured by radioimmunoassay. The expression of steroidogenic enzymes (StAR, CYP11A1, and HSD3B) in the cells was examined using real-time RT-PCR and immunoblotting. Additionally, MLTC-1 cells were treated for 48 h in a serum-free medium. The cell viability was measured by MTT assay. The cell cycle and apoptosis were analyzed using flow cytometry. The expression of activated caspase-3 was analyzed using RT-PCR and a colorimetric protease assay. Results. The Yangjing capsule extract increased testosterone production and the expression of StAR, CYP11A1, and HSD3B mRNAs and proteins compared with the control. H89 significantly inhibited these effects. The medicine improved the viability of MLTC-1 cells, decreased the number of cells in G0/G1 phase, and increased the number of cells in S-phase, as well as prevented cell apoptosis by inhibiting caspase-3. Conclusion. The Yangjing capsule can stimulate MLTC-1 cells to secrete testosterone and may be an alternative treatment for diseases characterized by insufficient testosterone production. PMID:23259004

  19. Effects of atherogenic diet on hepatic gene expression across mouse strains

    PubMed Central

    Witmer, David; Burgess-Herbert, Sarah L.; Paigen, Beverly; Churchill, Gary A.

    2009-01-01

    Diets high in fat and cholesterol are associated with increased obesity and metabolic disease in mice and humans. To study the molecular basis of the metabolic response to dietary fat, 10 inbred strains of mice were fed atherogenic high-fat and control low-fat diets. Liver gene expression and whole animal phenotypes were measured and analyzed in both sexes. The effects of diet, strain, and sex on gene expression were determined irrespective of complex processes, such as feedback mechanisms, that could have mediated the genomic responses. Global gene expression analyses demonstrated that animals of the same strain and sex have similar transcriptional profiles on a low-fat diet, but strains may show considerable variability in response to high-fat diet. Functional profiling indicated that high-fat feeding induced genes in the immune response, indicating liver damage, and repressed cholesterol biosynthesis. The physiological significance of the transcriptional changes was confirmed by a correlation analysis of transcript levels with whole animal phenotypes. The results found here were used to confirm a previously identified quantitative trait locus on chromosome 17 identified in males fed a high-fat diet in two crosses, PERA × DBA/2 and PERA × I/Ln. The gene expression data and phenotype data have been made publicly available as an online tool for exploring the effects of atherogenic diet in inbred mouse strains (http://cgd-array.jax.org/DietStrainSurvey). PMID:19671657

  20. T cell--associated immunoregulation and antiviral effect of oxymatrine in hydrodynamic injection HBV mouse model.

    PubMed

    Sang, Xiuxiu; Wang, Ruilin; Han, Yanzhong; Zhang, Cong'en; Shen, Honghui; Yang, Zhirui; Xiong, Yin; Liu, Huimin; Liu, Shijing; Li, Ruisheng; Yang, Ruichuang; Wang, Jiabo; Wang, Xuejun; Bai, Zhaofang; Xiao, Xiaohe

    2017-05-01

    Although oxymatrine (OMT) has been shown to directly inhibit the replication of hepatitis B virus (HBV) in vitro, limited research has been done with this drug in vivo. In the present study, the antiviral effect of OMT was investigated in an immunocompetent mouse model of chronic HBV infection. The infection was achieved by tail vein injection of a large volume of DNA solution. OMT (2.2, 6.7 and 20 mg/kg) was administered by daily intraperitoneal injection for 6 weeks. The efficacy of OMT was evaluated by the levels of HBV DNA, hepatitis B surface antigen (HBsAg), hepatitis B e antigen (HBeAg) and hepatitis B core antigen (HBcAg). The immunoregulatory activity of OMT was evaluated by serum ELISA and flow cytometry. Results shows that OMT at 20 mg/kg inhibited HBV replication, and it was more efficient than entecavir (ETV) in the elimination of serum HBsAg and intrahepatic HBcAg. In addition, OMT accelerated the production of interferon-γ (IFN-γ) in a dose-dependent manner in CD4(+) T cells. Our findings demonstrate the beneficial effects of OMT on the enhancement of immunological function and in the control of HBV antigens. The findings suggest this drug to be a good antiviral therapeutic candidate for the treatment of HBV infection.

  1. Effect of zinc deficiency on mouse renal interstitial fibrosis in diabetic nephropathy.

    PubMed

    Zhang, Xiuli; Liang, Dan; Lian, Xu; Chi, Zhi-Hong; Wang, Xuemei; Zhao, Yue; Ping, Zhang

    2016-12-01

    There is emerging evidence that tubulointerstitial fibrosis is the final common pathway of the majority of chronic progressive renal diseases, including diabetic nephropathy (DN). Zinc, an essential dietary element, has been suggested to be important for a number of protein functions during fibrosis in vivo and in vitro. However, the effect of zinc deficiency (ZnD) on renal interstitial fibrosis in DN remains unclear. The present study investigated the effect and the underlying mechanisms of ZnD on renal interstitial fibrosis during DN using an streptozotocin‑induced model of diabetes with immunofluorescence staining and western blot analysis. The present study identified that dietary zinc restriction significantly decreased zinc concentrations in the plasma and mouse kidney. ZnD enhanced albuminuria and extracellular matrix protein expression, associated with diabetic renal interstitial fibrosis by activation of renal interstitial fibroblasts and regulation of the expression of fibrosis‑associated factors, which may be mediated by the activation of fibroblasts via the TGF‑β/Smad signaling pathway. The data indicates that ZnD serves an important role in the pathogenic mechanisms of renal interstitial fibrosis during the development of DN.

  2. Effect of choline chloride in allergen-induced mouse model of airway inflammation.

    PubMed

    Mehta, A K; Gaur, S N; Arora, N; Singh, B P

    2007-10-01

    The incidence of asthma has increased the world over, and current therapies for the disease suffer from potential side-effects. This has created an opportunity to develop novel therapeutic approaches. Here, the anti-inflammatory activity of choline was investigated in a mouse model of allergic airway inflammation. Choline (1 mg.kg(-1)) was administered via oral gavage or intranasally before and after ovalbumin (OVA) challenge in sensitised mice. Airway hyperresponsiveness (AHR) to methacholine was measured in the mice by whole-body plethysmography. Type-2 T-helper cell cytokine and leukotriene levels were estimated in bronchoalveolar lavage fluid (BALF) and spleen culture supernatant by ELISA. Eosinophil peroxidase activity was also determined in the BALF supernatant. Choline treatment in sensitised mice before OVA challenge via oral/intranasal routes significantly inhibited eosinophilic airway inflammation and eosinophil peroxidase activity. It also reduced immunoglobulin E and G1 production and inhibited the release of type-2 T-helper cell cytokines and leukotrienes. However, the development of AHR was prevented effectively by intranasal choline treatment. Most importantly, choline treatment after OVA challenge by both routes could reverse established asthmatic conditions in mice by inhibiting AHR, eosinophilic airway inflammation and other inflammatory parameters. This study provides a new therapeutic approach for controlling as well as preventing asthma exacerbations.

  3. Effects of boldine on mouse diaphragm and sarcoplasmic reticulum vesicles isolated from skeletal muscle.

    PubMed

    Kang, J J; Cheng, Y W

    1998-02-01

    The effects of boldine [(S)-2,9-dihydroxy-1,10-dimethoxyaporphine], a major alkaloid in the leaves and bark of boldo (Peumus boldus Mol.), on skeletal muscle were studied using mouse diaphragm and isolated sarcoplasmic reticulum membrane vesicles. Boldine, at 10-200 microM, has little effect on the muscle-evoked twitches; however, the ryanodine-induced contracture was potentiated dose-dependently. At higher concentrations of 300 microM, boldine by itself induced muscle contracture of two phases, which were caused by the influx of extracellular Ca2+ and induction of Ca2+ release from the internal Ca2+ storage site, the sarcoplasmic reticulum, respectively. When tested with isolated sarcoplasmic reticulum membrane vesicles, boldine dose-dependently induced Ca2+ release from actively loaded sarcoplasmic reticulum vesicles isolated from skeletal muscle of rabbit or rat which was inhibited by ruthenium red, suggesting that the release was through the Ca2+ release channel, also known as the ryanodine receptor. Boldine also dose-dependently increased apparent [3H]-ryanodine binding with the EC50 value of 50 microM. In conclusion, we have shown that boldine could sensitize the ryanodine receptor and induce Ca2+ release from the internal Ca2+ storage site of skeletal muscle.

  4. Non-thermal effects of terahertz radiation on gene expression in mouse stem cells

    PubMed Central

    Alexandrov, Boian S.; Rasmussen, Kim Ø.; Bishop, Alan R.; Usheva, Anny; Alexandrov, Ludmil B.; Chong, Shou; Dagon, Yossi; Booshehri, Layla G.; Mielke, Charles H.; Phipps, M. Lisa; Martinez, Jennifer S.; Chen, Hou-Tong; Rodriguez, George

    2011-01-01

    Abstract In recent years, terahertz radiation sources are increasingly being exploited in military and civil applications. However, only a few studies have so far been conducted to examine the biological effects associated with terahertz radiation. In this study, we evaluated the cellular response of mesenchymal mouse stem cells exposed to THz radiation. We apply low-power radiation from both a pulsed broad-band (centered at 10 THz) source and from a CW laser (2.52 THz) source. Modeling, empirical characterization, and monitoring techniques were applied to minimize the impact of radiation-induced increases in temperature. qRT-PCR was used to evaluate changes in the transcriptional activity of selected hyperthermic genes. We found that temperature increases were minimal, and that the differential expression of the investigated heat shock proteins (HSP105, HSP90, and CPR) was unaffected, while the expression of certain other genes (Adiponectin, GLUT4, and PPARG) showed clear effects of the THz irradiation after prolonged, broad-band exposure. PMID:21991556

  5. Hormetic Effect of Chronic Hypergravity in a Mouse Model of Allergic Asthma and Rhinitis

    PubMed Central

    Jang, Tae Young; Jung, Ah-Yeoun; Kim, Young Hyo

    2016-01-01

    We aimed to evaluate the effect of chronic hypergravity in a mouse model of allergic asthma and rhinitis. Forty BALB/c mice were divided as: group A (n = 10, control) sensitized and challenged with saline, group B (n = 10, asthma) challenged by intraperitoneal and intranasal ovalbumin (OVA) to induce allergic asthma and rhinitis, and groups C (n = 10, asthma/rotatory control) and D (n = 10, asthma/hypergravity) exposed to 4 weeks of rotation with normogravity (1G) or hypergravity (5G) during induction of asthma/rhinitis. Group D showed significantly decreased eosinophils, neutrophils, and lymphocytes in their BAL fluid compared with groups B and C (p < 0.05). In real-time polymerase chain reaction using lung homogenate, the expression of IL-1β was significantly upregulated (p < 0.001) and IL-4 and IL-10 significantly downregulated (p < 0.05) in group D. Infiltration of inflammatory cells into lung parenchyma and turbinate, and the thickness of respiratory epithelium was significantly reduced in group D (p < 0.05). The expression of Bcl-2 and heme oxygenase-1 were significantly downregulated, Bax and extracellular dismutase significantly upregulated in Group D. Therefore, chronic hypergravity could have a hormetic effect for allergic asthma and rhinitis via regulation of genes involved in antioxidative and proapoptotic pathways. It is possible that we could use hypergravity machinery for treating allergic respiratory disorders. PMID:27251783

  6. Effect of caffeine on induction of endogenous type C virus in mouse cells in vitro

    SciTech Connect

    Niwa, O.; Sugahara, T.

    1981-08-01

    The effect of caffeine on the expression of murine endogenous virus in mouse cells induced by radiation and chemicals was studied. Postirradiation treatment of K-BALB cells with caffeine enhanced cell killing as well as the induction of xenotropic virus after ultraviolet light irradiation. The degree of enhancement for the virus induction was comparable to that for cell killing. On the other hand, colony-forming ability and the expression of xenotropic virus of K-BALB cells after X-irradiation were unaffected by caffeine. These data suggest a linear relationship between the degree of endogenous virus expression and the amount of lethal damages after irradiation. For induction by halogenated pyrimidines, a 24-hr incubation of AKR2B cells with caffeine after 5-iodo-2'-deoxyuridine treatment resulted in marked suppression of the expression of ecotropic virus. On the contrary, in K-BALB cells, caffeine exerted only a small effect on 5-iodo-2'-deoxyuridine-induced expression of ecotropic and xenotropic viruses. These results indicate that, although using the same inducing agent, the pathway of endogenous virus induction may be different for AKR2B cells and for K-BALB cells.

  7. Neurotoxic effects of local anesthetics on the mouse neuroblastoma NB2a cell line.

    PubMed

    Mete, M; Aydemir, I; Tuglu, I M; Selcuki, M

    2015-04-01

    Local anesthetics are used clinically for peripheral nerve blocks, epidural anesthesia, spinal anesthesia and pain management; large concentrations, continuous application and long exposure time can cause neurotoxicity. The mechanism of neurotoxicity caused by local anesthetics is unclear. Neurite outgrowth and apoptosis can be used to evaluate neurotoxic effects. Mouse neuroblastoma cells were induced to differentiate and generate neurites in the presence of local anesthetics. The culture medium was removed and replaced with serum-free medium plus 20 μl combinations of epidermal growth factor and fibroblast growth factor containing tetracaine, prilocaine, lidocaine or procaine at concentrations of 1, 10, 25, or 100 μl prior to neurite measurement. Cell viability, iNOS, eNOS and apoptosis were evaluated. Local anesthetics produced toxic effects by neurite inhibition at low concentrations and by apoptosis at high concentrations. There was an inverse relation between local anesthetic concentrations and cell viability. Comparison of different local anesthetics showed toxicity, as assessed by cell viability and apoptotic potency, in the following order: tetracaine > prilocaine > lidocaine > procaine. Procaine was the least neurotoxic local anesthetic and because it is short-acting, may be preferred for pain prevention during short procedures.

  8. The beneficial effect of blocking Kv1.3 in the psoriasiform SCID mouse model.

    PubMed

    Gilhar, Amos; Bergman, Reuven; Assay, Bedia; Ullmann, Yehuda; Etzioni, Amos

    2011-01-01

    The Kv1.3 channel is important in the activation and function of effector memory T cells. Recently, specific blockers of the Kv1.3 channel have been developed as a potential therapeutic option for diverse autoimmune diseases. In psoriatic lesions, most lymphocytes are memory effector T cells. The aim of the present study was to detect the expression of Kv1.3 channels in these cells in psoriatic lesions as well as in human psoriasiform skin grafts using the severe combined immunodeficient (SCID) mouse model. Histological and immunohistochemical staining for Kv1.3 expression and various inflammatory markers was performed in sections obtained from six psoriatic patients and 18 beige-SCID mice with psoriasiform human skin grafts. Six grafted mice were treated with Stichodactyla helianthus neurotoxin (ShK), a known Kv1.3 blocker. The results showed an increased number of Kv1.3+ cells in the psoriatic skin as well as in the psoriasiform skin grafts as compared with normal skin and normal skin grafts. Injections of ShK showed a marked therapeutic effect in three of six psoriasiform skin grafts. A significantly decreased number of Kv1.3+ cells was observed in the responders compared with the control grafts. This pilot study, although performed in a small number of mice, reveals the possible beneficial effect of Kv1.3 blockers in psoriasis patients.

  9. Prolactin effects on the dietary regulation of mouse mammary tumor virus proviral DNA expression.

    PubMed Central

    Hamada, N; Engelman, R W; Tomita, Y; Chen, R F; Iwai, H; Good, R A; Day, N K

    1990-01-01

    Chronic energy-intake restriction inhibits mouse mammary tumor virus (MMTV)-induced mammary tumors in C3H/Ou mice by greater than 90%. We have shown that associated with suppression of mammary tumorigenesis there is a reduction or inhibition of circulating prolactin, MMTV particles expressed, and MMTV mRNA transcription in mammary glands (and in most organs tested). To understand the concerted action of prolactin, energy-consumption level, and MMTV on inducing mammary tumors, experiments were designed to control prolactin and energy levels in order to evaluate their effects on MMTV mRNA expression. Mice on restricted diets were grafted with adenohypophyses, and mice fed ad libitum were treated with the dopaminomimetic agent octahydrobenzo [g]quinoline. Adenohypophyseal grafting significantly increased prolactin in dietary (energy)-restricted mice, and this effect was associated with an increase in MMTV mRNA expression within the mammary gland; a linear correlation between prolactin levels and MMTV mRNA expression in the mammary gland was found. Conversely, elimination of the nocturnal peak of circulating prolactin by i.p. injection of dopaminomimetic octahydrobenzo [g]quinoline to mice fed ad libitum delayed (by 8 weeks) and reduced (even as long as 25 weeks) mammary gland MMTV mRNA expression. These findings associate prolactin influences with MMTV mRNA production in mice and help explain the link between chronic energy-intake restriction and reduced MMTV gene expression. Images PMID:1975696

  10. Integration and modularity of quantitative trait locus effects on geometric shape in the mouse mandible.

    PubMed Central

    Klingenberg, Christian Peter; Leamy, Larry J; Cheverud, James M

    2004-01-01

    The mouse mandible has long served as a model system for complex morphological structures. Here we use new methodology based on geometric morphometrics to test the hypothesis that the mandible consists of two main modules, the alveolar region and the ascending ramus, and that this modularity is reflected in the effects of quantitative trait loci (QTL). The shape of each mandible was analyzed by the positions of 16 morphological landmarks and these data were analyzed using Procrustes analysis. Interval mapping in the F(2) generation from intercrosses of the LG/J and SM/J strains revealed 33 QTL affecting mandible shape. The QTL effects corresponded to a variety of shape changes, but ordination or a parametric bootstrap test of clustering did not reveal any distinct groups of QTL that would affect primarily one module or the other. The correlations of landmark positions between the two modules tended to be lower than the correlations between arbitrary subsets of landmarks, indicating that the modules were relatively independent of each other and confirming the hypothesized location of the boundary between them. While these results are in agreement with the hypothesis of modularity, they also underscore that modularity is a question of the relative degrees to which QTL contribute to different traits, rather than a question of discrete sets of QTL contributing to discrete sets of traits. PMID:15126408

  11. Antidepressant-like effects of the histone deacetylase inhibitor, sodium butyrate, in the mouse.

    PubMed

    Schroeder, Frederick A; Lin, Cong Lily; Crusio, Wim E; Akbarian, Schahram

    2007-07-01

    Chromatin remodeling, including changes in histone acetylation, might play a role in the pathophysiology and treatment of depression. We investigated whether the histone deacetylase inhibitor sodium butyrate (SB) administered as single drug or in combination with the selective serotonin reuptake inhibitor (SSRI) fluoxetine exerts antidepressant-like effects in mice. Mice (C57BL/6J) received injections of SB, fluoxetine, or a combination of both drugs either acutely or chronically for a period of 28 days and were subjected to a battery of tests to measure anxiety and behavioral despair. Histone acetylation and expression of brain-derived neurotrophic factor (BDNF) were monitored in hippocampus and frontal cortex. Co-treatment with SB and fluoxetine resulted in a significant 20%-40% decrease in immobility scores in the tail suspension test (TST), a measure for behavioral despair, both acutely and chronically. In contrast, decreased immobility after single drug regimens was limited either to the acute (fluoxetine) or chronic (SB) paradigm. Systemic injection of SB induced short-lasting histone hyperacetylation in hippocampus and frontal cortex. Among the four treatment paradigms that resulted in improved immobility scores in the TST, three were associated with a transient, at least 50% increase in BDNF transcript in frontal cortex, whereas changes in hippocampus were less consistent. The histone deacetylase inhibitor SB exerts antidepressant-like effects in the mouse. The therapeutic benefits and molecular actions of histone modifying drugs, including co-treatment with SSRIs and other newer generation antidepressant medications, warrant further exploration in experimental models.

  12. Long term effects of lipopolysaccharide on satellite glial cells in mouse dorsal root ganglia.

    PubMed

    Blum, E; Procacci, P; Conte, V; Sartori, P; Hanani, M

    2017-01-01

    Lipopolysaccharide (LPS) has been used extensively to study neuroinflammation, but usually its effects were examined acutely (24h<). We have shown previously that a single intraperitoneal LPS injection activated satellite glial cells (SGCs) in mouse dorsal root ganglia (DRG) and altered several functional parameters in these cells for at least one week. Here we asked whether the LPS effects would persist for 1 month. We injected mice with a single LPS dose and tested pain behavior, assessed SGCs activation in DRG using glial fibrillary acidic protein (GFAP) immunostaining, and injected a fluorescent dye intracellularly to study intercellular coupling. Electron microscopy was used to quantitate changes in gap junctions. We found that at 30 days post-LPS the threshold to mechanical stimulation was lower than in controls. GFAP expression, as well as the magnitude of dye coupling among SGCs were greater than in controls. Electron microscopy analysis supported these results, showing a greater number of gap junctions and an abnormal growth of SGC processes. These changes were significant, but less prominent than at 7 days post-LPS. We conclude that a single LPS injection exerts long-term behavioral and cellular changes. The results are consistent with the idea that SGC activation contributes to hyperalgesia.

  13. Neurite outgrowth in cultured mouse pelvic ganglia - Effects of neurotrophins and bladder tissue.

    PubMed

    Ekman, Mari; Zhu, Baoyi; Swärd, Karl; Uvelius, Bengt

    2017-07-01

    Neurotrophic factors regulate survival and growth of neurons. The urinary bladder is innervated via both sympathetic and parasympathetic neurons located in the major pelvic ganglion. The aim of the present study was to characterize the effects of the neurotrophins nerve growth factor (NGF), brain derived neurotrophic factor (BDNF) and neurotrophin 3 (NT-3) on the sprouting rate of sympathetic and parasympathetic neurites from the female mouse ganglion. The pelvic ganglion was dissected out and attached to a petri dish and cultured in vitro. All three factors (BDNF, NT-3 and NGF) stimulated neurite outgrowth of both sympathetic and parasympathetic neurites although BDNF and NT-3 had a higher stimulatory effect on parasympathetic ganglion cells. The neurotrophin receptors TrkA, TrkB and TrkC were all expressed in neurons of the ganglia. Co-culture of ganglia with urinary bladder tissue, but not diaphragm tissue, increased the sprouting rate of neurites. Active forms of BDNF and NT-3 were detected in urinary bladder tissue using western blotting whereas tissue from the diaphragm expressed NGF. Neurite outgrowth from the pelvic ganglion was inhibited by a TrkB receptor antagonist. We therefore suggest that the urinary bladder releases trophic factors, including BDNF and NT-3, which regulate neurite outgrowth via activation of neuronal Trk-receptors. These findings could influence future strategies for developing pharmaceuticals to improve re-innervation due to bladder pathologies. Copyright © 2017. Published by Elsevier B.V.

  14. Effects of oxalate on IMCD cells: a line of mouse inner medullary collecting duct cells.

    PubMed

    Maroni, Paul D; Koul, Sweaty; Meacham, Randall B; Chandhoke, Paramjit S; Koul, Hari K

    2004-12-01

    Oxalate, a metabolic end product and a major constituent of the majority of renal stones, has been shown to be toxic to renal epithelial cells of cortical origin. However, it is unknown whether inner medullary collecting duct (IMCD) cells that are physiologically exposed to higher concentrations of oxalate also behave in a similar manner. In the present study, we examined the effects of oxalate on IMCD cells. IMCD cells from the mouse were maintained in DMEM/F12 media supplemented with fetal bovine serum and antibiotics. Exposure of IMCD cells to oxalate produced time- and concentration-dependent changes in the light microscopic appearance of the cells. Long-term exposure to oxalate resulted in alterations in cell viability, with net cell loss after exposure to concentrations of 2 mM or greater. The production of free radicals was directly related to the exposure time and the concentration of oxalate. Crystal formation occurred in less than 1 h and cells in proximity to crystals would lose membrane integrity. Compared with IMCD cells, LLC-PK1 cells as well as HK-2 cells showed significant toxicity starting at lower oxalate concentrations (0.4 mM or greater). These results provide the first direct demonstration of toxic effects of oxalate in IMCD cells, a line of renal epithelial cells of the inner medullary collecting duct, and suggest that the cells lining the collecting duct are relatively resistant to oxalate toxicity.

  15. Neuroprotective effect of the endogenous neural peptide apelin in cultured mouse cortical neurons

    SciTech Connect

    Zeng, Xiang Jun; Yu, Shan Ping; Zhang, Like; Wei, Ling

    2010-07-01

    The adipocytokine apelin and its G protein-coupled APJ receptor were initially isolated from a bovine stomach and have been detected in the brain and cardiovascular system. Recent studies suggest that apelin can protect cardiomyocytes from ischemic injury. Here, we investigated the effect of apelin on apoptosis in mouse primary cultures of cortical neurons. Exposure of the cortical cultures to a serum-free medium for 24 h induced nuclear fragmentation and apoptotic death; apelin-13 (1.0-5.0 nM) markedly prevented the neuronal apoptosis. Apelin neuroprotective effects were mediated by multiple mechanisms. Apelin-13 reduced serum deprivation (SD)-induced ROS generation, mitochondria depolarization, cytochrome c release and activation of caspase-3. Apelin-13 prevented SD-induced changes in phosphorylation status of Akt and ERK1/2. In addition, apelin-13 attenuated NMDA-induced intracellular Ca{sup 2+} accumulation. These results indicate that apelin is an endogenous neuroprotective adipocytokine that may block apoptosis and excitotoxic death via cellular and molecular mechanisms. It is suggested that apelins may be further explored as a potential neuroprotective reagent for ischemia-induced brain damage.

  16. Antinociceptive effects of vitexin in a mouse model of postoperative pain

    PubMed Central

    Zhu, Qing; Mao, Li-Na; Liu, Cheng-Peng; Sun, Yue-Hua; Jiang, Bo; Zhang, Wei; Li, Jun-Xu

    2016-01-01

    Vitexin, a C-glycosylated flavone present in several medicinal herbs, has showed various pharmacological activities including antinociception. The present study investigated the antinociceptive effects of vitexin in a mouse model of postoperative pain. This model was prepared by making a surgical incision on the right hindpaw and von Frey filament test was used to assess mechanical hyperalgesia. Isobolographical analysis method was used to examine the interaction between vitexin and acetaminophen. A reliable mechanical hyperalgesia was observed at 2 h post-surgery and lasted for 4 days. Acute vitexin administration (3–10 mg/kg, i.p.) dose-dependently relieved this hyperalgesia, which was also observed from 1 to 3 days post-surgery during repeated daily treatment. However, repeated vitexin administration prior to surgery had no preventive value. The 10 mg/kg vitexin-induced antinociception was blocked by the opioid receptor antagonist naltrexone or the GABAA receptor antagonist bicuculline. The doses of vitexin used did not significantly suppress the locomotor activity. In addition, the combination of vitexin and acetaminophen produced an infra-additive effect in postoperative pain. Together, though vitexin-acetaminophen combination may not be useful for treating postoperative pain, vitexin exerts behaviorally-specific antinociception against postoperative pain mediated through opioid receptors and GABAA receptors, suggesting that vitexin may be useful for the control of postoperative pain. PMID:26763934

  17. The Effects of LW-AFC on Intestinal Microbiome in Senescence-Accelerated Mouse Prone 8 Strain, a Mouse Model of Alzheimer's Disease.

    PubMed

    Wang, Jianhui; Ye, Fuqiang; Cheng, Xiaorui; Zhang, Xiaorui; Liu, Feng; Liu, Gang; Ni, Ming; Qiao, Shanyi; Zhou, Wenxia; Zhang, Yongxiang

    2016-06-18

    Microbes have deserved broader attention as causal factors in Alzheimer's disease (AD), a neurodegenerative disorder. The senescence-accelerated mouse prone 8 (SAMP8) strain, a spontaneous mice of accelerated aging, are considered a robust model for sporadic AD. LW-AFC, an herbal medicine, was prepared from LiuweiDihuang decoction, which is a classical traditional Chinese medicine prescription. Here, we showed that the treatment of LW-AFC improved cognitive impairments of SAMP8 mice, including spatial learning and memory ability, active avoidance response, and object recognition memory capability. Our data indicated that there were significantly 8 increased and 12 decreased operational taxonomic units (OTUs) in the gut microbiota of SAMP8 mice compared with senescence accelerated mouse resistant 1 (SAMR1) strains, the control of SAMP8 mice. The treatment of LW-AFC altered 22 (16 increased and 6 decreased) OTUs in SAMP8 mice and among them, 15 OTUs could be reversed by LW-AFC treatment resulting in a microbial composition similar to that of SAMR1 mice. We further showed that there were 7 (3 negative and 4 positive correlation) OTUs significantly correlated with all the three types of cognitive abilities, at the order level, including Bacteroidales, Clostridiales, Desulfovibrionales, CW040, and two unclassified orders. LW-AFC had influences on bacterial taxa correlated with the abilities of learning and memory in SAMP8 mice and restored them to SAMR1 mice. Our results indicate that the effects of LW-AFC on improving cognitive impairments of SAMP8 mice might be via modulating intestinal microbiome and LW-AFC could be used as a potential anti-AD agent.

  18. Effect of Ames dwarfism and caloric restriction on spontaneous DNA mutation frequency in different mouse tissues.

    PubMed

    Garcia, Ana Maria; Busuttil, Rita A; Calder, R Brent; Dollé, Martijn E T; Diaz, Vivian; McMahan, C Alex; Bartke, Andrzej; Nelson, James; Reddick, Robert; Vijg, Jan

    2008-09-01

    Genetic instability has been implicated as a causal factor in cancer and aging. Caloric restriction (CR) and suppression of the somatotroph axis significantly increase life span in the mouse and reduce multiple symptoms of aging, including cancer. To test if in vivo spontaneous mutation frequency is reduced by such mechanisms, we crossed long-lived Ames dwarf mice with a C57BL/6J line harboring multiple copies of the lacZ mutation reporter gene as part of a plasmid that can be recovered from tissues and organs into Escherichia coli to measure mutant frequencies. Four cohorts were studied: (1) ad lib wild-type; (2) CR wild-type; (3) ad lib dwarf; and (4) CR dwarf. While both CR wild-type and ad lib dwarf mice lived significantly longer than the ad lib wild-type mice, under CR conditions dwarf mice did not live any longer than ad lib wild-type mice. While this may be due to an as yet unknown adverse effect of the C57BL/6J background, it did not prevent an effect on spontaneous mutation frequencies at the lacZ locus, which were assessed in liver, kidney and small intestine of 7- and 15-month-old mice of all four cohorts. A lower mutant frequency in the ad lib dwarf background was observed in liver and kidney at 7 and 15 months of age and in small intestine at 15 months of age as compared to the ad lib wild-type. CR also significantly reduced spontaneous mutant frequency in kidney and small intestine, but not in liver. In a separate cohort of lacZ-C57BL/6J mice CR was also found to significantly reduce spontaneous mutant frequency in liver and small intestine, across three age levels. These results indicate that two major pro-longevity interventions in the mouse are associated with a reduced mutation frequency. This could be responsible, at least in part, for the enhanced longevity associated with Ames dwarfism and CR.

  19. Effect of Ames dwarfism and caloric restriction on spontaneous mutation frequency in different mouse tissues

    PubMed Central

    Garcia, Ana Maria; Busuttil, Rita; Calder, Brent; Dollé, Martijn E. T.; Diaz, Vivian; McMahan, C. Alex; Bartke, Andrzej; Nelson, James; Reddick, Robert; Vijg, Jan

    2008-01-01

    Genetic instability has been implicated as a causal factor in cancer and aging. Caloric restriction (CR) and suppression of the somatotroph axis significantly increase life span in the mouse and reduces multiple symptoms of aging, including cancer. To test if in vivo spontaneous mutation frequency is reduced by such mechanisms, we crossed long-lived Ames dwarf mice with a C57BL/6J line harboring multiple copies of the lacZ mutation reporter gene as part of a plasmid that can be recovered from tissues and organs into E. coli to measure mutant frequencies. Four cohorts were studied: (1) ad lib wild-type; (2) CR wild-type; (3) ad lib dwarf; and (4) CR dwarf. While both CR wild-type and ad lib dwarf mice lived significantly longer than the ad lib wild-type mice, under CR conditions dwarf mice did not live any longer than ad lib wild-type mice. While this may be due to an as yet unknown adverse effect of the C57Bl/6 background, it did not prevent an effect on spontaneous mutation frequencies at the lacZ locus, which were assessed in liver, kidney and small intestine of 7- and 15-month old mice of all four cohorts. A lower mutant frequency in the ad lib dwarf background was observed in liver and kidney at 7 and 15 months of age and in small intestine at 15 months of age as compared to the ad lib wild-type. CR also significantly reduced spontaneous mutant frequency in kidney and small intestine, but not in liver. In a separate cohort of lacZ-C57BL/6J mice CR was also found to significantly reduce spontaneous mutant frequency in liver and small intestine, across three age levels. These results indicate that two major pro-longevity interventions in the mouse are associated with a reduced mutation frequency. This could be responsible, at least in part, for the enhanced longevity associated with Ames dwarfism and CR. PMID:18565572

  20. Influence of sodium substitutes on 5-HT-mediated effects at mouse 5-HT3 receptors

    PubMed Central

    Barann, M; Schmidt, K; Göthert, M; Urban, B W; Bönisch, H

    2004-01-01

    The influence of sodium ion substitutes on the 5-hydroxytryptamine (5-HT)-induced flux of the organic cation [14C]guanidinium through the ion channel of the mouse 5-HT3 receptor and on the competition of 5-HT with the selective 5-HT3 receptor antagonist [3H]GR 65630 was studied, unless stated otherwise, in mouse neuroblastoma N1E-115 cells. Under physiological conditions (135 mM sodium), 5-HT induced a concentration-dependent [14C]guanidinium influx with an EC50 (1.3 μM) similar to that in electrophysiological studies. The stepwise replacement of sodium by increasing concentrations of the organic cation hydroxyethyl trimethylammonium (choline) concentration dependently caused both a rightward shift of the 5-HT concentration–response curve and an increase in the maximum effect of 5-HT. Complete replacement of sodium resulted in a 34-fold lower potency of 5-HT and an almost two times higher maximal response. A low potency of 5-HT in choline buffer was also observed in other 5-HT3 receptor-expressing rodent cell lines (NG 108-15 or NCB 20). Replacement of Na+ by Li+ left the potency and maximal effects of 5-HT almost unchanged. Replacement by tris (hydroxymethyl) methylamine (Tris), tetramethylammonium (TMA) or N-methyl-D-glucamine (NMDG) caused an increase in maximal response to 5-HT similar to that caused by choline. The potency of 5-HT was only slightly reduced by Tris, to a high degree decreased by TMA (comparable to the decrease by choline), but not influenced by NMDG. The potency of 5-HT in inhibiting [3H]GR65630 binding to intact cells was 35-fold lower when sodium was completely replaced by choline, but remained unchanged after replacement by NMDG. The results are compatible with the suggestion that choline competes with 5-HT for the 5-HT3 receptor; the increase in maximal response may be partly due to a choline-mediated delay of the 5-HT-induced desensitization. For studies of 5-HT-evoked [14C]guanidinium flux through 5-HT3 receptor channels, NMDG appears

  1. Effective Combination of Innate and Adaptive Immunotherapeutic Approaches in a Mouse Melanoma Model.

    PubMed

    Rakhmilevich, Alexander L; Felder, Mildred; Lever, Lauren; Slowinski, Jacob; Rasmussen, Kayla; Hoefges, Anna; Van De Voort, Tyler J; Loibner, Hans; Korman, Alan J; Gillies, Stephen D; Sondel, Paul M

    2017-02-15

    Most cancer immunotherapies include activation of either innate or adaptive immune responses. We hypothesized that the combined activation of both innate and adaptive immunity will result in better antitumor efficacy. We have previously shown the synergy of an agonistic anti-CD40 mAb (anti-CD40) and CpG-oligodeoxynucleotides in activating macrophages to induce tumor cell killing in mice. Separately, we have shown that a direct intratumoral injection of immunocytokine (IC), an anti-GD2 Ab linked to IL-2, can activate T and NK cells resulting in antitumor effects. We hypothesized that activation of macrophages with anti-CD40/CpG, and NK cells with IC, would cause innate tumor destruction, leading to increased presentation of tumor Ags and adaptive T cell activation; the latter could be further augmented by anti-CTLA-4 Ab to achieve tumor eradication and immunological memory. Using the mouse GD2(+) B78 melanoma model, we show that anti-CD40/CpG treatment led to upregulation of T cell activation markers in draining lymph nodes. Anti-CD40/CpG + IC/anti-CTLA-4 synergistically induced regression of advanced s.c. tumors, resulting in cure of some mice and development of immunological memory against B78 and wild type B16 tumors. Although the antitumor effect of anti-CD40/CpG did not require T cells, the antitumor effect of IC/anti-CTLA-4 was dependent on T cells. The combined treatment with anti-CD40/CpG + IC/anti-CTLA-4 reduced T regulatory cells in the tumors and was effective against distant solid tumors and lung metastases. We suggest that a combination of anti-CD40/CpG and IC/anti-CTLA-4 should be developed for clinical testing as a potentially effective novel immunotherapy strategy. Copyright © 2017 by The American Association of Immunologists, Inc.

  2. Capsaicin protects mouse neuromuscular junctions from the neuroparalytic effects of botulinum neurotoxin a.

    PubMed

    Thyagarajan, Baskaran; Krivitskaya, Natalia; Potian, Joseph G; Hognason, Kormakur; Garcia, Carmen C; McArdle, Joseph J

    2009-11-01

    Botulinum neurotoxin A (BoNT/A), the most toxic, naturally occurring protein, cleaves synapse-associated protein of 25 kDa and inhibits acetylcholine release from motor nerve endings (MNEs). This leads to paralysis of skeletal muscles. Our study demonstrates that capsaicin protects mouse neuromuscular junctions from the neuroparalytic effects of BoNT/A. Bilateral injection of BoNT/A near the innervation of the Extensor digitorum longus (EDL) muscle of adult Swiss-Webster mice inhibited the toe spread reflex (TSR). However, when capsaicin was coinjected bilaterally, or injected 4 or 8 h before injecting BoNT/A, the TSR remained normal. In animals that were pretreated with capsazepine, capsaicin failed to protect against the neuroparalytic effects of BoNT/A. In vivo analyses demonstrated that capsaicin protected muscle functions and electromygraphic activity from the incapacitating effects of BoNT/A. The twitch response to nerve stimulation was greater for EDL preparations isolated from mice injected with capsaicin before BoNT/A. Capsaicin pretreatment also prevented the inhibitory effects of BoNT/A on end-plate currents. Furthermore, pretreatment of Neuro 2a cells with capsaicin significantly preserved labeling of synaptic vesicles by FM 1-43. This protective effect of capsaicin was observed only in the presence of extracellular Ca(2+) and was inhibited by capsazepine. Immunohistochemistry demonstrated that MNEs express transient receptor potential protein of the vanilloid subfamily, TRPV1, the capsaicin receptor. Capsaicin pretreatment, in vitro, reduced nerve stimulation or KCl-induced uptake of BoNT/A into motor nerve endings and cholinergic Neuro 2a cells. These data demonstrate that capsaicin interacts with TRPV1 receptors on MNEs to reduce BoNT/A uptake via a Ca(2+)-dependent mechanism.

  3. Therapeutic and preventive effects of methylene blue on Alzheimer's disease pathology in a transgenic mouse model.

    PubMed

    Paban, V; Manrique, C; Filali, M; Maunoir-Regimbal, S; Fauvelle, F; Alescio-Lautier, B

    2014-01-01

    Methylene blue (MB) belongs to the phenothiazinium family. It has been used to treat a variety of human conditions and has beneficial effects on the central nervous system in rodents with and without brain alteration. The present study was designed to test whether chronic MB treatment taken after (therapeutic effect) or before (preventive effect) the onset of beta-amyloid pathology influences cognition in a transgenic mouse model (APP/PS1). In addition, the present study aims at revealing whether these behavioral effects might be related to brain alteration in beta-amyloid deposition. To this end, we conducted an in vivo study and compared two routes of drug administration, drinking water versus intraperitoneal injection. Results showed that transgenic mice treated with MB orally or following intraperitoneal injection were protected from cognitive impairments in a variety of social, learning, and exploratory tasks. Immunoreactive beta-amyloid deposition was significantly reduced in the hippocampus and adjacent cortex in MB-treated transgenic mice. Interestingly, these beneficial effects were observed independently of beta-amyloid load at the time of MB treatment. This suggests that MB treatment is beneficial at both therapeutic and preventive levels. Using solid-state High Resolution Magic Angle Spinning Nuclear Magnetic Resonance (HRMAS-NMR), we showed that MB administration after the onset of amyloid pathology significantly restored the concentration of two metabolites related to mitochondrial metabolism, namely alanine and lactate. We conclude that MB might be useful for the therapy and prevention of Alzheimer's disease. This article is part of the Special Issue entitled 'The Synaptic Basis of Neurodegenerative Disorders'. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Pro-oxidant effects of Ecstasy and its metabolites in mouse brain synaptosomes

    PubMed Central

    Barbosa, Daniel José; Capela, João Paulo; Oliveira, Jorge MA; Silva, Renata; Ferreira, Luísa Maria; Siopa, Filipa; Branco, Paula Sério; Fernandes, Eduarda; Duarte, José Alberto; de Lourdes Bastos, Maria; Carvalho, Félix

    2012-01-01

    BACKGROUND AND PURPOSE 3,4-Methylenedioxymethamphetamine (MDMA or ‘Ecstasy’) is a worldwide major drug of abuse known to elicit neurotoxic effects. The mechanisms underlying the neurotoxic effects of MDMA are not clear at present, but the metabolism of dopamine and 5-HT by monoamine oxidase (MAO), as well as the hepatic biotransformation of MDMA into pro-oxidant reactive metabolites is thought to contribute to its adverse effects. EXPERIMENTAL APPROACH Using mouse brain synaptosomes, we evaluated the pro-oxidant effects of MDMA and its metabolites, α-methyldopamine (α-MeDA), N-methyl-α-methyldopamine (N-Me-α-MeDA) and 5-(glutathion-S-yl)-α-methyldopamine [5-(GSH)-α-MeDA], as well as those of 5-HT, dopamine, l-DOPA and 3,4-dihydroxyphenylacetic acid (DOPAC). KEY RESULTS 5-HT, dopamine, l-DOPA, DOPAC and MDMA metabolites α-MeDA, N-Me-α-MeDA and 5-(GSH)-α-MeDA, concentration- and time-dependently increased H2O2 production, which was significantly reduced by the antioxidants N-acetyl-l-cysteine (NAC), ascorbic acid and melatonin. From experiments with MAO inhibitors, it was observed that H2O2 generation induced by 5-HT was totally dependent on MAO-related metabolism, while for dopamine, it was a minor pathway. The MDMA metabolites, dopamine, l-DOPA and DOPAC concentration-dependently increased quinoproteins formation and, like 5-HT, altered the synaptosomal glutathione status. Finally, none of the compounds modified the number of polarized mitochondria in the synaptosomal preparations, and the compounds’ pro-oxidant effects were unaffected by prior mitochondrial depolarization, excluding a significant role for mitochondrial-dependent mechanisms of toxicity in this experimental model. CONCLUSIONS AND IMPLICATIONS MDMA metabolites along with high levels of monoamine neurotransmitters can be major effectors of neurotoxicity induced by Ecstasy. PMID:21506960

  5. Effects of gravity changes on gene expression of BDNF and serotonin receptors in the mouse brain

    PubMed Central

    Yoshimura, Yuko; Kudo, Takashi; Shirakawa, Masaki; Shiba, Dai; Takahashi, Satoru; Morita, Hironobu

    2017-01-01

    Spaceflight entails various stressful environmental factors including microgravity. The effects of gravity changes have been studied extensively on skeletal, muscular, cardiovascular, immune and vestibular systems, but those on the nervous system are not well studied. The alteration of gravity in ground-based animal experiments is one of the approaches taken to address this issue. Here we investigated the effects of centrifugation-induced gravity changes on gene expression of brain-derived neurotrophic factor (BDNF) and serotonin receptors (5-HTRs) in the mouse brain. Exposure to 2g hypergravity for 14 days showed differential modulation of gene expression depending on regions of the brain. BDNF expression was decreased in the ventral hippocampus and hypothalamus, whereas increased in the cerebellum. 5-HT1BR expression was decreased in the cerebellum, whereas increased in the ventral hippocampus and caudate putamen. In contrast, hypergravity did not affect gene expression of 5-HT1AR, 5-HT2AR, 5-HT2CR, 5-HT4R and 5-HT7R. In addition to hypergravity, decelerating gravity change from 2g hypergravity to 1g normal gravity affected gene expression of BDNF, 5-HT1AR, 5-HT1BR, and 5-HT2AR in various regions of the brain. We also examined involvement of the vestibular organ in the effects of hypergravity. Surgical lesions of the inner ear’s vestibular organ removed the effects induced by hypergravity on gene expression, which suggests that the effects of hypergravity are mediated through the vestibular organ. In summary, we showed that gravity changes induced differential modulation of gene expression of BDNF and 5-HTRs (5-HT1AR, 5-HT1BR and 5-HT2AR) in some brain regions. The modulation of gene expression may constitute molecular bases that underlie behavioral alteration induced by gravity changes. PMID:28591153

  6. Effects of gravity changes on gene expression of BDNF and serotonin receptors in the mouse brain.

    PubMed

    Ishikawa, Chihiro; Li, Haiyan; Ogura, Rin; Yoshimura, Yuko; Kudo, Takashi; Shirakawa, Masaki; Shiba, Dai; Takahashi, Satoru; Morita, Hironobu; Shiga, Takashi

    2017-01-01

    Spaceflight entails various stressful environmental factors including microgravity. The effects of gravity changes have been studied extensively on skeletal, muscular, cardiovascular, immune and vestibular systems, but those on the nervous system are not well studied. The alteration of gravity in ground-based animal experiments is one of the approaches taken to address this issue. Here we investigated the effects of centrifugation-induced gravity changes on gene expression of brain-derived neurotrophic factor (BDNF) and serotonin receptors (5-HTRs) in the mouse brain. Exposure to 2g hypergravity for 14 days showed differential modulation of gene expression depending on regions of the brain. BDNF expression was decreased in the ventral hippocampus and hypothalamus, whereas increased in the cerebellum. 5-HT1BR expression was decreased in the cerebellum, whereas increased in the ventral hippocampus and caudate putamen. In contrast, hypergravity did not affect gene expression of 5-HT1AR, 5-HT2AR, 5-HT2CR, 5-HT4R and 5-HT7R. In addition to hypergravity, decelerating gravity change from 2g hypergravity to 1g normal gravity affected gene expression of BDNF, 5-HT1AR, 5-HT1BR, and 5-HT2AR in various regions of the brain. We also examined involvement of the vestibular organ in the effects of hypergravity. Surgical lesions of the inner ear's vestibular organ removed the effects induced by hypergravity on gene expression, which suggests that the effects of hypergravity are mediated through the vestibular organ. In summary, we showed that gravity changes induced differential modulation of gene expression of BDNF and 5-HTRs (5-HT1AR, 5-HT1BR and 5-HT2AR) in some brain regions. The modulation of gene expression may constitute molecular bases that underlie behavioral alteration induced by gravity changes.

  7. Cryopreservation of unfertilized mouse oocytes: the effect of replacing sodium with choline in the freezing medium.

    PubMed

    Stachecki, J J; Cohen, J; Willadsen, S M

    1998-12-01

    Although embryo cryopreservation has become commonplace in many species, effective methods are not available for routine freezing of unfertilized eggs. Cryopreservation-induced damage may be caused by the high concentration of sodium ions in conventional freezing media. This study investigates the effect of a newly developed low-sodium choline-based medium (CJ2) on the ability of unfertilized, metaphase II mouse eggs to survive cryopreservation and develop to the blastocyst stage in vitro. Specifically, the effects of cooling to subzero temperatures, thawing rate, LN2 plunge temperature, and equilibration with a low-sodium medium prior to freezing are examined. In contrast to cooling to 23, 0, or -7.0 degreesC in a sodium-based freezing medium (ETFM), cooling in CJ2 had no significant negative effect on oocyte survival or development. Oocytes frozen in CJ2 survived plunging into LN2 from -10, -20, or -33 degreesC at significantly higher rates than oocytes frozen in ETFM. With the protocol used (1.5 M PrOH, 0.1 M sucrose, -0.3 C/min, plunging at -33 degreesC) rapid thawing by direct submersion in 30 degreesC water was more detrimental to oocyte survival than holding in air for 30 or 120 s prior to transfer to water. Equilibration of unfertilized oocytes with a low-sodium medium prior to cryopreservation in CJ2 significantly increased survival and blastocyst development. These results demonstrate that the high concentration of sodium in conventional freezing media is detrimental to oocyte cryopreservation and show that choline is a promising replacement. Reducing the sodium content of the freezing medium to a very low level or eliminating sodium altogether may allow oocytes and other cells to be frozen more effectively.

  8. Effects of computer mouse design and task on carpal tunnel pressure.

    PubMed

    Keir, P J; Bach, J M; Rempel, D

    1999-10-01

    Computer mouse use has become an integral part of office work in the past decade. Intensive mouse use has been associated with increased risk of upper extremity musculoskeletal disorders, including carpal tunnel syndrome. Sustained, elevated fluid pressure in the carpal tunnel may play a role in the pathophysiology of carpal tunnel syndrome. Carpal tunnel pressure was measured in 14 healthy individuals while they performed tasks using three different computer mice. Participants performed a multidirectional dragging ('drag and drop') task starting with the hand resting (static posture) on the mouse. With one mouse, an additional pointing ('point-and-click') task was performed. All mice were associated with similar wrist extension postures (p = 0.41) and carpal tunnel pressures (p = 0.48). Pressures were significantly greater during dragging and pointing tasks than when resting the hand (static posture) on the mouse (p = 0.003). The mean pressures during the dragging tasks were 28.8-33.1 mmHg, approximately 12 mmHg greater than the static postures. Pressures during the dragging task were higher than the pointing task (33.1 versus 28.0 mmHg), although the difference was borderline non-significant (p = 0.06). In many participants the carpal tunnel pressures measured during mouse use were greater than pressures known to alter nerve function and structure, indicating that jobs with long periods of intensive mouse use may be at an increased risk of median mononeuropathy. A recommendation is made to minimize wrist extension, minimize prolonged dragging tasks and frequently perform other tasks with the mousing hand.

  9. Protective Effect of Quercetin on the Development of Preimplantation Mouse Embryos against Hydrogen Peroxide-Induced Oxidative Injury

    PubMed Central

    Zhang, Qin-hua; Yan, Zhi-guang; Liang, Hong-xing; Chai, Wei-ran; Yan, Zheng; Kuang, Yan-ping; Qi, Cong

    2014-01-01

    Quercetin, a plant-derived flavonoid in Chinese herbs, fruits and wine, displays antioxidant properties in many pathological processes associated with oxidative stress. However, the effect of quercetin on the development of preimplantation embryos under oxidative stress is unclear. The present study sought to determine the protective effect and underlying mechanism of action of quercetin against hydrogen peroxide (H2O2)-induced oxidative injury in mouse zygotes. H2O2 treatment impaired the development of mouse zygotes in vitro, decreasing the rates of blastocyst formation and hatched, and increasing the fragmentation, apoptosis and retardation in blastocysts. Quercetin strongly protected zygotes from H2O2-induced oxidative injury by decreasing the reactive oxygen species level, maintaining mitochondrial function and modulating total antioxidant capability, the activity of the enzymatic antioxidants, including glutathione peroxidase and catalase activity to keep the cellular redox environment. Additionally, quercetin had no effect on the level of glutathione, the main non-enzymatic antioxidant in embryos. PMID:24586844

  10. EFFECTS OF VARIOUS IMMUNE RABBIT SERUMS ON THE CELLS OF SEVERAL TRANSPLANTED MOUSE LYMPHOMAS IN VITRO AND IN VIVO

    PubMed Central

    Mohos, Steven C.; Kidd, John G.

    1957-01-01

    Immune serums prepared in rabbits with antigens made from normal mouse organs and tissues that were presumably devoid of large numbers of lymphocytic cells (notably kidney, liver, brain, whole embryos, and erythrocytes) proved lethal for the cells of several transplanted mouse lymphomas in vitro in the presence of complement; but these immune serums, when given intraperitoneally in large amounts to susceptible mice that had been implanted subcutaneously with lymphoma cells of one or another of several types, failed entirely to inhibit growth of the lymphoma cells in vivo. In contrast, immune serums made with cells procured from transplanted mouse lymphomas as antigens, and those made with cells from normal mouse thymus or lymph nodes, acted even more powerfully upon the several types of lymphoma cells in vitro than did the immune serums prepared with normal mouse organs, and when given intraperitoneally to implanted mice they brought about death of the lymphoma cells in vivo, the effect being to a considerable extent specific and referable to an antibody that reacts with neoplastic and non-neoplastic lymphocytic cells of mice, as absorption experiments disclosed. In comparative tests, furthermore, the anti-lymphoma serums acted more powerfully upon the lymphoma cells in vivo than did such chemotherapeutic agents as amethopterin, azaguanine, ethionine, azaserine, and 6-mercaptopurine, given singly or in various combinations in maximal tolerated amounts, though their effects were not so powerful as those exerted by normal guinea pig serum on lymphoma cells of two types that are susceptible to its action in vivo. The significance of the findings was briefly discussed. PMID:13406182

  11. Effects of Inhalable Microparticles of Seonpyejeongcheon-Tang in an Asthma Mouse Model

    PubMed Central

    Yang, Won-Kyung; Lee, Chul-Hwa; Kim, Min-Hee; Kim, Seung-Hyeong; Choi, Hae-Yoon; Yeo, Yoon; Park, Yang-Chun

    2016-01-01

    Objectives: Allergic asthma generally presents with symptoms of wheezing, coughing, breathlessness, and airway inflammation. Seonpyejeongcheon-tang (SJT) consists of 12 herbs. It originated from Jeongcheon-tang (JT), also known as Ding-chuan-tang, composed of 7 herbs, in She-sheng-zhong-miao-fang. This study aimed to evaluate the effects of local delivery of SJT via inhalable microparticles in an asthma mouse model. Methods: Microparticles containing SJT were produced by spray-drying with leucine as an excipient. SJT microparticles were evaluated with respect to their aerodynamic properties, in vitro cytotoxicity, in vivo toxicity, and therapeutic effects on ovalbumin (OVA)-induced asthma in comparison with orally-administered SJT. Results: SJT microparticles provided desirable aerodynamic properties (fine particle fraction of 48.9% ± 6.4% and mass median aerodynamic diameter of 3.7 ± 0.3 μm). SJT microparticles did not show any cytotoxicity against RAW 264.7 macrophages at concentrations of 0.01 - 3 mg/mL. Inhaled SJT microparticles decreased the levels of IL-4, IL-5, IL-13, IL-17A, eotaxin and OVA-IgE in bronchoalveolar lavage fluid (BALF) in mice with OVA-induced asthma. These effects were verified by histological evaluation of the levels of infiltration of inflammatory cells and collagen, destructions of alveoli and bronchioles, and hyperplasia of goblet cells in lung tissues. The effects of SJT microparticles in the asthma model were equivalent to those of orally-administered SJT extract. Conclusion: This study suggests that SJT is a promising agent for inhalation therapy for patients with asthma. PMID:28097040

  12. Etoposide exposure during male mouse pachytene has complex effects on crossing-over and causes nondisjunction.

    PubMed

    Russell, Liane B; Hunsicker, Patricia R; Kerley, Marilyn; Pyle, April; Saxton, Arnold M

    2004-12-31

    In experiments involving different germ-cell stages, we had previously found meiotic prophase of the male mouse to be vulnerable to the induction of several types of genetic damage by the topoisomerase-II inhibitor etoposide. The present study of etoposide effects involved two end points of meiotic events known to occur in primary spermatocytes--chromosomal crossing-over and segregation. By following assortment of 13 microsatellite markers in two chromosomes (Ch 7 and Ch 15) it was shown that etoposide significantly affected crossing-over, but did not do so in a uniform fashion. Treatment generally changed the pattern for each chromosome, leading to local decreases in recombination, a distal shift in locations of crossing-over, and an overall decrease in double crossovers; at least some of these results might be interpreted as evidence for increased interference. Two methods were used to explore etoposide effects on chromosome segregation: a genetic experiment capable of detecting sex-chromosome nondisjunction in living progeny; and the use of FISH (fluorescence in situ hybridization) technology to score numbers of Chromosomes X, Y, and 8 in spermatozoa. Taken together these two approaches indicated that etoposide exposure of pachytene spermatocytes induces malsegregation, and that the findings of the genetic experiment probably yielded a marked underestimate of nondisjunction. As indicated by certain segregants, at least part of the etoposide effect could be due to disrupted pairing of achiasmatic homologs, followed by precocious sister-centromere separation. It has been shown for several organisms that absent or reduced levels of recombination, as well as suboptimally positioned recombination events, may be associated with abnormal segregation. Etoposide is the only chemical tested to date for which living progeny indicates an effect on both male meiotic crossing-over and chromosome segregation. Whether, however, etoposide-induced changes in recombination

  13. Dose Response Effects of 810 nm Laser Light on Mouse Primary Cortical Neurons

    PubMed Central

    Sharma, Sulbha K.; Kharkwal, Gitika B.; Sajo, Mari; Huang, Ying-Ying; De Taboada, Luis; McCarthy, Thomas; Hamblin, Michael R.

    2011-01-01

    Background and Objectives In the past four decades numerous studies have reported the efficacy of low level light (laser) therapy (LLLT) as a treatment for diverse diseases and injuries. Recent studies have shown that LLLT can biomodulate processes in the central nervous system and has been extensively studied as a stroke treatment. However there is still a lack of knowledge on the effects of LLLT at the cellular level in neurons. The present study aimed to study the effect of 810 nm laser on several cellular processes in primary cortical neurons cultured from embryonic mouse brains. Study Design/Materials and Methods Neurons were irradiated with fluences of 0.03, 0.3, 3, 10, or 30 J/cm2 of 810-nm laser delivered over varying times at 25 mW/cm2 and intracellular levels of reactive oxygen species (ROS), nitric oxide and calcium were measured using fluorescent probes within 5 minutes of the end of irradiation. The changes in mitochondrial function in response to light were studied in terms of adenosine triphosphate (ATP) and mitochondrial membrane potential (MMP). Results Light induced a significant increase in calcium, ATP and MMP at lower fluences and a decrease at higher fluences. ROS was significantly induced at low fluences, followed by a decrease and a second larger increase at 30 J/cm2. Nitric oxide levels showed a similar pattern of a double peak but values were less significant compared to ROS. Conclusions The results suggest that LLLT at lower fluences is capable of inducing mediators of cell signaling processes which in turn may be responsible for the beneficial stimulatory effects of the low level laser. At higher fluences beneficial mediators are reduced and high levels of Janus-type mediators such as ROS and NO (beneficial at low concentrations and harmful at high concentrations) may be responsible for the damaging effects of high-fluence light and the overall biphasic dose response. PMID:21956634

  14. Cisplatin-Induced Ototoxicity and the Effects of Intratympanic Diltiazem in a Mouse Model.

    PubMed

    Naples, James G; Parham, Kourosh

    2016-01-01

    To evaluate whether the calcium-channel blocker diltiazem has protective effects against cisplatin-induced ototoxicity in a mouse model. Original basic science in vivo investigation. Academic setting: Otolaryngology-Head and Neck Surgery laboratory at University of Connecticut Health Center. Thirty-nine female CBA/J mice. Pure tone- or click-evoked auditory brainstem responses (ABRs) were recorded in CBA/J mice to determine auditory thresholds. All mice had baseline ABRs recorded. They were then given a single cisplatin bolus (14 mg/kg), followed by 5 consecutive days of intratympanic diltiazem or saline control. Follow-up thresholds were recorded on days 7, 14, and 21 postcisplatin. Tone-evoked ABRs evaluated the otoprotective effect of 2-mg/kg diltiazem in 9 mice, and dose effect was examined in response to click-evoked ABR with 2- or 4-mg/kg diltiazem in 2 groups of 15 mice. Saline-treated ears had significantly elevated tone-evoked auditory thresholds when compared with diltiazem-treated ears (P = .038) on day 7 postcisplatin only. Click-evoked ABR thresholds were significantly elevated in saline-treated ears versus diltiazem-treated ears for the 2-mg/kg group (P = .001) and 4-mg/kg group (P = .011) on days 7, 14, and 21 postcisplatin. Intratympanic diltiazem has significant protective effects against cisplatin ototoxicity at 2 and 4 mg/kg. This is the first in vivo study to demonstrate that diltiazem offers a potentially novel therapy for cisplatin-induced ototoxicity. © American Academy of Otolaryngology-Head and Neck Surgery Foundation 2015.

  15. Effects of tetrahydrohyperforin in mouse hippocampal slices: neuroprotection, long-term potentiation and TRPC channels.

    PubMed

    Montecinos-Oliva, C; Schuller, A; Parodi, J; Melo, F; Inestrosa, N C

    2014-01-01

    Tetrahydrohyperforin (IDN5706) is a semi-synthetic compound derived from hyperforin (IDN5522) and is the main active principle of St. John's Wort. IDN5706 has shown numerous beneficial effects when administered to wild-type and double transgenic (APPswe/PSEN1ΔE9) mice that model Alzheimer's disease. However, its mechanism of action is currently unknown. Toward this end, we analysed field excitatory postsynaptic potentials (fEPSPs) in mouse hippocampal slices incubated with IDN5706 and in the presence of the TRPC3/6/7 activator 1-oleoyl-2-acetyl-sn-glycerol (OAG), the TRPC channel blocker SKF96365, and neurotoxic amyloid β-protein (Aβ) oligomers. To study spatial memory, Morris water maze (MWM) behavioural tests were conducted on wild-type mice treated with IDN5706 and SKF96365. In silico studies were conducted to predict a potential pharmacophore. IDN5706 and OAG had a similar stimulating effect on fEPSPs, which was inhibited by SKF96365. IDN5706 protected from reduced fEPSPs induced by Aβ oligomers. IDN5706 improved spatial memory in wild-type mice, an effect that was counteracted by co-administration of SKF96365. Our in silico studies suggest strong pharmacophore similarity of IDN5706 and other reported TRPC6 activators (IDN5522, OAG and Hyp9). We propose that the effect of IDN5706 is mediated through activation of the TRPC3/6/7 channel subfamily. The unveiling of the drug's mechanism of action is a necessary step toward the clinical use of IDN5706 in Alzheimer's disease.

  16. Analgesic effects of adenylyl cyclase inhibitor NB001 on bone cancer pain in a mouse model

    PubMed Central

    Kang, Wen-bo; Yang, Qi; Guo, Yan-yan; Wang, Lu; Wang, Dong-sheng; Cheng, Qiang; Li, Xiao-ming; Tang, Jun; Zhao, Jian-ning; Liu, Gang; Zhuo, Min

    2016-01-01

    Background Cancer pain, especially the one caused by metastasis in bones, is a severe type of pain. Pain becomes chronic unless its causes and consequences are resolved. With improvements in cancer detection and survival among patients, pain has been considered as a great challenge because traditional therapies are partially effective in terms of providing relief. Cancer pain mechanisms are more poorly understood than neuropathic and inflammatory pain states. Chronic inflammatory pain and neuropathic pain are influenced by NB001, an adenylyl cyclase 1 (AC1)-specific inhibitor with analgesic effects. In this study, the analgesic effects of NB001 on cancer pain were evaluated. Results Pain was induced by injecting osteolytic murine sarcoma cell NCTC 2472 into the intramedullary cavity of the femur of mice. The mice injected with sarcoma cells for four weeks exhibited significant spontaneous pain behavior and mechanical allodynia. The continuous systemic application of NB001 (30 mg/kg, intraperitoneally, twice daily for three days) markedly decreased the number of spontaneous lifting but increased the mechanical paw withdrawal threshold. NB001 decreased the concentrations of cAMP and the levels of GluN2A, GluN2B, p-GluA1 (831), and p-GluA1 (845) in the anterior cingulate cortex, and inhibited the frequency of presynaptic neurotransmitter release in the anterior cingulate cortex of the mouse models. Conclusions NB001 may serve as a novel analgesic to treat bone cancer pain. Its analgesic effect is at least partially due to the inhibition of AC1 in anterior cingulate cortex. PMID:27612915

  17. Renal protective effects of aliskiren beyond its antihypertensive property in a mouse model of progressive fibrosis.

    PubMed

    Gross, Oliver; Girgert, Rainer; Rubel, Diana; Temme, Johanna; Theissen, Stephanie; Müller, Gerhard-Anton

    2011-03-01

    The direct renin inhibitor aliskiren is known to exhibit a strong antihypertensive effect. However, the organoprotective potential of aliskiren beyond its antihypertensive properties is less clear. This study investigates the antifibrotic nephroprotective effects of aliskiren in a nonhypertensive mouse model for progressive renal fibrosis. COL4A3(-/-) mice received aliskiren via osmotic minipumps. Placebo-treated animals served as controls. Therapy was initiated in 6-week-old animals already showing renal damage (proteinuria ~1 g/l, starting renal fibrosis) and lasted for 4 weeks. Six animals were sacrificed after 9.5 weeks; serum urea and proteinuria were measured. Kidneys were further investigated using histological, immunohistological, and western blot techniques. Survival until end-stage renal failure was monitored in the remaining animals. COL4A3(-/-) mice did not develop hypertension. Aliskiren serum levels were in the therapeutic range (288 ± 44 ng/ml). Therapy significantly prolonged lifespan until death from renal failure by 18% compared with placebo-treated controls (78.6 ± 8.2 vs. 66.6 ± 4.9 days, P < 0.05). Similarly, therapy reduced the amount of proteinuria and serum urea. Compared with placebo-treated controls, the accumulation of extracellular matrix and renal scarring and the levels of transforming growth factor-β (TGFβ) and connective tissue growth factor (CTGF) were decreased in treated mice. Despite the late onset of therapy, our results indicate nephroprotective effects of the renin inhibitor aliskiren beyond its antihypertensive property in this animal model of progressive renal fibrosis. In addition to the recognized antihypertensive action of aliskiren, its antifibrotic, antiproteinuric effects demonstrated in the present study indicate that aliskiren may have potential as an important therapeutic option for chronic fibrotic diseases in humans.

  18. EFFECTS OF ARSENIC-AZOPROTEINS ON MOUSE LYMPHOMA CELLS IN VIVO

    PubMed Central

    Kidd, John G.

    1958-01-01

    Conjugates made by coupling diazotized arsanilic acid with one or another of a variety of proteins regularly brought about the complete regression of established 6C3HED lymphomas in living mice without perceptibly harming the latter, while untreated control animals regularly died with lymphomatosis. Histologic studies made plain that the lymphoma cells promptly die in mice treated with the arsenic-azoproteins, while those in untreated control animals continue to proliferate. Various inorganic and organic arsenicals (including arsanilic acid and 4-arsonophenyldiazotate) were essentially devoid of effect on the lymphoma cells in vivo, and this proved true as well of the proteins employed (serum albumins and globulins procured from several species, casein, and ovalbumin). Mixtures of arsanilic acid and the several proteins, various sulfur-azoproteins, and a number of other substances—viz., amethopterin, chlorambucil, 6-mercaptopurine, 8-azaguanine, azaserine, 6-azauracil, 5-fluorouracil, thioTEPA, and DON, each given in maximal tolerated amounts—also failed to influence notably the course of established 6C3HED lymphomas in vivo. Although readily overcoming Lymphoma E9514 cells growing in the subcutaneous tissues of susceptible mice, the arsenic-azoproteins had little or no effect once these cells had reached the livers and spleens of susceptible hosts. Furthermore the arsenic-azoproteins had little or no effect in vivo on the cells of Lymphoma AKRL1, L1210, and L4946. The findings were considered in relationship to the respective susceptibilities of several types of lymphoma cells to other anti-lymphoma agents—notably guinea pig serum, immune serums prepared in rabbits with mouse lymphoma cells as antigens, and a variety of chemical compounds. Taken together, the observations provide proof that lymphoma cells of various types, although resembling one another quite closely in growth characteristics following transplantation in susceptible hosts, and in morphology

  19. Effect of prolonged riluzole exposure on cultured motoneurons in a mouse model of ALS

    PubMed Central

    Schuster, J. E.; Fu, R.; Siddique, T.

    2012-01-01

    Riluzole is the only FDA-approved drug to treat amyotrophic lateral sclerosis, but its long-term effects on motoneurons are unknown. Therefore, we treated primary mouse spinal cord cultures with 2 μM riluzole for 4–9 days and then used whole cell patch clamp to record the passive and active properties of both wild-type and SOD1G93A motoneurons. At this concentration, riluzole blocks >50% of the sodium component of a persistent inward current that plays a major role in determining motoneuron excitability. Prolonged riluzole treatment significantly decreased the amplitude of the persistent inward current. This effect was specific for SOD1G93A motoneurons, where the amplitude decreased by 55.4%. In addition, prolonged treatment hyperpolarized the resting membrane potential as well as the voltage onset and voltage maximum of the persistent inward current (∼2–3 mV in each case). These effects appeared to offset one another and resulted in no change in the firing properties. In a subset of cells, acute reapplication of 2 μM riluzole during the recording decreased repetitive firing and the persistent inward current, which is consistent with the normal effects of riluzole. The downregulation of the persistent inward current in response to prolonged riluzole administration is in contrast to the strong upregulation of this same current after descending neuromodulatory drive to the cord is lost following spinal injury. This dichotomy suggests that decreased activation of G protein-coupled pathways can induce upregulation in the persistent inward current but that direct channel block is ineffective. PMID:22013234

  20. What Goes Around Can Come Around: An Unexpected Deleterious Effect of Using Mouse Running Wheels for Environmental Enrichment.

    PubMed

    Leduc, Renee Y M; Rauw, Gail; Baker, Glen B; McDermid, Heather E

    2017-03-01

    Environmental enrichment items such as running wheels can promote the wellbeing of laboratory mice. Growing evidence suggests that wheel running simulates exercise effects in many mouse models of human conditions, but this activity also might change other aspects of mouse behavior. In this case study, we show that the presence of running wheels leads to pronounced and permanent circling behavior with route-tracing in a proportion of the male mice of a genetically distinct cohort. The genetic background of this cohort includes a mutation in Arhgap19, but genetic crosses showed that an unknown second-site mutation likely caused the induced circling behavior. Behavioral tests for inner-ear function indicated a normal sense of gravity in the circling mice. However, the levels of dopamine, serotonin, and some dopamine metabolites were lower in the brains of circling male mice than in mice of the same genetic background that were weaned without wheels. Circling was seen in both singly and socially housed male mice. The additional stress of fighting may have exacerbated the predisposition to circling in the socially housed animals. Singly and socially housed male mice without wheels did not circle. Our current findings highlight the importance and possibly confounding nature of the environmental and genetic background in mouse behavioral studies, given that the circling behavior and alterations in dopamine and serotonin levels in this mouse cohort occurred only when the male mice were housed with running wheels.

  1. Effects of species and cellular activity of oviductal epithelial cells on their dialogue with co-cultured mouse embryos.

    PubMed

    Tan, Xiu-Wen; Ma, Suo-Feng; Yu, Jian-Ning; Zhang, Xia; Lan, Guo-Cheng; Liu, Xin-Yong; Han, Zheng-Bin; Tan, Jing-He

    2007-01-01

    An efficient co-culture system, especially with oviductal or uterine epithelial cells, is important not only for the production of high quality embryos, but also for the study of the molecular dialogue between embryos and their maternal environment. Although mouse embryos have been co-cultured successfully with oviductal epithelial cells (OECs) from several species, studies on the effects of species and functionality of OECs are few. Reports concerning the necessity of direct contact between the embryo and OECs and about the culture of mouse embryos in medium conditioned with heterologous OECs have been controversial. In this study, pronuclear embryos from Kunming mice, characterized by an obvious two-cell block in vitro, were co-cultured with mouse, goat, and chick OECs. The functionality of OECs was determined by analyzing the cell cycle, apoptosis, the numbers of mitochondria and cilia, and the ability both to support embryonic development and to remove hypoxanthine from the culture medium. The necessity of direct contact between OECs and embryos was studied by repeated renewal of culture medium with fresh conditioned medium, the culture of embryos in plastic wells connected by tunnels to wells with OEC monolayers, and the co-culture of embryos separated from OECs by a filter. Both goat and chick OECs supported mouse embryonic development, but their embryotrophic lifespan was shorter than that of the mouse OECs. Whereas media conditioned with mouse OECs supported mouse embryonic development satisfactorily, medium conditioned with goat OECs supported little development. Immediate dialogue between heterologous OECs and embryos was essential for efficient co-culture, whereas direct contact between the two cell types was not; neither dialogue nor contact was needed between isologous OECs and embryos. Embryotrophic activity and the ability to remove hypoxanthine from conditioned medium declined with time after confluence and number of passages of OECs, mainly because

  2. Effects of ubiquitin C-terminal hydrolase L1 deficiency on mouse ova.

    PubMed

    Koyanagi, Sayaka; Hamasaki, Hiroko; Sekiguchi, Satoshi; Hara, Kenshiro; Ishii, Yoshiyuki; Kyuwa, Shigeru; Yoshikawa, Yasuhiro

    2012-03-01

    Maternal proteins are rapidly degraded by the ubiquitin-proteasome system during oocyte maturation in mice. Ubiquitin C-terminal hydrolase L1 (UCHL1) is highly and specifically expressed in mouse ova and is involved in the polyspermy block. However, the role of UCHL1 in the underlying mechanism of polyspermy block is poorly understood. To address this issue, we performed a comprehensive proteomic analysis to identify maternal proteins that were relevant to the role of UCHL1 in mouse ova using UCHL1-deficient gad. Furthermore, we assessed morphological features in gad mouse ova using transmission electron microscopy. NACHT, LRR, and PYD domain-containing (NALP) family proteins and endoplasmic reticulum (ER) chaperones were identified by proteomic analysis. We also found that the 'maternal antigen that embryos require' (NLRP5 (MATER)) protein level increased significantly in gad mouse ova compared with that in wild-type mice. In an ultrastructural study, gad mouse ova contained less ER in the cortex than in wild-type mice. These results provide new insights into the role of UCHL1 in the mechanism of polyspermy block in mouse ova.

  3. Effect of Recombinant Human Keratinocyte Growth Factor (rHuKGF, Palifermin) on Radiation-Induced Mouse Urinary Bladder Dysfunction

    SciTech Connect

    Jaal, Jana Doerr, Wolfgang

    2007-10-01

    Purpose: To determine the effect of Palifermin (rHuKGF) on acute and late radiation effects in mouse urinary bladder. Methods and Materials: Graded radiation doses were applied on day 0. Single subcutaneous injections of Palifermin (15 mg/kg) were given on day -2 or day +2. Changes in bladder function (i.e., a reduction in bladder volume by {>=}50% of the individual preirradiation value) were assessed by cystometry. Results: Early changes in mouse bladder after irradiation occur in two phases. In the first early phase, a single injection of Palifermin on day -2 increased the ED{sub 50} (dose associated with a positive bladder response in 50% of the mice) from 20.0 {+-} 3.3 Gy to 27.1 {+-} 6.9 Gy (p < .0051). Palifermin given on day +2 was not beneficial. No significant effects of Palifermin were seen in the second early phase. However, Palifermin administration before, but not after, irradiation, also modified late radiation effects, with an ED{sub 50} of 22.2 {+-} 4.8 Gy compared with 16.2 {+-} 4.9 Gy in control animals (p < .0187). Conclusions: Initial early functional changes in the mouse urinary bladder after irradiation as well as late effects can be significantly reduced by a single administration of Palifermin before irradiation.

  4. The effects of poly L-lactic acid nanofiber scaffold on mouse spermatogonial stem cell culture.

    PubMed

    Eslahi, Neda; Hadjighassem, Mahmoud Reza; Joghataei, Mohammad Taghi; Mirzapour, Tooba; Bakhtiyari, Mehrdad; Shakeri, Malak; Pirhajati, Vahid; Shirinbayan, Peymaneh; Koruji, Morteza

    2013-01-01

    A 3D-nanofiber scaffold acts in a similar way to the extracellular matrix (ECM)/basement membrane that enhances the proliferation and self-renewal of stem cells. The goal of the present study was to investigate the effects of a poly L-lactic acid (PLLA) nanofiber scaffold on frozen-thawed neonate mouse spermatogonial stem cells (SSCs) and testis tissues. The isolated spermatogonial cells were divided into six culture groups: (1) fresh spermatogonial cells, (2) fresh spermatogonial cells seeded onto PLLA, (3) frozen-thawed spermatogonial cells, (4) frozen-thawed spermatogonial cells seeded onto PLLA, (5) spermatogonial cells obtained from frozen-thawed testis tissue, and (6) spermatogonial cells obtained from frozen-thawed testis tissue seeded onto PLLA. Spermatogonial cells and testis fragments were cryopreserved and cultured for 3 weeks. Cluster assay was performed during the culture. The presence of spermatogonial cells in the culture was determined by a reverse transcriptase polymerase chain reaction for spermatogonial markers (Oct4, GFRα-1, PLZF, Mvh(VASA), Itgα6, and Itgβ1), as well as the ultrastructural study of cell clusters and SSCs transplantation to a recipient azoospermic mouse. The significance of the data was analyzed using the repeated measures and analysis of variance. The findings indicated that the spermatogonial cells seeded on PLLA significantly increased in vitro spermatogonial cell cluster formations in comparison with the control groups (culture of SSCs not seeded on PLLA) (P≤0.001). The viability rate for the frozen cells after thawing was 63.00% ± 3.56%. This number decreased significantly (40.00% ± 0.82%) in spermatogonial cells obtained from the frozen-thawed testis tissue. Both groups, however, showed in vitro cluster formation. Although the expression of spermatogonial markers was maintained after 3 weeks of culture, there was a significant downregulation for some spermatogonial genes in the experimental groups compared with

  5. Effect of chronic valproic Acid treatment on hepatic gene expression profile in wfs1 knockout mouse.

    PubMed

    Punapart, Marite; Eltermaa, Mall; Oflijan, Julia; Sütt, Silva; Must, Anne; Kõks, Sulev; Schalkwyk, Leonard C; Fernandes, Catherine; Vasar, Eero; Soomets, Ursel; Terasmaa, Anton

    2014-01-01

    Valproic acid (VPA) is a widely used anticonvulsant and mood-stabilizing drug whose use is often associated with drug-induced weight gain. Treatment with VPA has been shown to upregulate Wfs1 expression in vitro. Aim of the present study was to compare the effect of chronic VPA treatment in wild type (WT) and Wfs1 knockout (KO) mice on hepatic gene expression profile. Wild type, Wfs1 heterozygous, and homozygous mice were treated with VPA for three months (300 mg/kg i.p. daily) and gene expression profiles in liver were evaluated using Affymetrix Mouse GeneChip 1.0 ST array. We identified 42 genes affected by Wfs1 genotype, 10 genes regulated by VPA treatment, and 9 genes whose regulation by VPA was dependent on genotype. Among the genes that were regulated differentially by VPA depending on genotype was peroxisome proliferator-activated receptor delta (Ppard), whose expression was upregulated in response to VPA treatment in WT, but not in Wfs1 KO mice. Thus, regulation of Ppard by VPA is dependent on Wfs1 genotype.

  6. Drugs that reverse disease transcriptomic signatures are more effective in a mouse model of dyslipidemia

    PubMed Central

    Wagner, Allon; Cohen, Noa; Kelder, Thomas; Amit, Uri; Liebman, Elad; Steinberg, David M; Radonjic, Marijana; Ruppin, Eytan

    2015-01-01

    High-throughput omics have proven invaluable in studying human disease, and yet day-to-day clinical practice still relies on physiological, non-omic markers. The metabolic syndrome, for example, is diagnosed and monitored by blood and urine indices such as blood cholesterol levels. Nevertheless, the association between the molecular and the physiological manifestations of the disease, especially in response to treatment, has not been investigated in a systematic manner. To this end, we studied a mouse model of diet-induced dyslipidemia and atherosclerosis that was subject to various drug treatments relevant to the disease in question. Both physiological data and gene expression data (from the liver and white adipose) were analyzed and compared. We find that treatments that restore gene expression patterns to their norm are associated with the successful restoration of physiological markers to their baselines. This holds in a tissue-specific manner—treatments that reverse the transcriptomic signatures of the disease in a particular tissue are associated with positive physiological effects in that tissue. Further, treatments that introduce large non-restorative gene expression alterations are associated with unfavorable physiological outcomes. These results provide a sound basis to in silico methods that rely on omic metrics for drug repurposing and drug discovery by searching for compounds that reverse a disease's omic signatures. Moreover, they highlight the need to develop drugs that restore the global cellular state to its healthy norm rather than rectify particular disease phenotypes. PMID:26148350

  7. Effects of Nigella sativa on heat-induced testis damage in mouse.

    PubMed

    Mohajeri, D; Kaffashi Elahi, R

    2015-01-01

    Infertility is one of the major health problems. The aim of this study was to evaluate the effects of Nigella sativa on heat-induced testicular damage. Forty male mice were randomly divided into the four equal groups as Control, Heat stressed and, Heated and treated with Nigella sativa 10 % and 20 % in diet. The scrotum of mice except to the control mice were immersed for 15 min in a water bath at 43 °C. Animals in the control group were treated identically except that the water bath was maintained at 23 °C. Fifty days after the heating, blood samples were collected for testosterone levels. Testes were removed for the measurement of seminiferous tubules diameter and percentage of spermatogenesis and oxidant/antioxidant status. Heating stress significantly reduced blood testosterone level and increased lipid peroxidation product and decreased antioxidant activities of superoxide dismutase, catalase and glutathione peroxidase (p < 0.01). Nigella sativa treatment significantly increased blood testosterone level and decreased testis malondialdehyde level and increased antioxidant enzymes activities (p < 0.05). In the mice treated with Nigella sativa, testes illustrated normal spermatogenesis and structure. The results indicated that supplementation of Nigella sativa in diet improves spermatogenesis and antioxidant status after a short exposure of the mouse testis to heat (Tab. 1, Fig. 4, Ref. 45).

  8. Specificity and Heterogeneity of Terahertz Radiation Effect on Gene Expression in Mouse Mesenchymal Stem Cells

    DOE PAGES

    Alexandrov, Boian S.; Phipps, M. Lisa; Alexandrov, Ludmil B.; ...

    2013-01-31

    In this paper, we report that terahertz (THz) irradiation of mouse mesenchymal stem cells (mMSCs) with a single-frequency (SF) 2.52 THz laser or pulsed broadband (centered at 10 THz) source results in irradiation specific heterogenic changes in gene expression. The THz effect depends on irradiation parameters such as the duration and type of THz source, and on the degree of stem cell differentiation. Our microarray survey and RT-PCR experiments demonstrate that prolonged broadband THz irradiation drives mMSCs toward differentiation, while 2-hour irradiation (regardless of THz sources) affects genes transcriptionally active in pluripotent stem cells. The strictly controlled experimental environment indicatesmore » minimal temperature changes and the absence of any discernable response to heat shock and cellular stress genes imply a non-thermal response. Computer simulations of the core promoters of two pluripotency markers reveal association between gene upregulation and propensity for DNA breathing. Finally, we propose that THz radiation has potential for non-contact control of cellular gene expression.« less

  9. Specificity and Heterogeneity of Terahertz Radiation Effect on Gene Expression in Mouse Mesenchymal Stem Cells

    PubMed Central

    Alexandrov, Boian S.; Phipps, M. Lisa; Alexandrov, Ludmil B.; Booshehri, Layla G.; Erat, Anna; Zabolotny, Janice; Mielke, Charles H.; Chen, Hou-Tong; Rodriguez, George; Rasmussen, Kim Ø.; Martinez, Jennifer S.; Bishop, Alan R.; Usheva, Anny

    2013-01-01

    We report that terahertz (THz) irradiation of mouse mesenchymal stem cells (mMSCs) with a single-frequency (SF) 2.52 THz laser or pulsed broadband (centered at 10 THz) source results in irradiation specific heterogenic changes in gene expression. The THz effect depends on irradiation parameters such as the duration and type of THz source, and on the degree of stem cell differentiation. Our microarray survey and RT-PCR experiments demonstrate that prolonged broadband THz irradiation drives mMSCs toward differentiation, while 2-hour irradiation (regardless of THz sources) affects genes transcriptionally active in pluripotent stem cells. The strictly controlled experimental environment indicates minimal temperature changes and the absence of any discernable response to heat shock and cellular stress genes imply a non-thermal response. Computer simulations of the core promoters of two pluripotency markers reveal association between gene upregulation and propensity for DNA breathing. We propose that THz radiation has potential for non-contact control of cellular gene expression. PMID:23378916

  10. Specificity and Heterogeneity of Terahertz Radiation Effect on Gene Expression in Mouse Mesenchymal Stem Cells

    SciTech Connect

    Alexandrov, Boian S.; Phipps, M. Lisa; Alexandrov, Ludmil B.; Booshehri, Layla G.; Erat, Anna; Zabolotny, Janice; Mielke, Charles H.; Chen, Hou-Tong; Rodriguez, George; Rasmussen, Kim O.; Martinez, Jennifer S.; Bishop, Alan R.; Usheva, Anny

    2013-01-31

    In this paper, we report that terahertz (THz) irradiation of mouse mesenchymal stem cells (mMSCs) with a single-frequency (SF) 2.52 THz laser or pulsed broadband (centered at 10 THz) source results in irradiation specific heterogenic changes in gene expression. The THz effect depends on irradiation parameters such as the duration and type of THz source, and on the degree of stem cell differentiation. Our microarray survey and RT-PCR experiments demonstrate that prolonged broadband THz irradiation drives mMSCs toward differentiation, while 2-hour irradiation (regardless of THz sources) affects genes transcriptionally active in pluripotent stem cells. The strictly controlled experimental environment indicates minimal temperature changes and the absence of any discernable response to heat shock and cellular stress genes imply a non-thermal response. Computer simulations of the core promoters of two pluripotency markers reveal association between gene upregulation and propensity for DNA breathing. Finally, we propose that THz radiation has potential for non-contact control of cellular gene expression.

  11. Effect of exposure to low-dose [gamma] radiation during late organogenesis in the mouse fetus

    SciTech Connect

    Devi, P.U.; Baskar, R.; Hande, M.P. )

    1994-04-01

    The adominal region of pregnant Swiss mice was exposed to 0.05 to 0.50 of [gamma] radiation on day 11.5 postcoitus. The animals were sacrificed on day 18 gestation and the fetuses were examined for mortality, growth retardation, changes in head size and brain weight, and incidence of microphthalmia. No marked increase in fetal mortality or growth retardation was observed below 0.25 Gy; the increase in these parameters was significant only at 0.50 Gy. A significant reduction in head size and brain weight and a significant increase in the incidence of microphthalmia were observed at doses above 0.15 Gy. Detectable levels of microcephaly and microphthalmia were evident even at 0.10 Gy. A linear dose response was seen for these effects in the dose range of 0.05 to 0.15 Gy. It is concluded that the late period of organogenesis in the mouse, especially between days 10 and 12 postcoitus, is a particularly sensitive phase in the development of the skull, brain and eye. 21 refs., 4 figs., 4 tabs.

  12. Differential gene expression in mouse liver associated with the hepatoprotective effect of clofibrate

    SciTech Connect

    Moffit, Jeffrey S.; Koza-Taylor, Petra H.; Holland, Ricky D.; Thibodeau, Michael S.; Beger, Richard D.; Lawton, Michael P.; Manautou, Jose E. . E-mail: jose.manautou@uconn.edu

    2007-07-15

    Pretreatment of mice with the peroxisome proliferator clofibrate (CFB) protects against acetaminophen (APAP)-induced hepatotoxicity. Previous studies have shown that activation of the nuclear peroxisome proliferator activated receptor-alpha (PPAR{alpha}) is required for this effect. The present study utilizes gene expression profile analysis to identify potential pathways contributing to PPAR{alpha}-mediated hepatoprotection. Gene expression profiles were compared between wild type and PPAR{alpha}-null mice pretreated with vehicle or CFB (500 mg/kg, i.p., daily for 10 days) and then challenged with APAP (400 mg/kg, p.o.). Total hepatic RNA was isolated 4 h after APAP treatment and hybridized to Affymetrix Mouse Genome MGU74 v2.0 GeneChips. Gene expression analysis was performed utilizing GeneSpring (registered) software. Our analysis identified 53 genes of interest including vanin-1, cell cycle regulators, lipid-metabolizing enzymes, and aldehyde dehydrogenase 2, an acetaminophen binding protein. Vanin-1 could be important for CFB-mediated hepatoprotection because this protein is involved in the synthesis of cysteamine and cystamine. These are potent antioxidants capable of ameliorating APAP toxicity in rodents and humans. HPLC-ESI/MS/MS analysis of liver extracts indicates that enhanced vanin-1 gene expression results in elevated cystamine levels, which could be mechanistically associated with CFB-mediated hepatoprotection.

  13. An effective manual deboning method to prepare intact mouse nasal tissue with preserved anatomical organization.

    PubMed

    Dunston, David; Ashby, Sarah; Krosnowski, Kurt; Ogura, Tatsuya; Lin, Weihong

    2013-08-10

    The mammalian nose is a multi-functional organ with intricate internal structures. The nasal cavity is lined with various epithelia such as olfactory, respiratory, and squamous epithelia which differ markedly in anatomical locations, morphology, and functions. In adult mice, the nose is covered with various skull bones, limiting experimental access to internal structures, especially those in the posterior such as the main olfactory epithelium (MOE). Here we describe an effective method for obtaining almost the entire and intact nasal tissues with preserved anatomical organization. Using surgical tools under a dissecting microscope, we sequentially remove the skull bones surrounding the nasal tissue. This procedure can be performed on both paraformaldehyde-fixed and freshly dissected, skinned mouse heads. The entire deboning procedure takes about 20-30 min, which is significantly shorter than the experimental time required for conventional chemical-based decalcification. In addition, we present an easy method to remove air bubbles trapped between turbinates, which is critical for obtaining intact thin horizontal or coronal or sagittal sections from the nasal tissue preparation. Nasal tissue prepared using our method can be used for whole mount observation of the entire epithelia, as well as morphological, immunocytochemical, RNA in situ hybridization, and physiological studies, especially in studies where region-specific examination and comparison are of interest.

  14. Neurogenic and neurotrophic effects of BDNF peptides in mouse hippocampal primary neuronal cell cultures.

    PubMed

    Cardenas-Aguayo, Maria del Carmen; Kazim, Syed Faraz; Grundke-Iqbal, Inge; Iqbal, Khalid

    2013-01-01

    The level of brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, is down regulated in Alzheimer's disease (AD), Parkinson's disease (PD), depression, stress, and anxiety; conversely the level of this neurotrophin is increased in autism spectrum disorders. Thus, modulating the level of BDNF can be a potential therapeutic approach for nervous system pathologies. In the present study, we designed five different tetra peptides (peptides B-1 to B-5) corresponding to different active regions of BDNF. These tetra peptides were found to be non-toxic, and they induced the expression of neuronal markers in mouse embryonic day 18 (E18) primary hippocampal neuronal cultures. Additionally, peptide B-5 induced the expression of BDNF and its receptor, TrkB, suggesting a positive feedback mechanism. The BDNF peptides induced only a moderate activation (phosphorylation at Tyr 706) of the TrkB receptor, which could be blocked by the Trk's inhibitor, K252a. Peptide B-3, when combined with BDNF, potentiated the survival effect of this neurotrophin on H(2)O(2)-treated E18 hippocampal cells. Peptides B-3 and B-5 were found to work as partial agonists and as partial antagonists competing with BDNF to activate the TrkB receptor in a dose-dependent manner. Taken together, these results suggest that the described BDNF tetra peptides are neurotrophic, can modulate BDNF signaling in a partial agonist/antagonist way, and offer a novel therapeutic approach to neural pathologies where BDNF levels are dysregulated.

  15. Oridonin's therapeutic effect: suppressing Th1/Th17 simultaneously in a mouse model of Crohn's disease.

    PubMed

    Wang, Shubei; Zhang, Yong; Saas, Philippe; Wang, Haili; Xu, Ying; Chen, Ke; Zhong, Jie; Yuan, Yaozong; Wang, Ying; Sun, Yunwei

    2015-03-01

    Crohn's disease is a chronic inflammatory bowel disease. Oridonin is an effective component isolated from Rabdosia rubescens. It can inhibit the activation of transcription factor nuclear factor-kappa B and suppress the over expression of cytokines. We postulated that oridonin may be a potential therapeutic candidate for Crohn's disease. To confirm the postulation, we investigated clinical and immunologic modulations of oridonin in a mouse model of trinitrobenzene sulfonic acid-induced colitis. It was found that oridonin attenuated trinitrobenzene sulfonic acid-induced colitis as represented by a reduction in colonic interferon-γ/inteleukin-17 secretion and a decrement in splenic Th1/Th17 cells and effector memory CD4(+) T cells. Oridonin treatment inhibited the proliferation of CD4(+) T cells and upregulated the apoptosis of lymphocytes by inhibiting nuclear translocation of transcription factor nuclear factor-kappa B. Oridonin is a potential modulator for trinitrobenzene sulfonic acid-induced colitis and other Th1/Th17 mediated inflammatory diseases. © 2014 Journal of Gastroenterology and Hepatology Foundation and Wiley Publishing Asia Pty Ltd.

  16. Mouse strains differ in their sensitivity to alprazolam effect in the staircase test.

    PubMed

    Weizman, R; Paz, L; Backer, M M; Amiri, Z; Modai, I; Pick, C G

    1999-08-21

    The behavioral responses of five mouse strains (inbred: C57 and BALB/c; outbred: Swiss, ICR and HS/Ibg) to alprazolam was examined in the staircase test, an animal model sensitive to benzodiazepines (BZs). Alprazolam administration resulted in a dose-dependent suppression of rearing behavior, but to a different extent among the strains. By contrast, the number of stairs ascended was not suppressed by alprazolam at doses of 0.25 and 0.5 mg/kg, except in the C57 mice. The addition of flumazenil antagonized the alprazolam effect on rearing and climbing in all strains. There was a consistency within strains in sensitivity to alprazolam, with some strains being highly sensitive (C57 and HS) or less sensitive (Swiss, ICR and BALB/c) with regard to both rearing and climbing behaviors. Serum alprazolam levels did not differ significantly among the strains. This strain-dependent pattern of response to alprazolam seems to indicate a genetic component, rather than pharmacokinetic, in the behavior sensitivity to the BZ, with a spectrum of degree of responsivity among strains.

  17. The Effect of Different Doses of Cigarette Smoke in a Mouse Lung Tumor Model

    PubMed Central

    Santiago, Ludmilla Nadir; de Camargo Fenley, Juliana; Braga, Lúcia Campanario; Cordeiro, José Antônio; Cury, Patrícia M.

    2009-01-01

    Few studies have used Balb/c mice as an animal model for lung carcinogenesis. In this study, we investigated the effect of different doses of cigarette smoking in the urethane-induced Balb/c mouse lung cancer model. After injection of 3mg/kg urethane intraperitoneally, the mice were then exposed to tobacco smoke once or twice a day, five times a week, in a closed chamber. The animals were randomly divided into four groups. The control group (G0) received urethane only. The experimental groups (G1, G2 and G3) received urethane and exposure to the smoke of 3 cigarettes for 10 minutes once a day, 3 cigarettes for 10 minutes twice a day, and 6 cigarettes for 10 minutes twice a day, respectively. The mice were sacrificed after 16 weeks of exposure, and the number of nodules and hyperplasia in the lungs was counted. The results showed no statistically significant difference in the mean number of nodules and hyperplasia among the different groups, suggesting that the Balb/c mice are not suitable to study the pathogenesis of tobacco smoking-induced tumor progression in the lungs. PMID:19079653

  18. Effects of major histocompatibility complex class II knockout on mouse bone mechanical properties during development

    NASA Technical Reports Server (NTRS)

    Simske, Steven J.; Bateman, Ted A.; Smith, Erin E.; Ferguson, Virginia L.; Chapes, Stephen K.

    2002-01-01

    We investigated the effect of major histocompatibility complex class II (MHC II) knockout on the development of the mouse peripheral skeleton. These C2D mice had less skeletal development at 8, 12 and 16 weeks of age compared to wild-type C57BL/6J (B6) male mice. The C2D mice had decreased femur mechanical, geometric and compositional measurements compared to wild type mice at each of these ages. C2D femur stiffness (S), peak force in 3-pt bending (Pm), and mineral mass (Min-M) were 74%, 64% and 66%, respectively, of corresponding B6 values at 8 weeks of age. Similar differences were measured at 12 weeks (for which C2D femoral S, Pm and Min-M were 71%, 72% and 73%, respectively, of corresponding B6 values) and at 16 weeks (for which C2D femoral S, Pm and Min-M were 80%, 66% and 61%, respectively, of corresponding B6 values). MHC II knockout delays the development of adult bone properties and is accompanied by lower body mass compared to wild-type controls.

  19. Effects of topical application of EGCG on testosterone-induced hair loss in a mouse model.

    PubMed

    Kim, Yoon Young; Up No, Sun; Kim, Min Ho; Kim, Hei Sung; Kang, Hoon; Kim, Hyung Ok; Park, Young Min

    2011-12-01

    We investigated the effect of topical epigallocatechin-3-gallate (EGCG) on testosterone (T)-induced hair loss in mice. Marked hair loss was observed at the T-injected site, and topical EGCG significantly reduced the hair loss (P < 0.05). TUNEL staining showed apoptosis of follicular epithelial cells in the T-injected groups where topical EGCG was found to significantly diminish T-induced apoptosis (P < 0.05). Topical EGCG down-regulated the T-induced expression of androgen receptor but did not down-regulate 17β-hydroxysteroid dehydrogenase (HSD) and three β-HSD expression. Analysis using liquid chromatography tandem mass spectrometry (LC-MS/MS) on serum and tissue samples revealed no significant difference in T and dihydrotestosterone concentrations between the T-injected and T + EGCG groups. Thus, we found that T injection in a mouse model induces hair loss by apoptosis of the hair follicles rather than through the androgen metabolic pathway and also saw that T-induced apoptosis of hair follicles was reduced by topical EGCG. © 2011 John Wiley & Sons A/S.

  20. Behavioural and EEG effects of chronic rapamycin treatment in a mouse model of tuberous sclerosis complex.

    PubMed

    Cambiaghi, Marco; Cursi, Marco; Magri, Laura; Castoldi, Valerio; Comi, Giancarlo; Minicucci, Fabio; Galli, Rossella; Leocani, Letizia

    2013-04-01

    Tuberous Sclerosis Complex (TSC) is a multisystem genetic disorder caused by mutation in either Tsc1 or Tsc2 genes that leads to the hyper activation of the mTOR pathway, a key signalling pathway for synaptic plasticity. TSC is characterized by benign tumors arising in different organs and severe neuropsychiatric symptoms, such as epilepsy, intellectual disability, autism, anxiety and depressive behaviour. Rapamycin is a potent inhibitor of mTOR and its efficacy in treating epilepsy and neurological symptoms remains elusive. In a mouse model in which Tsc1 has been deleted in embryonic telencephalic neural stem cells, we analyzed anxiety- and depression-like behaviour by elevated-plus maze (EPM), open-field test (OFT), forced-swim test (FST) and tail-suspension test (TST), after chronic administration of rapamycin. In addition, spectral analysis of background EEG was performed. Rapamycin-treated mutant mice displayed a reduction in anxiety- and depression-like phenotype, as shown by the EPM/OFT and FST, respectively. These results were inline with EEG power spectra outcomes. The same effects of rapamycin were observed in wild-type mice. Notably, in heterozygous animals we did not observe any EEG and/or behavioural variation after rapamycin treatment. Together these results suggest that both TSC1 deletion and chronic rapamycin treatment might have a role in modulating behaviour and brain activity, and point out to the potential usefulness of background EEG analysis in tracking brain dysfunction in parallel with behavioural testing.

  1. Glutathione-degradable drug-loaded nanogel effectively and securely suppresses hepatoma in mouse model

    PubMed Central

    Liu, Xingang; Wang, Jianmeng; Xu, Weiguo; Ding, Jianxun; Shi, Bo; Huang, Kexin; Zhuang, Xiuli; Chen, Xuesi

    2015-01-01

    The reduction-responsive polymeric nanocarriers have attracted considerable interest because of a significantly higher concentration of intracellular glutathione in comparison with that outside cells. The smart nanovehicles can selectively transport the antitumor drugs into cells to improve efficacies and decrease side effects. In this work, a facilely prepared glutathione-degradable nanogel was employed for targeting intracellular delivery of an antitumor drug (ie, doxorubicin [DOX]). DOX was loaded into nanogel through a sequential dispersion and dialysis approach with a drug loading efficiency of 56.8 wt%, and the laden nanogel (noted as NG/DOX) showed an appropriate hydrodynamic radius of 56.1±3.5 nm. NG/DOX exhibited enhanced or improved maximum tolerated dose on healthy Kunming mice and enhanced intratumoral accumulation and dose-dependent antitumor efficacy toward H22 hepatoma-xenografted mouse model compared with free drug. In addition, the upregulated antitumor efficacy of NG/DOX was further confirmed by the histopathological and immunohistochemical analyses. Furthermore, the excellent in vivo security of NG/DOX was confirmed by the detection of body weight, histopathology, and biochemical indices of corresponding organs and serum. With controllable large-scale preparation and fascinating in vitro and in vivo properties, the reduction-responsive nanogel exhibited a good prospect for clinical chemotherapy. PMID:26543363

  2. Fatigue and caffeine effects in fast-twitch and slow-twitch muscles of the mouse.

    PubMed

    Brust, M

    1976-12-28

    In excised, curarized and massively stimulated fast-twitch mouse gastrocnemius muscles the early twitch tension enhancements (treppe) during 1/s activity between 10 and 36 degrees C increase and affect more contractions as temperature increases. Tension output eventually declines at a temperature-independent rate. Half-relaxation time lengthens below 25 degrees C and shortens above 25 degrees C. During 1/0.63s twitches half-relaxation time lengthens even at 25 degrees C. In slow-twitch soleus muscles activity decreases twitch tension and half-relaxation time regardless of temperature. Activity shortens contraction times in both muscles. Oxygen lack induced by NaN3 cannot account satisfactorily for these results. Activation is apparently more plastic in the gastrocnemius than in the soleus, and the relationship between the rates of their activation and relaxation processes and the temperature sensitivities of these rates also seem to differ. In both muscles caffeine can convert activity-induced shortened of half-relaxation times into prolongations. In the soleus this effect is more pronounced at 30 than at 25 degrees C. At high temperature and twitch rates caffeine reduces treppe amplitude and duration without affecting the eventual twitch tension decline in the gastrocnemius while it greatly accelerates twitch tension decline in the soleus. In both muscles intrafiber Ca2+ movements are apparently major determinants of fatigue behavior.

  3. Effects of dimethyl sulfoxide on asymmetric division and cytokinesis in mouse oocytes

    PubMed Central

    2014-01-01

    Background Dimethyl sulfoxide (DMSO) is used extensively as a permeable cryoprotectant and is a common solvent utilized for several water-insoluble substances. DMSO has various biological and pharmacological activities; however, the effect of DMSO on mouse oocyte meiotic maturation remains unknown. Results In DMSO-treated oocytes, we observed abnormal MII oocytes that contained large polar bodies, including 2-cell–like MII oocytes, during in vitro maturation. Oocyte polarization did not occur, due to the absence of actin cap formation and spindle migration. These features are among the primary causes of abnormal symmetric division; however, analysis of the mRNA expression levels of genes related to asymmetric division revealed no significant difference in the expression of these factors between the 3% DMSO-treated group and the control group. After each “blastomere” of the 2-cell–like MII stage oocytes was injected by one sperm head respectively, the oocytes still possessed the ability to extrude the second polar body from each “blastomere” and to begin cleavage. However, MII oocytes with large polar bodies developed to the blastocyst stage after intracytoplasmic sperm injection (ICSI). Furthermore, other permeable cryoprotectants, such as ethylene glycol and glycerol, also caused asymmetric division failure. Conclusion Permeable cryoprotectants, such as DMSO, ethylene glycol, and glycerol, affect asymmetric division. DMSO disrupts cytokinesis completion by inhibiting cortical reorganization and polarization. Oocytes that undergo symmetric division maintain the ability to begin cleavage after ICSI. PMID:24953160

  4. Biocompatibility effects of biologically synthesized graphene in primary mouse embryonic fibroblast cells

    NASA Astrophysics Data System (ADS)

    Gurunathan, Sangiliyandi; Han, Jae Woong; Eppakayala, Vasuki; Dayem, Ahmed Abdal; Kwon, Deug-Nam; Kim, Jin-Hoi

    2013-09-01

    Due to unique properties and unlimited possible applications, graphene has attracted abundant interest in the areas of nanobiotechnology. Recently, much work has focused on the synthesis and properties of graphene. Here we show that a successful reduction of graphene oxide (GO) using spinach leaf extract (SLE) as a simultaneous reducing and stabilizing agent. The as-prepared SLE-reduced graphene oxide (S-rGO) was characterized by ultraviolet-visible spectroscopy and Fourier transform infrared spectroscopy. Dynamic light scattering technique was used to determine the average size of GO and S-rGO. Scanning electron microscopy and atomic force microscopy images provide clear surface morphological evidence for the formation of graphene. The resulting S-rGO has a mostly single-layer structure, is stable, and has significant water solubility. In addition, the biocompatibility of graphene was investigated using cell viability, leakage of lactate dehydrogenase and alkaline phosphatase activity in primary mouse embryonic fibroblast (PMEFs) cells. The results suggest that the biologically synthesized graphene has significant biocompatibility with PMEF cells, even at a higher concentration of 100 μg/mL. This method uses a `green', natural reductant and is free of additional stabilizing reagents; therefore, it is an environmentally friendly, simple, and cost-effective method for the fabrication of soluble graphene. This study could open up a promising view for substitution of hydrazine by a safe, biocompatible, and powerful reduction for the efficient deoxygenation of GO, especially in large-scale production and potential biomedical applications.

  5. Vascular Dysfunction in a Mouse Model of Rett Syndrome and Effects of Curcumin Treatment

    PubMed Central

    Panighini, Anna; Duranti, Emiliano; Santini, Ferruccio; Maffei, Margherita; Pizzorusso, Tommaso; Funel, Niccola; Taddei, Stefano; Bernardini, Nunzia; Ippolito, Chiara; Virdis, Agostino; Costa, Mario

    2013-01-01

    Mutations in the coding sequence of the X-linked gene MeCP2 (Methyl CpG–binding protein) are present in around 80% of patients with Rett Syndrome, a common cause of intellectual disability in female and to date without any effective pharmacological treatment. A relevant, and so far unexplored feature of RTT patients, is a marked reduction in peripheral circulation. To investigate the relationship between loss of MeCP2 and this clinical aspect, we used the MeCP2 null mouse model B6.129SF1-MeCP2tm1Jae for functional and pharmacological studies. Functional experiments were performed on isolated resistance mesenteric vessels, mounted on a pressurized myograph. Vessels from female MeCP2+/− mice show a reduced endothelium-dependent relaxation, due to a reduced Nitric Oxide (NO) availability secondary to an increased Reactive Oxygen Species (ROS) generation. Such functional aspects are associated with an intravascular increase in superoxide anion production, and a decreased vascular eNOS expression. These alterations are reversed by curcumin administration (5% (w/w) dietary curcumin for 21 days), which restores endothelial NO availability, decreases intravascular ROS production and normalizes vascular eNOS gene expression. In conclusion our findings highlight alterations in the vascular/endothelial system in the absence of a correct function of MeCP2, and uncover related cellular/molecular mechanisms that are rescued by an anti-oxidant treatment. PMID:23705018

  6. Radioprotective effects of Dragon's blood and its extract against gamma irradiation in mouse bone marrow cells.

    PubMed

    Ran, Yuanyuan; Wang, Ran; Lin, Fankai; Hasan, Murtaza; Jia, Qiutian; Tang, Bo; Xia, Yu; Shan, Shuangquan; Wang, Xiao; Li, Qiang; Deng, Yulin; Qing, Hong

    2014-06-01

    The radioprotective effects of Dragon's blood (DB) and its extracts (DBE) were investigated using the chromosomal aberrant test, micronucleus and oxidative stress assay for anti-clastogenic and anti-oxidative activity. Adult BALB/C mice were exposed to the whole body irradiation with 4 Gy (60)Co γ-rays. DB and DBE were administered orally once a day from 5 days prior to irradiation treatment to 1 day after irradiation. The mice were sacrificed on 24 h after irradiation. The cells of bone marrow were measured by counting different types of chromosomal aberrations and the frequency of micronuclei. Oxidative stress response was carried out by analysis of serum from blood. DB and DBE significantly decreased the number of bone marrow cells with chromosome aberrations after irradiation with respect to irradiated alone group. The administration of DB and DBE also significantly reduced the frequencies of micronucleated polychromatic erythrocytes (MPCE) and micronucleated normochromatic erythrocytes (MNCE). In addition, DB and DBE markedly increased the activity of antioxidant enzymes and the level of antioxidant molecular. Malondialdehyde (MDA) and nitric oxide (NO) levels in serum were significantly reduced by DB and DBE treatment. Our data suggested that DB and DBE have potential radioprotective properties in mouse bone marrow after (60)Co γ-ray exposure, which support their candidature as a potential radioprotective agent. Copyright © 2013 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  7. Combined effects of individual culture and atmospheric oxygen on preimplantation mouse embryos in vitro.

    PubMed

    Kelley, Rebecca L; Gardner, David K

    2016-11-01

    Embryos are routinely cultured individually, although this can reduce blastocyst development. Culture in atmospheric (20%) oxygen is also common, despite multiple detrimental effects on embryos. Although frequently occurring together, the consequences of this combination are unknown. Mouse embryos were cultured individually or grouped, under physiological (5%) or atmospheric (20%) oxygen. Embryos were assessed by time-lapse and blastocyst cell allocation. Compared with the control group (5% oxygen group culture), 5-cell cleavage (t5) was delayed in 5% oxygen individual culture and 20% oxygen group culture (59.91 ± 0.23, 60.70 ± 0.29, 63.06 ± 0.32 h post-HCG respectively, P < 0.05). Embryos in 20% oxygen individual culture were delayed earlier (3-cell cleavage), and at t5 cleaved later than embryos in other treatments (66.01 ± 0.40 h, P < 0.001), this delay persisting to blastocyst hatching. Compared with controls, hatching rate and cells per blastocyst were reduced in 5% oxygen single culture and 20% oxygen group culture (134.1 ± 3.4, 104.5 ± 3.2, 73.4 ± 2.2 cells, P < 0.001), and were further reduced in 20% oxygen individual culture (57.0 ± 2.8 cells, P < 0.001), as was percentage inner cell mass. These data indicate combining individual culture and 20% oxygen is detrimental to embryo development.

  8. Effect of contact with titanium alloys on the proliferation of mouse osteoblastic cells in culture.

    PubMed

    Onuki, Hiroyuki; Sakagami, Hiroshi; Kobayashi, Masahiko; Hibino, Yasushi; Yokote, Yoshiko; Nakajima, Hiroshi; Shimada, Jun

    2010-01-01

    This study was aimed at studying the effect of contact with titanium alloy plates of different surface textures on the proliferative capability of mouse osteoblastic MC3T3-E1 cells. First, the proliferation characteristics of MC3T3-E1 cells were investigated. MC3T3-E1 cells showed a high capacity for proliferation and survived for a long period even under nutritionally starved conditions. During logarithmic cell growth, the consumption of Ser, Gln, Val, Ile and Leu increased time-dependently. Contact with an hydoxyapatite (HA)-coated titanium alloy plate resulted in the increase in the recovery of