Science.gov

Sample records for mouse mesencephalon effects

  1. CEREBELLAR AND MESENCEPHALON NEOPLASIA IN A NILE HIPOPPOTAMUS (HIPPOPOTAMUS AMPHIBIOUS).

    PubMed

    Schiaffino, Francesca; Sander, Samantha J; Bacares, Marcia E Pereira; Barnes, Katie J; Kiupel, Matti; Walsh, Timothy; Murray, Suzan

    2016-12-01

    A 52-yr-old female Nile hippopotamus ( Hippopotamus amphibious ) was presented for acute onset anorexia, depression, lethargy, instability, and weakness in the pelvic limbs. Clinical signs were rapidly progressive, despite empiric therapy with anti-inflammatory medications, resulting in the death of the animal. Gross necropsy evaluation revealed two tan, firm masses in the cerebellum and mesencephalon and a single mass in the right cranial adrenal gland. All three masses had a similar histologic morphology, and immunohistochemical investigation confirmed the general diagnosis of an adenocarcinoma, but the exact cell of origin remains unclear. In addition, there was evidence of neuroendocrine differentiation in the adrenal gland and not in the brain. These findings suggest either two distinct neoplastic populations or a metastasizing adenocarcinoma with focal endocrine differentiation. In dogs, anal sac and clitoral adenocarcinomas have been reported to undergo focal endocrine differentiation, and both can cause widespread metastasis while the primary lesion can be small. A small neoplasm of these glands may have been missed on gross examination.

  2. Fetal porcine ventral mesencephalon grafts: dissection procedure and cellular characterization in culture.

    PubMed

    van Roon, W M; Copray, J C; Hogenesch, R I; Kema, I; Meyer, E M; Molenaar, G; Lugard, C; Staal, M J; Go, K G

    1995-01-01

    The objective of this study was to develop an optimal dissection procedure for fetal porcine ventral mesencephalon (VM) grafts and to characterize the cellular composition of such an explant, in particular with respect to the dopaminergic and GABAergic components. We have used a monolayer cell culture system to study and identify the various VM cell types. The in vitro development of the fetal VM cells and the effect of the addition of brain-derived neurotrophic factor (BDNF) was investigated during a culture period of 5 days. Extracellular dopamine levels were measured by means of high performance liquid chromatography (HPLC) with electrochemical detection (LCEC). Our results indicate that the ratio of dopaminergic to GABAergic neurons changed in favour of the dopaminergic component when a more selective dissection technique was used. Although addition of BDNF to the cultures appeared to exert trophic influences on all the cellular components of pig fetal VM, this effect was most pronounced on the TH-positive cells. Highest extracellular DA levels were found in the VM culture with the addition of BDNF and when a more selective dissection method was used. Our in vitro findings suggest that porcine fetal dopaminergic cells retain their potential for development and outgrowth after proper explantation and dissociation. Anticipating on the results of ongoing transplantation studies in rat, they suggest that pig fetal VM can be a suitable alternative for the use of fetal human VM as a graft for Parkinson's disease.

  3. Fetal homotransplants (ventral mesencephalon and adrenal tissue) to the striatum of parkinsonian subjects.

    PubMed

    Madrazo, I; Franco-Bourland, R; Ostrosky-Solis, F; Aguilera, M; Cuevas, C; Zamorano, C; Morelos, A; Magallon, E; Guizar-Sahagun, G

    1990-12-01

    Fetal ventral mesencephalon and fetal adrenal tissue grafted to the caudate nucleus of four and three parkinsonian patients, respectively, have been shown to be an alternative treatment for the amelioration of the signs of the disease. The ventral mesencephalon patients had a significant amelioration of rigidity, bradykinesia, postural imbalance, gait disturbance, and facial expression. Three of these four patients have returned to work. The fatal adrenal group only showed amelioration of rigidity and bradykinesia. Though these patients are now able to perform their basic daily living activities, and one of them has renewed her household tasks, the other two have not yet been able to return to work. The differences observed between the ventral mesencephalon- and the fetal adrenal-transplanted patients may be related to the heterogeneity of their disease and/or the type of graft implanted. However encouraging our results may be, this experimental procedure obviously requires further studies, and should not be practiced outside of highly qualified clinical research centers.

  4. Differential expression of tyrosine hydroxylase mRNA in the developing rat mesencephalon.

    PubMed

    Solberg, Y; Pollack, Y; Silverman, W F

    1992-12-01

    1. With respect to the mesostriatal projection, the mesencephalon is composed of two dopaminergic (DA) cell populations, called dorsal tier and ventral tier. Strong evidence suggests differences in both the spatial and the temporal sequence of the innervation of the striatum between the two groups, with the ventral tier neurons innervating striatal patches prenatally and dorsal tier cells innervating striatal matrix postnatally. 2. Using in situ hybridization, we have examined the expression of the gene coding for tyrosine hydroxylase (TH) in mesencephalic DA neurons with respect to their postnatal development. Two ontogenic patterns of expression were observed: (a) dorsal tier neurons of the medial mesencephalon exhibited a sharp increase in expression beginning after birth, peaking on day 14, then decreasing and, finally, stabilizing; and (b) ventral tier neurons and dorsal tier cells from the lateral and the medial-dorsal mesencephalon showed only a slight increase in TH mRNA, reaching a plateau at P10. 3. The time course of the observed increase in TH gene expression in the first group, generally parallels the innervation of their target cells in the striatal matrix, suggesting that TH gene expression in these cells may be influenced by their postsynaptic cells or by the innervation process.

  5. Effects of alphafetoprotein on isolated mouse oocytes.

    PubMed

    Lambert, J C; Seralini, G E; Stora, C; Vallette, G; Vranckx, R; Nunez, E A

    1986-01-01

    The supposition of an effect of alphafetoprotein (AFP) on female germinal cells is put forward. The spontaneous in vitro maturation of adult mouse oocytes is significantly inhibited when mouse AFP replaces albumin in culture medium. Furthermore, the very unusual degenerative appearance of the cells subjected to AFP seems to indicate that this meiotic inhibition is linked to a premature degeneration of the oocytes rather than to a blockage of the cells at an earlier stage of maturation. Accordingly AFP, perhaps through its ligands, may play a role in reducing the number of gonocytes during fetal and immediate post-natal life rather than in stopping oocyte meiosis at the diplotene stage.

  6. Dopamine antagonists reduce spontaneous electrical activity in cultured mammalian neurons from ventral mesencephalon.

    PubMed

    Heyer, E J

    1986-09-24

    Mammalian neurons from ventral mesencephalon (VM) were grown in primary dissociated cell (PDC) culture. These neurons are predominantly non-dopaminergic. Many of these non-dopaminergic neurons have dopamine agonist and antagonist binding sites. Intracellular recordings were obtained from these neurons. When bathed in phosphate-buffered saline (PBS) solution they generated action potentials spontaneously. However, in the presence of haloperidol dissolved in PBS solution, the percentage of neurons which generated action potentials spontaneously was reduced in a dose-dependent manner (1-10 microM). This response was also obtained with (+) butaclamol (1 microM) but not with (-) butaclamol (1 microM). This neuroleptic inhibition of spontaneously generated action potentials was specific for neurons in PDC cultures of VM since neurons in PDC cultures of spinal cord did not demonstrate this phenomenon.

  7. Effects of verbenalin on prostatitis mouse model

    PubMed Central

    Miao, Mingsan; Guo, Lin; Yan, Xiaoli; Wang, Tan; Li, Zuming

    2015-01-01

    The aim of this study was to observe the treatment characteristics of verbenalin on a prostatitis mouse model. Give Xiaozhiling injection in the prostate locally to make a prostatitis mouse model. High, medium and low doses of verbenalin were each given to different mouse groups. The amount of water was determined in 14th, 28th. The number of white cells and lecithin corpuscle density in prostatic fluid were determined. Morphological changes in the prostate, testis, epididymis and kidney were detected. Compared with the model control group, the mice treated with high, medium and low doses of verbenalin had significantly increased amounts of water, and prostate white blood cell count and prostate volume density (Vv) were decreased significantly, the density of lecithin corpuscle score increased, and pathologic prostatitis changes were significantly reduced. Pathological change in the testis was significantly reduced and the change in the epididymis was obviously reduced. The thymic cortex thickness and the number of lymphocytes increased significantly and could reduce the renal pathological changes in potential. Verbenalin has a good therapeutic effect on the prostatitis mouse model. PMID:26858560

  8. The volume effect in irradiated mouse colorectum

    NASA Astrophysics Data System (ADS)

    Skwarchuk, Mark William

    1997-11-01

    Damage of the colorectum is the dose-limiting normal tissue complication following radiotherapy of prostate and cervical cancers. One approach for decreasing complications is to physically reduce the treatment volume. Mathematical models have been previously developed to describe the change in associated toxicity with a change in irradiated volume, i.e. the 'volume effect', for serial-type normal tissues including the colorectum. The first goal of this thesis was to test the hypothesis that there would not be a threshold length in the development of obstruction after irradiation of mouse colorectum, as predicted by the Probability model of the volume effect. The second goal was to examine if there were differences in the threshold and in the incidence of colorectal obstruction after irradiation of two mouse strains, C57B1/6 (C57) and C3Hf/Kam (C3H), previously found to be fibrosis-prone and-resistant, respectively, after lung irradiation due, in part, to genetic differences. The hypothesis examined was that differences in incidence between strains were due to the differential expression of the fibrogenic cytokines TGF/beta and TNF/alpha. Various lengths of C57 and C3H mouse colorectum were irradiated and the incidence of colorectal obstruction was followed up to 15 months. A threshold length was observed for both mouse strains, in contradiction of model predictions. The mechanism of the threshold was epithelial regeneration after irradiation. C57 mice had significantly higher incidence of colorectal obstruction compared to C3H mice, especially at smaller irradiated lengths. Colorectal tissue was obtained at various times after irradiation and prepared for histology, immunohistochemistry and RNase protection assay for measurement of TGF/beta 1, 2, 3 and TNF/alpha mRNA. Distinct strain differences in the histological time of appearance and spatial locations of fibrosis were observed. However, there were no consistent strain difference in mRNA levels or

  9. Cytogenetic effect of griseofulvin in mouse spermatocytes.

    PubMed

    Fahmy, M A; Hassan, N H

    1996-01-01

    The genotoxic effects of griseofulvin (GF) in mouse primary spermatocytes at diakinesis metaphase I of meiosis were investigated. Griseofulvin was administered orally as a single dose of 500, 1000, 1500 and 2000 mg kg-1 body wt. and a multiple treatment with a daily dose of 1000 mg kg-1 body wt. for three and five successive doses. Both single and multiple treatment induced a statistically significant increase in the percentage of chromosomal aberrations which have a dose and time-dependent relationship. The frequency of chromosomal aberrations peaked 6 and 12 h post treatment; with the highest dose of the drug it reached 27.8% +/- 0.87 and 27.66% +/- 0.48 6 and 12 h respectively, compared with 5.6% +/- 0.39 and 5.2% +/- 0.48 for the control. The types of aberrations recorded were structural, including X-Y and autosomal univalent, gaps, breaks, fragments, chain IV and numerical in the form of diploid, triploid, tetraploid and aneuploid. The results of this study suggest that griseofulvin has a genotoxic effect in mouse spermatocytes.

  10. Combinatorial effects of odorants on mouse behavior

    PubMed Central

    Saraiva, Luis R.; Kondoh, Kunio; Ye, Xiaolan; Yoon, Kyoung-hye; Hernandez, Marcus; Buck, Linda B.

    2016-01-01

    The mechanisms by which odors induce instinctive behaviors are largely unknown. Odor detection in the mouse nose is mediated by >1, 000 different odorant receptors (ORs) and trace amine-associated receptors (TAARs). Odor perceptions are encoded combinatorially by ORs and can be altered by slight changes in the combination of activated receptors. However, the stereotyped nature of instinctive odor responses suggests the involvement of specific receptors and genetically programmed neural circuits relatively immune to extraneous odor stimuli and receptor inputs. Here, we report that, contrary to expectation, innate odor-induced behaviors can be context-dependent. First, different ligands for a given TAAR can vary in behavioral effect. Second, when combined, some attractive and aversive odorants neutralize one another’s behavioral effects. Both a TAAR ligand and a common odorant block aversion to a predator odor, indicating that this ability is not unique to TAARs and can extend to an aversive response of potential importance to survival. In vitro testing of single receptors with binary odorant mixtures indicates that behavioral blocking can occur without receptor antagonism in the nose. Moreover, genetic ablation of a single receptor prevents its cognate ligand from blocking predator odor aversion, indicating that the blocking requires sensory input from the receptor. Together, these findings indicate that innate odor-induced behaviors can depend on context, that signals from a single receptor can block innate odor aversion, and that instinctive behavioral responses to odors can be modulated by interactions in the brain among signals derived from different receptors. PMID:27208093

  11. Effects of endotoxin on the lactating mouse

    SciTech Connect

    Carr, J.K.

    1985-01-01

    The regulation of endogenous mouse mammary tumor virus (MMTV) sequences in trans by a host gene, the Lps locus on mouse chromosome 4, was suspected from a genetic linkage analysis. The Lps locus mediates the mouse's response to the injection of lipopolysaccharide (LPS) in the responder mouse while mice with the deficient allele are incapable of responding. Others have found that endotoxin exposure reduces milk production in lactating animals. This observation was confirmed in mice and extended by examining /sup 125/I-prolactin binding to liver membranes of lactating mice. Endotoxin treatment of responder mice increases liver prolactin binding within 15 minutes, followed by a decline over 6 hours. Scatchard analysis shows that the immediate increase comes from both increased affinity and abundance of the prolactin receptor. No such change in prolactin binding is seen in the non-responder following endotoxin treatment nor in /sup 125/I-insulin binding in responders.

  12. Dissociation between the panicolytic effect of cannabidiol microinjected into the substantia nigra, pars reticulata, and fear-induced antinociception elicited by bicuculline administration in deep layers of the superior colliculus: The role of CB1-cannabinoid receptor in the ventral mesencephalon.

    PubMed

    da Silva, Juliana Almeida; Biagioni, Audrey Francisco; Almada, Rafael Carvalho; de Souza Crippa, José Alexandre; Cecílio Hallak, Jaime Eduardo; Zuardi, Antônio Waldo; Coimbra, Norberto Cysne

    2015-07-05

    Many studies suggest that the substantia nigra, pars reticulata (SNpr), a tegmental mesencephalic structure rich in γ-aminobutyric acid (GABA)- and cannabinoid receptor-containing neurons, is involved in the complex control of defensive responses through the neostriatum-nigral disinhibitory and nigro-tectal inhibitory GABAergic pathways during imminently dangerous situations. The aim of the present work was to investigate the role played by CB1-cannabinoid receptor of GABAergic pathways terminal boutons in the SNpr or of SNpr-endocannabinoid receptor-containing interneurons on the effect of intra-nigral microinjections of cannabidiol in the activity of nigro-tectal inhibitory pathways. GABAA receptor blockade in the deep layers of the superior colliculus (dlSC) elicited vigorous defensive behaviour. This explosive escape behaviour was followed by significant antinociception. Cannabidiol microinjection into the SNpr had a clear anti-aversive effect, decreasing the duration of defensive alertness, the frequency and duration of defensive immobility, and the frequency and duration of explosive escape behaviour, expressed by running and jumps, elicited by transitory GABAergic dysfunction in dlSC. However, the innate fear induced-antinociception was not significantly changed. The blockade of CB1 endocannabinoid receptor in the SNpr decreased the anti-aversive effect of canabidiol based on the frequency and duration of defensive immobility, the frequency of escape expressed by running, and both the frequency and duration of escape expressed by jumps. These findings suggest a CB1 mediated endocannabinoid signalling in cannabidiol modulation of panic-like defensive behaviour, but not of innate fear-induced antinociception evoked by GABAA receptor blockade with bicuculline microinjection into the superior colliculus, with a putative activity in nigro-collicular GABAergic pathways.

  13. Expression of TRPM8 in the distal cerebrospinal fluid-contacting neurons in the brain mesencephalon of rats

    PubMed Central

    Du, Jing; Yang, Xinwei; Zhang, Licai; Zeng, Yin-ming

    2009-01-01

    Background It has been shown that distal cerebrospinal fluid-contacting neurons (dCSF-CNs) exist near the ventral midline of the midbrain aqueduct and also in the grey matter of the inferior third ventricle and the fourth ventricle floor in the superior segment of the pons. The dCSF-CNs communicate between the cerebrospinal fluid (CSF) and the brain parenchyma and may participate in the transduction and regulation of pain signals. The cold sensation receptor channel, TRPM8 is involved in analgesia for neuropathic pain, but whether the TRPM8 receptor exists on dCSF-CNs remains unknown. However, there is preliminary evidence that TRPM8 is expressed in dCSF-CNs and may participate in the transmission and regulation of sensory information between brain parenchyma and cerebrospinal fluid (CSF) in rats. Methods Retrograde tracing of the cholera toxin subunit B labeled with horseradish peroxidase (CB-HRP) injected into the lateral ventricle was used to identify dCSF-CNs. A double-labeled immunofluorescent technique and laser scanning confocal microscopy were used to identify the expression of TRPM8 in dCSF-CNs. Software Image-Pro Plus was used to count the number of neurons in three sections where CB-HRP positive neurons were located in the mesencephalon of six rats. Results The cell bodies of CB-HRP-positive dCSF-CNs were found in the brain parenchyma near the midline of the ventral Aq, also in the grey of the 3V, and the 4V floor in the superior segment of the pons. In the mesencephalon their processes extended into the CSF. TRPM8 labeled neurons were also found in the same area as were CB-HRP/TRPM8 double-labeled neurons. CB-HRP/TRPM8 double-labeled neurons were found in 42.9 ± 2.3% of neurons labeled by TRPM8, and all CB-HRP-labeled neurons were also labeled with TPRM8. Conclusion This study has demonstrated that the cold sensation receptor channel, TRPM8, is localised within the dCSF-CNs of the mesencephalon. TRPM8 acts as receptor of dCSF-CNs for sensation

  14. Identification of the 187 bp EphA7 Genomic DNA as the Dorsal Midline-Specific Enhancer of the Diencephalon and Mesencephalon

    PubMed Central

    Kim, Yujin; Park, Eunjeong; Park, Soochul

    2015-01-01

    EphA7 is a key molecule in regulating the development of the dien- and mesencephalon. To get insight into the mechanism of how EphA7 gene expression is regulated during the dorsal specification of the dien- and mesencephalon, we investigated the cis-acting regulatory sequence driving EphA7 to the dorsal midline of the dien- and mesencephalon. Transgenic LacZ reporter analysis, using overlapping EphA7 BACs, was used to narrow down the dorsal midline-specific enhancer, revealing the 25.3 kb genomic region as the enhancer candidate. Strikingly, this genomic DNA was located far downstream of the EphA7 transcription start site, +302.6 kb to +327.9 kb. Further enhancer mapping, using comparative genomic analysis and transgenic methods, showed that the 187 bp genomic DNA alone, approximately 305 kb downstream of the EphA7 transcription start site, was sufficient to act as the dorsal midline-specific enhancer of EphA7. Importantly, our results indicate that the 187 bp dorsal midline-specific enhancer is critically regulated by homeobox transcription factors during the development of the dien- and mesencephalon. PMID:26537192

  15. Electrophoretically pure mouse interferon exerts multiple biologic effects.

    PubMed Central

    Gresser, I; De Maeyer-Guignard, J; Tovey, M G; De Maeyer, E

    1979-01-01

    Electrophoretically pure mouse interferon was examined for a number of biologic effects previously ascribed to crude or partially purified interferon preparations. These effects include: inhibition of the growth of a transplantable tumor in mice; inhibition of cell multiplication of mouse tumor cells in vitro; enhancement of the expression of histocompatibility antigens on mouse tumor cells in vitro; inhibition of antibody formation in vitro; inhibition of sensitization to sheep erythrocytes and the expression of delayed type hypersensitivity in mice; enhancement of natural killer cell activity in vivo and in vitro; enhancement of cell sensitivity to the toxicity of poly(I)-poly(C); and enhanced production ("priming") of interferon production in vitro. Our results establish that the molecules responsible for the antiviral action of interferon are also responsible for these varied biologic effects. PMID:291948

  16. Effects of morphine in the isolated mouse urinary bladder.

    PubMed

    Acevedo, C G; Tamayo, L; Contreras, E

    1986-01-01

    Acute morphine increased the responses to acetylcholine of the isolated mouse urinary bladder. A chronic morphine treatment did not change the responses of the urinary bladder to acetylcholine or ATP. The acute administration of morphine did not modify the contractile response to ATP in the urinary bladders from untreated or chronically morphine treated mice. Methadone and ketocyclazocine decreased the responses to the electrical stimulation of the urinary bladder. These depressant effects were not modified by naloxone. The results suggest the nonexistence of opiate receptors in the mouse urinary bladder and the lack of direct effects of morphine on the neuroeffector junction.

  17. EFFECTS OF PERFLUOROOCTANOIC ACID EXPOSURE DURING PREGNANCY IN THE MOUSE

    EPA Science Inventory


    Title:

    Effects Of Perfluorooctanoic Acid Exposure During Pregnancy In The Mouse

    Authors & affiliations:
    Lau, C., J.R. Thibodeaux*, R.G. Hanson* and J.M. Rogers. Reproductive Toxicology Division, NHEERL, ORD, U.S. EPA, Research Triangle Park, NC
    Abstract:<...

  18. Curcumin shows excellent therapeutic effect on psoriasis in mouse model.

    PubMed

    Kang, Di; Li, Bowen; Luo, Lei; Jiang, Wenbing; Lu, Qiumin; Rong, Mingqing; Lai, Ren

    2016-04-01

    Curcumin is an active herbal ingredient possessing surprisingly wide range of beneficial properties, including anti-inflammatory, antioxidant, chemopreventive and chemotherapeutic activity. Recently, it has been reported to exhibit inhibitory activity on potassium channel subtype Kv1.3. As Kv1.3 channels are mainly expressed in T cells and play a key role in psoriasis, the effects of curcumin were investigated on inflammatory factors secretion in T cells and psoriasis developed in keratin (K) 14-vascular endothelial growth factor (VEGF) transgenic mouse model. Results showed that, 10 μM of curcumin significantly inhibited secretion of inflammatory factors including interleukin (IL)-17,IL-22, IFN-γ, IL-2, IL-8 and TNF-α in T cells by 30-60% in vitro. Notably, more than 50% of T cells proliferation was inhibited by application of 100 μM curcumin. Compared with severe psoriatic symptoms observed in the negative control mice, all psoriasis indexes including ear redness, weight, thickness and lymph node weight were significantly improved by oral application of curcumin in treatment mouse group. Histological examination indicated that curcumin had anti-inflammatory function in the experimental animals. More than 50% level of inflammatory factors including TNF-α, IFN-γ, IL-2, IL-12, IL-22 and IL-23 in mouse serum was decreased by curcumin treatment as well as cyclosporine. Compared with renal fibrosis observed in the mouse group treated by cyclosporine, no obvious side effect in mouse kidney was found after treated by curcumin. Taken together, curcumin, with high efficacy and safety, has a great potential to treat psoriasis.

  19. Teratogenic effects of silymarin on mouse fetuses

    PubMed Central

    Gholami, Mahbobe; Moallem, Seyed Adel; Afshar, Mohammad; Amoueian, Sakineh; Etemad, Leila; Karimi, Gholamreza

    2016-01-01

    Objective: Silybum marianum has been used for centuries in herbal medicine for treatment of liver diseases. Currently, there is no data available on the possible effects of silymarin on fetal development. This study aimed to investigate the teratogenic effect of silymarin on BALB/c mice fetuses. Materials and Methods: A total of 40 pregnant mice were divided into 4 groups of 10 mice each. Three groups received silymarin at three different doses of 50, 100 and 200 mg/kg/day during gestational days (GDs). The control group received normal saline and tween (solvent). Dams were sacrificed on GD 18 and all fetuses were examined for gross malformations, size and body weight. Malformed fetuses were double stained with alizarin red and alcian blue. Results: Silymarin administration at all doses resulted in reduction of the mean fetal body weights. The abnormalities included limb, vertebral column and craniofacial malformations. Craniofacial malformations were the most common abnormalities, but they were not observed in a dose-dependent manner. The percentage of fetal resorption significantly increased (up to 15%) in all treatment groups. Conclusion: Based on our results, silymarin, especially at high doses can lead to fetal resorption, intrauterine growth retardation and limb, vertebral column and craniofacial abnormalities. More precise studies should be conducted about the teratogenic effects of herbal medicine investigating the underlying mechanisms. Thus, caution should be taken when administering S. marianum to pregnant woman. PMID:27761424

  20. Toxic effect of lithium in mouse brain

    SciTech Connect

    Dixit, P.K.; Smithberg, M.

    1988-01-01

    The effect of lithium ion on glucose oxidation in the cerebrum and cerebellum of mice was measured in vitro by the conversion of isotopic glucose into /sup 14/CO/sub 2//mg wet weight. Glucose utilization is unaffected by lowest lithium dosage but is inhibited by high lithium concentrations (197-295 mM). Chronic administration of lithium to adult mice decreased the DNA content of the cerebrum and cerebellum at concentrations of 80 and 108 mM. The DNA content of selected postnatal stages of cerebrum and cerebellum was measured starting on Day 1 or 2. This served as another parameter to evaluate glucose oxidation studies at these ages. On the basis of wet weight, both brain parts of neonates of ages 1 and 10 days were approximately one-half that of the adult counterparts. On the basis of DNA content, the cerebrum enhanced its glucose utilization twofold from Day 1 to Day 10 and tripled its utilization from Day 10 to Day 20. The glucose utilization by cerebrum at Day 20 is similar to adult values. In contrast, glucose oxidation in the cerebellum remained relatively constant throughout the postnatal growth. The relative susceptibility of the two brain parts is discussed.

  1. Host Genetic and Environmental Effects on Mouse Cecum Microbiota

    SciTech Connect

    Campbell, James H; Foster, Carmen M; Vishnivetskaya, Tatiana A; Campbell, Alisha G; Yang, Zamin Koo; Wymore, Ann; Palumbo, Anthony Vito; Podar, Mircea

    2012-01-01

    The mammalian gut harbors complex and variable microbial communities, across both host phylogenetic space and conspecific individuals. A synergy of host genetic and environmental factors shape these communities and account for their variability, but their individual contributions and the selective pressures involved are still not well understood. We employed barcoded pyrosequencing of V1-2 and V4 regions of bacterial small subunit ribosomal RNA genes to characterize the effects of host genetics and environment on cecum assemblages in 10 genetically distinct, inbred mouse strains. Eight of these strains are the foundation of the Collaborative Cross (CC), a panel of mice derived from a genetically diverse set of inbred founder strains, designed specifically for complex trait analysis. Diversity of gut microbiota was characterized by complementing phylogenetic and distance-based, sequence-clustering approaches. Significant correlations were found between the mouse strains and their gut microbiota, reflected by distinct bacterial communities. Cohabitation and litter had a reduced, although detectable effect, and the microbiota response to these factors varied by strain. We identified bacterial phylotypes that appear to be discriminative and strain-specific to each mouse line used. Cohabitation of different strains of mice revealed an interaction of host genetic and environmental factors in shaping gut bacterial consortia, in which bacterial communities became more similar but retained strain specificity. This study provides a baseline analysis of intestinal bacterial communities in the eight CC progenitor strains and will be linked to integrated host genotype, phenotype and microbiota research on the resulting CC panel.

  2. Dual effects of fluoxetine on mouse early embryonic development

    SciTech Connect

    Kim, Chang-Woon; Choe, Changyong; Kim, Eun-Jin; Lee, Jae-Ik; Yoon, Sook-Young; Cho, Young-Woo; Han, Sunkyu; Tak, Hyun-Min; Han, Jaehee; Kang, Dawon

    2012-11-15

    Fluoxetine, a selective serotonin reuptake inhibitor, regulates a variety of physiological processes, such as cell proliferation and apoptosis, in mammalian cells. Little is known about the role of fluoxetine in early embryonic development. This study was undertaken to investigate the effect of fluoxetine during mouse early embryonic development. Late two-cell stage embryos (2-cells) were cultured in the presence of various concentrations of fluoxetine (1 to 50 μM) for different durations. When late 2-cells were incubated with 5 μM fluoxetine for 6 h, the percentage that developed into blastocysts increased compared to the control value. However, late 2-cells exposed to fluoxetine (5 μM) over 24 h showed a reduction in blastocyst formation. The addition of fluoxetine (5 μM) together with KN93 or KN62 (calcium/calmodulin-dependent protein kinase II (CaMKII) inhibitors) failed to increase blastocyst formation. Fluoxetine treatment inhibited TREK-1 and TREK-2, members of the two-pore domain K{sup +} channel family expressed in mouse embryos, activities, indicating that fluoxetine-induced membrane depolarization in late 2-cells might have resulted from TREK inhibition. In addition, long-term exposure to fluoxetine altered the TREK mRNA expression levels. Furthermore, injection of siRNA targeting TREKs significantly decreased blastocyst formation by ∼ 30% compared to injection of scrambled siRNA. Long-term exposure of fluoxetine had no effect on blastocyst formation of TREK deficient embryos. These results indicate that low-dose and short-term exposures of late 2-cells to fluoxetine probably increase blastocyst formation through activation of CaMKII-dependent signal transduction pathways, whereas long-term exposure decreases mouse early embryonic development through inhibition of TREK channel gating. Highlights: ► Short-term exposure of 2-cells to fluoxetine enhances mouse blastocyst formation. ► The enhancive effect of fluoxetine is resulted from Ca

  3. Cocaine Causes Apoptotic Death in Rat Mesencephalon and Striatum Primary Cultures.

    PubMed

    Lepsch, Lucilia B; Planeta, Cleopatra S; Scavone, Critoforo

    2015-01-01

    To study cocaine's toxic effects in vitro, we have used primary mesencephalic and striatal cultures from rat embryonic brain. Treatment with cocaine causes a dramatic increase in DNA fragmentation in both primary cultures. The toxicity induced by cocaine was paralleled with a concomitant decrease in the microtubule associated protein 2 (MAP2) and/or neuronal nucleus protein (NeuN) staining. We also observed in both cultures that the cell death caused by cocaine was induced by an apoptotic mechanism, confirmed by TUNEL assay. Therefore, the present paper shows that cocaine causes apoptotic cell death and inhibition of the neurite prolongation in striatal and mesencephalic cell culture. These data suggest that if similar neuronal damage could be produced in the developing human brain, it could account for the qualitative or quantitative defects in neuronal pathways that cause a major handicap in brain function following prenatal exposure to cocaine.

  4. Cocaine Causes Apoptotic Death in Rat Mesencephalon and Striatum Primary Cultures

    PubMed Central

    Lepsch, Lucilia B.; Planeta, Cleopatra S.; Scavone, Critoforo

    2015-01-01

    To study cocaine's toxic effects in vitro, we have used primary mesencephalic and striatal cultures from rat embryonic brain. Treatment with cocaine causes a dramatic increase in DNA fragmentation in both primary cultures. The toxicity induced by cocaine was paralleled with a concomitant decrease in the microtubule associated protein 2 (MAP2) and/or neuronal nucleus protein (NeuN) staining. We also observed in both cultures that the cell death caused by cocaine was induced by an apoptotic mechanism, confirmed by TUNEL assay. Therefore, the present paper shows that cocaine causes apoptotic cell death and inhibition of the neurite prolongation in striatal and mesencephalic cell culture. These data suggest that if similar neuronal damage could be produced in the developing human brain, it could account for the qualitative or quantitative defects in neuronal pathways that cause a major handicap in brain function following prenatal exposure to cocaine. PMID:26295051

  5. Effects of benzene on erythropoiesis in the fetal mouse

    SciTech Connect

    Mizens, M.

    1981-01-01

    Benzene toxicity in humans and adult animals appears as a functional disturbance of hematopoiesis. The work presented here examined the effects of benzene on the fetal mouse and its blood forming organ, the liver. The study includes the effects on macromolecular synthesis in the fetal liver erythropoietic cells and the general effects of benzene on the development of the fetus. Although biochemical changes were noted in the liver of the fetus when the female was exposed to benzene, no histopathologic changes were found. The effects on DNA and heme synthesis in the fetal liver cell population suggest disturbances in the proliferation and maturation phases of the developing red blood cell. The biochemical perturbations observed in the erythropoietic activity of the fetal mouse liver appeared to have no long term effects on the fetus. It is suggested that the temporary effect on the fetus may be the result of inteplay between an increase in the females' rate of metabolism of benzene and the ability of the fetal liver to recover rapidly from disturbances in the erythropoietic cell cycle. Only when the dosing period was extended from day 11 of gestation to term, and the maternal health appeared to be deteriorating, was the viability of the litter affected.

  6. Light and electron microscopic study of an avian pretectal nucleus, the lentiform nucleus of the mesencephalon, magnocellular division.

    PubMed

    Gottlieb, M D; McKenna, O C

    1986-06-01

    Using several light microscopic methods we have identified the lentiform nucleus of the mesencephalon, magnocellular division, by its position in the pretectum, its cellular composition, and its complement of retinal afferents and have distinguished it from neighboring structures. At the light microscopic level large neurons (approximately 30 X 21 microns) and small neurons (approximately 13 X 9 microns), which are more numerous, are seen interspersed among myelinated axons. The large neurons are generally ovoid and contain an eccentrically located nucleus and large clumps of Nissl-stained material. In the electron microscope the most notable feature of these neurons is the presence of ribosome rosettes and many parallel arrays of rough endoplasmic reticulum (RER). On the basis of cytological and ultrastructural features, we conclude that only one class of large neuron is present. Although in the light microscope the small neurons appear to be similar, at the ultrastructural level three neuron types have been distinguished: (1) ovoid shape with cytoplasm densely packed with organelles especially RER, (2) round shape with very little cytoplasm with few organelles, and (3) triangular shape with a pale cytoplasmic matrix with some RER. Subsurface membrane configurations are often seen in the somata of all neuron types. In addition, axon terminals, some containing flat vesicles, and other less frequent ones containing round vesicles are seen terminating on the somata of all neuronal cell types. In the neuropil, three types of presynaptic profiles can be identified. Two of these profiles are axodendritic and the third is dendrodendritic. The type R profile, which is often as large as 4 micron 2, is the most numerous, contains large round synaptic vesicles, and is often seen synapsing on several dendritic profiles. The type F profile contains flat vesicles and a relatively dense cytoplasm, and is smaller in area than type R. The third profile, which contains small

  7. Genetics of primary and timing effects in the mnd mouse

    SciTech Connect

    Messer, A.; Plummer, J.; MacMillen, M.C.

    1995-06-05

    The mnd mouse shows a spontaneous adult-onset hereditary neurological disease, with motor abnormality by 6 months of age, progressing to severe spastic paralysis and premature death. The disease is autosomal recessive, with heterozygote effects seen under stress. It maps to mouse chromosome (chr) 8. Histopathology with Nissl stains documents substantial abnormalities of upper and lower motor neurons, and there is retinal degeneration beginning in the first month, even without light exposure. Increasing levels of autofluorescent lipopigment are found in both neuronal and non-neuronal tissues as the mnd mice age. Recently, NCL-like inclusions and accumulating subunit c have also been described. When mnd is outcrossed to the AKR/J genetic background, ca. 40% of the mnd/mnd F2 progeny show early onset (onset by 4.5-5 months and death by 7 months). This accelerated timing effect seems to be strain-specific, and unlinked to the mnd gene itself. Our current working hypothesis is that the timing effect is due to 2 or 3 unlinked dominant genes with incomplete penetrance at any single locus. In a combined RFLP/PCR fragment genetic analysis, the strongest deviation from the expected ratio of AKR vs B6 alleles occurs with markers on proximal half of chr 1. Additional loci on chrs 5 and 10 may also be involved. The mechanism of interaction of these modifying genes with the primary mnd gene may offer new therapeutic avenues. 22 refs., 2 tabs.

  8. Immunohistochemical localization of nerve growth factor, glial fibrillary acidic protein and ciliary neurotrophic factor in mesencephalon, rhombencephalon, and spinal cord of developing mongolian gerbil.

    PubMed

    Park, Il-Kwon; Lee, Kyoug-Youl; Song, Chi-Won; Kwon, Hyo-Jung; Park, Mi-Sun; Lee, Mi-Young; Lee, Keun-Jwa; Jeong, Young-Gil; Lee, Chul-Ho; Ha, Kwon-Soo; Rhee, Man-Hee; Lee, Kang-Yi; Kim, Moo-Kang

    2002-09-01

    The distribution of the nerve growth factor (NGF), the glial fibrillary acidic protein (GFAP) and the ciliary neurotrohic factor (CNTF) was performed in coronal sections of the mesencephalon, rhombencephalon and spinal cord in the developing Mongolian gerbils. Generally, NGF specifically recognizes neurons with the NGF receptor, whereas GFAP does the glia, and CNTF does the motor neurons. The receptor expression was examined separately in gerbils between embryonic days 15 (E15) and postnatal weeks 3 (PNW 3). The NGF-IR was first observed in the spinal cord at E21, which might be related to the maturation. The GFAP reactivity was peaked at the postnatal days 2 (PND2), while the highest CNTF-reaction was expressed at PNW 2. The GFAP stains were observed in the aqueduct and the spinal cord, which appeared to project laterally at E19. The CNTF was observed only after the birth and found in both the neurons and neuroglia of the substantia nigra, mesencephalon, cerebellum and the spinal cord from PND1 to PNW3. These results suggest that NGF, GFAP and CNTF are important for the development of the neurons and the neuroglia in the central nervous system at the late prenatal and postnatal stages.

  9. Biochemical effects of chlorpromazine on mouse neuroblastoma cells.

    PubMed

    Andres, M I; Repetto, G; Sanz, P; Repetto, M

    1999-10-01

    Chlorpromazine and other phenothiazine derivatives are neuroleptic drugs of widespread use for clinical situations beyond the realm of psychiatry, such as to control nausea, vomiting and intractable hiccups. The present study investigated in vitro different cytotoxic effects of chlorpromazine in cultures of mouse neuroblastoma cell line Neuro-2a exposed to different concentrations of this compound. Indicators assessed were cell proliferation by quantification of total protein content of the cell culture, lysosomal function evaluated by the relative uptake of neutral red cytosolic phosphofructokinase (PFK) and enolase (ENL) activities in glycolysis, mitochondrial succinate dehydrogenase (SDH) activity in the citric acid cycle, lysosomal beta-galactosidase (GAL) activity, and neuronal acetylcholinesterase activity. Marked inhibitory effects were found for cell proliferation and relative neutral red uptake; PFK, ENL and GAL activities had no significant differences from control. Stimulation was specifically detected on SDH and the Krebs cycle at concentrations up to 30 microM. Chlorpromazine did not have high toxicity for cytotoxic effects on lysosomes.

  10. Effects of clinostat rotation on mouse meiotic maturation in vitro

    NASA Technical Reports Server (NTRS)

    Wolgemuth, D. J.; Grills, G. S.

    1984-01-01

    The effects of microgravity on meiosis, fertilization, and early embryonic development in mammals are being examined by using a clinostat to reorient the cells with respect to the gravity vector. A clinostat capable of supporting mammalian cells in tissue culture has been developed. Initial studies have focused on examining the effects of clinostat rotation on meiotic maturation in mouse oocytes. Oocytes recovered from ovarian follicles were subjected to clinostat rotation on a horizontal or vertical axis or to static conditions for a 16 hr period. No gross morphological changes and no effects on germinal vesicle breakdown were observed under any rotation conditions (1/4, 1, 10, 30, 100 RPM). Success of meiotic progression to Metaphase II was comparable among experimental and control groups except at 100 RPM, where a slight inhibition was observed.

  11. Effects of cannabinoids on the activities of mouse brain lipases.

    PubMed

    Hunter, S A; Burstein, S; Renzulli, L

    1986-09-01

    Cannabinoids were found to augment phospholipase activities and modify lipid levels of mouse brain synaptosomes, myelin and mitochondria. Delta-1-tetra-hydrocannabinol (delta 1-THC) and several of its metabolites induced a dose-dependent (0.32-16 microM) stimulation of phospholipase A2 (PLA2) activity resulting in the increased release of free arachidonic acid from exogenous [1-14C]phosphatidylcholine (PC). The potencies of the cannabinoids in modulating PLA2 activity were approximately of the order: 7-OH-delta 1-THC greater than delta 1-THC greater than 7-oxo-delta 1-THC greater than delta 1-THC-7-oic acid = 6 alpha OH-delta 1-THC much greater than 6 beta-OH-delta 1-THC. The hydrolysis of phosphatidylinositol (PI) by synaptosomal phospholipase C (PLC) was enhanced significantly by delta 1-THC and promoted diacylglyceride levels by greater than 100 percent compared to control values. In contrast, arachidonate was the major product resulting from phospholipase activities of a 20,000 g pellet. Synaptosomal diacylglyceride lipase activity was inhibited by delta 1-THC. [1-14C]Arachidonic acid was readily incorporated into subcellular membrane phospholipids and after exposure to cannabinoids led to diminished phosphoglyceride levels and concomitant increases in released neutral lipid products. These data suggest that cannabinoids control phospholipid turnover and metabolism in mouse brain preparations by the activation of phospholipases and, through this mechanism, may exert some of their effects.

  12. Formaldehyde in cryoprotectant propanediol and effect on mouse zygotes.

    PubMed

    Mahadevan, M M; McIntosh, Q; Miller, M M; Breckinridge, S M; Maris, M; Moutos, D M

    1998-04-01

    Cryopreservation of human zygotes and embryos has been routinely performed by in-vitro fertilization clinics for many years. Karran and Legge (1996) first reported that formaldehyde (FA) present in the cryoprotective solutions can have a deleterious effect on mouse oocytes. FA is a cytotoxic, carcinogenic and mutagenic chemical. The effect of FA on mouse zygotes was investigated. In addition, the concentrations of FA in propanediol (PROH) obtained from various sources were determined. Pooled 1-cell embryos were dispensed into droplets of modified Ham's F10 or human tubal fluid containing various concentrations of FA. Since bovine serum albumin (BSA) may minimize toxicity additional trials were done as above in the absence of BSA. FA concentration in the standard 1.5 M PROH, from different sources in water, was measured in the same assay using a standard curve of 0-100 microM FA. FA in a complex medium had a significant deleterious effect on embryo development and hatching but only at 1 mM concentration (P < 0.000001; see Tables I-III). There was no significant effect of FA at 100 microM. However, in a simple medium even 50 microM FA decreased embryo hatching. FA was present in 1.5 M PROH from different sources (range 1.0-35.3 microM concentration). It appears that FA concentrations do not increase with storage because FA concentrations were low even after opening and storage for 3 years on the shelf. This suggests that FA is a contaminant during the manufacturing process and may vary from manufacturer to manufacturer and batch to batch. Until further studies are done to confirm the lack of toxicity to embryos during cryopreservation (with or without FA scavengers) it may be prudent to screen all batches of cryoprotectants for FA as part of quality control.

  13. The effect of diet on bone shape in the mouse.

    PubMed Central

    Johnson, D R; O'Higgins, P; McAndrew, T J

    1990-01-01

    The effects of four deficient diets (oats, barley, wheat, buckwheat) on the shape of first and second cervical vertebrae and scapulae in C57BL mice have been measured using Fourier analysis. Bone shape was found to be robust, and only minimally affected by dietary change. The significance of this lack of change is discussed in the light of changes induced by diet in non-metrical variants in the skeleton. The study further emphasises the dangers of using certain non-metrical characters in taxonomic studies and indicates that the shapes of mouse bones are affected to a lesser degree by dietary influences than are the incidences of certain non-metrical character states. PMID:2272903

  14. Effect of Cadmium on Cellular Ultrastructure in Mouse Ovary.

    PubMed

    Wang, Ying; Wang, Xuejuan; Wang, Yanwu; Fan, Rong; Qiu, Chao; Zhong, Shan; Wei, Lei; Luo, Daji

    2015-01-01

    This study aimed at analyzing the cytotoxicity and pathological effects of cadmium on the ovary. Our studies revealed that cadmium was deposited in the mouse ovary after 8 d cadmium injection in vivo. Also, the increase in the rate of body weight was slowed, while the gonadosomatic index was reduced in the CdCl2 group, compared with the control group. Meanwhile, cadmium affected the maturation of follicles, the degradation of corpus luteum, the arrangement of follicles and corpus luteum, and increased the number of atresia follicles. Besides, under the electron microscope, chromatin margination, karopyknosis, swelling of mature cisternae of Golgi apparatus, mitochondrial cristae disappearance, and swelling of the rough endoplasmic reticulum can be observed in the CdCl2 group mice. Collectively, our findings elucidated the morphological mechanism that the exposure of cadmium changed the ultrastructure of cells in ovary tissues.

  15. Embryotoxic effects of chlorobutanol in cultured mouse embryos.

    PubMed

    Smoak, I W

    1993-03-01

    Chlorobutanol (CB) is a commonly used preservative which is added to numerous pharmaceutical preparations, and it is the active ingredient in certain oral sedatives and topical anesthetics. Chlorobutanol has demonstrated adverse effects in adult tissues, but CB has not been previously investigated for its effect on the developing whole embryo. The method of whole-embryo culture was used in this study to expose mouse embryos during two stages of organogenesis to CB at final concentrations of 0 (control), 10, 25, 50, 100, and 200 micrograms/ml. Embryos were evaluated for heart rate (HR), malformations, and somite number, and embryos and visceral yolk sacs (VYSs) were assayed for total protein content as a measure of overall growth. Neurulating (3-6 somite) embryos were malformed and growth retarded by exposure to CB concentrations > or = 25 micrograms/ml, with decreased VYS growth at > or = 50 micrograms/ml and decreased HR at > or = 100 micrograms/ml CB. Early limb-bud stage (20-25 somite) embryos were malformed at CB concentrations > or = 50 micrograms/ml and growth retarded at > or = 100 micrograms/ml, with decreased VYS growth at 200 micrograms/ml and decreased HR at > or = 100 micrograms/ml CB. Thus, CB produces dysmorphogenesis in mouse embryos in vitro, and neurulating embryos are somewhat less sensitive than early limb-bud stage embryos. The concentrations of CB that interfere with normal embryonic development are within the range of human blood levels measured following multiple doses of CB. Preparations containing CB should be used with caution during pregnancy, particularly when repeated dosing may allow accumulation of CB to potentially embryotoxic levels.

  16. Oncogenic bystander radiation effects in Patched heterozygous mouse cerebellum.

    PubMed

    Mancuso, Mariateresa; Pasquali, Emanuela; Leonardi, Simona; Tanori, Mirella; Rebessi, Simonetta; Di Majo, Vincenzo; Pazzaglia, Simonetta; Toni, Maria Pia; Pimpinella, Maria; Covelli, Vincenzo; Saran, Anna

    2008-08-26

    The central dogma of radiation biology, that biological effects of ionizing radiation are a direct consequence of DNA damage occurring in irradiated cells, has been challenged by observations that genetic/epigenetic changes occur in unexposed "bystander cells" neighboring directly-hit cells, due to cell-to-cell communication or soluble factors released by irradiated cells. To date, the vast majority of these effects are described in cell-culture systems, while in vivo validation and assessment of biological consequences within an organism remain uncertain. Here, we describe the neonatal mouse cerebellum as an accurate in vivo model to detect, quantify, and mechanistically dissect radiation-bystander responses. DNA double-strand breaks and apoptotic cell death were induced in bystander cerebellum in vivo. Accompanying these genetic events, we report bystander-related tumor induction in cerebellum of radiosensitive Patched-1 (Ptch1) heterozygous mice after x-ray exposure of the remainder of the body. We further show that genetic damage is a critical component of in vivo oncogenic bystander responses, and provide evidence supporting the role of gap-junctional intercellular communication (GJIC) in transmission of bystander signals in the central nervous system (CNS). These results represent the first proof-of-principle that bystander effects are factual in vivo events with carcinogenic potential, and implicate the need for re-evaluation of approaches currently used to estimate radiation-associated health risks.

  17. Effects of 810 nm laser on mouse primary cortical neurons

    NASA Astrophysics Data System (ADS)

    Kharkwal, Gitika B.; Sharma, Sulbha K.; Huang, Ying-Ying; De Taboada, Luis; McCarthy, Thomas; Hamblin, Michael R.

    2011-03-01

    In the past four decades numerous studies have reported the efficacy of low level light (laser) therapy (LLLT) as a treatment for diverse diseases and injuries. Recent studies have shown that LLLT can biomodulate processes in the central nervous system and has been extensively studied as a stroke treatment. However there is still a lack of knowledge on the effects of LLLT at the cellular level in neurons. The present study aimed to study the effect of 810 nm laser on several cellular processes in primary cortical neurons cultured from mouse embryonic brains. Neurons were irradiated with light dose of 0.03, 0.3, 3, 10 and 30 J/cm2 and intracellular levels of reactive oxygen species, nitric oxide and calcium were measured. The changes in mitochondrial function in response to light were studied in terms of adenosine triphosphate (ATP) and mitochondrial membrane potential (MMP). Light induced a significant increase in calcium, ATP and MMP at lower fluences and a decrease at higher fluence. ROS was induced significantly by light at all light doses. Nitric oxide levels also showed an increase on treatment with light. The results of the present study suggest that LLLT at lower fluences is capable of inducing mediators of cell signaling process which in turn may be responsible for the biomodulatory effects of the low level laser. At higher fluences beneficial mediators are reduced but potentially harmful mediators are increased thus offering an explanation for the biphasic dose response.

  18. Effects of Angiopoietin-2 on Transplanted Mouse Ovarian Tissue

    PubMed Central

    Youm, Hye Won; Lee, Jaewang; Kim, Eun Jung; Kong, Hyun Sun; Suh, Chang Suk; Kim, Seok Hyun

    2016-01-01

    Transplantation of ovarian tissue (OT) is currently the only clinical option to restore fertility with cryopreserved OT. However, follicle loss caused by ischemia and slow revascularization occurs in transplanted OT. To shorten the ischemic period and promote angiogenesis, some angiogenic factors have been used. Angiopoietin-2 (Ang2) is one of the major angiogenic factors and has been reported to promote blood vessels and increase vascular permeability in ischemic and/or hypoxic environment. This study was performed to investigate the effects of Ang2 on follicle integrity and revascularization of transplanted mouse OT. Five-week-old B6D2F1 female mice were divided into a control group and two Ang2 groups, followed by ovary collection and vitrification. After warming, the ovaries were autotransplanted into kidney capsules with/without Ang2 injection (50 or 500 ng/kg), and then the mice were sacrificed at days 2, 7, 21, and 42 after transplantation. A total 2,437 follicles in OT grafts were assessed for follicular density, integrity, and classification by using hematoxylin and eosin staining. Apoptosis and revascularization were evaluated by using TUNEL assay and CD31 immunohistochemistry, respectively. Serum follicle-stimulating hormone (FSH) levels were measured by using enzyme-linked immunosorbent assay. Both Ang2 groups showed remarkable increase in morphologically intact follicle ratio across all grafting durations except D21. The numbers of CD31(+) vessels were significantly increased in both Ang2 groups compared with the control group at all durations, except in the 50 ng Ang2 group at D42. However, the mean numbers of follicles of the grafts, apoptosis ratios, and serum FSH levels showed no significant differences among the groups. Our results show that Ang2 treatment significantly increased the intact follicle ratios and the number of blood vessels of the mouse OT grafts. However, further studies performed with large animal or human OT are necessary before

  19. Bimodal effects of cinnamaldehyde and camphor on mouse TRPA1.

    PubMed

    Alpizar, Yeranddy A; Gees, Maarten; Sanchez, Alicia; Apetrei, Aurelia; Voets, Thomas; Nilius, Bernd; Talavera, Karel

    2013-06-01

    TRPA1 is a nonselective cation channel activated by a wide variety of noxious chemicals. Intriguingly, several TRPA1 modulators induce a bimodal effect, activating the channel at micromolar concentrations and inhibiting it at higher concentrations. Here we report the bimodal action of cinnamaldehyde (CA) and camphor, which are thus far reported as agonist and antagonist of TRPA1, respectively. Whole-cell patch-clamp experiments in TRPA1-expressing CHO cells revealed that, as previously reported, extracellular application of 100 μM CA strongly stimulates TRPA1 currents. However, subsequent application of 3 mM CA induced fast and reversible current inhibition. Application of 3 mM CA in basal conditions induced a rather small current increase, followed by current inhibition and a dramatic rebound of current amplitude upon washout. These observations are reminiscent of the effects of TRPA1 modulators having bimodal effects, e.g., menthol and nicotine. In line with previous reports, extracellular application of 1 mM camphor induced a decrease of basal TRPA1 currents. However, the current amplitude showed a significant overshoot upon washout. On the other hand, application of 100 μM camphor induced a 3-fold increase of the basal current amplitude measured at -75 mV. The bimodal effects of CA and camphor on TRPA1 were also observed in microfluorimetric measurements of intracellular Ca(2+) in intact TRPA1-expressing CHO cells and in primary cultures of mouse dorsal root ganglion neurons. These findings are essential for the understanding of the complex sensory properties of these compounds, as well as their utility when used to study the pathophysiological relevance of TRPA1.

  20. Chlorambucil effectively induces deletion mutations in mouse germ cells

    SciTech Connect

    Russell, L.B.; Hunsicker, P.R.; Cacheiro, N.L.A.; Bangham, J.W.; Russell, W.L.; Shelby, M.D. )

    1989-05-01

    The chemotherapeutic agent chlorambucil was found to be more effective than x-rays or any chemical investigated to data in inducing high yields of mouse germ-line mutations that appear to be deletions or other structural changes. Induction of mutations involving seven specific loci was studied after exposures of various male germ-cell stages to chlorambucil at 10-25 mg/kg. A total of 60,750 offspring was scored. Mutation rates in spermatogonial stem cells were not significantly increased over control values; this negative result is not attributable to selective elimination of mutant cells. Mutations were, however, clearly induced in treated post-stem-cell stages, among which marked variations in mutational response were found. Maximum yield occurred after exposure of early spermatids, with {approx} 1% of all offspring carrying a specific-locus mutation in the 10 mg/kg group. The stage-response pattern for chlorambucil differs from that of all other chemicals investigated to date in the specific-locus test. Thus far, all but one of the tested mutations induced by chlorambucil in post-stem-cell stages have been proved deletions or other structural changes by genetic, cytogenetic, and/or molecular criteria. Deletion mutations have recently been useful for molecular mapping and for structure-function correlations of genomic regions. For generating presumed large-lesion germline mutations at highest frequencies, chlorambucil may be the mutagen of choice.

  1. Lack of influence of the phase of estrus cycle or treatment with steroid contraceptive drugs on cholinergic parameters in mouse and rat brain.

    PubMed

    Ladinsky, H; Consolo, S; Bianchi, S; Peri, G; Garattini, S

    1976-01-01

    Acetylcholine and choline levels were found not to fluctuate with the phase of the estrus cycle in the cerebral hemispheres, deincephalon and mesencephalon in the rat and mouse. Choline acetyltransferase activity was not altered in these brain areas in the mouse while in the rat there was a small but significant decrease in the cerebral hemispheres during proestrus (p less than 0.01), and in the mesencephalon during estrus (p less than 0.05), both with respect to diestrus. Chronic 30-day treatment with steroid contraceptive drug combinations (lynestrenol, 5 mg/kg+ mestranol, 0.3 mg/kg; lynestrenol, 2.5 mg/kg+ mestranol, 0.15 mg/kg; norethindrone, 4 mg/kg+ mestranol, 0.2 mg/kg; norethynodrel, 4 mg/kg+ mestranol, 0.06 mg/kg) did not alter cholinergic parameters in the brain areas of these two species except for minor changes in rare instances.

  2. Distinct effects of IPSU and suvorexant on mouse sleep architecture

    PubMed Central

    Hoyer, Daniel; Dürst, Thomas; Fendt, Markus; Jacobson, Laura H.; Betschart, Claudia; Hintermann, Samuel; Behnke, Dirk; Cotesta, Simona; Laue, Grit; Ofner, Silvio; Legangneux, Eric; Gee, Christine E.

    2013-01-01

    Dual orexin receptor (OXR) antagonists (DORAs) such as almorexant, SB-649868, suvorexant (MK-4305), and filorexant (MK-6096), have shown promise for the treatment of insomnias and sleep disorders. Whether antagonism of both OX1R and OX2R is necessary for sleep induction has been a matter of some debate. Experiments using knockout mice suggest that it may be sufficient to antagonize only OX2R. The recent identification of an orally bioavailable, brain penetrant OX2R preferring antagonist 2-((1H-Indol-3-yl)methyl)-9-(4-methoxypyrimidin-2-yl)-2,9-diazaspiro[5.5]undecan-1-one (IPSU) has allowed us to test whether selective antagonism of OX2R may also be a viable strategy for induction of sleep. We previously demonstrated that IPSU and suvorexant increase sleep when dosed during the mouse active phase (lights off); IPSU inducing sleep primarily by increasing NREM sleep, suvorexant primarily by increasing REM sleep. Here, our goal was to determine whether suvorexant and IPSU affect sleep architecture independently of overall sleep induction. We therefore tested suvorexant (25 mg/kg) and IPSU (50 mg/kg) in mice during the inactive phase (lights on) when sleep is naturally more prevalent and when orexin levels are normally low. Whereas IPSU was devoid of effects on the time spent in NREM or REM, suvorexant substantially disturbed the sleep architecture by selectively increasing REM during the first 4 h after dosing. At the doses tested, suvorexant significantly decreased wake only during the first hour and IPSU did not affect wake time. These data suggest that OX2R preferring antagonists may have a reduced tendency for perturbing NREM/REM architecture in comparison with DORAs. Whether this effect will prove to be a general feature of OX2R antagonists vs. DORAs remains to be seen. PMID:24368893

  3. Effects of electromagnetic pulse on polydactyly of mouse fetuses.

    PubMed

    Yang, Ming-Juan; Liu, Jun-Ye; Wang, Ya-Feng; Lang, Hai-Yang; Miao, Xia; Zhang, Li-Yan; Zeng, Li-Hua; Guo, Guo-Zhen

    2013-07-01

    There is an increasing public concern regarding potential health impacts from electromagnetic radiation exposure. Embryonic development is sensitive to the external environment, and limb development is vital for life quality. To determine the effects of electromagnetic pulse (EMP) on polydactyly of mouse fetuses, pregnant mice were sham-exposed or exposed to EMP (400 kV/m with 400 pulses) from Days 7 to 10 of pregnancy (Day 0 = day of detection of vaginal plug). As a positive control, mice were treated with 5-bromodeoxyuridine on Days 9 and 10. On Days 11 or 18, the fetuses were isolated. Compared with the sham-exposed group, the group exposed to EMP had increased rates of polydactyly fetuses (5.1% vs. 0.6%, P < 0.05) and abnormal gene expression (22.2% vs. 2.8%, P < 0.05). Ectopic expression of Fgf4 was detected in the apical ectodermal ridge, whereas overexpression and ectopic expression of Shh were detected in the zone of polarizing activity of limbs in the EMP-exposed group and in the positive control group. However, expression of Gli3 decreased in mesenchyme cells in those two groups. The percentages of programmed cell death of limbs in EMP-exposed and positive control group were decreased (3.57% and 2.94%, respectively, P < 0.05, compared with 7.76% in sham-exposed group). In conclusion, polydactyly induced by EMP was accompanied by abnormal expression of the above-mentioned genes and decreased percentage of programmed cell death during limb development.

  4. EFFECTS OF PERFLUOROOCTANOIC ACID EXPOSURE DURING PREGNANCY IN THE MOUSE

    EPA Science Inventory

    Perfluorooctanoic acid (PFOA), a member of the perfluoroalkyl acids that have wide commercial applications, has recently been detected in humans and wildlife. The current study characterizes the developmental toxicity of PFOA in the mouse. Timed pregnant CD-1 mice were given 1,...

  5. Preventive effect of antihistaminics on mouse skin photosensitization with hematoporphyrin derivative

    NASA Astrophysics Data System (ADS)

    Fu, Nai-wu; Yan, Li-xue

    1993-03-01

    Beta-carotene 100 mg/kg per day or vitamin C 50 mg/kg per day was administered orally for two days and did not prevent mouse skin photosensitization caused by hematoporphyrin derivative (HpD). However, (beta) -carotene 100 mg/kg per day administered intramuscularly for two days prevented mouse skin reaction. Cimetidine and benadryl 10 mg/kg per day, P.O.X 2, effectively prevented mouse skin reaction. This suggests histamine may be involved in skin photoreaction induced by HpD.

  6. Further study of trichosanthin's effect on mouse embryos with confocal laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Xu, Hui; Zhang, Chunyang; Ma, Hui; Chen, Die Yan

    2001-09-01

    Trichosanthin(TCS), a ribosome inactivating protein extracted from the root tuber of a traditional Chinese medicine herb Tian Huo Fen(THF), possessed abortifacient, anti-tumor and anti-human immunodeficiency virus(HIV) activities. For centuries in China, THF has been used as an effective folk medicine to terminate early and midtrimester pregnancies and to treat ectopic pregnancies, hydatidiform moles and trophoblastic tumor. We observed the changes in reactive oxygen species and intracellular calcium in mouse embryos induced by TCS with confocal laser scanning microscopy in combination with the fluorescene diacetate (DCFHDA) and Fluo-3-AM. The results indicated that TCS induced increase in intracellular calcium and production of reactive oxygen species in mouse embryos , and TCS inhibited the development of mouse embryos effectively. Mouse embryos of different developmental stages before implantation are used in the experiments. This provides new insight into mechanism for abortifacient activity of TCS.

  7. Effects of simulated microgravity on mouse Sertoli cells in culture

    NASA Astrophysics Data System (ADS)

    Angela, Masini Maria; Prato, Paola; Linda, Scarabelli; Lanza, Cristina; Palmero, Silvio; Pointis, Georges; Ricci, Franco; Strollo, Felice

    With the advent of space flights questions concerning the effects of microgravity (0xG) on hu-man reproduction physiology have got priority Spermatogenesis is a complex, highly ordered process of cell division and differentiation by which spermatogonial cells give rise to mature spermatozoa. Sertoli cells play a crucial role in the development of germ cells and the regulation of spermatogenesis. In this study the influence of 0xG on Sertoli cells was evaluated. A Sertoli cell line from mouse testis (42GPA9) was analyzed for cytoskeletal (using the 3D reconstruction generated from a stack of confocal images) and SHBG changes by immunohistochemistry, for antioxidant agents by RT-PCR and for culture medium lactate concentrations by wet chemistry. Cells were cultured for 6, 24 and 48 hrs on a three-dimensional Random Positioning Machine (3D-RPM); static controls (1xG) were positioned on the supporting frame. At the end of each experiment, cultured cells were either fixed in paraformaldehyde or RNA-extracted or used for culture medium lactate measurements as needed. At 0xG Sertoli cytoskeleton got disorganized, microtubules fragmented and SHBG undetectable already after 24 hrs, with alterations wors-ening further until 48 hrs; various antioxidant systems (SOD, GST, PARP, MTs) appreciably increased during the first 24 hrs but significantly decreased at 48 hrs. No changes occurred in 1xG samples. At least initially, 0xG seems to perturb antioxidant protection strategies allowing the testes to support sperm production, thus generating an aging-like state of oxidative stress. Lactate production at 0xG slightly decreased only after 24 hrs. Further experiments need to be carried out in space to investigate upon steroidogenesis and germ cell differentiation within the testis, to rule out eventually pending male infertility consequences, which would be a problem nowadays, when life expectancy increases and male fertility might become a social issue often extending into 60 years

  8. Effects of CHO-expressed recombinant lactoferrins on mouse dendritic cell presentation and function.

    PubMed

    Hwang, Shen-An; Kruzel, Marian L; Actor, Jeffrey K

    2015-07-01

    Lactoferrin (LF), a natural iron-binding protein, has previously demonstrated effectiveness in enhancing the Bacillus Calmette-Guérin (BCG) tuberculosis vaccine. This report investigates immune modulatory effects of Chinese hamster ovary (CHO) cell-expressed recombinant mouse and human LFs on mouse bone marrow-derived dendritic cells (BMDCs), comparing homologous and heterologous functions. BCG-infected BMDCs were cultured with LF, and examined for class II presentation molecule expression. Culturing of BCG-infected BMDCs with either LF decreased the class II molecule-expressing population. Mouse LF significantly increased the production of IL-12p40, IL-1β and IL-10, while human LF-treated BMDCs increased only IL-1β and IL-10. Overlaying naïve CD4 T-cells onto BCG-infected BMDCs cultured with mouse LF increased IFN-γ, whereas the human LF-exposed group increased IFN-γ and IL-17 from CD4 T cells. Overlay of naïve CD8 T cells onto BCG-infected BMDCs treated with mouse LF increased the production of IFN-γ and IL-17, while similar experiments using human LF only increased IL-17. This report is the first to examine mouse and human recombinant LFs in parallel experiments to assess murine DC function. These results detail the efficacy of the human LF counterpart used in a heterologous system to understand LF-mediated events that confer BCG efficacy against Mycobacterium tuberculosis challenge.

  9. Proinflammatory Effects of Interferon Gamma in Mouse Adenovirus 1 Myocarditis

    PubMed Central

    McCarthy, Mary K.; Procario, Megan C.; Twisselmann, Nele; Wilkinson, J. Erby; Archambeau, Ashley J.; Michele, Daniel E.; Day, Sharlene M.

    2014-01-01

    ABSTRACT Adenoviruses are frequent causes of pediatric myocarditis. Little is known about the pathogenesis of adenovirus myocarditis, and the species specificity of human adenoviruses has limited the development of animal models, which is a significant barrier to strategies for prevention or treatment. We have developed a mouse model of myocarditis following mouse adenovirus 1 (MAV-1) infection to study the pathogenic mechanisms of this important cause of pediatric myocarditis. Following intranasal infection of neonatal C57BL/6 mice, we detected viral replication and induction of interferon gamma (IFN-γ) in the hearts of infected mice. MAV-1 caused myocyte necrosis and induced substantial cellular inflammation that was composed predominantly of CD3+ T lymphocytes. Depletion of IFN-γ during acute infection reduced cardiac inflammation in MAV-1-infected mice without affecting viral replication. We observed decreased contractility during acute infection of neonatal mice, and persistent viral infection in the heart was associated with cardiac remodeling and hypertrophy in adulthood. IFN-γ is a proinflammatory mediator during adenovirus-induced myocarditis, and persistent adenovirus infection may contribute to ongoing cardiac dysfunction. IMPORTANCE Studying the pathogenesis of myocarditis caused by different viruses is essential in order to characterize both virus-specific and generalized factors that contribute to disease. Very little is known about the pathogenesis of adenovirus myocarditis, which is a significant impediment to the development of treatment or prevention strategies. We used MAV-1 to establish a mouse model of human adenovirus myocarditis, providing the means to study host and pathogen factors contributing to adenovirus-induced cardiac disease during acute and persistent infection. The MAV-1 model will enable fundamental studies of viral myocarditis, including IFN-γ modulation as a therapeutic strategy. PMID:25320326

  10. Oncogenic Radiation Abscopal Effects In Vivo: Interrogating Mouse Skin

    SciTech Connect

    Mancuso, Mariateresa; Leonardi, Simona; Giardullo, Paola; Pasquali, Emanuela; Tanori, Mirella; De Stefano, Ilaria; Casciati, Arianna; Naus, Christian C.; Pazzaglia, Simonetta; Saran, Anna

    2013-08-01

    Purpose: To investigate the tissue dependence in transmission of abscopal radiation signals and their oncogenic consequences in a radiosensitive mouse model and to explore the involvement of gap junction intercellular communication (GJIC) in mediating radiation tumorigenesis in off-target mouse skin. Methods and Materials: Patched1 heterozygous (Ptch1{sup +/−}) mice were irradiated at postnatal day 2 (P2) with 10 Gy of x-rays. Individual lead cylinders were used to protect the anterior two-thirds of the body, whereas the hindmost part was directly exposed to radiation. To test the role of GJICs and their major constituent connexin43 (Cx43), crosses between Ptch1{sup +/−} and Cx43{sup +/−} mice were similarly irradiated. These mouse groups were monitored for their lifetime, and skin basal cell carcinomas (BCCs) were counted and recorded. Early responses to DNA damage - Double Strand Breaks (DSBs) and apoptosis - were also evaluated in shielded and directly irradiated skin areas. Results: We report abscopal tumor induction in the shielded skin of Ptch1{sup +/−} mice after partial-body irradiation. Endpoints were induction of early nodular BCC-like tumors and macroscopic infiltrative BCCs. Abscopal tumorigenesis was significantly modulated by Cx43 status, namely, Cx43 reduction was associated with decreased levels of DNA damage and oncogenesis in out-of-field skin, suggesting a key role of GJIC in transmission of oncogenic radiation signals to unhit skin. Conclusions: Our results further characterize the nature of abscopal responses and the implications they have on pathologic processes in different tissues, including their possible underlying mechanistic bases.

  11. In vivo field recordings effectively monitor the mouse cortex and hippocampus under isoflurane anesthesia

    PubMed Central

    Yin, Yi-qing; Wang, Li-fang; Chen, Chao; Gao, Teng; Zhao, Zi-fang; Li, Cheng-hui

    2016-01-01

    Isoflurane is a widely used inhaled anesthetic in the clinical setting. However, the mechanism underlying its effect on consciousness is under discussion. Therefore, we investigated the effect of isoflurane on the hippocampus and cortex using an in vivo field recording approach. Our results showed that 1.3%, 0.8%, and 0.4% isoflurane exerted an inhibitory influence on the mouse hippocampus and cortex. Further, high frequency bands in the cortex and hippocampus showed greater suppression with increasing isoflurane concentration. Our findings suggest that in vivo field recordings can monitor the effect of isoflurane anesthesia on the mouse cortex and hippocampus. PMID:28197191

  12. Evidences for the agmatine involvement in antidepressant like effect of bupropion in mouse forced swim test.

    PubMed

    Kotagale, Nandkishor R; Tripathi, Sunil J; Aglawe, Manish M; Chopde, Chandrabhan T; Umekar, Milind J; Taksande, Brijesh G

    2013-06-01

    Although bupropion has been widely used in the treatment of depression, the precise mechanism of its therapeutic actions is not fully understood. The present study investigated the role of agmatine in an antidepressant like effect of bupropion in mouse forced swim test. The antidepressant like effect of bupropion was potentiated by pretreatment with agmatine (10-20mg/kg, ip) and by the drugs known to increase endogenous agmatine levels in brain viz., l-arginine (40 μg/mouse, icv), an agmatine biosynthetic precursor, ornithine decarboxylase inhibitor, dl-α-difluoromethyl ornithine hydrochloride, DFMO (12.5 μg/mouse, icv), diamine oxidase inhibitor, aminoguanidine (6.5 μg/mouse, icv) and agmatinase inhibitor, arcaine (50 μg/mouse, icv) as well as imidazoline I1 receptor agonists, moxonidine (0.25mg/kg, ip) and clonidine (0.015 mg/kg, ip) and imidazoline I2 receptor agonist, 2-(2-benzofuranyl)-2-imidazoline hydrochloride, 2-BFI (5mg/kg, ip). Conversely, prior administration of I1 receptor antagonist, efaroxan (1mg/kg, ip) and I2 receptor antagonist, idazoxan (0.25mg/kg, ip) blocked the antidepressant like effect of bupropion and its synergistic combination with agmatine. These results demonstrate involvement of agmatine in the antidepressant like effect of bupropion and suggest agmatine and imidazoline receptors as a potential therapeutic target for the treatment of depressive disorders.

  13. Effects of hyperthermia and radiation on mouse testis stem cells

    SciTech Connect

    Reid, B.O.; Mason, K.A.; Withers, H.R.; West, J.

    1981-11-01

    The response of mouse testis stem cells to hyperthermia and combined hyperthermia-radiation treatments was assayed by spermatogenic colony regrowth, sperm head counts, testis weight loss, and fertility. With the use of spermatogenic colony assay, thermal enhancement ratios at an isosurvival level of 0.1 were 1.27 at 41 degrees, 1.80 at 42 degrees, and 3.97 at 43 degrees for testes exposed to heat for 30 min prior to irradiation. Sperm head counts were reduced by heat alone from a surviving fraction of 0.58 at 41 degrees to 0.003 at 42.5-43.5 degrees. Curves for sperm head survival measured 56 days after the testes had been heated for 30 min prior to irradiation were biphasic and showed a progressive downward displacement to lower survival with increasing temperature. The 41, 42, and 43 degrees curves were displaced downward by factors of 2, 58, and 175, respectively. The proportion of animals remaining sterile after 30 min of heat (41-43 degrees) and the median sterility period in days increased with increasing temperature. The minimum sperm count necessary to regain fertility was 13% of the normal mouse level.

  14. Town mouse or country mouse: identifying a town dislocation effect in Chinese urbanization.

    PubMed

    Wang, Fei; Li, Shu; Bai, Xin-Wen; Ren, Xiao-Peng; Rao, Li-Lin; Li, Jin-Zhen; Liu, Huan; Liu, Hong-Zhi; Wu, Bin; Zheng, Rui

    2015-01-01

    Understanding urbanization and evaluating its impact are vital for formulating global sustainable development. The results obtained from evaluating the impact of urbanization, however, depend on the kind of measurement used. With the goal of increasing our understanding of the impact of urbanization, we developed direct and indirect subjective indicators to measure how people assess their living situation. The survey revealed that the projected endorsements and perceived social ambiance of people toward living in different types of settlements did not improve along with the urbanization level in China. The assessment scores from the city dwellers were not significantly different from those from the country areas and, more surprisingly, both were significantly higher than the assessment scores of the town dwellers, which we had expected to fall between the assessment scores of the country and city dwellers. Instead their scores were the lowest. We dubbed this V-shaped relationship the "town dislocation effect." When searching for a potential explanation for this effect, we found additional town dislocation effects in social support, loss aversion, and receptivity toward genetically modified food. Further analysis showed that only social support mediated the relationship between the three tiers of settlements (cities, country areas, and towns) and the subjective indicator. The projected endorsements yielded significant subjective assessments that could enhance our understanding of Chinese urbanization. Towns posed specific problems that require special attention.

  15. Town Mouse or Country Mouse: Identifying a Town Dislocation Effect in Chinese Urbanization

    PubMed Central

    Wang, Fei; Li, Shu; Bai, Xin-Wen; Ren, Xiao-Peng; Rao, Li-Lin; Li, Jin-Zhen; Liu, Huan; Liu, Hong-Zhi; Wu, Bin; Zheng, Rui

    2015-01-01

    Understanding urbanization and evaluating its impact are vital for formulating global sustainable development. The results obtained from evaluating the impact of urbanization, however, depend on the kind of measurement used. With the goal of increasing our understanding of the impact of urbanization, we developed direct and indirect subjective indicators to measure how people assess their living situation. The survey revealed that the projected endorsements and perceived social ambiance of people toward living in different types of settlements did not improve along with the urbanization level in China. The assessment scores from the city dwellers were not significantly different from those from the country areas and, more surprisingly, both were significantly higher than the assessment scores of the town dwellers, which we had expected to fall between the assessment scores of the country and city dwellers. Instead their scores were the lowest. We dubbed this V-shaped relationship the “town dislocation effect.” When searching for a potential explanation for this effect, we found additional town dislocation effects in social support, loss aversion, and receptivity toward genetically modified food. Further analysis showed that only social support mediated the relationship between the three tiers of settlements (cities, country areas, and towns) and the subjective indicator. The projected endorsements yielded significant subjective assessments that could enhance our understanding of Chinese urbanization. Towns posed specific problems that require special attention. PMID:25973960

  16. New Mouse Model May Aid in Developing Effective Therapies for Ovarian Cancer | Poster

    Cancer.gov

    By Frank Blanchard, Staff Writer A new genetically engineered mouse model appears promising as an effective tool for preclinical testing of novel therapies for ovarian cancer, which tends to be diagnosed in late stage. There are few effective treatments for the disease.

  17. Protective effects of black rice bran against chemically-induced inflammation of mouse skin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We investigated the inhibitory effects of black rice (cv. LK1-3-6-12-1-1) bran against 12-O-tetradecanolylphorbol-13-acetate (TPA)-induced skin edema and 2,4-dinitroflurobenzene (DNFB)-induced allergic contact dermatitis (ACD) in inflammatory mouse models. We also determined the effects of the bran...

  18. Inhibitory effects of whisky congeners on melanogenesis in mouse B16 melanoma cells.

    PubMed

    Ohguchi, Kenji; Koike, Minako; Suwa, Yoshihide; Koshimizu, Seiichi; Mizutani, Yuki; Nozawa, Yoshinori; Akao, Yukihiro

    2008-04-01

    We examined the effect of whisky congeners, substances other than ethanol in whisky, on melanogenesis in mouse B16 melanoma cells. Treatment with whisky congeners significantly blocked melanogenesis. Our results indicate that the inhibitory effects of whisky congeners on melanogenesis is due to direct inhibition of tyrosinase activity and to suppression of tyrosinase protein levels.

  19. [Effect of alpha-fetoprotein on isolated mouse oocytes].

    PubMed

    Lambert, J C; Vallette, G; Seralini, G E; Vranckx, R; Nunez, E; Stora, C

    1986-01-01

    Data are presented which indicate a possible action of alpha-fetoprotein (AFP) on female germinal cells. The in vitro maturation of mature mice oocytes was significantly inhibited when mouse AFP replaced albumin in the culture medium. In addition, the degenerative aspect of oocytes cultured with AFP seemed to indicate that this meïotic inhibition was caused by a premature degeneration of oocytes rather than by a blockage at a specific stage of maturation. Thus AFP, perhaps through its ligands, may play a role in the reduction of germinal cells during fetal and immediate post-natal life rather than in the arrest of meïosis at the diplotene stage.

  20. Therapeutic Effects of Resveratrol in a Mouse Model of LPS and Cigarette Smoke-Induced COPD.

    PubMed

    Chen, Jinlong; Yang, Xu; Zhang, Weiya; Peng, Danhua; Xia, Yanan; Lu, Yi; Han, Xiaodong; Song, Guangjie; Zhu, Jing; Liu, Renping

    2016-12-01

    This study was designed to examine whether resveratrol exerts the protective effects on LPS and cigarette smoke (LC)-induced COPD in a murine model. In lung histopathological studies, H&E, Masson's trichrome, and AB-PAS staining were performed. The cytokines (IL-6, IL-17, TGF-β, and TNF-α) and inflammatory cells in BALF were determined. The Beclin1 level in the lungs of mouse was analyzed. Compared with the LC-induced mouse, the level of inflammatory cytokines (IL-17, IL-6, TNF-α, and TGF-β) of the BALF in the resveratrol + cigarette smoke-treated mouse had obviously decreased. Histological examination of the lung tissue revealed that the resveratrol treatment attenuated the fibrotic response and mucus hypersecretion. In addition, resveratrol inhibited the expression of the Beclin1 protein in mouse lungs. The presented findings collectively suggest that resveratrol has a therapeutic effect on mouse LC-induced COPD, and its mechanism of action might be related to reducing the production of the Beclin1 protein.

  1. Rodent Habitat On ISS: Spaceflight Effects On Mouse Behavior

    NASA Technical Reports Server (NTRS)

    Ronca, A. E.; Moyer, E. L.; Talyansky, Y.; Padmanabhan, S.; Choi, S.; Gong, C.; Globus, R. K.

    2016-01-01

    The NASA Decadal Survey (2011), Recapturing a Future for Space Exploration: Life and Physical Sciences Research for a New Era, emphasized the importance of expanding NASA life sciences research to long duration, rodent experiments on the International Space Station (ISS). To accomplish this objective, flight hardware, operations, and science capabilities supporting mouse studies in space were developed at NASA Ames Research Center. The first flight experiment carrying mice, Rodent Research Hardware and Operations Validation (Rodent Research-1), was launched on Sept 21, 2014 in an unmanned Dragon Capsule, SpaceX4, exposing the mice to a total of 37 days in space. Ground control groups were maintained in environmental chambers at Kennedy Space Center. Mouse health and behavior were monitored for the duration of the experiment via video streaming. Here we present behavioral analysis of two groups of five C57BL/6 female adult mice viewed via fixed camera views compared with identically housed Ground Controls. Flight (Flt) and Ground Control (GC) mice exhibited the same range of behaviors, including eating, drinking, exploratory behavior, self- and allo-grooming, and social interactions at similar or greater levels of occurrence. Mice propelled themselves freely and actively throughout the Habitat using their forelimbs to push off or by floating from one cage area to another, and they quickly learned to anchor themselves using tails and/or paws. Overall activity was greater in Flt as compared to GC mice, with spontaneous ambulatory behavior including the development of organized ‘circling’ or ‘race-tracking’ behavior that emerged within the first few days of flight and encompassed the primary dark cycle activity for the remainder of the experiment. We quantified the bout frequency, duration and rate of circling with respect to characteristic behaviors observed in the varying stages of the progressive development of circling: flipping utilizing two sides of the

  2. Effect of Rhodopsin Phosphorylation on Dark Adaptation in Mouse Rods

    PubMed Central

    Berry, Justin; Frederiksen, Rikard; Yao, Yun; Nymark, Soile

    2016-01-01

    Rhodopsin is a prototypical G-protein-coupled receptor (GPCR) that is activated when its 11-cis-retinal moiety is photoisomerized to all-trans retinal. This step initiates a cascade of reactions by which rods signal changes in light intensity. Like other GPCRs, rhodopsin is deactivated through receptor phosphorylation and arrestin binding. Full recovery of receptor sensitivity is then achieved when rhodopsin is regenerated through a series of steps that return the receptor to its ground state. Here, we show that dephosphorylation of the opsin moiety of rhodopsin is an extremely slow but requisite step in the restoration of the visual pigment to its ground state. We make use of a novel observation: isolated mouse retinae kept in standard media for routine physiologic recordings display blunted dephosphorylation of rhodopsin. Isoelectric focusing followed by Western blot analysis of bleached isolated retinae showed little dephosphorylation of rhodopsin for up to 4 h in darkness, even under conditions when rhodopsin was completely regenerated. Microspectrophotometeric determinations of rhodopsin spectra show that regenerated phospho-rhodopsin has the same molecular photosensitivity as unphosphorylated rhodopsin and that flash responses measured by trans-retinal electroretinogram or single-cell suction electrode recording displayed dark-adapted kinetics. Single quantal responses displayed normal dark-adapted kinetics, but rods were only half as sensitive as those containing exclusively unphosphorylated rhodopsin. We propose a model in which light-exposed retinae contain a mixed population of phosphorylated and unphosphorylated rhodopsin. Moreover, complete dark adaptation can only occur when all rhodopsin has been dephosphorylated, a process that requires >3 h in complete darkness. SIGNIFICANCE STATEMENT G-protein-coupled receptors (GPCRs) constitute the largest superfamily of proteins that compose ∼4% of the mammalian genome whose members share a common membrane

  3. Radiation effect in mouse skin: Dose fractionation and wound healing

    SciTech Connect

    Gorodetsky, R.; Mou, X.D.; Fisher, D.R.; Taylor, J.M.; Withers, H.R. )

    1990-05-01

    Radiation induced dermal injury was measured by the gain in the physical strength of healing wounds in mouse skin. A sigmoid dose response for the inhibition of wound healing 14 days after surgery was found for single doses of X rays. The sparing of dermal damage from fractionation of the X-ray dose was quantified in terms of the alpha/beta ratio in the linear-quadratic (LQ) model, at a wide range of doses per fraction reaching as low as about 1 Gy. The fit and the appropriateness of the LQ model for the skin wound healing assay was examined with the use of the Fe-plot in which inverse total dose is plotted versus dose per fraction for wound strength isoeffects. The alpha/beta ratio of the skin was about 2.5 Gy (95% confidence of less than +/- 1 Gy) and was appropriate over a dose range of 1 Gy to about 8 Gy. The low alpha/beta value is typical for a late responding tissue. This assay, therefore, has the advantage of measuring and forecasting late radiation responses of the dermis within a short time after irradiation.

  4. The Effect of Glutamate Receptor Agonists on Mouse Retinal Astrocyte [Ca2+]i

    PubMed Central

    Blandford, Stephanie N.

    2016-01-01

    Calcium-imaging techniques were used to determine if mouse retinal astrocytes in situ respond to agonists of ionotropic (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, AMPA; N-methyl-D-aspartate, NMDA) and metabotropic (S-3,5-dihydroxyphenylglycine, DHPG; trans-1-amino-1,3-cyclopentanedicarboxylic acid, ACPD) glutamate receptors. In most cases we found no evidence that retinal astrocyte intracellular calcium ion concentration ([Ca2+]i) increased in response to these glutamate agonists. The one exception was AMPA that increased [Ca2+]i in some, but not all, mouse retinal astrocytes in situ. However, AMPA did not increase [Ca2+]i in mouse retinal astrocytes in vitro, suggesting that the effect of AMPA in situ may be indirect. PMID:27413752

  5. The Effect of Glutamate Receptor Agonists on Mouse Retinal Astrocyte [Ca(2+)]i.

    PubMed

    Blandford, Stephanie N; Baldridge, William H

    2016-01-01

    Calcium-imaging techniques were used to determine if mouse retinal astrocytes in situ respond to agonists of ionotropic (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, AMPA; N-methyl-D-aspartate, NMDA) and metabotropic (S-3,5-dihydroxyphenylglycine, DHPG; trans-1-amino-1,3-cyclopentanedicarboxylic acid, ACPD) glutamate receptors. In most cases we found no evidence that retinal astrocyte intracellular calcium ion concentration ([Ca(2+)]i) increased in response to these glutamate agonists. The one exception was AMPA that increased [Ca(2+)]i in some, but not all, mouse retinal astrocytes in situ. However, AMPA did not increase [Ca(2+)]i in mouse retinal astrocytes in vitro, suggesting that the effect of AMPA in situ may be indirect.

  6. Development of an invitro technique to use mouse embryonic stem cell in evaluating effects of xenobiotics

    EPA Science Inventory

    Our goal has been to develop a high-throughput, in vitro technique for evaluating the effects of xenobiotics using mouse embryonic stem cells (mESCs). We began with the Embryonic Stem Cell Test (EST), which is used to predict the embryotoxic potential of a test compound by combin...

  7. Timing is Essential for Rapid Effects of Corticosterone on Synaptic Potentiation in the Mouse Hippocampus

    ERIC Educational Resources Information Center

    Joels, Marian; Krugers, Harm; Wiegert, Olof

    2006-01-01

    Stress facilitates memory formation, but only when the stressor is closely linked to the learning context. These effects are, at least in part, mediated by corticosteroid hormones. Here we demonstrate that corticosterone rapidly facilitates synaptic potentiation in the mouse hippocampal CA1 area when high levels of the hormone and high-frequency…

  8. GPR30 Mediates the Fast Effect of Estrogen on Mouse Blastocyst and its Role in Implantation.

    PubMed

    Yu, Lin-lin; Qu, Ting; Zhang, Shi-mao; Yuan, Dong-zhi; Xu, Qian; Zhang, Jin-hu; He, Ya-ping; Yue, Li-min

    2015-10-01

    Our previous work demonstrated that estrogen could rapidly increase intracellular Ca(2+) in dormant mouse blastocysts. The purpose of the present study is to investigate the physiological relevance of G protein-coupled receptor 30 (GPR30) in the fast effect of estrogen on mouse blastocyst and in embryo implantation. We used reverse transcription-polymerase chain reaction, immunofluorescence, embryo coculture with Ishikawa uterine epithelial cell line, and embryo transfer technology to detect the expression of GPR30 in mouse embryos and the nongenomic effects of estrogen via GPR30 on blastocyst. We found that GPR30 is expressed in the mouse blastocyst, and its location is mostly consistent with the binding site of estrogen. Both estrogen and GPR30-specific agonist G-1 rapidly increase the intracellular Ca(2+) and phospholipase C activation in blastocyst cells, while GPR30-specific antagonist G-15 blocked this effect of estrogen. The pretreatment of G-15 on blastocysts lead to a lower attachment rate and implantation rate. Our data collectively suggested that GPR30 can mediate the fast effect of estrogen on blastocysts and play an important role in embryo implantation.

  9. The enhancing effect of fucoidan derived from Undaria pinnatifida on immunoglobulin production by mouse spleen lymphocytes.

    PubMed

    Takai, Mika; Miyazaki, Yoshiyuki; Tachibana, Hirofumi; Yamada, Koji

    2014-01-01

    In this study, we revealed that a Mekabu (Udaria pinnantifida) extract enhanced immunoglobulin (Ig) production of mouse spleen lymphocytes. Furthermore, it was suggested that water-soluble and high molecular weight ingredients in the Mekabu extract have significant enhancing effect on Ig production. Therefore, fucoidan was estimated as the active component.

  10. Inhibitory effect of beta-thujaplicin on ultraviolet B-induced apoptosis in mouse keratinocytes.

    PubMed

    Baba, T; Nakano, H; Tamai, K; Sawamura, D; Hanada, K; Hashimoto, I; Arima, Y

    1998-01-01

    Sunburn cells are thought to represent ultraviolet B-induced apoptotic keratinocytes. It has been demonstrated that enzymatic and nonenzymatic antioxidants effectively suppress sunburn cell formation, indicating that reactive oxygen species may play a role in the progression of ultraviolet B-induced apoptosis. Metallothionein, a cytosol protein, has antioxidant activity, and overexpression of metallothionein has been reported to reduce the number of sunburn cells in mouse skin. We have also demonstrated that overexpression of metallothionein inhibits ultraviolet B-induced DNA ladder formation in mouse keratinocytes. These findings support the hypothesis that cellular metallothionein may play an important role in the inhibition of ultraviolet B-induced apoptosis in keratinocytes through its antioxidant activity. In the present study, we investigated the effects of beta-thujaplicin, an extract from the woods of Thuja plicata D. Don. and Chamaecyparis obtuse, Sieb. et Zucc., on ultraviolet B-induced apoptosis in keratinocytes and on metallothionein induction. Topical application of beta-thujaplicin decreased the number of ultraviolet B-mediated sunburn cells and terminal deoxynucleotidyl transferase (TdT)-mediated dUTP-biotin nick end labeling-positive cells in mouse ear skin. Incubation with beta-thujaplicin suppressed ultraviolet B-induced DNA ladder formation in cultured mouse keratinocytes. Histochemical analysis showed that topical application of beta-thujaplicin induced metallothionein protein in mouse skin. Northern analysis and western blotting revealed significant induction of metallothionein mRNA and metallothionein protein, respectively, in beta-thujaplicin-treated cultured mouse keratinocytes. These findings indicate that beta-thujaplicin inhibits ultraviolet B-induced apoptosis in keratinocytes and strongly suggest that the inhibitory mechanism is due to the antioxidant activity of metallothionein induced by the agent.

  11. Cytotoxic effects of propiconazole and its metabolites in mouse and human hepatoma cells and primary mouse hepatocytes

    EPA Science Inventory

    Abstract: Propiconazole is a triazole-containing fungicide that is used agriculturally on grasses, fruits, grains, seeds, hardwoods, and conifers. Propiconazole is a mouse liver hepatotoxicant and a hepatocarcinogen and has adverse reproductive and developmental toxicities in exp...

  12. Effects and Responses to Spaceflight in the Mouse Retina

    NASA Technical Reports Server (NTRS)

    Zanello, Susana B.; Theriot, Corey; Westby, Christian; Boyle, Richard

    2011-01-01

    Several stress environmental factors are combined in a unique fashion during spaceflight, affecting living beings widely across their physiological systems. Recently, attention has been placed on vision changes in astronauts returning from long duration missions. Alterations include hyperoptic shift, globe flattening, choroidal folds and optic disc edema, which are probably associated with increased intracranial pressure. These observations justify a better characterization of the ocular health risks associated with spaceflight. This study investigates the impact of spaceflight on the biology of the mouse retina. Within a successful tissue sharing effort, eyes from albino Balb/cJ mice aboard STS-133 were collected for histological analysis and gene expression profiling of the retina at 1 and 7 days after landing. Both vivarium and AEM (Animal Enclosure Module) mice were used as ground controls. Oxidative stress-induced DNA damage was higher in the flight samples compared to controls on R+1, and decreased on R+7. A trend toward higher oxidative and cellular stress response gene expression was also observed on R+1 compared to AEM controls, and these levels decreased on R+7. Several genes coding for key antioxidant enzymes, namely, heme-oxygenase-1, peroxiredoxin, and catalase, were among those upregulated after flight. Likewise, NF B and TGFbeta1, were upregulated in one flight specimen that overall showed the most elevated oxidative stress markers on R+1. In addition, retinas from vivarium control mice evidenced higher oxidative stress markers, NF B and TGFbeta1, likely due to the more intense illumination in vivarium cages versus the AEM. These preliminary data suggest that spaceflight represents a source of environmental stress that translates into oxidative and cellular stress in the retina, which is partially reversible upon return to Earth. Further work is needed to dissect the contribution of the various spaceflight factors (microgravity, radiation) and to

  13. Mouse strain-dependent effect of amantadine on motility and brain biogenic amines.

    PubMed

    Messiha, F S

    1989-01-01

    The effect of amantadine hydrochloride, injected i.p. in 6 increments of 100 mg/kg each over 30 hr, on mouse motility and whole brain content of selected biogenic amines and major metabolites was studied in 4 strains of mice. These were the albino Sprague-Dawley ICR and BALB/C, the black C57BL/6 and the brown CDF-I mouse strains. Amantadine treatment produced a biphasic effect on mouse motility. The initial dose of amantadine depressed locomotor activity in all mouse strains studied with the BALB/C mice being the most sensitive. Subsequent amantadine treatments produced enhancement of motility from corresponding control in all mouse strains with the BALB/C mice being the least sensitive. The locomotor activity was decreased from corresponding controls in all strains studied, except for the ICR mice, during an overnight drug-free period following the fourth amantadine treatment. Readministration of amantadine, after a drug-free overnight period, increased motility from respective saline control in all strains with exception of the BALB/C mice where suppression of motility occurred. Treatment with amantadine did not alter whole brain dopamine levels but decreased the amounts of 3,4-dihydroxyphenylacetic acid in the BALB/C mice compared to saline control. Conversely, brain normetanephrine concentration was increased from saline control by amantadine in the BALB/C mice. The results suggest a strain-dependent effect of amantadine on motility and indicate a differential response to the acute and multiple dose regimens used. The BALB/C mouse was the most sensitive strain and could serve as the strain of choice for evaluating the side effects of amantadine. The biochemical results of brain biogenic amines of BALB/C mouse strain suggest a probable decrease of catecholamine turnover rate and/or metabolism by monoamine oxidase and a resulting increase in O-methylation of norepinephrine which may account for a behavioral depression caused by amantadine in the BALB/C mice.

  14. Anti-tumor effects of peptide analogs targeting neuropeptide hormone receptors on mouse pheochromocytoma cells.

    PubMed

    Ziegler, C G; Ullrich, M; Schally, A V; Bergmann, R; Pietzsch, J; Gebauer, L; Gondek, K; Qin, N; Pacak, K; Ehrhart-Bornstein, M; Eisenhofer, G; Bornstein, S R

    2013-05-22

    Pheochromocytoma is a rare but potentially lethal chromaffin cell tumor with currently no effective treatment. Peptide hormone receptors are frequently overexpressed on endocrine tumor cells and can be specifically targeted by various anti-tumor peptide analogs. The present study carried out on mouse pheochromocytoma cells (MPCs) and a more aggressive mouse tumor tissue-derived (MTT) cell line revealed that these cells are characterized by pronounced expression of the somatostatin receptor 2 (sst2), growth hormone-releasing hormone (GHRH) receptor and the luteinizing hormone-releasing hormone (LHRH) receptor. We further demonstrated significant anti-tumor effects mediated by cytotoxic somatostatin analogs, AN-162 and AN-238, by LHRH antagonist, Cetrorelix, by the cytotoxic LHRH analog, AN-152, and by recently developed GHRH antagonist, MIA-602, on MPC and for AN-152 and MIA-602 on MTT cells. Studies of novel anti-tumor compounds on these mouse cell lines serve as an important basis for mouse models of metastatic pheochromocytoma, which we are currently establishing.

  15. Effects of several salt marsh plants on mouse spleen and thymus cell proliferation using mtt assay

    NASA Astrophysics Data System (ADS)

    Seo, Youngwan; Lee, Hee-Jung; Kim, You Ah; Youn, Hyun Joo; Lee, Burm-Jong

    2005-12-01

    In the present study, we have tested the effects of 21 salt marsh plants on cell proliferation of mouse immune cells (spleen and thymus) using MTT assay in culture. The methanolic extracts of six salt marsh plants ( Rosa rugosa, Ixeris tamagawaensis, Artemisia capillaris, Tetragonia tetragonoides, Erigeron annus, and Glehnia littoralis) showed very powerful suppressive effects of mouse immune cell death and significant activities of cell proliferation in vitro. Especially, the methanolic extract of Rosa rugosa was found to have fifteen times compared to the control treatment, demonstrating that Rosa rugosa may have a potent stimulation effect on immune cell proliferation. These results suggest that several salt marsh plants including Rosa rugosa could be useful for further study as an immunomodulating agent.

  16. Early effect of interferon on mouse leukemia cells cultivated in a chemostat.

    PubMed Central

    Tovey, M; Brouty-Boyé, D; Gresser, I

    1975-01-01

    Mouse interferon preparations inhibited the multiplication of mouse leukemia L 1210 cells cultivated under steady-state conditions in a chemostat. The use of this sensitive and controlled system led to the detection of a rapid inhibition in the incorporation of (3-H)thymidine into cellular acid-precipitable material 2 hr after the addition of interferon, whereas an effect on cell multiplication was not detected until 22 hr later. Interferon exerted only a transitory effect on the incorporation of (3-H)uridine into acid-precipitable material and no effect on the incorporation of 14-C-amino acids into cellular protein. It is suggested that the chemostat offers many advantages for the investigation of those physiologic factors or chemotherapeutic substances that modify cell division. PMID:1056030

  17. Chronodependent effect of interleukin-2 on mouse spleen cells in the model of cyclophosphamide immunosuppression.

    PubMed

    Shurlygina, A V; Mel'nikova, E V; Trufakin, V A

    2015-02-01

    We studied the chronodependent effect of IL-2 in the experimental model of immunodeficiency, cyclophosphamide-induced immunosuppression in mice. IL-2 in a dose of 100 U/ mouse was administered at 10.00 and 16.00 for 3 days after injection of cyclophosphamide. In contrast to the morning treatment with the cytokine, evening administration produced antiapoptotic effect on splenocytes and stimulated proliferation to a greater extent. This was accompanied by an increase in the number of CD4(+), CD25(+) and CD4(+)25(+) cells in the spleen to a level of intact mice. More pronounced effect of the evening mode of IL-2 administration on the proliferation and subpopulation composition of mouse spleen cells in the studied model can be associated with high blood level of CD25(+) cells at this time of the day.

  18. Effective PCR-based detection of Naegleria fowleri from cultured sample and PAM-developed mouse.

    PubMed

    Kang, Heekyoung; Seong, Gi-Sang; Sohn, Hae-Jin; Kim, Jong-Hyun; Lee, Sang-Eun; Park, Mi Yeoun; Lee, Won-Ja; Shin, Ho-Joon

    2015-10-01

    Increasing numbers of Primary Amoebic Meningoencephalitis (PAM) cases due to Naegleria fowleri are becoming a serious issue in subtropical and tropical countries as a Neglected Tropical Disease (NTD). To establish a rapid and effective diagnostic tool, a PCR-based detection technique was developed based on previous PCR methods. Four kinds of primer pairs, Nfa1, Nae3, Nf-ITS, and Naegl, were employed in the cultured amoebic trophozoites and a mouse with PAM experimentally developed by N. fowleri inoculation (PAM-mouse). For the extraction of genomic DNA from N. fowleri trophozoites (1×10(6)), simple boiling with 10μl of PBS (pH 7.4) at 100°C for 30min was found to be the most rapid and efficient procedure, allowing amplification of 2.5×10(2) trophozoites using the Nfa-1 primer. The primers Nfa1 and Nae3 amplified only N. fowleri DNA, whereas the ITS primer detected N. fowleri and N. gruberi DNA. Using the PAM-mouse brain tissue, the Nfa1 primer was able to amplify the N. fowleri DNA 4 days post infection with 1ng/μl of genomic DNA being detectable. Using the PAM-mouse CSF, amplification of the N. fowleri DNA with the Nae3 primer was possible 5 days post infection showing a better performance than the Nfa1 primer at day 6.

  19. Effect of cyanobacteria extract on some associated enzymes in mouse liver in vivo

    NASA Astrophysics Data System (ADS)

    Chen, Jianzhong; Liu, Zhili; Zhou, Guoqing; Han, Zhiping; Zhang, Haiyang; Zhang, Yixiang

    2010-11-01

    Blooms of toxin-producing cyanobacteria have become increasingly common in the surface water of the world. In this study, we studied the dose- and time-dependent effects of a microcystin (MC) extract of cyanobacteria from Dianchi Lake in China on liver weight/body weight ratio and superoxide dismutase (SOD), lactate dehydrogenase (LDH) and glutathione peroxidase (GSH-Px) activities in mouse liver. We found that exposure to the cyanobacterial extract (CE) resulted in increase in liver weight/body weight ratio in a dose-dependent manner, and the mouse liver reached the maximum size at 1 h post-exposure (pe). SOD activity in mouse liver decreased in a dose-dependent manner, and time course study indicated that it decreased significantly at 1 and 2 h pe, and resumed at 3 h pe as compared to control. CE caused LDH activity in the livers of mice to decrease in a dose- and time-dependent manner except a small increase in 30 min pe mice. GSH-Px activity increased in a dose-dependent manner, and was higher than that in the control over the 3 h observation period. The present findings suggest that oxidative damage may be involved in the toxicity of microcystins on mouse.

  20. Hazardous Apoptotic Effects of 2-Bromopropane on Maturation of Mouse Oocytes, Fertilization, and Fetal Development

    PubMed Central

    Chan, Wen-Hsiung

    2010-01-01

    2-Bromopropane (2-BP) is used as an alternative to ozone-depleting cleaning solvents. Previously, we reported that 2-BP has cytotoxic effects on mouse blastocysts and is associated with defects in subsequent development. Here, we further investigate the effects of 2-BP on oocyte maturation and subsequent pre- and post-implantation development, both in vitro and in vivo. Notably, 2-BP induced a significant reduction in the rates of oocyte maturation, fertilization, and in vitro embryonic development. Treatment of oocytes with 2-BP during in vitro maturation (IVM) resulted in increased resorption of postimplantation embryos and decreased fetal weights. Experiments with a mouse model disclosed that consumption of drinking water containing 20 μM 2-BP led to decreased oocyte maturation in vivo and fertilization in vitro, as well as impairment of early embryonic development. Interestingly, pretreatment with a caspase-3-specific inhibitor effectively prevented 2-BP-triggered hazardous effects, suggesting that embryonic impairment by 2-BP occurs via a caspase-dependent apoptotic process. A study using embryonic stem cells as the assay model conclusively demonstrated that 2-BP induces cell death processes through apoptosis and not necrosis, and inhibits early embryo development in mouse embryonic stem cells. These results collectively confirm the hazardous effects of 2-BP on embryos derived from pretreated oocytes. PMID:21151443

  1. l-Cys/CSE/H2S pathway modulates mouse uterus motility and sildenafil effect.

    PubMed

    Mitidieri, Emma; Tramontano, Teresa; Donnarumma, Erminia; Brancaleone, Vincenzo; Cirino, Giuseppe; d'Emmanuele di Villa Bianca, Roberta; Sorrentino, Raffaella

    2016-09-01

    Sildenafil, a selective phosphodiesterase type 5 (PDE5) inhibitor, commonly used in the oral treatment for erectile dysfunction, relaxes smooth muscle of human bladder through the activation of hydrogen sulfide (H2S) signaling. H2S is an endogenous gaseous transmitter with myorelaxant properties predominantly formed from l-cysteine (l-Cys) by cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE). Sildenafil also relaxes rat and human myometrium during preterm labor but the underlying mechanism is still unclear. In the present study we investigated the possible involvement of H2S as a mediator of sildenafil-induced effect in uterine mouse contractility. We firstly demonstrated that both enzymes, CBS and CSE were expressed, and able to convert l-Cys into H2S in mouse uterus. Thereafter, sildenafil significantly increased H2S production in mouse uterus and this effect was abrogated by CBS or CSE inhibition. In parallel, l-Cys, sodium hydrogen sulfide or sildenafil but not d-Cys reduced spontaneous uterus contractility in a functional study. The blockage of CBS and CSE reduced this latter effect even if a major role for CSE than CBS was observed. This data was strongly confirmed by using CSE(-/-) mice. Indeed, the increase in H2S production mediated by l-Cys or by sildenafil was not found in CSE(-/-) mice. Besides, the effect of H2S or sildenafil on spontaneous contractility was reduced in CSE(-/-) mice. A decisive proof for the involvement of H2S signaling in sildenafil effect in mice uterus was given by the measurement of cGMP. Sildenafil increased cGMP level that was significantly reduced by CSE inhibition. In conclusion, l-Cys/CSE/H2S signaling modulates the mouse uterus motility and the sildenafil effect. Therefore the study may open different therapeutical approaches for the management of the uterus abnormal contractility disorders.

  2. The antidepressant-like effects of paeoniflorin in mouse models

    PubMed Central

    QIU, FENGMEI; ZHONG, XIAOMING; MAO, QINGQIU; HUANG, ZHEN

    2013-01-01

    Peony is often used in Chinese herbal medicine for the treatment of depression-like disorders. Our previous studies have demonstrated that the total glycosides of peony exert antidepressant-like effects in animal models. Paeoniflorin is the main active glycoside of peony. The aim of this study was to evaluate the antidepressant-like effects of paeoniflorin in mice, as well as its active mechanisms. The results revealed that intraperitoneally injected paeoniflorin significantly reduced the duration of immobility in forced swimming and tail suspension tests. The doses that affected the immobility response did not affect locomotor activity. Furthermore, paeoniflorin antagonized reserpine-induced ptosis, akinesia and hypothermia. Paeoniflorin also significantly increased the levels of serotonin (5-HT) and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) in the hippocampus. These results suggest that the upregulation of serotonergic systems may be an important mechanism for the antidepressant-like effects of paeoniflorin in mice. PMID:23599734

  3. Effects of ochratoxin a on mouse oocyte maturation and fertilization, and apoptosis during fetal development.

    PubMed

    Huang, Fu-Jen; Chan, Wen-Hsiung

    2016-06-01

    We previously reported that ochratoxin A (OTA), a mycotoxin found in many foods worldwide, causes nephrotoxicity, hepatotoxicity, and immunotoxicity, and is a risk factor for abnormal embryonic development. More specifically, OTA triggers apoptotic processes in the inner cell mass of mouse blastocysts, decreasing cell viability and embryonic development. In the current study, we investigated the deleterious effects of OTA on mouse oocyte maturation, in vitro fertilization (IVF), and subsequent pre- and postimplantation development both in vitro and in vivo. Notably, OTA significantly impaired mouse oocyte maturation, decreased IVF rates, and inhibited subsequent embryonic development in vitro. Preincubation of oocytes with OTA during in vitro maturation increased postimplantation embryonic resorption and decreased mouse fetal weight. In an in vivo animal model, provision of 1-10 μM OTA in the drinking water or intravenous injection of 1 or 2 mg/kg body weight of OTA decreased oocyte maturation and IVF, and had deleterious effects on early embryonic development. Importantly, preincubation of oocytes with a caspase-3-specific inhibitor effectively blocked these OTA-triggered deleterious effects, suggesting that the embryonic injury induced by OTA is mediated via a caspase-dependent apoptotic mechanism. Furthermore, OTA upregulated the levels of p53 and p21 in blastocyst cells derived from OTA-pretreated oocytes, indicating that such cells undergo apoptosis via p53-, p21-, and caspase-3-dependent regulatory mechanisms. This could have deleterious effects on embryonic implantation and fetal survival rates, as seen in our animal models. © 2014 Wiley Periodicals, Inc. Environ Toxicol 31: 724-735, 2016.

  4. Lack of effect of dibromochloropropane on the mouse testis

    SciTech Connect

    Oakberg, E.F.; Cummings, C.C.

    1984-01-01

    A single intraperitoneal injection of male mice with 110 mg/kg of 1,2-dibromo-3-chloropropane (DBCP) showed no effect on spermatogonial stem cells or on differentiating spermatogonia as measured by cell counts made 3, 5, and 8 days after injection.

  5. Synergistic effect of lidocaine with pingyangmycin for treatment of venous malformation using a mouse spleen model

    PubMed Central

    Bai, Nan; Chen, Yuan-Zheng; Mao, Kai-Ping; Fu, Yanjie; Lin, Qiang; Xue, Yan

    2014-01-01

    Aims: To explore whether lidocaine has the synergistic effect with pingyangmycin (PYM) in the venous malformations (VMs) treatment. Methods: The mouse spleen was chosen as a VM model and injected with different concentration of lidocaine or PYM or jointly treated with lidocaine and PYM. After 2, 5, 8 or 14 days, the mouse spleen tissues were acquired for hematoxylin-eosin (HE) staining, transmission electron microscopy (TEM) analysis, TUNEL assay and quantitative RT-PCR analysis to examine the toxicological effects of lidocaine and PYM on splenic vascular endothelial cells. Results: 0.4% of lidocaine mildly promoted the apoptosis of endothelial cells, while 2 mg/ml PYM significantly elevated the apoptotic ratios. However, the combination of 0.2% lidocaine and 0.5 mg/ml PYM notably elevated the apoptotic ratios of splenic cells and severely destroyed the configuration of spleen, compared to those of treatment with 0.5 mg/ml PYM alone. Conclusion: Lidocaine exerts synergistic effects with PYM in promoting the apoptosis of mouse splenic endothelial cells, indicating that lidocaine possibly promotes the therapeutic effects of PYM in VMs treatment via synergistically enhancing the apoptosis of endothelial cells of malformed venous lesions. PMID:24966943

  6. The effect of interferon-{beta} on mouse neural progenitor cell survival and differentiation

    SciTech Connect

    Hirsch, Marek; Knight, Julia; Tobita, Mari; Soltys, John; Panitch, Hillel; Mao-Draayer, Yang

    2009-10-16

    Interferon-{beta} (IFN-{beta}) is a mainstay therapy for relapse-remitting multiple sclerosis (MS). However, the direct effects of IFN-{beta} on the central nervous system (CNS) are not well understood. To determine whether IFN-{beta} has direct neuroprotective effects on CNS cells, we treated adult mouse neural progenitor cells (NPCs) in vitro with IFN-{beta} and examined the effects on proliferation, apoptosis, and differentiation. We found that mouse NPCs express high levels of IFN{alpha}/{beta} receptor (IFNAR). In response to IFN-{beta} treatment, no effect was observed on differentiation or proliferation. However, IFN-{beta} treated mouse NPCs demonstrated decreased apoptosis upon growth factor withdrawal. Pathway-specific polymerase chain reaction (PCR) arrays demonstrated that IFN-{beta} treatment upregulated the STAT 1 and 2 signaling pathway, as well as GFRA2, NOD1, Caspases 1 and 12, and TNFSF10. These results suggest that IFN-{beta} can directly affect NPC survival, possibly playing a neuroprotective role in the CNS by modulating neurotrophic factors.

  7. Individual and combined effects of deoxynivalenol and zearalenone on mouse kidney.

    PubMed

    Liang, Zhen; Ren, Zhihua; Gao, Shuang; Chen, Yun; Yang, Yanyi; Yang, Dan; Deng, Junliang; Zuo, Zhicai; Wang, Ya; Shen, Liuhong

    2015-11-01

    This study was performed to investigate the individual and combined toxic effects of deoxynivalenol (DON) and zearalenone (ZEA) on mouse kidney. A total of 360 female mice were divided into nine groups. Each group received intraperitoneal injection of solvent (control), DON, ZEA, or DON+ZEA four times for 12d. Results showed that ZEA and/or DON increased the apoptosis rate in the kidney, as well as the levels of serum creatinine and blood urea nitrogen. DON and/or ZEA also induced renal oxidative stress as indicated by increased malondialdehyde concentration and nitric oxide level and reduced superoxide dismutase enzyme activity and hydroxyl radical inhibiting capacity. The observed changes were dose and time dependent. This study reports that DON and/or ZEA induced apoptosis, dysfunction, and oxidative stress in mouse kidney. Furthermore, the combination of DON+ZEA exhibited a sub-additive nephrotoxic effect.

  8. Effect of Desiccating Stress on Mouse Meibomian Gland Function

    PubMed Central

    Suhalim, Jeffrey L.; Parfitt, Geraint J.; Xie, Yilu; De Pavia, Cintia S.; Pflugfelder, Stephen C.; Shah, Tejas N.; Potma, Eric O.; Brown, Donald J.; Jester, James V.

    2013-01-01

    Purpose Mice exposed to standardized desiccating environmental stress to induce dry eye-like symptoms have been used as a model to study the underlying mechanisms of evaporative dry eye. While studies have shown marked inflammatory and immune changes, the effect of such stress on meibomian gland function remains largely unknown. We sought to evaluate the effects of desiccating stress on meibocyte proliferation and meibum quality. Methods Ten mice were treated with scopolamine and subjected to a drafty low humidity environment (30–35%). Five and ten days after treatment, eyelids were harvested and cryosections stained with Ki67 antibody to identify cycling cells. Sections were also imaged using stimulated Raman scattering (SRS) microscopy to characterize the gland compositional changes by detecting the vibrational signatures of methylene (lipid) and amide-I (protein). Results Desiccating stress caused a 3-fold increase in basal acinar cell proliferation from 18.3 ± 11.1% in untreated mice to 64.4 ± 19.9% and 66.6 ± 13.4% after 5 and 10 days exposure, respectively (P < .001). In addition, SRS analysis showed a wider variation in the protein-to-lipid ratio throughout the gland, suggesting alterations in meibocyte differentiation and lipid synthesis. Conclusions These data are consistent with a model that a desiccating environment may have a direct effect on meibomian gland function, leading to a significant increase in basal acinar cell proliferation, abnormal meibocyte differentiation, and altered lipid production. PMID:24439047

  9. Effect of soman on the cholinergic system in mouse brain

    SciTech Connect

    Tripathi, H.L.; Szakal, A.R.; Little, D.M.; Dewey, W.L.

    1986-03-05

    The effects of soman on levels of acetylcholine (ACh) and choline (Ch) and turnover rate of ACh have been studied in whole brain and brain regions (cerebellum, medulla-pons, midbrain, corpus striatum, hippocampus and cortex) of mice. Animals were injected with saline or a dose of soman up to 80..mu..g/kg, i.v. and were sacrificed by focussed microwave irradiation of the head. The tracer, /sup 3/H-Ch was injected (i.v.) 2 min prior to sacrifice and turnover rate of ACh was quantitated by using HPLC with electrochemical detection. A behaviorally effective dose of 80 ..mu..g/kg soman increased the levels of ACh significantly in whole brain (57.5%), corpus striatum (42.8%), hippocampus (24.1%) and cortex (43.1%). The levels of Ch were also increased in cerebellum (80.1%), midbrain (75.7%), corpus striatum (86.0%) and cortex (52.5%). The turnover rate of ACh was decreased in whole brain (53.8%), cerebellum (80.4%), medulla-pons (66.8%), midbrain (57.0%), corpus striatum (62.1%) and cortex (52.6%). The duration of these effects lasted more than 1 hr and the results indicate that the decrease in ACh turnover is not due necessarily to an increase in brain levels of ACh and/or Ch.

  10. Effects of environmental enrichment on the amyotrophic lateral sclerosis mouse model.

    PubMed

    Sorrells, A D; Corcoran-Gomez, K; Eckert, K A; Fahey, A G; Hoots, B L; Charleston, L B; Charleston, J S; Roberts, C R; Markowitz, H

    2009-04-01

    The manner in which an animal's environment is furnished may have significant implications for animal welfare as well as research outcomes. We evaluated four different housing conditions to determine the effects of what has been considered standard rodent enrichment and the exercise opportunities those environments allow on disease progression in the amyotrophic lateral sclerosis mouse model. Forty-eight copper/zinc superoxide dismutase mice (strain: B6SJL-TgN [SOD1-G931]1Gur) (SOD1) and 48 control (C) (strain: B6SJL-TgN[SOD1]2Gur) male mice were randomly assigned to four different conditions where 12 SOD1 and 12 C animals were allotted to each condition (n = 96). Conditions tested the effects of standard housing, a forced exercise regime, access to a mouse house and opportunity for ad libitum exercise on a running wheel. In addition to the daily all-occurrence behavioural sampling, mice were weighed and tested twice per week on gait and Rotor-Rod performance until the mice reached the age of 150 days (C) or met the criteria for our humane endpoint (SOD1). The SOD1 mice exposed to the forced exercise regime and wheel access did better in average lifespan and Rotor-Rod performance, than SOD1 mice exposed to the standard cage and mouse house conditions. In SOD1 mice, stride length remained longest throughout the progression of the disease in mice exposed to the forced exercise regime compared with other SOD1 conditions. Within the control group, mice in the standard cage and forced exercise regime conditions performed significantly less than the mice with the mouse house and wheels on the Rotor-Rod. Alpha motor neuron counts were highest in mice with wheels and in mice exposed to forced exercise regime in both mouse strains. All SOD1 mice had significantly lower alpha neuron counts than controls (P < 0.05). These data show that different enrichment strategies affect behaviour and disease progression in a transgenic mouse model, and may have implications for the

  11. Genetic background differences and nonassociative effects in mouse trace fear conditioning.

    PubMed

    Smith, Dani R; Gallagher, Michela; Stanton, Mark E

    2007-09-01

    Fear conditioning, including variants such as delay and trace conditioning that depend on different neural systems, is widely used to behaviorally characterize genetically altered mice. We present data from three strains of mice, C57/BL6 (C57), 129/SvlmJ (129), and a hybrid strain of the two (F(1) hybrids), trained on various versions of a trace fear-conditioning protocol. The initial version was taken from the literature but included unpaired control groups to assess nonassociative effects on test performance. We observed high levels of nonassociative freezing in both contextual and cued test conditions. In particular, nonassociative freezing in unpaired control groups was equivalent to freezing shown by paired groups in the tests for trace conditioning. A number of pilot studies resulted in a new protocol that yielded strong context conditioning and low levels of nonassociative freezing in all mouse strains. During the trace-CS test in this protocol, freezing in unpaired controls remained low in all strains, and both the C57s and F(1) hybrids showed reliable associative trace fear conditioning. Trace conditioning, however, was not obtained in the 129 mice. Our findings indicate that caution is warranted in interpreting mouse fear-conditioning studies that lack control conditions to address nonassociative effects. They also reveal a final set of parameters that are important for minimizing such nonassociative effects and demonstrate strain differences across performance in mouse contextual and trace fear conditioning.

  12. Effect of cyclophosphamide and electromagnetic fields on mouse bone marrow

    SciTech Connect

    Cadossi, R.; Zucchini, P.; Emilia, G.; Torelli, G. )

    1990-02-26

    The authors have previously shown that the exposure to low frequency pulsing electromagnetic fields (PEMF) of mice X-ray irradiated resulted in an increased damage to the bone marrow. The series of experiments here reported were designed to investigate the effect of PEMF exposure after intraperitoneum injection of 200mg/kg of cyclophosphamide (CY). Control mice were CY injected only; experimental mice were CY injected and then exposed to PEMF. Exposure to PEMF (24 hours/day) increased the rate of decline of white blood cells in peripheral blood. Spleen weight was statistically higher among control mice than among mice exposed to PEMF at day 6, 8 and 10 after CY injection. Spleen autoradiography proved to be higher among PEMF exposed mice than among controls at day 8 and 9 after CY injection. The grafting efficiency of the bone marrow obtained from control mice was higher than the grafting efficiency of the bone marrow recovered from mice exposed to PEMF. All these data indicate that the exposure to PEMF increases the cytotoxic effect of CY.

  13. Effect of Fenbendazole on an Autoimmune Mouse Model

    PubMed Central

    Cray, Carolyn; Watson, Toshiba; Zaias, Julia; Altman, Norman H

    2013-01-01

    Fenbendazole is an anthelmintic drug widely used to treat and prevent pinworm infection in laboratory rodents. Data regarding possible side effects of fenbendazole on the immune system are conflicting, potentially due to the design of treatment protocols. The purpose of the current study was to determine the effects of 2 fenbendazole therapeutic regimens (continuous for 5 wk and alternating weeks [that is, 1 wk on, 1 wk off] for 9 wk) on the development of autoimmune disease in (NZB × NZW)F1 mice. No significant differences in survival curves or weight were observed between the treatment groups and cohort mice receiving nonmedicated feed. At the termination of the experiment, there were no differences in tissue pathology. Hematocrit decreased and BUN increased over time in all groups, but no significant differences were present between groups. After the cessation of treatment, mice fed the medicated diet continuously for 5 wk showed an increase in antiDNA antibody. Although this difference was significant, it did not affect survival curves or disease-related tissue or blood changes. These data indicate that common protocols of fenbendazole treatment do not alter the progression of autoimmune disease in (NZB × NZW)F1 mice. PMID:23849411

  14. Effect of fenbendazole on an autoimmune mouse model.

    PubMed

    Cray, Carolyn; Watson, Toshiba; Zaias, Julia; Altman, Norman H

    2013-01-01

    Fenbendazole is an anthelmintic drug widely used to treat and prevent pinworm infection in laboratory rodents. Data regarding possible side effects of fenbendazole on the immune system are conflicting, potentially due to the design of treatment protocols. The purpose of the current study was to determine the effects of 2 fenbendazole therapeutic regimens (continuous for 5 wk and alternating weeks [that is, 1 wk on, 1 wk off] for 9 wk) on the development of autoimmune disease in (NZB × NZW)F1 mice. No significant differences in survival curves or weight were observed between the treatment groups and cohort mice receiving nonmedicated feed. At the termination of the experiment, there were no differences in tissue pathology. Hematocrit decreased and BUN increased over time in all groups, but no significant differences were present between groups. After the cessation of treatment, mice fed the medicated diet continuously for 5 wk showed an increase in antiDNA antibody. Although this difference was significant, it did not affect survival curves or disease-related tissue or blood changes. These data indicate that common protocols of fenbendazole treatment do not alter the progression of autoimmune disease in (NZB × NZW)F1 mice.

  15. Uranium in drinking water: effects on mouse oocyte quality.

    PubMed

    Kundt, Miriam S; Martinez-Taibo, Carolina; Muhlmann, Maria C; Furnari, Juan C

    2009-05-01

    The aim of this work was to evaluate the reproductive toxicological effects of uranium (U) at 2.5, 5, and 10 mgU/kg/d chronically administered in drinking water for 40 d. Swiss female control mice (n = 28) and mice chronically contaminated with uranyl nitrate in drinking water (n = 36) were tested. The number and quality of ovulated oocytes, chromatin organization, and nuclear integrity were evaluated. No significant differences were obtained in the numbers of ovulated oocytes between the different groups. Nevertheless, in 1,520 of the oocytes examined, dysmorphism increased from 11.99% in the control group to 27.99%, 27.19%, and 27.43% in each of the contaminated groups, respectively, in a dose-independent manner. On the other hand, morphological chromatin organization from 880 oocytes examined showed an increase in metaphase plate abnormalities from 37.20% (+/-7.21) in the control group to 55.13% (+/-21.36), 58.29% (+/-21.72), and 64.10% (+/-12.62) in each of the contaminated groups, respectively. Cumulus cell (CC) micronucleation, a parameter of nuclear integrity, increased from 0.21% (+/-0.31) in the control group to 1.92 (+/-0.95), 2.98 (+/-0.97), and 3.2 (+/-0.98), respectively. Both metaphase plate abnormalities and CC micronucleation showed an increase in a dose-dependent manner (r = 0.9; p < 0.001). The oocyte and its microenvironment showed high sensitivity to uranium contamination by drinking water. The lowest observed adverse effect level for this system is estimated at a level below 2.5 mgU/kg/d for female mice.

  16. The effects of aging on the BTBR mouse model of autism spectrum disorder

    PubMed Central

    Jasien, Joan M.; Daimon, Caitlin M.; Wang, Rui; Shapiro, Bruce K.; Martin, Bronwen; Maudsley, Stuart

    2014-01-01

    Autism spectrum disorder (ASD) is a complex heterogeneous neurodevelopmental disorder characterized by alterations in social functioning, communicative abilities, and engagement in repetitive or restrictive behaviors. The process of aging in individuals with autism and related neurodevelopmental disorders is not well understood, despite the fact that the number of individuals with ASD aged 65 and older is projected to increase by over half a million individuals in the next 20 years. To elucidate the effects of aging in the context of a modified central nervous system, we investigated the effects of age on the BTBR T + tf/j mouse, a well characterized and widely used mouse model that displays an ASD-like phenotype. We found that a reduction in social behavior persists into old age in male BTBR T + tf/j mice. We employed quantitative proteomics to discover potential alterations in signaling systems that could regulate aging in the BTBR mice. Unbiased proteomic analysis of hippocampal and cortical tissue of BTBR mice compared to age-matched wild-type controls revealed a significant decrease in brain derived neurotrophic factor and significant increases in multiple synaptic markers (spinophilin, Synapsin I, PSD 95, NeuN), as well as distinct changes in functional pathways related to these proteins, including “Neural synaptic plasticity regulation” and “Neurotransmitter secretion regulation.” Taken together, these results contribute to our understanding of the effects of aging on an ASD-like mouse model in regards to both behavior and protein alterations, though additional studies are needed to fully understand the complex interplay underlying aging in mouse models displaying an ASD-like phenotype. PMID:25225482

  17. Calea zacatechichi dichloromethane extract exhibits antidiarrheal and antinociceptive effects in mouse models mimicking irritable bowel syndrome.

    PubMed

    Sałaga, M; Kowalczuk, A; Zielinska, M; Błażewicz, A; Fichna, J

    2015-10-01

    Calea zacatechichi Schltdl. (Asteraceae alt. Compositae) is a Mexican plant commonly used in folk medicine to treat respiratory and gastrointestinal (GI) disorders. The objective of this study is to characterize the effect of C. zacatechichi extracts in mouse models mimicking the symptoms of irritable bowel syndrome (IBS). Powdered C. zacatechichi herb (leaves, stems, and flowers) was extracted with methanol. Methanolic extract was filtered and evaporated giving methanolic fraction. The residue was extracted with dichloromethane (DCM). Methanolic and DCM (200 mg/kg, per os) extracts were screened for their effect on GI motility in several in vitro tests, and the antidiarrheal and antinociceptive effects were assessed using mouse models. The influence of the DCM extract on motoric parameters and exploratory behaviors was also assessed. Finally, the composition of C. zacatechichi DCM extract was qualitatively analyzed using liquid chromatography-mass spectrometry (LC-MS) method. C. zacatechichi DCM extract significantly inhibited the contractility of mouse colon in vitro (IC50 = 17 ± 2 μg/ml). Administration of the DCM extract in vivo (200 mg/kg, per os) significantly prolonged the time of whole GI transit (46 ± 1 vs. 117 ± 27 min for control and DCM-treated animals, respectively; P = 0.0023), inhibited hypermotility, and reduced pain in mouse models mimicking functional GI disorders. Our findings suggest that constituents of the C. zacatechichi DCM extract exhibit antidiarrheal and analgesic activity. The extract may thus become an attractive material for isolation of compounds that may be used as a supplementary treatment for pain and diarrhea associated with IBS in the future.

  18. Effects of melatonin on oocyte maturation in PCOS mouse model.

    PubMed

    Nikmard, Fatemeh; Hosseini, Elham; Bakhtiyari, Mehrdad; Ashrafi, Mahnaz; Amidi, Fardin; Aflatoonian, Reza

    2017-04-01

    The purpose of oocyte in vitro maturation is generation of mature oocytes that could support future development. Efforts have been made to enhance oocyte developmental competence by developing optimal culture conditions. The present study is conducted to determine melatonin effects on quality of polycystic ovarian syndrome (PCOS) oocytes when it has been added during in vitro maturation, and immature oocytes were cultured in defined conditioned medium with and without different melatonin concentrations. Melatonin could significantly improve nuclear maturation of PCOS oocytes (81.1% vs. 56.3%, P < 0.05 were achieved with 10(-6) mol/L concentration). Cleavage rate was significantly higher in 10(-5) mol/L concentration compared to untreated oocytes in PCOS (54% vs. 35%, respectively) and it was significantly higher with 10(-6) mol/L concentration in the control group, 55% versus 38%, compared to untreated oocytes. This study showed that melatonin has the potential to induce oocyte nuclear maturation and guarantee fertilization potential. © 2016 Japanese Society of Animal Science.

  19. Effects of deuteration on hematopoiesis in the mouse

    SciTech Connect

    Adams, W.H.; Adams, D.G.

    1988-02-01

    Mice ingesting 30 to 50% D/sub 2/O (heavy water, deuterium oxide) developed a dose-dependent depression of formed peripheral blood elements in 4 to 9 days. The principal mechanism of anemia and thrombocytopenia is impaired hematopoiesis. Despite pancytopenia in the peripheral blood, bone marrow cellularity and morphology remained normal. Upon replacement of D/sub 2/O with tap water, platelet and neutrophil concentrations returned to normal within 48 to 72 hr. In contrast, blood lymphocyte concentrations remained low for several weeks. B-lymphocytes may be more affected by deuteration than other lymphocyte subsets. In vivo reticuloendothelial cell function, as assessed by /sup 51/Cr-labeled sheep erythrocyte clearance, was unaffected by D/sub 2/O. Although a dose-dependent decrease in fluid intake occurred during deuteration, hematocytopenia was not a consequence of dehydration. In view of the known kinetics of D/sub 2/O in biological systems, the rapid response of myeloid elements to deuteration must be due primarily to the solvent (nonmetabolic) isotope effect. Prolonged deuteration has proven toxic when included in regimens for treatment of neoplasia, including leukemia, in animal models. The present study shows that modulation of hematopoiesis by D/sub 2/O is possible without invoking the toxicities associated with prolonged deuteration.

  20. Type 1 diabetes attenuates the modulatory effects of endomorphins on mouse colonic motility.

    PubMed

    Wang, Chang-lin; Wang, Xiang; Yu, Ye; Cui, Yun; Liu, Hong-mei; Lai, Lu-hao; Guo, Chao; Liu, Jing; Wang, Rui

    2008-02-01

    Our previous studies have shown that endomorphins (EMs), endogenous ligands for mu-opioid receptor, display a significant potentiation effect on mouse colonic motility. In the present study, to assess whether diabetes alters these modulatory effects of EMs on colonic motility, we investigated the effects of EMs in type 1 diabetic mouse colon in vitro. At 4 weeks after the onset of diabetes, carbachol-induced contractions in the longitudinal muscle of distal colon were significantly reduced compared to those of non-diabetic mice. Furthermore, the contractile effects induced by EMs in the longitudinal muscle of distal colon and in the circular muscle of proximal colon were also significantly reduced by type 1 diabetes. It is noteworthy that EMs-induced longitudinal muscle contractions were not significantly affected by atropine, Nomega-nitro-l-arginine methylester (l-NAME), phentolamine, propranolol, hexamethonium, methysergide and naltrindole. On the other hand, tetrodotoxin, indomethacin, naloxone, beta-funaltrexamine, naloxonazine and nor-binaltorphimine completely abolished these effects. These mechanisms responsible for EMs-induced modulatory effects in type 1 diabetes were in good agreement with those of non-diabetes, indicating similar mechanisms in both diabetes and non-diabetes. At 8 weeks after the onset of diabetes, both carbachol- and EMs-induced longitudinal muscle contractions were similar to those of short-time (4 weeks) diabetic mice. In summary, all the results indicated that type 1 diabetes significantly attenuated the modulatory effects of EMs on the mouse colonic motility, but the mechanisms responsible for these effects were not significantly altered.

  1. Inhibitory effects of pre- and posttest drugs on mouse-killing by rats.

    PubMed

    Gay, P E; Leaf, R C; Arble, F B

    1975-01-01

    Mouse-killing in rats was gradually inhibited by repeated posttest injections of d-amphetamine (1.5 mg/kg), l-amphetamine (1.5 mg/kg) or pilocarpine (7.5 mg/kg), but not by control substances. Of these drugs, only d-amphetamine inhibited killing when given prior to a mouse-killing test. Further experiments suggested that anorexia per se did not contribute to drug-induced inhibitory effects, but that changes in internal state were important to the development of inhibition. Pretest injections appear to inhibit predatory killing by a direct pharmacological action on some target site or sites, while posttest injections produce a learned aversion to predatory killing.

  2. Antifibrotic effect of pirfenidone in a mouse model of human nonalcoholic steatohepatitis

    PubMed Central

    Komiya, Chikara; Tanaka, Miyako; Tsuchiya, Kyoichiro; Shimazu, Noriko; Mori, Kentaro; Furuke, Shunsaku; Miyachi, Yasutaka; Shiba, Kumiko; Yamaguchi, Shinobu; Ikeda, Kenji; Ochi, Kozue; Nakabayashi, Kazuhiko; Hata, Ken-ichiro; Itoh, Michiko; Suganami, Takayoshi; Ogawa, Yoshihiro

    2017-01-01

    Non-alcoholic steatohepatitis (NASH) is characterized by steatosis with lobular inflammation and hepatocyte injury. Pirfenidone (PFD) is an orally bioavailable pyridone derivative that has been clinically used for the treatment of idiopathic pulmonary fibrosis. However, it remains unknown whether PFD improves liver fibrosis in a mouse model with human NASH-like phenotypes. In this study, we employed melanocortin 4 receptor-deficient (MC4R-KO) mice as a mouse model with human NASH-like phenotypes to elucidate the effect and action mechanisms of PFD on the development of NASH. PFD markedly attenuated liver fibrosis in western diet (WD)-fed MC4R-KO mice without affecting metabolic profiles or steatosis. PFD prevented liver injury and fibrosis associated with decreased apoptosis of liver cells in WD-fed MC4R-KO mice. Pretreatment of PFD inhibited the tumor necrosis factor-α (TNF-α)-induced liver injury and fibrogenic responses associated with decreased apoptosis of liver cells in wild-type mice. PFD also prevented TNF-α-induced hepatocyte apoptosis in vitro with reduced activation of caspase-8 and -3. This study provides evidence for the antifibrotic effect of PFD in a mouse model of human NASH. The data of this study highlight hepatocyte apoptosis as a potential therapeutic target, and suggest that PFD can be repositioned as an antifibrotic drug for human NASH. PMID:28303974

  3. The effect of molybdenum on the in vitro development of mouse preimplantation embryos.

    PubMed

    Bi, Cong-Ming; Zhang, Yu-Ling; Liu, Feng-Jun; Zhou, Tie-Zhong; Yang, Zi-Jun; Gao, Shen-Yang; Wang, Shu-De; Chen, Xiao-Li; Zhai, Xiao-Wei; Ma, Xue-Gang; Jin, Li-Jun; Wang, Shen

    2013-04-01

    The object of this study was to investigate the effect of molybdenum on the development of mouse preimplantation embryos cultured in vitro. Zygotes were flushed from one outbred mouse strain (Kunming), and then were cultured in potassium simplex optimized medium (KSOM) containing 0, 5, 10, 20, 40, 80, 120, and 160 µg/ml of molybdenum for 5 days until the mid-blastocyst stage. The addition of ≤ 20 µg/ml molybdenum did not affect the blastocyst and birth rates. Molybdenum at doses of 40 µg/ml and higher significantly decreased the cleavage, blastocyst and birth rates, the average cell number, and significantly increased the proportion of degenerative blastocysts. At 120 µg/ml molybdenum inhibited the blastocysts development to birth. At 160 µg/ml molybdenum caused overall developmental arrest (up to 16-cells) of embryos and their massive degeneration. In conclusion, molybdenum negatively affected the development of embryos in a dose-dependent manner. With lower doses (≤ 20 µg/ml), mouse embryos were not apparently damaged. With very high doses (≥ 40 µg/ml), embryo quality significantly decreased. This assessment of the effect of molybdenum on the preimplantation embryo is an initial survey of toxicological risk.

  4. Effects of T-2 toxin on the regulation of steroidogenesis in mouse Leydig cells.

    PubMed

    Yang, Jian Ying; Zhang, Yong Fa; Li, Yuan Xiao; Guan, Gui Ping; Kong, Xiang Feng; Liang, Ai Min; Ma, Kai Wang; Da Li, Guang; Bai, Xue Fei

    2016-10-01

    T-2 toxin is one of the mycotoxins, a group of type A trichothecenes produced by several fungal genera including Fusarium species, which may lead to the decrease of testosterone secretion in primary Leydig cells derived from mouse testis. The previous study demonstrated T-2 toxin decrease the testosterone biosynthesis in the primary Leydig cells derived from the mouse testis directly. In this study, we further examined the direct biological effects of T-2 toxin on the process of steroidogenesis, primarily in Leydig cells of mice. Leydig cells of mature mouse were purified by Percoll gradient centrifugation and the cell purity was determined by 3β-hydroxysteroid dehydrogenase (3β-HSD) staining. To examine the decrease in T-2 toxin-induced testosterone secretion, we measured the transcription level of three key steroidogenic enzymes including 3β-HSD-1, cytochrome P450 side-chain cleavage (P450scc) enzyme, and steroidogenic acute regulatory (StAR) protein in T-2 toxin/human chorionic gonadotropin (hCG) co-treated cells. Our previous study showed that T-2 toxin (10(-7), 10(-8), and 10(-9) M) significantly suppressed hCG (10 ng/ml)-induced testosterone secretion. The studies demonstrated that the suppressive effect is correlated with a decrease in the level of transcription of 3β-HSD-1, P450scc, and StAR (p < 0.05).

  5. Immunostimulatory effect of spinach aqueous extract on mouse macrophage-like J774.1 cells and mouse primary peritoneal macrophages.

    PubMed

    Ishida, Momoko; Ose, Saya; Nishi, Kosuke; Sugahara, Takuya

    2016-07-01

    We herein report the immunostimulatory effect of spinach aqueous extract (SAE) on mouse macrophage-like J774.1 cells and mouse primary peritoneal macrophages. SAE significantly enhanced the production of interleukin (IL)-6 and tumor necrosis factor-α by both J774.1 cells and peritoneal macrophages by enhancing the expression levels of these cytokine genes. In addition, the phagocytosis activity of J774.1 cells was facilitated by SAE. Immunoblot analysis revealed that SAE activates mitogen-activated protein kinase and nuclear factor-κB cascades. It was found that SAE activates macrophages through not only TLR4, but also other receptors. The production of IL-6 was significantly enhanced by peritoneal macrophages from SAE-administered BALB/c mice, suggesting that SAE has a potential to stimulate macrophage activity in vivo. Taken together, these data indicate that SAE would be a beneficial functional food with immunostimulatory effects on macrophages.

  6. Regulatory T cells exhibit neuroprotective effect in a mouse model of traumatic brain injury

    PubMed Central

    Yu, Yunhu; Cao, Fang; Ran, Qishan; Sun, Xiaochuan

    2016-01-01

    Traumatic brain injury (TBI) is a major health and socioeconomic problem as it is associated with high rates of mortality and morbidity worldwide. Regulatory T cells (Tregs) have been reported to reduce inflammatory response in several diseases, including myasthenia gravis, viral myocarditis and cerebral infarction. The present study investigated the role of Tregs in mediating neuro-protective effects in a mouse model of TBI. Initially, Treg levels were determined, and compared between the controlled cortical impact (CCI) model for moderate TBI and the sham group, by using flow cytometry and ELISA. Afterwards, the number of Tregs was upregulated (by injection) and downregulated (by depletion), respectively, to elucidate the effect of Tregs in the presence of an inflammatory reaction and a deficient neurological function and consequently, in the prognosis of TBI in the mouse. The expression of pro-inflammatory cytokines [tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6)] and anti-inflammatory cytokines [IL-10, transforming growth factor (TGF)-β] in blood and brain tissues was also measured in the five groups: Μice receiving a saline injection, mice experiencing Treg depletion, small-dose (SD Tregs, 1.25×105), and mice receiving different doses of Tregs: Moderate-dose (MD Tregs, 2.5×105) and large-dose (LD Tregs, 5×105), using ELISA and PCR. Co-cultures of Tregs and microglia were performed to evaluate the expression of pro-inflammatory cytokines and observe the interaction between the two types of cells. The regulation patterns in JNK-NF-κB pathway by Tregs were also evaluated by western blot analysis. Treg levels were significantly reduced in TBI mouse group on the 3rd day after TBI (P<0.05). In the mouse model of TBI, the expression of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6) was enhanced, while the expression of anti-inflammatory cytokines (IL-10, TGF-β) was reduced (P<0.05). Tregs exhibited a suppressive effect on inflammatory reactions

  7. Regulatory T cells exhibit neuroprotective effect in a mouse model of traumatic brain injury.

    PubMed

    Yu, Yunhu; Cao, Fang; Ran, Qishan; Sun, Xiaochuan

    2016-12-01

    Traumatic brain injury (TBI) is a major health and socioeconomic problem as it is associated with high rates of mortality and morbidity worldwide. Regulatory T cells (Tregs) have been reported to reduce inflammatory response in several diseases, including myasthenia gravis, viral myocarditis and cerebral infarction. The present study investigated the role of Tregs in mediating neuro‑protective effects in a mouse model of TBI. Initially, Treg levels were determined, and compared between the controlled cortical impact (CCI) model for moderate TBI and the sham group, by using flow cytometry and ELISA. Afterwards, the number of Tregs was upregulated (by injection) and downregulated (by depletion), respectively, to elucidate the effect of Tregs in the presence of an inflammatory reaction and a deficient neurological function and consequently, in the prognosis of TBI in the mouse. The expression of pro‑inflammatory cytokines [tumor necrosis factor (TNF)‑α, interleukin (IL)‑1β, IL‑6)] and anti‑inflammatory cytokines [IL‑10, transforming growth factor (TGF)‑β] in blood and brain tissues was also measured in the five groups: Μice receiving a saline injection, mice experiencing Treg depletion, small‑dose (SD Tregs, 1.25x105), and mice receiving different doses of Tregs: Moderate‑dose (MD Tregs, 2.5x105) and large‑dose (LD Tregs, 5x105), using ELISA and PCR. Co‑cultures of Tregs and microglia were performed to evaluate the expression of pro‑inflammatory cytokines and observe the interaction between the two types of cells. The regulation patterns in JNK‑NF‑κB pathway by Tregs were also evaluated by western blot analysis. Treg levels were significantly reduced in TBI mouse group on the 3rd day after TBI (P<0.05). In the mouse model of TBI, the expression of pro‑inflammatory cytokines (TNF‑α, IL‑1β, IL‑6) was enhanced, while the expression of anti‑inflammatory cytokines (IL‑10, TGF‑β) was reduced (P<0.05). Tregs exhibited a

  8. [Effect of anti-arrhythmia drugs on mouse arrhythmia induced by Bufonis Venenum].

    PubMed

    Lu, Wen-juan; Zhou, Jing; Ma, Hong-yue; Lü, Gao-hong; You, Fen-qiang; Ding, An-wei; Duan, Jin-ao

    2011-10-01

    This study is to investigate the effects of phenytoin sodium, lidocaine (sodium channel blockers), propranolol (beta-adrenergic receptor antagonist), amiodarone (drugs prolonging the action potential duration) and verapamil (calcium channel blockers) on arrhythmia of mice induced by Bufonis Venenum (Chansu) and isolated mouse hearts lethal dose of Chansu. Arrhythmia of mice were induced by Chansu and then electrocardiograms (ECGs) were recorded. The changes of P-R interval, QRS complex, Q-T interval, T wave amplitude, heart rate (HR) were observed. Moreover, arrhythmia rate, survival rate and arrhythmia score were counted. Isolated mouse hearts were prefused, and the lethal dose of Chansu was recorded. Compared with control group, after pretreatment with phenytoin sodium, broadening of QRS complex and HR were inhibited, and the incidence of ventricular arrhythmia was reduced dramatically, while survival rate was improved; the isolated mouse hearts lethal dose of Chansu was increased significantly. After pretreatment with lidocaine, the prolongation of P-R interval and broadening of QRS complex were inhibited, and the incidences of ventricular arrhythmia were reduced dramatically, while survival rate was improved; the isolated mouse hearts lethal dose of Chansu was increased significantly. After pretreatment with propranolol, prolongation of P-R interval, broadening of QRS complex, prolongation of Q-T interval and HR were inhibited, and the incidences of both supraventricular and ventricular arrhythmias were reduced dramatically, while survival rate was improved. After pretreatment with amiodarone, HR was inhibited, the incidences of ventricular tachycardia were reduced dramatically. Lastly, after pretreatment with verapamil, the prolongation of P-R interval and Q-T interval were inhibited and the incidences of both supraventricular and ventricular arrhythmias were reduced dramatically; the isolated mouse hearts lethal dose of Chansu was reduced significantly. In in

  9. Effect of different cryoprotectant agents on spermatogenesis efficiency in cryopreserved and grafted neonatal mouse testicular tissue.

    PubMed

    Yildiz, Cengiz; Mullen, Brendan; Jarvi, Keith; McKerlie, Colin; Lo, Kirk C

    2013-08-01

    Restoration of male fertility associated with use of the cryopreserved testicular tissue would be a significant advance in human and animal assisted reproductive technology. The purpose of this study was to test the effects of four different cryoprotectant agents (CPA) on spermatogenesis and steroidogenesis in cryopreserved and allotransplanted neonatal mouse testicular tissue. Hank's balanced salt solution (HBSS) with 5% fetal bovine serum including either 0.7 M dimethyl sulfoxide (DMSO), 0.7 M propylene glycol (PrOH), 0.7 M ethylene glycol (EG), or glycerol was used as the cryoprotectant solution. Donor testes were collected and dissected from neonatal pups of CD-1 mice (one day old). Freezing and seeding of the testicular whole tissues was performed using an automated controlled-rate freezer. Four fresh (non-frozen) or frozen-thawed pieces of testes were subcutaneously grafted onto the hind flank of each castrated male NCr nude recipient mouse and harvested after 3 months. Fresh neonatal testes grafts recovered from transplant sites had the most advanced rate of spermatogenesis with elongated spermatid and spermatozoa in 46.6% of seminiferous tubules and had higher levels of serum testosterone compared to all other frozen-thawed-graft groups (p<0.05). Fresh grafts and frozen-thawed grafts in the DMSO group had the highest rate of tissue survival compared to PrOH, EG, and glycerol after harvesting (p>0.05). The most effective CPA for the freezing and thawing of neonatal mouse testes was DMSO in comparison with EG (p<0.05) in both pre-grafted and post-grafted tissues based on histopathological evaluation. Likewise, the highest level of serum testosterone was obtained from the DMSO CPA group compared to all other cryoprotectants evaluated (p<0.05). The typical damage observed in the frozen-thawed grafts included disruption of the interstitial stroma, intercellular connection ruptures, and detachment of spermatogonia from the basement membrane. These findings

  10. Short-Term Peripheral Auditory Effects of Cranial Irradiation: A Mouse Model

    PubMed Central

    Gasser Rutledge, Krysta L.; Prasad, Kumar G.; Emery, Kara R.; Mikulec, Anthony A.; Varvares, Mark; Gratton, Michael Anne

    2015-01-01

    Objectives Assess post-cranial irradiation short-term threshold shift short-term peripheral auditory histopathology the mouse as an experimental model Methods Adult mice were exposed to single-dose radiation of 10 – 60 Gy. Pre- and post-irradiation (baseline, 2 – 8 days) audiometric brainstem response data were recorded with analysis of cochlear ultrastructure. Results Significant threshold shift occurred at all test frequencies in mice exposed to ≥ 20 Gy at 4 – 6 days post-irradiation. Ultrastructurally in Rosenthal’s canal and the spiral lamina, neuronal density and extracellular matrix decreased dramatically. There was overall preservation of hair cells, stria vascularis, and vasculature. No difference within Gy group was noted in the frequency or severity of pathology along the length of the cochlea. Conclusions The initial impact of radiation in the first week post-exposure focuses on spiral ganglion cell bodies and peripheral projections, resulting in significant threshold shift for irradiation dosages ≥ 20 Gy. This study demonstrates that the mouse is a viable model for study of short-term peripheral auditory effects using single-dose cranial irradiation. Additionally, with access to a precise animal irradiator, the mouse may be used as an experimental model for a fractionated irradiation dosage of 10 Gy, simulating stereotactic therapeutic cranial irradiation. PMID:26085370

  11. Tumour effect on arginine/ornithine metabolic relationship in hypertrophic mouse kidney.

    PubMed

    Manteuffel-Cymborowska, M; Chmurzyńska, W; Peska, M; Grzelakowska-Sztabert, B

    1997-03-01

    The presence of a tumour significantly changes nitrogen metabolism, including that of amino acids and polyamines, in host animals. In this study, we examine whether developing tumours affect the metabolic relationship of arginine and ornithine, precursors of polyamines, in the testosterone-induced hypertrophic mouse kidney model. Androgen-induced changes in the activity of enzymes involved with ornithine biosynthesis (arginase), its consumption (ornithine aminotransferase, OAT and ornithine decarboxylase, ODC) and the hypertrophy of host mouse kidney were not affected by the presence of an ascitic tumour (EAC) and only slightly by a mammary carcinoma (MaCa). The HPLC determined renal level of arginine and ornithine showed a striking homeostasis and was disturbed neither by testosterone nor EAC. The effect of MaCa and testosterone on the levels of both amino acids, although significant, was not very pronounced. Developing tumours, especially ascitic, altered the renal activity of OAT and ODC, but not of arginase, in testosterone-untreated mice. All examined tumours, EAC, L 1210 and MaCa actively metabolized arginine and ornithine. the tumour content of arginine which coincided with the activity of arginase, resulted in a marked increase of the ornithine/arginine ratio in tumours, when compared with kidneys. These results indicate that the androgen-induced anabolic response in mouse kidney is preserved, in spite of tumour requirements for essential metabolites.

  12. Rett syndrome treatment in mouse models: searching for effective targets and strategies.

    PubMed

    Ricceri, Laura; De Filippis, Bianca; Laviola, Giovanni

    2013-05-01

    Rett syndrome (RTT) is a pervasive developmental disorder, primarily affecting girls with a prevalence of 1 in every 10,000 births; it represents the second most common cause of intellectual disability in females. Mutations in the gene encoding methyl-CpG-binding protein 2 (MECP2) have been identified as clear etiological factors in more than 90% of classical RTT cases. Whereas the mechanisms leading to the severe, progressive and specific neurological dysfunctions when this gene is mutated still remain to be elucidated, a series of different mouse models have been generated, bearing different Mecp2 mutation. Neurobehavioural analysis in these mouse lines have been carried out and phenotyping analysis can be now utilised to preclinically evaluate the effects of potential RTT treatments. This review summarizes the different results achieved in this research field taking into account different key targets identified to ameliorate RTT phenotype in mouse models, including those not directly downstream of MeCP2 and those limited to the early phases of postnatal development. This article is part of the Special Issue entitled 'Neurodevelopmental Disorders'.

  13. The Effect of D-Aspartate on Spermatogenesis in Mouse Testis.

    PubMed

    Tomita, Keiji; Tanaka, Hiroyuki; Kageyama, Susumu; Nagasawa, Masayuki; Wada, Akinori; Murai, Ryosuke; Kobayashi, Kenichi; Hanada, Eiki; Agata, Yasutoshi; Kawauchi, Akihiro

    2016-02-01

    Spermatogenesis is controlled by hormonal secretions from the hypothalamus and pituitary gland, by factors produced locally in the testis, and by direct interaction between germ cells and Sertoli cells in seminiferous tubules. Although the mammalian testis contains high levels of D-aspartate (D-Asp), and D-Asp is known to stimulate the secretion of testosterone in cultured Leydig cells, its role in testis is unclear. We describe here biochemical, immunohistochemical, and flow cytometric studies designed to elucidate developmental changes in testicular D-Asp levels and the direct effect of D-Asp on germ cells. We found that the concentration of D-Asp in mouse testis increased with growth and that fluctuations in D-Asp levels were controlled in part by its degradative enzyme, D-aspartate oxidase expressed in Sertoli cells. In vitro sperm production studies showed that mitosis in premeiotic germ cells was strongly inhibited by the addition of D-Asp to the culture medium. Moreover, immunohistochemical analysis demonstrated that d-Asp accumulated in the differentiated spermatids, indicating either transport of D-Asp to spermatids or its de novo synthesis in these cells. Such compartmentation seems to prevent premeiotic germ cells in mouse testis from being exposed to the excess amount of D-Asp. In concert, our results indicate that in mouse testis, levels of D-Asp are regulated in a spatiotemporal manner and that D-Asp functions as a modulator of spermatogenesis.

  14. Effect of mycotoxin-containing diets on epigenetic modifications of mouse oocytes by fluorescence microscopy analysis.

    PubMed

    Zhu, Cheng-Cheng; Hou, Yan-Jun; Han, Jun; Liu, Hong-Lin; Cui, Xiang-Shun; Kim, Nam-Hyung; Sun, Shao-Chen

    2014-08-01

    Mycotoxins, such as aflatoxin (AF), fumonisin B1, zearalenone (ZEA), and deoxynivalenol (DON), are commonly found in many food commodities. Mycotoxins have been shown to increase DNA methylation levels in a human intestinal cell line. We previously showed that the developmental competence of oocytes was affected in mice that had been fed a mycotoxin-containing diet. In this study, we explored possible mechanisms of low mouse oocyte developmental competence after mycotoxin treatment in an epigenetic modification perspective. Mycotoxin-contaminated maize (DON at 3,875 μg/kg, ZEA at 1,897 μg/kg, and AF at 806 μg/kg) was included in diets at three different doses (mass percentage: 0, 15, and 30%) and fed to mice for 4 weeks. The fluorescence intensity analysis showed that the general DNA methylation levels increased in oocytes from high dose mycotoxin-fed mice. Mouse oocyte histone methylation was also altered. H3K9me3 and H4K20me3 level increased in oocytes from mycotoxin-fed mice, whereas H3K27me3 and H4K20me2 level decreased in oocytes from mycotoxin-fed mice. Thus, our results indicate that naturally occurring mycotoxins have effects on epigenetic modifications in mouse oocytes, which may be one of the reasons for reduced oocyte developmental competence.

  15. Application of mouse model for effective evaluation of foot-and-mouth disease vaccine.

    PubMed

    Lee, Seo-Yong; Ko, Mi-Kyeong; Lee, Kwang-Nyeong; Choi, Joo-Hyung; You, Su-Hwa; Pyo, Hyun-Mi; Lee, Myoung-Heon; Kim, Byounghan; Lee, Jong-Soo; Park, Jong-Hyeon

    2016-07-19

    Efficacy evaluation of foot-and-mouth disease (FMD) vaccines has been conducted in target animals such as cows and pigs. In particular, handling FMD virus requires a high level of biosafety management and facilities to contain the virulent viruses. The lack of a laboratory animal model has resulted in inconvenience when it comes to using target animals for vaccine evaluation, bringing about increased cost, time and labor for the experiments. The FMD mouse model has been studied, but most FMD virus (FMDV) strains are not known to cause disease in adult mice. In the present study, we created a series of challenge viruses that are lethal to adult C57BL/6 mice. FMDV types O, A, and Asia1, which are related to frequent FMD outbreaks, were adapted for mice and the pathogenesis of each virus was evaluated in the mouse model. Challenge experiments after vaccination using in-house and commercial vaccines demonstrated vaccine-mediated protection in a dose-dependent manner. In conclusion, we propose that FMD vaccine evaluation should be carried out using mouse-adapted challenge viruses as a swift, effective efficacy test of experimental or commercial vaccines.

  16. Chemopreventive effects of Paullinia cupana Mart var. sorbilis, the guaraná, on mouse hepatocarcinogenesis.

    PubMed

    Fukumasu, Heidge; da Silva, Tereza Cristina; Avanzo, José Luis; de Lima, Cyntia Esteves; Mackowiak, Ivone Isabel; Atroch, André; de Souza Spinosa, Helenice; Moreno, Fernando Salvador; Dagli, Maria Lucia Zaidan

    2006-02-20

    Guaraná (Paullinia cupana) is originally from Amazon, Brazil. Its effects on mouse hepatocarcinogenesis have been investigated in this study. Mice were treated with N-nitrosodiethylamine (DEN), received three different doses of P. cupana added to commercial food, and euthanized after 25 weeks. Gross lesions were quantified, and preneoplastic lesions (PNL) were histologically measured. Cellular proliferation was evaluated by immunobloting for the proliferating cell nuclear antigen (PCNA). The incidence and multiplicity of macroscopic lesions were reduced. The PNL number and PCNA expression were reduced in the highest P. cupana dose. According to these results, guaraná presented inhibitory effects on DEN hepatocarcinogenesis in mice.

  17. Identification of Aminopyridazine-Derived Antineuroinflammatory Agents Effective in an Alzheimer's Mouse Model

    PubMed Central

    2012-01-01

    Targeting neuroinflammation may be a new strategy to combat Alzheimer's disease. An aminopyridazine 1b previously reported as a novel antineuroinflammatory agent was considered to have a potential therapeutic effect for Alzheimer's disease. In this study, we further explored the chemical space to identify more potent antineuroinflammatory agents and validate their in vivo efficacy in an animal model. Compound 14 was finally identified as an effective agent with comparable in vivo efficacy to the marketed drug donepezil in counteracting spatial learning and working memory impairment in an Aβ-induced Alzheimer's mouse model. PMID:24900405

  18. Effect of intermittent fasting on prostate cancer tumor growth in a mouse model.

    PubMed

    Thomas, J A; Antonelli, J A; Lloyd, J C; Masko, E M; Poulton, S H; Phillips, T E; Pollak, M; Freedland, S J

    2010-12-01

    Caloric restriction (CR) has been shown to have anti-cancer properties. However, CR may be difficult to apply in humans secondary to compliance and potentially deleterious effects. An alternative is intermittent CR, or in the extreme case intermittent fasting (IF). In a previous small pilot study, we found 2 days per week of IF with ad libitum feeding on the other days resulted in trends toward prolonged survival of mice bearing prostate cancer xenografts. We sought to confirm these findings in a larger study. A total of 100 (7- to 8-week-old) male severe combined immunodeficiency mice were injected subcutaneously with 1 × 10(5) LAPC-4 prostate cancer cells. Mice were randomized to either ad libitum Western Diet (44% carbohydrates, 40% fat and 16% protein) or ad libitum Western Diet with twice-weekly 24 h fasts (IF). Tumor volumes and mouse bodyweights were measured twice weekly. Mice were killed when tumor volumes reached 1000 mm(3). Serum and tumor were collected for analysis of the insulin/insulin-like growth factor 1 (IGF-1) hormonal axis. Overall, there was no difference in mouse survival (P=0.37) or tumor volumes (P ≥ 0.10) between groups. Mouse body weights were similar between arms (P=0.84). IF mice had significantly higher serum IGF-1 levels and IGF-1/IGFBP-3 ratios at killing (P<0.001). However, no difference was observed in serum insulin, IGFBP-3 or tumor phospho-Akt levels (P ≥ 0.39). IF did not improve mouse survival nor did it delay prostate tumor growth. This may be secondary to metabolic adaptations to the 24 h fasting periods. Future studies are required to optimize CR for application in humans.

  19. Effect of Sildenafil on Pre-Eclampsia-Like Mouse Model Induced By L-Name.

    PubMed

    Motta, C; Grosso, C; Zanuzzi, C; Molinero, D; Picco, N; Bellingeri, R; Alustiza, F; Barbeito, C; Vivas, A; Romanini, M C

    2015-08-01

    N(omega)-nitro-L-arginine methyl ester (L-NAME) decreases the vasodilator effect of nitric oxide (NO) and induces pre-eclampsia in mouse. Sildenafil inhibits the degradation of nitric oxide and increases vasodilation. This study aimed to determine the effects of sildenafil citrate on angiogenesis and oxidative stress at the maternal foetal interface on pre-eclampsia-like mouse model induced by L-NAME. Twenty pregnant mice were divided into four groups: (i) vehicle control; (ii) L-NAME; (iii) sildenafil; (4) L-NAME+sildenafil. L-NAME was administered from day 7 of pregnancy and sildenafil from day 8 until day 16; animals were euthanized on day 17. Placental and foetal sizes and weights were measured; lipid peroxide levels and catalase activity in placental homogenates were determined, and placental vascular endothelia were identified by lectin-histochemistry using BSA-I lectin. Western blot analysis was used to determine VEGF expression in placental homogenates. No changes were seen in placental and foetal development in mice with normal pregnancies treated with sildenafil. Treatments with L-NAME reduced significantly the placental weight and average height and decreased the percentage of the endothelial surface. These alterations may be mediated by the reduction of NO levels in trophoblastic cells, due to the inhibitory effect of L-NAME on nitric oxide synthase (NOS) synthesis. This effect was offset by the treatment with sildenafil, with an increase in the percentage of the endothelial surface. In conclusion, our results indicate that treatment with sildenafil on pre-eclampsia mouse model can be used without adverse effects on the concept and its use in the treatment of pre-eclampsia is promising.

  20. Effect of sclerostin antibody treatment in a mouse model of severe osteogenesis imperfecta.

    PubMed

    Roschger, Andreas; Roschger, Paul; Keplingter, Petra; Klaushofer, Klaus; Abdullah, Sami; Kneissel, Michaela; Rauch, Frank

    2014-09-01

    Osteogenesis imperfecta (OI) is a heritable bone fragility disorder that is usually caused by mutations affecting collagen type I production in osteoblasts. Stimulation of bone formation through sclerostin antibody treatment (Sost-ab) has shown promising results in mouse models of relatively mild OI. We assessed the effect of once-weekly intravenous Sost-ab injections for 4weeks in male Col1a1(Jrt)/+mice, a model of severe dominant OI, starting either at 4weeks (growing mice) or at 20weeks (adult mice) of age. Sost-ab had no effect on weight or femur length. In OI mice, no significant treatment-associated differences in serum markers of bone formation (alkaline phosphatase activity, procollagen type I N-propeptide) or resorption (C-telopeptide of collagen type I) were found. Micro-CT analyses at the femur showed that Sost-ab treatment was associated with higher trabecular bone volume and higher cortical thickness in wild type mice at both ages and in growing OI mice, but not in adult OI mice. Three-point bending tests of the femur showed that in wild type but not in OI mice, Sost-ab was associated with higher ultimate load and work to failure. Quantitative backscattered electron imaging of the femur did not show any effect of Sost-ab on CaPeak (the most frequently occurring calcium concentration in the bone mineral density distribution), regardless of genotype, age or measurement location. Thus, Sost-ab had a larger effect in wild type than in Col1a1(Jrt)/+mice. Previous studies had found marked improvements of Sost-ab on bone mass and strength in an OI mouse model with a milder phenotype. Our data therefore suggest that Sost-ab is less effective in a more severely affected OI mouse model.

  1. Effect of Delta-9-tetrahydrocannabinol on mouse resistance to systemic Candida albicans infection.

    PubMed

    Blumstein, Gideon W; Parsa, Arya; Park, Anthony K; McDowell, Beverly L P; Arroyo-Mendoza, Melissa; Girguis, Marie; Adler-Moore, Jill P; Olson, Jon; Buckley, Nancy E

    2014-01-01

    Delta-9-tetrahydrocannabinol (Δ9-THC), the psychoactive component of marijuana, is known to suppress the immune responses to bacterial, viral and protozoan infections, but its effects on fungal infections have not been studied. Therefore, we investigated the effects of chronic Δ9-THC treatment on mouse resistance to systemic Candida albicans (C. albicans) infection. To determine the outcome of chronic Δ9-THC treatment on primary, acute systemic candidiasis, c57BL/6 mice were given vehicle or Δ9-THC (16 mg/kg) in vehicle on days 1-4, 8-11 and 15-18. On day 19, mice were infected with 5×10(5) C. albicans. We also determined the effect of chronic Δ9-THC (4-64 mg/kg) treatment on mice infected with a non-lethal dose of 7.5×10(4) C. albicans on day 2, followed by a higher challenge with 5×10(5) C. albicans on day 19. Mouse resistance to the infection was assessed by survival and tissue fungal load. Serum cytokine levels were determine to evaluate the immune responses. In the acute infection, chronic Δ9-THC treatment had no effect on mouse survival or tissue fungal load when compared to vehicle treated mice. However, Δ9-THC significantly suppressed IL-12p70 and IL-12p40 as well as marginally suppressed IL-17 versus vehicle treated mice. In comparison, when mice were given a secondary yeast infection, Δ9-THC significantly decreased survival, increased tissue fungal burden and suppressed serum IFN-γ and IL-12p40 levels compared to vehicle treated mice. The data showed that chronic Δ9-THC treatment decreased the efficacy of the memory immune response to candida infection, which correlated with a decrease in IFN-γ that was only observed after the secondary candida challenge.

  2. Metabolic Effects of Bariatric Surgery in Mouse Models of Circadian Disruption

    PubMed Central

    Arble, Deanna M.; Sandoval, Darleen A.; Turek, Fred W.; Woods, Stephen C.; Seeley, Randy J.

    2015-01-01

    Background/Objectives Mounting evidence supports a link between circadian disruption and metabolic disease. Humans with circadian disruption (e.g., night-shift workers) have an increased risk of obesity and cardiometabolic diseases compared to the non-disrupted population. However, it is unclear if the obesity and obesity-related disorders associated with circadian disruption respond to therapeutic treatments as well as individuals with other types of obesity. Subjects/Methods Here, we test the effectiveness of the commonly used bariatric surgical procedure, Vertical Sleeve Gastrectomy (VSG) in mouse models of genetic and environmental circadian disruption. Results VSG led to a reduction in body weight and fat mass in both ClockΔ19 mutant and constant-light mouse models (P < .05), resulting in an overall metabolic improvement independent of circadian disruption. Interestingly, the decrease in body weight occurred without altering diurnal feeding or activity patterns (P > .05). Within circadian-disrupted models, VSG also led to improved glucose tolerance and lipid handling (P < .05). Conclusions Together these data demonstrate that VSG is an effective treatment for the obesity associated with circadian disruption, and that the potent effects of bariatric surgery are orthogonal to circadian biology. However, since the effects of bariatric surgery are independent of circadian disruption, VSG cannot be considered a cure for circadian disruption. These data have important implications for circadian-disrupted obese patients. Moreover, these results reveal new information about the metabolic pathways governing the effects of bariatric surgery as well as of circadian disruption. PMID:25869599

  3. Effects of Opsonization and Gamma Interferon on Growth of Brucella Melitensis 16M in Mouse Peritoneal Macrophages In Vitro

    DTIC Science & Technology

    2000-01-01

    SUBTITLE Effects of Opsonization and Gamma Interferon on Growth of Brucella , melitensis 16M in Mouse Peritoneal Microphages rom In Vitro 3. REPORT...with Brucella melitensis 16M treated with complement- and/or antibody-rich serum. Mouse serum rich in antibody against Brucella lipopolysaccnaride...pathogens of humans and livestock. Brucella meli- tensis usually infects sheep, goats , and camels and is the most pathogenic species for humans (1). Like

  4. Effects of cartap on isolated mouse phrenic nerve diaphragm and its related mechanism.

    PubMed

    Liao, J W; Kang, J J; Liu, S H; Jeng, C R; Cheng, Y W; Hu, C M; Tsai, S F; Wang, S C; Pang, V F

    2000-06-01

    Cartap, a nereistoxin analogue pesticide, is reported to have no irritation to eyes in rabbits. However, we have demonstrated recently that cartap could actually cause acute death in rabbits via ocular exposure. Our preliminary study with isolated mouse phrenic nerve diaphragms has shown that instead of neuromuscular blockade, cartap caused muscular contracture. The objective of the study was to examine the effect of cartap on the neuromuscular junction in more detail and to investigate its possible underlying mechanism with isolated mouse phrenic nerve diaphragms and sarcoplasmic reticulum (SR) vesicles. Cartap or nereistoxin at various concentrations was added in the organ bath with isolated mouse phrenic nerve diaphragm and both nerve- and muscle-evoked twitches were recorded. Instead of blocking the neuromuscular transmission as nereistoxin did, cartap caused contracture in stimulated or quiescent isolated mouse phrenic nerve diaphragm. Both the cartap-induced muscular contracture force and the time interval to initiate the contracture were dose-dependent. The contracture induced by cartap was not affected by the pretreatment of the diaphragm with the acetylcholine receptor blocker alpha-bungarotoxin; the Na(+) channel blocker tetrodotoxin; or various Ca(2+) channel blockers, NiCl(2), verapamil, and nifedipine. On the contrary, the contracture was significantly inhibited when the diaphragm was pretreated with ryanodine or EGTA containing Ca(2+)-free Krebs solution or in combination. This suggested that both internal and extracellular Ca(2+) might participate in cartap-induced skeletal muscle contracture. Moreover, cartap inhibited the [(3)H]-ryanodine binding to the Ca(2+) release channel of SR in a dose-dependent manner. Additionally, cartap could induce a significant reduction in Ca(2+)-ATPase activity of SR vesicles at a relatively high dose. The results suggested that cartap might cause the influx of extracellular Ca(2+) and the release of internal Ca(2

  5. Effect of Short-Term Hypergravity Treatment on Mouse 2-Cell Embryo Development

    NASA Astrophysics Data System (ADS)

    Ning, Li-Na; Lei, Xiao-Hua; Cao, Yu-Jing; Zhang, Yun-Fang; Cao, Zhong-Hong; Chen, Qi; Duan, En-Kui

    2015-11-01

    Though there are numerous biological experiments, which have been performed in a space environment, to study the physiological effect of space travel on living organisms, while the potential effect of weightlessness or short-term hypergravity on the reproductive system in most species, particularly in mammalian is still controversial and unclear. In our previous study, we investigated the effect of space microgravity on the development of mouse 4-cell embryos by using Chinese SJ-8. .Unexpectedly, we did not get any developed embryo during the space-flight. Considering that the process of space experiment is quite different from most experiments done on earth in several aspects such as, the vibration and short-term hypergravity during the rock launching and landing. Thus we want to know whether the short-term hypergravity produced by the launch process affect the early embryo development in mice, and howthe early embryos respond to the hypergravity. In present study, we are mimicking the short-term hypergravity during launch by using a centrifuge to investigate its influence on the development of early embryo (2-cell) in mice. We also examined the actin filament distribution in 2-cell embryos by immunostaining to test their potential capacity of development under short-term hypergravity exposure. Our results showed that most 2-cell embryos in the hypergravity exposure groups developed into blastocysts with normal morphology after 72h cultured in vitro, and there is no obvious difference in the development rate of blastocyst formation compared to the control. Moreover, there were no statistically significant differences in birth rates after oviduct transfer of 2-cell mouse embryos exposed on short-term hypergravity compared with 1 g condition. In addition, the well-organized actin distribution appeared in 2-cell embryos after exposed on hypergravity and also in the subsequent developmental blastocysts. Taken together, our data shows that short-term exposure in

  6. Combined effects of social stress and liver fluke infection in a mouse model.

    PubMed

    Avgustinovich, Damira F; Marenina, Mariya K; Zhanaeva, Svetlana Ya; Tenditnik, Mikhail V; Katokhin, Alexey V; Pavlov, Konstantin S; Sivkov, Anton Yu; Vishnivetskaya, Galina B; Lvova, Maria N; Tolstikova, Tatiana G; Mordvinov, Viatcheslav A

    2016-03-01

    The effects of two influences, social stress and acute opisthorchiasis, were investigated in inbred C57BL/6J male mice. In the model of social stress, mice were repeatedly attacked and defeated by aggressive outbred ICR male mice and were in continuous sensory contact with an aggressive conspecific mouse in their home cage for 20 days. Acute opisthorchiasis was provoked by invasion of Opisthorchis felineus (50 larvae per animal) on the fourth day after the social stress was induced. Simultaneous action of both factors caused the hypertrophy of adrenal glands, as well as elevated the activity of cathepsins B and L in the spleen. This effect on the activity of the cysteine proteases in the hippocampus and hypothalamus following O. felineus invasion was the predominant result of simultaneous action with social stress. Acute opisthorchiasis, social stress, and their combination caused an increase in the level of blood IL-6 in approximately 30% of the animals. Social stress induced a more pronounced effect on mouse plus-maze behavior than O. felineus invasion. Our results suggest a more severe negative effect of the simultaneous influence of both factors on most of the parameters that were investigated.

  7. Prenatal pharmacotherapy rescues brain development in a Down's syndrome mouse model.

    PubMed

    Guidi, Sandra; Stagni, Fiorenza; Bianchi, Patrizia; Ciani, Elisabetta; Giacomini, Andrea; De Franceschi, Marianna; Moldrich, Randal; Kurniawan, Nyoman; Mardon, Karine; Giuliani, Alessandro; Calzà, Laura; Bartesaghi, Renata

    2014-02-01

    Intellectual impairment is a strongly disabling feature of Down's syndrome, a genetic disorder of high prevalence (1 in 700-1000 live births) caused by trisomy of chromosome 21. Accumulating evidence shows that widespread neurogenesis impairment is a major determinant of abnormal brain development and, hence, of intellectual disability in Down's syndrome. This defect is worsened by dendritic hypotrophy and connectivity alterations. Most of the pharmacotherapies designed to improve cognitive performance in Down's syndrome have been attempted in Down's syndrome mouse models during adult life stages. Yet, as neurogenesis is mainly a prenatal event, treatments aimed at correcting neurogenesis failure in Down's syndrome should be administered during pregnancy. Correction of neurogenesis during the very first stages of brain formation may, in turn, rescue improper brain wiring. The aim of our study was to establish whether it is possible to rescue the neurodevelopmental alterations that characterize the trisomic brain with a prenatal pharmacotherapy with fluoxetine, a drug that is able to restore post-natal hippocampal neurogenesis in the Ts65Dn mouse model of Down's syndrome. Pregnant Ts65Dn females were treated with fluoxetine from embryonic Day 10 until delivery. On post-natal Day 2 the pups received an injection of 5-bromo-2-deoxyuridine and were sacrificed after either 2 h or after 43 days (at the age of 45 days). Untreated 2-day-old Ts65Dn mice exhibited a severe neurogenesis reduction and hypocellularity throughout the forebrain (subventricular zone, subgranular zone, neocortex, striatum, thalamus and hypothalamus), midbrain (mesencephalon) and hindbrain (cerebellum and pons). In embryonically treated 2-day-old Ts65Dn mice, precursor proliferation and cellularity were fully restored throughout all brain regions. The recovery of proliferation potency and cellularity was still present in treated Ts65Dn 45-day-old mice. Moreover, embryonic treatment restored

  8. X chromosome effect on maternal recombination and meiotic drive in the mouse.

    PubMed Central

    de La Casa-Esperón, Elena; Loredo-Osti, J Concepción; Pardo-Manuel de Villena, Fernando; Briscoe, Tammi L; Malette, Jan Michel; Vaughan, Joe E; Morgan, Kenneth; Sapienza, Carmen

    2002-01-01

    We observed that maternal meiotic drive favoring the inheritance of DDK alleles at the Om locus on mouse chromosome 11 was correlated with the X chromosome inactivation phenotype of (C57BL/6-Pgk1(a) x DDK)F(1) mothers. The basis for this unexpected observation appears to lie in the well-documented effect of recombination on meiotic drive that results from nonrandom segregation of chromosomes. Our analysis of genome-wide levels of meiotic recombination in females that vary in their X-inactivation phenotype indicates that an allelic difference at an X-linked locus is responsible for modulating levels of recombination in oocytes. PMID:12196408

  9. Effects of dietary supplementation on autoimmunity in the MRL/lpr mouse: a preliminary investigation.

    PubMed

    Godfrey, D G; Stimson, W H; Watson, J; Belch, J F; Sturrock, R D

    1986-12-01

    The effects of dietary fatty acid supplementation on various disease parameters in the spontaneously autoimmune MRL-mp-lpr/lpr mouse model of systemic lupus erythematosus before onset of disease were investigated. A fat deficient diet was supplemented with the following oils: olive oil, sunflower oil, evening primrose oil (EPO), fish oil, and a fish oil/EPO mixture. The mice receiving a diet enriched with EPO showed an increase in survival, as did those receiving the fish oil/EPO mixture. These results, taken together with those of the other parameters monitored, suggest that EPO may be of benefit in alleviating the murine form of the disease.

  10. Effects of dietary supplementation on autoimmunity in the MRL/lpr mouse: a preliminary investigation.

    PubMed Central

    Godfrey, D G; Stimson, W H; Watson, J; Belch, J F; Sturrock, R D

    1986-01-01

    The effects of dietary fatty acid supplementation on various disease parameters in the spontaneously autoimmune MRL-mp-lpr/lpr mouse model of systemic lupus erythematosus before onset of disease were investigated. A fat deficient diet was supplemented with the following oils: olive oil, sunflower oil, evening primrose oil (EPO), fish oil, and a fish oil/EPO mixture. The mice receiving a diet enriched with EPO showed an increase in survival, as did those receiving the fish oil/EPO mixture. These results, taken together with those of the other parameters monitored, suggest that EPO may be of benefit in alleviating the murine form of the disease. PMID:3492970

  11. Relative biological effectiveness of fast neutrons compared with X-rays: Prenatal mortality in the mouse

    NASA Technical Reports Server (NTRS)

    Friedberg, W.; Hanneman, G. D.; Faulkner, D. N.; Darden, E. B., Jr.

    1972-01-01

    The effects of fission neutrons and of X-rays on the mouse zygote are discussed. Seven-week-old virgin mice were allowed a 12-hour mating opportunity beginning at 7:00 P.M. Between 1:30 and 4:00 P.M., except where indicated otherwise, the females which had mated (vaginal plug) during the night were either irradiated or sham-irradiated. At the time of irradiation the zygotes were in a pronuclear stage. Sixteen days later the mice were killed and the uteri dissected. The number of dead embryos, live embryos, and gross anomalies were determined. Dead embryos were classified as to stage of development.

  12. Effect of light on global gene expression in the neuroglobin-deficient mouse retina

    PubMed Central

    ILMJÄRV, STEN; REIMETS, RIIN; HUNDAHL, CHRISTIAN ANSGAR; LUUK, HENDRIK

    2014-01-01

    Several previous studies have raised controversy over the functional role of neuroglobin (Ngb) in the retina. Certain studies indicate a significant impact of Ngb on retinal physiology, whereas others are conflicting. The present is an observational study that tested the effect of Ngb deficiency on gene expression in dark- and light-adapted mouse retinas. Large-scale gene expression profiling was performed using GeneChip® Mouse Exon 1.0 ST arrays and the results were compared to publicly available data sets. The lack of Ngb was found to have a minor effect on the light-induced retinal gene expression response. In addition, there was no increase in the expression of marker genes associated with hypoxia, endoplasmic reticulum-stress and oxidative stress in the Ngb-deficient retina. By contrast, several genes were identified that appeared to be differentially expressed between the genotypes when the effect of light was ignored. The present study indicates that Ngb deficiency does not lead to major alternations in light-dependent gene expression response, but leads to subtle systemic differences of a currently unknown functional significance. PMID:25279145

  13. Effect of nitroimidazoles on glucose utilization and lactate accumulation in mouse brain

    SciTech Connect

    Chao, C.F.; Subjeck, J.R.; Brody, H.; Shen, J.; Johnson, R.J.R.

    1984-01-01

    The radiation sensitizers misonidazole (MISO) and desmethylmisonidazole (DMM) can produce central and peripheral neuropathy in patients and laboratory animals. Nitroimidazoles can also interfere with glycolysis in vitro under aerobic and anaerobic conditions. In the present work, the authors studied the effect of MISO or DMM on lactate production and glucose utilization in mouse brain. It is observed that these compounds result in a 25% inhibition of lactate production in brain slices relative to the control at a 10 mM level. Additionally, MISO (1.0 mg/g/day) or DMM (1.4 mg/g/day) were administered daily (oral) for 1, 4, 7, or 14 days to examine the effect of these two drugs on the regional glucose utilization in C3Hf mouse brain. Five microcuries of 2-deoxy(/sup 14/C)glucose was given following the last drug dose and autoradiographs of serial brain sections were made and analyzed by a densitometer. Following a single dose of either MISO or DMM, no significant differences in glucose uptake were observed when compared with controls. However, following 4, 7, and 14 doses the rate of glucose utilization was significantly reduced in the intoxicated animals. Larger reductions were measured in specific regions including the posterior colliculus, cochlear nuclei, vestibular nuclei, and pons with increasing effects observed at later stages. These results share a degree of correspondence with the regional brain pathology produced by these nitroimidazoles.

  14. Effects of caffeine on mouse skeletal muscle power output during recovery from fatigue.

    PubMed

    James, Rob S; Wilson, Robbie S; Askew, Graham N

    2004-02-01

    The effects of 10 mM (high) and 70 microM (physiologically relevant) caffeine on force, work output, and power output of isolated mouse extensor digitorum longus (EDL) and soleus muscles were investigated in vitro during recovery from fatigue at 35 degrees C. To monitor muscle performance during recovery from fatigue, we regularly subjected the muscle to a series of cyclical work loops. Force, work, and power output during shortening were significantly higher after treatment with 10 mM caffeine, probably as a result of increased Ca2+ release from the sarcoplasmic reticulum. However, the work required to relengthen the muscle also increased in the presence of 10 mM caffeine. This was due to a slowing of relaxation and an increase in muscle stiffness. The combination of increased work output during shortening and increased work input during lengthening had different effects on the two muscles. Net power output of mouse soleus muscle decreased as a result of 10 mM caffeine exposure, whereas net power output of the EDL muscle showed a transient, significant increase. Treatment with 70 microM caffeine had no significant effect on force, work, or power output of EDL or soleus muscles, suggesting that the plasma concentrations found when caffeine is used to enhance performance in human athletes might not directly affect the contractile performance of fatigued skeletal muscle.

  15. Toxic pulmonary effects of photodynamic therapy (PDT) in a mouse model

    NASA Astrophysics Data System (ADS)

    Luketich, James D.; Perry, Yaron; Wong, Hsien; Epperly, Michael W.

    2002-06-01

    A major limitation of PDT for Barrett's esophagus is the development of esophageal strictures. This report summarizes the effects of PDT delivered to mouse esophagus. Sixty-two C3H/Nsd mice were injected with Photofrin (2-10mg/Kg) intraperitoneally. Forty-eight hours later a 1 cm laser probe was passed orally to the mid-esophagus. Light energy (630nm) ranged from 0 to 400 Joules/cm (J). Animals were sacrificed if death was imminent, otherwise at 6 weeks and 3 months. Gross and microscopic exams were performed on paraffin embedded esophagus and lung specimens. Exposure to 400J as a single fraction, 125 X 3 or 150 X 3 fractions resulted in a lethal pulmonary injury in 90% of mice within 48 hours. There was no esophageal mucosal damage at this early time point. Lower doses caused minor pulmonary injury allowing long-term survival but no change in the esophageal endothelium and no stricture. In the mouse, this histopathologic study demonstrates that pulmonary toxicity is the limiting factor following esophageal PDT. At lower PDT doses, minimal pulmonary damage occurred but no effect was observed on the esophagus. We believe the 5 mm depth of PDT injury leads to lethal pulmonary damage preventing subsequent study of the effects on the esophagus.

  16. Effects of mouse genotype on bone wound healing and irradiation-induced delay of healing.

    PubMed

    Glowacki, Julie; Mizuno, Shuichi; Kung, Jason; Goff, Julie; Epperly, Michael; Dixon, Tracy; Wang, Hong; Greenberger, Joel S

    2014-01-01

    We tested the effects of mouse genotype (C57BL/6NHsd, NOD/SCID, SAMR1, and SAMP6) and ionizing irradiation on bone wound healing. Unicortical wounds were made in the proximal tibiae, and the time course of spontaneous healing and effects of irradiation were monitored radiographically and histologically. There was reproducible healing beginning with intramedullary osteogenesis, subsequent bone resorption by osteoclasts, gradual bridging of the cortical wound, and re-population of medullary hematopoietic cells. The most rapid wound closure was noted in SAMR1 mice, followed by SAMP6, C57BL/6NHsd, and NOD/SCID. Ionizing irradiation (20 Gy) to the leg significantly delayed bone wound healing in mice of all four genotypes. Mice with genetically-determined predisposition to early osteopenia (SAMP6) or with immune deficiency (NOD/SCID) had impairments in bone wound healing. These mouse models should be valuable for determining the effects of irradiation on bone healing and also for the design and testing of novel bone growth-enhancing drugs and mitigators of ionizing irradiation.

  17. Effects of Trichostatin A on Cumulus Expansion during Mouse Oocyte Maturation.

    PubMed

    Du, Ming; Fu, Xiangwei; Zhou, Yanhua; Zhu, Shien

    2013-11-01

    This study was conducted to investigate the effects of Trichostatin A (TSA) on cumulus expansion during mouse oocyte maturation. TSA treatment inhibited cumulus expansion and significantly reduced the cumulus expansion index (CEI) (p<0.05). To determine the underlying mechanism, the expression levels of several key factors that play crucial roles in cumulus expansion including components of extracellular matrix (ECM) (Has2, Ptgs2, Ptx3, and Tnfaip6) and Growth differentiation factor 9 (GDF9) were measured in control and TSA treated samples by real-time PCR. The effect of TSA on ERK phosphorylation (p-ERK1/2) in cumulus cells and GDF9 protein level in fully grown oocytes (FGOs) were detected by Western blotting. The expression levels of the ECM genes were significantly decreased (p<0.05) by TSA treatment while GDF9 expression did not response to TSA (p>0.05). TSA treatment blocked the activation of ERK1/2 (p<0.05) and had no significant effect on GDF9 protein expression (p>0.05). Collectively, these results suggested that TSA treatment altered ECM gene expression and blocked ERK1/2 activation to inhibit cumulus expansion in the mouse.

  18. Effects of mesenchymal stromal cells on human myeloid dendritic cell differentiation and maturation in a humanized mouse model.

    PubMed

    Chen, Ping; Huang, Yanfei; Womer, Karl L

    2015-12-01

    Mesenchymal stromal cells (MSCs) have shown promise as cellular therapy in allogeneic transplantation, although the precise mechanisms underlying their benefit in clinical trials are difficult to study. We previously demonstrated that MSCs exert immunoregulatory effects in mouse bone marrow-derived dendritic cell (DC) culture. Since mouse studies do not reliably reproduce human events, we used a humanized mouse model to study the immunomodulatory effects of human MSCs on human DC immunobiology. Humanized mice were established by injection of cord blood CD34(+) cells into NOD.Cg-Prkdc(scid) Il2rg(tm1Wjl/SzJ) (NOD scid gamma, NSG) mice. Human cells were detected in the mouse bone marrow, blood, and spleen 12weeks after transplantation. Human DCs were differentiated from humanized mouse bone marrow cells during human MSC co-culture. MSCs inhibited DC differentiation and kept DCs in an immature state as demonstrated by phenotype and function. In conclusion, humanized mouse models represent a useful method to study the function of human MSCs on human DC immunobiology.

  19. Phage Therapy Is Effective in a Mouse Model of Bacterial Equine Keratitis

    PubMed Central

    Furusawa, Takaaki; Hiyashimizu, Yutaro; Matsubara, Kazuki; Higuchi, Hidetoshi; Nagahata, Hajime; Niwa, Hidekazu; Katayama, Yoshinari; Kinoshita, Yuta; Hagiwara, Katsuro; Iwasaki, Tomohito; Tanji, Yasunori; Yokota, Hiroshi; Tamura, Yutaka

    2016-01-01

    ABSTRACT Bacterial keratitis of the horse is mainly caused by staphylococci, streptococci, and pseudomonads. Of these bacteria, Pseudomonas aeruginosa sometimes causes rapid corneal corruption and, in some cases, blindness. Antimicrobial resistance can make treatment very difficult. Therefore, new strategies to control bacterial infection are required. A bacteriophage (phage) is a virus that specifically infects and kills bacteria. Since phage often can lyse antibiotic-resistant bacteria because the killing mechanism is different, we examined the use of phage to treat horse bacterial keratitis. We isolated Myoviridae or Podoviridae phages, which together have a broad host range. They adsorb efficiently to host bacteria; more than 80% of the ΦR18 phage were adsorbed to host cells after 30 s. In our keratitis mouse model, the administration of phage within 3 h also could kill bacteria and suppress keratitis. A phage multiplicity of infection of 100 times the host bacterial number could kill host bacteria effectively. A cocktail of two phages suppressed bacteria in the keratitis model mouse. These data demonstrated that the phages in this study could completely prevent the keratitis caused by P. aeruginosa in a keratitis mouse model. Furthermore, these results suggest that phage may be a more effective prophylaxis for horse keratitis than the current preventive use of antibiotics. Such treatment may reduce the use of antibiotics and therefore antibiotic resistance. Further studies are required to assess phage therapy as a candidate for treatment of horse keratitis. IMPORTANCE Antibiotic-resistant bacteria are emerging all over the world. Bacteriophages have great potential for resolution of this problem. A bacteriophage, or phage, is a virus that infects bacteria specifically. As a novel therapeutic strategy against racehorse keratitis caused by Pseudomonas aeruginosa, we propose the application of phages for treatment. Phages isolated in this work had in vitro

  20. Altered regional connectivity reflecting effects of different anaesthesia protocols in the mouse brain.

    PubMed

    Wu, Tong; Grandjean, Joanes; Bosshard, Simone C; Rudin, Markus; Reutens, David; Jiang, Tianzi

    2017-04-01

    Studies in mice using resting-state functional magnetic resonance imaging (rs-fMRI) have provided opportunities to investigate the effects of pharmacological manipulations on brain function and map the phenotypes of mouse models of human brain disorders. Mouse rs-fMRI is typically performed under anaesthesia, which induces both regional suppression of brain activity and disruption of large-scale neural networks. Previous comparative studies using rodents investigating various drug effects on long-distance functional connectivity (FC) have reported agent-specific FC patterns, however, effects of regional suppression are sparsely explored. Here we examined changes in regional connectivity under six different anaesthesia conditions using mouse rs-fMRI with the goal of refining the framework of understanding the brain activation under anaesthesia at a local level. Regional homogeneity (ReHo) was used to map local synchronization in the brain, followed by analysis of several brain areas based on ReHo maps. The results revealed high local coherence in most brain areas. The primary somatosensory cortex and caudate-putamen showed agent-specific properties. Lower local coherence in the cingulate cortex was observed under medetomidine, particularly when compared to the combination of medetomidine and isoflurane. The thalamus was associated with retained local coherence across anaesthetic levels and multiple nuclei. These results show that anaesthesia induced by the investigated anaesthetics through different molecular targets promote agent-specific regional connectivity. In addition, ReHo is a data-driven method with minimum user interaction, easy to use and fast to compute. Given that examination of the brain at a local level is widely applied in human rs-fMRI studies, our results show its sensitivity to extract information on varied neuronal activity under six different regimens relevant to mouse functional imaging. These results, therefore, will inform future rs

  1. Contribution of dietary and loading changes to the effects of suspension on mouse femora

    NASA Technical Reports Server (NTRS)

    Simske, S. J.; Broz, J. J.; Fleet, M. L.; Schmeister, T. A.; Gayles, E. C.; Luttges, M. W.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    The present study assessed the contributions of feeding changes and unloading to the overall measured effects of 2-wk hindlimb (Tail) suspension on the mouse femora. Feeding changes were addressed by considering the effects of matched feeding among suspended and control mice. The effects of hind limb unloading were considered by comparing suspended mice to mice equipped identically (though not suspended) and matched-fed. The feeding and unloading aspects of suspension appear to cause distinctly differing effects on the stereotypic modeling of the femora. Matched-feeding was accompanied by increased resorption surface in comparison to suspended mice, while unloading led to reduced bone formation at the mid-diaphysis of the femora. Reduced mineral content was observed in the bones of suspended mice when compared to the other mice groups, but without increased resorption surface. Thus, the unloading aspects of the antiorthostatic suspension protocol apparently causes reduced formation and mineralization in the femur.

  2. Investigating the effects of Panadol on mouse liver by in vivo multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Li, Feng Chieh; Liang, Huei, Jr.; Yang, Shu-Mei; Lee, Hsuan-Shu; Dong, Chen-Yuan

    2008-02-01

    Conventional hepatic research relies heavily on histological images for obtaining morphological information of the liver. However, static histological images can not provide real-time dynamic information of in vivo physiological processes such as cellular motion or damage. For a long time, panadol has been used in pain relief. However, Panadol may have unwanted side effects and detailed information of the effects of Panadol on hepatic metabolism is unknown. In this work, we developed a high resolution intravital hepatic imaging chamber to study the effects of Panadol on liver. We expect this methodology to be useful in revealing the detailed metabolism of liver after using Panadol and this approach allows us to achieve a better understanding of hepatic processes. In our approach, we use multiphoton fluorescence (MPF) microscopy to observe the side effect of liver on using Panadol inside the in vivo mouse animal model.

  3. Effects of Tremella mesenterica on steroidogenesis in MA-10 mouse Leydig tumor cells.

    PubMed

    Lo, H-C; Chen, Y-W; Chien, C-H; Tseng, C-Y; Kuo, Y-M; Huang, B-M

    2005-01-01

    Tremella mesenterica (TM), a yellow jelly mushroom, has been traditionally used as food and crude medicine to improve several kinds of symptoms in Chinese society for a long time. Recent studies have illustrated that the fractions of fruiting bodies of TM exhibit a significant hypoglycemic activity in diabetic mouse models, which usually suffer from sexual dysfunction. In a previous study, we showed that TM reduced plasma testosterone production in normal rats without any positive effect in diabetic rats. It evolved a question of TM directly regulating Leydig cell steroidogenesis. In this study, MA-10 mouse Leydig tumor cells were treated with vehicle, different dosages of TM with or without human chorionic gonadotropin (hCG 50 ng/ml) to clarify the effects. Results showed that TM at different dosages (0.01-10 mg/ml) did not have any effect on MA-10 cell steroidogenesis (p > 0.05). In the presence of hCG, there was an inhibitory trend that TA suppressed MA-10 cell progesterone production at 3 hr treatment with a statistically significant difference by the 10 mg/ml TM (p < 0.05). In time course effect, TM alone did not have any effect on MA-10 cell steroidogenesis from at 1, 2, 3, 6 and 12 hr (p > 0.05). However, TM did reduce hCG-treated MA-10 cell progesterone production at 1, 2 and 3 hr (p < 0.05), respectively. To determine whether TM would have adverse effects on MA-10 cell steroidogenesis in the presence of hCG, MTT assay and recovery studies were conducted. MTT assay indicated that TM had no effect on surviving cells. In addition, with the removal of TM, and then the addition of hCG (2 and 4 hr), progesterone levels were restored within 4 hr. Taken together, present studies suggested that TM suppressed hCG-treated steroidogenesis in MA-10 cells without any toxicity effect.

  4. Modafinil Abrogates Methamphetamine-Induced Neuroinflammation and Apoptotic Effects in the Mouse Striatum

    PubMed Central

    Goitia, Belen; Garcia-Rill, Edgar; Krasnova, Irina N.; Cadet, Jean Lud; Urbano, Francisco J.; Bisagno, Veronica

    2012-01-01

    Methamphetamine is a drug of abuse that can cause neurotoxic damage in humans and animals. Modafinil, a wake-promoting compound approved for the treatment of sleeping disorders, is being prescribed off label for the treatment of methamphetamine dependence. The aim of the present study was to investigate if modafinil could counteract methamphetamine-induced neuroinflammatory processes, which occur in conjunction with degeneration of dopaminergic terminals in the mouse striatum. We evaluated the effect of a toxic methamphetamine binge in female C57BL/6 mice (4×5 mg/kg, i.p., 2 h apart) and modafinil co-administration (2×90 mg/kg, i.p., 1 h before the first and fourth methamphetamine injections) on glial cells (microglia and astroglia). We also evaluated the striatal expression of the pro-apoptotic BAX and anti-apoptotic Bcl-2 proteins, which are known to mediate methamphetamine-induced apoptotic effects. Modafinil by itself did not cause reactive gliosis and counteracted methamphetamine-induced microglial and astroglial activation. Modafinil also counteracted the decrease in tyrosine hydroxylase and dopamine transporter levels and prevented methamphetamine-induced increases in the pro-apoptotic BAX and decreases in the anti-apoptotic Bcl-2 protein expression. Our results indicate that modafinil can interfere with methamphetamine actions and provide protection against dopamine toxicity, cell death, and neuroinflammation in the mouse striatum. PMID:23056363

  5. Anticonvulsant effects of a triheptanoin diet in two mouse chronic seizure models

    PubMed Central

    Willis, Sarah; Stoll, James; Sweetman, Lawrence; Borges, Karin

    2010-01-01

    We hypothesized that in epileptic brains citric acid cycle intermediate levels may be deficient leading to hyperexcitability. Anaplerosis is the metabolic refilling of deficient metabolites. Our goal was to determine the anticonvulsant effects of feeding triheptanoin, the triglyceride of anaplerotic heptanoate. CF1 mice were fed 0-35% calories from triheptanoin. Body weights and dietary intake were similar in mice fed triheptanoin vs. standard diet. Triheptanoin feeding increased blood propionyl-carnitine levels, signifying its metabolism. 35%, but not 20%, triheptanoin delayed development of corneal kindled seizures. After pilocarpine-induced status epilepticus (SE), triheptanoin feeding increased the pentylenetetrazole tonic seizure threshold during the chronically epileptic stage. Mice in the chronically epileptic stage showed various changes in brain metabolite levels, including a reduction in malate. Triheptanoin feeding largely restored a reduction in propionyl-CoA levels and increased methylmalonyl-CoA levels in SE mice. In summary, triheptanoin was anticonvulsant in two chronic mouse models and increased levels of anaplerotic precursor metabolites in epileptic mouse brains. The mechanisms of triheptanoin's effects and its efficacy in humans suffering from epilepsy remain to be determined. PMID:20691264

  6. Protective effect of [6]-gingerol on the ethanol-induced teratogenesis of cultured mouse embryos.

    PubMed

    Yon, Jung-Min; Baek, In-Jeoung; Lee, Se-Ra; Kim, Mi-Ra; Hong, Jin Tae; Yong, Hwanyul; Lee, Beom Jun; Yun, Young Won; Nam, Sang-Yoon

    2012-01-01

    Excessive ethanol consumption during pregnancy causes fetal alcohol syndrome. We investigated the effect of [6]-gingerol on ethanol-induced embryotoxicity using a whole embryo culture system. The morphological changes of embryos and the gene expression patterns of the antioxidant enzymes cytosolic glutathione peroxidase (cGPx), cytoplasmic Cu/Zn superoxide dismutase (SOD1), and Mn-SOD (SOD2), and SOD activity were examined in the cultured mouse embryos exposed to ethanol (5 μL/3 mL) and/or [6]-gingerol (1×10(-8) or 1×10(-7) μg/mL) for 2 days. In ethanol-exposed embryos, the standard morphological score of embryos was significantly decreased compared with those of the control (vehicle) group. However, cotreatment of embryos with [6]-gingerol and ethanol significantly improved all of the developmental parameters except crownrump length and head length, compared with those of the ethanol alone group. The mRNA expression levels of cGPx and SOD2, not SOD1, were decreased consistently, SOD activity were significantly decreased compared with the control group. However, the decreases in mRNA levels of antioxidant enzymes and SOD activity were significantly restored to the control levels by [6]-gingerol supplement. These results indicate that [6]-gingerol has a protective effect against ethanol-induced teratogenicity during mouse embryogenesis.

  7. Edge effects on morphometrics and body mass in two sympatric species of mouse lemurs in Madagascar.

    PubMed

    Burke, Ryan J; Lehman, Shawn M

    2014-01-01

    Edge effects are an inevitable and important consequence of forest loss and fragmentation. These effects include changes in species biology and biogeography. Here we examine variations in body mass and morphometrics for 2 sympatric species of mouse lemurs (Microcebus murinus and M. ravelobensis) between edge and interior habitats in the dry deciduous forest at Ankarafantsika National Park. Between May and August 2012, we conducted mark-recapture experiments on mouse lemurs trapped along edge and interior forest transects within continuous forest adjacent to a large savannah. Of the 34 M. murinus captured during our study, 82% (n = 28) were trapped in interior habitats. Conversely, 72% (n = 47) of M. ravelobensis were captured in edge habitats. We found that mean body mass of M. murinus and M. ravelobensis did not differ between edge and interior habitats. However, female M. ravelobensis weighed significantly more in edge habitats (56.09 ± 1.74 g) than in interior habitats (48.14 ± 4.44 g). Our study provides some of the first evidence of sex differences in edge responses for a primate species.

  8. Effects of heavy ion to the primary culture of mouse brain cells

    NASA Technical Reports Server (NTRS)

    Nojima, Kumie; Nakadai, Taeko; Kohno, Yukio; Vazquez, Marcelo E.; Yasuda, Nakahiro; Nagaoka, Shunji

    2004-01-01

    To investigate effects of low dose heavy particle radiation to CNS system, we adopted mouse neonatal brain cells in culture being exposed to heavy ions by HIMAC at NIRS and NSRL at BNL. The applied dose varied from 0.05 Gy up to 2.0 Gy. The subsequent biological effects were evaluated by an induction of apoptosis and neuron survival focusing on the dependencies of the animal strains, SCID, B6, B6C3F1, C3H, used for brain cell culture, SCID was the most sensitive and C3H the least sensitive to particle radiation as evaluated by 10% apoptotic criterion. The LET dependency was compared with using SCID and B6 cells exposing to different ions (H, C, Ne, Si, Ar, and Fe). Although no detectable LET dependency was observed in the high LET (55-200 keV/micrometers) and low dose (<0.5 Gy) regions. The survivability profiles of the neurons were different in the mouse strains and ions. In this report, a result of memory and learning function to adult mice after whole-body and brain local irradiation at carbon ion and iron ion.

  9. Anticlastogenic effects of galangin against bleomycin-induced chromosomal aberrations in mouse spleen lymphocytes.

    PubMed

    Heo, M Y; Lee, S J; Kwon, C H; Kim, S W; Sohn, D H; Au, W W

    1994-12-01

    Galangin, a flavonoid derivative, was tested for its anticlastogenic effect against the induction of chromosome aberrations by bleomycin. For an in vitro assay, galangin (0, 2 x 10(-8), 2 x 10(-7), and 2 x 10(-6) M) was added to mouse spleen lymphocyte cultures together with bleomycin (3 microgram/ml) at 24 h after Con A initiation of cultures. In an in vivo/in vitro experiment, galangin (0, 0.1, 1, 10, and 100 mg/kg) was administered to mice orally twice with a 24-h interval. Mice were killed 8 h later. Spleen lymphocytes were isolated and cultures were made. Bleomycin (3 microgram/ml) was added to the mouse spleen lymphocyte cultures at 24 h after Con A initiation. Both in vitro and in vivo/in vitro cultures were harvested at 42 h after initiation. The harvested cells were used for cytogenetic analyses. The results showed that in vitro or in vivo treatment of lymphocytes with galangin suppressed the induction of chromosome aberrations by bleomycin in a galangin dose-dependent manner. The galangin doses used were non-clastogenic to cells. The data from our in vitro and in vivo/in vitro studies confirmed each other and indicate that galangin is an anticlastogenic agent. The in vivo/in vitro protocol may be a useful means to assay the chemoprotective effects of chemicals in humans.

  10. Effect of Acinetobacter glutaminase-asparaginase treatment on free amino acids in mouse tissues.

    PubMed

    Holcenberg, J S; Tang, E; Dolowy, W C

    1975-05-01

    Acinetobacter glutaminase-asparaginase (AGA) and Escherichia coli asparaginase were compared for their effects on plasma and tissue levels of amino acids, ammonia, and glutamyl transferase activity in the mouse. Free asparagine was depleted similarly in plasma and tissues by both enzymes. AGA treatment produced partial depletion of glutamine concentrations in muscle, spleen, small intestine, and liver. Brain and kidney glutamine concentrations actually rose with treatment. Despite over 100-fold increase in plasma glutamate, only the kidney showed a substantial increase in free glutamate levels during AGA treatment. Glutamine biosynthesis measured by glutamyl transferase activity showed an appreciable increase only in the kidney. Ammonia levels in tissues and plasma rose 1.3- to 4.3-fold. In general, E. coli asparaginase treatment had much less effect on these measurements than did AGA. The changes in these levels are discussed in relation to sites of possible toxicity and antitumor effects.

  11. Effect of the Fusarium toxins, zearalenone and deoxynivalenol, on the mouse brain.

    PubMed

    Ren, Z H; Deng, H D; Deng, Y T; Deng, J L; Zuo, Z C; Yu, S M; Shen, L H; Cui, H M; Xu, Z W; Hu, Y C

    2016-09-01

    The aim of this study was to find effects of Fusarium toxins on brain injury in mice. We evaluated the individual and combined effect of the Fusarium toxins zearalenone and deoxynivalenol on the mouse brain. We examined brain weight, protein, antioxidant indicators, and apoptosis. After 3 and 5days of treatment, increased levels of nitric oxide, total nitric oxide synthase, hydroxyl radical scavenging, and malondialdehyde were observed in the treatment groups. This was accompanied by reduced levels of brain protein, superoxide dismutase (apart from the low-dose zearalenone groups), glutathione, glutathione peroxidase activity, and percentage of apoptotic cells. By day 12, most of these indicators had returned to control group levels. The effects of zearalenone and deoxynivalenol were dose-dependent, and were synergistic in combination. Our results suggest that brain function is affected by zearalenone and deoxynivalenol.

  12. Early effect of mosquito larvae extract on mouse cells proliferation in vivo.

    PubMed

    Ronderos, J R

    1996-04-01

    It has been demonstrated that mosquito larvae crude extract has an inhibiting effect on the mitotic rate of several mouse cell populations. The sampling period was 16-24 h after treatment, when mitotic peak normally occurs. The present paper reports the effect of mosquito larvae crude extract on the proliferation of hepatocytes, renocytes, Lieberkhün crypt enterocytes, and sialocytes. In this case, the sampling period covered the dark phase of the day, during the first 12 h after treatment. Colchicine-arrested metaphases were controlled at 20/04, 00/08 and 04/12 (Time of Day/Time Post Injection). The mitotic rate was significantly increased in hepatocytes and renocytes and inhibited in duodenum enterocytes. In view of the time chosen to administer the treatments and the time elapsed until sampling, we conclude a probable effect of the extract at the G2-M point of the cell cycle.

  13. Effects of trifluoperazine and promethazine on the release of transmitter quanta at the mouse neuromuscular junction.

    PubMed

    Nishimura, M; Komatsu, R; Taquahashi, Y; Shimizu, Y; Satoh, E

    1998-01-01

    The present experiments examined the effects of phenothiazine derivatives, such as trifluoperazine and promethazine, on the release of transmitter quanta in preparations of the mouse diaphragm. The frequency (F, s-1) of miniature end-plate potentials and the quantal content (m) of endplate potentials were measured intracellularly at the same endplate in a bathing solution that contained 0.5-0.8 mM Ca2+ ions and 5 mM Mg2+ ions. Trifluoperazine (4 microM) significantly reduced both F and m. The inhibitory effect on m, but not on F, was subject to competition by Ca2+ ions. Promethazine at 48 microM, but not at 16 microM, reduced the quantal release. It was apparent that the effect of trifluoperazine was competitively antagonized by Ca2+ ions at motor nerve terminals.

  14. Effect of wood creosote and loperamide on propulsive motility of mouse colon and small intestine.

    PubMed

    Ogata, N; Ataka, K; Morino, H; Shibata, T

    1999-10-01

    To elucidate a mechanism of the antidiarrheal activity of wood creosote, its effect on the propulsive motility of mouse colon and small intestine was studied using a charcoal meal test and a colonic bead expulsion test. The effect was compared with that of loperamide. At an ordinary therapeutic dose, wood creosote inhibited the propulsive motility of colon, but not of small intestine. On the other hand, loperamide inhibited the propulsive motility of small intestine, but not of colon. The results indicate that at least a part of the antidiarrheal activity of wood creosote and loperamide is attributable to their antikinetic effect predominantly on colon of the former and predominantly on small intestine of the latter.

  15. Contractile effect of TRPA1 receptor agonists in the isolated mouse intestine.

    PubMed

    Penuelas, Angelica; Tashima, Kimihito; Tsuchiya, Shizuko; Matsumoto, Kenjiro; Nakamura, Tomonori; Horie, Syunji; Yano, Shingo

    2007-12-08

    TRPA1 is a member of the transient receptor potential (TRP) channel family expressed in sensory neurons. The present study focused on the effects of TRPA1 activation on contractile responses in isolated mouse intestine preparations. The jejunum, ileum, and proximal and distal colon were surgically isolated from male ddY mice. Intestinal motility was recorded as changes in isotonic tension. TRPA1, TRPM8, and TRPV1 expressions were examined by reverse transcription-polymerase chain reaction (RT-PCR). A TRPA1 agonist allyl isothiocyanate (AITC) dose-dependently induced contractions in the proximal and distal colon, whereas in the jejunum and ileum, even 100 muM AITC caused very little contraction. Likewise, a TRPA1 and TRPM8 agonist icilin, a TRPA1 agonist allicin, and a TRPV1 agonist capsaicin induced contractions in the colon. However, a TRPM8 agonist menthol induced long-lasting relaxation in the colon. Repeated exposure to AITC produced desensitization of its own contraction in the colon. Moreover, contractions induced by AITC generate cross-desensitization with icilin and capsaicin. Tetrodotoxin completely abolished AITC-induced contractions in the colon, whereas atropine significantly attenuated AITC-induced contractions in the distal colon, but not in the proximal colon. Menthol-induced relaxation in the colon was not inhibited by tetrodotoxin and atropine. RT-PCR analysis revealed the expression of TRPA1 and TRPV1, but not TRPM8, throughout the mouse intestine. These results suggest that TRPA1, but not TRPM8, are functionally expressed in the enteric nervous system throughout the mouse intestine on neurons that may also co-express TRPV1, yet the contractile responses to TRPA1 activation differ depending on their location along the intestine.

  16. Effects of Shen'an granules on Wnt signaling pathway in mouse models of diabetic nephropathy

    PubMed Central

    Zou, Xin-Rong; Wang, Xiao-Qin; Hu, Ying-Lin; Zhou, Hui-Lan

    2016-01-01

    The effect of Shen'an granules on the Wnt signaling pathway in renal tissues of mouse models of streptozotocin (STZ)-induced diabetic nephropathy was investigated in the present study. A total of 62 BALB/c mice were randomly divided into the normal control (A group), model (B group), losartan (C group), low-dose Shen'an granules (D group), and high-dose Shen'an granules (E group) groups. The mouse model of diabetic nephropathy was established by a single intraperitoneal injection of STZ (150 mg/kg). The animals were treated with drugs for 8 weeks, and blood creatinine, blood urea nitrogen, triglycerides (TG), and total cholesterol (CHOL) were measured prior to and after treatment. PAS staining was performed for observation of glomerular microstructure by light microscope, and western blot analysis was performed to detect Wnt1 protein and β-catenin protein. The results indicated that the quantification of 24-h microalbuminuria, and levels of blood creatinine, urea nitrogen, TG, and CHOL were significantly lower in the high- and low-dose Shen'an granules groups than those in the model group (p<0.05). The expression levels of Wnt1 protein and β-catenin protein in the high- and low-dose Shen'an granules groups were significantly lower than those in the model group (p<0.05). In conclusion, proteinuria, renal dysfunction, and dyslipidemias are closely associated with the abnormal activation of the Wnt signaling pathway in the mouse model of diabetic nephropathy. The mechanism by which Shen'an granules regulate proteinuria, renal function, and blood lipids may be associated with inhibition of the abnormally activated Wnt signaling pathway. PMID:28105085

  17. Effect of treppe on isovolumic function in the isolated blood-perfused mouse heart.

    PubMed

    Brooks, W W; Apstein, C S

    1996-08-01

    The effects of treppe on left ventricular function in the isolated mouse heart perfused with physiological buffer or with erythrocyte-rich buffer were compared. Left ventricular systolic and diastolic pressures were measured in the isovolumically contracting (balloon in the left ventricle) mouse hearts. Hearts were isolated from 12 adult Swiss-Webster mice and perfused at constant pressure (approximately 85 mmHg) via the aorta. Perfusate consisted of non-recirculating oxygenated Krebs-Henseleit (KH) solution without or with washed cow red blood cells at a hematocrit of 20% (KH-RBC20). The measured ionized calcium concentration of the perfusates were adjusted to 2.2 mmol/l and the temperature held constant at 37 degrees C. Left ventricular systolic pressure, its derivative and diastolic pressures were recorded via a pressure transducer attached to a small latex balloon which was placed in the left ventricle through a left atrial incision. The balloon volume was adjusted to achieve an end-diastolic pressure of 4-8 mmHg. Left ventricular (LV) developed pressure averaged 111 +/- 4 (mean +/- S.E.M.) with KH alone and 108 +/- 4 mmHg with KH-RBC20 while the coronary flows were 3.1 +/- 0.18 and 0.95 +/- 0.15 ml/min respectively. In both KH solution alone and KH-RBC20, developed pressure remained relatively stable from 3 to 5 Hz while +/- dp/dt increased approximately 10% above values observed at 3 Hz. During KH perfusion with increasing stimulation rates, left ventricular pressure and +/- dP/dt, to a lesser extent, decreased while end-diastolic pressure markedly increased at stimulation rates higher than 5 Hz. However, KH-RBC20 perfusion prevented the marked increase in diastolic pressure with increasing stimulation rates (from 5 to 10 Hz). No significant difference in left ventricular developed pressure or +/dP/dt response to treppe were in evidence between groups. These results demonstrate that diastolic function of the isovolumically contracting mouse heart is sensitive

  18. Therapeutic effects of adipose-derived stem cells pretreated with pioglitazone in an emphysema mouse model

    PubMed Central

    Hong, Yoonki; Kim, You-Sun; Hong, Seok-Ho; Oh, Yeon-Mok

    2016-01-01

    There is no therapy currently available that influences the natural history of disease progression in patients with chronic obstructive pulmonary disease (COPD). Although stem cell therapy is considered a potential therapeutic option in COPD, there are no clinical trials proving definitive therapeutic effects in patients with COPD. Recently, it was reported that pioglitazone might potentiate the therapeutic effects of stem cells in patients with heart or liver disease. To test the capacity of pioglitazone pretreatment of stem cells for emphysema repair, we evaluated the therapeutic effects of pioglitazone-pretreated human adipose-derived mesenchymal stem cells (ASCs) on elastase-induced or cigarette smoke-induced emphysema in mice. We also investigated the mechanisms of action of pioglitazone-pretreated ASCs. Pioglitazone-pretreated ASCs had a more potent therapeutic effect than non-pretreated ASCs in the repair of both elastase-induced and smoke-induced emphysema models (mean linear intercept, 78.1±2.5 μm vs 83.2±2.6 μm in elastase models and 75.6±1.4 μm vs 80.5±3.2 μm in smoke models, P<0.05). Furthermore, we showed that pioglitazone-pretreated ASCs increased vascular endothelial growth factor (VEGF) production both in vitro and in mouse lungs in the smoke-induced emphysema model. Pioglitazone-pretreated ASCs may have more potent therapeutic effects than non-pretreated ASCs in emphysema mouse models. PMID:27765950

  19. Therapeutic effects of adipose-derived stem cells pretreated with pioglitazone in an emphysema mouse model.

    PubMed

    Hong, Yoonki; Kim, You-Sun; Hong, Seok-Ho; Oh, Yeon-Mok

    2016-10-21

    There is no therapy currently available that influences the natural history of disease progression in patients with chronic obstructive pulmonary disease (COPD). Although stem cell therapy is considered a potential therapeutic option in COPD, there are no clinical trials proving definitive therapeutic effects in patients with COPD. Recently, it was reported that pioglitazone might potentiate the therapeutic effects of stem cells in patients with heart or liver disease. To test the capacity of pioglitazone pretreatment of stem cells for emphysema repair, we evaluated the therapeutic effects of pioglitazone-pretreated human adipose-derived mesenchymal stem cells (ASCs) on elastase-induced or cigarette smoke-induced emphysema in mice. We also investigated the mechanisms of action of pioglitazone-pretreated ASCs. Pioglitazone-pretreated ASCs had a more potent therapeutic effect than non-pretreated ASCs in the repair of both elastase-induced and smoke-induced emphysema models (mean linear intercept, 78.1±2.5 μm vs 83.2±2.6 μm in elastase models and 75.6±1.4 μm vs 80.5±3.2 μm in smoke models, P<0.05). Furthermore, we showed that pioglitazone-pretreated ASCs increased vascular endothelial growth factor (VEGF) production both in vitro and in mouse lungs in the smoke-induced emphysema model. Pioglitazone-pretreated ASCs may have more potent therapeutic effects than non-pretreated ASCs in emphysema mouse models.

  20. Flavanone silibinin treatment attenuates nitrogen mustard-induced toxic effects in mouse skin

    SciTech Connect

    Jain, Anil K.; Tewari-Singh, Neera; Inturi, Swetha; Kumar, Dileep; Orlicky, David J.; Agarwal, Chapla; White, Carl W.; Agarwal, Rajesh

    2015-05-15

    Currently, there is no effective antidote to prevent skin injuries by sulfur mustard (SM) and nitrogen mustard (NM), which are vesicating agents with potential relevance to chemical warfare, terrorist attacks, or industrial/laboratory accidents. Our earlier report has demonstrated the therapeutic efficacy of silibinin, a natural flavanone, in reversing monofunctional alkylating SM analog 2-chloroethyl ethyl sulfide-induced toxic effects in mouse skin. To translate this effect to a bifunctional alkylating vesicant, herein, efficacy studies were carried out with NM. Topical application of silibinin (1 or 2 mg) 30 min after NM exposure on the dorsal skin of male SKH-1 hairless mice significantly decreased NM-induced toxic lesions at 24, 72 or 120 h post-exposure. Specifically, silibinin treatment resulted in dose-dependent reduction of NM-induced increase in epidermal thickness, dead and denuded epidermis, parakeratosis and microvesication. Higher silibinin dose also caused a 79% and 51%reversal in NM-induced increases in myeloperoxidase activity and COX-2 levels, respectively. Furthermore, silibinin completely prevented NM-induced H2A.X phosphorylation, indicating reversal of DNA damage which could be an oxidative DNA damage as evidenced by high levels of 8-oxodG in NM-exposed mouse skin that was significantly reversed by silibinin. Together, these findings suggest that attenuation of NM-induced skin injury by silibinin is due to its effects on the pathways associated with DNA damage, inflammation, vesication and oxidative stress. In conclusion, results presented here support the optimization of silibinin as an effective treatment of skin injury by vesicants. - Highlights: • Silibinin treatment attenuated nitrogen mustard (NM)-induced skin injury. • Silibinin affects pathways associated with DNA damage, inflammation and vesication. • The efficacy of silibinin could also be associated with oxidative stress. • These results support testing and optimization of

  1. Flavanone silibinin treatment attenuates nitrogen mustard-induced toxic effects in mouse skin.

    PubMed

    Jain, Anil K; Tewari-Singh, Neera; Inturi, Swetha; Kumar, Dileep; Orlicky, David J; Agarwal, Chapla; White, Carl W; Agarwal, Rajesh

    2015-05-15

    Currently, there is no effective antidote to prevent skin injuries by sulfur mustard (SM) and nitrogen mustard (NM), which are vesicating agents with potential relevance to chemical warfare, terrorist attacks, or industrial/laboratory accidents. Our earlier report has demonstrated the therapeutic efficacy of silibinin, a natural flavanone, in reversing monofunctional alkylating SM analog 2-chloroethyl ethyl sulfide-induced toxic effects in mouse skin. To translate this effect to a bifunctional alkylating vesicant, herein, efficacy studies were carried out with NM. Topical application of silibinin (1 or 2mg) 30 min after NM exposure on the dorsal skin of male SKH-1 hairless mice significantly decreased NM-induced toxic lesions at 24, 72 or 120 h post-exposure. Specifically, silibinin treatment resulted in dose-dependent reduction of NM-induced increase in epidermal thickness, dead and denuded epidermis, parakeratosis and microvesication. Higher silibinin dose also caused a 79% and 51%reversal in NM-induced increases in myeloperoxidase activity and COX-2 levels, respectively. Furthermore, silibinin completely prevented NM-induced H2A.X phosphorylation, indicating reversal of DNA damage which could be an oxidative DNA damage as evidenced by high levels of 8-oxodG in NM-exposed mouse skin that was significantly reversed by silibinin. Together, these findings suggest that attenuation of NM-induced skin injury by silibinin is due to its effects on the pathways associated with DNA damage, inflammation, vesication and oxidative stress. In conclusion, results presented here support the optimization of silibinin as an effective treatment of skin injury by vesicants.

  2. Flavanone silibinin treatment attenuates nitrogen mustard-induced toxic effects in mouse skin

    PubMed Central

    Jain, Anil K; Tewari-Singh, Neera; Inturi, Swetha; Kumar, Dileep; Orlicky, David J; Agarwal, Chapla; White, Carl W; Agarwal, Rajesh

    2015-01-01

    Currently, there is no effective antidote to prevent skin injuries by sulfur mustard (SM) and nitrogen mustard (NM), which are vesicating agents with potential relevance to chemical warfare, terrorist attacks, or industrial/laboratory accidents. Our earlier report has demonstrated the therapeutic efficacy of silibinin, a natural flavanone, in reversing monofunctional alkylating SM analog 2-chloroethyl ethyl sulfide-induced toxic effects in mouse skin. To translate this effect to a bifunctional alkylating vesicant, herein, efficacy studies were carried out with NM. Topical application of silibinin (1 or 2 mg) 30 min after NM exposure on the dorsal skin of male SKH-1 hairless mice significantly decreased NM-induced toxic lesions at 24, 72 or 120 h post-exposure. Specifically, silibinin treatment resulted in dose-dependent reduction of NM-induced increase in epidermal thickness, dead and denuded epidermis, parakeratosis and microvesication. Higher silibinin dose also caused a 79% and 51% reversal in NM-induced increases in myeloperoxidase activity and COX-2 levels, respectively. Furthermore, silibinin completely prevented NM-induced H2A.X phosphorylation, indicating reversal of DNA damage which could be an oxidative DNA damage as evidenced by high levels of 8-oxodG in NM-exposed mouse skin that was significantly reversed by silibinin. Together, these findings suggest that attenuation of NM-induced skin injury by silibinin is due to its effects on the pathways associated with DNA damage, inflammation, vesication and oxidative stress. In conclusion, results presented here support the optimization of silibinin as an effective treatment of skin injury by vesicants. PMID:25791923

  3. [Effects of alkaloids from Coptidis Rhizoma on mouse peritoneal macrophages in vitro].

    PubMed

    Zhou, Xia; Peng, Yao-zong; Huang, Tao; Li, Ling; Mou, Shao-xia; Kou, Shu-ming; Li, Xue-gang

    2015-12-01

    This work was mainly studied the effects of the four alkaloids from Coptidis Rhizoma on the mouse peritoneal macrophages in vitro and preliminarily discussed the regulating mechanisms. The effect of alkaloids from Coptidis Rhizoma on the vitality of macrophages was measured by the MTT assay. The effect of alkaloids on the phagocytosis of macrophages was determined by neutral red trial and respiratory burst activity was tested by NBT. The expressions of respiratory-burst-associated genes influenced by alkaloids were detected by qRT-PCR. The conformation change of membrane protein in macrophages by the impact of alkaloids was studied by fluorospectro-photometer. Results showed that the four alkaloids from Coptidis Rhizoma could increase the phagocytosis of macrophages in different level and berberine had the best effect. Berberine, coptisine and palmatine had up-regulation effects on respiratory burst activity of mouse peritoneal macrophages stimulated by PMA and regulatory activity on the mRNA expression of PKC, p40phox or p47phox, whereas the epiberberine had no significant influence on respiratory burst. Moreover, alkaloids from Coptidis Rhizoma could change the conformation of membrane protein and the berberine showed the strongest activity. The results suggested that the four alkaloids from Coptidis Rhizoma might activate macrophages through changing the conformation of membrane protein of macrophages and then enhanced the phagocytosis and respiratory burst activity of macrophages. Furthermore, the regulatory mechanism of alkaloids on the respiratory burst activity of macrophages may be also related to the expression level of PKC, p40phox and p47phox.

  4. Differential effects of triclosan on the activation of mouse and human peroxisome proliferator-activated receptor alpha.

    PubMed

    Wu, Yuanfeng; Wu, Qiangen; Beland, Frederick A; Ge, Peter; Manjanatha, Mugimane G; Fang, Jia-Long

    2014-11-18

    Triclosan is an anti-bacterial agent used in many personal care products, household items, medical devices, and clinical settings. Liver tumors occur in mice exposed to triclosan, a response attributed to peroxisome proliferator-activated receptor alpha (PPARα) activation; however, the effects of triclosan on mouse and human PPARα have not been fully evaluated. We compared the effects of triclosan on mouse and human PPARα using PPARα reporter assays and on downstream events of PPARα activation using mouse hepatoma Hepa1c1c7 cells and human hepatoma HepG2 cells. PPARα transcriptional activity was increased by triclosan in a mouse PPARα reporter assay and decreased in a human PPARα reporter assay. Concentrations of triclosan inhibiting 50% cell growth were similar in both human and mouse hepatoma cells. Western blotting analysis showed that triclosan increased acyl-coenzyme A oxidase (ACOX1), a PPARα target, in Hepa1c1c7 cells but decreased the level in HepG2 cells. Treatment of Hepa1c1c7 cells with triclosan enhanced DNA synthesis and suppressed transforming growth factor beta-mediated apoptosis. This did not occur in HepG2 cells. These data demonstrate that triclosan had similar cytotoxicity in Hepa1c1c7 and HepG2 cells, but differential effects on the activation of PPARα, the expression of ACOX1, and downstream events including DNA synthesis and apoptosis.

  5. The effect of handling method on the mouse grimace scale in two strains of laboratory mice.

    PubMed

    Miller, Amy L; Leach, Matthew C

    2016-08-01

    Pain assessment in laboratory animals is an ethical and legal requirement. The mouse grimace scale (MGS) is a new method of pain assessment deemed to be both accurate and reliable, and observers can be rapidly trained to use it. In order for a new pain assessment technique to be effective, we must ensure that the score awarded by the technique is only influenced by pain and not by other husbandry or non-painful but integral aspects of research protocols. Here, we studied 16 male mice, housed under standard laboratory conditions. Eight mice were randomly assigned to tail handling and eight to tube handling on arrival at the unit. On each occasion the mice were removed from their cage for routine husbandry, they were picked up using their assigned handling method. Photographs of the mouse faces were then scored by treatment-blind observers as per the MGS manual (see Nature Methods 2010, Vol. 7, pp 447-449), and scores from the two groups were compared. There was no significant difference in MGS scores between the mice that had been handled using a tube compared with the tail. Consequently, these methods of handling did not influence the baseline grimace score given, suggesting that these handling techniques are not confounding factors when establishing baseline MGS scores, further validating this technique.

  6. Effects of Lizhong Tang on cultured mouse small intestine interstitial cells of Cajal

    PubMed Central

    Hwang, Min Woo; Kim, Jung Nam; Song, Ho Jun; Lim, Bora; Kwon, Young Kyu; Kim, Byung Joo

    2013-01-01

    AIM: To investigate the effects of Lizhong Tang, an herbal product used in traditional Chinese medicine, on mouse small intestine interstitial cells of Cajal (ICCs). METHODS: Enzymatic digestions were used to dissociate ICCs from mouse small intestine tissues. The ICCs were morphologically distinct from other cell types in culture and were identified using phase contrast microscopy after verification with anti c-kit antibody. A whole-cell patch-clamp configuration was used to record potentials (current clamp) from cultured ICCs. All of the experiments were performed at 30-32  °C. RESULTS: ICCs generated pacemaker potentials, and Lizhong Tang produced membrane depolarization in current-clamp mode. The application of flufenamic acid (a nonselective cation channel blocker) abolished the generation of pacemaker potentials by Lizhong Tang. Pretreatment with thapsigargin (a Ca2+-ATPase inhibitor in the endoplasmic reticulum) also abolished the generation of pacemaker potentials by Lizhong Tang. However, pacemaker potentials were completely abolished in the presence of an external Ca2+-free solution, and under this condition, Lizhong Tang induced membrane depolarizations. Furthermore, When GDP-β-S (1 mmol/L) was in the pipette solution, Lizhong Tang still induced membrane depolarizations. In addition, membrane depolarizations were not inhibited by chelerythrine or calphostin C, which are protein kinase C inhibitors, but were inhibited by U-73122, an active phospholipase C inhibitors. CONCLUSION: These results suggest that Lizhong Tang might affect gastrointestinal motility by modulating pacemaker activity in interstitial cells of Cajal. PMID:23599652

  7. Effect of Acrylamide on Oocyte Nuclear Maturation and Cumulus Cells Apoptosis in Mouse In Vitro

    PubMed Central

    Liu, Shuzhen; Jiang, Ligang; Zhong, Tao; Kong, Shuhui; Zheng, Rongbin; Kong, Fengyun; Zhang, Cong; Zhang, Lei; An, Liguo

    2015-01-01

    Acrylamide (ACR) is a chemical compound with severe neurotoxicity, genotoxicity, carcinogenicity and reproductive toxicity. Recent studies showed that ACR impairs the function of reproductive organs, e.g., epididymis and testes. In vitro maturation of mouse oocyte is a sensitive assay to identify potential chemical hazard to female fertility. The aim of this study was to evaluate the adverse effects of ACR on the nuclear maturation and cumulus cells apoptosis of mouse oocytes in vitro. Cumulus–oocyte complexes were incubated in a maturation medium containing 0, 5, 10 and 20 μM of ACR. Chromosome alignment and spindle morphology of oocytes was determined by immunofluorescence and confocal microscopy. Our results showed that oocytes exposed to different doses of ACR in vitro were associated with a significant decrease of oocyte maturation, significant increase of chromosome misalignment rate, occurrence of abnormal spindle configurations, and the inhibition of oocyte parthenogenetic activation. Furthermore, apoptosis of cumulus cells was determined by TUNEL and CASPASE-3 assay. Results showed that apoptosis in cumulus cells was enhanced and the expression of CASPASE-3 was increased after cumulus–oocyte complexes were exposed to ACR. Therefore, ACR may affect the nuclear maturation of oocytes via the apoptosis of cumulus cells in vitro. PMID:26275143

  8. Effect of Acrylamide on Oocyte Nuclear Maturation and Cumulus Cells Apoptosis in Mouse In Vitro.

    PubMed

    Liu, Shuzhen; Jiang, Ligang; Zhong, Tao; Kong, Shuhui; Zheng, Rongbin; Kong, Fengyun; Zhang, Cong; Zhang, Lei; An, Liguo

    2015-01-01

    Acrylamide (ACR) is a chemical compound with severe neurotoxicity, genotoxicity, carcinogenicity and reproductive toxicity. Recent studies showed that ACR impairs the function of reproductive organs, e.g., epididymis and testes. In vitro maturation of mouse oocyte is a sensitive assay to identify potential chemical hazard to female fertility. The aim of this study was to evaluate the adverse effects of ACR on the nuclear maturation and cumulus cells apoptosis of mouse oocytes in vitro. Cumulus-oocyte complexes were incubated in a maturation medium containing 0, 5, 10 and 20 μM of ACR. Chromosome alignment and spindle morphology of oocytes was determined by immunofluorescence and confocal microscopy. Our results showed that oocytes exposed to different doses of ACR in vitro were associated with a significant decrease of oocyte maturation, significant increase of chromosome misalignment rate, occurrence of abnormal spindle configurations, and the inhibition of oocyte parthenogenetic activation. Furthermore, apoptosis of cumulus cells was determined by TUNEL and CASPASE-3 assay. Results showed that apoptosis in cumulus cells was enhanced and the expression of CASPASE-3 was increased after cumulus-oocyte complexes were exposed to ACR. Therefore, ACR may affect the nuclear maturation of oocytes via the apoptosis of cumulus cells in vitro.

  9. Galvanotactic response of mouse epididymal sperm: in vitro effects of zinc and diethyldithiocarbamate.

    PubMed

    Zhang, X; Jin, L; Takenaka, I

    2000-01-01

    This study was conducted to evaluate the galvanotactic response of mouse epididymal sperm as well as the in vitro effects of Zn-acetate and diethyldithiocarbamate (DEDTC) on the galvanotaxis of sperm. The galvanotaxis of sperm was observed in a direct current (DC) electric field between 0 and 10 V/cm. The sperm were treated with Zn-acetate or DEDTC at concentrations of 0.02, 0.20, and 2.00 mM before the observations. The sperm exhibited galvanotaxis toward both cathode and anode in the fields between 1 and 9 V/cm. The number of sperm that accumulated at both electrodes was found to reach the highest level between 5 and 7 V/cm. In comparison with the results from untreated sperm, the number of accumulated sperm at the electrodes increased with the addition of 0.20 and 2.00 mM Zn-acetate, but decreased with the addition of DEDTC at all 3 concentrations. The galvanotaxis of mouse epididymal sperm is related to the field strengths, and the guidance of sperm migration may be influenced by the sex chromosomes. The galvanotaxis of the sperm may be improved by addition of Zn-acetate but depressed by DEDTC in the presence of DC electric fields.

  10. Effects of housing conditions on the development of wet skin lesions in the NOA mouse.

    PubMed

    Kondo, Taizo; Kondo, Toshio; Shiomoto, Yasuhisa; Momii, Akira

    2005-04-01

    The effects of housing on the onset time and prevalence of wet skin lesions were investigated in NOA mice, which spontaneously develop these lesions at a high rate. Wet skin lesions developed earliest in mice that were housed individually. For mice that were housed in groups, the lesions developed earlier in mice with non-littermate group housing than in mice with littermate group housing. The prevalence of lesions was in the following order: individual housing > non-littermate group housing > littermate group housing. These results suggest that socio-psychological factors are involved in the etiology of wet skin lesions in the NOA mouse. Under individual housing conditions, two other novel characters of the NOA mouse were also observed, specifically, development of dry skin and wet skin lesions at the tail root. These characteristics developed early and with high prevalence and were easily observed on external examination. Therefore, these novel characteristics observed in NOA mice are potential markers of the psychological state of the animals.

  11. Positive effects of bisphosphonates on bone and muscle in a mouse model of Duchenne muscular dystrophy.

    PubMed

    Yoon, Sung-Hee; Sugamori, Kim S; Grynpas, Marc D; Mitchell, Jane

    2016-01-01

    Patients with Duchenne muscular dystrophy are at increased risk of decreased bone mineral density and bone fracture as a result of inactivity. To determine if antiresorptive bisphosphonates could improve bone quality and their effects on muscle we studied the Mdx mouse, treated with pamidronate during peak bone growth at 5 and 6 weeks of age, and examined the outcome at 13 weeks of age. Pamidronate increased cortical bone architecture and strength in femurs with increased resistance to fracture. While overall long bone growth was not affected by pamidronate, there was significant inhibition of remodeling in metaphyseal trabecular bone with evidence of residual calcified cartilage. Pamidronate treatment had positive effects on skeletal muscle in the Mdx mice with decreased serum and muscle creatine kinase and evidence of improved muscle histology and grip strength.

  12. The effect of space flight on monoclonal antibody synthesis in a hybridoma mouse cell line

    NASA Technical Reports Server (NTRS)

    Smiley, S. A.; Gillock, E. T.; Black, M. C.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1997-01-01

    The hybridoma cell line, 3G10G5, producing a monoclonal antibody to the major capsid protein VP1 from the avian polyomavirus budgerigar fledgling disease virus, was produced from a Balb/C mouse. This cell line was used to test the effects of microgravity on cellular processes, specifically protein synthesis. A time course study utilizing incorporation of [35S]methionine into newly synthesized monoclonal antibody was performed on STS-77. After 5.5 days, it was observed that cell counts for the samples exposed to microgravity were lower than those of ground-based samples. However, radiolabel incorporation of the synthesized monoclonal antibody was similar in both orbiter and ground control samples. Overall, microgravity does not seem to have an effect on this cell line's ability to synthesize IgG protein.

  13. Evaluation of fractional photothermolysis effect in a mouse model using nonlinear optical microscopy

    NASA Astrophysics Data System (ADS)

    Guo, Han Wen; Tseng, Te-Yu; Dong, Chen-Yuan; Tsai, Tsung-Hua

    2014-07-01

    Fractional photothermolysis (FP) induces discrete columns of photothermal damage in skin dermis, thereby promoting collagen regeneration. This technique has been widely used for treating wrinkles, sun damage, and scar. In this study, we evaluate the potential of multiphoton microscopy as a noninvasive imaging modality for the monitoring of skin rejuvenation following FP treatment. The dorsal skin of a nude mouse underwent FP treatment in order to induce microthermal zones (MTZs). We evaluated the effect of FP on skin remodeling at 7 and 14 days after treatment. Corresponding histology was performed for comparison. After 14 days of FP treatment at 10 mJ, the second harmonic generation signal recovered faster than the skin treated with 30 mJ, indicating a more rapid regeneration of dermal collagen at 10 mJ. Our results indicate that nonlinear optical microscopy is effective in detecting the damaged areas of MTZ and monitoring collagen regeneration following FP treatment.

  14. Effects of brevetoxin-B on motor nerve terminals of mouse skeletal muscle.

    PubMed Central

    Tsai, M. C.; Chen, M. L.

    1991-01-01

    1. The effects of brevetoxin-B, a red tide toxin, on motor nerve terminal activity were assessed on mouse triangularis sterni nerve-muscle preparations. The perineural waveforms were recorded with extracellular electrodes placed in the perineural sheaths of motor nerves. 2. At 0.11 microM, brevetoxin-B increased the components of waveforms associated with sodium and potassium currents while it decreased the calcium activated potassium current and the slow calcium current of the nerve terminal. The fast calcium current and slow potassium current were not affected. 3. At 1.11 microM, brevetoxin-B decreased all of the components of waveforms associated with sodium, potassium and calcium currents. 4. It is concluded that brevetoxin-B affects sodium, potassium as well as calcium currents in the nerve terminal. The effects may contribute to its pharmacological actions on synaptic transmission. PMID:1652340

  15. The effects of plasma from patients with Graves' disease on foetal mouse hearts in organ culture.

    PubMed Central

    Nathan, A. W.; Longmore, D. B.; Havard, C. W.; Dandona, P.

    1983-01-01

    Plasma, obtained during plasma exchange therapy, from 3 euthyroid patients with Graves' disease and severe progressive exophthalmos induced an increase in heart rate and then early death when applied to foetal mouse hearts maintained in isolated organ culture. All plasma samples which induced an increase in foetal heart rate had high titres of thyroid stimulating immunoglobulins. Plasma samples obtained after exchange had a much diminished effect. These studies may indicate a previously unrecognized non-thyroidal action of the abnormal immunoglobulins associated with Graves' disease and suggest that chronic thyroid heart disease may be due, at least in part, to the effect of these immunoglobulins especially when not associated with elevated thyroid hormones concentrations. PMID:6139124

  16. Stochastic changes over time and not founder effects drive cage effects in microbial community assembly in a mouse model

    PubMed Central

    McCafferty, Jonathan; Mühlbauer, Marcus; Gharaibeh, Raad Z; Arthur, Janelle C; Perez-Chanona, Ernesto; Sha, Wei; Jobin, Christian; Fodor, Anthony A

    2013-01-01

    Maternal transmission and cage effects are powerful confounding factors in microbiome studies. To assess the consequences of cage microenvironment on the mouse gut microbiome, two groups of germ-free (GF) wild-type (WT) mice, one gavaged with a microbiota harvested from adult WT mice and another allowed to acquire the microbiome from the cage microenvironment, were monitored using Illumina 16S rRNA sequencing over a period of 8 weeks. Our results revealed that cage effects in WT mice moved from GF to specific pathogen free (SPF) conditions take several weeks to develop and are not eliminated by the initial gavage treatment. Initial gavage influenced, but did not eliminate a successional pattern in which Proteobacteria became less abundant over time. An analysis in which 16S rRNA sequences are mapped to the closest sequenced whole genome suggests that the functional potential of microbial genomes changes significantly over time shifting from an emphasis on pathogenesis and motility early in community assembly to metabolic processes at later time points. Functionally, mice allowed to naturally acquire a microbial community from their cage, but not mice gavaged with a common biome, exhibit a cage effect in Dextran Sulfate Sodium-induced inflammation. Our results argue that while there are long-term effects of the founding community, these effects are mitigated by cage microenvironment and successional community assembly over time, which must both be explicitly considered in the interpretation of microbiome mouse experiments. PMID:23823492

  17. Effect of mouse strain as a background for Alzheimer's disease models on the clearance of amyloid-β.

    PubMed

    Qosa, Hisham; Kaddoumi, Amal

    2016-04-01

    Novel animal models of Alzheimer's disease (AD) are relentlessly being developed and existing ones are being fine-tuned; however, these models face multiple challenges associated with the complexity of the disease where most of these models do not reproduce the full phenotypical disease spectrum. Moreover, different AD models express different phenotypes that could affect their validity to recapitulate disease pathogenesis and/or response to a drug. One of the most important and understudied differences between AD models is differences in the phenotypic characteristics of the background species. Here, we used the brain clearance index (BCI) method to investigate the effect of strain differences on the clearance of amyloid β (Aβ) from the brains of four mouse strains. These mouse strains, namely C57BL/6, FVB/N, BALB/c and SJL/J, are widely used as a background for the development of AD mouse models. Findings showed that while Aβ clearance across the blood-brain barrier (BBB) was comparable between the 4 strains, levels of LRP1, an Aβ clearance protein, was significantly lower in SJL/J mice compared to other mouse strains. Furthermore, these mouse strains showed a significantly different response to rifampicin treatment with regard to Aβ clearance and effect on brain level of its clearance-related proteins. Our results provide for the first time an evidence for strain differences that could affect ability of AD mouse models to recapitulate response to a drug, and opens a new research avenue that requires further investigation to successfully develop mouse models that could simulate clinically important phenotypic characteristics of AD.

  18. Effect of Lactobacillus salivarius bacteriocin Abp118 on the mouse and pig intestinal microbiota.

    PubMed

    Riboulet-Bisson, Eliette; Sturme, Mark H J; Jeffery, Ian B; O'Donnell, Michelle M; Neville, B Anne; Forde, Brian M; Claesson, Marcus J; Harris, Hugh; Gardiner, Gillian E; Casey, Patrick G; Lawlor, Peadar G; O'Toole, Paul W; Ross, R Paul

    2012-01-01

    Lactobacilli are gram-positive bacteria that are a subdominant element in the human gastrointestinal microbiota, and which are commonly used in the food industry. Some lactobacilli are considered probiotic, and have been associated with health benefits. However, there is very little culture-independent information on how consumed probiotic microorganisms might affect the entire intestinal microbiota. We therefore studied the impact of the administration of Lactobacillus salivarius UCC118, a microorganism well characterized for its probiotic properties, on the composition of the intestinal microbiota in two model animals. UCC118 has anti-infective activity due to production of the bacteriocin Abp118, a broad-spectrum class IIb bacteriocin, which we hypothesized could impact the microbiota. Mice and pigs were administered wild-type (WT) L. salivarius UCC118 cells, or a mutant lacking bacteriocin production. The microbiota composition was determined by pyrosequencing of 16S rRNA gene amplicons from faeces. The data show that L. salivarius UCC118 administration had no significant effect on proportions of major phyla comprising the mouse microbiota, whether the strain was producing bacteriocin or not. However, L. salivarius UCC118 WT administration led to a significant decrease in Spirochaetes levels, the third major phylum in the untreated pig microbiota. In both pigs and mice, L. salivarius UCC118 administration had an effect on Firmicutes genus members. This effect was not observed when the mutant strain was administered, and was thus associated with bacteriocin production. Surprisingly, in both models, L. salivarius UCC118 administration and production of Abp118 had an effect on gram-negative microorganisms, even though Abp118 is normally not active in vitro against this group of microorganisms. Thus L. salivarius UCC118 administration has a significant but subtle impact on mouse and pig microbiota, by a mechanism that seems at least partially bacteriocin-dependent.

  19. Prosocial effects of oxytocin in two mouse models of autism spectrum disorders.

    PubMed

    Teng, Brian L; Nonneman, Randal J; Agster, Kara L; Nikolova, Viktoriya D; Davis, Tamara T; Riddick, Natallia V; Baker, Lorinda K; Pedersen, Cort A; Jarstfer, Michael B; Moy, Sheryl S

    2013-09-01

    Clinical evidence suggests that oxytocin treatment improves social deficits and repetitive behavior in autism spectrum disorders (ASDs). However, the neuropeptide has a short plasma half-life and poor ability to penetrate the blood-brain barrier. In order to facilitate the development of more bioavailable oxytocinergic compounds as therapeutics to treat core ASD symptoms, small animal models must be validated for preclinical screens. This study examined the preclinical utility of two inbred mouse strains, BALB/cByJ and C58/J, that exhibit phenotypes relevant to core ASD symptoms. Mice from both strains were intraperitoneally administered oxytocin, using either acute or sub-chronic regimens. Acute oxytocin did not increase sociability in BALB/cByJ; however, sub-chronic oxytocin had significant prosocial effects in both BALB/cByJ and C58/J. Increased sociability was observed 24 h following the final oxytocin dose in BALB/cByJ, while prosocial effects of oxytocin emerged 1-2 weeks post-treatment in C58/J. Furthermore, acute oxytocin decreased motor stereotypy in C58/J and did not induce hypoactivity or anxiolytic-like effects in an open field test. This study demonstrates that oxytocin administration can attenuate social deficits and repetitive behavior in mouse models of ASD, dependent on dose regimen and genotype. These findings provide validation of the BALB/cByJ and C58/J models as useful platforms for screening novel drugs for intervention in ASDs and for elucidating the mechanisms contributing to the prosocial effects of oxytocin.

  20. The effect of midazolam on mouse Leydig cell steroidogenesis and apoptosis.

    PubMed

    So, Edmund Cheung; Chang, Ya-Ting; Hsing, Chung-His; Poon, Paul Wai-Fung; Leu, Sew-Fen; Huang, Bu-Miin

    2010-02-01

    The peripheral-type benzodiazepine receptor (PBR), a putative receptor in Leydig cells, modulates steroidogenesis. Since benzodiazepines are commonly used in regional anesthesia, their peripheral effects need to be defined. Therefore, this study set out to investigate in vitro effects of the benzodiazepine midazolam (MDZ) on Leydig cell steroidogenesis, and the possible underlying mechanisms. The effects of MDZ on steroidogenesis in primary mouse Leydig cells and MA-10 Leydig tumor cells were determined by radioimmunoassay. PBR, P450scc, 3beta-HSD and StAR protein expression induced by MDZ was determined by Western blotting. Inhibitors of the signal transduction pathway and a MDZ antagonist were used to investigate the intracellular cascades activated by MDZ. In both cell types, MDZ-stimulated steroidogenesis in dose- and time-dependent manners, and induced the expression of PBR and StAR proteins, but had no effect on P450scc and 3beta-HSD expressions. Moreover, H89 (PKA inhibitor) and GF109203X (PKC inhibitor) attenuated MDZ-stimulated steroid production. Interestingly, the MDZ antagonist (flumazenil) did not decrease MDZ-induced steroid production in both cell types. These results highly indicated that MDZ-induced steroidogenesis in mouse Leydig cells via PKA and PKC pathways, along with the expression of PBR and StAR proteins. In addition, MDZ at high dosages induced rounding-up, membrane blebbing, and then death in MA-10 cells. In conclusion, midazolam could induce Leydig tumor cell steroidogenesis, and high dose of midazolam could induce apoptosis in Leydig tumor cells.

  1. Effects of Subretinal Gene Transfer at Different Time Points in a Mouse Model of Retinal Degeneration

    PubMed Central

    Dai, Xufeng; Zhang, Hua; Han, Juanjuan; He, Ying; Zhang, Yangyang; Qi, Yan; Pang, Ji-jing

    2016-01-01

    Lysophosphatidylcholine acyltransferase 1 (LPCAT1) is necessary for photoreceptors to generate an important lipid component of their membranes. The absence of LPCAT1 results in early and rapid rod and cone degeneration. Retinal degeneration 11 (rd11) mice carry a mutation in the Lpcat1 gene, and are an excellent model of early-onset rapid retinal degeneration (RD). To date, no reports have documented gene therapy administration in the rd11 mouse model at different ages. In this study, the AAV8 (Y733F)-smCBA-Lpcat1 vector was subretinally injected at postnatal day (P) 10, 14, 18, or 22. Four months after injection, immunohistochemistry and analysis of retinal morphology showed that treatment at P10 rescued about 82% of the wild-type retinal thickness. However, the diffusion of the vector and the resulting rescue were limited to an area around the injection site that was only 31% of the total retinal area. Injection at P14 resulted in vector diffusion that covered approximately 84% of the retina, and we found that gene therapy was more effective against RD when exposure to light was limited before and after treatment. We observed long-term preservation of electroretinogram (ERG) responses, and preservation of retinal structure, indicating that early treatment followed by limited light exposure can improve gene therapy effectiveness for the eyes of rd11 mice. Importantly, delayed treatment still partially preserved M-cones, but not S-cones, and M-cones in the rd11 retina appeared to have a longer window of opportunity for effective preservation with gene therapy. These results provide important information regarding the effects of subretinal gene therapy in the mouse model of LPCAT1-deficiency. PMID:27228218

  2. Prosocial effects of oxytocin in two mouse models of autism spectrum disorders

    PubMed Central

    Teng, Brian L.; Nonneman, Randal J.; Agster, Kara L.; Nikolova, Viktoriya D.; Davis, Tamara T.; Riddick, Natallia V.; Baker, Lorinda K.; Pedersen, Cort A.; Jarstfer, Michael B.; Moy, Sheryl S.

    2013-01-01

    Clinical evidence suggests that oxytocin treatment improves social deficits and repetitive behavior in autism spectrum disorders (ASDs). However, the neuropeptide has a short plasma half-life and poor ability to penetrate the blood-brain barrier. In order to facilitate the development of more bioavailable oxytocinergic compounds as therapeutics to treat core ASD symptoms, small animal models must be validated for preclinical screens. This study examined the preclinical utility of two inbred mouse strains, BALB/cByJ and C58/J, that exhibit phenotypes relevant to core ASD symptoms. Mice from both strains were intraperitoneally administered oxytocin, using either acute or sub-chronic regimens. Acute oxytocin did not increase sociability in BALB/cByJ; however, sub-chronic oxytocin had significant prosocial effects in both BALB/cByJ and C58/J. Increased sociability was observed 24 hours following the final oxytocin dose in BALB/cByJ, while prosocial effects of oxytocin emerged 1–2 weeks post-treatment in C58/J. Furthermore, acute oxytocin decreased motor stereotypy in C58/J and did not induce hypoactivity or anxiolytic-like effects in an open field test. This study demonstrates that oxytocin administration can attenuate social deficits and repetitive behavior in mouse models of ASD, dependent on dose regimen and genotype. These findings provide validation of the BALB/cByJ and C58/J models as useful platforms for screening novel drugs for intervention in ASDs and for elucidating the mechanisms contributing to the prosocial effects of oxytocin. PMID:23643748

  3. The effect of polymer dots on bioactivity of mouse sperm in vitro

    NASA Astrophysics Data System (ADS)

    Feng, Gang; Chen, Qiang; Zhai, Peng; Wang, Xiaomei; Lin, Guimiao; Xu, Gaixia; Chen, Danni

    2014-09-01

    Objective: In recent years, semiconducting polymer dots (Pdots)have caught considerable attention for their outstanding optical characteristics in biomedical imaging applications. Not as semiconductor quantum dots, Pdots are composed of nonmetallic material and their biological effects remain unclear. In this work, we investigated the effects of a band new polymer dots on bioactivity of mouse sperm using a computer-aided sperm analysis system(CASA) and an in vitro fertilization (IVF) model. Methods: The semiconducting polymer dots used in this study is CN-PPV Pdots, which emits in the orange wavelength range with high brightness. Epididymal mouse sperm were collected from 7-8weeks old Balb/c mouse. Firstly, CN-PPV Pdots was added into the Human Tubal Fluid (HTF) media at various concentrations (0, 1, 10, 100 nmol/L respectively ), then sperm bioactivity and vitality were evaluated every 10 minutes. Secondly, the treated sperm were co-cultured with matured oocytes in HTF media, fertilization rate and oocytes development were recorded after 24 hours co-incubation. Results: Sperm viability in the control group (0 nmol/L) and experimental group (1, 10,100 nmol/L) were 57.20+/-4.51%, 58.17+/-4.81%, 55.50+/-4.52%, 46.26%+/-3.83%, respectively. Fertilization rate in different groups showed no obvious differences, control group (0 nmol/L) and experimental group (1, 10, 100 nmol/L) were 38.75+/-1.71%, 37.01+/-4.69%, 32.75+/-1.71%, 35.24+/-2.37%, respectively. Conclusion: Our data indicated that the CN-PPV Pdots had a very high biocompatibility on sperm in both the activation and the IVF process, even in extreme high Pdots concentration,the sperm bioactivity only got slight restrained. The effect of CN-PPV Pdots seems has no or little toxicity,and the long-term embryonic development has yet to be verified.

  4. Effects of hydroxamate metalloendoprotease inhibitors on botulinum neurotoxin A poisoned mouse neuromuscular junctions

    PubMed Central

    Thyagarajan, Baskaran; Potian, Joseph G.; Garcia, Carmen C.; Hognason, Kormakur; Čapková, Kateřina; Moe, Scott T.; Jacobson, Alan R.; Janda, Kim D.; McArdle, Joseph J.

    2010-01-01

    Summary Currently the only therapy for botulinum neurotoxin A (BoNT/A) poisoning is antitoxin. Antidotes that are effective after BoNT/A has entered the motor nerve terminals would dramatically benefit BoNT/A therapy. Inhibition of proteolytic activity of BoNT/A light chain by metalloendoprotease inhibitors (MEIs) is under development. We tested the effects of MEIs on in vitro as well as in vivo BoNT/A poisoned mouse nerve muscle preparations (NMPs). The Ki for inhibition of BoNT/A metalloendoprotease was 0.40 and 0.36 μM, respectively, for 2, 4 – dichlorocinnamic acid hydroxamate (DCH) and its methyl derivative, ABS 130. Acute treatment of nerve muscle preparations with 10 pM BoNT/A inhibited nerve evoked muscle twitches, reduced mean quantal content, and induced failures of endplate currents (EPCs). Bath application of 10 μM DCH or 5 μM ABS 130 reduced failures, increased the quantal content of EPCs, and partially restored muscle twitches after a delay of 40 to 90 min. The restorative effects of DCH and ABS 130, as well as 3,4 diaminopyridine (DAP) on twitch tension were greater at 22 °C compared to 37 °C. Unlike DAP, neither DCH nor ABS 130 increased Ca2+ levels in cholinergic Neuro 2a cells. Injection of MEIs into mouse hind limbs before or after BoNT/A injection neither prevented the toe spread reflex inhibition nor improved muscle functions. We suggest that hydroxamate MEIs partially restore neurotransmission of acutely BoNT/A poisoned nerve muscle preparations in vitro in a temperature dependent manner without increasing the Ca2+ levels within motor nerve endings. PMID:20211192

  5. Biphasic effect of 1,25-dihydroxyvitamin D3 on primary mouse epidermal keratinocyte proliferation.

    PubMed

    Bollag, W B; Ducote, J; Harmon, C S

    1995-05-01

    1,25-Dihydroxyvitamin D3 [1,25(OH)2D3] has been proposed as a physiologic regulator of keratinocyte growth and differentiation. Utilizing a proliferative serum-free culture system, we have found that a physiologic (picomolar) concentrations this hormone stimulated proliferation of primary mouse epidermal keratinocytes; at higher (nanomolar to micromolar) doses, growth was inhibited by 1,25(OH)2D3. We investigated the nature of the signal transduction mechanism underlying the response to 1,25(OH)2D3 and observed little or no effect of either low or high concentrations of the hormone on cytosolic calcium levels or Fos expression. Furthermore, the protein kinase C inhibitor, Ro 31-7549, had very little effect on the growth inhibition induced by a high dose (1 microM) of 1,25(OH)2D3. This lack of rapid signal transduction events was consistent with the inability of a short (4-hour) exposure to 1,25(OH)2D3 to initiate a complete growth-inhibitory response as measured using [3H]thymidine incorporation. Our results indicate that physiologic concentrations of 1,25(OH)2D3 are required for optimal keratinocyte growth. Furthermore, we found no evidence of rapid effects of 1,25(OH)2D3 and suggest that in mouse epidermal keratinocytes, the response to this hormone is mediated by a slow transduction pathway, such as that activated by the intracellular 1,25(OH)2D3 receptor (VDR).

  6. Effects of colistin on amino acid neurotransmitters and blood-brain barrier in the mouse brain.

    PubMed

    Wang, Jian; Yi, Meishuang; Chen, Xueping; Muhammad, Ishfaq; Liu, Fangping; Li, Rui; Li, Jian; Li, Jichang

    2016-01-01

    Neurotoxicity is one of the major potential side effects of colistin therapy. However, the mechanistic aspects of colistin-induced neurotoxicity remain largely unknown. The objective of this study was to examine the effects of colistin on the blood-brain barrier (BBB) and amino acid neurotransmitters in the cerebral cortex of mouse. Mice were divided into four groups (n=5) and were administrated intravenously with 15mg/kg/day of colistin sulfate for 1, 3 and 7days successively while the control group was administrated intravenously with saline solution. The permeability and ultrastructure of the BBB were detected using the Evans blue (EB) dye and transmission electron microscopy (TEM), and the expression of Claudin-5 were determined by real-time PCR examination and western blotting. The brain uptake of colistin was measured by high-performance liquid chromatography (HPLC). The effects of colistin on amino acid neurotransmitters and their receptors were also examined by HPLC and real-time PCR. The results of EB extravasation, TEM and expression of Claudin-5 showed that colistin treatment did not affect the BBB integrity. In addition, multiple doses of colistin could induce accumulation of this compound in the brain parenchyma although there was poor brain uptake of colistin. Moreover, colistin exposure significantly increased the contents of glutamate (Glu) and gamma aminobutyric acid (GABA), and enhanced the mRNA expression levels of gamma aminobutyric acid type A receptor (GABAAR), gamma aminobutyric acid type B receptor (GABABR), N-methyl-d-aspartate 1 receptor (NR1), N-methyl-d-aspartate 2A receptor (NR2A) and N-methyl-d-aspartate 2B receptor (NR2B) in the cerebral cortex. Our data demonstrate that colistin is able to accumulate in the mouse brain and elevate the levels of amino acid neurotransmitters. These findings may be associated with colistin-induced neurotoxicity.

  7. Effects of perinatal stress on the anxiety-related behavior of the adolescence mouse.

    PubMed

    Nishio, H; Tokumo, K; Hirai, T

    2006-06-01

    We evaluated the effects of sound noise or forced swim stress applied to pregnant mice or to neonatal mice on the anxiety-related behavior using the elevated plus-maze test performed during the age of 5 weeks. The forced swim stress applied at the late gestation period, days 10-18 of pregnancy, caused a significant reduction of the body weight gain of the dams. However, the anxiety-related behavior of the male and female offspring were not affected by the antenatal stress treatment. When the forced swim stress was applied to the neonatal mice during the late lactation period, 14-18 days after birth, the male mice showed an elevated level of anxiolytic behavior accompanying the reduction of the emotion-related motor activity. The anxiety-related behavior of the female mice was not affected by the stress treatment. Furthermore, we applied the sound noise or forced swim stress to the neonatal mice immediately after the weaning, 21-25 days after birth. The stress applied after the weaning period had no effect on the anxiety-related behavior. These results suggested that the stress applied during the lactation period, but not that during the antenatal period, nor after the weaning period, might have gender-dependently reduced the anxiety level of the male mouse. It was shown that the effects of perinatal stress on the anxiety-related behavior of the adolescent mouse varied according to the period of application and gender. The hypothesis that gender-dependent abnormalities in neurodevelopment might be caused by the excess stress applied to the breast-fed infant is of importance in elucidating the relationship between the psychoneurotic disorder in childhood and the environment stress of the breast-fed infant.

  8. β-asarone and levodopa co-administration protects against 6-hydroxydopamine-induced damage in parkinsonian rat mesencephalon by regulating autophagy: down-expression Beclin-1 and light chain 3B and up-expression P62.

    PubMed

    Huang, Li-Ping; Deng, Min-Zhen; He, Yu-Ping; Fang, Yong-Qi

    2015-03-01

    In this study, we investigated Beclin-1, light chain (LC)3B, and p62 expression in 6-hydroxydopamine (6-OHDA)-induced parkinsonian rats after β-asarone and levodopa (l-dopa) co-administration. Unilateral 6-OHDA injection into the medial forebrain bundle was used to create the models, except in sham-operated rats. Rats were divided into eight groups: sham-operated group; 6-OHDA model group; madopar group (75 mg/kg, per os (p.o.)); l-dopa group (60 mg/kg, p.o.); β-asarone group (15 mg/kg, p.o.); β-asarone + l-dopa co-administered group (15 mg/kg + 60 mg/kg, p.o.); 3-methyladenine group (500 nmol, intraperitoneal injection); and rapamycin group (1 mg/kg, intraperitoneal injection). Then, Beclin-1, LC3B, and p62 expression in the mesencephalon were detected. The mesencephalon was also observed by transmission electron microscope. The results showed that Beclin-1 and LC3B expression decreased and that p62 expression increased significantly in the madopar, l-dopa, β-asarone, and co-administered groups when compared with the 6-OHDA model. Beclin-1 and LC3B expression in the β-asarone and co-administered groups were less than in the madopar or l-dopa groups, whereas p62 expression in the β-asarone and co-administered groups was higher than in the madopar or l-dopa groups. In addition, a significant decrease in autophagosome was exhibited in the β-asarone and co-administered groups when compared with the 6-OHDA group. Our findings indicate that Beclin-1 and LC3B expression decreased, whereas p62 expression increased after co-administration treatment. In sum, all data suggest that the co-administration of β-asarone and l-dopa may contribute to the treatment of 6-OHDA-induced damage in rats by inhibiting autophagy activity.

  9. Exposure of mouse skin to organic peroxides: subchronic effects related to carcinogenic potential.

    PubMed

    Hanausek, Margaret; Walaszek, Zbigniew; Viaje, Aurora; LaBate, Michael; Spears, Erick; Farrell, David; Henrich, Richard; Tveit, Ann; Walborg, Earl F; Slaga, Thomas J

    2004-03-01

    Screening of newly synthesized organic peroxides for tumor initiating/promoting activity would be greatly facilitated if predictive methodologies could be developed using topical exposures shorter than those required for definitive tumor assessment in mouse skin models. Nine organic peroxides [benzoyl peroxide (BZP), di-t-butyl peroxide (DTBP), t-butyl peroxybenzoate (TBPB), p-t-butyl isopropylbenzene hydroperoxide (TBIBHP), cumene hydroperoxide (CHP), dicetyl peroxydicarbonate (DPD), dicumyl peroxide (DCP), methyl ethyl ketone peroxide (MEKP) and O,O-t-butyl-O-(2-ethylhexyl) monoperoxycarbonate (TBEC)] were evaluated for their ability to increase biomarkers of tumor promotion in mouse skin, i.e. sustained epidermal hyperplasia, dermal inflammation and oxidative DNA damage. Evaluations were performed using SENCAR mice exposed topically for 4 weeks. The organic peroxides varied in their effects on these biomarkers. BZP, TBPB and TBIBHP exhibited significant increases in all three biomarkers associated with tumor promoting activity, CHP produced increases only in sustained epidermal hyperplasia and dermal inflammation, MEKP and DCP produced increases only in sustained epidermal hyperplasia and TBEC produced an increase only in dermal inflammation. DTBP and DPD had no effect on the three parameters studied. TBPB and TBIBHP were selected for further examination of their ability to produce mutations in codons 12, 13 and 61 of the c-Ha-ras protooncogene, i.e. those mutations known to be involved in the initiation of mouse skin tumors, because they were the only peroxides to exhibit significant positive results in all assays except the Ha-ras mutation following 4 weeks of exposure. Evaluations were performed using SENCAR mice dosed topically for 8 or 12 weeks in a complete carcinogenesis protocol or 16 weeks in an initiation/promotion protocol using 7,12-dimethylbenz[a]anthracene, urethane, benzo[a]pyrene and N-methyl-N'-nitro-N-nitrosoguanidine as positive controls

  10. Synergistic deleterious effect of chronic stress and sodium azide in the mouse hippocampus.

    PubMed

    Delgado-Cortés, María José; Espinosa-Oliva, Ana M; Sarmiento, Manuel; Argüelles, Sandro; Herrera, Antonio J; Mauriño, Raquel; Villarán, Ruth F; Venero, José L; Machado, Alberto; de Pablos, Rocío M

    2015-04-20

    Alzheimer's disease is the most common cause of dementia in the elderly. Although the primary cause of the disease is presently unknown, to date several risk factors have been described. Evidence suggests that one of these risk factors could be chronic stress. The aim of this work is to demonstrate that chronic stress is able to induce Alzheimer's disease features after the administration of nontoxic doses of sodium azide. We found that chronic stress increases the levels of several proteins involved in Alzheimer's disease pathogenesis, such as presenilin 1, presenilin 2, and S100β, besides inducing the aggregation of Tau, ubiquitin, and β-amyloid proteins in the hippocampus. More important, our work shows a synergistic effect of stress and sodium azide treatment leading to significant neuronal death in the mouse hippocampus. Our results point out that chronic stress is a risk factor contributing to amplify and accelerate Alzheimer's disease features in the hippocampus.

  11. The effect of tequila in the synaptonemal complex structure of mouse spermatocytes.

    PubMed

    Tapia, F; Madrigal-Bujaidar, E; Aguirre, S

    1992-04-01

    The effect of tequila in the synaptonemal complex (SC) of mouse spermatocytes was determined. We tested 3 dosages (2.1, 4.2 and 8.4 g/kg) administered in a single intraperitoneal inoculation. The frequency of SC alterations was established in pachytenic nuclei 5 days after the administration using a silver impregnation technique. Three types of alterations were observed (desynapses, breaks and multiaxials) and the rate of each alteration was compared with that obtained with appropriate controls, including cyclophosphamide (CP) (150 mg/kg). The results showed a significant increase induced by tequila only in the frequency of desynapses. This damage began at the second highest dose (4.2 g/kg). The other SC alterations were in the control range. CP, however, induced a significant increase in all 3 types of SC alterations.

  12. Effect of mitochondria poisoning by FCCP on Ca2+ signaling in mouse skeletal muscle fibers.

    PubMed

    Caputo, Carlo; Bolaños, Pura

    2008-01-01

    We have studied the effects of mitochondria poisoning by carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP) on Ca(2+) signaling in enzymatically dissociated mouse flexor digitorum brevis (FDB) muscle fibers. We used Fura-2AM to measure resting [Ca(2+)](i) and MagFluo-4AM to measure Ca(2+) transients. Exposure to FCCP (2 microM, 2 min) caused a continuous increase in [Ca(2+)](i) at a rate of 0.60 nM/s and a drastic reduction of electrically elicited Ca(2+) transients without much effect on their decay phase. Half of the maximal effect occurred at [Ca(2+)](i) = 220 nM. This effect was partially reversible after long recuperation and was not diminished by Tiron, a reactive oxygen species (ROS) scavenger. FCCP had no effects on fiber excitability as shown by the generation of action potentials. 4CmC, an agonist of ryanodine receptors, induced a massive Ca(2+) release. FCCP diminished the rate but not the amount of Ca(2+) released, indicating that depletion of Ca(2+) stores did not cause the decrease in Ca(2+) transient amplitude. Ca(2+) transient amplitude could also be diminished, but to a lesser degree, by increases in [Ca(2+)](i) induced by repetitive stimulation of fibers treated with ciclopiazonic acid. This suggests an important role for Ca(2+) in the FCCP effect on transient amplitude.

  13. Nicotine enhances the hypnotic and hypothermic effects of alcohol in the mouse

    PubMed Central

    Slater, Cassandra A.; Jackson, Asti; Muldoon, Pretal P.; Dawson, Anton; O’Brien, Megan; Soll, Lindsey G.; Abdullah, Rehab; Carroll, F. Ivy; Tapper, Andrew R.; Miles, Michael F.; Banks, Matthew L.; Bettinger, Jill C.; Damaj, M. Imad

    2015-01-01

    Background Ethanol and nicotine abuse are two leading causes of preventable mortality in the world, but little is known about the pharmacological mechanisms mediating co-abuse. Few studies have examined the interaction of the acute effects of ethanol and nicotine. Here, we examine the effects of nicotine administration on the duration of ethanol-induced loss of righting reflex (LORR) and characterize the nature of their pharmacological interactions in C57BL/6J mice. Methods We assessed the effects of ethanol and nicotine and the nature of their interaction in the LORR test using isobolographic analysis after acute injection in C57BL/6J male mice. Next, we examined the importance of receptor efficacy using nicotinic partial agonists varenicline and sazetidine. We evaluated the involvement of major nAChR subtypes using nicotinic antagonist mecamylamine and nicotinic α4 and α7 knockout mice. The selectivity of nicotine’s actions on ethanol-induced LORR was examined by testing nicotine’s effects on the hypnotic properties of ketamine and pentobarbital. We also assessed the development of tolerance after repeated nicotine exposure. Lastly, we assessed if the effects of nicotine on ethanol-induced LORR extends to hypothermia and ethanol intake in the Drinking in the Dark (DID) paradigm. Results We found that acute nicotine injection enhances ethanol’s hypnotic effects in a synergistic manner and that receptor efficacy plays an important role in this interaction. Furthermore, tolerance developed to the enhancement of ethanol’s hypnotic effects by nicotine after repeated exposure of the drug. α4* and α7 nAChRs seem to play an important role in nicotine-ethanol interaction in the LORR test. In addition, the magnitude of ethanol-induced LORR enhancement by nicotine was more pronounced in C57BL/6J than DBA/2J mice. Furthermore, acute nicotine enhanced ketamine and pentobarbital hypnotic effects in the mouse. Finally, nicotine enhanced ethanol-induced hypothermia

  14. The Effectiveness of Ferritin as a Contrast Agent for Cell Tracking MRI in Mouse Cancer Models

    PubMed Central

    Lee, Chan Wha; Choi, Sun Il; Lee, Sang Jin; Oh, Young Taek; Park, Gunwoo; Park, Na Yeon; Yoon, Kyoung-Ah; Kim, Sunshin; Suh, Jin-Suck

    2017-01-01

    Purpose We aimed to investigate the effectiveness of ferritin as a contrast agent and a potential reporter gene for tracking tumor cells or macrophages in mouse cancer models. Materials and Methods Adenoviral human ferritin heavy chain (Ad-hFTH) was administrated to orthotopic glioma models and subcutaneous colon cancer mouse models using U87MG and HCT116 cells, respectively. Brain MR images were acquired before and daily for up to 6 days after the intracranial injection of Ad-hFTH. In the HCT116 tumor model, MR examinations were performed before and at 6, 24, and 48 h after intratumoral injection of Ad-hFTH, as well as before and every two days after intravenous injection of ferritin-labeled macrophages. The contrast effect of ferritin in vitro was measured by MR imaging of cell pellets. MRI examinations using a 7T MR scanner comprised a T1-weighted (T1w) spin-echo sequence, T2-weighted (T2w) relaxation enhancement sequence, and T2*-weighted (T2*w) fast low angle shot sequence. Results Cell pellet imaging of Ad-hFTH in vitro showed a strong negatively enhanced contrast in T2w and T2*w images, presenting with darker signal intensity in high concentrations of Fe. T2w images of glioma and subcutaneous HCT116 tumor models showed a dark signal intensity around or within the Ad-hFTH tumor, which was distinct with time and apparent in T2*w images. After injection of ferritin-labeled macrophages, negative contrast enhancement was identified within the tumor. Conclusion Ferritin could be a good candidate as an endogenous MR contrast agent and a potential reporter gene that is capable of maintaining cell labeling stability and cellular safety. PMID:27873495

  15. Effect of an epidermal growth factor receptor inhibitor in mouse models of lung cancer.

    PubMed

    Yan, Ying; Lu, Yan; Wang, Min; Vikis, Haris; Yao, Ruisheng; Wang, Yian; Lubet, Ronald A; You, Ming

    2006-12-01

    Gefitinib (Iressa, ZD1839) is a potent high-affinity competitive tyrosine kinase inhibitor aimed primarily at epidermal growth factor receptor (EGFR). Inhibitors in this class have recently been approved for clinical use in the treatment of advanced non-small cell lung cancer as monotherapy following failure of chemotherapy. We examined the efficacy of gefitinib on lung tumorigenesis in mouse models using both postinitiation and progression protocols. Gefitinib was given at a dose of 200 mg/kg body weight (i.g.) beginning either 2 or 12 weeks following carcinogen initiation. In the postinitiation protocol, gefitinib significantly inhibited both tumor multiplicity (approximately 70%) and tumor load (approximately 90%) in A/J or p53-mutant mice (P < 0.0001). Interestingly, gefitinib was also highly effective against lung carcinogenesis in the progression protocol when individual animals already have multiple preinvasive lesions in the lung. Gefitinib exhibited approximately 60% inhibition of tumor multiplicity and approximately 80% inhibition of tumor load when compared with control mice (both P < 0.0001). These data show that gefitinib is a potent chemopreventive agent in both wild-type and p53-mutant mice and that a delayed administration was still highly effective. Analyses of mutations in the EGFR and K-ras genes in lung tumors from either control or treatment groups showed no mutations in EGFR and consistent mutation in K-ras. Using an oligonucleotide array on control and gefitinib-treated lesions showed that gefitinib treatment failed to alter the activity or the expression level of EGFR. In contrast, gefitinib treatment significantly altered the expression of a series of genes involved in cell cycle, cell proliferation, cell transformation, angiogenesis, DNA synthesis, cell migration, immune responses, and apoptosis. Thus, gefitinib showed highly promising chemopreventive and chemotherapeutic activity in this mouse model of lung carcinogenesis.

  16. Pharmacometabolomic Signature of Ataxia SCA1 Mouse Model and Lithium Effects

    PubMed Central

    Wikoff, William R.; Gatchel, Jennifer R.; Wang, Lu; Barupal, Dinesh K.; Crespo-Barreto, Juan; Fiehn, Oliver

    2013-01-01

    We have shown that lithium treatment improves motor coordination in a spinocerebellar ataxia type 1 (SCA1) disease mouse model (Sca1154Q/+). To learn more about disease pathogenesis and molecular contributions to the neuroprotective effects of lithium, we investigated metabolomic profiles of cerebellar tissue and plasma from SCA1-model treated and untreated mice. Metabolomic analyses of wild-type and Sca1154Q/+ mice, with and without lithium treatment, were performed using gas chromatography time-of-flight mass spectrometry and BinBase mass spectral annotations. We detected 416 metabolites, of which 130 were identified. We observed specific metabolic perturbations in Sca1154Q/+ mice and major effects of lithium on metabolism, centrally and peripherally. Compared to wild-type, Sca1154Q/+ cerebella metabolic profile revealed changes in glucose, lipids, and metabolites of the tricarboxylic acid cycle and purines. Fewer metabolic differences were noted in Sca1154Q/+ mouse plasma versus wild-type. In both genotypes, the major lithium responses in cerebellum involved energy metabolism, purines, unsaturated free fatty acids, and aromatic and sulphur-containing amino acids. The largest metabolic difference with lithium was a 10-fold increase in ascorbate levels in wild-type cerebella (p<0.002), with lower threonate levels, a major ascorbate catabolite. In contrast, Sca1154Q/+ mice that received lithium showed no elevated cerebellar ascorbate levels. Our data emphasize that lithium regulates a variety of metabolic pathways, including purine, oxidative stress and energy production pathways. The purine metabolite level, reduced in the Sca1154Q/+ mice and restored upon lithium treatment, might relate to lithium neuroprotective properties. PMID:23936457

  17. Protective effect of dieckol against chemical hypoxia-induced cytotoxicity in primary cultured mouse hepatocytes.

    PubMed

    Jeon, Yu Jin; Kim, Hyoung Seok; Song, Kyung-Sik; Han, Ho Jae; Park, Soo Hyun; Chang, Woochul; Lee, Min Young

    2015-04-01

    Hepatic ischemic injury is a major complication arising from liver surgery, transplantation, or other ischemic diseases, and both reactive oxygen species (ROS) and pro-inflammatory mediators play the role of key mediators in hepatic ischemic injury. In this study, we examined the effect of dieckol in chemical hypoxia-induced injury in mouse hepatocytes. Cell viability was significantly decreased after treatment with cobalt chloride (CoCl2), a well-known hypoxia mimetic agent in a time- and dose-dependent manner. Pretreatment with dieckol before exposure to CoCl2 significantly attenuated the CoCl2-induced decrease of cell viability. Additionally, pretreatment with dieckol potentiated the CoCl2-induced decrease of Bcl-2 expression and attenuated the CoCl2-induced increase in the expression of Bax and caspase-3. Treatment with CoCl2 resulted in an increased intracellular ROS generation, which is inhibited by dieckol or N-acetyl cysteine (NAC, a ROS scavenger), and p38 MAPK phosphorylation, which is also blocked by dieckol or NAC. In addition, dieckol and SB203580 (p38 MAPK inhibitor) increased the CoCl2-induced decrease of Bcl-2 expression and decreased the CoCl2-induced increase of Bax and caspase-3 expressions. CoCl2-induced decrease of cell viability was attenuated by pretreatment with dieckol, NAC, and SB203580. Furthermore, dieckol attenuated CoCl2-induced COX-2 expression. Similar to the effect of dieckol, NAC also blocked CoCl2-induced COX-2 expression. Additionally, CoCl2-induced decrease of cell viability was attenuated not only by dieckol and NAC but also by NS-398 (a selective COX-2 inhibitor). In conclusion, dieckol protects primary cultured mouse hepatocytes against CoCl2-induced cell injury through inhibition of ROS-activated p38 MAPK and COX-2 pathway.

  18. Differential effects of the neuroprotectant lubeluzole on bovine and mouse chromaffin cell calcium channel subtypes

    PubMed Central

    Hernández-Guijo, Jesús M; Gandía, Luis; de Pascual, Ricardo; García, Antonio G

    1997-01-01

    The effects of lubeluzole (a neuroprotective benzothiazole derivative) and its (−) enantiomer R91154 on whole-cell currents through Ca2+ channels, with 10 mM Ba2+ as charge carrier (IBa), have been studied in bovine and mouse voltage-clamped adrenal chromaffin cells. Currents generated by applying 50 ms depolarizing test pulses to 0 mV, from a holding potential of −80 mV, at 10 s intervals had an average magnitude of 1 nA. Lubeluzole and R91154 blocked the peak IBa of bovine chromaffin cells in a time and concentration-dependent manner; their IC50s were 1.94 μM for lubeluzole and 2.54 μM for R91154. In a current-voltage protocol, lubeluzole (3 μM) inhibited peak IBa at all test potentials. However, no obvious shifts of the I-V curve were detected. After 10 min exposure to 3 μM lubeluzole, the late current (measured at the end of the pulse) was inhibited more than the peak current. Upon wash out of the drug, the inactivation reversed first and then the peak current recovered. Blockade of peak current was greater at more depolarizing holding potentials (i.e. 35% at −110 mV and 87% at −50 mV, after 10 min superfusion with lubeluzole). Inactivation of the current was pronounced at −110 mV, decreased at −80 mV and did not occur at −50 mV. Intracellular dialysis of bovine voltage-clamped chromaffin cells with 3 μM lubeluzole caused neither blockade nor inactivation of IBa. The external application of 3 μM lubeluzole to those dialysed cells produced inhibition as well as inactivation of IBa. The effects of lubeluzole (3 μM) on IBa in mouse chromaffin cells were similar to those in bovine chromaffin cells. At −80 mV holding potential, a pronounced inactivation of the current led to greater blockade of the late IBa (66%) as compared with peak IBa (46% after 10 min superfusion with lubeluzole). In mouse chromaffin cells approximately half of the whole-cell IBa was sensitive to 3 μM nifedipine (L-type Ca2

  19. Effects of the analgesic acetaminophen (Paracetamol) and its para-aminophenol metabolite on viability of mouse-cultured cortical neurons.

    PubMed

    Schultz, Stephen; DeSilva, Mauris; Gu, Ting Ting; Qiang, Mei; Whang, Kyumin

    2012-02-01

    Acetaminophen has been used as an analgesic for more than a hundred years, but its mechanism of action has remained elusive. Recently, it has been shown that acetaminophen produces analgesia by the activation of the brain endocannabinoid receptor CB1 through its para-aminophenol (p-aminophenol) metabolite. The objective of this study was to determine whether p-aminophenol could be toxic for in vitro developing mouse cortical neurons as a first step in establishing a link between acetaminophen use and neuronal apoptosis. We exposed developing mouse cortical neurons to various concentrations of drugs for 24 hr in vitro. Acetaminophen itself was not toxic to developing mouse cortical neurons at therapeutic concentrations of 10-250 μg/ml. However, concentrations of p-aminophenol from 1 to 100 μg/ml produced significant (p < 0.05) loss of mouse cortical neuron viability at 24 hr compared to the controls. The naturally occurring endocannabinoid anandamide also caused similar 24-hr loss of cell viability in developing mouse cortical neurons at concentrations from 1 to 100 μg/ml, which indicates the mechanism of cell death could be through the cannabinoid receptors. The results of our experiments have shown a detrimental effect of the acetaminophen metabolite p-aminophenol on in vitro developing cortical neuron viability which could act through CB1 receptors of the endocannabinoid system. These results could be especially important in recommending an analgesic for children or individuals with traumatic brain injury who have developing cortical neurons.

  20. Effect of amantadine on motility of reserpinized mice as a function of brain biogenic amines and mouse strains.

    PubMed

    Messiha, F S

    1989-01-01

    The effect of amantadine, reserpine or both on locomotor activity and whole brain content of selected biogenic amines and major metabolites was studied as a function of mouse strain. Successive administration of small dose regimens of reserpine, 0.2 mg/kg IP, did not alter motility from corresponding saline control. Administration of amantadine, 100 mg/kg, IP, prior to each of the reserpine treatments produced either stimulation of motor activity in the albino ICR and black C57BL/6 mice or caused inhibition from reserpine in the albino BALB/C and the brown CDF-1 mouse strains. This suggests a genotype strain sensitivity to the amantadine and reserpine interaction on the motor behavior of the mouse. The amantadine treatment did not alter brain dopamine concentration but increased its immediate acid metabolite, 3,4-dihydroxyphenylacetic acid, in the C57BL/6 mice as contrasted with reduction of the same in the BALB/C mouse strain. Both BALB/C and C57BL/6 mice showed changes in brain normetanephrine levels as a consequence of the pharmacologic intervention used which suggest catecholaminergic sensitivity. The only changes produced by the agents studied in brain serotonin or 5-hydroxyindoleacetic acid levels were confined to the BALB/C mouse strain. No changes occurred in brain levels of the compounds measured from corresponding controls in the CDF-1 mice. The results indicate differential sensitivity of the serotonergic and dopaminergic systems to drug-drug interaction studied which appears to be strain dependent.

  1. Effects of model inducers on thyroxine UDP-glucuronosyl-transferase activity in vitro in rat and mouse hepatocyte cultures.

    PubMed

    Viollon-Abadie, C; Bigot-Lasserre, D; Nicod, L; Carmichael, N; Richert, L

    2000-12-01

    Thyroxine (T(4))-UDP-glucuronosyltransferase (UGT) activity was measured directly in cultured male Sprague-Dawley rat and OF-1 mouse hepatocyte monolayers. The activity of T(4)-UGT (pmol/min/g liver) in vitro in hepatocyte cultures was, after 24 hr in culture, equivalent to that previously measured in vivo in rat and mouse liver microsomes (Viollon-Abadie et al., 1999). A progressive decline in T(4)-UGT activity occurred over time in both rat and mouse hepatocyte cultures. Treatment of cultures with various model inducers such as phenobarbital (PB), beta-naphthoflavone (NF) and clofibric acid (CLO) induced a strong increase in T(4)-UGT activity in rat hepatocyte monolayers. In addition, and as expected from available in vivo data, treatment of rat hepatocyte cultures with NF also increased p-nitrophenol (PNP)-UGT activity and treatment with PB or CLO increased bilirubin (Bili)-UGT activity. In contrast, T(4)-UGT activity in mouse hepatocyte monolayers was not affected by the treatments, neither were PNP- and Bili- UGT activities. These in vitro data confirm our previous in vivo observations that these inducers increase rat but not mouse liver T(4)-UGT activities (Viollon-Abadie et al., 1999). The present study thus demonstrates that hepatocyte monolayers are appropriated for the evaluation and inter-species comparison of the effects of xenobiotics on T(4)-UGT activities.

  2. Selective inhibitory effects of 50-nm gold nanoparticles on mouse macrophage and spleen cells.

    PubMed

    Kingston, Micah; Pfau, Jean C; Gilmer, John; Brey, Richard

    2016-01-01

    Nanoparticles (NP) are significant to multiple industrial processes, consumer products and medical applications today. The health effects of many different types of NP, however, are largely unknown. The purpose of this study was to test the effects of 50-nm gold NP coated with poly-N-vinylpyrrolidone (PVP) on mouse macrophage and spleen cells with and without lipopolysaccharide (LPS), testing the hypothesis that the NP would modulate immune responses without being overtly toxic. Gold NP had no effect on macrophage viability and, in the absence of LPS, they had no effect on tumor necrosis factor (TNF)-α production as measured by ELISA. The presence of LPS significantly increased the release of TNFα from the macrophages above no-treatment controls, but increasing gold NP concentration led to decreasing release of TNFα. The reactive oxygen species (ROS) produced by exposed macrophages were also reduced compared to untreated controls, both with and without LPS, suggesting some kind of oxygen radical scavenging. In splenocyte cultures, gold NP had no effect alone, but significantly reduced the release of interleukin (IL)-17 and TNFα triggered by LPS. These results suggest that the gold NP used here are not cytotoxic to immune cells at these concentrations, but may affect cellular responses to infection or inflammation by altering the balance of cytokines.

  3. Mouse tracking traces the "Camrbidge Unievrsity" effects in monolingual and bilingual minds.

    PubMed

    Lin, Yu-Cheng; Lin, Pei-Ying

    2016-06-01

    Previous monolingual studies have consistently suggested that there was flexibility of letter position encoding in different alphabetic writing systems. This robust letter transposition was named the "Cambridge University" effect. However, to date whether the orthographic neighborhood and cross-language script similarity would modulate the magnitude of the Cambridge University effect during the second-language word recognition in bilingual minds was unknown. We address this question using a mouse-tracking experimental paradigm to trace the internal lexical matching processes underlying the lexical access. Our linear mixed effects models and growth curve analyses revealed that a low orthographic neighborhood can trigger a large magnitude of the Cambridge University effect for monolinguals and bilinguals on their hand trajectories. We also found that different-script bilinguals (Chinese-English bilinguals) exhibited a greater Cambridge University effect than similar-script bilinguals (Spanish-English bilinguals) and English monolinguals. The findings offer compelling evidence that a human lexical match criterion of recognition system can be modified by neighborhood density and cross-language script similarity of readers.

  4. [Effects of ethanol extracts of herbal medicines on dermatitis in an atopic dermatitis mouse model].

    PubMed

    Takano, Norikazu; Inokuchi, Yuki; Kurachi, Michio

    2011-04-01

    Atopic dermatitis is a chronic and relapsing inflammatory skin disease that is characterized by highly pruritic, eczematous skin lesions. Our previous study elucidated that nerve growth factor (NGF) plays an important role in the pathogenesis of skin lesions and inhibition of the physiological effects of NGF can moderate skin lesions in atopic dermatitis. In this study, we investigated the effects of ethanol extracts of herbal medicines on neuritic outgrowth induced by NGF. Four herbal extracts (Geranium thunbergii, Humulus lupulus, Rosmarinus officinalis and Salvia officinalis L.) inhibited NGF-induced neuritic outgrowth in PC12 cells. We also investigated the effects of each herbal extract on dermatitis in NC/Nga, an atopic dermatitis mouse model. The skin lesions of the NC/Nga mice were significantly inhibited by repeated applications of each herbal extract. These results suggested that the four herbal extracts can prevent and moderate the symptoms of atopic dermatitis, and these effects might be appeared by inhibiting the effect of NGF on neuritic outgrowth in lesional skin.

  5. Effects of 50 Hz magnetic fields on mouse spermatogenesis monitored by flow cytometric analysis

    SciTech Connect

    Vita, R. de; Cavallo, D.; Raganella, L.; Eleuteri, P.; Grollino, M.G.; Calugi, A.

    1995-12-01

    Flow cytometry (FCM) was performed to monitor the cellular effects of extremely-low-frequency magnetic field on mouse spermatogenesis. Groups of five male hybrid F1 mice aged 8--10 weeks were exposed to 50 Hz magnetic field. The strength of the magnetic field was 1.7 mT. Exposure times of 2 and 4 h were chosen. FCM measurements were performed 7, 14, 21, 28, 35, and 42 days after treatment. For each experimental point, a sham-treated group was used as a control. The possible effects were studied by analyzing the DNA content distribution of the different cell types involved in spermatogenesis and using the elongated spermatids as the reference population. The relative frequencies of the various testicular cell types were calculated using specific software. In groups exposed for 2 h, no effects were observed. In groups exposed for 4 h, a statistically significant (P < 0.001) decrease in elongated spermatids was observed at 28 days after treatment. This change suggests a possible cytotoxic and/or cytostatic effect on differentiating spermatogonia. However, further studies are being carried out to investigate the effects of longer exposure times.

  6. Anti-arrhythmic effects of hypercalcemia in hyperkalemic, Langendorff-perfused mouse hearts

    PubMed Central

    Tse, Gary; Sun, Bing; Wong, Sheung Ting; Tse, Vivian; Yeo, Jie Ming

    2016-01-01

    The present study examined the ventricular arrhythmic and electrophysiological properties during hyperkalemia (6.3 mM [K+] vs. 4 mM in normokalemia) and anti-arrhythmic effects of hypercalcemia (2.2 mM [Ca2+]) in Langendorff-perfused mouse hearts. Monophasic action potential recordings were obtained from the left ventricle during right ventricular pacing. Hyperkalemia increased the proportion of hearts showing provoked ventricular tachycardia (VT) from 0 to 6 of 7 hearts during programmed electrical stimulation (Fisher's exact test, P<0.05). It shortened the epicardial action potential durations (APDx) at 90, 70, 50 and 30% repolarization and ventricular effective refractory periods (VERPs) (analysis of variance, P<0.05) without altering activation latencies. Endocardial APDx and VERPs were unaltered. Consequently, ∆APDx (endocardial APDx-epicardial APDx) was increased, VERP/latency ratio was decreased and critical intervals for reexcitation (APD90-VERP) were unchanged. Hypercalcemia treatment exerted anti-arrhythmic effects during hyperkalemia, reducing the proportion of hearts showing VT to 1 of 7 hearts. It increased epicardial VERPs without further altering the remaining parameters, returning VERP/latency ratio to normokalemic values and also decreased the critical intervals. In conclusion, hyperkalemia exerted pro-arrhythmic effects by shortening APDs and VERPs. Hypercalcemia exerted anti-arrhythmic effects by reversing VERP changes, which scaled the VERP/latency ratio and critical intervals. PMID:27588173

  7. Effect of human milk as a treatment for dry eye syndrome in a mouse model

    PubMed Central

    Diego, Jose L.; Bidikov, Luke; Pedler, Michelle G.; Kennedy, Jeffrey B.; Quiroz-Mercado, Hugo; Gregory, Darren G.; Petrash, J. Mark

    2016-01-01

    -reduced milk but continued to increase in eyes treated with nopal-derived materials. Conclusions Whole and fat-reduced human milk showed promising effects in the prevention of BAK-induced loss of corneal epithelial thickness and epithelial damage in this mouse model. Further studies are required to determine whether human milk may be safely used to treat dry eye in patients. PMID:27667918

  8. Nutritive evaluation and effect of Moringa oleifera pod on clastogenic potential in the mouse.

    PubMed

    Promkum, Chadamas; Kupradinun, Piengchai; Tuntipopipat, Siriporn; Butryee, Chaniphun

    2010-01-01

    Moringa oleifera Lam (horseradish tree; tender pod or fruits) has been consumed as a vegetable and utilized as a major ingredient of healthy Thai cuisine. Previous studies have shown that M. oleifera pod extracts act as bifunctional inducers along with displaying antioxidant properties and also inhibiting skin papillomagenesis in mice. This study was aimed to determine the nutritive value, and clastogenic and anticlastogenic potentials of M. oleifera pod. The nutritive value was determined according to AOAC methods. The clastogenic and anticlastogenic potentials were determined using the in vivo erythrocyte micronucleus assay in the mouse. Eighty male mice were fed semi-purified diets containing 1.5%, 3.0% and 6.0% of ground freeze-dried boiled M. oleifera pod (bMO) for 2 weeks prior to administration of both direct-acting (mitomycin C, MMC) and indirect-acting (7, 12-dimethylbenz(a)anthracene, DMBA), clastogens. Blood samples were collected at 0, 24, 48 and 72 h, dropped on acridine orange-coated slides, and then counted for reticulocytes both with and without micronuclei by fluorescence microscopy. The nutritive value of 100 g bMO consisted of: moisture content, 8.2 g; protein, 19.2 g; fat, 3.9 g; carbohydrate (dietary fiber included), 60.5 g; dietary fiber, 37.5 g; ash, 8.1 g and energy, 354 kcal. Freeze-dried boiled M. oleifera had no clastogenic activity in the mouse while it possessed anticlastogenic activity against both direct and indirect-acting clastogens. Freeze-dried boiled M. oleifera pod at 1.5%, 3.0% and 6.0% in the diets decreased the number of micronucleated peripheral reticulocytes (MNRETs) induced by both MMC and DMBA. However, the effect was statistically significant in the dose dependent manner only in the MMC-treated group. In conclusion, the present study demonstrated that bMO has no clastogenicity and possesses anticlastogenic potential against clastogens, and particularly a direct-acting clastogen in the mouse.

  9. Effect of urethane, dimethylnitrosamine, paraquat, and butylated hydroxytoluene on the activities of glycolytic key enzymes in mouse lung

    SciTech Connect

    Arany, I.; Rady, P.; Bojan, I.; Kertai, P.

    1981-12-01

    Effects of carcinogens and noncarcinogenic pulmonary toxicants on the activities of glycolytic key enzymes in the mouse lung were investigated. The carcinogens urethane (URTH) and dimethylnitrosamine (DMN) permanently enhanced, and the noncarcinogenic pulmonary toxicants paraquat (PAR) and butylated hydroxytoluene (BHT) temporarily, enhanced the activities of hexokinase (HK), phosphofructokinase (PFK), and pyruvate kinase (PK) in the lungs of mice.

  10. Effect of glucagon on digestive enzyme synthesis, transport and secretion in mouse pancreatic acinar cells.

    PubMed Central

    Singh, M

    1980-01-01

    1. Effect of glucagon on amylase secretion and lactic dehydrogenase (LDH) release from functionally intact dissociated pancreatic acinar cells and acini was studied. 2. In dissociated rat pancreatic acinar cells, the rate of amylase secretion was increased by 70% with bethanechol (maximally effective concentration, 10(-4) M) and 125% with A23187 (10(-5) M), but the response to cholecystokinin-pancreozymin (CCK-PZ) was inconsistent. In dissociated cells from mouse pancreas, the increases amounted to 78% with bethanechol (10(-4) M), 134% with A23187 (10(-5) M) and 82% with CCK-PZ (maximally effective concentration, 0 . 01 u. ml.-1). Glucagon in concentrations ranging from 10(-7) to 10(-4) M increased amylase secretion by 3, 26, 67 and 80%, whereas secretin (10(-8)--10(-5) M) increased amylase secretion by 8, 39, 88 and 138%. LDH release was increased with A23187 in concentrations greater than 10(-6) M. 3. CCK-PZ, bethanechol and A23187 used in maximal concentrations potentiated the effect of a submaximal dose of glucagon whereas secretin did not have an additive or a potentiating effect. 4. Pancreatic acini were approximately 3 times more responsive to secretagogues than cells. The dose--response curves to bethanechol, glucagon and CCK-PZ for increase in amylase secretion were similar. LDH release was not increased by these agents. Cytochalasin B (5 microgram ml.-1) which is known to disrupt the integrity of luminal membrane inhibited the amylase secretion stimulated by glucagon, bethanechol and CCK-PZ. 5. Glucagon inhibited incorporation of a mixture of fifteen 14C-labelled amino acids (algal profile, Schwarz Mann) into perchloric acid precipitable proteins in dissociated mouse pancreatic acini within 30 min. 6. In 'pulse-chase' experiments, glucagon decreased the specific activity of zymogen granules isolated by differential centrifugation, from pancreatic lobules (120 min) and increased the specific activity of radiolabelled proteins in the medium (60 and 120 min

  11. Effect of light on the development of the circadian rhythm of motor activity in the mouse.

    PubMed

    Canal-Corretger, M M; Vilaplana, J; Cambras, T; Díez-Noguera, A

    2001-07-01

    In previous experiments, we found that rats raised in constant light (LL) manifested a more robust circadian rhythm of motor activity in LL and showed longer phase shifts after a light pulse in constant darkness (DD) than chose raised under constant darkness. In addition, we observed that the effects produced by constant light differed depending on the time of postnatal development in which it was given. These results suggest that both sensitivity to light and the functioning of the circadian pacemaker of the rat could be affected by the environmental conditions experienced during postembryonic development. Thus, the present experiment aimed to study whether postnatal exposure to light could also affect the circadian system of the mouse. Three groups of mice were formed: One group was raised under constant darkness during lactation (DD group), the second under constant light (LL group), and the third under light-dark cycles (LD group). After lactation, the three groups were submitted first to constant light of high intensity, then to LD cycles, and finally to constant darkness. In the DD stage, a light pulse was given. Finally, mice were submitted to constant light of low intensity. We observed that the circadian rhythm of the DD group was more disturbed under constant light than the rhythm of the LL group, and that, when light intensity increased, the period of the rhythm of the DD group lengthened more than that of the LL group. No significant differences among the groups were found in the phase shift induced by the light pulse. Therefore, it appears that DD mice are more sensitive to light than their LL counterparts. However, at present there is no evidence to affirm that the light environment experienced by the mouse during postnatal development affects the circadian pacemaker.

  12. Genotoxic effects of 1 GeV/amu Fe ions in mouse kidney epithelial cells

    NASA Astrophysics Data System (ADS)

    Kronenberg, A.; Gauny, S. S.; Connolly, L.; Turker, M.

    Human exploration of space places individuals in environments where they are exposed to charged particle radiation. The goal of our studies is to assess the genotoxic and mutagenic effects of high energy Fe ions (1 GeV/amu) in kidney epithelial cells of the mouse irradiated either in vitro or in vivo. The initial study focused on establishing the toxicity of these heavy ions (LET=159 keV/micron) in two Aprt heterozygous kidney epithelial cell lines: K06 cells derived from a C57BL6/129Sv animal, and clone 4a cells derived from a C57BL6/DBA2 animal. Cells were exposed in vitro to graded doses of Fe ions (0-300 cGy) and the toxicity of the treatment was established using colony forming assays. Experiments were performed in triplicate at the NASA Space Radiation Laboratory at Brookhaven National Laboratory. The results indicate that Fe ions are toxic to mouse kidney epithelial cells and that no shoulder is observed on the survival curve for cells from either genetic background. The clone 4a cells were more sensitive to Fe ion exposures than the K06 cells. The D(37) for clone 4a cells was 92 cGy and the D(10) was 212 cGy. The more resistant K06 cells had a D(37) of 192 cGy and an estimated D(10) of 388 cGy. Parallel experiments are underway to establish the RBE's for cell killing for these two cell lines. Supported by NASA grant T-403X to A. Kronenberg

  13. Amino acid-permeable anion channels in early mouse embryos and their possible effects on cleavage.

    PubMed

    Sonoda, Momoyo; Okamoto, Fujio; Kajiya, Hiroshi; Inoue, Yoshihito; Honjo, Ko; Sumii, Yoshinari; Kawarabayashi, Tatsuhiko; Okabe, Koji

    2003-03-01

    Effects of several Cl(-) channel blockers on ionic currents in mouse embryos were studied using whole-cell patch-clamp and microelectrode methods. Microelectrode measurements showed that the resting membrane potential of early embryonic cells (1-cell stage) was -23 mV and that reduction of extracellular Cl(-) concentration depolarized the membrane, suggesting that Cl(-) conductance is a major contributor for establishing the resting membrane potential. Membrane currents recorded by whole-cell voltage clamp showed outward rectification and confirmed that a major component of these embryonic currents are carried by Cl(-) ions. A Cl(-) channel blocker, 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), suppressed the outward rectifier current in a voltage- and concentration-dependent manner. Other Cl(-) channel blockers (5-nitro-2-[3-phenylpropyl-amino] benzoic acid and 2-[3-(trifluoromethyl)-anilino] nicotinic acid [niflumic acid]) similarly inhibited this current. Simultaneous application of niflumic acid with DIDS further suppressed the outward rectifier current. Under high osmotic condition, niflumic acid, but not DIDS, inhibited the Cl(-)current, suggesting the presence of two types of Cl(-) channels: a DIDS-sensitive (swelling-activated) channel, and a DIDS-insensitive (niflumic acid-sensitive) Cl(-) channel. Anion permeability of the DIDS-insensitive Cl(-) current differed from that of the compound Cl(-) current: Rank order of anion permeability of the DIDS-sensitive Cl(-) channels was I(-) = Br(-) > Cl(-) > gluconate(-), whereas that of the DIDS-insensitive Cl(-) channel was I(-) = Br(-) > Cl(-) > gluconate(-). These results indicate that early mouse embryos have a Cl(-) channel that is highly permeable to amino acids, which may regulate intracellular amino acid concentration.

  14. Neuroprotective Effects of Voluntary Exercise in an Inherited Retinal Degeneration Mouse Model

    PubMed Central

    Hanif, Adam M.; Lawson, Eric C.; Prunty, Megan; Gogniat, Marissa; Aung, Moe H.; Chakraborty, Ranjay; Boatright, Jeffrey H.; Pardue, Machelle T.

    2015-01-01

    Purpose Our previous investigations showed that involuntary treadmill exercise is neuroprotective in a light-induced retinal degeneration mouse model, and it may act through activation of tropomyosin-related kinase B (TrkB) receptors. This study investigated whether voluntary running wheel exercise can be neuroprotective in an inheritable model of the retinal degenerative disease retinitis pigmentosa (RP), rd10 mice. Methods Breeding pairs of rd10 and C57BL/6J mice were given free-spinning (active) or locked (inactive) running wheels. Pups were weaned into separate cages with their parents' respective wheel types, and visual function was tested with ERG and a virtual optokinetic system at 4, 5, and 6 weeks of age. Offspring were killed at 6 weeks of age and retinal cross-sections were prepared for photoreceptor nuclei counting. Additionally, separate cohorts of active and inactive rd10 pups were injected daily for 14 days after eye opening with a selective TrkB receptor antagonist (ANA-12) or vehicle solution and assessed as described above. Results Mice in the rd10 active group exhibited significant preservation of visual acuity, cone nuclei, and total photoreceptor nuclei number. Injection with ANA-12 precluded the preservation of visual acuity and photoreceptor nuclei number in rd10 mice. Conclusions Voluntary running partially protected against the retinal degeneration and vision loss that otherwise occurs in the rd10 mouse model of RP. This protection was prevented by injection of ANA-12, suggesting that TrkB activation mediates exercise's preservation of the retina. Exercise may serve as an effective, clinically translational intervention against retinal degeneration. PMID:26567796

  15. Manifestations of diabetes mellitus on mouse preimplantation development: effect of elevated concentration of metabolic intermediates.

    PubMed

    Moley, K H; Vaughn, W K; Diamond, M P

    1994-01-01

    The metabolic derangements of pregnancies complicated by diabetes mellitus, specifically hyperglycaemia and hyperketonaemia, are known to be teratogenic during the period of organogenesis in animals. We have shown previously that poorly controlled diabetes mellitus impairs in-vivo and in-vitro mouse preimplantation embryo growth, and that culturing embryos in elevated glucose concentrations only partially recreates this developmental delay. To extend this observation we examined the effect on mouse preimplantation embryo growth of elevated concentrations of other metabolic intermediates, which may be deranged in diabetes mellitus, namely lipids, lactate, glycerol, amino acids, and ketones. Two-cell embryos from ovulation-induced B6C3F1 mice were cultured for 72 h in the presence of added lipids (250 mg/dl), lactate (5 mM), glycerol (160 microM) or mixed amino acids (8.5% travasol, 7 mM) and showed no significant difference in growth over 72 h versus their control groups. However, growth of preimplantation embryos in acetoacetate (10 mM) or in the racemic mixture of DL-beta-hydroxybutyrate (16 and 32 mM) revealed marked retardation versus controls when assessed either by distribution of developmental stages over time (24, 48, 72 h, P < 0.001) or by the difference in the average rank of sums indicating a delay in maturation (P < 0.0001). We conclude that elevated ketone concentrations adversely affect preimplantation embryo development. These findings extend previous studies which correlate uncontrolled diabetes mellitus as well as hyperglycaemia with abnormal organogenesis, and demonstrate that exposure to metabolic derangements may also hinder reproductive performance at even earlier stages in gestation.

  16. LW-AFC Effects on N-glycan Profile in Senescence-Accelerated Mouse Prone 8 Strain, a Mouse Model of Alzheimer’s Disease

    PubMed Central

    Wang, Jianhui; Cheng, Xiaorui; Zeng, Ju; Yuan, Jiangbei; Wang, Zhongfu; Zhou, Wenxia; Zhang, Yongxiang

    2017-01-01

    Glycosylation is one of the most common eukaryotic post-translational modifications, and aberrant glycosylation has been linked to many diseases. However, glycosylation and glycome analysis is a significantly challenging task. Although several lines of evidence have indicated that protein glycosylation is defective in Alzheimer’s disease (AD), only a few studies have focused on AD glycomics. The etiology of AD is unclear and there are no effective disease-modifying treatments for AD. In this study, we found that the object recognition memory, passive avoidance, and spatial learning and memory of senescence-accelerated mouse prone 8 (SAMP8) strain, an AD animal model, were deficient, and LW-AFC, which was prepared from the traditional Chinese medicine prescription Liuwei Dihuang decoction, showed beneficial effects on the deterioration of cognitive capability in SAMP8 mice. Forty-three and 56 N-glycan were identified in the cerebral cortex and serum of SAMP8 mice, respectively. The N-glycan profile in SAMP8 mice was significantly different from that of senescence accelerated mouse resistant 1 (SAMR1) strains, the control of SAMP8 mice. Treatment with LW-AFC modulated the abundance of 21 and 6 N-glycan in the cerebral cortex and serum of SAMP8 mice, respectively. The abundance of (Hex)3(HexNAc)5(Fuc)1(Neu5Ac)1 and (Hex)2(HexNAc)4 decreased in the cerebral cortex and serum of SAMP8 mice compared with SAMR1 mice, decreases that were significantly correlated with learning and memory measures. The administration of LW-AFC could reverse or increase these levels in SAMP8 mice. These results indicated that the effects of LW-AFC on cognitive impairments in SAMP8 mice might be through modulation of N-glycan patterns, and LW-AFC may be a potential anti-AD agent. PMID:28203484

  17. Anxiolytic-like effects of alverine citrate in experimental mouse models of anxiety.

    PubMed

    Gupta, Deepali; Radhakrishnan, Mahesh; Kurhe, Yeshwant

    2014-11-05

    Anxiety disorders are widely spread psychiatric illnesses that are a cause of major concern. Despite a consistent increase in anxiolytics, the prevalence of anxiety is static; this necessitates the development of new compounds with potential activity and minimum unwanted effects. A serotonergic (5HT) system plays an important role in pathogenesis of anxiety and predominantly involves 5HT1A receptor action in mediating anxiety-like behavior; the antagonism of 5HT1A receptor has demonstrated to produce anxiolytic-like effects. Alverine citrate (AVC) is reported as a 5HT1A antagonist; however, its effects on anxiety-like behavior are not investigated. Thus, the present study, by utilizing a neurobehavioral approach, examined the anxiolytic-like effects of AVC in experimental mouse models of anxiety. Mice were acutely treated with AVC (5-20mg/kg, i.p.)/diazepam (DIA, 2mg/kg, i.p.) and subjected to four validated anxiety models viz. elevated plus-maze (EPM), light/dark (L/D), hole-board (HB) and marble burying (MB) tests. AVC (15-20mg/kg) and DIA significantly increased open arm activity in EPM, exploration in light chamber in L/D test, exploratory behavior in HB and reduced MB behavior in marble burying test. AVC (5mg/kg) had no effect on all behavioral tests, while AVC (10mg/kg) produced partial effects. It revealed anxiolytic-like effects of AVC. Furthermore, anxiolytic-like effects of AVC at higher doses (15-20mg/kg) were more pronounced than lower doses (10mg/kg) and were quite similar to the standard drug DIA. The present finding demonstrates, for the first time, the anxiolytic-like effects of AVC, which may be an alternative approach for management of anxiety-related disorders.

  18. Effect of mitomycin C on the neural tube defects of the curly-tail mouse.

    PubMed

    Seller, M J; Perkins, K J

    1986-06-01

    Around 60% of the mouse mutants called curly-tail, have tail aberrations in the form of a coil or a kink, with or without lumbosacral spina bifida, and rarely, exencephaly. These neural tube defects (NTD) are the result of an incompletely penetrant recessive gene. A single injection of various doses (1-6 mg/kg) of the DNA inhibitor mitomycin C was given to pregnant curly-tail mice on day 7, 8, or 9 of gestation, and its effect on the NTD of the embryos was noted. No dose used was lethal to the embryo. When given on day 7 or day 8, mitomycin C markedly increased the number of exencephalics, and additionally, on day 8, it reduced the number of posterior abnormalities. However, on day 9, no exencephaly was produced, and there was a drastic reduction in the number of tail and spinal defects, the overall incidence of NTD being as low as 15% with 2 mg/kg. A twofold effect of mitomycin C on the curly-tail embryos was thus observed--according to the time in development it was administered, firstly, a teratogenic effect, and later, a "remedial" or preventive effect.

  19. Effects of drugs affecting the noradrenergic system on convulsions in the quaking mouse.

    PubMed

    Chermat, R; Doaré, L; Lachapelle, F; Simon, P

    1981-12-01

    Handling-induced convulsions in the quaking mouse can be blocked by: phenobarbital, pentobarbital or phenytoin; postsynaptic alpha-adrenoceptor agonists (noradrenaline, phenylephrine, CRL 40028); presynaptic alpha-adrenoceptor blockers (yohimbine, mianserine); catecholamine liberating agent (amphetamine); noradrenaline reuptake inhibitors (cocaine, imipramine, desipramine). Moreover, the protective effect of yohimbine was antagonized by clonidine, prazosin or alpha-methylparatyrosine, and the protective effect of CRL 40028 was antagonized by prazosin but not by alpha-methyltyrosine. Drugs acting by other mechanisms (pilocarpine, atropine, trihexyphenidyl, (--)-5-HTP, methysergide, pimozide, clonidine, alpha-methyl DOPA, prazosin, isoprenaline, salbutamol) did not protect against convulsions. A slight protection was obtained with high doses of apomorphine and also with (+/-)-propranolol. This effect is probably not related to blockade of beta-adrenoceptors because the same effect was obtained with (+)propranolol. In young quaking mice, where susceptibility to convulsions is low, both postsynaptic alpha-adrenoceptor blockers and presynaptic alpha-adrenoceptor antagonist lowered the convulsive threshold. Thus, this seems to constitute an interesting model for the in vivo study of substances which affect the central alpha-adrenoceptors either pre- or postsynaptically.

  20. A Novel Drug-Mouse Phenotypic Similarity Method Detects Molecular Determinants of Drug Effects

    PubMed Central

    Prinz, Jeanette; Vogt, Ingo; Adornetto, Gianluca; Campillos, Mónica

    2016-01-01

    The molecular mechanisms that translate drug treatment into beneficial and unwanted effects are largely unknown. We present here a novel approach to detect gene-drug and gene-side effect associations based on the phenotypic similarity of drugs and single gene perturbations in mice that account for the polypharmacological property of drugs. We scored the phenotypic similarity of human side effect profiles of 1,667 small molecules and biologicals to profiles of phenotypic traits of 5,384 mouse genes. The benchmarking with known relationships revealed a strong enrichment of physical and indirect drug-target connections, causative drug target-side effect links as well as gene-drug links involved in pharmacogenetic associations among phenotypically similar gene-drug pairs. The validation by in vitro assays and the experimental verification of an unknown connection between oxandrolone and prokineticin receptor 2 reinforces the ability of this method to provide new molecular insights underlying drug treatment. Thus, this approach may aid in the proposal of novel and personalized treatments. PMID:27673331

  1. Effects of suspension-induced osteopenia on the mechanical behaviour of mouse long bones

    NASA Technical Reports Server (NTRS)

    Simske, S. J.; Greenberg, A. R.; Luttges, M. W.; Spooner, B. S. (Principal Investigator)

    1991-01-01

    Whereas most studies of tail-suspension induced osteopenia have utilized rat femora, the present study investigated the effects of a 14 day tail-suspension on the mechanical behaviour of mice femora, tibiae and humeri. Force-deflection properties were obtained via three-point bending for long bones from suspended and control mice. Whole bone behaviour was characterized by converting the force-deflection values to stiffness, strength, ductility and energy parameters which were not normalized for specimen geometry. The effects of a systematic variation in the deflection rate over the range 0.1-10 mm min-1 were also evaluated. Statistical analysis indicated that the primary effect of the tail-suspension period was lowered bone mass which was manifested mechanically through lower values of the bone strength parameters. These effects were similar in the bones of both the fore and hind limbs. The results also demonstrated that the stiffness, ductility and energy characteristics were much less influenced by the tail-suspension. Whereas a significant dependence of the bone strength values upon deflection rate was observed for the femora and humeri, the other mechanical parameters were less sensitive. Based upon the nature of the physical and mechanical changes observed in the long bones following tail-suspension, the mouse appears to be a suitable animal model for the study of osteopenia.

  2. A Novel Drug-Mouse Phenotypic Similarity Method Detects Molecular Determinants of Drug Effects.

    PubMed

    Prinz, Jeanette; Vogt, Ingo; Adornetto, Gianluca; Campillos, Mónica

    2016-09-01

    The molecular mechanisms that translate drug treatment into beneficial and unwanted effects are largely unknown. We present here a novel approach to detect gene-drug and gene-side effect associations based on the phenotypic similarity of drugs and single gene perturbations in mice that account for the polypharmacological property of drugs. We scored the phenotypic similarity of human side effect profiles of 1,667 small molecules and biologicals to profiles of phenotypic traits of 5,384 mouse genes. The benchmarking with known relationships revealed a strong enrichment of physical and indirect drug-target connections, causative drug target-side effect links as well as gene-drug links involved in pharmacogenetic associations among phenotypically similar gene-drug pairs. The validation by in vitro assays and the experimental verification of an unknown connection between oxandrolone and prokineticin receptor 2 reinforces the ability of this method to provide new molecular insights underlying drug treatment. Thus, this approach may aid in the proposal of novel and personalized treatments.

  3. Limited Effect of Chronic Valproic Acid Treatment in a Mouse Model of Machado-Joseph Disease

    PubMed Central

    Esteves, Sofia; Duarte-Silva, Sara; Naia, Luana; Neves-Carvalho, Andreia; Teixeira-Castro, Andreia; Rego, Ana Cristina; Silva-Fernandes, Anabela; Maciel, Patrícia

    2015-01-01

    Machado-Joseph disease (MJD) is an inherited neurodegenerative disease, caused by a CAG repeat expansion within the coding region of ATXN3 gene, and which currently lacks effective treatment. In this work we tested the therapeutic efficacy of chronic treatment with valproic acid (VPA) (200mg/kg), a compound with known neuroprotection activity, and previously shown to be effective in cell, fly and nematode models of MJD. We show that chronic VPA treatment in the CMVMJD135 mouse model had limited effects in the motor deficits of these mice, seen mostly at late stages in the motor swimming, beam walk, rotarod and spontaneous locomotor activity tests, and did not modify the ATXN3 inclusion load and astrogliosis in affected brain regions. However, VPA chronic treatment was able to increase GRP78 protein levels at 30 weeks of age, one of its known neuroprotective effects, confirming target engagement. In spite of limited results, the use of another dosage of VPA or of VPA in a combined therapy with molecules targeting other pathways, cannot be excluded as potential strategies for MJD therapeutics. PMID:26505994

  4. Beneficial effects of interleukin-6 in neonatal mouse models of group B streptococcal disease.

    PubMed Central

    Mancuso, G; Tomasello, F; Migliardo, M; Delfino, D; Cochran, J; Cook, J A; Teti, G

    1994-01-01

    Previous studies have shown that tumor necrosis factor alpha (TNF-alpha) plays a pathophysiologic role in sepsis induced in rat pups by group B streptococci (GBS). In this model, TNF-alpha is also partially responsible for the induction of interleukin-6 (IL-6). The present study was undertaken to investigate the role of IL-6 in neonatal BALB/c mice infected with type III GBS. The effect of anti-IL-6 monoclonal antibodies and recombinant IL-6 on lethality and TNF-alpha production was investigated. In mouse pups infected with GBS strain COH1, plasma IL-6 reached levels of 3,067 +/- 955 and 1,923 +/- 891 U/ml when measured at 22 and 48 h, respectively (P < 0.05 compared with uninfected controls). Pretreatment with 25 micrograms of anti-IL-6 antibodies totally prevented the increase in circulating IL-6 bioactivity at both 22 and 48 h after infection (P < 0.05). Treatment with anti-IL-6 also induced a moderate decrease in survival time of mice infected with lethal doses of strains COH1 and COH31, as evidenced by increased lethality (P < 0.05) at 24 to 48 h but not at 96 h. Mouse recombinant IL-6 (12,500 U) given 6 h before challenge with strains COH1 and COH31 consistently increased survival time, as evidenced by decreased (P < 0.05) lethality at 48 to 72 h but not at 96 h. The effects of IL-6 pretreatment were dose dependent, since no protection was observed with doses lower than 12,500 U. In addition, no effects on lethality were noted when IL-6 was given at the time of challenge or at later times. TNF-alpha elevations (P < 0.05 compared with uninfected controls) were measured at 12, 22, and 48 h after challenge with strain COH1 (68 +/- 28, 233 +/- 98, and 98 +/- 34 U, respectively). Pretreatment with IL-6 significantly (P < 0.05) decreased plasma TNF-alpha levels at 12 and 22 h, with 55 and 69% inhibitions, respectively. Anti-IL-6 had an opposite effect, as evidenced by a 145% increase (P < 0.05) in TNF-alpha levels at 48 h after challenge. Collectively, our data are

  5. Effect of oral calcium and calcium + fluoride treatments on mouse bone properties during suspension

    NASA Technical Reports Server (NTRS)

    Simske, S. J.; Luttges, M. W.; Allen, K. A.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    The bone effects of oral dosages of calcium chloride with or without supplementary sodium fluoride were assessed in antiorthostatically suspended mice. Two calcium dosages were used to replace half (3.1 mM) or all(6.3 mM) of the dietary calcium lost due to reduced food intake by the suspended mice. Two groups of 6.3 mM CaCl2-treated mice were additionally treated with 0.25 or 2.5 mM NaF. The results indicate that supplementation of the mouse drinking water with calcium salts prevents bone changes induced by short-term suspension, while calcium salts in combination with fluoride are less effective as fluoride dosage increases. However, the calcium supplements change the relationship between the femur mechanical properties and the mineral composition of the bone. Because of this, it appears that oral calcium supplements are effective through a mechanism other than simple dietary supplementation and may indicate a dependence of bone consistency on systemic and local fluid conditions.

  6. Effect of aqueous extract of Ipomoea carnea leaf on isolated frog and mouse heart.

    PubMed

    Bachhav, K V; Burande, M D; Rangari, V D; Mehta, J K

    1999-11-01

    Ipomoea carnea fam. Convolvulaceae is a poisonous plant and its toxicity is supposed to be due to the cardiac and respiratory failure. The present paper describes the cardiac effect of aqueous extract of the fresh leaves of I. carnea using mouse and frog heart. The aqueous extract produced an initial blockade of isolated frog heart for 5-10 sec followed by dose dependent increase in both amplitude and rate that lasts up to 2 min. Atropine (1 microgram/ml) blocked the initial depressant phase and potentiated the stimulant effect of the aqueous extract. The dose dependent increase in cardiac contractility of aqueous extract was not altered by propranolol or calcium channel blockers like nifedipine or diltiazem. The decrease in sodium chloride concentration or increase in potassium chloride concentration or calcium chloride concentration in physiological salt solution inhibited the responses to aqueous extract while an increase in sodium chloride concentration or decrease in potassium chloride or calcium chloride concentration in physiological salt solution potentiated the responses to the aqueous extract of I. carnea. It may be suggested from the data that aqueous extract of I. carnea produces positive inotropic effect on isolate frog heart possibly by sodium extrusion or release of the intracellular calcium.

  7. Ret is essential to mediate GDNF's neuroprotective and neuroregenerative effect in a Parkinson disease mouse model

    PubMed Central

    Drinkut, Anja; Tillack, Karsten; Meka, Durga P; Schulz, Jorg B; Kügler, Sebastian; Kramer, Edgar R

    2016-01-01

    Glial cell line-derived neurotrophic factor (GDNF) is a potent survival and regeneration-promoting factor for dopaminergic neurons in cell and animal models of Parkinson disease (PD). GDNF is currently tested in clinical trials on PD patients with so far inconclusive results. The receptor tyrosine kinase Ret is the canonical GDNF receptor, but several alternative GDNF receptors have been proposed, raising the question of which signaling receptor mediates here the beneficial GDNF effects. To address this question we overexpressed GDNF in the striatum of mice deficient for Ret in dopaminergic neurons and subsequently challenged these mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Strikingly, in this established PD mouse model, the absence of Ret completely abolished GDNF's neuroprotective and regenerative effect on the midbrain dopaminergic system. This establishes Ret signaling as absolutely required for GDNF's effects to prevent and compensate dopaminergic system degeneration and suggests Ret activation as the primary target of GDNF therapy in PD. PMID:27607574

  8. Neurotoxic effects of ochratoxin A on the subventricular zone of adult mouse brain.

    PubMed

    Paradells, Sara; Rocamonde, Brenda; Llinares, Cristina; Herranz-Pérez, Vicente; Jimenez, Misericordia; Garcia-Verdugo, Jose Manuel; Zipancic, Ivan; Soria, Jose Miguel; Garcia-Esparza, Ma Angeles

    2015-07-01

    Ochratoxin A (OTA), a mycotoxin that was discovered as a secondary metabolite of the fungal species Aspergillus and Penicillium, is a common contaminant in food and animal feed. This mycotoxin has been described as teratogenic, carcinogenic, genotoxic, immunotoxic and has been proven a potent neurotoxin. Other authors have previously reported the effects of OTA in different structures of the central nervous system as well as in some neurogenic regions. However, the impact of OTA exposure in the subventricular zone (SVZ) has not been assessed yet. To elucidate whether OTA affects neural precursors of the mouse SVZ we investigated, in vitro and in vivo, the effects of OTA exposure on the SVZ and on the neural precursors obtained from this neurogenic niche. In this work, we prove the cumulative effect of OTA exposure on proliferation, differentiation and depletion of neural stem cells cultured from the SVZ. In addition, we corroborated these results in vivo by immunohistochemistry and electron microscopy. As a result, we found a significant alteration in the proliferation process, which was evidenced by a decrease in the number of 5-bromo-2-deoxyuridine-positive cells and glial cells, as well as, a significant decrease in the number of neuroblasts in the SVZ. To summarize, in this study we demonstrate how OTA could be a threat to the developing and the adult SVZ through its impact in cell viability, proliferation and differentiation in a dose-dependent manner.

  9. Protective effects of Mentha haplocalyx ethanol extract (MH) in a mouse model of allergic asthma.

    PubMed

    Lee, Mee-Young; Lee, Jin-Ah; Seo, Chang-Seob; Ha, Hyekyung; Lee, Nam-Hun; Shin, Hyeun-Kyoo

    2011-06-01

    Mentha haplocalyx Briq., a commonly used herb in traditional Oriental medicine, has a variety of known pharmacological properties. However, neither the protective effects of Mentha haplocalyx ethanol extract (MH) against inflammation of the airway in an asthmatic model nor the mechanisms involved, have previously been reported. In the present study, an ovalbumin (OVA)-induced mouse model of allergic asthma was used to investigate whether MH was effective against the disease through regulation of airway inflammation. The MH treatment significantly inhibited increases in immunoglobulin (Ig) E and T-helper 2 (Th2)-type cytokines such as IL-4 and IL-5 in bronchoalveolar lavage fluid (BALF) and lung tissue. Inflammatory cell infiltration of the airway in mice treated with MH was effectively alleviated when compared with infiltration seen in the OVA-induced group. These data indicated that decreased cytokine levels are the result of the decreased number of invaded leukocytes. Also, the generation of reactive oxygen species (ROS) in BALF was diminished by MH treatment. Taken together, these findings indicate that the administration of MH may have potential therapeutic value in the treatment of inflammatory disease.

  10. Effects of heat shock on survival, proliferation and differentiation of mouse neural stem cells.

    PubMed

    Omori, Hiroyuki; Otsu, Masahiro; Suzuki, Asami; Nakayama, Takashi; Akama, Kuniko; Watanabe, Masaru; Inoue, Nobuo

    2014-02-01

    Hyperthermia during pregnancy is a significant cause of reproductive problems ranging from abortion to congenital defects of the central nervous system (CNS), including neural tube defects and microcephaly. Neural stem cells (NSCs) can proliferate and differentiate into neurons and glia, playing a key role in the formation of the CNS. Here, we examined the effects of heat shock on homogeneous proliferating NSCs derived from mouse embryonic stem cells. After heat shock at 42 °C for 20 min, the proliferating NSCs continued to proliferate, although subtle changes were observed in gene expression and cell survival and proliferation. In contrast, heat shock at 43 °C caused a variety of responses: the up-regulation of genes encoding heat shock proteins (HSP), induction of apoptosis, temporal inhibition of cell proliferation and retardation of differentiation. Finally, effects of heat shock at 44 °C were severe, with almost all cells disappearing and the remaining cells losing the capacity to proliferate and differentiate. These temperature-dependent effects of heat shock on NSCs may be valuable in elucidating the mechanisms by which hyperthermia during pregnancy causes various reproductive problems.

  11. GDNF-Transfected Macrophages Produce Potent Neuroprotective Effects in Parkinson's Disease Mouse Model

    PubMed Central

    Zhao, Yuling; Haney, Matthew J.; Gupta, Richa; Bohnsack, John P.; He, Zhijian; Kabanov, Alexander V.; Batrakova, Elena V.

    2014-01-01

    The pathobiology of Parkinson's disease (PD) is associated with the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) projecting to the striatum. Currently, there are no treatments that can halt or reverse the course of PD; only palliative therapies, such as replacement strategies for missing neurotransmitters, exist. Thus, the successful brain delivery of neurotrophic factors that promote neuronal survival and reverse the disease progression is crucial. We demonstrated earlier systemically administered autologous macrophages can deliver nanoformulated antioxidant, catalase, to the SNpc providing potent anti-inflammatory effects in PD mouse models. Here we evaluated genetically-modified macrophages for active targeted brain delivery of glial cell-line derived neurotropic factor (GDNF). To capitalize on the beneficial properties afforded by alternatively activated macrophages, transfected with GDNF-encoded pDNA cells were further differentiated toward regenerative M2 phenotype. A systemic administration of GDNF-expressing macrophages significantly ameliorated neurodegeneration and neuroinflammation in PD mice. Behavioral studies confirmed neuroprotective effects of the macrophage-based drug delivery system. One of the suggested mechanisms of therapeutic effects is the release of exosomes containing the expressed neurotropic factor followed by the efficient GDNF transfer to target neurons. Such formulations can serve as a new technology based on cell-mediated active delivery of therapeutic proteins that attenuate and reverse progression of PD, and ultimately provide hope for those patients who are already significantly disabled by the disease. PMID:25229627

  12. Effects of type of light on mouse circadian behaviour and stress levels.

    PubMed

    Alves-Simoes, Marta; Coleman, Georgia; Canal, Maria Mercè

    2016-02-01

    Light is the principal synchronizing environmental factor for the biological clock. Light quantity (intensity), and light quality (type of light source) can have different effects. The aim of this study was to determine the effects of the type of light experienced from the time of birth on mouse growth, circadian behaviour and stress levels. We raised pigmented and albino mice under 24 h light-dark cycles of either fluorescent or white light-emitting diode (LED) light source during the suckling stage, and the animals were then exposed to various light environments after weaning and their growth rate, locomotor activity and plasma corticosterone concentration were measured. We found that the type of light the animals were exposed to did not affect the animals' growth rates or stress levels. However, we observed significant effects on the expression of the locomotor activity rhythm under low contrast light-dark cycles in pigmented mice, and under constant light in both albino and pigmented mice. These results highlight the importance of environmental light quality (light source) on circadian behavioural rhythms, and the need for close monitoring of light environments in animal facilities.

  13. Longitudinal Effects of Ketamine on Dendritic Architecture In Vivo in the Mouse Medial Frontal Cortex123

    PubMed Central

    Phoumthipphavong, Victoria; Barthas, Florent; Hassett, Samantha

    2016-01-01

    Abstract A single subanesthetic dose of ketamine, an NMDA receptor antagonist, leads to fast-acting antidepressant effects. In rodent models, systemic ketamine is associated with higher dendritic spine density in the prefrontal cortex, reflecting structural remodeling that may underlie the behavioral changes. However, turnover of dendritic spines is a dynamic process in vivo, and the longitudinal effects of ketamine on structural plasticity remain unclear. The purpose of the current study is to use subcellular resolution optical imaging to determine the time course of dendritic alterations in vivo following systemic ketamine administration in mice. We used two-photon microscopy to visualize repeatedly the same set of dendritic branches in the mouse medial frontal cortex (MFC) before and after a single injection of ketamine or saline. Compared to controls, ketamine-injected mice had higher dendritic spine density in MFC for up to 2 weeks. This prolonged increase in spine density was driven by an elevated spine formation rate, and not by changes in the spine elimination rate. A fraction of the new spines following ketamine injection was persistent, which is indicative of functional synapses. In a few cases, we also observed retraction of distal apical tuft branches on the day immediately after ketamine administration. These results indicate that following systemic ketamine administration, certain dendritic inputs in MFC are removed immediately, while others are added gradually. These dynamic structural modifications are consistent with a model of ketamine action in which the net effect is a rebalancing of synaptic inputs received by frontal cortical neurons. PMID:27066532

  14. Therapeutic Effect of Berberine on Huntington’s Disease Transgenic Mouse Model

    PubMed Central

    Jiang, Wenxiao; Wei, Wenjie; Gaertig, Marta A.; Li, Shihua; Li, Xiao-Jiang

    2015-01-01

    Huntington disease (HD) represents a family of neurodegenerative diseases that are caused by misfolded proteins. The misfolded proteins accumulate in the affected brain regions in an age-dependent manner to cause late-onset neurodegeneration. Transgenic mouse models expressing the HD protein, huntingtin, have been widely used to identify therapeutics that may retard disease progression. Here we report that Berberine (BBR), an organic small molecule isolated from plants, has protective effects on transgenic HD (N171-82Q) mice. We found that BBR can reduce the accumulation of mutant huntingtin in cultured cells. More importantly, when given orally, BBR could effectively alleviate motor dysfunction and prolong the survival of transgenic N171-82Q HD mice. We found that BBR could promote the degradation of mutant huntingtin by enhancing autophagic function. Since BBR is an orally-taken drug that has been safely used to treat a number of diseases, our findings suggest that BBR can be tested on different HD animal models and HD patients to further evaluate its therapeutic effects. PMID:26225560

  15. Technical note: Milk composition in mice--methodological aspects and effects of mouse strain and lactation day.

    PubMed

    Görs, S; Kucia, M; Langhammer, M; Junghans, P; Metges, C C

    2009-02-01

    Analysis in individual mouse milk samples is restricted by small sample volumes and hindered by high fat contents. Miniaturized methods were developed for the analysis of dry matter (DM), crude fat, crude protein (CP), and lactose in individual samples of mouse milk and used to compare milk from the mouse strain DU6, the largest growth-selected mouse line worldwide, with unselected mice (CON) on lactation d 3, 14, and 18. Individual milk samples were collected by means of a self-constructed milking machine. Aliquots of 10 microL of milk were used to measure DM [coefficient of variation (CV) <2.1%], which was subsequently used to analyze nitrogen for calculation of CP (CV 2.7%). Crude fat was determined in 100 microL via a miniaturized Röse-Gottlieb method (CV 2.8%). An HPLC protocol was used to analyze lactose in 20 microL of diluted whey (CV 5.3%). The miniaturized methods gave similar results compared with conventional approaches. Homogenization was the most important factor affecting milk composition and its reproducibility. Milk storage at -20 degrees C had no effect on composition. Irrespective of the mouse strain, maximum values of 45.5% DM, 29.8% fat, and 12.7% CP were observed at d 14. The greatest lactose contents were found on d 18 (2.41%). Milk lactose concentration at d 3 was lower in DU6 (1.13 +/- 0.10%) than CON (1.67 +/- 0.18%). The method provides an accurate assessment of mouse milk composition.

  16. Hybrid vigor and transgenerational epigenetic effects on early mouse embryo phenotype.

    PubMed

    Han, Zhiming; Mtango, Namdori R; Patel, Bela G; Sapienza, Carmen; Latham, Keith E

    2008-10-01

    Mouse embryos display a strain-dependent propensity for blastomere cytofragmentation at the two-cell stage. The maternal pronucleus exerts a predominant, transcription-dependent effect on this phenotype, with lesser effects of the ooplasm and the paternal pronucleus. A parental origin effect has been observed as an inequality in the cytofragmentation rate of embryos produced through genetic crosses of reciprocal F(1) hybrid females. To understand the basis for this, we conducted an extensive series of pronuclear transfer studies employing different combinations of inbred and F(1) hybrid maternal and paternal genotypes. We find that the parental origin effect is the result of a transgenerational epigenetic modification, whereby the inherited maternal grandpaternal contribution interacts with the fertilizing paternal genome and the ooplasm. This result indicates that some epigenetic information related to grandparental origins of chromosomes (i.e., imprinting of chromosomes in the mother) is retained through oogenesis and transmitted to progeny, where it affects gene expression from the maternal pronucleus and subsequent embryo phenotype. These results reveal for the first time that mammalian embryonic development can be affected by the epigenotype of at least three individuals. Additionally, we observe a significant suppression of fragmentation by F(1) hybrid ooplasm when it is separated from the F(1) hybrid maternal pronucleus. This latter effect is a striking example of heterosis in the early mammalian embryo, and it provides a new opportunity for examining the molecular mechanisms of heterosis. These results are relevant to our understanding of the mechanisms of epigenetic effects on development and the possible fertility effects of genetic and epigenetic interactions in reproductive medicine.

  17. Effect of Male House Mouse Pheromone Components on Behavioral Responses of Mice in Laboratory and Field Experiments.

    PubMed

    Musso, Antonia E; Gries, Regine; Zhai, Huimin; Takács, Stephen; Gries, Gerhard

    2017-03-01

    Urine of male house mice, Mus musculus, is known to have primer pheromone effects on the reproductive physiology of female mice. Urine-mediated releaser pheromone effects that trigger certain behavioral responses are much less understood, and no field studies have investigated whether urine deposits by male or female mice, or synthetic mouse pheromone, increase trap captures of mice. In field experiments, we baited traps with bedding soiled with urine and feces of caged female or male mice, and recorded captures of mice in these and in control traps containing clean bedding. Traps baited with female bedding preferentially captured adult males, whereas traps baited with male bedding preferentially captured juvenile and adult females, indicating the presence of male- and female-specific sex pheromones in soiled bedding. Analyses of headspace volatiles emanating from soiled bedding by gas chromatography/mass spectrometry revealed that 3,4-dehydro-exo-brevicomin (DEB) was seven times more prevalent in male bedding and that 2-sec-butyl-4,5-dihydrothiazole (DHT) was male-specific. In a follow-up field experiment, traps baited with DEB and DHT captured 4 times more female mice than corresponding control traps, thus indicating that DEB and DHT are sex attractant pheromone components of house mouse males. Our study provides impetus to identify the sex attractant pheromone of female mice, and to develop synthetic mouse pheromone as a lure to enhance the efficacy of trapping programs for mouse control.

  18. Differential effects of platelet rich plasma and washed platelets on the proliferation of mouse MSC cells.

    PubMed

    Duan, Jianmin; Kuang, Wei; Tan, Jiali; Li, Hongtao; Zhang, Yi; Hirotaka, Kikuchi; Tadashi, Katayama

    2011-04-01

    Multipotent mesenchymal stem cell (MSC) therapies are being tested clinically for a variety of disorders. However, despite the remarkable clinical advancements in this field, most applications still use traditional culture media containing fetal bovine serum. Platelet-rich plasma (PRP) appears as a novel application for tissue engineering and its effect on bone healing is thought to be mainly dependent on the proliferation promoting function, with the molecular mechanisms largely unknown. In this study, mouse osteogenic progenitor mesenchymal stem cells (MSCs) were cultured in PRP or washed platelet (WPLT)-treated wells or in untreated wells, and analyzed on cycloxygenase 2 (COX2) expression (qRT-PCR), cell growth (MTT assay) and cell differentiation (alkaline phosphatase activity). The results showed that PRP and WPLT stimulated cell growth similarly in the first 6 days, together with the steady induction of COX2 and PGE2. 10 μmol/l celecoxib (an inhibitor of COX2) significantly inhibited the pro-proliferation effects. Interestingly, WPLT had stronger effects than PRP in proliferation at the later time points (6-9 days). ALP activity assay and collagen 1a expression revealed PRP had a mild but statistically significant pro-differentiation effect, while no obvious effects observed in WLPT group. In summary, PRP stimulates initial growth of MSCs in a COX2 partially dependent manner and the less obvious osteogenic differentiation promoting effects of WPLT strongly indicates WPLT rather than the PRP should be the optional choice for expanding MSCs in vitro for clinical use.

  19. Time course of the effects of histamine, thioperamide and EEDQ on H3 receptors in the mouse brain.

    PubMed

    Detzner, M; Kathmann, M; Schlicker, E

    1994-06-01

    The effects of histamine, thioperamide and EEDQ (N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline) at the noradrenaline release-modulating H3 receptor in the mouse brain were examined. In superfused mouse brain cortex slices preincubated with 3H-noradrenaline, the inhibitory effect of histamine on the electrically (0.3 Hz) evoked tritium overflow was virtually identical when the time of exposure was 30, 80 or 130 min; after withdrawal of histamine, the evoked overflow recovered within 80 min. The attenuation of the effect of histamine by thioperamide was reversible within 50 min after withdrawal of the antagonist, whereas the attenuation produced by EEDQ remained constant for at least 80 min. In conclusion, the effects of histamine and thioperamide at the H3 receptor are readily reversible, whereas EEDQ appears to be an irreversible antagonist; desensitization of the H3 receptor does not occur.

  20. Effects of whole genome duplication on cell size and gene expression in mouse embryonic stem cells

    PubMed Central

    IMAI, Hiroyuki; FUJII, Wataru; KUSAKABE, Ken Takeshi; KISO, Yasuo; KANO, Kiyoshi

    2016-01-01

    Alterations in ploidy tend to influence cell physiology, which in the long-term, contribute to species adaptation and evolution. Polyploid cells are observed under physiological conditions in the nerve and liver tissues, and in tumorigenic processes. Although tetraploid cells have been studied in mammalian cells, the basic characteristics and alterations caused by whole genome duplication are still poorly understood. The purpose of this study was to acquire basic knowledge about the effect of whole genome duplication on the cell cycle, cell size, and gene expression. Using flow cytometry, we demonstrate that cell cycle subpopulations in mouse tetraploid embryonic stem cells (TESCs) were similar to those in embryonic stem cells (ESCs). We performed smear preparations and flow cytometric analysis to identify cell size alterations. These indicated that the relative cell volume of TESCs was approximately 2.2–2.5 fold that of ESCs. We also investigated the effect of whole genome duplication on the expression of housekeeping and pluripotency marker genes using quantitative real-time PCR with external RNA. We found that the target transcripts were 2.2 times more abundant in TESCs than those in ESCs. This indicated that gene expression and cell volume increased in parallel. Our findings suggest the existence of a homeostatic mechanism controlling the cytoplasmic transcript levels in accordance with genome volume changes caused by whole genome duplication. PMID:27569766

  1. Effect of choline chloride in allergen-induced mouse model of airway inflammation.

    PubMed

    Mehta, A K; Gaur, S N; Arora, N; Singh, B P

    2007-10-01

    The incidence of asthma has increased the world over, and current therapies for the disease suffer from potential side-effects. This has created an opportunity to develop novel therapeutic approaches. Here, the anti-inflammatory activity of choline was investigated in a mouse model of allergic airway inflammation. Choline (1 mg.kg(-1)) was administered via oral gavage or intranasally before and after ovalbumin (OVA) challenge in sensitised mice. Airway hyperresponsiveness (AHR) to methacholine was measured in the mice by whole-body plethysmography. Type-2 T-helper cell cytokine and leukotriene levels were estimated in bronchoalveolar lavage fluid (BALF) and spleen culture supernatant by ELISA. Eosinophil peroxidase activity was also determined in the BALF supernatant. Choline treatment in sensitised mice before OVA challenge via oral/intranasal routes significantly inhibited eosinophilic airway inflammation and eosinophil peroxidase activity. It also reduced immunoglobulin E and G1 production and inhibited the release of type-2 T-helper cell cytokines and leukotrienes. However, the development of AHR was prevented effectively by intranasal choline treatment. Most importantly, choline treatment after OVA challenge by both routes could reverse established asthmatic conditions in mice by inhibiting AHR, eosinophilic airway inflammation and other inflammatory parameters. This study provides a new therapeutic approach for controlling as well as preventing asthma exacerbations.

  2. Neuroprotective effect of the endogenous neural peptide apelin in cultured mouse cortical neurons

    SciTech Connect

    Zeng, Xiang Jun; Yu, Shan Ping; Zhang, Like; Wei, Ling

    2010-07-01

    The adipocytokine apelin and its G protein-coupled APJ receptor were initially isolated from a bovine stomach and have been detected in the brain and cardiovascular system. Recent studies suggest that apelin can protect cardiomyocytes from ischemic injury. Here, we investigated the effect of apelin on apoptosis in mouse primary cultures of cortical neurons. Exposure of the cortical cultures to a serum-free medium for 24 h induced nuclear fragmentation and apoptotic death; apelin-13 (1.0-5.0 nM) markedly prevented the neuronal apoptosis. Apelin neuroprotective effects were mediated by multiple mechanisms. Apelin-13 reduced serum deprivation (SD)-induced ROS generation, mitochondria depolarization, cytochrome c release and activation of caspase-3. Apelin-13 prevented SD-induced changes in phosphorylation status of Akt and ERK1/2. In addition, apelin-13 attenuated NMDA-induced intracellular Ca{sup 2+} accumulation. These results indicate that apelin is an endogenous neuroprotective adipocytokine that may block apoptosis and excitotoxic death via cellular and molecular mechanisms. It is suggested that apelins may be further explored as a potential neuroprotective reagent for ischemia-induced brain damage.

  3. Effects of boldine on mouse diaphragm and sarcoplasmic reticulum vesicles isolated from skeletal muscle.

    PubMed

    Kang, J J; Cheng, Y W

    1998-02-01

    The effects of boldine [(S)-2,9-dihydroxy-1,10-dimethoxyaporphine], a major alkaloid in the leaves and bark of boldo (Peumus boldus Mol.), on skeletal muscle were studied using mouse diaphragm and isolated sarcoplasmic reticulum membrane vesicles. Boldine, at 10-200 microM, has little effect on the muscle-evoked twitches; however, the ryanodine-induced contracture was potentiated dose-dependently. At higher concentrations of 300 microM, boldine by itself induced muscle contracture of two phases, which were caused by the influx of extracellular Ca2+ and induction of Ca2+ release from the internal Ca2+ storage site, the sarcoplasmic reticulum, respectively. When tested with isolated sarcoplasmic reticulum membrane vesicles, boldine dose-dependently induced Ca2+ release from actively loaded sarcoplasmic reticulum vesicles isolated from skeletal muscle of rabbit or rat which was inhibited by ruthenium red, suggesting that the release was through the Ca2+ release channel, also known as the ryanodine receptor. Boldine also dose-dependently increased apparent [3H]-ryanodine binding with the EC50 value of 50 microM. In conclusion, we have shown that boldine could sensitize the ryanodine receptor and induce Ca2+ release from the internal Ca2+ storage site of skeletal muscle.

  4. Prolactin effects on the dietary regulation of mouse mammary tumor virus proviral DNA expression.

    PubMed Central

    Hamada, N; Engelman, R W; Tomita, Y; Chen, R F; Iwai, H; Good, R A; Day, N K

    1990-01-01

    Chronic energy-intake restriction inhibits mouse mammary tumor virus (MMTV)-induced mammary tumors in C3H/Ou mice by greater than 90%. We have shown that associated with suppression of mammary tumorigenesis there is a reduction or inhibition of circulating prolactin, MMTV particles expressed, and MMTV mRNA transcription in mammary glands (and in most organs tested). To understand the concerted action of prolactin, energy-consumption level, and MMTV on inducing mammary tumors, experiments were designed to control prolactin and energy levels in order to evaluate their effects on MMTV mRNA expression. Mice on restricted diets were grafted with adenohypophyses, and mice fed ad libitum were treated with the dopaminomimetic agent octahydrobenzo [g]quinoline. Adenohypophyseal grafting significantly increased prolactin in dietary (energy)-restricted mice, and this effect was associated with an increase in MMTV mRNA expression within the mammary gland; a linear correlation between prolactin levels and MMTV mRNA expression in the mammary gland was found. Conversely, elimination of the nocturnal peak of circulating prolactin by i.p. injection of dopaminomimetic octahydrobenzo [g]quinoline to mice fed ad libitum delayed (by 8 weeks) and reduced (even as long as 25 weeks) mammary gland MMTV mRNA expression. These findings associate prolactin influences with MMTV mRNA production in mice and help explain the link between chronic energy-intake restriction and reduced MMTV gene expression. Images PMID:1975696

  5. Non-thermal effects of terahertz radiation on gene expression in mouse stem cells

    PubMed Central

    Alexandrov, Boian S.; Rasmussen, Kim Ø.; Bishop, Alan R.; Usheva, Anny; Alexandrov, Ludmil B.; Chong, Shou; Dagon, Yossi; Booshehri, Layla G.; Mielke, Charles H.; Phipps, M. Lisa; Martinez, Jennifer S.; Chen, Hou-Tong; Rodriguez, George

    2011-01-01

    Abstract In recent years, terahertz radiation sources are increasingly being exploited in military and civil applications. However, only a few studies have so far been conducted to examine the biological effects associated with terahertz radiation. In this study, we evaluated the cellular response of mesenchymal mouse stem cells exposed to THz radiation. We apply low-power radiation from both a pulsed broad-band (centered at 10 THz) source and from a CW laser (2.52 THz) source. Modeling, empirical characterization, and monitoring techniques were applied to minimize the impact of radiation-induced increases in temperature. qRT-PCR was used to evaluate changes in the transcriptional activity of selected hyperthermic genes. We found that temperature increases were minimal, and that the differential expression of the investigated heat shock proteins (HSP105, HSP90, and CPR) was unaffected, while the expression of certain other genes (Adiponectin, GLUT4, and PPARG) showed clear effects of the THz irradiation after prolonged, broad-band exposure. PMID:21991556

  6. Long term effects of lipopolysaccharide on satellite glial cells in mouse dorsal root ganglia.

    PubMed

    Blum, E; Procacci, P; Conte, V; Sartori, P; Hanani, M

    2017-01-01

    Lipopolysaccharide (LPS) has been used extensively to study neuroinflammation, but usually its effects were examined acutely (24h<). We have shown previously that a single intraperitoneal LPS injection activated satellite glial cells (SGCs) in mouse dorsal root ganglia (DRG) and altered several functional parameters in these cells for at least one week. Here we asked whether the LPS effects would persist for 1 month. We injected mice with a single LPS dose and tested pain behavior, assessed SGCs activation in DRG using glial fibrillary acidic protein (GFAP) immunostaining, and injected a fluorescent dye intracellularly to study intercellular coupling. Electron microscopy was used to quantitate changes in gap junctions. We found that at 30 days post-LPS the threshold to mechanical stimulation was lower than in controls. GFAP expression, as well as the magnitude of dye coupling among SGCs were greater than in controls. Electron microscopy analysis supported these results, showing a greater number of gap junctions and an abnormal growth of SGC processes. These changes were significant, but less prominent than at 7 days post-LPS. We conclude that a single LPS injection exerts long-term behavioral and cellular changes. The results are consistent with the idea that SGC activation contributes to hyperalgesia.

  7. Effects of the Yangjing Capsule Extract on Steroidogenesis and Apoptosis in Mouse Leydig Cells

    PubMed Central

    Sun, Dalin; Cui, Yugui; Jin, Baofang; Zhang, Xindong; Yang, Xiaoyu; Gao, Chao

    2012-01-01

    Objectives. This study aimed to explore the effect and mechanism of Yangjing capsule on testosterone secretion in mouse Leydig tumor cells (MLTC-1). Methods. MLTC-1 cells were treated with the Yangjing capsule extract for 24 h. The testosterone level in medium was measured by radioimmunoassay. The expression of steroidogenic enzymes (StAR, CYP11A1, and HSD3B) in the cells was examined using real-time RT-PCR and immunoblotting. Additionally, MLTC-1 cells were treated for 48 h in a serum-free medium. The cell viability was measured by MTT assay. The cell cycle and apoptosis were analyzed using flow cytometry. The expression of activated caspase-3 was analyzed using RT-PCR and a colorimetric protease assay. Results. The Yangjing capsule extract increased testosterone production and the expression of StAR, CYP11A1, and HSD3B mRNAs and proteins compared with the control. H89 significantly inhibited these effects. The medicine improved the viability of MLTC-1 cells, decreased the number of cells in G0/G1 phase, and increased the number of cells in S-phase, as well as prevented cell apoptosis by inhibiting caspase-3. Conclusion. The Yangjing capsule can stimulate MLTC-1 cells to secrete testosterone and may be an alternative treatment for diseases characterized by insufficient testosterone production. PMID:23259004

  8. Beneficial effect of supplemental lipoic acid on diabetes-induced pregnancy loss in the mouse.

    PubMed

    Padmanabhan, Rengasamy; Mohamed, Shafiullah; Singh, Sarabjit

    2006-11-01

    Uncontrolled diabetes mellitus (DM) is an etiological factor for recurrent pregnancy loss, fetal growth disorders, and major congenital malformations in the offspring. Antioxidant therapy has been advocated to overcome the oxidant-antioxidant disequilibrium inherent in diabetes. The objective of this article was to evaluate the beneficial effects of alpha-lipoic acid (LA) on fetal outcome in a mouse model of streptozotocin (STZ)-induced DM. Timed pregnant mice were made diabetic by intraperitoneal (IP) injection of a single dose of STZ (200 mg/kg) on gestation day (GD) 2. Diabetic animals were supplemented daily with an IP injection of 15 mg/kg of LA starting on GD 4 and continued through GD 12. Fetuses were examined on GD 18 for malformations and growth restriction. Some diabetic mice injected with Evans blue were examined on GD 3.5 and GD 6.5 to evaluate frequency of implantations. STZ-treated mice had all cardinal signs of DM. LA treatment did not normalize blood glucose levels of DM mice. Rates of pregnancy in saline control, DM, and DM + LA groups were 90%, 28%, and 64%, respectively, indicating that LA promotes pregnancy in DM animals. However, postimplantation resorption showed a threefold increase in the DM + LA group. Rates of intrauterine growth restriction and major congenital malformations were also augmented thus indicating that the interaction between DM and LA has deleterious effects on postimplantation embryos.

  9. Effects of atherogenic diet on hepatic gene expression across mouse strains

    PubMed Central

    Witmer, David; Burgess-Herbert, Sarah L.; Paigen, Beverly; Churchill, Gary A.

    2009-01-01

    Diets high in fat and cholesterol are associated with increased obesity and metabolic disease in mice and humans. To study the molecular basis of the metabolic response to dietary fat, 10 inbred strains of mice were fed atherogenic high-fat and control low-fat diets. Liver gene expression and whole animal phenotypes were measured and analyzed in both sexes. The effects of diet, strain, and sex on gene expression were determined irrespective of complex processes, such as feedback mechanisms, that could have mediated the genomic responses. Global gene expression analyses demonstrated that animals of the same strain and sex have similar transcriptional profiles on a low-fat diet, but strains may show considerable variability in response to high-fat diet. Functional profiling indicated that high-fat feeding induced genes in the immune response, indicating liver damage, and repressed cholesterol biosynthesis. The physiological significance of the transcriptional changes was confirmed by a correlation analysis of transcript levels with whole animal phenotypes. The results found here were used to confirm a previously identified quantitative trait locus on chromosome 17 identified in males fed a high-fat diet in two crosses, PERA × DBA/2 and PERA × I/Ln. The gene expression data and phenotype data have been made publicly available as an online tool for exploring the effects of atherogenic diet in inbred mouse strains (http://cgd-array.jax.org/DietStrainSurvey). PMID:19671657

  10. Effect of caffeine on induction of endogenous type C virus in mouse cells in vitro

    SciTech Connect

    Niwa, O.; Sugahara, T.

    1981-08-01

    The effect of caffeine on the expression of murine endogenous virus in mouse cells induced by radiation and chemicals was studied. Postirradiation treatment of K-BALB cells with caffeine enhanced cell killing as well as the induction of xenotropic virus after ultraviolet light irradiation. The degree of enhancement for the virus induction was comparable to that for cell killing. On the other hand, colony-forming ability and the expression of xenotropic virus of K-BALB cells after X-irradiation were unaffected by caffeine. These data suggest a linear relationship between the degree of endogenous virus expression and the amount of lethal damages after irradiation. For induction by halogenated pyrimidines, a 24-hr incubation of AKR2B cells with caffeine after 5-iodo-2'-deoxyuridine treatment resulted in marked suppression of the expression of ecotropic virus. On the contrary, in K-BALB cells, caffeine exerted only a small effect on 5-iodo-2'-deoxyuridine-induced expression of ecotropic and xenotropic viruses. These results indicate that, although using the same inducing agent, the pathway of endogenous virus induction may be different for AKR2B cells and for K-BALB cells.

  11. Neurotoxic effects of local anesthetics on the mouse neuroblastoma NB2a cell line.

    PubMed

    Mete, M; Aydemir, I; Tuglu, I M; Selcuki, M

    2015-04-01

    Local anesthetics are used clinically for peripheral nerve blocks, epidural anesthesia, spinal anesthesia and pain management; large concentrations, continuous application and long exposure time can cause neurotoxicity. The mechanism of neurotoxicity caused by local anesthetics is unclear. Neurite outgrowth and apoptosis can be used to evaluate neurotoxic effects. Mouse neuroblastoma cells were induced to differentiate and generate neurites in the presence of local anesthetics. The culture medium was removed and replaced with serum-free medium plus 20 μl combinations of epidermal growth factor and fibroblast growth factor containing tetracaine, prilocaine, lidocaine or procaine at concentrations of 1, 10, 25, or 100 μl prior to neurite measurement. Cell viability, iNOS, eNOS and apoptosis were evaluated. Local anesthetics produced toxic effects by neurite inhibition at low concentrations and by apoptosis at high concentrations. There was an inverse relation between local anesthetic concentrations and cell viability. Comparison of different local anesthetics showed toxicity, as assessed by cell viability and apoptotic potency, in the following order: tetracaine > prilocaine > lidocaine > procaine. Procaine was the least neurotoxic local anesthetic and because it is short-acting, may be preferred for pain prevention during short procedures.

  12. The beneficial effect of blocking Kv1.3 in the psoriasiform SCID mouse model.

    PubMed

    Gilhar, Amos; Bergman, Reuven; Assay, Bedia; Ullmann, Yehuda; Etzioni, Amos

    2011-01-01

    The Kv1.3 channel is important in the activation and function of effector memory T cells. Recently, specific blockers of the Kv1.3 channel have been developed as a potential therapeutic option for diverse autoimmune diseases. In psoriatic lesions, most lymphocytes are memory effector T cells. The aim of the present study was to detect the expression of Kv1.3 channels in these cells in psoriatic lesions as well as in human psoriasiform skin grafts using the severe combined immunodeficient (SCID) mouse model. Histological and immunohistochemical staining for Kv1.3 expression and various inflammatory markers was performed in sections obtained from six psoriatic patients and 18 beige-SCID mice with psoriasiform human skin grafts. Six grafted mice were treated with Stichodactyla helianthus neurotoxin (ShK), a known Kv1.3 blocker. The results showed an increased number of Kv1.3+ cells in the psoriatic skin as well as in the psoriasiform skin grafts as compared with normal skin and normal skin grafts. Injections of ShK showed a marked therapeutic effect in three of six psoriasiform skin grafts. A significantly decreased number of Kv1.3+ cells was observed in the responders compared with the control grafts. This pilot study, although performed in a small number of mice, reveals the possible beneficial effect of Kv1.3 blockers in psoriasis patients.

  13. Hormetic Effect of Chronic Hypergravity in a Mouse Model of Allergic Asthma and Rhinitis

    PubMed Central

    Jang, Tae Young; Jung, Ah-Yeoun; Kim, Young Hyo

    2016-01-01

    We aimed to evaluate the effect of chronic hypergravity in a mouse model of allergic asthma and rhinitis. Forty BALB/c mice were divided as: group A (n = 10, control) sensitized and challenged with saline, group B (n = 10, asthma) challenged by intraperitoneal and intranasal ovalbumin (OVA) to induce allergic asthma and rhinitis, and groups C (n = 10, asthma/rotatory control) and D (n = 10, asthma/hypergravity) exposed to 4 weeks of rotation with normogravity (1G) or hypergravity (5G) during induction of asthma/rhinitis. Group D showed significantly decreased eosinophils, neutrophils, and lymphocytes in their BAL fluid compared with groups B and C (p < 0.05). In real-time polymerase chain reaction using lung homogenate, the expression of IL-1β was significantly upregulated (p < 0.001) and IL-4 and IL-10 significantly downregulated (p < 0.05) in group D. Infiltration of inflammatory cells into lung parenchyma and turbinate, and the thickness of respiratory epithelium was significantly reduced in group D (p < 0.05). The expression of Bcl-2 and heme oxygenase-1 were significantly downregulated, Bax and extracellular dismutase significantly upregulated in Group D. Therefore, chronic hypergravity could have a hormetic effect for allergic asthma and rhinitis via regulation of genes involved in antioxidative and proapoptotic pathways. It is possible that we could use hypergravity machinery for treating allergic respiratory disorders. PMID:27251783

  14. Distinct metabolic and vascular effects of dietary triglycerides and cholesterol in atherosclerotic and diabetic mouse models.

    PubMed

    Laplante, Marc-André; Charbonneau, Alexandre; Avramoglu, Rita Kohen; Pelletier, Patricia; Fang, Xiangping; Bachelard, Hélène; Ylä-Herttuala, Seppo; Laakso, Markku; Després, Jean-Pierre; Deshaies, Yves; Sweeney, Gary; Mathieu, Patrick; Marette, André

    2013-09-01

    Cholesterol and triglyceride-rich Western diets are typically associated with an increased occurrence of type 2 diabetes and vascular diseases. This study aimed to assess the relative impact of dietary cholesterol and triglycerides on glucose tolerance, insulin sensitivity, atherosclerotic plaque formation, and endothelial function. C57BL6 wild-type (C57) mice were compared with atherosclerotic LDLr(-/-) ApoB(100/100) (LRKOB100) and atherosclerotic/diabetic IGF-II × LDLr(-/-) ApoB(100/100) (LRKOB100/IGF) mice. Each group was fed either a standard chow diet, a 0.2% cholesterol diet, a high-fat diet (HFD), or a high-fat 0.2% cholesterol diet for 6 mo. The triglyceride-rich HFD increased body weight, glucose intolerance, and insulin resistance but did not alter endothelial function or atherosclerotic plaque formation. Dietary cholesterol, however, increased plaque formation in LRKOB100 and LRKOB100/IGF animals and decreased endothelial function regardless of genotype. However, cholesterol was not associated with an increase of insulin resistance in LRKOB100 and LRKOB100/IGF mice and, unexpectedly, was even found to reduce the insulin-resistant effect of dietary triglycerides in these animals. Our data indicate that dietary triglycerides and cholesterol have distinct metabolic and vascular effects in obese atherogenic mouse models resulting in dissociation between the impairment of glucose homeostasis and the development of atherosclerosis.

  15. Hormetic Effect of Chronic Hypergravity in a Mouse Model of Allergic Asthma and Rhinitis

    NASA Astrophysics Data System (ADS)

    Jang, Tae Young; Jung, Ah-Yeoun; Kim, Young Hyo

    2016-06-01

    We aimed to evaluate the effect of chronic hypergravity in a mouse model of allergic asthma and rhinitis. Forty BALB/c mice were divided as: group A (n = 10, control) sensitized and challenged with saline, group B (n = 10, asthma) challenged by intraperitoneal and intranasal ovalbumin (OVA) to induce allergic asthma and rhinitis, and groups C (n = 10, asthma/rotatory control) and D (n = 10, asthma/hypergravity) exposed to 4 weeks of rotation with normogravity (1G) or hypergravity (5G) during induction of asthma/rhinitis. Group D showed significantly decreased eosinophils, neutrophils, and lymphocytes in their BAL fluid compared with groups B and C (p < 0.05). In real-time polymerase chain reaction using lung homogenate, the expression of IL-1β was significantly upregulated (p < 0.001) and IL-4 and IL-10 significantly downregulated (p < 0.05) in group D. Infiltration of inflammatory cells into lung parenchyma and turbinate, and the thickness of respiratory epithelium was significantly reduced in group D (p < 0.05). The expression of Bcl-2 and heme oxygenase-1 were significantly downregulated, Bax and extracellular dismutase significantly upregulated in Group D. Therefore, chronic hypergravity could have a hormetic effect for allergic asthma and rhinitis via regulation of genes involved in antioxidative and proapoptotic pathways. It is possible that we could use hypergravity machinery for treating allergic respiratory disorders.

  16. Antinociceptive effects of vitexin in a mouse model of postoperative pain

    PubMed Central

    Zhu, Qing; Mao, Li-Na; Liu, Cheng-Peng; Sun, Yue-Hua; Jiang, Bo; Zhang, Wei; Li, Jun-Xu

    2016-01-01

    Vitexin, a C-glycosylated flavone present in several medicinal herbs, has showed various pharmacological activities including antinociception. The present study investigated the antinociceptive effects of vitexin in a mouse model of postoperative pain. This model was prepared by making a surgical incision on the right hindpaw and von Frey filament test was used to assess mechanical hyperalgesia. Isobolographical analysis method was used to examine the interaction between vitexin and acetaminophen. A reliable mechanical hyperalgesia was observed at 2 h post-surgery and lasted for 4 days. Acute vitexin administration (3–10 mg/kg, i.p.) dose-dependently relieved this hyperalgesia, which was also observed from 1 to 3 days post-surgery during repeated daily treatment. However, repeated vitexin administration prior to surgery had no preventive value. The 10 mg/kg vitexin-induced antinociception was blocked by the opioid receptor antagonist naltrexone or the GABAA receptor antagonist bicuculline. The doses of vitexin used did not significantly suppress the locomotor activity. In addition, the combination of vitexin and acetaminophen produced an infra-additive effect in postoperative pain. Together, though vitexin-acetaminophen combination may not be useful for treating postoperative pain, vitexin exerts behaviorally-specific antinociception against postoperative pain mediated through opioid receptors and GABAA receptors, suggesting that vitexin may be useful for the control of postoperative pain. PMID:26763934

  17. Effects of oxalate on IMCD cells: a line of mouse inner medullary collecting duct cells.

    PubMed

    Maroni, Paul D; Koul, Sweaty; Meacham, Randall B; Chandhoke, Paramjit S; Koul, Hari K

    2004-12-01

    Oxalate, a metabolic end product and a major constituent of the majority of renal stones, has been shown to be toxic to renal epithelial cells of cortical origin. However, it is unknown whether inner medullary collecting duct (IMCD) cells that are physiologically exposed to higher concentrations of oxalate also behave in a similar manner. In the present study, we examined the effects of oxalate on IMCD cells. IMCD cells from the mouse were maintained in DMEM/F12 media supplemented with fetal bovine serum and antibiotics. Exposure of IMCD cells to oxalate produced time- and concentration-dependent changes in the light microscopic appearance of the cells. Long-term exposure to oxalate resulted in alterations in cell viability, with net cell loss after exposure to concentrations of 2 mM or greater. The production of free radicals was directly related to the exposure time and the concentration of oxalate. Crystal formation occurred in less than 1 h and cells in proximity to crystals would lose membrane integrity. Compared with IMCD cells, LLC-PK1 cells as well as HK-2 cells showed significant toxicity starting at lower oxalate concentrations (0.4 mM or greater). These results provide the first direct demonstration of toxic effects of oxalate in IMCD cells, a line of renal epithelial cells of the inner medullary collecting duct, and suggest that the cells lining the collecting duct are relatively resistant to oxalate toxicity.

  18. Influence of sodium substitutes on 5-HT-mediated effects at mouse 5-HT3 receptors

    PubMed Central

    Barann, M; Schmidt, K; Göthert, M; Urban, B W; Bönisch, H

    2004-01-01

    The influence of sodium ion substitutes on the 5-hydroxytryptamine (5-HT)-induced flux of the organic cation [14C]guanidinium through the ion channel of the mouse 5-HT3 receptor and on the competition of 5-HT with the selective 5-HT3 receptor antagonist [3H]GR 65630 was studied, unless stated otherwise, in mouse neuroblastoma N1E-115 cells. Under physiological conditions (135 mM sodium), 5-HT induced a concentration-dependent [14C]guanidinium influx with an EC50 (1.3 μM) similar to that in electrophysiological studies. The stepwise replacement of sodium by increasing concentrations of the organic cation hydroxyethyl trimethylammonium (choline) concentration dependently caused both a rightward shift of the 5-HT concentration–response curve and an increase in the maximum effect of 5-HT. Complete replacement of sodium resulted in a 34-fold lower potency of 5-HT and an almost two times higher maximal response. A low potency of 5-HT in choline buffer was also observed in other 5-HT3 receptor-expressing rodent cell lines (NG 108-15 or NCB 20). Replacement of Na+ by Li+ left the potency and maximal effects of 5-HT almost unchanged. Replacement by tris (hydroxymethyl) methylamine (Tris), tetramethylammonium (TMA) or N-methyl-D-glucamine (NMDG) caused an increase in maximal response to 5-HT similar to that caused by choline. The potency of 5-HT was only slightly reduced by Tris, to a high degree decreased by TMA (comparable to the decrease by choline), but not influenced by NMDG. The potency of 5-HT in inhibiting [3H]GR65630 binding to intact cells was 35-fold lower when sodium was completely replaced by choline, but remained unchanged after replacement by NMDG. The results are compatible with the suggestion that choline competes with 5-HT for the 5-HT3 receptor; the increase in maximal response may be partly due to a choline-mediated delay of the 5-HT-induced desensitization. For studies of 5-HT-evoked [14C]guanidinium flux through 5-HT3 receptor channels, NMDG appears

  19. Effect of Ames dwarfism and caloric restriction on spontaneous DNA mutation frequency in different mouse tissues.

    PubMed

    Garcia, Ana Maria; Busuttil, Rita A; Calder, R Brent; Dollé, Martijn E T; Diaz, Vivian; McMahan, C Alex; Bartke, Andrzej; Nelson, James; Reddick, Robert; Vijg, Jan

    2008-09-01

    Genetic instability has been implicated as a causal factor in cancer and aging. Caloric restriction (CR) and suppression of the somatotroph axis significantly increase life span in the mouse and reduce multiple symptoms of aging, including cancer. To test if in vivo spontaneous mutation frequency is reduced by such mechanisms, we crossed long-lived Ames dwarf mice with a C57BL/6J line harboring multiple copies of the lacZ mutation reporter gene as part of a plasmid that can be recovered from tissues and organs into Escherichia coli to measure mutant frequencies. Four cohorts were studied: (1) ad lib wild-type; (2) CR wild-type; (3) ad lib dwarf; and (4) CR dwarf. While both CR wild-type and ad lib dwarf mice lived significantly longer than the ad lib wild-type mice, under CR conditions dwarf mice did not live any longer than ad lib wild-type mice. While this may be due to an as yet unknown adverse effect of the C57BL/6J background, it did not prevent an effect on spontaneous mutation frequencies at the lacZ locus, which were assessed in liver, kidney and small intestine of 7- and 15-month-old mice of all four cohorts. A lower mutant frequency in the ad lib dwarf background was observed in liver and kidney at 7 and 15 months of age and in small intestine at 15 months of age as compared to the ad lib wild-type. CR also significantly reduced spontaneous mutant frequency in kidney and small intestine, but not in liver. In a separate cohort of lacZ-C57BL/6J mice CR was also found to significantly reduce spontaneous mutant frequency in liver and small intestine, across three age levels. These results indicate that two major pro-longevity interventions in the mouse are associated with a reduced mutation frequency. This could be responsible, at least in part, for the enhanced longevity associated with Ames dwarfism and CR.

  20. Cryopreservation of unfertilized mouse oocytes: the effect of replacing sodium with choline in the freezing medium.

    PubMed

    Stachecki, J J; Cohen, J; Willadsen, S M

    1998-12-01

    Although embryo cryopreservation has become commonplace in many species, effective methods are not available for routine freezing of unfertilized eggs. Cryopreservation-induced damage may be caused by the high concentration of sodium ions in conventional freezing media. This study investigates the effect of a newly developed low-sodium choline-based medium (CJ2) on the ability of unfertilized, metaphase II mouse eggs to survive cryopreservation and develop to the blastocyst stage in vitro. Specifically, the effects of cooling to subzero temperatures, thawing rate, LN2 plunge temperature, and equilibration with a low-sodium medium prior to freezing are examined. In contrast to cooling to 23, 0, or -7.0 degreesC in a sodium-based freezing medium (ETFM), cooling in CJ2 had no significant negative effect on oocyte survival or development. Oocytes frozen in CJ2 survived plunging into LN2 from -10, -20, or -33 degreesC at significantly higher rates than oocytes frozen in ETFM. With the protocol used (1.5 M PrOH, 0.1 M sucrose, -0.3 C/min, plunging at -33 degreesC) rapid thawing by direct submersion in 30 degreesC water was more detrimental to oocyte survival than holding in air for 30 or 120 s prior to transfer to water. Equilibration of unfertilized oocytes with a low-sodium medium prior to cryopreservation in CJ2 significantly increased survival and blastocyst development. These results demonstrate that the high concentration of sodium in conventional freezing media is detrimental to oocyte cryopreservation and show that choline is a promising replacement. Reducing the sodium content of the freezing medium to a very low level or eliminating sodium altogether may allow oocytes and other cells to be frozen more effectively.

  1. Pro-oxidant effects of Ecstasy and its metabolites in mouse brain synaptosomes

    PubMed Central

    Barbosa, Daniel José; Capela, João Paulo; Oliveira, Jorge MA; Silva, Renata; Ferreira, Luísa Maria; Siopa, Filipa; Branco, Paula Sério; Fernandes, Eduarda; Duarte, José Alberto; de Lourdes Bastos, Maria; Carvalho, Félix

    2012-01-01

    BACKGROUND AND PURPOSE 3,4-Methylenedioxymethamphetamine (MDMA or ‘Ecstasy’) is a worldwide major drug of abuse known to elicit neurotoxic effects. The mechanisms underlying the neurotoxic effects of MDMA are not clear at present, but the metabolism of dopamine and 5-HT by monoamine oxidase (MAO), as well as the hepatic biotransformation of MDMA into pro-oxidant reactive metabolites is thought to contribute to its adverse effects. EXPERIMENTAL APPROACH Using mouse brain synaptosomes, we evaluated the pro-oxidant effects of MDMA and its metabolites, α-methyldopamine (α-MeDA), N-methyl-α-methyldopamine (N-Me-α-MeDA) and 5-(glutathion-S-yl)-α-methyldopamine [5-(GSH)-α-MeDA], as well as those of 5-HT, dopamine, l-DOPA and 3,4-dihydroxyphenylacetic acid (DOPAC). KEY RESULTS 5-HT, dopamine, l-DOPA, DOPAC and MDMA metabolites α-MeDA, N-Me-α-MeDA and 5-(GSH)-α-MeDA, concentration- and time-dependently increased H2O2 production, which was significantly reduced by the antioxidants N-acetyl-l-cysteine (NAC), ascorbic acid and melatonin. From experiments with MAO inhibitors, it was observed that H2O2 generation induced by 5-HT was totally dependent on MAO-related metabolism, while for dopamine, it was a minor pathway. The MDMA metabolites, dopamine, l-DOPA and DOPAC concentration-dependently increased quinoproteins formation and, like 5-HT, altered the synaptosomal glutathione status. Finally, none of the compounds modified the number of polarized mitochondria in the synaptosomal preparations, and the compounds’ pro-oxidant effects were unaffected by prior mitochondrial depolarization, excluding a significant role for mitochondrial-dependent mechanisms of toxicity in this experimental model. CONCLUSIONS AND IMPLICATIONS MDMA metabolites along with high levels of monoamine neurotransmitters can be major effectors of neurotoxicity induced by Ecstasy. PMID:21506960

  2. Capsaicin protects mouse neuromuscular junctions from the neuroparalytic effects of botulinum neurotoxin a.

    PubMed

    Thyagarajan, Baskaran; Krivitskaya, Natalia; Potian, Joseph G; Hognason, Kormakur; Garcia, Carmen C; McArdle, Joseph J

    2009-11-01

    Botulinum neurotoxin A (BoNT/A), the most toxic, naturally occurring protein, cleaves synapse-associated protein of 25 kDa and inhibits acetylcholine release from motor nerve endings (MNEs). This leads to paralysis of skeletal muscles. Our study demonstrates that capsaicin protects mouse neuromuscular junctions from the neuroparalytic effects of BoNT/A. Bilateral injection of BoNT/A near the innervation of the Extensor digitorum longus (EDL) muscle of adult Swiss-Webster mice inhibited the toe spread reflex (TSR). However, when capsaicin was coinjected bilaterally, or injected 4 or 8 h before injecting BoNT/A, the TSR remained normal. In animals that were pretreated with capsazepine, capsaicin failed to protect against the neuroparalytic effects of BoNT/A. In vivo analyses demonstrated that capsaicin protected muscle functions and electromygraphic activity from the incapacitating effects of BoNT/A. The twitch response to nerve stimulation was greater for EDL preparations isolated from mice injected with capsaicin before BoNT/A. Capsaicin pretreatment also prevented the inhibitory effects of BoNT/A on end-plate currents. Furthermore, pretreatment of Neuro 2a cells with capsaicin significantly preserved labeling of synaptic vesicles by FM 1-43. This protective effect of capsaicin was observed only in the presence of extracellular Ca(2+) and was inhibited by capsazepine. Immunohistochemistry demonstrated that MNEs express transient receptor potential protein of the vanilloid subfamily, TRPV1, the capsaicin receptor. Capsaicin pretreatment, in vitro, reduced nerve stimulation or KCl-induced uptake of BoNT/A into motor nerve endings and cholinergic Neuro 2a cells. These data demonstrate that capsaicin interacts with TRPV1 receptors on MNEs to reduce BoNT/A uptake via a Ca(2+)-dependent mechanism.

  3. Protective Effect of Quercetin on the Development of Preimplantation Mouse Embryos against Hydrogen Peroxide-Induced Oxidative Injury

    PubMed Central

    Zhang, Qin-hua; Yan, Zhi-guang; Liang, Hong-xing; Chai, Wei-ran; Yan, Zheng; Kuang, Yan-ping; Qi, Cong

    2014-01-01

    Quercetin, a plant-derived flavonoid in Chinese herbs, fruits and wine, displays antioxidant properties in many pathological processes associated with oxidative stress. However, the effect of quercetin on the development of preimplantation embryos under oxidative stress is unclear. The present study sought to determine the protective effect and underlying mechanism of action of quercetin against hydrogen peroxide (H2O2)-induced oxidative injury in mouse zygotes. H2O2 treatment impaired the development of mouse zygotes in vitro, decreasing the rates of blastocyst formation and hatched, and increasing the fragmentation, apoptosis and retardation in blastocysts. Quercetin strongly protected zygotes from H2O2-induced oxidative injury by decreasing the reactive oxygen species level, maintaining mitochondrial function and modulating total antioxidant capability, the activity of the enzymatic antioxidants, including glutathione peroxidase and catalase activity to keep the cellular redox environment. Additionally, quercetin had no effect on the level of glutathione, the main non-enzymatic antioxidant in embryos. PMID:24586844

  4. Dose Response Effects of 810 nm Laser Light on Mouse Primary Cortical Neurons

    PubMed Central

    Sharma, Sulbha K.; Kharkwal, Gitika B.; Sajo, Mari; Huang, Ying-Ying; De Taboada, Luis; McCarthy, Thomas; Hamblin, Michael R.

    2011-01-01

    Background and Objectives In the past four decades numerous studies have reported the efficacy of low level light (laser) therapy (LLLT) as a treatment for diverse diseases and injuries. Recent studies have shown that LLLT can biomodulate processes in the central nervous system and has been extensively studied as a stroke treatment. However there is still a lack of knowledge on the effects of LLLT at the cellular level in neurons. The present study aimed to study the effect of 810 nm laser on several cellular processes in primary cortical neurons cultured from embryonic mouse brains. Study Design/Materials and Methods Neurons were irradiated with fluences of 0.03, 0.3, 3, 10, or 30 J/cm2 of 810-nm laser delivered over varying times at 25 mW/cm2 and intracellular levels of reactive oxygen species (ROS), nitric oxide and calcium were measured using fluorescent probes within 5 minutes of the end of irradiation. The changes in mitochondrial function in response to light were studied in terms of adenosine triphosphate (ATP) and mitochondrial membrane potential (MMP). Results Light induced a significant increase in calcium, ATP and MMP at lower fluences and a decrease at higher fluences. ROS was significantly induced at low fluences, followed by a decrease and a second larger increase at 30 J/cm2. Nitric oxide levels showed a similar pattern of a double peak but values were less significant compared to ROS. Conclusions The results suggest that LLLT at lower fluences is capable of inducing mediators of cell signaling processes which in turn may be responsible for the beneficial stimulatory effects of the low level laser. At higher fluences beneficial mediators are reduced and high levels of Janus-type mediators such as ROS and NO (beneficial at low concentrations and harmful at high concentrations) may be responsible for the damaging effects of high-fluence light and the overall biphasic dose response. PMID:21956634

  5. Effects of tetrahydrohyperforin in mouse hippocampal slices: neuroprotection, long-term potentiation and TRPC channels.

    PubMed

    Montecinos-Oliva, C; Schuller, A; Parodi, J; Melo, F; Inestrosa, N C

    2014-01-01

    Tetrahydrohyperforin (IDN5706) is a semi-synthetic compound derived from hyperforin (IDN5522) and is the main active principle of St. John's Wort. IDN5706 has shown numerous beneficial effects when administered to wild-type and double transgenic (APPswe/PSEN1ΔE9) mice that model Alzheimer's disease. However, its mechanism of action is currently unknown. Toward this end, we analysed field excitatory postsynaptic potentials (fEPSPs) in mouse hippocampal slices incubated with IDN5706 and in the presence of the TRPC3/6/7 activator 1-oleoyl-2-acetyl-sn-glycerol (OAG), the TRPC channel blocker SKF96365, and neurotoxic amyloid β-protein (Aβ) oligomers. To study spatial memory, Morris water maze (MWM) behavioural tests were conducted on wild-type mice treated with IDN5706 and SKF96365. In silico studies were conducted to predict a potential pharmacophore. IDN5706 and OAG had a similar stimulating effect on fEPSPs, which was inhibited by SKF96365. IDN5706 protected from reduced fEPSPs induced by Aβ oligomers. IDN5706 improved spatial memory in wild-type mice, an effect that was counteracted by co-administration of SKF96365. Our in silico studies suggest strong pharmacophore similarity of IDN5706 and other reported TRPC6 activators (IDN5522, OAG and Hyp9). We propose that the effect of IDN5706 is mediated through activation of the TRPC3/6/7 channel subfamily. The unveiling of the drug's mechanism of action is a necessary step toward the clinical use of IDN5706 in Alzheimer's disease.

  6. Etoposide exposure during male mouse pachytene has complex effects on crossing-over and causes nondisjunction.

    PubMed

    Russell, Liane B; Hunsicker, Patricia R; Kerley, Marilyn; Pyle, April; Saxton, Arnold M

    2004-12-31

    In experiments involving different germ-cell stages, we had previously found meiotic prophase of the male mouse to be vulnerable to the induction of several types of genetic damage by the topoisomerase-II inhibitor etoposide. The present study of etoposide effects involved two end points of meiotic events known to occur in primary spermatocytes--chromosomal crossing-over and segregation. By following assortment of 13 microsatellite markers in two chromosomes (Ch 7 and Ch 15) it was shown that etoposide significantly affected crossing-over, but did not do so in a uniform fashion. Treatment generally changed the pattern for each chromosome, leading to local decreases in recombination, a distal shift in locations of crossing-over, and an overall decrease in double crossovers; at least some of these results might be interpreted as evidence for increased interference. Two methods were used to explore etoposide effects on chromosome segregation: a genetic experiment capable of detecting sex-chromosome nondisjunction in living progeny; and the use of FISH (fluorescence in situ hybridization) technology to score numbers of Chromosomes X, Y, and 8 in spermatozoa. Taken together these two approaches indicated that etoposide exposure of pachytene spermatocytes induces malsegregation, and that the findings of the genetic experiment probably yielded a marked underestimate of nondisjunction. As indicated by certain segregants, at least part of the etoposide effect could be due to disrupted pairing of achiasmatic homologs, followed by precocious sister-centromere separation. It has been shown for several organisms that absent or reduced levels of recombination, as well as suboptimally positioned recombination events, may be associated with abnormal segregation. Etoposide is the only chemical tested to date for which living progeny indicates an effect on both male meiotic crossing-over and chromosome segregation. Whether, however, etoposide-induced changes in recombination

  7. Analgesic effects of adenylyl cyclase inhibitor NB001 on bone cancer pain in a mouse model

    PubMed Central

    Kang, Wen-bo; Yang, Qi; Guo, Yan-yan; Wang, Lu; Wang, Dong-sheng; Cheng, Qiang; Li, Xiao-ming; Tang, Jun; Zhao, Jian-ning; Liu, Gang; Zhuo, Min

    2016-01-01

    Background Cancer pain, especially the one caused by metastasis in bones, is a severe type of pain. Pain becomes chronic unless its causes and consequences are resolved. With improvements in cancer detection and survival among patients, pain has been considered as a great challenge because traditional therapies are partially effective in terms of providing relief. Cancer pain mechanisms are more poorly understood than neuropathic and inflammatory pain states. Chronic inflammatory pain and neuropathic pain are influenced by NB001, an adenylyl cyclase 1 (AC1)-specific inhibitor with analgesic effects. In this study, the analgesic effects of NB001 on cancer pain were evaluated. Results Pain was induced by injecting osteolytic murine sarcoma cell NCTC 2472 into the intramedullary cavity of the femur of mice. The mice injected with sarcoma cells for four weeks exhibited significant spontaneous pain behavior and mechanical allodynia. The continuous systemic application of NB001 (30 mg/kg, intraperitoneally, twice daily for three days) markedly decreased the number of spontaneous lifting but increased the mechanical paw withdrawal threshold. NB001 decreased the concentrations of cAMP and the levels of GluN2A, GluN2B, p-GluA1 (831), and p-GluA1 (845) in the anterior cingulate cortex, and inhibited the frequency of presynaptic neurotransmitter release in the anterior cingulate cortex of the mouse models. Conclusions NB001 may serve as a novel analgesic to treat bone cancer pain. Its analgesic effect is at least partially due to the inhibition of AC1 in anterior cingulate cortex. PMID:27612915

  8. Effects of Inhalable Microparticles of Seonpyejeongcheon-Tang in an Asthma Mouse Model

    PubMed Central

    Yang, Won-Kyung; Lee, Chul-Hwa; Kim, Min-Hee; Kim, Seung-Hyeong; Choi, Hae-Yoon; Yeo, Yoon; Park, Yang-Chun

    2016-01-01

    Objectives: Allergic asthma generally presents with symptoms of wheezing, coughing, breathlessness, and airway inflammation. Seonpyejeongcheon-tang (SJT) consists of 12 herbs. It originated from Jeongcheon-tang (JT), also known as Ding-chuan-tang, composed of 7 herbs, in She-sheng-zhong-miao-fang. This study aimed to evaluate the effects of local delivery of SJT via inhalable microparticles in an asthma mouse model. Methods: Microparticles containing SJT were produced by spray-drying with leucine as an excipient. SJT microparticles were evaluated with respect to their aerodynamic properties, in vitro cytotoxicity, in vivo toxicity, and therapeutic effects on ovalbumin (OVA)-induced asthma in comparison with orally-administered SJT. Results: SJT microparticles provided desirable aerodynamic properties (fine particle fraction of 48.9% ± 6.4% and mass median aerodynamic diameter of 3.7 ± 0.3 μm). SJT microparticles did not show any cytotoxicity against RAW 264.7 macrophages at concentrations of 0.01 - 3 mg/mL. Inhaled SJT microparticles decreased the levels of IL-4, IL-5, IL-13, IL-17A, eotaxin and OVA-IgE in bronchoalveolar lavage fluid (BALF) in mice with OVA-induced asthma. These effects were verified by histological evaluation of the levels of infiltration of inflammatory cells and collagen, destructions of alveoli and bronchioles, and hyperplasia of goblet cells in lung tissues. The effects of SJT microparticles in the asthma model were equivalent to those of orally-administered SJT extract. Conclusion: This study suggests that SJT is a promising agent for inhalation therapy for patients with asthma. PMID:28097040

  9. Chemomodulatory Effect of Trigonella foenum graecum (L.) Seed Extract on Two Stage Mouse Skin Carcinogenesis.

    PubMed

    Chatterjee, Sreemoyee; Kumar, Madhu; Kumar, Ashok

    2012-09-01

    Cancer is not a single disease but a group of complex genetic diseases of aged cells. Chemoprevention of cancer is the attempt to use natural and synthetic compounds to intervene in the early stages of cancer, before invasive disease begins. Consuming a diet rich in plant foods can provide a milieu of phytochemicals and non-nutritive plant substances that possess health-protective effects. Some phytochemicals derived in spices and herbs as well as other plants possess substantial cancer preventive properties. Thus the cancer chemo preventive potential of naturally occurring phytochemicals is of great interest because of their preventive role and as they are not perceived as "medicine". During the course of present study Trigonella foenum graecum (L.) seed- TFGS (commonly called fenugreek) extract was given at pre-initiational, post-initiational, promotional and throughout the experiment along with 7,12-dimethylbenz [a] anthracene DMBA and 12-O-tetradecanoylphorbol-13-acetate TPA treatment in Swiss albino mice. A significant reduction of papillomas in DMBA + TPA + TFGS (400 mg/kg. body wt.) treated group was found to be effective in decreasing the rate of tumor incidence in comparison to control. Furthermore, cumulative number of papillomas, tumor yield and tumor burden were also found to be reduced. The TFGS extract treatment before DMBA and TPA application (i.e. Pre initiation) were more effective than that of treatment during, and /or after DMBA treatment, however TFGS extract treatment was most effective when treated throughout all the stages of tumorigenesis. The TFGS treatment also showed a modulatory influence on mouse hepatic antioxidant defense system (GSH and LPO level).

  10. Effect of prolonged riluzole exposure on cultured motoneurons in a mouse model of ALS

    PubMed Central

    Schuster, J. E.; Fu, R.; Siddique, T.

    2012-01-01

    Riluzole is the only FDA-approved drug to treat amyotrophic lateral sclerosis, but its long-term effects on motoneurons are unknown. Therefore, we treated primary mouse spinal cord cultures with 2 μM riluzole for 4–9 days and then used whole cell patch clamp to record the passive and active properties of both wild-type and SOD1G93A motoneurons. At this concentration, riluzole blocks >50% of the sodium component of a persistent inward current that plays a major role in determining motoneuron excitability. Prolonged riluzole treatment significantly decreased the amplitude of the persistent inward current. This effect was specific for SOD1G93A motoneurons, where the amplitude decreased by 55.4%. In addition, prolonged treatment hyperpolarized the resting membrane potential as well as the voltage onset and voltage maximum of the persistent inward current (∼2–3 mV in each case). These effects appeared to offset one another and resulted in no change in the firing properties. In a subset of cells, acute reapplication of 2 μM riluzole during the recording decreased repetitive firing and the persistent inward current, which is consistent with the normal effects of riluzole. The downregulation of the persistent inward current in response to prolonged riluzole administration is in contrast to the strong upregulation of this same current after descending neuromodulatory drive to the cord is lost following spinal injury. This dichotomy suggests that decreased activation of G protein-coupled pathways can induce upregulation in the persistent inward current but that direct channel block is ineffective. PMID:22013234

  11. Effects of species and cellular activity of oviductal epithelial cells on their dialogue with co-cultured mouse embryos.

    PubMed

    Tan, Xiu-Wen; Ma, Suo-Feng; Yu, Jian-Ning; Zhang, Xia; Lan, Guo-Cheng; Liu, Xin-Yong; Han, Zheng-Bin; Tan, Jing-He

    2007-01-01

    An efficient co-culture system, especially with oviductal or uterine epithelial cells, is important not only for the production of high quality embryos, but also for the study of the molecular dialogue between embryos and their maternal environment. Although mouse embryos have been co-cultured successfully with oviductal epithelial cells (OECs) from several species, studies on the effects of species and functionality of OECs are few. Reports concerning the necessity of direct contact between the embryo and OECs and about the culture of mouse embryos in medium conditioned with heterologous OECs have been controversial. In this study, pronuclear embryos from Kunming mice, characterized by an obvious two-cell block in vitro, were co-cultured with mouse, goat, and chick OECs. The functionality of OECs was determined by analyzing the cell cycle, apoptosis, the numbers of mitochondria and cilia, and the ability both to support embryonic development and to remove hypoxanthine from the culture medium. The necessity of direct contact between OECs and embryos was studied by repeated renewal of culture medium with fresh conditioned medium, the culture of embryos in plastic wells connected by tunnels to wells with OEC monolayers, and the co-culture of embryos separated from OECs by a filter. Both goat and chick OECs supported mouse embryonic development, but their embryotrophic lifespan was shorter than that of the mouse OECs. Whereas media conditioned with mouse OECs supported mouse embryonic development satisfactorily, medium conditioned with goat OECs supported little development. Immediate dialogue between heterologous OECs and embryos was essential for efficient co-culture, whereas direct contact between the two cell types was not; neither dialogue nor contact was needed between isologous OECs and embryos. Embryotrophic activity and the ability to remove hypoxanthine from conditioned medium declined with time after confluence and number of passages of OECs, mainly because

  12. Effects of ubiquitin C-terminal hydrolase L1 deficiency on mouse ova.

    PubMed

    Koyanagi, Sayaka; Hamasaki, Hiroko; Sekiguchi, Satoshi; Hara, Kenshiro; Ishii, Yoshiyuki; Kyuwa, Shigeru; Yoshikawa, Yasuhiro

    2012-03-01

    Maternal proteins are rapidly degraded by the ubiquitin-proteasome system during oocyte maturation in mice. Ubiquitin C-terminal hydrolase L1 (UCHL1) is highly and specifically expressed in mouse ova and is involved in the polyspermy block. However, the role of UCHL1 in the underlying mechanism of polyspermy block is poorly understood. To address this issue, we performed a comprehensive proteomic analysis to identify maternal proteins that were relevant to the role of UCHL1 in mouse ova using UCHL1-deficient gad. Furthermore, we assessed morphological features in gad mouse ova using transmission electron microscopy. NACHT, LRR, and PYD domain-containing (NALP) family proteins and endoplasmic reticulum (ER) chaperones were identified by proteomic analysis. We also found that the 'maternal antigen that embryos require' (NLRP5 (MATER)) protein level increased significantly in gad mouse ova compared with that in wild-type mice. In an ultrastructural study, gad mouse ova contained less ER in the cortex than in wild-type mice. These results provide new insights into the role of UCHL1 in the mechanism of polyspermy block in mouse ova.

  13. Inhibitory effects of catechin derivatives on mammalian DNA polymerase and topoisomerase activities and mouse one-cell zygote development.

    PubMed

    Yoshida, Naoko; Kuriyama, Isoko; Yoshida, Hiromi; Mizushina, Yoshiyuki

    2013-03-01

    In this study, the inhibitory activities against DNA polymerases (pols) and DNA topoisomerases (topos) by eight major green tea catechin derivatives (flavan-3-ols) were investigated. Some catechins inhibited mammalian pols (α and β) and human topos (I and II), with (-)-epigallocatechin gallate (EGCg) the strongest inhibitor of both enzyme types, showing IC(50) values of 3.8-21.5 and 2.0-20.0 μM, respectively. EGCg did not affect the activities of plant (cauliflower) pol α or prokaryotic pols and showed no effect on the activities of other DNA metabolic enzymes tested. Next, a method was established for assay of mouse one-cell zygote development inhibition, the catechin derivatives screened for bioactivity, and the inhibition was assessed and their effects ranked as: EGCg > GCg > Cg > others. In the mouse one-cell zygote assay, EGCg at 50 μM increased abnormal cells and 75 μM of EGCg-induced apoptosis. The observed ranking of catechin derivative inhibition effects against mouse one-cell zygote development in vivo was similar to their ranking by topo inhibition in vitro rather than by pol inhibition; therefore, topo inhibition might have been effecting zygote development inhibition. These results suggested that catechin derivatives indeed reached the nuclear DNA where topo inhibition can occur, thus causing the observed cellular effects. From these findings, this zygote development inhibition assay will be useful as an anti-pregnant agent screening.

  14. Effect of Recombinant Human Keratinocyte Growth Factor (rHuKGF, Palifermin) on Radiation-Induced Mouse Urinary Bladder Dysfunction

    SciTech Connect

    Jaal, Jana Doerr, Wolfgang

    2007-10-01

    Purpose: To determine the effect of Palifermin (rHuKGF) on acute and late radiation effects in mouse urinary bladder. Methods and Materials: Graded radiation doses were applied on day 0. Single subcutaneous injections of Palifermin (15 mg/kg) were given on day -2 or day +2. Changes in bladder function (i.e., a reduction in bladder volume by {>=}50% of the individual preirradiation value) were assessed by cystometry. Results: Early changes in mouse bladder after irradiation occur in two phases. In the first early phase, a single injection of Palifermin on day -2 increased the ED{sub 50} (dose associated with a positive bladder response in 50% of the mice) from 20.0 {+-} 3.3 Gy to 27.1 {+-} 6.9 Gy (p < .0051). Palifermin given on day +2 was not beneficial. No significant effects of Palifermin were seen in the second early phase. However, Palifermin administration before, but not after, irradiation, also modified late radiation effects, with an ED{sub 50} of 22.2 {+-} 4.8 Gy compared with 16.2 {+-} 4.9 Gy in control animals (p < .0187). Conclusions: Initial early functional changes in the mouse urinary bladder after irradiation as well as late effects can be significantly reduced by a single administration of Palifermin before irradiation.

  15. Drugs that reverse disease transcriptomic signatures are more effective in a mouse model of dyslipidemia

    PubMed Central

    Wagner, Allon; Cohen, Noa; Kelder, Thomas; Amit, Uri; Liebman, Elad; Steinberg, David M; Radonjic, Marijana; Ruppin, Eytan

    2015-01-01

    High-throughput omics have proven invaluable in studying human disease, and yet day-to-day clinical practice still relies on physiological, non-omic markers. The metabolic syndrome, for example, is diagnosed and monitored by blood and urine indices such as blood cholesterol levels. Nevertheless, the association between the molecular and the physiological manifestations of the disease, especially in response to treatment, has not been investigated in a systematic manner. To this end, we studied a mouse model of diet-induced dyslipidemia and atherosclerosis that was subject to various drug treatments relevant to the disease in question. Both physiological data and gene expression data (from the liver and white adipose) were analyzed and compared. We find that treatments that restore gene expression patterns to their norm are associated with the successful restoration of physiological markers to their baselines. This holds in a tissue-specific manner—treatments that reverse the transcriptomic signatures of the disease in a particular tissue are associated with positive physiological effects in that tissue. Further, treatments that introduce large non-restorative gene expression alterations are associated with unfavorable physiological outcomes. These results provide a sound basis to in silico methods that rely on omic metrics for drug repurposing and drug discovery by searching for compounds that reverse a disease's omic signatures. Moreover, they highlight the need to develop drugs that restore the global cellular state to its healthy norm rather than rectify particular disease phenotypes. PMID:26148350

  16. Long-term and transgenerational effects of in vitro culture on mouse embryos.

    PubMed

    Calle, Alexandra; Fernandez-Gonzalez, Raul; Ramos-Ibeas, Priscila; Laguna-Barraza, Ricardo; Perez-Cerezales, Serafin; Bermejo-Alvarez, Pablo; Ramirez, Miguel Angel; Gutierrez-Adan, Alfonso

    2012-03-01

    The mouse is a convenient model to analyze the impact of in vitro culture (IVC) on the long-term health and physiology of the offspring, and the possible inheritance of these altered phenotypes. The preimplantation period of mammalian development has been identified as an early 'developmental window' during which environmental conditions may influence the pattern of future growth and physiology. Suboptimal culture media can cause severe alterations in mRNA expression in the embryo, which are associated with embryo quality reduction. In addition, the embryonic epigenetic reprogramming may also be severely affected by IVC, modifying epigenetic marks particularly in imprinted genes and epigenetically sensitive alleles. These altered epigenetic marks can persist after birth, resulting in adult health problems such as obesity, increased anxiety and memory deficits. Furthermore, some epigenetic modifications have been found to be transmitted to the offspring (epigenetic transgenerational inheritance), thereby providing a suitable model to asses risks of cross-generational effects of perturbing early embryo development. This review will highlight how preimplantation environment changes can not only affect developmental processes taking place at that time, but can also have an impact further, affecting offspring health and physiology; and how they may be transmitted to the next generation. We will also analyze the emerging role of epigenetics as a mechanistic link between the early environment and the later phenotype of the developing organism.

  17. Positive Prehabilitative Effect of Intense Treadmill Exercise for Ameliorating Cancer Cachexia Symptoms in a Mouse Model

    PubMed Central

    Jee, Hyunseok; Chang, Ji-Eun; Yang, Eun Joo

    2016-01-01

    Due to the importance of exercise in prehabilitation, we conducted this study to understand the effects of different exercise intensities on cancer-related cachexia. Forty adult male CDF1 mice were randomly divided into a non-cancer control group (N=10, NC), cancer control group (N=10, CC), cancer with moderate exercise group (N=10, ME, 70% maxHR), and cancer with intense exercise group (N=10, SE, 90% maxHR) for obtaining data such as tissue weight and body weight changes, quality of life (QoL) indicators, and levels of cytokines and a muscle homeostasis regulatory protein. We verified that mouse colonic carcinoma cancer cells metastasized based on our observation that the weight of CC group lungs was almost 87% greater than NC group lungs. Survival rates of SE, NC, ME, and CC groups were 100%, 100%, 80%, and 50%, respectively (p<0.01). Other results such as tissue and body weight changes, QoL indicators, and protein analyses also supported our hypothesis that the SE group had improved survival compared to CC and ME groups (p<0.05 and p<0.01, respectively). Our results suggest that exercise, especially intense exercise, improves QoL and survival rate and prevents muscle atrophy. These data suggest that exercise is an optimal prehabilitation choice to alleviate the negative impacts of cancer cachexia. PMID:27994677

  18. Antinociceptive effects of fluoxetine in a mouse model of anxiety/depression.

    PubMed

    Hache, Guillaume; Guiard, Bruno P; Le Dantec, Yannick; Orvoën, Sophie; David, Denis J; Gardier, Alain M; Coudoré, François

    2012-06-20

    Pain was reported by 60-90% of patients with depression, and chronic pain states are often linked to depression. Animal models of pain/depression are generally lacking for the identification of centrally active drugs. In the present study, pain sensitivity was assessed in a mouse model of anxiety/depression on the basis of chronic corticosterone (CORT) administration through the drinking water (CORT model). We measured thermal hyperalgesia as shown by a decrease in the latency to hind paw licking in the hot plate test and cold allodynia reflected by a decrease in the time spent on the plate set at 20°C in the thermal preference plate test. Subsequently, we determined the effect of chronic administration of the selective serotonin reuptake inhibitor fluoxetine (an antidepressant known to reverse anxiety/depressive-like state in CORT-treated mice) on pain relief. Fluoxetine administration reduced both heat hyperalgesia and cold allodynia, thus unveiling a putative link between mood and nociception in the CORT model. This hypothesis is consistent with previous clinical studies reporting the analgesic efficacy of fluoxetine in depressed patients suffering from pain disorders. Together, these results suggest that the CORT model, with pain/anxiety/depressive-like state, is a good candidate for translational research.

  19. Fatigue and caffeine effects in fast-twitch and slow-twitch muscles of the mouse.

    PubMed

    Brust, M

    1976-12-28

    In excised, curarized and massively stimulated fast-twitch mouse gastrocnemius muscles the early twitch tension enhancements (treppe) during 1/s activity between 10 and 36 degrees C increase and affect more contractions as temperature increases. Tension output eventually declines at a temperature-independent rate. Half-relaxation time lengthens below 25 degrees C and shortens above 25 degrees C. During 1/0.63s twitches half-relaxation time lengthens even at 25 degrees C. In slow-twitch soleus muscles activity decreases twitch tension and half-relaxation time regardless of temperature. Activity shortens contraction times in both muscles. Oxygen lack induced by NaN3 cannot account satisfactorily for these results. Activation is apparently more plastic in the gastrocnemius than in the soleus, and the relationship between the rates of their activation and relaxation processes and the temperature sensitivities of these rates also seem to differ. In both muscles caffeine can convert activity-induced shortened of half-relaxation times into prolongations. In the soleus this effect is more pronounced at 30 than at 25 degrees C. At high temperature and twitch rates caffeine reduces treppe amplitude and duration without affecting the eventual twitch tension decline in the gastrocnemius while it greatly accelerates twitch tension decline in the soleus. In both muscles intrafiber Ca2+ movements are apparently major determinants of fatigue behavior.

  20. Exploring diazepam’s effect on hemodynamic responses of mouse brain tissue by optical spectroscopic imaging

    PubMed Central

    Abookasis, David; Shochat, Ariel; Nesher, Elimelech; Pinhasov, Albert

    2014-01-01

    In this study, a simple duel-optical spectroscopic imaging apparatus capable of simultaneously determining relative changes in brain oxy-and deoxy-hemoglobin concentrations was used following administration of the anxiolytic compound diazepam in mice with strong dominant (Dom) and submissive (Sub) behavioral traits. Three month old mice (n = 30) were anesthetized and after 10 min of baseline imaging, diazepam (1.5 mg/kg) was administered and measurements were taken for 80 min. The mouse head was illuminated by white light based LED's and diffused reflected light passing through different channels, consisting of a bandpass filter and a CCD camera, respectively, was collected and analyzed to measure the hemodynamic response. This work’s major findings are threefold: first, Dom and Sub animals showed statistically significant differences in hemodynamic response to diazepam administration. Secondly, diazepam was found to more strongly affect the Sub group. Thirdly, different time-series profiles were observed post-injection, which can serve as a possible marker for the groups’ differentiation. To the best of our knowledge, this is the first report on the effects of an anxiolytic drug on brain hemodynamic responses in mice using diffused light optical imaging. PMID:25071958

  1. Effect of chelators on copper metabolism and copper pools in mouse hepatocytes

    SciTech Connect

    McArdle, H.J.; Gross, S.M.; Creaser, I.; Sargeson, A.M.; Danks, D.M.

    1989-04-01

    Disorders of copper storage are usually treated by chelation therapy. It is generally thought that the chelators act by mobilizing copper from the liver, hence allowing excretion in the urine. This paper has examined the effect of chelators on copper uptake and storage in mouse hepatocytes. Penicillamine, a clinically important chelator, does not block the uptake of copper or remove copper from hepatocytes. Two other copper chelators, sar and diamsar, which form very stable and kinetically inert Cu2+ complexes by encapsulating the metal ion in an organic cage, were shown to block copper accumulation by the cells and to remove up to 80% of cell-associated copper. They also removed most (approximately 80%) of the /sup 64/Cu accumulated by the cells in 30 min, but released only a small percentage (less than 20%) of that accumulated over 18 h. The results show that copper in the hepatocyte can be divided into at least two pools, an easily accessible one, and another, not removable even after long-term incubation with any of the chelators. Most of the copper normally found in the cell appeared to be associated with the former pool.

  2. Radiation effects on cellularity, proliferation and EGFR expression in mouse bladder urothelium.

    PubMed

    Jaal, Jana; Dörr, Wolfgang

    2010-04-01

    This study was designed to determine changes in cell numbers, proliferation (using Ki-67) and EGFR expression in mouse bladder urothelium during the early and late radiation response. Groups of mice were irradiated with a single dose of 20 Gy and assayed 0-360 days later. Urothelial cells were counted. After immunohistochemistry, the absolute and relative numbers of Ki-67(+) and EGFR(+) cells were analyzed. Radiation exposure resulted in a decrease in total urothelial cell numbers to 49% by day 31, with restoration of cellularity by day 180. In contrast, at day 360, an increase in total cell number (143%) was seen. Slightly increased Ki-67 expression was found at days 120 and 180 after treatment, followed by a pronounced elevation at days 240 and 360. Compared to controls, higher EGFR expression was detected up to day 360 after irradiation. A positive correlation was found between total urothelial cells numbers and Ki-67 as well as EGFR expression. Radiation exposure results in an increased urothelial expression of EGFR that precedes urothelial restoration, indicating a contribution of the EGF/EGFR system to urothelial proliferation and differentiation. Further studies are needed to evaluate the impact of EGFR inhibition on radiation effects in the urinary bladder.

  3. Combined effects of individual culture and atmospheric oxygen on preimplantation mouse embryos in vitro.

    PubMed

    Kelley, Rebecca L; Gardner, David K

    2016-11-01

    Embryos are routinely cultured individually, although this can reduce blastocyst development. Culture in atmospheric (20%) oxygen is also common, despite multiple detrimental effects on embryos. Although frequently occurring together, the consequences of this combination are unknown. Mouse embryos were cultured individually or grouped, under physiological (5%) or atmospheric (20%) oxygen. Embryos were assessed by time-lapse and blastocyst cell allocation. Compared with the control group (5% oxygen group culture), 5-cell cleavage (t5) was delayed in 5% oxygen individual culture and 20% oxygen group culture (59.91 ± 0.23, 60.70 ± 0.29, 63.06 ± 0.32 h post-HCG respectively, P < 0.05). Embryos in 20% oxygen individual culture were delayed earlier (3-cell cleavage), and at t5 cleaved later than embryos in other treatments (66.01 ± 0.40 h, P < 0.001), this delay persisting to blastocyst hatching. Compared with controls, hatching rate and cells per blastocyst were reduced in 5% oxygen single culture and 20% oxygen group culture (134.1 ± 3.4, 104.5 ± 3.2, 73.4 ± 2.2 cells, P < 0.001), and were further reduced in 20% oxygen individual culture (57.0 ± 2.8 cells, P < 0.001), as was percentage inner cell mass. These data indicate combining individual culture and 20% oxygen is detrimental to embryo development.

  4. Effects of major histocompatibility complex class II knockout on mouse bone mechanical properties during development

    NASA Technical Reports Server (NTRS)

    Simske, Steven J.; Bateman, Ted A.; Smith, Erin E.; Ferguson, Virginia L.; Chapes, Stephen K.

    2002-01-01

    We investigated the effect of major histocompatibility complex class II (MHC II) knockout on the development of the mouse peripheral skeleton. These C2D mice had less skeletal development at 8, 12 and 16 weeks of age compared to wild-type C57BL/6J (B6) male mice. The C2D mice had decreased femur mechanical, geometric and compositional measurements compared to wild type mice at each of these ages. C2D femur stiffness (S), peak force in 3-pt bending (Pm), and mineral mass (Min-M) were 74%, 64% and 66%, respectively, of corresponding B6 values at 8 weeks of age. Similar differences were measured at 12 weeks (for which C2D femoral S, Pm and Min-M were 71%, 72% and 73%, respectively, of corresponding B6 values) and at 16 weeks (for which C2D femoral S, Pm and Min-M were 80%, 66% and 61%, respectively, of corresponding B6 values). MHC II knockout delays the development of adult bone properties and is accompanied by lower body mass compared to wild-type controls.

  5. The Effect of Different Doses of Cigarette Smoke in a Mouse Lung Tumor Model

    PubMed Central

    Santiago, Ludmilla Nadir; de Camargo Fenley, Juliana; Braga, Lúcia Campanario; Cordeiro, José Antônio; Cury, Patrícia M.

    2009-01-01

    Few studies have used Balb/c mice as an animal model for lung carcinogenesis. In this study, we investigated the effect of different doses of cigarette smoking in the urethane-induced Balb/c mouse lung cancer model. After injection of 3mg/kg urethane intraperitoneally, the mice were then exposed to tobacco smoke once or twice a day, five times a week, in a closed chamber. The animals were randomly divided into four groups. The control group (G0) received urethane only. The experimental groups (G1, G2 and G3) received urethane and exposure to the smoke of 3 cigarettes for 10 minutes once a day, 3 cigarettes for 10 minutes twice a day, and 6 cigarettes for 10 minutes twice a day, respectively. The mice were sacrificed after 16 weeks of exposure, and the number of nodules and hyperplasia in the lungs was counted. The results showed no statistically significant difference in the mean number of nodules and hyperplasia among the different groups, suggesting that the Balb/c mice are not suitable to study the pathogenesis of tobacco smoking-induced tumor progression in the lungs. PMID:19079653

  6. Metabolomic Analysis of Exercise Effects in the POLG Mitochondrial DNA Mutator Mouse Brain

    PubMed Central

    Clark-Matott, Joanne; Saleem, Ayesha; Dai, Ying; Shurubor, Yevgeniya; Ma, Xiaoxing; Safdar, Adeel; Beal, M. Flint; Tarnopolsky, Mark; Simon, David K.

    2015-01-01

    Mitochondrial DNA (mtDNA) mutator mice express a mutated form of mtDNA polymerase gamma (PolgA) that results an accelerated accumulation of somatic mtDNA mutations in association with a premature aging phenotype. An exploratory metabolomic analysis of cortical metabolites in sedentary and exercised mtDNA mutator mice and wild-type (WT) littermate controls at 9–10 months of age was performed. Pathway analysis revealed deficits in the neurotransmitters acetylcholine, glutamate and aspartate that were ameliorated by exercise. Nicotinamide adenine dinucleotide (NAD+) depletion and evidence of increased Poly [ADP-ribose] polymerase 1 (PARP-1) activity were apparent in sedentary mtDNA mutator mouse cortex, along with deficits in carnitine metabolites and an upregulated antioxidant response that largely normalized with exercise. These data highlight specific pathways that are altered in the brain in association with an accelerated age-related accumulation of somatic mtDNA mutations. These results may have relevance to age-related neurodegenerative diseases associated with mitochondrial dysfunction, such as Alzheimer’s disease and Parkinson’s disease, and provide insights into potential mechanisms of beneficial effects of exercise on brain function. PMID:26294258

  7. The effect of low fluoride concentrations on microdamage accumulation in mouse tibias under impact loading

    NASA Astrophysics Data System (ADS)

    Luo, Qing; Chen, Nan; Zhou, Yan-Heng; Rong, Qi-Guo

    2015-12-01

    Microdamage accumulation in bone is one of the mechanisms for energy dissipation during the fracture process. Changes in the ultrastructure and composition of bone constituents due to aging or diseases could affect microdamage accumulation. Low concentration (1 mM) of sodium fluoride (NaF) has been used in this study to investigate the effect of ultrastructural changes on microdamage accumulation in mouse tibias following free-fall impact loadings. Twenty-two tibias were divided randomly into control and NaF-treated groups. Free-fall impact loading was conducted twice on each tibia to produce microdamage. The elastic modulus of NaF-treated tibias decreased significantly after the impact loadings, while there was no significant difference in the modulus of untreated samples between pre- and post-damage loadings. Microdamage morphology analysis showed that less and shorter microcracks existed in NaF-treated tibias compared with control bones. Meanwhile, more and longer microcracks were observed in tensile regions in untreated samples compared with that in compressive regions, whereas no significant difference was observed between tensile and compressive regions in NaF-treated bones. The results of this study indicate that more energy is required to generate microcracks in NaF-treated bone than in normal bone. A low concentration of fluoride treatment may increase the toughness of bone under impact loading.

  8. Restorative effect of hair follicular dermal cells on injured human hair follicles in a mouse model.

    PubMed

    Yamao, Mikaru; Inamatsu, Mutsumi; Okada, Taro; Ogawa, Yuko; Ishida, Yuji; Tateno, Chise; Yoshizato, Katsutoshi

    2015-03-01

    No model is available for examining whether in vivo-damaged human hair follicles (hu-HFs) are rescued by transplanting cultured hu-HF dermal cells (dermal papilla and dermal sheath cells). Such a model might be valuable for examining whether in vivo-damaged hu-HFs such as miniaturized hu-HFs in androgenic alopecia are improvable by auto-transplanting hu-HF dermal cells. In this study, we first developed mice with humanized skin composed of hu-keratinocytes and hu-dermal fibroblasts. Then, a 'humanized scalp model mouse' was generated by transplanting hu-scalp HFs into the humanized skin. To demonstrate the usability of the model, the lower halves of the hu-HFs in the model were amputated in situ, and cultured hu-HF dermal cells were injected around the amputated area. The results demonstrated that the transplanted cells contributed to the restoration of the damaged HFs. This model could be used to explore clinically effective technologies for hair restoration therapy by autologous cell transplantation.

  9. Specificity and Heterogeneity of Terahertz Radiation Effect on Gene Expression in Mouse Mesenchymal Stem Cells

    DOE PAGES

    Alexandrov, Boian S.; Phipps, M. Lisa; Alexandrov, Ludmil B.; ...

    2013-01-31

    In this paper, we report that terahertz (THz) irradiation of mouse mesenchymal stem cells (mMSCs) with a single-frequency (SF) 2.52 THz laser or pulsed broadband (centered at 10 THz) source results in irradiation specific heterogenic changes in gene expression. The THz effect depends on irradiation parameters such as the duration and type of THz source, and on the degree of stem cell differentiation. Our microarray survey and RT-PCR experiments demonstrate that prolonged broadband THz irradiation drives mMSCs toward differentiation, while 2-hour irradiation (regardless of THz sources) affects genes transcriptionally active in pluripotent stem cells. The strictly controlled experimental environment indicatesmore » minimal temperature changes and the absence of any discernable response to heat shock and cellular stress genes imply a non-thermal response. Computer simulations of the core promoters of two pluripotency markers reveal association between gene upregulation and propensity for DNA breathing. Finally, we propose that THz radiation has potential for non-contact control of cellular gene expression.« less

  10. Specificity and Heterogeneity of Terahertz Radiation Effect on Gene Expression in Mouse Mesenchymal Stem Cells

    PubMed Central

    Alexandrov, Boian S.; Phipps, M. Lisa; Alexandrov, Ludmil B.; Booshehri, Layla G.; Erat, Anna; Zabolotny, Janice; Mielke, Charles H.; Chen, Hou-Tong; Rodriguez, George; Rasmussen, Kim Ø.; Martinez, Jennifer S.; Bishop, Alan R.; Usheva, Anny

    2013-01-01

    We report that terahertz (THz) irradiation of mouse mesenchymal stem cells (mMSCs) with a single-frequency (SF) 2.52 THz laser or pulsed broadband (centered at 10 THz) source results in irradiation specific heterogenic changes in gene expression. The THz effect depends on irradiation parameters such as the duration and type of THz source, and on the degree of stem cell differentiation. Our microarray survey and RT-PCR experiments demonstrate that prolonged broadband THz irradiation drives mMSCs toward differentiation, while 2-hour irradiation (regardless of THz sources) affects genes transcriptionally active in pluripotent stem cells. The strictly controlled experimental environment indicates minimal temperature changes and the absence of any discernable response to heat shock and cellular stress genes imply a non-thermal response. Computer simulations of the core promoters of two pluripotency markers reveal association between gene upregulation and propensity for DNA breathing. We propose that THz radiation has potential for non-contact control of cellular gene expression. PMID:23378916

  11. Behavioural and EEG effects of chronic rapamycin treatment in a mouse model of tuberous sclerosis complex.

    PubMed

    Cambiaghi, Marco; Cursi, Marco; Magri, Laura; Castoldi, Valerio; Comi, Giancarlo; Minicucci, Fabio; Galli, Rossella; Leocani, Letizia

    2013-04-01

    Tuberous Sclerosis Complex (TSC) is a multisystem genetic disorder caused by mutation in either Tsc1 or Tsc2 genes that leads to the hyper activation of the mTOR pathway, a key signalling pathway for synaptic plasticity. TSC is characterized by benign tumors arising in different organs and severe neuropsychiatric symptoms, such as epilepsy, intellectual disability, autism, anxiety and depressive behaviour. Rapamycin is a potent inhibitor of mTOR and its efficacy in treating epilepsy and neurological symptoms remains elusive. In a mouse model in which Tsc1 has been deleted in embryonic telencephalic neural stem cells, we analyzed anxiety- and depression-like behaviour by elevated-plus maze (EPM), open-field test (OFT), forced-swim test (FST) and tail-suspension test (TST), after chronic administration of rapamycin. In addition, spectral analysis of background EEG was performed. Rapamycin-treated mutant mice displayed a reduction in anxiety- and depression-like phenotype, as shown by the EPM/OFT and FST, respectively. These results were inline with EEG power spectra outcomes. The same effects of rapamycin were observed in wild-type mice. Notably, in heterozygous animals we did not observe any EEG and/or behavioural variation after rapamycin treatment. Together these results suggest that both TSC1 deletion and chronic rapamycin treatment might have a role in modulating behaviour and brain activity, and point out to the potential usefulness of background EEG analysis in tracking brain dysfunction in parallel with behavioural testing.

  12. Specificity and Heterogeneity of Terahertz Radiation Effect on Gene Expression in Mouse Mesenchymal Stem Cells

    SciTech Connect

    Alexandrov, Boian S.; Phipps, M. Lisa; Alexandrov, Ludmil B.; Booshehri, Layla G.; Erat, Anna; Zabolotny, Janice; Mielke, Charles H.; Chen, Hou-Tong; Rodriguez, George; Rasmussen, Kim O.; Martinez, Jennifer S.; Bishop, Alan R.; Usheva, Anny

    2013-01-31

    In this paper, we report that terahertz (THz) irradiation of mouse mesenchymal stem cells (mMSCs) with a single-frequency (SF) 2.52 THz laser or pulsed broadband (centered at 10 THz) source results in irradiation specific heterogenic changes in gene expression. The THz effect depends on irradiation parameters such as the duration and type of THz source, and on the degree of stem cell differentiation. Our microarray survey and RT-PCR experiments demonstrate that prolonged broadband THz irradiation drives mMSCs toward differentiation, while 2-hour irradiation (regardless of THz sources) affects genes transcriptionally active in pluripotent stem cells. The strictly controlled experimental environment indicates minimal temperature changes and the absence of any discernable response to heat shock and cellular stress genes imply a non-thermal response. Computer simulations of the core promoters of two pluripotency markers reveal association between gene upregulation and propensity for DNA breathing. Finally, we propose that THz radiation has potential for non-contact control of cellular gene expression.

  13. Biocompatibility effects of biologically synthesized graphene in primary mouse embryonic fibroblast cells

    NASA Astrophysics Data System (ADS)

    Gurunathan, Sangiliyandi; Han, Jae Woong; Eppakayala, Vasuki; Dayem, Ahmed Abdal; Kwon, Deug-Nam; Kim, Jin-Hoi

    2013-09-01

    Due to unique properties and unlimited possible applications, graphene has attracted abundant interest in the areas of nanobiotechnology. Recently, much work has focused on the synthesis and properties of graphene. Here we show that a successful reduction of graphene oxide (GO) using spinach leaf extract (SLE) as a simultaneous reducing and stabilizing agent. The as-prepared SLE-reduced graphene oxide (S-rGO) was characterized by ultraviolet-visible spectroscopy and Fourier transform infrared spectroscopy. Dynamic light scattering technique was used to determine the average size of GO and S-rGO. Scanning electron microscopy and atomic force microscopy images provide clear surface morphological evidence for the formation of graphene. The resulting S-rGO has a mostly single-layer structure, is stable, and has significant water solubility. In addition, the biocompatibility of graphene was investigated using cell viability, leakage of lactate dehydrogenase and alkaline phosphatase activity in primary mouse embryonic fibroblast (PMEFs) cells. The results suggest that the biologically synthesized graphene has significant biocompatibility with PMEF cells, even at a higher concentration of 100 μg/mL. This method uses a `green', natural reductant and is free of additional stabilizing reagents; therefore, it is an environmentally friendly, simple, and cost-effective method for the fabrication of soluble graphene. This study could open up a promising view for substitution of hydrazine by a safe, biocompatible, and powerful reduction for the efficient deoxygenation of GO, especially in large-scale production and potential biomedical applications.

  14. Effect of chronic valproic Acid treatment on hepatic gene expression profile in wfs1 knockout mouse.

    PubMed

    Punapart, Marite; Eltermaa, Mall; Oflijan, Julia; Sütt, Silva; Must, Anne; Kõks, Sulev; Schalkwyk, Leonard C; Fernandes, Catherine; Vasar, Eero; Soomets, Ursel; Terasmaa, Anton

    2014-01-01

    Valproic acid (VPA) is a widely used anticonvulsant and mood-stabilizing drug whose use is often associated with drug-induced weight gain. Treatment with VPA has been shown to upregulate Wfs1 expression in vitro. Aim of the present study was to compare the effect of chronic VPA treatment in wild type (WT) and Wfs1 knockout (KO) mice on hepatic gene expression profile. Wild type, Wfs1 heterozygous, and homozygous mice were treated with VPA for three months (300 mg/kg i.p. daily) and gene expression profiles in liver were evaluated using Affymetrix Mouse GeneChip 1.0 ST array. We identified 42 genes affected by Wfs1 genotype, 10 genes regulated by VPA treatment, and 9 genes whose regulation by VPA was dependent on genotype. Among the genes that were regulated differentially by VPA depending on genotype was peroxisome proliferator-activated receptor delta (Ppard), whose expression was upregulated in response to VPA treatment in WT, but not in Wfs1 KO mice. Thus, regulation of Ppard by VPA is dependent on Wfs1 genotype.

  15. Differential gene expression in mouse liver associated with the hepatoprotective effect of clofibrate

    SciTech Connect

    Moffit, Jeffrey S.; Koza-Taylor, Petra H.; Holland, Ricky D.; Thibodeau, Michael S.; Beger, Richard D.; Lawton, Michael P.; Manautou, Jose E. . E-mail: jose.manautou@uconn.edu

    2007-07-15

    Pretreatment of mice with the peroxisome proliferator clofibrate (CFB) protects against acetaminophen (APAP)-induced hepatotoxicity. Previous studies have shown that activation of the nuclear peroxisome proliferator activated receptor-alpha (PPAR{alpha}) is required for this effect. The present study utilizes gene expression profile analysis to identify potential pathways contributing to PPAR{alpha}-mediated hepatoprotection. Gene expression profiles were compared between wild type and PPAR{alpha}-null mice pretreated with vehicle or CFB (500 mg/kg, i.p., daily for 10 days) and then challenged with APAP (400 mg/kg, p.o.). Total hepatic RNA was isolated 4 h after APAP treatment and hybridized to Affymetrix Mouse Genome MGU74 v2.0 GeneChips. Gene expression analysis was performed utilizing GeneSpring (registered) software. Our analysis identified 53 genes of interest including vanin-1, cell cycle regulators, lipid-metabolizing enzymes, and aldehyde dehydrogenase 2, an acetaminophen binding protein. Vanin-1 could be important for CFB-mediated hepatoprotection because this protein is involved in the synthesis of cysteamine and cystamine. These are potent antioxidants capable of ameliorating APAP toxicity in rodents and humans. HPLC-ESI/MS/MS analysis of liver extracts indicates that enhanced vanin-1 gene expression results in elevated cystamine levels, which could be mechanistically associated with CFB-mediated hepatoprotection.

  16. Effect of exposure to low-dose [gamma] radiation during late organogenesis in the mouse fetus

    SciTech Connect

    Devi, P.U.; Baskar, R.; Hande, M.P. )

    1994-04-01

    The adominal region of pregnant Swiss mice was exposed to 0.05 to 0.50 of [gamma] radiation on day 11.5 postcoitus. The animals were sacrificed on day 18 gestation and the fetuses were examined for mortality, growth retardation, changes in head size and brain weight, and incidence of microphthalmia. No marked increase in fetal mortality or growth retardation was observed below 0.25 Gy; the increase in these parameters was significant only at 0.50 Gy. A significant reduction in head size and brain weight and a significant increase in the incidence of microphthalmia were observed at doses above 0.15 Gy. Detectable levels of microcephaly and microphthalmia were evident even at 0.10 Gy. A linear dose response was seen for these effects in the dose range of 0.05 to 0.15 Gy. It is concluded that the late period of organogenesis in the mouse, especially between days 10 and 12 postcoitus, is a particularly sensitive phase in the development of the skull, brain and eye. 21 refs., 4 figs., 4 tabs.

  17. An effective manual deboning method to prepare intact mouse nasal tissue with preserved anatomical organization.

    PubMed

    Dunston, David; Ashby, Sarah; Krosnowski, Kurt; Ogura, Tatsuya; Lin, Weihong

    2013-08-10

    The mammalian nose is a multi-functional organ with intricate internal structures. The nasal cavity is lined with various epithelia such as olfactory, respiratory, and squamous epithelia which differ markedly in anatomical locations, morphology, and functions. In adult mice, the nose is covered with various skull bones, limiting experimental access to internal structures, especially those in the posterior such as the main olfactory epithelium (MOE). Here we describe an effective method for obtaining almost the entire and intact nasal tissues with preserved anatomical organization. Using surgical tools under a dissecting microscope, we sequentially remove the skull bones surrounding the nasal tissue. This procedure can be performed on both paraformaldehyde-fixed and freshly dissected, skinned mouse heads. The entire deboning procedure takes about 20-30 min, which is significantly shorter than the experimental time required for conventional chemical-based decalcification. In addition, we present an easy method to remove air bubbles trapped between turbinates, which is critical for obtaining intact thin horizontal or coronal or sagittal sections from the nasal tissue preparation. Nasal tissue prepared using our method can be used for whole mount observation of the entire epithelia, as well as morphological, immunocytochemical, RNA in situ hybridization, and physiological studies, especially in studies where region-specific examination and comparison are of interest.

  18. Neurogenic and neurotrophic effects of BDNF peptides in mouse hippocampal primary neuronal cell cultures.

    PubMed

    Cardenas-Aguayo, Maria del Carmen; Kazim, Syed Faraz; Grundke-Iqbal, Inge; Iqbal, Khalid

    2013-01-01

    The level of brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, is down regulated in Alzheimer's disease (AD), Parkinson's disease (PD), depression, stress, and anxiety; conversely the level of this neurotrophin is increased in autism spectrum disorders. Thus, modulating the level of BDNF can be a potential therapeutic approach for nervous system pathologies. In the present study, we designed five different tetra peptides (peptides B-1 to B-5) corresponding to different active regions of BDNF. These tetra peptides were found to be non-toxic, and they induced the expression of neuronal markers in mouse embryonic day 18 (E18) primary hippocampal neuronal cultures. Additionally, peptide B-5 induced the expression of BDNF and its receptor, TrkB, suggesting a positive feedback mechanism. The BDNF peptides induced only a moderate activation (phosphorylation at Tyr 706) of the TrkB receptor, which could be blocked by the Trk's inhibitor, K252a. Peptide B-3, when combined with BDNF, potentiated the survival effect of this neurotrophin on H(2)O(2)-treated E18 hippocampal cells. Peptides B-3 and B-5 were found to work as partial agonists and as partial antagonists competing with BDNF to activate the TrkB receptor in a dose-dependent manner. Taken together, these results suggest that the described BDNF tetra peptides are neurotrophic, can modulate BDNF signaling in a partial agonist/antagonist way, and offer a novel therapeutic approach to neural pathologies where BDNF levels are dysregulated.

  19. Effect of human mesenchymal stem cell transplantation on cerebral ischemic volume‐controlled photothrombotic mouse model

    PubMed Central

    Choi, Yun‐Kyong; Urnukhsaikhan, Enerelt; Yoon, Hee‐Hoon; Seo, Young‐Kwon

    2016-01-01

    Abstract Various animal models of stroke have been developed to simulate the human stroke with the development of the ischemic method facilitates preclinical stroke research. The photothrombotic ischemia model, based on the intravascular photochemical reaction, is widely used for in vivo studies. However, this study has limitations, which generated a relatively small‐sized infarction model on superficial cortex compared to that of the MCAO stroke model. In this study, the photothorombosis mouse model is adapted and the optimum conditions for generation of cell death and deficits with high reproducibility is determined. The extent of damage within the cortex was assessed by infarct volume and cellular/behavioral analyses. In this model, the neural cell death and inflammatory responses is detected; moreover, the degree of behavioral impairment is correlated with the brain infarct volume. Further, to enhance the understanding of neural repair, the effect of neural differentiation by transplantation of human bone marrow‐derived mesenchymal stem cells (BM‐MSCs) is analyzed. The authors demonstrated that transplantation of BM‐MSCs promoted the neural differentiation and behavioral performance in their photothrombosis model. Therefore, this research was meaningful to provide a stable animal model of stroke with low variability. Moreover, this model will facilitate development of novel MSC‐based therapeutics for stroke. PMID:27440447

  20. Suppression of Sproutys Has a Therapeutic Effect for a Mouse Model of Ischemia by Enhancing Angiogenesis

    PubMed Central

    Taniguchi, Koji; Sasaki, Ken-ichiro; Watari, Kousuke; Yasukawa, Hideo; Imaizumi, Tsutomu; Ayada, Toranoshin; Okamoto, Fuyuki; Ishizaki, Takuma; Kato, Reiko; Kohno, Ri-ichiro; Kimura, Hiroshi; Sato, Yasufumi; Ono, Mayumi; Yonemitsu, Yoshikazu; Yoshimura, Akihiko

    2009-01-01

    Sprouty proteins (Sproutys) inhibit receptor tyrosine kinase signaling and control various aspects of branching morphogenesis. In this study, we examined the physiological function of Sproutys in angiogenesis, using gene targeting and short-hairpin RNA (shRNA) knockdown strategies. Sprouty2 and Sprouty4 double knockout (KO) (DKO) mice were embryonic-lethal around E12.5 due to cardiovascular defects. The number of peripheral blood vessels, but not that of lymphatic vessels, was increased in Sprouty4 KO mice compared with wild-type (WT) mice. Sprouty4 KO mice were more resistant to hind limb ischemia and soft tissue ischemia than WT mice were, because Sprouty4 deficiency causes accelerated neovascularization. Moreover, suppression of Sprouty2 and Sprouty4 expression in vivo by shRNA targeting accelerated angiogenesis and has a therapeutic effect in a mouse model of hind limb ischemia. These data suggest that Sproutys are physiologically important negative regulators of angiogenesis in vivo and novel therapeutic targets for treating peripheral ischemic diseases. PMID:19424491

  1. Effect of polymorphisms on ligand binding by mouse major urinary proteins

    PubMed Central

    Darwish Marie, Amr; Veggerby, Christina; Robertson, Duncan H.L.; Gaskell, Simon J.; Hubbard, Simon J.; Martinsen, Line; Hurst, Jane L.; Beynon, Robert J.

    2001-01-01

    Mouse urine contains an abundance of major urinary proteins, lipocalins, whose roles include slow release of semiochemicals. These proteins are highly polymorphic, with small sequence differences between individual members. In this study, we purified to homogeneity four of these proteins from two strains of inbred mice and characterized them by mass spectrometry. This analysis has led to the discovery of another variant in this group of proteins. Three of the polymorphic variants that map to the surface have no effect on the binding of a fluorescent probe in the binding cavity, but the fourth, characterized by a Phe to Val substitution in the cavity, shows a substantially lower affinity and fluorescence yield for the probe. These results are interpreted in light of the known crystal structure of the protein and molecular modeling calculations, which rationalize the experimental findings. This work raises the possibility that the calyx-binding site can show specificity for different ligands, the implications of which on pheromone binding and chemical communication are discussed. PMID:11266626

  2. Effects of glial glutamate transporter inhibitors on intracellular Na+ in mouse astrocytes.

    PubMed

    Chatton, J Y; Shimamoto, K; Magistretti, P J

    2001-03-02

    The effects of inhibitors of the glial Na+/glutamate co-transporter on the intracellular Na+ concentration ([Na+](i)) were investigated in mouse cortical astrocytes. [Na+](i) was monitored by fluorescence microscopy on single astrocytes using the Na+-sensitive probe sodium-binding benzofuran isophtalate. Application of the competitive inhibitors threo-beta-hydroxyaspartate (THA) and trans-pyrrolidine-2,4-dicarboxylic acid (t-PDC) resulted in robust and reversible increases in [Na+](i) that were comparable in shape to the response to glutamate but about twice lower in amplitude. As previously observed with glutamate, the amplitude of the [Na+](i) response to these compounds was concentration-dependent with EC(50) values of 11.1 microM (THA) and 7.6 microM (t-PDC), as was the initial rate of [Na+](i) rise (EC(50) values of 14.8 microM for THA and 11.5 microM for t-PDC). Both compounds diminished the response to subsequent glutamate applications, possibly because of an inhibitory effect of the intracellularly-accumulated compounds. In comparison, the newly-developed compound threo-beta-benzyloxyaspartate (TBOA) alone did not cause any significant alteration of [Na+](i) up to a concentration of 500 microM . TBOA inhibited the [Na+](i) response evoked by 200 microM glutamate in a concentration-dependent manner with IC(50) values of 114 and 63 microM, as measured on the amplitude and the initial rate, respectively. The maximum inhibition of glutamate-evoked [Na+](i) increase by TBOA was approximately 70%. The residual response persisted in the presence of a non-NMDA receptor antagonist or the inhibitor of the GLT-1 glutamate transporters, dihydrokainate (DHK). In view of the complete reversibility of its effects, TBOA represents a very useful pharmacological tool for studies of glutamate transporters.

  3. The Therapeutic Effect of PLAG against Oral Mucositis in Hamster and Mouse Model

    PubMed Central

    Lee, Ha-Reum; Yoo, Nina; Kim, Joo Heon; Sohn, Ki-Young; Kim, Heung-Jae; Kim, Myung-Hwan; Han, Mi Young; Yoon, Sun Young; Kim, Jae Wha

    2016-01-01

    Chemotherapy-induced mucositis can limit the effectiveness of cancer therapy and increase the risk of infections. However, no specific therapy for protection against mucositis is currently available. In this study, we investigated the therapeutic effect of PLAG (1-palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol, acetylated diglyceride) in 5-fluorouracil (5-FU)-induced oral mucositis animal models. Hamsters were administered 5-FU (80 mg/kg) intraperitoneally on days 0, 6, and 9. The animals’ cheek pouches were then scratched equally with the tip of an 18-gage needle on days 1, 2, and 7. PLAG was administered daily at 250 mg/kg/day. PLAG administration significantly reduced 5-FU/scratching-induced mucositis. Dramatic reversal of weight loss in PLAG-treated hamsters with mucositis was observed. Histochemical staining data also revealed newly differentiated epidermis and blood vessels in the cheek pouches of PLAG-treated hamsters, indicative of recovery. Whole blood analyses indicated that PLAG prevents 5-FU-induced excessive neutrophil transmigration to the infection site and eventually stabilizes the number of circulating neutrophils. In a mouse mucositis model, mice with 5-FU-induced disease treated with PLAG exhibited resistance to body-weight loss compared with mice that received 5-FU or 5-FU/scratching alone. PLAG also dramatically reversed mucositis-associated weight loss and inhibited mucositis-induced inflammatory responses in the tongue and serum. These data suggest that PLAG enhances recovery from 5-FU-induced oral mucositis and may therefore be a useful therapeutic agent for treating side effects of chemotherapy, such as mucositis and cachexia. PMID:27800302

  4. Apoptotic effects of the 'designer drug' methylenedioxypyrovalerone (MDPV) on the neonatal mouse brain.

    PubMed

    Adám, Agota; Gerecsei, László István; Lepesi, Nikolett; Csillag, András

    2014-09-01

    The designer drug of cathinone family, methylenedioxypyrovalerone (MDPV), is a cheap and frequently used psychoactive drug of abuse. However, its mechanism of action, particularly its potential detrimental effect on the developing brain, is largely unknown, despite the fact that pregnant females may occur among the users. The objective of our study was to identify the brain areas sensitive for a possible apoptotic effect of the widely abused MDPV on the developing brain. To this end, we used a mouse model which can be compared with the human fetus of third trimester, considering the developmental stage of the brain. Litters of 7-day-old C57BL/6J mice were treated either with i.p. injection of 10mg/kg b.wt.of MDPV or vehicle (saline), and sacrificed after 24h. Similar dose of MDPV enhanced locomotor activity of pups. The brains were processed for anti-caspase 3 (Casp3) immunohistochemistry and the apoptotic cells were identified and counted. We found prominent increase in the number of apoptotic cells in the piriform cortex, retrosplenial area, hippocampus CA1 and nucleus accumbens, whereas the overall density of cells did not change significantly in these regions. The neurons of the nucleus accumbens appeared to be especially sensitive to MDPV: Casp3-immunoreactive cells marked out the core and shell regions of the accumbens. Highest percentage of apoptotic cells as compared to total cell density was also found in the nucleus accumbens. However, we did not observe the same effect on the brain of adult mice. Thus, MDPV did not seem to increase apoptosis in the mature nervous system. The results are in agreement with the assumption that cathinones (in particular MDPV) may adversely affect neural integrity in the developing CNS.

  5. Neuropeptidomics of mouse hypothalamus after imipramine treatment reveal somatostatin as a potential mediator of antidepressant effects.

    PubMed

    Nilsson, Anna; Stroth, Nikolas; Zhang, Xiaoqun; Qi, Hongshi; Fälth, Maria; Sköld, Karl; Hoyer, Daniel; Andrén, Per E; Svenningsson, Per

    2012-01-01

    Excessive activation of the hypothalamic-pituitary-adrenal (HPA) axis has been associated with numerous diseases, including depression, and the tricyclic antidepressant imipramine has been shown to suppress activity of the HPA axis. Central hypothalamic control of the HPA axis is complex and involves a number of neuropeptides released from multiple hypothalamic subnuclei. The present study was therefore designed to determine the effects of imipramine administration on the mouse hypothalamus using a peptidomics approach. Among the factors found to be downregulated after acute (one day) or chronic (21 days) imipramine administration were peptides derived from secretogranin 1 (chromogranin B) as well as peptides derived from cerebellin precursors. In contrast, peptides SRIF-14 and SRIF-28 (1-11) derived from somatostatin (SRIF, somatotropin release inhibiting factor) were significantly upregulated by imipramine in the hypothalamus. Because diminished SRIF levels have long been known to occur in depression, a second part of the study investigated the roles of individual SRIF receptors in mediating potential antidepressant effects. SRA880, an antagonist of the somatostatin-1 autoreceptor (sst1) which positively modulates release of endogenous SRIF, was found to synergize with imipramine in causing antidepressant-like effects in the tail suspension test. Furthermore, chronic co-administration of SRA880 and imipramine synergistically increased BDNF mRNA expression in the cerebral cortex. Application of SRIF or L054264, an sst2 receptor agonist, but not L803807, an sst4 receptor agonist, increased phosphorylation of CaMKII and GluR1 in cerebrocortical slices. Our present experiments thus provide evidence for antidepressant-induced upregulation of SRIF in the brain, and strengthen the notion that augmented SRIF expression and signaling may counter depressive-like symptoms. This article is part of a Special Issue entitled 'Anxiety and Depression'.

  6. Neuroprotective effects of swimming training in a mouse model of Parkinson's disease induced by 6-hydroxydopamine.

    PubMed

    Goes, A T R; Souza, L C; Filho, C B; Del Fabbro, L; De Gomes, M G; Boeira, S P; Jesse, C R

    2014-01-03

    Parkinson's disease (PD) is characterized by progressive dopamine (DA) depletion in the striatum. Exercise has been shown to be a promising non-pharmacological approach to reduce the risk of neurodegeneration diseases. This study was designed to investigate the potential neuroprotective effect of swimming training (ST) in a mouse model of PD induced by 6-hydroxydopamine (6-OHDA) in mice. The present study demonstrated that a 4-week ST was effective in attenuating the following impairments resulting from 6-OHDA exposure: (i) depressive-like behavior in the tail suspension test; (ii) increase in the number of falls in the rotarod test; (iii) impairment on long-term memory in the object recognition test; (iv) increase of the reactive species and interleukin 1-beta (IL-1β) levels; (v) inhibition of the glutathione peroxidase (GPx) activity; (vi) rise of the glutathione reductase (GR) and glutathione S-transferase (GST) activities and vii) decrease of DA, homovanillic acid (HVA) and 3,4-dihydroxyphenylacetic acid (DOPAC) levels. The mechanisms involved in this study are the modulation of GPx, GR and GST activities as well as IL-1β level in a PD model induced by 6-OHDA, protecting against the decrease of DA, DOPAC and HVA levels in the striatum of mice. These findings reinforce that one of the effects induced by exercise on neurodegenerative disease, such as PD, is due to antioxidant and anti-inflammatory properties. We suggest that exercise attenuates cognitive and motor declines, depression, oxidative stress, and neuroinflammation induced by 6-OHDA supporting the hypothesis that exercise can be used as a non-pharmacological tool to reduce the symptoms of PD.

  7. Ethanol exerts dual effects on calcium homeostasis in CCK-8-stimulated mouse pancreatic acinar cells

    PubMed Central

    Fernández-Sánchez, Marcela; del Castillo-Vaquero, Angel; Salido, Ginés M; González, Antonio

    2009-01-01

    Background A significant percentage of patients with pancreatitis often presents a history of excessive alcohol consumption. Nevertheless, the patho-physiological effect of ethanol on pancreatitis remains poorly understood. In the present study, we have investigated the early effects of acute ethanol exposure on CCK-8-evoked Ca2+ signals in mouse pancreatic acinar cells. Changes in [Ca2+]i and ROS production were analyzed employing fluorescence techniques after loading cells with fura-2 or CM-H2DCFDA, respectively. Results Ethanol, in the concentration range from 1 to 50 mM, evoked an oscillatory pattern in [Ca2+]i. In addition, ethanol evoked reactive oxygen species generation (ROS) production. Stimulation of cells with 1 nM or 20 pM CCK-8, respectively led to a transient change and oscillations in [Ca2+]i. In the presence of ethanol a transformation of 20 pM CCK-8-evoked physiological oscillations into a single transient increase in [Ca2+]i in the majority of cells was observed. Whereas, in response to 1 nM CCK-8, the total Ca2+ mobilization was significantly increased by ethanol pre-treatment. Preincubation of cells with 1 mM 4-MP, an inhibitor of alcohol dehydrogenase, or 10 μM of the antioxidant cinnamtannin B-1, reverted the effect of ethanol on total Ca2+ mobilization evoked by 1 nM CCK-8. Cinnamtannin B-1 blocked ethanol-evoked ROS production. Conclusion ethanol may lead, either directly or through ROS generation, to an over stimulation of pancreatic acinar cells in response to CCK-8, resulting in a higher Ca2+ mobilization compared to normal conditions. The actions of ethanol on CCK-8-stimulation of cells create a situation potentially leading to Ca2+ overload, which is a common pathological precursor that mediates pancreatitis. PMID:19878551

  8. Effect of aerosol particles generated by ultrasonic humidifiers on the lung in mouse

    PubMed Central

    2013-01-01

    Background Ultrasonic humidifiers silently generate water droplets as a cool fog and produce most of the dissolved minerals in the fog in the form of an aerosolized “white dust.” However, the health effect of these airborne particles is largely unknown. This study aimed to characterize the aerosol particles generated by ultrasonic humidifiers and to investigate their effect on the lung tissue of mice. Methods An ultrasonic humidifier was operated with tap water, high-silica water, ultrapure water, or other water types. In a chamber (0.765 m3, ventilation ratio 11.5 m3/hr), male ICR mice (10-week-old) were exposed by inhalation to an aerosol-containing vapor generated by the humidifier. After exposure for 7 or 14 days, lung tissues and bronchoalveolar lavage fluid (BALF) were collected from each mouse and examined by microarray, quantitative reverse transcription-polymerase chain reaction, and light and electron microscopy. Results Particles generated from the humidifier operated with tap water had a mass concentration of 0.46 ± 0.03 mg/m3, number concentration of (5.0 ± 1.1) × 104/cm3, and peak size distribution of 183 nm. The particles were phagocytosed by alveolar macrophages in the lung of mice. Inhalation of particles caused dysregulation of genes related to mitosis, cell adhesion molecules, MHC molecules and endocytosis, but did not induce any signs of inflammation or tissue injury in the lung. Conclusion These results indicate that aerosol particles released from ultrasonic humidifiers operated with tap water initiated a cellular response but did not cause severe acute inflammation in pulmonary tissue. Additionally, high mineral content tap water is not recommended and de-mineralized water should be recommended in order to exclude any adverse effects. PMID:24359587

  9. Coffee-mediated protective effects against directly acting genotoxins and gamma-radiation in mouse lymphoma cells.

    PubMed

    Abraham, S K; Vukicevic, V; Stopper, H

    2004-03-01

    The cytokinesis-block micronucleus test was performed using L5178Y mouse lymphoma cells to ascertain whether or not standard (caffeinated) instant coffee, the commonly consumed polyphenolic beverage with antioxidant activity can protect against chromosomal damage induced by the directly acting agents N-methyl-N-nitro-N-nitrosoguanidine (MNNG), mitomycin C (MMC), methyl methanesulfonate (MMS) and gamma radiation. Our results demonstrated significant reductions in the in vitro genotoxic effects of MNNG, MMC, and MMS following co-treatment of mouse lymphoma cells with standard instant coffee. Subsequently, the comet assay was carried out to assess the effect of coffee co-treatment on the level of DNA damage induced by MMS in mouse lymphoma cells. The results demonstrated a significant reduction in MMS-induced DNA damage following co-treatment with standard instant coffee. Protective effects were observed in mouse lymphoma cells which were treated with coffee immediately after exposure to gamma radiation (1 and 2 Gy). Another experiment showed protection when the mammalian cells were irradiated (0.5 and 1 Gy) midway (at 2 h) during a 4 h coffee treatment. However, the protective effect against the lower dose (0.5 Gy) was not significant. In addition we assessed the modulatory effect of coffee on MNNG-induced apoptotic frequency by flow cytometry. The results revealed only a minor influence of coffee on the frequency of apoptotic cells induced by the test compounds, rendering an increase in sensitivity for apoptosis as a reason for the reduced genomic damage an unlikely or at least incomplete explanation.

  10. Immunomodulatory and anti-tumor effects of Nigella glandulifera freyn and sint seeds on ehrlich ascites carcinoma in mouse model

    PubMed Central

    Aikemu, Ainiwaer; Xiaerfuding, Xiadiya; Shiwenhui, Chengyufeng; Abudureyimu, Meiliwan; Maimaitiyiming, Dilinuer

    2013-01-01

    Aim: This study investigated the immunomodulatory and anti-tumor effects of Nigella glandulifera Freyn and Sint seeds (NGS) on Ehrlich ascites carcinoma in a mouse model. Materials and Methods: Kunming mice with transplanted Ehrlich ascites tumor cells (EAC) were treated with NGS by oral administration. On the 11th day after the EAC implant, mouse thymus, liver, spleen and kidney tumors were removed for histopathological analysis. Blood samples were taken for hematological and biochemical analyses. Results: The results indicate that NGS treatment leads to an increase in TNF-α, IL-1β, and IL-2 blood serum levels. Absence of viable EAC and presence of necrotic cells were observed in the tumor tissue of the NGS-treated animals. Conclusions: The study results indicated that a water extract of NGS had the highest anti-tumor effect. Moreover, NGS treatment also showed an increase in the immune system activity. PMID:23929999

  11. Inhibitory effect of quercetin isolated from rose hip (Rosa canina L.) against melanogenesis by mouse melanoma cells.

    PubMed

    Fujii, Takashi; Saito, Morio

    2009-09-01

    We investigated the effects of compounds isolated from a methanolic extract of rose hips on melanin biosynthesis in B16 mouse melanoma cells and the possible mechanisms responsible for the inhibition of melanin biosynthesis. We found that, among the isolated compounds, quercetin was a particularly potent melanogenesis inhibitor. To reveal the mechanism for this inhibition, the effects on tyrosinase of B16 mouse melanoma were measured. Quercetin decreased the intracellular tyrosinase activity as well as the tyrosinase activity in a cell culture-free system. We also examined the cellular level of tyrosinase protein and found that quercetin dose-dependently inhibited tyrosinase protein expression. We consider from these results that the inhibition of melanogenesis by quercetin was due to the inhibition of both tyrosinase activity and of the protein expression.

  12. Effects of transforming growth factor type beta on expression of cytoskeletal proteins in endosteal mouse osteoblastic cells

    SciTech Connect

    Lomri, A.; Marie, P.J. )

    1990-01-01

    Transforming growth factor beta (TGF beta) has been shown to influence the growth and differentiation of many cell types in vitro. We have examined the effects of TGF beta on cell morphology and cytoskeletal organization in relation to parameters of cell proliferation and differentiation in endosteal osteoblastic cells isolated from mouse caudal vertebrae. Treatment of mouse osteoblastic cells cultured in serum free medium for 24 hours with TGF beta (1.5-30 ng/mL) slightly (-23%) inhibited alkaline phosphatase activity. In parallel, TGF beta (0.5-30 ng/mL, 24 hours) greatly increased cell replication as evaluated by (3H)-thymidine incorporation into DNA (157% to 325% of controls). At a median dose (1.5 ng/mL) that affected both alkaline phosphatase and DNA synthesis (235% of controls) TGF beta induced rapid (six hours) cell respreading of quiescent mouse osteoblastic cells. This effect was associated with increased polymerization of actin, alpha actinin, and tubulins, as evaluated by both biochemical and immunofluorescence methods. In addition, TGF beta (1.5 ng/mL) increased the de novo biosynthesis of actin, alpha actinin, vimentin, and tubulins, as determined by {sup 35}S methionine labeling and fractionation of cytoskeletal proteins using two-dimensional gel electrophoresis. These effects were rapid and transient, as they occurred at six hours and were reversed after 24 hours of TGF beta exposure. The results indicate that the stimulatory effect of TGF beta on DNA synthesis in endosteal mouse osteoblastic cells is associated with a transient increase in cell spreading associated with enhanced polymerization and synthesis of cytoskeletal proteins.

  13. Effects of the co-carcinogen catechol on benzo(a)pyrene metabolism and DNA adduct formation in mouse skin

    SciTech Connect

    Melikian, A.A.; Leszczynska, J.M.; Hecht, S.S.; Hoffmann, D.

    1986-01-01

    We have studied the effects of the co-carcinogen catechol (1,2-dihydroxybenzene) on the metabolic activation of (/sup 3/H) benzo(a)pyrene (BaP) in mouse skin, in vivo and on the binding of BaP metabolites to DNA and protein at intervals from 0.5-24 h. Upon topical application of 0.015 mg (/sup 3/H)BaP and 0.25 or 0.5 mg catechol per mouse, catechol had little effect on the total amount of (/sup 3/H)BaP metabolized in mouse skin, but it affected the relative proportions of (/sup 3/H)BaP metabolites. Catechol (0.5 mg/mouse) decreased the proportion of water-soluble (/sup 3/H)BaP metabolites, ethyl acetate-soluble polar metabolites and quinones, but doubled the levels of unconjugated 3-hydroxy-BaP at all measured intervals after treatment. Catechol also caused a small increase in the levels of trans-7,8-dihydroxy-7,8-dihydroBaP and trans-9,10-dihydroxy-9,10-dihydroBaP 0.5 h after treatment. Two hours after treatment, the levels of these metabolites subsided to those of the controls. Catechol did not affect the levels of glutathione conjugates of BaP. However, it caused a decrease in glucuronide and sulphate conjugate formation from BaP. Catechol caused an approximately 2-fold increase in the formation of anti-7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydroBaP (BPDE) DNA adducts and elevated the ratio of anti-syn-BPDE-DNA adducts 1.6 to 2.9-fold. Catechol treatment increased the radioactivity associated with epidermal proteins after (/sup 3/H)BaP application. Because catechol increased levels of 3-hydroxyBaP, we considered the possibility that 3-hydroxyBaP might enhance the tumor initiating activities of BaP or BPDE in mouse skin; a bioassay demonstrated that this was not the case. The results of this study indicate that one important effect of catechol related to its co-carcinogenicity is its ability to enhance formation of anti-BPDE-DNA adducts in mouse skin.

  14. Effects of methylmercury on muscarinic receptors in the mouse brain: A quantitative autoradiographic study

    SciTech Connect

    Lee, Haesung; Yee, S.; Geddes, J.; Choi, Byung, H. Univ. of California, Irvine )

    1991-03-11

    Methylmercury (MeHg) is reported to inhibit several stages of cholinergic neurotransmission in brain tissue in-vitro and in-vivo. To examine whether or not behavioral disturbances and/or selective vulnerability of specific neuronal groups in MeHg poisoning may be related to MeHg effects on cholinergic receptors in specific regions of the brain, the density and distribution of muscarinic receptors in the brains of C57BL/6J mice were determined following repeated injections of 5 mg/kg of methylmercuric chloride (MMC). The receptor densities in six cortical laminae of seven cerebral cortical regions, hippocampus and striatum were quantitated by computer-assisted imaging system following in-vitro labeling with ({sup 3}H)-pirenzepine (M1) and ({sup 3}H)N-methyl scopolamine (M2). The results showed heterogeneous distribution of M1 and M2 sites in different regions of the brain, and significant reduction in the density of both receptor subtypes following MeHg poisoning in many cortical and subcortical regions. However, the changes in the density were variable in different laminae even in the same cortical regions. Prominent reductions in M1 densities were noted in the temporal and entorhinal cortices, CA3 and hilar regions of the hippocampus as compared to control, whereas the reduction in M2 receptor density was most prominently noted in the frontal, perirhinal and entorhinal cortices, and CA1 and hilar regions of the hippocampus. Thus, it is apparent that MeHg significantly affects muscarinic receptors in the mouse brain, and that these data when used in conjunction with immunocytochemical and other morphological studies would provide further insights into the mechanisms of neurotoxic effects of MeHg.

  15. The effects of a novel hormonal breast cancer therapy, endoxifen, on the mouse skeleton.

    PubMed

    Gingery, Anne; Subramaniam, Malayannan; Pitel, Kevin S; Reese, Jordan M; Cicek, Muzaffer; Lindenmaier, Laurence B; Ingle, James N; Goetz, Matthew P; Turner, Russell T; Iwaniec, Urszula T; Spelsberg, Thomas C; Hawse, John R

    2014-01-01

    Endoxifen has recently been identified as the predominant active metabolite of tamoxifen and is currently being developed as a novel hormonal therapy for the treatment of endocrine sensitive breast cancer. Based on past studies in breast cancer cells and model systems, endoxifen classically functions as an anti-estrogenic compound. Since estrogen and estrogen receptors play critical roles in mediating bone homeostasis, and endoxifen is currently being implemented as a novel breast cancer therapy, we sought to comprehensively characterize the in vivo effects of endoxifen on the mouse skeleton. Two month old ovariectomized C57BL/6 mice were treated with vehicle or 50 mg/kg/day endoxifen hydrochloride via oral gavage for 45 days. Animals were analyzed by dual-energy x-ray absorptiometry, peripheral quantitative computed tomography, micro-computed tomography and histomorphometry. Serum from control and endoxifen treated mice was evaluated for bone resorption and bone formation markers. Gene expression changes were monitored in osteoblasts, osteoclasts and the cortical shells of long bones from endoxifen treated mice and in a human fetal osteoblast cell line. Endoxifen treatment led to significantly higher bone mineral density and bone mineral content throughout the skeleton relative to control animals. Endoxifen treatment also resulted in increased numbers of osteoblasts and osteoclasts per tissue area, which was corroborated by increased serum levels of bone formation and resorption markers. Finally, endoxifen induced the expression of osteoblast, osteoclast and osteocyte marker genes. These studies are the first to examine the in vivo and in vitro impacts of endoxifen on bone and our results demonstrate that endoxifen increases cancellous as well as cortical bone mass in ovariectomized mice, effects that may have implications for postmenopausal breast cancer patients.

  16. The Effect of PKCα on the Light Response of Rod Bipolar Cells in the Mouse Retina

    PubMed Central

    Xiong, Wei-Hong; Pang, Ji-Jie; Pennesi, Mark E.; Duvoisin, Robert M.; Wu, Samuel M.; Morgans, Catherine W.

    2015-01-01

    Purpose Protein kinase C α (PKCα) is abundantly expressed in rod bipolar cells (RBCs) in the retina, yet the physiological function of PKCα in these cells is not well understood. To elucidate the role of PKCα in visual processing in the eye, we examined the effect of genetic deletion of PKCα on the ERG and on RBC light responses in the mouse. Methods Immunofluorescent labeling was performed on wild-type (WT), TRPM1 knockout, and PKCα knockout (PKC-KO) retina. Scotopic and photopic ERGs were recorded from WT and PKC-KO mice. Light responses of RBCs were measured using whole-cell recordings in retinal slices from WT and PKC-KO mice. Results Protein kinase C alpha expression in RBCs is correlated with the activity state of the cell. Rod bipolar cells dendrites are a major site of PKCα phosphorylation. Electroretinogram recordings indicated that loss of PKCα affects the scotopic b-wave, including a larger peak amplitude, longer implicit time, and broader width of the b-wave. There were no differences in the ERG a- or c-wave between PKCα KO and WT mice, indicating no measurable effect of PKCα in photoreceptors or the RPE. The photopic ERG was unaffected consistent with the lack of detectable PKCα in cone bipolar cells. Whole-cell recordings from RBCs in PKC-KO retinal slices revealed that, compared with WT, RBC light responses in the PKC-KO retina are delayed and of longer duration. Conclusions Protein kinase C alpha plays an important modulatory role in RBCs, regulating both the peak amplitude and temporal properties of the RBC light response in the rod visual pathway. PMID:26230760

  17. A Major Effect QTL on Chromosome 18 for Noise Injury to the Mouse Cochlear Lateral Wall

    PubMed Central

    Ohlemiller, Kevin K.; Rosen, Allyson D.; Gagnon, Patricia M.

    2009-01-01

    We recently demonstrated a striking difference among inbred mouse strains in the effects of a single noise exposure, whereby CBA/J and CBA/CaJ (CBA) mice show moderate reversible reduction in the endocochlear potential (EP) while C57BL/6J (B6) mice do not (Ohlemiller, K.K., Gagnon, P.M. 2007. Genetic dependence of cochlear cells and structures injured by noise. Hearing Res. 224, 34-50). Acute EP reduction in CBA was reliably associated with characteristic pathology of the spiral ligament and stria vascularis, both immediately after noise and 8 weeks later. Analysis of B6×CBA F1 hybrid mice indicated that EP reduction and its anatomic correlates are co-inherited in an autosomal dominant manner. Further analysis of N2 mice resulting from the backcross of F1 hybrids to B6 mice led us to suggest that the EP reduction phenotype principally reflects the influence of a small number of quantitative trait loci (QTLs). Here we report the results of QTL mapping of the EP reduction phenotype in CBA/J using 106 N2 mice from a (CBA×B6) × B6 backcross. Correlation of acute post-noise EP with 135 markers distributed throughout the genome revealed a single major effect QTL on chromosome 18 (12.5 cM, LOD 3.57) (Nirep, for Noise-induced reduction in EP QTL), and two marginally significant QTLs on chromosomes 5 and 16 (LOD 1.43 and 1.73, respectively). Our results underscore that fact that different cochlear structures may possess different susceptibilities to noise through the influence of non-overlapping genes. While Nirep and similar-acting QTLs do not appear to influence the extent of permanent hearing loss from a single noise exposure, they could reduce the homeostatic ‘reserve’ of the lateral wall in protracted or continual exposures, and thereby influence long term threshold stability. PMID:19913606

  18. Effects of social housing condition and behavior on growth of the Shionogi mouse mammary carcinoma.

    PubMed

    Grimm, M S; Emerman, J T; Weinberg, J

    1996-01-01

    We have demonstrated marked effects of social housing condition on the growth rate of the androgen-responsive Shionogi mouse mammary carcinoma. The present study investigated the possible role of psychosocial variables in modulating the differential tumor growth rates observed. Male DD/S mice were reared individually housed (I) or in groups (G) of three or five siblings or nonsiblings. Following tumor cell injection, mice either remained in their rearing conditions (II, GG) or were rehoused (IG, GI). Effects of group size, sibling relationship, dominance status, change vs. no change in housing condition, and direction of change (individual to group or group to individual) were examined. Home cage behaviors were monitored both prior to and following tumor cell injection and rehousing. Overall, mice in the GI conditions showed faster tumor growth rates than mice in the IG conditions. Mice in the II and GG conditions showed intermediate tumor growth rates. Differences in group size and sibling relationship prior to and following tumor cell injection and rehousing had no significant influence on tumor growth rates. However, both change in housing condition and direction of change following tumor cell injection/rehousing were significant variables in modulating differential tumor growth rates. Dominance status differentially influenced tumor growth depending on whether mice experienced a change in housing; in the IG conditions, dominant mice showed faster tumor growth whereas in the GG conditions, dominant mice showed slower tumor growth than subordinate mice. Increased fighting among mice in IG compared to mice in GG conditions may play a role in modulating differential tumor growth rates.

  19. The short- and long-term effects of orally administered high-dose reduced graphene oxide nanosheets on mouse behaviors.

    PubMed

    Zhang, Ding; Zhang, Zheyu; Liu, Yayun; Chu, Maoquan; Yang, Chengyu; Li, Wenhao; Shao, Yuxiang; Yue, Yan; Xu, Rujiao

    2015-11-01

    Reduced graphene oxide (rGO), a carbon-based nanomaterial, has enormous potential in biomedical research, including in vivo cancer therapeutics. Concerns over the toxicity remain outstanding and must be investigated before clinical application. The effect of rGO exposure on animal behaviors, such as learning and memory abilities, has not been clarified. Herein, we explored the short- and long-term effects of orally administered rGO on mouse behaviors, including general locomotor activity level, balance and neuromuscular coordination, exploratory and anxiety behaviors, and learning and memory abilities using open-field, rotarod, and Morris water maze tests. Compared with mice administered buffer-dispersed mouse chow or buffer alone, mice receiving a high dose of small or large rGO nanosheets showed little change in exploratory, anxiety-like, or learning and memory behaviors, although general locomotor activity, balance, and neuromuscular coordination were initially affected, which the mechanisms (e.g. the influence of rGO exposure on the activity of superoxide dismutase in mouse serum) were discussed. The results presented in this work look to provide a deep understanding of the in vivo toxicity of rGO to animals, especially its effect on learning and memory and other behaviors.

  20. Modulatory Effects of Mild Carbon Monoxide Exposure in the Developing Mouse Cochlea.

    PubMed

    Lopez, Ivan A; Acuna, Dora; Edmond, John

    2017-01-01

    Carbon monoxide (CO) is well known as a highly toxic poison at high concentrations, yet in physiologic amounts it is an endogenous biological messenger in organs such as the internal ear and brain. In this study we tested the hypothesis that chronic very mild CO exposure at concentrations 25-ppm increases the expression of oxidative stress protecting enzymes within the cellular milieu of the developing inner ear (cochlea) of the normal CD-1 mouse. In addition we tested also the hypothesis that CO can decrease the pre-existing condition of oxidative stress in the mouse model for the human medical condition systemic lupus erythematosus by increasing two protective enzymes heme-oxygenase-1 (HO-1), and superoxide dismutase-2 (SOD-2). CD-1 and MRL/lpr mice were exposed to mild CO concentrations (25 ppm in air) from prenatal only and prenatal followed by early postnatal day 5 to postnatal day 20. The expression of cell markers specific for oxidative stress, and related neural/endothelial markers were investigated at the level of the gene products by immunohistochemistry, proteomics and mRNA expression (quantitative real time-PCR). We found that in the CD-1 and MRL/lpr mouse cochlea SOD-2 and HO-1 were upregulated. In this mouse model of autoimmune disease defense mechanism are attenuated, thus mild CO exposure is beneficial. Several genes (mRNA) and proteins detected by proteomics involved in cellular protection were upregulated in the CO exposed CD-1 mouse and the MRL/lpr mouse.

  1. First effects of rising amyloid-β in transgenic mouse brain: synaptic transmission and gene expression

    PubMed Central

    Cummings, Damian M.; Liu, Wenfei; Portelius, Erik; Bayram, Sevinç; Yasvoina, Marina; Ho, Sui-Hin; Smits, Hélène; Ali, Shabinah S.; Steinberg, Rivka; Pegasiou, Chrysia-Maria; James, Owain T.; Matarin, Mar; Richardson, Jill C.; Zetterberg, Henrik; Blennow, Kaj; Hardy, John A.; Salih, Dervis A.

    2015-01-01

    Detecting and treating Alzheimer’s disease, before cognitive deficits occur, has become the health challenge of our time. The earliest known event in Alzheimer’s disease is rising amyloid-β. Previous studies have suggested that effects on synaptic transmission may precede plaque deposition. Here we report how relative levels of different soluble amyloid-β peptides in hippocampus, preceding plaque deposition, relate to synaptic and genomic changes. Immunoprecipitation-mass spectrometry was used to measure the early rise of different amyloid-β peptides in a mouse model of increasing amyloid-β (‘TASTPM’, transgenic for familial Alzheimer’s disease genes APP/PSEN1). In the third postnatal week, several amyloid-β peptides were above the limit of detection, including amyloid-β40, amyloid-β38 and amyloid-β42 with an intensity ratio of 6:3:2, respectively. By 2 months amyloid-β levels had only increased by 50% and although the ratio of the different peptides remained constant, the first changes in synaptic currents, compared to wild-type mice could be detected with patch-clamp recordings. Between 2 and 4 months old, levels of amyloid-β40 rose by ∼7-fold, but amyloid-β42 rose by 25-fold, increasing the amyloid-β42:amyloid-β40 ratio to 1:1. Only at 4 months did plaque deposition become detectable and only in some mice; however, synaptic changes were evident in all hippocampal fields. These changes included increased glutamate release probability (P < 0.001, n = 7–9; consistent with the proposed physiological effect of amyloid-β) and loss of spontaneous action potential-mediated activity in the cornu ammonis 1 (CA1) and dentate gyrus regions of the hippocampus (P < 0.001, n = 7). Hence synaptic changes occur when the amyloid-β levels and amyloid-β42:amyloid-β40 ratio are still low compared to those necessary for plaque deposition. Genome-wide microarray analysis revealed changes in gene expression at 2–4 months including synaptic genes being

  2. First effects of rising amyloid-β in transgenic mouse brain: synaptic transmission and gene expression.

    PubMed

    Cummings, Damian M; Liu, Wenfei; Portelius, Erik; Bayram, Sevinç; Yasvoina, Marina; Ho, Sui-Hin; Smits, Hélène; Ali, Shabinah S; Steinberg, Rivka; Pegasiou, Chrysia-Maria; James, Owain T; Matarin, Mar; Richardson, Jill C; Zetterberg, Henrik; Blennow, Kaj; Hardy, John A; Salih, Dervis A; Edwards, Frances A

    2015-07-01

    Detecting and treating Alzheimer's disease, before cognitive deficits occur, has become the health challenge of our time. The earliest known event in Alzheimer's disease is rising amyloid-β. Previous studies have suggested that effects on synaptic transmission may precede plaque deposition. Here we report how relative levels of different soluble amyloid-β peptides in hippocampus, preceding plaque deposition, relate to synaptic and genomic changes. Immunoprecipitation-mass spectrometry was used to measure the early rise of different amyloid-β peptides in a mouse model of increasing amyloid-β ('TASTPM', transgenic for familial Alzheimer's disease genes APP/PSEN1). In the third postnatal week, several amyloid-β peptides were above the limit of detection, including amyloid-β40, amyloid-β38 and amyloid-β42 with an intensity ratio of 6:3:2, respectively. By 2 months amyloid-β levels had only increased by 50% and although the ratio of the different peptides remained constant, the first changes in synaptic currents, compared to wild-type mice could be detected with patch-clamp recordings. Between 2 and 4 months old, levels of amyloid-β40 rose by ∼7-fold, but amyloid-β42 rose by 25-fold, increasing the amyloid-β42:amyloid-β40 ratio to 1:1. Only at 4 months did plaque deposition become detectable and only in some mice; however, synaptic changes were evident in all hippocampal fields. These changes included increased glutamate release probability (P < 0.001, n = 7-9; consistent with the proposed physiological effect of amyloid-β) and loss of spontaneous action potential-mediated activity in the cornu ammonis 1 (CA1) and dentate gyrus regions of the hippocampus (P < 0.001, n = 7). Hence synaptic changes occur when the amyloid-β levels and amyloid-β42:amyloid-β40 ratio are still low compared to those necessary for plaque deposition. Genome-wide microarray analysis revealed changes in gene expression at 2-4 months including synaptic genes being strongly

  3. Effect of prolactin and bromocriptine on growth of transplanted hormone-dependent mouse mammary tumours.

    PubMed Central

    Briand, P.; Thorpe, S. M.; Daehnfeldt, J. L.

    1977-01-01

    Administration of ovine prolactin alone supported growth of hormone-dependent GR mouse mammary tumours. Growth of hormone-independent tumours was not stimulated. Furthermore, administration of bromocriptine, a compound that inhibits release of prolactin from the pituitary gland, was shown to inhibit the growth of hormone-dependent tumours in animals receiving treatment with progesterone + oestrone. Administration of prolactin or bromocriptine to mice bearing tumours that grew independently of progesterone + oestrone treatment had no influence on tumour growth. We conclude that direct as well as indirect evidence has been found for the involvement of prolactin in the growth of transplanted, hormone-dependent GR mouse mammary tumours. PMID:577471

  4. Mineral metabolism in isolated mouse long bones: Opposite effects of microgravity on mineralization and resorption

    NASA Technical Reports Server (NTRS)

    Veldhuijzen, Jean Paul; Vanloon, Jack J. W. A.

    1994-01-01

    An experiment using isolated skeletal tissues under microgravity, is reported. Fetal mouse long bones (metatarsals) were cultured for 4 days in the Biorack facility of Spacelab during the IML-1 (International Microgravity Laboratory) mission of the Space Shuttle. Overall growth was not affected, however glucose consumption was significantly reduced under microgravity. Mineralization of the diaphysis was also strongly reduced under microgravity as compared to the on-board 1 g group. In contrast, mineral resorption by osteoclasts was signficantly increased. These results indicate that these fetal mouse long bones are a sensitive and useful model to further study the cellular mechanisms involved in the changed mineral metabolism of skeletal tissues under microgravity.

  5. Ultraviolet survival and sensitizing effect of caffeine in mouse hybrid cells

    SciTech Connect

    Zampetti-Bosseler, F.; Delhaise, P.; Limbosch, S.

    1980-10-01

    In a previous paper it was reported that three hybrid cell lines between mouse lymphoma cells (L5178YS) and mouse fibroblasts (A9) were more resistant to x rays than either of the parental cells. In this work, these hybrids displayed a degree of resistance to uv light either higher than (hybrid clone 3) or similar to (hybrid clones 1 and 2) that of the more resistant parent (A9). The enhanced resistance of hybrid clone 3 to uv was related neither to changes in cell shape, ploidy, and growth rate nor to an increase in a caffeine-sensitive recovery process after uv irradiation.

  6. Electrophysiological and functional effects of sphingosine-1-phosphate in mouse ventricular fibroblasts

    SciTech Connect

    Benamer, Najate; Bois, Patrick

    2011-04-29

    Highlights: {yields} In cardiac fibroblasts, SUR2/Kir6.1 channel is activated by S1P via the S1P3R. {yields} S1P increases cell proliferation through SUR2/Kir6.1 activation. {yields} S1P decreases collagen and IL-6 secretion through SUR2/Kir6.1 activation. {yields} S1P stimulates fibroblast migration independently from SUR2/Kir6.1 channel. -- Abstract: The aim of this study was to characterize the effects of sphingosine-1-phosphate (S1P) on cardiac ventricular fibroblasts. Impacts of S1P on fibroblast excitability, cell migration, proliferation and secretion were characterized. The patch-clamp technique in the whole-cell configuration was used to study the S1P-induced current from mouse ventricular fibroblasts. The expression level of the S1P receptor during cell culture duration was evaluated by western-blot. Fibroblast proliferation and migration were quantified using the methylene blue assay and the Boyden chamber technique, respectively. Finally, fibroblast secretion properties were estimated by quantification of the IL-6 and collagen levels using ELISA and SIRCOL collagen assays, respectively. We found that S1P activated SUR2/Kir6.1 channel and that this effect was sensitive to specific inhibition of the S1P receptor of type 3 (S1P3R). In contrast, S1P1R receptor inhibition had no effect. Moreover, the S1P-induced current increased with cell culture duration whereas S1P3R expression level remained constant. The activation of SUR2/Kir6.1 channel by S1P via S1P3R stimulated cell proliferation and decreased IL-6 and collagen secretions. S1P also stimulated fibroblast migration via S1P3R but independently from SUR2/Kir6.1 channel activation. This study demonstrates that S1P, via S1P3R, affects cardiac ventricular fibroblasts function independently or through activation of SUR2/Kir6.1 channel. The latter effect occurs after fibroblasts differentiate into myofibroblasts, opening a new potential therapeutic strategy to modulate fibrosis after cardiac

  7. Atrial Anti-Arrhythmic Effects of Heptanol in Langendorff-Perfused Mouse Hearts

    PubMed Central

    Tse, Gary; Tse, Vivian; Yeo, Jie Ming; Sun, Bing

    2016-01-01

    Acute effects of heptanol (0.1 to 2 mM) on atrial electrophysiology were explored in Langendorff-perfused mouse hearts. Left atrial bipolar electrogram or monophasic action potential recordings were obtained during right atrial stimulation. Regular pacing at 8 Hz elicited atrial activity in 11 out of 11 hearts without inducing atrial arrhythmias. Programmed electrical stimulation using a S1S2 protocol provoked atrial tachy-arrhythmias in 9 of 17 hearts. In the initially arrhythmic group, 2 mM heptanol exerted anti-arrhythmic effects (Fisher’s exact test, P < 0.05) and increased atrial effective refractory period (ERP) from 26.0 ± 1.9 to 57.1 ± 2.5 ms (ANOVA, P < 0.001) despite increasing activation latency from 18.7 ± 1.1 to 28.9 ± 2.1 ms (P < 0.001) and leaving action potential duration at 90% repolarization (APD90) unaltered (25.6 ± 1.2 vs. 27.2 ± 1.2 ms; P > 0.05), which led to increases in ERP/latency ratio from 1.4 ± 0.1 to 2.1 ± 0.2 and ERP/APD90 ratio from 1.0 ± 0.1 to 2.1 ± 0.2 (P < 0.001). In contrast, in the initially non-arrhythmic group, heptanol did not alter arrhythmogenicity, increased AERP from 47.3 ± 5.3 to 54.5 ± 3.1 ms (P < 0.05) and activation latency from 23.7 ± 2.2 to 31.3 ± 2.5 ms and did not alter APD90 (24.1 ± 1.2 vs. 25.0 ± 2.3 ms; P > 0.05), leaving both AERP/latency ratio (2.1 ± 0.3 vs. 1.9 ± 0.2; P > 0.05) and ERP/APD90 ratio (2.0 ± 0.2 vs. 2.1 ± 0.1; P > 0.05) unaltered. Lower heptanol concentrations (0.1, 0.5 and 1 mM) did not alter arrhythmogenicity or the above parameters. The present findings contrast with known ventricular pro-arrhythmic effects of heptanol associated with decreased ERP/latency ratio, despite increased ERP/APD ratio observed in both the atria and ventricles. PMID:26872148

  8. Cytotoxic effects of ZnO nanoparticles on mouse testicular cells

    PubMed Central

    Han, Zhe; Yan, Qi; Ge, Wei; Liu, Zhi-Guo; Gurunathan, Sangiliyandi; De Felici, Massimo; Shen, Wei; Zhang, Xi-Feng

    2016-01-01

    Background Nanoscience and nanotechnology are developing rapidly, and the applications of nanoparticles (NPs) have been found in several fields. At present, NPs are widely used in traditional consumer and industrial products, however, the properties and safety of NPs are still unclear and there are concerns about their potential environmental and health effects. The aim of the present study was to investigate the potential toxicity of ZnO NPs on testicular cells using both in vitro and in vivo systems in a mouse experimental model. Methods ZnO NPs with a crystalline size of 70 nm were characterized with various analytical techniques, including ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, and atomic force microscopy. The cytotoxicity of the ZnO NPs was examined in vitro on Leydig cell and Sertoli cell lines, and in vivo on the testes of CD1 mice injected with single doses of ZnO NPs. Results ZnO NPs were internalized by Leydig cells and Sertoli cells, and this resulted in cytotoxicity in a time- and dose-dependent manner through the induction of apoptosis. Apoptosis likely occurred as a consequence of DNA damage (detected as γ-H2AX and RAD51 foci) caused by increase in reactive oxygen species associated with loss of mitochondrial membrane potential. In addition, injection of ZnO NPs in male mice caused structural alterations in the seminiferous epithelium and sperm abnormalities. Conclusion These results demonstrate that ZnO NPs have the potential to induce apoptosis in testicular cells likely through DNA damage caused by reactive oxygen species, with possible adverse consequences for spermatogenesis and therefore, male fertility. This suggests that evaluating the potential impacts of engineered NPs is essential prior to their mass production, to address both the environmental and human health concerns and also to develop sustainable and safer nanomaterials. PMID:27785022

  9. Effects of 4-aminopyridine on action potentials generation in mouse sinoauricular node strips

    PubMed Central

    Golovko, Vladimir; Gonotkov, Mikhail; Lebedeva, Elena

    2015-01-01

    The physiological role of Ito has yet to be clarified. The goal of this study is to investigate the possible contribution of the transient outward current (Ito) on the generation of transmembrane action potentials (APs) and the sensitivity of mouse sinoauricular node (SAN) cells to a 4-aminopyridine (4AP) as Ito blocker. The electrophysiological identification of cells was performed in the sinoauricular node artery area (nstrips = 38) of the subendocardial surface using microelectrode technique. In this study, for the first time, it was observed that dependence duration of action potential at the level of 20% repolarization (APD20) level under a 4AP concentration in the pacemaker SAN and auricular cells corresponds to a curve predicted by Hill’s equation. APD20 raised by 70% and spike duration of AP increased by 15–25%, when 4AP concentration was increased from 0.1 to 5.0 mmol/L. Auricular cells were found to be more sensitive to 4AP than true pacemaker cells. This was accompanied by a decrease in the upstroke velocity as compared to the control. Our data and previous findings in the literature lead us to hypothesize that the 4AP-sensitive current participates in the repolarization formation of pacemaker and auricular type cells. Thus, study concerning the inhibitory effects of lidocaine and TTX on APD20 can explain the phenomenon of the decrease in upstroke velocity, which, for the first time, was observed after exposure to 4AP. Duration of AP at the level of 20% repolarization (APD20) under a 4-AP concentration 0.5 mmol/L in the true pacemaker cells lengthen by 60–70% with a control. PMID:26156968

  10. Subchronic effects of valproic acid on gene expression profiles for lipid metabolism in mouse liver

    SciTech Connect

    Lee, Min-Ho |; Kim, Mingoo |; Lee, Byung-Hoon |; Kim, Ju-Han |; Kang, Kyung-Sun |; Kim, Hyung-Lae |; Yoon, Byung-Il |; Chung, Heekyoung; Kong, Gu |; Lee, Mi-Ock ||

    2008-02-01

    Valproic acid (VPA) is used clinically to treat epilepsy, however it induces hepatotoxicity such as microvesicular steatosis. Acute hepatotoxicity of VPA has been well documented by biochemical studies and microarray analysis, but little is known about the chronic effects of VPA in the liver. In the present investigation, we profiled gene expression patterns in the mouse liver after subchronic treatment with VPA. VPA was administered orally at a dose of 100 mg/kg/day or 500 mg/kg/day to ICR mice, and the livers were obtained after 1, 2, or 4 weeks. The activities of serum liver enzymes did not change, whereas triglyceride concentration increased significantly. Microarray analysis revealed that 1325 genes of a set of 32,996 individual genes were VPA responsive when examined by two-way ANOVA (P < 0.05) and fold change (> 1.5). Consistent with our previous results obtained using an acute VPA exposure model (Lee et al., Toxicol Appl Pharmacol. 220:45-59, 2007), the most significantly over-represented biological terms for these genes included lipid, fatty acid, and steroid metabolism. Biological pathway analysis suggests that the genes responsible for increased biosynthesis of cholesterol and triglyceride, and for decreased fatty acid {beta}-oxidation contribute to the abnormalities in lipid metabolism induced by subchronic VPA treatment. A comparison of the VPA-responsive genes in the acute and subchronic models extracted 15 commonly altered genes, such as Cyp4a14 and Adpn, which may have predictive power to distinguish the mode of action of hepatotoxicants. Our data provide a better understanding of the molecular mechanisms of VPA-induced hepatotoxicity and useful information to predict steatogenic hepatotoxicity.

  11. Effect of doxorubicin-induced ovarian toxicity on mouse ovarian granulosa cells.

    PubMed

    Zhang, Ting; He, Wan Hong; Feng, Ling Lin; Huang, Hao Guang

    2017-02-17

    The objective of this study was to identify the effect of doxorubicin-induced ovarian toxicity on mouse ovarian granulosa cells. After granulosa cells were treated with doxorubicin at the final concentrations of 0, 0.4, 0.8, and 1.6 μg/ml for 24 h, cell apoptosis was detected by DAPI staining or caspase-3/7 fluorescence probe; ROS was determined by 2', 7'-dichlorodihydrofluorescin diacetate fluorescence probe; mitochondrial membrane potential was detected by rhodamine-123 fluorescence probe; and mRNA expression levels of Bax, Bcl-2, p53, FSHR, StAR, P450scc and P450arom were analyzed by RT-PCR. Results indicated that doxorubicin could induce apoptosis of granulosa cells (p < 0.01); increase ROS generation (p < 0.05 or p < 0.01); decrease mitochondrial membrane potential (p < 0.05); increase mRNA expression levels of Bax, Bcl-2, and p53 (p < 0.001); enhance mRNA expression level of StAR (p < 0.01 or p < 0.001); and inhibit mRNA expression level of P450scc in granulosa cells (p < 0.05 or p < 0.001). The mRNA expression levels of FSHR and P450arom were not influenced by doxorubicin. We suggest that the ovarian toxicity of doxorubicin was associated with apoptosis of granulosa cells, ROS accumulation, and decline of mitochondrial membrane potential in granulosa cells. In addition, cell apoptosis was regulated by Bax, Bcl-2, and p53, and hormone generation could be influenced by StAR and P450scc.

  12. Wound Healing Effects of Rose Placenta in a Mouse Model of Full-Thickness Wounds

    PubMed Central

    Kim, Yang Woo; Baek, Seung Ryeol; Lee, Eun Sook; Lee, Sang Ho; Moh, Sang Hyun; Kim, Soo Yun; Moh, Ji Hong; Kondo, Chieko

    2015-01-01

    Background Rosa damascena, a type of herb, has been used for wound healing in Eastern folk medicine. The goal of this study was to evaluate the effectiveness of rose placenta from R. damascena in a full-thickness wound model in mice. Methods Sixty six-week-old C57BL/6N mice were used. Full-thickness wounds were made with an 8-mm diameter punch. Two wounds were made on each side of the back, and wounds were assigned randomly to the control and experimental groups. Rose placenta (250 µg) was injected in the experimental group, and normal saline was injected in the control group. Wound sizes were measured with digital photography, and specimens were harvested. Immunohistochemical staining was performed to assess the expression of epidermal growth factor (EGF), vascular endothelial growth factor (VEGF), transforming growth factor-β1 (TGF-β1), and CD31. Vessel density was measured. Quantitative analysis using an enzyme-linked immunosorbent assay (ELISA) for EGF was performed. All evaluations were performed on postoperative days 0, 2, 4, 7, and 10. Statistical analyses were performed using the paired t-test. Results On days 4, 7, and 10, the wounds treated with rose placenta were significantly smaller. On day 2, VEGF and EGF expression increased in the experimental group. On days 7 and 10, TGF-β1 expression decreased in the experimental group. On day 10, vessel density increased in the experimental group. The increase in EGF on day 2 was confirmed with ELISA. Conclusions Rose placenta was found to be associated with improved wound healing in a mouse full-thickness wound model via increased EGF release. Rose placenta may potentially be a novel drug candidate for enhancing wound healing. PMID:26618114

  13. Postnatal development, maturation and aging in the mouse cochlea and their effects on hair cell regeneration.

    PubMed

    Walters, Bradley J; Zuo, Jian

    2013-03-01

    The organ of Corti in the mammalian inner ear is comprised of mechanosensory hair cells (HCs) and nonsensory supporting cells (SCs), both of which are believed to be terminally post-mitotic beyond late embryonic ages. Consequently, regeneration of HCs and SCs does not occur naturally in the adult mammalian cochlea, though recent evidence suggests that these cells may not be completely or irreversibly quiescent at earlier postnatal ages. Furthermore, regenerative processes can be induced by genetic and pharmacological manipulations, but, more and more reports suggest that regenerative potential declines as the organ of Corti continues to age. In numerous mammalian systems, such effects of aging on regenerative potential are well established. However, in the cochlea, the problem of regeneration has not been traditionally viewed as one of aging. This is an important consideration as current models are unable to elicit widespread regeneration or full recovery of function at adult ages yet regenerative therapies will need to be developed specifically for adult populations. Still, the advent of gene targeting and other genetic manipulations has established mice as critically important models for the study of cochlear development and HC regeneration and suggests that auditory HC regeneration in adult mammals may indeed be possible. Thus, this review will focus on the pursuit of regeneration in the postnatal and adult mouse cochlea and highlight processes that occur during postnatal development, maturation, and aging that could contribute to an age-related decline in regenerative potential. Second, we will draw upon the wealth of knowledge pertaining to age related senescence in tissues outside of the ear to synthesize new insights and potentially guide future research aimed at promoting HC regeneration in the adult cochlea.

  14. Direct glucocorticoid inhibition of insulin secretion. An in vitro study of dexamethasone effects in mouse islets.

    PubMed Central

    Lambillotte, C; Gilon, P; Henquin, J C

    1997-01-01

    The direct effects of glucocorticoids on pancreatic beta cell function were studied with normal mouse islets. Dexamethasone inhibited insulin secretion from cultured islets in a concentration-dependent manner: maximum of approximately 75% at 250 nM and IC50 at approximately 20 nM dexamethasone. This inhibition was of slow onset (0, 20, and 40% after 1, 2, and 3 h) and only slowly reversible. It was prevented by a blocker of nuclear glucocorticoid receptors, by pertussis toxin, by a phorbol ester, and by dibutyryl cAMP, but was unaffected by an increase in the fuel content of the culture medium. Dexamethasone treatment did not affect islet cAMP levels but slightly reduced inositol phosphate formation. After 18 h of culture with or without 1 microM dexamethasone, the islets were perifused and stimulated by a rise in the glucose concentration from 3 to 15 mM. Both phases of insulin secretion were similarly decreased in dexamethasone-treated islets as compared with control islets. This inhibition could not be ascribed to a lowering of insulin stores (higher in dexamethasone-treated islets), to an alteration of glucose metabolism (glucose oxidation and NAD(P)H changes were unaffected), or to a lesser rise of cytoplasmic Ca2+ in beta cells (only the frequency of the oscillations was modified). Dexamethasone also inhibited insulin secretion induced by arginine, tolbutamide, or high K+. In this case also the inhibition was observed despite a normal rise of cytoplasmic Ca2+. In conclusion, dexamethasone inhibits insulin secretion through a genomic action in beta cells that leads to a decrease in the efficacy of cytoplasmic Ca2+ on the exocytotic process. PMID:9022074

  15. Combination radiation-adriamycin therapy: renoprival growth, functional and structural effects in the immature mouse

    SciTech Connect

    Donaldson, S.S.; Moskowitz, P.S.; Canty, E.L.; Fajardo, L.F.

    1980-07-01

    The normal tissue effects of radiation-adriamycin combination therapy were studied in the renoprival weanling mouse in an attempt to determine whether compensatory renal growth inhibition from radiation and chemotherapy could be associated with structural or functional abnormalities. Weanling BLc/sub Fl/ mice underwent unilateral nephrectomy, then single fraction renal irradiation, LD 1/21 doses of adriamycin in 5 daily doses, or combination therapy with radiation and adriamycin. Animals were sacrificed at 3, 12, and 24 weeks. Compensatory renal growth, body growth, serum blood urea nitrogen (BUN), and renal morphology by light microscopy were evaluated. Significant compensatory renal growth inhibition from radiation-adriamycin therapy exceeded that produced by adriamycin alone and radiation alone, at all time periods (p < 0.005). Body growth inhibition from radiation-adriamycin therapy or adriamycin alone significantly exceeded that produced by radiation alone (p < 0.005). Kidney and body growth inhibition from radiation-adriamycin therapy was proportionately severe. Kidney growth inhibition proportionately exceeded body growth inhibition with radiation alone; body growth inhibition proportionately exceeded kidney growth inhibition with adriamycin alone. Comparable azotemia developed by 24 weeks in both the radiation alone (p < .005) and radiation-adriamycin animals (p < 0.005), but not in the adriamycin only animals. Morphologic alterations consisting of increased glomerular density, tubular atrophy, and stromal fibrosis occurred with greater severity in the radiation-adriamycin animals than in the radiation only animals by 24 weeks; no alterations were seen in the adriamycin only animals. Using histologic criteria 750 rad plus adriamycin produced comparable injury as seen with 1000 rad alone, thus adriamycin produced an apparent dose-modifying factor of 1.33.

  16. Genotoxic effects of two-generational selenium deficiency in mouse somatic and testicular cells.

    PubMed

    Graupner, Anne; Instanes, Christine; Andersen, Jill M; Brandt-Kjelsen, Anicke; Dertinger, Stephen D; Salbu, Brit; Brunborg, Gunnar; Olsen, Ann-Karin

    2015-03-01

    Many studies have investigated genotoxic effects of high Se diets but very few have addressed the genotoxicity of Se deprivation and its consequences in germ cells and none in somatic cells. To address these data gaps, C57BL/6 male mice were subjected to Se deprivation starting in the parental generation, i.e. before conception. Mice were given a diet of either low (0.01mg Se/kg diet) or normal (0.23mg Se/kg diet) Se content. Ogg1-deficient (Ogg1 (-/-) ) mice were used as a sensitive model towards oxidative stress due to their reduced capacity to repair oxidised purines. Ogg1 (-/-) mice also mimic the repair characteristics of human post-meiotic male germ cells which have a reduced ability to repair such lesions. The genotoxicity of Se deficiency was addressed by measuring DNA lesions with the alkaline single cell gel electrophoresis (+ Fpg to detect oxidised DNA lesions) in somatic cells (nucleated blood cells and lung cells) and male germ cells (testicular cells). Total Se concentration in liver and GPx activity in plasma and testicular cells were measured. Gene mutation was evaluated by an erythrocyte-based Pig-a assay. We found that Se deprivation of F1 from their conception and until early adulthood led to the induction of DNA lesions in testicular and lung cells expressed as significantly increased levels of DNA lesions, irrespective of the mouse genotype. In blood cells, Se levels did not appear to affect DNA lesions or mutant cell frequencies. The results suggest that the testis was the most sensitive tissue. Thus, genotoxicity induced by the low Se diet in the spermatozoal genome has potential implications for the offspring.

  17. Effects of Parental Status on Male Body Mass in the Monogamous, Biparental California Mouse

    PubMed Central

    Saltzman, Wendy; Harris, Breanna N.; de Jong, Trynke R.; Nguyen, Pauline P.; Cho, Julia T.; Hernandez, Mindy; Perea-Rodriguez, Juan P.

    2014-01-01

    Studies of biparental mammals demonstrate that males may undergo systematic changes in body mass as a consequence of changes in reproductive status; however, these studies typically have not teased apart effects of specific social and reproductive factors, such as cohabitation with a female per se, cohabitation with a breeding female specifically, and engagement in paternal care. We aimed to determine whether California mouse (Peromyscus californicus) fathers undergo systematic changes in body mass and if so, which specific social/reproductive factor(s) might contribute to these changes. We compared mean weekly body masses over a 5-week period in 1) males housed with another male vs. males housed with a non-reproductive (tubally ligated) female; 2) males housed with a tubally ligated female vs. males housed with a female that was undergoing her first pregnancy; and 3) experienced fathers housed with vs. without pups during their mate’s subsequent pregnancy. Body mass did not differ between males housed with another male and those housed with a non-reproductive female; however, males housed with a non-reproductive female were significantly heavier than those housed with a primiparous female. Among experienced fathers, those housed with pups from their previous litter underwent significant increases in body mass across their mates’ pregnancy, whereas fathers housed without pups did not. These results suggest that male body mass is reduced by cohabitation with a breeding (pregnant) female, but not by cohabitation with a non-reproductive female, and that increases in body mass across the mate’s pregnancy are associated with concurrent care of offspring rather than cohabitation with a pregnant female. Additional work is needed to determine the mechanisms and functional significance, if any, of these changes in male body mass with reproductive condition. PMID:26005292

  18. Effects of butyric acid and arsenic on isolated pancreatic islets and liver mitochondria of male mouse

    PubMed Central

    Ahangarpour, Akram; Oroojan, Ali Akbar; Rezae, Mohsen; Khodayar, Mohammad Javad; Alboghobeish, Soheila; Zeinvand, Marzieh

    2017-01-01

    Aim: The aim of the present study was to evaluate the different doses of Butyric acid (BA) and Arsenic (As) in liver mitochondria oxidative stress and pancreatic islet insulin secretion of male mouse. Background: BA is found in many foods and As as a toxic metal is present in drinking water. They can induce oxidative stress in tissues. Methods: In this experimental study, Liver mitochondria were isolated by administration of the different centrifugation method and pancreatic islets were isolated by collagenase method. Mitochondria were incubated by BA (35, 75, 150, 300 μM) and As (20, 50, 100, 200 μM) as the islets were incubated by BA (250, 500, 1000, 1500 μM) and As (50, 100, 200 μM) for 1 hour. At the end of the experiment, mitochondrial viability and membrane potential, ROS, MDA, GSH and islets insulin secretion were measured by their specific methods. Results: BA and As administration increased mitochondrial levels of ROS, MDA and decreased GSH and pancreatic islet insulin secretion in a dose dependent manner (p<0.05). The doses of BA 75μM and As 100μM have been revealed the most mitochondria toxic concentrations. Also, the doses of 1000μM for BA and 100μM for As were considered as reducing concentrations for islets insulin secretion. Additionally, co administration of them intensified more these effects Conclusion: Alone or in combination administration of BA and As induced oxidative stress in liver mitochondria and decreased insulin secretion of pancreatic islets. PMID:28331564

  19. Effects of Telfairia occidentalis (fluted pumpkin; Cucurbitaceae) in mouse models of convulsion, muscle relaxation, and depression.

    PubMed

    Akindele, Abidemi J; Ajao, Mutiu Y; Aigbe, Flora R; Enumah, Uchenna S

    2013-09-01

    Telfairia occidentalis (Cucurbitaceae) is a leafy vegetable used in soup and folk medicine in southern Nigeria. Ethnobotanical survey revealed that preparations of the plant are used in the treatment of central nervous system-related disorders including convulsion. This study was conducted to investigate the effect of the hydroethanolic leaf extract of T. occidentalis in mouse models of convulsion, muscle relaxation, and depression. The strychnine and isoniazid convulsion, traction and climbing muscle relaxation, and forced swim and tail suspension depression tests were used in this study. The extract was administered orally (p.o.) at dose range of 25-800 mg/kg while distilled water (10 mL/kg p.o.) served as negative control. Diazepam (5 mg/kg p.o.) was used as positive control in the convulsion and muscle relaxation models while imipramine (64 mg/kg p.o.) served the same purpose in the depression tests. T. occidentalis significantly increased the onset (P<.001) and reduced the duration of convulsion (P<.05, .01) in the strychnine test and increased the time to death (P<.05, .01, .001) in the isoniazid model. The extract insignificantly increased the reaction time in the traction test while it significantly increased the time in the climbing test (P<.001). In the forced swim and tail suspension models, T. occidentalis significantly (P<.001) and dose-dependently increased the duration of immobility. The results obtained in this study suggest that the hydroethanolic leaf extract of T. occidentalis possesses anticonvulsant and muscle relaxant properties, thus justifying its folkloric use.

  20. Biocompatibility effects of biologically synthesized graphene in primary mouse embryonic fibroblast cells

    PubMed Central

    2013-01-01

    Due to unique properties and unlimited possible applications, graphene has attracted abundant interest in the areas of nanobiotechnology. Recently, much work has focused on the synthesis and properties of graphene. Here we show that a successful reduction of graphene oxide (GO) using spinach leaf extract (SLE) as a simultaneous reducing and stabilizing agent. The as-prepared SLE-reduced graphene oxide (S-rGO) was characterized by ultraviolet–visible spectroscopy and Fourier transform infrared spectroscopy. Dynamic light scattering technique was used to determine the average size of GO and S-rGO. Scanning electron microscopy and atomic force microscopy images provide clear surface morphological evidence for the formation of graphene. The resulting S-rGO has a mostly single-layer structure, is stable, and has significant water solubility. In addition, the biocompatibility of graphene was investigated using cell viability, leakage of lactate dehydrogenase and alkaline phosphatase activity in primary mouse embryonic fibroblast (PMEFs) cells. The results suggest that the biologically synthesized graphene has significant biocompatibility with PMEF cells, even at a higher concentration of 100 μg/mL. This method uses a ‘green’, natural reductant and is free of additional stabilizing reagents; therefore, it is an environmentally friendly, simple, and cost-effective method for the fabrication of soluble graphene. This study could open up a promising view for substitution of hydrazine by a safe, biocompatible, and powerful reduction for the efficient deoxygenation of GO, especially in large-scale production and potential biomedical applications. PMID:24059222

  1. Effects of aging and sensory loss on glial cells in mouse visual and auditory cortices.

    PubMed

    Tremblay, Marie-Ève; Zettel, Martha L; Ison, James R; Allen, Paul D; Majewska, Ania K

    2012-04-01

    Normal aging is often accompanied by a progressive loss of receptor sensitivity in hearing and vision, whose consequences on cellular function in cortical sensory areas have remained largely unknown. By examining the primary auditory (A1) and visual (V1) cortices in two inbred strains of mice undergoing either age-related loss of audition (C57BL/6J) or vision (CBA/CaJ), we were able to describe cellular and subcellular changes that were associated with normal aging (occurring in A1 and V1 of both strains) or specifically with age-related sensory loss (only in A1 of C57BL/6J or V1 of CBA/CaJ), using immunocytochemical electron microscopy and light microscopy. While the changes were subtle in neurons, glial cells and especially microglia were transformed in aged animals. Microglia became more numerous and irregularly distributed, displayed more variable cell body and process morphologies, occupied smaller territories, and accumulated phagocytic inclusions that often displayed ultrastructural features of synaptic elements. Additionally, evidence of myelination defects were observed, and aged oligodendrocytes became more numerous and were more often encountered in contiguous pairs. Most of these effects were profoundly exacerbated by age-related sensory loss. Together, our results suggest that the age-related alteration of glial cells in sensory cortical areas can be accelerated by activity-driven central mechanisms that result from an age-related loss of peripheral sensitivity. In light of our observations, these age-related changes in sensory function should be considered when investigating cellular, cortical, and behavioral functions throughout the lifespan in these commonly used C57BL/6J and CBA/CaJ mouse models.

  2. Neurogenic and Neurotrophic Effects of BDNF Peptides in Mouse Hippocampal Primary Neuronal Cell Cultures

    PubMed Central

    Cardenas-Aguayo, Maria del Carmen; Kazim, Syed Faraz; Grundke-Iqbal, Inge; Iqbal, Khalid

    2013-01-01

    The level of brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, is down regulated in Alzheimer’s disease (AD), Parkinson’s disease (PD), depression, stress, and anxiety; conversely the level of this neurotrophin is increased in autism spectrum disorders. Thus, modulating the level of BDNF can be a potential therapeutic approach for nervous system pathologies. In the present study, we designed five different tetra peptides (peptides B-1 to B-5) corresponding to different active regions of BDNF. These tetra peptides were found to be non-toxic, and they induced the expression of neuronal markers in mouse embryonic day 18 (E18) primary hippocampal neuronal cultures. Additionally, peptide B-5 induced the expression of BDNF and its receptor, TrkB, suggesting a positive feedback mechanism. The BDNF peptides induced only a moderate activation (phosphorylation at Tyr 706) of the TrkB receptor, which could be blocked by the Trk’s inhibitor, K252a. Peptide B-3, when combined with BDNF, potentiated the survival effect of this neurotrophin on H2O2-treated E18 hippocampal cells. Peptides B-3 and B-5 were found to work as partial agonists and as partial antagonists competing with BDNF to activate the TrkB receptor in a dose-dependent manner. Taken together, these results suggest that the described BDNF tetra peptides are neurotrophic, can modulate BDNF signaling in a partial agonist/antagonist way, and offer a novel therapeutic approach to neural pathologies where BDNF levels are dysregulated. PMID:23320097

  3. Effects of Trichostatin A and PXD101 on the In Vitro Development of Mouse Somatic Cell Nuclear Transfer Embryos.

    PubMed

    Qiu, Xiaoyan; You, Haihong; Xiao, Xiong; Li, Nan; Li, Yuemin

    2017-02-01

    The low success rate of animal cloning by somatic cell nuclear transfer (SCNT) is believed to be associated with aberrant epigenetic nuclear reprogramming. It has been demonstrated that treatment with histone deacetylase inhibitors (HDACis) enhances developmental potential of SCNT embryos. Previous studies in many species revealed that treatment of SCNT embryos with trichostatin A (TSA)-an HDACi-significantly enhances the in vitro development of SCNT embryos. In this study, we compared two different SCNT protocols with TSA and investigate, for the first time, the effect of another new HDACi, PXD101 (belinostat), on in vitro development of mouse SCNT embryo. Rates of blastocyst development in mouse SCNT embryos treated with either 5 nM TSA during (6 hours) and after (4 hours) activation (39.1%) or with 50 nM PXD101 during (6 hours) and after (4 hours) activation (40.2%) were significantly higher than those of nontreated SCNT embryos (11.5%) and both treatments also significantly improved the subsequent establishment of NT-ESCs in comparison with the nontreated group (38.1% and 40.9% vs. 11.8%). In conclusion, we optimized the TSA concentration and treatment timing and, for the first time, investigated the effect of PXD101 on mouse development of SCNT embryos and establishment of NT-ESCs.

  4. Injury effects of ginkgolide B on maturation of mouse oocytes, fertilization, and fetal development in vitro and in vivo.

    PubMed

    Shiao, Nion-Heng; Chan, Wen-Hsiung

    2009-07-10

    Ginkgolide B (GKB), the major active component of Ginkgo biloba extracts, exerts both stimulatory and inhibitory effects on apoptotic signaling. Previous studies by our group demonstrated that ginkgolide treatment of mouse blastocysts induces apoptosis, decreases cell number, hinders early postimplantation blastocyst development, and increases early-stage blastocyst death. Here, we further investigate the effects of GKB on oocyte maturation, and subsequent pre- and postimplantation development in vitro and in vivo. In our experiments, GKB induced a significant reduction in the rate of oocyte maturation, fertilization, and in vitro embryonic development. Treatment of oocytes with 1-6 microM GKB during in vitro maturation (IVM) led to increased resorption of postimplantation embryos and decreased placental and fetal weights. Data obtained using an in vivo mouse model further disclosed that consumption of drinking water containing 3-6 microM GKB led to decreased oocyte maturation and in vitro fertilization, as well as early embryo developmental injury, specifically, inhibition of development to the blastocyst stage in vivo. To our knowledge, this is the first study to investigate the impact of GKB on maturation of mouse oocytes, fertilization, and sequential embryonic development.

  5. Inhibitory effect of pheophorbide a, a chlorophyll-related compound, on skin tumor promotion in ICR mouse.

    PubMed

    Nakamura, Y; Murakami, A; Koshimizu, K; Ohigashi, H

    1996-11-29

    Anti-tumor-promoting activity of pheophorbide a (PPBa) a chlorophyll-related compound, was examined in a two-stage carcinogenesis experiment in ICR mouse skin by 7,12-dimethylbenz[a] anthracene (DMBA, 0.19 mumol) and 12-O-tetradecanoylphorbol-13-acetate (TPA, 1.6 nmol). Topical application of PPBa (160 nmol) markedly reduced the average number of tumors per mouse and the ratio of tumor-bearing mice (inhibitory ratio: IR = 56%, P < 0.01 and 31%, P < 0.005, respectively). PPBa exhibited potent anti-inflammatory activity in ICR mouse ears and moderate inhibitory activity toward TPA-induced superoxide (O2-) generation in differentiated HL-60 cells. While CuPPBa, a synthetic copper complex of PPBa, exhibited higher anti-inflammatory activity than that of indomethacin, it showed little antioxidative effect against formation of lipid hydroperoxides (LOOHs) and malondialdehyde (MDA), suggesting that the antioxidative effect of PPBa might not be important for anti-inflammatory activity. These results imply that the active mechanism of PPBa for anti-tumor promotion might be partly involved in inhibition of TPA-induced inflammatory responses by suppressing leukocyte activation.

  6. Ventricular anti-arrhythmic effects of heptanol in hypokalaemic, Langendorff-perfused mouse hearts

    PubMed Central

    TSE, GARY; TSE, VIVIAN; YEO, JIE MING

    2016-01-01

    Ventricular arrhythmic and electrophysiological properties were examined during normokalaemia (5.2 mM [K+]), hypokalaemia (3 mM [K+]) or hypokalaemia in the presence of 0.1 or 2 mM heptanol in Langendorff-perfused mouse hearts. Left ventricular epicardial or endocardial monophasic action potential recordings were obtained during right ventricular pacing. Hypokalaemia induced ventricular premature beats (VPBs) in 5 of 7 and ventricular tachycardia (VT) in 6 of 7 hearts (P<0.01), prolonged action potential durations (APD90) from 36.2±1.7 to 55.7±2.0 msec (P<0.01) and shortened ventricular effective refractory periods (VERPs) from 44.5±4.0 to 28.9±3.8 msec (P<0.01) without altering conduction velocities (CVs) (0.17±0.01 m/sec, P>0.05), reducing excitation wavelengths (λ, CV × VERP) from 7.9±1.1 to 5.1±0.3 mm (P<0.05) while increasing critical intervals (CI, APD90-VERP) from −8.3±4.3 to 26.9±2.0 msec (P>0.001). Heptanol (0.1 mM) prevented VT, restored effective refractory period (ERP) to 45.2±2.9 msec without altering CV or APD, returning λ to control values (P>0.05) and CI to 8.4±3.8 msec (P<0.05). Heptanol (2 mM) prevented VPBs and VT, increased ERP to 67.7±7.6 msec (P<0.05), and reduced CV to 0.11±0.1 m/sec (P<0.001) without altering APD (P>0.05), returning λ and CI to control values (P>0.05). Anti-arrhythmic effects of heptanol during hypokalaemia were explicable by ERP changes, scaling λ and CI. PMID:26998268

  7. BROMOCHLORO-HALOACETIC ACIDS: EFFECTS ON MOUSE EMBRYOS IN VITRO AND QSAR CONSIDERATIONS

    EPA Science Inventory

    The haloacetic acids (HAA) are a family of chemicals that are drinking water disinfection byproducts. We previously reported that bromo- and chloro-acetic acids altered embryonic development when mouse conceptuses were directly exposed to these xenobiotics in whole embryo culture...

  8. Chemical neuroanatomical and psychopharmacological evidence that κ receptor-mediated endogenous opioid peptide neurotransmission in the dorsal and ventral mesencephalon modulates panic-like behaviour.

    PubMed

    da Silva, Juliana Almeida; de Freitas, Renato Leonardo; Eichenberger, Gustavo Cavalcanti Dutra; Padovan, Cláudia Maria; Coimbra, Norberto Cysne

    2013-01-05

    The chemical neuroanatomy and the effects of central administration of opioid antagonists on the innate fear-induced responses elicited by electrical (at escape behaviour threshold) stimulation of the midbrain tectum were determined. The aim of the present work was to investigate the interaction between the tecto-nigral endogenous opioid peptide-mediated disinhibitory pathways and nigro-tectal inhibitory links in the control of panic-like behaviour and their organisation in the continuum comprised by the deep layers of the superior colliculus (dlSC) and the dorsolateral columns of the periaqueductal grey matter (dlPAG). Beta-endorphin-labelled neurons and fibres were found in the dorsal midbrain and also in the substantia nigra. Opioid varicose fibres and terminal buttons were widely distributed in PAG columns and in all substantia nigra subdivisions. Microinjections of naltrexone (a non-selective opioid receptor antagonist; 5.0 μg/0.2 μl) or nor-binaltorphimine (a selective κ-opioid receptor antagonist; 5.0 μg/0.2 μl) in the dlSC/dlPAG continuum, in independent groups of animals, induced significant increases in the escape thresholds for midbrain tectum electrical stimulation. The microinjection of naltrexone or nor-binaltorphimine into the SNpr also increased the escape behaviour threshold for electrical stimulation of dlSC/dlPAG. These morphological and neuropharmacological findings support previous evidence from our team for the role played by the interaction between opioidergic and GABAergic mechanisms in the modulation of innate fear-induced responses. The present data offer a neuroanatomical basis for both intratectal axo-axonic/pre-synaptic and tecto-nigral axo-somatic opioid inhibition of GABAergic nigro-tectal neurons that modulate the dorsal midbrain neurons related to the organisation of fear-related emotional responses.

  9. Permeant ion effects on the gating kinetics of the type L potassium channel in mouse lymphocytes

    PubMed Central

    1991-01-01

    Permeant ion species was found to profoundly affect the gating kinetics of type l K+ currents in mouse T lymphocytes studied with the whole- cell or on-cell patch gigaohm-seal techniques. Replacing external K+ with Rb+ (as the sole monovalent cation, at 160 mM) shifted the peak conductance voltage (g-V) relation by approximately 20 mV to more negative potentials, while NH4+ shifted the g-V curve by 15 mV to more positive potentials. Deactivation (the tail current time constant, tau tail) was slowed by an average of 14-fold at -70 mV in external Rb+, by approximately 8-fold in Cs+, and by a factor of two to three in NH4+. Changing the external K+ concentration, [K+]o, from 4.5 to 160 mM or [Rb+]o from 10 to 160 mM had no effect on tau tail. With all the internal K+ replaced by Rb+ or Cs+ and either isotonic Rb+ or K+ in the bath, tau tail was indistinguishable from that with K+ in the cell. With the exception of NH4+, activation time constants were insensitive to permeant ion species. These results indicate that external permeant ions have stronger effects than internal permeant ions, suggesting an external modulatory site that influences K+ channel gating. However, in bi-ionic experiments with reduced external permeant ion concentrations, tau tail was sensitive to the direction of current flow, indicating that the modulatory site is either within the permeation pathway or in the outer vestibule of the channel. The latter interpretation implies that outward current through an open type l K+ channel significantly alters local ion concentrations at the modulatory site in the outer vestibule, and consequently at the mouth of the channel. Experiments with mixtures of K+ and Rb+ in the external solution reveal that deactivation kinetics are minimally affected by addition of Rb+ until the Rb+ mole fraction approaches unity. This relationship between mole fraction and tau tail, together with the concentration independence of tau tail, was hard to reconcile with simple

  10. Relative biological effectiveness of fast neutrons in a multiorgan assay for apoptosis in mouse.

    PubMed

    Lee, Hae-June; Kim, Joong-Sun; Moon, Changjong; Kim, Jong-Choon; Jo, Sung-Kee; Kim, Sung-Ho

    2008-04-01

    This study compared the effects of high linear energy transfer (LET) fast neutrons on the induction of apoptosis in several tissue types (hair follicle, intestine crypt, testis) of ICR mouse exposed to low LET 60Co gamma-rays. The changes that occurred from 0 to 24 h after exposing the mice to either 2 Gy of gamma-rays (2 Gy/min) or 0.8 Gy of neutrons (94 mGy/min, 35 MeV) were examined. The maximum frequency of apoptosis was observed at 8 or 12 h after irradiation. The mice that had received 0-8 Gy of gamma-rays or 0-1.6 Gy of neutrons were examined 8 h after irradiation. The best-fitting dose-response curves were linear-quadratic, and there was a significant relationship between the number of apoptotic cells and the dose. The stained products in the TUNEL-positive cells or bodies correlated with the typical morphologic characteristics of apoptosis observed by optical microscopy. In the follicles showing an apoptosis frequency between 2 and 14 per hair follicle, the relative biological effectiveness (RBE) of the neutrons in the small and large follicles was 2.09 +/- 0.31 and 2.15 +/- 0.18, respectively. In the intestine crypts showing an apoptosis frequency between 1 and 3 per crypt, the RBE of the neutrons was 4.03 +/- 0.06 and 3.87 +/- 0.04 in the base and total crypts, respectively. The RBE of the neutrons in the seminiferous tubule showing an apoptosis frequency between 0.5 and 2 per tubule was 5.18 +/- 0.06. The results determined the time-response relations and the RBE for fast neutron-induced apoptosis in several organs at the same time. The differences in RBE observed between the high and low LET radiation and it is believed that the difference in the DSB repair capacity in hair follicle, intestine crypt, and seminiferous tubule cells plays a role in determining the RBE of the high-LET radiation for the induced apoptotic cell formation.

  11. Effect of Systemic Iron Overload and a Chelation Therapy in a Mouse Model of the Neurodegenerative Disease Hereditary Ferritinopathy

    PubMed Central

    Li, Wei; Goodwin, Charles B.; Richine, Briana; Acton, Anthony; Chan, Rebecca J.; Peacock, Munro; Muhoberac, Barry B.; Ghetti, Bernardino; Vidal, Ruben

    2016-01-01

    Mutations in the ferritin light chain (FTL) gene cause the neurodegenerative disease neuroferritinopathy or hereditary ferritinopathy (HF). HF is characterized by a severe movement disorder and by the presence of nuclear and cytoplasmic iron-containing ferritin inclusion bodies (IBs) in glia and neurons throughout the central nervous system (CNS) and in tissues of multiple organ systems. Herein, using primary mouse embryonic fibroblasts from a mouse model of HF, we show significant intracellular accumulation of ferritin and an increase in susceptibility to oxidative damage when cells are exposed to iron. Treatment of the cells with the iron chelator deferiprone (DFP) led to a significant improvement in cell viability and a decrease in iron content. In vivo, iron overload and DFP treatment of the mouse model had remarkable effects on systemic iron homeostasis and ferritin deposition, without significantly affecting CNS pathology. Our study highlights the role of iron in modulating ferritin aggregation in vivo in the disease HF. It also puts emphasis on the potential usefulness of a therapy based on chelators that can target the CNS to remove and redistribute iron and to resolubilize or prevent ferritin aggregation while maintaining normal systemic iron stores. PMID:27574973

  12. Effect of Rat Medicated Serum Containing You Gui Wan on Mouse Oocyte In Vitro Maturation and Subsequent Fertilization Competence

    PubMed Central

    Jiang, Xiao-Hui; Deng, Yan-li; Lu, Hua; Duan, Heng; Zhen, Xia; Hu, Xiang; Liang, Xin

    2014-01-01

    You Gui Wan (YGW) is a classic herbal formula in traditional Chinese medicine (TCM) used for the clinical treatment of infertility. This study was to explore whether YGW has an impact on mouse oocyte maturation in vitro and subsequent fertilization competence. Rat medicated serum containing YGW was prepared by orally administrating YGW. Mouse immature oocytes were cultured with YGW medicated serum and compared to those cultured with or without normal rat serum or follicle-stimulating hormone (FSH). YGW medicated serum significantly increased the percentages of matured oocytes when compared to the groups with or without normal rat serum (P < 0.01). Furthermore, YGW medicated serum increased the rate of in vitro fertilization (IVF) when compared to the groups treated with FSH and with or without normal rat serum (P < 0.001). YGW medicated serum also had significant effects on the mRNA expressions of PKA, CREB, MAPK, PKC, PKG, and MPF and the concentrations of cAMP, cGMP, and NO in matured oocytes. These results indicate that YGW can promote mouse oocyte maturation and IVF in vitro. Signaling pathways, such as the cAMP/PKA/MAPK, the PKC-MAPK, and the NO-cGMP-PKG pathway, which are similar to those induced by FSH, may be responsible for this action. PMID:25530775

  13. Effects of Murine Norovirus Infection on a Mouse Model of Diet-Induced Obesity and Insulin Resistance

    PubMed Central

    Paik, Jisun; Fierce, Yvette; Drivdahl, Rolf; Treuting, Piper M; Seamons, Audrey; Brabb, Thea; Maggio-Price, Lillian

    2010-01-01

    Murine norovirus (MNV) is prevalent in SPF mouse facilities in the United States, and we currently lack sufficient data to determine whether it should be eliminated. It is generally accepted that the virus does not cause clinical symptoms in immunocompetent mice. However, we previously reported that MNV infection alters the phenotype of a mouse model of bacteria-induced inflammatory bowel disease in part through its effects on dendritic cells. The tropism of MNV toward macrophages and dendritic cells makes MNV a potential intercurrent variable in murine models of macrophage-driven inflammatory diseases, such as obesity, insulin resistance, and atherosclerosis. Therefore, we determined whether MNV infection altered obesity and insulin resistance phenotypes in C57BL/6 mice, a widely used model of diet-induced obesity. We found that MNV did not alter weight gain, food intake, and glucose metabolism in this model, but it did induce subtle changes in lymphoid tissue. Further studies using other models of metabolic diseases are needed to provide additional information on the potential role this ‘subclinical’ virus might have on disease progression in mouse models of inflammatory diseases. PMID:20579433

  14. The "Goldilocks Effect" in Cystic Fibrosis: identification of a lung phenotype in the cftr knockout and heterozygous mouse

    PubMed Central

    Craig Cohen, J; Lundblad, Lennart KA; Bates, Jason HT; Levitzky, Michael; Larson, Janet E

    2004-01-01

    Background Cystic Fibrosis is a pleiotropic disease in humans with primary morbidity and mortality associated with a lung disease phenotype. However, knockout in the mouse of cftr, the gene whose mutant alleles are responsible for cystic fibrosis, has previously failed to produce a readily, quantifiable lung phenotype. Results Using measurements of pulmonary mechanics, a definitive lung phenotype was demonstrated in the cftr-/- mouse. Lungs showed decreased compliance and increased airway resistance in young animals as compared to cftr+/+ littermates. These changes were noted in animals less than 60 days old, prior to any long term inflammatory effects that might occur, and are consistent with structural differences in the cftr-/- lungs. Surprisingly, the cftr+/- animals exhibited a lung phenotype distinct from either the homozygous normal or knockout genotypes. The heterozygous mice showed increased lung compliance and decreased airway resistance when compared to either homozygous phenotype, suggesting a heterozygous advantage that might explain the high frequency of this mutation in certain populations. Conclusions In the mouse the gene dosage of cftr results in distinct differences in pulmonary mechanics of the adult. Distinct phenotypes were demonstrated in each genotype, cftr-/-, cftr +/-, and cftr+/+. These results are consistent with a developmental role for CFTR in the lung. PMID:15279681

  15. The effect of the site of laser zona opening on the complete hatching of mouse blastocysts and their cell numbers

    PubMed Central

    Sanmee, Usanee; Piromlertamorn, Waraporn

    2016-01-01

    Objective We studied the effect of the site of laser zona opening on the complete hatching of mouse blastocysts and the cell numbers of the completely hatched blastocysts. Methods Mouse blastocysts were randomly allocated to the inner cell mass (ICM) group (zona opening performed at the site of the ICM, n=125), the trophectoderm (TE) group (zona opening performed opposite to the ICM, n=125) and the control group (no zona opening, n=125). Results The rate of complete hatching of the blastocysts was not significantly different in the ICM and the TE group (84.8% vs 80.8%, respectively; p=0.402), but was significantly lower in the control group (51.2%, p<0.001). The cell numbers in the completely hatched blastocysts were comparable in the control group, the ICM group, and the TE group (69±19.3, 74±15.7, and 71±16.8, respectively; p=0.680). Conclusion These findings indicate that the site of laser zona opening did not influence the rate of complete hatching of mouse blastocysts or their cell numbers. PMID:27689037

  16. Superparamagnetic iron oxide nanoparticles coated with different polymers and their MRI contrast effects in the mouse brains

    NASA Astrophysics Data System (ADS)

    Xie, Songbo; Zhang, Baolin; Wang, Lei; Wang, Jun; Li, Xuan; Yang, Gao; Gao, Fabao

    2015-01-01

    PEG and PEG/PEI modified superparamagnetic iron oxide nanoparticles (SPIONs) were synthesized by the thermal decomposition of iron (III) acetylacetonate (Fe(acac)3) in poly (ethylene glycol) (PEG) containing poly (ethylene imine) (PEI) (0 or 0.3 g). PEG/PEI-SPIONs were coated with Tween 80 (PEG/PEI/Tween 80-SPIONs). Fourier transform infrared spectroscopy (FTIR) analyses indicated that PEG, PEG/PEI and PEG/PEI/Tween 80 were attached to the surfaces of the SPIONs. The PEG-SPIONs, PEG/PEI-SPIONs and PEG/PEI/Tween 80-SPIONs performed excellent colloidal stability in the phosphate buffered saline (PBS), and in deionized water with the mean hydrodynamic sizes of 19.5, 21.0, 24.0 nm and the zeta potentials of -5.0, 35.0, 19.0 mV, respectively. All the SPIONs showed low cytotoxicity assessed by the MTT assay. In vivo magnetic resonance imaging (MRI) of the Kunming (KM) mouse brains were performed, the PEG-SPIONs, PEG/PEI-SPIONs and PEG/PEI/Tween 80-SPIONs exhibited vascular imaging effects in bulbus olfactorius, frontal cortex, temporal, thalamus and brain stem of the mouse brains after 24 h intravenous injection of the nanoparticles. The SPIONs have potentials as MRI contrast agents in the mouse brains.

  17. Effects of tea infusions of various varieties or different manufacturing types on inhibition of mouse mast cell activation.

    PubMed

    Maeda-Yamamoto, M; Kawahara, H; Matsuda, N; Nesumi, K; Sano, M; Tsuji, K; Kawakami, Y; Kawakami, T

    1998-11-01

    We investigated effects of various tea infusions on mast cell activation using mouse mast cells. Among various tea extracts, infusions from cultivar 'Benihomare' and Taiwan lineage strongly inhibited histamine release after Fc epsilon RI cross-linking. Among three types of tea (from cultivar 'Benihomare'), extract from oolong tea or black tea inhibited histamine release more strongly than green tea extract. Furthermore, 'Benihomare' oolong tea extract suppressed tyrosine phosphorylation of cellular proteins after Fc epsilon RI cross-linking, but polyvinyl polypyrrolidone treatment of the extract to remove phenolic compounds, weakened the suppressive effect.

  18. Effects of age and strain on the microbiota colonization in an infant human flora-associated mouse model.

    PubMed

    Zeng, Benhua; Li, Guiqing; Yuan, Jing; Li, Wenxia; Tang, Huan; Wei, Hong

    2013-09-01

    The establishment of human flora-associated animal models allows the in vivo manipulation of host, microbial, and environmental parameters to influence the gut microbial community. However, it is difficult to simulate infant gut microbiota in germ-free animals because of the variation and dynamic state of infant microbial communities. In this study, the effects of age and strain on intestinal microbiota were observed in an infant human flora-associated (IHFA) mouse model. To establish an IHFA model, postnatal day (PND) 1 germ-free mice (Kunming, n = 10; BALB/c, n = 10) were infected with feces from a breast-fed infant. Microbiota in the feces of BALB/c mice (at PND 7, 14, and 21), and Kunming mice (at PND 14) were analyzed by PCR-denaturing gradient gel electrophoresis. Bifidobacteria and lactobacilli levels in the feces of BALB/c and Kunming mice (PND 7/14/21) were detected by quantitative real-time PCR. The Dice similarity coefficient (Cs) for the fecal microbiota of IHFA mice in comparison with the HD donor sample was higher for BALB/c mice than for Kunming mice (P < 0.05). In addition, the DCs at PND 7 were lower than those at PND 14 and PND 21 in both mouse strains (P < 0.05). The Bifidobacteria and Lactobacillus species colonizing the BALB/c mice were similar to those in the Kunming mice (at PND 7/14/21). The bifidobacteria counts increased with age in both mouse strains, whereas the lactobacilli counts decreased with age in both strains. These results suggest that both age and strain influence microbiota patterns in the IHFA mouse model.

  19. Anti-PD-L1 treatment enhances antitumor effect of everolimus in a mouse model of renal cell carcinoma.

    PubMed

    Hirayama, Yukiyoshi; Gi, Min; Yamano, Shotaro; Tachibana, Hirokazu; Okuno, Takahiro; Tamada, Satoshi; Nakatani, Tatsuya; Wanibuchi, Hideki

    2016-12-01

    Immunotherapy based on blockade of the programmed death-1 (PD-1)/programmed death-ligand 1 (PD-L1) axis has shown promising clinical activity for renal cell carcinoma (RCC) patients; however, the most effective use of these agents in combination with conventional targeted therapy remains to be resolved. Here we evaluated the therapeutic efficacy of the combination of the mTOR inhibitor everolimus (EVE) and anti-PD-L1 using an immunocompetent mouse model of RCC. We first assessed the in vitro effect of EVE on PD-L1 expression in the human 786-O and mouse RENCA RCC cell lines and found that EVE upregulated PD-L1 expression in these RCC cell lines. We then treated RENCA tumor-bearing mice with EVE and found that PD-L1 expression was also increased in tumor cells after EVE treatment. To determine the antitumor effects of EVE alone, anti-PD-L1 alone, and EVE in combination with anti-PD-L1, we evaluated their antitumor effects on RENCA tumor-bearing mice. A significant decrease in the tumor burden was observed in the EVE alone but not in the anti-PD-L1 alone treatment group compared with the control group. Importantly, the combination of EVE with anti-PD-L1 significantly reduced tumor burden compared with the EVE alone treatment, increasing tumor infiltrating lymphocytes (TILs) and the ratio of cytotoxic CD8(+) T cells to TILs. The results of the present study demonstrated that anti-PD-L1 treatment enhanced the antitumor effect of EVE in a mouse model, supporting a direct translation of this combination strategy to the clinic for the treatment of RCC.

  20. Effects of Three Different Types of Antifreeze Proteins on Mouse Ovarian Tissue Cryopreservation and Transplantation

    PubMed Central

    Youm, Hye Won; Kim, Hak Jun; Lee, Jung Ryeol; Suh, Chang Suk; Kim, Seok Hyun

    2015-01-01

    Background Ovarian tissue (OT) cryopreservation is effective in preserving fertility in cancer patients who have concerns about fertility loss due to cancer treatment. However, the damage incurred at different steps during the cryopreservation procedure may cause follicular depletion; hence, preventing chilling injury would help maintain ovarian function. Objective This study was designed to investigate the beneficial effects of different antifreeze proteins (AFPs) on mouse ovarian tissue cryopreservation and transplantation. Methodology Ovaries were obtained from 5-week-old B6D2F1 mice, and each ovary was cryopreserved using two-step vitrification and four-step warming procedures. In Experiment I, ovaries were randomly allocated into fresh, vitrification control, and nine experimental groups according to the AFP type (FfIBP, LeIBP, type III) and concentration (0.1, 1, 10 mg/mL) used. After vitrification and warming, 5,790 ovarian follicles were evaluated using histology and TUNEL assays, and immunofluorescence for τH2AX and Rad51 was used to detect DNA double-strand breaks (DSBs) and repair (DDR), respectively. In Experiment II, 20 mice were randomly divided into two groups: one where the vitrification and warming media were supplemented with 10 mg/mL LeIBP, and the other where media alone were used (control). Ovaries were then autotransplanted under both kidney capsules 7 days after vitrification together with the addition of 10 mg/mL LeIBP in the vitrification-warming media. After transplantation, the ovarian follicles, the percentage of apoptotic follicles, the extent of the CD31-positive area, and the serum FSH levels of the transplanted groups were compared. Principal Findings In Experiment I, the percentage of total grade 1 follicles was significantly higher in the 10 mg/mL LeIBP group than in the vitrification control, while all AFP-treated groups had significantly improved grade 1 primordial follicle numbers compared with those of the vitrification

  1. Chimeric analysis of Notch2 function: a role for Notch2 in the development of the roof plate of the mouse brain.

    PubMed

    Kadokawa, Yuzo; Marunouchi, Tohru

    2002-10-01

    Notch proteins are transmembrane receptors involved in cell-fate determination throughout development. Targeted disruption of either the Notch1 or Notch2 gene in mice results in embryonic lethality around embryonic day (E) 10.5 with widespread cell death. Although Notch1-deficient mice show disorganized somitogenesis, Notch2 mutants did not show definitive abnormalities in any tissue expressing high levels of the Notch2 gene, including the central nervous system. To study Notch2 function in development beyond the embryonic lethal stage, we performed chimeric analysis between Notch2 mutant and wild-type mouse embryos. Chimeric embryos developed normally and homozygous Notch2 mutant-specific cell death was not observed. Although chimeric embryos showed normal mosaicism until E9.5 in all tissues studied to date, Notch2 homozygous mutant cells failed to contribute to formation of the roof plate of the diencephalon and mesencephalon at later developmental stages, when Notch2 is normally expressed at high levels at there. Furthermore, Notch2 heterozygous mutant cells were also excluded from the roof plate of the chimera, however, Notch2 heterozygous mutant mice developed normally. We also showed that Wnt-1 and Mash1 expression patterns at the roof plate were disorganized in Notch2 homozygous mutant embryos. These results indicate that Notch2 plays an important role in development of the roof plate of the diencephalon and mesencephalon, and suggest that cellular rearrangement is involved in this process.

  2. Characterization of the effects of opiorphin and sialorphin and their analogs substituted in position 1 with pyroglutamic acid on motility in the mouse ileum.

    PubMed

    Kamysz, Elżbieta; Sałaga, Maciej; Sobczak, Marta; Kamysz, Wojciech; Fichna, Jakub

    2013-03-01

    Opiorphin and sialorphin are two recently discovered endogenous enkephalin-degrading enzyme inhibitors. Our aim was to characterize their effect on the mouse ileum motility and to investigate the role of glutamine in position 1. Opiorphin, sialorphin, and their analogs substituted in position 1 with pyroglutamic acid (pGlu) were synthesized by the solid-phase method using Fmoc chemistry. The effect of peptides on gastrointestinal (GI) motility was characterized using in vitro assays and in mouse model of upper GI transit. Opiorphin and sialorphin, but not their analogs, significantly increased electrical field-stimulated contractions in the mouse ileum in a δ-opioid receptor-dependent manner. Opiorphin, sialorphin, and their analogs did not influence the effect of [Met(5)]enkephalin on smooth muscle contractility in the mouse ileum in vitro. [Met(5)]enkephalin and sialorphin, but not opiorphin injected intravenously (1 mg/kg), significantly inhibited the upper GI transit. The intraperitoneal administration of peptides (3 mg/kg) did not change the mouse upper GI transit. In conclusion, this is the first study investigating the effect of opiorphin and sialorphin on the mouse ileum motility and demonstrating that glutamine in position 1 is crucial for their pharmacological action. Our results may be important for further structure-activity relationship studies on opiorphin and sialorphin and future development of potent clinical therapeutics aiming at the enkephalinergic system.

  3. The effect of interferon on the receptor sites to rabies virus on mouse neuroblastoma cells

    SciTech Connect

    Briggs, D.J.

    1989-01-01

    The binding of rabies virus to mouse neuroblastoma cells (MNA) primed with alpha interferon (IFN-{alpha}), beta interferon (IFN-{beta}), or alpha bungarotoxin (BTX) was examined. A saturable number of receptor sites to rabies virus was calculated by increasing the amount of {sup 3}H-CVS added to a constant number of untreated MNA cells. MNA cells were then exposed to 20 I.U. of IFN-{alpha}, IFN-{beta}, or 1 {mu}g of BTX and assayed to determine if these treatments had an effect on the number of receptor sites to rabies virus. Total amount of {sup 3}H-CVS bound to MNA cells was determined during a three hour incubation period. Cold competition assays using 1,000 fold excess unlabeled CVS were used to determine non-specific binding for each treatment. Specific binding was then calculated by subtracting non-specific binding from the total amount of CVS bound to MNA cells. A similar amount of total viral protein bound to untreated and IFN-{beta}, and BTX treated cells after 180 minutes of incubation. The bound protein varied by only 0.07 {mu}g. However, the amount of specific and non-specific binding varied a great deal between treatments. BTX caused an increase in non-specific and a decrease in specific binding of rabies virus. IFN-{beta} produced variable results in non-specific and specific binding while IFN-{alpha} caused mainly specific binding to occur. The most significant change brought about by IFN-{alpha} was an increase in the rate of viral attachment. At 30 minutes post-infection, IFN-{alpha} treated cells had bound 90% of the total amount of virus bound to untreated cells after 180 minutes. The increased binding rate did not cause a productive infection of rabies virus. No viral production was evident after an incubation period of 48 hours in either IFN-{alpha} or IFN-{beta} treated cells.

  4. Depolarizing Effects of Daikenchuto on Interstitial Cells of Cajal from Mouse Small Intestine

    PubMed Central

    Kim, Hyungwoo; Kim, Hyun Jung; Yang, Dongki; Jung, Myeong Ho; Kim, Byung Joo

    2017-01-01

    Background: Daikenchuto (DKT; TJ-100, TU-100), a traditional herbal medicineis used in modern medicine to treat gastrointestinal (GI) functional disorders. Interstitial cells of Cajal (ICCs) are the pacemaker cells of the GI tract and play important roles in the regulation of GI motility. Objective: The objective of this study was to investigate the effects of DKT on the pacemaker potentials (PPs) of cultured ICCs from murine small intestine. Materials and Methods: Enzymatic digestions were used to dissociate ICCs from mouse small intestine tissues. All experiments on ICCs were performed after 12 h of culture. The whole-cell patch-clamp configuration was used to record ICC PPs (current clamp mode). All experiments were performed at 30-32°C. Results: In current-clamp modeDKT depolarized and concentration-dependently decreased the amplitudes of PPs. Y25130 (a 5-HT3 receptor antagonist) or SB269970 (a 5-HT7 receptor antagonist) did not block DKT-induced PP depolarization, but RS39604 (a 5-HT4 receptor antagonist) did. Methoctramine (a muscarinic M2 receptor antagonist) failed to block DKT-induced PP depolarization, but pretreating 4-diphenylacetoxy-N-methylpiperidine methiodide (a muscarinic M3 receptor antagonist) facilitated blockade of DKT-induced PP depolarization. Pretreatment with an external Ca2+-free solution or thapsigargin abolished PPsand under these conditions, DKT did not induce PP depolarization. Furthermore Ginseng radix and Zingiberis rhizomes depolarized PPs, whereas Zanthoxyli fructus fruit (the third component of DKT) hyperpolarized PPs. Conclusion: These results suggest that DKT depolarizes ICC PPs in an internal or external Ca2+-dependent manner by stimulating 5-HT4 and M3 receptors. Furthermore, the authors suspect that the component in DKT largely responsible for depolarization is probably also a component of Ginseng radix and Zingiberis rhizomes. SUMMARY Daikenchuto (DKT) depolarized and concentration-dependently decreased the amplitudes of

  5. Effect of prenatal alcohol exposure on bony craniofacial development: a mouse MicroCT study.

    PubMed

    Shen, Li; Ai, Huisi; Liang, Yun; Ren, Xiaowei; Anthony, Charles Bruce; Goodlett, Charles R; Ward, Richard; Zhou, Feng C

    2013-08-01

    Craniofacial bone dysmorphology is an important but under-explored potential diagnostic feature of fetal alcohol spectrum disorders. This study used longitudinal MicroCT 3D imaging to examine the effect of prenatal alcohol exposure on craniofacial bone growth in a mouse model. C57BL/6J dams were divided into 3 groups: alcohol 4.2% v/v in PMI® liquid diet (ALC), 2 weeks prior to and during pregnancy from embryonic (E) days 7-E16; pair-fed controls (PF), isocalorically matched to the ALC group; chow controls (CHOW), given ad libitum chow and water. The MicroCT scans were performed on pups on postnatal days 7 (P7) and P21. The volumes of the neurocranium (volume encased by the frontal, parietal, and occipital bones) and the viscerocranium (volume encased by the mandible and nasal bone), along with total skull bone volume, head size, and head circumference were evaluated using general linear models and discriminant analyses. The pups in the alcohol-treated group, when compared to the chow-fed controls (ALC vs CHOW) and the isocaloric-fed controls (ALC vs PF), showed differences in head size and circumference at P7 and P21, the total skull volume and parietal bone volume at P7, and volume of all the tested bones except nasal at P21. There was a growth trend of ALC < CHOW and ALC < PF. While covarying for gender and head size or circumference, the treatment affected the total skull and mandible at P7 (ALC > CHOW), and the total skull, parietal bone, and occipital bone at P21 (ALC < CHOW, ALC < PF). While covarying for the P7 measures, the treatment affected only the 3 neurocranial bones at P21 (ALC < CHOW, ALC < PF). Discriminant analysis sensitively selected between ALC and CHOW (AUC = 0.967), between ALC and PF (AUC = 0.995), and between PF and CHOW (AUC = 0.805). These results supported our hypothesis that craniofacial bones might be a reliable and sensitive indicator for the diagnosis of prenatal alcohol exposure. Significantly, we found that the neurocranium (upper

  6. Novel Transgenic Mouse Model for Testing the Effect of Circulating IGF-I on Mammary Stem/Progenitor Cell Number and Tumorigenesis

    DTIC Science & Technology

    2007-08-01

    AD_________________ Award Number: W81XWH-06-1-0628 TITLE: Novel Transgenic Mouse Model for Testing ...TITLE AND SUBTITLE 5a. CONTRACT NUMBER Novel Transgenic Mouse Model for Testing the Effect of Circulating IGF-I on Mammary Stem/Progenitor Cell...tumorigenesis. We found no difference in time to tumor formation in ErbB2 vs. TTR-IGF-I/ErbB2 transgenic mice . Our conclusion is either that ErbB2

  7. [Effect of pravastatin on transportation of scutellarin in mouse liver and its mechanism].

    PubMed

    Liu, Jian-Ming; Xiong, Yu-Qing

    2011-03-01

    This study is to investigate the transportation of scutellarin in cell and live models and study on mechanism of absorption and transport of scutellarin in mouse liver. The concentration of scutellarin in plasma and liver from control and pretreated groups was determined by high performance liquid chromatography. The uptake of scutellarin was examined in control hepatocytes group, induced hepatocytes group and induced hepatocytes plus pravastatin group. Pravastatin can affect the pharmacokinetics of scutellarin in mouse: CL is decreased while AUC is increased. The scutellarin absorption of hepatocyte induced group was higher than that of control group, but was decreased in the group with pravastatin added. The research showed that there was potential drug interaction between pravastatin and scutellarin. The drugs may compete for oatp2 mediated transport pathway consisted in the uptake of scutellarin in liver.

  8. [Effect of freezing on immunogenicity of the rabies vaccine produced in suckling mouse brain].

    PubMed

    Albas, A; Nogueira, R M; Fontolan, O L; Albas Kd; Bremer Neto, H

    2001-01-01

    The immune humoral response induced by the rabies vaccine produced in suckling mouse brain was studied in 23 dogs. The mouse neutralization test (MNT) was used to evaluate the level of rabies antibodies. Ten dogs received vaccine stored at 2 to 8 degrees C, showing the following results: 30 days after vaccination, six samples (60%) responded to the MNT; 180 days after vaccination, 4 samples (40%); and 360 days after vaccination, only one sample (10%). The remaining 13 dogs received previously frozen vaccine and 30 days after vaccination, only two samples (l5.4%) responded to the MNT. No titers were detected 180 and 360 days after vaccination. Statistical analysis of each variable used Tuckey analysis of variance, which showed statistically significant differences between the two groups.

  9. Effectiveness of slow freezing and vitrification for long-term preservation of mouse ovarian tissue.

    PubMed

    Kim, G A; Kim, H Y; Kim, J W; Lee, G; Lee, E; Ahn, J Y; Park, J H; Lim, J M

    2011-04-01

    This study was conducted to evaluate the interaction between cryo-damage and ART outcome after cryopreservation of mouse ovarian tissues with different methods. Either a vitrification or a slow freezing was employed for the cryopreservation of B6CBAF1 mouse ovaries and follicle growth and the preimplantation development of intrafollicular oocytes following parthenogenesis or IVF were monitored. Both cryopreservation protocols caused significant damage to follicle components, including vacuole formation and mitochondrial deformities. Regardless of the cryopreservation protocols employed, a sharp (P < 0.0001) decrease in follicle viability and post-thaw growth was detected. When IVF program was employed, significant (P < 0.05) decrease in cleavage and blastocyst formation was notable in both modes of cryopreservation. However, such retardation was not found when oocytes were parthenogenetically activated. In the IVF oocytes, slow freezing led to better development than vitrification. In conclusion, a close relationship between cryopreservation and ART methods should be considered for the selection of cryopreservation program.

  10. Anti-inflammatory effects of Lacto-Wolfberry in a mouse model of experimental colitis

    PubMed Central

    Philippe, David; Brahmbhatt, Viral; Foata, Francis; Saudan, Yen; Serrant, Patrick; Blum, Stephanie; Benyacoub, Jalil; Vidal, Karine

    2012-01-01

    AIM: To investigate the anti-inflammatory properties of Lacto-Wolfberry (LWB), both in vitro and using a mouse model of experimental colitis. METHODS: The effects of LWB on lipopolysaccharide (LPS)-induced reactive oxygen species (ROS) and interleukin (IL)-6 secretion were assessed in a murine macrophage cell line. in vitro assessment also included characterizing the effects of LWB on the activation of NF-E2 related 2 pathway and inhibition of tumor necrosis factor-α (TNF-α)-induced nuclear factor-κB (NF-κB) activation, utilizing reporter cell lines. Following the in vitro assessment, the anti-inflammatory efficacy of an oral intervention with LWB was tested in vivo using a preclinical model of intestinal inflammation. Multiple outcomes including body weight, intestinal histology, colonic cytokine levels and anti-oxidative measures were investigated. RESULTS: LWB reduced the LPS-mediated induction of ROS production [+LPS vs 1% LWB + LPS, 1590 ± 188.5 relative luminescence units (RLU) vs 389 ± 5.9 RLU, P < 0.001]. LWB was more effective than wolfberry alone in reducing LPS-induced IL-6 secretion in vitro (wolfberry vs 0.5% LWB, 15% ± 7.8% vs 64% ± 5%, P < 0.001). In addition, LWB increased reporter gene expression via the anti-oxidant response element activation (wolfberry vs LWB, 73% ± 6.9% vs 148% ± 28.3%, P < 0.001) and inhibited the TNF-α-induced activation of the NF-κB pathway (milk vs LWB, 10% ± 6.7% vs 35% ± 3.3%, P < 0.05). Furthermore, oral supplementation with LWB resulted in a reduction of macroscopic (-LWB vs +LWB, 5.39 ± 0.61 vs 3.66 ± 0.59, P = 0.0445) and histological scores (-LWB vs +LWB, 5.44 ± 0.32 vs 3.66 ± 0.59, P = 0.0087) in colitic mice. These effects were associated with a significant decrease in levels of inflammatory cytokines such as IL-1β (-LWB vs +LWB, 570 ± 245 μg/L vs 89 ± 38 μg/L, P = 0.0106), keratinocyte-derived chemokine/growth regulated protein-α (-LWB vs +LWB, 184 ± 49 μg/L vs 75 ± 20 μg/L, P = 0

  11. [Effect of combined administration of Angelica polysaccharide and cytarabine on liver of human leukemia NOD/SCID mouse model].

    PubMed

    Zhu, Jia-Hong; Xu, Chun-Yan; Mu, Xin-Yi; Liu, Jun; Zhang, Meng-Si; Jia, Dao-Yong; Zhang, Yan-Yan; Huang, Guo-Ning; Wang, Ya-Ping

    2014-01-01

    Leukemia is a type of malignant tumors of hematopoietic system with the abnormal increased immature leukemia cells showing metastasis and invasion ability. Liver is one of the main targets of the leukemia cells spread to, where they may continue to proliferate and differentiate and cause liver function damage, even liver failure. Our previous studies showed that Angelica polysscharides (APS), the main effective components in Angelica sinensis of Chinese traditional medicine, was able to inhibit the proliferation and induced differentiation of the leukemia cells, however, its effect on the liver during the treatment remains elucidated. In the present study, the human leukemia NOD/SCID mouse model were established by implantation human leukemia K562 cells line, then the leukemia mouse were treated with APS, Ara-c or APS + Ara-c respectively by peritoneal injection for 14 days, to explore the effect and mechanism of the chemicals on the mouse liver. Compared to the human leukemia NOD/SCID mouse model group with the treatments of APS, Ara-c and APS + Ara-c, We found that severe liver damage and pathological changes of the liver were able to alleviate: First, the number of white blood cells in the peripheral blood was significantly lower and with less transplanted K562 leukemia cells; Second, liver function damage was alleviated as liver function tests showed that alanine aminotransferase (ALT), aspartate aminotransferase (AST) and total bilirubin (TBiL) were significantly reduced, while the albumin (Alb) was notably increased; Third, liver antioxidant ability was improved as the activities of the antioxidant enzymes glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) were significantly increased, and the contents of GSH and malonaldehyde (MDA) were decreased significantly in the liver; Fourth, the inflammation of the liver was relieved as the level of IL-1beta and IL-6, the inflammatory cytokines, were decreased significantly in the liver. Fifth, liver index

  12. Cytogenetic effects of pesticides. II. Induction of micronuclei in mouse bone marrow by the insecticide gardona.

    PubMed

    Amer, S M; Fahmy, M A

    1983-01-01

    The induction of micronuclei in mouse bone marrow by the organophosphorus insecticide gardona (also known as tetrachlorvinphos) was tested. 3 routes of administration were used for the pure insecticide: intraperitoneal, oral and dermal. The different routes of treatment with gardona caused toxicity of marrow indicated as significant increases in the percentage of polychromatic erythrocytes over that of the control. Intraperitoneal and oral treatments induced a statistically significant percentage of micronucleated PE.

  13. Effects of androgen on immunohistochemical localization of androgen receptor and Connexin 43 in mouse ovary.

    PubMed

    Yang, Mei; Li, Jianhua; An, Yulin; Zhang, Shuiwen

    2015-10-01

    Androgens have essential roles in the regulation of follicular development and female fertility. Androgen excess is the leading defect in polycystic ovary syndrome (PCOS) patients and involved in the ovarian dysfunction. The aim of this study was to elucidate the regarding regulatory role of androgen in the follicular development of female mouse. Immunohistochemical staining and Western blot analyses were performed to detect androgen receptor (AR) and Connexin 43 (Cx43) expression in ovaries from both control and testosterone-treated group mice. In this study, localizations of AR and Cx43 were dramatically altered in testosterone-treated mouse ovaries. In addition, AR expression was significantly increased, whereas Cx43 expression was markedly decreased after testosterone treatment. Alterations of AR and Cx43 expression by testosterone with concomitant reduction of MII oocytes. Overall, these results suggest the involvement of androgen in the regulation of AR and Cx43 localizations in mouse ovary. Alterations of AR and Cx43 expression by testosterone may affect normal folliculogenesis. Together these findings will enable us to begin understanding the important roles of AR and Cx43 actions in the regulation of follicular development, as well as providing insights into the role of AR and Cx43 actions in the androgen-associated reproductive diseases such as PCOS.

  14. Metagenomic insights into tetracycline effects on microbial community and antibiotic resistance of mouse gut.

    PubMed

    Yin, Jinbao; Zhang, Xu-Xiang; Wu, Bing; Xian, Qiming

    2015-12-01

    Antibiotics have been widely used for disease prevention and treatment of the human and animals, and for growth promotion in animal husbandry. Antibiotics can disturb the intestinal microbial community, which play a fundamental role in animals' health. Misuse or overuse of antibiotics can result in increase and spread of microbial antibiotic resistance, threatening human health and ecological safety. In this study, we used Illumina Hiseq sequencing, (1)H nuclear magnetic resonance spectroscopy and metagenomics approaches to investigate intestinal microbial community shift and antibiotic resistance alteration of the mice drinking the water containing tetracycline hydrochloride (TET). Two-week TET administration caused reduction of gut microbial diversity (from 194 to 89 genera), increase in Firmicutes abundance (from 24.9 to 39.8%) and decrease in Bacteroidetes abundance (from 69.8 to 51.2%). Metagenomic analysis showed that TET treatment affected the intestinal microbial functions of carbohydrate, ribosomal, cell wall/membrane/envelope and signal transduction, which is evidenced by the alteration in the metabolites of mouse serum. Meanwhile, in the mouse intestinal microbiota, TET treatment enhanced the abundance of antibiotic resistance genes (ARGs) (from 307.3 to 1492.7 ppm), plasmids (from 425.4 to 3235.1 ppm) and integrons (from 0.8 to 179.6 ppm) in mouse gut. Our results indicated that TET administration can disturb gut microbial community and physiological metabolism of mice, and increase the opportunity of ARGs and mobile genetic elements entering into the environment with feces discharge.

  15. Effect of Harderian adenectomy on the statistical analyses of mouse brain imaging using positron emission tomography

    PubMed Central

    Kim, Minsoo; Woo, Sang-Keun; Yu, Jung Woo; Lee, Yong Jin; Kim, Kyeong Min; Kang, Joo Hyun; Eom, Kidong

    2014-01-01

    Positron emission tomography (PET) using 2-deoxy-2-[18F] fluoro-D-glucose (FDG) as a radioactive tracer is a useful technique for in vivo brain imaging. However, the anatomical and physiological features of the Harderian gland limit the use of FDG-PET imaging in the mouse brain. The gland shows strong FDG uptake, which in turn results in distorted PET images of the frontal brain region. The purpose of this study was to determine if a simple surgical procedure to remove the Harderian gland prior to PET imaging of mouse brains could reduce or eliminate FDG uptake. Measurement of FDG uptake in unilaterally adenectomized mice showed that the radioactive signal emitted from the intact Harderian gland distorts frontal brain region images. Spatial parametric measurement analysis demonstrated that the presence of the Harderian gland could prevent accurate assessment of brain PET imaging. Bilateral Harderian adenectomy efficiently eliminated unwanted radioactive signal spillover into the frontal brain region beginning on postoperative Day 10. Harderian adenectomy did not cause any post-operative complications during the experimental period. These findings demonstrate the benefits of performing a Harderian adenectomy prior to PET imaging of mouse brains. PMID:23820224

  16. Anti-Tumor Effects after Adoptive Transfer of IL-12 Transposon-Modified Murine Splenocytes in the OT-I-Melanoma Mouse Model.

    PubMed

    Galvan, Daniel L; O'Neil, Richard T; Foster, Aaron E; Huye, Leslie; Bear, Adham; Rooney, Cliona M; Wilson, Matthew H

    2015-01-01

    Adoptive transfer of gene modified T cells provides possible immunotherapy for patients with cancers refractory to other treatments. We have previously used the non-viral piggyBac transposon system to gene modify human T cells for potential immunotherapy. However, these previous studies utilized adoptive transfer of modified human T cells to target cancer xenografts in highly immunodeficient (NOD-SCID) mice that do not recapitulate an intact immune system. Currently, only viral vectors have shown efficacy in permanently gene-modifying mouse T cells for immunotherapy applications. Therefore, we sought to determine if piggyBac could effectively gene modify mouse T cells to target cancer cells in a mouse cancer model. We first demonstrated that we could gene modify cells to express murine interleukin-12 (p35/p40 mIL-12), a transgene with proven efficacy in melanoma immunotherapy. The OT-I melanoma mouse model provides a well-established T cell mediated immune response to ovalbumin (OVA) positive B16 melanoma cells. B16/OVA melanoma cells were implanted in wild type C57Bl6 mice. Mouse splenocytes were isolated from C57Bl6 OT-I mice and were gene modified using piggyBac to express luciferase. Adoptive transfer of luciferase-modified OT-I splenocytes demonstrated homing to B16/OVA melanoma tumors in vivo. We next gene-modified OT-I cells to express mIL-12. Adoptive transfer of mIL-12-modified mouse OT-I splenocytes delayed B16/OVA melanoma tumor growth in vivo compared to control OT-I splenocytes and improved mouse survival. Our results demonstrate that the piggyBac transposon system can be used to gene modify splenocytes and mouse T cells for evaluating adoptive immunotherapy strategies in immunocompetent mouse tumor models that may more directly mimic immunotherapy applications in humans.

  17. Effect of synthetic compound B 58 on natural killer and cytostatic cell activity in the mouse spleen

    SciTech Connect

    Malaitsev, V.V.; Bogdanova, I.M.; Spivak, N.Ya.; Bogdashin, I.V.; Zueva, V.S.

    1987-11-01

    The authors study the effect of compound B 58, a synthetic interferon inducer, on activity of natural killer cells (NKC) and cytostatic effectors in the mouse spleen. NKC activity in the spleen was determined in the 4-hour microtoxicity test against VAC-1 target cells labeled with /sup 51/Cr. /sup 3/H-thymidine was added to the effectors and targets. An increase in activity of the cellular mechanisms of natural antitumor resistance arising under the influence of compound B 58 is shown.

  18. Ameliorating effects of Mango (Mangifera indica L.) fruit on plasma ethanol level in a mouse model assessed with H-NMR based metabolic profiling.

    PubMed

    Kim, So-Hyun; K Cho, Somi; Min, Tae-Sun; Kim, Yujin; Yang, Seung-Ok; Kim, Hee-Su; Hyun, Sun-Hee; Kim, Hana; Kim, Young-Suk; Choi, Hyung-Kyoon

    2011-05-01

    The ameliorating effects of Mango (Mangifera indica L.) flesh and peel samples on plasma ethanol level were investigated using a mouse model. Mango fruit samples remarkably decreased mouse plasma ethanol levels and increased the activities of alcohol dehydrogenase and acetaldehyde dehydrogenase. The (1)H-NMR-based metabolomic technique was employed to investigate the differences in metabolic profiles of mango fruits, and mouse plasma samples fed with mango fruit samples. The partial least squares-discriminate analysis of (1)H-NMR spectral data of mouse plasma demonstrated that there were clear separations among plasma samples from mice fed with buffer, mango flesh and peel. A loading plot demonstrated that metabolites from mango fruit, such as fructose and aspartate, might stimulate alcohol degradation enzymes. This study suggests that mango flesh and peel could be used as resources for functional foods intended to decrease plasma ethanol level after ethanol uptake.

  19. Effects of Prenatal Testosterone Exposure on Sexually Dimorphic Gene Expression in the Neonatal Mouse Cortex and Hippocampus

    PubMed Central

    Armoskus, Chris; Mota, Thomas; Moreira, Debbie; Tsai, Houng-Wei

    2014-01-01

    Objective Using gene expression microarrays and reverse transcription with quantitative polymerase chain reaction (RT-qPCR), we have recently identified several novel genes that are differentially expressed in the neonatal male versus female mouse cortex/hippocampus (Armoskus et al.). Since perinatal testosterone (T) secreted by the developing testes masculinizes cortical and hippocampal structures and the behaviors regulated by these brain regions, we hypothesized that sexually dimorphic expression of specific selected genes in these areas might be regulated by T during early development. Methods To test our hypothesis, we treated timed pregnant female mice daily with vehicle or testosterone propionate (TP) starting on embryonic day 16 until the day of birth. The cortex/hippocampus was collected from vehicle- and TP-treated, male and female neonatal pups. Total RNA was extracted from these brain tissues, followed by RT-qPCR to measure relative mRNA levels of seven sex chromosome genes and three autosomal genes that have previously showed sex differences. Results The effect of prenatal TP was confirmed as it stimulated Dhcr24 expression in the neonatal mouse cortex/hippocampus and increased the anogenital distance in females. We found a significant effect of sex, but not TP, on expression of three Y-linked (Ddx3y, Eif2s3y, and Kdm5d), four X-linked (Eif2s3x, Kdm6a, Mid1, and Xist), and one autosomal (Klk8) genes in the neonatal mouse cortex/hippocampus. Conclusion Although most of the selected genes are not directly regulated by prenatal T, their sexually dimorphic expression might play an important role in the control of sexually differentiated cognitive and social behaviors as well as in the etiology of sex-biased neurological disorders and mental illnesses. PMID:25411648

  20. The effect of gas exchange on multiple-breath nitrogen washout measures of ventilation inhomogeneity in the mouse.

    PubMed

    Dharmakumara, Mahesh; Prisk, G Kim; Royce, Simon G; Tawhai, Merryn; Thompson, Bruce R

    2014-11-01

    Inert-gas washout measurements using oxygen, in the lungs of small animals, are complicated by the continuous process of oxygen consumption (V̇o2). The multiple-breath nitrogen washout (MBNW) technique uses the alveolar slope to determine measures of ventilation inhomogeneity in the acinar (Sacin) and conducting (Scond) airway regions, as well as overall inhomogeneity, as determined by the lung clearance index (LCI). We hypothesized that measured ventilation inhomogeneity in the mouse lung while it is alive is in fact an artifact due to the high V̇o2 in proportion to alveolar gas volume (Va), and not ventilation inhomogeneity per se. In seven male C57BL/6 mice, MBNW was performed alive and postmortem to derive measures with and without the effect of gas exchange, respectively. These results were compared with those obtained from an asymmetric multibranch point mathematical model of the mouse lung. There was no statistical difference in Sacin and LCI between alive and postmortem results (Sacin alive = 0.311 ± 0.043 ml(-1) and Sacin postmortem = 0.338 ± 0.032 ml(-1), LCI alive = 7.0 ± 0.1 and LCI postmortem = 7.0 ± 0.1). However, there was a significant decrease in Scond from 0.086 ± 0.005 ml(-1) alive to 0.006 ± 0.002 ml(-1) postmortem (P < 0.01). Model simulations replicated these results. Furthermore, in the model, as V̇o2 increased, so did the alveolar slope. These findings suggests that the MBNW measurement of Scond in the mouse lung is confounded by the effect of gas exchange, a result of the high V̇o2-to-Va ratio in this small animal, and not due to inhomogeneity within the airways.

  1. Comparative effects of α2δ-1 ligands in mouse models of colonic hypersensitivity

    PubMed Central

    Meleine, Mathieu; Boudieu, Ludivine; Gelot, Agathe; Muller, Emilie; Lashermes, Amandine; Matricon, Julien; Silberberg, Celine; Theodorou, Vassilia; Eschalier, Alain; Ardid, Denis; Carvalho, Frederic A

    2016-01-01

    AIM To investigate anti-hypersensitive effects of α2δ-1 ligands in non-inflammatory and inflammation-associated colonic hypersensitivity (CHS) mouse models. METHODS To induce an inflammation-associated CHS, 1% dextran sulfate sodium (DSS) was administered to C57Bl/6J male mice, in drinking water, for 14 d. Regarding the non-inflammatory neonatal maternal separation (NMS) -induced CHS model, wild-type C57BI/6J pups were isolated from their mother from day 2 to day 14 (P2 to P14), three hours per day (from 9:00 a.m. to 12:00 p.m.). Colorectal distension was performed by inflating distension probe from 20 μL to 100 μL by 20 μL increment step every 10 s. After a first colorectal distension (CRD), drugs were administered subcutaneously, in a cumulative manner, (Gabapentin at 30 mg/kg and 100 mg/kg; Pregabalin at 10 mg/kg and 30 mg/kg; Carbamazepine at 10 mg/kg and 30 mg/kg) and a second CRD was performed one hour after each injection. RESULTS The visceromotor response (VMR) to CRD was increased by our NMS paradigm protocol in comparison to non-handled (NH) mice, considering the highest distension volumes (80 μL: 0.783 ± 0.056 mV/s vs 0.531 ± 0.034 mV/s, P < 0.05 and 100 μL: 1.087 ± 0.056 mV/s vs 0.634 ± 0.038 mV/s, P < 0.05 for NMS and NH mice, respectively). In the inflammation-associated CHS, DSS-treated mice showed a dramatic and significant increase in VMR at 60 and 80 μL distension volumes when compared to control mice (60 μL: 0.920 ± 0.079 mV/s vs 0.426 ± 0.100 mV/s P < 0.05 and 80 μL: 1.193 ± 0.097 mV/s vs 0.681 ± 0.094 mV/s P < 0.05 for DSS- and Water-treated mice, respectively). Carbamazepine failed to significantly reduce CHS in both models. Gabapentin significantly reduced CHS in the DSS-induced model for both subcutaneous injections at 30 or 100 mg/kg. Pregabalin significantly reduced VMR to CRD in the non-inflammatory NMS-induced CHS model for the acute subcutaneous administration of the highest cumulative dose (30 mg/kg) and significantly

  2. The effect of neurotoxin on rabies virus binding to mouse neuroblastoma cells.

    PubMed

    Briggs, D J; Phillips, R M

    1991-08-01

    Mouse neuroblastoma cells were exposed to alpha bungarotoxin, a neurotoxin known to inhibit rabies virus binding to the nicotinic acetylcholine receptor located at the neuromuscular junction in muscle tissue. The total amount of 3H-CVS virus that bound to neurotoxin treated cells was separated into specific and non-specific binding using a cold competition assay. Comparison of untreated and neurotoxin treated cells demonstrated that the majority of cell-associated virus in untreated cells was of a specific nature whereas the majority of the cell-associated virus in neurotoxin treated cells was due to non-specific binding.

  3. L-proline: a highly effective cryoprotectant for mouse oocyte vitrification

    PubMed Central

    Zhang, Lu; Xue, Xu; Yan, Jie; Yan, Li-Ying; Jin, Xiao-Hu; Zhu, Xiao-Hui; He, Zhi-Zhu; Liu, Jing; Li, Rong; Qiao, Jie

    2016-01-01

    Recent studies have shown that L-proline is a natural osmoprotectant and an antioxidant to protect cells from injuries such as that caused by freezing and thawing in many species including plant, ram sperm and human endothelial cells. Nevertheless, this nontoxic cryoprotectant has not yet been applied to mammalian oocyte vitrification. In this study we evaluated the efficiency and safety of the new cryoprotectant in oocyte vitrification. The results indicated that L-proline improves the survival rate of vitrified oocytes, protects mitochondrial functions and could be applied as a new cryoprotectant in mouse oocyte vitrification. PMID:27412080

  4. Effects of Synbiotic2000™ Forte on the Intestinal Motility and Interstitial Cells of Cajal in TBI Mouse Model.

    PubMed

    Zhang, Limei; Zeng, Jing; Ma, Yuanyuan; Tan, Min; Zhou, Min; Fang, Huan; Bengmark, Stig; Zhu, Jingci

    2017-03-16

    The main objective of this study was to investigate the effects of Synbiotic2000™ Forte on the intestinal motility and interstitial cells of Cajal (ICC) in traumatic brain injury (TBI) mouse model. Kunming mice were randomly divided into sham operation group (S group), enteral nutrition group with TBI (E group), and Synbiotic2000™ Forte group with TBI (P group). The contractile activity of the intestinal smooth muscle, densities and ultrastructure of the ICC, kit protein concentration, weight, and defecation of mice were monitored and analyzed. TBI markedly suppressed contractile activity of the intestinal smooth muscle (P < 0.01), which led to a reduction of defecation (P < 0.01) and weight (P < 0.01). However, application of Synbiotic2000™ Forte significantly improved contractile activity of the small intestine (P < 0.01), which may be related to protective effects to the interstitial cells of Cajal, smooth muscle cells, and enteric neurons. TBI impaired ICC networks and densities (P < 0.01), events that were protected by the application of Synbiotic2000™ Forte. Synbiotic2000™ Forte may attenuate TBI-mediated inhibition of the kit protein pathway. Synbiotic2000™ Forte may improve intestinal motility and protect the ICC in the TBI mouse. These findings provide a novel support for the application of Synbiotic2000™ Forte in intestinal motility disturbance after TBI.

  5. Cytotoxic effects of CdSe quantum dots on maturation of mouse oocytes, fertilization, and fetal development.

    PubMed

    Hsieh, Ming-Shu; Shiao, Nion-Heng; Chan, Wen-Hsiung

    2009-05-14

    Quantum dots (QDs) are useful novel luminescent markers, but their embryonic toxicity is yet to be fully established, particularly in oocyte maturation and sperm fertilization. Earlier experiments by our group show that CdSe-core QDs have cytotoxic effects on mouse blastocysts and are associated with defects in subsequent development. Here, we further investigate the influence of CdSe-core QDs on oocyte maturation, fertilization, and subsequent pre- and postimplantation development. CdSe-core QDs induced a significant reduction in the rates of oocyte maturation, fertilization, and in vitro embryo development, but not ZnS-coated CdSe QDs. Treatment of oocytes with 500 nM CdSe-core QDs during in vitro maturation (IVM) led to increased resorption of postimplantation embryos and decreased placental and fetal weights. To our knowledge, this is the first study to report the negative impact of CdSe-core QDs on mouse oocyte development. Moreover, surface modification of CdSe-core QDs with ZnS effectively prevented this cytotoxicity.

  6. Effect of dihydrotestosterone on the expression of mucin 1 and the activity of Wnt signaling in mouse corneal epithelial cells

    PubMed Central

    Qin, Li; Pei, Cheng; Kang, Qian-Yan; Liu, Zhao; Li, Li

    2016-01-01

    AIM To explore the effects of the androgen dihydrotestosterone on the expression of mucin 1 (MUC1) and the activity of Wnt signaling in mouse corneal epithelial cells. METHODS Primary mouse corneal epithelial cells were isolated from the corneas of BALB/c mice. Quantitative real-time polymerase chain reaction, immunofluorescence and Western blot analysis were used to quantify the differential expression of selected genes. The androgen receptor was silenced by transfecting cells with androgen receptor shRNAs. TOP-Flash and FOP-flash reporter plasmids were used to measure β-catenin-driven transcription. RESULTS Dihydrotestosterone treatment increased MUC1 expression and activated the Wnt signaling pathway and led to the translocation of β-catenin and upregulation of the Wnt downstream target gene TATA box binding protein and urokinase plasminogen activator. These effects were prevented by downregulating the androgen receptor. CONCLUSION Androgens may protect against dry eye by regulating the expression of MUC1 which is stimulated by the activation of Wnt signaling via the androgen receptor. An understanding of the mechanisms associated with androgen-mediated protection against dry eye is an important step in developing new therapies for this disease. PMID:27990353

  7. Effects of Solar Particle Event-Like Proton Radiation and/or Simulated Microgravity on Circulating Mouse Blood Cells.

    PubMed

    Romero-Weaver, Ana L; Lin, Liyong; Carabe-Fernandez, Alejandro; Kennedy, Ann R

    2014-08-01

    Astronauts traveling in space missions outside of low Earth orbit will be exposed for longer times to a microgravity environment. In addition, the increased travel time involved in exploration class missions will result in an increased risk of exposure to significant doses of solar particle event (SPE) radiation. Both conditions could significantly affect the number of circulating blood cells. Therefore, it is critical to determine the combined effects of exposure to both microgravity and SPE radiation. The purpose of the present study was to assess these risks by evaluating the effects of SPE-like proton radiation and/or microgravity, as simulated with the hindlimb unloading (HU) system, on circulating blood cells using mouse as a model system. The results indicate that exposure to HU alone caused minimal or no significant changes in mouse circulating blood cell numbers. The exposure of mice to SPE-like proton radiation with or without HU treatment caused a significant decrease in the number of circulating lymphocytes, granulocytes and platelets. The reduced numbers of circulating lymphocytes, granulocytes, and platelets, resulting from the SPE-like proton radiation exposure, with or without HU treatment, in mice suggest that astronauts participating in exploration class missions may be at greater risk of developing infections and thrombotic diseases; thus, countermeasures may be necessary for these biological endpoints.

  8. A transgenic mouse model expressing an ERα folding biosensor reveals the effects of Bisphenol A on estrogen receptor signaling

    PubMed Central

    Sekar, Thillai V.; Foygel, Kira; Massoud, Tarik F.; Gambhir, Sanjiv S.; Paulmurugan, Ramasamy

    2016-01-01

    Estrogen receptor-α (ERα) plays an important role in normal and abnormal physiology of the human reproductive system by interacting with the endogenous ligand estradiol (E2). However, other ligands, either analogous or dissimilar to E2, also bind to ERα. This may create unintentional activation of ER signaling in reproductive tissues that can lead to cancer development. We developed a transgenic mouse model that constitutively expresses a firefly luciferase (FLuc) split reporter complementation biosensor (NFLuc-ER-LBDG521T-CFLuc) to simultaneously evaluate the dynamics and potency of ligands that bind to ERα. We first validated this model using various ER ligands, including Raloxifene, Diethylstilbestrol, E2, and 4-hydroxytamoxifen, by employing FLuc-based optical bioluminescence imaging of living mice. We then used the model to investigate the carcinogenic property of Bisphenol A (BPA), an environmental estrogen, by long-term exposure at full and half environmental doses. We showed significant carcinogenic effects on female animals while revealing activated downstream ER signaling as measured by bioluminescence imaging. BPA induced tumor-like outgrowths in female transgenic mice, histopathologically confirmed to be neoplastic and epithelial in origin. This transgenic mouse model expressing an ERα folding-biosensor is useful in evaluation of estrogenic ligands and their downstream effects, and in studying environmental estrogen induced carcinogenesis in vivo. PMID:27721470

  9. Rhythmical Photic Stimulation at Alpha Frequencies Produces Antidepressant-Like Effects in a Mouse Model of Depression

    PubMed Central

    Kim, Shinheun; Kim, Sangwoo; Khalid, Arshi; Jeong, Yong; Jeong, Bumseok; Lee, Soon-Tae; Jung, Keun-Hwa; Chu, Kon; Lee, Sang Kun; Jeon, Daejong

    2016-01-01

    Current therapies for depression consist primarily of pharmacological agents, including antidepressants, and/or psychiatric counseling, such as psychotherapy. However, light therapy has recently begun to be considered as an effective tool for the treatment of the neuropsychiatric behaviors and symptoms of a variety of brain disorders or diseases, including depression. One methodology employed in light therapy involves flickering photic stimulation within a specific frequency range. The present study investigated whether flickering and flashing photic stimulation with light emitting diodes (LEDs) could improve depression-like behaviors in a corticosterone (CORT)-induced mouse model of depression. Additionally, the effects of the flickering and flashing lights on depressive behavior were compared with those of fluoxetine. Rhythmical flickering photic stimulation at alpha frequencies from 9–11 Hz clearly improved performance on behavioral tasks assessing anxiety, locomotor activity, social interaction, and despair. In contrast, fluoxetine treatment did not strongly improve behavioral performance during the same period compared with flickering photic stimulation. The present findings demonstrated that LED-derived flickering photic stimulation more rapidly improved behavioral outcomes in a CORT-induced mouse model of depression compared with fluoxetine. Thus, the present study suggests that rhythmical photic stimulation at alpha frequencies may aid in the improvement of the quality of life of patients with depression. PMID:26727023

  10. Effects of continuous administration of paroxetine on ligand binding site and expression of serotonin transporter protein in mouse brain.

    PubMed

    Hirano, Kazufumi; Seki, Takahiro; Sakai, Norio; Kato, Yasuhiro; Hashimoto, Hisakuni; Uchida, Shinya; Yamada, Shizuo

    2005-08-16

    Selective serotonin reuptake inhibitors (SSRIs), such as paroxetine, are utilized in the treatment of depression and anxiety disorders. Although SSRIs potently interfere with the activity of brain serotonin transporter (SERT) after acute treatment, clinical improvement of psychiatric diseases is observed only after the repeated administration for several weeks (2-6 weeks). The present study was undertaken to investigate the effects of continuous administration of paroxetine on specific [3H]paroxetine binding sites and expression of SERT protein in mouse brain. Mice continuously and subcutaneously received paroxetine at doses of 2.67 or 13.3 mumol/kg/day for 21 days by using osmotic minipumps, and the steady-state plasma drug levels were within the range of reported concentrations in the clinical therapy. Continuous administration of paroxetine at theses doses produced significant (25-46%) reduction of [3H]paroxetine binding in each brain region (cerebral cortex, striatum, hippocampus, thalamus, midbrain) of mice. In Western blot analysis, expression levels of SERT protein in the thalamus and midbrain of mice were significantly (51% and 61%, respectively) decreased on day 21 after the implantation of minipumps at the higher dose. In conclusion, this study has firstly shown that continuous administration of paroxetine induces significant reduction of not only ligand binding sites of SERT but the protein expression level in mouse brain. Such down-regulation of SERT may partly underlie the therapeutic effect of long-term treatment with SSRIs in human.

  11. Antimicrobial effect of continuous lidocaine infusion in a Staphylococcus aureus-induced wound infection in a mouse model.

    PubMed

    Lu, Cheng-Wei; Lin, Tzu-Yu; Shieh, Jiann-Shing; Wang, Ming-Jiuh; Chiu, Kuan-Ming

    2014-11-01

    Continuous infusion of local anesthetics in surgical wounds has been shown to be an effective technique for postoperative analgesia. To investigate the potential antimicrobial effect of continuous local anesthetic infusion, we adapted a mouse model of surgical wound infection to examine effects on antibacterial response. Forty male BALB/c mice were randomized into 2 groups. An incision wound was made over the dorsal flank and instilled with Staphylococcus aureus. An osmotic pump was then implanted to deliver either 0.9% NaCl or 2% lidocaine continuously. Each wound was cultured postoperatively at 2 days, and the colony count of S. aureus was determined. Results showed that the number of colony-forming units of S. aureus measured in wounds treated with lidocaine displayed a nearly 10-fold reduction compared to the wounds in the saline group (P=0.009). The demonstrated antibacterial activity indicates that local anesthetic infusion may play a role in prophylaxis for surgical wound infections.

  12. Epinecidin-1 Has Immunomodulatory Effects, Facilitating Its Therapeutic Use in a Mouse Model of Pseudomonas aeruginosa Sepsis

    PubMed Central

    Pan, Chieh-Yu; Chen, Jian-Chyi; Sheen, Jenn-Feng; Lin, Tai-Lang

    2014-01-01

    Antimicrobial peptides (AMPs) are garnering attention as possible alternatives to antibiotics. Here, we describe the antimicrobial properties of epinecidin-1 against a multidrug-resistant clinical isolate of P. aeruginosa (P. aeruginosa R) and a P. aeruginosa strain from ATCC (P. aeruginosa ATCC 19660) in vivo. The MICs of epinecidin-1 against P. aeruginosa R and P. aeruginosa ATCC 19660 were determined and compared with those of imipenem. Epinecidin-1 was found to be highly effective at combating peritonitis infection caused by P. aeruginosa R or P. aeruginosa ATCC 19660 in mouse models, without inducing adverse behavioral effects or liver or kidney toxicity. Taken together, our results indicate that epinecidin-1 enhances the rate of survival of mice infected with the bacterial pathogen P. aeruginosa through both antimicrobial and immunomodulatory effects. PMID:24820078

  13. Effects of Smilaxchinoside A and Smilaxchinoside C, two steroidal glycosides from Smilax riparia, on hyperuricemia in a mouse model.

    PubMed

    Wu, Xiao-Hui; Wang, Chong-Zhi; Zhang, Jun; Wang, Shu-Qing; Han, Lide; Zhang, Yan-Wen; Yuan, Chun-Su

    2014-12-01

    The roots and rhizomes of Smilax riparia, called 'Niu-Wei-Cai' in traditional Chinese medicine, are believed to be effective in treating the symptoms of gout. However, the active constituents and their uricosuric mechanisms are unknown. In this study, we isolated two steroidal glycosides, named smilaxchinoside A and smilaxchinoside C, from the total saponins obtained from the ethanol extract of the roots of S. riparia. We then examined if these two compounds were effective in reducing serum uric acid levels in a hyperuricemic mouse model induced by potassium oxonate. We observed that these two steroidal glycosides possess potent uricosuric activities, and the observed effects accompanied the reduction of renal mURAT1 and the inhibition of xanthine oxidase, which contribute to the enhancement of uric acid excretion and the reduction of hyperuricemia-induced renal dysfunction. Smilaxchinoside A and smilaxchinoside C may have a clinical utility in treating gout and other medical conditions caused by hyperuricemia.

  14. Analgesic Effect of Electroacupuncture in a Mouse Fibromyalgia Model: Roles of TRPV1, TRPV4, and pERK.

    PubMed

    Lin, Jaung-Geng; Hsieh, Ching-Liang; Lin, Yi-Wen

    2015-01-01

    Fibromyalgia (FM) is among the most common chronic pain syndromes encountered in clinical practice, but there is limited understanding of FM pathogenesis. We examined the contribution of transient receptor potential vanilloid 1 (TRPV1) and TRPV4 channels to chronic pain in the repeated acid injection mouse model of FM and the potential therapeutic efficacy of electroacupuncture. Electroacupuncture (EA) at the bilateral Zusanli (ST36) acupoint reduced the long-lasting mechanical hyperalgesia induced by repeated acid saline (pH 4) injection in mouse hindpaw. Isolated L5 dorsal root ganglion (DRG) neurons from FM model mice (FM group) were hyperexcitable, an effect reversed by EA pretreatment (FM + EA group). The increase in mechanical hyperalgesia was also accompanied by upregulation of TRPV1 expression and phosphoactivation of extracellular signal regulated kinase (pERK) in the DRG, whereas DRG expression levels of TRPV4, p-p38, and p-JNK were unaltered. Blockade of TRPV1, which was achieved using TRPV1 knockout mice or via antagonist injection, and pERK suppressed development of FM-like pain. Both TRPV1 and TRPV4 protein expression levels were increased in the spinal cord (SC) of model mice, and EA at the ST36 acupoint decreased overexpression. This study strongly suggests that DRG TRPV1 overexpression and pERK signaling, as well as SC TRPV1 and TRPV4 overexpression, mediate hyperalgesia in a mouse FM pain model. The therapeutic efficacy of EA may result from the reversal of these changes in pain transmission pathways.

  15. Therapeutic Effect of Ligustilide-Stimulated Adipose-Derived Stem Cells in a Mouse Thromboembolic Stroke Model.

    PubMed

    Chi, Kang; Fu, Ru-Huei; Huang, Yu-Chuen; Chen, Shih-Yin; Lin, Shinn-Zong; Huang, Pi-Chun; Lin, Po-Cheng; Chang, Fu-Kuei; Liu, Shih-Ping

    2016-01-01

    Stroke is a result of cerebral ischemia that triggers a cascade of both physiological and biochemical events. No effective treatment is available for stroke; however, stem cells have the potential to rescue tissue from the effects of stroke. Adipose-derived stem cells (ADSCs) are an abundant source of adult stem cells; therefore, ADSC therapy can be considered as a future strategy for regenerative medicine. However, more research is required to improve the effectiveness of transplanted ADSCs as a treatment for stroke in the mouse stroke model. Ligustilide, isolated from the herb Angelica sinensis, exhibits a protective effect on neurons and inhibits inflammation. We also demonstrated that ligustilide treatment increases the expression levels of homing factors such as SDF-1 and CXCR4. In the present study, we evaluated the therapeutic effects of ADSC transplantation and ligustilide treatment in a mouse thromboembolic stroke model by behavioral tests, including beam walking, locomotor activity, and rotarod analysis. ADSCs pretreated with ligustilide were transplanted into the brains of stroke mice. The results showed that the therapeutic effect of ADSCs pretreated with ligustilide was better than that of ADSCs without ligustilide pretreatment. There was no difference between the recovery of mice treated by ADSC transplantation combined with subcutaneous ligustilide injection and that of mice treated only with ADSCs. The TUNEL assay showed fewer apoptotic cells in the brains of mice transplanted with ADSCs pretreated with ligustilide as well as in those without pretreatment. In summary, pretreatment of ADSCs with ligustilide improves the therapeutic efficacy of ADSC transplantation. The results of this study will help improve stem cell therapies being developed for future clinical applications.

  16. MO-F-CAMPUS-J-01: Effect of Iodine Contrast Agent Concentration On Cerebrovascular Dose for Synchrotron Radiation Microangiography Based On a Simple Mouse Head Model and a Voxel Mouse Head Phantom

    SciTech Connect

    Lin, H; Jing, J; Xie, C; Lu, Y

    2015-06-15

    Purpose: To find effective setting methods to mitigate the irradiation injure in synchrotron radiation microangiography(SRA) by Monte Carlo simulation. Methods: A mouse 1-D head model and a segmented voxel mouse head phantom were simulated by EGSnrc/Dosxyznrc code to investigate the dose enhancement effect of the iodine contrast agent irradiated by a monochromatic synchrotron radiation(SR) source. The influence of, like iodine concentration (IC), vessel width and depth, with and without skull layer protection and the various incident X ray energies, were simulated. The dose enhancement effect and the absolute dose based on the segmented voxel mouse head phantom were evaluated. Results: The dose enhancement ratio depends little on the irradiation depth, but strongly on the IC, which is linearly increases with IC. The skull layer protection cannot be ignored in SRA, the 700µm thick skull could decrease 10% of the dose. The incident X-ray energy can significantly affact the dose. E.g. compared to the dose of 33.2keV for 50mgI/ml, the 32.7keV dose decreases 38%, whereas the dose of 33.7 keV increases 69.2%, and the variation will strengthen more with enhanced IC. The segmented voxel mouse head phantom also showed that the average dose enhancement effect and the maximal voxel dose per photon depends little on the iodine voxel volume ratio, but strongly on IC. Conclusion: To decrease dose damage in SRA, the high-Z contrast agent should be used as little as possible, and try to avoid radiating locally the injected position immediately after the contrast agent injection. The fragile vessel containing iodine should avoid closely irradiating. Avoiding irradiating through the no or thin skull region, or appending thin equivalent material from outside to protect is also a better method. As long as SRA image quality is ensured, using incident X-ray energy as low as possible.

  17. Analysis of propolis from Baccharis dracunculifolia DC. (Compositae) and its effects on mouse fibroblasts.

    PubMed

    de Funari, Cristiano Soleo; de Oliveira Ferro, Vicente; Mathor, Monica Beatriz

    2007-05-04

    This paper confirms Baccharis dracunculifolia DC. (Compositae) as the main botanical source of the propolis from southeastern Brazil (state of São Paulo) investigated to ascertain specific biological activity in relation to mouse NIH-3T3 fibroblasts, skin cells directly involved in the cicatrization processes. Flavonoid and total phenolic compounds were determined by spectrophotometry, and chemical composition by HPLC; the chromatographic profile, characterized largely by flavonoids and aromatic acids, was found to be qualitatively similar to that of Baccharis dracunculifolia DC. The adsorption of phenolic compounds in the propolis to skin powder was also investigated, and 68% of these compounds adsorbed to the skin powder. At concentrations from 0.12 to 7.81 microg/ml, the propolis revealed no statistical significant differences from its control solutions; however, at concentrations of 31.25 microg/ml or more, the propolis was toxic to NIH-3T3 cells. Thus, the propolis from Baccharis dracunculifolia DC. (Compositae) presents an in vitro concentration-dependent toxicity on mouse NIH-3T3 fibroblasts.

  18. Transgenerational developmental effects and genomic instability after X-irradiation of preimplantation embryos: studies on two mouse strains.

    PubMed

    Jacquet, P; Buset, J; Neefs, M; Vankerkom, J; Benotmane, M A; Derradji, H; Hildebrandt, G; Baatout, S

    2010-05-01

    Recent results have shown that irradiation of a single cell, the zygote or 1-cell embryo of various mouse strains, could lead to congenital anomalies in the fetuses. In the Heiligenberger strain, a link between the radiation-induced congenital anomalies and the development of a genomic instability was also suggested. Moreover, further studies showed that in that strain, both congenital anomalies and genomic instability could be transmitted to the next generation. The aim of the experiments described in this paper was to investigate whether such non-targeted transgenerational effects could also be observed in two other radiosensitive mouse strains (CF1 and ICR), using lower radiation doses. Irradiation of the CF1 and ICR female zygotes with 0.2 or 0.4Gy did not result in a decrease of their fertility after birth, when they had reached sexual maturity. Moreover, females of both strains that had been X-irradiated with 0.2Gy exhibited higher rates of pregnancy, less resorptions and more living fetuses. Additionally, the mean weight of living fetuses in these groups had significantly increased. Exencephaly and dwarfism were observed in CF1 fetuses issued from control and X-irradiated females. In the control group of that strain, polydactyly and limb deformity were also found. The yields of abnormal fetuses did not differ significantly between the control and X-irradiated groups. Polydactyly, exencephaly and dwarfism were observed in fetuses issued from ICR control females. In addition to these anomalies, gastroschisis, curly tail and open eye were observed at low frequencies in ICR fetuses issued from X-irradiated females. Again, the frequencies of abnormal fetuses found in the different groups did not differ significantly. In both CF1 and ICR mouse strains, irradiation of female zygotes did not result in the development of a genomic instability in the next generation embryos. Overall, our results suggest that, at the moderate doses used, developmental defects observed

  19. Effect of mono-(2-ethylhexyl) phthalate on human and mouse fetal testis: In vitro and in vivo approaches

    SciTech Connect

    Muczynski, V.; Cravedi, J.P.; Lehraiki, A.; Levacher, C.; Moison, D.; Lecureuil, C.; Messiaen, S.; Perdu, E.; Frydman, R.; Habert, R.; and others

    2012-05-15

    The present study was conducted to determine whether exposure to the mono-(2-ethylhexyl) phthalate (MEHP) represents a genuine threat to male human reproductive function. To this aim, we investigated the effects on human male fetal germ cells of a 10{sup −5} M exposure. This dose is slightly above the mean concentrations found in human fetal cord blood samples by biomonitoring studies. The in vitro experimental approach was further validated for phthalate toxicity assessment by comparing the effects of in vitro and in vivo exposure in mouse testes. Human fetal testes were recovered during the first trimester (7–12 weeks) of gestation and cultured in the presence or not of 10{sup −5} M MEHP for three days. Apoptosis was quantified by measuring the percentage of Caspase-3 positive germ cells. The concentration of phthalate reaching the fetal gonads was determined by radioactivity measurements, after incubations with {sup 14}C-MEHP. A 10{sup −5} M exposure significantly increased the rate of apoptosis in human male fetal germ cells. The intratesticular MEHP concentration measured corresponded to the concentration added in vitro to the culture medium. Furthermore, a comparable effect on germ cell apoptosis in mouse fetal testes was induced both in vitro and in vivo. This study suggests that this 10{sup −5} M exposure is sufficient to induce changes to the in vivo development of the human fetal male germ cells. -- Highlights: ► 10{sup −5} M of MEHP impairs germ cell development in the human fetal testis. ► Organotypic culture is a suitable approach to investigate phthalate effects in human. ► MEHP is not metabolized in the human fetal testis. ► In mice, MEHP triggers similar effects both in vivo and in vitro.

  20. The constitutively active Ah receptor (CA-AhR) mouse as a model for dioxin exposure - effects in reproductive organs.

    PubMed

    Brunnberg, Sara; Andersson, Patrik; Poellinger, Lorenz; Hanberg, Annika

    2011-12-01

    The dioxin/aryl hydrocarbon receptor (AhR) mediates most toxic effects of dioxins. In utero/lactational exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) impairs fetal/neonatal development and the developing male reproductive tract are among the most sensitive tissues. TCDD causes antiestrogenic responses in rodent mammary gland and uterus and in human breast cancer cell lines in the presence of estrogen. Also, more recently an estrogen-like effect of TCDD/AhR has been suggested in the absence of estrogen. A transgenic mouse expressing a constitutively active AhR (CA-AhR) was developed as a model mimicking a situation of constant exposure to AhR agonists. Male and female reproductive tissues of CA-AhR mice were characterized for some of the effects commonly seen after dioxin exposure. Sexually mature CA-AhR female mice showed decreased uterus weight, while an uterotrophic assay in immature CA-AhR mice resulted in increased uterus weight. In immature mice, both TCDD-exposure and CA-AhR increased the expression of the estrogen receptor target gene Cathepsin D. When co-treated with 17β-estradiol no increase in Cathepsin D levels occurred in either TCDD-exposed or CA-AhR mice. In sexually mature male CA-AhR mice the weights of testis and ventral prostate were decreased and the epididymal sperm reserve was reduced. The results of the present study are in accordance with previous studies on dioxin-exposed rodents in that an activated AhR (here CA-AhR) leads to antiestrogenic effects in the presence of estrogen, but to estrogenic effects in the absence of estrogen. These results suggest the CA-AhR mouse model as a useful tool for studies of continuous low activity of the AhR from early development, resembling the human exposure situation.

  1. Effects of Coculture With Immune Cells on the Developmental Competence of Mouse Preimplantation Embryos in Vitro and in Utero.

    PubMed

    Lee, Jaewang; Kim, Jihyun; Kim, Seok Hyun; Kang, Hee-Gyoo; Jun, Jin Hyun

    2015-10-01

    The aim of this study was to establish a coculture system using immune cells as well as an in vitro model for inflammatory conditioning using RAW 264.7 mouse macrophages activated by lipopolysaccharide. The direct and indirect coculture systems were applied to evaluate the influence of embryo-to-cell direct or indirect secretory molecules from the cocultured cells. Blastulation rate in vitro (94.6% vs 76.9%, P < .05) and implantation rate in utero (43.3% vs 17.6%, P < .01) were significantly increased in direct coculture with activated RAW 264.7 cells compared to control. We also found the embryotrophic effects in vitro in the indirect coculture system. Our results indicate that coculture of mouse preimplantation embryos with immune cells could improve the developmental competence in vitro and in utero. Taken together, RAW 264.7 cells secret embryotrophic molecules, and it suggests the valuable insights that immune cells could improve in vitro culture conditions of preimplantation embryos.

  2. Bioluminescence-Based Tumor Quantification Method for Monitoring Tumor Progression and Treatment Effects in Mouse Lymphoma Models

    PubMed Central

    Cosette, Jeremie; Ben Abdelwahed, Rym; Donnou-Triffault, Sabrina; Sautès-Fridman, Catherine

    2016-01-01

    Although bioluminescence imaging (BLI) shows promise for monitoring tumor burden in animal models of cancer, these analyses remain mostly qualitative. Here we describe a method for bioluminescence imaging to obtain a semi-quantitative analysis of tumor burden and treatment response. This method is based on the calculation of a luminoscore, a value that allows comparisons of two animals from the same or different experiments. Current BLI instruments enable the calculation of this luminoscore, which relies mainly on the acquisition conditions (back and front acquisitions) and the drawing of the region of interest (manual markup around the mouse). Using two previously described mouse lymphoma models based on cell engraftment, we show that the luminoscore method can serve as a noninvasive way to verify successful tumor cell inoculation, monitor tumor burden, and evaluate the effects of in situ cancer treatment (CpG-DNA). Finally, we show that this method suits different experimental designs. We suggest that this method be used for early estimates of treatment response in preclinical small-animal studies. PMID:27501019

  3. Early specific host response associated with starting effective tuberculosis treatment in an infection controlled placebo controlled mouse study.

    PubMed

    den Hertog, Alice L; de Vos, Alex F; Klatser, Paul R; Anthony, Richard M

    2013-01-01

    Recently we proposed exploring the potential of treatment stimulated testing as diagnostic method for tuberculosis (TB). An infection controlled placebo controlled mouse study was performed to investigate whether serum cytokine levels changed measurably during the early phase of TB chemotherapy. Serum was collected prior to and during the first 3 weeks of isoniazid (INH) and rifampicin (RIF) chemotherapy, and levels of 23 selected cytokines/chemokines were measured using a liquid bead array. The serum levels of IFNγ, IP-10, MIG, MCP-1, IL-17 and IL-6 were elevated in the TB infected mice compared to non-infected mice at least at 1 time point measured. In infected mice, IFNγ, IP-10, MIG and MCP-1 levels decreased within 7 days of treatment with RIF+INH compared to placebo. Treatment of non-infected mice in the absence of tuberculosis infection had no effect on these cytokines. IL-17 and IL-6 had decreased to baseline in all infected mice prior to the initiation of treatment. This study demonstrates that systemic levels of some cytokines, more specifically IFNγ, IP-10, MIG and MCP-1, rapidly and specifically change upon starting TB chemotherapy only in the presence of infection in a mouse model. Thus, IFNγ, IP-10, MIG and MCP-1 are promising 'Treat-to-Test' targets for the diagnosis of TB and deserve further investigation in a study on human TB suspects.

  4. Effects of cell phone radiation on lipid peroxidation, glutathione and nitric oxide levels in mouse brain during epileptic seizure.

    PubMed

    Esmekaya, Meric Arda; Tuysuz, Mehmet Zahid; Tomruk, Arın; Canseven, Ayse G; Yücel, Engin; Aktuna, Zuhal; Keskil, Semih; Seyhan, Nesrin

    2016-09-01

    The objective of the this study was to evaluate the effects of cellular phone radiation on oxidative stress parameters and oxide levels in mouse brain during pentylenetetrazole (PTZ) induced epileptic seizure. Eight weeks old mice were used in the study. Animals were distributed in the following groups: Group I: Control group treated with PTZ, Group II: 15min cellular phone radiation+PTZ treatment+30min cellular phone radiation, Group III: 30min cellular phone radiation+PTZ treatment+30min cellular phone radiation. The RF radiation was produced by a 900MHz cellular phone. Lipid peroxidation, which is the indicator of oxidative stress was quantified by measuring the formation of thiobarbituric acid reactive substances (TBARS). The glutathione (GSH) levels were determined by the Ellman method. Tissue total nitric oxide (NOx) levels were obtained using the Griess assay. Lipid peroxidation and NOx levels of brain tissue increased significantly in group II and III compared to group I. On the contrary, GSH levels were significantly lower in group II and III than group I. However, no statistically significant alterations in any of the endpoints were noted between group II and Group III. Overall, the experimental findings demonstrated that cellular phone radiation may increase the oxidative damage and NOx level during epileptic activity in mouse brain.

  5. Effects of environmental enrichment on repetitive behaviors in the BTBR T+tf/J mouse model of autism.

    PubMed

    Reynolds, Stacey; Urruela, Meagan; Devine, Darragh P

    2013-10-01

    Lower order and higher order repetitive behaviors have been documented in the BTBR T+tf/J (BTBR) mouse strain, a mouse model that exhibits all three core behavioral domains that define autism. The purpose of this study was to evaluate the effectiveness of environmental enrichment for reducing repetitive behaviors in BTBR mice. Lower order behaviors were captured by assaying the time and sequence of grooming, while higher order behaviors were measured using pattern analysis of an object exploration task from digital recordings. Baseline scores were established at 7 weeks of age, followed by 30 days of housing in either a standard or enriched cage. As expected, BTBR mice spent significantly more time grooming and had a more rigid grooming sequence than control C57BL/6J mice did at baseline. After 30 days of enrichment housing, BTBR mice demonstrated a significant reduction in time spent grooming, resulting in levels that were lower than those exhibited by BTBR mice in standard housing. However, no changes were noted in the rigidity of their grooming sequence. In contrast to previous findings, there was no difference in repetitive patterns of exploration at baseline between BTBR and C57BL/6J mice in the object exploration test. Subsequently, enrichment did not significantly alter the number of repetitive patterns at posttest. Overall, the results suggest that environmental enrichment may be beneficial for reducing the time spent engaging in lower order repetitive behaviors, but may not change the overall quality of the behaviors when they do manifest.

  6. Combined inhibitory effects of low temperature and N-acetyl-l-cysteine on the postovulatory aging of mouse oocytes.

    PubMed

    Li, Qian; Cui, Long-Bo

    2016-04-01

    The postovulatory aging of oocytes eventually affects the development of oocytes and embryos. Oxidative stress is known to accelerate the onset of apoptosis in oocytes and influence their capacity for fertilisation. This study aimed to reveal the roles of temperature and the antioxidant N-acetyl-l-cysteine in preventing the aging of postovulatory mouse oocytes. First, newly ovulated mouse oocytes were cultured at various temperature and time combinations in HCZB medium with varying concentrations of N-acetyl-l-cysteine to assess signs of aging and developmental potential. When cultured in HCZB with 300 μM N-acetyl-l-cysteine at different temperature and incubation time combinations (namely 25°C for 12 h, 15°C for 24 h and 5°C for 12 h), the increase in the susceptibility of oocytes to activating stimuli was efficiently prevented, and the developmental potential was maintained following Sr2+ activation or in vitro fertilisation. After incubation at either 15°C for 36 h or 5°C for 24 h, oocytes that had decreased blastocyst rates displayed unrecoverable abnormal cortical granule distribution together with decreased BCL2 levels, total glutathione concentrations and glutathione/glutathione disulphide (GSH/GSSG) ratios. In conclusion, postovulatory oocyte aging could be effectively inhibited by appropriate N-acetyl-l-cysteine addition at low temperatures. In addition, a simple method for the temporary culture of mature oocytes was established.

  7. Modification of nanocellulose by poly-lysine can inhibit the effect of fumonisin B1 on mouse liver cells.

    PubMed

    Jebali, Ali; Yasini Ardakani, Seyed Ali; Shahdadi, Hossein; Balal Zadeh, Mohammad Hossein; Hekmatimoghaddam, Seyedhossein

    2015-02-01

    Fumonisin B1 is an important mycotoxin, mainly produced by Fusarium verticillioides. It has toxic effects on liver, brain, and kidney cells. The first aim of this study was to synthesize nanocellulose modified with poly-lysine (NMPL), and the second aim was to evaluate the adsorption of fumonisin B1 by NMPL. As third aim, the function of mouse liver cells was investigated after exposure to fumonisin B1, and fumonisin B1+ NMPL. In this study, NMPL was prepared using cross-linker, and then incubated with fumonisin B1 at controlled conditions. After incubation, the adsorption and release of fumonisin B1 were evaluated in each condition. Next, mouse liver cells were separately exposed to fumonisin B1, NMPL, and (fumonisin B1+NMPL). Then, the level of aniline aminotransferase (ALT) and aspartate aminotransferase (AST) was evaluated. It was found that both adsorption and release of fumonisin B1 were not affected by temperature and incubation time, but affected by pH and concentration of NMPL. Also, this study showed NMPL could adsorb fumonisin B1 in different foodstuffs. Importantly, although the levels of ALT and AST were increased when the cells were treated with fumonisin B1 alone, they were not affected when exposed to NMPL or (fumonisin B1+NMPL). The authors suggest that NMPL is a good adsorbent to remove and inhibit fumonisin B1.

  8. A Mouse Model for Studying Nutritional Programming: Effects of Early Life Exposure to Soy Isoflavones on Bone and Reproductive Health

    PubMed Central

    Ward, Wendy E.; Kaludjerovic, Jovana; Dinsdale, Elsa C.

    2016-01-01

    Over the past decade, our research group has characterized and used a mouse model to demonstrate that “nutritional programming” of bone development occurs when mice receive soy isoflavones (ISO) during the first days of life. Nutritional programming of bone development can be defined as the ability for diet during early life to set a trajectory for better or compromised bone health at adulthood. We have shown that CD-1 mice exposed to soy ISO during early neonatal life have higher bone mineral density (BMD) and greater trabecular inter-connectivity in long bones and lumbar spine at young adulthood. These skeletal sites also withstand greater forces before fracture. Because the chemical structure of ISO resembles that of 17-β-estradiol and can bind to estrogen receptors in reproductive tissues, it was prudent to expand analyses to include measures of reproductive health. This review highlights aspects of our studies in CD-1 mice to understand the early life programming effects of soy ISO on bone and reproductive health. Preclinical mouse models can provide useful data to help develop and guide the design of studies in human cohorts, which may, depending on findings and considerations of safety, lead to dietary interventions that optimize bone health. PMID:27187422

  9. The Effects of Different Garlic-Derived Allyl Sulfides on Anaerobic Sulfur Metabolism in the Mouse Kidney

    PubMed Central

    Iciek, Małgorzata; Bilska-Wilkosz, Anna; Górny, Magdalena; Sokołowska-Jeżewicz, Maria; Kowalczyk-Pachel, Danuta

    2016-01-01

    Diallyl sulfide (DAS), diallyl disulfide (DADS) and diallyl trisulfide (DATS) are major oil-soluble organosulfur compounds of garlic responsible for most of its pharmacological effects. The present study investigated the influence of repeated intraperitoneally (ip) administration of DAS, DADS and DATS on the total level of sulfane sulfur, bound sulfur (S-sulfhydration) and hydrogen sulfide (H2S) and on the activity of enzymes, which catalyze sulfane sulfur formation and transfer from a donor to an acceptor in the normal mouse kidney, i.e., γ-cystathionase (CSE) and rhodanese (TST). The activity of aldehyde dehydrogenase (ALDH), which is a redox-sensitive protein, containing an –SH group in its catalytic center, was also determined. The obtained results indicated that all tested compounds significantly increased the activity of TST. Moreover, DADS and DATS increased the total sulfane sulfur level and CSE activity in the normal mouse kidney. ALDH activity was inhibited in the kidney after DATS administration. The results indicated also that none of the studied allyl sulfides affected the level of bound sulfur or H2S. Thus, it can be concluded that garlic-derived DADS and DATS can be a source of sulfane sulfur for renal cells but they are not connected with persulfide formation. PMID:27929399

  10. A Mouse Model for Studying Nutritional Programming: Effects of Early Life Exposure to Soy Isoflavones on Bone and Reproductive Health.

    PubMed

    Ward, Wendy E; Kaludjerovic, Jovana; Dinsdale, Elsa C

    2016-05-11

    Over the past decade, our research group has characterized and used a mouse model to demonstrate that "nutritional programming" of bone development occurs when mice receive soy isoflavones (ISO) during the first days of life. Nutritional programming of bone development can be defined as the ability for diet during early life to set a trajectory for better or compromised bone health at adulthood. We have shown that CD-1 mice exposed to soy ISO during early neonatal life have higher bone mineral density (BMD) and greater trabecular inter-connectivity in long bones and lumbar spine at young adulthood. These skeletal sites also withstand greater forces before fracture. Because the chemical structure of ISO resembles that of 17-β-estradiol and can bind to estrogen receptors in reproductive tissues, it was prudent to expand analyses to include measures of reproductive health. This review highlights aspects of our studies in CD-1 mice to understand the early life programming effects of soy ISO on bone and reproductive health. Preclinical mouse models can provide useful data to help develop and guide the design of studies in human cohorts, which may, depending on findings and considerations of safety, lead to dietary interventions that optimize bone health.

  11. Quantitative investigations on the effects of exposure durations to the combined cryoprotective agents on mouse oocyte vitrification procedures.

    PubMed

    Wang, Liang; Liu, Jun; Zhou, Guang-Bin; Hou, Yun-Peng; Li, Jun-Jie; Zhu, Shi-En

    2011-11-01

    Vitrification by using two-step exposures to combined cryoprotective agents (CPAs) has become one of the most common methods for oocyte cryopreservation. By quantitatively examining the status of oocytes during CPA additions and dilutions, we can analyze the degree of the associated osmotic damages. The osmotic responses of mouse MII oocyte in the presence of the combined CPAs (ethylene glycol, EG, and dimethyl sulfoxide, DMSO) were recorded and analyzed. A two-parameter model was used in the curve-fitting calculation to determine the values of hydraulic conductivity (L(p)) and permeability (P(s)) to the combined CPAs at 25°C and 37°C. The effects of exposure durations and the exposure temperatures on the cryopreservation in terms of frozen-thawed cell survival rates and subsequent development were examined in a series of cryopreservation experiments. Mouse MII oocytes were exposed to pretreatment solution (PTS) and vitrification solution (VS) at specific temperatures. The PTS used in our experiment was 10% EG and 10% DMSO dissolved in modified PBS (mPBS), and the VS was EDFS30 (15% EG, 15% DMSO, 3 × 10(-3) M Ficoll, and 0.35 M sucrose in mPBS).The accumulative osmotic damage (AOD) and intracellular CPA concentrations were calculated under the different cryopreservation conditions, and for the first time, the quantitative interactions between survival rates, subsequent development rates, and values of AOD were investigated.

  12. Inhibitory effect of genistein on mouse colon cancer MC-26 cells involved TGF-{beta}1/Smad pathway

    SciTech Connect

    Yu Zengli . E-mail: zengliy@yahoo.com.cn; Tang Yunan; Hu Dongsheng; Li Juan

    2005-08-05

    TGF-{beta}1/signaling has been shown to be associated with proapoptotic and antimitotic activities in epithelial tissues. Genistein, a major component of soybean isoflavone, has multiple functions resulting in anticancer proliferation. We herein showed that genistein dose-dependently increased TGF-{beta}1 mRNA expression in mouse colon cancer MC-26 cells. A mouse monoclonal anti-TGF-{beta}1 neutralizing antibody partially, but not completely, blocked the growth inhibition by genistein. By using adenoviral vector, we demonstrated that Smad7 overexpression attenuated genistein-induced growth inhibition and apoptosis as determined by MTT and apoptosis ELISA. Smad7 overexpression also inhibited upregulation of p21 and caspase-3 activity by geinistein. To further confirm inhibitory effect of genistein in MC-26 cells require TGF-{beta}1/Smad signaling, we employed Western blot and electrophoretic mobility shift assay to detect formation of Smad-DNA complexes and phosphorylation of Smad2 and Smad3, respectively. Data revealed that genistein induced an evident formation of Smad-DNA complexes and phosphorylation of Smad2 and Smad3, indicating increased TGF-{beta}1 signaling. Taken together, these findings first provided insights into possible molecular mechanisms of growth inhibition by genistein that required Smad signaling, which could aid in its evaluation for colon tumor prevention.

  13. Gene Expression Profile Change and Associated Physiological and Pathological Effects in Mouse Liver Induced by Fasting and Refeeding

    PubMed Central

    Zhang, Fang; Xu, Xiang; Zhou, Ben; He, Zhishui; Zhai, Qiwei

    2011-01-01

    Food availability regulates basal metabolism and progression of many diseases, and liver plays an important role in these processes. The effects of food availability on digital gene expression profile, physiological and pathological functions in liver are yet to be further elucidated. In this study, we applied high-throughput sequencing technology to detect digital gene expression profile of mouse liver in fed, fasted and refed states. Totally 12162 genes were detected, and 2305 genes were significantly regulated by food availability. Biological process and pathway analysis showed that fasting mainly affected lipid and carboxylic acid metabolic processes in liver. Moreover, the genes regulated by fasting and refeeding in liver were mainly enriched in lipid metabolic process or fatty acid metabolism. Network analysis demonstrated that fasting mainly regulated Drug Metabolism, Small Molecule Biochemistry and Endocrine System Development and Function, and the networks including Lipid Metabolism, Small Molecule Biochemistry and Gene Expression were affected by refeeding. In addition, FunDo analysis showed that liver cancer and diabetes mellitus were most likely to be affected by food availability. This study provides the digital gene expression profile of mouse liver regulated by food availability, and demonstrates the main biological processes, pathways, gene networks and potential hepatic diseases regulated by fasting and refeeding. These results show that food availability mainly regulates hepatic lipid metabolism and is highly correlated with liver-related diseases including liver cancer and diabetes. PMID:22096593

  14. Effect of Spirulina (Arthrospira) supplementation on the immune response to tetanus toxoid vaccination in a mouse model.

    PubMed

    Chu, Wan-Loy; Quynh, Le Van; Radhakrishnan, Ammu Kutty

    2013-09-01

    The aim of this study was to investigate whether Spirulina (Arthrospira) supplementation could enhance the immune response to tetanus toxoid (TT) vaccine in a mouse model. Vaccination of TT was performed on day 7 and 21 in mice fed daily with Spirulina (50 and 150 mg/kg body weight). Both Spirulina supplementation and TT vaccination did not significantly affect body weight gain of the mice. Supplementation of Spirulina significantly enhanced IgG level (p = .01) after the first but not after the second TT vaccination. The anti-TT IgG levels of the groups that received low dose and high dose of Spirulina were not significantly different. Spirulina supplementation did not show significant effects on in vitro splenocyte proliferation and cytokine (IFN-γ and IL-4) production induced by Con A and TT. This study showed that Spirulina supplementation could enhance primary immune response in terms of antibody production, but not secondary immune response following TT vaccination in a mouse model.

  15. Mouse genetics: catalogue and scissors.

    PubMed

    Sung, Young Hoon; Baek, In-Jeoung; Seong, Je Kyung; Kim, Jin Soo; Lee, Han-Woong

    2012-12-01

    Phenotypic analysis of gene-specific knockout (KO) mice has revolutionized our understanding of in vivo gene functions. As the use of mouse embryonic stem (ES) cells is inevitable for conventional gene targeting, the generation of knockout mice remains a very time-consuming and expensive process. To accelerate the large-scale production and phenotype analyses of KO mice, international efforts have organized global consortia such as the International Knockout Mouse Consortium (IKMC) and International Mouse Phenotype Consortium (IMPC), and they are persistently expanding the KO mouse catalogue that is publicly available for the researches studying specific genes of interests in vivo. However, new technologies, adopting zinc-finger nucleases (ZFNs) or Transcription Activator-Like Effector (TALE) Nucleases (TALENs) to edit the mouse genome, are now emerging as valuable and effective shortcuts alternative for the conventional gene targeting using ES cells. Here, we introduce the recent achievement of IKMC, and evaluate the significance of ZFN/TALEN technology in mouse genetics.

  16. Preventive Effect of Boiogito on Metabolic Disorders in the TSOD Mouse, a Model of Spontaneous Obese Type II Diabetes Mellitus.

    PubMed

    Shimada, Tsutomu; Akase, Tomoko; Kosugi, Mitsutaka; Aburada, Masaki

    2011-01-01

    "Boiogito" is a Kampo preparation which has been used since ancient times in patients with obesity of the "asthenic constitution" type, so-called "watery obesity", and its effect has been recognized clinically. In this study, we investigated the anti-obesity effect of Boiogito in the TSOD (Tsumura Suzuki Obese Diabetes) mouse, a model of spontaneous obese type II diabetes mellitus. Boiogito showed a significant anti-obesity effect in TSOD mice by suppressing body weight gain in a dosage-dependent manner. In addition, Boiogito showed significant ameliorative effects on features of metabolic syndrome such as hyperinsulinemia, fasting hyperglycemia and abnormal lipid metabolism. Regarding lipid accumulation in TSOD mice, Boiogito showed a significant suppressive effect on accumulation of subcutaneous fat, but the effect on the visceral fat accumulation that constitutes the basis of metabolic syndrome was weak, and the suppressive effect on insulin resistance was also weak. Furthermore, Boiogito did not alleviate the abnormal glucose tolerance, the hypertension or the peripheral neuropathy characteristically developed in the TSOD mice. In contrast, in the TSNO (Tsumura Suzuki Non-Obesity) mice used as controls, Boiogito suppressed body weight gain and accumulation of subcutaneous and visceral fat. The above results suggested that Boiogito is effective as an anti-obesity drug against obesity of the "asthenic constitution" type in which subcutaneous fat accumulates, but cannot be expected to exert a preventive effect against various symptoms of metabolic syndrome that are based on visceral fat accumulation.

  17. Preventive Effect of Boiogito on Metabolic Disorders in the TSOD Mouse, a Model of Spontaneous Obese Type II Diabetes Mellitus

    PubMed Central

    Shimada, Tsutomu; Akase, Tomoko; Kosugi, Mitsutaka; Aburada, Masaki

    2011-01-01

    “Boiogito” is a Kampo preparation which has been used since ancient times in patients with obesity of the “asthenic constitution” type, so-called “watery obesity”, and its effect has been recognized clinically. In this study, we investigated the anti-obesity effect of Boiogito in the TSOD (Tsumura Suzuki Obese Diabetes) mouse, a model of spontaneous obese type II diabetes mellitus. Boiogito showed a significant anti-obesity effect in TSOD mice by suppressing body weight gain in a dosage-dependent manner. In addition, Boiogito showed significant ameliorative effects on features of metabolic syndrome such as hyperinsulinemia, fasting hyperglycemia and abnormal lipid metabolism. Regarding lipid accumulation in TSOD mice, Boiogito showed a significant suppressive effect on accumulation of subcutaneous fat, but the effect on the visceral fat accumulation that constitutes the basis of metabolic syndrome was weak, and the suppressive effect on insulin resistance was also weak. Furthermore, Boiogito did not alleviate the abnormal glucose tolerance, the hypertension or the peripheral neuropathy characteristically developed in the TSOD mice. In contrast, in the TSNO (Tsumura Suzuki Non-Obesity) mice used as controls, Boiogito suppressed body weight gain and accumulation of subcutaneous and visceral fat. The above results suggested that Boiogito is effective as an anti-obesity drug against obesity of the “asthenic constitution” type in which subcutaneous fat accumulates, but cannot be expected to exert a preventive effect against various symptoms of metabolic syndrome that are based on visceral fat accumulation. PMID:19208721

  18. Acute effects of guarana (Paullinia cupana Mart.) on mouse behaviour in forced swimming and open field tests.

    PubMed

    Campos, A R; Barros, A I S; Albuquerque, F A A; M Leal, L K A; Rao, V S N

    2005-05-01

    Guarana, a herbal extract from the seeds of Paullinia cupana Mart. has been evaluated in comparison with caffeine on mouse behaviour in forced swimming and open field tests. Guarana (25 and 50 mg/kg, p.o.) and caffeine (10 and 20 mg/kg, p.o.) each significantly reduced the duration of immobility in the forced swimming test suggesting an antidepressant-like effect in mice. At these doses, neither substance affected ambulation in the open field test. However, a high dose of guarana (100 mg/kg) and caffeine (30 mg/kg) significantly enhanced the locomotor activity in the open field test. Caffeine, but not guarana, could effectively block an adenosine agonist, cyclopentyl adenosine (CPA)-induced increase in swimming immobility suggesting that mechanism(s) other than the adenosinergic mechanism are involved in the antidepressant-like activity of guarana.

  19. Effects of Japanese mistletoe lectin on cytokine gene expression in human colonic carcinoma cells and in the mouse intestine.

    PubMed

    Monira, Pervin; Koyama, Yu; Fukutomi, Ryuuta; Yasui, Kensuke; Isemura, Mamoru; Yokogoshi, Hidehiko

    2009-10-01

    Mistletoe lectins have various biological activities including anti-cancer and immunomodulatory effects. We previously isolated a lectin (ML-J) from Japanese mistletoe. In the present study, we examined the effects of ML-J on cytokine gene expression in human colon adenocarcinoma Caco-2 cells and in the mouse intestine. The results of reverse transcription-polymerase chain reaction and quantitative real-time polymerase chain reaction indicated that ML-J caused an upregulation of the gene expression of the proinflammatory cytokines interleukin (IL)-8, tumor necrosis factor-alpha (TNF-alpha) and IL-6 in Caco-2 cells and TNF-alpha and IL-6 in the duodenum. This study provides the first example to show that a perorally administered plant lectin affects gene expression in the duodenum.

  20. Antitumor Effects and Immunomodulating Activities of Phellinus linteus Extract in a CT-26 Cell-Injected Colon Cancer Mouse Model

    PubMed Central

    Hwang, Seung-Lark; Yun, Ik-Jin; Do, Eun-Ju; Lee, Won-Ha; Jung, Young-Mi; Hong, Sung-Chang; Park, Dong-Chan

    2009-01-01

    The antitumor effects of Phellinus linteus extract (Keumsa Linteusan) were investigated in a CT-26 cell-injected colon cancer mouse model. When administered orally (250~1,000 mg/kg body weight), Keumsa Linteusan significantly inhibited the growth of solid colon cancer. The highest dose was highly effective, reducing tumor formation by 26% compared with the control group. The anticomplementary activity of Keumsa Linteusan increased in a dose-dependent manner. Lysosomal enzyme activity of macrophages was increased by 2-fold (100 µg/ml) compared with the control group. Keumsa Linteusan can be regarded as a potent enhancer of the innate immune response, and can be considered as a very promising candidate for antitumor action. PMID:23983521

  1. The Dipeptides Ile-Tyr and Ser-Tyr Exert Distinct Effects on Catecholamine Metabolism in the Mouse Brainstem

    PubMed Central

    Moriyasu, Kazuki; Ichinose, Takashi; Nakahata, Akane; Tanaka, Mitsuru; Matsui, Toshiro; Furuya, Shigeki

    2016-01-01

    Catecholamine synthesis and transmission in the brain are influenced by the availability of Tyr in the body. In this study, we compared the effects of oral administration of Tyr-containing dipeptides Ile-Tyr, Ser-Tyr, and Tyr-Pro with Tyr alone on catecholamine metabolism in the mouse brainstem. Among these dipeptides, Ile-Tyr administration led to increases in dopamine, the dopamine metabolites homovanillic acid, and 3,4-dihydroxyphenylacetic acid, compared to administration of Ser-Tyr, Tyr-Pro, or Tyr alone. In comparison, administration of Ser-Tyr induced significantly increasing noradrenaline turnover, while Tyr-Pro administration suppressed dopamine turnover. Therefore, oral administration of Ile-Tyr, Ser-Tyr, and Tyr-Pro differentially affected metabolism of dopamine and noradrenaline. These observations strongly suggest that Tyr-containing dipeptides exert distinct effects on catecholamine metabolism in the brainstem when ingested orally. PMID:26981137

  2. In Vivo Inflammatory Effects of Ceria Nanoparticles on CD-1 Mouse: Evaluation by Hematological, Histological, and TEM Analysis

    PubMed Central

    Poma, Anna; Ragnelli, Anna Maria; de Lapuente, Joaquin; Ramos, David; Borras, Miquel; Di Gioacchino, Mario; Santucci, Sandro; De Marzi, Laura

    2014-01-01

    The attention on CeO2-NPs environmental and in vivo effects is due to their presence in diesel exhaust and in diesel filters that release a more water-soluble form of ceria NPs, as well as to their use for medical applications. In this work, acute and subacute in vivo toxicity assays demonstrate no lethal effect of these NPs. Anyhow, performing in vivo evaluations on CD-1 mouse systems, we demonstrate that it is even not correct to assert that ceria NPs are harmless for living systems as they can induce status of inflammation, revealed by hematological-chemical-clinical assays as well as histological and TEM microscope observations. TEM analysis showed the presence of NPs in alveolar macrophages. Histological evaluation demonstrated the NPs presence in lungs tissues and this can be explained by assuming their ability to go into the blood stream and lately into the organs (generating inflammation). PMID:25032226

  3. Effects of Simulated Weightlessness on Mammalian Development. Part 2: Meiotic Maturation of Mouse Oocytes During Clinostat Rotation

    NASA Technical Reports Server (NTRS)

    Wolgemuth, D. J.; Grills, G. S.

    1985-01-01

    In order to understand the role of gravity in basic cellular processes that are important during development, the effects of a simulated microgravity environment on mammalian gametes and early embryos cultured in vitro are examined. A microgravity environment is simulated by use of a clinostat, which essentially reorients cells relative to the gravity vector. Initial studies have focused on assessing the effects of clinostat rotation on the meiotic progression of mouse oocytes. Modifications centered on providing the unique in vitro culture of the clinostat requirements of mammalian oocytes and embryos: 37 C temperature, constant humidity, and a 5% CO2 in air environment. The oocytes are observed under the dissecting microscope for polar body formation and gross morphological appearance. They are then processed for cytogenetic analysis.

  4. A Cannabinoid CB1 Receptor-Positive Allosteric Modulator Reduces Neuropathic Pain in the Mouse with No Psychoactive Effects

    PubMed Central

    Ignatowska-Jankowska, Bogna M; Baillie, Gemma L; Kinsey, Steven; Crowe, Molly; Ghosh, Sudeshna; Owens, Robert A; Damaj, Imad M; Poklis, Justin; Wiley, Jenny L; Zanda, Matteo; Zanato, Chiara; Greig, Iain R; Lichtman, Aron H; Ross, Ruth A

    2015-01-01

    The CB1 receptor represents a promising target for the treatment of several disorders including pain-related disease states. However, therapeutic applications of Δ9-tetrahydrocannabinol and other CB1 orthosteric receptor agonists remain limited because of psychoactive side effects. Positive allosteric modulators (PAMs) offer an alternative approach to enhance CB1 receptor function for therapeutic gain with the promise of reduced side effects. Here we describe the development of the novel synthetic CB1 PAM, 6-methyl-3-(2-nitro-1-(thiophen-2-yl)ethyl)-2-phenyl-1H-indole (ZCZ011), which augments the in vitro and in vivo pharmacological actions of the CB1 orthosteric agonists CP55,940 and N-arachidonoylethanolamine (AEA). ZCZ011 potentiated binding of [3H]CP55,940 to the CB1 receptor as well as enhancing AEA-stimulated [35S]GTPγS binding in mouse brain membranes and β-arrestin recruitment and ERK phosphorylation in hCB1 cells. In the whole animal, ZCZ011 is brain penetrant, increased the potency of these orthosteric agonists in mouse behavioral assays indicative of cannabimimetic activity, including antinociception, hypothermia, catalepsy, locomotor activity, and in the drug discrimination paradigm. Administration of ZCZ011 alone was devoid of activity in these assays and did not produce a conditioned place preference or aversion, but elicited CB1 receptor-mediated antinociceptive effects in the chronic constriction nerve injury model of neuropathic pain and carrageenan model of inflammatory pain. These data suggest that ZCZ011 acts as a CB1 PAM and provide the first proof of principle that CB1 PAMs offer a promising strategy to treat neuropathic and inflammatory pain with minimal or no cannabimimetic side effects. PMID:26052038

  5. The effect of isoflurane anaesthesia and buprenorphine on the mouse grimace scale and behaviour in CBA and DBA/2 mice.

    PubMed

    Miller, Amy; Kitson, Gemma; Skalkoyannis, Benjamin; Leach, Matthew

    2015-11-01

    Prevention or alleviation of pain in laboratory mice is a fundamental requirement of in vivo research. The mouse grimace scale (MGS) has the potential to be an effective and rapid means of assessing pain and analgesic efficacy in laboratory mice. Preliminary studies have demonstrated its potential utility for assessing pain in mouse models that involve potentially painful procedures. The next step in validation is to determine if the other procedures that are integral to these models, i.e. anaesthesia or analgesia, result in any changes in MGS score which would need to be taken into account when using this tool to assess post-procedural pain. Here, spontaneous behaviour and MGS data for CBA and DBA/2 mice were recorded at baseline and following either isoflurane anaesthesia (suitable to perform abdominal surgery) or 0.05 mg/kg s.c. buprenorphine. In line with previous studies, isoflurane anaesthesia alone had limited effects on the spontaneous behaviour in either strain of mice. Administration of buprenorphine resulted in increased periods of activity e.g. walking and chewing bedding in CBA mice. These effects were not demonstrated in DBA/2 mice. In comparison, buprenorphine alone had no impact on MGS score in either strain of mice, however DBA/2 mice showed a significant increase in MGS score following isoflurane anaesthesia. The presence of this increased MGS score must be taken into account when attempting to use the MGS to assess pain in DBA/2 mice. Further work should be carried out to establish the presence of this isoflurane effect in other strains and the potential influence of gender on the MGS. This further validation is necessary prior to implementation of this technique in clinical scenarios.

  6. Anti-cancer potential of MAPK pathway inhibition in paragangliomas-effect of different statins on mouse pheochromocytoma cells.

    PubMed

    Fliedner, Stephanie M J; Engel, Tobias; Lendvai, Nikoletta K; Shankavaram, Uma; Nölting, Svenja; Wesley, Robert; Elkahloun, Abdel G; Ungefroren, Hendrik; Oldoerp, Angela; Lampert, Gary; Lehnert, Hendrik; Timmers, Henri; Pacak, Karel

    2014-01-01

    To date, malignant pheochromocytomas and paragangliomas (PHEOs/PGLs) cannot be effectively cured and thus novel treatment strategies are urgently needed. Lovastatin has been shown to effectively induce apoptosis in mouse PHEO cells (MPC) and the more aggressive mouse tumor tissue-derived cells (MTT), which was accompanied by decreased phosphorylation of mitogen-activated kinase (MAPK) pathway players. The MAPK pathway plays a role in numerous aggressive tumors and has been associated with a subgroup of PHEOs/PGLs, including K-RAS-, RET-, and NF1-mutated tumors. Our aim was to establish whether MAPK signaling may also play a role in aggressive, succinate dehydrogenase (SDH) B mutation-derived PHEOs/PGLs. Expression profiling and western blot analysis indicated that specific aspects of MAPK-signaling are active in SDHB PHEOs/PGLs, suggesting that inhibition by statin treatment could be beneficial. Moreover, we aimed to assess whether the anti-proliferative effect of lovastatin on MPC and MTT differed from that exerted by fluvastatin, simvastatin, atorvastatin, pravastatin, or rosuvastatin. Simvastatin and fluvastatin decreased cell proliferation most effectively and the more aggressive MTT cells appeared more sensitive in this respect. Inhibition of MAPK1 and 3 phosphorylation following treatment with fluvastatin, simvastatin, and lovastatin was confirmed by western blot. Increased levels of CASP-3 and PARP cleavage confirmed induction of apoptosis following the treatment. At a concentration low enough not to affect cell proliferation, spontaneous migration of MPC and MTT was significantly inhibited within 24 hours of treatment. In conclusion, lipophilic statins may present a promising therapeutic option for treatment of aggressive human paragangliomas by inducing apoptosis and inhibiting tumor spread.

  7. Anti-Cancer Potential of MAPK Pathway Inhibition in Paragangliomas–Effect of Different Statins on Mouse Pheochromocytoma Cells

    PubMed Central

    Lendvai, Nikoletta K.; Shankavaram, Uma; Nölting, Svenja; Wesley, Robert; Elkahloun, Abdel G.; Ungefroren, Hendrik; Oldoerp, Angela; Lampert, Gary; Lehnert, Hendrik; Timmers, Henri; Pacak, Karel

    2014-01-01

    To date, malignant pheochromocytomas and paragangliomas (PHEOs/PGLs) cannot be effectively cured and thus novel treatment strategies are urgently needed. Lovastatin has been shown to effectively induce apoptosis in mouse PHEO cells (MPC) and the more aggressive mouse tumor tissue-derived cells (MTT), which was accompanied by decreased phosphorylation of mitogen-activated kinase (MAPK) pathway players. The MAPK pathway plays a role in numerous aggressive tumors and has been associated with a subgroup of PHEOs/PGLs, including K-RAS-, RET-, and NF1-mutated tumors. Our aim was to establish whether MAPK signaling may also play a role in aggressive, succinate dehydrogenase (SDH) B mutation-derived PHEOs/PGLs. Expression profiling and western blot analysis indicated that specific aspects of MAPK-signaling are active in SDHB PHEOs/PGLs, suggesting that inhibition by statin treatment could be beneficial. Moreover, we aimed to assess whether the anti-proliferative effect of lovastatin on MPC and MTT differed from that exerted by fluvastatin, simvastatin, atorvastatin, pravastatin, or rosuvastatin. Simvastatin and fluvastatin decreased cell proliferation most effectively and the more aggressive MTT cells appeared more sensitive in this respect. Inhibition of MAPK1 and 3 phosphorylation following treatment with fluvastatin, simvastatin, and lovastatin was confirmed by western blot. Increased levels of CASP-3 and PARP cleavage confirmed induction of apoptosis following the treatment. At a concentration low enough not to affect cell proliferation, spontaneous migration of MPC and MTT was significantly inhibited within 24 hours of treatment. In conclusion, lipophilic statins may present a promising therapeutic option for treatment of aggressive human paragangliomas by inducing apoptosis and inhibiting tumor spread. PMID:24846270

  8. Estrogen effects on the expression of Brx in the brain and pituitary of the mouse.

    PubMed

    Eddington, David O; Baldwin, Emily L; Segars, James H; Wu, T J

    2006-04-28

    A member of the Dbl family of oncoproteins was discovered in breast cancer tissue extracts. This novel protein, designated Brx, contains an estrogen-receptor binding motif and is highly expressed in hormone-responsive breast tissue. Due to its ability to augment ligand-dependent activation of estrogen receptors, we analyzed the expression of Brx in the adult mouse brain and pituitary. Results indicated that Brx was expressed in specific regions of the brain and pituitary. Furthermore, the results indicate that differences exist in both brain and pituitary tissue of male and female mice with greater expression in the female. However, estrogen did not influence Brx expression in ovariectomized mice. The anatomical studies support a role for Brx in its association with the estrogen receptor and that Brx may be involved in neuronal and pituitary function in a sexually dimorphic manner.

  9. The therapeutic effects of human adipose-derived stem cells in Alzheimer's disease mouse models.

    PubMed

    Chang, Keun-A; Kim, Hee Jin; Joo, Yuyoung; Ha, Sungji; Suh, Yoo-Hun

    2014-01-01

    Alzheimer's disease (AD) is an irreversible neurodegenerative disease, still lacking proper clinical treatment. Therefore, many researchers have focused on the possibility of therapeutic use of stem cells for AD. Adipose-derived stem cells (ASCs), mesenchymal stem cells (MSCs) isolated from adipose tissue, are well known for their pluripotency and their ability to differentiate into multiple tissue types and have immune modulatory properties similar to those of MSCs from other origins. Because of their biological properties, ASCs can be considered for cell therapy and neuroregeneration. Our recent results clearly showed the therapeutic potential of these cells after transplantation into Tg2576 mice (an AD mouse model). Intravenously or intracerebrally transplanted human ASCs (hASCs) greatly improved the memory impairment and the neuropathology, suggesting that hASCs have a high therapeutic potential for AD.

  10. Effects of lead on the male mouse as investigated by in vitro fertilization and blastocyst culture

    SciTech Connect

    Johansson, L.; Sjoeblom, P.; Wide, M.

    1987-02-01

    Long-term exposure of male mice to inorganic lead (lead chloride, 1 g/liter) in the drinking water reduces their fertility. The cause of this reduction, expressed as a decrease in the number of mated females showing inplantations, was investigated, using an in vivo fertilization method. It was found that spermatozoa from lead-exposed males had a significantly lower ability to fertilize mouse eggs than those from unexposed males. Preimplantation embryos, isolated from uterine horns of mice mated with lead-exposed males. Preimplantation embryos, isolated from uterine horns of mice mated with lead-exposed males, were examined. No morphologically abnormal embryos were found. However, when cultured in vitro over the implantation period, blastocysts of the group mated with lead-exposed males showed an increased frequency of delayed hatching from the zona pellucida or an inability to hatch. Among blastocysts from this group a decreased frequency of inner cell mass development was also found.

  11. Effect of NIP-142 on potassium channel alpha-subunits Kv1.5, Kv4.2 and Kv4.3, and mouse atrial repolarization.

    PubMed

    Tanaka, Hikaru; Namekata, Iyuki; Hamaguchi, Shogo; Kawamura, Taro; Masuda, Hiroyuki; Tanaka, Yoshio; Iida-Tanaka, Naoko; Takahara, Akira

    2010-01-01

    Effects of NIP-142, a benzopyran compound which terminates experimental atrial arrhythmia, on potassium channel alpha-subunits and mouse atrial repolarization were examined. NIP-142 concentration-dependently blocked the outward current through potassium channel alpha subunits Kv1.5, Kv4.2 and Kv4.3 expressed in Xenopus oocytes. In isolated mouse atrial myocardia, NIP-142 prolonged the action potential duration and effective refractory period, and increased the contractile force. These results suggest that NIP-142 blocks the potassium channels underlying the transient and sustained outward currents, which may contribute to its antiarrhythmic activity.

  12. Agmatine enhances the antidepressant-like effect of lithium in mouse forced swimming test through NMDA pathway.

    PubMed

    Mohseni, Gholmreza; Ostadhadi, Sattar; Imran-Khan, Muhammad; Norouzi-Javidan, Abbas; Zolfaghari, Samira; Haddadi, Nazgol-Sadat; Dehpour, Ahmad-Reza

    2017-04-01

    Depression is one the world leading global burdens leading to various comorbidities. Lithium as a mainstay in the treatment of depression is still considered gold standard treatment. Similar to lithium another agent agmatine has also central protective role against depression. Since, both agmatine and lithium modulate various effects through interaction with NMDA receptor, therefore, in current study we aimed to investigate the synergistic antidepressant-like effect of agmatine with lithium in mouse force swimming test. Also to know whether if such effect is due to interaction with NMDA receptor. In our present study we found that when potent dose of lithium (30mg/kg) was administered, it significantly decreased the immobility time. Also, when subeffective dose of agmatine (0.01mg/kg) was coadministered with subeffective dose of lithium (3mg/kg), it potentiated the antidepressant-like effect of subeffective dose of lithium. For the involvement of NMDA receptor in such effect, we administered NMDA receptor antagonist MK-801 (0.05mg/kg) with a combination of subeffective dose of lithium (3mg/kg) and agmatine (0.001mg/kg). A significant antidepressant-like effect was observed. Furthermore, when subeffective dose (50 and 75mg/kg) of NMDA was given it inhibited the synergistic effect of agmatine (0.01mg/kg) with lithium (3mg/kg). Hence, our finding demonstrate that agmatine have synergistic effect with lithium which is mediated by NMDA receptor pathway.

  13. Effect of lectins on hepatic clearance and killing of Candida albicans by the isolated perfused mouse liver.

    PubMed Central

    Sawyer, R T; Garner, R E; Hudson, J A

    1992-01-01

    The isolated perfused mouse liver model was used to study the effects of various lectins on hepatic trapping and killing of Candida albicans. After mouse livers were washed with 20 to 30 ml of perfusion buffer, 10(6) C. albicans CFU were infused into the livers. At the time of recovery, 63% +/- 2% (mean +/- standard error of the mean) of the infused C. albicans CFU were recovered from the liver and 14% +/- 1% were recovered from the effluent for a total recovery of 77% +/- 2%. This indicated that 86% +/- 9% of the original inoculum was trapped by the liver and that 23% +/- 2% was killed within the liver. When included in both preperfusion and postperfusion buffers (0.2 mg of lectin per ml), Ulex europeaus lectin (binding specificity for fucose) decreased hepatic trapping of C. albicans by 37% and eluted trapped C. albicans from the liver only when included in postperfusion buffer. By comparison, treatment of C. albicans with U. europeaus lectin before infusion had no effect on the trapping or killing of yeast cells. When Lens culinaris lectin (binding specificity for mannose) was included in the perfusion buffers, hepatic killing of C. albicans increased by 16% with no significant effect on hepatic killing when yeast cells were treated with L. culinaris lectin before infusion. Forty to 55% of the infused C. albicans were killed when concanavalin A (binding specificities for mannose and glucose), Glycine max (binding specificity for N-acetylgalactosamine), or Arachis hypogea (binding specificity for galactose) lectin was included in the perfusion buffer or when yeast cells were treated with these lectins before their infusion. When C. albicans was treated with concanavalin A at a concentration of less than 0.02 mg/ml, hepatic killing of yeast cells was not significantly increased. The data suggest that a fucose-containing receptor on the surface of either sinusoidal endothelial cells or Kupffer cells is involved in the trapping of C. albicans by the perfused mouse

  14. Assessment of ultraviolet B–blocking effects of weekly disposable contact lenses on corneal surface in a mouse model

    PubMed Central

    Lin, David Pei-Cheng; Chang, Han-Hsin; Yang, Li-Chien; Huang, Tzu-Ping; Liu, Hsiang-Jui; Chang, Lin-Song; Lin, Chien-Hsun

    2013-01-01

    Purpose Weekly disposable soft contact lenses have been widely used recently, but their shield effects against ultraviolet (UV) irradiation remain to be evaluated. This study investigated the bioprotective effects of several weekly soft contact lenses against UVB irradiation on the corneal surface in a mouse model. Methods Fifty ICR mice were randomly divided into five groups: (1) blank control, (2) exposed to UVB without contact lens protection, (3) exposed to UVB and protected with Vifilcon A contact lenses, (4) exposed to UVB and protected with Etafilcon A contact lenses, and (5) exposed to UVB and protected with HEMA+MA contact lenses. The exposure to UVB irradiation was performed at 0.72 J/cm2/day after anesthesia for a 7-day period, followed by cornea surface assessment for smoothness, opacity, and grading of lissamine green staining. Tissue sections were prepared for hematoxylin and eosin staining and immunohistochemical detection by using antibodies against myeloperoxidase, cytokeratin-5, P63, Ki-67, nuclear factor-kappa B (p65), cyclooxygenase-2, Fas L, and Fas. Results The results showed impaired corneal surface with myeloperoxidase+ polymorphonuclear leukocyte infiltration into the stroma after UVB exposure, in contrast to the intact status of the blank controls. The corneas with Etafilcon A and HEMA+MA contact lenses maintained more cells positive for cytokeratin-5, P63, and Ki-67 compared to those with Vifilcon A or without contact lens protection. Furthermore, less proinflammatory factors, including nuclear factor-kappa (p65), cyclooxygenase-2, Fas L, and Fas, were induced in the corneas protected by Etafilcon A and HEMA+MA. Conclusions This study demonstrated various protective effects of weekly disposable contact lenses against UVB irradiation. The mouse model used in the present study may be used extensively for in vivo assessment of UV shield efficacy. PMID:23734085

  15. Effects of buspirone on posthypoxic ventilatory behavior in the C57BL/6J and A/J mouse strains.

    PubMed

    Yamauchi, Motoo; Dostal, Jesse; Kimura, Hiroshi; Strohl, Kingman P

    2008-08-01

    Buspirone, a partial agonist of the serotonergic 5-HT1A receptor, improves breathing irregularities in humans with Rett syndrome or brain stem injury. The purpose of this study was to examine whether buspirone alters posthypoxic ventilatory behavior in C57BL/6J (B6) and A/J mouse strains. Measurements of ventilatory behavior were collected from unanesthetized adult male mice (n=6 for each strain) using the plethysmographic method. Mice were given intraperitoneal injections of vehicle or several doses of buspirone and exposed to 2 min of hypoxia (10% O2) followed by rapid reoxygenation (100% O2). Twenty minutes later, mice were tested for hypercapnic response (8% CO(2)-92% O2). On a separate day, mice were injected with the 5-HT1A receptor antagonist 4-iodo-N-{2-[4-(methoxyphenyl)-1-piperazinyl] ethyl}-N-2-pyridinylbenzamide (p-MPPI) before the injection of buspirone, and measurements were repeated. In separate studies, arterial blood-gas analysis was performed for each strain (n=12 in B6 and 10 in A/J) with buspirone or vehicle. In both strains, buspirone stimulated ventilation at rest. In the B6 mice, the hypoxic response was unchanged, but the response to hypercapnia was reduced with buspirone (5 mg/kg; P<0.05). With reoxygenation, vehicle-treated B6 exhibited periodic breathing and greater variation in ventilation compared with A/J (P<0.01). In B6 animals, >or=3 mg/kg of buspirone reduced variation and prevented the occurrence of posthypoxic periodic breathing. Both effects were reversed by p-MPPI. Treatment effect of buspirone was not explained by a difference in resting arterial blood gases. We conclude that buspirone improves posthypoxic ventilatory irregularities in the B6 mouse through its agonist effects on the 5-HT1A receptor.

  16. Effects of sepiapterin and 6-acetyldihydrohomopterin on the guanosine triphosphate cyclohydrolase I of mouse, rat and the fruit-fly Drosophila.

    PubMed

    Jacobson, K B; Manos, R E

    1989-05-15

    The regulation of GTP cyclohydrolase I would lead to the regulation of tetrahydrobiopterin, an important cofactor for synthesis of neurotransmitters. In an attempt to extend a previous finding [Bellahsene, Dhondt, & Farriaux (1984) Biochem. J. 217, 59-65] that GTP cyclohydrolase I of rat liver is inhibited by subnanomolar concentrations of reduced biopterin and sepiapterin, we found that this could not be verified with the enzyme from mouse liver, fruit-fly (Drosophila) heads or, indeed, from rat liver. It was shown, however, that 12 microM-sepiapterin inhibited mouse liver GTP cyclohydrolase I. Another compound, namely 6-acetyldihydrohomopterin, was also employed in the present study to explore its effect on enzymes that lead to its synthesis in Drosophila and for effects on mammalian systems; at 2-5 microM this compound was shown to stimulate one form of mouse liver GTP cyclohydrolase I and then to inhibit at higher concentrations (40 microM). Neither sepiapterin nor 6-acetyldihydrohomopterin caused any effect on the Drosophila head enzyme. On the other hand, the sigmoid GTP concentration curve for the Drosophila enzyme may indicate a regulatory characteristic of this enzyme. Another report, on the lower level of GTP cyclohydrolase I in mutant mouse liver [McDonald, Cotton, Jennings, Ledley, Woo & Bode (1988) J. Neurochem. 50, 655-657], was confirmed and extended. Instead of having 10% activity, we find that the hph-1 mouse mutant has less than 2% activity in the liver. These studies demonstrate that micromolar levels of reduced pterins may have regulatory effects on GTP cyclohydrolase I and that a mouse mutant is available that has low enough activity to be considered as a model for human atypical phenylketonuria.

  17. Involvement of AMPA receptors in the antidepressant-like effects of lithium in the mouse tail suspension test and forced swim test.

    PubMed

    Gould, Todd D; O'Donnell, Kelley C; Dow, Eliot R; Du, Jing; Chen, Guang; Manji, Husseini K

    2008-03-01

    In addition to its clinical antimanic effects, lithium also has efficacy in the treatment of depression. However, the mechanism by which lithium exerts its antidepressant effects is unclear. Our objective was to further characterize the effects of peripheral and central administration of lithium in mouse models of antidepressant efficacy as well as to investigate the role of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptors in these behaviors. We utilized the mouse forced swim test (FST) and tail suspension test (TST), intracerebroventricular (ICV) lithium administration, AMPA receptor inhibitors, and BS3 crosslinking followed by Western blot. Both short- and long-term administration of lithium resulted in robust antidepressant-like effects in the mouse FST and TST. Using ICV administration of lithium, we show that these effects are due to actions of lithium on the brain, rather than to peripheral effects of the drug. Both ICV and rodent chow (0.4% LiCl) administration paradigms resulted in brain lithium concentrations within the human therapeutic range. The antidepressant-like effects of lithium in the FST and TST were blocked by administration of AMPA receptor inhibitors. Additionally, administration of lithium increased the cell surface expression of GluR1 and GluR2 in the mouse hippocampus. Collectively, these data show that lithium exerts centrally mediated antidepressant-like effects in the mouse FST and TST that require AMPA receptor activation. Lithium may exert its antidepressant effects in humans through AMPA receptors, thus further supporting a role of targeting AMPA receptors as a therapeutic approach for the treatment of depression.

  18. Involvement of AMPA Receptors in the Antidepressant-Like Effects of Lithium in the Mouse Tail Suspension Test and Forced Swim Test

    PubMed Central

    Gould, Todd D.; O’Donnell, Kelley C.; Dow, Eliot R.; Du, Jing; Chen, Guang; Manji, Husseini K.

    2008-01-01

    In addition to its clinical antimanic effects, lithium also has efficacy in the treatment of depression. However, the mechanism by which lithium exerts its antidepressant effects is unclear. Our objective was to further characterize the effects of peripheral and central administration of lithium in mouse models of antidepressant efficacy as well as to investigate the role of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptors in these behaviors. We utilized the mouse forced swim test (FST) and tail suspension test (TST), intracerebroventricular (ICV) lithium administration, AMPA receptor inhibitors, and BS3 crosslinking followed by western blot. Both short- and long-term administration of lithium resulted in robust antidepressant-like effects in the mouse FST and TST. Using ICV administration of lithium, we show that these effects are due to actions of lithium on the brain, rather than to peripheral effects of the drug. Both ICV and rodent chow (0.4% LiCl) administration paradigms resulted in brain lithium concentrations within the human therapeutic range. The effects of lithium to decrease immobility in the FST and TST were blocked by administration of AMPA receptor inhibitors. Additionally, administration of lithium increased the cell surface expression of GluR1 and GluR2 in the mouse hippocampus. Collectively, these data show that lithium exerts centrally mediated antidepressant-like effects in the mouse FST and TST that require AMPA receptor activation. Lithium may exert its antidepressant effects in humans through AMPA receptors, thus further supporting a role of targeting AMPA receptors as a therapeutic approach for the treatment of depression. PMID:18096191

  19. Inhibitory effects of devil's claw (secondary root of Harpagophytum procumbens) extract and harpagoside on cytokine production in mouse macrophages.

    PubMed

    Inaba, Kazunori; Murata, Kazuya; Naruto, Shunsuke; Matsuda, Hideaki

    2010-04-01

    Successive oral administration (50 mg/kg) of a 50% ethanolic extract (HP-ext) of devil's claw, the secondary root of Harpagophytum procumbens, showed a significant anti-inflammatory effect in the rat adjuvant-induced chronic arthritis model. HP-ext dose-dependently suppressed the lipopolysaccharide (LPS)-induced production of inflammatory cytokines [interleukin-1beta (IL-1beta), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-alpha)] in mouse macrophage cells (RAW 264.7). Harpagoside, a major iridoid glycoside present in devil's claw, was found to be one of the active agents in HP-ext and inhibited the production of IL-1beta, IL-6, and TNF-alpha by RAW 264.7.

  20. A comparative study of the effects of sparteine, lupanine and lupin extract on the central nervous system of the mouse.

    PubMed

    Pothier, J; Cheav, S L; Galand, N; Dormeau, C; Viel, C

    1998-08-01

    Lupin is toxic because of its alkaloid content, sparteine and lupanine in particular. Although the pharmacological properties of sparteine are well known those of lupanine have not been much studied. This paper reports procedures for extraction, purification and crystallization of lupanine, and methods for the preparation of an extract for injection of Lupinus mutabilis Sweet, and for the determination of the acute toxicity and maximum non-lethal dose (DL0) of lupanine, sparteine and lupin extract in the mouse. The three substances were tested on the central nervous system (CNS) for locomotor activity, for interaction with specific drugs used for treatment of the CNS (the stimulant drugs amphetamine and pentetrazol and the depressant drugs pentobarbital and chlorpromazine) and for analgesic activity. The results indicate that lupanine and lupin extract are less toxic than sparteine and that at the doses studied the three products have a weak sedative effect on the CNS.

  1. The effect of a physiological concentration of caffeine on the endurance of maximally and submaximally stimulated mouse soleus muscle.

    PubMed

    Tallis, Jason; James, Rob S; Cox, Val M; Duncan, Michael J

    2013-03-01

    The use of caffeine as an ergogenic aid to promote endurance has been widely studied, with human literature showing the greatest benefit during submaximal muscle activities. Recent evidence suggests that the acute treatment of skeletal muscle with physiological concentrations of caffeine (70 μM maximum) will directly potentiate force production. The aims of the present study are: firstly, to assess the effects of a physiological concentration (70 μM) of caffeine on endurance in maximally activated mouse soleus (relatively slow) muscle; and secondly, to examine whether endurance changes when muscle is activated submaximally during caffeine treatment. Maximally stimulated soleus muscle treated with 70 μM caffeine resulted in a significant (17.6 %) decrease in endurance. In contrast, at a submaximal stimulation frequency, caffeine treatment significantly prolonged endurance (by 19.2 %). Findings are activation-dependent such that, during high frequency stimulation, caffeine accelerates fatigue, whereas, during low frequency stimulation, caffeine delays fatigue.

  2. Effects of a calcium channel agonist on the electrical, ionic and secretory events in mouse pancreatic B-cells

    SciTech Connect

    Henquin, J.C.; Schmeer, W.; Nenquin, M.; Meissner, H.P.

    1985-09-16

    The changes in pancreatic B-cell function produced by a Ca channel agonist, the dihydropyridine derivative CGP 28392, have been studied with mouse islets. CGP 28392 (5 microM) modified the electrical activity induced in B-cells by 10 mM glucose: the duration and the amplitude of the slow waves of membrane potential increased, but the overall spike activity decreased. Simultaneously, CGP 28392 markedly increased insulin release and UVCaS efflux, and slightly accelerated YWRb efflux from islet cells. These latter effects were abolished by omission of extracellular CaS . Qualitatively similar changes were observed at 15 mM glucose, whereas CGP 28392 was ineffective at 3 mM glucose. These results strongly suggest that an influx of CaS contributes to the slow waves of membrane potential triggered by glucose, and underline the importance of this influx of CaS for the control of insulin release by the sugar.

  3. Regulatory effect of Bcl-2 in ultraviolet radiation-induced apoptosis of the mouse crystalline lens

    PubMed Central

    DONG, YUCHEN; ZHENG, YAJUAN; XIAO, JUN; ZHU, CHAO; ZHAO, MEISHENG

    2016-01-01

    The aim of the present study was to analyze the role of Bcl-2 during the process of apoptosis in the mouse crystalline lens. In total, 12 normal mice served as the control group and 12 Bcl-2 knockout (K.O) mice served as the experimental group. The mouse crystalline lens was sampled for the detection of Bcl-2 and caspase-3 expression following exposure to ultraviolet (UV) radiation. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to determine Bcl-2 expression in the groups of normal mice receiving UV radiation or not receiving UV radiation. Samples of the murine crystalline lens were microscopically harvested and analyzed using western blotting. Apoptosis was detected using terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay. Furthermore, caspase 3 activity was examined using enzyme-linked immunosorbent assay kits, and RT-qPCR was used to analyze caspase-3 expression levels. The results of the present study demonstrated that there was no statistically significant difference in the level of Bcl-2 gene transcription between the two groups. In addition, UV radiation did not change the macrostructure of the crystalline lens in the group of normal mice or the group of Bcl-2 K.O mice. The results of the TUNEL assay indicated that the normal-UV group exhibited a more significant apoptosis level compared with the Bcl-2 K.O-UV group. Furthermore, the mRNA expression level of caspase-3 in the normal-UV group was significantly higher compared with the normal-nonUV group (P<0.05), while the levels in the Bcl-2 K.O-UV group were significantly higher compared with the Bcl-2 K.O and normal-nonUV groups (P<0.05). In addition, the mRNA expression level of caspase-3 was significantly higher in the normal-UV, as compared with the Bcl-2 K.O-UV group (P<0.05), and the variation trends in caspase-3 activity were consistent. In conclusion, the results of the present study demonstrated that Bcl-2 may have an important role in the

  4. Protective effects of positive lysosomal modulation in Alzheimer's disease transgenic mouse models.

    PubMed

    Butler, David; Hwang, Jeannie; Estick, Candice; Nishiyama, Akiko; Kumar, Saranya Santhosh; Baveghems, Clive; Young-Oxendine, Hollie B; Wisniewski, Meagan L; Charalambides, Ana; Bahr, Ben A

    2011-01-01

    Alzheimer's disease (AD) is an age-related neurodegenerative pathology in which defects in proteolytic clearance of amyloid β peptide (Aβ) likely contribute to the progressive nature of the disorder. Lysosomal proteases of the cathepsin family exhibit up-regulation in response to accumulating proteins including Aβ(1-42). Here, the lysosomal modulator Z-Phe-Ala-diazomethylketone (PADK) was used to test whether proteolytic activity can be enhanced to reduce the accumulation events in AD mouse models expressing different levels of Aβ pathology. Systemic PADK injections in APP(SwInd) and APPswe/PS1ΔE9 mice caused 3- to 8-fold increases in cathepsin B protein levels and 3- to 10-fold increases in the enzyme's activity in lysosomal fractions, while neprilysin and insulin-degrading enzyme remained unchanged. Biochemical analyses indicated the modulation predominantly targeted the active mature forms of cathepsin B and markedly changed Rab proteins but not LAMP1, suggesting the involvement of enhanced trafficking. The modulated lysosomal system led to reductions in both Aβ immunostaining as well as Aβ(x-42) sandwich ELISA measures in APP(SwInd) mice of 10-11 months. More extensive Aβ deposition in 20-22-month APPswe/PS1ΔE9 mice was also reduced by PADK. Selective ELISAs found that a corresponding production of the less pathogenic Aβ(1-38) occurs as Aβ(1-42) levels decrease in the mouse models, indicating that PADK treatment leads to Aβ truncation. Associated with Aβ clearance was the elimination of behavioral and synaptic protein deficits evident in the two transgenic models. These findings indicate that pharmacologically-controlled lysosomal modulation reduces Aβ(1-42) accumulation, possibly through intracellular truncation that also influences extracellular deposition, and in turn offsets the defects in synaptic composition and cognitive functions. The selective modulation promotes clearance at different levels of Aβ pathology and provides proof

  5. Comparative analysis of the relationship between trichloroethylene metabolism and tissue-specific toxicity among inbred mouse strains: kidney effects.

    PubMed

    Yoo, Hong Sik; Bradford, Blair U; Kosyk, Oksana; Uehara, Takeki; Shymonyak, Svitlana; Collins, Leonard B; Bodnar, Wanda M; Ball, Louise M; Gold, Avram; Rusyn, Ivan

    2015-01-01

    Trichloroethylene (TCE) is a well-known environmental and occupational toxicant that is classified as carcinogenic to humans based on the epidemiological evidence of an association with higher risk of renal-cell carcinoma. A number of scientific issues critical for assessing human health risks from TCE remain unresolved, such as the amount of kidney-toxic glutathione conjugation metabolites formed, interspecies and interindividual differences, and the mode of action for kidney carcinogenicity. It was postulated that TCE renal metabolite levels are associated with kidney-specific toxicity. Oral dosing with TCE was conducted in subacute (600 mg/kg/d; 5 d; 7 inbred mouse strains) and subchronic (100 or 400 mg/kg/d; 1, 2, or 4 wk; 2 inbred mouse strains) designs. The quantitative relationship was evaluated between strain-, dose, and time-dependent formation of TCE metabolites from cytochrome P-450-mediated oxidation (trichloroacetic acid [TCA], dichloroacetic acid [DCA], and trichloroethanol) and glutathione conjugation [S-(1,2-dichlorovinyl)-L-cysteine and S-(1,2-dichlorovinyl)glutathione], and various kidney toxicity phenotypes. In subacute study, interstrain differences in renal TCE metabolite levels were observed. In addition, data showed that in several strains kidney-specific effects of TCE included induction of peroxisome proliferator-marker genes Cyp4a10 and Acox1, increased cell proliferation, and expression of KIM-1, a marker of tubular damage and regeneration. In subchronic study, peroxisome proliferator-marker gene induction and renal toxicity diminished while cell proliferative response was elevated in a dose-dependent manner in NZW/LacJ but not C57BL/6J mice. Overall, data demonstrated that renal TCE metabolite levels are associated with kidney-specific toxicity and that these effects are strain dependent.

  6. Effect of menthol and related terpenes on the percutaneous absorption of propranolol across excised hairless mouse skin.

    PubMed

    Kunta, J R; Goskonda, V R; Brotherton, H O; Khan, M A; Reddy, I K

    1997-12-01

    The potential use of terpenes/terpenoids as penetration enhancers in the transdermal delivery of propranolol hydrochloride (PL) was investigated. PL was chosen for the reasons of its extensive first-pass metabolism and short elimination half-life. The terpenes studied included L-menthol, (+)-limonene, (+/-)-linalool, and carvacrol at 1%, 5%, and 10% w/v concentrations. The diffusion of PL across excised hairless mouse skin was determined using side-by-side diffusion cells. Flux, permeability coefficient (Pm), and lag time (tL) were calculated. PL showed comparable lag times with menthol at all three concentration levels. At a 1% level of carvacrol, PL exhibited a 2.4- and 2.2-fold increase in lag time compared with 5 and 10% levels of enhancer, respectively. In the presence of limonene, PL had shown maximum lag time (between 3.0 and 3.3 h) at all three levels. In the case of linalool, the lag times for PL with 5 and 10% levels of enhancer were 7.0- and 5.2-fold less compared with 1% level. A significant (p < 0.05) concentration effect was observed only with linalool. Hydrogel-based patches were formulated with or without menthol as enhancer. Release profiles from the hydrogel formulations obeyed zero-order kinetics. The permeability of propranolol was significantly higher (p < 0.05) from the test patch than the control (no enhancer) patch across the mouse skin. The mechanism of permeation enhancement of menthol could involve its distribution preferentially into the intercellular spaces of stratum corneum and the possible reversible disruption of the intercellular lipid domain. The results suggest the potential use of menthol as effective penetration enhancer in the delivery of significant amounts of PL through skin.

  7. Protective effect of propofol against kainic acid-induced lipid peroxidation in mouse brain homogenates: comparison with trolox and melatonin.

    PubMed

    Lee, Hyung; Jang, Young-Ho; Lee, Seong-Ryong

    2005-07-01

    This study compared the effectiveness of propofol with that of trolox and melatonin for reduction of lipid peroxidation in vitro. Lipid peroxidation was induced by addition of kainic acid (KA; 10 mM), hydrogen peroxide (H2O2; 10 mM), or ferrous ammonium sulfate (5 microM) to mouse brain homogenate, and thiobarbituric acid-reactive substances (TBA-RS) were used as a marker of lipid peroxidation. Propofol, trolox, and melatonin reduced KA-, H2O2-, and ferrous ammonium sulfate-induced lipid peroxidation in a concentration-dependent manner. In reducing KA-induced lipid peroxidation, 50% inhibitory concentration (IC50) values of antioxidants were as follows: propofol (11.33 mM), trolox (4.00 mM), and melatonin (9.72 mM). In reducing H2O2-induced lipid peroxidation, IC50 values of antioxidants were as follows: propofol (56.86 mM), trolox (33.34 mM), and melatonin (26.63 mM). In reducing ferrous ion-induced lipid peroxidation, IC50 values of antioxidants were as follows: propofol (49.57 mM), trolox (60.35 mM), and melatonin (22.02 mM). Under the in vitro conditions of this experiment, propofol was an excellent and a very potent antioxidant in inhibiting KA-, H2O2-, and ferrous ion-induced lipid peroxidation in mouse brain homogenates. We conclude that the antioxidant properties of propofol at clinically relevant anesthetic concentrations may have a neuroprotective effect.

  8. Anti-inflammatory effects of oroxylin A on RAW 264.7 mouse macrophages induced with polyinosinic-polycytidylic acid

    PubMed Central

    LEE, JI YOUNG; PARK, WANSU

    2016-01-01

    Oroxylin A (5,7-dihydroxy-6-methoxy-2-phenylchromen-4-one; Baicalein 6-methyl ether) is an active flavonoid compound originally isolated from Scutellaria radix, which has been used to treat pulmonary infection in Korea, China, and Japan. Oroxylin A is known to possess dopamine reuptake inhibitor activity. However, the effects of oroxylin A on virus-induced macrophages has not been fully elucidated. In the present study, the anti-inflammatory effects of oroxylin A on double-stranded RNA-induced macrophages were examined. Production of nitric oxide (NO), various cytokines, as well as calcium release and the mRNA expression of signal transducer and activator of transcription 1 (STAT1) in dsRNA polyinosinic-polycytidylic acid (PIC)-induced RAW 264.7 mouse macrophages were evaluated. Oroxylin A restored the cell viability in PIC-induced RAW 264.7 mouse macrophages at concentrations of up to 50 µM. Additionally, oroxylin A significantly inhibited the production of nitric oxide (NO), interleukin (IL)-1α, IL-1β, IL-6, IL-10, interferon gamma-induced protein 10, granulocyte-colony stimulating factor (CSF), granulocyte macrophage-CSF, leukemia inhibitory factor (IL-6 class cytokine), lipopolysaccharide-induced CXC chemokine (LIX), monocyte chemoattractant protein 1, macrophage inflammatory protein (MIP)-1α, MIP-1β, MIP-2, Regulated on Activation, Normal T Expressed and Secreted, tumor necrosis factor-α, and vascular endothelial growth factor as well as calcium release and the mRNA expression of STAT1 in PIC-induced RAW 264.7 cells (P<0.05). Thus, the present results suggest that oroxylin A has anti-inflammatory properties, associated with its inhibition of NO, cytokines, chemokines and growth factors in PIC-induced macrophages via the calcium-STAT pathway. PMID:27347031

  9. The mushroom ribosome-inactivating protein lyophyllin exerts deleterious effects on mouse embryonic development in vitro.

    PubMed

    Chan, W Y; Ng, T B; Lam, Joyce S Y; Wong, Jack H; Chu, K T; Ngai, P H K; Lam, S K; Wang, H X

    2010-01-01

    Earlier investigations disclose that some plant ribosome-inactivating proteins (RIPs) adversely affect mouse embryonic development. In the present study, a mushroom RIP, namely lyophyllin from Lyophyllum shimeji, was isolated, partially sequenced, and its translation inhibitory activity determined. Its teratogenicity was studied by using a technique entailing microinjection and postimplantation whole-embryo culture. It was found that embryonic abnormalities during the period of organogenesis from E8.5 to E9.5 were induced by lyophyllin at a concentration as low as 50 microg/ml, and when the lyophyllin concentration was raised, the number of abnormal embryos increased, the final somite number decreased, and the abnormalities increased in severity. The affected embryonic structures included the cranial neural tube, forelimb buds, branchial arches, and body axis, while optic and otic placodes were more resistant. Lyophyllin at a concentration higher than 500 microg/ml also induced forebrain blisters within the cranial mesenchyme. When the abnormal embryos were examined histologically, an increase of cell death was found to be associated with abnormal structure