Science.gov

Sample records for mouse model induced

  1. Mouse models for radiation-induced cancers.

    PubMed

    Rivina, Leena; Davoren, Michael J; Schiestl, Robert H

    2016-09-01

    Potential ionising radiation exposure scenarios are varied, but all bring risks beyond the simple issues of short-term survival. Whether accidentally exposed to a single, whole-body dose in an act of terrorism or purposefully exposed to fractionated doses as part of a therapeutic regimen, radiation exposure carries the consequence of elevated cancer risk. The long-term impact of both intentional and unintentional exposure could potentially be mitigated by treatments specifically developed to limit the mutations and precancerous replication that ensue in the wake of irradiation The development of such agents would undoubtedly require a substantial degree of in vitro testing, but in order to accurately recapitulate the complex process of radiation-induced carcinogenesis, well-understood animal models are necessary. Inbred strains of the laboratory mouse, Mus musculus, present the most logical choice due to the high number of molecular and physiological similarities they share with humans. Their small size, high rate of breeding and fully sequenced genome further increase its value for use in cancer research. This chapter will review relevant m. musculus inbred and F1 hybrid animals of radiation-induced myeloid leukemia, thymic lymphoma, breast and lung cancers. Method of cancer induction and associated molecular pathologies will also be described for each model. © The Author 2016. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Mouse models of radiation-induced cancers.

    PubMed

    Rivina, Leena; Schiestl, Robert

    2013-01-01

    Radiation-induced (RI) secondary cancers were not a major clinical concern even as little as 15 years ago. However, advances in cancer diagnostics, therapy, and supportive care have saved numerous lives and many former cancer patients are now living for 5, 10, 20, and more years beyond their initial diagnosis. The majority of these patients have received radiotherapy as a part of their treatment regimen and are now beginning to develop secondary cancers arising from normal tissue exposure to damaging effects of ionizing radiation. Because historically patients rarely survived past the extended latency periods inherent to these RI cancers, very little effort was channeled towards the research leading to the development of therapeutic agents intended to prevent or ameliorate oncogenic effects of normal tissue exposure to radiation. The number of RI cancers is expected to increase very rapidly in the near future, but the field of cancer biology might not be prepared to address important issues related to this phenomena. One such issue is the ability to accurately differentiate between primary tumors and de novo arising secondary tumors in the same patient. Another issue is the lack of therapeutic agents intended to reduce such cancers in the future. To address these issues, large-scale epidemiological studies must be supplemented with appropriate animal modeling studies. This work reviews relevant mouse (Mus musculus) models of inbred and F1 animals and methodologies of induction of most relevant radiation-associated cancers: leukemia, lymphoma, and lung and breast cancers. Where available, underlying molecular pathologies are included. © 2013 Elsevier Inc. All rights reserved.

  3. Chemically induced mouse models of intestinal inflammation.

    PubMed

    Wirtz, Stefan; Neufert, Clemens; Weigmann, Benno; Neurath, Markus F

    2007-01-01

    Animal models of intestinal inflammation are indispensable for our understanding of the pathogenesis of Crohn disease and ulcerative colitis, the two major forms of inflammatory bowel disease in humans. Here, we provide protocols for establishing murine 2,4,6-trinitro benzene sulfonic acid (TNBS)-, oxazolone- and both acute and chronic dextran sodium sulfate (DSS) colitis, the most widely used chemically induced models of intestinal inflammation. In the former two models, colitis is induced by intrarectal administration of the covalently reactive reagents TNBS/oxazolone, which are believed to induce a T-cell-mediated response against hapten-modified autologous proteins/luminal antigens. In the DSS model, mice are subjected several days to drinking water supplemented with DSS, which seems to be directly toxic to colonic epithelial cells of the basal crypts. The procedures for the hapten models of colitis and acute DSS colitis can be accomplished in about 2 weeks but the protocol for chronic DSS colitis takes about 2 months.

  4. A Mouse Model for Laser-induced Choroidal Neovascularization.

    PubMed

    Shah, Ronil S; Soetikno, Brian T; Lajko, Michelle; Fawzi, Amani A

    2015-12-27

    The mouse laser-induced choroidal neovascularization (CNV) model has been a crucial mainstay model for neovascular age-related macular degeneration (AMD) research. By administering targeted laser injury to the RPE and Bruch's membrane, the procedure induces angiogenesis, modeling the hallmark pathology observed in neovascular AMD. First developed in non-human primates, the laser-induced CNV model has come to be implemented into many other species, the most recent of which being the mouse. Mouse experiments are advantageously more cost-effective, experiments can be executed on a much faster timeline, and they allow the use of various transgenic models. The miniature size of the mouse eye, however, poses a particular challenge when performing the procedure. Manipulation of the eye to visualize the retina requires practice of fine dexterity skills as well as simultaneous hand-eye-foot coordination to operate the laser. However, once mastered, the model can be applied to study many aspects of neovascular AMD such as molecular mechanisms, the effect of genetic manipulations, and drug treatment effects. The laser-induced CNV model, though useful, is not a perfect model of the disease. The wild-type mouse eye is otherwise healthy, and the chorio-retinal environment does not mimic the pathologic changes in human AMD. Furthermore, injury-induced angiogenesis does not reflect the same pathways as angiogenesis occurring in an age-related and chronic disease state as in AMD. Despite its shortcomings, the laser-induced CNV model is one of the best methods currently available to study the debilitating pathology of neovascular AMD. Its implementation has led to a deeper understanding of the pathogenesis of AMD, as well as contributing to the development of many of the AMD therapies currently available.

  5. Inducible Mouse Models for Cancer Drug Target Validation

    PubMed Central

    Jeong, Joseph H.

    2016-01-01

    Genetically-engineered mouse (GEM) models have provided significant contributions to our understanding of cancer biology and developing anticancer therapeutic strategies. The development of GEM models that faithfully recapitulate histopathological and clinical features of human cancers is one of the most pressing needs to successfully conquer cancer. In particular, doxycycline-inducible transgenic mouse models allow us to regulate (induce or suppress) the expression of a specific gene of interest within a specific tissue in a temporal manner. Leveraging this mouse model system, we can determine whether the transgene expression is required for tumor maintenance, thereby validating the transgene product as a target for anticancer drug development (target validation study). In addition, there is always a risk of tumor recurrence with cancer therapy. By analyzing recurrent tumors derived from fully regressed tumors after turning off transgene expression in tumor-bearing mice, we can gain an insight into the molecular basis of how tumor cells escape from their dependence on the transgene (tumor recurrence study). Results from such studies will ultimately allow us to predict therapeutic responses in clinical settings and develop new therapeutic strategies against recurrent tumors. The aim of this review is to highlight the significance of doxycycline-inducible transgenic mouse models in studying target validation and tumor recurrence. PMID:28053958

  6. A mouse model for juvenile doxorubicin-induced cardiac dysfunction.

    PubMed

    Zhu, Wuqiang; Shou, Weinian; Payne, R Mark; Caldwell, Randall; Field, Loren J

    2008-11-01

    Doxorubicin (DOX) is a potent antitumor agent. DOX can also induce cardiotoxicity, and high cumulative doses are associated with recalcitrant heart failure. Children are particularly sensitive to DOX-induced heart failure. The ability to genetically modify mice makes them an ideal experimental system to study the molecular basis of DOX-induced cardiotoxicity. However, most mouse DOX studies rely on acute drug administration in adult animals, which typically are analyzed within 1 wk. Here, we describe a juvenile mouse model of chronic DOX-induced cardiac dysfunction. DOX treatment was initiated at 2 wk of age and continued for a period of 5 wk (25 mg/kg cumulative dose). This resulted in a decline in cardiac systolic function, which was accompanied by marked atrophy of the heart, low levels of cardiomyocyte apoptosis, and decreased growth velocity. Other animals were allowed to recover for 13 wk after the final DOX injection. Cardiac systolic function improved during this recovery period but remained depressed compared with the saline injected controls, despite the reversal of cardiac atrophy. Interestingly, increased levels of cardiomyocyte apoptosis and concomitant myocardial fibrosis were observed after DOX withdrawal. These data suggest that different mechanisms contribute to cardiac dysfunction during the treatment and recovery phases.

  7. Chronic mouse model of TMA-induced contact hypersensitivity.

    PubMed

    Schneider, Claudia; Döcke, Wolf-Dietrich F; Zollner, Thomas M; Röse, Lars

    2009-04-01

    Due to the steadily increasing incidence of atopic dermatitis (AD), especially in children, there is a high medical need for new therapies and improved animal models. In mice, trimellitic anhydride (TMA) is routinely used to trigger T-cell-dependent contact hypersensitivity (CHS) reactions. In this study, we compared the standard acute TMA-induced CHS in Balb/c mice with subacute and chronic models of TMA-induced ear inflammation. Compared to the acute model, the chronic CHS model more closely reflects characteristics of AD, such as typical morphological changes of the inflamed skin, strong infiltration with T cells, major histocompatibility complex II-positive cells, eosinophils, and mast cells, a T-helper cell-type (Th) 2 cytokine profile and a strong increase of serum IgE levels. Moreover, a strong lymph node involvement with T-helper cell dominance and a mixed Th1/Th2 T-cell differentiation and activation pattern was demonstrated. Importantly, as demonstrated by successful therapy with prednisolone, the chronic TMA-induced CHS model, in contrast to acute and subacute models, made prolonged therapeutic treatment of a pre-established skin inflammation possible. Altogether, we present an improved model of mouse T-cell-dependent skin inflammation for AD. We hope this model will enhance the predictive value of animal models for therapeutic treatment of atopic eczema.

  8. Revisiting the mouse model of oxygen-induced retinopathy

    PubMed Central

    Kim, Clifford B; D'Amore, Patricia A; Connor, Kip M

    2016-01-01

    Abnormal blood vessel growth in the retina is a hallmark of many retinal diseases, such as retinopathy of prematurity (ROP), proliferative diabetic retinopathy, and the wet form of age-related macular degeneration. In particular, ROP has been an important health concern for physicians since the advent of routine supplemental oxygen therapy for premature neonates more than 70 years ago. Since then, researchers have explored several animal models to better understand ROP and retinal vascular development. Of these models, the mouse model of oxygen-induced retinopathy (OIR) has become the most widely used, and has played a pivotal role in our understanding of retinal angiogenesis and ocular immunology, as well as in the development of groundbreaking therapeutics such as anti-vascular endothelial growth factor injections for wet age-related macular degeneration. Numerous refinements to the model have been made since its inception in the 1950s, and technological advancements have expanded the use of the model across multiple scientific fields. In this review, we explore the historical developments that have led to the mouse OIR model utilized today, essential concepts of OIR, limitations of the model, and a representative selection of key findings from OIR, with particular emphasis on current research progress. PMID:27499653

  9. Surgically-induced mouse models in the study of bone regeneration: Current models and future directions

    PubMed Central

    Ning, Bin; Zhao, Yunpeng; Buza, John A.; Li, Wei; Wang, Wenzhao; Jia, Tanghong

    2017-01-01

    Bone regeneration has been extensively studied over the past several decades. The surgically-induced mouse model is the key animal model for studying bone regeneration, of the various research strategies used. These mouse models mimic the trauma and recovery processes in vivo and serve as carriers for tissue engineering and gene modification to test various therapies or associated genes in bone regeneration. The present review introduces a classification of surgically induced mouse models in bone regeneration, evaluates the application and value of these models and discusses the potential development of further innovations in this field in the future. PMID:28138711

  10. A Mouse Model of Furosemide-Induced Overactive Bladder.

    PubMed

    Saporito, Michael S; Zuvich, Eva; DiCamillo, Amy

    2016-09-16

    Detailed in this unit is a mouse model of overactive bladder and urinary incontinence based on diuretic stress-induced urination. The procedure involves the use of a unique, highly sensitive, and automated urine capturing method to measure urinary latency, frequency, and void volume. Although this method was first described and validated using an anti-muscarinic drug used for treating overactive bladder, subsequent work has shown that effective non-cholinergic agents can be detected. These findings indicate good predictive value for this model regarding the possible clinical utility of test agents as treatments for overactive bladder, regardless of their site of action. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  11. A Mouse Model of Fatigue Induced by Peripheral Irradiation.

    PubMed

    Wolff, Brian S; Renner, Michael A; Springer, Danielle A; Saligan, Leorey N

    2017-03-17

    Cancer-related fatigue (CRF) is a distressing and costly condition that often affects patients receiving cancer treatments, including radiation therapy. Here we describe a method using targeted peripheral irradiation to induce fatigue-like behavior in mice. With appropriate shielding, the irradiation targets the lower abdominal/pelvic region of the mouse, sparing the brain, in an effort to model radiation treatment received by individuals with pelvic cancers. We deliver an irradiation dose that is sufficient to induce fatigue-like behavior in mice, measured by voluntary wheel-running activity (VWRA), without causing obvious morbidity. Since wheel running is a normal, voluntary behavior in mice, its use should have little confounding effect on other behavioral tests or biological measures. Hence, wheel running can be used as a feasible outcome measure in understanding the behavioral and biological correlates of fatigue. CRF is a complex condition with frequent comorbidities, and likely has causes related both to cancer and its various treatments. The methods described in this paper are useful for investigating radiation-induced changes that contribute to the development of CRF and, more generally, to explore the biological networks that can explain the development and persistence of a peripherally-triggered but centrally-driven behavior like fatigue.

  12. Asparaginase Potentiates Glucocorticoid-Induced Osteonecrosis in a Mouse Model.

    PubMed

    Liu, Chengcheng; Janke, Laura J; Kawedia, Jitesh D; Ramsey, Laura B; Cai, Xiangjun; Mattano, Leonard A; Boyd, Kelli L; Funk, Amy J; Relling, Mary V

    2016-01-01

    Osteonecrosis is a common dose-limiting toxicity of glucocorticoids. Data from clinical trials suggest that other medications can increase the risk of glucocorticoid-induced osteonecrosis. Here we utilized a mouse model to study the effect of asparaginase treatment on dexamethasone-induced osteonecrosis. Mice receiving asparaginase along with dexamethasone had a higher rate of osteonecrosis than those receiving only dexamethasone after 6 weeks of treatment (44% vs. 10%, P = 0.006). Similarly, epiphyseal arteriopathy, which we have shown to be an initiating event for osteonecrosis, was observed in 58% of mice receiving asparaginase and dexamethasone compared to 17% of mice receiving dexamethasone only (P = 0.007). As in the clinic, greater exposure to asparaginase was associated with greater plasma exposure to dexamethasone (P = 0.0001). This model also recapitulated other clinical risk factors for osteonecrosis, including age at start of treatment, and association with the systemic exposure to dexamethasone (P = 0.027) and asparaginase (P = 0.036). We conclude that asparaginase can potentiate the osteonecrotic effect of glucocorticoids.

  13. Mouse models of alphavirus-induced inflammatory disease.

    PubMed

    Taylor, Adam; Herrero, Lara J; Rudd, Penny A; Mahalingam, Suresh

    2015-02-01

    Part of the Togaviridae family, alphaviruses are arthropod-borne viruses that are widely distributed throughout the globe. Alphaviruses are able to infect a variety of vertebrate hosts, but in humans, infection can result in extensive morbidity and mortality. Symptomatic infection can manifest as fever, an erythematous rash and/or significant inflammatory pathologies such as arthritis and encephalitis. Recent overwhelming outbreaks of alphaviral disease have highlighted the void in our understanding of alphavirus pathogenesis and the re-emergence of alphaviruses has given new impetus to anti-alphaviral drug design. In this review, the development of viable mouse models of Old Word and New World alphaviruses is examined. How mouse models that best replicate human disease have been used to elucidate the immunopathology of alphavirus pathogenesis and trial novel therapeutic discoveries is also discussed.

  14. IMQ Induced K14-VEGF Mouse: A Stable and Long-Term Mouse Model of Psoriasis-Like Inflammation

    PubMed Central

    Wang, Xuguo; Sun, Jun; Hu, JinHong

    2015-01-01

    An imiquimod (IMQ) induced wild type (WT) mouse can mimic some features of psoriasis, such as thickened skin, abnormal keratinocyte-related proteins, infiltration of inflammatory cells and pro-inflammatory cytokines. This model is a prevalent model that is widely used in the study of psoriasis. However, skin inflammation decreases during the eighth day when IMQ is given to WT mice, which may result in false results when evaluating the pharmacodynamics effects of a drug. To extend the timeliness and inherit the advantages of this model, we applied IMQ to the skin of 8-week-old homozygous K14-VEGF mice to investigate whether IMQ can prolong mice ear inflammation. In our experiments, we found that, compared to the IMQ induced WT mice model, the IMQ induced K14-VEGF mice have serious skin inflammation, even on the fourteenth day. We also evaluated the stability of skin inflammation at days 8, 10, and 13, and the inflammatory situation remained stable in the skin. This research intends to improve the existing model, and we hypothesize that the IMQ induced K14-VEGF mouse will become a practical mouse model in psoriasis research. PMID:26691862

  15. Indirubin Treatment of Lipopolysaccharide-Induced Mastitis in a Mouse Model and Activity in Mouse Mammary Epithelial Cells

    PubMed Central

    Lai, Jin-lun; Liu, Yu-hui; Peng, Yong-chong; Ge, Pan; He, Chen-fei; Liu, Chang; Chen, Ying-yu; Guo, Ai-zhen

    2017-01-01

    Indirubin is a Chinese medicine extracted from indigo and known to be effective for treating chronic myelogenous leukemia, neoplasia, and inflammatory disease. This study evaluated the in vivo anti-inflammatory activity of indirubin in a lipopolysaccharide- (LPS-) induced mouse mastitis model. The indirubin mechanism and targets were evaluated in vitro in mouse mammary epithelial cells. In the mouse model, indirubin significantly attenuated the severity of inflammatory lesions, edema, inflammatory hyperemia, milk stasis and local tissue necrosis, and neutrophil infiltration. Indirubin significantly decreased myeloperoxidase activity and downregulated the production of tumor necrosis factor-α, interleukin-1β (IL-1β), and IL-6 caused by LPS. In vitro, indirubin inhibited LPS-stimulated expression of proinflammatory cytokines in a dose-dependent manner. It also downregulated LPS-induced toll-like receptor 4 (TLR4) expression and inhibited phosphorylation of LPS-induced nuclear transcription factor-kappa B (NF-κB) P65 protein and inhibitor of kappa B. In addition to its effect on the NF-κB signaling pathway, indirubin suppressed the mitogen-activated protein kinase (MAPK) signaling by inhibiting phosphorylation of extracellular signal-regulated kinase (ERK), P38, and c-jun NH2-terminal kinase (JNK). Indirubin improved LPS-induced mouse mastitis by suppressing TLR4 and downstream NF-κB and MAPK pathway inflammatory signals and might be a potential treatment of mastitis and other inflammatory diseases. PMID:28255203

  16. Indirubin Treatment of Lipopolysaccharide-Induced Mastitis in a Mouse Model and Activity in Mouse Mammary Epithelial Cells.

    PubMed

    Lai, Jin-Lun; Liu, Yu-Hui; Peng, Yong-Chong; Ge, Pan; He, Chen-Fei; Liu, Chang; Chen, Ying-Yu; Guo, Ai-Zhen; Hu, Chang-Min

    2017-01-01

    Indirubin is a Chinese medicine extracted from indigo and known to be effective for treating chronic myelogenous leukemia, neoplasia, and inflammatory disease. This study evaluated the in vivo anti-inflammatory activity of indirubin in a lipopolysaccharide- (LPS-) induced mouse mastitis model. The indirubin mechanism and targets were evaluated in vitro in mouse mammary epithelial cells. In the mouse model, indirubin significantly attenuated the severity of inflammatory lesions, edema, inflammatory hyperemia, milk stasis and local tissue necrosis, and neutrophil infiltration. Indirubin significantly decreased myeloperoxidase activity and downregulated the production of tumor necrosis factor-α, interleukin-1β (IL-1β), and IL-6 caused by LPS. In vitro, indirubin inhibited LPS-stimulated expression of proinflammatory cytokines in a dose-dependent manner. It also downregulated LPS-induced toll-like receptor 4 (TLR4) expression and inhibited phosphorylation of LPS-induced nuclear transcription factor-kappa B (NF-κB) P65 protein and inhibitor of kappa B. In addition to its effect on the NF-κB signaling pathway, indirubin suppressed the mitogen-activated protein kinase (MAPK) signaling by inhibiting phosphorylation of extracellular signal-regulated kinase (ERK), P38, and c-jun NH2-terminal kinase (JNK). Indirubin improved LPS-induced mouse mastitis by suppressing TLR4 and downstream NF-κB and MAPK pathway inflammatory signals and might be a potential treatment of mastitis and other inflammatory diseases.

  17. Mouse Model of Respiratory Tract Infection Induced by Waddlia chondrophila

    PubMed Central

    Pilloux, Ludovic; LeRoy, Didier; Brunel, Christophe

    2016-01-01

    Waddlia chondrophila, an obligate intracellular bacterium belonging to the Chlamydiales order, is considered as an emerging pathogen. Some clinical studies highlighted a possible role of W. chondrophila in bronchiolitis, pneumonia and miscarriage. This pathogenic potential is further supported by the ability of W. chondrophila to infect and replicate within human pneumocytes, macrophages and endometrial cells. Considering that W. chondrophila might be a causative agent of respiratory tract infection, we developed a mouse model of respiratory tract infection to get insight into the pathogenesis of W. chondrophila. Following intranasal inoculation of 2 x 108 W. chondrophila, mice lost up to 40% of their body weight, and succumbed rapidly from infection with a death rate reaching 50% at day 4 post-inoculation. Bacterial loads, estimated by qPCR, increased from day 0 to day 3 post-infection and decreased thereafter in surviving mice. Bacterial growth was confirmed by detecting dividing bacteria using electron microscopy, and living bacteria were isolated from lungs 14 days post-infection. Immunohistochemistry and histopathology of infected lungs revealed the presence of bacteria associated with pneumonia characterized by an important multifocal inflammation. The high inflammatory score in the lungs was associated with the presence of pro-inflammatory cytokines in both serum and lungs at day 3 post-infection. This animal model supports the role of W. chondrophila as an agent of respiratory tract infection, and will help understanding the pathogenesis of this strict intracellular bacterium. PMID:26950066

  18. The common parasite Toxoplasma gondii induces prostatic inflammation and microglandular hyperplasia in a mouse model.

    PubMed

    Colinot, Darrelle L; Garbuz, Tamila; Bosland, Maarten C; Wang, Liang; Rice, Susan E; Sullivan, William J; Arrizabalaga, Gustavo; Jerde, Travis J

    2017-07-01

    Inflammation is the most prevalent and widespread histological finding in the human prostate, and associates with the development and progression of benign prostatic hyperplasia and prostate cancer. Several factors have been hypothesized to cause inflammation, yet the role each may play in the etiology of prostatic inflammation remains unclear. This study examined the possibility that the common protozoan parasite Toxoplasma gondii induces prostatic inflammation and reactive hyperplasia in a mouse model. Male mice were infected systemically with T. gondii parasites and prostatic inflammation was scored based on severity and focality of infiltrating leukocytes and epithelial hyperplasia. We characterized inflammatory cells with flow cytometry and the resulting epithelial proliferation with bromodeoxyuridine (BrdU) incorporation. We found that T. gondii infects the mouse prostate within the first 14 days of infection and can establish parasite cysts that persist for at least 60 days. T. gondii infection induces a substantial and chronic inflammatory reaction in the mouse prostate characterized by monocytic and lymphocytic inflammatory infiltrate. T. gondii-induced inflammation results in reactive hyperplasia, involving basal and luminal epithelial proliferation, and the exhibition of proliferative inflammatory microglandular hyperplasia in inflamed mouse prostates. This study identifies the common parasite T. gondii as a new trigger of prostatic inflammation, which we used to develop a novel mouse model of prostatic inflammation. This is the first report that T. gondii chronically encysts and induces chronic inflammation within the prostate of any species. Furthermore, T. gondii-induced prostatic inflammation persists and progresses without genetic manipulation in mice, offering a powerful new mouse model for the study of chronic prostatic inflammation and microglandular hyperplasia. © 2017 Wiley Periodicals, Inc.

  19. Initial gut microbiota structure affects sensitivity to DSS-induced colitis in a mouse model.

    PubMed

    Li, Min; Wu, Yanqiu; Hu, Yingxin; Zhao, Liping; Zhang, Chenhong

    2017-08-15

    The dextran sulfate sodium (DSS)-induced colitis model is a widely applied mouse model, but controversial results have been obtained from experiments using the same mouse strain under the same conditions. Because the gut microbiota play an important role in DSS-induced colitis, it is essential to evaluate the influence of the initial gut microbiota in this model. Here, we identified significant variations in the initial gut microbiota of different batches of mice and found that the initial intestinal microbiota had a profound influence on DSS-induced colitis. We performed three independent trials using the same C57BL/6J mouse model with DSS treatment and used high-throughput 16S rRNA gene sequencing to analyze the gut microbiota. We found that the structure and composition of the gut microbiota in mice with severe colitis, as compared with mice with milder colon damage, had unique features, such as an increase in Akkermansia bacteria and a decrease in Barnesiella spp. Moreover, these varied gut bacteria in the different trials also showed different responses to DSS treatment. Our work suggests that, in studies using mouse models, the gut microbiota must be considered when examining mechanisms of diseases, to ensure that comparable results are obtained.

  20. Inducible mouse models illuminate parameters influencing epigenetic inheritance.

    PubMed

    Wan, Mimi; Gu, Honggang; Wang, Jingxue; Huang, Haichang; Zhao, Jiugang; Kaundal, Ravinder K; Yu, Ming; Kushwaha, Ritu; Chaiyachati, Barbara H; Deerhake, Elizabeth; Chi, Tian

    2013-02-01

    Environmental factors can stably perturb the epigenome of exposed individuals and even that of their offspring, but the pleiotropic effects of these factors have posed a challenge for understanding the determinants of mitotic or transgenerational inheritance of the epigenetic perturbation. To tackle this problem, we manipulated the epigenetic states of various target genes using a tetracycline-dependent transcription factor. Remarkably, transient manipulation at appropriate times during embryogenesis led to aberrant epigenetic modifications in the ensuing adults regardless of the modification patterns, target gene sequences or locations, and despite lineage-specific epigenetic programming that could reverse the epigenetic perturbation, thus revealing extraordinary malleability of the fetal epigenome, which has implications for 'metastable epialleles'. However, strong transgenerational inheritance of these perturbations was observed only at transgenes integrated at the Col1a1 locus, where both activating and repressive chromatin modifications were heritable for multiple generations; such a locus is unprecedented. Thus, in our inducible animal models, mitotic inheritance of epigenetic perturbation seems critically dependent on the timing of the perturbation, whereas transgenerational inheritance additionally depends on the location of the perturbation. In contrast, other parameters examined, particularly the chromatin modification pattern and DNA sequence, appear irrelevant.

  1. Therapeutic Effects of Resveratrol in a Mouse Model of LPS and Cigarette Smoke-Induced COPD.

    PubMed

    Chen, Jinlong; Yang, Xu; Zhang, Weiya; Peng, Danhua; Xia, Yanan; Lu, Yi; Han, Xiaodong; Song, Guangjie; Zhu, Jing; Liu, Renping

    2016-12-01

    This study was designed to examine whether resveratrol exerts the protective effects on LPS and cigarette smoke (LC)-induced COPD in a murine model. In lung histopathological studies, H&E, Masson's trichrome, and AB-PAS staining were performed. The cytokines (IL-6, IL-17, TGF-β, and TNF-α) and inflammatory cells in BALF were determined. The Beclin1 level in the lungs of mouse was analyzed. Compared with the LC-induced mouse, the level of inflammatory cytokines (IL-17, IL-6, TNF-α, and TGF-β) of the BALF in the resveratrol + cigarette smoke-treated mouse had obviously decreased. Histological examination of the lung tissue revealed that the resveratrol treatment attenuated the fibrotic response and mucus hypersecretion. In addition, resveratrol inhibited the expression of the Beclin1 protein in mouse lungs. The presented findings collectively suggest that resveratrol has a therapeutic effect on mouse LC-induced COPD, and its mechanism of action might be related to reducing the production of the Beclin1 protein.

  2. Dietary selenium deficiency exacerbates lipopolysaccharide-induced inflammatory response in mouse mastitis models.

    PubMed

    Wei, Zhengkai; Yao, Minjun; Li, Yimeng; He, Xuexiu; Yang, Zhengtao

    2014-12-01

    Selenium (Se) is an essential micronutrient that plays a critical role in anti-inflammatory processes and antioxidant defense system. In this study, we investigated the effects of dietary selenium deficiency on lipopolysaccharide (LPS)-induced mastitis in mouse models. Se content in the liver was assessed by fluorescent atomic absorption spectrometry. Glutathione peroxidase (GPx) activity in the blood, myeloperoxidase (MPO) activity, tumor necrosis actor alpha (TNF-α), and interleukin (IL)-1β in the supernatant of the mammary tissue were determined according to the corresponding kits. Cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expressions were evaluated by Western blotting. The results showed that the Se-deficient mouse model was successfully replicated, and selenium deficiency exacerbated mammary gland histopathology, increased the expressions of TNF-α and IL-1β, and facilitated the activation of iNOS and COX-2 in LPS-induced mouse mastitis. In conclusion, our studies demonstrated that selenium deficiency resulted in more severe inflammatory response in LPS-induced mouse mastitis.

  3. Mouse model of inducible nephrogenic diabetes insipidus produced by floxed aquaporin-2 gene deletion.

    PubMed

    Yang, Baoxue; Zhao, Dan; Qian, Liman; Verkman, A S

    2006-08-01

    Transgenic mouse models of defective urinary concentrating ability produced by deletion of various membrane transport or receptor proteins, including aquaporin-2 (AQP2), are associated with neonatal mortality from polyuria. Here, we report an inducible mouse model of AQP2 gene deletion with severe polyuria in adult mice. LoxP sequences were inserted into introns 1 and 2 in the mouse AQP2 gene by homologous recombination in embryonic stem cells. Mating of germ-line AQP2-loxP mice with tamoxifen-inducible Cre-expressing mice produced offspring with inducible homozygous Cre-AQP2-loxP, which had a normal phenotype. Tamoxifen injections over 10 days resulted in AQP2 gene excision, with undetectable full-length AQP2 transcript in kidney and a >95% reduction in immunoreactive AQP2 protein. Urine osmolality decreased from approximately 2,000 to <500 mosmol/kgH(2)O after 4-5 days, with urine output increasing from 2 to 25 ml/day. Urine osmolality did not increase after water deprivation. Interestingly, AQP3 protein expression in the collecting duct was increased by about fivefold after AQP2 gene excision. Mild renal damage was seen after 6 wk of polyuria, with collecting duct dilatation, yet normal creatinine clearance and serum chemistries. These results establish the first adult model of nephrogenic diabetes insipidus (NDI) caused by AQP2 deficiency, with daily urine output comparable to body weight, although remarkable preservation of renal function compared with non-inducible NDI models.

  4. A Mouse Ear Model for Bystander Studies Induced by Microbeam Irradiation

    PubMed Central

    Buonanno, M.; Randers-Pehrson, G.; Smilenov, L. B.; Kleiman, N. J.; Young, E.; Ponnayia, B.; Brenner, D. J.

    2015-01-01

    Radiation-induced bystander effects have been observed in vitro and in cell and tissue culture models, however, there are few reported studies showing these effects in vivo. To our knowledge, this is the first reported study on bystander effects induced by microbeam irradiation in an intact living mammal. The mouse ear was used to investigate radiation-induced bystander effects in keratinocytes, utilizing a 3 MeV proton microbeam (LET 13.1 keV/µm) with a range in skin of about 135 µm. Using a custom-designed holder, the ear of an anesthetized C57BL/6J mouse was flattened by gentle suction and placed over the microbeam port to irradiate cells along a 35 µm wide, 6 mm long path. Immunohistochemical analysis of γ-H2AX foci formation in tissue sections revealed, compared to control tissue, proton-induced γ-H2AX foci formation in one of the two epidermal layers of the mouse ear. Strikingly, a higher number of cells than expected showed foci from direct irradiation effects. Although the proton-irradiated line was ~35 µm wide, the average width spanned by γ-H2AX-positive cells exceeded 150 µm. Cells adjacent to or in the epidermal layer opposite the γ-H2AX-positive region did not exhibit foci. These findings validate this mammalian model as a viable system for investigating radiation-induced bystander effects in an intact living organism. PMID:26207682

  5. A mouse model of mitochondrial complex III dysfunction induced by myxothiazol

    SciTech Connect

    Davoudi, Mina; Kallijärvi, Jukka; Marjavaara, Sanna; Kotarsky, Heike; Hansson, Eva; Levéen, Per; Fellman, Vineta

    2014-04-18

    Highlights: • Reversible chemical inhibition of complex III in wild type mouse. • Myxothiazol causes decreased complex III activity in mouse liver. • The model is useful for therapeutic trials to improve mitochondrial function. - Abstract: Myxothiazol is a respiratory chain complex III (CIII) inhibitor that binds to the ubiquinol oxidation site Qo of CIII. It blocks electron transfer from ubiquinol to cytochrome b and thus inhibits CIII activity. It has been utilized as a tool in studies of respiratory chain function in in vitro and cell culture models. We developed a mouse model of biochemically induced and reversible CIII inhibition using myxothiazol. We administered myxothiazol intraperitoneally at a dose of 0.56 mg/kg to C57Bl/J6 mice every 24 h and assessed CIII activity, histology, lipid content, supercomplex formation, and gene expression in the livers of the mice. A reversible CIII activity decrease to 50% of control value occurred at 2 h post-injection. At 74 h only minor histological changes in the liver were found, supercomplex formation was preserved and no significant changes in the expression of genes indicating hepatotoxicity or inflammation were found. Thus, myxothiazol-induced CIII inhibition can be induced in mice for four days in a row without overt hepatotoxicity or lethality. This model could be utilized in further studies of respiratory chain function and pharmacological approaches to mitochondrial hepatopathies.

  6. Thrombus formation induced by laser in a mouse model

    PubMed Central

    PÉREZ, PABLO; ALARCÓN, MARCELO; FUENTES, EDUARDO; PALOMO, IVÁN

    2014-01-01

    Animal models are used for the development of techniques and/or models that aid the study of thrombosis pathophysiology. The aim of the present study was to modify the technique of in vivo thrombosis induction to make it more accessible. BALB/c mice were intraperitoneally anesthetized with 0.4 ml 2,2,2-tribromoethanol (266.6 mg/kg) and xylazine (13.3 mg/kg), whilst maintaining stable blood pressure and temperature. Through abdominal surgery, the mesentery was identified and isolated for the visualization of the arteries. A simple epifluorescence magnifier was used to detect the presence of thrombi. The results obtained indicate that using rose bengal at concentrations of 25 and 50 mg/kg and a laser power of 5 mW, thrombus formation occurred. In addition, formation of the thrombus occurred ~30 min following induction and the thrombus had a total area of 4,878.3 μm2, which caused total occlusion of the mesenteric artery. For visualization, platelets were labeled with calcein acetyloxymethyl ester for 1 h, which resulted in improved observation of thrombus formation in real time. Therefore, this technique may be used to perform in vivo studies simply and at low cost, and is suitable for use in a variety of studies of thrombosis. PMID:24944598

  7. Thrombus formation induced by laser in a mouse model.

    PubMed

    Pérez, Pablo; Alarcón, Marcelo; Fuentes, Eduardo; Palomo, Iván

    2014-07-01

    Animal models are used for the development of techniques and/or models that aid the study of thrombosis pathophysiology. The aim of the present study was to modify the technique of in vivo thrombosis induction to make it more accessible. BALB/c mice were intraperitoneally anesthetized with 0.4 ml 2,2,2-tribromoethanol (266.6 mg/kg) and xylazine (13.3 mg/kg), whilst maintaining stable blood pressure and temperature. Through abdominal surgery, the mesentery was identified and isolated for the visualization of the arteries. A simple epifluorescence magnifier was used to detect the presence of thrombi. The results obtained indicate that using rose bengal at concentrations of 25 and 50 mg/kg and a laser power of 5 mW, thrombus formation occurred. In addition, formation of the thrombus occurred ~30 min following induction and the thrombus had a total area of 4,878.3 μm(2), which caused total occlusion of the mesenteric artery. For visualization, platelets were labeled with calcein acetyloxymethyl ester for 1 h, which resulted in improved observation of thrombus formation in real time. Therefore, this technique may be used to perform in vivo studies simply and at low cost, and is suitable for use in a variety of studies of thrombosis.

  8. Lessons learned using different mouse models during space radiation-induced lung tumorigenesis experiments

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Zhang, Xiangming; Wang, Ping; Wang, Xiang; Farris, Alton B.; Wang, Ya

    2016-06-01

    Unlike terrestrial ionizing radiation, space radiation, especially galactic cosmic rays (GCR), contains high energy charged (HZE) particles with high linear energy transfer (LET). Due to a lack of epidemiologic data for high-LET radiation exposure, it is highly uncertain how high the carcinogenesis risk is for astronauts following exposure to space radiation during space missions. Therefore, using mouse models is necessary to evaluate the risk of space radiation-induced tumorigenesis; however, which mouse model is better for these studies remains uncertain. Since lung tumorigenesis is the leading cause of cancer death among both men and women, and low-LET radiation exposure increases human lung carcinogenesis, evaluating space radiation-induced lung tumorigenesis is critical to enable safe Mars missions. Here, by comparing lung tumorigenesis obtained from different mouse strains, as well as miR-21 in lung tissue/tumors and serum, we believe that wild type mice with a low spontaneous tumorigenesis background are ideal for evaluating the risk of space radiation-induced lung tumorigenesis, and circulating miR-21 from such mice model might be used as a biomarker for predicting the risk.

  9. Lessons learned using different mouse models during space radiation-induced lung tumorigenesis experiments.

    PubMed

    Wang, Jian; Zhang, Xiangming; Wang, Ping; Wang, Xiang; Farris, Alton B; Wang, Ya

    2016-06-01

    Unlike terrestrial ionizing radiation, space radiation, especially galactic cosmic rays (GCR), contains high energy charged (HZE) particles with high linear energy transfer (LET). Due to a lack of epidemiologic data for high-LET radiation exposure, it is highly uncertain how high the carcinogenesis risk is for astronauts following exposure to space radiation during space missions. Therefore, using mouse models is necessary to evaluate the risk of space radiation-induced tumorigenesis; however, which mouse model is better for these studies remains uncertain. Since lung tumorigenesis is the leading cause of cancer death among both men and women, and low-LET radiation exposure increases human lung carcinogenesis, evaluating space radiation-induced lung tumorigenesis is critical to enable safe Mars missions. Here, by comparing lung tumorigenesis obtained from different mouse strains, as well as miR-21 in lung tissue/tumors and serum, we believe that wild type mice with a low spontaneous tumorigenesis background are ideal for evaluating the risk of space radiation-induced lung tumorigenesis, and circulating miR-21 from such mice model might be used as a biomarker for predicting the risk.

  10. Immunotherapy for choroidal neovascularization in a laser-induced mouse model simulating exudative (wet) macular degeneration

    NASA Astrophysics Data System (ADS)

    Bora, Puran S.; Hu, Zhiwei; Tezel, Tongalp H.; Sohn, Jeong-Hyeon; Kang, Shin Goo; Cruz, Jose M. C.; Bora, Nalini S.; Garen, Alan; Kaplan, Henry J.

    2003-03-01

    Age-related macular degeneration (AMD) is the leading cause of blindness after age 55 in the industrialized world. Severe loss of central vision frequently occurs with the exudative (wet) form of AMD, as a result of the formation of a pathological choroidal neovasculature (CNV) that damages the macular region of the retina. We tested the effect of an immunotherapy procedure, which had been shown to destroy the pathological neovasculature in solid tumors, on the formation of laser-induced CNV in a mouse model simulating exudative AMD in humans. The procedure involves administering an Icon molecule that binds with high affinity and specificity to tissue factor (TF), resulting in the activation of a potent cytolytic immune response against cells expressing TF. The Icon binds selectively to TF on the vascular endothelium of a CNV in the mouse and pig models and also on the CNV of patients with exudative AMD. Here we show that the Icon dramatically reduces the frequency of CNV formation in the mouse model. After laser treatment to induce CNV formation, the mice were injected either with an adenoviral vector encoding the Icon, resulting in synthesis of the Icon by vector-infected mouse cells, or with the Icon protein. The route of injection was i.v. or intraocular. The efficacy of the Icon in preventing formation of laser-induced CNV depends on binding selectively to the CNV. Because the Icon binds selectively to the CNV in exudative AMD as well as to laser-induced CNV, the Icon might also be efficacious for treating patients with exudative AMD.

  11. A transgenic mouse model of neuroepithelial cell specific inducible overexpression of dopamine D1-receptor

    PubMed Central

    Fujimoto, Kumiko; Araki, Kiyomi; McCarthy, Deirdre M.; Sims, John R.; Ren, Jia-Qian; Zhang, Xuan; Bhide, Pradeep G.

    2010-01-01

    Dopamine and its receptors appear in the brain during early embryonic period suggesting a role for dopamine in brain development. In fact, dopamine receptor imbalance resulting from impaired physiological balance between D1- and D2-receptor activities can perturb brain development and lead to persisting changes in brain structure and function. Dopamine receptor imbalance can be produced experimentally using pharmacological or genetic methods. Pharmacological methods tend to activate or antagonize the receptors in all cell types. In the traditional gene knockout models the receptor imbalance occurs during development and also at maturity. Therefore, assaying the effects of dopamine imbalance on specific cell types (e.g. precursor versus postmitotic cells) or at specific periods of brain development (e.g. pre- or postnatal periods) is not feasible in these models. We describe a novel transgenic mouse model based on the tetracycline dependent inducible gene expression system in which dopamine D1-receptor transgene expression is induced selectively in neuroepithelial cells of the embryonic brain at experimenter-chosen intervals of brain development. In this model, doxycycline-induced expression of the transgene causes significant overexpression of the D1-receptor and significant reductions in the incorporation of the S-phase marker bromodeoxyuridine into neuroepithelial cells of the basal and dorsal telencephalon indicating marked effects on telencephalic neurogenesis. The D1-receptor overexpression occurs at higher levels in the medial ganglionic eminence than the lateral ganglionic eminence or cerebral wall. Moreover, although the transgene is induced selectively in the neuroepithelium, D1-receptor protein overexpression appears to persist in postmitotic cells. The mouse model can be modified for neuroepithelial cell-specific inducible expression of other transgenes or induction of the D1-receptor transgene in other cells in specific brain regions by crossbreeding

  12. Ligustrazine attenuates inflammation and the associated chemokines and receptors in ovalbumine-induced mouse asthma model.

    PubMed

    Wei, Ying; Liu, Jiaqi; Zhang, Hongying; Du, Xin; Luo, Qingli; Sun, Jing; Liu, Feng; Li, Mihui; Xu, Fei; Wei, Kai; Dong, Jingcheng

    2016-09-01

    Ligustrazine which is isolated from Chinese herb ligusticum chuanxiong hort, has been widely used in traditional Chinese medicine (TCM) for asthma treatment. In this study, we aim to observe the effect of ligustrazine on inflammation and the associated chemokines and receptors in ovalbumin (OVA)-induced mouse asthma model. Our data demonstrates that ligustrazine suppresses airway hyperresponsiveness to methacholine and lung inflammation in OVA-induced mouse asthma model. Ligustrazine also induces inhibition of inflammatory cells including neutrophils, lymphocytes and eosinophils. In addition, ligustrazine significantly reduces IL-4, IL-5, IL-17A, CCL3, CCL19 and CCL21 level in BALF of asthma mice. Furthermore, ligustrazine induces down-regulation of CCL19 receptor CCR7, STAT3 and p38 MAPK protein expression. Collectively, these results suggest that ligustrazine is effective in attenuation of allergic airway inflammatory changes and related chemokines and receptors in OVA-induced asthma model, and this action might be associated with inhibition of STAT3 and p38 MAPK pathway, which indicates that ligustrazine may be used as a potential therapeutic method to treat asthma.

  13. Fucoidan Extracted from Fucus Evanescens Prevents Endotoxin-Induced Damage in a Mouse Model of Endotoxemia

    PubMed Central

    Kuznetsova, Tatyana A.; Besednova, Natalya N.; Somova, Larisa M.; Plekhova, Natalya G.

    2014-01-01

    An important problem of treating patients with endotoxemia is to find drugs to reduce the negative effects of endotoxin on the organism. We tested fucoidan (sulfated polysaccharide) from the brown alga Fucus evanescens as a potential drug in a mouse model of endotoxemia inducted by lipopolysaccharide (LPS). The survival time of mice injected with LPS increased under fucoidan treatment compared with the group of mice injected with LPS only. The preventive administration of fucoidan to mice with endotoxemia resulted in inhibition of increased levels of proinflammatory cytokines (TNFα and IL-6), as well as decreasing of the processes of hypercoagulability. The parenteral or per os administration of fucoidan resulted in decreasing the degree of microcirculatory disorders and secondary dystrophic-destructive changes in parenchymal organs of mice with endotoxemia. Taken together, these results demonstrate that fucoidan prevents endotoxin-induced damage in a mouse model of endotoxemia and increases the mice’s resistance to LPS. PMID:24492521

  14. Fucoidan extracted from Fucus evanescens prevents endotoxin-induced damage in a mouse model of endotoxemia.

    PubMed

    Kuznetsova, Tatyana A; Besednova, Natalya N; Somova, Larisa M; Plekhova, Natalya G

    2014-01-31

    An important problem of treating patients with endotoxemia is to find drugs to reduce the negative effects of endotoxin on the organism. We tested fucoidan (sulfated polysaccharide) from the brown alga Fucus evanescens as a potential drug in a mouse model of endotoxemia inducted by lipopolysaccharide (LPS). The survival time of mice injected with LPS increased under fucoidan treatment compared with the group of mice injected with LPS only. The preventive administration of fucoidan to mice with endotoxemia resulted in inhibition of increased levels of proinflammatory cytokines (TNFα and IL-6), as well as decreasing of the processes of hypercoagulability. The parenteral or per os administration of fucoidan resulted in decreasing the degree of microcirculatory disorders and secondary dystrophic-destructive changes in parenchymal organs of mice with endotoxemia. Taken together, these results demonstrate that fucoidan prevents endotoxin-induced damage in a mouse model of endotoxemia and increases the mice's resistance to LPS.

  15. The Gut Microbiome Is Altered in a Letrozole-Induced Mouse Model of Polycystic Ovary Syndrome

    PubMed Central

    Kelley, Scott T.; Skarra, Danalea V.; Rivera, Alissa J.; Thackray, Varykina G.

    2016-01-01

    Women with polycystic ovary syndrome (PCOS) have reproductive and metabolic abnormalities that result in an increased risk of infertility, diabetes and cardiovascular disease. The large intestine contains a complex community of microorganisms (the gut microbiome) that is dysregulated in humans with obesity and type 2 diabetes. Using a letrozole-induced PCOS mouse model, we demonstrated significant diet-independent changes in the gut microbial community, suggesting that gut microbiome dysbiosis may also occur in PCOS women. Letrozole treatment was associated with a time-dependent shift in the gut microbiome and a substantial reduction in overall species and phylogenetic richness. Letrozole treatment also correlated with significant changes in the abundance of specific Bacteroidetes and Firmicutes previously implicated in other mouse models of metabolic disease in a time-dependent manner. Our results suggest that the hyperandrogenemia observed in PCOS may significantly alter the gut microbiome independently of diet. PMID:26731268

  16. The Gut Microbiome Is Altered in a Letrozole-Induced Mouse Model of Polycystic Ovary Syndrome.

    PubMed

    Kelley, Scott T; Skarra, Danalea V; Rivera, Alissa J; Thackray, Varykina G

    2016-01-01

    Women with polycystic ovary syndrome (PCOS) have reproductive and metabolic abnormalities that result in an increased risk of infertility, diabetes and cardiovascular disease. The large intestine contains a complex community of microorganisms (the gut microbiome) that is dysregulated in humans with obesity and type 2 diabetes. Using a letrozole-induced PCOS mouse model, we demonstrated significant diet-independent changes in the gut microbial community, suggesting that gut microbiome dysbiosis may also occur in PCOS women. Letrozole treatment was associated with a time-dependent shift in the gut microbiome and a substantial reduction in overall species and phylogenetic richness. Letrozole treatment also correlated with significant changes in the abundance of specific Bacteroidetes and Firmicutes previously implicated in other mouse models of metabolic disease in a time-dependent manner. Our results suggest that the hyperandrogenemia observed in PCOS may significantly alter the gut microbiome independently of diet.

  17. A clinically authentic mouse model of enterovirus 71 (EV-A71)-induced neurogenic pulmonary oedema

    PubMed Central

    Victorio, Carla Bianca Luena; Xu, Yishi; Ng, Qimei; Chua, Beng Hooi; Alonso, Sylvie; Chow, Vincent T. K.; Chua, Kaw Bing

    2016-01-01

    Enterovirus 71 (EV-A71) is a neurotropic virus that sporadically causes fatal neurologic illness among infected children. Animal models of EV-A71 infection exist, but they do not recapitulate in animals the spectrum of disease and pathology observed in fatal human cases. Specifically, neurogenic pulmonary oedema (NPE)—the main cause of EV-A71 infection-related mortality—is not observed in any of these models. This limits their utility in understanding viral pathogenesis of neurologic infections. We report the development of a mouse model of EV-A71 infection displaying NPE in severely affected animals. We inoculated one-week-old BALB/c mice with an adapted EV-A71 strain and identified clinical signs consistent with observations in human cases and other animal models. We also observed respiratory distress in some mice. At necropsy, we found their lungs to be heavier and incompletely collapsed compared to other mice. Serum levels of catecholamines and histopathology of lung and brain tissues of these mice strongly indicated onset of NPE. The localization of virally-induced brain lesions also suggested a potential pathogenic mechanism for EV-A71-induced NPE. This novel mouse model of virally-induced NPE represents a valuable resource for studying viral mechanisms of neuro-pathogenesis and pre-clinical testing of potential therapeutics and prophylactics against EV-A71-related neurologic complications. PMID:27357918

  18. Transposon mouse models to elucidate the genetic mechanisms of hepatitis B viral induced hepatocellular carcinoma

    PubMed Central

    Chiu, Amy P; Tschida, Barbara R; Lo, Lilian H; Moriarity, Branden S; Rowlands, Dewi K; Largaespada, David A; Keng, Vincent W

    2015-01-01

    The major type of human liver cancer is hepatocellular carcinoma (HCC), and there are currently many risk factors that contribute to this deadly disease. The majority of HCC occurrences are associated with chronic hepatitis viral infection, and hepatitis B viral (HBV) infection is currently a major health problem in Eastern Asia. Elucidating the genetic mechanisms associated with HBV-induced HCC has been difficult due to the heterogeneity and genetic complexity associated with this disease. A repertoire of animal models has been broadly used to study the pathophysiology and to develop potential treatment regimens for HBV-associated HCC. The use of these animal models has provided valuable genetic information and has been an important contributor to uncovering the factors involved in liver malignant transformation, invasion and metastasis. Recently, transposon-based mouse models are becoming more widely used in liver cancer research to interrogate the genome by forward genetics and also used to validate genes rapidly in a reverse genetic manner. Importantly, these transposon-based rapid reverse genetic mouse models could become crucial in testing potential therapeutic agents before proceeding to clinical trials in human. Therefore, this review will cover the use of transposon-based mouse models to address the problems of liver cancer, especially HBV-associated HCC occurrences in Asia. PMID:26576100

  19. A mouse model for MERS coronavirus-induced acute respiratory distress syndrome.

    PubMed

    Cockrell, Adam S; Yount, Boyd L; Scobey, Trevor; Jensen, Kara; Douglas, Madeline; Beall, Anne; Tang, Xian-Chun; Marasco, Wayne A; Heise, Mark T; Baric, Ralph S

    2016-11-28

    Middle East respiratory syndrome coronavirus (MERS-CoV) is a novel virus that emerged in 2012, causing acute respiratory distress syndrome (ARDS), severe pneumonia-like symptoms and multi-organ failure, with a case fatality rate of ∼36%. Limited clinical studies indicate that humans infected with MERS-CoV exhibit pathology consistent with the late stages of ARDS, which is reminiscent of the disease observed in patients infected with severe acute respiratory syndrome coronavirus. Models of MERS-CoV-induced severe respiratory disease have been difficult to achieve, and small-animal models traditionally used to investigate viral pathogenesis (mouse, hamster, guinea-pig and ferret) are naturally resistant to MERS-CoV. Therefore, we used CRISPR-Cas9 gene editing to modify the mouse genome to encode two amino acids (positions 288 and 330) that match the human sequence in the dipeptidyl peptidase 4 receptor, making mice susceptible to MERS-CoV infection and replication. Serial MERS-CoV passage in these engineered mice was then used to generate a mouse-adapted virus that replicated efficiently within the lungs and evoked symptoms indicative of severe ARDS, including decreased survival, extreme weight loss, decreased pulmonary function, pulmonary haemorrhage and pathological signs indicative of end-stage lung disease. Importantly, therapeutic countermeasures comprising MERS-CoV neutralizing antibody treatment or a MERS-CoV spike protein vaccine protected the engineered mice against MERS-CoV-induced ARDS.

  20. A Mouse Ear Model for Bystander Studies Induced by Microbeam Irradiation.

    PubMed

    Buonanno, M; Randers-Pehrson, G; Smilenov, L B; Kleiman, N J; Young, E; Ponnayia, B; Brenner, D J

    2015-08-01

    Radiation-induced bystander effects have been observed in vitro and in cell and tissue culture models, however, there are few reported studies showing these effects in vivo. To our knowledge, this is the first reported study on bystander effects induced by microbeam irradiation in an intact living mammal. The mouse ear was used to investigate radiation-induced bystander effects in keratinocytes, utilizing a 3 MeV proton microbeam (LET 13.1 keV/μm) with a range in skin of about 135 μm. Using a custom-designed holder, the ear of an anesthetized C57BL/6J mouse was flattened by gentle suction and placed over the microbeam port to irradiate cells along a 35 μm wide, 6 mm long path. Immunohistochemical analysis of γ-H2AX foci formation in tissue sections revealed, compared to control tissue, proton-induced γ-H2AX foci formation in one of the two epidermal layers of the mouse ear. Strikingly, a higher number of cells than expected showed foci from direct irradiation effects. Although the proton-irradiated line was ~35 μm wide, the average width spanned by γ-H2AX-positive cells exceeded 150 μm. Cells adjacent to or in the epidermal layer opposite the γ-H2AX-positive region did not exhibit foci. These findings validate this mammalian model as a viable system for investigating radiation-induced bystander effects in an intact living organism.

  1. High-resolution optical coherence tomography in mouse models of genetic and induced retinal degeneration

    NASA Astrophysics Data System (ADS)

    Cimalla, Peter; Carido, Madalena; Pran Babu, Sheik; Santos-Ferreira, Tiago; Gaertner, Maria; Kordowich, Simon; Wittig, Dierk; Ader, Marius; Karl, Mike; Koch, Edmund

    2013-06-01

    For the study of disease mechanisms and the development of novel therapeutic strategies for retinal pathologies in human, rodent models play an important role. Nowadays, optical coherence tomography (OCT) allows three-dimensional investigation of retinal events over time. However, a detailed analysis of how different retinal degenerations are reflected in OCT images is still lacking in the biomedical field. Therefore, we use OCT to visualize retinal degeneration in specific mouse models in order to study disease progression in vivo and improve image interpretation of this noninvasive modality. We use a self-developed spectral domain OCT system for simultaneous dual-band imaging in the 0.8 μm- and 1.3 μm-wavelength range - the two most common spectral bands in biomedical OCT. A fiber-coupled ophthalmic scanning unit allows flexible imaging of the eye with a high axial resolution of 3 - 4 μm in tissue. Four different mouse models consisting of one genetic (rhodopsin-deficient and three induced retinal degenerations (sodium iodate-induced damage, light-induced photoreceptor damage and Kainate neurotoxin damage) were investigated. OCT imaging was performed daily or weekly, depending on the specific degeneration model, over a time period of up to 9 weeks. Individual retinal layers that were affected by the specific degeneration could successfully be identified and monitored over the observation time period. Therefore, longitudinal OCT studies deliver reliable information about the retinal microstructure and the time course of retinal degeneration processes in vivo.

  2. Generation of a novel mouse model for the inducible depletion of macrophages in vivo.

    PubMed

    Gheryani, Nabeia; Coffelt, Seth B; Gartland, Alison; Rumney, Robin M H; Kiss-Toth, Endre; Lewis, Claire E; Tozer, Gillian M; Greaves, David R; Dear, T Neil; Miller, Gaynor

    2013-01-01

    Macrophages play an essential role in tissue homeostasis, innate immunity, inflammation, and wound repair. Macrophages are also essential during development, severely limiting the use of mouse models in which these cells have been constitutively deleted. Consequently, we have developed a transgenic model of inducible macrophage depletion in which macrophage-specific induction of the cytotoxic diphtheria toxin A chain (DTA) is achieved by administration of doxycycline. Induction of the DTA protein in transgenic animals resulted in a significant 50% reduction in CD68+ macrophages of the liver, spleen, and bone over a period of 6 weeks. Pertinently, the macrophages remaining after doxycycline treatment were substantially smaller and are functionally impaired as shown by reduced inflammatory cytokine production in response to lipopolysaccharide. This inducible model of macrophage depletion can now be utilized to determine the role of macrophages in both development and animal models of chronic inflammatory diseases.

  3. Orofacial neuropathic pain mouse model induced by Trigeminal Inflammatory Compression (TIC) of the infraorbital nerve

    PubMed Central

    2012-01-01

    Background Trigeminal neuropathic pain attacks can be excruciating for patients, even after being lightly touched. Although there are rodent trigeminal nerve research models to study orofacial pain, few models have been applied to studies in mice. A mouse trigeminal inflammatory compression (TIC) model is introduced here which successfully and reliably promotes vibrissal whisker pad hypersensitivity. Results The chronic orofacial neuropathic pain model is induced after surgical placement of chromic gut suture in the infraorbital nerve fissure in the maxillary bone. Slight compression and chemical effects of the chromic gut suture on the portion of the infraorbital nerve contacted cause mild nerve trauma. Nerve edema is observed in the contacting infraorbital nerve bundle as well as macrophage infiltration in the trigeminal ganglia. Centrally in the spinal trigeminal nucleus, increased immunoreactivity for an activated microglial marker is evident (OX42, postoperative day 70). Mechanical thresholds of the affected whisker pad are significantly decreased on day 3 after chromic gut suture placement, persisting at least 10 weeks. The mechanical allodynia is reversed by suppression of microglial activation. Cold allodynia was detected at 4 weeks. Conclusions A simple, effective, and reproducible chronic mouse model mimicking clinical orofacial neuropathic pain (Type 2) is induced by placing chromic gut suture between the infraorbital nerve and the maxillary bone. The method produces mild inflammatory compression with significant continuous mechanical allodynia persisting at least 10 weeks and cold allodynia measureable at 4 weeks. PMID:23270529

  4. Sulfur mustard induces an endoplasmic reticulum stress response in the mouse ear vesicant model

    PubMed Central

    Chang, Yoke-Chen; Wang, James D.; Svoboda, Kathy K.; Casillas, Robert P.; Laskin, Jeffrey D.; Gordon, Marion K.; Gerecke, Donald R.

    2013-01-01

    The endoplasmic reticulum (ER) stress response is a cell survival pathway upregulated when cells are under severe stress. Severely damaged mouse ear skin exposed to the vesicant, sulfur mustard (bis-2-chloroethyl sulfide, SM), resulted in increased expression of ER chaperone proteins that accompany misfolded and incorrectly made proteins targeted for degradation. Time course studies with SM using the mouse ear vesicant model (MEVM) showed progressive histopathologic changes including edema, separation of the epidermis from the dermis, persistent inflammation, upregulation of laminin γ2 (one of the chains of laminin-332, a heterotrimeric skin glycoprotein required for wound repair), and delayed wound healing from 24 h to 168 h post exposure. This was associated with time related increased expression of the cell survival ER stress marker, GRP78/BiP, and the ER stress apoptosis marker, GADD153/CHOP, suggesting simultaneous activation of both cell survival and non-mitochondrial apoptosis pathways. Dual immunofluorescence labeling of a keratinocyte migration promoting protein, laminin γ2 and GRP78/BIP, showed colocalization of the two molecules 72 h post exposure indicating that the laminin γ2 was misfolded after SM exposure and trapped within the ER. Taken together, these data show that ER stress is induced in mouse skin within 24 h of vesicant exposure in a defensive response to promote cell survival; however, it appears that this response is rapidly overwhelmed by the apoptotic pathway as a consequence of severe SM-induced injury. PMID:23357548

  5. Sulfur mustard induces an endoplasmic reticulum stress response in the mouse ear vesicant model

    SciTech Connect

    Chang, Yoke-Chen; Wang, James D.; Svoboda, Kathy K.; Casillas, Robert P.; Laskin, Jeffrey D.; Gordon, Marion K.; Gerecke, Donald R.

    2013-04-15

    The endoplasmic reticulum (ER) stress response is a cell survival pathway upregulated when cells are under severe stress. Severely damaged mouse ear skin exposed to the vesicant, sulfur mustard (bis-2-chloroethyl sulfide, SM), resulted in increased expression of ER chaperone proteins that accompany misfolded and incorrectly made proteins targeted for degradation. Time course studies with SM using the mouse ear vesicant model (MEVM) showed progressive histopathologic changes including edema, separation of the epidermis from the dermis, persistent inflammation, upregulation of laminin γ2 (one of the chains of laminin-332, a heterotrimeric skin glycoprotein required for wound repair), and delayed wound healing from 24 h to 168 h post exposure. This was associated with time related increased expression of the cell survival ER stress marker, GRP78/BiP, and the ER stress apoptosis marker, GADD153/CHOP, suggesting simultaneous activation of both cell survival and non-mitochondrial apoptosis pathways. Dual immunofluorescence labeling of a keratinocyte migration promoting protein, laminin γ2 and GRP78/BIP, showed colocalization of the two molecules 72 h post exposure indicating that the laminin γ2 was misfolded after SM exposure and trapped within the ER. Taken together, these data show that ER stress is induced in mouse skin within 24 h of vesicant exposure in a defensive response to promote cell survival; however, it appears that this response is rapidly overwhelmed by the apoptotic pathway as a consequence of severe SM-induced injury. - Highlights: ► We demonstrated ER stress response in the mouse ear vesicant model. ► We described the asymmetrical nature of wound repair in the MEVM. ► We identified the distribution of various ER stress markers in the MEVM.

  6. Mechanism Underlying Linezolid-induced Thrombocytopenia in a Chronic Kidney Failure Mouse Model

    PubMed Central

    Nishijo, Nao; Tsuji, Yasuhiro; Matsunaga, Kazuhisa; Kutsukake, Masahiko; Okazaki, Fumiyasu; Fukumori, Shiro; Kasai, Hidefumi; Hiraki, Yoichi; Sakamaki, Ippei; Yamamoto, Yoshihiro; Karube, Yoshiharu; To, Hideto

    2017-01-01

    Objective: To investigate the relationship between renal function and linezolid (LZD)-induced thrombocytopenia and elucidate the underlying mechanism using a chronic renal disease (CRD) mouse model. Materials and Methods: CRD was induced in 5-week-old male Institute of Cancer Research (ICR) mice by 5/6 nephrectomy. After this procedure, LZD (25 and 100 mg/kg) was administered intraperitoneally once every day for 28 days. Platelet counts, white blood cell (WBC) counts, and hematocrit (HCT) levels were measured every 7 days. 2-14C-thymidine (0.185 MBq) was administrated intravenously to LZD-administered mice to evaluate the thymidine uptake ability of bone marrow. Results: Platelet counts were significantly lower in the LZD-administered CRD group than in the LZD-nonadministered groups at 14, 21, and 28 days (P < 0.05); however, these changes were not observed in LZD-administered mice with normal renal function, regardless of the duration of LZD administration. No significant changes were observed in WBC counts or HCT levels in any LZD-administered CRD mouse. Moreover, radioactive levels in bone marrow were not significantly different in each group. Conclusions: These results indicate that LZD-induced decreases in platelet counts were enhanced by renal impairment in vivo, suggesting that LZD-induced thrombocytopenia is not caused by nonimmune-mediated bone marrow suppression. PMID:28405130

  7. Mechanisms of particle-induced pulmonary inflammation in a mouse model: exposure to wood dust.

    PubMed

    Määttä, Juha; Lehto, Maili; Leino, Marina; Tillander, Sari; Haapakoski, Rita; Majuri, Marja-Leena; Wolff, Henrik; Rautio, Sari; Welling, Irma; Husgafvel-Pursiainen, Kirsti; Savolainen, Kai; Alenius, Harri

    2006-09-01

    Repeated airway exposure to wood dust has long been known to cause adverse respiratory effects such as asthma and chronic bronchitis and impairment of lung function. However, the mechanisms underlying the inflammatory responses of the airways after wood dust exposure are poorly known. We used a mouse model to elucidate the mechanisms of particle-induced inflammatory responses to fine wood dust particles. BALB/c mice were exposed to intranasally administered fine (more than 99% of the particles had a particle size of < or = 5 microm, with virtually identical size distribution) birch or oak dusts twice a week for 3 weeks. PBS, LPS, and titanium dioxide were used as controls. Intranasal instillation of birch or oak dusts elicited influx of inflammatory cells to the lungs in mice. Enhancement of lymphocytes and neutrophils was seen after oak dust exposure, whereas eosinophil infiltration was higher after birch dust exposure. Infiltration of inflammatory cells was associated with an increase in the mRNA levels of several cytokines, chemokines, and chemokine receptors in lung tissue. Oak dust appeared to be a more potent inducer of these inflammatory mediators than birch dust. The results from our in vivo mouse model show that repeated airway exposure to wood dust can elicit lung inflammation, which is accompanied by induction of several proinflammatory cytokines and chemokines. Oak and birch dusts exhibited quantitative and qualitative differences in the elicitation of pulmonary inflammation, suggesting that the inflammatory responses induced by the wood species may rise via different cellular mechanisms.

  8. Mouse models of osteoarthritis: surgical model of posttraumatic osteoarthritis induced by destabilization of the medial meniscus.

    PubMed

    Culley, Kirsty L; Dragomir, Cecilia L; Chang, Jun; Wondimu, Elisabeth B; Coico, Jonathan; Plumb, Darren A; Otero, Miguel; Goldring, Mary B

    2015-01-01

    The surgical model of destabilization of the medial meniscus (DMM) has become a gold standard for studying the onset and progression of posttraumatic osteoarthritis (OA). The DMM model mimics clinical meniscal injury, a known predisposing factor for the development of human OA, and permits the study of structural and biological changes over the course of the disease. In addition, when applied to genetically modified or engineered mouse models, this surgical procedure permits dissection of the relative contribution of a given gene to OA initiation and/or progression. This chapter describes the requirements for the surgical induction of OA in mouse models, and provides guidelines and tools for the subsequent histological, immunohistochemical, and molecular analyses. Methods for the assessment of the contributions of selected genes in genetically modified strains are also provided.

  9. An inducible mouse model of late onset Tay-Sachs disease.

    PubMed

    Jeyakumar, Mylvaganam; Smith, David; Eliott-Smith, Elena; Cortina-Borja, Mario; Reinkensmeier, Gabriele; Butters, Terry D; Lemm, Thorsten; Sandhoff, Konrad; Perry, V Hugh; Dwek, Raymond A; Platt, Frances M

    2002-08-01

    Mouse models of the G(M2) gangliosidoses, Tay-Sachs and Sandhoff disease, are null for the hexosaminidase alpha and beta subunits respectively. The Sandhoff (Hexb-/-) mouse has severe neurological disease and mimics the human infantile onset variant. However, the Tay-Sachs (Hexa-/-) mouse model lacks an overt phenotype as mice can partially bypass the blocked catabolic pathway and escape disease. We have investigated whether a subset of Tay-Sachs mice develop late onset disease. We have found that approximately 65% of the mice develop one or more clinical signs of the disease within their natural life span (n = 52, P < 0.0001). However, 100% of female mice with repeat breeding histories developed late onset disease at an earlier age (n = 21, P < 0.0001) and displayed all clinical features. Repeat breeding of a large cohort of female Tay-Sachs mice confirmed that pregnancy induces late onset Tay-Sachs disease. Onset of symptoms correlated with reduced up-regulation of hexosaminidase B, a component of the bypass pathway.

  10. A mouse dry eye model induced by topical administration of benzalkonium chloride

    PubMed Central

    Lin, Zhirong; Liu, Xiaochen; Zhou, Tong; Wang, Yihui; Bai, Li; He, Hui

    2011-01-01

    Purpose To develop a dry eye model of mouse induced by topical administration of benzalkonium chloride (BAC) and investigate the possible mechanisms. Methods BAC at concentration of 0.2% was applied to the mouse ocular surface for 7 days. Phenol red thread tear test, tear break-up time (BUT) test, corneal inflammatory index scoring, fluorescein and rose bengal test were performed to evaluate the toxic effects of BAC on the ocular surface. Global specimens were collected on day (D) 7 and labeled with a series of antibodies including cytokeratin 10 (K10) and mucin 5AC (MUC5AC). Apoptosis of ocular surface epithelium was evaluated by in situ terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Histologic analysis and transmission electron microscopy (TEM) were performed on D7. Results BAC at a concentration of 0.2% successfully induced a dry eye condition with decreased tear volume and BUTs, increased corneal fluorescein and rose bengal scores. The Inflammatory index was increased in accompanyment with higher tumor necrosis factor-α (TNF-α) expression and more inflammatory infiltration in the cornea. Immunolabeling revealed positive K10 expression in BAC-treated corneal epithelium and fewer MUC5AC-positive cells in the BAC-treated conjunctival fornix. TUNEL assay showed more apoptotic cells in the corneal basal epithelium. TEM showed that the size and intervals of the microvillis were both reduced in the corneal epithelium. Conclusions Topical administration of 0.2% BAC in mouse induces changes resembling that of dry eye syndrome in humans, and thus, represents a novel model of dry eye. PMID:21283525

  11. Functional neuroimaging of amphetamine-induced striatal neurotoxicity in the pleiotrophin knockout mouse model.

    PubMed

    Soto-Montenegro, María Luisa; Vicente-Rodríguez, Marta; Pérez-García, Carmen; Gramage, Esther; Desco, Manuel; Herradón, Gonzalo

    2015-03-30

    Amphetamine-induced neurotoxic effects have traditionally been studied using immunohistochemistry and other post-mortem techniques, which have proven invaluable for the definition of amphetamine-induced dopaminergic damage in the nigrostriatal pathway. However, these approaches are limited in that they require large numbers of animals and do not provide the temporal data that can be collected in longitudinal studies using functional neuroimaging techniques. Unfortunately, functional imaging studies in rodent models of drug-induced neurotoxicity are lacking. The aim of this study was to evaluate in vivo the changes in brain glucose metabolism caused by amphetamine in the pleiotrophin knockout mouse (PTN-/-), a genetic model with increased vulnerability to amphetamine-induced neurotoxic effects. We showed that administration of amphetamine causes a significantly greater loss of striatal tyrosine hydroxylase content in PTN-/- mice than in wild-type (WT) mice. In addition, [(18)F]-FDG-PET shows that amphetamine produces a significant decrease in glucose metabolism in the striatum and prefrontal cortex in the PTN-/- mice, compared to WT mice. These findings suggest that [(18)F]-FDG uptake measured by PET is useful for detecting amphetamine-induced changes in glucose metabolism in vivo in specific brain areas, including the striatum, a key feature of amphetamine-induced neurotoxicity. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. A mouse model for pathogen-induced chronic inflammation at local and systemic sites.

    PubMed

    Papadopoulos, George; Kramer, Carolyn D; Slocum, Connie S; Weinberg, Ellen O; Hua, Ning; Gudino, Cynthia V; Hamilton, James A; Genco, Caroline A

    2014-08-08

    Chronic inflammation is a major driver of pathological tissue damage and a unifying characteristic of many chronic diseases in humans including neoplastic, autoimmune, and chronic inflammatory diseases. Emerging evidence implicates pathogen-induced chronic inflammation in the development and progression of chronic diseases with a wide variety of clinical manifestations. Due to the complex and multifactorial etiology of chronic disease, designing experiments for proof of causality and the establishment of mechanistic links is nearly impossible in humans. An advantage of using animal models is that both genetic and environmental factors that may influence the course of a particular disease can be controlled. Thus, designing relevant animal models of infection represents a key step in identifying host and pathogen specific mechanisms that contribute to chronic inflammation. Here we describe a mouse model of pathogen-induced chronic inflammation at local and systemic sites following infection with the oral pathogen Porphyromonas gingivalis, a bacterium closely associated with human periodontal disease. Oral infection of specific-pathogen free mice induces a local inflammatory response resulting in destruction of tooth supporting alveolar bone, a hallmark of periodontal disease. In an established mouse model of atherosclerosis, infection with P. gingivalis accelerates inflammatory plaque deposition within the aortic sinus and innominate artery, accompanied by activation of the vascular endothelium, an increased immune cell infiltrate, and elevated expression of inflammatory mediators within lesions. We detail methodologies for the assessment of inflammation at local and systemic sites. The use of transgenic mice and defined bacterial mutants makes this model particularly suitable for identifying both host and microbial factors involved in the initiation, progression, and outcome of disease. Additionally, the model can be used to screen for novel therapeutic strategies

  13. A mouse model of diet-induced obesity and insulin resistance.

    PubMed

    Wang, Chao-Yung; Liao, James K

    2012-01-01

    Obesity is reaching pandemic proportions in Western society. It has resulted in increasing health care burden and decreasing life expectancy. Obesity is a complex, chronic disease, involving decades of pathophysiological changes and adaptation. Therefore, it is difficult ascertain the exact mechanisms for this long-term process in humans. To circumvent some of these issues, several surrogate models are available, including murine genetic loss-of-function mutations, transgenic gain-of-function mutations, polygenic models, and different environmental exposure models. The mouse model of diet-induced obesity has become one of the most important tools for understanding the interplay of high-fat Western diets and the development of obesity. The diet-induced obesity model closely mimics the increasingly availability of the high-fat/high-density foods in modern society over the past two decades, which are main contributors to the obesity trend in human. This model has lead to many discoveries of the important signalings in obesity, such as Akt and mTOR. The chapter describes protocols for diet induced-obesity model in mice and protocols for measuring insulin resistance and sensitivity.

  14. Inhibition of STAT3 activity delays obesity-induced thyroid carcinogenesis in a mouse model.

    PubMed

    Park, Jeong Won; Han, Cho Rong; Zhao, Li; Willingham, Mark C; Cheng, Sheue-yann

    2016-01-01

    Compelling epidemiologic studies indicate that obesity is a risk factor for many human cancers, including thyroid cancer. In recent decades, the incidence of thyroid cancer has dramatically increased along with a marked rise in obesity prevalence. We previously demonstrated that a high fat diet (HFD) effectively induced the obese phenotype in a mouse model of thyroid cancer (Thrb(PV/PV)Pten(+/-) mice). Moreover, HFD activates the STAT3 signal pathway to promote more aggressive tumor phenotypes. The aim of the present study was to evaluate the effect of S3I-201, a specific inhibitor of STAT3 activity, on HFD-induced aggressive cancer progression in the mouse model of thyroid cancer. WT and Thrb(PV/PV)Pten(+/-) mice were treated with HFD together with S3I-201 or vehicle-only as controls. We assessed the effects of S3I-201 on HFD-induced thyroid cancer progression, the leptin-JAK2-STAT3 signaling pathway, and key regulators of epithelial-mesenchymal transition (EMT). S3I-201 effectively inhibited HFD-induced aberrant activation of STAT3 and its downstream targets to markedly inhibit thyroid tumor growth and to prolong survival. Decreased protein levels of cyclins D1 and B1, cyclin dependent kinase 4 (CDK4), CDK6, and phosphorylated retinoblastoma protein led to the inhibition of tumor cell proliferation in S3I-201-treated Thrb(PV/PV)Pten(+/-) mice. Reduced occurrence of vascular invasion and blocking of anaplasia and lung metastasis in thyroid tumors of S3I-201-treated Thrb(PV/PV)Pten(+/-) mice were mediated via decreased expression of vimentin and matrix metalloproteinases, two key effectors of EMT. The present findings suggest that inhibition of the STAT3 activity would be a novel treatment strategy for obesity-induced thyroid cancer. © 2016 Society for Endocrinology.

  15. Pathophysiological Responses in Rat and Mouse Models of Radiation-Induced Brain Injury.

    PubMed

    Yang, Lianhong; Yang, Jianhua; Li, Guoqian; Li, Yi; Wu, Rong; Cheng, Jinping; Tang, Yamei

    2017-03-01

    The brain is the major dose-limiting organ in patients undergoing radiotherapy for assorted conditions. Radiation-induced brain injury is common and mainly occurs in patients receiving radiotherapy for malignant head and neck tumors, arteriovenous malformations, or lung cancer-derived brain metastases. Nevertheless, the underlying mechanisms of radiation-induced brain injury are largely unknown. Although many treatment strategies are employed for affected individuals, the effects remain suboptimal. Accordingly, animal models are extremely important for elucidating pathogenic radiation-associated mechanisms and for developing more efficacious therapies. So far, models employing various animal species with different radiation dosages and fractions have been introduced to investigate the prevention, mechanisms, early detection, and management of radiation-induced brain injury. However, these models all have limitations, and none are widely accepted. This review summarizes the animal models currently set forth for studies of radiation-induced brain injury, especially rat and mouse, as well as radiation dosages, dose fractionation, and secondary pathophysiological responses.

  16. p75 reduces beta-amyloid-induced sympathetic innervation deficits in an Alzheimer's disease mouse model.

    PubMed

    Bengoechea, Tasha G; Chen, Zhijiang; O'Leary, Debra A; O'Leary, Deborah; Masliah, Eliezer; Lee, Kuo-Fen

    2009-05-12

    Beta-amyloid (Abeta) has adverse effects on brain cells, but little is known about its effects on the peripheral nervous system in Alzheimer's disease (AD). Several lines of in vitro evidence suggest that the neurotrophin receptor p75 mediates or exacerbates Abeta-induced neurotoxicity. Here, we show that p75-deficient sympathetic neurons are more sensitive to Abeta-induced neurite growth inhibition. To investigate the role of p75 in the sympathetic nervous system of AD, p75 mutant mice were crossed with a mouse line of AD model. The majority of p75-deficient AD mice died by 3 weeks of age. The lethality is associated with severe defects in sympathetic innervation to multiple organs. When 1 copy of the BACE1 gene encoding a protein essential in Abeta production was deleted in p75-deficient AD mice, sympathetic innervation was significantly restored. These results suggest that p75 is neuroprotective for the sympathetic nervous system in a mouse model of AD.

  17. Genetic Dissection of Cardiac Remodeling in an Isoproterenol-Induced Heart Failure Mouse Model

    PubMed Central

    Wang, Jessica Jen-Chu; Rau, Christoph; Avetisyan, Rozeta; Ren, Shuxun; Romay, Milagros C.; Gong, Ke Wei; Wang, Yibin; Lusis, Aldons J.

    2016-01-01

    We aimed to understand the genetic control of cardiac remodeling using an isoproterenol-induced heart failure model in mice, which allowed control of confounding factors in an experimental setting. We characterized the changes in cardiac structure and function in response to chronic isoproterenol infusion using echocardiography in a panel of 104 inbred mouse strains. We showed that cardiac structure and function, whether under normal or stress conditions, has a strong genetic component, with heritability estimates of left ventricular mass between 61% and 81%. Association analyses of cardiac remodeling traits, corrected for population structure, body size and heart rate, revealed 17 genome-wide significant loci, including several loci containing previously implicated genes. Cardiac tissue gene expression profiling, expression quantitative trait loci, expression-phenotype correlation, and coding sequence variation analyses were performed to prioritize candidate genes and to generate hypotheses for downstream mechanistic studies. Using this approach, we have validated a novel gene, Myh14, as a negative regulator of ISO-induced left ventricular mass hypertrophy in an in vivo mouse model and demonstrated the up-regulation of immediate early gene Myc, fetal gene Nppb, and fibrosis gene Lgals3 in ISO-treated Myh14 deficient hearts compared to controls. PMID:27385019

  18. BCG vaccine-induced neuroprotection in a mouse model of Parkinson's disease.

    PubMed

    Yong, Jing; Lacan, Goran; Dang, Hoa; Hsieh, Terry; Middleton, Blake; Wasserfall, Clive; Tian, Jide; Melega, William P; Kaufman, Daniel L

    2011-01-31

    There is a growing interest in using vaccination with CNS antigens to induce autoreactive T cell responses that home to damaged areas in the CNS and ameliorate neurodegenerative disease. Neuroprotective vaccine studies have focused on administering oligodendrocyte antigens or Copaxone® in complete Freund's adjuvant (CFA). Theoretical considerations, however, suggest that vaccination with a neuronal antigen may induce more robust neuroprotective immune responses. We assessed the neuroprotective potential of vaccines containing tyrosine hydroxylase (a neuronal protein involved in dopamine synthesis) or Copaxone® in CFA in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease. Surprisingly, we observed that the main beneficial factor in these vaccines was the CFA. Since the major immunogenic component in CFA is Mycobacterium tuberculosis, which closely related to the bacille Calmette-Guérin (BCG) that is used in human vaccines, we tested BCG vaccination in the MPTP mouse model. We observed that BCG vaccination partially preserved markers of striatal dopamine system integrity and prevented an increase in activated microglia in the substantia nigra of MPTP-treated mice. These results support a new neuroprotective vaccine paradigm in which general (nonself-reactive) immune stimulation in the periphery can limit potentially deleterious microglial responses to a neuronal insult and exert a neurorestorative effect in the CNS. Accordingly, BCG vaccination may provide a new strategy to augment current treatments for a wide range of neuropathological conditions.

  19. BCG Vaccine-Induced Neuroprotection in a Mouse Model of Parkinson's Disease

    PubMed Central

    Yong, Jing; Lacan, Goran; Dang, Hoa; Hsieh, Terry; Middleton, Blake; Wasserfall, Clive; Tian, Jide; Melega, William P.; Kaufman, Daniel L.

    2011-01-01

    There is a growing interest in using vaccination with CNS antigens to induce autoreactive T cell responses that home to damaged areas in the CNS and ameliorate neurodegenerative disease. Neuroprotective vaccine studies have focused on administering oligodendrocyte antigens or Copaxone® in complete Freund's adjuvant (CFA). Theoretical considerations, however, suggest that vaccination with a neuronal antigen may induce more robust neuroprotective immune responses. We assessed the neuroprotective potential of vaccines containing tyrosine hydroxylase (a neuronal protein involved in dopamine synthesis) or Copaxone® in CFA in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease. Surprisingly, we observed that the main beneficial factor in these vaccines was the CFA. Since the major immunogenic component in CFA is Mycobacterium tuberculosis, which closely related to the bacille Calmette-Guérin (BCG) that is used in human vaccines, we tested BCG vaccination in the MPTP mouse model. We observed that BCG vaccination partially preserved markers of striatal dopamine system integrity and prevented an increase in activated microglia in the substantia nigra of MPTP-treated mice. These results support a new neuroprotective vaccine paradigm in which general (nonself-reactive) immune stimulation in the periphery can limit potentially deleterious microglial responses to a neuronal insult and exert a neurorestorative effect in the CNS. Accordingly, BCG vaccination may provide a new strategy to augment current treatments for a wide range of neuropathological conditions. PMID:21304945

  20. New mouse model for inducing and evaluating unilateral vestibular deafferentation syndrome.

    PubMed

    Cassel, R; Bordiga, P; Pericat, D; Hautefort, C; Tighilet, B; Chabbert, C

    2017-09-11

    Unilateral vestibular deafferentation syndrome (uVDS) holds a particular place in the vestibular pathology domain. Due to its suddenness, the violence of its symptoms that often result in emergency hospitalization, and its associated original neurophysiological properties, this syndrome is a major source of questioning for the otoneurology community. Also, its putative pathogenic causes remain to be determined. There is currently a strong medical need for the development of targeted and effective countermeasures to improve the therapeutic management of uVDS. The present study reports the development of a new mouse model for inducing and evaluating uVDS. Both the method for generating controlled excitotoxic-type peripheral vestibular damages, through transtympanic administration of the glutamate receptors agonist kainate (TTK), and the procedure for evaluating the ensuing clinical signs are detailed. Through extensive analysis of the clinical symptoms characteristics, this new animal model provides the opportunity to better follow the temporal evolution of various uVDS specific symptoms, while better appreciating the different phases that composed this syndrome. The uVDS evoked in the TTK mouse model displays two main phases distinguishable by their kinetics and amplitudes. Several parameters of the altered vestibular behaviour mimic those observed in the human syndrome. This new murine model brings concrete information about how uVDS develops and how it affects global behaviour. In addition, it opens new opportunity to decipher the etiopathological substrate of this pathology by authorizing the use of genetically modified mouse models. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Effect of Sildenafil on Pre-Eclampsia-Like Mouse Model Induced By L-Name.

    PubMed

    Motta, C; Grosso, C; Zanuzzi, C; Molinero, D; Picco, N; Bellingeri, R; Alustiza, F; Barbeito, C; Vivas, A; Romanini, M C

    2015-08-01

    N(omega)-nitro-L-arginine methyl ester (L-NAME) decreases the vasodilator effect of nitric oxide (NO) and induces pre-eclampsia in mouse. Sildenafil inhibits the degradation of nitric oxide and increases vasodilation. This study aimed to determine the effects of sildenafil citrate on angiogenesis and oxidative stress at the maternal foetal interface on pre-eclampsia-like mouse model induced by L-NAME. Twenty pregnant mice were divided into four groups: (i) vehicle control; (ii) L-NAME; (iii) sildenafil; (4) L-NAME+sildenafil. L-NAME was administered from day 7 of pregnancy and sildenafil from day 8 until day 16; animals were euthanized on day 17. Placental and foetal sizes and weights were measured; lipid peroxide levels and catalase activity in placental homogenates were determined, and placental vascular endothelia were identified by lectin-histochemistry using BSA-I lectin. Western blot analysis was used to determine VEGF expression in placental homogenates. No changes were seen in placental and foetal development in mice with normal pregnancies treated with sildenafil. Treatments with L-NAME reduced significantly the placental weight and average height and decreased the percentage of the endothelial surface. These alterations may be mediated by the reduction of NO levels in trophoblastic cells, due to the inhibitory effect of L-NAME on nitric oxide synthase (NOS) synthesis. This effect was offset by the treatment with sildenafil, with an increase in the percentage of the endothelial surface. In conclusion, our results indicate that treatment with sildenafil on pre-eclampsia mouse model can be used without adverse effects on the concept and its use in the treatment of pre-eclampsia is promising.

  2. A novel gingival overgrowth mouse model induced by the combination of CsA and ligature-induced inflammation.

    PubMed

    Okanobu, Ai; Matsuda, Shinji; Kajiya, Mikihito; Fujita, Tsuyoshi; Kittaka, Mizuho; Shiba, Hideki; Kurihara, Hidemi

    2017-06-01

    Drug-induced gingival overgrowth (DIGO) is a side effect of the enlargement of gingival tissue by phenytoin, nifedipine, and cyclosporine A (CsA). Gingival inflammation has been identified as a key factor that initiates DIGO. However, a sufficient animal model for clarifying the role of inflammation in DIGO has not yet been generated. We herein describe a novel CsA-induced gingival overgrowth mouse model to evaluate the role of inflammation. A ligature was placed around the second molar in maxillae for 7days to induce gingival inflammation, and CsA (50mg/kg/day) was administered to mice during each experimental period. The severity of gingival overgrowth and mRNA expression of inflammatory cytokines in gingiva were assessed by the gingival overgrowth degree, histological analyses, and RT-PCR. The administration of CsA for 28days in combination with ligation significantly increased the gingival overgrowth degree and expanded the connective tissue area. Increases in the gingival overgrowth degree continued in a time-dependent manner until 21days. Furthermore, the cessation of CsA reduced gingival overgrowth. Thin ligatures (7-0 size) induced weaker tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 mRNA expression and less gingival overgrowth than thick ligatures (5-0 ligature). Moreover, the administration of an antibiotic cocktail, which suppressed the expression of these inflammatory cytokines in gingiva, attenuated gingival overgrowth induced by ligatures and CsA. These results suggest that inflammation in gingival tissue plays a role in initiating CsA-induced gingival overgrowth. This gingival overgrowth mouse model has potential for elucidating the etiology of DIGO from the view point of gingival inflammation. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Honokiol inhibits pathological retinal neovascularization in oxygen-induced retinopathy mouse model

    SciTech Connect

    Vavilala, Divya Teja; O’Bryhim, Bliss E.; Ponnaluri, V.K. Chaithanya; White, R. Sid; Radel, Jeff; Symons, R.C. Andrew; Mukherji, Mridul

    2013-09-06

    Highlights: •Aberrant activation of HIF pathway is the underlying cause of ischemic neovascularization. •Honokiol has better therapeutic index as a HIF inhibitor than digoxin and doxorubicin. •Daily IP injection of honokiol in OIR mouse model reduced retinal neovascularization. •Honokiol also prevents vaso-obliteration, the characteristic feature of the OIR model. •Honokiol enhanced physiological revascularization of the retinal vascular plexuses. -- Abstract: Aberrant activation of the hypoxia inducible factor (HIF) pathway is the underlying cause of retinal neovascularization, one of the most common causes of blindness worldwide. The HIF pathway also plays critical roles during tumor angiogenesis and cancer stem cell transformation. We have recently shown that honokiol is a potent inhibitor of the HIF pathway in a number of cancer and retinal pigment epithelial cell lines. Here we evaluate the safety and efficacy of honokiol, digoxin, and doxorubicin, three recently identified HIF inhibitors from natural sources. Our studies show that honokiol has a better safety to efficacy profile as a HIF inhibitor than digoxin and doxorubicin. Further, we show for the first time that daily intraperitoneal injection of honokiol starting at postnatal day (P) 12 in an oxygen-induced retinopathy (OIR) mouse model significantly reduced retinal neovascularization at P17. Administration of honokiol also prevents the oxygen-induced central retinal vaso-obliteration, characteristic feature of the OIR model. Additionally, honokiol enhanced physiological revascularization of the retinal vascular plexuses. Since honokiol suppresses multiple pathways activated by HIF, in addition to the VEGF signaling, it may provide advantages over current treatments utilizing specific VEGF antagonists for ocular neovascular diseases and cancers.

  4. An exercise regimen prevents development paclitaxel induced peripheral neuropathy in a mouse model.

    PubMed

    Park, Jae Sung; Kim, Sangri; Hoke, Ahmet

    2015-03-01

    Peripheral neuropathy is a major, dose-limiting complication of many chemotherapeutic agents. Currently there is no effective method to prevent development of chemotherapy-induced peripheral neuropathy (CIPN). Recent studies have shown that exercise can improve regeneration of peripheral nerves but its effect in preventing peripheral neuropathy is unknown. In this study, we examined the effect of a rigorous treadmill exercise program that was started 1 week before administration of paclitaxel and continued throughout the study in a mouse model of CIPN. We showed that exercise can partially abrogate features of axonal degeneration induced by paclitaxel including reduction in epidermal nerve fiber density in the plantar hind paw and thermal hypoalgesia. Furthermore, detyrosinated tubulin that is elevated in nerves treated with paclitaxel was normal in exercised animals. This study points to a relatively simple and potentially effective therapeutic option to reduce the neurotoxic effects of chemotherapy. © 2015 Peripheral Nerve Society.

  5. Human liver chimeric mouse model based on diphtheria toxin-induced liver injury

    PubMed Central

    Ren, Xiao-Nan; Ren, Rong-Rong; Yang, Hua; Qin, Bo-Yin; Peng, Xiu-Hua; Chen, Li-Xiang; Li, Shun; Yuan, Meng-Jiao; Wang, Chao; Zhou, Xiao-Hui

    2017-01-01

    AIM To establish an inducible liver injury mouse model and transplant human hepatocytes to obtain liver-humanized mice. METHODS We crossed three mouse strains, including albumin (Alb)-cre transgenic mice, inducible diphtheria toxin receptor (DTR) transgenic mice and severe combined immune deficient (SCID)-beige mice, to create Alb-cre/DTR/SCID-beige (ADSB) mice, which coincidentally harbor Alb-cre and DTR transgenes and are immunodeficient. As the Cre expression is driven by the liver-specific promoter Alb (encoding ALB), the DTR stop signal flanked by two loxP sites can be deleted in the ADSB mice, resulting in DTR expression in the liver. ADSB mice aged 8-10 wk were injected intraperitoneally (i.p.) with diphtheria toxin (DT) and liver damage was assessed by serum alanine aminotransferase (ALT) level. Two days later, mouse livers were sampled for histological analysis, and human hepatocytes were transplanted into the livers on the same day. A human ALB enzyme-linked immunosorbent assay was performed 7, 14, 21 and 28 d after transplantation. Human CD68 immunohistochemistry was performed 30 and 90 d after transplantation. RESULTS We crossed Alb-cre with DTR and SCID-beige mice to obtain ADSB mice. These mice were found to have liver damage 4 d after i.p. injection of 2.5 ng/g bodyweight DT. Bodyweight began to decrease on day 2, increased on day 7, and was lowest on day 4 (range, 10.5%-13.4%). Serum ALT activity began to increase on day 2 and reached a peak value of 289.7 ± 16.2 IU/mL on day 4, then returned to background values on day 7. After transplantation of human liver cells, peripheral blood human ALB level was 1580 ± 454.8 ng/mL (range, 750.2-3064.9 ng/mL) after 28 d and Kupffer cells were present in the liver at 30 d in ADSB mice. CONCLUSION Human hepatocytes were successfully repopulated in the livers of ADSB mice. The inducible mouse model of humanized liver in ADSB mice may have functional applications, such as hepatocyte transplantation, hepatic

  6. Chronic ultraviolet exposure-induced p53 gene alterations in sencar mouse skin carcinogenesis model

    SciTech Connect

    Tong, Ying; Smith, M.A.; Tucker, S.B.

    1997-06-27

    Alterations of the tumor suppressor gene p53 have been found in ultraviolet radiation (UVR) related human skin cancers and in UVR-induced murine skin tumors. However, links between p53 gene alterations and the stages of carcinogenesis induced by UVR have not been clearly defined. We established a chronic UVR exposure-induced Sencar mouse skin carcinogenesis model to determine the frequency of p53 gene alterations in different stages of carcinogenesis, including UV-exposed skin, papillomas, squamous-cell carcinomas (SCCs), and malignant spindle-cell tumors (SCTs). A high incidence of SCCs and SCTs were found in this model. Positive p53 nuclear staining was found in 10137 (27%) of SCCs and 12124 (50%) of SCTs, but was not detected in normal skin or papillomas. DNA was isolated from 40 paraffin-embedded normal skin, UV-exposed skin, and tumor sections. The p53 gene (exons 5 and 6) was amplified from the sections by using nested polymerase chain reaction (PCR). Subsequent single-strand conformation polymorphism (SSCP) assay and sequencing analysis revealed one point mutation in exon 6 (coden 193, C {r_arrow} A transition) from a UV-exposed skin sample, and seven point mutations in exon 5 (codens 146, 158, 150, 165, and 161, three C {r_arrow} T, two C {r_arrow} A, one C {r_arrow} G, and one A {r_arrow} T transition, respectively) from four SCTs, two SCCs and one UV-exposed skin sample. These experimental results demonstrate that alterations in the p53 gene are frequent events in chronic UV exposure-induced SCCs and later stage SCTs in Sencar mouse skin. 40 refs., 5 figs., 1 tab.

  7. A novel mouse model of Schistosoma haematobium egg-induced immunopathology.

    PubMed

    Fu, Chi-Ling; Odegaard, Justin I; Herbert, De'Broski R; Hsieh, Michael H

    2012-01-01

    Schistosoma haematobium is the etiologic agent for urogenital schistosomiasis, a major source of morbidity and mortality for more than 112 million people worldwide. Infection with S. haematobium results in a variety of immunopathologic sequelae caused by parasite oviposition within the urinary tract, which drives inflammation, hematuria, fibrosis, bladder dysfunction, and increased susceptibility to urothelial carcinoma. While humans readily develop urogenital schistosomiasis, the lack of an experimentally-tractable model has greatly impaired our understanding of the mechanisms that underlie this important disease. We have developed an improved mouse model of S. haematobium urinary tract infection that recapitulates several aspects of human urogenital schistosomiasis. Following microinjection of purified S. haematobium eggs into the bladder wall, mice consistently develop macrophage-rich granulomata that persist for at least 3 months and pass eggs in their urine. Importantly, egg-injected mice also develop urinary tract fibrosis, bladder dysfunction, and various urothelial changes morphologically reminiscent of human urogenital schistosomiasis. As expected, S. haematobium egg-induced immune responses in the immediate microenvironment, draining lymph nodes, and systemic circulation are associated with a Type 2-dominant inflammatory response, characterized by high levels of interleukin-4, eosinophils, and IgE. Taken together, our novel mouse model may help facilitate a better understanding of the unique pathophysiological mechanisms of epithelial dysfunction, tissue fibrosis, and oncogenesis associated with urogenital schistosomiasis.

  8. A Novel Mouse Model of Schistosoma haematobium Egg-Induced Immunopathology

    PubMed Central

    Fu, Chi-Ling; Odegaard, Justin I.; Herbert, De'Broski R.; Hsieh, Michael H.

    2012-01-01

    Schistosoma haematobium is the etiologic agent for urogenital schistosomiasis, a major source of morbidity and mortality for more than 112 million people worldwide. Infection with S. haematobium results in a variety of immunopathologic sequelae caused by parasite oviposition within the urinary tract, which drives inflammation, hematuria, fibrosis, bladder dysfunction, and increased susceptibility to urothelial carcinoma. While humans readily develop urogenital schistosomiasis, the lack of an experimentally-tractable model has greatly impaired our understanding of the mechanisms that underlie this important disease. We have developed an improved mouse model of S. haematobium urinary tract infection that recapitulates several aspects of human urogenital schistosomiasis. Following microinjection of purified S. haematobium eggs into the bladder wall, mice consistently develop macrophage-rich granulomata that persist for at least 3 months and pass eggs in their urine. Importantly, egg-injected mice also develop urinary tract fibrosis, bladder dysfunction, and various urothelial changes morphologically reminiscent of human urogenital schistosomiasis. As expected, S. haematobium egg-induced immune responses in the immediate microenvironment, draining lymph nodes, and systemic circulation are associated with a Type 2-dominant inflammatory response, characterized by high levels of interleukin-4, eosinophils, and IgE. Taken together, our novel mouse model may help facilitate a better understanding of the unique pathophysiological mechanisms of epithelial dysfunction, tissue fibrosis, and oncogenesis associated with urogenital schistosomiasis. PMID:22479181

  9. Endogenous retrovirus induces leukemia in a xenograft mouse model for primary myelofibrosis

    PubMed Central

    Triviai, Ioanna; Ziegler, Marion; Bergholz, Ulla; Oler, Andrew J.; Stübig, Thomas; Prassolov, Vladimir; Fehse, Boris; Kozak, Christine A.; Kröger, Nicolaus; Stocking, Carol

    2014-01-01

    The compound immunodeficiencies in nonobese diabetic (NOD) inbred mice homozygous for the Prkdcscid and Il2rgnull alleles (NSG mice) permit engraftment of a wide-range of primary human cells, enabling sophisticated modeling of human disease. In studies designed to define neoplastic stem cells of primary myelofibrosis (PMF), a myeloproliferative neoplasm characterized by profound disruption of the hematopoietic microenvironment, we observed a high frequency of acute myeloid leukemia (AML) in NSG mice. AML was of mouse origin, confined to PMF-xenografted mice, and contained multiple clonal integrations of ecotropic murine leukemia virus (E-MuLV). Significantly, MuLV replication was not only observed in diseased mice, but also in nontreated NSG controls. Furthermore, in addition to the single ecotropic endogenous retrovirus (eERV) located on chromosome 11 (Emv30) in the NOD genome, multiple de novo germ-line eERV integrations were observed in mice from each of four independent NSG mouse colonies. Analysis confirmed that E-MuLV originated from the Emv30 provirus and that recombination events were not necessary for virus replication or AML induction. Pathogenicity is thus likely attributable to PMF-mediated paracrine stimulation of mouse myeloid cells, which serve as targets for retroviral infection and transformation, as evidenced by integration into the Evi1 locus, a hotspot for retroviral-induced myeloid leukemia. This study thus corroborates a role of paracrine stimulation in PMF disease progression, underlines the importance of target cell type and numbers in MuLV-induced disease, and mandates awareness of replicating MuLV in NOD immunodeficient mice, which can significantly influence experimental results and their interpretation. PMID:24912157

  10. Effects of topical application of EGCG on testosterone-induced hair loss in a mouse model.

    PubMed

    Kim, Yoon Young; Up No, Sun; Kim, Min Ho; Kim, Hei Sung; Kang, Hoon; Kim, Hyung Ok; Park, Young Min

    2011-12-01

    We investigated the effect of topical epigallocatechin-3-gallate (EGCG) on testosterone (T)-induced hair loss in mice. Marked hair loss was observed at the T-injected site, and topical EGCG significantly reduced the hair loss (P < 0.05). TUNEL staining showed apoptosis of follicular epithelial cells in the T-injected groups where topical EGCG was found to significantly diminish T-induced apoptosis (P < 0.05). Topical EGCG down-regulated the T-induced expression of androgen receptor but did not down-regulate 17β-hydroxysteroid dehydrogenase (HSD) and three β-HSD expression. Analysis using liquid chromatography tandem mass spectrometry (LC-MS/MS) on serum and tissue samples revealed no significant difference in T and dihydrotestosterone concentrations between the T-injected and T + EGCG groups. Thus, we found that T injection in a mouse model induces hair loss by apoptosis of the hair follicles rather than through the androgen metabolic pathway and also saw that T-induced apoptosis of hair follicles was reduced by topical EGCG. © 2011 John Wiley & Sons A/S.

  11. High-fat diet induces significant metabolic disorders in a mouse model of polycystic ovary syndrome.

    PubMed

    Lai, Hao; Jia, Xiao; Yu, Qiuxiao; Zhang, Chenglu; Qiao, Jie; Guan, Youfei; Kang, Jihong

    2014-11-01

    Polycystic ovary syndrome (PCOS) is the most common female endocrinopathy associated with both reproductive and metabolic disorders. Dehydroepiandrosterone (DHEA) is currently used to induce a PCOS mouse model. High-fat diet (HFD) has been shown to cause obesity and infertility in female mice. The possible effect of an HFD on the phenotype of DHEA-induced PCOS mice is unknown. The aim of the present study was to investigate both reproductive and metabolic features of DHEA-induced PCOS mice fed a normal chow or a 60% HFD. Prepubertal C57BL/6 mice (age 25 days) on the normal chow or an HFD were injected (s.c.) daily with the vehicle sesame oil or DHEA for 20 consecutive days. At the end of the experiment, both reproductive and metabolic characteristics were assessed. Our data show that an HFD did not affect the reproductive phenotype of DHEA-treated mice. The treatment of HFD, however, caused significant metabolic alterations in DHEA-treated mice, including obesity, glucose intolerance, dyslipidemia, and pronounced liver steatosis. These findings suggest that HFD induces distinct metabolic features in DHEA-induced PCOS mice. The combined DHEA and HFD treatment may thus serve as a means of studying the mechanisms involved in metabolic derangements of this syndrome, particularly in the high prevalence of hepatic steatosis in women with PCOS.

  12. Hesperidin suppresses ovalbumin-induced airway inflammation in a mouse allergic asthma model.

    PubMed

    Wei, Dajun; Ci, Xinxin; Chu, Xiao; Wei, Miaomiao; Hua, Shucheng; Deng, Xuming

    2012-02-01

    Hesperidin, a flavanone glycoside comprised of the flavanone hesperetin and the disaccharide rutinose, is a plentiful and inexpensive by-product of citrus cultivation. It has been reported to exert a wide range of pharmacological effects that include antioxidant, anti-inflammatory, and anticarcinogenic properties. In this study, we attempt to determine whether hesperidin inhibits inflammatory mediators in the mouse allergic asthma model. Mice were sensitized and challenged by ovalbumin (OVA) to induce chronic airway inflammation and airway remodeling. The administration of hesperidin significantly decreased the number of infiltrating inflammatory cells and Th2 cytokines in bronchoalveolar lavage (BAL) fluid compared with the OVA-induced group of mice. In addition, hesperidin reduced OVA-specific IgE levels in serum. Hesperidin markedly alleviated the OVA-induced airway hyperresponsiveness (AHR) to inhaled methacholine. Based on lung histopathological studies using hematoxylin and eosin and alcian blue-periodic acid-Schiff staining, hesperidin inhibited inflammatory cell infiltration and mucus hypersecretion compared with the OVA-induced group of mice. These findings provide new insight into the immunopharmacological role of hesperidin in terms of its effects in a murine model of asthma.

  13. NM23 deficiency promotes metastasis in a UV radiation-induced mouse model of human melanoma.

    PubMed

    Jarrett, Stuart G; Novak, Marian; Harris, Nathan; Merlino, Glenn; Slominski, Andrezj; Kaetzel, David M

    2013-01-01

    Cutaneous malignant melanoma is the most lethal form of skin cancer, with 5-year survival rates of <5 % for patients presenting with metastatic disease. Mechanisms underlying metastatic spread of UVR-induced melanoma are not well understood, in part due to a paucity of animal models that accurately recapitulate the disease in its advanced forms. We have employed a transgenic mouse strain harboring a tandem deletion of the nm23-m1 and nm23-m2 genes to assess the combined contribution of these genes to suppression of melanoma metastasis. Crossing of the nm23-h1/nm23-h2 knockout in hemizygous-null form ([m1m2](+/-)) to a transgenic mouse strain (hepatocyte growth factor/scatter factor-overexpressing, or HGF(+) strain) vulnerable to poorly-metastatic, UVR-induced melanomas resulted in UVR-induced melanomas with high metastatic potential. Metastasis to draining lymph nodes was seen in almost all cases of back skin melanomas, while aggressive metastasis to lung, thoracic cavity, liver and bone also occurred. Interestingly, no differences were observed in the invasive characteristics of primary melanomas of HGF(+) and HGF(+) × [m1m2](+/-) strains, with both exhibiting invasion into the dermis and subcutis, indicating factors other than simple invasive activity were responsible for metastasis of HGF(+) × [m1m2](+/-) melanomas. Stable cell lines were established from the primary and metastatic melanoma lesions from these mice, with HGF(+) × [m1m2](+/-) lines exhibiting increased single cell migration and genomic instability. These studies demonstrate for the first time in vivo a potent metastasis suppressor activity of NM23 in UVR-induced melanoma, and have provided new tools for identifying molecular mechanisms that underlie melanoma metastasis.

  14. Characterization of PTZ-Induced Seizure Susceptibility in a Down Syndrome Mouse Model That Overexpresses CSTB

    PubMed Central

    Brault, Véronique; Martin, Benoît; Costet, Nathalie; Bizot, Jean-Charles; Hérault, Yann

    2011-01-01

    Down syndrome (DS) is a complex genetic syndrome characterized by intellectual disability, dysmorphism and variable additional physiological traits. Current research progress has begun to decipher the neural mechanisms underlying cognitive impairment, leading to new therapeutic perspectives. Pentylenetetrazol (PTZ) has recently been found to have positive effects on learning and memory capacities of a DS mouse model and is foreseen to treat DS patients. But PTZ is also known to be a convulsant drug at higher dose and DS persons are more prone to epileptic seizures than the general population. This raises concerns over what long-term effects of treatment might be in the DS population. The cause of increased propensity for epilepsy in the DS population and which Hsa21 gene(s) are implicated remain unknown. Among Hsa21 candidate genes in epilepsy, CSTB, coding for the cystein protease inhibitor cystatin B, is involved in progressive myoclonus epilepsy and ataxia in both mice and human. Thus we aim to evaluate the effect of an increase in Cstb gene dosage on spontaneous epileptic activity and susceptibility to PTZ-induced seizure. To this end we generated a new mouse model trisomic for Cstb by homologous recombination. We verified that increasing copy number of Cstb from Trisomy (Ts) to Tetrasomy (Tt) was driving overexpression of the gene in the brain, we checked transgenic animals for presence of locomotor activity and electroencephalogram (EEG) abnormalities characteristic of myoclonic epilepsy and we tested if those animals were prone to PTZ-induced seizure. Overall, the results of the analysis shows that an increase in Cstb does not induce any spontaneous epileptic activity and neither increase or decrease the propensity of Ts and Tt mice to myoclonic seizures suggesting that Ctsb dosage should not interfere with PTZ-treatment. PMID:22140471

  15. Palmitoyl Serotonin Inhibits L-dopa-induced Abnormal Involuntary Movements in the Mouse Parkinson Model

    PubMed Central

    Park, Hye-Yeon; Ryu, Young-Kyoung; Go, Jun; Son, Eunjung

    2016-01-01

    L-3,4-dihydroxyphenylalanine (L-DOPA) is the most common treatment for patients with Parkinson's disease (PD). However, long term use of L-DOPA for PD therapy lead to abnormal involuntary movements (AIMs) known as dyskinesia. Fatty acid amide hydrolase (FAAH) is enriched protein in basal ganglia, and inhibition of the protein reduces dyskinetic behavior of mice. Palmitoyl serotonin (PA-5HT) is a hybrid molecule patterned after arachidonoyl serotonin, antagonist of FAAH. However, the effect of PA-5HT on L-DOPA-induced dyskinesia (LID) in PD have not yet been elucidated. To investigate whether PA-5HT relieve LID in PD and decrease hyperactivation of dopamine D1 receptors, we used the 6-hydroxydopomine (6-OHDA)-lesioned mouse model of PD and treated the L-DOPA (20 mg/kg) for 10 days with PA-5HT (0.3 mg/kg/day). The number of wall contacts with the forelimb in the cylinder test was significantly decreased by 6-OHDA lesion in mice and the pharmacotherapeutic effect of L-DOPA was also revealed in PA-5HT-treated mice. Moreover, in AIMs test, PA-5HT-treated mice showed significant reduction of locomotive, axial, limb, and orofacial AIMs score compared to the vehicle-treated mice. LID-induced hyper-phosphorylation of ERK1/2 and overexpression of FosB/ΔFosB was markedly decreased in 6-OHDA-lesioned striatum of PA-5HT-treated mice, indicating that PA-5HT decreased the dopamine D1 receptor-hyperactivation induced by chronic treatment of L-DOPA in dopamine-denervated striatum. These results suggest that PA-5HT effectively attenuates the development of LID and enhance of ERK1/2 phosphorylation and FosB/ΔFosB expression in the hemi-parkinsonian mouse model. PA-5HT may have beneficial effect on the LID in PD. PMID:27574484

  16. Developing better mouse models to study cisplatin-induced kidney injury.

    PubMed

    Sharp, Cierra N; Siskind, Leah J

    2017-10-01

    Cisplatin is a potent chemotherapeutic used for the treatment of many types of cancer. However, its dose-limiting side effect is nephrotoxicity leading to acute kidney injury (AKI). Patients who develop AKI have an increased risk of mortality and are more likely to develop chronic kidney disease (CKD). Unfortunately, there are no therapeutic interventions for the treatment of AKI. It has been suggested that the lack of therapies is due in part to the fact that the established mouse model used to study cisplatin-induced AKI does not recapitulate the cisplatin dosing regimen patients receive. In recent years, work has been done to develop more clinically relevant models of cisplatin-induced kidney injury, with much work focusing on incorporation of multiple low doses of cisplatin administered over a period of weeks. These models can be used to recapitulate the development of CKD after AKI and, by doing so, increase the likelihood of identifying novel therapeutic targets for the treatment of cisplatin-induced kidney injury. Copyright © 2017 the American Physiological Society.

  17. An in vitro mouse model of congenital cytomegalovirus-induced pathogenesis of the inner ear cochlea.

    PubMed

    Melnick, Michael; Jaskoll, Tina

    2013-02-01

    Congenital human cytomegalovirus (CMV) infection is the leading nongenetic etiology of sensorineural hearing loss (SNHL) at birth and prelingual SNHL not expressed at birth. The paucity of temporal bone autopsy specimens from infants with congenital CMV infection has hindered the critical correlation of histopathology with pathogenesis. Here, we present an in vitro embryonic mouse model of CMV-infected cochleas that mimics the human sites of viral infection and associated pathology. There is a striking dysplasia/hyperplasia in mouse CMV-infected cochlear epithelium and mesenchyme, including organ of Corti hair and supporting cells and stria vascularis. This is concomitant with significant dysregulation of p19, p21, p27, and Pcna gene expression, as well as proliferating cell nuclear antigen (PCNA) protein expression. Other pathologies similar to those arising from known deafness gene mutations include downregulation of KCNQ1 protein expression in the stria vascularis, as well as hypoplastic and dysmorphic melanocytes. Thus, this model provides a relevant and reliable platform within which the detailed cell and molecular biology of CMV-induced deafness may be studied.

  18. An In Vitro Mouse Model of Congenital Cytomegalovirus-induced Pathogenesis of the Inner Ear Cochlea

    PubMed Central

    Melnick, Michael; Jaskoll, Tina

    2015-01-01

    Congenital human cytomegalovirus (CMV) infection is the leading nongenetic etiology of sensorineural hearing loss (SNHL) at birth and prelingual SNHL not expressed at birth. The paucity of temporal bone autopsy specimens from infants with congenital CMV infection has hindered the critical correlation of histopathology with pathogenesis. Here, we present an in vitro embryonic mouse model of CMV-infected cochleas that mimics the human sites of viral infection and associated pathology. There is a striking dysplasia/hyperplasia in mouse CMV-infected cochlear epithelium and mesenchyme, including organ of Corti hair and supporting cells and stria vascularis. This is concomitant with significant dysregulation of p19, p21, p27, and Pcna gene expression, as well as proliferating cell nuclear antigen (PCNA) protein expression. Other pathologies similar to those arising from known deafness gene mutations include downregulation of KCNQ1 protein expression in the stria vascularis, as well as hypoplastic and dysmorphic melanocytes. Thus, this model provides a relevant and reliable platform within which the detailed cell and molecular biology of CMV-induced deafness may be studied. PMID:23281115

  19. A Mouse Model of Diet-Induced Obesity Resembling Most Features of Human Metabolic Syndrome

    PubMed Central

    Della Vedova, Maria C.; Muñoz, Marcos D.; Santillan, Lucas D.; Plateo-Pignatari, Maria G.; Germanó, Maria J.; Rinaldi Tosi, Martín E.; Garcia, Silvina; Gomez, Nidia N.; Fornes, Miguel W.; Gomez Mejiba, Sandra E.; Ramirez, Dario C.

    2016-01-01

    Increased chicken-derived fat and fructose consumption in the human diet is paralleled by an increasing prevalence of obesity and metabolic syndrome (MS). Herein, we aimed at developing and characterizing a mouse model of diet-induced obesity (DIO) resembling most of the key features of the human MS. To accomplish this, we fed male C57BL/6J mice for 4, 8, 12, and 16 weeks with either a low-fat diet (LFD) or a high-chicken-fat diet (HFD) and tap water with or without 10% fructose (F). This experimental design resulted in the following four experimental groups: LFD, LFD + F, HFD, and HFD + F. Over the feeding period, and on a weekly basis, the HFD + F group had more caloric intake and gained more weight than the other experimental groups. Compared to the other groups, and at the end of the feeding period, the HFD + F group had a higher adipogenic index, total cholesterol, low-density lipoprotein cholesterol, fasting basal glycemia, insulin resistance, hypertension, and atherogenic index and showed steatohepatitis and systemic oxidative stress/inflammation. A mouse model of DIO that will allow us to study the effect of MS in different organs and systems has been developed and characterized. PMID:27980421

  20. Prostatic Inflammation Induces Fibrosis in a Mouse Model of Chronic Bacterial Infection

    PubMed Central

    Wong, Letitia; Hutson, Paul R.; Bushman, Wade

    2014-01-01

    Inflammation of the prostate is strongly correlated with development of lower urinary tract symptoms and several studies have implicated prostatic fibrosis in the pathogenesis of bladder outlet obstruction. It has been postulated that inflammation induces prostatic fibrosis but this relationship has never been tested. Here, we characterized the fibrotic response to inflammation in a mouse model of chronic bacterial-induced prostatic inflammation. Transurethral instillation of the uropathogenic E. coli into C3H/HeOuJ male mice induced persistent prostatic inflammation followed by a significant increase in collagen deposition and hydroxyproline content. This fibrotic response to inflammation was accompanied with an increase in collagen synthesis determined by the incorporation of 3H-hydroxyproline and mRNA expression of several collagen remodeling-associated genes, including Col1a1, Col1a2, Col3a1, Mmp2, Mmp9, and Lox. Correlation analysis revealed a positive correlation of inflammation severity with collagen deposition and immunohistochemical staining revealed that CD45+VIM+ fibrocytes were abundant in inflamed prostates at the time point coinciding with increased collagen synthesis. Furthermore, flow cytometric analysis demonstrated an increased percentage of these CD45+VIM+ fibrocytes among collagen type I expressing cells. These data show–for the first time–that chronic prostatic inflammation induces collagen deposition and implicates fibrocytes in the fibrotic process. PMID:24950301

  1. Honokiol inhibits pathological retinal neovascularization in oxygen-induced retinopathy mouse model.

    PubMed

    Vavilala, Divya Teja; O'Bryhim, Bliss E; Ponnaluri, V K Chaithanya; White, R Sid; Radel, Jeff; Symons, R C Andrew; Mukherji, Mridul

    2013-09-06

    Aberrant activation of the hypoxia inducible factor (HIF) pathway is the underlying cause of retinal neovascularization, one of the most common causes of blindness worldwide. The HIF pathway also plays critical roles during tumor angiogenesis and cancer stem cell transformation. We have recently shown that honokiol is a potent inhibitor of the HIF pathway in a number of cancer and retinal pigment epithelial cell lines. Here we evaluate the safety and efficacy of honokiol, digoxin, and doxorubicin, three recently identified HIF inhibitors from natural sources. Our studies show that honokiol has a better safety to efficacy profile as a HIF inhibitor than digoxin and doxorubicin. Further, we show for the first time that daily intraperitoneal injection of honokiol starting at postnatal day (P) 12 in an oxygen-induced retinopathy (OIR) mouse model significantly reduced retinal neovascularization at P17. Administration of honokiol also prevents the oxygen-induced central retinal vaso-obliteration, characteristic feature of the OIR model. Additionally, honokiol enhanced physiological revascularization of the retinal vascular plexuses. Since honokiol suppresses multiple pathways activated by HIF, in addition to the VEGF signaling, it may provide advantages over current treatments utilizing specific VEGF antagonists for ocular neovascular diseases and cancers. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Mouse models in oncoimmunology.

    PubMed

    Zitvogel, Laurence; Pitt, Jonathan M; Daillère, Romain; Smyth, Mark J; Kroemer, Guido

    2016-12-01

    Fundamental cancer research and the development of efficacious antineoplastic treatments both rely on experimental systems in which the relationship between malignant cells and immune cells can be studied. Mouse models of transplantable, carcinogen-induced or genetically engineered malignancies - each with their specific advantages and difficulties - have laid the foundations of oncoimmunology. These models have guided the immunosurveillance theory that postulates that evasion from immune control is an essential feature of cancer, the concept that the long-term effects of conventional cancer treatments mostly rely on the reinstatement of anticancer immune responses and the preclinical development of immunotherapies, including currently approved immune checkpoint blockers. Specific aspects of pharmacological development, as well as attempts to personalize cancer treatments using patient-derived xenografts, require the development of mouse models in which murine genes and cells are replaced with their human equivalents. Such 'humanized' mouse models are being progressively refined to characterize the leukocyte subpopulations that belong to the innate and acquired arms of the immune system as they infiltrate human cancers that are subjected to experimental therapies. We surmise that the ever-advancing refinement of murine preclinical models will accelerate the pace of therapeutic optimization in patients.

  3. Geraniin suppresses RANKL-induced osteoclastogenesis in vitro and ameliorates wear particle-induced osteolysis in mouse model

    SciTech Connect

    Xiao, Fei; Zhai, Zanjing; Jiang, Chuan; Liu, Xuqiang; Li, Haowei; Qu, Xinhua; Ouyang, Zhengxiao; Fan, Qiming; Tang, Tingting; Qin, An; Gu, Dongyun

    2015-01-01

    Wear particle-induced osteolysis and subsequent aseptic loosening remains the most common complication that limits the longevity of prostheses. Wear particle-induced osteoclastogenesis is known to be responsible for extensive bone erosion that leads to prosthesis failure. Thus, inhibition of osteoclastic bone resorption may serve as a therapeutic strategy for the treatment of wear particle induced osteolysis. In this study, we demonstrated for the first time that geraniin, an active natural compound derived from Geranium thunbergii, ameliorated particle-induced osteolysis in a Ti particle-induced mouse calvaria model in vivo. We also investigated the mechanism by which geraniin exerts inhibitory effects on osteoclasts. Geraniin inhibited RANKL-induced osteoclastogenesis in a dose-dependent manner, evidenced by reduced osteoclast formation and suppressed osteoclast specific gene expression. Specially, geraniin inhibited actin ring formation and bone resorption in vitro. Further molecular investigation demonstrated geraniin impaired osteoclast differentiation via the inhibition of the RANKL-induced NF-κB and ERK signaling pathways, as well as suppressed the expression of key osteoclast transcriptional factors NFATc1 and c-Fos. Collectively, our data suggested that geraniin exerts inhibitory effects on osteoclast differentiation in vitro and suppresses Ti particle-induced osteolysis in vivo. Geraniin is therefore a potential natural compound for the treatment of wear particle induced osteolysis in prostheses failure. - Highlights: • Geraniin suppresses osteoclasts formation and function in vitro. • Geraniin impairs RANKL-induced nuclear factor-κB and ERK signaling pathway. • Geraniin suppresses osteolysis in vivo. • Geraniin may be used for treating osteoclast related diseases.

  4. Primary Ovarian Insufficiency Induced by Fanconi Anemia E Mutation in a Mouse Model.

    PubMed

    Fu, Chun; Begum, Khurshida; Overbeek, Paul A

    2016-01-01

    In most cases of primary ovarian insufficiency (POI), the cause of the depletion of ovarian follicles is unknown. Fanconi anemia (FA) proteins are known to play important roles in follicular development. Using random insertional mutagenesis with a lentiviral transgene, we identified a family with reduced fertility in the homozygous transgenic mice. We identified the integration site and found that the lentivirus had integrated into intron 8 of the Fanconi E gene (Fance). By RT-PCR and in situ hybridization, we found that Fance transcript levels were significantly reduced. The Fance homozygous mutant mice were assayed for changes in ovarian development, follicle numbers and estrous cycle. Ovarian dysplasias and a severe lack of follicles were seen in the mutant mice. In addition, the estrous cycle was disrupted in adult females. Our results suggest that POI has been induced by the Fance mutation in this new mouse model.

  5. Primary Ovarian Insufficiency Induced by Fanconi Anemia E Mutation in a Mouse Model

    PubMed Central

    Fu, Chun; Begum, Khurshida; Overbeek, Paul A.

    2016-01-01

    In most cases of primary ovarian insufficiency (POI), the cause of the depletion of ovarian follicles is unknown. Fanconi anemia (FA) proteins are known to play important roles in follicular development. Using random insertional mutagenesis with a lentiviral transgene, we identified a family with reduced fertility in the homozygous transgenic mice. We identified the integration site and found that the lentivirus had integrated into intron 8 of the Fanconi E gene (Fance). By RT-PCR and in situ hybridization, we found that Fance transcript levels were significantly reduced. The Fance homozygous mutant mice were assayed for changes in ovarian development, follicle numbers and estrous cycle. Ovarian dysplasias and a severe lack of follicles were seen in the mutant mice. In addition, the estrous cycle was disrupted in adult females. Our results suggest that POI has been induced by the Fance mutation in this new mouse model. PMID:26939056

  6. Sulodexide inhibits retinal neovascularization in a mouse model of oxygen-induced retinopathy

    PubMed Central

    Jo, Hyoung; Jung, Sang Hoon; Kang, Jun; Yim, Hye Bin; Kang, Kui Dong

    2014-01-01

    Sulodexide is a mixed glycosaminoglycan composed of heparin and dermatan sulfate. In this study, the anti-angiogenic effect of sulodexide was investigated using an oxygen-induced retinopathy (OIR) mouse model. The retinas of sham-injected OIR mice (P17) had a distinctive central area of nonperfusion, and this area was significantly decreased in sulodexide-injected mice. The number of neovascular tufts measured by SWIFT_NV and mean neovascular lumen number were significantly decreased in sulodexide-injected mice. Hyperbaric oxygen exposure resulted in increased levels of VEGF, MMP-2 and MMP-9, and when mice were treated with sulodexide, a dose-dependent reduction in VEGF, MMP-2 and MMP-9 levels was observed. Our results clearly demonstrate the anti-angiogenic effect of sulodexide and highlight sulodexide as a candidate supplementary substance to be used for the treatment of ocular pathologies that involve neovascularization. [BMB Reports 2014; 47(11): 637-642] PMID:24602608

  7. Sulodexide inhibits retinal neovascularization in a mouse model of oxygen-induced retinopathy.

    PubMed

    Jo, Hyoung; Jung, Sang Hoon; Kang, Jun; Yim, Hye Bin; Kang, Kui Dong

    2014-11-01

    Sulodexide is a mixed glycosaminoglycan composed of heparin and dermatan sulfate. In this study, the anti-angiogenic effect of sulodexide was investigated using an oxygen-induced retinopathy (OIR) mouse model. The retinas of sham-injected OIR mice (P17) had a distinctive central area of nonperfusion, and this area was significantly decreased in sulodexide-injected mice. The number of neovascular tufts measured by SWIFT_NV and mean neovascular lumen number were significantly decreased in sulodexide-injected mice. Hyperbaric oxygen exposure resulted in increased levels of VEGF, MMP-2 and MMP-9, and when mice were treated with sulodexide, a dose-dependent reduction in VEGF, MMP-2 and MMP-9 levels was observed. Our results clearly demonstrate the anti-angiogenic effect of sulodexide and highlight sulodexide as a candidate supplementary substance to be used for the treatment of ocular pathologies that involve neovascularization.

  8. Development of Novel Mouse Model of Ulcers Induced by Implantation of Magnets.

    PubMed

    Takeuchi, Yuriko; Ueno, Koji; Mizoguchi, Takahiro; Samura, Makoto; Harada, Takasuke; Oga, Atsunori; Murata, Tomoaki; Hosoyama, Tohru; Morikage, Noriyasu; Hamano, Kimikazu

    2017-07-07

    We developed a novel mouse model of human refractory cutaneous ulcers that more faithfully reflects pathology and evaluated the effects of mixed cell sheets comprising peripheral blood mononuclear cells and fibroblasts, which we previously developed for treating refractory cutaneous ulcers. Model development involved sandwiching the skin between two magnets, one of which was implanted under the skin for 7 consecutive days. This magnet-implanted ulcer model produced persistently large amounts of exudate and induced the infiltration of the ulcer with inflammatory cells. The model mice had a thicker epidermis and impaired transforming growth factor-β (TGF-β) signaling followed by SMAD2 down-regulation, which causes epidermal hyperplasia in chronic ulcers. Impaired TGF-β signaling also occurred in the ulcers of critical limb ischemia patients. Mixed cell implantation in this ulcer model reduced TNF-α and IL-6 levels in the tissues surrounding the mixed cell sheet-treated ulcers compared with controls or mice treated with trafermin (FGF2). Seven days after commencing therapy, the epidermis was thinner in mice treated with the mixed cell sheets than in controls. This model may therefore serve as a clinically relevant model of human ulcers, and our mixed cell sheets may effectively relieve chronic inflammation and inhibit refractoriness mechanisms.

  9. An inducible transgenic mouse model for familial hypertension with hyperkalaemia (Gordon's syndrome or pseudohypoaldosteronism type II).

    PubMed

    Chowdhury, Jabed A; Liu, Che-Hsiung; Zuber, Annie M; O'Shaughnessy, Kevin M

    2013-06-01

    Mutations in the novel serine/threonine WNK [With No lysine (=K)] kinases WNK1 and WNK4 cause PHAII (pseudohypoaldosteronism type II or Gordon's syndrome), a rare monogenic syndrome which causes hypertension and hyperkalaemia on a background of a normal glomerular filtration rate. Current animal models for PHAII recapitulate some aspects of the disease phenotype, but give no clues to how rapidly the phenotype emerges or whether it is reversible. To this end we have created an inducible PHAII transgenic animal model that expresses a human disease-causing WNK4 mutation, WNK4 Q565E, under the control of the Tet-On system. Several PHAII inducible transgenic mouse lines were created, each with differing TG (transgene) copy numbers and displaying varying degrees of TG expression (low, medium and high). Each of these transgenic lines demonstrated similar elevations of BP (blood pressure) and plasma potassium after 4 weeks of TG induction. Withdrawal of doxycycline switched off mutant TG expression and the disappearance of the PHAII phenotype. Western blotting of microdissected kidney nephron segments confirmed that expression of the thiazide-sensitive NCC (Na⁺-Cl⁻ co-transporter) was increased, as expected, in the distal convoluted tubule when transgenic mice were induced with doxycycline. The kidneys of these mice also do not show the morphological changes seen in the previous transgenic model expressing the same mutant form of WNK4. This inducible model shows, for the first time, that in vivo expression of a mutant WNK4 protein is sufficient to cause the rapid and reversible appearance of a PHAII disease phenotype in mice.

  10. Generation of a Retinoblastoma (Rb)1-inducible dominant-negative (DN) mouse model

    PubMed Central

    Tarang, Shikha; Doi, Songila M. S. R.; Gurumurthy, Channabasavaiah B.; Harms, Donald; Quadros, Rolen; Rocha-Sanchez, Sonia M.

    2015-01-01

    Retinoblastoma 1 (Rb1) is an essential gene regulating cellular proliferation, differentiation, and homeostasis. To exert these functions, Rb1 is recruited and physically interacts with a growing variety of signaling pathways. While Rb1 does not appear to be ubiquitously expressed, its expression has been confirmed in a variety of hematopoietic and neuronal-derived cells, including the inner ear hair cells (HCs). Studies in transgenic mice demonstrate that complete germline or conditional Rb1 deletion leads to abnormal cell proliferation, followed by massive apoptosis; making it difficult to fully address Rb1’s biochemical activities. To overcome these limitations, we developed a tetracycline-inducible TetO-CB-myc6-Rb1 (CBRb) mouse model to achieve transient and inducible dominant-negative (DN) inhibition of the endogenous RB1 protein. Our strategy involved fusing the Rb1 gene to the lysosomal protease pre-procathepsin B (CB), thus allowing for further routing of the DN-CBRb fusion protein and its interacting complexes for proteolytic degradation. Moreover, reversibility of the system is achieved upon suppression of doxycycline (Dox) administration. Preliminary characterization of DN-CBRb mice bred to a ubiquitous rtTA mouse line demonstrated a significant inhibition of the endogenous RB1 protein in the inner ear and in a number of other organs where RB1 is expressed. Examination of the postnatal (P) DN-CBRb mice inner ear at P10 and P28 showed the presence of supernumerary inner HCs (IHCs) in the lower turns of the cochleae, which corresponds to the described expression domain of the endogenous Rb1 gene. Selective and reversible suppression of gene expression is both an experimental tool for defining function and a potential means to medical therapy. Given the limitations associated with Rb1-null mice lethality, this model provides a valuable resource for understanding RB1 activity, relative contribution to HC regeneration and its potential therapeutic

  11. Generation of a Retinoblastoma (Rb)1-inducible dominant-negative (DN) mouse model.

    PubMed

    Tarang, Shikha; Doi, Songila M S R; Gurumurthy, Channabasavaiah B; Harms, Donald; Quadros, Rolen; Rocha-Sanchez, Sonia M

    2015-01-01

    Retinoblastoma 1 (Rb1) is an essential gene regulating cellular proliferation, differentiation, and homeostasis. To exert these functions, Rb1 is recruited and physically interacts with a growing variety of signaling pathways. While Rb1 does not appear to be ubiquitously expressed, its expression has been confirmed in a variety of hematopoietic and neuronal-derived cells, including the inner ear hair cells (HCs). Studies in transgenic mice demonstrate that complete germline or conditional Rb1 deletion leads to abnormal cell proliferation, followed by massive apoptosis; making it difficult to fully address Rb1's biochemical activities. To overcome these limitations, we developed a tetracycline-inducible TetO-CB-myc6-Rb1 (CBRb) mouse model to achieve transient and inducible dominant-negative (DN) inhibition of the endogenous RB1 protein. Our strategy involved fusing the Rb1 gene to the lysosomal protease pre-procathepsin B (CB), thus allowing for further routing of the DN-CBRb fusion protein and its interacting complexes for proteolytic degradation. Moreover, reversibility of the system is achieved upon suppression of doxycycline (Dox) administration. Preliminary characterization of DN-CBRb mice bred to a ubiquitous rtTA mouse line demonstrated a significant inhibition of the endogenous RB1 protein in the inner ear and in a number of other organs where RB1 is expressed. Examination of the postnatal (P) DN-CBRb mice inner ear at P10 and P28 showed the presence of supernumerary inner HCs (IHCs) in the lower turns of the cochleae, which corresponds to the described expression domain of the endogenous Rb1 gene. Selective and reversible suppression of gene expression is both an experimental tool for defining function and a potential means to medical therapy. Given the limitations associated with Rb1-null mice lethality, this model provides a valuable resource for understanding RB1 activity, relative contribution to HC regeneration and its potential therapeutic application.

  12. Diet-induced obesity and kidney disease - In search of a susceptible mouse model.

    PubMed

    Wicks, Shawna E; Nguyen, Trang-Tiffany; Breaux, Chelsea; Kruger, Claudia; Stadler, Krisztian

    2016-05-01

    Obesity and metabolic syndrome are independent risk factors for chronic kidney disease, even without diabetes or hyperglycemia. Here, we compare two mouse models that are susceptible to diet-induced obesity: the relatively renal injury resistant C57BL/6J strain and the DBA2/J strain which is more sensitive to renal injury. Our studies focused on characterizing the effects of high fat diet feeding on renal oxidative stress, albuminuria, fibrosis and podocyte loss/insulin resistance. While the C57BL/6J strain does not develop significant pathological changes in the kidney, at least on lard based diets within the time frame investigated, it does show increased renal iNOS and nitrotyrosine levels and elevated mitochondrial respiration which may be indicative of mitochondrial lipid overfueling. Restricting the high fat diet to decrease adiposity decreased the levels of cellular oxidative stress markers, indicating that adiposity-related proinflammatory changes such as increased iNOS levels may trigger similar responses in the kidney. Mitochondrial respiration remained higher, suggesting that eating excess lipids, despite normal adiposity may still lead to renal mitochondrial overfueling. In comparison, DBA/2J mice developed albuminuria on similar diets, signs of fibrosis, oxidative stress, early signs of podocyte loss (evaluated by the markers podocin and WT-1) and podocyte insulin resistance (unable to phosphorylate their glomerular Akt when insulin was given). To summarize, while the C57BL/6J strain is not particularly susceptible to renal disease, changes in its mitochondrial lipid handling combined with the easy availability of transgenic technology may be an advantage to design new knockout models related to mitochondrial lipid metabolism. The DBA/2J model could serve as a basis for studying podocyte insulin resistance and identifying early renal markers in obesity before more severe kidney disease develops. Based on our observations, we encourage further critical

  13. Early biomarkers of doxorubicin-induced heart injury in a mouse model

    SciTech Connect

    Desai, Varsha G.; Kwekel, Joshua C.; Vijay, Vikrant; Moland, Carrie L.; Herman, Eugene H.; Lee, Taewon; Han, Tao; Lewis, Sherry M.; Davis, Kelly J.; Muskhelishvili, Levan; Kerr, Susan; Fuscoe, James C.

    2014-12-01

    Cardiac troponins, which are used as myocardial injury markers, are released in plasma only after tissue damage has occurred. Therefore, there is a need for identification of biomarkers of earlier events in cardiac injury to limit the extent of damage. To accomplish this, expression profiling of 1179 unique microRNAs (miRNAs) was performed in a chronic cardiotoxicity mouse model developed in our laboratory. Male B6C3F{sub 1} mice were injected intravenously with 3 mg/kg doxorubicin (DOX; an anti-cancer drug), or saline once a week for 2, 3, 4, 6, and 8 weeks, resulting in cumulative DOX doses of 6, 9, 12, 18, and 24 mg/kg, respectively. Mice were euthanized a week after the last dose. Cardiac injury was evidenced in mice exposed to 18 mg/kg and higher cumulative DOX dose whereas examination of hearts by light microscopy revealed cardiac lesions at 24 mg/kg DOX. Also, 24 miRNAs were differentially expressed in mouse hearts, with the expression of 1, 1, 2, 8, and 21 miRNAs altered at 6, 9, 12, 18, and 24 mg/kg DOX, respectively. A pro-apoptotic miR-34a was the only miRNA that was up-regulated at all cumulative DOX doses and showed a significant dose-related response. Up-regulation of miR-34a at 6 mg/kg DOX may suggest apoptosis as an early molecular change in the hearts of DOX-treated mice. At 12 mg/kg DOX, up-regulation of miR-34a was associated with down-regulation of hypertrophy-related miR-150; changes observed before cardiac injury. These findings may lead to the development of biomarkers of earlier events in DOX-induced cardiotoxicity that occur before the release of cardiac troponins. - Highlights: • Upregulation of miR-34a before doxorubicin-induced cardiac tissue injury • Apoptosis might be an early event in mouse heart during doxorubicin treatment. • Expression of miR-150 declined before doxorubicin-induced cardiac tissue injury.

  14. Splenocyte proliferation and anaphylaxis induced by BSA challenge in a D-galactose-induced aging mouse model

    PubMed Central

    Park, Ji-Hun

    2016-01-01

    We previously found a cross-reactive autoantibody that bound to bovine serum albumin generated in a D-galactose-induced aging mouse model. Also, we confirmed that other reducing sugars (glucose and fructose) could induce the formation of autoantibody, and only following subcutaneous injection, not oral or intraperitoneal administration. Mice that had never been exposed to bovine serum albumin produced an anti-bovine serum albumin autoantibody following repeated subcutaneous injection of D-galactose (D-gal). In this study, we investigated the involvement of the adaptive immune system in the production of this autoantibody. In particular, we examined bovine serum albumin-induced splenocyte proliferation and bovine serum albumin-induced active cutaneous and systemic anaphylaxis in D-gal-treated mice. We find our results particularly interesting: bovine serum albumin stimulates splenocyte proliferation and induces both active cutaneous and systemic anaphylaxis in D-gal-treated mice. In summary, our results suggest that adaptive immune response participates in the autoantibody formation against bovine serum albumin in D-gal-treated mice. PMID:27833452

  15. Influence of stimulant-induced hyperactivity on social approach in the BTBR mouse model of autism.

    PubMed

    Silverman, Jill L; Babineau, Brooke A; Oliver, Chicora F; Karras, Michael N; Crawley, Jacqueline N

    2013-05-01

    Translational research is needed to discover pharmacological targets and treatments for the diagnostic behavioral domains of autism spectrum disorders. Animal models with phenotypic relevance to diagnostic criteria offer clear experimental strategies to test the efficacy and safety of novel treatments. Antagonists of mGluR5 receptors are in clinical trials for Fragile X syndrome and under investigation for the treatment of autism spectrum disorders. However, in preclinical studies of mGluR5 compounds tested in our laboratory and others, increased locomotion following mGluR5 modulation has been observed. Understanding the influence of general activity on sociability and repetitive behaviors will increase the accuracy of interpretations of positive outcomes measured from pharmacological treatment that produces locomotor activating or sedating effects. In the present studies, dose-response curves for d-amphetamine (AMPH)-induced hyperlocomotion were similar in standard B6 mice and in the BTBR mouse model of autism. AMPH produced significant, robust reductions in the high level of repetitive self-grooming that characterizes BTBR, and also reduced the low baseline grooming in B6, indicating that AMPH-induced hyperlocomotion competes with time spent engaged in self-grooming. We then tested AMPH in B6 and BTBR on the 3-chambered social approach task. One component of sociability, the time spent in the chamber with the novel mouse, in B6 mice was reduced, while the sniffing time component of sociability in BTBR mice was enhanced. This finding replicated across multiple cohorts treated with AMPH and saline vehicle. In-depth analysis revealed that AMPH increased the number and decreased the duration of sniffing bouts in BTBR, suggesting BTBR treated with AMPH mostly engaged in brief sniffs rather than true social interactions with the novel mouse during the social approach task. Our data suggest that compounds with stimulant properties may have some direct benefits on

  16. Proteomic profiling of the hypothalamus in a mouse model of cancer-induced anorexia-cachexia

    PubMed Central

    Ihnatko, R; Post, C; Blomqvist, A

    2013-01-01

    Background: Anorexia-cachexia is a common and severe cancer-related complication but the underlying mechanisms are largely unknown. Here, using a mouse model for tumour-induced anorexia-cachexia, we screened for proteins that are differentially expressed in the hypothalamus, the brain's metabolic control centre. Methods: The hypothalamus of tumour-bearing mice with implanted methylcholanthrene-induced sarcoma (MCG 101) displaying anorexia and their sham-implanted pair-fed or free-fed littermates was examined using two-dimensional electrophoresis (2-DE)-based comparative proteomics. Differentially expressed proteins were identified by liquid chromatography-tandem mass spectrometry. Results: The 2-DE data showed an increased expression of dynamin 1, hexokinase, pyruvate carboxylase, oxoglutarate dehydrogenase, and N-ethylmaleimide-sensitive factor in tumour-bearing mice, whereas heat-shock 70 kDa cognate protein, selenium-binding protein 1, and guanine nucleotide-binding protein Gα0 were downregulated. The expression of several of the identified proteins was similarly altered also in the caloric-restricted pair-fed mice, suggesting an involvement of these proteins in brain metabolic adaptation to restricted nutrient availability. However, the expression of dynamin 1, which is required for receptor internalisation, and of hexokinase, and pyruvate carboxylase were specifically changed in tumour-bearing mice with anorexia. Conclusion: The identified differentially expressed proteins may be new candidate molecules involved in the pathophysiology of tumour-induced anorexia-cachexia. PMID:24002602

  17. Efficacy of Kaempferia parviflora in a mouse model of obesity-induced dermatopathy.

    PubMed

    Hidaka, Moeko; Horikawa, Kazumasa; Akase, Tomoko; Makihara, Hiroko; Ogami, Takatoshi; Tomozawa, Hiroshi; Tsubata, Masahito; Ibuki, Ai; Matsumoto, Yutaka

    2017-01-01

    Obesity results from excessive energy intake and physical inactivity, and predisposes one to various diseases. One of these reasons is that enlargement of adipocytes raises the lipid metabolic abnormalities that affect various organs. The skin is one such organ, and it has been reported that subcutaneous adipocyte cells secrete various factors and these factors are involved in reduction of dermal collagen fibers and fragility of the skin in obesity. The present study explored the efficacy of Kaempferia parviflora (KP) in preventing obesity-induced dermatopathy. We used Tsumura Suzuki obese diabetes (TSOD) mice as an obesity model. TSOD mice were fed a standard diet (MF) mixed with either an ethanol extract from KP (KPE), polymethoxyflavonoid-rich extract from KP (PMF), or polymethoxyflavonoid-poor extract from KP (X). We then evaluated the effect of these three KP fractions on aging-like skin damage induced by UVB irradiation. KPE and PMF caused a significant decrease of mouse body weight, and suppressed the increase in the thickness of the subcutaneous fat layer. In addition, KPE shifted the frequency of subcutaneous adipocyte sizes towards smaller cells possibly via its polypharmacological actions. Scanning electron microscopy revealed that the stereostructure of the collagenous fibers in the dermis was better retained in the KPE and PMF groups, in that order. These results offer the first evidence that KPE can attenuate obesity-induced dermatopathy more effectively than PMF, suggesting that KPE (or KP) might be a candidate supplement for preventing obesity-related skin disorders.

  18. Time course pathogenesis of sulphur mustard-induced skin lesions in mouse model.

    PubMed

    Lomash, Vinay; Jadhav, Sunil E; Vijayaraghavan, Rajagopalan; Pant, Satish C

    2013-08-01

    Sulphur mustard (SM) is a bifunctional alkylating agent that causes cutaneous blistering in humans and animals. In this study, we have presented closer views on pathogenesis of SM-induced skin injury in a mouse model. SM diluted in acetone was applied once dermally at a dose of 5 or 10 mg/kg to Swiss albino mice. Skin was dissected out at 0, 1, 3, 6, 12, 24, 48, 72 and 168 hours, post-SM exposure for studying histopathological changes and immunohistochemistry of inflammatory-reparative biomarkers, namely, transforming growth factor alpha (TGF-α), fibroblast growth factor (FGF), endothelial nitric oxide synthase (eNOS) and interlukin 6 (IL-6). Histopathological changes were similar to other mammalian species and basal cell damage resembled the histopathological signs observed with vesication in human skin. Inflammatory cell recruitment at the site of injury was supported by differential expressions of IL-6 at various stages. Time-dependent expressions of eNOS played pivotal roles in all the events of wound healing of SM-induced skin lesions. TGF-α and FGF were strongly associated with keratinocyte migration, re-epithelialisation, angiogenesis, fibroblast proliferation and cell differentiation. Furthermore, quantification of the tissue leukocytosis and DNA damage along with semiquantitative estimation of re-epithelialisation, fibroplasia and neovascularisation on histomorphologic scale could be efficiently used for screening the efficacy of orphan drugs against SM-induced skin injury. © 2012 The Authors. International Wound Journal © 2012 John Wiley & Sons Ltd and Medicalhelplines.com Inc.

  19. Oncogene-induced senescence and its evasion in a mouse model of thyroid neoplasia.

    PubMed

    Bellelli, Roberto; Vitagliano, Donata; Federico, Giorgia; Marotta, Pina; Tamburrino, Anna; Salerno, Paolo; Paciello, Orlando; Papparella, Serenella; Knauf, Jeffrey A; Fagin, James A; Refetoff, Samuel; Troncone, Giancarlo; Santoro, Massimo

    2017-06-23

    Here we describe a conditional doxycycline-dependent mouse model of RET/PTC3 (NCOA4-RET) oncogene-induced thyroid tumorigenesis. In these mice, after 10 days of doxycycline (dox) administration, RET/PTC3 expression induced mitogen activated protein kinase (MAPK) stimulation and a proliferative response which resulted in the formation of hyperplastic thyroid lesions. This was followed, after 2 months, by growth arrest accompanied by typical features of oncogene-induced senescence (OIS), including upregulation of p16INK4A and p21CIP, positivity at the Sudan black B, activation of the DNA damage response (DDR) markers γH2AX and pChk2 T68, and induction of p53 and p19ARF. After 5 months, about half of thyroid lesions escaped OIS and formed tumors that remained dependent on RET/PTC3 expression. This progression was accompanied by activation of AKT-FOXO1/3a pathway and increased serum TSH levels. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Longitudinal analysis of mammogenesis using a novel tetracycline-inducible mouse model and in vivo imaging.

    PubMed

    Creamer, Bradley A; Triplett, Aleata A; Wagner, Kay-Uwe

    2009-04-01

    We generated a novel mouse model, which expresses the tetracycline-inducible transactivator under the regulation of the endogenous whey acidic protein gene. Using a tet-responsive luciferase reporter transgene, we demonstrated that the Wap-rtTA knockin allele allows a tightly controlled temporal and spatial expression of transgenes in the mammary gland in a ligand-inducible manner. The longitudinal analysis of individual females throughout their reproductive cycles using in vivo bioluminescence imaging confirmed that the expression of the Wap-rtTA knockin allele is highly upregulated during lactation. However, the extent of the transcriptional activation of the targeted Wap locus is dependent on the suckling stimulus and milk retrieval. In addition, we used WAP-rtTA/TetO-H2B-GFP double-transgenic females to monitor the presence of GFP-labeled parity-induced mammary epithelial cells (PI-MECs) during the postlactational involution period. The study shows that, unlike their progeny in mammary epithelial transplants as reported previously, PI-MECs themselves may not belong to the long-term label-retaining epithelial subtype.

  1. Proteomic profiling of the hypothalamus in a mouse model of cancer-induced anorexia-cachexia.

    PubMed

    Ihnatko, R; Post, C; Blomqvist, A

    2013-10-01

    Anorexia-cachexia is a common and severe cancer-related complication but the underlying mechanisms are largely unknown. Here, using a mouse model for tumour-induced anorexia-cachexia, we screened for proteins that are differentially expressed in the hypothalamus, the brain's metabolic control centre. The hypothalamus of tumour-bearing mice with implanted methylcholanthrene-induced sarcoma (MCG 101) displaying anorexia and their sham-implanted pair-fed or free-fed littermates was examined using two-dimensional electrophoresis (2-DE)-based comparative proteomics. Differentially expressed proteins were identified by liquid chromatography-tandem mass spectrometry. The 2-DE data showed an increased expression of dynamin 1, hexokinase, pyruvate carboxylase, oxoglutarate dehydrogenase, and N-ethylmaleimide-sensitive factor in tumour-bearing mice, whereas heat-shock 70 kDa cognate protein, selenium-binding protein 1, and guanine nucleotide-binding protein Gα0 were downregulated. The expression of several of the identified proteins was similarly altered also in the caloric-restricted pair-fed mice, suggesting an involvement of these proteins in brain metabolic adaptation to restricted nutrient availability. However, the expression of dynamin 1, which is required for receptor internalisation, and of hexokinase, and pyruvate carboxylase were specifically changed in tumour-bearing mice with anorexia. The identified differentially expressed proteins may be new candidate molecules involved in the pathophysiology of tumour-induced anorexia-cachexia.

  2. Broad neuroprotective profile of nicotinamide in different mouse models of MPTP-induced parkinsonism.

    PubMed

    Anderson, D W; Bradbury, K A; Schneider, J S

    2008-08-01

    The factors contributing to substantia nigra pars compacta (SNc) dopamine (DA) neuron death and striatal DA depletion in Parkinson's disease (PD) are still poorly understood. However, mitochondrial dysfunction, cellular energy depletion and oxidative stress appear to play important roles in the pathogenesis of PD. In view of this, the current study examined the potential of nicotinamide, a form of the B-complex vitamin niacin, to protect against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced SNc cell loss and striatal DA depletion in two mouse MPTP models that respond differently to putative neuroprotective agents. Adult male C57Bl/6 mice received nicotinamide (125, 250 or 500 mg/kg i.p.) prior to either acute (four injections in 1 day at 2-h intervals) or sub-acute (two injections per day at 4-h intervals for 5 days) MPTP administration. Striatal DA levels, changes in numbers of tyrosine hydroxylase (TH)- and cresyl violet-stained cells in the SNc at 2 and 6 weeks following the last MPTP exposure were analyzed. Nicotinamide administration resulted in a dose-dependent sparing of striatal DA levels and SNc neurons in acute MPTP-treated animals. Only the highest dose of nicotinamide had similar effects in sub-acute MPTP-treated animals. At 6 weeks after MPTP exposure, there was some spontaneous recovery of striatal DA levels in both models: neuroprotective effects were still apparent in acute but not sub-acute MPTP-treated animals. These results show neuroprotective effects of nicotinamide in different mouse Parkinson models associated with different forms of cell death and suggest that nicotinamide may have broad neuroprotective potential in PD.

  3. Vibrio cholerae-Induced Inflammation in the Neonatal Mouse Cholera Model

    PubMed Central

    Bishop, Anne L.; Patimalla, Bharathi

    2014-01-01

    Vibrio cholerae is the causative agent of the acute diarrheal disease of cholera. Innate immune responses to V. cholerae are not a major cause of cholera pathology, which is characterized by severe, watery diarrhea induced by the action of cholera toxin. Innate responses may, however, contribute to resolution of infection and must be required to initiate adaptive responses after natural infection and oral vaccination. Here we investigated whether a well-established infant mouse model of cholera can be used to observe an innate immune response. We also used a vaccination model in which immunized dams protect their pups from infection through breast milk antibodies to investigate innate immune responses after V. cholerae infection for pups suckled by an immune dam. At the peak of infection, we observed neutrophil recruitment accompanied by induction of KC, macrophage inflammatory protein 2 (MIP-2), NOS-2, interleukin-6 (IL-6), and IL-17a. Pups suckled by an immunized dam did not mount this response. Accessory toxins RtxA and HlyA played no discernible role in neutrophil recruitment in a wild-type background. The innate response to V. cholerae deleted for cholera toxin-encoding phage (CTXϕ) and part of rtxA was significantly reduced, suggesting a role for CTXϕ-carried genes or for RtxA in the absence of cholera toxin (CTX). Two extracellular V. cholerae DNases were not required for neutrophil recruitment, but DNase-deficient V. cholerae caused more clouds of DNA in the intestinal lumen, which appeared to be neutrophil extracellular traps (NETs), suggesting that V. cholerae DNases combat NETs. Thus, the infant mouse model has hitherto unrecognized utility for interrogating innate responses to V. cholerae infection. PMID:24686062

  4. Vibrio cholerae-induced inflammation in the neonatal mouse cholera model.

    PubMed

    Bishop, Anne L; Patimalla, Bharathi; Camilli, Andrew

    2014-06-01

    Vibrio cholerae is the causative agent of the acute diarrheal disease of cholera. Innate immune responses to V. cholerae are not a major cause of cholera pathology, which is characterized by severe, watery diarrhea induced by the action of cholera toxin. Innate responses may, however, contribute to resolution of infection and must be required to initiate adaptive responses after natural infection and oral vaccination. Here we investigated whether a well-established infant mouse model of cholera can be used to observe an innate immune response. We also used a vaccination model in which immunized dams protect their pups from infection through breast milk antibodies to investigate innate immune responses after V. cholerae infection for pups suckled by an immune dam. At the peak of infection, we observed neutrophil recruitment accompanied by induction of KC, macrophage inflammatory protein 2 (MIP-2), NOS-2, interleukin-6 (IL-6), and IL-17a. Pups suckled by an immunized dam did not mount this response. Accessory toxins RtxA and HlyA played no discernible role in neutrophil recruitment in a wild-type background. The innate response to V. cholerae deleted for cholera toxin-encoding phage (CTX) and part of rtxA was significantly reduced, suggesting a role for CTX-carried genes or for RtxA in the absence of cholera toxin (CTX). Two extracellular V. cholerae DNases were not required for neutrophil recruitment, but DNase-deficient V. cholerae caused more clouds of DNA in the intestinal lumen, which appeared to be neutrophil extracellular traps (NETs), suggesting that V. cholerae DNases combat NETs. Thus, the infant mouse model has hitherto unrecognized utility for interrogating innate responses to V. cholerae infection.

  5. Hepcidin protects against lipopolysaccharide-induced liver injury in a mouse model of obstructive jaundice.

    PubMed

    Huang, Ying-Hsien; Yang, Ya-Ling; Tiao, Mao-Meng; Kuo, Ho-Chang; Huang, Li-Tung; Chuang, Jiin-Haur

    2012-06-01

    Obstructive jaundice (OJ) increases the risk of liver injury and sepsis, leading to increased mortality. Cholestatic liver injury is associated with a downregulation of hepcidin expression levels. In fact, hepcidin has an important antimicrobial effect, especially against Escherichia coli. It is unknown whether supplementing recombinant hepcidin is effective in alleviating cholestasis-induced liver injury and mortality in mice with superimposed sepsis. A mouse model of cholestasis was developed using extrahepatic bile duct ligation for 3 days. In addition, sepsis due to E. coli 0111:B4 lipopolysaccharide (LPS) was induced in the model. The serum levels of total bilirubin, AST, ALT, and LDH and the mRNA levels of IL-1β, TNF-α, and MCP-1 in the liver were significantly higher in the OJ mice receiving LPS than in the sham-operated mice receiving LPS. Compared to the OJ mice receiving LPS, the hepcidin-pretreated OJ mice receiving LPS showed a significant decrease in the above mentioned parameters, as well as a reversal in the downregulation of LC3B-II and upregulation of cleaved caspase-3; this, in turn, led to significantly decreased lethality in 24h. In conclusion, these results indicate that hepcidin pretreatment significantly reduced hepatic proinflammatory cytokine expression and liver injury, leading to reduced early lethality in OJ mice receiving LPS. Enhanced autophagy and reduced apoptosis may account for the protective effects of hepcidin.

  6. Evaluation of a novel mouse model of intracisternal strychnine-induced trigeminal allodynia.

    PubMed

    Lee, Il-Ok; Whitehead, Ryan A; Ries, Craig R; Schwarz, Stephan K W; Puil, Ernest; MacLeod, Bernard A

    2013-08-01

    Intractable neuropathic dynamic allodynia remains one of the major symptoms of human trigeminal neuropathy and is commonly accepted to be the most excruciatingly painful condition known to humankind. At present, a validated animal model of this disorder is necessary for efficient and effective development of novel drug treatments. Intracisternal strychnine in rats has been shown to result in localized trigeminal dynamic allodynia, thus representing a possible model of trigeminal neuralgia. The purpose of this study was to validate a mouse model of trigeminal glycinergic inhibitory dysfunction using established positive (carbamazepine epoxide) and negative (morphine) controls. The actions of conventional first-line treatment (carbamazepine epoxide [CBZe]) and clinically ineffective morphine were tested for trigeminal dynamic mechanical allodynia produced by intracisternal strychnine. In mice under halothane anesthesia, we injected either strychnine (0.3 μg), strychnine with CBZe (4 ng), or artificial cerebrospinal fluid (aCSF) intracisternally (i.c.). In a separate set of experiments, subcutaneous morphine (3 mg·kg(-1) sc) was injected with intracisternal strychnine. Dynamic mechanical allodynia was induced by stroking the fur with polyethylene (PE-10) tubing. The response of each mouse was rated to determine its allodynia score, and scores of each group were compared. In addition, in a separate dichotomous disequilibrium study, pairs of mice were injected with strychnine/saline, strychnine/strychnine-CBZe, or strychnine/strychnine-morphine. A blinded observer recorded which mouse of each pair had the greater global pain behaviour. Strychnine (i.c.) produced higher quantitative allodynia scores in the trigeminal distribution (mean 81.5%; 95% confidence interval [CI] 76.4 to 86.6) vs the aCSF group (mean 11.3%; 95% CI 8.1 to 14.4) (P < 0.0001). Carbamazepine epoxide (i.c.) completely abolished allodynia when co-injected with strychnine (mean 83.2%; 95% CI 78.1 to

  7. Neuroprotective effects of swimming training in a mouse model of Parkinson's disease induced by 6-hydroxydopamine.

    PubMed

    Goes, A T R; Souza, L C; Filho, C B; Del Fabbro, L; De Gomes, M G; Boeira, S P; Jesse, C R

    2014-01-03

    Parkinson's disease (PD) is characterized by progressive dopamine (DA) depletion in the striatum. Exercise has been shown to be a promising non-pharmacological approach to reduce the risk of neurodegeneration diseases. This study was designed to investigate the potential neuroprotective effect of swimming training (ST) in a mouse model of PD induced by 6-hydroxydopamine (6-OHDA) in mice. The present study demonstrated that a 4-week ST was effective in attenuating the following impairments resulting from 6-OHDA exposure: (i) depressive-like behavior in the tail suspension test; (ii) increase in the number of falls in the rotarod test; (iii) impairment on long-term memory in the object recognition test; (iv) increase of the reactive species and interleukin 1-beta (IL-1β) levels; (v) inhibition of the glutathione peroxidase (GPx) activity; (vi) rise of the glutathione reductase (GR) and glutathione S-transferase (GST) activities and vii) decrease of DA, homovanillic acid (HVA) and 3,4-dihydroxyphenylacetic acid (DOPAC) levels. The mechanisms involved in this study are the modulation of GPx, GR and GST activities as well as IL-1β level in a PD model induced by 6-OHDA, protecting against the decrease of DA, DOPAC and HVA levels in the striatum of mice. These findings reinforce that one of the effects induced by exercise on neurodegenerative disease, such as PD, is due to antioxidant and anti-inflammatory properties. We suggest that exercise attenuates cognitive and motor declines, depression, oxidative stress, and neuroinflammation induced by 6-OHDA supporting the hypothesis that exercise can be used as a non-pharmacological tool to reduce the symptoms of PD. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  8. Loki zupa (Luooukezupa) decoction reduced airway inflammation in an OVA-induced asthma mouse model.

    PubMed

    Wei, Ying; Abduwaki, Muhammadjan; Li, Mihui; Luo, Qingli; Sun, Jing; Lv, Yubao; Nurahmat, Mammat; Dong, Jingcheng

    2016-01-01

    Loki zupa (Luooukezupa) decoction, consisting of the roots of Hyssopuscuspidatus Boriss (Shenxiangcao) and Irishalophila Pall root (Yuanweigen), is commonly used in Uygur medicine to treat asthma. However, the mode of action of this material has yet to be elucidated. This study aims to investigate the effects of Loki zupa decoction on the airway inflammation of an ovalbumin (OVA)-induced asthma mouse model. Mice were divided into normal control (NC), asthma (A), high, medium and low doses of Loki zupa decoction (L 14.0, L 7.0, L 3.5), water extract (LW), n-butanol extract (LN), ethyl acetate extract (LE) and dexamethasone (DEX) groups. Antiasthmatic model was induced by OVA sensitization and challenged using BALB/c mice. Airway hyperresponsiveness (AHR) toward methacholine (Mch) was assessed using Buxco equipment. Lung inflammation was measured by hematoxylin and eosin staining and bronchoalveolar lavage fluid (BALF) cell count and classification. Inflammatory cytokines in BALF and serum were analyzed by Bio-Plex assay, and mRNA levels were investigated by qPCR analysis. The roots of H. Boriss (250 g) and I. Pall (250 g) were decocted, concentrated and diluted to 14.0, 7.0 and 3.5 g crude herb/kg body weight. The LW, LN and LE of the Loki zupa decoction were prepared and diluted to a dose equivalent to 7 g of crude herb/kg body weight. Loki zupa decoction and its extracts significantly attenuated the AHR towards Mch (all P < 0.05). Treatment with Loki zupa decoction and its extracts relieved the infiltration of inflammatory cells in and around the airways, and reduced the total white blood cell (all P < 0.05), neutrophil (all P < 0.05), monocyte (all P < 0.05) and eosinophil (all P < 0.05) counts in the BALF. The BALF samples collected from the mice treated with the Loki zupa decoction and its extracts had lower levels of IL-1β (all P < 0.05), TNF-α (all P < 0.05), IL-2 (all P < 0.05), IL-4 (P = 0.047) and IL-5 (all P < 0.05). The serum

  9. Increased susceptibility of estrogen-induced bladder outlet obstruction in a novel mouse model.

    PubMed

    Tam, Neville Ngai-Chung; Zhang, Xiang; Xiao, Hong; Song, Dan; Levin, Linda; Meller, Jarek; Ho, Shuk-Mei

    2015-05-01

    Disorders of the prostate and lower urinary tract are common in elderly men. We investigated the role of metallothionein-1 (MT1) in prostate carcinogenesis by generating a prostate-specific, MT1-expressing mouse. Unexpectedly, genomic analyses revealed that a 12.1-kb genomic region harboring several conserved noncoding elements was unintentionally deleted, upstream of the transgene integration site in the mouse, which we named it 12.1ΔMT1. Male 12.1ΔMT1 mice chronically treated with testosterone (T) plus 17β-estradiol (E2) to induce prostate cancer exhibited no evidence of precancerous or cancerous lesions. Instead, most of them exhibited a bladder outlet obstruction (BOO) phenotype not observed in treated wild-type (WT) mice. Thus, we hypothesized that 12.1ΔMT1 is a novel model for studying the hormonal requirement for BOO induction. Adult male 12.1ΔMT1 and WT mice were treated with T, E2, bisphenol A (BPA), T+E2, or T+BPA for up to 6 months. Histologic and immunohistochemical analysis of the prostate, bladder, and urethra were performed. No significant prostate pathologies were observed in WT or 12.1ΔMT1 mice treated with any of the hormone regimens. As expected, prostatic regression occurred in all E2-treated animals (WT and 12.1ΔMT1). Of great interest, despite a small prostate, 100% of E2-treated 12.1ΔMT1 mice, but only 40% of E2-treated WT mice, developed severe BOO (P<0.01). In contrast, T+E2 treatment was less effective than E2 treatment in inducing severe BOO in 12.1ΔMT1 mice (68%, P<0.05) and was completely ineffective in WT animals. Similarly, T, BPA, and T+BPA treatments did not induce BOO in either WT or 12.1ΔMT1 mice. The BOO pathology includes a thinner detrusor wall, narrowing of bladder neck and urethral lumen, and basal cell hyperplasia in the bladder body and urethra. These findings indicate that 12.1ΔMT1 mice exhibit enhanced susceptibility to E2-induced BOO that is independent of prostate enlargement but that is attenuated by the

  10. Mouse Models of Rheumatoid Arthritis.

    PubMed

    Caplazi, P; Baca, M; Barck, K; Carano, R A D; DeVoss, J; Lee, W P; Bolon, B; Diehl, L

    2015-09-01

    Rheumatoid arthritis (RA) is a chronic debilitating autoimmune disorder characterized by synovitis that leads to cartilage and bone erosion by invading fibrovascular tissue. Mouse models of RA recapitulate many features of the human disease. Despite the availability of medicines that are highly effective in many patient populations, autoimmune diseases (including RA) remain an area of active biomedical research, and consequently mouse models of RA are still extensively used for mechanistic studies and validation of therapeutic targets. This review aims to integrate morphologic features with model biology and cover the key characteristics of the most commonly used induced and spontaneous mouse models of RA. Induced models emphasized in this review include collagen-induced arthritis and antibody-induced arthritis. Collagen-induced arthritis is an example of an active immunization strategy, whereas antibody- induced arthritis models, such as collagen antibody-induced arthritis and K/BxN antibody transfer arthritis, represent examples of passive immunization strategies. The coverage of spontaneous models in this review is focused on the TNFΔ (ARE) mouse, in which arthritis results from overexpression of TNF-α, a master proinflammatory cytokine that drives disease in many patients.

  11. Amelioration of Chemotherapy-Induced Intestinal Mucositis by Orally Administered Probiotics in a Mouse Model

    PubMed Central

    Jiang, Chun-Bin; Cheng, Mei-Lien; Liu, Chia-Yuan; Chang, Szu-Wen; Chiang Chiau, Jen-Shiu; Lee, Hung-Chang

    2015-01-01

    Background and Aims Intestinal mucositis is a frequently encountered side effect in oncology patients undergoing chemotherapy. No well-established or up to date therapeutic strategies are available. To study a novel way to alleviate mucositis, we investigate the effects and safety of probiotic supplementation in ameliorating 5-FU-induced intestinal mucositis in a mouse model. Methods Seventy-two mice were injected saline or 5-Fluorouracil (5-FU) intraperitoneally daily. Mice were either orally administrated daily saline, probiotic suspension of Lactobacillus casei variety rhamnosus (Lcr35) or Lactobacillus acidophilus and Bifidobacterium bifidum (LaBi). Diarrhea score, pro-inflammatory cytokines serum levels, intestinal villus height and crypt depth and total RNA from tissue were assessed. Samples of blood, liver and spleen tissues were assessed for translocation. Results Marked diarrhea developed in the 5-FU groups but was attenuated after oral Lcr35 and LaBi administrations. Diarrhea scores decreased significantly from 2.64 to 1.45 and 0.80, respectively (P<0.001). Those mice in 5-FU groups had significantly higher proinflammatory cytokine levels (TNF-α: 234.80 vs. 29.10, P<0.001, IL-6: 25.13 vs. 7.43, P<0.001, IFN-γ: 22.07 vs. 17.06, P = 0.137). A repairing of damage in jejunal villi was observed following probiotics administration. We also found TNF-α, IL-1β and IL-6 mRNA expressions were up-regulated in intestinal mucositis tissues following 5-FU treatment (TNF-α: 4.35 vs. 1.18, IL-1β: 2.29 vs. 1.07, IL-6: 1.49 vs. 1.02) and that probiotics treatment suppressed this up-regulation (P<0.05). No bacterial translocation was found in this study. Conclusions In conclusion, our results show that oral administration of probiotics Lcr35 and LaBi can ameliorate chemotherapy-induced intestinal mucositis in a mouse model. This suggests probiotics may serve as an alternative therapeutic strategy for the prevention or management of chemotherapy-induced mucositis in

  12. Amelioration of Chemotherapy-Induced Intestinal Mucositis by Orally Administered Probiotics in a Mouse Model.

    PubMed

    Yeung, Chun-Yan; Chan, Wai-Tao; Jiang, Chun-Bin; Cheng, Mei-Lien; Liu, Chia-Yuan; Chang, Szu-Wen; Chiang Chiau, Jen-Shiu; Lee, Hung-Chang

    2015-01-01

    Intestinal mucositis is a frequently encountered side effect in oncology patients undergoing chemotherapy. No well-established or up to date therapeutic strategies are available. To study a novel way to alleviate mucositis, we investigate the effects and safety of probiotic supplementation in ameliorating 5-FU-induced intestinal mucositis in a mouse model. Seventy-two mice were injected saline or 5-Fluorouracil (5-FU) intraperitoneally daily. Mice were either orally administrated daily saline, probiotic suspension of Lactobacillus casei variety rhamnosus (Lcr35) or Lactobacillus acidophilus and Bifidobacterium bifidum (LaBi). Diarrhea score, pro-inflammatory cytokines serum levels, intestinal villus height and crypt depth and total RNA from tissue were assessed. Samples of blood, liver and spleen tissues were assessed for translocation. Marked diarrhea developed in the 5-FU groups but was attenuated after oral Lcr35 and LaBi administrations. Diarrhea scores decreased significantly from 2.64 to 1.45 and 0.80, respectively (P<0.001). Those mice in 5-FU groups had significantly higher proinflammatory cytokine levels (TNF-α: 234.80 vs. 29.10, P<0.001, IL-6: 25.13 vs. 7.43, P<0.001, IFN-γ: 22.07 vs. 17.06, P = 0.137). A repairing of damage in jejunal villi was observed following probiotics administration. We also found TNF-α, IL-1β and IL-6 mRNA expressions were up-regulated in intestinal mucositis tissues following 5-FU treatment (TNF-α: 4.35 vs. 1.18, IL-1β: 2.29 vs. 1.07, IL-6: 1.49 vs. 1.02) and that probiotics treatment suppressed this up-regulation (P<0.05). No bacterial translocation was found in this study. In conclusion, our results show that oral administration of probiotics Lcr35 and LaBi can ameliorate chemotherapy-induced intestinal mucositis in a mouse model. This suggests probiotics may serve as an alternative therapeutic strategy for the prevention or management of chemotherapy-induced mucositis in the future.

  13. ACE inhibition attenuates uremia-induced aortic valve thickening in a novel mouse model

    PubMed Central

    Simolin, Mikko A; Pedersen, Tanja X; Bro, Susanne; Mäyränpää, Mikko I; Helske, Satu; Nielsen, Lars B; Kovanen, Petri T

    2009-01-01

    Background We examined whether impaired renal function causes thickening of the aortic valve leaflets in hyperlipidemic apoE-knockout (apoE-/-) mice, and whether the putative effect on the aortic valves could be prevented by inhibiting the angiotensin-converting enzyme (ACE) with enalapril. Methods Thickening of the aortic valve leaflets in apoE-/- mice was induced by producing mild or moderate chronic renal failure resulting from unilateral nephrectomy (1/2 NX, n = 18) or subtotal nephrectomy (5/6 NX, n = 22), respectively. Additionally, the 5/6 NX mice were randomized to no treatment (n = 8) or enalapril treatment (n = 13). The maximal thickness of each leaflet was measured from histological sections of the aortic roots. Results Leaflet thickness was significantly greater in the 5/6 NX mice than in the 1/2 NX mice (P = 0.030) or the unoperated mice (P = 0.003). The 5/6 NX mice treated with enalapril had significantly thinner leaflets than did the untreated 5/6 NX mice (P = 0.014). Conclusion Moderate uremia causes thickening of the aortic valves in apoE-/- mice, which can be attenuated by ACE inhibition. The nephrectomized apoE-/- mouse constitutes a new model for investigating the mechanisms of uremia-induced aortic valve disease, and also provides an opportunity to study its pharmacologic prevention. PMID:19257900

  14. Unaltered Prion Pathogenesis in a Mouse Model of High-Fat Diet-Induced Insulin Resistance

    PubMed Central

    Zhu, Caihong; Schwarz, Petra; Abakumova, Irina; Aguzzi, Adriano

    2015-01-01

    Epidemiological, clinical, and experimental animal studies suggest a strong correlation between insulin resistance and Alzheimer’s disease. In fact, type-2 diabetes is considered an important risk factor of developing Alzheimer’s disease. In addition, impaired insulin signaling in the Alzheimer’s disease brain may promote Aβ production, impair Aβ clearance and induce tau hyperphosphorylation, thereby leading to deterioration of the disease. The pathological prion protein, PrPSc, deposits in the form of extracellular aggregates and leads to dementia, raising the question as to whether prion pathogenesis may also be affected by insulin resistance. We therefore established high-fat diet-induced insulin resistance in tga20 mice, which overexpress the prion protein. We then inoculated the insulin-resistant mice with prions. We found that insulin resistance in tga20 mice did not affect prion disease progression, PrPSc deposition, astrogliosis or microglial activation, and had no effect on survival. Our study demonstrates that in a mouse model, insulin resistance does not significantly contribute to prion pathogenesis. PMID:26658276

  15. Immune System Modifications Induced in a Mouse Model of Chronic Exposure to (90)Sr.

    PubMed

    Synhaeve, Nicholas; Musilli, Stefania; Stefani, Johanna; Nicolas, Nour; Delissen, Olivia; Dublineau, Isabelle; Bertho, Jean-Marc

    2016-03-01

    Strontium 90 ((90)Sr) remains in the environment long after a major nuclear disaster occurs. As a result, populations living on contaminated land are potentially exposed to daily ingesting of low quantities of (90)Sr. The potential long-term health effects of such chronic contamination are unknown. In this study, we used a mouse model to evaluate the effects of (90)Sr ingestion on the immune system, the animals were chronically exposed to (90)Sr in drinking water at a concentration of 20 kBq/l, for a daily ingestion of 80-100 Bq/day. This resulted in a reduced number of CD19(+) B lymphocytes in the bone marrow and spleen in steady-state conditions. In contrast, the results from a vaccine experiment performed as a functional test of the immune system showed that in response to T-dependent antigens, there was a reduction in IgG specific to tetanus toxin (TT), a balanced Th1/Th2 response inducer antigen, but not to keyhole limpet hemocyanin (KLH), a strong Th2 response inducer antigen. This was accompanied by a reduction in Th1 cells in the spleen, consistent with the observed reduction in specific IgG concentration. The precise mechanisms by which (90)Sr acts on the immune system remain to be elucidated. However, our results suggest that (90)Sr ingestion may be responsible for some of the reported effects of internal contamination on the immune system in civilian populations exposed to the Chernobyl fallout.

  16. Patrinia scabiosaefolia induces mitochondrial-dependent apoptosis in a mouse model of colorectal cancer.

    PubMed

    Liu, Liya; Shen, Aling; Chen, Youqin; Wei, Lihui; Lin, Jiumao; Sferra, Thomas J; Hong, Zhenfeng; Peng, Jun

    2013-08-01

    Disrupted apoptosis not only confers a survival advantage to cancer cells but also causes resistance to chemotherapies. Therefore, inducing cell apoptosis has become a promising strategy for anticancer treatment. Patrinia scabiosaefolia (PS) has long been used to clinically treat various types of malignancies including colorectal cancer (CRC). However, the precise mechanism of its tumoricidal activity remains largely unclear. Using a CRC mouse xenograft model and a human colon carcinoma cell line, HT-29, in the present study, we evaluated the antitumor activities of an ethanol extract of Patrinia scabiosaefolia (EEPS), and investigated the underlying molecular mechanisms. We found that EEPS inhibited CRC growth both in vivo and in vitro, without apparent adverse side-effects. Moreover, EEPS treatment promoted apoptosis in CRC tumor tissues and in HT-29 cells, suggesting that the inhibitory effect of EEPS on tumor growth was due to its pro-apoptotic activity. Furthermore, EEPS treatment inhibited the expression of anti-apoptotic Bcl-2 but enhanced pro-apoptotic Bax expression at both transcriptional and translational levels. Finally, EEPS induced the loss of mitochondrial membrane potential and activation of caspase-9 and -3 in HT-29 cells. Taken together, data in this study suggest that induction of cancer cell apoptosis via the mitochondrial-dependent pathway may be one of the mechanisms whereby PS exerts anticancer activity.

  17. Acupuncture inhibits microglial activation and inflammatory events in the MPTP-induced mouse model.

    PubMed

    Kang, Jun Mo; Park, Hi Joon; Choi, Yeong Gon; Choe, Il Hwan; Park, Jae Hyun; Kim, Yong Sik; Lim, Sabina

    2007-02-02

    Using a mouse model of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease (PD), this study investigated on the neuroprotective effects of acupuncture by examining whether acupuncture contributed to inhibiting microglial activation and inflammatory events. C57BL/6 mice were treated with MPTP (30 mg/kg, i.p.) for 5 consecutive days. Acupuncture was then applied to acupoints Yanglingquan (GB34) and Taichong (LR3) starting 2 h after the first MPTP administration and then at 48 h intervals until the mice were sacrificed for analyses at 1, 3, and 7 days after the last MPTP injection. These experiments demonstrated that acupuncture inhibited the decreased of the tyrosine hydroxylase (TH) immunoreactivity (IR) and generated a neuroprotective effects in the striatum (ST) and the substantia nigra (SN) on days 1, 3, and 7 post-MPTP injections. Acupuncture attenuated the increase of macrophage antigen complex-1 (MAC-1), a marker of microglial activation, at 1 and 3 days and reduced the increases in cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expression on days 1, 3, and 7. In MPTP group, striatal dopamine (DA) was measured by 46% at 7 days, whereas DA in the acupuncture group was 78%. On the basis of these results, we suggest that acupuncture could be used as a neuroprotective intervention for the purpose of inhibiting microglial activation and inflammatory events in PD.

  18. Interleukin-12 inhibits pathological neovascularization in mouse model of oxygen-induced retinopathy

    PubMed Central

    Zhou, Yedi; Yoshida, Shigeo; Kubo, Yuki; Kobayashi, Yoshiyuki; Nakama, Takahito; Yamaguchi, Muneo; Ishikawa, Keijiro; Nakao, Shintaro; Ikeda, Yasuhiro; Ishibashi, Tatsuro; Sonoda, Koh-Hei

    2016-01-01

    Hypoxia-induced retinal neovascularization is a major pathological condition in many vision-threatening diseases. In the present study, we determined whether interleukin (IL)-12, a cytokine that regulates angiogenesis, plays a role in the neovascularization in a mouse model of oxygen-induced retinopathy (OIR). We found that the expressions of the mRNAs of both IL-12p35 and IL-12p40 were significantly reduced in the OIR retinas compared to that of the room air-raised control. The sizes of the avascular areas and neovascular tufts were larger in IL-12p40 knock-out (KO) mice than that in wild type (WT) mice. In addition, an intravitreal injection of recombinant IL-12 reduced both avascular areas and neovascular tufts. IL-12 injection enhanced the expressions of interferon-gamma (IFN-γ) and other downstream chemokines. In an in vitro system, IL-12 had no significant effect on tube formation of human retinal microvascular endothelial cells (HRECs). Moreover, a blockade of IFN-γ suppressed the inhibitory effect of IL-12 on pathological neovascularization. These results suggest that IL-12 plays important roles in inhibiting pathological retinal neovascularization. PMID:27312090

  19. Mouse model of Bell's palsy induced by reactivation of herpes simplex virus type 1.

    PubMed

    Takahashi, H; Hitsumoto, Y; Honda, N; Hato, N; Mizobuchi, M; Murakami, S; Kisaki, H; Wakisaka, H; Gyo, K

    2001-06-01

    In order to investigate the mechanism of Bell's palsy, we developed an animal model of facial nerve paralysis induced by the reactivation of herpes simplex virus type 1 (HSV-1). Eight weeks after recovery from facial nerve paralysis caused by inoculation with HSV-1, the mice were treated with auricular skin scratch at the site of the previous inoculation, or with intraperitoneal injection of anti-CD3 monoclonal antibody (mAb), or combination of both procedures. No mice developed facial nerve paralysis when they were treated with either auricular scratch or mAb injection alone. In contrast, 20% of mice developed facial nerve paralysis with the combined treatment. With one exception, no mouse treated with either auricular scratch or mAb injection showed HSV-I DNA in their facial nerve tissue, whereas 4 out of 6 mice receiving both treatments showed HSV-1 DNA on day 10 after treatment. Histopathological findings showed neuronal degeneration in the geniculate ganglion and demyelination of the facial motor nerve in paralyzed mice. These findings suggest that a combination of stimuli, local skin irritation, and general immunosuppression is essential for successfully inducing facial nerve paralysis in mice with latent HSV-1 infection.

  20. Cold stress aggravates inflammatory responses in an LPS-induced mouse model of acute lung injury

    NASA Astrophysics Data System (ADS)

    Joo, Su-Yeon; Park, Mi-Ju; Kim, Kyun-Ha; Choi, Hee-Jung; Chung, Tae-Wook; Kim, Yong Jin; Kim, Joung Hee; Kim, Keuk-Jun; Joo, Myungsoo; Ha, Ki-Tae

    2016-08-01

    Although the relationship between environmental cold temperature and susceptibility to respiratory infection is generally accepted, the effect of ambient cold temperature on host reactivity in lung inflammation has not been fully studied. To examine the function of ambient cold temperature on lung inflammation, mice were exposed to 4 °C for 8 h each day for 14 days. In the lungs of mice exposed to cold stress, inflammatory cells in bronchoalveolar lavage (BAL) fluid and lung tissues were slightly increased by about twofold. However, the structures of pulmonary epithelial cells were kept within normal limits. Next, we examined the effect of cold stress on the inflammatory responses in a lipopolysaccharide (LPS)-induced acute lung injury (ALI) mouse model. The infiltration of neutrophils and inflammation of lung tissue determined by histology were significantly increased by exposure to ambient cold temperature. In addition, the production of pro-inflammatory cytokines including interleukin (IL)-12, IL-17, and monokine induced by gamma interferon (MIG) was elevated by exposure to cold stress. Therefore, we suggest that cold stress is a factor that exacerbates lung inflammation including ALI. To our knowledge, this is the first report on the relationship between cold stress and severity of lung inflammation.

  1. Baicalin Attenuates IL-17-Mediated Acetaminophen-Induced Liver Injury in a Mouse Model

    PubMed Central

    Liao, Chia-Chih; Day, Yuan-Ji; Lee, Hung-Chen; Liou, Jiin-Tarng; Chou, An-Hsun; Liu, Fu-Chao

    2016-01-01

    Background IL-17 has been shown to be involved in liver inflammatory disorders in both mice and humans. Baicalin (BA), a major compound extracted from traditional herb medicine (Scutellariae radix), has potent hepatoprotective properties. Previous study showed that BA inhibits IL-17-mediated lymphocyte adhesion and downregulates joint inflammation. The aim of this study is to investigate the role of IL-17 in the hepatoprotective effects of BA in an acetaminophen (APAP)-induced liver injury mouse model. Methods Eight weeks male C57BL/6 (B6) mice were used for this study. Mice received intraperitoneal hepatotoxic injection of APAP (300 mg/kg) and after 30 min of injection, the mice were treated with BA at a concentration of 30 mg/kg. After 16 h of treatment, mice were killed. Blood samples and liver tissues were harvested for analysis of liver injury parameters. Results APAP overdose significantly increased the serum alanine transferase (ALT) levels, hepatic activities of myeloperoxidase (MPO), expression of cytokines (TNF-α, IL-6, and IL-17), and malondialdehyde (MDA) activity when compared with the control animals. BA treatment after APAP administration significantly attenuated the elevation of these parameters in APAP-induced liver injury mice. Furthermore, BA treatment could also decrease hepatic IL-17-producing γδT cells recruitment, which was induced after APAP overdose. Conclusion Our data suggested that baicalin treatment could effectively decrease APAP-induced liver injury in part through attenuation of hepatic IL-17 expression. These results indicate that baicalin is a potential hepatoprotective agent. PMID:27855209

  2. Celastrol suppresses allergen-induced airway inflammation in a mouse allergic asthma model.

    PubMed

    Kim, Dae Yong; Park, Jung Won; Jeoung, Dooil; Ro, Jai Youl

    2009-06-10

    Celastrol has anti-inflammatory and immunomodulatory activities, but its anti-allergic effects remain poorly understood. Therefore, we aimed to investigate the ability of celastrol to inhibit asthmatic reactions in a mouse allergic asthma model. BALB/c mice were sensitized and challenged with ovalbumin to induce asthma. We measured the recruitment of inflammatory cells into the bronchoalveolar lavage fluid or lung tissues by Diff-Quik and hematoxylin and eosin staining, respectively, goblet cell hyperplasia by periodic acid-Schiff (PAS) staining, airway hyperresponsiveness by Flexvent system, mRNA and protein expression of cytokines, matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases (TIMPs) by reverse transcriptase polymerase chain reaction and ELISA, respectively, and the activities of mitogen-activated protein (MAP) kinases and nuclear factor-kappa B (NF-kappaB) in the bronchoalveolar lavage cells and lung tissues by Western blot and electrophoretic mobility shift assay (EMSA), respectively. Celastrol reduced the total number of inflammatory cells in the bronchoalveolar lavage fluid and in peribronchial areas, and decreased the airway hyperresponsiveness, mRNA and protein expression levels for inflammatory cytokines such as interleukin (IL)-4, IL-13, TNF-alpha and IFN-gamma, and for MMPs and TIMPs, MAP kinases and NF-kappaB activities in the bronchoalveolar lavage cells and in the lung tissues increased in ovalbumin-induced allergic asthma in mice. Our data suggest that oral administration of celastrol suppresses ovalbumin-induced airway inflammation, hyperresponsiveness, and tissue remodeling by regulating the imbalance of MMP-2/-9 and TIMP-1/-2 by inflammatory cytokines via MAP kinases/NF-kappaB in inflammatory cells. Based on our findings, we suggest that celastrol may be used as a therapeutic agent for allergy-induced asthma.

  3. Generation of a tamoxifen inducible Tnnt2MerCreMer knock-in mouse model for cardiac studies.

    PubMed

    Yan, Jianyun; Sultana, Nishat; Zhang, Lu; Park, David S; Shekhar, Akshay; Hu, Jun; Bu, Lei; Cai, Chen-Leng

    2015-06-01

    Tnnt2, encoding thin-filament sarcomeric protein cardiac troponin T, plays critical roles in heart development and function in mammals. To develop an inducible genetic deletion strategy in myocardial cells, we generated a new Tnnt2:MerCreMer (Tnnt2(MerCreMer/+)) knock-in mouse. Rosa26 reporter lines were used to examine the specificity and efficiency of the inducible Cre recombinase. We found that Cre was specifically and robustly expressed in the cardiomyocytes at embryonic and adult stages following tamoxifen induction. The knock-in allele on Tnnt2 locus does not impact cardiac function. These results suggest that this new Tnnt2(MerCreMer/+) mouse could be applied towards the temporal genetic deletion of genes of interests in cardiomyocytes with Cre-LoxP technology. The Tnnt2(MerCreMer/+) mouse model also provides a useful tool to trace myocardial lineage during development and repair after cardiac injury.

  4. Effects of model inducers on thyroxine UDP-glucuronosyl-transferase activity in vitro in rat and mouse hepatocyte cultures.

    PubMed

    Viollon-Abadie, C; Bigot-Lasserre, D; Nicod, L; Carmichael, N; Richert, L

    2000-12-01

    Thyroxine (T(4))-UDP-glucuronosyltransferase (UGT) activity was measured directly in cultured male Sprague-Dawley rat and OF-1 mouse hepatocyte monolayers. The activity of T(4)-UGT (pmol/min/g liver) in vitro in hepatocyte cultures was, after 24 hr in culture, equivalent to that previously measured in vivo in rat and mouse liver microsomes (Viollon-Abadie et al., 1999). A progressive decline in T(4)-UGT activity occurred over time in both rat and mouse hepatocyte cultures. Treatment of cultures with various model inducers such as phenobarbital (PB), beta-naphthoflavone (NF) and clofibric acid (CLO) induced a strong increase in T(4)-UGT activity in rat hepatocyte monolayers. In addition, and as expected from available in vivo data, treatment of rat hepatocyte cultures with NF also increased p-nitrophenol (PNP)-UGT activity and treatment with PB or CLO increased bilirubin (Bili)-UGT activity. In contrast, T(4)-UGT activity in mouse hepatocyte monolayers was not affected by the treatments, neither were PNP- and Bili- UGT activities. These in vitro data confirm our previous in vivo observations that these inducers increase rat but not mouse liver T(4)-UGT activities (Viollon-Abadie et al., 1999). The present study thus demonstrates that hepatocyte monolayers are appropriated for the evaluation and inter-species comparison of the effects of xenobiotics on T(4)-UGT activities.

  5. Alterations of lung microbiota in a mouse model of LPS-induced lung injury

    PubMed Central

    Meng, Fanyong; Meliton, Angelo; Afonyushkin, Taras; Ulanov, Alexander; Semenyuk, Ekaterina; Latif, Omar; Tesic, Vera; Birukova, Anna A.; Birukov, Konstantin G.

    2015-01-01

    Acute lung injury (ALI) and the more severe acute respiratory distress syndrome are common responses to a variety of infectious and noninfectious insults. We used a mouse model of ALI induced by intratracheal administration of sterile bacterial wall lipopolysaccharide (LPS) to investigate the changes in innate lung microbiota and study microbial community reaction to lung inflammation and barrier dysfunction induced by endotoxin insult. One group of C57BL/6J mice received LPS via intratracheal injection (n = 6), and another received sterile water (n = 7). Bronchoalveolar lavage (BAL) was performed at 72 h after treatment. Bacterial DNA was extracted and used for qPCR and 16S rRNA gene-tag (V3–V4) sequencing (Illumina). The bacterial load in BAL from ALI mice was increased fivefold (P = 0.03). The community complexity remained unchanged (Simpson index, P = 0.7); the Shannon diversity index indicated the increase of community evenness in response to ALI (P = 0.07). Principal coordinate analysis and analysis of similarity (ANOSIM) test (P = 0.005) revealed a significant difference between microbiota of control and ALI groups. Bacteria from families Xanthomonadaceae and Brucellaceae increased their abundance in the ALI group as determined by Metastats test (P < 0.02). In concordance with the 16s-tag data, Stenotrohomonas maltophilia (Xanthomonadaceae) and Ochrobactrum anthropi (Brucellaceae) were isolated from lungs of mice from both groups. Metabolic profiling of BAL detected the presence of bacterial substrates suitable for both isolates. Additionally, microbiota from LPS-treated mice intensified IL-6-induced lung inflammation in naive mice. We conclude that the morbid transformation of ALI microbiota was attributed to the set of inborn opportunistic pathogens thriving in the environment of inflamed lung, rather than the external infectious agents. PMID:25957290

  6. Alterations of lung microbiota in a mouse model of LPS-induced lung injury.

    PubMed

    Poroyko, Valeriy; Meng, Fanyong; Meliton, Angelo; Afonyushkin, Taras; Ulanov, Alexander; Semenyuk, Ekaterina; Latif, Omar; Tesic, Vera; Birukova, Anna A; Birukov, Konstantin G

    2015-07-01

    Acute lung injury (ALI) and the more severe acute respiratory distress syndrome are common responses to a variety of infectious and noninfectious insults. We used a mouse model of ALI induced by intratracheal administration of sterile bacterial wall lipopolysaccharide (LPS) to investigate the changes in innate lung microbiota and study microbial community reaction to lung inflammation and barrier dysfunction induced by endotoxin insult. One group of C57BL/6J mice received LPS via intratracheal injection (n = 6), and another received sterile water (n = 7). Bronchoalveolar lavage (BAL) was performed at 72 h after treatment. Bacterial DNA was extracted and used for qPCR and 16S rRNA gene-tag (V3-V4) sequencing (Illumina). The bacterial load in BAL from ALI mice was increased fivefold (P = 0.03). The community complexity remained unchanged (Simpson index, P = 0.7); the Shannon diversity index indicated the increase of community evenness in response to ALI (P = 0.07). Principal coordinate analysis and analysis of similarity (ANOSIM) test (P = 0.005) revealed a significant difference between microbiota of control and ALI groups. Bacteria from families Xanthomonadaceae and Brucellaceae increased their abundance in the ALI group as determined by Metastats test (P < 0.02). In concordance with the 16s-tag data, Stenotrohomonas maltophilia (Xanthomonadaceae) and Ochrobactrum anthropi (Brucellaceae) were isolated from lungs of mice from both groups. Metabolic profiling of BAL detected the presence of bacterial substrates suitable for both isolates. Additionally, microbiota from LPS-treated mice intensified IL-6-induced lung inflammation in naive mice. We conclude that the morbid transformation of ALI microbiota was attributed to the set of inborn opportunistic pathogens thriving in the environment of inflamed lung, rather than the external infectious agents.

  7. An estrogen-induced endometrial hyperplasia mouse model recapitulating human disease progression and genetic aberrations.

    PubMed

    Yang, Chieh-Hsiang; Almomen, Aliyah; Wee, Yin Shen; Jarboe, Elke A; Peterson, C Matthew; Janát-Amsbury, Margit M

    2015-07-01

    Endometrial hyperplasia (EH) is a condition originating from uterine endometrial glands undergoing disordered proliferation including the risk to progress to endometrial adenocarcinoma. In recent years, a steady increase in EH cases among younger women of reproductive age accentuates the demand of therapeutic alternatives, which emphasizes that an improved disease model for therapeutic agents evaluation is concurrently desired. Here, a new hormone-induced EH mouse model was developed using a subcutaneous estradiol (E2)-sustained releasing pellet, which elevates the serum E2 level in mice, closely mimicking the effect known as estrogen dominance with underlying, pathological E2 levels in patients. The onset and progression of EH generated within this model recapitulate a clinically relevant, pathological transformation, beginning with disordered proliferation developing to simple EH, advancing to atypical EH, and then progressing to precancerous stages, all following a chronologic manner. Although a general increase in nuclear progesterone receptor (PR) expression occurred after E2 expression, a total loss in PR was noted in some endometrial glands as disease advanced to simple EH. Furthermore, estrogen receptor (ER) expression in the nucleus of endometrial cells was reduced in disordered proliferation and increased when EH progressed to atypical EH and precancerous stages. This EH model also resembles other pathological patterns found in human disease such as leukocytic infiltration, genetic aberrations in β-catenin, and joint phosphatase and tensin homolog/paired box gene 2 (PTEN/PAX2) silencing. In summary, this new and comprehensively characterized EH model is cost-effective, easily reproducible, and may serve as a tool for preclinical testing of therapeutic agents and facilitate further investigation of EH.

  8. Targeting AMCase reduces esophageal eosinophilic inflammation and remodeling in a mouse model of egg induced eosinophilic esophagitis.

    PubMed

    Cho, Jae Youn; Rosenthal, Peter; Miller, Marina; Pham, Alexa; Aceves, Seema; Sakuda, Shohei; Broide, David H

    2014-01-01

    Studies of AMCase inhibition in mouse models of lung eosinophilic inflammation have produced conflicting results with some studies demonstrating inhibition of eosinophilic inflammation and others not. No studies have investigated the role of AMCase inhibition in eosinophilic esophagitis (EoE). We have used a mouse model of egg (OVA) induced EoE to determine whether pharmacologic inhibition of AMCase with allosamidin reduced eosinophilic inflammation and remodeling in the esophagus in EoE. Administration of intra-esophageal OVA for 6weeks to BALB/c mice induced increased levels of esophageal eosinophils, mast cells, and features of esophageal remodeling (fibrosis, basal zone hyperplasia, deposition of the extracellular matrix protein fibronectin). Administration of intraperitoneal (ip) allosamidin to BALB/c mice significantly inhibited AMCase enzymatic activity in the esophagus. Pharmacologic inhibition of AMCase with ip allosamidin inhibited both OVA induced increases in esophageal eosinophilic inflammation and OVA induced esophageal remodeling (fibrosis, epithelial basal zone hyperplasia, extracellular matrix deposition of fibronectin). This inhibition of eosinophilic inflammation in the esophagus by ip allosamidin was associated with reduced eotaxin-1 expression in the esophagus. Oral allosamidin inhibited eosinophilic inflammation in the epithelium but did not inhibit esophageal remodeling. These studies suggest that pharmacologic inhibition of AMCase results in inhibition of eosinophilic inflammation and remodeling in the esophagus in a mouse model of egg induced EoE partially through effects in the esophagus on reducing chemokines (i.e. eotaxin-1) implicated in the pathogenesis of EoE.

  9. A humanized microbiota mouse model of ovalbumin-induced lung inflammation.

    PubMed

    Arrieta, Marie-Claire; Sadarangani, Manish; Brown, Eric M; Russell, Shannon L; Nimmo, Michael; Dean, John; Turvey, Stuart E; Chan, Edmond S; Finlay, B Brett

    2016-07-03

    There is increasing evidence for a role of early life gut microbiota in later development of asthma in children. In our recent study, children with reduced abundance of the bacterial genera Lachnospira, Veillonella, Faecalibacterium, and Rothia had an increased risk of development of asthma and addition of these bacteria in a humanized mouse model reduced airway inflammation. In this Addendum, we provide additional data on the use of a humanized gut microbiota mouse model to study the development of asthma in children, highlighting the differences in immune development between germ-free mice colonized with human microbes compared to those colonized with mouse gut microbiota. We also demonstrate that there is no association between the composition of the gut microbiota in older children and the diagnosis of asthma, further suggesting the importance of the gut microbiota-immune system axis in the first 3 months of life.

  10. Selective Motor Neuron Resistance and Recovery in a New Inducible Mouse Model of TDP-43 Proteinopathy.

    PubMed

    Spiller, Krista J; Cheung, Claudia J; Restrepo, Clark R; Kwong, Linda K; Stieber, Anna M; Trojanowski, John Q; Lee, Virginia M-Y

    2016-07-20

    Motor neurons (MNs) are the neuronal class that is principally affected in amyotrophic lateral sclerosis (ALS), but it is widely known that individual motor pools do not succumb to degeneration simultaneously. Because >90% of ALS patients have an accumulation of cytoplasmic TDP-43 aggregates in postmortem brain and spinal cord (SC), it has been suggested that these inclusions in a given population may trigger its death. We investigated seven MN pools in our new inducible rNLS8 transgenic (Tg) mouse model of TDP-43 proteinopathy and found striking differences in MN responses to TDP-43 pathology. Despite widespread neuronal expression of cytoplasmic human TDP-43, only MNs in the hypoglossal nucleus and the SC are lost after 8 weeks of transgene expression, whereas those in the oculomotor, trigeminal, and facial nuclei are spared. Within the SC, slow MNs survive to end stage, whereas fast fatigable MNs are lost. Correspondingly, axonal dieback occurs first from fast-twitch muscle fibers, whereas slow-twitch fibers remain innervated. Individual pools show differences in the downregulation of endogenous nuclear TDP-43, but this does not fully account for vulnerability to degenerate. After transgene suppression, resistant MNs sprout collaterals to reinnervate previously denervated neuromuscular junctions concurrently with expression of matrix metalloproteinase 9 (MMP-9), a marker of fast MNs. Therefore, although pathological TDP-43 is linked to MN degeneration, the process is not stochastic and mirrors the highly selective patterns of MN degeneration observed in ALS patients. Because TDP-43 is the major pathological hallmark of amyotrophic lateral sclerosis (ALS), we generated mice in which mutant human TDP-43 expression causes progressive neuron loss. We show that these rNLS8 mice have a pattern of axonal dieback and cell death that mirrors that often observed in human patients. This finding demonstrates the diversity of motor neuron (MN) populations in their response

  11. Effects of baicalin cream in two mouse models: 2,4-dinitrofluorobenzene-induced contact hypersensitivity and mouse tail test for psoriasis

    PubMed Central

    Wu, Jie; Li, Hong; Li, Ming

    2015-01-01

    Background:Scutellaria baicalensis is a Chinese herbal medicine that has been used for centuries to treat psoriasis. Baicalin is one of the major flavonoids and bioactive components of S. baicalensis and is responsible for the pharmacologic actions of the plant. Objective: This study aimed to investigate the anti-inflammatory effect and keratinocyte differentiation-inducing activity of baicalin in vivo. Methods: Baicalin was formulated into topical creams at concentrations of 1%, 3%, and 5%. The anti-inflammatory effect of baicalin cream was evaluated in 2,4-dinitrofluorobenzene (DNFB)-induced contact hypersensitivity (CHS) mice, and its keratinocyte-modulating action was assessed using the mouse tail model for psoriasis. Results: During the topical application of baicalin cream, no evidence of irritant effect was observed in both tests. In the inflammation model, mice exposed to baicalin cream displayed a reduction in DNFB-induced CHS responses compared with vehicle-treated animals, showing that the topical application of baicalin cream exerted an anti-inflammatory effect. In the second model, baicalin cream dose-dependently increased the orthokeratosis of granular layers and the relative epidermal thickness of mouse tail skin, indicative of the keratinocyte differentiation-inducing activity of this topical preparation. Conclusions: Taking the in vivo findings together, the present study indicated that baicalin cream may be a promising antipsoriatic agent worthy of further investigation for psoriasis treatment. PMID:25932143

  12. Effects of baicalin cream in two mouse models: 2,4-dinitrofluorobenzene-induced contact hypersensitivity and mouse tail test for psoriasis.

    PubMed

    Wu, Jie; Li, Hong; Li, Ming

    2015-01-01

    Scutellaria baicalensis is a Chinese herbal medicine that has been used for centuries to treat psoriasis. Baicalin is one of the major flavonoids and bioactive components of S. baicalensis and is responsible for the pharmacologic actions of the plant. This study aimed to investigate the anti-inflammatory effect and keratinocyte differentiation-inducing activity of baicalin in vivo. Baicalin was formulated into topical creams at concentrations of 1%, 3%, and 5%. The anti-inflammatory effect of baicalin cream was evaluated in 2,4-dinitrofluorobenzene (DNFB)-induced contact hypersensitivity (CHS) mice, and its keratinocyte-modulating action was assessed using the mouse tail model for psoriasis. During the topical application of baicalin cream, no evidence of irritant effect was observed in both tests. In the inflammation model, mice exposed to baicalin cream displayed a reduction in DNFB-induced CHS responses compared with vehicle-treated animals, showing that the topical application of baicalin cream exerted an anti-inflammatory effect. In the second model, baicalin cream dose-dependently increased the orthokeratosis of granular layers and the relative epidermal thickness of mouse tail skin, indicative of the keratinocyte differentiation-inducing activity of this topical preparation. Taking the in vivo findings together, the present study indicated that baicalin cream may be a promising antipsoriatic agent worthy of further investigation for psoriasis treatment.

  13. Effects of Murine Norovirus Infection on a Mouse Model of Diet-Induced Obesity and Insulin Resistance

    PubMed Central

    Paik, Jisun; Fierce, Yvette; Drivdahl, Rolf; Treuting, Piper M; Seamons, Audrey; Brabb, Thea; Maggio-Price, Lillian

    2010-01-01

    Murine norovirus (MNV) is prevalent in SPF mouse facilities in the United States, and we currently lack sufficient data to determine whether it should be eliminated. It is generally accepted that the virus does not cause clinical symptoms in immunocompetent mice. However, we previously reported that MNV infection alters the phenotype of a mouse model of bacteria-induced inflammatory bowel disease in part through its effects on dendritic cells. The tropism of MNV toward macrophages and dendritic cells makes MNV a potential intercurrent variable in murine models of macrophage-driven inflammatory diseases, such as obesity, insulin resistance, and atherosclerosis. Therefore, we determined whether MNV infection altered obesity and insulin resistance phenotypes in C57BL/6 mice, a widely used model of diet-induced obesity. We found that MNV did not alter weight gain, food intake, and glucose metabolism in this model, but it did induce subtle changes in lymphoid tissue. Further studies using other models of metabolic diseases are needed to provide additional information on the potential role this ‘subclinical’ virus might have on disease progression in mouse models of inflammatory diseases. PMID:20579433

  14. Efficacy of Red or Infrared Light-Emitting Diodes in a Mouse Model of Propionibacterium acnes-Induced Inflammation

    PubMed Central

    Lee, Kyou Chae; Kim, Min Ji; Jang, Yong Hyun; Lee, Seok-Jong; Kim, Do Won

    2016-01-01

    Background Laser/light-based devices may provide an alternative to conventional acne therapeutics in some patients with nonresponsive acne. Objective We investigated the efficacy of red or infrared light-emitting diode (LED) devices in a mouse model of Propionibacterium acnes-induced inflammation through clinical examination and histopathological and immunohistochemical studies. Methods A human-derived Propionibacterium acnes suspension (109 colony-forming units /µl) was injected into the back of an HR-1 mouse. Then, a 28.9 J/cm2 650-nm red LED or 9.3 J/cm2 830-nm infrared LED was applied to the mouse with P. acnes-induced inflammation once daily for 2 weeks. Two weeks after treatment, histological findings with hematoxylin and eosin staining and expression levels of inflammatory biomarkers (integrin α6, neutrophils, interleukin [IL]-1β, and matrix metalloproteinase [MMP]-2/9) were evaluated in tissue specimens using immunohistochemical staining. Results Mice treated with red and infrared LED showed clinical improvement in inflammatory nodules compared to mice in the control group. Red LED was much more effective than infrared LED. Epidermal hyperplasia, comedone-like cysts, and integrin α6 expression improved to a similar extent in the red and infrared LED treatment groups and control group. Neutrophil, IL-1β, MMP-2, and MMP-9 expression after treatment with red and infrared LED decreased considerably compared to expression in the control group. Conclusion In a mouse model of P. acnes-induced inflammatory nodules, red and infrared LED devices may be an alternative to conventional acne therapies. In addition, a mouse model of P. acnes-induced inflammatory nodules is helpful for laboratory research of acne. PMID:27081265

  15. Efficacy of Red or Infrared Light-Emitting Diodes in a Mouse Model of Propionibacterium acnes-Induced Inflammation.

    PubMed

    Lee, Weon Ju; Lee, Kyou Chae; Kim, Min Ji; Jang, Yong Hyun; Lee, Seok-Jong; Kim, Do Won

    2016-04-01

    Laser/light-based devices may provide an alternative to conventional acne therapeutics in some patients with nonresponsive acne. We investigated the efficacy of red or infrared light-emitting diode (LED) devices in a mouse model of Propionibacterium acnes-induced inflammation through clinical examination and histopathological and immunohistochemical studies. A human-derived Propionibacterium acnes suspension (10(9) colony-forming units /µl) was injected into the back of an HR-1 mouse. Then, a 28.9 J/cm(2) 650-nm red LED or 9.3 J/cm(2) 830-nm infrared LED was applied to the mouse with P. acnes-induced inflammation once daily for 2 weeks. Two weeks after treatment, histological findings with hematoxylin and eosin staining and expression levels of inflammatory biomarkers (integrin α6, neutrophils, interleukin [IL]-1β, and matrix metalloproteinase [MMP]-2/9) were evaluated in tissue specimens using immunohistochemical staining. Mice treated with red and infrared LED showed clinical improvement in inflammatory nodules compared to mice in the control group. Red LED was much more effective than infrared LED. Epidermal hyperplasia, comedone-like cysts, and integrin α6 expression improved to a similar extent in the red and infrared LED treatment groups and control group. Neutrophil, IL-1β, MMP-2, and MMP-9 expression after treatment with red and infrared LED decreased considerably compared to expression in the control group. In a mouse model of P. acnes-induced inflammatory nodules, red and infrared LED devices may be an alternative to conventional acne therapies. In addition, a mouse model of P. acnes-induced inflammatory nodules is helpful for laboratory research of acne.

  16. Shear stress-induced mechanotransduction protein deregulation and vasculopathy in a mouse model of progeria

    PubMed Central

    2014-01-01

    Introduction A mouse model of progeria derived by insertion of the human mutant LMNA gene (mLMNA), producing mutant lamin A, shows loss of smooth muscle cells in the media of the ascending aorta. We hypothesized that high shear stress, in the presence of mutant lamin A, induces this vasculopathy and tried to define the molecular and cellular basis for aortic vasculopathy. Methods Ascending and descending aortas from wild type (WT) and mLMNA+ mice were compared using proteomics, Western blots, PCR and immunostaining. To determine whether high fluidic shear stress, known to occur in the ascending aorta, contributed to the vasculopathy, we exposed descending aortas of mLMNA+ mice, with no apparent vasculopathy, to 75 dynes/cm2 shear stress for 30 minutes using a microfluidic system. Results When the mice were one year of age, expression of several mechanotransduction proteins in the ascending aorta, including vimentin, decreased in mLMNA+ mice but no decrease occurred in the descending aorta. High fluidic shear stress produced a significant reduction in vimentin of mLMNA+ mice but not in similarly treated WT mice. Conclusions The occurrence of mutant lamin A and high shear stress correlate with a reduction in the level of mechanotransduction proteins in smooth muscle cells of the media. Reduction of these proteins may contribute over time to development of vasculopathy in the ascending aorta in progeria syndrome. PMID:24661531

  17. Hepsin colocalizes with desmosomes and induces progression of ovarian cancer in a mouse model.

    PubMed

    Miao, Jiangyong; Mu, David; Ergel, Burce; Singavarapu, Rajasekhar; Duan, Zhenfeng; Powers, Scott; Oliva, Esther; Orsulic, Sandra

    2008-11-01

    Hepsin is a serine protease that is widely expressed in different tissues and cell types, most prominently in the normal liver and kidney. Overexpression of hepsin has been associated with prostate cancers, ovarian cancers and renal cell carcinomas. The physiological functions of hepsin in normal tissues and tumors are poorly understood. To gain insight into its function in ovarian cancer, we analyzed the expression and subcellular localization of hepsin protein in ovarian cancer cell lines and tumors. We showed that the membrane-associated hepsin protein is present at desmosomal junctions, where it colocalizes with its putative proteolytic substrate hepatocyte growth factor. Consistent with the growing evidence that desmosomal junctions and their constituents play a role in cancer progression, we demonstrated that overexpression of hepsin promotes ovarian tumor growth in a mouse model. The ability of ectopic hepsin to induce tumor growth in mice is abrogated by the mutation of 3 critical residues in the catalytic domain, thus implicating the enzymatic activity of hepsin in promoting tumor progression.

  18. Characterization of mouse models of early pancreatic lesions induced by alcohol and chronic pancreatitis

    PubMed Central

    Xu, Shiping; Chheda, Chintan; Ouhaddi, Yassine; Benhaddou, Hajar; Bourhim, Mouloud; Grippo, Paul J.; Principe, Daniel R.; Mascariñas, Emman; DeCant, Brian; Tsukamoto, Hidekazu; Pandol, Stephen J.; Edderkaoui, Mouad

    2015-01-01

    Objective We describe the first mouse model of pancreatic intra-epithelial neoplasia (PanIN) lesions induced by alcohol in the presence and absence of chronic pancreatitis. Methods Pdx1-Cre; LSL-Kras (KC) mice were exposed to Lieber-DeCarli alcohol diet for 6 weeks with cerulein injections. PanIN lesions and markers of fibrosis, inflammation, histone de-acetylation, epithelial-to-mesenchymal transition (EMT), and cancer stemness were measured by immuno-histochemistry and Western. Results Exposure of KC mice to an alcohol diet significantly stimulated fibrosis and slightly, but not significantly, increased the level of PanIN lesions associated with an increase in tumor-promoting M2-macrophages. Importantly, the alcohol diet did not increase activation of stellate cells. Alcohol diet and cerulein injections resulted in synergistic and additive effects on PanIN lesion and M2-Macrophage phenotype induction, respectively. Cerulein-pancreatitis caused stellate cell activation, EMT, and cancer stemness in the pancreas. Pancreatitis caused histone deacetylation which was promoted by the alcohol diet. Pancreatitis increased EMT and cancer stemness markers which not further affected by the alcohol diet. Conclusion The results suggest that alcohol has independent effects on promotion of PDAC associated with fibrosis formed through a stellate cell-independent mechanism and that it further promotes early PDAC and M2 macrophage induction in the context of chronic pancreatitis. PMID:26166469

  19. Kupffer cells induce Notch-mediated hepatocyte conversion in a common mouse model of intrahepatic cholangiocarcinoma

    PubMed Central

    Terada, Maiko; Horisawa, Kenichi; Miura, Shizuka; Takashima, Yasuo; Ohkawa, Yasuyuki; Sekiya, Sayaka; Matsuda-Ito, Kanae; Suzuki, Atsushi

    2016-01-01

    Intrahepatic cholangiocarcinoma (ICC) is a malignant epithelial neoplasm composed of cells resembling cholangiocytes that line the intrahepatic bile ducts in portal areas of the hepatic lobule. Although ICC has been defined as a tumor arising from cholangiocyte transformation, recent evidence from genetic lineage-tracing experiments has indicated that hepatocytes can be a cellular origin of ICC by directly changing their fate to that of biliary lineage cells. Notch signaling has been identified as an essential factor for hepatocyte conversion into biliary lineage cells at the onset of ICC. However, the mechanisms underlying Notch signal activation in hepatocytes remain unclear. Here, using a mouse model of ICC, we found that hepatic macrophages called Kupffer cells transiently congregate around the central veins in the liver and express the Notch ligand Jagged-1 coincident with Notch activation in pericentral hepatocytes. Depletion of Kupffer cells prevents the Notch-mediated cell-fate conversion of hepatocytes to biliary lineage cells, inducing hepatocyte apoptosis and increasing mortality in mice. These findings will be useful for uncovering the pathogenic mechanism of ICC and developing prevenient and therapeutic strategies for this refractory disease. PMID:27698452

  20. Photoacoustic detection of induced melanoma in vitro using a mouse model

    NASA Astrophysics Data System (ADS)

    Gupta, Sagar; Bhattacharya, Kiran; Newton, Jessica R.; Quinn, Thomas P.; Viator, John A.

    2012-03-01

    Metastasis is a life threatening complex physiological phenomenon that involves the movement of cancer cells from one organ to another by means of blood and lymph. An understanding about metastasis is extremely important to device diagnostic systems to detect and monitor its spread within the body. For the first time we report rapid photoacoustic detection of the induced metastatic melanoma in mice in vitro using photoacoustic flowmetry. A new photoacoustic flow system is developed, that employs photoacoustic excitation coupled with an ultrasound transducer capable of determining the presence of individual, induced mouse melanoma cells (B16/F10) within the circulating system in vitro. Tumor was induced in mice by injecting mouse melanoma cells through tail vein into the C57BL/6 mice. A luciferase based in vivo bioluminescence imaging is performed to confirm the tumor load and multiple metastases in the tumor-induced mice. 1ml of blood obtained through cardiac puncture of the induced metastasized mice was treated to lyse the red blood cells (RBC) and enriched, leaving the induced melanoma in the peripheral blood mononuclear suspension (PBMC). A photoacoustic flowsystem coupled with an ultrasound transducer is used to detect the individual circulating metastatic melanoma cells from the enriched cell suspension.

  1. Labrador tea (Rhododendron groenlandicum) attenuates insulin resistance in a diet-induced obesity mouse model.

    PubMed

    Ouchfoun, Meriem; Eid, Hoda M; Musallam, Lina; Brault, Antoine; Li, Shilin; Vallerand, Diane; Arnason, John T; Haddad, Pierre S

    2016-04-01

    Using a diet-induced obesity (DIO) mouse model, we investigated the antidiabetic effect of Labrador tea [Rhododendron groenlandicum (Oeder) Kron and Judd], a beverage and medicinal tea used by the Cree Nations of northern Quebec. C57BL6 mice were divided into five groups and given standard chow (~4 % of lipids) or high-fat diet (~35 % of lipids) for 8 weeks until they became obese and insulin resistant. Treatment began by adding the plant extract at three doses (125, 250 and 500 mg/kg) to the high-fat diet for another 8 weeks. At the end of the study, insulin-sensitive tissues (liver, skeletal muscle, adipose tissue) were collected to investigate the plant's molecular mechanisms. Labrador tea significantly reduced blood glucose (13 %), the response to an oral glucose tolerance test (18.2 %) and plasma insulin (65 %) while preventing hepatic steatosis (42 % reduction in hepatic triglyceride levels) in DIO mice. It stimulated insulin-dependent Akt pathway (55 %) and increased the expression of GLUT4 (53 %) in skeletal muscle. In the liver, Labrador tea stimulated the insulin-dependent Akt and the insulin-independent AMP-activated protein kinase pathways. The improvement in hepatic steatosis observed in DIO-treated mice was associated with a reduction in inflammation (through the IKK α/β) and a decrease in the hepatic content of SREBP-1 (39 %). Labrador tea exerts potential antidiabetic action by improving insulin sensitivity and mitigating high-fat diet-induced obesity and hyperglycemia. They validate the safety and efficacy of this plant, a promising candidate for culturally relevant complementary treatment in Cree diabetics.

  2. Aberrant neuronal activity-induced signaling and gene expression in a mouse model of RASopathy

    PubMed Central

    Nakhaei-Rad, Saeideh; Montenegro-Venegas, Carolina; Pina-Fernández, Eneko; Marini, Claudia; Santos, Monica; Ahmadian, Mohammad R.; Stork, Oliver; Zenker, Martin

    2017-01-01

    Noonan syndrome (NS) is characterized by reduced growth, craniofacial abnormalities, congenital heart defects, and variable cognitive deficits. NS belongs to the RASopathies, genetic conditions linked to mutations in components and regulators of the Ras signaling pathway. Approximately 50% of NS cases are caused by mutations in PTPN11. However, the molecular mechanisms underlying cognitive impairments in NS patients are still poorly understood. Here, we report the generation and characterization of a new conditional mouse strain that expresses the overactive Ptpn11D61Y allele only in the forebrain. Unlike mice with a global expression of this mutation, this strain is viable and without severe systemic phenotype, but shows lower exploratory activity and reduced memory specificity, which is in line with a causal role of disturbed neuronal Ptpn11 signaling in the development of NS-linked cognitive deficits. To explore the underlying mechanisms we investigated the neuronal activity-regulated Ras signaling in brains and neuronal cultures derived from this model. We observed an altered surface expression and trafficking of synaptic glutamate receptors, which are crucial for hippocampal neuronal plasticity. Furthermore, we show that the neuronal activity-induced ERK signaling, as well as the consecutive regulation of gene expression are strongly perturbed. Microarray-based hippocampal gene expression profiling revealed profound differences in the basal state and upon stimulation of neuronal activity. The neuronal activity-dependent gene regulation was strongly attenuated in Ptpn11D61Y neurons. In silico analysis of functional networks revealed changes in the cellular signaling beyond the dysregulation of Ras/MAPK signaling that is nearly exclusively discussed in the context of NS at present. Importantly, changes in PI3K/AKT/mTOR and JAK/STAT signaling were experimentally confirmed. In summary, this study uncovers aberrant neuronal activity-induced signaling and regulation

  3. The effects of galangin on a mouse model of vitiligo induced by hydroquinone.

    PubMed

    Huo, Shi-Xia; Liu, Xin-Ming; Ge, Chun-Hui; Gao, Li; Peng, Xiao-Ming; Zhao, Ping-Ping; Yan, Ming

    2014-10-01

    Galangin, the main active component of Alpinia officinarum Hance, was tested in a mouse model of vitiligo induced in C57BL/6 mice by the topical application of 2 mL of 2.5% hydroquinone daily to shaved areas (2 × 2 cm) of dorsal skin for 60 days. Thirty days after the final application of hydroquinone, galangin (0.425, and 4.25 mg/kg) was administered orally for 30 days. The hair colour darkened when it grew back after treatment, and histological analysis showed that the number of melanin-containing hair follicles had increased after treatment with all doses of galangin groups and 8-methoxypsoralen (8-MOP, the positive control) compared with the untreated vitiligo group (p < 0.05). The number of skin basal layer melanocytes and melanin-containing epidermal cells had also increased significantly with the application of 4.25 mg/kg of galangin. The concentration of tyrosinase (TYR) in serum was found to have increased, whereas the content of malondialdehyde and the activity of cholinesterase had decreased after treatment with all doses of galangin and 8-MOP, compared with control (p < 0.05). The expression of TYR protein in treated areas of skin also increased with the application of 4.25 mg/kg galangin and 8-MOP. In conclusion, the results showed that galangin was able to improve vitiligo induced by hydroquinone in mice, with the activity related to concentrations of TYR, expression of TYR protein, activity of malondialdehyde and content of cholinesterase. Galangin may therefore be a potential candidate for the treatment of vitiligo, subject to further investigation.

  4. Cisplatin-Induced Ototoxicity and the Effects of Intratympanic Diltiazem in a Mouse Model.

    PubMed

    Naples, James G; Parham, Kourosh

    2016-01-01

    To evaluate whether the calcium-channel blocker diltiazem has protective effects against cisplatin-induced ototoxicity in a mouse model. Original basic science in vivo investigation. Academic setting: Otolaryngology-Head and Neck Surgery laboratory at University of Connecticut Health Center. Thirty-nine female CBA/J mice. Pure tone- or click-evoked auditory brainstem responses (ABRs) were recorded in CBA/J mice to determine auditory thresholds. All mice had baseline ABRs recorded. They were then given a single cisplatin bolus (14 mg/kg), followed by 5 consecutive days of intratympanic diltiazem or saline control. Follow-up thresholds were recorded on days 7, 14, and 21 postcisplatin. Tone-evoked ABRs evaluated the otoprotective effect of 2-mg/kg diltiazem in 9 mice, and dose effect was examined in response to click-evoked ABR with 2- or 4-mg/kg diltiazem in 2 groups of 15 mice. Saline-treated ears had significantly elevated tone-evoked auditory thresholds when compared with diltiazem-treated ears (P = .038) on day 7 postcisplatin only. Click-evoked ABR thresholds were significantly elevated in saline-treated ears versus diltiazem-treated ears for the 2-mg/kg group (P = .001) and 4-mg/kg group (P = .011) on days 7, 14, and 21 postcisplatin. Intratympanic diltiazem has significant protective effects against cisplatin ototoxicity at 2 and 4 mg/kg. This is the first in vivo study to demonstrate that diltiazem offers a potentially novel therapy for cisplatin-induced ototoxicity. © American Academy of Otolaryngology-Head and Neck Surgery Foundation 2015.

  5. Drinking citrus fruit juice inhibits vascular remodeling in cuff-induced vascular injury mouse model.

    PubMed

    Ohnishi, Arika; Asayama, Rie; Mogi, Masaki; Nakaoka, Hirotomo; Kan-No, Harumi; Tsukuda, Kana; Chisaka, Toshiyuki; Wang, Xiao-Li; Bai, Hui-Yu; Shan, Bao-Shuai; Kukida, Masayoshi; Iwanami, Jun; Horiuchi, Masatsugu

    2015-01-01

    Citrus fruits are thought to have inhibitory effects on oxidative stress, thereby attenuating the onset and progression of cancer and cardiovascular disease; however, there are few reports assessing their effect on vascular remodeling. Here, we investigated the effect of drinking the juice of two different citrus fruits on vascular neointima formation using a cuff-induced vascular injury mouse model. Male C57BL6 mice were divided into five groups as follows: 1) Control (water) (C), 2) 10% Citrus unshiu (CU) juice (CU10), 3) 40% CU juice (CU40), 4) 10% Citrus iyo (CI) juice (CI10), and 5) 40% CI juice (CI40). After drinking them for 2 weeks from 8 weeks of age, cuff injury was induced by polyethylene cuff placement around the femoral artery. Neointima formation was significantly attenuated in CU40, CI10 and CI40 compared with C; however, no remarkable preventive effect was observed in CU10. The increases in levels of various inflammatory markers including cytokines such as monocyte chemotactic protein-1, interleukin-6 (IL-6), IL-1β, and tumor necrosis factor-α in response to vascular injury did not differ significantly between C, CU10 and CI10. The increases in cell proliferation and superoxide anion production were markedly attenuated in CI10, but not in CU10 compared with C. The increase in phosphorylated ERK expression was markedly attenuated both in CU10 and CI10 without significant difference between CU10 and CI10. Accumulation of immune cells did not differ between CU10 and CI10. These results indicate that drinking citrus fruit juice attenuates vascular remodeling partly via a reduction of oxidative stress. Interestingly, the preventive efficacy on neointima formation was stronger in CI than in CU at least in part due to more prominent inhibitory effects on oxidative stress by CI.

  6. Drinking Citrus Fruit Juice Inhibits Vascular Remodeling in Cuff-Induced Vascular Injury Mouse Model

    PubMed Central

    Ohnishi, Arika; Asayama, Rie; Mogi, Masaki; Nakaoka, Hirotomo; Kan-no, Harumi; Tsukuda, Kana; Chisaka, Toshiyuki; Wang, Xiao-Li; Bai, Hui-Yu; Shan, Bao-Shuai; Kukida, Masayoshi; Iwanami, Jun; Horiuchi, Masatsugu

    2015-01-01

    Citrus fruits are thought to have inhibitory effects on oxidative stress, thereby attenuating the onset and progression of cancer and cardiovascular disease; however, there are few reports assessing their effect on vascular remodeling. Here, we investigated the effect of drinking the juice of two different citrus fruits on vascular neointima formation using a cuff-induced vascular injury mouse model. Male C57BL6 mice were divided into five groups as follows: 1) Control (water) (C), 2) 10% Citrus unshiu (CU) juice (CU10), 3) 40% CU juice (CU40), 4) 10% Citrus iyo (CI) juice (CI10), and 5) 40% CI juice (CI40). After drinking them for 2 weeks from 8 weeks of age, cuff injury was induced by polyethylene cuff placement around the femoral artery. Neointima formation was significantly attenuated in CU40, CI10 and CI40 compared with C; however, no remarkable preventive effect was observed in CU10. The increases in levels of various inflammatory markers including cytokines such as monocyte chemotactic protein-1, interleukin-6 (IL-6), IL-1β, and tumor necrosis factor-α in response to vascular injury did not differ significantly between C, CU10 and CI10. The increases in cell proliferation and superoxide anion production were markedly attenuated in CI10, but not in CU10 compared with C. The increase in phosphorylated ERK expression was markedly attenuated both in CU10 and CI10 without significant difference between CU10 and CI10. Accumulation of immune cells did not differ between CU10 and CI10. These results indicate that drinking citrus fruit juice attenuates vascular remodeling partly via a reduction of oxidative stress. Interestingly, the preventive efficacy on neointima formation was stronger in CI than in CU at least in part due to more prominent inhibitory effects on oxidative stress by CI. PMID:25692290

  7. Curcumin inhibits paraquat induced lung inflammation and fibrosis by extracellular matrix modifications in mouse model.

    PubMed

    Tyagi, Namitosh; Dash, D; Singh, Rashmi

    2016-12-01

    Paraquat (PQ), a potent herbicide can cause severe toxicity. We report here that fibroproliferation phase of acute lung injury (ALI) is initiated much earlier (within 48 h) after PQ intoxication than previously reported (after 2 weeks) and we aimed to study the protective effects of intranasal curcumin as new therapeutic strategy in mouse model. Mice (Park's strain) were divided into five experimental groups (I) control, received only saline (0.9 % NaCl) (II) PQ, mice intoxicated with PQ (50 mg/kg, i.p., single dose); (III) curcumin, treated with curcumin (5 mg/kg, i.n) an hour before PQ administration; (IV)Veh, DMSO (equal volume to curcumin) given an hour before PQ exposure; (V) DEXA, mice treated with dexamethasone (1 mg/kg, i.p) before an hour of PQ intoxication. After 48 h of the PQ exposure, all mice were sacrificed and samples were analyzed. Pretreatment with intranasal curcumin (5 mg/kg) could modify the PQ-intoxication (50 mg/kg, i.p) induced structural remodeling of lung parenchyma at an early phase of acute lung injury. Significant increase in inflammatory cell count, reactive oxygen species and hydroxyproline levels were decreased after curcumin pretreatment (all p < 0.05). Histological examination and zymography results were also found consistent. Our results show that curcumin pretreatment decreased the expression of alpha smooth muscle actin (α-SMA), matrix metalloproteinases-9 (MMP-9) and changed the expression of tissue inhibitors of metalloproteinase (TIMP-1) after PQ intoxication. Single toxic dose of PQ has initiated fibroproliferation within 48 h and intranasal curcumin may prove as new therapeutic strategy for PQ induced ALI and fibroproliferation.

  8. Predictive Validity of a Non-Induced Mouse Model of Compulsive-Like Behavior

    PubMed Central

    Greene-Schloesser, DM; Van der Zee, EA; Sheppard, DK; Castillo, MR; Gregg, KA; Burrow, T; Foltz, H; Slater, M; Bult-Ito, A

    2011-01-01

    A key to advancing the understanding of obsessive-compulsive disorder (OCD)-like symptoms is the development of spontaneous animal models. Over 55 generations of bidirectional selection for nest-building behavior in house mice, Mus musculus, resulted in a 40-fold difference in the amount of cotton used for a nest in high (BIG) and low (SMALL) selected lines. The nesting behavior of BIG mice appears to be compulsive-like and has initial face validity as an animal model for OCD in humans. Compulsive-like digging behavior was assessed; BIG male mice buried about three times as many marbles as SMALL male mice, strengthening face validity. Using the open field and elevated plus maze, SMALL male mice showed higher levels of anxiety/fear-like behavior than BIG male mice, indicating that compulsive-like and not anxiety-like behavior was measured. To establish predictive validity, chronic (4 weeks) oral administration of fluoxetine (30, 50 and 100 mg/kg/day) and clomipramine (80 mg/kg/day), both effective in treating OCD, significantly reduced compulsive-like nest-building behavior in BIG male mice. Compulsive-like digging behavior was also significantly reduced by chronic oral fluoxetine (30 and 80 mg/kg/day) treatment in BIG male mice. General locomotor activity was not affected by chronic oral fluoxetine (30 and 80 mg/kg/day) treatment; chronic oral treatment with desipramine (30 mg/kg/day), an antidepressant not effective in treating OCD, had no effect on nesting behavior of BIG male mice, strengthening predictive validity. Together, the results indicate that these mice have good face and predictive validity as a non-induced mouse model of compulsive-like behavior relevant to OCD. PMID:21316394

  9. Postnatal Notch1 activation induces T‑cell malignancy in conditional and inducible mouse models.

    PubMed

    Liu, Ju; Dong, Fengyun; Fung, Iris; Chen, Edwin; Allen, Thaddeus D; Deutsch, Urban; Lobe, Corrinne G

    2014-11-01

    The Notch1 signaling pathway is essential for hematopoietic development. However, the effects of postnatal activation of Notch1 signaling on hematopoietic system is not yet fully understood. We previously generated ZEG‑IC‑Notch1 transgenic mice that have a floxed β‑geo/stop signal between a CMV promoter and intracellular domain of Notch1 (IC‑Notch1). Constitutively active IC‑Notch1 is silent until the introduction of Cre recombinase. In this study, endothelial/hematopoietic specific expression of IC‑Notch1 in double transgenic ZEG‑IC‑Notch1/Tie2‑Cre embryos induced embryonic lethality at E9.5 with defects in vascular system but not in hematopoietic system. Inducible IC‑Notch1 expression in adult mice was achieved by using tetracycline regulated Cre system. The ZEG‑IC‑Notch1/Tie2‑tTA/tet‑O‑Cre triple transgenic mice survived embryonic development when maintained on tetracycline. Post‑natal withdrawal of tetracycline induced expression of IC‑Notch1 transgene in hematopoietic cells of adult mice. The triple transgenic mice displayed extensive T‑cell infiltration in multiple organs and T‑cell malignancy of lymph nodes. In addition, the protein levels of p53 and alternative reading frame (ARF) were decreased in lymphoma‑like neoplasms from the triple transgenic mice while their mRNA expression remained unchanged, suggesting that IC‑Notch1 might repress ARF‑p53 pathway by a post‑transcriptional mechanism. This study demonstrated that activation of constitutive Notch1 signaling after embryonic development alters adult hematopoiesis and induces T‑cell malignancy.

  10. Structure-function relations in an elastase-induced mouse model of emphysema.

    PubMed

    Hamakawa, Hiroshi; Bartolák-Suki, Erzsébet; Parameswaran, Harikrishnan; Majumdar, Arnab; Lutchen, Kenneth R; Suki, Béla

    2011-09-01

    Emphysema is a progressive disease characterized by the destruction of peripheral airspaces and subsequent decline in lung function. However, the relation between structure and function during disease progression is not well understood. The objective of this study was to assess the time course of the structural, mechanical, and remodeling properties of the lung in mice after elastolytic injury. At 2, 7, and 21 days after treatment with porcine pancreatic elastase, respiratory impedance, the constituents of lung extracellular matrix, and histological sections of the lung were evaluated. In the control group, no changes were observed in the structural or functional properties, whereas, in the treatment group, the respiratory compliance and its variability significantly increased by Day 21 (P < 0.001), and the difference in parameters decreased with increasing positive end-expiratory pressure. The heterogeneity of airspace structure gradually increased over time. Conversely, the relative amounts of elastin and type I collagen exhibited a peak (P < 0.01) at Day 2, but returned to baseline levels by Day 21. Structure-function relations manifested themselves in strong correlations between compliance parameters and both mean size and heterogeneity of airspace structure (r(2) > 0.9). Similar relations were also obtained in a network model of the parenchyma in which destruction was based on the notion that mechanical forces contribute to alveolar wall rupture. We conclude that, in a mouse model of emphysema, progressive decline in lung function is sensitive to the development of airspace heterogeneity governed by local, mechanical, force-induced failure of remodeled collagen.

  11. Thalidomide-induced limb abnormalities in a humanized CYP3A mouse model

    PubMed Central

    Kazuki, Yasuhiro; Akita, Masaharu; Kobayashi, Kaoru; Osaki, Mitsuhiko; Satoh, Daisuke; Ohta, Ryo; Abe, Satoshi; Takehara, Shoko; Kazuki, Kanako; Yamazaki, Hiroshi; Kamataki, Tetsuya; Oshimura, Mitsuo

    2016-01-01

    Thalidomide is a teratogen in humans but not in rodents. It causes multiple birth defects including malformations of limbs, ears, and other organs. However, the species-specific mechanism of thalidomide teratogenicity is not completely understood. Reproduction of the human teratogenicity of thalidomide in rodents has previously failed because of the lack of a model reflecting human drug metabolism. In addition, because the maternal metabolic effect cannot be eliminated, the migration of unchanged thalidomide to embryos is suppressed, and the metabolic activation is insufficient to develop teratogenicity. Previously, we generated transchromosomic mice containing a human cytochrome P450 (CYP) 3A cluster in which the endogenous mouse Cyp3a genes were deleted. Here, we determined whether human CYP3A or mouse Cyp3a enzyme expression was related to the species difference in a whole embryo culture system using humanized CYP3A mouse embryos. Thalidomide-treated embryos with the human CYP3A gene cluster showed limb abnormalities, and human CYP3A was expressed in the placenta, suggesting that human CYP3A in the placenta may contribute to the teratogenicity of thalidomide. These data suggest that the humanized CYP3A mouse is a useful model to predict embryonic toxicity in humans. PMID:26903378

  12. Thalidomide-induced limb abnormalities in a humanized CYP3A mouse model.

    PubMed

    Kazuki, Yasuhiro; Akita, Masaharu; Kobayashi, Kaoru; Osaki, Mitsuhiko; Satoh, Daisuke; Ohta, Ryo; Abe, Satoshi; Takehara, Shoko; Kazuki, Kanako; Yamazaki, Hiroshi; Kamataki, Tetsuya; Oshimura, Mitsuo

    2016-02-23

    Thalidomide is a teratogen in humans but not in rodents. It causes multiple birth defects including malformations of limbs, ears, and other organs. However, the species-specific mechanism of thalidomide teratogenicity is not completely understood. Reproduction of the human teratogenicity of thalidomide in rodents has previously failed because of the lack of a model reflecting human drug metabolism. In addition, because the maternal metabolic effect cannot be eliminated, the migration of unchanged thalidomide to embryos is suppressed, and the metabolic activation is insufficient to develop teratogenicity. Previously, we generated transchromosomic mice containing a human cytochrome P450 (CYP) 3A cluster in which the endogenous mouse Cyp3a genes were deleted. Here, we determined whether human CYP3A or mouse Cyp3a enzyme expression was related to the species difference in a whole embryo culture system using humanized CYP3A mouse embryos. Thalidomide-treated embryos with the human CYP3A gene cluster showed limb abnormalities, and human CYP3A was expressed in the placenta, suggesting that human CYP3A in the placenta may contribute to the teratogenicity of thalidomide. These data suggest that the humanized CYP3A mouse is a useful model to predict embryonic toxicity in humans.

  13. Endothelial injury in a transforming growth factor β-dependent mouse model of scleroderma induces pulmonary arterial hypertension.

    PubMed

    Derrett-Smith, Emma C; Dooley, Audrey; Gilbane, Adrian J; Trinder, Sarah L; Khan, Korsa; Baliga, Reshma; Holmes, Alan M; Hobbs, Adrian J; Abraham, David; Denton, Christopher P

    2013-11-01

    To delineate the constitutive pulmonary vascular phenotype of the TβRIIΔk-fib mouse model of scleroderma, and to selectively induce pulmonary endothelial cell injury using vascular endothelial growth factor (VEGF) inhibition to develop a model with features characteristic of pulmonary arterial hypertension (PAH). The TβRIIΔk-fib mouse strain expresses a kinase-deficient transforming growth factor β (TGFβ) receptor type II driven by a fibroblast-specific promoter, leading to ligand-dependent up-regulation of TGFβ signaling, and replicates key fibrotic features of scleroderma. Structural, biochemical, and functional assessments of pulmonary vessels, including in vivo hemodynamic studies, were performed before and following VEGF inhibition, which induced pulmonary endothelial cell apoptosis. These assessments included biochemical analysis of the TGFβ and VEGF signaling axes in tissue sections and explanted smooth muscle cells. In the TβRIIΔk-fib mouse strain, a constitutive pulmonary vasculopathy with medial thickening, a perivascular proliferating chronic inflammatory cell infiltrate, and mildly elevated pulmonary artery pressure resembled the well-described chronic hypoxia model of pulmonary hypertension. Following administration of SU5416, the pulmonary vascular phenotype was more florid, with pulmonary arteriolar luminal obliteration by apoptosis-resistant proliferating endothelial cells. These changes resulted in right ventricular hypertrophy, confirming hemodynamically significant PAH. Altered expression of TGFβ and VEGF ligand and receptor was consistent with a scleroderma phenotype. In this study, we replicated key features of systemic sclerosis-related PAH in a mouse model. Our results suggest that pulmonary endothelial cell injury in a genetically susceptible mouse strain triggers this complication and support the underlying role of functional interplay between TGFβ and VEGF, which provides insight into the pathogenesis of this disease. Copyright

  14. White matter injuries induced by MK-801 in a mouse model of schizophrenia based on NMDA antagonism.

    PubMed

    Xiu, Yun; Kong, Xiang-Ru; Zhang, Lei; Qiu, Xuan; Chao, Feng-Lei; Peng, Chao; Gao, Yuan; Huang, Chun-Xia; Wang, San-Rong; Tang, Yong

    2014-08-01

    The etiology of schizophrenia (SZ) is complex and largely unknown. Neuroimaging and postmortem studies have suggested white matter disturbances in SZ. In the present study, we tested the white matter deficits hypothesis of SZ using a mouse model of SZ induced by NMDA receptor antagonist MK-801. We found that mice with repeated chronic MK-801 administration showed increased locomotor activity in the open field test, less exploration of a novel environment in the hole-board test, and increased anxiety in the elevated plus maze but no impairments were observed in coordination or motor function on accelerating rota-rod. The total white matter volume and corpus callosum volume in mice treated with MK-801 were significantly decreased compared to control mice treated with saline. Myelin basic protein and 2', 3'-cyclic nucleotide 3'-phosphodiesterase were also significantly decreased in the mouse model of SZ. Furthermore, we observed degenerative changes of myelin sheaths in the mouse model of SZ. These results provide further evidence of white matter deficits in SZ and indicate that the animal model of SZ induced by MK-801 is a useful model to investigate mechanisms underlying white matter abnormalities in SZ. Copyright © 2014 Wiley Periodicals, Inc.

  15. [Naringin reduced polymethylmethacrylate-induced osteolysis in the mouse air sacs model].

    PubMed

    Li, Nian-Hu; Xu, Zhan-wang

    2015-04-01

    To evaluate the influence of naringin on PMMA-induced osteoclastic bone resorption using the mouse air sacs model. Total 48 female Balb/c mices with the age of 8 to 10 weeks were chosen in the study. Air were injected into the back in 32 mices and formed the air sacs, 6 d later, the skulls (originated from other 16 mices) were implanted to the air sacs. Thirty-two animals were divided into naringin treatment group (with 2 concentrations of 150 mg/kg and 30 mg/ kg) , DMSO group and PBS blank group, 8 animals in each group. Polymethylmethacrylate (PMMA) particles were injected into the air sacs in naringin treatment groups and DMSO group so as to irritate inflammatory reaction. Naringin with 2 concentrations of 150 mg/kg and 30 mg/kg were dissolved in DMSO of 0.2 ml, and were injected into air sacs, respectively. In PBS black group, no stimulation with PMMA particles, only injected PBS, and in DMSO group, injected DMSO without naringin. Tartrate resistant acid phosphatase (TRAP), Ca2+ release, modified Masson stain and histological analysis were performed on the 7th day after stimulation. Compared with DMSO group, naringin treatment group's cellular infiltration decreased (P < 0.01); concentration of 150 mg/kg was better than that of concentrations of 30 mg/kg (8.90 ± 1.75 vs 15.23 ± 1.86). Naringin can decrease calcium release in the lavage of the air sacs bone resorption model, especially obvious in naringin with concentration of 150 mg/kg. Naringin can ameliorate the inflammatory reaction and the subsequent bone resorption (including bone collagen loss, TRAP positive cells amount and so on) in air sacs with bone implant and PMMA particles. Naringin with concentration of 150 mg/kg appeared to be an optimal dosage to deliver the therapeutic effects. Naringin inhibits PMMA-induced osteoclastogenesis and ameliorates the PMMA-associated inflammatory reaction and the subsequent bone resorption.

  16. Mouse model of alloimmune-induced vascular rejection and transplant arteriosclerosis.

    PubMed

    Enns, Winnie; von Rossum, Anna; Choy, Jonathan

    2015-05-17

    Vascular rejection that leads to transplant arteriosclerosis (TA) is the leading representation of chronic heart transplant failure. In TA, the immune system of the recipient causes damage of the arterial wall and dysfunction of endothelial cells and smooth muscle cells. This triggers a pathological repair response that is characterized by intimal thickening and luminal occlusion. Understanding the mechanisms by which the immune system causes vasculature rejection and TA may inform the development of novel ways to manage graft failure. Here, we describe a mouse aortic interposition model that can be used to study the pathogenic mechanisms of vascular rejection and TA. The model involves grafting of an aortic segment from a donor animal into an allogeneic recipient. Rejection of the artery segment involves alloimmune reactions and results in arterial changes that resemble vascular rejection. The basic technical approach we describe can be used with different mouse strains and targeted interventions to answer specific questions related to vascular rejection and TA.

  17. Hearing Restoration in Mouse Models with Noise-induced Hearing Loss

    DTIC Science & Technology

    2013-12-19

    such capacity declines with age. 3. Sox2 directly regulates p27Kip’ to maintain quiescence of postmitotic cochlear SCs; such roles decline with age. 4...SCs in the mammalian cochlea can be converted to sensory HCs in mouse models with a single factor Atohl; such ability declines with age. 5...critical role in mammalian HC regeneration after NIHL (Cox et al., in preparation). Non-mammalian vertebrates such as birds, fish and amphibians can

  18. An Inducible, Large-Intestine-Specific Transgenic Mouse Model for Colitis and Colitis-Induced Colon Cancer Research.

    PubMed

    Wang, Fa; Johnson, Robert L; Snyder, Paul W; DeSmet, Marsha L; Fleet, James C

    2016-04-01

    Animal models are an important tool to understand intestinal biology. Our laboratory previously generated C57BL/6-Tg(Car1-cre)5Flt transgenic mice (CAC) with large-intestine-specific Cre recombinase (Cre) expression as a model to study colon health. To expand the utility of the CAC mouse model by determining the impact of chemically induced colitis on CAC transgene expression. CAC mice were crossed to Rosa reporter mice (Rosa26R (flox/flox) ) with a lox-STOP-lox signal controlling β-galactosidase (βgal) expression and then further crossed with Apc(CKO/CKO) mice in some experiments to delete Apc alleles (Apc (Δ580) ). Initially, 8-week-old CAC(Tg/WT);Rosa26R (flox/WT) ;Apc (Δ580/WT) mice were treated with dextran sulfate sodium (DSS) in drinking water (5 days, 0, 0.65, 1.35, or 2.0 %). Colon tissue damage and βgal labeling were analyzed 10 day after stopping DSS. Next, 8-week-old CAC(Tg/WT);Rosa26R(flox/flox) mice were treated with 0 or 1.35 % DSS, and colonic βgal labeling was assessed at 30 day post-DSS treatment. Finally, 10-week-old CAC(Tg/WT);Apc (Δ580/WT) mice were treated with DSS (0 or 2 %) for 5 days and colonic tumors were analyzed at 20 weeks. CAC(Tg/WT);Rosa26R (flox/WT) ;Apc (Δ580/WT) mice had a DSS dose-dependent increase in colon epithelial damage that correlated with increased epithelial βgal labeling at 10 days (r (2) = 0.9, β = 0.75). The βgal labeling in CAC(Tg/WT);Rosa26R(flox/flox) mice colon remained high at 30 days, especially in the crypts of the healed ulcer. DSS also increased colon tumor incidence and multiplicity in CAC(Tg/WT);Apc (Δ580/WT) mice. DSS-mediated epithelial damage induces a persistent, Cre-mediated recombination of floxed alleles in CAC mice. This enables the examination of gene function in colon epithelium during experimental colitis and colitis-induced colon cancer.

  19. Effect of chitosan-N-acetylcysteine conjugate in a mouse model of botulinum toxin B-induced dry eye.

    PubMed

    Hongyok, Teeravee; Chae, Jemin J; Shin, Young Joo; Na, Daero; Li, Li; Chuck, Roy S

    2009-04-01

    To evaluate the effect of a thiolated polymer lubricant, chitosan-N-acetylcysteine conjugate (C-NAC), in a mouse model of dry eye. Eye drops containing 0.5% C-NAC, 0.3% C-NAC, a vehicle (control group), artificial tears, or fluorometholone were applied in a masked fashion in a mouse model of induced dry eye from 3 days to 4 weeks after botulinum toxin B injection. Corneal fluorescein staining was periodically recorded. Real-time reverse transcriptase-polymerase chain reaction and immunofluorescence staining were performed at the end of the study to evaluate inflammatory cytokine expressions. Mice treated with C-NAC, 0.5%, and fluorometholone showed a downward trend that was not statistically significant in corneal staining compared with the other groups. Chitosan-NAC formulations, fluorometholone, and artificial tears significantly decreased IL-1beta (interleukin 1beta), IL-10, IL-12alpha, and tumor necrosis factor alpha expression in ocular surface tissues. The botulinum toxin B-induced dry eye mouse model is potentially useful in evaluating new dry eye treatment. Evaluation of important molecular biomarkers suggests that C-NAC may impart some protective ocular surface properties. However, clinical data did not indicate statistically significant improvement of tear production and corneal staining in any of the groups tested. Topically applied C-NAC might protect the ocular surface in dry eye syndrome, as evidenced by decreased inflammatory cytokine expression.

  20. [Create the mouse model of severe acute pancreatitis induced by caerulein plus lipopolysaccharide and study on its pathogenesis].

    PubMed

    Jin, Chang; Li, Ji Cheng

    2003-04-01

    To set up a nontraumatic and convenient mouse model of severe acute pancreatitis (SAP). Caerulein(Cn) was injected the mice intraperitonealy with lipopolysaccharide(LPS). Serum amylase and pancreas weight were measured in experiment. The pathological changes of pancreas and other organs were observed under light microscope. The ultrastructure of acini were observed under transmission electron microscope (TEM). Serum NO concentration were measured and the SOD and MDA in pancreas were examined. The results in Cn + LPS group were showed that serum amylase, NO concentration and pancreas weight were increased, SOD deduced and MDA increased. Severe edema, inflammation infiltration, necrosis and different extent of hemorrhage were showed. The acini were damaged severely. And the lesion of other organs were also happened. In Cn group, there were only pancreatic interstitial edema but no parenchmal necrosis or hemorrhage, and the other organs were normal. In LPS group, pancreas were almost normal and the organs besides pancreas were only showed light inflammation infiltration. The SAP mouse model induced by caerulein plus LPS has the same pathological characteristics of human SAP, which can be used in human SAP research. The unbalance of oxygen free radical release-elimination and oxidation-antioxidation mechanisms might be involved in the pathogenesis of mouse model of severe acute pancreatitis induced by intraperitoneal injection of caerulein plus LPS.

  1. Whole recombinant yeast vaccine induces antitumor immunity and improves survival in a genetically engineered mouse model of melanoma

    PubMed Central

    Tanaka, A; Jensen, JD; Prado, R; Riemann, H; Shellman, YG; Norris, DA; Chin, L; Yee, C; Fujita, M

    2015-01-01

    Malignant melanoma is one of the deadliest forms of skin cancer and its incidence is expected to rise over the next two decades. At present, there are no effective therapies for advanced melanoma. We have previously shown that administration of whole recombinant yeast expressing human MART-1 (hMART-IT) induces protective antimelanoma immunity in a B16F10 transplantable mouse model. In this study, we examine the effectiveness of the hMART-IT vaccine in a congenic strain of genetically engineered mouse model of melanoma, which recapitulates both the underlying genetics and the proper tumor microenvironment of naturally occurring melanoma. Subcutaneous administration of hMART-IT induced cytotoxicity against melanoma cells and antigen-specific production of Th1-specific cytokines by splenocytes. Weekly administration of hMART-IT significantly delayed the development of melanoma and prolonged the survival of mice compared with controls. Although histological analysis demonstrated diffuse infiltration of CD4+ T cells and CD8+ T cells, no reduction of regulatory T cells was observed, suggesting that hMART-IT cannot prevent immunotolerance in the tumor microenvironment. This study provides a proof of concept that genetically engineered mouse models lend valuable insights into immunotherapeutics being tested in the preclinical setting. PMID:21390072

  2. Transgenic Mouse Models Resistant to Diet-Induced Metabolic Disease: Is Energy Balance the Key?

    PubMed Central

    Gilliam, Laura A. A.

    2012-01-01

    The prevalence and economic burden of obesity and type 2 diabetes is a driving force for the discovery of molecular targets to improve insulin sensitivity and glycemic control. Here, we review several transgenic mouse models that identify promising targets, ranging from proteins involved in the insulin signaling pathway, alterations of genes affecting energy metabolism, and transcriptional metabolic regulators. Despite the diverse endpoints in each model, a common thread that emerges is the necessity for maintenance of energy balance, suggesting pharmacotherapy must target the development of drugs that decrease energy intake, accelerate energy expenditure in a well controlled manner, or augment natural compensatory responses to positive energy balance. PMID:22700428

  3. Transgenic mouse models resistant to diet-induced metabolic disease: is energy balance the key?

    PubMed

    Gilliam, Laura A A; Neufer, P Darrell

    2012-09-01

    The prevalence and economic burden of obesity and type 2 diabetes is a driving force for the discovery of molecular targets to improve insulin sensitivity and glycemic control. Here, we review several transgenic mouse models that identify promising targets, ranging from proteins involved in the insulin signaling pathway, alterations of genes affecting energy metabolism, and transcriptional metabolic regulators. Despite the diverse endpoints in each model, a common thread that emerges is the necessity for maintenance of energy balance, suggesting pharmacotherapy must target the development of drugs that decrease energy intake, accelerate energy expenditure in a well controlled manner, or augment natural compensatory responses to positive energy balance.

  4. Severe, multimodal stress exposure induces PTSD-like characteristics in a mouse model of single prolonged stress.

    PubMed

    Perrine, Shane A; Eagle, Andrew L; George, Sophie A; Mulo, Kostika; Kohler, Robert J; Gerard, Justin; Harutyunyan, Arman; Hool, Steven M; Susick, Laura L; Schneider, Brandy L; Ghoddoussi, Farhad; Galloway, Matthew P; Liberzon, Israel; Conti, Alana C

    2016-04-15

    Appropriate animal models of posttraumatic stress disorder (PTSD) are needed because human studies remain limited in their ability to probe the underlying neurobiology of PTSD. Although the single prolonged stress (SPS) model is an established rat model of PTSD, the development of a similarly-validated mouse model emphasizes the benefits and cross-species utility of rodent PTSD models and offers unique methodological advantages to that of the rat. Therefore, the aims of this study were to develop and describe a SPS model for mice and to provide data that support current mechanisms relevant to PTSD. The mouse single prolonged stress (mSPS) paradigm, involves exposing C57Bl/6 mice to a series of severe, multimodal stressors, including 2h restraint, 10 min group forced swim, exposure to soiled rat bedding scent, and exposure to ether until unconsciousness. Following a 7-day undisturbed period, mice were tested for cue-induced fear behavior, effects of paroxetine on cue-induced fear behavior, extinction retention of a previously extinguished fear memory, dexamethasone suppression of corticosterone (CORT) response, dorsal hippocampal glucocorticoid receptor protein and mRNA expression, and prefrontal cortex glutamate levels. Exposure to mSPS enhanced cue-induced fear, which was attenuated by oral paroxetine treatment. mSPS also disrupted extinction retention, enhanced suppression of stress-induced CORT response, increased mRNA expression of dorsal hippocampal glucocorticoid receptors and decreased prefrontal cortex glutamate levels. These data suggest that the mSPS model is a translationally-relevant model for future PTSD research with strong face, construct, and predictive validity. In summary, mSPS models characteristics relevant to PTSD and this severe, multimodal stress modifies fear learning in mice that coincides with changes in the hypothalamo-pituitary-adrenal (HPA) axis, brain glucocorticoid systems, and glutamatergic signaling in the prefrontal cortex

  5. Obese diet-induced mouse models of nonalcoholic steatohepatitis-tracking disease by liver biopsy

    PubMed Central

    Kristiansen, Maria Nicoline Baandrup; Veidal, Sanne Skovgård; Rigbolt, Kristoffer Tobias Gustav; Tølbøl, Kirstine Sloth; Roth, Jonathan David; Jelsing, Jacob; Vrang, Niels; Feigh, Michael

    2016-01-01

    ) and ob/ob-NASH mice (2.4 ± 0.3 vs 6.3 ± 0.2, P < 0.001 compared to ob/ob chow), respectively. Furthermore, fibrosis stage was significantly elevated for DIO-NASH mice (0 vs 1.2 ± 0.2, P < 0.05 compared to lean chow) and ob/ob NASH (0.1 ± 0.1 vs 3.0 ± 0.2, P < 0.001 compared to ob/ob chow). Notably, fibrosis stage was significantly (P < 0.001) increased in ob/ob-NASH mice, when compared to DIO-NASH mice. CONCLUSION: These data introduce the obese diet-induced DIO-NASH and ob/ob-NASH mouse models with biopsy-confirmed individual disease staging as a preclinical platform for evaluation of novel NASH therapeutics. PMID:27326314

  6. Protective effect of Bifidobacterium infantis CGMCC313-2 on ovalbumin-induced airway asthma and β-lactoglobulin-induced intestinal food allergy mouse models

    PubMed Central

    Liu, Meng-Yun; Yang, Zhen-Yu; Dai, Wen-Kui; Huang, Jian-Qiong; Li, Yin-Hu; Zhang, Juan; Qiu, Chuang-Zhao; Wei, Chun; Zhou, Qian; Sun, Xin; Feng, Xin; Li, Dong-Fang; Wang, He-Ping; Zheng, Yue-Jie

    2017-01-01

    AIM To determine whether oral administration of Bifidobacterium infantis CGMCC313-2 (B. infantis CGMCC313-2) inhibits allergen-induced airway inflammation and food allergies in a mouse model. METHODS Ovalbumin (OVA)-induced allergic asthma and β-lactoglobulin-induced food allergy mouse models were used in this study. Following oral administration of B. infantis CGMCC313-2 during or after allergen sensitization, histopathologic changes in the lung and intestine were evaluated by hematoxylin and eosin (HE) staining. In the allergic asthma mouse model, we evaluated the proportion of lung-infiltrating inflammatory cells. OVA-specific IgE and IgG1 levels in serum and cytokine levels in bronchoalveolar lavage fluid (BALF) were also assessed. In the food allergy mouse model, the levels of total IgE and cytokines in serum were measured. RESULTS Oral administration of B. infantis CGMCC313-2 during or after allergen sensitization suppressed allergic inflammation in lung and intestinal tissues, while the proportion of infiltrating inflammatory cells was significantly decreased in the BALF of allergic asthma mice. Moreover, B. infantis CGMCC313-2 decreased the serum levels of total IgE in food allergy mice, and reductions in IgE and IgG1 were also observed in OVA-induced allergic asthma mice. The expression of interleukin-4 (IL-4) and IL-13 in both serum and BALF was suppressed following the administration of B. infantis CGMCC313-2, while an effect on serum IL-10 levels was not observed. CONCLUSION B. infantis CGMCC313-2 inhibits the secretion of allergen-induced IgE, IL-4 and IL-13, and attenuates allergic inflammation. PMID:28405142

  7. Minor histocompatibility antigens on transfused leukoreduced units of red blood cells induce bone marrow transplant rejection in a mouse model.

    PubMed

    Desmarets, Maxime; Cadwell, Chantel M; Peterson, Kenneth R; Neades, Renee; Zimring, James C

    2009-09-10

    When successful, human leukocyte antigen (HLA)-matched bone marrow transplantation with reduced-intensity conditioning is a cure for several nonmalignant hematologic disorders that require chronic transfusion, such as sickle cell disease and aplastic anemia. However, there are unusually high bone marrow transplant (BMT) rejection rates in these patients. Rejection correlates with the number of transfusions before bone marrow transplantation, and it has been hypothesized that preimmunization to antigens on transfused blood may prime BMT rejection. Using a novel mouse model of red blood cell (RBC) transfusion and major histocompatibility complex-matched bone marrow transplantation, we report that transfusion of RBC products induced BMT rejection across minor histocompatibility antigen (mHA) barriers. It has been proposed that contaminating leukocytes are responsible for transfusion-induced BMT rejection; however, filter leukoreduction did not prevent rejection in the current studies. Moreover, we generated a novel transgenic mouse with RBC-specific expression of a model mHA and demonstrated that transfusion of RBCs induced a CD8(+) T-cell response. Together, these data suggest that mHAs on RBCs themselves are capable of inducing BMT rejection. Cellular immunization to mHAs is neither monitored nor managed by current transfusion medicine practice; however, the current data suggest that mHAs on RBCs may represent an unappreciated and significant consequence of RBC transfusion.

  8. Gene therapy with IL-12 induced enhanced anti-tumor activity in fibrosarcoma mouse model.

    PubMed

    Razi Soofiyani, Saiedeh; Kazemi, Tohid; Lotfipour, Farzaneh; Mohammad Hosseini, Akbar; Shanehbandi, Dariush; Hallaj-Nezhadi, Somayeh; Baradaran, Behzad

    2016-12-01

    Context Immunotherapy is among the most promising modalities for treatment of cancer. Recently, interleukin 12 (IL-12) has been used as an immunotherapeutic agent in cancer gene therapy. IL-12 can activate dendritic cells (DCs) and boost anti-tumor immune responses. Objective In the current study, we have investigated if IL-12 gene therapy can lead to the regression of tumor mass in a mouse model of fibrosarcoma. Material and methods To investigate the therapeutic efficacy of IL-12, WEHI-164 tumor cells were transfected with murine-IL12 plasmids using Lipofectamine. Enzyme linked immunosorbent assay (ELISA) was used to confirm IL-12 expression in transfected cells. The fibrosarcoma mouse model was established by subcutaneous injection of transfected cells to Balb/C mice. Mice were sacrificed and the tumors were extracted. Tumor sizes were measured by caliper. The expression of IL-12 and IFN-γ was studied with real-time PCR and western blotting. The expression of Ki-67(a tumor proliferation marker) in tumor mass was studied by immunohistochemistry staining. Results and discussion The group treated with IL-12 showed a significant decrease in tumor mass volume (P: 0.000). The results of real-time PCR and western blotting showed that IL-12 and IFN-γ expression increased in the group treated with IL-12 (relative expression of IL-12: 1.9 and relative expression of IFN-γ: 1.766). Immunohistochemistry staining showed that Ki-67 expression was reduced in the group treated with IL-12. Conclusion IL-12 gene therapy successfully led to regress of tumor mass in the fibrosarcoma mouse model. This may serve as a candidate therapeutic approach for treatment of cancer.

  9. A Mouse Model of Multi-Drug Resistant Staphylococcus aureus-induced Ocular Disease

    PubMed Central

    Broekema, Nicole M.; Larsen, Inna V.; Naruzawa, Erika S.; Filutowicz, Marcin; Kolb, Aaron W.; Teixeira, Leandro B. C.; Brandt, Curtis R.

    2016-01-01

    Staphylococcus aureus infection of the cornea is a significant threat to vision. The percentage of bacterial isolates resistant to antibiotics is increasing as is the percentage of infections caused by methicillin resistant isolates. There is a critical need for additional therapeutic approaches and their development will require the use of animal models to test efficacy. Two mouse models of S. aureus keratitis have been described but only quantified stromal keratitis (corneal clouding and perforation). We have extended these models using the methicillin resistant S. aureus USA300 LAC strain and show that eyelid inflammation and swelling (blepharitis) and corneal neovascularization can be quantified. This expanded model should prove useful in assessing additional effects of antibacterial therapies and additional pathological mechanisms involved in bacterial ocular infection. PMID:27896297

  10. A mouse model of ocular blast injury that induces closed globe anterior and posterior pole damage

    PubMed Central

    Hines-Beard, Jessica; Marchetta, Jeffrey; Gordon, Sarah; Chaum, Edward; Geisert, Eldon E.; Rex, Tonia S.

    2012-01-01

    We developed and characterized a mouse model of primary ocular blast injury. The device consists of: a pressurized air tank attached to a regulated paintball gun with a machined barrel; a chamber that protects the mouse from direct injury and recoil, while exposing the eye; and a secure platform that enables fine, controlled movement of the chamber in relation to the barrel. Expected pressures were calculated and the optimal pressure transducer, based on the predicted pressures, was positioned to measure output pressures at the location where the mouse eye would be placed. Mice were exposed to one of three blast pressures (23.6, 26.4, or 30.4psi). Gross pathology, intraocular pressure, optical coherence tomography, and visual acuity were assessed 0, 3, 7, 14, and 28 days after exposure. Contralateral eyes and non-blast exposed mice were used as controls. We detected increased damage with increased pressures and a shift in the damage profile over time. Gross pathology included corneal edema, corneal abrasions, and optic nerve avulsion. Retinal damage was detected by optical coherence tomography and a deficit in visual acuity was detected by optokinetics. Our findings are comparable to those identified in Veterans of the recent wars with closed eye injuries as a result of blast exposure. In summary, this is a relatively simple system that creates injuries with features similar to those seen in patients with ocular blast trauma. This is an important new model for testing the short-term and long-term spectrum of closed globe blast injuries and potential therapeutic interventions. PMID:22504073

  11. [Orthogonal design based optimization of a mouse model of acute liver failure induced by D-galactosamine and lipopolysaccharide].

    PubMed

    Yang, Hao-zhen; Chen, Long; Tong, Jing-jing; Zhang, Hui-ying; Pang, Fei; Xu, Zhi-heng; Xin, Shao-jie; Hu, Jin-hua

    2013-06-01

    To apply an orthogonal design optimization strategy to a mouse model of acute liver failure induced by D-galactosamine (D-GalN) and lipopolysaccharide (LPS) exposure. A four-level orthogonal array design (L16(45)) was constructed to test factors with potential impact on successful establishment of the model (D-GalN and LPS dosages, and dilution rate of the D-GalN/LPS mixture). The mortality rate of mice within 24 hours of D-GalN/LPS administration was determined by the Kaplan-Meier method. The model outcome was verified by changes in serum alanine transferase level, liver histology, and hepatocyte apoptosis. The orthogonal array identified the optimal model technique as intraperitoneal injection of a combination of D-GalN and LPS at dosages of 350 mg/kg and 30 mug/kg, respectively, and using a dilution rate of 3. The dosages tested had no effect on survival. The typical signs of liver failure appeared at 6 hrs after administration of the D-GalN/LPS combination. The orthogonal design optimization strategy provided a procedure for establishing a mouse model of acute liver failure induced by D-GalN and LPS that showed appropriate disease outcome and survival, and which will serve to improve future experimental research of acute liver failure.

  12. Decidual neutrophil infiltration is not required for preterm birth in a mouse model of infection-induced preterm labor.

    PubMed

    Rinaldi, Sara F; Catalano, Rob D; Wade, Jean; Rossi, Adriano G; Norman, Jane E

    2014-03-01

    Parturition is associated with a leukocyte influx into the intrauterine tissues; however, the exact role these leukocytes play in the onset of labor remains unclear. Neutrophil infiltration of the uteroplacental tissues has been particularly associated with infection-associated preterm labor (PTL) in both women and mouse models. In this study, we investigated the role of neutrophils in a mouse model of infection-induced PTL. Intrauterine administration of LPS on day 17 of gestation resulted in a 7-fold increase in the number of decidual neutrophils compared with control mice receiving PBS (p < 0.01; n = 8-11). We hypothesized that neutrophil influx is necessary for PTL and that neutrophil depletion would abolish preterm birth. To test this hypothesis, mice were depleted of neutrophils by treatment with anti-Gr-1, anti-Ly-6G, or the appropriate IgG control Ab on day 16 of gestation prior to LPS on day 17 (n = 6-7). Successful neutrophil depletion was confirmed by flow cytometry and immunohistochemistry. Neutrophil depletion with Gr-1 resulted in reduced uterine and placental Il-1β expression (p < 0.05). Neutrophil depletion with Ly-6G reduced uterine Il-1β and Tnf-α expression (p < 0.05). However, neutrophil depletion with either Ab did not delay LPS-induced preterm birth. Collectively, these data show that decidual neutrophil infiltration is not essential for the induction of infection-induced PTL in the mouse, but that neutrophils contribute to the LPS-induced inflammatory response of the uteroplacental tissues.

  13. Mouse closed head injury model induced by a weight-drop device.

    PubMed

    Flierl, Michael A; Stahel, Philip F; Beauchamp, Kathryn M; Morgan, Steven J; Smith, Wade R; Shohami, Esther

    2009-01-01

    Traumatic brain injury represents the leading cause of death in young individuals. Various animal models have been developed to mimic human closed head injury (CHI). Widely used models induce head injury by lateral fluid percussion, a controlled cortical impact or impact acceleration. The presented model induces a CHI by a standardized weight-drop device inducing a focal blunt injury over an intact skull without pre-injury manipulations. The resulting impact triggers a profound neuroinflammatory response within the intrathecal compartment with high consistency and reproducibility, leading to neurological impairment and breakdown of the blood-brain barrier. In this protocol, we define standardized procedures for inducing CHI in mice and determine various severity grades of CHI through modulation of the weight falling height. In experienced hands, this CHI model can be carried out in as little as 30 s per animal, with additional time required for subsequent posttraumatic analysis and data collection.

  14. Minocycline attenuates 5-fluorouracil-induced small intestinal mucositis in mouse model.

    PubMed

    Huang, Tien-Yu; Chu, Heng-Cheng; Lin, Yi-Ling; Ho, Whae-Hong; Hou, Hsien-San; Chao, You-Chen; Liao, Ching-Len

    2009-11-27

    Minocycline exerts anti-inflammatory and anti-apoptotic effects distinct from its antimicrobial function. In this study we investigated the effect of this drug on chemotherapy-induced gut damage. Body weight loss results, diarrhea scores, and villi measurements showed that minocycline attenuated the severity of intestinal mucositis induced by 5-fluorouracil (5-FU). Minocycline repressed the expression of TNF-alpha, IL-1beta, and iNOS, decreased the apoptotic index, and inhibited poly(ADP-ribose) polymerase-1 (PARP-1) activity in the mouse small intestine. In vitro experiments showed that minocycline suppressed the upregulation of PARP-1 activity in enterocyte IEC-6 cells treated with 5-FU. In addition, minocycline treatment appeared to enhance the antitumor effects of 5-FU in tumor CT-26 xenograft mice. Our results indicate that minocycline protects mice from gut injury induced by 5-FU and enhances the antitumor effects of 5-FU in xenograft mice. These observations suggest that minocycline treatment may benefit patients undergoing standard cancer chemotherapy by alleviating chemical-associated intestinal mucositis.

  15. Proteomic characterization of acyclovir-induced nephrotoxicity in a mouse model.

    PubMed

    Lu, Hong; Han, Ya-Juan; Xu, Jia-Dong; Xing, Wen-Min; Chen, Jie

    2014-01-01

    Acyclovir (ACV) is an effective and widely used antiviral agent. However, its clinical application is limited by severe nephrotoxicity. We assessed ACV-induced nephrotoxicity and identified the differentially expressed proteins using mass spectrometry-based proteomic analysis. In total, 30 ICR mice were intraperitoneally administrated ACV (150 or 600 mg/kg per day) for 9 days. After administration of ACV, levels of serum creatinine and urea nitrogen increased significantly. In addition, mouse kidneys exhibited histopathological changes and reduced expression levels of vascular endothelial growth factor (VEGF) and its receptor VEGFR2. In the proteomic analysis, more than 1,000 proteins were separated by two-dimensional polyacrylamide gel electrophoresis, and a total of 20 proteins were up- or down-regulated in the ACV group compared with the saline group. Among these, six proteins (MHC class II antigen, glyoxalase 1, peroxiredoxin 1, αB-crystallin, fibroblast growth factor receptor 1-IIIb, and cytochrome c oxidase subunit Vb) were identified in association with ACV-induced nephrotoxicity. These findings were confirmed by Western blotting analysis. The differential expression levels of α-BC, Prx1, Glo I and CcO Vb suggest that oxidative damage and mitochondrial injury may be involved in ACV-induced nephrotoxicity. Furthermore, VEGF and FGF may play a role in tissue repair and the restoration process following ACV nephrotoxicity.

  16. Proteomic Characterization of Acyclovir-Induced Nephrotoxicity in a Mouse Model

    PubMed Central

    Lu, Hong; Han, Ya-Juan; Xu, Jia-Dong; Xing, Wen-Min; Chen, Jie

    2014-01-01

    Acyclovir (ACV) is an effective and widely used antiviral agent. However, its clinical application is limited by severe nephrotoxicity. We assessed ACV-induced nephrotoxicity and identified the differentially expressed proteins using mass spectrometry-based proteomic analysis. In total, 30 ICR mice were intraperitoneally administrated ACV (150 or 600 mg/kg per day) for 9 days. After administration of ACV, levels of serum creatinine and urea nitrogen increased significantly. In addition, mouse kidneys exhibited histopathological changes and reduced expression levels of vascular endothelial growth factor (VEGF) and its receptor VEGFR2. In the proteomic analysis, more than 1,000 proteins were separated by two-dimensional polyacrylamide gel electrophoresis, and a total of 20 proteins were up- or down-regulated in the ACV group compared with the saline group. Among these, six proteins (MHC class II antigen, glyoxalase 1, peroxiredoxin 1, αB-crystallin, fibroblast growth factor receptor 1-IIIb, and cytochrome c oxidase subunit Vb) were identified in association with ACV-induced nephrotoxicity. These findings were confirmed by Western blotting analysis. The differential expression levels of α-BC, Prx1, Glo I and CcO Vb suggest that oxidative damage and mitochondrial injury may be involved in ACV-induced nephrotoxicity. Furthermore, VEGF and FGF may play a role in tissue repair and the restoration process following ACV nephrotoxicity. PMID:25055032

  17. Rebamipide attenuates 5-Fluorouracil-induced small intestinal mucositis in a mouse model.

    PubMed

    Kim, Hyun Jin; Kim, Jin Hyun; Moon, Won; Park, Jongha; Park, Seun Ja; Song, Geun Am; Han, Seung Hee; Lee, Jong Hun

    2015-01-01

    5-Fluorouracil (5-FU)-induced intestinal mucositis is one of the most common morbidities in chemotherapy and involves the reactive oxygen species (ROS) system, apoptosis, and inflammatory cytokines. Rebamipide exerts a mucosal-protective effect, mediated through several mechanisms. The aim of this study was to evaluate the effects of rebamipide in 5-FU-induced mouse small-intestinal mucositis. BALB/c mice were assigned randomly to four groups; (1) control group (n=10; receiving saline orally for 6 d), (2) rebamipide group (n=10; 150 mg/kg rebamipide for 6 d orally), (3) 5-FU group (n=10; 30 mg/kg 5-FU for 5 d, intraperitoneally (i.p.)), and (4) rebamipide +5-FU group (n=10; 150 mg/kg rebamipide for 6 d orally and 30 mg/kg 5-FU for 5 d, i.p.). Body weights and diarrhea scales were assessed. At day 5, the mice were sacrificed. Small intestinal tissue was used for: (1) hematoxylin and eosin (HE) staining for determination of small intestinal villi height, (2) terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) assay, (3) immunohistochemistry for inducible nitric oxide synthase (iNOS), F4/80, and transforming growth factor (TGF)-β1, (4) measurement of serum and tissue GSH levels, and (5) measurement of serum tumor necrosis factor (TNF)-α levels. Rebamipide attenuated the severity of mucosal injury reflected by body weight changes, degrees of diarrhea, and heights of villi. Rebamipide reduced the expression of iNOS and TGF-β1, apoptosis, macrophage accumulation, serum TNF-α levels, and prevented reductions in serum and tissue glutathione (GSH) levels by 5-FU administration. These results suggest that rebamipide promotes several mechanisms of mucosal protection and attenuated the 5-FU-induced mucosal injury. In conclusion, administration of rebamipide may have significant protective effects against 5-FU-induced intestinal mucositis.

  18. Induced Chromosome Deletion in a Williams-Beuren Syndrome Mouse Model Causes Cardiovascular Abnormalities

    PubMed Central

    Goergen, Craig J.; Li, Hong-Hua; Francke, Uta; Taylor, Charles A.

    2011-01-01

    Aims The Williams-Beuren syndrome (WBS) is a genetic disorder caused by a heterozygous ∼1.5-Mb deletion. The aim of this study was to determine how the genetic changes in a Wbs mouse model alter Eln expression, blood pressure, vessel structure, and abdominal aortic wall dynamics in vivo. Methods Elastin (ELN) transcript levels were quantified by qRT-PCR and blood pressure was measured with a tail cuff system. M-mode ultrasound was used to track pulsatile abdominal aortic wall motion. Aortas were sectioned and stained to determine medial lamellar structure. Results ELN transcript levels were reduced by 38–41% in Wbs mice lacking one copy of the ELN gene. These mice also had a 10–20% increase in mean blood pressure and significantly reduced circumferential cyclic strain (p < 0.001). Finally, histological sections showed disorganized and fragmented elastin sheets in Wbs mice, but not the characteristic increase in lamellar units seen in Eln+/– mice. Conclusions The deletion of Eln in this Wbs mouse model results in lower gene expression, hypertension, reduced cyclic strain, and fragmented elastin sheets. The observation that the number of medial lamellar units is normal in Wbs deletion mice, which is in contrast to Eln+/– mice, suggests other genes may be involved in vascular development. PMID:20926892

  19. A Mouse Model of Post-Stroke Pneumonia Induced by Intra-Tracheal Inoculation with Streptococcus pneumoniae.

    PubMed

    Mracsko, Eva; Stegemann-Koniszewski, Sabine; Na, Shin-Young; Dalpke, Alexander; Bruder, Dunja; Lasitschka, Felix; Veltkamp, Roland

    2017-01-01

    Stroke-induced immunodeficiency increases the risk of infectious complications, which adversely affects neurological outcome. Among those, pneumonia affects as many as one third of stroke patients and is the main contributor to mortality in the post-acute phase of stroke. Experimental findings on post-stroke susceptibility to spontaneous pneumonia in mice are contradictory. Here, we established a mouse model inducing standardized bacterial pneumonia and characterized the impaired pulmonary cellular and humoral immune responses after experimental stroke. Bacterial pneumonia was induced by intra-tracheal inoculation with Streptococcus pneumoniae at different time points after transient middle cerebral artery occlusion (MCAO). Bacterial counts in lungs and blood, histological changes, and cytokine production in the lungs were assessed. Furthermore, we investigated the effect of pneumonia on stroke outcome. Intra-tracheal inoculation resulted in reproducible pneumonia and bacteraemia, and demonstrated post-stroke susceptibility to streptococcal pneumonia developing with a delay of at least 24 h after MCAO. Higher bacterial counts in mice infected 3 days after stroke induction correlated with reduced neutrophil and macrophage infiltration in the lungs and lower levels of pro-inflammatory cytokines in the broncho-alveolar lavage compared to sham-operated animals. Pneumonia increased mortality without affecting brain-infiltrating leukocytes. In this standardized mouse model of post-stroke pneumonia, we describe attenuated leukocyte infiltration and cytokine production in response to bacterial infection in the lungs that has a profound effect on outcome. © 2017 S. Karger AG, Basel.

  20. Subchronic Arsenic Exposure Induces Anxiety-Like Behaviors in Normal Mice and Enhances Depression-Like Behaviors in the Chemically Induced Mouse Model of Depression.

    PubMed

    Chang, Chia-Yu; Guo, How-Ran; Tsai, Wan-Chen; Yang, Kai-Lin; Lin, Li-Chuan; Cheng, Tain-Junn; Chuu, Jiunn-Jye

    2015-01-01

    Accumulating evidence implicates that subchronic arsenic exposure causes cerebral neurodegeneration leading to behavioral disturbances relevant to psychiatric disorders. However, there is still little information regarding the influence of subchronic exposure to arsenic-contaminated drinking water on mood disorders and its underlying mechanisms in the cerebral prefrontal cortex. The aim of this study is to assess the effects of subchronic arsenic exposure (10 mg/LAs2O3 in drinking water) on the anxiety- and depression-like behaviors in normal mice and in the chemically induced mouse model of depression by reserpine pretreatment. Our findings demonstrated that 4 weeks of arsenic exposure enhance anxiety-like behaviors on elevated plus maze (EPM) and open field test (OFT) in normal mice, and 8 weeks of arsenic exposure augment depression-like behaviors on tail suspension test (TST) and forced swimming test (FST) in the reserpine pretreated mice. In summary, in this present study, we demonstrated that subchronic arsenic exposure induces only the anxiety-like behaviors in normal mice and enhances the depression-like behaviors in the reserpine induced mouse model of depression, in which the cerebral prefrontal cortex BDNF-TrkB signaling pathway is involved. We also found that eight weeks of subchronic arsenic exposure are needed to enhance the depression-like behaviors in the mouse model of depression. These findings imply that arsenic could be an enhancer of depressive symptoms for those patients who already had the attribute of depression.

  1. Subchronic Arsenic Exposure Induces Anxiety-Like Behaviors in Normal Mice and Enhances Depression-Like Behaviors in the Chemically Induced Mouse Model of Depression

    PubMed Central

    Chang, Chia-Yu; Guo, How-Ran; Tsai, Wan-Chen; Yang, Kai-Lin; Lin, Li-Chuan

    2015-01-01

    Accumulating evidence implicates that subchronic arsenic exposure causes cerebral neurodegeneration leading to behavioral disturbances relevant to psychiatric disorders. However, there is still little information regarding the influence of subchronic exposure to arsenic-contaminated drinking water on mood disorders and its underlying mechanisms in the cerebral prefrontal cortex. The aim of this study is to assess the effects of subchronic arsenic exposure (10 mg/LAs2O3 in drinking water) on the anxiety- and depression-like behaviors in normal mice and in the chemically induced mouse model of depression by reserpine pretreatment. Our findings demonstrated that 4 weeks of arsenic exposure enhance anxiety-like behaviors on elevated plus maze (EPM) and open field test (OFT) in normal mice, and 8 weeks of arsenic exposure augment depression-like behaviors on tail suspension test (TST) and forced swimming test (FST) in the reserpine pretreated mice. In summary, in this present study, we demonstrated that subchronic arsenic exposure induces only the anxiety-like behaviors in normal mice and enhances the depression-like behaviors in the reserpine induced mouse model of depression, in which the cerebral prefrontal cortex BDNF-TrkB signaling pathway is involved. We also found that eight weeks of subchronic arsenic exposure are needed to enhance the depression-like behaviors in the mouse model of depression. These findings imply that arsenic could be an enhancer of depressive symptoms for those patients who already had the attribute of depression. PMID:26114099

  2. A MOUSE MODEL OF MAMMARY HYPERPLASIA INDUCED BY ORAL HORMONE ADMINISTRATION.

    PubMed

    Sun, Li; Guo, Dong-Hui; Liu, Fei; Liu, Qian; Jiang, Ning; Sun, Yun-Feng; Cai, Li-Ping; Zheng, Hong-Xin

    2017-01-01

    Mammary hyperplasia is one of the most common benign breast disorders. Although traditional Chinese medicine has a vast experience in the treatment of mammary hyperplasia, it is not accepted widely due to its unclear mechanism. To address the mechanism, we developed a mouse model of mammary hyperplasia. We gave mice estradiol valerate tablets and progesterone capsules sequentially for one month by intragastric administration. Mice treated by this method had a series of pathological changes which are similar to those detected in women with mammary hyperplasia, including ectopic level of estradiol and progesterone in serum, hyperplasia of mammary glands and increased expression of ERα and PR. This model will facilitate the mechanical study of traditional medicine on mammary hyperplasia.

  3. Mouse Models of Diet-Induced Nonalcoholic Steatohepatitis Reproduce the Heterogeneity of the Human Disease

    PubMed Central

    Machado, Mariana Verdelho; Michelotti, Gregory Alexander; Xie, Guanhua; de Almeida, Thiago Pereira; Boursier, Jerome; Bohnic, Brittany; Guy, Cynthia D.; Diehl, Anna Mae

    2015-01-01

    Background and aims Non-alcoholic steatohepatitis (NASH), the potentially progressive form of nonalcoholic fatty liver disease (NAFLD), is the pandemic liver disease of our time. Although there are several animal models of NASH, consensus regarding the optimal model is lacking. We aimed to compare features of NASH in the two most widely-used mouse models: methionine-choline deficient (MCD) diet and Western diet. Methods Mice were fed standard chow, MCD diet for 8 weeks, or Western diet (45% energy from fat, predominantly saturated fat, with 0.2% cholesterol, plus drinking water supplemented with fructose and glucose) for 16 weeks. Liver pathology and metabolic profile were compared. Results The metabolic profile associated with human NASH was better mimicked by Western diet. Although hepatic steatosis (i.e., triglyceride accumulation) was also more severe, liver non-esterified fatty acid content was lower than in the MCD diet group. NASH was also less severe and less reproducible in the Western diet model, as evidenced by less liver cell death/apoptosis, inflammation, ductular reaction, and fibrosis. Various mechanisms implicated in human NASH pathogenesis/progression were also less robust in the Western diet model, including oxidative stress, ER stress, autophagy deregulation, and hedgehog pathway activation. Conclusion Feeding mice a Western diet models metabolic perturbations that are common in humans with mild NASH, whereas administration of a MCD diet better models the pathobiological mechanisms that cause human NAFLD to progress to advanced NASH. PMID:26017539

  4. Inhibition of STAT3 signaling blocks obesity-induced mammary hyperplasia in a mouse model

    PubMed Central

    Park, Jeong Won; Zhao, Li; Willingham, Mark C; Cheng, Sheue-Yann

    2017-01-01

    Compelling epidemiologic evidence indicates that obesity is a risk factor for human cancers, including breast. However, molecular mechanisms by which obesity could contribute to the development of breast cancer remain unclear. To understand the impact of obesity on breast cancer development, we used a mutant mouse that expresses a mutated thyroid hormone receptor β (denoted as PV) with haplodeficiency of the Pten gene (ThrbPV/PVPten+/- mice). We previously showed that adult nulliparous female ThrbPV/PVPten+/- mice developed extensive mammary hyperplasia and breast tumors. In this study, we induced obesity in ThrbPV/PVPten+/- mice by feeding them a high fat diet (HFD). We found HFD exacerbated the extent of mammary hyperplasia in ThrbPV/PVPten+/- mice. HFD elevated serum leptin levels but had no effect on the levels of serum thyroid stimulating hormone, thyroid hormones, and estrogens. Molecular analysis showed that the obesity-induced hyperplasia was mediated by the leptin/leptin receptor-JAK1-STAT3 pathway to increase key cell cycle regulators to stimulate mammary epithelial cell proliferation. Activated STAT3 signaling led to altered expression in the key regulators of epithelial-mesenchymal-transition (EMT) to augment invasiveness and migration of mammary proliferating epithelial cells. Moreover, treatment of HFD-ThrbPV/PVPten+/- mice with a STAT3 inhibitor, S3I-201, markedly reversed the obesity-induced mammary hyperplasia and reduced EMT signals to lessen cell invasiveness and migration. Our studies not only elucidated how obesity could contribute to mammary hyperplasia at the molecular level, but also, importantly, demonstrated that inhibition of the STAT3 activity could be a novel treatment strategy for obesity-induced breast cancer progression. PMID:28401024

  5. An Adult Mouse Model of Vibrio cholerae-induced Diarrhea for Studying Pathogenesis and Potential Therapy of Cholera

    PubMed Central

    Sawasvirojwong, Sutthipong; Srimanote, Potjanee; Chatsudthipong, Varanuj; Muanprasat, Chatchai

    2013-01-01

    Cholera is a diarrheal disease causing significant morbidity and mortality worldwide. This study aimed to establish an adult mouse model of Vibrio cholerae-induced diarrhea and to characterize its pathophysiology. Ligated ileal loops of adult mice were inoculated for 6, 9, 12 and 18 h with a classical O1 hypertoxigenic 569B strain of V. cholerae (107 CFU/loop). Time-course studies demonstrated that the optimal period for inducing diarrhea was 12 h post-inoculation, when peak intestinal fluid accumulation (loop/weight ratio of ∼0.2 g/cm) occurred with the highest diarrhea success rate (90%). In addition, pathogenic numbers of V. cholerae (∼109 CFU/g tissue) were recovered from ileal loops at all time points between 6–18 h post-inoculation with the diarrheagenic amount of cholera toxin being detected in the secreted intestinal fluid at 12 h post-inoculation. Interestingly, repeated intraperitoneal administration of CFTRinh-172 (20 µg every 6 h), an inhibitor of cystic fibrosis transmembrane conductance regulator (CFTR), completely abolished the V. cholerae-induced intestinal fluid secretion without affecting V. cholerae growth in vivo. As analyzed by ex vivo measurement of intestinal electrical resistance and in vivo assay of fluorescein thiocyanate (FITC)-dextran trans-intestinal flux, V. cholerae infection had no effect on intestinal paracellular permeability. Measurements of albumin in the diarrheal fluid suggested that vascular leakage did not contribute to the pathogenesis of diarrhea in this model. Furthermore, histological examination of V. cholerae-infected intestinal tissues illustrated edematous submucosa, congestion of small vessels and enhanced mucus secretion from goblet cells. This study established a new adult mouse model of V. cholerae-induced diarrhea, which could be useful for studying the pathogenesis of cholera diarrhea and for evaluating future therapeutics/cholera vaccines. In addition, our study confirmed the major role of CFTR in V

  6. An Adult Mouse Model of Vibrio cholerae-induced Diarrhea for Studying Pathogenesis and Potential Therapy of Cholera.

    PubMed

    Sawasvirojwong, Sutthipong; Srimanote, Potjanee; Chatsudthipong, Varanuj; Muanprasat, Chatchai

    2013-06-01

    Cholera is a diarrheal disease causing significant morbidity and mortality worldwide. This study aimed to establish an adult mouse model of Vibrio cholerae-induced diarrhea and to characterize its pathophysiology. Ligated ileal loops of adult mice were inoculated for 6, 9, 12 and 18 h with a classical O1 hypertoxigenic 569B strain of V. cholerae (10(7) CFU/loop). Time-course studies demonstrated that the optimal period for inducing diarrhea was 12 h post-inoculation, when peak intestinal fluid accumulation (loop/weight ratio of ∼0.2 g/cm) occurred with the highest diarrhea success rate (90%). In addition, pathogenic numbers of V. cholerae (∼10(9) CFU/g tissue) were recovered from ileal loops at all time points between 6-18 h post-inoculation with the diarrheagenic amount of cholera toxin being detected in the secreted intestinal fluid at 12 h post-inoculation. Interestingly, repeated intraperitoneal administration of CFTRinh-172 (20 µg every 6 h), an inhibitor of cystic fibrosis transmembrane conductance regulator (CFTR), completely abolished the V. cholerae-induced intestinal fluid secretion without affecting V. cholerae growth in vivo. As analyzed by ex vivo measurement of intestinal electrical resistance and in vivo assay of fluorescein thiocyanate (FITC)-dextran trans-intestinal flux, V. cholerae infection had no effect on intestinal paracellular permeability. Measurements of albumin in the diarrheal fluid suggested that vascular leakage did not contribute to the pathogenesis of diarrhea in this model. Furthermore, histological examination of V. cholerae-infected intestinal tissues illustrated edematous submucosa, congestion of small vessels and enhanced mucus secretion from goblet cells. This study established a new adult mouse model of V. cholerae-induced diarrhea, which could be useful for studying the pathogenesis of cholera diarrhea and for evaluating future therapeutics/cholera vaccines. In addition, our study confirmed the major role of CFTR in V

  7. A novel mouse model of aortic valve stenosis induced by direct wire injury.

    PubMed

    Honda, Shintaro; Miyamoto, Takuya; Watanabe, Tetsu; Narumi, Taro; Kadowaki, Shinpei; Honda, Yuki; Otaki, Yoichiro; Hasegawa, Hiromasa; Netsu, Shunsuke; Funayama, Akira; Ishino, Mitsunori; Nishiyama, Satoshi; Takahashi, Hiroki; Arimoto, Takanori; Shishido, Tetsuro; Miyashita, Takehiko; Kubota, Isao

    2014-02-01

    The response-to-tissue-injury theory is currently the favorite paradigm to investigate valve pathology. To the best of our knowledge, there are currently no in vivo valve injury models. There are few calcific aortic valve stenosis (AVS) models that develop hemodynamically significant stenosis. Here, we investigated the effect of direct mechanical injury on aortic valves in vivo and developed a novel mouse model of calcific AVS. Aortic valve injury was created by inserting and moving a spring guidewire under echocardiographic guidance into the left ventricle of male C57/BL6 mice via right common carotid artery. Serial echocardiographic measurements revealed that aortic velocity was increased 1 week after injury and persistently increased until 16 weeks after injury. AVS mice showed a higher heart weight/body weight ratio and decreased left ventricular fractioning shortening 4 weeks after injury, compared with sham mice. We found remarkable proliferation of valve leaflets 4 weeks after injury. Proliferative valves showed increased production of reactive oxygen species and expression of inflammatory cytokines and osteochondrogenic factors. Alizarin red staining showed valvular calcification 12 weeks after injury. We report a novel calcific AVS model to support the response-to-tissue-injury theory. This model may be a valuable tool for analyzing the mechanism of AVS and assessing therapeutic options.

  8. Critical Differences between Induced and Spontaneous Mouse Models of Graves' Disease with Implications for Antigen-Specific Immunotherapy in Humans.

    PubMed

    Rapoport, Basil; Banuelos, Bianca; Aliesky, Holly A; Hartwig Trier, Nicole; McLachlan, Sandra M

    2016-12-15

    Graves' hyperthyroidism, a common autoimmune disease caused by pathogenic autoantibodies to the thyrotropin (TSH) receptor (TSHR), can be treated but not cured. This single autoantigenic target makes Graves' disease a prime candidate for Ag-specific immunotherapy. Previously, in an induced mouse model, injecting TSHR A-subunit protein attenuated hyperthyroidism by diverting pathogenic TSHR Abs to a nonfunctional variety. In this study, we explored the possibility of a similar diversion in a mouse model that spontaneously develops pathogenic TSHR autoantibodies, NOD.H2(h4) mice with the human (h) TSHR (hTSHR) A-subunit transgene expressed in the thyroid and (shown in this article) the thymus. We hypothesized that such diversion would occur after injection of "inactive" hTSHR A-subunit protein recognized only by nonpathogenic (not pathogenic) TSHR Abs. Surprisingly, rather than attenuating the pre-existing pathogenic TSHR level, in TSHR/NOD.H2(h4) mice inactive hTSHR Ag injected without adjuvant enhanced the levels of pathogenic TSH-binding inhibition and thyroid-stimulating Abs, as well as nonpathogenic Abs detected by ELISA. This effect was TSHR specific because spontaneously occurring autoantibodies to thyroglobulin and thyroid peroxidase were unaffected. As controls, nontransgenic NOD.H2(h4) mice similarly injected with inactive hTSHR A-subunit protein unexpectedly developed TSHR Abs, but only of the nonpathogenic variety detected by ELISA. Our observations highlight critical differences between induced and spontaneous mouse models of Graves' disease with implications for potential immunotherapy in humans. In hTSHR/NOD.H2(h4) mice with ongoing disease, injecting inactive hTSHR A-subunit protein fails to divert the autoantibody response to a nonpathogenic form. Indeed, such therapy is likely to enhance pathogenic Ab production and exacerbate Graves' disease in humans. Copyright © 2016 by The American Association of Immunologists, Inc.

  9. Inhibition of PKCδ reduces cisplatin-induced nephrotoxicity without blocking chemotherapeutic efficacy in mouse models of cancer

    PubMed Central

    Pabla, Navjotsingh; Dong, Guie; Jiang, Man; Huang, Shuang; Kumar, M. Vijay; Messing, Robert O.; Dong, Zheng

    2011-01-01

    Cisplatin is a widely used cancer therapy drug that unfortunately has major side effects in normal tissues, notably nephrotoxicity in kidneys. Despite intensive research, the mechanism of cisplatin-induced nephrotoxicity remains unclear, and renoprotective approaches during cisplatin-based chemotherapy are lacking. Here we have identified PKCδ as a critical regulator of cisplatin nephrotoxicity, which can be effectively targeted for renoprotection during chemotherapy. We showed that early during cisplatin nephrotoxicity, Src interacted with, phosphorylated, and activated PKCδ in mouse kidney lysates. After activation, PKCδ regulated MAPKs, but not p53, to induce renal cell apoptosis. Thus, inhibition of PKCδ pharmacologically or genetically attenuated kidney cell apoptosis and tissue damage, preserving renal function during cisplatin treatment. Conversely, inhibition of PKCδ enhanced cisplatin-induced cell death in multiple cancer cell lines and, remarkably, enhanced the chemotherapeutic effects of cisplatin in several xenograft and syngeneic mouse tumor models while protecting kidneys from nephrotoxicity. Together these results demonstrate a role of PKCδ in cisplatin nephrotoxicity and support targeting PKCδ as an effective strategy for renoprotection during cisplatin-based cancer therapy. PMID:21633170

  10. Enterovirus 71-induced autophagy increases viral replication and pathogenesis in a suckling mouse model

    PubMed Central

    2014-01-01

    Background We previously reported that Enterovirus 71 (EV71) infection activates autophagy, which promotes viral replication both in vitro and in vivo. In the present study we further investigated whether EV71 infection of neuronal SK-N-SH cells induces an autophagic flux. Furthermore, the effects of autophagy on EV71-related pathogenesis and viral load were evaluated after intracranial inoculation of mouse-adapted EV71 (MP4 strain) into 6-day-old ICR suckling mice. Results We demonstrated that in EV71-infected SK-N-SH cells, EV71 structural protein VP1 and nonstructural protein 2C co-localized with LC3 and mannose-6-phosphate receptor (MPR, endosome marker) proteins by immunofluorescence staining, indicating amphisome formation. Together with amphisome formation, EV71 induced an autophagic flux, which could be blocked by NH4Cl (inhibitor of acidification) and vinblastine (inhibitor of fusion), as demonstrated by Western blotting. Suckling mice intracranially inoculated with EV71 showed EV71 VP1 protein expression (representing EV71 infection) in the cerebellum, medulla, and pons by immunohistochemical staining. Accompanied with these infected brain tissues, increased expression of LC3-II protein as well as formation of LC3 aggregates, autophagosomes and amphisomes were detected. Amphisome formation, which was confirmed by colocalization of EV71-VP1 protein or LC3 puncta and the endosome marker protein MPR. Thus, EV71-infected suckling mice (similar to EV71-infected SK-N-SH cells) also show an autophagic flux. The physiopathological parameters of EV71-MP4 infected mice, including body weight loss, disease symptoms, and mortality were increased compared to those of the uninfected mice. We further blocked EV71-induced autophagy with the inhibitor 3-methyladenine (3-MA), which attenuated the disease symptoms and decreased the viral load in the brain tissues of the infected mice. Conclusions In this study, we reveal that EV71 infection of suckling mice induces an

  11. Increased sensitivity to light-induced damage in a mouse model of autosomal dominant retinal disease.

    PubMed

    White, D Alan; Fritz, Jason J; Hauswirth, William W; Kaushal, Shalesh; Lewin, Alfred S

    2007-05-01

    To describe a sensitivity to light-induced damage associated with expression of a T17M mutant human rhodopsin (hT17M) transgene in mice, with the goal of minimizing retinal injury during the subretinal delivery of rAAV-mediated gene therapy. Mice were bred to express the hT17M rhodopsin transgene in a line that was hemizygous null for wild-type mouse rhodopsin (mrho(+/-)), and the eyes of transgenic mice and nontransgenic littermates were exposed for 2.5 minutes to unilateral illumination with fiber-optic light ranging from 5,000 to 10,000 lux. Funduscopic images were made with a handheld camera (Genesis; Kowa Company, Ltd., Tokyo, Japan). Full-field scotopic electroretinographic analysis (ERG) was performed to measure loss of retinal function. Morphometry in the light microscope was used to measure loss of rod photoreceptors. TUNEL staining and a nucleosome release assay were used to measure levels of apoptosis in retinal specimens. mrho(+/-);hT17M mice exhibited a sensitivity to light-induced damage that caused severe loss of a- and b-wave ERG responses. hT17M transgenic mice on the mrho(+/+) background were equally sensitive to light-induced damage. Histologic analysis showed a concomitant loss of photoreceptors and TUNEL labeling of fragmented DNA in rod photoreceptor cells, demonstrating that the damage occurred via an apoptotic pathway. Nontransgenic littermate mice were not affected by this exposure to light. Mice expressing an hP23H mutant human rhodopsin transgene were minimally sensitive to light-induced damage at these intensities, in comparison to hT17M mice. Treating the hT17M mice with an equivalent regimen of exposure to red light was less damaging to the retina, as measured by ERG and histology. Expression of a human hT17M mutant rhodopsin transgene in mice is associated with photoreceptor apoptosis in response to moderate exposure to light. This phenotype was not observed in nontransgenic littermates or in mice expressing an hP23H mutant human

  12. Enterovirus 71-induced autophagy increases viral replication and pathogenesis in a suckling mouse model.

    PubMed

    Lee, Ying-Ray; Wang, Po-Shun; Wang, Jen-Ren; Liu, Hsiao-Sheng

    2014-08-20

    We previously reported that Enterovirus 71 (EV71) infection activates autophagy, which promotes viral replication both in vitro and in vivo. In the present study we further investigated whether EV71 infection of neuronal SK-N-SH cells induces an autophagic flux. Furthermore, the effects of autophagy on EV71-related pathogenesis and viral load were evaluated after intracranial inoculation of mouse-adapted EV71 (MP4 strain) into 6-day-old ICR suckling mice. We demonstrated that in EV71-infected SK-N-SH cells, EV71 structural protein VP1 and nonstructural protein 2C co-localized with LC3 and mannose-6-phosphate receptor (MPR, endosome marker) proteins by immunofluorescence staining, indicating amphisome formation. Together with amphisome formation, EV71 induced an autophagic flux, which could be blocked by NH₄Cl (inhibitor of acidification) and vinblastine (inhibitor of fusion), as demonstrated by Western blotting. Suckling mice intracranially inoculated with EV71 showed EV71 VP1 protein expression (representing EV71 infection) in the cerebellum, medulla, and pons by immunohistochemical staining. Accompanied with these infected brain tissues, increased expression of LC3-II protein as well as formation of LC3 aggregates, autophagosomes and amphisomes were detected. Amphisome formation, which was confirmed by colocalization of EV71-VP1 protein or LC3 puncta and the endosome marker protein MPR. Thus, EV71-infected suckling mice (similar to EV71-infected SK-N-SH cells) also show an autophagic flux. The physiopathological parameters of EV71-MP4 infected mice, including body weight loss, disease symptoms, and mortality were increased compared to those of the uninfected mice. We further blocked EV71-induced autophagy with the inhibitor 3-methyladenine (3-MA), which attenuated the disease symptoms and decreased the viral load in the brain tissues of the infected mice. In this study, we reveal that EV71 infection of suckling mice induces an amphisome formation accompanied

  13. Intake of Diet Including 1% Ovomucoid for 4 Weeks Induces Oral Desensitization in Ovomucoid-Specific Allergic Mouse Model.

    PubMed

    Maeta, Akihiro; Sakamoto, Yoko; Yuki, Sayo; Takahashi, Kyoko

    2017-01-01

    We propose a new oral immunotherapy (OIT) method that includes a small amount of a food allergen in the diet. However, it is not clear whether this method will induce oral desensitization and immune tolerance. Therefore, we investigated the therapeutic effectiveness using a 1% food allergen diet in an allergic mouse model. C3H/HeJ mice were sensitized to ovomucoid (OM) in alum four times at 12-d intervals. Sensitized mice were divided into two groups: the OIT group (19% casein diet with 1% OM) and the non-treated group (20% casein diet without OM). The non-sensitized mice served as the non-allergy group. The OIT treatment was performed for 4 wk. To assess desensitization and immune tolerance, we performed oral and intraperitoneal OM challenges, assessed vascular permeability of the dorsal skin, and measured allergic biomarkers. The OIT group exhibited significantly lower oral symptom scores and vascular permeability than the non-treated group, but the two groups did not differ in intraperitoneal allergy symptom scores. Furthermore, the OIT group had significantly higher OM-specific IgA levels in their plasma than the non-treated group. However, the plasma levels of OM-specific IgE, IgG1, and IgG2a were not significantly different between the OIT and the non-treated groups. These results suggest that the proposed OIT using an OM-supplemented diet may induce desensitization, but not immune tolerance, in an OM allergic mouse model.

  14. Tyrosine kinase inhibitor BIBF1120 ameliorates inflammation, angiogenesis and fibrosis in CCl4-induced liver fibrogenesis mouse model

    PubMed Central

    Öztürk Akcora, Büsra; Storm, Gert; Prakash, Jai; Bansal, Ruchi

    2017-01-01

    Hepatic fibrosis, a progressive chronic disease mainly caused by hepatitis viral infections, alcohol abuse or metabolic syndrome leading to liver dysfunction and is the growing cause of mortality worldwide. Tyrosine kinase inhibitor BIBF1120 (Nintedanib) has been evaluated in clinical trials for idiopathic pulmonary fibrosis and advanced Hepatocellular carcinoma, but has not been explored for liver fibrosis yet. In this study, we aimed to investigate the therapeutic effects and mechanism of BIBF1120 in liver fibrogenesis. The effects of BIBF1120 were evaluated in TGFβ-activated mouse 3T3 fibroblasts, LX2 cells, primary human hepatic stellate cells (HSCs) and CCl4-induced liver fibrogenesis mouse model. Fibroblasts-conditioned medium studies were performed to assess the paracrine effects on macrophages and endothelial cells. In-vitro in TGFβ-activated fibroblasts, BIBF1120 significantly inhibited expression of major fibrotic parameters, wound-healing and contractility. In vivo in CCl4-induced acute liver injury model, post-disease BIBF1120 administration significantly attenuated collagen accumulation and HSC activation. Interestingly, BIBF1120 drastically inhibited intrahepatic inflammation and angiogenesis. To further elucidate the mechanism of action, 3T3-conditioned medium studies demonstrated increased 3T3-mediated macrophage chemotaxis and endothelial cells tube formation and activation, which was significantly decreased by BIBF1120. These results suggests that BIBF1120 can be a potential therapeutic approach for the treatment of liver fibrosis. PMID:28291245

  15. Phosphatidylinositol 3-Kinase Mediates Bronchioalveolar Stem Cell Expansion in Mouse Models of Oncogenic K-ras-Induced Lung Cancer

    PubMed Central

    Yang, Yanan; Iwanaga, Kentaro; Raso, Maria Gabriela; Wislez, Marie; Hanna, Amy E.; Wieder, Eric D.; Molldrem, Jeffrey J.; Wistuba, Ignacio I.; Powis, Garth; Demayo, Francesco J.; Kim, Carla F.; Kurie, Jonathan M.

    2008-01-01

    Background Non-small cell lung cancer (NSCLC) is the most common cause of cancer-related death in Western countries. Developing more effective NSCLC therapeutics will require the elucidation of the genetic and biochemical bases for this disease. Bronchioalveolar stem cells (BASCs) are a putative cancer stem cell population in mouse models of oncogenic K-ras-induced lung adenocarcinoma, an histologic subtype of NSCLC. The signals activated by oncogenic K-ras that mediate BASC expansion have not been fully defined. Methodology/Principal Findings We used genetic and pharmacologic approaches to modulate the activity of phosphatidylinositol 3-kinase (PI3K), a key mediator of oncogenic K-ras, in two genetic mouse models of lung adenocarcinoma. Oncogenic K-ras-induced BASC accumulation and tumor growth were blocked by treatment with a small molecule PI3K inhibitor and enhanced by inactivation of phosphatase and tensin homologue deleted from chromosome 10, a negative regulator of PI3K. Conclusions/Significance We conclude that PI3K is a critical regulator of BASC expansion, supporting treatment strategies to target PI3K in NSCLC patients. PMID:18493606

  16. Mechanisms of hyperhomocysteinemia induced skeletal muscle myopathy after ischemia in the CBS-/+ mouse model.

    PubMed

    Veeranki, Sudhakar; Tyagi, Suresh C

    2015-01-06

    Although hyperhomocysteinemia (HHcy) elicits lower than normal body weights and skeletal muscle weakness, the mechanisms remain unclear. Despite the fact that HHcy-mediated enhancement in ROS and consequent damage to regulators of different cellular processes is relatively well established in other organs, the nature of such events is unknown in skeletal muscles. Previously, we reported that HHcy attenuation of PGC-1α and HIF-1α levels enhanced the likelihood of muscle atrophy and declined function after ischemia. In the current study, we examined muscle levels of homocysteine (Hcy) metabolizing enzymes, anti-oxidant capacity and focused on protein modifications that might compromise PGC-1α function during ischemic angiogenesis. Although skeletal muscles express the key enzyme (MTHFR) that participates in re-methylation of Hcy into methionine, lack of trans-sulfuration enzymes (CBS and CSE) make skeletal muscles more susceptible to the HHcy-induced myopathy. Our study indicates that elevated Hcy levels in the CBS-/+ mouse skeletal muscles caused diminished anti-oxidant capacity and contributed to enhanced total protein as well as PGC-1α specific nitrotyrosylation after ischemia. Furthermore, in the presence of NO donor SNP, either homocysteine (Hcy) or its cyclized version, Hcy thiolactone, not only increased PGC-1α specific protein nitrotyrosylation but also reduced its association with PPARγ in C2C12 cells. Altogether these results suggest that HHcy exerts its myopathic effects via reduction of the PGC-1/PPARγ axis after ischemia.

  17. Systemic Administration of Induced Neural Stem Cells Regulates Complement Activation in Mouse Closed Head Injury Models

    PubMed Central

    Gao, Mou; Dong, Qin; Yao, Hui; Lu, Yingzhou; Ji, Xinchao; Zou, Mingming; Yang, Zhijun; Xu, Minhui; Xu, Ruxiang

    2017-01-01

    Complement activation plays important roles in the pathogenesis of central nervous system (CNS) diseases. Patients face neurological disorders due to the development of complement activation, which contributes to cell apoptosis, brain edema, blood-brain barrier dysfunction and inflammatory infiltration. We previously reported that induced neural stem cells (iNSCs) can promote neurological functional recovery in closed head injury (CHI) animals. Remarkably, we discovered that local iNSC grafts have the potential to modulate CNS inflammation post-CHI. In this study, we aimed to explore the role of systemically delivered iNSCs in complement activation following CNS injury. Our data showed that iNSC grafts decreased the levels of sera C3a and C5a and down-regulated the expression of C3d, C9, active Caspase-3 and Bax in the brain, kidney and lung tissues of CHI mice. Furthermore, iNSC grafts decreased the levels of C3d+/NeuN+, C5b-9+/NeuN+, C3d+/Map2+ and C5b-9+/Map2+ neurons in the injured cortices of CHI mice. Subsequently, we explored the mechanisms underlying these effects. With flow cytometry analysis, we observed a dramatic increase in complement receptor type 1-related protein y (Crry) expression in iNSCs after CHI mouse serum treatment. Moreover, both in vitro and in vivo loss-of-function studies revealed that iNSCs could modulate complement activation via Crry expression. PMID:28383046

  18. Prevention of Radiation-Induced Salivary Gland Dysfunction Utilizing a CDK Inhibitor in a Mouse Model

    PubMed Central

    Martin, Katie L.; Hill, Grace A.; Klein, Rob R.; Arnett, Deborah G.; Burd, Randy; Limesand, Kirsten H.

    2012-01-01

    Background Treatment of head and neck cancer with radiation often results in damage to surrounding normal tissues such as salivary glands. Permanent loss of function in the salivary glands often leads patients to discontinue treatment due to incapacitating side effects. It has previously been shown that IGF-1 suppresses radiation-induced apoptosis and enhances G2/M arrest leading to preservation of salivary gland function. In an effort to recapitulate the effects of IGF-1, as well as increase the likelihood of translating these findings to the clinic, the small molecule therapeutic Roscovitine, is being tested. Roscovitine is a cyclin-dependent kinase inhibitor that acts to transiently inhibit cell cycle progression and allow for DNA repair in damaged tissues. Methodology/Principal Findings Treatment with Roscovitine prior to irradiation induced a significant increase in the percentage of cells in the G2/M phase, as demonstrated by flow cytometry. In contrast, mice treated with radiation exhibit no differences in the percentage of cells in G2/M when compared to unirradiated controls. Similar to previous studies utilizing IGF-1, pretreatment with Roscovitine leads to a significant up-regulation of p21 expression and a significant decrease in the number of PCNA positive cells. Radiation treatment leads to a significant increase in activated caspase-3 positive salivary acinar cells, which is suppressed by pretreatment with Roscovitine. Administration of Roscovitine prior to targeted head and neck irradiation preserves normal tissue function in mouse parotid salivary glands, both acutely and chronically, as measured by salivary output. Conclusions/Significance These studies suggest that induction of transient G2/M cell cycle arrest by Roscovitine allows for suppression of apoptosis, thus preserving normal salivary function following targeted head and neck irradiation. This could have an important clinical impact by preventing the negative side effects of radiation

  19. Merkel Cell Polyomavirus Small T Antigen Induces Cancer and Embryonic Merkel Cell Proliferation in a Transgenic Mouse Model

    PubMed Central

    Geng, Xuehui; Shuda, Yoko; Ostrowski, Stephen M.; Lukianov, Stefan; Jenkins, Frank J.; Honda, Kord; Maricich, Stephen M.; Moore, Patrick S.; Chang, Yuan

    2015-01-01

    Merkel cell polyomavirus (MCV) causes the majority of human Merkel cell carcinomas (MCC) and encodes a small T (sT) antigen that transforms immortalized rodent fibroblasts in vitro. To develop a mouse model for MCV sT-induced carcinogenesis, we generated transgenic mice with a flox-stop-flox MCV sT sequence homologously recombined at the ROSA locus (ROSAsT), allowing Cre-mediated, conditional MCV sT expression. Standard tamoxifen (TMX) administration to adult UbcCreERT2; ROSAsT mice, in which Cre is ubiquitously expressed, resulted in MCV sT expression in multiple organs that was uniformly lethal within 5 days. Conversely, most adult UbcCreERT2; ROSAsT mice survived low-dose tamoxifen administration but developed ear lobe dermal hyperkeratosis and hypergranulosis. Simultaneous MCV sT expression and conditional homozygous p53 deletion generated multi-focal, poorly-differentiated, highly anaplastic tumors in the spleens and livers of mice after 60 days of TMX treatment. Mouse embryonic fibroblasts from these mice induced to express MCV sT exhibited anchorage-independent cell growth. To examine Merkel cell pathology, MCV sT expression was also induced during mid-embryogenesis in Merkel cells of Atoh1CreERT2/+; ROSAsT mice, which lead to significantly increased Merkel cell numbers in touch domes at late embryonic ages that normalized postnatally. Tamoxifen administration to adult Atoh1CreERT2/+; ROSAsT and Atoh1CreERT2/+; ROSAsT; p53flox/flox mice had no effects on Merkel cell numbers and did not induce tumor formation. Taken together, these results show that MCV sT stimulates progenitor Merkel cell proliferation in embryonic mice and is a bona fide viral oncoprotein that induces full cancer cell transformation in the p53-null setting. PMID:26544690

  20. Impairment of skin barrier function via cholinergic signal transduction in a dextran sulphate sodium-induced colitis mouse model.

    PubMed

    Yokoyama, Satoshi; Hiramoto, Keiichi; Koyama, Mayu; Ooi, Kazuya

    2015-10-01

    Dry skin has been clinically associated with visceral diseases, including liver disease, as well as for our previously reported small intestinal injury mouse model, which have abnormalities in skin barrier function. To clarify this disease-induced skin disruption, we used a dextran sulphate sodium (DSS)-induced colitis mouse model. Following treatment with DSS, damage to the colon and skin was monitored using histological and protein analysis methods as well as the detection of inflammatory mediators in the plasma. Notably, transepidermal water loss was higher, and skin hydration was lower in DSS-treated mice compared to controls. Tumor necrosis factor-alpha (TNF-α), interleukin 6 and NO2-/NO3- levels were also upregulated in the plasma, and a decrease in body weight and colon length was observed in DSS-treated mice. However, when administered TNF-α antibody or an iNOS inhibitor, no change in skin condition was observed, indicating that another signalling mechanism is utilized. Interestingly, the number of tryptase-expressing mast cells, known for their role in immune function via cholinergic signal transduction, was elevated. To evaluate the function of cholinergic signalling in this context, atropine (a muscarinic cholinoceptor antagonist) or hexamethonium (a nicotinic cholinergic ganglion-blocking agent) was administered to DSS-treated mice. Our data indicate that muscarinic acetylcholine receptors (mAChRs) are the primary receptors functioning in colon-to-skin signal transduction, as DSS-induced skin disruption was suppressed by atropine. Thus, skin disruption is likely associated with DSS-induced colitis, and the activation of mast cells via mAChRs is critical to this association.

  1. Generation of an inducible, cardiomyocyte-specific transgenic mouse model with PPAR β/δ overexpression.

    PubMed

    Kim, Teayoun; Zhelyabovska, Olga; Liu, Jian; Yang, Qinglin

    2013-01-01

    Peroxisome proliferator-activated receptors (PPARs) consist of three subtypes, each displaying distinctive tissue distribution. In general, the three PPAR subtypes exert overlapping function in transcriptional regulation of lipid metabolism. However, each PPAR subtype possesses distinctive functions in different tissues dependent on their expression abundance, endogenous ligands, and the PPAR coregulators in a specific tissue. Transgenesis is an invaluable technique in defining the in vivo function of a particular gene and its protein. Cre/LoxP-mediated gene targeting has been extensively used to explore the tissue-specific function of PPARs. While this tissue-specific loss-of-function approach is extremely useful in determining the essential role of a PPAR, the tissue-specific gain-of-function approach is another important technique used to understand the effects of PPAR activation in a particular tissue. Transgenic overexpression of PPAR in a specific tissue has been used. However, this conventional technique requires generating the transgenic models individually for each target tissue. In this chapter, we describe the methodology for a more efficient generation of transgenic mouse models with a constitutively active form of PPARβ/δ in different tissues.

  2. Endogenous glucocorticoids attenuate Shiga toxin-2-induced toxicity in a mouse model of haemolytic uraemic syndrome

    PubMed Central

    GÓMEZ, S A; FERNÁNDEZ, G C; VANZULLI, S; DRAN, G; RUBEL, C; BERKI, T; ISTURIZ, M A; PALERMO, M S

    2003-01-01

    The concept that during an immune challenge the release of glucocorticoids (GC) provides feedback inhibition on evolving immune responses has been drawn primarily from studies of autoimmune and/or inflammatory processes in animal models. The epidemic form of haemolytic uraemic syndrome (HUS) occurs secondary to infection with Gram-negative bacteria that produce Shiga toxin (Stx). Although Stx binding to the specific receptors present on renal tissue is the primary pathogenic mechanism, inflammatory or immune interactions are necessary for the development of the complete form of HUS. The aim of this study was to investigate the influence of endogenous GC on Stx-toxicity in a mouse model. Stx2 was injected into GC-deprived mice and survival rate, renal damage and serum urea levels were evaluated. Plasma corticosterone and cytosolic GC receptor (GR) concentration were also determined at multiple intervals post-Stx2 treatment. Higher sensitivity to Stx2 was observed in mice lacking endogenous GC, evidenced by an increase in mortality rates, circulating urea levels and renal histological damage. Moreover, Stx2 injection was associated with a transient but significant rise in corticosterone secretion. Interestingly, 24 h after Stx inoculation significant increases in total GR were detected in circulating neutrophils. These results indicate that interactions between the neuroendocrine and immune systems can modulate the level of damage significantly during a bacterial infection. PMID:12562380

  3. Endogenous glucocorticoids attenuate Shiga toxin-2-induced toxicity in a mouse model of haemolytic uraemic syndrome.

    PubMed

    Gómez, S A; Fernández, G C; Vanzulli, S; Dran, G; Rubel, C; Berki, T; Isturiz, M A; Palermo, M S

    2003-02-01

    The concept that during an immune challenge the release of glucocorticoids (GC) provides feedback inhibition on evolving immune responses has been drawn primarily from studies of autoimmune and/or inflammatory processes in animal models. The epidemic form of haemolytic uraemic syndrome (HUS) occurs secondary to infection with Gram-negative bacteria that produce Shiga toxin (Stx). Although Stx binding to the specific receptors present on renal tissue is the primary pathogenic mechanism, inflammatory or immune interactions are necessary for the development of the complete form of HUS. The aim of this study was to investigate the influence of endogenous GC on Stx-toxicity in a mouse model. Stx2 was injected into GC-deprived mice and survival rate, renal damage and serum urea levels were evaluated. Plasma corticosterone and cytosolic GC receptor (GR) concentration were also determined at multiple intervals post-Stx2 treatment. Higher sensitivity to Stx2 was observed in mice lacking endogenous GC, evidenced by an increase in mortality rates, circulating urea levels and renal histological damage. Moreover, Stx2 injection was associated with a transient but significant rise in corticosterone secretion. Interestingly, 24 h after Stx inoculation significant increases in total GR were detected in circulating neutrophils. These results indicate that interactions between the neuroendocrine and immune systems can modulate the level of damage significantly during a bacterial infection.

  4. A comprehensive analysis of oxidative stress in the ozone-induced lung inflammation mouse model.

    PubMed

    Wiegman, Coen H; Li, Feng; Clarke, Colin J; Jazrawi, Elen; Kirkham, Paul; Barnes, Peter J; Adcock, Ian M; Chung, Kian F

    2014-03-01

    Ozone is an oxidizing environmental pollutant that contributes significantly to respiratory health. Exposure to increased levels of ozone has been associated with worsening of symptoms of patients with asthma and COPD (chronic obstructive pulmonary disease). In the present study, we investigated the acute and chronic effects of ozone exposure-induced oxidative stress-related inflammation mechanics in mouse lung. In particular, we investigated the oxidative stress-induced effects on HDAC2 (histone deacetylase 2) modification and activation of the Nrf2 (nuclear factor erythroid-related factor 2) and HIF-1α (hypoxia-inducible factor-1α) signalling pathways. Male C57BL/6 mice were exposed to ozone (3 p.p.m.) for 3 h a day, twice a week for a period of 1, 3 or 6 weeks. Control mice were exposed to normal air. After the last exposure, mice were killed for BAL (bronchoalveolar lavage) fluid and lung tissue collection. BAL total cell counts were elevated at all of the time points studied. This was associated with increased levels of chemokines and cytokines in all ozone-exposed groups, indicating the presence of a persistent inflammatory environment in the lung. Increased inflammation and Lm (mean linear intercept) scores were observed in chronic exposed mice, indicating emphysematous changes were present in lungs of chronic exposed mice. The antioxidative stress response was active (indicated by increased Nrf2 activity and protein) after 1 week of ozone exposure, but this ability was lost after 3 and 6 weeks of ozone exposure. The transcription factor HIF-1α was elevated in 3- and 6-week ozone-exposed mice and this was associated with increased gene expression levels of several HIF-1α target genes including Hdac2 (histone deacetylase 2), Vegf (vascular endothelial growth factor), Keap1 (kelch-like ECH-associated protein 1) and Mif (macrophage migration inhibitory factor). HDAC2 protein was found to be phosphorylated and carbonylated in nuclear and cytoplasm fractions

  5. B cell deficient mice are protected from biliary obstruction in the rotavirus-induced mouse model of biliary atresia.

    PubMed

    Feldman, Amy G; Tucker, Rebecca M; Fenner, Erika K; Pelanda, Roberta; Mack, Cara L

    2013-01-01

    A leading theory regarding the pathogenesis of biliary atresia (BA) is that bile duct injury is initiated by a virus infection, followed by an autoimmune response targeting bile ducts. In experimental models of autoimmune diseases, B cells have been shown to play an important role. The aim of this study was to determine the role of B cells in the development of biliary obstruction in the Rhesus rotavirus (RRV)-induced mouse model of BA. Wild-type (WT) and B cell-deficient (Ig-α(-/-)) mice received RRV shortly after birth. Ig-α(-/-) RRV-infected mice had significantly increased disease-free survival rate compared to WT RRV-infected BA mice (76.8% vs. 17.5%). In stark contrast to the RRV-infected BA mice, the RRV-infected Ig-α(-/-) mice did not have hyperbilirubinemia or bile duct obstruction. The RRV-infected Ig-α(-/-) mice had significantly less liver inflammation and Th1 cytokine production compared to RRV-infected WT mice. In addition, Ig-α(-/-) mice had significantly increased numbers of regulatory T cells (Tregs) at baseline and after RRV infection compared to WT mice. However, depletion of Tregs in Ig-α(-/-) mice did not induce biliary obstruction, indicating that the expanded Tregs in the Ig-α(-/-) mice were not the sole reason for protection from disease. Conclusion : B cell deficient Ig-α(-/-) mice are protected from biliary obstruction in the RRV-induced mouse model of BA, indicating a primary role of B cells in mediating disease pathology. The mechanism of protection may involve lack of B cell antigen presentation, which impairs T-cell activation and Th1 inflammation. Immune modulators that inhibit B cell function may be a new strategy for treatment of BA.

  6. Depletion of polymorphonuclear leukocytes has no effect on preterm delivery in a mouse model of Escherichia coli-induced labor.

    PubMed

    Filipovich, Yana; Agrawal, Varkha; Crawford, Susan E; Fitchev, Philip; Qu, Xiaowu; Klein, Jeremy; Hirsch, Emmet

    2015-11-01

    The objective of the study was to investigate the role of polymorphonuclear leukocytes (PMNs) in a mouse model of Escherichia coli-induced labor. Intraperitoneal injection of rabbit antimouse PMN antiserum or control was performed in CD-1 mice 29 hours and 5 hours prior to laparotomy and intrauterine injection of either killed E coli or phosphate-buffered saline on day 14.5 of pregnancy. Preterm delivery was defined as delivery of at least 1 pup within 48 hours. Circulating leukocyte counts were determined manually or by flow cytometry at the time of surgery and 8, 24, and 48 hours afterward. Maternal and fetal tissues were analyzed in a separate group of animals 8 hours after surgery. Pretreatment with anti-PMN antiserum significantly decreased the numbers of circulating leukocytes and the proportion of neutrophils among all leukocytes by 70-80% at surgery and at least 8 hours thereafter. Neutrophil depletion significantly reduced 2 markers of neutrophil activation in the uterus and placenta (neutrophil elastase and myeloperoxidase activity) and neutrophil infiltration into gestational tissues in bacterially treated animals to baseline (control) levels but did not affect preterm birth rates. The large E coli-induced increases in uterine inflammatory markers (interleukin-1β, tumor necrosis factor, chemokine ligand-5, cyclooxygenase-2) were not affected or were only minimally affected by neutrophil depletion. Although PMN antiserum reduces both neutrophil number and activity, it does not diminish sensitivity to bacterially induced delivery or meaningfully alter the expression of inflammatory markers in the mouse model. Preterm birth and inflammation in this model are not likely to depend on neutrophil function. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Mouse Models of Aneuploidy

    PubMed Central

    Sheppard, Olivia; Wiseman, Frances K.; Ruparelia, Aarti; Tybulewicz, Victor L. J.; Fisher, Elizabeth M. C.

    2012-01-01

    Abnormalities of chromosome copy number are called aneuploidies and make up a large health load on the human population. Many aneuploidies are lethal because the resulting abnormal gene dosage is highly deleterious. Nevertheless, some whole chromosome aneuploidies can lead to live births. Alterations in the copy number of sections of chromosomes, which are also known as segmental aneuploidies, are also associated with deleterious effects. Here we examine how aneuploidy of whole chromosomes and segmental aneuploidy of chromosomal regions are modeled in the mouse. These models provide a whole animal system in which we aim to investigate the complex phenotype-genotype interactions that arise from alteration in the copy number of genes. Although our understanding of this subject is still in its infancy, already research in mouse models is highlighting possible therapies that might help alleviate the cognitive effects associated with changes in gene number. Thus, creating and studying mouse models of aneuploidy and copy number variation is important for understanding what it is to be human, in both the normal and genomically altered states. PMID:22262951

  8. Generation of a tetracycline regulated mouse model of MYC-induced T-cell acute lymphoblastic leukemia.

    PubMed

    Rakhra, Kavya; Felsher, Dean W

    2013-01-01

    The tetracycline regulatory system provides a tractable strategy to interrogate the role of oncogenes in the initiation and maintenance of tumorigenesis through both spatial and temporal control of expression. This approach has several potential advantages over conventional methods to generate genetically engineered mouse models. First, continuous constitutive overexpression of an oncogene can be lethal to the host impeding further study. Second, constitutive overexpression fails to model adult onset of disease. Third, constitutive deletion does not permit, whereas conditional overexpression of an oncogene enables the study of the consequences of restoring expression of an oncogene back to endogenous levels. Fourth, the conditional activation of oncogenes enables examination of specific and/or developmental state-specific consequences. Hence, by allowing precise control of when and where a gene is expressed, the tetracycline regulatory system provides an ideal approach for the study of putative oncogenes in both the initiation and maintenance of tumorigenesis. In this protocol, we describe the methods involved in the development of a conditional mouse model of MYC-induced T-cell acute lymphoblastic leukemia.

  9. Transduced Tat-glyoxalase protein attenuates streptozotocin-induced diabetes in a mouse model.

    PubMed

    Kim, Mi Jin; Kim, Dae Won; Lee, Byung Ryong; Shin, Min Jea; Kim, Young Nam; Eom, Seon Ae; Park, Byung-Jae; Cho, Yoon Shin; Han, Kyu Hyung; Park, Jinseu; Hwang, Hyun Sook; Eum, Won Sik; Choi, Soo Young

    2013-01-04

    Diabetes mellitus (DM) is characterized by hyperglycemia. Glyoxalase 1 (GLO) has considerable potential as a possible therapeutic agent for DM. However, the precise action of GLO remains unclear in DM. In this study, we examined the protective effects of GLO protein in a streptozotocin (STZ)-induced diabetes animal model using cell-permeable Tat-GLO protein. Purified Tat-GLO protein was efficiently transduced into RINm5F cells in a time- and dose-dependent manner and protected cells against sodium nitroprusside (SNP)-induced cell death and DNA fragmentation. Furthermore, Tat-GLO protein significantly inhibited blood glucose levels and altered the serum biochemical parameters in STZ-induced diabetic mice. These results demonstrate that transduced Tat-GLO protein protects pancreatic cells by the inhibition of STZ-mediated toxicity. Therefore, Tat-GLO protein could be useful as a therapeutic agent against DM. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Fusobacterium nucleatum and Tannerella forsythia induce synergistic alveolar bone loss in a mouse periodontitis model.

    PubMed

    Settem, Rajendra P; El-Hassan, Ahmed Taher; Honma, Kiyonobu; Stafford, Graham P; Sharma, Ashu

    2012-07-01

    Tannerella forsythia is strongly associated with chronic periodontitis, an inflammatory disease of the tooth-supporting tissues, leading to tooth loss. Fusobacterium nucleatum, an opportunistic pathogen, is thought to promote dental plaque formation by serving as a bridge bacterium between early- and late-colonizing species of the oral cavity. Previous studies have shown that F. nucleatum species synergize with T. forsythia during biofilm formation and pathogenesis. In the present study, we showed that coinfection of F. nucleatum and T. forsythia is more potent than infection with either species alone in inducing NF-κB activity and proinflammatory cytokine secretion in monocytic cells and primary murine macrophages. Moreover, in a murine model of periodontitis, mixed infection with the two species induces synergistic alveolar bone loss, characterized by bone loss which is greater than the additive alveolar bone losses induced by each species alone. Further, in comparison to the single-species infection, mixed infection caused significantly increased inflammatory cell infiltration in the gingivae and osteoclastic activity in the jaw bones. These data show that F. nucleatum subspecies and T. forsythia synergistically stimulate the host immune response and induce alveolar bone loss in a murine experimental periodontitis model.

  11. Dietary feeding of Opuntia humifusa inhibits UVB radiation-induced carcinogenesis by reducing inflammation and proliferation in hairless mouse model.

    PubMed

    Lee, Jin-A; Jung, Bock-Gie; Kim, Tae-Hoon; Lee, Su-Gil; Park, Young-Seok; Lee, Bong-Joo

    2013-01-01

    It has been validated that ultraviolet B (UVB) irradiation induced both squamous and basal cell carcinomas, as a tumor initiator and promoter. Opuntia humifusa is a member of the Cactaceae family which has been demonstrated in our previous study to have a chemopreventive effect in 7, 12-dimethylbenz[a]anthracene and 12-O-tetradecanoylphorbol-13-acetate induced skin carcinogenesis models. Therefore, this study was designed to determine the protective effects of O. humifusa against photocarcinogenesis. O. humifusa was administrated to mice as a dietary feeding, following exposure to UVB radiation (180 mJ/cm(2)) twice a week of 30 weeks for skin tumor development in hairless mice. Dietary O. humifusa inhibited UVB-induced epidermal hyperplasia, infiltration of leukocytes, level of myeloperoxidase and the levels of proinflammatory cytokines, tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6), in UVB exposed skin. Also, O. humifusa significantly inhibited both protein and mRNA expression level of cyclooxygenase-2 (COX-2), nitric oxide synthase (iNOS), proliferating cell nuclear antigen (PCNA) and cyclin D1 compared to the non-O. humifusa treated group. Collectively, these results suggest that O. humifusa could inhibit photocarcinogenesis in mouse skin and that protective effect is associated with the inhibition of not only UVB-induced inflammatory responses involving COX-2, iNOS and proinflammatory cytokines, but also the down-regulation of UVB-induced cellular proliferation. © 2013 The American Society of Photobiology.

  12. Microbead-Induced Ocular Hypertensive Mouse Model for Screening and Testing of Aqueous Production Suppressants for Glaucoma

    PubMed Central

    Yang, Qiang; Cho, Kin-Sang; Chen, Huihui; Yu, Dekuang; Wang, Wan-Heng; Luo, Gang; Pang, Iok-Hou; Guo, Wenyi; Chen, Dong Feng

    2012-01-01

    Purpose. To characterize the microbead-induced ocular hypertension (OHT) mouse model and investigate its potential use for preclinical screening and evaluation of ocular hypotensive agents, we tested the model's responses to major antiglaucoma drugs. Methods. Adult C57BL/6J mice were induced to develop OHT unilaterally by intracameral injection of microbeads. The effects of the most commonly used ocular hypotensive drugs, including timolol, brimonidine, brinzolamide, pilocarpine, and latanoprost, on IOP and glaucomatous neural damage were evaluated. Degeneration of retinal ganglion cells (RGCs) and optic nerve axons were quantitatively assessed using immunofluorescence labeling and histochemistry. Thickness of the ganglion cell complex (GCC) was also assessed with spectral-domain optical coherence tomography (SD-OCT). Results. A microbead-induced OHT model promptly responded to drugs, such as timolol, brimonidine, and brinzolamide, that lower IOP through suppressing aqueous humor production and showed improved RGC and axon survival as compared to vehicle controls. Accordingly, SD-OCT detected significantly less reduction of GCC thickness in mice treated with all three aqueous production suppressants as compared to the vehicle contol–treated group. In contrast, drugs that increase aqueous outflow, such as pilocarpine and latanoprost, failed to decrease IOP in the microbead-induced OHT mice. Conclusions. Microbead-induced OHT mice carry dysfunctional aqueous outflow facility and therefore offer a unique model that allows selective screening of aqueous production suppressant antiglaucoma drugs or for studying the mechanisms regulating aqueous humor production. Our data set the stage for using GCC thickness assessed by SD-OCT as an imaging biomarker for noninvasive tracking of neuronal benefits of glaucoma therapy in this model. PMID:22599582

  13. Microbead-induced ocular hypertensive mouse model for screening and testing of aqueous production suppressants for glaucoma.

    PubMed

    Yang, Qiang; Cho, Kin-Sang; Chen, Huihui; Yu, Dekuang; Wang, Wan-Heng; Luo, Gang; Pang, Iok-Hou; Guo, Wenyi; Chen, Dong Feng

    2012-06-20

    To characterize the microbead-induced ocular hypertension (OHT) mouse model and investigate its potential use for preclinical screening and evaluation of ocular hypotensive agents, we tested the model's responses to major antiglaucoma drugs. Adult C57BL/6J mice were induced to develop OHT unilaterally by intracameral injection of microbeads. The effects of the most commonly used ocular hypotensive drugs, including timolol, brimonidine, brinzolamide, pilocarpine, and latanoprost, on IOP and glaucomatous neural damage were evaluated. Degeneration of retinal ganglion cells (RGCs) and optic nerve axons were quantitatively assessed using immunofluorescence labeling and histochemistry. Thickness of the ganglion cell complex (GCC) was also assessed with spectral-domain optical coherence tomography (SD-OCT). A microbead-induced OHT model promptly responded to drugs, such as timolol, brimonidine, and brinzolamide, that lower IOP through suppressing aqueous humor production and showed improved RGC and axon survival as compared to vehicle controls. Accordingly, SD-OCT detected significantly less reduction of GCC thickness in mice treated with all three aqueous production suppressants as compared to the vehicle contol-treated group. In contrast, drugs that increase aqueous outflow, such as pilocarpine and latanoprost, failed to decrease IOP in the microbead-induced OHT mice. Microbead-induced OHT mice carry dysfunctional aqueous outflow facility and therefore offer a unique model that allows selective screening of aqueous production suppressant antiglaucoma drugs or for studying the mechanisms regulating aqueous humor production. Our data set the stage for using GCC thickness assessed by SD-OCT as an imaging biomarker for noninvasive tracking of neuronal benefits of glaucoma therapy in this model.

  14. Generation of Functional Neutrophils from a Mouse Model of X-Linked Chronic Granulomatous Disorder Using Induced Pluripotent Stem Cells

    PubMed Central

    Mukherjee, Sayandip; Santilli, Giorgia; Blundell, Michael P.; Navarro, Susana; Bueren, Juan A.; Thrasher, Adrian J.

    2011-01-01

    Murine models of human genetic disorders provide a valuable tool for investigating the scope for application of induced pluripotent stem cells (iPSC). Here we present a proof-of-concept study to demonstrate generation of iPSC from a mouse model of X-linked chronic granulomatous disease (X-CGD), and their successful differentiation into haematopoietic progenitors of the myeloid lineage. We further demonstrate that additive gene transfer using lentiviral vectors encoding gp91phox is capable of restoring NADPH-oxidase activity in mature neutrophils derived from X-CGD iPSC. In the longer term, correction of iPSC from human patients with CGD has therapeutic potential not only through generation of transplantable haematopoietic stem cells, but also through production of large numbers of autologous functional neutrophils. PMID:21408614

  15. Gene Profiles in a Smoke-Induced COPD Mouse Lung Model Following Treatment with Mesenchymal Stem Cells.

    PubMed

    Kim, You-Sun; Kokturk, Nurdan; Kim, Ji-Young; Lee, Sei Won; Lim, Jaeyun; Choi, Soo Jin; Oh, Wonil; Oh, Yeon-Mok

    2016-10-01

    Mesenchymal stem cells (MSCs) effectively reduce airway inflammation and regenerate the alveolus in cigarette- and elastase-induced chronic obstructive pulmonary disease (COPD) animal models. The effects of stem cells are thought to be paracrine and immune-modulatory because very few stem cells remain in the lung one day after their systemic injection, which has been demonstrated previously. In this report, we analyzed the gene expression profiles to compare mouse lungs with chronic exposure to cigarette smoke with non-exposed lungs. Gene expression profiling was also conducted in a mouse lung tissue with chronic exposure to cigarette smoke following the systemic injection of human cord blood-derived mesenchymal stem cells (hCB-MSCs). Globally, 834 genes were differentially expressed after systemic injection of hCB-MSCs. Seven and 21 genes, respectively, were up-and downregulated on days 1, 4, and 14 after HCB-MSC injection. The Hbb and Hba, genes with oxygen transport and antioxidant functions, were increased on days 1 and 14. A serine protease inhibitor was also increased at a similar time point after injection of hCB-MSCs. Gene Ontology analysis indicated that the levels of genes related to immune responses, metabolic processes, and blood vessel development were altered, indicating host responses after hCB-MSC injection. These gene expression changes suggest that MSCs induce a regeneration mechanism against COPD induced by cigarette smoke. These analyses provide basic data for understanding the regeneration mechanisms promoted by hCB-MSCs in cigarette smoke-induced COPD.

  16. Gene Profiles in a Smoke-Induced COPD Mouse Lung Model Following Treatment with Mesenchymal Stem Cells

    PubMed Central

    Kim, You-Sun; Kokturk, Nurdan; Kim, Ji-Young; Lee, Sei Won; Lim, Jaeyun; Choi, Soo Jin; Oh, Wonil; Oh, Yeon-Mok

    2016-01-01

    Mesenchymal stem cells (MSCs) effectively reduce airway inflammation and regenerate the alveolus in cigarette- and elastase-induced chronic obstructive pulmonary disease (COPD) animal models. The effects of stem cells are thought to be paracrine and immune-modulatory because very few stem cells remain in the lung one day after their systemic injection, which has been demonstrated previously. In this report, we analyzed the gene expression profiles to compare mouse lungs with chronic exposure to cigarette smoke with non-exposed lungs. Gene expression profiling was also conducted in a mouse lung tissue with chronic exposure to cigarette smoke following the systemic injection of human cord blood-derived mesenchymal stem cells (hCB-MSCs). Globally, 834 genes were differentially expressed after systemic injection of hCB-MSCs. Seven and 21 genes, respectively, were up-and downregulated on days 1, 4, and 14 after HCB-MSC injection. The Hbb and Hba, genes with oxygen transport and antioxidant functions, were increased on days 1 and 14. A serine protease inhibitor was also increased at a similar time point after injection of hCB-MSCs. Gene Ontology analysis indicated that the levels of genes related to immune responses, metabolic processes, and blood vessel development were altered, indicating host responses after hCB-MSC injection. These gene expression changes suggest that MSCs induce a regeneration mechanism against COPD induced by cigarette smoke. These analyses provide basic data for understanding the regeneration mechanisms promoted by hCB-MSCs in cigarette smoke-induced COPD. PMID:27802588

  17. Effect of choline chloride in allergen-induced mouse model of airway inflammation.

    PubMed

    Mehta, A K; Gaur, S N; Arora, N; Singh, B P

    2007-10-01

    The incidence of asthma has increased the world over, and current therapies for the disease suffer from potential side-effects. This has created an opportunity to develop novel therapeutic approaches. Here, the anti-inflammatory activity of choline was investigated in a mouse model of allergic airway inflammation. Choline (1 mg.kg(-1)) was administered via oral gavage or intranasally before and after ovalbumin (OVA) challenge in sensitised mice. Airway hyperresponsiveness (AHR) to methacholine was measured in the mice by whole-body plethysmography. Type-2 T-helper cell cytokine and leukotriene levels were estimated in bronchoalveolar lavage fluid (BALF) and spleen culture supernatant by ELISA. Eosinophil peroxidase activity was also determined in the BALF supernatant. Choline treatment in sensitised mice before OVA challenge via oral/intranasal routes significantly inhibited eosinophilic airway inflammation and eosinophil peroxidase activity. It also reduced immunoglobulin E and G1 production and inhibited the release of type-2 T-helper cell cytokines and leukotrienes. However, the development of AHR was prevented effectively by intranasal choline treatment. Most importantly, choline treatment after OVA challenge by both routes could reverse established asthmatic conditions in mice by inhibiting AHR, eosinophilic airway inflammation and other inflammatory parameters. This study provides a new therapeutic approach for controlling as well as preventing asthma exacerbations.

  18. Targeted inhibition of Gq signaling induces airway relaxation in mouse models of asthma.

    PubMed

    Matthey, Michaela; Roberts, Richard; Seidinger, Alexander; Simon, Annika; Schröder, Ralf; Kuschak, Markus; Annala, Suvi; König, Gabriele M; Müller, Christa E; Hall, Ian P; Kostenis, Evi; Fleischmann, Bernd K; Wenzel, Daniela

    2017-09-13

    Obstructive lung diseases are common causes of disability and death worldwide. A hallmark feature is aberrant activation of Gq protein-dependent signaling cascades. Currently, drugs targeting single G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptors (GPCRs) are used to reduce airway tone. However, therapeutic efficacy is often limited, because various GPCRs contribute to bronchoconstriction, and chronic exposure to receptor-activating medications results in desensitization. We therefore hypothesized that pharmacological Gq inhibition could serve as a central mechanism to achieve efficient therapeutic bronchorelaxation. We found that the compound FR900359 (FR), a membrane-permeable inhibitor of Gq, was effective in silencing Gq signaling in murine and human airway smooth muscle cells. Moreover, FR both prevented bronchoconstrictor responses and triggered sustained airway relaxation in mouse, pig, and human airway tissue ex vivo. Inhalation of FR in healthy wild-type mice resulted in high local concentrations of the compound in the lungs and prevented airway constriction without acute effects on blood pressure and heart rate. FR administration also protected against airway hyperreactivity in murine models of allergen sensitization using ovalbumin and house dust mite as allergens. Our findings establish FR as a selective Gq inhibitor when applied locally to the airways of mice in vivo and suggest that pharmacological blockade of Gq proteins may be a useful therapeutic strategy to achieve bronchorelaxation in asthmatic lung disease. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  19. Weight Loss Decreases Inherent and Allergic Methacholine Hyperresponsiveness in Mouse Models of Diet-Induced Obese Asthma.

    PubMed

    Ather, Jennifer L; Chung, Michael; Hoyt, Laura R; Randall, Matthew J; Georgsdottir, Anna; Daphtary, Nirav A; Aliyeva, Minara I; Suratt, Benjamin T; Bates, Jason H T; Irvin, Charles G; Russell, Sheila R; Forgione, Patrick M; Dixon, Anne E; Poynter, Matthew E

    2016-08-01

    Obese asthma presents with inherent hyperresponsiveness to methacholine or augmented allergen-driven allergic asthma, with an even greater magnitude of methacholine hyperresponsiveness. These physiologic parameters and accompanying obese asthma symptoms can be reduced by successful weight loss, yet the underlying mechanisms remain incompletely understood. We implemented mouse models of diet-induced obesity, dietary and surgical weight loss, and environmental allergen exposure to examine the mechanisms and mediators of inherent and allergic obese asthma. We report that the methacholine hyperresponsiveness in these models of inherent obese asthma and obese allergic asthma manifests in distinct anatomical compartments but that both are amenable to interventions that induce substantial weight loss. The inherent obese asthma phenotype, with characteristic increases in distal airspace tissue resistance and tissue elastance, is associated with elevated proinflammatory cytokines that are reduced with dietary weight loss. Surprisingly, bariatric surgery-induced weight loss further elevates these cytokines while reducing methacholine responsiveness to levels similar to those in lean mice or in formerly obese mice rendered lean through dietary intervention. In contrast, the obese allergic asthma phenotype, with characteristic increases in central airway resistance, is not associated with increased adaptive immune responses, yet diet-induced weight loss reduces methacholine hyperresponsiveness without altering immunological variables. Diet-induced weight loss is effective in models of both inherent and allergic obese asthma, and our examination of the fecal microbiome revealed that the obesogenic Firmicutes/Bacteroidetes ratio was normalized after diet-induced weight loss. Our results suggest that structural, immunological, and microbiological factors contribute to the manifold presentations of obese asthma.

  20. Weight Loss Decreases Inherent and Allergic Methacholine Hyperresponsiveness in Mouse Models of Diet-Induced Obese Asthma

    PubMed Central

    Ather, Jennifer L.; Chung, Michael; Hoyt, Laura R.; Randall, Matthew J.; Georgsdottir, Anna; Daphtary, Nirav A.; Aliyeva, Minara I.; Suratt, Benjamin T.; Bates, Jason H. T.; Irvin, Charles G.; Russell, Sheila R.; Forgione, Patrick M.; Dixon, Anne E.

    2016-01-01

    Obese asthma presents with inherent hyperresponsiveness to methacholine or augmented allergen-driven allergic asthma, with an even greater magnitude of methacholine hyperresponsiveness. These physiologic parameters and accompanying obese asthma symptoms can be reduced by successful weight loss, yet the underlying mechanisms remain incompletely understood. We implemented mouse models of diet-induced obesity, dietary and surgical weight loss, and environmental allergen exposure to examine the mechanisms and mediators of inherent and allergic obese asthma. We report that the methacholine hyperresponsiveness in these models of inherent obese asthma and obese allergic asthma manifests in distinct anatomical compartments but that both are amenable to interventions that induce substantial weight loss. The inherent obese asthma phenotype, with characteristic increases in distal airspace tissue resistance and tissue elastance, is associated with elevated proinflammatory cytokines that are reduced with dietary weight loss. Surprisingly, bariatric surgery–induced weight loss further elevates these cytokines while reducing methacholine responsiveness to levels similar to those in lean mice or in formerly obese mice rendered lean through dietary intervention. In contrast, the obese allergic asthma phenotype, with characteristic increases in central airway resistance, is not associated with increased adaptive immune responses, yet diet-induced weight loss reduces methacholine hyperresponsiveness without altering immunological variables. Diet-induced weight loss is effective in models of both inherent and allergic obese asthma, and our examination of the fecal microbiome revealed that the obesogenic Firmicutes/Bacteroidetes ratio was normalized after diet-induced weight loss. Our results suggest that structural, immunological, and microbiological factors contribute to the manifold presentations of obese asthma. PMID:27064658

  1. Clostridium ramosum promotes high-fat diet-induced obesity in gnotobiotic mouse models.

    PubMed

    Woting, Anni; Pfeiffer, Nora; Loh, Gunnar; Klaus, Susanne; Blaut, Michael

    2014-09-30

    The intestines of obese humans and mice are enriched with Erysipelotrichi, a class within the Firmicutes. Clostridium ramosum, a member of the Erysipelotrichi, is associated with symptoms of the metabolic syndrome in humans. To clarify the possible obesogenic potential of this bacterial species and to unravel the underlying mechanism, we investigated the role of C. ramosum in obesity development in gnotobiotic mice. Mice were associated with a simplified human intestinal (SIHUMI) microbiota of eight bacterial species, including C. ramosum, with the SIHUMI microbiota except C. ramosum (SIHUMIw/oCra), or with C. ramosum only (Cra) and fed a high-fat diet (HFD) or a low-fat diet (LFD). Parameters related to the development of obesity and metabolic diseases were compared. After 4 weeks of HFD feeding, the mouse groups did not differ in energy intake, diet digestibility, gut permeability, and parameters of low-grade inflammation. However, SIHUMI and Cra mice fed the HFD gained significantly more body weight and body fat and displayed higher food efficiency than SIHUMIw/oCra mice fed the HFD. Gene expression of glucose transporter 2 (Glut2) in jejunal mucosa and of fatty acid translocase (CD36) in ileal mucosa was significantly increased in the obese SIHUMI and Cra mice compared with the less obese SIHUMIw/oCra mice. The data demonstrate that the presence of C. ramosum in SIHUMI and Cra mice enhanced diet-induced obesity. Upregulation of small intestinal glucose and fat transporters in these animals may contribute to their increased body fat deposition. Obesity is a growing health problem worldwide. Changes in the proportions of Bacteroidetes and Firmicutes, the two dominant phyla in the human and the murine intestinal tract, link the intestinal microbiota to obesity. Erysipelotrichi, a class within the Firmicutes, increase in response to high-fat feeding in mice. Clostridium ramosum, a member of the Erysipelotrichi, has been linked to symptoms of the metabolic syndrome

  2. Ibuprofen targets neuronal pentraxins expresion and improves cognitive function in mouse model of AlCl3-induced neurotoxicity.

    PubMed

    Jamil, Anum; Mahboob, Aamra; Ahmed, Touqeer

    2016-02-01

    Aluminum is known to exert neurotoxic effects associated with various neurodegenerative disorders, including Alzheimer's disease (AD). Ibuprofen is a well-known non-steroidal anti-inflammatory drug, which has demonstrated potential efficacy in the treatment of numerous inflammatory and neurodegenerative disorders, including AD. The present study aimed to investigate the protective effects of ibuprofen on cognitive function, and the expression levels of neuronal pentraxins (NPs) and interleukin (IL)-1β in an aluminum chloride (AlCl3)-induced mouse model of neurotoxicity. The effects of ibuprofen (100 mg/kg/day for 12 days) on learning and memory were evaluated in the AlCl3-induced neurotoxic mice using a Morris water maze and open field tests. In addition, ibuprofen was assessed for its effects on the expression levels of NPs and IL-1β in the hippocampus, cortex and amygdala of the brain. Treatment of the AlCl3-treated mice with ibuprofen decreased anxiety levels (6.90±0.34 min) compared with the AlCl3-treated group (1.80±0.29 min), as indicated by the time spent in the central area in an open field test. Furthermore, the expression levels of NP1 (1.32±0.47) and IL-1β (0.99±0.21) were significantly decreased in the hippocampus of mice following ibuprofen treatment, as compared with the AlCl3-treated mice (8.62±1.54 and 7.47±0.53, respectively). In the present study, ibuprofen was able to target novel structures in order to attenuate the inflammation associated with an AlCl3-induced mouse model of neurotoxicity; thus suggesting that ibuprofen may be considered a potential therapeutic option for the treatment of neurodegenerative diseases, including AD.

  3. Pravastatin induces placental growth factor (PGF) and ameliorates preeclampsia in a mouse model

    PubMed Central

    Kumasawa, Keiichi; Ikawa, Masahito; Kidoya, Hiroyasu; Hasuwa, Hidetoshi; Saito-Fujita, Tomoko; Morioka, Yuka; Takakura, Nobuyuki; Kimura, Tadashi; Okabe, Masaru

    2011-01-01

    Preeclampsia is a relatively common pregnancy-related disorder. Both maternal and fetal lives will be endangered if it proceeds unabated. Recently, the placenta-derived anti-angiogenic factors, such as soluble fms-like tyrosine kinase-1 (sFLT1) and soluble endoglin (sENG), have attracted attention in the progression of preeclampsia. Here, we established a unique experimental model to test the role of sFLT1 in preeclampsia using a lentiviral vector-mediated placenta-specific expression system. The model mice showed hypertension and proteinuria during pregnancy, and the symptoms regressed after parturition. Intrauterine growth restriction was also observed. We further showed that pravastatin induced the VEGF-like angiogenic factor placental growth factor (PGF) and ameliorated the symptoms. We conclude that our experimental preeclamptic murine model phenocopies the human case, and the model identifies low-dose statins and PGF as candidates for preeclampsia treatment. PMID:21187414

  4. Neuroprotective Effect of Matrine in Mouse Model of Vincristine-Induced Neuropathic Pain.

    PubMed

    Gong, Shuai-Shuai; Li, Yu-Xiang; Zhang, Meng-Ting; Du, Juan; Ma, Peng-Sheng; Yao, Wan-Xia; Zhou, Ru; Niu, Yang; Sun, Tao; Yu, Jian-Qiang

    2016-11-01

    Chemotherapy drugs such as vincristine (VCR) can cause neuropathic pain, and there is still lack of ideal strategy to treat it. The current study was designed to investigate effect of matrine (MT) on VCR-induced neuropathic pain in animal model. VCR (75 μg/kg, i.p. for 10 consecutive days) was administered to induce painful neuropathy model in mice. MT (15, 30 and 60 mg/kg, i.p.) and pregabalin (10 mg/kg, i.p.) were administered for 11 consecutive days. Various tests were performed to assess the degree of pain at different days (1, 6, 11, 16, and 21). Von Frey hair, hot plate, cold-plate and paw pressure tests were conducted to assess the degree of mechanical allodynia, thermal hyperalgesia, cold allodynia and mechanical hyperalgesia in the hind paw respectively. The electrophysiological and histopathological changes were also analyzed. Furthermore, tissue malondialdehyde (MDA), total antioxidant capacity (T-AOC),superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), total calcium (TCA), myeloperoxidase (MPO), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), interleukin-10 (IL-10) were measured to investigate possible involvement of MT in inflammation and oxidative stress. Administration of MT attenuated the VCR-induced behavioral alterations as well as electrophysiological and histopathological changes in a dose dependent manner. Further, MT also attenuated the VCR-induced oxidative stress (MDA, T-AOC, GSH-Px, SOD and TCA) and inflammation (MPO, TNF-α, IL-6 and IL-10). Taken together, MT ameliorated VCR-induced painful neuropathy, which might be attributed to neuroprotective effects by subsequent reduction in oxidative stress and anti-inflammatory actions.

  5. A Novel Mouse Model to Study Image-Guided, Radiation-Induced Intestinal Injury and Preclinical Screening of Radioprotectors.

    PubMed

    Verginadis, Ioannis I; Kanade, Rahul; Bell, Brett; Koduri, Sravya; Ben-Josef, Edgar; Koumenis, Constantinos

    2017-02-15

    Radiation is an important treatment modality for gastrointestinal tumors, but intestinal injury is a common side effect. Here we describe a physiologically relevant model for studying the molecular determinants of radiation-induced intestinal damage and testing novel radioprotectors. The model employs a radiopaque marker implanted into the surface of the mouse jejunum, serving as a fiducial marker for precise radiation targeting. Mice were imaged with Cone-Beam CT (CBCT) and irradiated (IR) to the marked area using the Small Animal Radiation Research Platform (SARRP). IR-induced damage was acute but reversible and largely restricted to the area of the marker, leaving the surrounding tissues intact. Although whole gut irradiation with these doses caused lethal GI syndrome, focal (5 mm) radiation of the intestine did not cause any weight loss or lethality. However, fibrosis and collagen deposition 4 months post-IR indicated chronic intestinal damage. A separate cohort of mice was treated daily with curcumin, a clinically tested radioprotector, prior to and post-IR. Curcumin-treated mice showed significant decreases in both local and systemic inflammatory cytokine levels and in fibrosis, suggesting it is an effective radioprotector of the intestine. Our results indicate that this model, which emulates clinically relevant intestinal radiation-induced injury, can be used to assess radioprotectors prior to testing in the clinic. Cancer Res; 77(4); 908-17. ©2016 AACR. ©2016 American Association for Cancer Research.

  6. Measuring oxygen tension modulation, induced by a new pre-radiotherapy therapeutic, in a mammary window chamber mouse model

    NASA Astrophysics Data System (ADS)

    Schafer, Rachel; Gmitro, Arthur F.

    2015-03-01

    Tumor regions under hypoxic or low oxygen conditions respond less effectively to many treatment strategies, including radiation therapy. A novel investigational therapeutic, NVX-108 (NuvOx Pharma), has been developed to increase delivery of oxygen through the use of a nano-emulsion of dodecofluoropentane. By raising pO2 levels prior to delivering radiation, treatment efficacy may be improved. To aid in evaluating the novel drug, oxygen tension was quantitatively measured, spatially and temporally, to record the effect of administrating NVX-108 in an orthotopic mammary window chamber mouse model of breast cancer. The oxygen tension was measured through the use of an oxygen-sensitive coating, comprised of phosphorescent platinum porphyrin dye embedded in a polystyrene matrix. The coating, applied to the surface of the coverslip of the window chamber through spin coating, is placed in contact with the mammary fat pad to record the oxygenation status of the surface tissue layer. Prior to implantation of the window chamber, a tumor is grown in the SCID mouse model by injection of MCF-7 cells into the mammary fat pad. Two-dimensional spatial distributions of the pO2 levels were obtained through conversion of measured maps of phosphorescent lifetime. The resulting information on the spatial and temporal variation of the induced oxygen modulation could provide valuable insight into the optimal timing between administration of NVX-108 and radiation treatment to provide the most effective treatment outcome.

  7. Stat3 accelerates Myc induced tumor formation while reducing growth rate in a mouse model of breast cancer

    PubMed Central

    Jhan, Jing-Ru; Andrechek, Eran R.

    2016-01-01

    Elevated Myc expression has been noted in basal breast cancer but therapies targeting Myc directly are lacking. It is therefore critical to characterize the interaction of Myc with other genes and pathways to uncover future potential therapeutic strategies. In this study, we bioinformatically predicted a role for Stat3 in Myc induced mammary tumors and tested it using mouse models. During normal mammary function, loss of Stat3 in Myc transgenic dams resulted in lethality of pups due to lactation deficiencies. We also observed that deletion of Stat3 in the mammary glands of MMTV-Myc mice unexpectedly resulted in increased and earlier hyperplasia and expedited tumorigenesis. However, despite arising earlier, Myc tumors lacking Stat3 grew more slowly with alterations in the resulting histological subtypes, including a dramatic increase in EMT-like tumors. We also observed that these tumors had impaired angiogenesis and a slight decrease in lung metastases. This metastatic finding is distinct from previously published findings in both MMTV-Neu and MMTV-PyMT mouse models. Together, the literature and our current research demonstrate that Stat3 can function as an oncogene or as a tumor repressor depending on the oncogenic driver and developmental context. PMID:27589562

  8. Overexpression of circadian clock protein cryptochrome (CRY) 1 alleviates sleep deprivation-induced vascular inflammation in a mouse model.

    PubMed

    Qin, Bing; Deng, Yunlong

    2015-01-01

    Disturbance of the circadian clock by sleep deprivation has been proposed to be involved in the regulation of inflammation. However, the underlying mechanism of circadian oscillator components in regulating the pro-inflammatory process during sleep deprivation remains poorly understood. Using a sleep deprivation mouse model, we showed here that sleep deprivation increased the expression of pro-inflammatory cytokines expression and decreased the expression of cryptochrome 1 (CRY1) in vascular endothelial cells. Furthermore, the adhesion molecules including intercellular adhesion molecule-1, vascular cell adhesion molecule-1 and E-selectin were elevated in vascular endothelial cells and the monocytes binding to vascular endothelial cells were also increased by sleep deprivation. Interestingly, overexpression of CRY1 in a mouse model by adenovirus vector significantly inhibited the expression of inflammatory cytokines and adhesion molecules, and NF-κB signal pathway activation, as well as the binding of monocytes to vascular endothelial cells. Using a luciferase reporter assay, we found that CRY1 could repress the transcriptional activity of nuclear factor (NF)-κB in vitro. Subsequently, we demonstrated that overexpression of CRY1 inhibited the basal concentration of cyclic adenosine monophosphate (cAMP), leading to decreased protein kinase A activity, which resulted in decreased phosphorylation of p65. Taken together, these results suggested that the overexpression of CRY1 inhibited sleep deprivation-induced vascular inflammation that might be associated with NF-κB and cAMP/PKA pathways.

  9. Proteomic analysis of the dorsal spinal cord in the mouse model of spared nerve injury-induced neuropathic pain.

    PubMed

    Park, Eun-Sung; Ahn, Jung-Mo; Jeon, Sang-Min; Cho, Hee-Jung; Chung, Ki-Myung; Cho, Je-Yoel; Youn, Dong-Ho

    2017-09-03

    Peripheral nerve injury often causes neuropathic pain and is associated with changes in the expression of numerous proteins in the dorsal horn of the spinal cord. To date, proteomic analysis method has been used to simultaneously analyze hundreds or thousands of proteins differentially expressed in the dorsal horn of the spinal cord in rats or dorsal root ganglion of rats with certain type of peripheral nerve injury. However, a proteomic study using a mouse model of neuropathic pain could be attempted because of abundant protein database and the availability of transgenic mice. In this study, whole proteins were extracted from the ipsilateral dorsal half of the 4(th)-6(th) lumbar spinal cord in a mouse model of spared nerve injury (SNI)-induced neuropathic pain. In-gel digests of the proteins size-separated on a polyacrylamide gel were subjected to reverse-phase liquid-chromatography coupled with electrospray ionization ion trap tandem mass spectrometry (MS/MS). After identifying proteins, the data were analyzed with subtractive proteomics using ProtAn, an in-house analytic program. Consequently, 15 downregulated and 35 upregulated proteins were identified in SNI mice. The identified proteins may contribute to the maintenance of neuropathic pain, and may provide new or valuable information in the discovery of new therapeutic targets for neuropathic pain.

  10. Effects of methotrexate upon inflammatory parameters induced by carrageenan in the mouse model of pleurisy.

    PubMed Central

    Dalmarco, Eduardo Monguilhott; Fröde, Tânia Silvia; Medeiros, Yara Santos

    2002-01-01

    BACKGROUND: The model of pleurisy induced by carrageenan exhibits a biphasic response (4 and 48 h) and permits the quantification of exudate, cell migration and certain enzymes such as myeloperoxidase (MPO) and adenosine-deaminase (ADA) that are markers of activated leukocytes. AIMS: The present study evaluates whether there exists, in the pleurisy model, a significant inhibition of ADA and MPO enzymes, leukocyte kinetics and other markers of inflammation [nitric oxide (NO) levels, exudation] caused by methotrexate treatment by the intraperitoneal (i.p.) route. METHODS: The pleurisy was induced by carrageenan (1%) in mice, and the parameters were analyzed 4 and 48 h after. RESULTS: After the induction of inflammation (4 h), methotrexate (20 mg/kg, i.p., 24 h before pleurisy induction) inhibited the leukocyte infiltration (p < 0.05), NO levels and MPO activity (p < 0.01), but not ADA activity and fluid leakage (p > 0.05). Regarding the second phase of pleurisy (48 h), methotrexate (40 mg/kg, i.p., 0.5 h before pleurisy induction) inhibited the leukocyte infiltration (p < 0.05), fluid leakage, NO levels (p < 0.01), and ADA and MPO activity (p < 0.05). CONCLUSIONS: These findings support the evidence that the acute administration of methotrexate has an important systemic anti-inflammatory activity in the studied inflammatory model. This effect was due to a significant inhibition on both neutrophil and mononuclear cells, being less marked in relation to exudation 48 h after. In relation to the enzymes studied and to NO levels, the findings support the evidence that methotrexate inhibits both enzymes (MPO and ADA) from leukocytes at the site of injury, thus reflecting the activation of both neutrophils and lymphocytes, respectively. Furthermore, the inhibiting effect on NO in both phases of pleurisy induced by carrageenan (4 and 48 h) indicates that methotrexate acts on constitutive and/or inducible NO synthases by means of different cells of the pleural cavity. PMID

  11. Cryptosporidium parvum-induced ileo-caecal adenocarcinoma and Wnt signaling in a mouse model.

    PubMed

    Benamrouz, Sadia; Conseil, Valerie; Chabé, Magali; Praet, Marleen; Audebert, Christophe; Blervaque, Renaud; Guyot, Karine; Gazzola, Sophie; Mouray, Anthony; Chassat, Thierry; Delaire, Baptiste; Goetinck, Nathalie; Gantois, Nausicaa; Osman, Marwan; Slomianny, Christian; Dehennaut, Vanessa; Lefebvre, Tony; Viscogliosi, Eric; Cuvelier, Claude; Dei-Cas, Eduardo; Creusy, Colette; Certad, Gabriela

    2014-06-01

    Cryptosporidium species are apicomplexan protozoans that are found worldwide. These parasites constitute a large risk to human and animal health. They cause self-limited diarrhea in immunocompetent hosts and a life-threatening disease in immunocompromised hosts. Interestingly, Cryptosporidium parvum has been related to digestive carcinogenesis in humans. Consistent with a potential tumorigenic role of this parasite, in an original reproducible animal model of chronic cryptosporidiosis based on dexamethasone-treated or untreated adult SCID mice, we formerly reported that C. parvum (strains of animal and human origin) is able to induce digestive adenocarcinoma even in infections induced with very low inoculum. The aim of this study was to further characterize this animal model and to explore metabolic pathways potentially involved in the development of C. parvum-induced ileo-caecal oncogenesis. We searched for alterations in genes or proteins commonly involved in cell cycle, differentiation or cell migration, such as β-catenin, Apc, E-cadherin, Kras and p53. After infection of animals with C. parvum we demonstrated immunohistochemical abnormal localization of Wnt signaling pathway components and p53. Mutations in the selected loci of studied genes were not found after high-throughput sequencing. Furthermore, alterations in the ultrastructure of adherens junctions of the ileo-caecal neoplastic epithelia of C. parvum-infected mice were recorded using transmission electron microscopy. In conclusion, we found for the first time that the Wnt signaling pathway, and particularly the cytoskeleton network, seems to be pivotal for the development of the C. parvum-induced neoplastic process and cell migration of transformed cells. Furthermore, this model is a valuable tool in understanding the host-pathogen interactions associated with the intricate infection process of this parasite, which is able to modulate host cytoskeleton activities and several host-cell biological

  12. Rebamipide ameliorates radiation-induced intestinal injury in a mouse model.

    PubMed

    Shim, Sehwan; Jang, Hyo-Sun; Myung, Hyun-Wook; Myung, Jae Kyung; Kang, Jin-Kyu; Kim, Min-Jung; Lee, Seung Bum; Jang, Won-Suk; Lee, Sun-Joo; Jin, Young-Woo; Lee, Seung-Sook; Park, Sunhoo

    2017-08-15

    Radiation-induced enteritis is a major side effect in cancer patients undergoing abdominopelvic radiotherapy. Radiation exposure produces an uncontrolled inflammatory cascade and epithelial cell loss leading to impaired epithelial barrier function. The goal of this study was to determine the effect of rebamipide on regeneration of the intestinal epithelia after radiation injury. The abdomens of C57BL/6 mice were exposed to 13Gy of irradiation (IR) and then the mice were treated with rebamipide. Upon IR, intestinal epithelia were destroyed structurally at the microscopic level and bacterial translocation was increased. The intestinal damage reached a maximum level on day 6 post-IR and intestinal regeneration occurred thereafter. We found that rebamipide significantly ameliorated radiation-induced intestinal injury. In mice treated with rebamipide after IR, intestinal barrier function recovered and expression of the tight junction components of the intestinal barrier were upregulated. Rebamipide administration reduced radiation-induced intestinal mucosal injury. The levels of proinflammatory cytokines and matrix metallopeptidase 9 (MMP9) were significantly reduced upon rebamipide administration. Intestinal cell proliferation and β-catenin expression also increased upon rebamipide administration. These data demonstrate that rebamipide reverses impairment of the intestinal barrier by increasing intestinal cell proliferation and attenuating the inflammatory response by inhibiting MMP9 and proinflammatory cytokine expression in a murine model of radiation-induced enteritis. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Pulmonary fibrosis in a mouse model of sarcoid granulomatosis induced by booster challenge with Propionibacterium acnes

    PubMed Central

    Jiang, Dingyuan; Huang, Xiaoxi; Geng, Jing; Dong, Run; Li, Shuhong; Liu, Zheng; Wang, Chen; Dai, Huaping

    2016-01-01

    Pulmonary fibrosis (PF) associated with chronic sarcoidosis remains poorly understood, and no experimental model is currently available for this condition. Previous studies have shown that Propionibacterium acnes (PA) was associated with sarcoidosis and induced granuloma formation in mice. Here, we investigated whether repeated challenge with PA induces persistent inflammation leading to sarcoidosis followed by PF in mice. Specifically, C57BL/6 mice were inoculated intraperitoneally and subjected to intratracheal challenge with PA, and then were booster-challenged with either PA or phosphate-buffered saline on day 28. Inflammation, granulomata, and features of fibrosis were evaluated every 7 days until day 70. Complete remission of lung granulomata was apparent on day 42 in the sarcoid-remission group. However, granulomata was present from days 21 to 70 in mice that received PA boosting. Inflammatory cell counts and Th1 cytokine levels in lung lavage fluids were elevated up to day 70. Furthermore, fibrotic changes in the lungs were observed around granulomatous and peribronchovascular regions after PA boosting. Taken together, these findings suggest that development of PF following sarcoidosis may result from continuous PA infection and inflammation. Repeated boosting with PA to induce PF might be a useful model for future studies of sarcoidosis-associated PF. PMID:27203210

  14. Activation-induced cytidine deaminase is dispensable for virus-mediated liver and skin tumor development in mouse models.

    PubMed

    Nguyen, Tung; Xu, Jianliang; Chikuma, Shunsuke; Hiai, Hiroshi; Kinoshita, Kazuo; Moriya, Kyoji; Koike, Kazuhiko; Marcuzzi, Gian Paolo; Pfister, Herbert; Honjo, Tasuku; Kobayashi, Maki

    2014-07-01

    Activation-induced cytidine deaminase (AID) not only promotes immune diversity by initiating somatic hypermutation and class switch recombination in immunoglobulin genes but also provokes genomic instability by introducing translocations and mutations into non-immunoglobulin genes. To test whether AID is essential for virus-induced tumor development, we used two transgenic tumor models: mice expressing hepatitis C virus (HCV) core proteins (HCV-Tg), driven by the hepatitis B virus promoter, and mice expressing human papillomavirus type 8 proteins (HPV8-Tg), driven by the Keratin 14 promoter. Both strains were analyzed in the absence and presence of AID by crossing each with AID (-/-) mice. There was no difference in the liver tumor frequency between the HCV-Tg/AID (+/+) and HCV-Tg/AID (-/-) mice at 20 months of age although the AID (+/+) mice showed more severe histological findings and increased cytokine expression. Furthermore, a low level of AID transcript was detected in the HCV-Tg/AID (+/+) liver tissue that was not derived from hepatocytes themselves but from intra-hepatic immune cells. Although AID may not be the direct cause of HCV-induced oncogenesis, AID expressed in B cells, not in hepatocytes, may prolong steatosis and cause increased lymphocyte infiltration into HCV core protein-induced liver lesions. Similarly, there was no difference in the time course of skin tumor development between the HPV8-Tg/AID (-/-) and HPV8-Tg/AID (+/+) groups. In conclusion, AID does not appear to be required for tumor development in the two virus-induced tumor mouse models tested although AID expressed in infiltrating B cells may promote inflammatory reactions in HCV core protein-induced liver pathogenesis.

  15. Mobilization of endogenous bone marrow-derived stem cells in a thioacetamide-induced mouse model of liver fibrosis.

    PubMed

    El-Akabawy, Gehan; El-Mehi, Abeer

    2015-06-01

    The clinical significance of enhancing endogenous circulating haematopoietic stem cells is becoming increasingly recognized, and the augmentation of circulating stem cells using granulocyte-colony stimulating factor (G-CSF) has led to promising preclinical and clinical results for several liver fibrotic conditions. However, this approach is largely limited by cost and the infeasibility of maintaining long-term administration. Preclinical studies have reported that StemEnhance, a mild haematopoietic stem cell mobilizer, promotes cardiac muscle regeneration and remedies the manifestation of diabetes. However, the effectiveness of StemEnhance in ameliorating liver cirrhosis has not been studied. This study is the first to evaluate the beneficial effect of StemEnhance administration in a thioacetamide-induced mouse model of liver fibrosis. StemEnhance augmented the number of peripheral CD34-positive cells, reduced hepatic fibrosis, improved histopathological changes, and induced endogenous liver proliferation. In addition, VEGF expression was up-regulated, while TNF-α expression was down-regulated in thioacetamide-induced fibrotic livers after StemEnhance intake. These data suggest that StemEnhance may be useful as a potential therapeutic candidate for liver fibrosis by inducing reparative effects via mobilization of haematopoietic stem cells.

  16. SRF modulates seizure occurrence, activity induced gene transcription and hippocampal circuit reorganization in the mouse pilocarpine epilepsy model.

    PubMed

    Lösing, Pascal; Niturad, Cristina Elena; Harrer, Merle; Reckendorf, Christopher Meyer Zu; Schatz, Theresa; Sinske, Daniela; Lerche, Holger; Maljevic, Snezana; Knöll, Bernd

    2017-07-17

    A hallmark of temporal lobe epilepsy (TLE) is hippocampal neuronal demise and aberrant mossy fiber sprouting. In addition, unrestrained neuronal activity in TLE patients induces gene expression including immediate early genes (IEGs) such as Fos and Egr1.We employed the mouse pilocarpine model to analyze the transcription factor (TF) serum response factor (SRF) in epileptogenesis, seizure induced histopathology and IEG induction. SRF is a neuronal activity regulated TF stimulating IEG expression as well as nerve fiber growth and guidance. Adult conditional SRF deficient mice (Srf (CaMKCreERT2) ) were more refractory to initial status epilepticus (SE) acquisition. Further, SRF deficient mice developed more spontaneous recurrent seizures (SRS). Genome-wide transcriptomic analysis uncovered a requirement of SRF for SE and SRS induced IEG induction (e.g. Fos, Egr1, Arc, Npas4, Btg2, Atf3). SRF was required for epilepsy associated neurodegeneration, mossy fiber sprouting and inflammation. We uncovered MAP kinase signaling as SRF target during epilepsy. Upon SRF ablation, seizure evoked induction of dual specific phosphatases (Dusp5 and Dusp6) was reduced. Lower expression of these negative ERK kinase regulators correlated with altered P-ERK levels in epileptic Srf mutant animals.Overall, this study uncovered an SRF contribution to several processes of epileptogenesis in the pilocarpine model.

  17. Chemo-immunotherapy induces tumor regression in a mouse model of spontaneous mammary carcinogenesis

    PubMed Central

    Carpinelli, Giulia; Canese, Rossella; Cecchetti, Serena; Schiavoni, Giovanna; D'Urso, Maria Teresa; Belardelli, Filippo; Proietti, Enrico

    2016-01-01

    Tumor-specific immune tolerance represents an obstacle for the development of effective anti-tumor immune responses through cancer vaccines. We here evaluated the efficacy of chemo-immunotherapy in breaking tumor-specific immune tolerance in an almost incurable mouse model of spontaneous carcinogenesis. Transgenic HER-2/neu mice bearing large mammary tumors received the adoptive transfer of splenocytes and serum isolated from immune donors, with or without pre-conditioning with cyclophosphamide. Treatment efficacy was assessed by monitoring tumor growth by manual inspection and by magnetic resonance imaging. The same chemo-immunotherapy protocol was tested on tumor-free HER-2/neu mice, to evaluate the effects on tumor emergence. Our data show that chemo-immunotherapy hampered carcinogenesis and caused the regression of large mammary tumor lesions in tumor-bearing HER-2/neu mice. The complete eradication of a significant number of tumor lesions occurred only in mice receiving cyclophosphamide shortly before immunotherapy, and was associated with increased serum anti HER-2/p185 antibodies and tumor leukocyte infiltration. The same protocol significantly delayed the appearance of mammary tumors when administered to tumor-free HER-2/neu mice, indicating that this chemo-immunotherapy approach acted through the elicitation of an effective anti-tumor immune response. Overall, our data support the immune-modulatory role of chemotherapy in overcoming cancer immune tolerance when administered at lymphodepleting non-myeloablative doses shortly before transfer of antigen-specific immune cells and immunoglobulins. These findings open new perspectives on combining immune-modulatory chemotherapy and immunotherapy to overcome immune tolerance in cancer patients. PMID:27486759

  18. Cigarette exposure induces changes in maternal vascular function in a pregnant mouse model.

    PubMed

    Gandley, Robin E; Jeyabalan, Arun; Desai, Ketaki; McGonigal, Stacy; Rohland, Jennifer; DeLoia, Julie A

    2010-05-01

    Smoking is associated with multiple adverse pregnancy outcomes, including fetal growth restriction. The objective of this study was to determine whether cigarette smoke exposure during pregnancy in a mouse model affects the functional properties of maternal uterine, mesenteric, and renal arteries as a possible mechanism for growth restriction. C57Bl/CJ mice were exposed to whole body sidestream smoke for 4 h/day. Smoke particle exposure was increased from day 4 of gestation until late pregnancy (day 16-19), with mean total suspended particle levels of 63 mg/m(3), representative of moderate-to-heavy smoking in humans. Uterine, mesenteric, and renal arteries from late-pregnant and virgin mice were isolated and studied in a pressure-arteriograph system (n = 23). Plasma cotinine was measured by ELISA. Fetal weights were significantly reduced in smoke-exposed compared with control fetuses (0.88 +/- 0.1 vs. 1.0 +/- 0.08 g, P < 0.02), while litter sizes were not different. Endothelium-mediated relaxation responses to methacholine were significantly impaired in both the uterine and mesenteric vasculature of pregnant mice exposed to cigarette smoke during gestation. This difference was not apparent in isolated renal arteries from pregnant mice exposed to cigarette smoke; however, relaxation was significantly reduced in renal arteries from smoke-exposed virgin mice. In conclusion, we found that passive cigarette smoke exposure is associated with impaired vascular relaxation of uterine and mesenteric arteries in pregnant mice. Functional maternal vascular perturbations during pregnancy, specifically impaired peripheral and uterine vasodilation, may contribute to a mechanism by which smoking results in fetal growth restriction.

  19. Development of a novel mouse model of amodiaquine-induced liver injury with a delayed onset.

    PubMed

    Metushi, Imir G; Cai, Ping; Dervovic, Dzana; Liu, Feng; Lobach, Alexandra; Nakagawa, Tetsuya; Uetrecht, Jack

    2015-01-01

    Amodiaquine (AQ) treatment is associated with a high incidence of idiosyncratic drug-induced liver injury (IDILI) and agranulocytosis. Evidence suggests that AQ-induced IDILI is immune mediated. A significant impediment to mechanistic studies of IDILI is the lack of valid animal models. This study reports the first animal model of IDILI with characteristics similar to mild IDILI in humans. Treatment of female C57BL/6 mice with AQ led to liver injury with delayed onset, which resolved despite continued treatment. Covalent binding of AQ was detected in the liver, which was greater in female than in male mice, and higher in the liver than in other organs. Covalent binding in the liver was maximal by Day 3, which did not explain the delayed onset of alanine aminotransferase (ALT) elevation. However, coincident with the elevated serum ALT, infiltration of liver and splenic mononuclear cells and activation of CD8 T-cells within the liver were identified. By Week 7, when ALT levels had returned close to normal, down-regulation of several inflammatory cytokines and up-regulation of PD-1 on T-cells suggested induction of immune tolerance. Treatment of Rag1(-/-) mice with AQ resulted in higher ALT activities than C57BL/6 mice, which suggested that the adaptive immune response was responsible for immune tolerance. In contrast, depletion of NK cells significantly attenuated the increase in ALT, which implied a role for NK cells in mild AQ-induced IDILI. This is the first example of a delayed-onset animal model of IDILI that appears to be immune-mediated.

  20. Conditional ablation of TGF-β signaling inhibits tumor progression and invasion in an induced mouse bladder cancer model

    PubMed Central

    Liang, Yu; Zhu, Fengyu; Zhang, Haojie; Chen, Demeng; Zhang, Xiuhong; Gao, Qian; Li, Yang

    2016-01-01

    The role of transforming growth factor-β (TGF-β) signaling in cancer progression is still under debate. To determine the function of TGF-β signaling in bladder cancer progression, we conditionally knocked out the Tgfbr2 in mouse model after a N-butyl-N-4-hydroxybutyl Nitrosamine induced bladder carcinogenesis. We found the ablation of TGF-β signaling could inhibit the cancer cell proliferation, cancer stem cell population and EMT, hence suppressed the invasive cancer progression, which is similar with the result of TGF-β receptor I inhibitor treatment. These findings recognize the roles and mechanisms of TGF-β signaling in bladder cancer progression in vivo for the first time. PMID:27378170

  1. Identification of the common regulators for hepatocellular carcinoma induced by hepatitis B virus X antigen in a mouse model.

    PubMed

    Lu, Jeng-Wei; Hsia, Yu; Yang, Wan-Yu; Lin, Yu-I; Li, Chao-Chin; Tsai, Ting-Fen; Chang, Ko-Wei; Shieh, Grace S; Tsai, Shih-Feng; Wang, Horng-Dar; Yuh, Chiou-Hwa

    2012-01-01

    Hepatitis B virus X antigen plays an important role in the development of human hepatocellular carcinoma (HCC). The key regulators controlling the temporal downstream gene expression for HCC progression remains unknown. In this study, we took advantage of systems biology approach and analyzed the microarray data of the HBx transgenic mouse as a screening process to identify the differentially expressed genes and applied the software Pathway Studio to identify potential pathways and regulators involved in HCC. Using subnetwork enrichment analysis, we identified five common regulator genes: EDN1, BMP7, BMP4, SPIB and SRC. Upregulation of the common regulators was validated in the other independent HBx transgenic mouse lines. Furthermore, we verified the correlation of their RNA expression levels by using the human HCC samples, and their protein levels by using the human liver disease tissue arrays. EDN1, bone morphogenetic protein (BMP) 4 and BMP7 were upregulated in cirrhosis, BMP4, BMP7 and SRC were further upregulated in hepatocellular or cholangiocellular carcinoma samples. The trend of increasing expression of the common regulators correlates well with the progression of human liver cancer. Overexpression of the common regulators increases the cell viability, promotes migration and invasiveness and enhances the colony formation ability in Hep3B cells. Our approach allows us to identify the critical genes in hepatocarcinogenesis in an HBx-induced mouse model. The validation of the gene expressions in the liver cancer of human patients and their cellular function assays suggests that the identified common regulators may serve as useful molecular targets for the early-stage diagnosis or therapy for HCC.

  2. Rapamycin Prolongs Cardiac Allograft Survival in a Mouse Model by Inducing Myeloid-Derived Suppressor Cells.

    PubMed

    Nakamura, T; Nakao, T; Yoshimura, N; Ashihara, E

    2015-09-01

    Mammalian target of rapamycin (mTOR) inhibitors are the main immunosuppressive drugs for organ transplant recipients. Nevertheless, the mechanisms by which mTOR inhibitors induce immunosuppression is not fully understood. Myeloid-derived suppressor cells (MDSCs) maintain host immunity; however, the relationship between mTOR inhibitors and MDSCs is unclear. Here, the results from a murine cardiac transplantation model revealed that rapamycin treatment (3 mg/kg, intraperitoneally on postoperative days 0, 2, 4, and 6) led to the recruitment of MDSCs and increased their expression of inducible nitric oxide synthase (iNOS). Immunohistochemical analysis revealed that rapamycin induced the migration of iNOS-expressing MDSCs into the subintimal space within the allograft vessels, resulting in a significant prolongation of graft survival compared with that in the untreated group (67 days vs. 7 days, respectively). These effects were counterbalanced by the administration of an anti-Gr-1, which reduced allograft survival to 21 days. Moreover, adoptive transcoronary arterial transfer of MDSCs from rapamycin-treated recipients prolonged allograft survival; this increase was reversed by the anti-Gr-1 antibody. Finally, co-administration of rapamycin and a mitogen-activated protein kinase kinase (MEK) inhibitor trametinib reversed rapamycin-mediated MDSC recruitment. Thus, the mTOR and Raf/MEK/extracellular signal regulated kinase (ERK) signaling pathways appear to play an important role in MDSC expansion.

  3. Effects of Low Level Laser Therapy on Ovalbumin-Induced Mouse Model of Allergic Rhinitis

    PubMed Central

    Choi, Binhye; Chang, Mun Seog; Ryu, Bongha; Kim, Jinsung

    2013-01-01

    Introduction. This study was designed to investigate the effects of low level laser therapy (LLLT) on experimental allergic rhinitis (AR) models induced by ovalbumin. Materials and Methods. AR was induced by 1% ovalbumin in mice. Twenty-four mice were divided into 4 groups: normal, control, low, and high dose irradiation. Low and high dose LLLT were irradiated once a day for 7 days. Total IgE, cytokines concentrations (IL-4 and IFN-γ), and thymus and activation regulated chemokine (TARC) were measured. Histological changes in the nasal mucosal tissue by laser irradiation were examined. Results. LLLT significantly inhibited total IgE, IL-4, and TARC expression in ovalbumin-induced mice at low dose irradiation. The protein expression level of IL-4 in spleen was inhibited in low dose irradiation significantly. IL-4 expression in EL-4 cells was inhibited in a dose dependent manner. Histological damages of the epithelium in the nasal septum were improved by laser irradiation with marked improvement at low dose irradiation. Conclusion. These results suggest that LLLT might serve as a new therapeutic tool in the treatment of AR with more effectiveness at low dose irradiation. To determine the optimal dose of laser irradiation and action mechanisms of laser therapy, further studies will be needed. PMID:24319484

  4. Therapeutic effects of LASSBio-596 in an elastase-induced mouse model of emphysema

    PubMed Central

    Padilha, Gisele A.; Henriques, Isabela; Lopes-Pacheco, Miquéias; Abreu, Soraia C.; Oliveira, Milena V.; Morales, Marcelo M.; Lima, Lidia M.; Barreiro, Eliezer J.; Silva, Pedro L.; Xisto, Debora G.; Rocco, Patricia R. M.

    2015-01-01

    Emphysema is an intractable pulmonary disease characterized by an inflammatory process of the airways and lung parenchyma and ongoing remodeling process in an attempt to restore lung structure. There is no effective drug therapy that regenerates lung tissue or prevents the progression of emphysema; current treatment is aimed at symptomatic relief. We hypothesized that LASSBio-596, a molecule with potent anti-inflammatory and immunomodulatory effects, might reduce pulmonary inflammation and remodeling and thus improve lung function in experimental emphysema. Emphysema was induced in BALB/c mice by intratracheal administration of porcine pancreatic elastase (0.1 IU) once weekly during 4 weeks. A control group received saline using the same protocol. After the last instillation of saline or elastase, dimethyl sulfoxide, or LASSBio-596 were administered intraperitoneally, once daily for 8 days. After 24 h, in elastase-induced emphysema animals, LASSBio-596 yielded: (1) decreased mean linear intercept, hyperinflation and collagen fiber content, (2) increased elastic fiber content, (3) reduced number of M1 macrophages, (4) decreased tumor necrosis factor-α, interleukin-1β, interleukin-6, and transforming growth factor-β protein levels in lung tissue, and increased vascular endothelial growth factor. These changes resulted in increased static lung elastance. In conclusion, LASSBio-596 therapy reduced lung inflammation, airspace enlargement, and small airway wall remodeling, thus improving lung function, in this animal model of elastase-induced emphysema. PMID:26483698

  5. Moxibustion at mingmen reduces inflammation and decreases IL-6 in a collagen-induced arthritis mouse model.

    PubMed

    Kogure, Morihiro; Mimura, Naomi; Ikemoto, Hideshi; Ishikawa, Shintaro; Nakanishi-Ueda, Takako; Sunagawa, Masataka; Hisamitsu, Tadashi

    2012-02-01

    The purpose of this study was to compare the effectiveness of moxibustion (MOX) treatment at the GV4 and CV12 acupoints, and to determine the correlations between MOX treatment and interleukin (IL)-6 and corticosterone levels in a collagen-induced arthritis (CIA) mouse model. CIA mice were immunized twice intradermally over a 3-week interval with bovine type II collagen. After the second immunization (day 21), MOX was applied to the mouse equivalent of the GV4 and CV12 acupoints with a 1mg moxa cone five times/day. Clinical symptoms of CIA were observed three times/week until day 35. The concentrations of IL-6 and corticosterone in the blood samples were measured by immunoassay kits. At day 35, the incidence of CIA was significantly decreased in mice treated with MOX at the GV4 acupoint (78%, n=23, p<0.05), compared to untreated CIA mice (100%) and mice treated with MOX at the CV12 acupoint (100%). IL-6 and corticosterone levels were significantly increased by immunization. IL-6 levels significantly decreased in mice treated with MOX at the GV4 acupoint. These results suggest that MOX treatment suppressed CIA at the GV4 acupoint, not at the CV12 acupoint, possibly through inhibition of IL-6 production.

  6. Ursolic acid attenuates oxidative stress in nigrostriatal tissue and improves neurobehavioral activity in MPTP-induced Parkinsonian mouse model.

    PubMed

    Rai, Sachchida Nand; Yadav, Satyndra Kumar; Singh, Divakar; Singh, Surya Pratap

    2016-01-01

    Parkinson's disease (PD) is characterized by a slow and progressive degeneration of dopaminergic neurons in substantia nigra pars compacta (SNpc) region of brain. Oxidative stress and inflammation plays important role in the neurodegeneration and development of PD. Ursolic Acid (UA: 3β-hydroxy-urs-12-en-28-oic acid) is a natural pentacyclic triterpenoid found in various medicinal plants. Its anti-inflammatory and antioxidant activity is a well-established fact. In this paper, the neuroprotective efficiency of UA in MPTP induced PD mouse model has been explored. For this purpose, we divided 30 mice into 5 different groups; first was control, second was MPTP-treated, third, fourth and fifth were different doses of UA viz., 5 mg/kg, 25 mg/kg, and 50 mg/kg body weight (wt) respectively, along with MPTP. After 21 days of treatment, different behavioral parameters and biochemical assays were conducted. Tyrosine hydroxylase (TH) immunostaining of SN dopaminergic neurons as well as HPLC quantification of dopamine and its metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanilic acid (HVA) were also performed. Our results proved that, UA improves behavioral deficits, restored altered dopamine level and protect dopaminergic neurons in the MPTP intoxicated mouse. Among three different doses, 25 mg/kg body wt was the most effective dose for the PD. This work reveals the potential of UA as a promising drug candidate for PD treatment.

  7. AhR modulates the IL-22-producing cell proliferation/recruitment in imiquimod-induced psoriasis mouse model.

    PubMed

    Cochez, Perrine M; Michiels, Camille; Hendrickx, Emilie; Van Belle, Astrid B; Lemaire, Muriel M; Dauguet, Nicolas; Warnier, Guy; de Heusch, Magali; Togbe, Dieudonnée; Ryffel, Bernhard; Coulie, Pierre G; Renauld, Jean-Christophe; Dumoutier, Laure

    2016-06-01

    IL-22 has a detrimental role in skin inflammatory processes, for example in psoriasis. As transcription factor, AhR controls the IL-22 production by several cell types (i.e. Th17 cells). Here, we analyzed the role of Ahr in IL-22 production by immune cells in the inflamed skin, using an imiquimod-induced psoriasis mouse model. Our results indicate that IL-22 is expressed in the ear of imiquimod-treated Ahr(-/-) mice but less than in wild-type mice. We then studied the role of AhR on three cell populations known to produce IL-22 in the skin: γδ T cells, Th17 cells, and ILC3, and a novel IL-22-producing cell type identified in this setting: CD4(-) CD8(-) TCRβ(+) T cells. We showed that AhR is required for IL-22 production by Th17, but not by the three other cell types, in the imiquimod-treated ears. Moreover, AhR has a role in the recruitment of γδ T cells, ILC3, and CD4(-) CD8(-) TCRβ(+) T cells into the inflamed skin or in their local proliferation. Taken together, AhR has a direct role in IL-22 production by Th17 cells in the mouse ear skin, but not by γδ T cells, CD4(-) CD8(-) TCRβ(+) T cells and ILCs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Korean Solar Salt Ameliorates Colon Carcinogenesis in an AOM/DSS-Induced C57BL/6 Mouse Model.

    PubMed

    Ju, Jaehyun; Kim, Yeung-Ju; Park, Eui Seong; Park, Kun-Young

    2017-06-01

    The effects of Korean solar salt on an azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced colon cancer C57BL/6 mouse model were studied. Korean solar salt samples (SS-S, solar salt from S salt field; SS-Yb, solar salt from Yb salt field), nine-time-baked bamboo salt (BS-9x, made from SS-Yb), purified salt (PS), and SS-G (solar salt from Guérande, France) were orally administered at a concentration of 1% during AOM/DSS colon cancer induction, and compared for their protective effects during colon carcinogenesis in C57BL/6 mice. SS-S and SS-Yb suppressed colon length shortening and tumor counts in mouse colons. Histological evaluation by hematoxylin and eosin staining also revealed suppression of tumorigenesis by SS-S. Conversely, PS and SS-G did not show a similar suppressive efficacy as Korean solar salt. SS-S and SS-Yb promoted colon mRNA expression of an apoptosis-related factor and cell-cycle-related gene and suppressed pro-inflammatory factor. SS-Yb baked into BS-9x further promoted these anti-carcinogenic efficacies. Taken together, the results indicate that Korean solar salt, especially SS-S and SS-Yb, exhibited anti-cancer activity by modulating apoptosis- and inflammation-related gene expression during colon carcinogenesis in mice, and bamboo salt baked from SS-Yb showed enhanced anti-cancer functionality.

  9. Multimodal analysis of ocular inflammation using the endotoxin-induced uveitis mouse model

    PubMed Central

    Chu, Colin J.; Gardner, Peter J.; Copland, David A.; Liyanage, Sidath E.; Gonzalez-Cordero, Anai; kleine Holthaus, Sophia-Martha; Luhmann, Ulrich F. O.; Smith, Alexander J.; Ali, Robin R.; Dick, Andrew D.

    2016-01-01

    ABSTRACT Endotoxin-induced uveitis (EIU) in rodents is a model of acute Toll-like receptor 4 (TLR4)-mediated organ inflammation, and has been used to model human anterior uveitis, examine leukocyte trafficking and test novel anti-inflammatory therapeutics. Wider adoption has been limited by the requirement for manual, non-specific, cell-count scoring of histological sections from each eye as a measure of disease severity. Here, we describe a comprehensive and efficient technique that uses ocular dissection and multimodal tissue analysis. This allows matched disease scoring by multicolour flow cytometric analysis of the inflammatory infiltrate, protein analysis on ocular supernatants and qPCR on remnant tissues of the same eye. Dynamic changes in cell populations could be identified and mapped to chemokine and cytokine changes over the course of the model. To validate the technique, dose-responsive suppression of leukocyte infiltration by recombinant interleukin-10 was demonstrated, as well as selective suppression of the monocyte (CD11b+Ly6C+) infiltrate, in mice deficient for either Ccl2 or Ccr2. Optical coherence tomography (OCT) was used for the first time in this model to allow in vivo imaging of infiltrating vitreous cells, and correlated with CD11b+Ly6G+ counts to provide another unique measure of cell populations in the ocular tissue. Multimodal tissue analysis of EIU is proposed as a new standard to improve and broaden the application of this model. PMID:26794131

  10. Red ginseng powder fermented with probiotics exerts antidiabetic effects in the streptozotocin-induced mouse diabetes model.

    PubMed

    Jang, Sun-Hee; Park, Jisang; Kim, Sae-Hae; Choi, Kyung-Min; Ko, Eun-Sil; Cha, Jeong-Dan; Lee, Young-Ran; Jang, Hyonseok; Jang, Yong-Suk

    2017-12-01

    Red ginseng (heat-processed Panax ginseng) is a well-known alternative medicine with pharmacological antidiabetic activity. It exerts pharmacological effects through the transformation of saponin into metabolites by the intestinal microbiota. Given that intestinal conditions and intestinal microflora vary among individuals, the pharmacological effects of orally administered red ginseng likely may vary among individuals. To overcome this variation and produce homogeneously effective red ginseng, we evaluated the antidiabetic effects of probiotic-fermented red ginseng in a mouse model. The antidiabetic efficacy of orally administered probiotic-fermented red ginseng was assessed in ICR mice after induction of diabetes using streptozotocin (170 mg/kg body weight). Samples were given orally for 8 weeks, and indicators involved in diabetic disorders such as body weight change, water intake, blood glucose, glucose tolerance and various biochemical parameters were determined. Oral administration of probiotic-fermented red ginseng significantly decreased the level of blood glucose of about 62.5% in the fasting state and induced a significant increase in glucose tolerance of about 10.2% compared to the control diabetic mice. Additionally, various indicators of diabetes and biochemical data (e.g., blood glycosylated haemoglobin level, serum concentrations of insulin, and α-amylase activity) showed a significant improvement in the diabetic conditions of the mice treated with probiotic-fermented red ginseng in comparison with those of control diabetic mice. Our results demonstrate the antidiabetic effects of probiotic-fermented red ginseng in the streptozotocin-induced mouse diabetes model and suggest that probiotic-fermented red ginseng may be a uniformly effective red ginseng product.

  11. Increased Expression of TGF-β Signaling Components in a Mouse Model of Fibrosis Induced by Submandibular Gland Duct Ligation

    PubMed Central

    Woods, Lucas T.; Camden, Jean M.; El-Sayed, Farid G.; Khalafalla, Mahmoud G.; Petris, Michael J.; Erb, Laurie; Weisman, Gary A.

    2015-01-01

    Transforming growth factor-β (TGF-β) is a multi-functional cytokine with a well-described role in the regulation of tissue fibrosis and regeneration in the liver, kidney and lung. Submandibular gland (SMG) duct ligation and subsequent deligation in rodents is a classical model for studying salivary gland damage and regeneration. While previous studies suggest that TGF-β may contribute to salivary gland fibrosis, the expression of TGF-β signaling components has not been investigated in relation to mouse SMG duct ligation-induced fibrosis and regeneration following ductal deligation. Following a 7 day SMG duct ligation, TGF-β1 and TGF-β3 were significantly upregulated in the SMG, as were TGF-β receptor 1 and downstream Smad family transcription factors in salivary acinar cells, but not in ductal cells. In acinar cells, duct ligation also led to upregulation of snail, a Smad-activated E-cadherin repressor and regulator of epithelial-mesenchymal transition, whereas in ductal cells upregulation of E-cadherin was observed while snail expression was unchanged. Upregulation of these TGF-β signaling components correlated with upregulation of fibrosis markers collagen 1 and fibronectin, responses that were inhibited by administration of the TGF-β receptor 1 inhibitors SB431542 or GW788388. After SMG regeneration following a 28 day duct deligation, TGF-β signaling components and epithelial-mesenchymal transition markers returned to levels similar to non-ligated controls. The results from this study indicate that increased TGF-β signaling contributes to duct ligation-induced changes in salivary epithelium that correlate with glandular fibrosis. Furthermore, the reversibility of enhanced TGF-β signaling in acinar cells of duct-ligated mouse SMG after deligation indicates that this is an ideal model for studying TGF-β signaling mechanisms in salivary epithelium as well as mechanisms of fibrosis initiation and their resolution. PMID:25955532

  12. Jungia sellowii suppresses the carrageenan-induced inflammatory response in the mouse model of pleurisy.

    PubMed

    Nader, Marina; Vicente, Geison; da Rosa, Julia Salvan; Lima, Tamires Cardoso; Barbosa, Alyne Machado; Santos, Alan Diego Conceição; Barison, Andersson; Dalmarco, Eduardo Monguilhott; Biavatti, Maique Weber; Fröde, Tânia Silvia

    2014-12-01

    This study was conducted to explore the anti-inflammatory effect of Jungia sellowii (Asteraceae) using a murine model of pleurisy induced by carrageenan (Cg). This plant is used in southern Brazil to treat inflammatory diseases. J. sellowii leaves were extracted with ethanol/water to obtain the crude extract (CE), which was fractionated with different solvents, yielding n-hexane (Hex), dichloromethane (DCM), ethyl acetate (EtOAc) and n-butanol (BuOH) fractions, and aqueous fraction (Aq). The major compounds succinic acid (SA) and lactic acid (LA) were isolated from Aq fraction, and their structures were determined by (1)H and (13)C NMR. Pleurisy was induced by Cg (Saleh et al. 1996). The leukocytes, exudation, myeloperoxidase (MPO) and adenosine-deaminase (ADA) activities, metabolites of nitric oxide (NO x ) levels, protein levels and mRNA expression for interleukin 1 beta (IL-1β), tumour necrosis factor alpha (TNF-α), interleukin 17A (IL17A) and inducible of nitric oxide synthase (iNOs), and p65 protein phosphorylation (NF-κB) were analysed 4 h after pleurisy induction. Animals pre-treated with CE, BuOH, Aq, SA, or LA inhibited leukocytes, exudation, MPO and ADA activities, NO x , IL-1β, TNF-α, and IL-17A levels, and the mRNA expression for IL-1β, TNF-α, IL-17A, iNOS, and p65 protein phosphorylation (NF-κB) (p < 0.05). Our study demonstrated that J. sellowii can protect against inflammation induced by Cg by decreasing the leukocytes and exudation. Its effects are related to the decrease of either proinflammatory cytokines and/or NO x . The isolated compounds SA and LA may play an important role in this anti-inflammatory action by inhibiting all the studied parameters. The anti-inflammatory properties of these compounds are due to the downregulation of NF-κB.

  13. Resveratrol Possesses Protective Effects in a Pristane-Induced Lupus Mouse Model

    PubMed Central

    Xu, Dong; Zhou, Shuang; Chen, Hou-Zao; Gao, Na; Chen, Zhen; Zhang, Ling-Ling; Zeng, Xiao-Feng

    2014-01-01

    Background Systemic lupus erythematosus (SLE) is a multisystemic autoimmune disease characterized by the production of autoantibodies. To date, no therapy has been found to satisfactorily treat SLE. SIRT1 deficiency results in the development of an autoimmune syndrome in mice, including a high titer of anti-nuclear antibody in serum, immunoglobulin deposition in the kidney, and immune complex glomerulonephritis. Resveratrol is an activator of SIRT1 and possesses anti-inflammation and immune-regulatory properties. Objective To evaluate the preventative effects of resveratrol on a pristane-induced lupus animal model and assess its putative immune modulation effects. Methods BALB/c mice received a single intraperitoneal injection of 0.5 ml of pristane on day 1 and then various doses of resveratrol were given to the mice daily starting on day 2 and continuing for seven months. The autoantibodies in serum and supernatants were measured. Single cells isolated from spleen, isolated CD4+ T cells, and CD19+ B cells were cultured with or without resveratrol in vitro and assessed by flow cytometry. Results Resveratrol attenuated proteinuria, immunoglobuin depositon in kidney, and glomerulonephritis as well as IgG1 and IgG2a in serum in pristane-induced lupus mice. Resveratrol also suppressed CD69 and CD71 expression on CD4+ T cells as well as CD4+ T cell proliferation, induced CD4+ T cell apoptosis, and decreased CD4 IFNγ+ Th1 cells and the ratio of Th1/Th2 cells in vitro. In vitro antibody production and proliferation of B cells were also inhibited. Conclusion Resveratrol possesses protective effects in pristane-induced lupus mice and may represent a novel approach for the management of SLE. PMID:25501752

  14. Primary epiphyseal arteriopathy in a mouse model of steroid-induced osteonecrosis.

    PubMed

    Janke, Laura J; Liu, Chengcheng; Vogel, Peter; Kawedia, Jitesh; Boyd, Kelli L; Funk, Amy J; Relling, Mary V

    2013-07-01

    Patients undergoing glucocorticoid therapy for a variety of disorders, including autoimmune diseases and hematological malignancies, are at risk of developing osteonecrosis. Despite extensive research in both patients and animal models, the underlying pathogenesis remains unclear. Proposed inciting mechanisms include intravascular thrombotic occlusion, marrow fat hypertrophy, osteocyte and/or endothelial cell apoptosis, hypercoagulability, and vasoconstriction of specific arteries and arterioles supplying bone. Our laboratory has developed a model of steroid-induced osteonecrosis in BALBcJ mice which reflects clinically relevant exposures to glucocorticoids in which treated mice develop osteonecrosis of the distal femoral epiphysis when administered 4 to 8 mg/L dexamethasone in drinking water for 6 weeks. We identified lesions in arterioles supplying this area, with the mildest occurring in knees without any evidence of osteonecrosis. However, arteriopathy was more common among mice that did versus did not develop osteonecrosis (P < 0.0001); in mice with osteonecrosis, the associated vessels showed transmural necrosis and thickening of the vessel wall progressing to the point of luminal obstruction. In the most severe cases of osteonecrosis, end-stage lesions consisted of fully occluded vessels with marrow and bone necrosis involving the entire epiphysis. We propose that a primary arteriopathy is the initiating event in the genesis of steroid-induced osteonecrosis and provides a basis for future investigation of this disease process.

  15. TRIMELLITIC ANHYDRIDE-INDUCED EOSINOPHILLA IN A MOUSE MODEL OF OCCUPATIONAL ASTHMA

    EPA Science Inventory

    Trimellitic anhydride (TMA) is a low molecular weight chemical known to cause occupational asthma. The present study was designed to determine if TMA could elicit eosinophil infiltration into the lung of a sensitized mouse similarly to previous studies with the protein allergen ...

  16. TRIMELLITIC ANHYDRIDE-INDUCED EOSINOPHILLA IN A MOUSE MODEL OF OCCUPATIONAL ASTHMA

    EPA Science Inventory

    Trimellitic anhydride (TMA) is a low molecular weight chemical known to cause occupational asthma. The present study was designed to determine if TMA could elicit eosinophil infiltration into the lung of a sensitized mouse similarly to previous studies with the protein allergen ...

  17. The Effect of Butin on the Vitiligo Mouse Model Induced by Hydroquinone.

    PubMed

    Huo, Shi-Xia; Wang, Qiong; Liu, Xin-Min; Ge, Chun-Hui; Gao, Li; Peng, Xiao-Ming; Yan, Ming

    2017-05-01

    Vernonia anthelmintica (L.) Willd has been traditionally used in the treatment of vitiligo in Uyghur medicine. This study used butin, the main component of V. anthelmintica, to study the influence on hydroquinone-induced vitiligo in mice. The animals were randomly divided into six groups: control, model, 8-methoxypsoralen (8-MOP, 4.25 mg/kg), and butin (0.425, 4.25, and 42.5 mg/kg) groups. The number of melanin-containing hair follicles, basal layer melanocytes, melanin-containing epidermal cells, the expression of tyrosinase (TYR) and tyrosinase-related protein-1 (TRP-1), the malondialdehyde (MDA), and cholinesterase (CHE) activity in serum were measured. Our results indicated that compared with the model group, the melanin-containing hair follicles, the expression of TYR and TRP-1 increased, the activity of CHE decreased after treatment with 8-MOP and all doses of butin (p < 0.05, p < 0.01), the basal layer melanocytes and melanin-containing epidermal cells increased significantly after treatment with butin 4.25 and 42.5 mg/kg (p < 0.05, p < 0.01), and the MDA activity decreased after using butin 4.25 and 42.5 mg/kg and 8-MOP (p < 0.05, p < 0.01). Our results support the use of butin on vitiligo, and its possible mechanisms may be related to increase the TYR and TRP-1 protein expression and decrease the activity of MDA and CHE in hydroquinone-induced vitiligo model in mice. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  18. Topically applied ZnO nanoparticles suppress allergen induced skin inflammation but induce vigorous IgE production in the atopic dermatitis mouse model

    PubMed Central

    2014-01-01

    Background Metal oxide nanoparticles such as ZnO are used in sunscreens as they improve their optical properties against the UV-light that causes dermal damage and skin cancer. However, the hazardous properties of the particles used as UV-filters in the sunscreens and applied to the skin have remained uncharacterized. Methods Here we investigated whether different sized ZnO particles would be able to penetrate injured skin and injured allergic skin in the mouse atopic dermatitis model after repeated topical application of ZnO particles. Nano-sized ZnO (nZnO) and bulk-sized ZnO (bZnO) were applied to mechanically damaged mouse skin with or without allergen/superantigen sensitization. Allergen/superantigen sensitization evokes local inflammation and allergy in the skin and is used as a disease model of atopic dermatitis (AD). Results Our results demonstrate that only nZnO is able to reach into the deep layers of the allergic skin whereas bZnO stays in the upper layers of both damaged and allergic skin. In addition, both types of particles diminish the local skin inflammation induced in the mouse model of AD; however, nZnO has a higher potential to suppress the local effects. In addition, especially nZnO induces systemic production of IgE antibodies, evidence of allergy promoting adjuvant properties for topically applied nZnO. Conclusions These results provide new hazard characterization data about the metal oxide nanoparticles commonly used in cosmetic products and provide new insights into the dermal exposure and hazard assessment of these materials in injured skin. PMID:25123235

  19. DIVERSE AND TISSUE-SPECIFIC MITOCHONDRIAL RESPIRATORY RESPONSE IN A MOUSE MODEL OF SEPSIS-INDUCED MULTIPLE ORGAN FAILURE.

    PubMed

    Karlsson, Michael; Hara, Naomi; Morata, Saori; Sjövall, Fredrik; Kilbaugh, Todd; Hansson, Magnus J; Uchino, Hiroyoki; Elmér, Eskil

    2016-04-01

    Mitochondrial function is thought to play a role in sepsis-induced multiple organ failure. However, the temporal and organ-specific alterations in mitochondrial function have yet to be fully elucidated. Many studies show reduced phosphorylating capacity, while others have indicated that mitochondrial respiration is enhanced. The objective of this study was to evaluate the temporal dynamics of brain and liver mitochondrial function in a mouse model of sepsis.Sepsis was induced by cecal ligation and puncture. Controls were sham operated. Using high-resolution respirometry, brain and liver homogenates from 31 C57BL/6 mice were analyzed at either 6 or 24 h. Reactive oxygen species (ROS) production was simultaneously measured in brain samples using fluorometry.Septic brain tissue exhibited an early increased uncoupling of respiration. Temporal changes between the two time points were diminutive and no difference in ROS production was detected.Liver homogenate from the septic mice displayed a significant increase in the respiratory control ratio at 6 h. In the 24-h group, the rate of maximal oxidative phosphorylation, as well as LEAK respiration, was significantly increased compared with controls and the resultant respiratory control ratio was also significantly increased. Maximal protonophore-induced respiratory (uncoupled) capacity was similar between the two treatment groups.The present study suggests a diverse and tissue-specific mitochondrial respiratory response to sepsis. The brain displayed an early impaired mitochondrial respiratory efficiency. In the liver the primary finding was a substantial activation of the maximal phosphorylating capacity.

  20. A novel mouse model of intrahepatic cholangiocarcinoma induced by liver-specific Kras activation and Pten deletion

    PubMed Central

    Ikenoue, Tsuneo; Terakado, Yumi; Nakagawa, Hayato; Hikiba, Yohko; Fujii, Tomoaki; Matsubara, Daisuke; Noguchi, Rei; Zhu, Chi; Yamamoto, Keisuke; Kudo, Yotaro; Asaoka, Yoshinari; Yamaguchi, Kiyoshi; Ijichi, Hideaki; Tateishi, Keisuke; Fukushima, Noriyoshi; Maeda, Shin; Koike, Kazuhiko; Furukawa, Yoichi

    2016-01-01

    Intrahepatic cholangiocarcinoma (ICC) is an aggressive malignancy with poor prognosis and its incidence is increasing worldwide. Recently, several types of cells have been considered as the origin of ICC, namely cholangiocytes, liver progenitor cells, and hepatocytes. Here, we have established a novel mouse model of ICC by liver-specific Kras activation and Pten deletion. An activating mutation of Kras in combination with deletion of Pten was introduced in embryonic hepatic bipotential progenitor cells (so-called hepatoblasts) and mature hepatocytes using the Cre-loxP system. As a result, liver-specific Kras activation and homozygous Pten deletion cooperated to induce ICCs exclusively. In contrast, Kras activation in combination with heterozygous Pten deletion induced both ICCs and HCCs, whereas Kras activation alone resulted in HCCs but not ICCs. Furthermore, a cell-lineage visualization system using tamoxifen-inducible Cre-loxP demonstrated that the ICCs did not originate from hepatocytes but from cholangiocytes. Our data suggest that mice carrying liver-specific Kras activation in combination with homozygous Pten deletion should be useful for the investigation of therapeutic strategies for human ICC. PMID:27032374

  1. Commensal Bacteroides species induce colitis in host-genotype-specific fashion in a mouse model of inflammatory bowel disease

    PubMed Central

    Bloom, Seth M.; Bijanki, Vinieth N.; Nava, Gerardo M.; Sun, Lulu; Malvin, Nicole P.; Donermeyer, David L.; Dunne, W. Michael; Allen, Paul M.; Stappenbeck, Thaddeus S.

    2011-01-01

    SUMMARY The intestinal microbiota is important for induction of inflammatory bowel disease (IBD). IBD is associated with complex shifts in microbiota composition, but it is unclear whether specific bacterial subsets induce IBD and, if so, whether their proportions in the microbiota are altered during disease. Here we fulfilled Koch’s postulates in host-genotype-specific fashion using a mouse model of IBD with human-relevant disease-susceptibility mutations. From screening experiments we isolated common commensal Bacteroides species, introduced them into antibiotic-pretreated mice, and quantitatively re-isolated them in culture. The bacteria colonized IBD-susceptible and non-susceptible mice equivalently, but induced disease exclusively in susceptible animals. Conversely, commensal Enterobacteriaceae were >100-fold enriched during spontaneous disease but an Enterobacteriaceae isolate failed to induce disease in antibiotic-pretreated mice despite robust colonization. We thus demonstrate that IBD-associated microbiota alterations do not necessarily reflect underlying disease etiology. These findings establish important experimental criteria and a conceptual framework for understanding microbial contributions to IBD. PMID:21575910

  2. PEDF mediates pathological neovascularization by regulating macrophage recruitment and polarization in the mouse model of oxygen-induced retinopathy.

    PubMed

    Gao, Sha; Li, Changwei; Zhu, Yanji; Wang, Yanuo; Sui, Ailing; Zhong, Yisheng; Xie, Bing; Shen, Xi

    2017-02-17

    Macrophages have been demonstrated to play a proangiogenic role in retinal pathological vascular growth. Pigment epithelium-derived factor (PEDF) works as a powerful endogenous angiogenesis inhibitor, but its role in macrophage recruitment and polarization is largely unknown. To explore the underlying mechanisms, we first evaluated macrophage polarization in the retinas of the oxygen-induced retinopathy (OIR) mouse model. Compared to that in normal controls, M1- and M2-like macrophages were all abundantly increased in the retinas of OIR mice. In addition, both M1 and M2 subtypes significantly promoted neovascularization in vitro and in vivo. In addition, we found that PEDF inhibited retinal neovascularization by dampening macrophage recruitment and polarization. Furthermore, PEDF inhibited macrophage polarization through adipose triglyceride lipase (ATGL) by regulating the activation of MAPKs and the Notch1 pathway, as we found that the phosphorylation of MAPKs, including p38MAPK, JNK and ERK, as well as the accumulation of Notch1 were essential for hypoxia-induced macrophage polarization, while PEDF significantly dampened M1 subtype-related iNOS and M2 subtype-related Arg-1 expression by inhibiting hypoxia-induced activation of Notch1 and MAPKs through ATGL. These findings reveal a protective role of PEDF against retinal neovascularization by regulating macrophage recruitment and polarization.

  3. PEDF mediates pathological neovascularization by regulating macrophage recruitment and polarization in the mouse model of oxygen-induced retinopathy

    PubMed Central

    Gao, Sha; Li, Changwei; Zhu, Yanji; Wang, Yanuo; Sui, Ailing; Zhong, Yisheng; Xie, Bing; Shen, Xi

    2017-01-01

    Macrophages have been demonstrated to play a proangiogenic role in retinal pathological vascular growth. Pigment epithelium-derived factor (PEDF) works as a powerful endogenous angiogenesis inhibitor, but its role in macrophage recruitment and polarization is largely unknown. To explore the underlying mechanisms, we first evaluated macrophage polarization in the retinas of the oxygen-induced retinopathy (OIR) mouse model. Compared to that in normal controls, M1- and M2-like macrophages were all abundantly increased in the retinas of OIR mice. In addition, both M1 and M2 subtypes significantly promoted neovascularization in vitro and in vivo. In addition, we found that PEDF inhibited retinal neovascularization by dampening macrophage recruitment and polarization. Furthermore, PEDF inhibited macrophage polarization through adipose triglyceride lipase (ATGL) by regulating the activation of MAPKs and the Notch1 pathway, as we found that the phosphorylation of MAPKs, including p38MAPK, JNK and ERK, as well as the accumulation of Notch1 were essential for hypoxia-induced macrophage polarization, while PEDF significantly dampened M1 subtype-related iNOS and M2 subtype-related Arg-1 expression by inhibiting hypoxia-induced activation of Notch1 and MAPKs through ATGL. These findings reveal a protective role of PEDF against retinal neovascularization by regulating macrophage recruitment and polarization. PMID:28211523

  4. Baicalein induces CD4+Foxp3+ T cells and enhances intestinal barrier function in a mouse model of food allergy

    PubMed Central

    Bae, Min-Jung; Shin, Hee Soon; See, Hye-Jeong; Jung, Sun Young; Kwon, Da-Ae; Shon, Dong-Hwa

    2016-01-01

    The incidence of food allergy, which is triggered by allergen permeation of the gastrointestinal tract followed by a T-helper (Th) 2-mediated immune response, has been increasing annually worldwide. We examined the effects of baicalein (5,6,7-trihydroxyflavone), a flavonoid from Scutellaria baicalensis used in oriental herbal medicine, on regulatory T (Treg) cell induction and intestinal barrier function through the regulation of tight junctions in a mouse model of food allergy. An allergic response was induced by oral challenge with ovalbumin, and the incidence of allergic symptoms and T cell-related activity in the mesenteric lymph nodes were analyzed with and without the presence of baicalein. Our results demonstrated that the administration of baicalein ameliorated the symptoms of food allergy and attenuated serum IgE and effector T cells. However, Treg-related factors were up-regulated by baicalein. Furthermore, baicalein was shown to enhance intestinal barrier function through the regulation of tight junctions. We also found that baicalein treatment induced the differentiation of Treg cells via aryl hydrocarbon receptors (AhRs). Thus, the action of baicalein as an agonist of AhR can induce Treg differentiation and enhance barrier function, suggesting that baicalein might serve as an effective immune regulator derived from foods for the treatment of food allergy. PMID:27561877

  5. Commensal Bacteroides species induce colitis in host-genotype-specific fashion in a mouse model of inflammatory bowel disease.

    PubMed

    Bloom, Seth M; Bijanki, Vinieth N; Nava, Gerardo M; Sun, Lulu; Malvin, Nicole P; Donermeyer, David L; Dunne, W Michael; Allen, Paul M; Stappenbeck, Thaddeus S

    2011-05-19

    The intestinal microbiota is important for induction of inflammatory bowel disease (IBD). IBD is associated with complex shifts in microbiota composition, but it is unclear whether specific bacterial subsets induce IBD and, if so, whether their proportions in the microbiota are altered during disease. Here, we fulfilled Koch's postulates in host-genotype-specific fashion using a mouse model of IBD with human-relevant disease-susceptibility mutations. From screening experiments we isolated common commensal Bacteroides species, introduced them into antibiotic-pretreated mice, and quantitatively reisolated them in culture. The bacteria colonized IBD-susceptible and -nonsusceptible mice equivalently, but induced disease exclusively in susceptible animals. Conversely, commensal Enterobacteriaceae were >100-fold enriched during spontaneous disease, but an Enterobacteriaceae isolate failed to induce disease in antibiotic-pretreated mice despite robust colonization. We thus demonstrate that IBD-associated microbiota alterations do not necessarily reflect underlying disease etiology. These findings establish important experimental criteria and a conceptual framework for understanding microbial contributions to IBD. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Deregulation of arginase induces bone complications in high-fat/high-sucrose diet diabetic mouse model.

    PubMed

    Bhatta, Anil; Sangani, Rajnikumar; Kolhe, Ravindra; Toque, Haroldo A; Cain, Michael; Wong, Abby; Howie, Nicole; Shinde, Rahul; Elsalanty, Mohammed; Yao, Lin; Chutkan, Norman; Hunter, Monty; Caldwell, Ruth B; Isales, Carlos; Caldwell, R William; Fulzele, Sadanand

    2016-02-15

    A balanced diet is crucial for healthy development and prevention of musculoskeletal related diseases. Diets high in fat content are known to cause obesity, diabetes and a number of other disease states. Our group and others have previously reported that activity of the urea cycle enzyme arginase is involved in diabetes-induced dysregulation of vascular function due to decreases in nitric oxide formation. We hypothesized that diabetes may also elevate arginase activity in bone and bone marrow, which could lead to bone-related complications. To test this we determined the effects of diabetes on expression and activity of arginase, in bone and bone marrow stromal cells (BMSCs). We demonstrated that arginase 1 is abundantly present in the bone and BMSCs. We also demonstrated that arginase activity and expression in bone and bone marrow is up-regulated in models of diabetes induced by HFHS diet and streptozotocin (STZ). HFHS diet down-regulated expression of healthy bone metabolism markers (BMP2, COL-1, ALP, and RUNX2) and reduced bone mineral density, bone volume and trabecular thickness. However, treatment with an arginase inhibitor (ABH) prevented these bone-related complications of diabetes. In-vitro study of BMSCs showed that high glucose treatment increased arginase activity and decreased nitric oxide production. These effects were reversed by treatment with an arginase inhibitor (ABH). Our study provides evidence that deregulation of l-arginine metabolism plays a vital role in HFHS diet-induced diabetic complications and that these complications can be prevented by treatment with arginase inhibitors. The modulation of l-arginine metabolism in disease could offer a novel therapeutic approach for osteoporosis and other musculoskeletal related diseases.

  7. Potent tumor tropism of induced pluripotent stem cells and induced pluripotent stem cell-derived neural stem cells in the mouse intracerebral glioma model.

    PubMed

    Yamazoe, Tomohiro; Koizumi, Shinichiro; Yamasaki, Tomohiro; Amano, Shinji; Tokuyama, Tsutomu; Namba, Hiroki

    2015-01-01

    Although neural and mesenchymal stem cells have been well-known to have a strong glioma tropism, this activity in induced pluripotent stem cells (iPSCs) has not yet been fully studied. In the present study, we tested tumor tropic activity of mouse iPSCs and neural stem cells derived from the iPSC (iPS-NSCs) using in vitro Matrigel invasion chamber assay and in vivo mouse intracranial tumor model. Both iPSC and iPS-NSC had a similar potent in vitro tropism for glioma conditioned media. The migrated iPSCs to the gliomas kept expressing Nanog-GFP gene, suggesting no neuronal or glial differentiation. iPSCs or iPS-NSCs labeled with 5-bromo-2-deoxyuridine were intracranially implanted in the contralateral hemisphere to the GL261 glioma cell implantation in the allogeneic C57BL/6 mouse. Active migration of both stem cells was observed 7 days after implantation. Again, the iPSCs located in the tumor area expressed Nanog-GFP gene, suggesting that the migrated cells were still iPSCs. These findings demonstrated that both iPSCs and iPS-NSCs had potent glioma tropism and could be candidates as vehicles in stem cell-based glioma therapy.

  8. Bile Duct Ligation Induces ATZ Globule Clearance In a Mouse Model of Alpha-1 Antitrypsin Deficiency

    PubMed Central

    Khan, Zahida; Yokota, Shinichiro; Ono, Yoshihiro; Bell, Aaron W.; Stolz, Donna B.; Michalopoulos, George K.

    2016-01-01

    Background Alpha-1 antitrypsin deficiency (A1ATD) can progress to cirrhosis and hepatocellular carcinoma; however, not all patients are susceptible to severe liver disease. In A1ATD, a toxic gain-of-function mutation generates insoluble ATZ “globules” in hepatocytes, overwhelming protein clearance mechanisms. The relationship between bile acids and hepatocytic autophagy is less clear, but may involve altered gene expression pathways. Based on previous findings that bile duct ligation (BDL) induces autophagy, we hypothesized that retained bile acids may have hepatoprotective effects in PiZZ transgenic mice, which model A1ATD. Methods We performed BDL and partial BDL (pBDL) in PiZZ mice, followed by analysis of liver tissues. Results PiZZ liver subjected to BDL showed up to 50% clearance of ATZ globules, with increased expression of autophagy proteins. Analysis of transcription factors revealed significant changes. Surprisingly nuclear TFEB, a master regulator of autophagy, remained unchanged. pBDL confirmed that ATZ globule clearance was induced by localized stimuli rather than diet or systemic effects. Several genes involved in bile metabolism were over-expressed in globule-devoid hepatocytes, compared to globule-containing cells. Conclusions Retained bile acids led to a dramatic reduction of ATZ globules, with enhanced hepatocyte regeneration and autophagy. These findings support investigation of synthetic bile acids as potential autophagy-enhancing agents. PMID:27938510

  9. Photoacoustic microscopy of collagenase-induced Achilles tendinitis in a mouse model

    NASA Astrophysics Data System (ADS)

    Wang, Po-Hsun; Chen, Wen-Shiang; Li, Meng-Lin

    2010-02-01

    Assessments of vascularity are important when assessing inflammation changes in tendon injuries since Achilles tendinitis is often accompanied with neovascularization or hypervascularity. In this study, we have investigated the feasibility of photoacoustic imaging in noninvasive monitoring of morphological and vascular changes in Achilles tendon injuries. Collagenase-induced Achilles tendinitis model of mice was adopted here. During collagenase-induced tendinitis, a 25-MHz photoacoustic microscopy (PAM) was used to image micro-vascular changes in Achilles tendons longitudinally up to 23 days. The positions of vessels imaged by PAM were identified by co-registration of PAM Bmode images with 25-MHz ultrasound (USM) ones. Morphological changes in Achilles tendons due to inflammation and edema were revealed by the PAM and USM images. Proliferation of new blood vessels within the tendons was also observed. Observed micro-vascular changes during tendinitis were similar to the findings in the literatures. This study demonstrates that photoacoustic imaging, owning required sensitivity and penetration, has the potential for high sensitive diagnosis and assessment of treatment performance in tendinopathy.

  10. PML/RARα and FLT3-ITD induce an APL-like disease in a mouse model

    PubMed Central

    Kelly, Louise M.; Kutok, Jeffrey L.; Williams, Ifor R.; Boulton, Christina L.; Amaral, Sonia M.; Curley, David P.; Ley, Timothy J.; Gilliland, D. Gary

    2002-01-01

    Acute promyelocytic leukemia (APL) cells invariably express aberrant fusion proteins involving the retinoic acid receptor α (RARα). The most common fusion partner is promyelocytic leukemia protein (PML), which is fused to RARα in the balanced reciprocal chromosomal translocation, t(15;17)(q22:q11). Expression of PML/RARα from the cathepsin G promoter in transgenic mice causes a nonfatal myeloproliferative syndrome in all mice; about 15% go on to develop APL after a long latent period, suggesting that additional mutations are required for the development of APL. A candidate target gene for a second mutation is FLT3, because it is mutated in approximately 40% of human APL cases. Activating mutations in FLT3, including internal tandem duplication (ITD) in the juxtamembrane domain, transform hematopoietic cell lines to factor independent growth. FLT3-ITDs also induce a myeloproliferative disease in a murine bone marrow transplant model, but are not sufficient to cause AML. Here, we test the hypothesis that PML/RARα can cooperate with FLT3-ITD to induce an APL-like disease in the mouse. Retroviral transduction of FLT3-ITD into bone marrow cells obtained from PML/RARα transgenic mice results in a short latency APL-like disease with complete penetrance. This disease resembles the APL-like disease that occurs with long latency in the PML/RARα transgenics, suggesting that activating mutations in FLT3 can functionally substitute for the additional mutations that occur during mouse APL progression. The leukemia is transplantable to secondary recipients and is ATRA responsive. These observations document cooperation between PML/RARα and FLT3-ITD in development of the murine APL phenotype. PMID:12060771

  11. [Effect of thalidomide in a mouse model of paraquat-induced acute lung injury and the underlying mechanisms].

    PubMed

    Zhao, Guangju; Cai, Xiaoxia; She, Xingrong; Li, Dong; Hong, Guangliang; Wu, Bin; Li, Mengfang; Lu, Zhongqiu

    2014-11-01

    To investigate the effects of thalidomide in a mouse model of paraquat-induced acute lung injury and the mechanisms underlying the properties of thalidomide. Male ICR mice were randomly allocated into four groups: nomal control group (n = 30), thalidomide control group (n = 30), paraquat poisioning group (n = 30) and thalidomide treatment group (n = 90). Mice were sacrificed at 1d, 3d and 7d after paraquat poisioning. The level of (MDA) malondialdehyde, Superoxidedi-smutase (SOD) and glutathione (GSH) in the lung tissue were measuerd by chemical colorimetry. The expression of Nrf2 mRNA was determined by RT-PCR; Nuclear protein Nrf2 was abserved by Western blotting; Pathological changes of lung tissue were observed under light microscope by HE stain; the lung apoptosis cells were detected by TUNEL. The levels of MDA, SOD and the expressions Nrf2 mRNA and protein Nrf2 in lung tissue were all markedly increased in mice of paraquat poisioning group than those in nomal group at 1 d, 3 d, 7 d. In contrast, the levels of GSH were decreaseel (P<0.05). Compared with paraquat poisioning group, the pulmonary SOD, Nrf2 mRNA and protein were increased and the lung wet dry ratio were all significantly decreased in mice of THD treatment group at 1 d, 3 d, 7 d (P<0.05). THD alleviated the pulmonary damage in the lightmicroscope at 3d after paraquat poisioning. The apoptosis index was markedly decreased in THD treatment groups comparing to paraquat piosioning group (P<0.05). Lipid peroxide damage was one of the mechanisms of paraquat poisioning, thalidomide could attenuate paraquat-induced acute lung injury and its mechanism may be activating the Nrf2-ARE signaling pathway to protect mouse from Lipid peroxide damage.

  12. Effects of Boswellia serrata in mouse models of chemically induced colitis.

    PubMed

    Kiela, Pawel R; Midura, Anna J; Kuscuoglu, Nesrin; Jolad, Shivanand D; Sólyom, Anikó M; Besselsen, David G; Timmermann, Barbara N; Ghishan, Fayez K

    2005-04-01

    Extracts from Boswellia serrata have been reported to have anti-inflammatory activity, primarily via boswellic acid-mediated inhibition of leukotriene synthesis. In three small clinical trials, boswellia was shown to improve symptoms of ulcerative colitis and Crohn's disease, and because of its alleged safety, boswellia was considered superior over mesalazine in terms of a benefit-risk evaluation. The goal of this study was to evaluate the effectiveness of boswellia extracts in controlled settings of dextran sulfate- or trinitrobenzene sulfonic acid-induced colitis in mice. Our results suggest that boswellia is ineffective in ameliorating colitis in these models. Moreover, individual boswellic acids were demonstrated to increase the basal and IL-1beta-stimulated NF-kappaB activity in intestinal epithelial cells in vitro as well as reverse proliferative effects of IL-1beta. We also observed hepatotoxic effect of boswellia with pronounced hepatomegaly and steatosis. Hepatotoxity and increased lipid accumulation in response to boswellia were further confirmed in vitro in HepG2 cells with fluorescent Nile red binding/resazurin reduction assay and by confocal microscopy. Microarray analyses of hepatic gene expression demonstrated dysregulation of a number of genes, including a large group of lipid metabolism-related genes, and detoxifying enzymes, a response consistent with that to hepatotoxic xenobiotics. In summary, boswellia does not ameliorate symptoms of colitis in chemically induced murine models and, in higher doses, may become hepatotoxic. Potential implications of prolonged and uncontrolled intake of boswellia as an herbal supplement in inflammatory bowel disease and other inflammatory conditions should be considered in future clinical trials with this botanical.

  13. Early or late antibiotic intervention prevents Helicobacter pylori-induced gastric cancer in a mouse model.

    PubMed

    Zhang, Songhua; Lee, Dong Soo; Morrissey, Rhiannon; Aponte-Pieras, Jose R; Rogers, Arlin B; Moss, Steven F

    2014-12-01

    H. pylori infection causes gastritis, peptic ulcers and gastric cancer. Eradicating H. pylori prevents ulcers, but to what extent this prevents cancer remains unknown, especially if given after intestinal metaplasia has developed. H. pylori infected wild-type (WT) mice do not develop cancer, but mice lacking the tumor suppressor p27 do so, thus providing an experimental model of H. pylori-induced cancer. We infected p27-deficient mice with H. pylori strain SS1 at 6-8 weeks of age. Persistently H. pylori-infected WT C57BL/6 mice served as controls. Mice in the eradication arms received antimicrobial therapy (omeprazole, metronidazole and clarithromycin) either "early" (at 15 weeks post infection, WPI) or "late" at 45 WPI. At 70 WPI, mice were euthanized for H. pylori determination, histopathology and cytokine/chemokine expression. Persistently infected mice developed premalignant lesions including high-grade dysplasia, whereas those given antibiotics did not. Histologic activity scores in the eradication groups were similar to each other, and were significantly decreased compared with controls for inflammation, epithelial defects, hyperplasia, metaplasia, atrophy and dysplasia. IP-10 and MIG levels in groups that received antibiotics were significantly lower than controls. There were no significant differences in expression of IFN-γ, TNF-α, IL-1β, RANTES, MCP-1, MIP-1α or MIP-1β among the three groups. Thus, H. pylori eradication given either early or late after infection significantly attenuated gastric inflammation, gastric atrophy, hyperplasia, and dysplasia in the p27-deficient mice model of H. pylori-induced gastric cancer, irrespective of the timing of antibiotic administration. This was associated with reduced expression of IP-10 and MIG.

  14. Contribution and Mobilization of Mesenchymal Stem Cells in a mouse model of carbon tetrachloride-induced liver fibrosis

    PubMed Central

    Liu, Yan; Yang, Xue; Jing, Yingying; Zhang, Shanshan; Zong, Chen; Jiang, Jinghua; Sun, Kai; Li, Rong; Gao, Lu; Zhao, Xue; Wu, Dong; Shi, Yufang; Han, Zhipeng; Wei, Lixin

    2015-01-01

    Hepatic fibrosis is associated with bone marrow derived mesenchymal stem cells (BM-MSCs). In this study, we aimed to determine what role MSCs play in the process and how they mobilize from bone marrow (BM). We employed a mouse model of carbon tetrachloride(CCl4)-induced liver fibrosis. Frozen section was used to detect MSCs recruited to mice and human fibrotic liver. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) was detected to assess liver function. It was found that MSCs of both exogenous and endogenous origin could aggravate liver fibrosis and attenuate liver damage as indicated by lower serum ALT and AST levels. Stromal cell–derived factor-1 (SDF-1α)/ CXCR4 was the most important chemotactic axis regulating MSCs migration from BM to fibrotic liver. Frozen section results showed that the migration did not start from the beginning of liver injury but occured when the expression balance of SDF-1α between liver and BM was disrupted, where SDF-1α expression in liver was higher than that in BM. Our findings provide further evidence to show the role of BM-MSCs in liver fibrosis and to elucidate the mechanism underlying MSCs mobilization in our early liver fibrosis mice model induced by CCl4. PMID:26643997

  15. Valproic acid induces differentiation and transient tumor regression, but spares leukemia-initiating activity in mouse models of APL.

    PubMed

    Leiva, M; Moretti, S; Soilihi, H; Pallavicini, I; Peres, L; Mercurio, C; Dal Zuffo, R; Minucci, S; de Thé, H

    2012-07-01

    Aberrant histone acetylation was physiopathologically associated with the development of acute myeloid leukemias (AMLs). Reversal of histone deacetylation by histone deacetylase inhibitor (HDACis) activates a cell death program that allows tumor regression in mouse models of AMLs. We have used several models of PML-RARA-driven acute promyelocytic leukemias (APLs) to analyze the in vivo effects of valproic acid, a well-characterized HDACis. Valproic acid (VPA)-induced rapid tumor regression and sharply prolonged survival. However, discontinuation of treatment was associated to an immediate relapse. In vivo, as well as ex vivo, VPA-induced terminal granulocytic differentiation. Yet, despite full differentiation, leukemia-initiating cell (LIC) activity was actually enhanced by VPA treatment. In contrast to all-trans retinoic acid (ATRA) or arsenic, VPA did not degrade PML-RARA. However, in combination with ATRA, VPA synergized for PML-RARA degradation and LIC eradication in vivo. Our studies indicate that VPA triggers differentiation, but spares LIC activity, further uncouple differentiation from APL clearance and stress the importance of PML-RARA degradation in APL cure.

  16. Purified vitexin compound 1 suppresses tumor growth and induces cell apoptosis in a mouse model of human choriocarcinoma.

    PubMed

    Tan, Zhihui; Zhang, Yi; Deng, Jun; Zeng, Guangyao; Zhang, Yu

    2012-03-01

    In our previous study, we had isolated a series of lignan compounds, termed vitexins, from the seed of Chinese herb Vitex negundo and found broad antitumor activities of these compounds in many cancer xenograft models and cell lines. This study was aimed to determine the antitumor effect of purified vitexin compound 1 (VB1) on choriocarcinoma in vitro and in vivo. The severe combined immunodeficiency mouse model of choriocarcinoma was established to investigate the in vivo effect of VB1. Its effect on proliferation and apoptosis in JEG-3 cell line was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, colony formation assay and flow cytometry, respectively. The expression of caspase-3, Bcl-2, and some molecules involved in the mammalian target of rapamycin (mTOR) signaling was detected by Western blot. Vitexin compound 1 significantly inhibited the growth of choriocarcinoma in severe combined immunodeficient mice and reduced the serum β-human chorionic gonadotropin level. Vitexin compound 1 inhibited cell proliferation, induced apoptosis, and inhibited the mTOR signaling in JEG-3 cell line. Vitexin compound 1 could inhibit choriocarcinoma via inducing cell apoptosis and suppressing the mTOR pathway.

  17. Contribution and Mobilization of Mesenchymal Stem Cells in a mouse model of carbon tetrachloride-induced liver fibrosis.

    PubMed

    Liu, Yan; Yang, Xue; Jing, Yingying; Zhang, Shanshan; Zong, Chen; Jiang, Jinghua; Sun, Kai; Li, Rong; Gao, Lu; Zhao, Xue; Wu, Dong; Shi, Yufang; Han, Zhipeng; Wei, Lixin

    2015-12-08

    Hepatic fibrosis is associated with bone marrow derived mesenchymal stem cells (BM-MSCs). In this study, we aimed to determine what role MSCs play in the process and how they mobilize from bone marrow (BM). We employed a mouse model of carbon tetrachloride(CCl4)-induced liver fibrosis. Frozen section was used to detect MSCs recruited to mice and human fibrotic liver. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) was detected to assess liver function. It was found that MSCs of both exogenous and endogenous origin could aggravate liver fibrosis and attenuate liver damage as indicated by lower serum ALT and AST levels. Stromal cell-derived factor-1 (SDF-1α)/ CXCR4 was the most important chemotactic axis regulating MSCs migration from BM to fibrotic liver. Frozen section results showed that the migration did not start from the beginning of liver injury but occurred when the expression balance of SDF-1α between liver and BM was disrupted, where SDF-1α expression in liver was higher than that in BM. Our findings provide further evidence to show the role of BM-MSCs in liver fibrosis and to elucidate the mechanism underlying MSCs mobilization in our early liver fibrosis mice model induced by CCl4.

  18. Phenotypic changes in dorsal root ganglion and spinal cord in the collagen antibody-induced arthritis mouse model.

    PubMed

    Su, Jie; Gao, Tianle; Shi, Tiejun; Xiang, Qiong; Xu, Xiaojun; Wiesenfeld-Hallin, Zsuzsanna; Hökfelt, Tomas; Svensson, Camilla I

    2015-07-01

    The mechanisms underlying rheumatoid arthritis (RA)-induced pain are still not fully elucidated, and accumulating data indicate that peripheral inflammation is not the only factor driving pain in these patients. The focus of our work is to investigate the molecular basis for long-term alterations in nociceptive pathways induced by polyarthritis using the collagen antibody-induced arthritis (CAIA) mouse model. In this model, mechanical hypersensitivity outlasts the joint inflammation by weeks. Here we examined expression levels of neuropeptides, ion channels, and nerve injury markers associated with neuropathic and/or inflammatory pain in dorsal root ganglia (DRGs) and spinal cord both during the peak of inflammation (day 15) and when the inflammation has resolved but the hypersensitivity persists (days 45-47). No apparent differences were observed in substance P, calcitonin gene-related peptide, or neuropeptide Y protein expression in DRGs and spinal cord of CAIA mice. However, the neuropeptide galanin, the ATP-gated ion channel P2X3, and calcium channel subunit α2δ1 were significantly increased in the CAIA DRGs as compared to controls, both 15 and 47 days after induction of arthritis. On day 15 there was an increase in expression of two factors associated with nerve injury and cell stress, activating transcription factor 3 and growth-associated protein 43 in DRGs, whereby the latter was still dramatically upregulated after 47 days. In conclusion, this study suggests that long-term joint inflammation has an impact on DRG neurons that resembles both inflammation and nerve injury-induced pain states. Thus, antibody-driven inflammation generates a pain state with a unique neurochemical profile. © 2015 Wiley Periodicals, Inc.

  19. Anti-inflammatory effects of Salvia plebeia R. Br extract in vitro and in ovalbumin-induced mouse model.

    PubMed

    Jang, Hwan-Hee; Cho, Su-Yeon; Kim, Mi-Ju; Kim, Jung-Bong; Lee, Sung-Hyen; Lee, Mee-Young; Lee, Young-Min

    2016-10-05

    Asthma is an increasing global health problem, and novel strategies to prevent or ameliorate the condition are needed. Here, the effects of 80 % ethanol extracts of Salvia plebeia R. Br. (SE) on an induced inflammatory response were investigated. Salvia plebeia R. Br. inhibited production of pro-inflammatory cytokines, such as TNF-α and IL-6, as well as nitric oxide (NO) in LPS-stimulated RAW 264.7 cells. NO and pro-inflammatory cytokine production was suppressed more effectively by SE of the aerial parts (SE-A) than of the roots (SE-R) of S. plebeia. In BEAS-2B cells, both SE-A and SE-R inhibited the increase in production of the inflammatory cytokines IL-6 and IL-8. We also investigated the anti-asthmatic effects of SE in an ovalbumin (OVA)-induced BALB/c mouse model. SE-A treatment significantly reduced the number of airway eosinophils, IL-4 and IL-13 levels, mucus production, and inflammatory infiltration, as compared with the corresponding levels in the untreated, OVA-induced mice, and had similar effects to dexamethasone. Salvia plebeia ethanol extract ameliorated the induced inflammatory response in RAW 264.7 and BEAS-2B cells, with more effective inhibition noted for SE-A than for SE-R. SE-A treatment was effective in improving the histopathological changes in the lungs of asthma model mice via modulation of eosinophils and Th2 cytokines. These results suggest that SE-A can be considered as a therapeutic agent that can potentially relieve asthma.

  20. Blood glucose lowering activity of aloe based composition, UP780, in alloxan induced insulin dependent mouse diabetes model.

    PubMed

    Yimam, Mesfin; Zhao, Jifu; Corneliusen, Brandon; Pantier, Mandee; Brownell, Lidia; Jia, Qi

    2014-01-01

    There are a few nutritional approaches to address the increased needs of managing diabetic conditions. Previously it has been reported that UP780, a standardized composition of aloe chromone formulated with an aloe polysaccharide, has a significant impact in reducing HbA1C, fasting blood glucose, fructosamine and plasma insulin level in humans and improved impaired glucose and insulin resistance in high-fat diet-induced and db/db non-insulin dependent diabetic mouse models. Here we describe activity of UP780 and its constituents to improve insulin sensitivity in alloxan induced insulin dependent diabetic mouse model. Insulin dependent diabetes was induced by administering a single intraperitoneal injection of alloxan monohydrate at a dose of 150 mg/kg to CD-1 mice. Aloesin (UP394) was formulated with an Aloe vera inner leaf gel powder polysaccharide (Qmatrix) to yield a composition designated UP780. Efficacy of oral administration of UP780 at 2000 mg/kg and its constituents (aloesin at 80 mg/kg and Qmatrix at 1920 mg/kg) were evaluated in this model. Glyburide, a sulfonylurea drug used in the treatment of type 2 diabetes, was used at 5 mg/kg as a positive control. Effect of UP780 on non-diabetic normal mice was also addressed. Mice administered intraperitoneal alloxan monohydrate developed progressive type-1 diabetes like symptom. After 4 weeks of daily oral administration, reductions of 35.9%, 17.2% and 11.6% in fasting blood glucose levels were observed for UP780, the UP780 Aloe vera inner leaf gel polysaccharide preparation without chromone (Qmatrix), and Aloesin (UP394), treated animals respectively, compared to vehicle treated animals. UP780 has no impact on blood glucose level of non-diabetic healthy mice. UP780 showed statistically significant improvement for blood glucose clearance in oral glucose tolerance tests. Similarly, enhanced improvement in plasma insulin level and statistically significant reduction in triglyceride level was also observed for

  1. Inhibition of hypoxia-inducible factors limits tumor progression in a mouse model of colorectal cancer

    PubMed Central

    Simon, M.Celeste

    2014-01-01

    Hypoxia-inducible factors (HIFs) accumulate in both neoplastic and inflammatory cells within the tumor microenvironment and impact the progression of a variety of diseases, including colorectal cancer. Pharmacological HIF inhibition represents a novel therapeutic strategy for cancer treatment. We show here that acriflavine (ACF), a naturally occurring compound known to repress HIF transcriptional activity, halts the progression of an autochthonous model of established colitis-associated colon cancer (CAC) in immunocompetent mice. ACF treatment resulted in decreased tumor number, size and advancement (based on histopathological scoring) of CAC. Moreover, ACF treatment corresponded with decreased macrophage infiltration and vascularity in colorectal tumors. Importantly, ACF treatment inhibited the hypoxic induction of M-CSFR, as well as the expression of the angiogenic factor (vascular endothelial growth factor), a canonical HIF target, with little to no impact on the Nuclear factor-kappa B pathway in bone marrow-derived macrophages. These effects probably explain the observed in vivo phenotypes. Finally, an allograft tumor model further confirmed that ACF treatment inhibits tumor growth through HIF-dependent mechanisms. These results suggest pharmacological HIF inhibition in multiple cell types, including epithelial and innate immune cells, significantly limits tumor growth and progression. PMID:24408928

  2. A Mouse Model of Blast-Induced mild Traumatic Brain Injury

    PubMed Central

    Rubovitch, Vardit; Ten-Bosch, Meital; Zohar, Ofer; Harrison, Catherine R.; Tempel-Brami, Catherine; Stein, Elliot; Hoffer, Barry J.; Balaban, Carey D.; Schreiber, Shaul; Chiu, Wen-Ta; Pick, Chaim G.

    2011-01-01

    Improvised explosive devices (IEDs) are one of the main causes for casualties among civilians and military personnel in the present war against terror. Mild traumatic brain injury from IEDs induces various degrees of cognitive, emotional and behavioral disturbances but knowledge of the exact brain pathophysiology following exposure to blast is poorly understood. The study was aimed at establishing a murine model for a mild BI-TBI that isolates low-level blast pressure effects to the brain without systemic injuries. An open-field explosives detonation was used to replicate, as closely as possible, low-level blast trauma in the battlefield or at a terror-attack site. No alterations in basic neurological assessment or brain gross pathology were found acutely in the blast-exposed mice. At 7 days post blast, cognitive and behavioral tests revealed significantly decreased performance at both 4 and 7 meters distance from the blast (5.5 and 2.5 PSI, respectively). At 30 days post-blast, clear differences were found in animals at both distances in the object recognition test, and in the 7 m group in the Y maze test. Using MRI, T1 weighted images showed an increased BBB permeability one month post-blast. DTI analysis showed an increase in fractional anisotropy (FA) and a decrease in radial diffusivity. These changes correlated with sites of up-regulation of manganese superoxide dismutase 2 in neurons and CXC-motif chemokine receptor 3 around blood vessels in fiber tracts. These results may represent brain axonal and myelin abnormalities. Cellular and biochemical studies are underway in order to further correlate the blast-induced cognitive and behavioral changes and to identify possible underlying mechanisms that may help develop treatment- and neuroprotective modalities. PMID:21946269

  3. Characterization of a Mouse Model of Emphysema Induced by Multiple Instillations of Low-Dose Elastase

    PubMed Central

    Oliveira, Milena V.; Abreu, Soraia C.; Padilha, Gisele A.; Rocha, Nazareth N.; Maia, Lígia A.; Takiya, Christina M.; Xisto, Debora G.; Suki, Bela; Silva, Pedro L.; Rocco, Patricia R. M.

    2016-01-01

    Many experimental models have been proposed to study the pathophysiological features of emphysema, as well as to search for new therapeutic approaches for acute or chronically injured lung parenchyma. We aimed to characterize an emphysema model induced by multiple instillations of elastase by tracking changes in inflammation, remodeling, and cardiac function after each instillation. Forty-eight C57BL/6 mice were randomly assigned across two groups. Emphysema (ELA) animals received 1, 2, 3, or 4 intratracheal instillations of pancreatic porcine elastase (PPE, 0.2 IU) with a 1-week interval between them. Controls (C) received saline following the same protocol. Before and after implementation of the protocol, animals underwent echocardiographic analysis. After the first instillation of PPE, the percentage of mononuclear cells in the lung parenchyma increased compared to C (p = 0.0001). The second instillation resulted in hyperinflated alveoli, increased mean linear intercept, and reduced elastic fiber content in lung parenchyma compared to C (p = 0.0197). Following the third instillation, neutrophils and collagen fiber content in alveolar septa and airways increased, whereas static lung elastance was reduced compared to C (p = 0.0094). After the fourth instillation, the percentage of M1 macrophages in lungs; levels of interleukin-1β (IL-1β), keratinocyte-derived chemokine, hepatocyte growth factor (HGF), and vascular endothelial growth factor (VEGF); and collagen fiber content in the pulmonary vessel wall were increased compared to C (p = 0.0096). At this time point, pulmonary arterial hypertension was apparent, with increased diastolic right ventricular wall thickness. In conclusion, the initial phase of emphysema was characterized by lung inflammation with predominance of mononuclear cells, whereas at the late stage, impairment of pulmonary and cardiovascular functions was observed. This model enables analysis of therapies at different time points during

  4. Characterization of a Mouse Model of Emphysema Induced by Multiple Instillations of Low-Dose Elastase.

    PubMed

    Oliveira, Milena V; Abreu, Soraia C; Padilha, Gisele A; Rocha, Nazareth N; Maia, Lígia A; Takiya, Christina M; Xisto, Debora G; Suki, Bela; Silva, Pedro L; Rocco, Patricia R M

    2016-01-01

    Many experimental models have been proposed to study the pathophysiological features of emphysema, as well as to search for new therapeutic approaches for acute or chronically injured lung parenchyma. We aimed to characterize an emphysema model induced by multiple instillations of elastase by tracking changes in inflammation, remodeling, and cardiac function after each instillation. Forty-eight C57BL/6 mice were randomly assigned across two groups. Emphysema (ELA) animals received 1, 2, 3, or 4 intratracheal instillations of pancreatic porcine elastase (PPE, 0.2 IU) with a 1-week interval between them. Controls (C) received saline following the same protocol. Before and after implementation of the protocol, animals underwent echocardiographic analysis. After the first instillation of PPE, the percentage of mononuclear cells in the lung parenchyma increased compared to C (p = 0.0001). The second instillation resulted in hyperinflated alveoli, increased mean linear intercept, and reduced elastic fiber content in lung parenchyma compared to C (p = 0.0197). Following the third instillation, neutrophils and collagen fiber content in alveolar septa and airways increased, whereas static lung elastance was reduced compared to C (p = 0.0094). After the fourth instillation, the percentage of M1 macrophages in lungs; levels of interleukin-1β (IL-1β), keratinocyte-derived chemokine, hepatocyte growth factor (HGF), and vascular endothelial growth factor (VEGF); and collagen fiber content in the pulmonary vessel wall were increased compared to C (p = 0.0096). At this time point, pulmonary arterial hypertension was apparent, with increased diastolic right ventricular wall thickness. In conclusion, the initial phase of emphysema was characterized by lung inflammation with predominance of mononuclear cells, whereas at the late stage, impairment of pulmonary and cardiovascular functions was observed. This model enables analysis of therapies at different time points during

  5. Effects of treadmill exercise on hippocampal neurogenesis in an MPTP /probenecid-induced Parkinson's disease mouse model.

    PubMed

    Sung, Yun-Hee

    2015-10-01

    [Purpose] This study aimed to investigate the effect of treadmill exercise on non-motor function, specifically long-term memory, in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid-induced Parkinson's disease mouse model. [Methods] A mouse model of Parkinson's disease was developed by injecting 20 mg/kg of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and 250 mg/kg of probenecid (P). We divided in into four groups: probenecid group, probenecid-exercise group, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid group, and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid-exercise group. Mice in the exercise groups ran on treadmill for 30 min/day, five times per week for 4 weeks. [Results] Latency in the passive avoidance test increased in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid-exercise group compared with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid group. In addition, the number of 5-bromo-2-deoxyuridine/NeuN-positive cells and 5-bromo-2-deoxyuridine/doublecortin-positive cells in the hippocampal dentate gyrus was higher in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid-exercise group than that in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid group. These changes were associated with the expression of brain-derived neurotrophic factor in the hippocampus. [Conclusion] Our results suggest that treadmill exercise may improve long-term memory in Parkinson's disease mice by facilitating neurogenesis via increased expression of neurotrophic factors.

  6. TLR4 signaling mediates AP-1 activation in an MPTP-induced mouse model of Parkinson's disease.

    PubMed

    Zhao, Xu-Dong; Wang, Fa-Xiang; Cao, Wen-Fu; Zhang, Yong-Hong; Li, Yan

    2016-03-01

    To evaluate the effects of Toll-like receptor 4 (TLR4) signaling on the activation of the transcription factor activator protein-1 (AP-1) in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of Parkinson's disease (PD). The following groups were evaluated: normal saline (NS)-treated WT mice, NS-treated TLR4-knockout (KO) mice, MPTP-treated WT mice, and MPTP-treated TLR4-KO mice. After establishing the mouse model, behavioral changes were evaluated. AP-1 expression was detected by RT-PCR, Western blotting, immunohistochemistry and immunofluorescence staining. Compared to MPTP-treated WT mice, significantly reduced dyskinesia was observed in MPTP-treated TLR4-KO mice. AP-1 mRNA and protein levels were significantly up-regulated in the substantia nigras (SNs) of MPTP-treated WT mice relative to NS-treated mice (P<0.01); these levels were significantly reduced in MPTP-treated TLR4-KO mice relative to MPTP-treated WT mice (P<0.01). Immunohistochemical staining demonstrated that AP-1 was distributed throughout the SN in MPTP-treated mice, and immunofluorescence further showed that AP-1 was expressed in TH-positive neuronal cells and GFAP-positive astrocytes. In addition, immunofluorescence revealed that AP-1 expression was lower in TH-positive neurons and GFAP-positive astrocytes in the SNs of MPTP-treated TLR4-KO mice relative to MPTP-treated WT mice. The TLR4 pathway may play an important role in regulating AP-1 activation. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. An inducible mouse model for microvillus inclusion disease reveals a role for myosin Vb in apical and basolateral trafficking

    PubMed Central

    Schneeberger, Kerstin; Vogel, Georg F.; Teunissen, Hans; van Ommen, Domenique D.; Begthel, Harry; El Bouazzaoui, Layla; van Vugt, Anke H. M.; Beekman, Jeffrey M.; Klumperman, Judith; Müller, Thomas; Janecke, Andreas; Gerner, Patrick; Huber, Lukas A.; Hess, Michael W.; Clevers, Hans; van Es, Johan H.; Nieuwenhuis, Edward E. S.; Middendorp, Sabine

    2015-01-01

    Microvillus inclusion disease (MVID) is a rare intestinal enteropathy with an onset within a few days to months after birth, resulting in persistent watery diarrhea. Mutations in the myosin Vb gene (MYO5B) have been identified in the majority of MVID patients. However, the exact pathophysiology of MVID still remains unclear. To address the specific role of MYO5B in the intestine, we generated an intestine-specific conditional Myo5b-deficient (Myo5bfl/fl;Vil-CreERT2) mouse model. We analyzed intestinal tissues and cultured organoids of Myo5bfl/fl;Vil-CreERT2 mice by electron microscopy, immunofluorescence, and immunohistochemistry. Our data showed that Myo5bfl/fl;Vil-CreERT2 mice developed severe diarrhea within 4 d after tamoxifen induction. Periodic Acid Schiff and alkaline phosphatase staining revealed subapical accumulation of intracellular vesicles in villus enterocytes. Analysis by electron microscopy confirmed an almost complete absence of apical microvilli, the appearance of microvillus inclusions, and enlarged intercellular spaces in induced Myo5bfl/fl;Vil-CreERT2 intestines. In addition, we determined that MYO5B is involved not only in apical but also basolateral trafficking of proteins. The analysis of the intestine during the early onset of the disease revealed that subapical accumulation of secretory granules precedes occurrence of microvillus inclusions, indicating involvement of MYO5B in early differentiation of epithelial cells. By comparing our data with a novel MVID patient, we conclude that our mouse model completely recapitulates the intestinal phenotype of human MVID. This includes severe diarrhea, loss of microvilli, occurrence of microvillus inclusions, and subapical secretory granules. Thus, loss of MYO5B disturbs both apical and basolateral trafficking of proteins and causes MVID in mice. PMID:26392529

  8. A novel mouse model of high flow-induced pulmonary hypertension-surgically induced by right pulmonary artery ligation.

    PubMed

    Zhang, Anchen; Wang, Hongfei; Wang, Shengwei; Huang, Xiaofan; Ye, Ping; Du, Xinling; Xia, Jiahong

    2017-02-01

    This study sought to establish a new model of high-flow pulmonary hypertension (PH) in mice. This model may be useful for studies seeking to reduce the pulmonary vascular resistance and delay the development of PH caused by congenital heart disease. The right pulmonary artery was ligated via a right posterolateral thoracotomy. Pulmonary hemodynamics was evaluated by right heart catheterization immediately after ligation and at 2, 4, 8, and 12 wk postoperatively. The right ventricle (RV) and the left ventricle (LV) with septum (S) were weighed to calculate the RV/(LV + S) ratio as an index of right ventricular hypertrophy. Morphologic changes in the left lungs were analyzed, and percentages of muscularized pulmonary vessels were assessed by hematoxylin and eosin, elastica van Gieson and alpha-smooth muscle actin staining. All the study data were compared with data from a model of PH generated by hypoxic stimulation. A pulmonary hypertensive state was successfully induced by 2 wk after surgery. However, the morphologic analysis demonstrated that pulmonary vascular muscularization, as evaluated using right ventricular systolic pressure and RV/(LV + S), was not significantly increased until 4 wk postoperatively. When mice from the new model and the hypoxic model were compared, no significant differences were observed in any of the evaluated indices. High-flow PH can be induced within 4 wk after ligation of the right pulmonary artery, which is easily performed in mice. Such mice can be used as a model of high-flow PH. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Mouse models of gastrointestinal tumors.

    PubMed

    Taketo, Makoto Mark

    2006-05-01

    The laboratory mouse (Mus musculus) has become one of the best model animal species in biomedical research today because of its abundant genetic/genomic information, and easy mutagenesis using transgenic and gene knockout technology. Genetically engineered mice have become essential tools in both mechanistic studies and drug development. In this article I will review recent topics in gastrointestinal cancer model mice, with emphasis on the results obtained in our laboratory. They include: (i) mouse models for familial adenomatous polyposis (Apc mutant mice; modifier genes of Apc intestinal polyposis; stabilizing beta-catenin mutant mice); (ii) mouse models for colon cancer (mouse models for hereditary non-polyposis colon cancer; additional mutations in Apc mutant mice; models with mutations in other genes; models for colon cancer associated with inflammatory bowel diseases); and (iii) mouse models for gastric cancer.

  10. Substance P and beta-endorphin mediate electro-acupuncture induced analgesia in mouse cancer pain model

    PubMed Central

    Lee, Hyo-Jeong; Lee, Jae-Ho; Lee, Eun-Ok; Lee, Hyo-Jung; Kim, Kwan-Hyun; Kim, Sun-Hyung; Lee, Keun-Sung; Jung, Hee-Jae; Kim, Sung-Hoon

    2009-01-01

    Background Opioid analgesics are generally used to combat the pain associated with cancerous conditions. These agents not only inhibit respiratory function and cause constipation, but also induce other significant side effects such as addiction and tolerance, all of which further contribute to a reduced quality of life for cancer patients. Thus, in the present study, the effects of electro-acupuncture treatment (EA) on mechanical allodynia were examined in a cancer pain mouse model. Methods In order to produce a neuropathic cancer pain model, S-180 sarcoma cells were inoculated around the sciatic nerve of left legs of Balb/c mice. Magnetic Resonance Imaging (MRI) scanning confirmed the mass of S-180 cancer cells embedded around the sciatic nerve. Mechanical allodynia was most consistently induced in the mouse sarcoma cell line S-180 (2 × 106sarcoma cells)-treated group compared to all the other groups studied. EA stimulation (2 Hz) was administered daily to ST36 (Zusanli) of S-180 bearing mice for 30 min for 9 days after S-180 inoculation. Results EA treatment significantly prolonged paw withdrawal latency from 5 days after inoculation. It also shortened the cumulative lifting duration from 7 days after inoculation, compared to the tumor control. Also, the overexpression of pain peptide substance P in the dorsal horn of the spinal cord was significantly decreased in the EA-treated group compared to the tumor control on Day 9 post inoculation. Furthermore, EA treatment effectively increased the concentration of β-endorphin in blood and brain samples of the mice to a greater extent than that of the tumor control as well as the normal group. The concentration of β-endorphin for EA treatment group increased by 51.457% in the blood and 12.6% in the brain respectively, compared to the tumor control group. Conclusion The findings of this study suggest that a S-180 cancer pain model is useful as a consistent and short time animal model. It also indicated that EA

  11. An Inducible Transgenic Mouse Model for Immune Mediated Hepatitis Showing Clearance of Antigen Expressing Hepatocytes by CD8+ T Cells

    PubMed Central

    Cebula, Marcin; Ochel, Aaron; Hillebrand, Upneet; Pils, Marina C.; Schirmbeck, Reinhold; Hauser, Hansjörg; Wirth, Dagmar

    2013-01-01

    The liver has the ability to prime immune responses against neo antigens provided upon infections. However, T cell immunity in liver is uniquely modulated by the complex tolerogenic property of this organ that has to also cope with foreign agents such as endotoxins or food antigens. In this respect, the nature of intrahepatic T cell responses remains to be fully characterized. To gain deeper insight into the mechanisms that regulate the CD8+ T cell responses in the liver, we established a novel OVA_X_CreERT2 mouse model. Upon tamoxifen administration OVA antigen expression is observed in a fraction of hepatocytes, resulting in a mosaic expression pattern. To elucidate the cross-talk of CD8+ T cells with antigen-expressing hepatocytes, we adoptively transferred Kb/OVA257-264-specific OT-I T cells to OVA_X_CreERT2 mice or generated triple transgenic OVA_X CreERT2_X_OT-I mice. OT-I T cells become activated in OVA_X_CreERT2 mice and induce an acute and transient hepatitis accompanied by liver damage. In OVA_X_CreERT2_X_OT-I mice, OVA induction triggers an OT-I T cell mediated, fulminant hepatitis resulting in 50% mortality. Surviving mice manifest a long lasting hepatitis, and recover after 9 weeks. In these experimental settings, recovery from hepatitis correlates with a complete loss of OVA expression indicating efficient clearance of the antigen-expressing hepatocytes. Moreover, a relapse of hepatitis can be induced upon re-induction of cured OVA_X_CreERT2_X_OT-I mice indicating absence of tolerogenic mechanisms. This pathogen-free, conditional mouse model has the advantage of tamoxifen inducible tissue specific antigen expression that reflects the heterogeneity of viral antigen expression and enables the study of intrahepatic immune responses to both de novo and persistent antigen. It allows following the course of intrahepatic immune responses: initiation, the acute phase and antigen clearance. PMID:23869228

  12. An inducible transgenic mouse model for immune mediated hepatitis showing clearance of antigen expressing hepatocytes by CD8+ T cells.

    PubMed

    Cebula, Marcin; Ochel, Aaron; Hillebrand, Upneet; Pils, Marina C; Schirmbeck, Reinhold; Hauser, Hansjörg; Wirth, Dagmar

    2013-01-01

    The liver has the ability to prime immune responses against neo antigens provided upon infections. However, T cell immunity in liver is uniquely modulated by the complex tolerogenic property of this organ that has to also cope with foreign agents such as endotoxins or food antigens. In this respect, the nature of intrahepatic T cell responses remains to be fully characterized. To gain deeper insight into the mechanisms that regulate the CD8+ T cell responses in the liver, we established a novel OVA_X_CreER(T2) mouse model. Upon tamoxifen administration OVA antigen expression is observed in a fraction of hepatocytes, resulting in a mosaic expression pattern. To elucidate the cross-talk of CD8+ T cells with antigen-expressing hepatocytes, we adoptively transferred K(b)/OVA257-264-specific OT-I T cells to OVA_X_CreER(T2) mice or generated triple transgenic OVA_X CreER(T2)_X_OT-I mice. OT-I T cells become activated in OVA_X_CreER(T2) mice and induce an acute and transient hepatitis accompanied by liver damage. In OVA_X_CreER(T2)_X_OT-I mice, OVA induction triggers an OT-I T cell mediated, fulminant hepatitis resulting in 50% mortality. Surviving mice manifest a long lasting hepatitis, and recover after 9 weeks. In these experimental settings, recovery from hepatitis correlates with a complete loss of OVA expression indicating efficient clearance of the antigen-expressing hepatocytes. Moreover, a relapse of hepatitis can be induced upon re-induction of cured OVA_X_CreER(T2)_X_OT-I mice indicating absence of tolerogenic mechanisms. This pathogen-free, conditional mouse model has the advantage of tamoxifen inducible tissue specific antigen expression that reflects the heterogeneity of viral antigen expression and enables the study of intrahepatic immune responses to both de novo and persistent antigen. It allows following the course of intrahepatic immune responses: initiation, the acute phase and antigen clearance.

  13. Mouse Models of Tumor Immunotherapy.

    PubMed

    Ngiow, Shin Foong; Loi, Sherene; Thomas, David; Smyth, Mark J

    2016-01-01

    Immunotherapy is now evolving into a major therapeutic option for cancer patients. Such clinical advances also promote massive interest in the search for novel immunotherapy targets, and to understand the mechanism of action of current drugs. It is projected that a series of novel immunotherapy agents will be developed and assessed for their therapeutic activity. In light of this, in vivo experimental mouse models that recapitulate human malignancies serve as valuable tools to validate the efficacy and safety profile of immunotherapy agents, before their transition into clinical trials. In this review, we will discuss the major classes of experimental mouse models of cancer commonly used for immunotherapy assessment and provide examples to guide the selection of appropriate models. We present some new data concerning the utility of a carcinogen-induced tumor model for comparing immunotherapies and combining immunotherapy with chemotherapy. We will also highlight some recent advances in experimental modeling of human malignancies in mice that are leading towards personalized therapy in patients.

  14. The lonely mouse: verification of a separation-induced model of depression in female mice.

    PubMed

    Martin, Alison L; Brown, Richard E

    2010-02-11

    Animal models of depression seldom test females, even though women are twice as likely as men to suffer from major depressive disorder. Since female mice are sensitive to social isolation, we tested a separation-based model of depression in three experiments. In experiment 1 female C57BL/6J mice were housed in three conditions: isolated (housed individually from 8 weeks of age), separated (housed in groups and then separated and housed individually at 23 weeks of age) and grouped (housed in groups from 8 weeks of age). At 24 weeks of age, there was a significant increase in weight and in immobility in individually housed mice in the forced swim test (FST) and tail suspension test (TST), a reduction in transitions in the L/D box, a reduced startle response and reduced prepulse inhibition, but no differences in cued or context fear conditioning. Experiment 2 showed that fluoxetine treatment administered via drinking water attenuated depressive-like behaviour in the FST and TST in individually housed female C57BL/6J mice, but had no effect on anxiety-like behaviour. Experiment 3 found that group-housed females had higher baseline corticosterone (CORT) levels than isolated females and fluoxetine had no effect on CORT levels. Thus, separation from group housing is a reliable and valid method for inducing depression-like behaviour in female mice. This procedure is both versatile, allowing for the study of genetic and environmental interactions, and accessible, making it useful for studying depression and testing new drugs for its treatment.

  15. Suppression of ovalbumin-induced airway inflammatory responses in a mouse model of asthma by Mimosa pudica extract.

    PubMed

    Yang, Eun Ju; Lee, Ji-Sook; Yun, Chi-Young; Ryang, Yong Suk; Kim, Jong-Bae; Kim, In Sik

    2011-01-01

    Asthma is an inflammatory airway disease. The pathogenic mechanisms of asthma include the infiltration of leukocytes and release of cytokines. Mimosa pudica (Mp) has been used traditionally for the treatment of insomnia, diarrhea and inflammatory diseases. Although Mp extract has various therapeutic properties, the effect of this extract on asthma has not yet been reported. This study investigated the suppressive effects of Mp extract on asthmatic responses both in vitro and in vivo. Mp extract was acquired from dried and powdered whole plants of M. pudica using 80% ethanol. BALB/c mice were used for the mouse model of asthma induced by ovalbumin. Mp extract significantly inhibited the HMC-1 cell migration induced by stem cell factor and blocked the release of monocyte chemotactic protein-1 (MCP-1) and interleukin-6 (IL-6) in EoL-1 cells. Leukocytosis, eosinophilia and mucus hypersecretion in asthmatic lung were significantly suppressed by Mp extract. The release of ovalbumin-specific IgE in bronchoalveolar lavage fluid and serum was also decreased. Mp extract treatment resulted in no liver cytotoxicity. The Mp extract has inhibitory properties on asthma and may be used as a potent therapeutic agent for allergic lung inflammation. Copyright © 2010 John Wiley & Sons, Ltd.

  16. Osmanthus fragrans Flower Extract and Acteoside Protect Against d-Galactose-Induced Aging in an ICR Mouse Model.

    PubMed

    Xiong, Lina; Mao, Shuqin; Lu, Baiyi; Yang, Jiajia; Zhou, Fei; Hu, Yinzhou; Jiang, Yirong; Shen, Canxi; Zhao, Yajing

    2016-01-01

    Osmanthus fragrans flower extract (OFE) is an organic extract from O. fragrans flower, which exhibits neuroprotective, free radical scavenging, and antioxidant effects. Therefore, the protective effect of OFE and acteoside against aging was studied. An aging ICR mouse model was established by chronically administering d-galactose (250 mg/kg) for 8 weeks. d-galactose induced spatial learning and memory impairments that were successfully inhibited by OFE and acteoside, which could shorten escape latency, improve platform crossing times, and increase zone time. The antioxidant potential of OFE and acteoside in vivo was evaluated by estimating the following: activities of antioxidant enzymes, such as glutathione peroxidase and aging-related enzyme, particularly monoamine oxidase; contents of lipid peroxidation methane dicarboxylic aldehyde, advanced glycation end products, and 8-hydroxy-2'-deoxyguanosine (a DNA damage product); and levels of nuclear factor-erythroid 2-related factor 2. OFE and acteoside also inhibited d-galactose-induced neurological aging by suppressing the increase in glial fibrillary acidic protein and neurotrophin-3. Considering the dose-dependent protective effects of OFE and acteoside, we concluded that OFE, rich in acteoside, was a good source of natural antiaging compounds.

  17. Endothelin receptor antagonism prevents hypoxia-induced mortality and morbidity in a mouse model of sickle-cell disease

    PubMed Central

    Sabaa, Nathalie; de Franceschi, Lucia; Bonnin, Philippe; Castier, Yves; Malpeli, Giorgio; Debbabi, Haythem; Galaup, Ariane; Maier-Redelsperger, Micheline; Vandermeersch, Sophie; Scarpa, Aldo; Janin, Anne; Levy, Bernard; Girot, Robert; Beuzard, Yves; Leboeuf, Christophe; Henri, Annie; Germain, Stéphane; Dussaule, Jean-Claude; Tharaux, Pierre-Louis

    2008-01-01

    Patients with sickle-cell disease (SCD) suffer from tissue damage and life-threatening complications caused by vasoocclusive crisis (VOC). Endothelin receptors (ETRs) are mediators of one of the most potent vasoconstrictor pathways in mammals, but the relationship between vasoconstriction and VOC is not well understood. We report here that pharmacological inhibition of ETRs prevented hypoxia-induced acute VOC and organ damage in a mouse model of SCD. An in vivo ultrasonographic study of renal hemodynamics showed a substantial increase in endothelin-mediated vascular resistance during hypoxia/reoxygenation-induced VOC. This increase was reversed by administration of the dual ETR antagonist (ETRA) bosentan, which had pleiotropic beneficial effects in vivo. It prevented renal and pulmonary microvascular congestion, systemic inflammation, dense rbc formation, and infiltration of activated neutrophils into tissues with subsequent nitrative stress. Bosentan also prevented death of sickle-cell mice exposed to a severe hypoxic challenge. These findings in mice suggest that ETRA could be a potential new therapy for SCD, as it may prevent acute VOC and limit organ damage in sickle-cell patients. PMID:18382768

  18. Marked Acceleration of Atherosclerosis following Lactobacillus casei induced Coronary Arteritis in a Mouse Model of Kawasaki Disease

    PubMed Central

    Chen, Shuang; Lee, Young Ho; Crother, Timothy R.; Fishbein, Michael; Zhang, Wenxuan; Yilmaz, Atilla; Shimada, Kenichi; Schulte, Danica J; Lehman, Thomas J.A.; Shah, Prediman K.; Arditi, Moshe

    2012-01-01

    Objective To investigate if Lactobacillus casei cell wall extract (LCWE)-induced Kawasaki Disease (KD) accelerates atherosclerosis in hypercholesterolemic mice. Method and Resuslts Apoe−/− or Ldlr−/− mice were injected with LCWE (KD mice) or PBS, fed high fat diet for 8 weeks, and atherosclerotic lesions in aortic sinuses (AS), arch (AC) and whole aorta were assessed. KD mice had larger, more complex aortic lesions with abundant collagen, and both extracellular and intracellular lipid and foam cells, compared to lesions in control mice despite similar cholesterol levels. Both Apoe−/− KD and Ldlr−/− KD mice showed dramatic acceleration in atherosclerosis vs. controls, with increases in en face aortic atherosclerosis and plaque size in both the AS and AC plaques. Accelerated atherosclerosis was associated with increased circulating IL-12p40, IFN-γ, TNF-α, and increased macrophage, DC, and T cell recruitment in lesions. Furthermore, daily injections of the IL-1Ra, which inhibits LCWE induced KD vasculitis, prevented the acceleration of atherosclerosis. Conclusions Our results suggest an important pathophysiologic link between coronary arteritis/vasculitis in the KD mouse model and subsequent atherosclerotic acceleration, supporting the concept that a similar relation may also be present in KD patients. These results also suggest that KD in childhood may predispose to accelerated and early atherosclerosis as adults. PMID:22628430

  19. TRAIL administration down-modulated the acute systemic inflammatory response induced in a mouse model by muramyldipeptide or lipopolysaccharide.

    PubMed

    Marcuzzi, Annalisa; Secchiero, Paola; Crovella, Sergio; Zauli, Giorgio

    2012-10-01

    The potent inducer of apoptosis TRAIL/Apo2 ligand is now under considerations in clinical trials for the treatment of different types of cancer. Since the natural history of cancer is often characterized by microbial infections, we have investigated the effect of recombinant human TRAIL in a mouse model of systemic acute inflammation of microbial origin represented by BALB/c mice treated with either bacterial muramyldipeptide (MDP) or lipopolysaccharide (LPS). When administered intraperitoneally (i.p.), these inflammatory bacterial compounds triggered a severe systemic inflammatory response within 2h, represented by body temperature elevation, increase of circulating serum amyloid-A (SAA) and of the number of leukocytes in the peritoneal cavity. Moreover, both MDP and LPS induced a significant elevation of the circulating levels of several inflammatory cytokines and chemokines. Noteworthy, pre-treatment with recombinant human TRAIL 48 and 72 h before administration of either MDP or LPS, significantly counteracted all acute inflammatory responses, including the elevation of key pro-inflammatory cytokines/chemokines such as IL-1α, IL-6, G-CSF, MCP-1. These data demonstrate for the first time that TRAIL has a potent anti-inflammatory activity, which might be beneficial for the anti-tumoral activity of TRAIL.

  20. IL-12-based vaccination therapy reverses liver-induced systemic tolerance in a mouse model of hepatitis B virus carrier.

    PubMed

    Zeng, Zhutian; Kong, Xiaohui; Li, Fenglei; Wei, Haiming; Sun, Rui; Tian, Zhigang

    2013-10-15

    Liver-induced systemic immune tolerance that occurs during chronic hepadnavirus infection is the biggest obstacle for effective viral clearance. Immunotherapeutic reversal of this tolerance is a promising strategy in the clinic but remains to be explored. In this study, using a hepatitis B virus (HBV)-carrier mouse model, we report that IL-12-based vaccination therapy can efficiently reverse systemic tolerance toward HBV. HBV-carrier mice lost responsiveness to hepatitis B surface Ag (HBsAg) vaccination, and IL-12 alone could not reverse this liver-induced immune tolerance. However, after IL-12-based vaccination therapy, the majority of treated mice became HBsAg(-) in serum; hepatitis B core Ag was also undetectable in hepatocytes. HBV clearance was dependent on HBsAg vaccine-induced anti-HBV immunity. Further results showed that IL-12-based vaccination therapy strongly enhanced hepatic HBV-specific CD8(+) T cell responses, including proliferation and IFN-γ secretion. Systemic HBV-specific CD4(+) T cell responses were also restored in HBV-carrier mice, leading to the arousal of HBsAg-specific follicular Th-germinal center B cell responses and anti-hepatitis B surface Ag Ab production. Recovery of HBsAg-specific responses also correlated with both reduced CD4(+)Foxp3(+) regulatory T cell frequency and an enhanced capacity of effector T cells to overcome inhibition by regulatory T cells. In conclusion, IL-12-based vaccination therapy may reverse liver-induced immune tolerance toward HBV by restoring systemic HBV-specific CD4(+) T cell responses, eliciting robust hepatic HBV-specific CD8(+) T cell responses, and facilitating the generation of HBsAg-specific humoral immunity; thus, this therapy may become a viable approach to treating patients with chronic hepatitis B.

  1. Protective effect of chinonin in MPTP-induced C57BL/6 mouse model of Parkinson's disease.

    PubMed

    Feng, Guoshuai; Zhang, Zhijian; Bao, Qingqing; Zhang, Zaijun; Zhou, Libing; Jiang, Jie; Li, Sha

    2014-01-01

    The aims of this study were to investigate the effect of chinonin in preventing 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurodegeneration in C57BL/6 mice and to examine the possible mechanisms. The neurotoxin MPTP was employed to create a subacute Parkinson's disease (PD)-like model in C57BL/6 mice. Chinonin (10, 20, 40 mg/kg body weight) was intraperitoneally administered 0.5 h after MPTP (30 mg/kg) injection for 7 d consecutively. Chinonin showed neuroprotective effects in the MPTP-treated mice PD model by ameliorating motor impairment in the catwalk and open-field tests. Consistently, chinonin reduced loss of dopaminergic neurons in the substantia nigra and prevented depletion of dopamine and its metabolites 3-methoxy-4-hydroxy-phenylacetic acid and homovanillic acid in the striatum of mice. Compared with the MPTP group, in the chinonin plus MPTP groups significant increases of superoxide dismutase activity and glutathione levels were observed as well as a distinct reduction of lipid peroxidation product malondialdehyde in the striatum. Taken together, we propose that chinonin exerts neuroprotective effects in C57BL/6 mouse model of PD and these effects may be due to chinonin's antioxidative property.

  2. Genome-wide analysis of DNA methylation in UVB- and DMBA/TPA-induced mouse skin cancer models.

    PubMed

    Yang, Anne Yuqing; Lee, Jong Hun; Shu, Limin; Zhang, Chengyue; Su, Zheng-Yuan; Lu, Yaoping; Huang, Mou-Tuan; Ramirez, Christina; Pung, Douglas; Huang, Ying; Verzi, Michael; Hart, Ronald P; Kong, Ah-Ng Tony

    2014-09-15

    Ultraviolet irradiation and carcinogens have been reported to induce epigenetic alterations, which potentially contribute to the development of skin cancer. We aimed to study the genome-wide DNA methylation profiles of skin cancers induced by ultraviolet B (UVB) irradiation and 7,12-dimethylbenz(a)anthracene (DMBA)/12-O-tetradecanoylphorbol-1,3-acetate (TPA). Methylated DNA immunoprecipitation (MeDIP) followed by next-generation sequencing was utilized to ascertain the DNA methylation profiles in the following common mouse skin cancer models: SKH-1 mice treated with UVB irradiation and CD-1 mice treated with DMBA/TPA. Ingenuity® Pathway Analysis (IPA) software was utilized to analyze the data and to identify gene interactions among the different pathways. 6003 genes in the UVB group and 5424 genes in the DMBA/TPA group exhibited a greater than 2-fold change in CpG methylation as mapped by the IPA software. The top canonical pathways identified by IPA after the two treatments were ranked were pathways related to cancer development, cAMP-mediated signaling, G protein-coupled receptor signaling and PTEN signaling associated with UVB treatment, whereas protein kinase A signaling and xenobiotic metabolism signaling were associated with DMBA/TPA treatment. In addition, the mapped IL-6-related inflammatory pathways displayed alterations in the methylation profiles of inflammation-related genes linked to UVB treatment. Genes with altered methylation were ranked in the UVB and DMBA/TPA models, and the molecular interaction networks of those genes were identified by the IPA software. The genome-wide DNA methylation profiles of skin cancers induced by UV irradiation or by DMBA/TPA will be useful for future studies on epigenetic gene regulation in skin carcinogenesis. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Manganese-enhanced magnetic resonance imaging reveals increased DOI-induced brain activity in a mouse model of schizophrenia

    PubMed Central

    Malkova, Natalia V.; Gallagher, Joseph J.; Yu, Collin Z.; Jacobs, Russell E.; Patterson, Paul H.

    2014-01-01

    Maternal infection during pregnancy increases the risk for schizophrenia in offspring. In rodent models, maternal immune activation (MIA) yields offspring with schizophrenia-like behaviors. None of these behaviors are, however, specific to schizophrenia. The presence of hallucinations is a key diagnostic symptom of schizophrenia. In mice, this symptom can be defined as brain activation in the absence of external stimuli, which can be mimicked by administration of hallucinogens. We find that, compared with controls, adult MIA offspring display an increased stereotypical behavioral response to the hallucinogen 2,5-dimethoxy-4-iodoamphetamine (DOI), an agonist for serotonin receptor 2A (5-HT2AR). This may be explained by increased levels of 5-HT2AR and downstream signaling molecules in unstimulated MIA prefrontal cortex (PFC). Using manganese-enhanced magnetic resonance imaging to identify neuronal activation elicited by DOI administration, we find that, compared with controls, MIA offspring exhibit a greater manganese (Mn2+) accumulation in several brain areas, including the PFC, thalamus, and striatum. The parafascicular thalamic nucleus, which plays the role in the pathogenesis of hallucinations, is activated by DOI in MIA offspring only. Additionally, compared with controls, MIA offspring demonstrate higher DOI-induced expression of early growth response protein 1, cyclooxygenase-2, and brain-derived neurotrophic factor in the PFC. Chronic treatment with the 5-HT2AR antagonist ketanserin reduces DOI-induced head twitching in MIA offspring. Thus, the MIA mouse model can be successfully used to investigate activity induced by DOI in awake, behaving mice. Moreover, manganese-enhanced magnetic resonance imaging is a useful, noninvasive method for accurately measuring this type of activity. PMID:24889602

  4. Hepatocyte Hypoxia Inducible Factor-1 Mediates the Development of Liver Fibrosis in a Mouse Model of Nonalcoholic Fatty Liver Disease.

    PubMed

    Mesarwi, Omar A; Shin, Mi-Kyung; Bevans-Fonti, Shannon; Schlesinger, Christina; Shaw, Janet; Polotsky, Vsevolod Y

    2016-01-01

    Obstructive sleep apnea (OSA) is associated with the progression of non-alcoholic fatty liver disease (NAFLD) to steatohepatitis and fibrosis. This progression correlates with the severity of OSA-associated hypoxia. In mice with diet induced obesity, hepatic steatosis leads to liver tissue hypoxia, which worsens with exposure to intermittent hypoxia. Emerging data has implicated hepatocyte cell signaling as an important factor in hepatic fibrogenesis. We hypothesized that hepatocyte specific knockout of the oxygen sensing α subunit of hypoxia inducible factor-1 (HIF-1), a master regulator of the global response to hypoxia, may be protective against the development of liver fibrosis. Wild-type mice and mice with hepatocyte-specific HIF-1α knockout (Hif1a-/-hep) were fed a high trans-fat diet for six months, as a model of NAFLD. Hepatic fibrosis was evaluated by Sirius red stain and hydroxyproline assay. Liver enzymes, fasting insulin, and hepatic triglyceride content were also assessed. Hepatocytes were isolated from Hif1a-/-hep mice and wild-type controls and were exposed to sustained hypoxia (1% O2) or normoxia (16% O2) for 24 hours. The culture media was used to reconstitute type I collagen and the resulting matrices were examined for collagen cross-linking. Wild-type mice on a high trans-fat diet had 80% more hepatic collagen than Hif1a-/-hep mice (2.21 μg collagen/mg liver tissue, versus 1.23 μg collagen/mg liver tissue, p = 0.03), which was confirmed by Sirius red staining. Body weight, liver weight, mean hepatic triglyceride content, and fasting insulin were similar between groups. Culture media from wild-type mouse hepatocytes exposed to hypoxia allowed for avid collagen cross-linking, but very little cross-linking was seen when hepatocytes were exposed to normoxia, or when hepatocytes from Hif1a-/-hep mice were used in hypoxia or normoxia. Hepatocyte HIF-1 mediates an increase in liver fibrosis in a mouse model of NAFLD, perhaps due to liver tissue

  5. Hepatocyte Hypoxia Inducible Factor-1 Mediates the Development of Liver Fibrosis in a Mouse Model of Nonalcoholic Fatty Liver Disease

    PubMed Central

    Mesarwi, Omar A.; Shin, Mi-Kyung; Bevans-Fonti, Shannon; Schlesinger, Christina; Shaw, Janet; Polotsky, Vsevolod Y.

    2016-01-01

    Background Obstructive sleep apnea (OSA) is associated with the progression of non-alcoholic fatty liver disease (NAFLD) to steatohepatitis and fibrosis. This progression correlates with the severity of OSA-associated hypoxia. In mice with diet induced obesity, hepatic steatosis leads to liver tissue hypoxia, which worsens with exposure to intermittent hypoxia. Emerging data has implicated hepatocyte cell signaling as an important factor in hepatic fibrogenesis. We hypothesized that hepatocyte specific knockout of the oxygen sensing α subunit of hypoxia inducible factor-1 (HIF-1), a master regulator of the global response to hypoxia, may be protective against the development of liver fibrosis. Methods Wild-type mice and mice with hepatocyte-specific HIF-1α knockout (Hif1a-/-hep) were fed a high trans-fat diet for six months, as a model of NAFLD. Hepatic fibrosis was evaluated by Sirius red stain and hydroxyproline assay. Liver enzymes, fasting insulin, and hepatic triglyceride content were also assessed. Hepatocytes were isolated from Hif1a-/-hep mice and wild-type controls and were exposed to sustained hypoxia (1% O2) or normoxia (16% O2) for 24 hours. The culture media was used to reconstitute type I collagen and the resulting matrices were examined for collagen cross-linking. Results Wild-type mice on a high trans-fat diet had 80% more hepatic collagen than Hif1a-/-hep mice (2.21 μg collagen/mg liver tissue, versus 1.23 μg collagen/mg liver tissue, p = 0.03), which was confirmed by Sirius red staining. Body weight, liver weight, mean hepatic triglyceride content, and fasting insulin were similar between groups. Culture media from wild-type mouse hepatocytes exposed to hypoxia allowed for avid collagen cross-linking, but very little cross-linking was seen when hepatocytes were exposed to normoxia, or when hepatocytes from Hif1a-/-hep mice were used in hypoxia or normoxia. Conclusions Hepatocyte HIF-1 mediates an increase in liver fibrosis in a mouse model of

  6. Aging, Breast Cancer and the Mouse Model

    DTIC Science & Technology

    2005-05-01

    Presenescent or senescent hBF (1.2 or 18x×10 4/well, respectively) [M, Stampfer , P. Yaswen, Lawrence Berkeley National Laboratory wdre suspended in 60 l cold...2.8 1 2.8 Inducing a human-like senescent phenotype in mouse fibroblasts Jean-Philihoo Copp , Simona Parrinello, Ana Krtolica, Christopher K. Patil...MAMMARY EPITHELIAL CELL PROLIFERATION AND TUMORIGENESIS: A MOUSE MODEL FOR HUMAN AGING. Jean-Philippe Coppe, Simona Parrinello, Ana Krtolica, Christopher

  7. Gender differences in a mouse model of chemotherapy-induced neuropathic pain.

    PubMed

    Naji-Esfahani, H; Vaseghi, G; Safaeian, L; Pilehvarian, A-A; Abed, A; Rafieian-Kopaei, M

    2016-02-01

    Chemotherapy-induced neuropathic pain is one of the major problems for cancer patients. Although paclitaxel and cisplatin are widely used in women, most laboratory studies of chemotherapy-induced neuropathic pain have been conducted on male animals. The current study examined the gender differences in chemotherapy-induced neuropathic pain in mice. Neuropathic pain was induced by intraperitoneal injection of paclitaxel (2 mg/kg) for five consecutive days and cisplatin (1 mg/kg) for seven consecutive days. Cold allodynia was evaluated by measuring the paw withdrawal frequency and duration of paw licking in mice; however, mechanical allodynia was assessed by von Frey filaments. Neuropathic pain began to manifest after a few days (P < 0.001). Cold allodynia was more robust in female mice (P < 0.001) treated with paclitaxel, while no differences were observed between the two genders in the manifestation of paclitaxel-induced mechanical allodynia. Interestingly, no gender differences were observed in cisplatin-induced cold and mechanical allodynia tests. In conclusion, gender differences play a major role in neuropathic pain induced by paclitaxel. The differences between male and female animals should be considered in future studies and the findings should be generalized to humans with caution.

  8. Aberrant lung remodeling in a mouse model of surfactant dysregulation induced by modulation of the Abca3 gene✩

    PubMed Central

    Beers, Michael F.; Knudsen, Lars; Tomer, Yaniv; Maronn, Julian; Zhao, Ming; Ochs, Matthias; Mulugeta, Surafel

    2017-01-01

    The lipid transporter, ATP binding cassette class A3 (ABCA3), plays a critical role in the biogenesis of alveolar type 2 (AT2) cell lamellar bodies (LBs). A relatively large number of mutations in the ABCA3 gene have been identified in association with diffuse parenchymal lung disease (DPLD), the most common of which is a missense mutation (valine substitution for lysine at residue 292 (ABCA3E292V)) that leads to functional impairment of the transporter in vitro. The consequences of ABCA3E292V gene expression in vivo are unknown. To address this question, we developed mouse models expressing ABCA3E292V knocked-in to the endogenous mouse locus. The parental (F1) mouse line (mAbca3E292V) that retained an intronic pgk-Neo selection cassette (inserted in reverse orientation) (mAbca3E292V–rNeo) demonstrated an allele dependent extracellular surfactant phospholipid (PL) deficiency. We hypothesize that this PL deficiency leads to aberrant parenchymal remodeling contributing to the pathophysiology of the DPLD phenotype. Compared to wild type littermates, baseline studies of mice homozygous for the pgk-Neo insert (mAbca3E292V–rNeo+/+) revealed nearly 50% reduction in bronchoalveolar lavage (BAL) PL content that was accompanied by quantitative reduction in AT2 LB size with a compensatory increase in LB number. The phenotypic alteration in surfactant lipid homeostasis resulted in an early macrophage predominant alveolitis which peaked at 8 weeks of age. This was followed by age-dependent development of histological DPLD characterized initially by peribronchial inflammatory cell infiltration and culminating in both an emphysema-like phenotype (which included stereologically quantifiable reductions in both alveolar septal surface area and volume of septal wall tissue) plus foci of trichrome-positive collagen deposition together with substantial proliferation of hyperplastic AT2 cells. In addition to spontaneous lung remodeling, mABCA3E292V–rNeo mice were rendered more

  9. Aberrant lung remodeling in a mouse model of surfactant dysregulation induced by modulation of the Abca3 gene.

    PubMed

    Beers, Michael F; Knudsen, Lars; Tomer, Yaniv; Maronn, Julian; Zhao, Ming; Ochs, Matthias; Mulugeta, Surafel

    2017-03-01

    The lipid transporter, ATP binding cassette class A3 (ABCA3), plays a critical role in the biogenesis of alveolar type 2 (AT2) cell lamellar bodies (LBs). A relatively large number of mutations in the ABCA3 gene have been identified in association with diffuse parenchymal lung disease (DPLD), the most common of which is a missense mutation (valine substitution for lysine at residue 292 (ABCA3(E292V))) that leads to functional impairment of the transporter in vitro. The consequences of ABCA3(E292)(V) gene expression in vivo are unknown. To address this question, we developed mouse models expressing ABCA3(E292V) knocked-in to the endogenous mouse locus. The parental (F1) mouse line (mAbca3(E292)(V)) that retained an intronic pgk-Neo selection cassette (inserted in reverse orientation) (mAbca3(E292)(V)-rNeo) demonstrated an allele dependent extracellular surfactant phospholipid (PL) deficiency. We hypothesize that this PL deficiency leads to aberrant parenchymal remodeling contributing to the pathophysiology of the DPLD phenotype. Compared to wild type littermates, baseline studies of mice homozygous for the pgk-Neo insert (mAbca3(E292)(V)-rNeo(+/)(+)) revealed nearly 50% reduction in bronchoalveolar lavage (BAL) PL content that was accompanied by quantitative reduction in AT2 LB size with a compensatory increase in LB number. The phenotypic alteration in surfactant lipid homeostasis resulted in an early macrophage predominant alveolitis which peaked at 8 weeks of age. This was followed by age-dependent development of histological DPLD characterized initially by peribronchial inflammatory cell infiltration and culminating in both an emphysema-like phenotype (which included stereologically quantifiable reductions in both alveolar septal surface area and volume of septal wall tissue) plus foci of trichrome-positive collagen deposition together with substantial proliferation of hyperplastic AT2 cells. In addition to spontaneous lung remodeling, mABCA3(E292V)-rNeo mice

  10. Mouse models of sickle cell disease.

    PubMed

    Beuzard, Y

    2008-01-01

    In the absence of a natural animal model for sickle cell disease, transgenic mouse models have been generated to better understand the complex pathophysiology of the disease and to evaluate potential specific therapies. In the early nineties, the simple addition of human globin genes induced the expression of hemoglobin S (HbS) or HbS-related human hemoglobins in mice still expressing mouse hemoglobin. To increase the proportion of human hemoglobin and the severity of the mouse sickle cell syndrome, the proportion of mouse hemoglobin could be decreased by a combination of mouse alpha- and beta-thalassemic defects, leading to complex genotypes and mild disease. Following the discovery of gene targeting in the mouse embryonic stem cells (ES cells), it was made possible to knock out all mouse adult globin genes (2alpha and 2beta) and to add the human homologous genes elsewhere in the mouse genome. In addition, the human gamma gene of fetal hemoglobin was protecting the fetus from HbS polymer formation. Accordingly, the resulting adult mouse models obtained in 1997, expressing human HbS-only, had a very severe anemia (Hb=5-6 g/dL). In order to survive, these "HbS-only mice" had to reduce the HbS concentration within the red blood cells. The phenotype could be less severe by adding modified human gamma genes, still expressed in adult mice. In 2006, a last "S-only" model was obtained by homologous knock in, replacing the mouse globin genes by human genes. This array of models contributes to better understand the role of different interacting factors in the complexity of sickle cell events, such as red cell defects, changes in blood flow and vaso-occlusion, hyperhemolysis, vascular tone dysregulation, oxidations, inflammation, activation and adhesion of cells, ischemia, reperfusion... In addition, each model has an appropriate usefulness to evaluate experimental therapies in vivo and to perform preclinical studies.

  11. Increased Muscle Stress-Sensitivity Induced by Selenoprotein N Inactivation in Mouse: A Mammalian Model for SEPN1-Related Myopathy

    PubMed Central

    Arbogast, Sandrine; Lainé, Jeanne; Vassilopoulos, Stéphane; Beuvin, Maud; Dubourg, Odile; Vignaud, Alban; Ferry, Arnaud; Krol, Alain; Allamand, Valérie; Guicheney, Pascale; Ferreiro, Ana; Lescure, Alain

    2011-01-01

    Selenium is an essential trace element and selenoprotein N (SelN) was the first selenium-containing protein shown to be directly involved in human inherited diseases. Mutations in the SEPN1 gene, encoding SelN, cause a group of muscular disorders characterized by predominant affection of axial muscles. SelN has been shown to participate in calcium and redox homeostasis, but its pathophysiological role in skeletal muscle remains largely unknown. To address SelN function in vivo, we generated a Sepn1-null mouse model by gene targeting. The Sepn1−/− mice had normal growth and lifespan, and were macroscopically indistinguishable from wild-type littermates. Only minor defects were observed in muscle morphology and contractile properties in SelN-deficient mice in basal conditions. However, when subjected to challenging physical exercise and stress conditions (forced swimming test), Sepn1−/− mice developed an obvious phenotype, characterized by limited motility and body rigidity during the swimming session, as well as a progressive curvature of the spine and predominant alteration of paravertebral muscles. This induced phenotype recapitulates the distribution of muscle involvement in patients with SEPN1-Related Myopathy, hence positioning this new animal model as a valuable tool to dissect the role of SelN in muscle function and to characterize the pathophysiological process. PMID:21858002

  12. Lingonberry (Vaccinium vitis-idaea L.) Exhibits Antidiabetic Activities in a Mouse Model of Diet-Induced Obesity.

    PubMed

    Eid, Hoda M; Ouchfoun, Meriem; Brault, Antoine; Vallerand, Diane; Musallam, Lina; Arnason, John T; Haddad, Pierre S

    2014-01-01

    Vaccinium vitis-idaea, commonly known as lingonberry, has been identified among species used by the Cree of Eeyou Istchee of northern Quebec to treat symptoms of diabetes. In a previous study, the ethanol extract of berries of V. vitis-idaea enhanced glucose uptake in C2C12 muscle cells via stimulation of AMP-activated protein kinase (AMPK) pathway. The purpose of this study was to examine the effect of plant extract in a dietary mouse model of mild type 2 diabetes. C57BL/6 mice fed a high-fat diet (HFD, ∼35% lipids) for 8 weeks that become obese and insulin-resistant (diet-induced obesity, DIO) were used. Treatment began by adding V. vitis-idaea extract to HFD at 3 different concentrations (125, 250, and 500 mg/Kg) for a subsequent period of 8 weeks (total HFD, 16 weeks). The plant extract significantly decreased glycemia and strongly tended to decrease insulin levels in this model. This was correlated with a significant increase in GLUT4 content and activation of the AMPK and Akt pathways in skeletal muscle. V. vitis-idaea treatment also improved hepatic steatosis by decreasing hepatic triglyceride levels and significantly activated liver AMPK and Akt pathways. The results of the present study confirm that V. vitis-idaea represents a culturally relevant treatment option for Cree diabetics and pave the way to clinical studies.

  13. Protective effects of seahorse extracts in a rat castration and testosterone-induced benign prostatic hyperplasia model and mouse oligospermatism model.

    PubMed

    Xu, Dong-Hui; Wang, Li-Hong; Mei, Xue-Ting; Li, Bing-Ji; Lv, Jun-Li; Xu, Shi-Bo

    2014-03-01

    This study investigated the effects of seahorse (Hippocampus spp.) extracts in a rat model of benign prostatic hyperplasia (BPH) and mouse model of oligospermatism. Compared to the sham operated group, castration and testosterone induced BPH, indicated by increased penile erection latency; decreased penis nitric oxide synthase (NOS) activity; reduced serum acid phosphatase (ACP) activity; increased prostate index; and epithelial thickening, increased glandular perimeter, increased proliferating cell nuclear antigen (PCNA) index and upregulation of basic fibroblast growth factor (bFGF) in the prostate. Seahorse extracts significantly ameliorated the histopathological changes associated with BPH, reduced the latency of penile erection and increased penile NOS activity. Administration of seahorse extracts also reversed epididymal sperm viability and motility in mice treated with cyclophosphamide (CP). Seahorse extracts have potential as a candidate marine drug for treating BPH without inducing the side effects of erectile dysfunction (ED) or oligospermatism associated with the BPH drug finasteride. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Heat-induced structural changes affect OVA-antigen processing and reduce allergic response in mouse model of food allergy.

    PubMed

    Golias, Jaroslav; Schwarzer, Martin; Wallner, Michael; Kverka, Miloslav; Kozakova, Hana; Srutkova, Dagmar; Klimesova, Klara; Sotkovsky, Petr; Palova-Jelinkova, Lenka; Ferreira, Fatima; Tuckova, Ludmila

    2012-01-01

    The egg protein ovalbumin (OVA) belongs to six most frequent food allergens. We investigated how thermal processing influences its ability to induce allergic symptoms and immune responses in mouse model of food allergy. Effect of increased temperature (70°C and 95°C) on OVA secondary structure was characterized by circular dichroism and by the kinetics of pepsin digestion with subsequent HPLC. BALB/c mice were sensitized intraperitoneally and challenged with repeated gavages of OVA or OVA heated to 70°C (h-OVA). Levels of allergen-specific serum antibodies were determined by ELISA (IgA and IgGs) or by β-hexosaminidase release test (IgE). Specific activities of digestive enzymes were determined in brush border membrane vesicles of jejunal enterocytes. Cytokine production and changes in regulatory T cells in mesenteric lymph nodes and spleen were assessed by ELISA and FACS. Heating of OVA to 70°C caused mild irreversible changes in secondary structure compared to boiling to 95°C (b-OVA), but both OVA treatments led to markedly different digestion kinetics and Tregs induction ability in vitro, compared to native OVA. Heating of OVA significantly decreased clinical symptoms (allergic diarrhea) and immune allergic response on the level of IgE, IL-4, IL-5, IL-13. Furthermore, h-OVA induced lower activities of serum mast cell protease-1 and enterocyte brush border membrane alkaline phosphatase as compared to native OVA. On the other hand h-OVA stimulated higher IgG2a in sera and IFN-γ secretion by splenocytes. Minor irreversible changes in OVA secondary structure caused by thermal processing changes both its digestion and antigenic epitopes formation, which leads to activation of different T cell subpopulations, induces shift towards Th1 response and ultimately reduces its allergenicity.

  15. Inhibition of hypoxia-inducible factor via upregulation of von Hippel-Lindau protein induces “angiogenic switch off” in a hepatoma mouse model

    PubMed Central

    Iwamoto, Hideki; Nakamura, Toru; Koga, Hironori; Izaguirre-Carbonell, Jesus; Kamisuki, Shinji; Sugawara, Fumio; Abe, Mitsuhiko; Iwabata, Kazuki; Ikezono, Yu; Sakaue, Takahiko; Masuda, Atsutaka; Yano, Hirohisa; Ohta, Keisuke; Nakano, Masahito; Shimose, Shigeo; Shirono, Tomotake; Torimura, Takuji

    2015-01-01

    “Angiogenic switch off” is one of the ideal therapeutic concepts in the treatment of cancer. However, the specific molecules which can induce “angiogenic switch off” in tumor have not been identified yet. In this study, we focused on von Hippel-Lindau protein (pVHL) in hepatocellular carcinoma (HCC) and investigated the effects of sulfoquinovosyl-acylpropanediol (SQAP), a novel synthetic sulfoglycolipid, for HCC. We examined mutation ratio of VHL gene in HCC using 30 HCC samples and we treated the HCC-implanted mice with SQAP. Thirty clinical samples showed no VHL genetic mutation in HCC. SQAP significantly inhibited tumor growth by inhibiting angiogenesis in a hepatoma mouse model. SQAP induced tumor “angiogenic switch off” by decreasing hypoxia-inducible factor (HIF)-1, 2α protein via pVHL upregulation. pVHL upregulation decreased HIFα protein levels through different multiple mechanisms: (i) increasing pVHL-dependent HIFα protein degradation; (ii) decreasing HIFα synthesis with decrease of NF-κB expression; and (iii) decrease of tumor hypoxia by vascular normalization. We confirmed these antitumor effects of SQAP by the loss-of-function experiments. We found that SQAP directly bound to and inhibited transglutaminase 2. This study provides evidence that upregulation of tumor pVHL is a promising target, which can induce “angiogenic switch off” in HCC. PMID:27119112

  16. A mouse model for too much TV?

    PubMed

    Bilimoria, Parizad M; Hensch, Takao K; Bavelier, Daphne

    2012-11-01

    In a new study published in Scientific Reports, Christakis and colleagues investigate a mouse model for technology-induced overstimulation. We review their findings, discuss the challenges of defining overstimulation, and consider the resemblance of the phenotypes observed in Christakis et al. to those noted in genetic models of attention deficit hyperactivity disorder (ADHD).

  17. The effects of exogenous surfactant administration on ventilation-induced inflammation in mouse models of lung injury

    PubMed Central

    2013-01-01

    Background Mechanical ventilation (MV) is an essential supportive therapy for acute lung injury (ALI); however it can also contribute to systemic inflammation. Since pulmonary surfactant has anti-inflammatory properties, the aim of the study was to investigate the effect of exogenous surfactant administration on ventilation-induced systemic inflammation. Methods Mice were randomized to receive an intra-tracheal instillation of a natural exogenous surfactant preparation (bLES, 50 mg/kg) or no treatment as a control. MV was then performed using the isolated and perfused mouse lung (IPML) set up. This model allowed for lung perfusion during MV. In experiment 1, mice were exposed to mechanical ventilation only (tidal volume =20 mL/kg, 2 hours). In experiment 2, hydrochloric acid or air was instilled intra-tracheally four hours before applying exogenous surfactant and ventilation (tidal volume =5 mL/kg, 2 hours). Results For both experiments, exogenous surfactant administration led to increased total and functional surfactant in the treated groups compared to the controls. Exogenous surfactant administration in mice exposed to MV only did not affect peak inspiratory pressure (PIP), lung IL-6 levels and the development of perfusate inflammation compared to non-treated controls. Acid injured mice exposed to conventional MV showed elevated PIP, lung IL-6 and protein levels and greater perfusate inflammation compared to air instilled controls. Instillation of exogenous surfactant did not influence the development of lung injury. Moreover, exogenous surfactant was not effective in reducing the concentration of inflammatory cytokines in the perfusate. Conclusions The data indicates that exogenous surfactant did not mitigate ventilation-induced systemic inflammation in our models. Future studies will focus on altering surfactant composition to improve its immuno-modulating activity. PMID:24256698

  18. The roles of a ribosomal protein S19 polymer in a mouse model of carrageenan-induced acute pleurisy.

    PubMed

    Yamanegi, Koji; Kawakami, Toru; Yamada, Naoko; Kumanishi, Shunsuke; Futani, Hiroyuki; Nakasho, Keiji; Nishiura, Hiroshi

    2017-02-07

    C5-deficient mice usually present moderate neutrophil activation during the initiation phase of acute inflammation. Conversely, C5a receptor (C5aR)-deficient mice show unusually excessive activation of neutrophils. We identified the ribosomal protein S19 (RP S19) polymer, which is cross-linked at Lys122 and Gln137 by transglutaminases in apoptotic neutrophils, as a second C5aR ligand during the resolution phase of acute inflammation. The RP S19 polymer promotes apoptosis via the neutrophil C5aR and phagocytosis via the macrophage C5aR. To confirm the roles of the RP S19 polymer, we employed a carrageenan-induced acute pleurisy mouse model using C57BL/6J mice with a knock-in of the Gln137Glu mutant RP S19 gene and replaced the RP S19 polymer with either an S-tagged C5a/RP S19 recombinant protein or the RP S19(122-145) peptide monomer and dimer (as functional C5aR agonists/antagonists) and the RP S19(122-145) peptide trimer (as a functional C5aR antagonist). Neutrophils and macrophages were still present in the thoracic cavities of the knock-in mice at 24h and 7days after carrageenan injection, respectively. Knock-in mice showed structural organization and severe hemorrhaging from the surrounding small vessels of the alveolar walls in the lung parenchyma. In contrast to the RP S19(122-145) peptide monomer and trimer, the simultaneous presence of S-tagged C5a/RP S19 and the RP S19(122-145) peptide dimer completely improved the physiological and pathological acute inflammatory cues. The RP S19 polymer, especially the dimer, appears to play a role at the resolution phase of carrageenan-induced acute pleurisy in C57BL/6J model mice.

  19. An inducible mouse model of colon carcinogenesis for the analysis of sporadic and inflammation-driven tumor progression.

    PubMed

    Neufert, Clemens; Becker, Christoph; Neurath, Markus F

    2007-01-01

    Colorectal cancer is a life-threatening disease that can develop spontaneously or as a complication of inflammatory bowel diseases. Mouse models are essential tools for the preclinical testing of novel therapeutic options in vivo. Here, we provide a highly reliable protocol for an experimental mouse model to study the development of colon cancers. It is based on the mutagenic agent azoxymethane (AOM), which exerts colonotropic carcinogenicity. Repeated intraperitoneal administration of AOM results in the development of spontaneous tumors within 30 weeks. As an alternative option, inflammation-dependent tumor growth can be investigated by combining the administration of AOM with the inflammatory agent dextran sodium sulfate in drinking water, which causes rapid growth of multiple colon tumors per mouse within 10 weeks. Different scoring systems including number of tumors and tumor size identify factors promoting or inhibiting tumor initiation and/or tumor progression, respectively.

  20. Tetracycline-regulated mouse models of cancer.

    PubMed

    Yeh, Elizabeth S; Vernon-Grey, Ann; Martin, Heather; Chodosh, Lewis A

    2014-10-01

    Genetically engineered mouse models (GEMMs) have proven essential to the study of mammalian gene function in both development and disease. However, traditional constitutive transgenic mouse model systems are limited by the temporal and spatial characteristics of the experimental promoter used to drive transgene expression. To address this limitation, considerable effort has been dedicated to developing conditional and inducible mouse model systems. Although a number of approaches to generating inducible GEMMs have been pursued, several have been restricted by toxic or undesired physiological side effects of the compounds used to activate gene expression. The development of tetracycline (tet)-dependent regulatory systems has allowed for circumvention of these issues resulting in the widespread adoption of these systems as an invaluable tool for modeling the complex nature of cancer progression.

  1. Antihyperalgesic Activities of Endocannabinoids in a Mouse Model of Antiretroviral-Induced Neuropathic Pain.

    PubMed

    Munawar, Neha; Oriowo, Mabayoje A; Masocha, Willias

    2017-01-01

    Background: Nucleoside reverse transcriptase inhibitors (NRTIs) are the cornerstone of the antiretroviral therapy for human immunodeficiency virus/acquired immune deficiency syndrome (HIV/AIDS). However, their use is sometimes limited by the development of a painful sensory neuropathy, which does not respond well to drugs. Smoked cannabis has been reported in clinical trials to have efficacy in relieving painful HIV-associated sensory neuropathy. Objectives: The aim of this study was to evaluate whether the expression of endocannabinoid system molecules is altered during NRTI-induced painful neuropathy, and also whether endocannabinoids can attenuate NRTI-induced painful neuropathy. Methods: BALB/c mice were treated with 25 mg/kg of 2',3'-dideoxycytidine (ddC, zalcitabine), a NRTI, to induce thermal hyperalgesia. The expression of endocannabinoid system molecules was evaluated by real time polymerase chain reaction in the brain, spinal cord and paw skin at 6 days post ddC administration, a time point when mice had developed thermal hyperalgesia. The effects of the endocannabinoids, N-arachidonoyl ethanolamine (AEA) and 2-arachidonoyl glycerol (2-AG), the cannabinoid type 1 (CB1) receptor antagonist AM 251, CB2 receptor antagonist AM 630, and G protein-coupled receptor 55 (GPR55) antagonists ML193 and CID 16020046 on ddC-induced thermal hyperalgesia were evaluated using the hot plate test. Results: ddC treatment resulted in thermal hyperalgesia and increased transcripts of the synthesizing enzyme Plcβ1 and decreased Daglβ in the paw skins, but not Napepld, and Daglα compared to vehicle treatment. Transcripts of the inactivating enzymes Faah and Mgll were downregulated in the brain and/or paw skin but not in the spinal cord of ddC-treated mice. Both AEA and 2-AG had antihyperalgesic effects in mice with ddC-induced thermal hyperalgesia, but had no effect in ddC-naïve mice. The antihyperalgesic activity of AEA was antagonized by AM251 and AM630, whereas the

  2. Antihyperalgesic Activities of Endocannabinoids in a Mouse Model of Antiretroviral-Induced Neuropathic Pain

    PubMed Central

    Munawar, Neha; Oriowo, Mabayoje A.; Masocha, Willias

    2017-01-01

    Background: Nucleoside reverse transcriptase inhibitors (NRTIs) are the cornerstone of the antiretroviral therapy for human immunodeficiency virus/acquired immune deficiency syndrome (HIV/AIDS). However, their use is sometimes limited by the development of a painful sensory neuropathy, which does not respond well to drugs. Smoked cannabis has been reported in clinical trials to have efficacy in relieving painful HIV-associated sensory neuropathy. Objectives: The aim of this study was to evaluate whether the expression of endocannabinoid system molecules is altered during NRTI-induced painful neuropathy, and also whether endocannabinoids can attenuate NRTI-induced painful neuropathy. Methods: BALB/c mice were treated with 25 mg/kg of 2′,3′-dideoxycytidine (ddC, zalcitabine), a NRTI, to induce thermal hyperalgesia. The expression of endocannabinoid system molecules was evaluated by real time polymerase chain reaction in the brain, spinal cord and paw skin at 6 days post ddC administration, a time point when mice had developed thermal hyperalgesia. The effects of the endocannabinoids, N-arachidonoyl ethanolamine (AEA) and 2-arachidonoyl glycerol (2-AG), the cannabinoid type 1 (CB1) receptor antagonist AM 251, CB2 receptor antagonist AM 630, and G protein-coupled receptor 55 (GPR55) antagonists ML193 and CID 16020046 on ddC-induced thermal hyperalgesia were evaluated using the hot plate test. Results: ddC treatment resulted in thermal hyperalgesia and increased transcripts of the synthesizing enzyme Plcβ1 and decreased Daglβ in the paw skins, but not Napepld, and Daglα compared to vehicle treatment. Transcripts of the inactivating enzymes Faah and Mgll were downregulated in the brain and/or paw skin but not in the spinal cord of ddC-treated mice. Both AEA and 2-AG had antihyperalgesic effects in mice with ddC-induced thermal hyperalgesia, but had no effect in ddC-naïve mice. The antihyperalgesic activity of AEA was antagonized by AM251 and AM630, whereas the

  3. Direct measurement of the 3-dimensional DNA lesion distribution induced by energetic charged particles in a mouse model tissue

    PubMed Central

    Mirsch, Johanna; Tommasino, Francesco; Frohns, Antonia; Conrad, Sandro; Durante, Marco; Scholz, Michael; Friedrich, Thomas; Löbrich, Markus

    2015-01-01

    Charged particles are increasingly used in cancer radiotherapy and contribute significantly to the natural radiation risk. The difference in the biological effects of high-energy charged particles compared with X-rays or γ-rays is determined largely by the spatial distribution of their energy deposition events. Part of the energy is deposited in a densely ionizing manner in the inner part of the track, with the remainder spread out more sparsely over the outer track region. Our knowledge about the dose distribution is derived solely from modeling approaches and physical measurements in inorganic material. Here we exploited the exceptional sensitivity of γH2AX foci technology and quantified the spatial distribution of DNA lesions induced by charged particles in a mouse model tissue. We observed that charged particles damage tissue nonhomogenously, with single cells receiving high doses and many other cells exposed to isolated damage resulting from high-energy secondary electrons. Using calibration experiments, we transformed the 3D lesion distribution into a dose distribution and compared it with predictions from modeling approaches. We obtained a radial dose distribution with sub-micrometer resolution that decreased with increasing distance to the particle path following a 1/r2 dependency. The analysis further revealed the existence of a background dose at larger distances from the particle path arising from overlapping dose deposition events from independent particles. Our study provides, to our knowledge, the first quantification of the spatial dose distribution of charged particles in biologically relevant material, and will serve as a benchmark for biophysical models that predict the biological effects of these particles. PMID:26392532

  4. Pharmacologically induced mouse model of adult spinal muscular atrophy to evaluate effectiveness of therapeutics after disease onset.

    PubMed

    Feng, Zhihua; Ling, Karen K Y; Zhao, Xin; Zhou, Chunyi; Karp, Gary; Welch, Ellen M; Naryshkin, Nikolai; Ratni, Hasane; Chen, Karen S; Metzger, Friedrich; Paushkin, Sergey; Weetall, Marla; Ko, Chien-Ping

    2016-03-01

    Spinal muscular atrophy (SMA) is a genetic disease characterized by atrophy of muscle and loss of spinal motor neurons. SMA is caused by deletion or mutation of the survival motor neuron 1 (SMN1) gene, and the nearly identical SMN2 gene fails to generate adequate levels of functional SMN protein due to a splicing defect. Currently, several therapeutics targeted to increase SMN protein are in clinical trials. An outstanding issue in the field is whether initiating treatment in symptomatic older patients would confer a therapeutic benefit, an important consideration as the majority of patients with milder forms of SMA are diagnosed at an older age. An SMA mouse model that recapitulates the disease phenotype observed in adolescent and adult SMA patients is needed to address this important question. We demonstrate here that Δ7 mice, a model of severe SMA, treated with a suboptimal dose of an SMN2 splicing modifier show increased SMN protein, survive into adulthood and display SMA disease-relevant pathologies. Increasing the dose of the splicing modifier after the disease symptoms are apparent further mitigates SMA histopathological features in suboptimally dosed adult Δ7 mice. In addition, inhibiting myostatin using intramuscular injection of AAV1-follistatin ameliorates muscle atrophy in suboptimally dosed Δ7 mice. Taken together, we have developed a new murine model of symptomatic SMA in adolescents and adult mice that is induced pharmacologically from a more severe model and demonstrated efficacy of both SMN2 splicing modifiers and a myostatin inhibitor in mice at later disease stages. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Lumbar muscle inflammation alters spinally mediated locomotor recovery induced by training in a mouse model of complete spinal cord injury.

    PubMed

    Jeffrey-Gauthier, Renaud; Piché, Mathieu; Leblond, Hugues

    2017-09-17

    Locomotor networks after spinal cord injury (SCI) are shaped by training-activated proprioceptive and cutaneous inputs. Nociception from injured tissues may alter these changes but has largely been overlooked. The objective of the present study was to ascertain whether lumbar muscle inflammation hinders locomotion recovery in a mouse model of complete SCI. Lower limb kinematics during treadmill training was assessed before and after complete SCI at T8 (2, 7, 14, 21 and 28days post-injury). Locomotor recovery was compared in 4 groups of CD1 mice: control spinal mice; spinal mice with daily locomotor training; spinal mice with lumbar muscle inflammation (Complete Freund's Adjuvant (CFA) injection); and spinal mice with locomotor training and CFA. On day 28, H-reflex excitability and its inhibition at high-frequency stimulation (frequency-dependent depression: FDD) were compared between groups, all of which showed locomotor recovery. Recovery was enhanced by training, whereas lumbar muscle inflammation hindered these effects (knee angular excursion and paw drag: p's<0.05). In addition, lumbar muscle inflammation impaired hind limb coupling during locomotion (p<0.05) throughout recovery. Also, H-reflex disinhibition was prevented by training, with or without CFA injection (p's<0.05). Altogether, these results indicate that back muscle inflammation modulates spinally mediated locomotor recovery in mice with complete SCI, in part, by reducing adaptive changes induced by training. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Experimental traumatic brain injury induces rapid aggregation and oligomerization of amyloid-beta in an Alzheimer's disease mouse model.

    PubMed

    Washington, Patricia M; Morffy, Nicholas; Parsadanian, Maia; Zapple, David N; Burns, Mark P

    2014-01-01

    Soluble amyloid-beta (Aβ) oligomers are hypothesized to be the pathogenic species in Alzheimer's disease (AD), and increased levels of oligomers in the brain subsequent to traumatic brain injury (TBI) may exacerbate secondary injury pathways and underlie increased risk of developing AD in later life. To determine whether TBI causes Aβ aggregation and oligomerization in the brain, we exposed triple transgenic AD model mice to controlled cortical impact injury and measured levels of soluble, insoluble, and oligomeric Aβ by enzyme-linked immunosorbent assay (ELISA) at 1, 3, and 7 days postinjury. TBI rapidly increased levels of both soluble and insoluble Aβ40 and Aβ42 in the injured cortex at 1 day postinjury. We confirmed previous findings that identified damaged axons as a major site of Aβ accumulation using both immunohistochemistry and biochemistry. We also report that soluble Aβ oligomers were significantly increased in the injured cortex, as demonstrated by both ELISA and Western blot. Interestingly, the mouse brain is able to rapidly clear trauma-induced Aβ, with both soluble and insoluble Aβ species returning to sham levels by 7 days postinjury. In conclusion, we demonstrate that TBI causes acute accumulation and aggregation of Aβ in the brain, including the formation of low- and high-molecular-weight Aβ oligomers. The formation and aggregation of Aβ into toxic species acutely after injury may play a role in secondary injury cascades after trauma and, chronically, may contribute to increased risk of developing AD in later life.

  7. The Influence of Bone Marrow-Secreted IL-10 in a Mouse Model of Cerulein-Induced Pancreatic Fibrosis

    PubMed Central

    Lin, Wey-Ran; Lim, Siew-Na; Yen, Tzung-Hai; Alison, Malcolm R.

    2016-01-01

    This study aimed to understand the role of IL-10 secreted from bone marrow (BM) in a mouse model of pancreatic fibrosis. The severity of cerulein-induced inflammation, fibrosis, and the frequency of BM-derived myofibroblasts were evaluated in the pancreas of mice receiving either a wild-type (WT) BM or an IL-10 knockout (KO) BM transplantation. The area of collagen deposition increased significantly in the 3 weeks after cerulein cessation in mice with an IL-10 KO BM transplant (13.7 ± 0.6% and 18.4 ± 1.1%, p < 0.05), but no further increase was seen in WT BM recipients over this time. The percentage of BM-derived myofibroblasts also increased in the pancreas of the IL-10 KO BM recipients after cessation of cerulein (6.7 ± 1.1% and 11.9 ± 1.3%, p < 0.05), while this figure fell in WT BM recipients after cerulein withdrawal. Furthermore, macrophages were more numerous in the IL-10 KO BM recipients than the WT BM recipients after cerulein cessation (23.2 ± 2.3 versus 15.3 ± 1.7 per HPF, p < 0.05). In conclusion, the degree of fibrosis, inflammatory cell infiltration, and the number of BM-derived myofibroblasts were significantly different between IL-10 KO BM and WT BM transplanted mice, highlighting a likely role of IL-10 in pancreatitis. PMID:27314021

  8. Lactobacillus rhamnosus CCFM1107 treatment ameliorates alcohol-induced liver injury in a mouse model of chronic alcohol feeding.

    PubMed

    Tian, Fengwei; Chi, Feifei; Wang, Gang; Liu, Xiaoming; Zhang, Qiuxiang; Chen, Yongquan; Zhang, Hao; Chen, Wei

    2015-12-01

    Lactobacillus rhamnosus CCFM1107 was screened for high antioxidative activity from 55 lactobacilli. The present study attempted to explore the protective properties of L. rhamnosus CCFM1107 in alcoholic liver injury. A mouse model was induced by orally feeding alcohol when simultaneously treated with L. rhamnosus CCFM1107, the drug Hu-Gan- Pian (HGP), L. rhamnosus GG (LGG), and L. plantarum CCFM1112 for 3 months. Biochemical analysis was performed for both serum and liver homogenate. Detailed intestinal flora and histological analyses were also carried out. Our results indicated that the administration of L. rhamnosus CCFM1107 significantly inhibited the increase in the levels of serum aminotransferase and endotoxin, as well as the levels of triglyceride (TG) and cholesterol (CHO) in the serum and in the liver. Glutathione (GSH), glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) were elevated while the levels of malondialdehyde (MDA) were decreased. The enteric dysbiosis caused by alcohol was restored by increasing the numbers of both lactobacilli and bifidobacteria and decreasing the numbers of both enterococci and enterobacter. Histological analysis confirmed the protective effect of L. rhamnosus CCFM1107. Compared with the other lactobacilli and to the drug Hu-Gan-Pian, there is a high chance that L. rhamnosus CCFM1107 provides protective effects on alcoholic liver injury by reducing oxidative stress and restoring the intestinal flora.

  9. Magnolia Extract (BL153) Ameliorates Kidney Damage in a High Fat Diet-Induced Obesity Mouse Model

    PubMed Central

    Cui, Wenpeng; Wang, Yangwei; Chen, Qiang; Sun, Weixia; Cai, Lu; Tan, Yi; Kim, Ki-Soo; Kim, Ki Ho; Kim, Young Heui

    2013-01-01

    Accumulating evidence demonstrated that obesity is a risk factor for renal structural and functional changes, leading to the end-stage renal disease which imposes a heavy economic burden on the community. However, no effective therapeutic method for obesity-associated kidney disease is available. In the present study, we explored the therapeutic potential of a magnolia extract (BL153) for treating obesity-associated kidney damage in a high fat diet- (HFD-) induced mouse model. The results showed that inflammation markers (tumor necrosis factor-α and plasminogen activator inhibitor-1) and oxidative stress markers (3-nitrotyrosine and 4-hydroxy-2-nonenal) were all significantly increased in the kidney of HFD-fed mice compared to mice fed with a low fat diet (LFD). Additionally, proteinuria and renal structure changes in HFD-fed mice were much more severe than that in LFD-fed mice. However, all these alterations were attenuated by BL153 treatment, accompanied by upregulation of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) and hexokinase II (HK II) expression in the kidney. The present study indicates that BL153 administration may be a novel approach for renoprotection in obese individuals by antiinflammation and anti-oxidative stress most likely via upregulation of PGC-1α and HK II signal in the kidney. PMID:24381715

  10. Experimental Traumatic Brain Injury Induces Rapid Aggregation and Oligomerization of Amyloid-Beta in an Alzheimer's Disease Mouse Model

    PubMed Central

    Washington, Patricia M.; Morffy, Nicholas; Parsadanian, Maia; Zapple, David N.

    2014-01-01

    Abstract Soluble amyloid-beta (Aβ) oligomers are hypothesized to be the pathogenic species in Alzheimer's disease (AD), and increased levels of oligomers in the brain subsequent to traumatic brain injury (TBI) may exacerbate secondary injury pathways and underlie increased risk of developing AD in later life. To determine whether TBI causes Aβ aggregation and oligomerization in the brain, we exposed triple transgenic AD model mice to controlled cortical impact injury and measured levels of soluble, insoluble, and oligomeric Aβ by enzyme-linked immunosorbent assay (ELISA) at 1, 3, and 7 days postinjury. TBI rapidly increased levels of both soluble and insoluble Aβ40 and Aβ42 in the injured cortex at 1 day postinjury. We confirmed previous findings that identified damaged axons as a major site of Aβ accumulation using both immunohistochemistry and biochemistry. We also report that soluble Aβ oligomers were significantly increased in the injured cortex, as demonstrated by both ELISA and Western blot. Interestingly, the mouse brain is able to rapidly clear trauma-induced Aβ, with both soluble and insoluble Aβ species returning to sham levels by 7 days postinjury. In conclusion, we demonstrate that TBI causes acute accumulation and aggregation of Aβ in the brain, including the formation of low- and high-molecular-weight Aβ oligomers. The formation and aggregation of Aβ into toxic species acutely after injury may play a role in secondary injury cascades after trauma and, chronically, may contribute to increased risk of developing AD in later life. PMID:24050316

  11. Apigenin exhibits protective effects in a mouse model of d-galactose-induced aging via activating the Nrf2 pathway.

    PubMed

    Sang, Ying; Zhang, Fan; Wang, Heng; Yao, Jianqiao; Chen, Ruichuan; Zhou, Zhengdao; Yang, Kun; Xie, Yan; Wan, Tianfeng; Ding, Hong

    2017-06-21

    The aim of the present research was to study the protective effects and underlying mechanisms of apigenin on d-galactose-induced aging mice. Firstly, apigenin exhibited a potent antioxidant activity in vitro. Secondly, d-galactose was administered by subcutaneous injection once daily for 8 weeks to establish an aging mouse model to investigate the protective effect of apigenin. We found that apigenin supplementation significantly ameliorated aging-related changes such as behavioral impairment, decreased organic index, histopathological injury, increased senescence-associated β-galactosidase (SAβ-gal) activity and advanced glycation end product (AGE) level. Further data showed that apigenin facilitated Nrf2 nuclear translocation both in aging mice and normal young mice, and the Nrf2 expression of normal young mice was higher than that of natural senile mice. In addition, the expressions of Nrf2 downstream gene targets, including HO-1 and NQO1, were also promoted by apigenin administration. Moreover, apigenin also decreased the MDA level and elevated SOD and CAT activities. In conclusion, focusing on the Nrf2 pathway is a suitable strategy to delay the aging process, and apigenin may exert an anti-senescent effect process via activating the Nrf2 pathway.

  12. The effect of serine protease inhibitors on airway inflammation in a chronic allergen-induced asthma mouse model.

    PubMed

    Lin, Chih-Che; Lin, Li-Jen; Wang, Shulhn-Der; Chiang, Chung-Jen; Chao, Yun-Peng; Lin, Joseph; Kao, Shung-Te

    2014-01-01

    Serine protease inhibitors reportedly attenuated airway inflammation and had antioxidant in multiorgan. However, the effects of the serine protease inhibitors nafamostat mesilate (FUT), gabexate mesilate (FOY), and ulinastatin (UTI) on a long-term challenged mouse model of chronic asthma are unclear. BALB/c mice (6 mice/group) were intratracheally inoculated with five doses of Dermatophagoides pteronyssinus (Der p; 50 μL, 1 mg/mL) at one-week intervals. Therapeutic doses of FUT (0.0625 mg/kg), FOY (20 mg/kg), or UTI (10,000 U/kg) were, respectively, injected intraperitoneally into these mice. Control mice received sterile PBS. At 3 days after the last challenge, mice were sacrificed to assess airway hyperresponsiveness (AHR), remodeling, and inflammation; lung histological features; and cytokine expression profiles. Compared with untreated controls, mice treated with FUT, FOY, and UTI had decreased AHR and goblet cell hyperplasia, decreased eosinophil and neutrophil infiltration, decreased Der p-induced IL-4 levels in serum and IL-5, IL-6, IL-13, and IL-17 levels in bronchoalveolar lavage fluid, and inhibited nuclear factor (NF)-κB activity in lung tissues. The serine protease inhibitors FUT, FOY, and UTI have potential therapeutic benefits for treating asthma by downregulating Th2 cytokines and Th17 cell function and inhibiting NF-κB activation in lung tissue.

  13. Diffuse Optical Spectroscopy for the Quantitative Assessment of Acute Ionizing Radiation Induced Skin Toxicity Using a Mouse Model

    PubMed Central

    Chin, Lee; Korpela, Elina; Kim, Anthony; Yohan, Darren; Niu, Carolyn; Wilson, Brian C.; Liu, Stanley K.

    2016-01-01

    Acute skin toxicities from ionizing radiation (IR) are a common side effect from therapeutic courses of external beam radiation therapy (RT) and negatively impact patient quality of life and long term survival. Advances in the understanding of the biological pathways associated with normal tissue toxicities have allowed for the development of interventional drugs, however, current response studies are limited by a lack of quantitative metrics for assessing the severity of skin reactions. Here we present a diffuse optical spectroscopic (DOS) approach that provides quantitative optical biomarkers of skin response to radiation. We describe the instrumentation design of the DOS system as well as the inversion algorithm for extracting the optical parameters. Finally, to demonstrate clinical utility, we present representative data from a pre-clinical mouse model of radiation induced erythema and compare the results with a commonly employed visual scoring. The described DOS method offers an objective, high through-put evaluation of skin toxicity via functional response that is translatable to the clinical setting. PMID:27284926

  14. PD-L1 Blockade Attenuated Sepsis-Induced Liver Injury in a Mouse Cecal Ligation and Puncture Model

    PubMed Central

    Bao, Rui; Zhu, Jiali; Wang, Jiafeng; Li, Jinbao

    2013-01-01

    Liver plays a major role in hypermetabolism and produces acute phase proteins during systemic inflammatory response syndrome and it is of vital importance in host defense and bacteria clearance. Our previous studies indicated that programmed death-1 (PD-1) and its ligand programmed death ligand-1 (PD-L1) are crucial modulators of host immune responses during sepsis. Our current study was designed to investigate the role of PD-L1 in sepsis-induced liver injury by a mouse cecal ligation and puncture (CLP) model. Our results indicated that there was a significant increase of PD-L1 expression in liver after CLP challenge compared to sham-operated controls, in terms of levels of mRNA transcription and immunohistochemistry. Anti-PD-L1 antibody significantly alleviated the morphology of liver injury in CLP mice. Anti-PD-L1 antibody administration decreased ALT and AST release in CLP mice, decreased the levels of tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-10 mRNA in liver after sepsis challenge. Thus, anti-PD-L1 antibody might have a therapeutic potential in attenuating liver injury in sepsis. PMID:24324295

  15. Development of doxorubicin-induced chronic cardiotoxicity in the B6C3F{sub 1} mouse model

    SciTech Connect

    Desai, Varsha G.; Herman, Eugene H.; Moland, Carrie L.; Branham, William S.; Lewis, Sherry M.; Davis, Kelly J.; George, Nysia I.; Lee, Taewon; Kerr, Susan; Fuscoe, James C.

    2013-01-01

    Serum levels of cardiac troponins serve as biomarkers of myocardial injury. However, troponins are released into the serum only after damage to cardiac tissue has occurred. Here, we report development of a mouse model of doxorubicin (DOX)-induced chronic cardiotoxicity to aid in the identification of predictive biomarkers of early events of cardiac tissue injury. Male B6C3F{sub 1} mice were administered intravenous DOX at 3 mg/kg body weight, or an equivalent volume of saline, once a week for 4, 6, 8, 10, 12, and 14 weeks, resulting in cumulative DOX doses of 12, 18, 24, 30, 36, and 42 mg/kg, respectively. Mice were sacrificed a week following the last dose. A significant reduction in body weight gain was observed in mice following exposure to a weekly DOX dose for 1 week and longer compared to saline-treated controls. DOX treatment also resulted in declines in red blood cell count, hemoglobin level, and hematocrit compared to saline-treated controls after the 2nd weekly dose until the 8th and 9th doses, followed by a modest recovery. All DOX-treated mice had significant elevations in cardiac troponin T concentrations in plasma compared to saline-treated controls, indicating cardiac tissue injury. Also, a dose-related increase in the severity of cardiac lesions was seen in mice exposed to 24 mg/kg DOX and higher cumulative doses. Mice treated with cumulative DOX doses of 30 mg/kg and higher showed a significant decline in heart rate, suggesting drug-induced cardiac dysfunction. Altogether, these findings demonstrate the development of DOX-induced chronic cardiotoxicity in B6C3F{sub 1} mice. -- Highlights: ► 24 mg/kg was a cumulative cardiotoxic dose of doxorubicin in male B6C3F{sub 1} mice. ► Doxorubicin-induced hematological toxicity was in association with splenomegaly. ► Doxorubicin induced severe testicular toxicity in B6C3F{sub 1} male mice.

  16. Arsenate-induced maternal glucose intolerance and neural tube defects in a mouse model

    SciTech Connect

    Hill, Denise S.; Wlodarczyk, Bogdan J.; Mitchell, Laura E.; Finnell, Richard H.

    2009-08-15

    Background: Epidemiological studies have linked environmental arsenic (As) exposure to increased type 2 diabetes risk. Periconceptional hyperglycemia is a significant risk factor for neural tube defects (NTDs), the second most common structural birth defect. A suspected teratogen, arsenic (As) induces NTDs in laboratory animals. Objectives: We investigated whether maternal glucose homeostasis disruption was responsible for arsenate-induced NTDs in a well-established dosing regimen used in studies of arsenic's teratogenicity in early neurodevelopment. Methods: We evaluated maternal intraperitoneal (IP) exposure to As 9.6 mg/kg (as sodium arsenate) in LM/Bc/Fnn mice for teratogenicity and disruption of maternal plasma glucose and insulin levels. Selected compounds (insulin pellet, sodium selenate (SS), N-acetyl cysteine (NAC), L-methionine (L-Met), N-tert-Butyl-{alpha}-phenylnitrone (PBN)) were investigated for their potential to mitigate arsenate's effects. Results: Arsenate caused significant glucose elevation during an IP glucose tolerance test (IPGTT). Insulin levels were not different between arsenate and control dams before (arsenate, 0.55 ng/dl; control, 0.48 ng/dl) or after glucose challenge (arsenate, 1.09 ng/dl; control, 0.81 ng/dl). HOMA-IR index was higher for arsenate (3.9) vs control (2.5) dams (p = 0.0260). Arsenate caused NTDs (100%, p < 0.0001). Insulin pellet and NAC were the most successful rescue agents, reducing NTD rates to 45% and 35%. Conclusions: IPGTT, insulin assay, and HOMA-IR results suggest a modest failure of glucose stimulated insulin secretion and insulin resistance characteristic of glucose intolerance. Insulin's success in preventing arsenate-induced NTDs provides evidence that these arsenate-induced NTDs are secondary to elevated maternal glucose. The NAC rescue, which did not restore maternal glucose or insulin levels, suggests oxidative disruption plays a role.

  17. Hormonal changes accompanying cigarette smoke-induced preterm births in a mouse model.

    PubMed

    Ng, Sheung P; Steinetz, Bernard G; Lasano, Salamia G; Zelikoff, Judith T

    2006-09-01

    Epidemiologic evidence indicates that maternal smoking increases the risk of preterm birth. While a number of plausible mechanisms for early delivery have been offered, the role of gestational hormones in this smoke-induced outcome is uncertain. Thus, a toxicologic study was performed to examine the effects and underlying hormonal mechanisms of mainstream cigarette smoke (MCS) exposure on gestational duration. Pregnant B6C3F1 mice were exposed by inhalation to MCS for 5 days/week (4 hrs/day) from Gestational Day (GD) 4 to parturition. Smoke-induced effects on gestational length, interpubic ligament length, maternal hormone secretion patterns (estradiol-17beta, progesterone, prolactin, and relaxin), body weight gain, postimplantation loss, litter size, and offspring sex ratio were examined. Dams exposed to MCS at a concentration equivalent to smoking less than one pack of cigarettes/day (carbon monoxide = 25 parts per million, total suspended particulates = 16 mg/m3) demonstrated a significant (P < 0.05) shortening of gestational duration (compared with pregnant, air-exposed mice). In addition, MCS-exposed mice sacrificed on GD 18 had significantly (P < 0.05) increased interpubic ligament length, elevated serum estrogen levels, and a reduced progesterone to estradiol-17beta ratio (compared with air-exposed controls); levels of progesterone and prolactin were only modestly decreased and increased, respectively, in the MCS-exposed mice. Smoke exposure had no significant effects on maternal relaxin levels, body weight gain, postimplantation loss, litter size, or sex ratio. Results of this study demonstrate that inhalation exposure of pregnant mice to a low dose of MCS shortens gestation and alters hormone secretory patterns, which are important for maintaining pregnancy and inducing parturition. These findings support the view that pregnant women who smoke (even modestly) may be at increased risk for preterm birth, and that early delivery may be related (at least

  18. ARSENATE-INDUCED MATERNAL GLUCOSE INTOLERANCE AND NEURAL TUBE DEFECTS IN A MOUSE MODEL

    PubMed Central

    Hill, Denise S.; Wlodarczyk, Bogdan J.; Mitchell, Laura E.; Finnell, Richard H.

    2009-01-01

    Background Epidemiological studies have linked environmental arsenic (As) exposure to increased type 2 diabetes risk. Periconceptional hyperglycemia is a significant risk factor for neural tube defects (NTDs), the second most common structural birth defect. A suspected teratogen, arsenic (As) induces NTDs in laboratory animals. Objectives We investigated whether maternal glucose homeostasis disruption was responsible for arsenate-induced NTDs in a well-established dosing regimen used in studies of arsenic’s teratogenicity in early neurodevelopment. Methods We evaluated maternal intraperitoneal (I.P.) exposure to As 9.6 mg/kg (as sodium arsenate) in LM/Bc/Fnn mice for teratogenicity and disruption of maternal plasma glucose and insulin levels. Selected compounds (insulin pellet, sodium selenate (SS), N-acetyl cysteine (NAC), L-methionine (L-Met), N-tert-Butyl-α-phenylnitrone (PBN)) were investigated for their potential to mitigate arsenate’s effects. Results Arsenate caused significant glucose elevation during an I.P. glucose tolerance test (IPGTT). Insulin levels were not different between arsenate and control dams before (arsenate, 0.55 ng/dl; control, 0.48 ng/dl) or after glucose challenge (arsenate, 1.09 ng/dl; control, 0.81 ng/dl). HOMA-IR index was higher for arsenate (3.9) vs control (2.5) dams (p=0.0260). Arsenate caused NTDs (100%, p<0.0001). Insulin pellet and NAC were the most successful rescue agents, reducing NTD rates to 45% and 35%. Conclusions IPGTT, insulin assay, and HOMA-IR results suggest a modest failure of glucose stimulated insulin secretion and insulin resistance characteristic of glucose intolerance. Insulin’s success in preventing arsenate-induced NTDs provides evidence that these arsenate-induced NTDs are secondary to elevated maternal glucose. The NAC rescue, which did not restore maternal glucose or insulin levels, suggests oxidative disruption plays a role. PMID:19446573

  19. Effects of Angelicin on Ovalbumin (OVA)-Induced Airway Inflammation in a Mouse Model of Asthma.

    PubMed

    Wei, Da-Zhen; Guo, Xian-Yang; Lin, Li-Na; Lin, Meng-Xiang; Gong, Yu-Qiang; Ying, Bin-Yu; Huang, Ming-Yuan

    2016-12-01

    Angelicin, a furocoumarin found in Psoralea corylifolia L. fruit, has been reported to have anti-inflammatory activity. The purpose of this study was to determine the protective effects of angelicin on allergic asthma induced by ovalbumin (OVA) in mice. Mice were sensitized to OVA (on days 0 and 14) and challenged with OVA three times (on days 21 to 23). Angelicin (2.5, 5, 10 mg/kg) was given intraperitoneally 1 h before OVA treatment after the initial OVA sensitization. The production of IL-4, IL-5, and IL-13 in BALF and IgE in the serum were measured by ELISA. Lung histological changes were detected by using hematoxylin and eosin (H&E) stain. The results showed that angelicin significantly inhibited inflammatory cells infiltration into the lungs. Histological studies showed that angelicin significantly attenuated OVA-induced lung injury. Meanwhile, treatment of angelicin dose-dependently inhibited OVA-induced the production of IL-4, IL-5, and IL-13 in BALF and IgE in the serum. Furthermore, angelicin was found to inhibit airway hyperresponsiveness and NF-kB activation. In conclusion, our results suggested that angelicin inhibited allergic airway inflammation and hyperresponsiveness by inhibiting NF-kB activation.

  20. Akt/hypoxia-inducible factor-1α signaling deficiency compromises skin wound healing in a type 1 diabetes mouse model

    PubMed Central

    JING, LIFENG; LI, SHUANG; LI, QIN

    2015-01-01

    The aim of the present study was to investigate the mechanisms for impaired skin wound healing in subjects with diabetes. Type 1 diabetes (T1DM) was induced in BALB/c mice using streptozotocin. One month after the establishment of the T1DM mouse model, a wound was formed on the back of the mice, and tissues from the wounds and the margins were collected on days 0, 3, 7 and 10. Protein levels of cluster of differentiation 31 (CD31) were detected using immunohistochemistry, and the mRNA levels of Akt, hypoxia-inducible factor-1α (Hif-1α), vascular endothelial growth factor (Vegf), VEGF receptor 2 (Vegfr2), stromal cell-derived growth factor-1α (Sdf-1α) and CXC chemokine receptor 4 (Cxcr4) were determined using reverse transcription-quantitative polymerase chain reaction analysis. The corresponding protein levels were determined using western blotting. The skin wound healing rate in the T1DM mice was significantly lower than that in the control mice, and the protein level of CD31 in the wounded skin of the T1DM mice was significantly decreased. Furthermore, the overall mRNA levels of Akt, Hif-1α, Vegf, Vegfr2, Sdf-1α and Cxcr4 in the T1DM mice were significantly lower than those in the control mice, and similar trends were observed in the protein levels. In conclusion, skin wound healing was impaired in the T1DM mice, and this may have been caused by a deficiency of Akt/HIF-1α and downstream signaling, as well as delayed angiogenesis. PMID:26136949

  1. Mechanisms underlying insulin deficiency-induced acceleration of β-amyloidosis in a mouse model of Alzheimer's disease.

    PubMed

    Devi, Latha; Alldred, Melissa J; Ginsberg, Stephen D; Ohno, Masuo

    2012-01-01

    Although evidence is accumulating that diabetes mellitus is an important risk factor for sporadic Alzheimer's disease (AD), the mechanisms by which defects in insulin signaling may lead to the acceleration of AD progression remain unclear. In this study, we applied streptozotocin (STZ) to induce experimental diabetes in AD transgenic mice (5XFAD model) and investigated how insulin deficiency affects the β-amyloidogenic processing of amyloid precursor protein (APP). Two and half months after 5XFAD mice were treated with STZ (90 mg/kg, i.p., once daily for two consecutive days), they showed significant reductions in brain insulin levels without changes in insulin receptor expression. Concentrations of cerebral amyloid-β peptides (Aβ40 and Aβ42) were significantly increased in STZ-treated 5XFAD mice as compared with vehicle-treated 5XFAD controls. Importantly, STZ-induced insulin deficiency upregulated levels of both β-site APP cleaving enzyme 1 (BACE1) and full-length APP in 5XFAD mouse brains, which was accompanied by dramatic elevations in the β-cleaved C-terminal fragment (C99). Interestingly, BACE1 mRNA levels were not affected, whereas phosphorylation of the translation initiation factor eIF2α, a mechanism proposed to mediate the post-transcriptional upregulation of BACE1, was significantly elevated in STZ-treated 5XFAD mice. Meanwhile, levels of GGA3, an adapter protein responsible for sorting BACE1 to lysosomal degradation, are indistinguishable between STZ- and vehicle-treated 5XFAD mice. Moreover, STZ treatments did not affect levels of Aβ-degrading enzymes such as neprilysin and insulin-degrading enzyme (IDE) in 5XFAD brains. Taken together, our findings provide a mechanistic foundation for a link between diabetes and AD by demonstrating that insulin deficiency may change APP processing to favor β-amyloidogenesis via the translational upregulation of BACE1 in combination with elevations in its substrate, APP.

  2. Hippocampal TNFα Signaling Contributes to Seizure Generation in an Infection-Induced Mouse Model of Limbic Epilepsy.

    PubMed

    Patel, Dipan C; Wallis, Glenna; Dahle, E Jill; McElroy, Pallavi B; Thomson, Kyle E; Tesi, Raymond J; Szymkowski, David E; West, Peter J; Smeal, Roy M; Patel, Manisha; Fujinami, Robert S; White, H Steve; Wilcox, Karen S

    2017-01-01

    Central nervous system infection can induce epilepsy that is often refractory to established antiseizure drugs. Previous studies in the Theiler's murine encephalomyelitis virus (TMEV)-induced mouse model of limbic epilepsy have demonstrated the importance of inflammation, especially that mediated by tumor necrosis factor-α (TNFα), in the development of acute seizures. TNFα modulates glutamate receptor trafficking via TNF receptor 1 (TNFR1) to cause increased excitatory synaptic transmission. Therefore, we hypothesized that an increase in TNFα signaling after TMEV infection might contribute to acute seizures. We found a significant increase in both mRNA and protein levels of TNFα and the protein expression ratio of TNF receptors (TNFR1:TNFR2) in the hippocampus, a brain region most likely involved in seizure initiation, after TMEV infection, which suggests that TNFα signaling, predominantly through TNFR1, may contribute to limbic hyperexcitability. An increase in hippocampal cell-surface glutamate receptor expression was also observed during acute seizures. Although pharmacological inhibition of TNFR1-mediated signaling had no effect on acute seizures, several lines of genetically modified animals deficient in either TNFα or TNFRs had robust changes in seizure incidence and severity after TMEV infection. TNFR2(-/-) mice were highly susceptible to developing acute seizures, suggesting that TNFR2-mediated signaling may provide beneficial effects during the acute seizure period. Taken together, the present results suggest that inflammation in the hippocampus, caused predominantly by TNFα signaling, contributes to hyperexcitability and acute seizures after TMEV infection. Pharmacotherapies designed to suppress TNFR1-mediated or augment TNFR2-mediated effects of TNFα may provide antiseizure and disease-modifying effects after central nervous system infection.

  3. Hippocampal TNFα Signaling Contributes to Seizure Generation in an Infection-Induced Mouse Model of Limbic Epilepsy

    PubMed Central

    Patel, Dipan C.; Wallis, Glenna; Dahle, E. Jill; McElroy, Pallavi B.; Thomson, Kyle E.; West, Peter J.; Smeal, Roy M.; Patel, Manisha; Fujinami, Robert S.; White, H. Steve

    2017-01-01

    Abstract Central nervous system infection can induce epilepsy that is often refractory to established antiseizure drugs. Previous studies in the Theiler’s murine encephalomyelitis virus (TMEV)-induced mouse model of limbic epilepsy have demonstrated the importance of inflammation, especially that mediated by tumor necrosis factor-α (TNFα), in the development of acute seizures. TNFα modulates glutamate receptor trafficking via TNF receptor 1 (TNFR1) to cause increased excitatory synaptic transmission. Therefore, we hypothesized that an increase in TNFα signaling after TMEV infection might contribute to acute seizures. We found a significant increase in both mRNA and protein levels of TNFα and the protein expression ratio of TNF receptors (TNFR1:TNFR2) in the hippocampus, a brain region most likely involved in seizure initiation, after TMEV infection, which suggests that TNFα signaling, predominantly through TNFR1, may contribute to limbic hyperexcitability. An increase in hippocampal cell-surface glutamate receptor expression was also observed during acute seizures. Although pharmacological inhibition of TNFR1-mediated signaling had no effect on acute seizures, several lines of genetically modified animals deficient in either TNFα or TNFRs had robust changes in seizure incidence and severity after TMEV infection. TNFR2–/– mice were highly susceptible to developing acute seizures, suggesting that TNFR2-mediated signaling may provide beneficial effects during the acute seizure period. Taken together, the present results suggest that inflammation in the hippocampus, caused predominantly by TNFα signaling, contributes to hyperexcitability and acute seizures after TMEV infection. Pharmacotherapies designed to suppress TNFR1-mediated or augment TNFR2-mediated effects of TNFα may provide antiseizure and disease-modifying effects after central nervous system infection. PMID:28497109

  4. Lipid droplet binding thalidomide analogs activate endoplasmic reticulum stress and suppress hepatocellular carcinoma in a chemically induced transgenic mouse model

    PubMed Central

    2013-01-01

    Background Hepatocellular carcinoma (HCC) is the most frequent and aggressive primary tumor of the liver and it has limited treatment options. Results In this study, we report the in vitro and in vivo effects of two novel amino-trifluoro-phtalimide analogs, Ac-915 and Ac-2010. Both compounds bind lipid droplets and endoplasmic reticulum membrane, and interact with several proteins with chaperone functions (HSP60, HSP70, HSP90, and protein disulfide isomerase) as determined by affinity chromatography and resonant waveguide optical biosensor technology. Both compounds inhibited protein disulfide isomerase activity and induced cell death of different HCC cells at sub or low micromolar ranges detected by classical biochemical end-point assay as well as with real-time label-free measurements. Besides cell proliferation inhibiton, analogs also inhibited cell migration even at 250 nM. Relative biodistribution of the analogs was analysed in native tissue sections of different organs after administration of drugs, and by using fluorescent confocal microscopy based on the inherent blue fluorescence of the compounds. The analogs mainly accumulated in the liver. The effects of Ac-915 and Ac-2010 were also demonstrated on the advanced stages of hepatocarcinogenesis in a transgenic mouse model of N-nitrosodiethylamine (DEN)-induced HCC. Significantly less tumor development was found in the livers of the Ac-915- or Ac-2010-treated groups compared with control mice, characterized by less liver tumor incidence, fewer tumors and smaller tumor size. Conclusion These results imply that these amino-trifluoro-phthalimide analogs could serve potent clinical candidates against HCC alone or in combination with dietary polyunsaturated fatty acids. PMID:24268070

  5. Tracheal Dysplasia Precedes Bronchial Dysplasia in Mouse Model of N-Nitroso Trischloroethylurea Induced Squamous Cell Lung Cancer

    PubMed Central

    Ghosh, Moumita; Dwyer-Nield, Lori D.; Kwon, Jennifer B.; Barthel, Lea; Janssen, William J.; Merrick, Daniel T.; Keith, Robert L.

    2015-01-01

    Squamous cell lung cancer (SCC) is the second leading cause of lung cancer death in the US and has a 5-year survival rate of only 16%. Histological changes in the bronchial epithelium termed dysplasia are precursors to invasive SCC. However, the cellular mechanisms that cause dysplasia are unknown. To fill this knowledge gap, we used topical application of N-nitroso-tris chloroethylurea (NTCU) for 32 weeks to induce squamous dysplasia and SCC in mice. At 32 weeks the predominant cell type in the dysplastic airways was Keratin (K) 5 and K14 expressing basal cells. Notably, basal cells are extremely rare in the normal mouse bronchial epithelium but are abundant in the trachea. We therefore evaluated time-dependent changes in tracheal and bronchial histopathology after NTCU exposure (4, 8, 12, 16, 25 and 32 weeks). We show that tracheal dysplasia occurs significantly earlier than that of the bronchial epithelium (12 weeks vs. 25 weeks). This was associated with increased numbers of K5+/K14+ tracheal basal cells and a complete loss of secretory (Club cell secretory protein expressing CCSP+) and ciliated cells. TUNEL staining of NTCU treated tissues confirmed that the loss of CCSP+ and ciliated cells was not due to apoptosis. However, mitotic index (measured by bromodeoxyuridine incorporation) showed that NTCU treatment increased proliferation of K5+ basal cells in the trachea, and altered bronchial mitotic population from CCSP+ to K5+ basal cells. Thus, we demonstrate that NTCU-induced lung epithelial dysplasia starts in the tracheal epithelium, and is followed by basal cell metaplasia of the bronchial epithelium. This analysis extends our knowledge of the NTCU-SCC model by defining the early changes in epithelial cell phenotypes in distinct airway locations, and this may assist in identifying new targets for future chemoprevention studies. PMID:25860262

  6. Temporary inhibition of AMPA receptors induces a prolonged improvement of motor performance in a mouse model of juvenile Batten disease

    PubMed Central

    Kovács, Attila D.; Saje, Angelika; Wong, Andrew; Szénási, Gábor; Kiricsi, Péter; Szabó, Éva; Cooper, Jonathan D.; Pearce, David A.

    2011-01-01

    Mutations in the CLN3 gene cause juvenile Batten disease, a fatal pediatric neurodegenerative disorder. The Cln3-loss-of-function (Cln3Δex1-6) mouse model of the disease displays many pathological characteristics of the human disorder including a deficit in motor coordination. We have previously found that attenuation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)-type glutamate receptor activity in one-month-old Cln3Δex1-6 mice resulted in an immediate improvement of their motor skills. Here we show that at a later stage of the disease, in 6-7-month-old Cln3Δex1-6 mice, acute inhibition of AMPA receptors by a single intraperitoneal injection (1 mg/kg) of the non-competitive AMPA antagonist, EGIS-8332, does not have an immediate effect. Instead, it induces a delayed but prolonged improvement of motor skills. Four days after the injection of the AMPA antagonist, Cln3Δex1-6 mice reached the same motor skill level as their wild type (WT) counterparts, an improvement that persisted for an additional four days. EGIS-8332 was rapidly eliminated from the brain as measured by HPLC-MS/MS. Histological analysis performed 8 days after the drug administration revealed that EGIS-8332 did not have any impact upon glial activation or the survival of vulnerable neuron populations in 7-month-old Cln3Δex1-6 mice. We propose that temporary inhibition of AMPA receptors can induce a prolonged correction of the pre-existing abnormal glutamatergic neurotransmission in vivo for juvenile Batten disease. PMID:20971125

  7. The effect of isorhamnetin glycosides extracted from Opuntia ficus-indica in a mouse model of diet induced obesity.

    PubMed

    Rodríguez-Rodríguez, César; Torres, Nimbe; Gutiérrez-Uribe, Janet A; Noriega, Lilia G; Torre-Villalvazo, Iván; Leal-Díaz, Ana M; Antunes-Ricardo, Marilena; Márquez-Mota, Claudia; Ordaz, Guillermo; Chavez-Santoscoy, Rocío A; Serna-Saldivar, Sergio O; Tovar, Armando R

    2015-03-01

    A diet rich in polyphenols can ameliorate some metabolic alterations associated with obesity and type 2 diabetes. Opuntia ficus-indica (OFI) is a plant rich in isorhamnetin glycosides and is highly consumed in Mexico. The purpose of this research was to determine the metabolic effect of an OFI extract on a mouse model of diet-induced obesity and in isolated pancreatic islets. OFI extract was added to a high fat (HF) diet at a low (0.3%) or high (0.6%) dose and administered to C57BL/6 mice for 12 weeks. Mice fed the HF diet supplemented with the OFI extract gained less body weight and exhibited significantly lower circulating total cholesterol, LDL cholesterol and HDL cholesterol compared to those fed the HF diet alone. The HF-OFI diet fed mice presented lower glucose and insulin concentration than the HF diet fed mice. However, the HF-OFI diet fed mice tended to have higher insulin concentration than control mice. The OFI extract stimulated insulin secretion in vitro, associated with increased glucose transporter 2 (GLUT2) and peroxisome proliferator-activated receptor gamma (PPARγ) mRNA content. Furthermore, the OFI extract improved glucose tolerance, and additionally increased energy expenditure. These metabolic improvements were associated with reduced adipocyte size, increased hepatic IRS1 tyr-608 and S6 K thr-389 phosphorylation. OFI isorhamnetin glycosides also diminished the hepatic lipid content associated with reduced mRNA expression of the endoplasmic reticulum stress markers and lipogenic enzymes and increased mRNA expression of genes related to fatty acid oxidation. Overall, the OFI extract prevented the development of metabolic abnormalities associated with diet-induced obesity.

  8. Neuroprotective effects of alkaloids from Piper longum in a MPTP-induced mouse model of Parkinson's disease.

    PubMed

    Bi, Ying; Qu, Peng-Cheng; Wang, Qing-Song; Zheng, Li; Liu, Hao-Long; Luo, Rong; Chen, Xiao-Qing; Ba, Yin-Ying; Wu, Xia; Yang, Hui

    2015-01-01

    Alkaloids of Piper longum L. (Piperaceae) (PLA) include piperine and piperlonguminine. Piper longum and piperine have multiple biological properties including antioxidant activity. The present study investigated the neuroprotective effects of PLA in a MPTP-induced mouse model of Parkinson's disease. PLA was prepared by extracting the dry seed of P. longum using 85% ethanol. Adult male C57BL/6 mice were divided into eight groups of 12 rats each. Experimental and control groups received an equivalent volume of saline, 0.5% CMC-Na, and 0.1% Tween 80, treated groups received oral PLA (30, 60, and 120 mg/kg), other groups treated with piperine (60 mg/kg) or Madopar (50 mg/kg). The PLA prevention group (PLA-Pr) administrated PLA (120 mg/kg) for 1 week before MPTP challenged. Except for the PLA-Pr group, others were treated for seven consecutive weeks. Parkinson's disease was induced by injecting MPTP intraperitoneally (25 mg/kg) twice weekly for five consecutive weeks. Dopaminerigic (DA) neurons and their metabolism were detected by UFLC-MS/MS. Tyrosine hydroxylase (TH)-immunohistochemistry assay and Western blotting were performed. The antioxidant enzymatic levels were determined by kit-based assays. The LD50 value of PLA was determined at 1509 mg/kg of body weight. PLA (60 mg/kg) can significantly increase total movement time and distance (p < 0.05), increase levels of DA (p < 0.05) and DOPAC (p <  .05), increase glutathione (GSH) level and superoxide dismutase (SOD) activity (p < 0.05), and decrease the lipid peroxidation of malondiadehycle (MDA) (p < 0.05) in PLA-treated groups as compared with the control group. Our results indicate that PLA possesses neuroprotective effects and has ameliorative properties in dopaminergic neurons.

  9. Alterations in Nerve-Evoked Bladder Contractions in a Coronavirus-Induced Mouse Model of Multiple Sclerosis

    PubMed Central

    Malykhina, Anna P.; Barbe, Mary F.; Ruggieri, Michael R.

    2014-01-01

    Background Patients with neurodegenerative diseases such as multiple sclerosis, Parkinson’s, and Alzheimer’s often present with lower urinary tract symptoms (LUTS, urinary frequency, urgency, nocturia and retention) resulting from damage to the peripheral and central nervous systems. These studies were designed to examine the changes in the function of the bladder that may underlie neurogenic bladder dysfunction using a mouse model of demyelination in the CNS. Methods Bladders from 12 week old male C57BL/6J mice with coronavirus-induced encephalomyelitis (CIE, a chronic, progressive demyelinating disease model of human MS), and age-matched controls, were cut into 5–7 strips and suspended in physiological muscle baths for tension measurement in response to agonists and electric field stimulation (EFS). Experiments were performed on intact and denuded (with mucosa removed) bladder strips. Results The maximum effect of EFS was not significantly different between CIE and control bladders. Nerve-evoked EFS contractions (tetrodotoxin-sensitive) were blocked by a combination of atropine (cholinergic antagonist) and α,β-methylene ATP (an ATP analog that desensitizes purinergic receptors). In response to EFS, the α,β-methylene ATP-resistant (cholinergic) component of contraction was significantly reduced, while the atropine-resistant (purinergic) component was significantly increased in CIE bladders. Removal of the mucosa in CIE bladders restored the cholinergic component. Bethanechol (muscarinic receptor agonist) potency was significantly increased in CIE bladders. Conclusions Our data demonstrate a deficit in the nerve-evoked cholinergic component of contraction that is not due to the ability of the smooth muscle to respond to acetylcholine. We conclude that neurodegenerative bladder dysfunction in this model of multiple sclerosis may be due, in part, to pathologic changes in the mucosa that causes suppression of muscarinic receptor-mediated contractile response

  10. Alterations in nerve-evoked bladder contractions in a coronavirus-induced mouse model of multiple sclerosis.

    PubMed

    Lamarre, Neil S; Braverman, Alan S; Malykhina, Anna P; Barbe, Mary F; Ruggieri, Michael R

    2014-01-01

    Patients with neurodegenerative diseases such as multiple sclerosis, Parkinson's, and Alzheimer's often present with lower urinary tract symptoms (LUTS, urinary frequency, urgency, nocturia and retention) resulting from damage to the peripheral and central nervous systems. These studies were designed to examine the changes in the function of the bladder that may underlie neurogenic bladder dysfunction using a mouse model of demyelination in the CNS. Bladders from 12 week old male C57BL/6J mice with coronavirus-induced encephalomyelitis (CIE, a chronic, progressive demyelinating disease model of human MS), and age-matched controls, were cut into 5-7 strips and suspended in physiological muscle baths for tension measurement in response to agonists and electric field stimulation (EFS). Experiments were performed on intact and denuded (with mucosa removed) bladder strips. The maximum effect of EFS was not significantly different between CIE and control bladders. Nerve-evoked EFS contractions (tetrodotoxin-sensitive) were blocked by a combination of atropine (cholinergic antagonist) and α,β-methylene ATP (an ATP analog that desensitizes purinergic receptors). In response to EFS, the α,β-methylene ATP-resistant (cholinergic) component of contraction was significantly reduced, while the atropine-resistant (purinergic) component was significantly increased in CIE bladders. Removal of the mucosa in CIE bladders restored the cholinergic component. Bethanechol (muscarinic receptor agonist) potency was significantly increased in CIE bladders. Our data demonstrate a deficit in the nerve-evoked cholinergic component of contraction that is not due to the ability of the smooth muscle to respond to acetylcholine. We conclude that neurodegenerative bladder dysfunction in this model of multiple sclerosis may be due, in part, to pathologic changes in the mucosa that causes suppression of muscarinic receptor-mediated contractile response and augmentation of purinergic response of

  11. High-fat Western diet-induced obesity contributes to increased tumor growth in mouse models of human colon cancer.

    PubMed

    O'Neill, Ann Marie; Burrington, Christine M; Gillaspie, Erin A; Lynch, Darin T; Horsman, Melissa J; Greene, Michael W

    2016-12-01

    Strong epidemiologic evidence links colon cancer to obesity. The increasing worldwide incidence of colon cancer has been linked to the spread of the Western lifestyle, and in particular consumption of a high-fat Western diet. In this study, our objectives were to establish mouse models to examine the effects of high-fat Western diet-induced obesity on the growth of human colon cancer tumor xenografts, and to examine potential mechanisms driving obesity-linked human colon cancer tumor growth. We hypothesize that mice rendered insulin resistant due to consumption of a high-fat Western diet will show increased and accelerated tumor growth. Homozygous Rag1(tm1Mom) mice were fed either a low-fat Western diet or a high-fat Western diet (HFWD), then human colon cancer xenografts were implanted subcutaneously or orthotopically. Tumors were analyzed to detect changes in receptor tyrosine kinase-mediated signaling and expression of inflammatory-associated genes in epididymal white adipose tissue. In both models, mice fed an HFWD weighed more and had increased intra-abdominal fat, and tumor weight was greater compared with in the low-fat Western diet-fed mice. They also displayed significantly higher levels of leptin; however, there was a negative correlation between leptin levels and tumor size. In the orthotopic model, tumors and adipose tissue from the HFWD group displayed significant increases in both c-Jun N-terminal kinase activation and monocyte chemoattractant protein 1 expression, respectively. In conclusion, this study suggests that human colon cancer growth is accelerated in animals that are obese and insulin resistant due to the consumption of an HFWD. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Chronic intermittent hypoxia causes hepatitis in a mouse model of diet-induced fatty liver.

    PubMed

    Savransky, Vladimir; Bevans, Shannon; Nanayakkara, Ashika; Li, Jianguo; Smith, Philip L; Torbenson, Michael S; Polotsky, Vsevolod Y

    2007-10-01

    Obstructive sleep apnea (OSA) causes chronic intermittent hypoxia (CIH) during sleep. OSA is associated with nonalcoholic steatohepatitis (NASH) in obese individuals and may contribute to progression of nonalcoholic fatty liver disease from steatosis to NASH. The purpose of this study was to examine whether CIH induces inflammatory changes in the liver in mice with diet-induced hepatic steatosis. C57BL/6J mice (n = 8) on a high-fat, high-cholesterol diet were exposed to CIH for 6 mo and were compared with mice on the same diet exposed to intermittent air (control; n = 8). CIH caused liver injury with an increase in serum ALT (461 +/- 58 U/l vs. 103 +/- 16 U/l in the control group; P < 0.01) and AST (637 +/- 37 U/l vs. 175 +/- 13 U/l in the control group; P < 0.001), whereas alkaline phosphatase and total bilirubin levels were unchanged. Histology revealed hepatic steatosis in both groups, with mild accentuation of fat staining in the zone 3 hepatocytes in mice exposed to CIH. Animals exposed to CIH exhibited lobular inflammation and fibrosis in the liver, which were not evident in control mice. CIH caused significant increases in lipid peroxidation in serum and liver tissue; significant increases in hepatic levels of myeloperoxidase and proinflammatory cytokines IL-1beta, IL-6, and CXC chemokine MIP-2; a trend toward an increase in TNF-alpha; and an increase in alpha1(I)-collagen mRNA. We conclude that CIH induces lipid peroxidation and inflammation in the livers of mice on a high-fat, high-cholesterol diet.

  13. Protection from diclofenac-induced liver injury by Yulangsan polysaccharide in a mouse model.

    PubMed

    Huang, Jianchun; Nguyen, Vanphuc; Tang, Xiaojun; Wei, Jinbin; Lin, Xing; Lai, Zefeng; Doan, Vanminh; Xie, Qiuqiao; Huang, Renbin

    2016-12-04

    Millettia pulchra Kurz var-laxior (Dunn) Z. Wei, a wild-growing plant of the family Fabaceae is known to possess multifarious medicinal properties. Yulangsan polysaccharide (YLSPS) is a chief ingredient of its root, which has been used in Chinese traditional medicine with a long history for remedy of acute or chronic hepatitis and jaundice. To investigate the ability of the YLSPS to protect against diclofenac-induced hepatotoxicity in mice. Mice were orally treated with YLSPS daily 1h after the injection of diclofenac for 2 weeks. Dimethyl diphenyl bicarboxylate was used as a reference drug. YLSPS effectively reduced the elevated levels of serum alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase and enhanced the reduction of superoxide dismutase, catalase, and glutathione peroxidase activities in the liver. Moreover, the content of malondialdehyde was reduced by treatment with YLSPS, and histological findings also confirmed the anti-hepatotoxic activity. In addition, YLSPS significantly inhibited proinflammatory mediators, such as tumor necrosis factor-alpha and interleukin 1 beta. YLSPS also enhanced mitochondrial antioxidants and inhibited cell death by preventing the down-regulation of Bcl-2 and the up-regulation and release of Bax along with caspase 9 and 3 activity; thus, these findings confirm the involvement of mitochondria in diclofenac-induced apoptosis. The results indicate that protective effects of YLSPS against diclofenac-induced acute hepatic injury may rely on its effect on reducing oxidative stress, suppressing inflammatory responses, and improving drug-metabolizing enzyme activity in the liver. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Linking immune-mediated arterial inflammation and cholesterol-induced atherosclerosis in a transgenic mouse model

    PubMed Central

    Ludewig, Burkhard; Freigang, Stefan; Jäggi, Martin; Kurrer, Michael O.; Pei, Yao-Chang; Vlk, Lenka; Odermatt, Bernhard; Zinkernagel, Rolf M.; Hengartner, Hans

    2000-01-01

    Arterial inflammatory responses are thought to be a significant component of atherosclerotic disease. We describe here, using a transgenic approach, the mutual perpetuation of immune-mediated arterial inflammation and cholesterol-induced atherosclerosis. Mice expressing the bacterial transgene β-galactosidase exclusively in cardiomyocytes and in smooth muscle cells in lung arteries and the aorta (SM-LacZ), and hypercholesterolemic apolipoprotein E-deficient SM-LacZ mice (SM-LacZ/apoE−/−) developed myocarditis and arteritis after immunization with dendritic cells presenting a β-galactosidase-derived immunogenic peptide. Hypercholesterolemia amplified acute arteritis and perpetuated chronic arterial inflammation in SM-LacZ/apoE−/− mice, but had no major impact on acute myocarditis or the subsequent development of dilated cardiomyopathy. Conversely, arteritis significantly accelerated cholesterol-induced atherosclerosis. Taken together, these data demonstrate that the linkage of immune-mediated arteritis and hypercholesterolemia favors initiation and maintenance of atherosclerotic lesion formation. Therapeutic strategies to prevent or disrupt such self-perpetuating vicious circles may be crucial for the successful treatment of atherosclerosis. PMID:11050173

  15. Oral probiotic bacterial administration suppressed allergic responses in an ovalbumin-induced allergy mouse model.

    PubMed

    Kim, Hyeyoung; Kwack, Kubum; Kim, Dae-Young; Ji, Geun Eog

    2005-08-01

    This study investigated whether orally administered probiotic bacteria (Bifidobacterium bifidum and Lactobacillus casei) and a gram-negative bacterium (Escherichia coli) function as allergic immune modulators to prevent food allergy, according to the hygiene hypothesis. C3H/HeJ mice were sensitized with ovalbumin (OVA) and cholera toxin for 5 weeks. After sensitization, the OVA-induced mice that were not treated with bacteria had significantly increased levels of OVA-specific IgE, total IgE, and IgG1 in sera, as well as scab-covered tails. In comparison, groups treated with B. bifidum BGN4 (BGN4), L. casei 911 (L. casei), or Escherichia coli MC4100 (E. coli) had decreased levels of OVA-specific IgE, total IgE, and IgG1, and decreased levels of mast cell degranulation and tail scabs. OVA-specific IgA levels were decreased in BGN4- and L. casei-treated groups. In conclusion, administration of E. coli, BGN4, or L. casei decreased the OVA-induced allergy response. However, a normal increase in body weight was inhibited in the E. coli-treated mice and in the montreated mice groups during allergy sensitization. Thus, BGN4 and L. casei appear to be useful probiotic bacteria for the prevention of allergy.

  16. Investigation of Hepatoprotective Activity of Induced Pluripotent Stem Cells in the Mouse Model of Liver Injury

    PubMed Central

    Chiang, Chih-Hung; Chang, Ching-Chih; Huang, Hui-Chun; Chen, Yi-Jen; Tsai, Ping-Hsing; Jeng, Shaw-Yeu; Hung, Shuen-Iu; Hsieh, Jung-Hung; Huang, Hsu-Shan; Chiou, Shih-Hwa; Lee, Fa-Yauh; Lee, Shou-Dong

    2011-01-01

    To date liver transplantation is the only effective treatment for end-stage liver diseases. Considering the potential of pluripotency and differentiation into tridermal lineages, induced pluripotent stem cells (iPSCs) may serve as an alternative of cell-based therapy. Herein, we investigated the effect of iPSC transplantation on thioacetamide- (TAA-) induced acute/fulminant hepatic failure (AHF) in mice. Firstly, we demonstrated that iPSCs had the capacity to differentiate into hepatocyte-like cells (iPSC-Heps) that expressed various hepatic markers, including albumin, α-fetoprotein, and hepatocyte nuclear factor-3β, and exhibited biological functions. Intravenous transplantation of iPSCs effectively reduced the hepatic necrotic area, improved liver functions and motor activity, and rescued TAA-treated mice from lethal AHF. 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate cell labeling revealed that iPSCs potentially mobilized to the damaged liver area. Taken together, iPSCs can effectively rescue experimental AHF and represent a potentially favorable cell source of cell-based therapy. PMID:21808596

  17. Gut microbial metabolite TMAO contributes to renal dysfunction in a mouse model of diet-induced obesity.

    PubMed

    Sun, Guangping; Yin, Zhongmin; Liu, Naiquan; Bian, Xiaohui; Yu, Rui; Su, Xiaoxiao; Zhang, Beiru; Wang, Yanqiu

    2017-11-18

    Emerging evidence shows that obesity induces renal injury and is an independent risk factor for the development of chronic kidney disease (CKD), even without diabetes or hyperglycemia. Although multiple metabolic factors have been suggested to account for obesity-associated renal injury, the precious underlying mechanisms are not completely understood. Recent study shows that increased trimethylamine N-Oxide (TMAO), a gut microbiota-generated metabolite, directly contributes to renal interstitial fibrosis and dysfunction. Circulating TMAO is elevated in high-fat diets (HFD)-induced obese animals. Here we tested the hypothesis that elevated TMAO might play a contributory role in the development of renal dysfunction in a mouse model of HFD-induced obesity that mimics human obesity syndrome. Male C57BL/6 mice received either a low-fat diet (LFD) or a HFD, without or with 3,3-Dimethyl-1-butanol (DMB, a trimethylamine formation inhibitor) for 16 weeks. Compared with mice fed a LFD, mice fed a HFD developed obesity and metabolic disorders, and exhibited significantly elevated plasma TMAO levels at the end of the experiment. Molecular and morphological studies revealed that renal interstitial fibrosis, phosphorylation of SMAD3 (a key regulator of renal fibrosis), expression of kidney injury molecule-1 and plasma cystatin C were significantly increased in mice fed a HFD, compared with mice fed a LFD. Additionally, expression of NADPH oxidase-4 and pro-inflammatory cytokines tumor necrosis factor-α and interleukin-1 β was also augmented in mice fed a HFD as compared to mice fed a LFD. These molecular and morphological alterations observed in mice fed a HFD were prevented by concomitant treatment with DMB, which reduced plasma TMAO levels. Furthermore, elevated circulating TMAO levels were positively correlated with increased renal interstitial fibrosis and expression of kidney injury molecule-1. Notable, there was no difference in blood pressure among groups, and DMB

  18. Mouse models for neurological disease.

    PubMed

    Hafezparast, Majid; Ahmad-Annuar, Azlina; Wood, Nicholas W; Tabrizi, Sarah J; Fisher, Elizabeth M C

    2002-08-01

    The mouse has many advantages over human beings for the study of genetics, including the unique property that genetic manipulation can be routinely carried out in the mouse genome. Most importantly, mice and human beings share the same mammalian genes, have many similar biochemical pathways, and have the same diseases. In the minority of cases where these features do not apply, we can still often gain new insights into mouse and human biology. In addition to existing mouse models, several major programmes have been set up to generate new mouse models of disease. Alongside these efforts are new initiatives for the clinical, behavioural, and physiological testing of mice. Molecular genetics has had a major influence on our understanding of the causes of neurological disorders in human beings, and much of this has come from work in mice.

  19. Hypergravity-Induced Changes in Hematological and Lymphocyte Function Parameters in a Mouse Model

    NASA Technical Reports Server (NTRS)

    Gridley, Daila S.; Miller, Glen M.; Nelson, Gregory A.; Pecaut, Michael J.

    2003-01-01

    The purpose of this study was to quantify hypergravity-induced changes in hematological and lymphocyte characteristics. Mice were subjected to 1, 2, and 3G and euthanized on days 1 , 4, 7, 10, and 21. The data show that increased gravitational force resulted in persistent hypothermia. Red blood cell (RBC) counts, hematocrit, and hemoglobin were reduced by day 21, whereas hemoglobin and RBC volume were low at most times of measurement. A transient increase was noted in platelet numbers in the 3G group. Fluctuations in spontaneous blastogenesis of lymphocytes were dependent upon centrifugation time and not gravity. Changes in splenocyte responses to T and B cell mitogens due to gravity were also noted. Cytokine production was primarily affected during the first week; IL-2, IL-4 and TNF-alpha were increased, whereas IFN-gamma was decreased. These findings indicate that altered gravity can influence both hematological and functional variables that may translate into serious health consequences.

  20. Hypergravity-Induced Changes in Hematological and Lymphocyte Function Parameters in a Mouse Model

    NASA Technical Reports Server (NTRS)

    Gridley, Daila S.; Miller, Glen M.; Nelson, Gregory A.; Pecaut, Michael J.

    2003-01-01

    The purpose of this study was to quantify hypergravity-induced changes in hematological and lymphocyte characteristics. Mice were subjected to 1, 2, and 3G and euthanized on days 1 , 4, 7, 10, and 21. The data show that increased gravitational force resulted in persistent hypothermia. Red blood cell (RBC) counts, hematocrit, and hemoglobin were reduced by day 21, whereas hemoglobin and RBC volume were low at most times of measurement. A transient increase was noted in platelet numbers in the 3G group. Fluctuations in spontaneous blastogenesis of lymphocytes were dependent upon centrifugation time and not gravity. Changes in splenocyte responses to T and B cell mitogens due to gravity were also noted. Cytokine production was primarily affected during the first week; IL-2, IL-4 and TNF-alpha were increased, whereas IFN-gamma was decreased. These findings indicate that altered gravity can influence both hematological and functional variables that may translate into serious health consequences.

  1. Increased 4R-Tau Induces Pathological Changes in a Human-Tau Mouse Model.

    PubMed

    Schoch, Kathleen M; DeVos, Sarah L; Miller, Rebecca L; Chun, Seung J; Norrbom, Michaela; Wozniak, David F; Dawson, Hana N; Bennett, C Frank; Rigo, Frank; Miller, Timothy M

    2016-06-01

    Pathological evidence for selective four-repeat (4R) tau deposition in certain dementias and exon 10-positioned MAPT mutations together suggest a 4R-specific role in causing disease. However, direct assessments of 4R toxicity have not yet been accomplished in vivo. Increasing 4R-tau expression without change to total tau in human tau-expressing mice induced more severe seizures and nesting behavior abnormality, increased tau phosphorylation, and produced a shift toward oligomeric tau. Exon 10 skipping could also be accomplished in vivo, providing support for a 4R-tau targeted approach to target 4R-tau toxicity and, in cases of primary MAPT mutation, eliminate the disease-causing mutation. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. FoxO3 induces reversible cardiac atrophy and autophagy in a transgenic mouse model.

    PubMed

    Schips, Tobias G; Wietelmann, Astrid; Höhn, Katharina; Schimanski, Silvia; Walther, Paul; Braun, Thomas; Wirth, Thomas; Maier, Harald J

    2011-09-01

    The transcription factor FoxO3 contributes to anti-hypertrophic signalling in the heart presumably by regulating autophagic-lysosomal and ubiquitin-proteasomal pathways. We wanted to study FoxO3 function in the adult heart in vivo by expressing a constitutively active mutant of FoxO3 in transgenic mice. We generated transgenic mice in which a tetracycline-regulated constitutively active FoxO3 transgene (FoxO3-CA) is controlled by the heart-specific α-myosin heavy chain promoter. Cardiac-specific expression in adult mice resulted in a decrease in heart weight by 25% and a reduction in stroke volume and cardiac output. The decrease in heart size was due to a reduction in the size of individual cardiomyocytes, whereas there was no evidence for increased cell death. FoxO3 activation was accompanied by the initiation of a foetal gene programme with increased expression of β-myosin heavy chain and natriuretic peptides, and by the activation of AKT and mammalian target of rapamycin signalling. As shown by electron microscopy, FoxO3-CA massively stimulated destruction of sarcomeres and autophagy, and induced expression of LC3-II and BNIP3. When FoxO3-CA expression was shut off in affected mice, cardiac atrophy and dysfunction as well as molecular markers were normalized within 1 month. FoxO3-CA expression did not counteract hypertrophy induced by transverse aortic constriction. Heart-specific expression of constitutively active FoxO3 leads to reversible heart atrophy. The reversibility of the phenotype suggests a remarkable ability of the adult myocardium to respond to different regulatory cues.

  3. Alcohol induced hepatic degeneration in a hepatitis C virus core protein transgenic mouse model.

    PubMed

    Noh, Dong-Hyung; Lee, Eun-Joo; Kim, Ah-Young; Lee, Eun-Mi; Min, Chang-Woo; Kang, Kyung-Ku; Lee, Myeong-Mi; Kim, Sang-Hyeob; Sung, Soo-Eun; Hwang, Meeyul; Yu, Dae-Yeul; Jeong, Kyu-Shik

    2014-03-07

    Hepatitis C virus (HCV) has become a major public health issue. It is prevalent in most countries. HCV infection frequently begins without clinical symptoms, before progressing to persistent viremia, chronic hepatitis, cirrhosis and hepatocellular carcinoma (HCC) in the majority of patients (70% to 80%). Alcohol is an independent cofactor that accelerates the development of HCC in chronic hepatitis C patients. The purpose of the current study was to evaluate ethanol-induced hepatic changes in HCV core-Tg mice and mutant core Tg mice. Wild type (NTG), core wild-Tg mice (TG-K), mutant core 116-Tg mice (TG-116) and mutant core 99-Tg mice (TG-99) were used in this investigation. All groups were given drinking water with 10% ethanol and 5% sucrose for 13 weeks. To observe liver morphological changes, we performed histopathological and immunohistochemical examinations. Histopathologically, NTG, TG-K and TG-116 mice showed moderate centrilobular necrosis, while severe centrilobular necrosis and hepatocyte dissociation were observed in TG-99 mice with increasing lymphocyte infiltration and piecemeal necrosis. In all groups, a small amount of collagen fiber was found, principally in portal areas. None of the mice were found to have myofibroblasts based on immunohistochemical staining specific for α-SMA. CYP2E1-positive cells were clearly detected in the centrilobular area in all groups. In the TG-99 mice, we also observed cells positive for CK8/18, TGF-β1 and phosphorylated (p)-Smad2/3 and p21 around the necrotic hepatocytes in the centrilobular area (p < 0.01). Based on our data, alcohol intake induced piecemeal necrosis and hepatocyte dissociation in the TG-99 mice. These phenomena involved activation of the TGF-β1/p-Smad2/3/p21 signaling pathway in hepatocytes. Data from this study will be useful for elucidating the association between alcohol intake and HCV infection.

  4. Mouse Models of Gastric Carcinogenesis

    PubMed Central

    Yu, Sungsook; Yang, Mijeong

    2014-01-01

    Gastric cancer is one of the most common cancers in the world. Animal models have been used to elucidate the details of the molecular mechanisms of various cancers. However, most inbred strains of mice have resistance to gastric carcinogenesis. Helicobacter infection and carcinogen treatment have been used to establish mouse models that exhibit phenotypes similar to those of human gastric cancer. A large number of transgenic and knockout mouse models of gastric cancer have been developed using genetic engineering. A combination of carcinogens and gene manipulation has been applied to facilitate development of advanced gastric cancer; however, it is rare for mouse models of gastric cancer to show aggressive, metastatic phenotypes required for preclinical studies. Here, we review current mouse models of gastric carcinogenesis and provide our perspectives on future developments in this field. PMID:25061535

  5. Heterozygous P53 knockout mouse model for dehydropyrrolizidine alkaloid-induced carcinogenesis

    USDA-ARS?s Scientific Manuscript database

    Dehydropyrrolizidine alkaloids are a large, structurally diverse group of plant-derived protoxins that are potentially carcinogenic. With worldwide significance, these alkaloids can contaminate or be naturally present in the human food supply. To develop a small animal model that may be used to com...

  6. Cashew apple extract inhibition of fat storage and insulin resistance in the diet-induced obesity mouse model.

    PubMed

    Beejmohun, Vickram; Mignon, Cyril; Mazollier, Aude; Peytavy-Izard, Marie; Pallet, Dominique; Dornier, Manuel; Chapal, Nicolas

    2015-01-01

    The cashew apple is an unvalued by-product from the cashew nut industry, of which millions of tonnes are simply discarded globally. Interestingly, however, cashew apple nutrients may have beneficial effects for health even if these are still poorly described. The present study was designed to evaluate the effect of a hydro-alcoholic extract of cashew apple (cashew apple extract; CAE; Cashewin(™)) on obesity and diabetes, in two experimental designs using the diet-induced obesity (DIO) mouse model. First, in the preventive design, mice were treated orally with the CAE at the dose of 200 mg/kg body weight from the first day under a high-fat diet (HFD) and during 8 weeks thereafter. Second, in the curative design, the animals were first maintained under the HFD for 4 weeks and then treated with the CAE for a further 4 weeks under the same regimen. For both experimental designs, body weight, peri-epididymal adipose tissue, liver weight, food consumption, glycaemia, insulinaemia and insulin resistance were assessed. In both designs, the CAE significantly reduced body-weight gain and fat storage in both the peri-epididymal adipose tissue and the liver for mice under the HFD. This was achieved without modifying their energy consumption. Furthermore, glycaemia, insulinaemia and insulin resistance (homeostasis model assessment-insulin resistance) of the DIO mice were significantly lowered compared with the control group. Thus, a well-designed hydro-alcoholic extract of cashew apple could provide an attractive nutritional food ingredient to help support the management of body weight and associated metabolic parameters such as blood glucose and insulin levels.

  7. S-SCAM, A Rare Copy Number Variation Gene, Induces Schizophrenia-Related Endophenotypes in Transgenic Mouse Model

    PubMed Central

    Zhang, Nanyan; Zhong, Peng; Shin, Seung Min; Metallo, Jacob; Danielson, Eric; Olsen, Christopher M.; Liu, Qing-song

    2015-01-01

    Accumulating genetic evidence suggests that schizophrenia (SZ) is associated with individually rare copy number variations (CNVs) of diverse genes, often specific to single cases. However, the causality of these rare mutations remains unknown. One of the rare CNVs found in SZ cohorts is the duplication of Synaptic Scaffolding Molecule (S-SCAM, also called MAGI-2), which encodes a postsynaptic scaffolding protein controlling synaptic AMPA receptor levels, and thus the strength of excitatory synaptic transmission. Here we report that, in a transgenic mouse model simulating the duplication conditions, elevation of S-SCAM levels in excitatory neurons of the forebrain was sufficient to induce multiple SZ-related endophenotypes. S-SCAM transgenic mice showed an increased number of lateral ventricles and a reduced number of parvalbumin-stained neurons. In addition, the mice exhibited SZ-like behavioral abnormalities, including hyperlocomotor activity, deficits in prepulse inhibition, increased anxiety, impaired social interaction, and working memory deficit. Notably, the S-SCAM transgenic mice showed a unique sex difference in showing these behavioral symptoms, which is reminiscent of human conditions. These behavioral abnormalities were accompanied by hyperglutamatergic function associated with increased synaptic AMPA receptor levels and impaired long-term potentiation. Importantly, reducing glutamate release by the group 2 metabotropic glutamate receptor agonist LY379268 ameliorated the working memory deficits in the transgenic mice, suggesting that hyperglutamatergic function underlies the cognitive functional deficits. Together, these results contribute to validate a causal relationship of the rare S-SCAM CNV and provide supporting evidence for the rare CNV hypothesis in SZ pathogenesis. Furthermore, the S-SCAM transgenic mice provide a valuable new animal model for studying SZ pathogenesis. PMID:25653350

  8. CNTF Attenuates Vasoproliferative Changes Through Upregulation of SOCS3 in a Mouse-Model of Oxygen-Induced Retinopathy

    PubMed Central

    Bucher, Felicitas; Walz, Johanna M.; Bühler, Anima; Aguilar, Edith; Lange, Clemens; Diaz-Aguilar, Sophia; Martin, Gottfried; Schlunck, Günther; Agostini, Hansjürgen; Friedlander, Martin; Stahl, Andreas

    2016-01-01

    Purpose Retinal vascular disease represents a major cause for vision loss in the Western world. Recent research has shown that neuronal and vascular damage are closely related in retinal disease. Ciliary neurotrophic factor (CNTF) is a well-studied neurotrophic factor that is currently being tested in clinical trials for the treatment of retinal degenerative diseases and macular telangiectasia. However, little is known about its effect on retinal vasculature. In this study, we investigate the effects of CNTF in retinal neovascular disease using the mouse model of oxygen-induced retinopathy (OIR). Methods Newborn pups were exposed to 75% oxygen from postnatal day (P)7 to P12 and subsequently returned to room air. Ciliary neurotrophic factor was injected intravitreally at OIR P12 and the vaso-obliterated and neovascular areas were quantified at OIR P17. Immunohistochemistry, RNA, and protein analysis were used to identify CNTF-responsive cells. In vitro experiments were performed to analyze the effect of CNTF on endothelial and astroglial cells. Results In the OIR model, CNTF facilitated capillary regrowth and attenuated preretinal neovascularization in a dose-dependent manner. The protective effect of CNTF was mediated via activation of the JAK/STAT3/SOCS3 signaling pathway. Immunohistochemical studies identified endothelial cells among others as CNTF-responsive cells in the retina. In vitro studies confirmed the anti-angiogenic effect of CNTF on endothelial cell sprouting. Conclusions This study provides evidence for a therapeutic potential of CNTF beyond degenerative retinal disease. Vasoproliferative retinopathies may benefit from a CNTF-dependent and SOCS3-mediated angiomodulatory effect. PMID:27494343

  9. Mechanisms of amiodarone and valproic acid induced liver steatosis in mouse in vivo act as a template for other hepatotoxicity models.

    PubMed

    Vitins, Alexa P; Kienhuis, Anne S; Speksnijder, Ewoud N; Roodbergen, Marianne; Luijten, Mirjam; van der Ven, Leo T M

    2014-08-01

    Liver injury is the leading cause of drug-induced toxicity. For the evaluation of a chemical compound to induce toxicity, in this case steatosis or fatty liver, it is imperative to identify markers reflective of mechanisms and processes induced upon exposure, as these will be the earliest changes reflective of disease. Therefore, an in vivo mouse toxicogenomics study was completed to identify common pathways, nuclear receptor (NR) binding sites, and genes regulated by three known human steatosis-inducing compounds, amiodarone (AMD), valproic acid (VPA), and tetracycline (TET). Over 1, 4, and 11 days of treatment, AMD induced changes in clinical chemistry parameters and histopathology consistent with steatosis. Common processes and NR binding sites involved in lipid, retinol, and drug metabolism were found for AMD and VPA, but not for TET, which showed no response. Interestingly, the pattern of enrichment of these common pathways and NR binding sites over time was unique to each compound. Eleven biomarkers of steatosis were identified as dose responsive and time sensitive to toxicity for AMD and VPA. Finally, this in vivo mouse study was compared to an AMD rat in vivo, an AMD mouse primary hepatocyte, and a VPA human primary hepatocyte study to identify concordance for steatosis. We conclude that concordance is found on the process level independent of species, model or dose*time point.

  10. Curcumin inhibits gastric inflammation induced by Helicobacter pylori infection in a mouse model.

    PubMed

    Santos, António M; Lopes, Teresa; Oleastro, Mónica; Gato, Inês Vale; Floch, Pauline; Benejat, Lucie; Chaves, Paula; Pereira, Teresa; Seixas, Elsa; Machado, Jorge; Guerreiro, António S

    2015-01-06

    Helicobacter pylori (H. pylori) infection triggers a sequence of gastric alterations starting with an inflammation of the gastric mucosa that, in some cases, evolves to gastric cancer. Efficient vaccination has not been achieved, thus it is essential to find alternative therapies, particularly in the nutritional field. The current study evaluated whether curcumin could attenuate inflammation of the gastric mucosa due to H. pylori infection. Twenty-eight C57BL/6 mice, were inoculated with the H. pylori SS1 strain; ten non-infected mice were used as controls. H. pylori infection in live mice was followed-up using a modified 13C-Urea Breath Test (13C-UBT) and quantitative real-time polymerase chain reaction (PCR). Histologically confirmed, gastritis was observed in 42% of infected non-treated mice at both 6 and 18 weeks post-infection. These mice showed an up-regulation of the expression of inflammatory cytokines and chemokines, as well as of toll-like receptors (TLRs) and MyD88, at both time points. Treatment with curcumin decreased the expression of all these mediators. No inflammation was observed by histology in this group. Curcumin treatment exerted a significant anti-inflammatory effect in H. pylori-infected mucosa, pointing to the promising role of a nutritional approach in the prevention of H. pylori induced deleterious inflammation while the eradication or prevention of colonization by effective vaccine is not available.

  11. Curcumin Inhibits Gastric Inflammation Induced by Helicobacter Pylori Infection in a Mouse Model

    PubMed Central

    Santos, António M.; Lopes, Teresa; Oleastro, Mónica; Gato, Inês Vale; Floch, Pauline; Benejat, Lucie; Chaves, Paula; Pereira, Teresa; Seixas, Elsa; Machado, Jorge; Guerreiro, António S.

    2015-01-01

    Helicobacter pylori (H. pylori) infection triggers a sequence of gastric alterations starting with an inflammation of the gastric mucosa that, in some cases, evolves to gastric cancer. Efficient vaccination has not been achieved, thus it is essential to find alternative therapies, particularly in the nutritional field. The current study evaluated whether curcumin could attenuate inflammation of the gastric mucosa due to H. pylori infection. Twenty-eight C57BL/6 mice, were inoculated with the H. pylori SS1 strain; ten non-infected mice were used as controls. H. pylori infection in live mice was followed-up using a modified 13C-Urea Breath Test (13C-UBT) and quantitative real-time polymerase chain reaction (PCR). Histologically confirmed, gastritis was observed in 42% of infected non-treated mice at both 6 and 18 weeks post-infection. These mice showed an up-regulation of the expression of inflammatory cytokines and chemokines, as well as of toll-like receptors (TLRs) and MyD88, at both time points. Treatment with curcumin decreased the expression of all these mediators. No inflammation was observed by histology in this group. Curcumin treatment exerted a significant anti-inflammatory effect in H. pylori-infected mucosa, pointing to the promising role of a nutritional approach in the prevention of H. pylori induced deleterious inflammation while the eradication or prevention of colonization by effective vaccine is not available. PMID:25569625

  12. Gongjin-Dan Enhances Hippocampal Memory in a Mouse Model of Scopolamine-Induced Amnesia

    PubMed Central

    Lee, Jin-Seok; Hong, Sung-Shin; Kim, Hyeong-Geug; Lee, Hye-Won; Kim, Won-Yong; Lee, Sam-Keun; Son, Chang-Gue

    2016-01-01

    We evaluated the neuropharmacological effects of Gongjin-Dan (GJD) on the memory impairment caused by scopolamine injection. BALB/c mice were orally treated with GJD (100, 200, or 400 mg/kg, daily) or tacrine (THA, 10 mg/kg) for 10 days, and scopolamine (2 mg/kg) was injected intraperitoneally. The radial arm maze and passive avoidance tests were performed to evaluate the animal’s learning and memory. Scopolamine increased the task completing time, the number of total errors (reference and working memory error) in the radial arm maze task, and the latency time in the passive avoidance test, which were significantly ameliorated by treatment with GJD. The GJD treatment also attenuated the scopolamine-induced hyperactivation of acetylcholinesterase activity, and suppression of the expression of brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF) and their receptors in the hippocampus. These effects of GJD were supported by both the doublecortin (DCX)-positive staining and Nissl staining, which were used to measure hippocampal neurogenesis and atrophy, respectively. These findings strongly suggest that GJD exerts a potent anti-amnesic effect, and its underlying mechanism might involve the modulation of cholinergic activity. PMID:27483466

  13. Antiaging Effect of Inula britannica on Aging Mouse Model Induced by D-Galactose

    PubMed Central

    Chen, Hui; Long, Yuanyuan; Guo, Lei

    2016-01-01

    The antiaging effect of Inula britannica flower total flavonoids (IBFTF) on aging mice induced by D-galactose and its mechanism was examined in this study. From the results, the biochemical indexes and histological analysis of skin tissues showed that IBFTF could effectively improve the antioxidant enzyme activity of the aging mice, enhance the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) of skin tissue, and decrease the malondialdehyde (MDA) content. Besides, IBFTF could maintain the skin collagen, hydroxyproline (Hyp), dermal thickness, and moisture content. Meanwhile, IBFTF could significantly reduce the number of cells arrested in G0/G1 phase, and from the point of view of protein and mRNA expression level in skin tissue, IBFTF could significantly increase the expression of Sirt1 and CyclinD1 but decrease the expression of p16 and p21, and its effect was not less than that of the well-known vitamin E (VE). Overall, these results seem to be implying that IBFTF is a potential natural anti-skin aging agent with great antioxidant ability. PMID:27066100

  14. Differentially expressed miRNAs in oxygen-induced retinopathy newborn mouse models

    PubMed Central

    Wang, Yunpeng; Wu, Suying; Yang, Yang; Peng, Fen; Li, Qintao; Tian, Peng; Xiang, Erying; Liang, Honglu; Wang, Beibei; Zhou, Xiaoyu; Huang, Hua; Zhou, Xiaoguang

    2016-01-01

    The present study aimed to identify microRNAs (miRNAs) involved in regulating retinal neovascularization and retinopathy of prematurity (ROP). A total of 80 healthy C57BL/6 neonatal mice were randomly divided into the oxygen-induced retinopathy (OIR) group (n=40), in which 7-day-old mice were maintained in 75% oxygen conditions for 5 days, or the control group (n=40). Following collection of retinal tissue, retinal angiography and hematoxylin and eosin (H&E) staining were performed. Total RNA was also extracted from retinal tissue, and miRNA microarrays and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) were performed to identify differentially expressed miRNAs in the two groups. Retinal angiography and H&E staining revealed damage to retinas in the OIR group. Compared with the control group, 67 miRNAs were differentially expressed in the OIR group, of which 34 were upregulated and 33 were downregulated. Of these differentially expressed miRNAs, 32 exhibited a fold change ≥2, of which 21 were upregulated and 11 were downregulated. The results of RT-qPCR for miR-130a-3p and miR-5107-5p were in accordance with those of the miRNA microarray. The newly identified miRNAs may be important in the development of ROP, and may provide a basis for future research into the mechanisms of ROP. PMID:27922698

  15. Gongjin-Dan Enhances Hippocampal Memory in a Mouse Model of Scopolamine-Induced Amnesia.

    PubMed

    Lee, Jin-Seok; Hong, Sung-Shin; Kim, Hyeong-Geug; Lee, Hye-Won; Kim, Won-Yong; Lee, Sam-Keun; Son, Chang-Gue

    2016-01-01

    We evaluated the neuropharmacological effects of Gongjin-Dan (GJD) on the memory impairment caused by scopolamine injection. BALB/c mice were orally treated with GJD (100, 200, or 400 mg/kg, daily) or tacrine (THA, 10 mg/kg) for 10 days, and scopolamine (2 mg/kg) was injected intraperitoneally. The radial arm maze and passive avoidance tests were performed to evaluate the animal's learning and memory. Scopolamine increased the task completing time, the number of total errors (reference and working memory error) in the radial arm maze task, and the latency time in the passive avoidance test, which were significantly ameliorated by treatment with GJD. The GJD treatment also attenuated the scopolamine-induced hyperactivation of acetylcholinesterase activity, and suppression of the expression of brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF) and their receptors in the hippocampus. These effects of GJD were supported by both the doublecortin (DCX)-positive staining and Nissl staining, which were used to measure hippocampal neurogenesis and atrophy, respectively. These findings strongly suggest that GJD exerts a potent anti-amnesic effect, and its underlying mechanism might involve the modulation of cholinergic activity.

  16. Toxoplasma gondii infection induces suppression in a mouse model of allergic airway inflammation.

    PubMed

    Fenoy, Ignacio M; Chiurazzi, Romina; Sánchez, Vanesa R; Argenziano, Mariana A; Soto, Ariadna; Picchio, Mariano S; Martin, Valentina; Goldman, Alejandra

    2012-01-01

    Allergic asthma is an inflammatory disorder characterized by infiltration of the airway wall with inflammatory cells driven mostly by activation of Th2-lymphocytes, eosinophils and mast cells. There is a link between increased allergy and a reduction of some infections in Western countries. Epidemiological data also show that respiratory allergy is less frequent in people exposed to orofecal and foodborne microbes such as Toxoplasma gondii. We previously showed that both acute and chronic parasite T. gondii infection substantially blocked development of airway inflammation in adult BALB/c mice. Based on the high levels of IFN-γ along with the reduction of Th2 phenotype, we hypothesized that the protective effect might be related to the strong Th1 immune response elicited against the parasite. However, other mechanisms could also be implicated. The possibility that regulatory T cells inhibit allergic diseases has received growing support from both animal and human studies. Here we investigated the cellular mechanisms involved in T. gondii induced protection against allergy. Our results show for the first time that thoracic lymph node cells from mice sensitized during chronic T. gondii infection have suppressor activity. Suppression was detected both in vitro, on allergen specific T cell proliferation and in vivo, on allergic lung inflammation after adoptive transference from infected/sensitized mice to previously sensitized animals. This ability was found to be contact-independent and correlated with high levels of TGF-β and CD4(+)FoxP3(+) cells.

  17. Toxoplasma gondii Infection Induces Suppression in a Mouse Model of Allergic Airway Inflammation

    PubMed Central

    Fenoy, Ignacio M.; Chiurazzi, Romina; Sánchez, Vanesa R.; Argenziano, Mariana A.; Soto, Ariadna; Picchio, Mariano S.; Martin, Valentina; Goldman, Alejandra

    2012-01-01

    Allergic asthma is an inflammatory disorder characterized by infiltration of the airway wall with inflammatory cells driven mostly by activation of Th2-lymphocytes, eosinophils and mast cells. There is a link between increased allergy and a reduction of some infections in Western countries. Epidemiological data also show that respiratory allergy is less frequent in people exposed to orofecal and foodborne microbes such as Toxoplasma gondii. We previously showed that both acute and chronic parasite T. gondii infection substantially blocked development of airway inflammation in adult BALB/c mice. Based on the high levels of IFN-γ along with the reduction of Th2 phenotype, we hypothesized that the protective effect might be related to the strong Th1 immune response elicited against the parasite. However, other mechanisms could also be implicated. The possibility that regulatory T cells inhibit allergic diseases has received growing support from both animal and human studies. Here we investigated the cellular mechanisms involved in T. gondii induced protection against allergy. Our results show for the first time that thoracic lymph node cells from mice sensitized during chronic T. gondii infection have suppressor activity. Suppression was detected both in vitro, on allergen specific T cell proliferation and in vivo, on allergic lung inflammation after adoptive transference from infected/sensitized mice to previously sensitized animals. This ability was found to be contact- independent and correlated with high levels of TGF-β and CD4+FoxP3+ cells. PMID:22952678

  18. Mouse models in tendon and ligament research.

    PubMed

    Mienaltowski, Michael J; Birk, David E

    2014-01-01

    Mutant mouse models are valuable resources for the study of tendon and ligament biology. Many mutant mouse models are used because their manifested phenotypes mimic clinical pathobiology for several heritable disorders, such as Ehlers-Danlos Syndrome and Osteogenesis Imperfecta. Moreover, these models are helpful for discerning roles of specific genes in the development, maturation, and repair of musculoskeletal tissues. There are several categories of genes with essential roles in the synthesis and maintenance of tendon and ligament structures. The form and function of these tissues depend highly upon fibril-forming collagens, the primary extracellular macromolecules of tendons and ligaments. Models for these fibril-forming collagens, as well as for regulatory molecules like FACITs and SLRPs, are important for studying fibril assembly, growth, and maturation. Additionally, mouse models for growth factors and transcription factors are useful for defining regulation of cell proliferation, cell differentiation, and cues that stimulate matrix synthesis. Models for membrane-bound proteins assess the roles of cell-cell communication and cell-matrix interaction. In some cases, special considerations need to be given to spatio-temporal control of a gene in a model. Thus, conditional and inducible mouse models allow for specific regulation of genes of interest. Advances in mouse models have provided valuable tools for gaining insight into the form and function of tendons and ligaments.

  19. Justicia procumbens Extract (DW2008) Selectively Suppresses Th2 Cytokines in Splenocytes and Ameliorates Ovalbumin-Induced Airway Inflammation in a Mouse Model of Asthma.

    PubMed

    Youm, Jihyun; Lee, Hyunyong; Chang, Hwan Bong; Jeon, Jihyun; Yoon, Mi Hee; Woo, Ji Young; Choi, Min-Soo; Hwang, Yunha; Seong, Seungkyoo; Na, Kyuheum; Yoon, Joobyoung

    2017-01-01

    DW2008 is an anhydrous ethanol extract of Justicia procumbens produced by Dong-Wha Pharmaceutical, Inc., Co. as a candidate anti-asthmatic drug. In this study, DW2008 selectively reduced T helper 2 (Th2) cytokines in mouse splenocytes and ameliorated ovalbumin-induced airway inflammation by downregulating pulmonary infiltration of differential inflammatory cells and Th2 cytokines more than a decoction or ethanol extract of J. procumbens did in a mouse asthma model. DW2008 also significantly inhibited airway hyperresponsiveness and reduced the thickness of the airway epithelium. HPLC analysis showed that the major peaks (justicidin A and B) of DW2008 were higher than those of the other extracts. Justicidin A and B significantly suppressed Th2 cytokine levels in mouse spleen cells and exhibited a protective effect in ovalbumin-induced airway inflammation. Our findings indicate that DW2008 effectively inhibits allergic airway inflammatory reactions and airway hyperresponsiveness in a mouse model of asthma, suggesting its potential as an anti-asthmatic agent.

  20. A live-attenuated Zika virus vaccine candidate induces sterilizing immunity in mouse models.

    PubMed

    Shan, Chao; Muruato, Antonio E; Nunes, Bruno T D; Luo, Huanle; Xie, Xuping; Medeiros, Daniele B A; Wakamiya, Maki; Tesh, Robert B; Barrett, Alan D; Wang, Tian; Weaver, Scott C; Vasconcelos, Pedro F C; Rossi, Shannan L; Shi, Pei-Yong

    2017-06-01

    Zika virus (ZIKV) infection of pregnant women can cause a wide range of congenital abnormalities, including microcephaly, in the infant, a condition now collectively known as congenital ZIKV syndrome. A vaccine to prevent or significantly attenuate viremia in pregnant women who are residents of or travelers to epidemic or endemic regions is needed to avert congenital ZIKV syndrome, and might also help to suppress epidemic transmission. Here we report on a live-attenuated vaccine candidate that contains a 10-nucleotide deletion in the 3' untranslated region of the ZIKV genome (10-del ZIKV). The 10-del ZIKV is highly attenuated, immunogenic, and protective in type 1 interferon receptor-deficient A129 mice. Crucially, a single dose of 10-del ZIKV induced sterilizing immunity with a saturated neutralizing antibody titer, which no longer increased after challenge with an epidemic ZIKV, and completely prevented viremia. The immunized mice also developed a robust T cell response. Intracranial inoculation of 1-d-old immunocompetent CD-1 mice with 1 × 10(4) infectious focus units (IFU) of 10-del ZIKV caused no mortality, whereas infections with 10 IFU of wild-type ZIKV were lethal. Mechanistically, the attenuated virulence of 10-del ZIKV may be due to decreased viral RNA synthesis and increased sensitivity to type-1-interferon inhibition. The attenuated 10-del ZIKV was incapable of infecting mosquitoes after oral feeding of spiked-blood meals, representing an additional safety feature. Collectively, the safety and efficacy results suggest that further development of this promising, live-attenuated ZIKV vaccine candidate is warranted.

  1. High-selenium lentil diet protects against arsenic-induced atherosclerosis in a mouse model.

    PubMed

    Krohn, Regina M; Lemaire, Maryse; Negro Silva, Luis F; Lemarié, Catherine; Bolt, Alicia; Mann, Koren K; Smits, Judit E

    2016-01-01

    Cardiovascular disease (CVD) is a major cause of death worldwide, and arsenic (As) intake, mainly through drinking water, is a well-known risk factor for CVD as well as other health problems. Selenium (Se) is a known antagonist to As toxicity. We tested the potential of high-Se lentils from the Canadian prairies as a therapeutic food to alter the outcome of As-enhanced atherosclerosis. Male ApoE(-/-) mice exposed to a moderate level of As (200ppb) in their drinking water, and control mice on tap water received one of three lentil diets: Se-deficient (0.009mg/kg), Se-adequate (0.16mg/kg) or Se-high (0.3mg/kg). After 13weeks, lesion formation in the aortic arch and sinus were assessed. Intralesional cellular composition, serum lipid levels and hepatic oxidative stress were assessed as well. Arsenic-exacerbated plaque formation was reduced in the sinus and completely abolished in the aortic arch of mice on the Se-fortified lentil diet, whereas lesions were increased in As-exposed mice on both the Se-deficient and Se-adequate diets. Notably, Se deficiency contributed to proatherogenic composition of serum lipids in As-exposed mice as indicated by high-density lipoprotein:low-density lipoprotein. At least adequate Se status was crucial for counteracting As-induced oxidative stress. This study is the first to show the potential of high-Se lentils to protect against As-triggered atherosclerosis, and this invites further investigations in human populations at risk from As contamination of their drinking water. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  2. N-acetylcysteine attenuates subcutaneous administration of bleomycin-induced skin fibrosis and oxidative stress in a mouse model of scleroderma.

    PubMed

    Zhou, C-F; Yu, J-F; Zhang, J-X; Jiang, T; Xu, S-H; Yu, Q-Y; Zhu, Q-X

    2013-06-01

    Several lines of evidence suggest that the generation of reactive oxygen species (ROS) is of major importance in the pathogenesis of scleroderma, and thus antioxidant therapy may be useful for patients with an impaired oxidative defence mechanism. To examine the effect of N-acetylcysteine (NAC) on skin fibrosis and oxidative stress in a bleomycin (BLM)-induced mouse model of scleroderma. We used this mouse model to evaluate the effect of NAC on skin fibrosis and oxidative stress. Skin fibrosis was evaluated by histopathological examination and hydroxyproline content. To measure lipid peroxidation, we used a thiobarbituric acid-reactive species, malondialdehyde (MDA). Oxidative protein damage (carbonyl content) and the activities of catalase (CAT) and superoxide dismutase (SOD) were determined to evaluate oxidative stress in the skin tissue. Treatment with NAC attenuated the skin fibrosis induced by BLM, significantly reducing the MDA and protein carbonyl content in these mice. SOD activity in BLM-only mice and BLM plus NAC-treated mice was increased compared with control mice. However, there was no significant difference in skin SOD activity of mice treated with both BLM and NAC compared with those treated with BLM only. In addition, CAT activity was not altered in the BLM plus NAC mice. NAC treatment attenuates skin fibrosis in a BLM-induced mouse model of scleroderma, and this is associated with diminished oxidative stress. The results suggest that NAC may be a potential therapeutic agent for patients with scleroderma. © The Author(s) CED © 2013 British Association of Dermatologists.

  3. Region-Specific Protein Abundance Changes in the Brain of MPTP-induced Parkinson’s Disease Mouse Model

    SciTech Connect

    Zhang, Xu; Zhou, Jianying; Chin, Mark H; Schepmoes, Athena A; Petyuk, Vladislav A; Weitz, Karl K; Petritis, Brianne O; Monroe, Matthew E; Camp, David G; Wood, Stephen A; Melega, William P; Bigelow, Diana J; Smith, Desmond J; Qian, Weijun; Smith, Richard D

    2010-02-15

    Parkinson’s disease (PD) is characterized by dopaminergic neurodegeneration in the nigrostriatal region of the brain; however, the neurodegeneration extends well beyond dopaminergic neurons. To gain a better understanding of the molecular changes relevant to PD, we applied two-dimensional LC-MS/MS to comparatively analyze the proteome changes in four brain regions (striatum, cerebellum, cortex, and the rest of brain) using a MPTP-induced PD mouse model with the objective to identify nigrostriatal-specific and other region-specific protein abundance changes. The combined analyses resulted in the identification of 4,895 non-redundant proteins with at least two unique peptides per protein. The relative abundance changes in each analyzed brain region were estimated based on the spectral count information. A total of 518 proteins were observed with significant MPTP-induced changes across different brain regions. 270 of these proteins were observed with specific changes occurring either only in the striatum and/or in the rest of the brain region that contains substantia nigra, suggesting that these proteins are associated with the underlying nigrostriatal pathways. Many of the proteins that exhibit significant abundance changes were associated with dopamine signaling, mitochondrial dysfunction, the ubiquitin system, calcium signaling, the oxidative stress response, and apoptosis. A set of proteins with either consistent change across all brain regions or with changes specific to the cortex and cerebellum regions were also detected. One of the interesting proteins is ubiquitin specific protease (USP9X), a deubiquination enzyme involved in the protection of proteins from degradation and promotion of the TGF-β pathway, which exhibited altered abundances in all brain regions. Western blot validation showed similar spatial changes, suggesting that USP9X is potentially associated with neurodegeneration. Together, this study for the first time presents an overall picture of

  4. Stress-Induced Executive Dysfunction in GDNF-Deficient Mice, A Mouse Model of Parkinsonism

    PubMed Central

    Buhusi, Mona; Olsen, Kaitlin; Yang, Benjamin Z.; Buhusi, Catalin V.

    2016-01-01

    Maladaptive reactivity to stress is linked to improper decision making, impulsivity, and discounting of delayed rewards. Chronic unpredictable stress (CUS) alters dopaminergic function, re-shapes dopaminergic circuits in key areas involved in decision making, and impairs prefrontal-cortex dependent response inhibition and working memory. Glial-derived neurotrophic factor (GDNF) is essential for regulating dopamine (DA) release in the basal ganglia and for the survival of dopaminergic neurons; GDNF-deficient mice are considered an animal model for aging-related Parkinsonism. Recently, GDNF expression in the striatum has been linked to resilience to stress. Here we investigated the effects of CUS on decision making in GDNF-heterozygous (HET) mice and their wild-type littermate controls (WT). Before CUS no differences in temporal discounting (TD) were found between genotypes. However, following CUS GDNF HET mice, having a partial reduction of GDNF levels, showed increased impulsive choice indexed by a reduction in percent Larger-Later (LL) choices in the TD paradigm, and a reduction in area under the TD curve. Moreover, stressed GDNF HET mice, but not their WT controls, showed decreased neuronal activation (number of cFos positive neurons) in the orbitofrontal cortex (OFC), nucleus accumbens (NA) core, and NA shell, suggestive of a maladaptive response to stress. Interestingly, area under the TD curve positively correlated with cFos activation in the NA core, and NA shell, but not with orbitofrontal activity. These results provide further evidence of the differential involvement of the OFC, NA core, and NA shell in impulsive choice, and identify GDNF-deficient mice as a double-hit (gene × environment) model of stress-related executive dysfunction, particularly relevant to substance abuse and Parkinson’s disease (PD). PMID:27445722

  5. Stress-Induced Executive Dysfunction in GDNF-Deficient Mice, A Mouse Model of Parkinsonism.

    PubMed

    Buhusi, Mona; Olsen, Kaitlin; Yang, Benjamin Z; Buhusi, Catalin V

    2016-01-01

    Maladaptive reactivity to stress is linked to improper decision making, impulsivity, and discounting of delayed rewards. Chronic unpredictable stress (CUS) alters dopaminergic function, re-shapes dopaminergic circuits in key areas involved in decision making, and impairs prefrontal-cortex dependent response inhibition and working memory. Glial-derived neurotrophic factor (GDNF) is essential for regulating dopamine (DA) release in the basal ganglia and for the survival of dopaminergic neurons; GDNF-deficient mice are considered an animal model for aging-related Parkinsonism. Recently, GDNF expression in the striatum has been linked to resilience to stress. Here we investigated the effects of CUS on decision making in GDNF-heterozygous (HET) mice and their wild-type littermate controls (WT). Before CUS no differences in temporal discounting (TD) were found between genotypes. However, following CUS GDNF HET mice, having a partial reduction of GDNF levels, showed increased impulsive choice indexed by a reduction in percent Larger-Later (LL) choices in the TD paradigm, and a reduction in area under the TD curve. Moreover, stressed GDNF HET mice, but not their WT controls, showed decreased neuronal activation (number of cFos positive neurons) in the orbitofrontal cortex (OFC), nucleus accumbens (NA) core, and NA shell, suggestive of a maladaptive response to stress. Interestingly, area under the TD curve positively correlated with cFos activation in the NA core, and NA shell, but not with orbitofrontal activity. These results provide further evidence of the differential involvement of the OFC, NA core, and NA shell in impulsive choice, and identify GDNF-deficient mice as a double-hit (gene × environment) model of stress-related executive dysfunction, particularly relevant to substance abuse and Parkinson's disease (PD).

  6. A transgenic mouse model with inducible Tyrosinase gene expression using the tetracycline (Tet-on) system allows regulated rescue of abnormal chiasmatic projections found in albinism.

    PubMed

    Giménez, Estela; Lavado, Alfonso; Giraldo, Patricia; Cozar, Patricia; Jeffery, Glen; Montoliu, Lluís

    2004-08-01

    Congenital defects in retinal pigmentation, as in oculocutaneous albinism Type I (OCA1), where tyrosinase is defective, result in visual abnormalities affecting the retina and pathways into the brain. Transgenic animals expressing a functional tyrosinase gene on an albino genetic background display a correction of all these abnormalities, implicating a functional role for tyrosinase in normal retinal development. To address the function of tyrosinase in the development of the mammalian visual system, we have generated a transgenic mouse model with inducible expression of the tyrosinase gene using the tetracycline (TET-ON) system. We have produced two types of transgenic mice: first, mice expressing the transactivator rtTA chimeric protein under the control of mouse tyrosinase promoter and its locus control region (LCR), and; second, transgenic mice expressing a mouse tyrosinase cDNA construct driven by a minimal promoter inducible by rtTA in the presence of doxycycline. Inducible experiments have been carried out with selected double transgenic mouse lines. Tyrosinase expression has been induced from early embryo development and its impact assessed with histological and biochemical methods in heterozygous and homozygous double transgenic individuals. We have found an increase of tyrosinase activity in the eyes of induced animals, compared with littermate controls. However, there was significant variability in the activation of this gene, as reported in analogous experiments. In spite of this, we could observe corrected uncrossed chiasmatic pathways, decreased in albinism, in animals induced from their first gestational week. These mice could be instrumental in revealing the role of tyrosinase in mammalian visual development.

  7. Prolonged diet induced obesity has minimal effects towards brain pathology in mouse model of cerebral amyloid angiopathy: implications for studying obesity-brain interactions in mice.

    PubMed

    Zhang, Le; Dasuri, Kalavathi; Fernandez-Kim, Sun-Ok; Bruce-Keller, Annadora J; Freeman, Linnea R; Pepping, Jennifer K; Beckett, Tina L; Murphy, M Paul; Keller, Jeffrey N

    2013-09-01

    Cerebral amyloid angiopathy (CAA) occurs in nearly every individual with Alzheimer's disease (AD) and Down's syndrome, and is the second largest cause of intracerebral hemorrhage. Mouse models of CAA have demonstrated evidence for increased gliosis contributing to CAA pathology. Nearly two thirds of Americans are overweight or obese, with little known about the effects of obesity on the brain, although increasingly the vasculature appears to be a principle target of obesity effects on the brain. In the current study we describe for the first time whether diet induced obesity (DIO) modulates glial reactivity, amyloid levels, and inflammatory signaling in a mouse model of CAA. In these studies we identify surprisingly that DIO does not significantly increase Aβ levels, astrocyte (GFAP) or microglial (IBA-1) gliosis in the CAA mice. However, within the hippocampal gyri a localized increase in reactive microglia were increased in the CA1 and stratum oriens relative to CAA mice on a control diet. DIO was observed to selectively increase IL-6 in CAA mice, with IL-1β and TNF-α not increased in CAA mice in response to DIO. Taken together, these data show that prolonged DIO has only modest effects towards Aβ in a mouse model of CAA, but appears to elevate some localized microglial reactivity within the hippocampal gyri and selective markers of inflammatory signaling. These data are consistent with the majority of the existing literature in other models of Aβ pathology, which surprisingly show a mixed profile of DIO effects towards pathological processes in mouse models of neurodegenerative disease. The importance for considering the potential impact of ceiling effects in pathology within mouse models of Aβ pathogenesis, and the current experimental limitations for DIO in mice to fully replicate metabolic dysfunction present in human obesity, are discussed. This article is part of a Special Issue entitled: Animal Models of Disease.

  8. Naringin treatment induces neuroprotective effects in a mouse model of Parkinson's disease in vivo, but not enough to restore the lesioned dopaminergic system.

    PubMed

    Kim, Heung Deok; Jeong, Kyoung Hoon; Jung, Un Ju; Kim, Sang Ryong

    2016-02-01

    We recently reported that treatment with naringin, a major flavonoid found in grapefruit and citrus fruits, attenuated neurodegeneration in a rat model of Parkinson's disease (PD) in vivo. In order to investigate whether its effects are universally applied to a different model of PD and whether its treatment induces restorative effects on the lesioned nigrostriatal dopaminergic (DA) projection, we observed the effects of pre-treatment or post-treatment with naringin in a mouse model of PD. For neuroprotective effects, 6-hydroxydopamine (6-OHDA) was unilaterally injected into the striatum of mouse brains for a neurotoxin model of PD in the presence or absence of naringin by daily intraperitoneal injection. Our results showed that naringin protected the nigrostriatal DA projection from 6-OHDA-induced neurotoxicity. Moreover, similar to the effects in rat brains, this treatment induced the activation of mammalian target of rapamycin complex 1 (mTORC1), which is well known as an important survival factor for DA neurons, and inhibited microglial activation in the substantia nigra (SN) of mouse brains treated with 6-OHDA. However, there was no significant change of DA phenotypes in the SN and striatum post-treated with naringin compared with 6-OHDA-lesioned mice, despite the treatment being continued for 12 weeks. These results suggest that post-treatment with naringin alone may not be enough to restore the nigrostriatal DA projection in a mouse model of PD. However, our results apparently suggest that naringin is a beneficial natural product to prevent DA degeneration, which is involved in PD.

  9. Embryonic alteration of motoneuronal morphology induces hyperexcitability in the mouse model of amyotrophic lateral sclerosis.

    PubMed

    Martin, Elodie; Cazenave, William; Cattaert, Daniel; Branchereau, Pascal

    2013-06-01

    Although amyotrophic lateral sclerosis (ALS) is an age-dependent fatal neurodegenerative disease in which upper and lower motoneurons (MNs) are targeted for death in adults, increasing lines of evidence indicate that MNs display physiological and morphological abnormalities during postnatal development, long before disease onset. Here, using transgenic mice overexpressing the G93A mutation of the human Cu/Zn superoxide dismutase gene (SOD1), we show that SOD1(G93A) embryonic lumbar E17.5 MNs already expressed abnormal morphometric parameters, including a deep reduction of their terminal segments length. Whole-cell patch-clamp recordings from acute spinal cord preparations were made to characterize functional changes in neuronal activity. SOD1(G93A) E17.5 MNs displayed hyperexcitability compared to wild-type MNs. Finally, we performed realistic simulations in order to correlate morphometric and electrophysiological changes observed in embryonic SOD1(G93A) MNs. We found that the reduced dendritic elongation mainly accounted for the hyperexcitability observed in SOD1(G93A) MNs. Altogether, our results emphasize the remarkable early onset of abnormal neural activity in the commonly used animal model for ALS, and suggest that embryonic morphological changes are the primary compensatory mechanisms, the physiological adjustments being only secondary to morphological alterations. Copyright © 2013. Published by Elsevier Inc.

  10. Probiotics induce resistance to enteropathogens in a re-nourished mouse model.

    PubMed

    Cano, Paola Gauffin; Perdigón, Gabriela

    2003-11-01

    Nutritional deficiency is commonly associated with impaired immune response and the relation between infection and malnutrition is synergic. Probiotics, especially lactic acid bacteria are immunomodulatory. The aim was to determine whether optimal doses of Lactobacillus casei and yogurt, used as adjuvants in a re-nutrition diet in a non-severe malnutrition experimental model, protect against Salmonella typhimurium and Escherichia coli. Groups of malnourished mice were used, which were re-nourished with milk for 7 or 14 d. After that, both groups of mice received the optimal doses of Lb. casei and yogurt supplements. We measured IgA+ and IgG+-B cells and phenotypic markers of T lymphocytes; CD3+, CD4+ and CD8+ cells. We also determined alphabeta and gammabeta T cell receptor (TCR). The ability to protect against Sal. typhimurium and Esch. coli infections and specific S-IgA were assessed. Probiotics complemented the effects of the re-nutrition diet, by stimulating recuperation of the activity of immune cells that improved protection against infections.

  11. An inducible transgenic mouse breast cancer model for the analysis of tumor antigen specific CD8+ T-cell responses.

    PubMed

    Bruns, Michael; Wanger, Jara; Utermöhlen, Olaf; Deppert, Wolfgang

    2015-11-17

    In Simian virus 40 (SV40) transgenic BALB/c WAP-T mice tumor development and progression is driven by SV40 tumor antigens encoded by inducible transgenes. WAP-T mice constitute a well characterized mouse model for breast cancer with strong similarities to the corresponding human disease. BALB/c mice mount only a weak cellular immune response against SV40 T-antigen (T-Ag). For studying tumor antigen specific CD8+ T-cell responses against transgene expressing cells, we created WAP-TNP mice, in which the transgene additionally codes for the NP118-126-epitope contained within the nucleoprotein of lymphocytic choriomeningitis virus (LCMV), the immune-dominant T-cell epitope in BALB/c mice. We then investigated in WAP-TNP mice the immune responses against SV40 tumor antigens and the NP-epitope within the chimeric T-Ag/NP protein (T-AgNP). Analysis of the immune-reactivity against T-Ag in WAP-T and of T-AgNP in WAP-TNP mice revealed that, in contrast to wild type (wt) BALB/c mice, WAP-T and WAP-TNP mice were non-reactive against T-Ag. However, like wtBALB/c mice, WAP-T as well as WAP-TNP mice were highly reactive against the immune-dominant LCMV NP-epitope, thereby allowing the analysis of NP-epitope specific cellular immune responses in WAP-TNP mice. LCMV infection of WAP-TNP mice induced a strong, LCMV NP-epitope specific CD8+ T-cell response, which was able to specifically eliminate T-AgNP expressing mammary epithelial cells both prior to tumor formation (i.e. in cells of lactating mammary glands), as well as in invasive tumors. Elimination of tumor cells, however, was only transient, even after repeated LCMV infections. Further studies showed that already non-infected WAP-TNP tumor mice contained LCMV NP-epitope specific CD8+ T-cells, albeit with strongly reduced, though measurable activity. Functional impairment of these 'endogenous' NP-epitope specific T-cells seems to be caused by expression of the programmed death-1 protein (PD1), as anti-PD1 treatment of

  12. An inducible transgenic mouse breast cancer model for the analysis of tumor antigen specific CD8+ T-cell responses

    PubMed Central

    Bruns, Michael; Wanger, Jara; Utermöhlen, Olaf; Deppert, Wolfgang

    2015-01-01

    In Simian virus 40 (SV40) transgenic BALB/c WAP-T mice tumor development and progression is driven by SV40 tumor antigens encoded by inducible transgenes. WAP-T mice constitute a well characterized mouse model for breast cancer with strong similarities to the corresponding human disease. BALB/c mice mount only a weak cellular immune response against SV40 T-antigen (T-Ag). For studying tumor antigen specific CD8+ T-cell responses against transgene expressing cells, we created WAP-TNP mice, in which the transgene additionally codes for the NP118–126-epitope contained within the nucleoprotein of lymphocytic choriomeningitis virus (LCMV), the immune-dominant T-cell epitope in BALB/c mice. We then investigated in WAP-TNP mice the immune responses against SV40 tumor antigens and the NP-epitope within the chimeric T-Ag/NP protein (T-AgNP). Analysis of the immune-reactivity against T-Ag in WAP-T and of T-AgNP in WAP-TNP mice revealed that, in contrast to wild type (wt) BALB/c mice, WAP-T and WAP-TNP mice were non-reactive against T-Ag. However, like wtBALB/c mice, WAP-T as well as WAP-TNP mice were highly reactive against the immune-dominant LCMV NP-epitope, thereby allowing the analysis of NP-epitope specific cellular immune responses in WAP-TNP mice. LCMV infection of WAP-TNP mice induced a strong, LCMV NP-epitope specific CD8+ T-cell response, which was able to specifically eliminate T-AgNP expressing mammary epithelial cells both prior to tumor formation (i.e. in cells of lactating mammary glands), as well as in invasive tumors. Elimination of tumor cells, however, was only transient, even after repeated LCMV infections. Further studies showed that already non-infected WAP-TNP tumor mice contained LCMV NP-epitope specific CD8+ T-cells, albeit with strongly reduced, though measurable activity. Functional impairment of these ‘endogenous’ NP-epitope specific T-cells seems to be caused by expression of the programmed death-1 protein (PD1), as anti-PD1 treatment of

  13. Toll-like receptor 4 regulates lipopolysaccharide-induced inflammation and lactation insufficiency in a mouse model of mastitis.

    PubMed

    Glynn, Danielle J; Hutchinson, Mark R; Ingman, Wendy V

    2014-05-01

    Lactation mastitis is a debilitating inflammatory breast disease in postpartum women. Disease severity is associated with markers of inflammation rather than bacterial load, suggesting that immune-signaling pathways activated in the host are important in the disease pathology. The role of the innate pattern recognition receptor toll-like receptor 4 (TLR4) in progression and resolution of mastitislike disease was investigated in a mouse model. Lipopolysaccharide in Matrigel (10 μg/10 μl) was administered into the teat canal of lactating Tlr4 null mutant and wild-type mice to induce a localized area of inflammation. Mastitis induction resulted in a marked influx of RB6-positive neutrophils and F4/80-positive macrophages, which was higher in Tlr4(-/-) mice compared to wild-type mice. Tlr4 null mutation resulted in an altered immune-signaling fingerprint following induction of mastitis, with attenuated serum cytokines, including CXCL1, CCL2, interleukin 1 beta, and tumor necrosis factor alpha compared to wild-type mice. In both genotypes, the localized area of inflammation had resolved after 7 days, and milk protein was evident. However, the mammary glands of wild-type mice exhibited reduced capacity for milk production, with decreased percent area populated with glandular epithelium and decreased abundance of nuclear phosphorylated signal transducer and activator of transcription 5 compared to Tlr4 null mice. This study demonstrates that inflammatory pathways activated in the host are critically important in mastitis disease progression and suggests that lactation insufficiency associated with mastitis may be a consequence of TLR4-mediated inflammation, rather than the bacterial infection itself.

  14. Sodium Caseinate (CasNa) Induces Mobilization of Hematopoietic Stem Cells in a BALB/c Mouse Model

    PubMed Central

    Santiago-Osorio, Edelmiro; Ledesma-Martínez, Edgar; Aguiñiga-Sánchez, Itzen; Poblano-Pérez, Ignacio; Weiss-Steider, Benny; Montesinos-Montesinos, Juan José; de Lourdes Mora-García, María

    2015-01-01

    Background Hematopoietic stem cells transplantation has high clinical potential against a wide variety of hematologic, metabolic, and autoimmune diseases and solid tumors. Clinically, hematopoietic stem cells derived from peripheral blood are currently used more than those obtained from sources such as bone marrow. However, mobilizing agents used in the clinic tend to fail in high rates, making the number of mobilized cells insufficient for transplantation. We investigated whether sodium caseinate induces functional mobilization of hematopoietic stem cells into peripheral blood of Balb/c mice. Material/Methods Using a mouse model, we administrated sodium caseinate or Plerixafor, a commercial mobilizing agent, and analyzed counts of hematopoietic stem cells in peripheral blood, and then cells were transplanted into lethally irradiated mice to restore hematopoiesis. All assays were performed at least twice. Results We found that sodium caseinate increases the number of mononuclear cells in peripheral blood with the immunophenotype of hematopoietic stem cells (0.2 to 0.5% LSK cells), allowing them to form colonies of various cell lineages in semisolid medium (p<0.05). This effect is similar to that of Plerixafor, and cells transplanted into lethally irradiated mice can restore hematopoiesis at higher percentages than mononuclear cells mobilized by Plerixafor (40% vs. 20%, respectively). Further, a secondary transplant rescued a separate group of irradiated mice from death, proving definitive evidence of hematopoietic reconstitution after hematopoietic stem cells transplantation. Data are presented as mean ± standard deviation. To determine significant differences between the data, one-way ANOVA and the Tukey test were used. Conclusions Collectively these results show the utility of sodium caseinate as a mobilizer of hematopoietic stem cells and its potential clinical application in transplantation settings. PMID:26409928

  15. Early anti-inflammatory intervention ameliorates axial disease in the proteoglycan-induced spondylitis mouse model of ankylosing spondylitis.

    PubMed

    Tseng, Hsu-Wen; Glant, Tibor T; Brown, Matthew A; Kenna, Tony J; Thomas, Gethin P; Pettit, Allison R

    2017-05-30

    Ankylosing spondylitis (AS) is characterised by immune-mediated arthritis and osteoproliferation, ultimately leading to joint ankylosis. Whether inflammation is necessary for osteoproliferation is controversial, fuelled by the unclear efficacy of anti-inflammatory treatments on radiographic progression. In proteoglycan-induced spondylitis (PGISp), a mouse model of AS, inflammation is the prerequisite for osteoproliferation as osteoproliferation was only observed following inflammation-driven intervertebral disc (IVD) destruction. We hypothesised that early intervention with a potent anti-inflammatory therapy would protect IVD integrity and consequently alter disease progression. PGISp mice received vehicle or a combination of etanercept (ETN) plus prednisolone (PRD) therapy for 2 or 6 weeks initiated at an early disease stage. Peripheral arthritis was scored longitudinally. Spinal disease was assessed using a semi-quantitative histological scoring regimen including inflammation, joint destruction and excessive tissue formation. ETN + PRD therapy significantly delayed the onset of peripheral arthritis. IVD integrity was significantly protected when treatment was commenced in early disease. Six-weeks of treatment resulted in trends towards reductions in intervertebral joint damage and excessive tissue formation. IVD score distribution was dichotomized, likely reflecting the extent of axial disease at initiation of therapy. In the sub-group of mice with high IVD destruction scores, ETN + PRD treatment significantly reduced IVD destruction severity, inflammation and bone erosion and reduced cartilage damage and excessive tissue formation. Early intervention with anti-inflammatory treatment not only improved inflammatory symptoms but also ameliorated structural damage of spine in PGISp mice. This preclinical observation suggests that early anti-inflammatory intervention may slow radiographic progression in AS patients.

  16. Accelerated activation of SOCE current in myotubes from two mouse models of anesthetic- and heat-induced sudden death.

    PubMed

    Yarotskyy, Viktor; Protasi, Feliciano; Dirksen, Robert T

    2013-01-01

    Store-operated calcium entry (SOCE) channels play an important role in Ca(2+) signaling. Recently, excessive SOCE was proposed to play a central role in the pathogenesis of malignant hyperthermia (MH), a pharmacogenic disorder of skeletal muscle. We tested this hypothesis by characterizing SOCE current (ISkCRAC) magnitude, voltage dependence, and rate of activation in myotubes derived from two mouse models of anesthetic- and heat-induced sudden death: 1) type 1 ryanodine receptor (RyR1) knock-in mice (Y524S/+) and 2) calsequestrin 1 and 2 double knock-out (dCasq-null) mice. ISkCRAC voltage dependence and magnitude at -80 mV were not significantly different in myotubes derived from wild type (WT), Y524S/+ and dCasq-null mice. However, the rate of ISkCRAC activation upon repetitive depolarization was significantly faster at room temperature in myotubes from Y524S/+ and dCasq-null mice. In addition, the maximum rate of ISkCRAC activation in dCasq-null myotubes was also faster than WT at more physiological temperatures (35-37°C). Azumolene (50 µM), a more water-soluble analog of dantrolene that is used to reverse MH crises, failed to alter ISkCRAC density or rate of activation. Together, these results indicate that while an increased rate of ISkCRAC activation is a common characteristic of myotubes derived from Y524S/+ and dCasq-null mice and that the protective effects of azumolene are not due to a direct inhibition of SOCE channels.

  17. Polyglutamine-induced neurodegeneration in SCA3 is not mitigated by non-expanded ataxin-3: conclusions from double-transgenic mouse models.

    PubMed

    Hübener, Jeannette; Riess, Olaf

    2010-04-01

    A crucial question in polyQ-induced neurodegeneration is the influence of wild type protein on the formation of aggregates and toxicity. Recently it was shown that non-expanded ataxin-3 protein mitigated neurodegeneration in a Drosophila and mouse model of SCA3. We now explored the effects of overexpressing non-expanded ataxin-3 with 15Q in a SCA3 transgenic mouse model with 70 polyglutamine repeats. These double-transgenic mice (dt) developed neurological symptoms with premature death at the age of 6 months comparable to the single-transgenic (st) SCA3 disease model. Furthermore, immunohistochemistry revealed similar localization and distribution of nuclear aggregates in dt- and st-mutant SCA3 mice. In a second dt-mutant mouse model, coexpression of ataxin-3 with 148Q attached to a nuclear export signal, which usually diminishes the phenotype, did even reinforce toxic effects of mutant expanded ataxin-3. We therefore conclude that overexpressing wild type ataxin-3 or mutant ataxin-3 with NES are not striking suppressors of polyglutamine-induced neurodegeneration and have thus no potential for future gene therapeutic interventions in SCA3. Copyright 2009 Elsevier Inc. All rights reserved.

  18. The role of renal proximal tubule P450 enzymes in chloroform-induced nephrotoxicity: Utility of renal specific P450 reductase knockout mouse models

    SciTech Connect

    Liu, Senyan; Yao, Yunyi; Lu, Shijun; Aldous, Kenneth; Ding, Xinxin; Mei, Changlin; Gu, Jun

    2013-10-01

    The kidney is a primary target for numerous toxic compounds. Cytochrome P450 enzymes (P450) are responsible for the metabolic activation of various chemical compounds, and in the kidney are predominantly expressed in proximal tubules. The aim of this study was to test the hypothesis that renal proximal tubular P450s are critical for nephrotoxicity caused by chemicals such as chloroform. We developed two new mouse models, one having proximal tubule-specific deletion of the cytochrome P450 reductase (Cpr) gene (the enzyme required for all microsomal P450 activities), designated proximal tubule-Cpr-null (PTCN), and the other having proximal tubule-specific rescue of CPR activity with the global suppression of CPR activity in all extra-proximal tubular tissues, designated extra-proximal tubule-Cpr-low (XPT-CL). The PTCN, XPT-CL, Cpr-low (CL), and wild-type (WT) mice were treated with a single oral dose of chloroform at 200 mg/kg. Blood, liver and kidney samples were obtained at 24 h after the treatment. Renal toxicity was assessed by measuring BUN and creatinine levels, and by pathological examination. The blood and tissue levels of chloroform were determined. The severity of toxicity was less in PTCN and CL mice, compared with that of WT and XPT-CL mice. There were no significant differences in chloroform levels in the blood, liver, or kidney, between PTCN and WT mice, or between XPT-CL and CL mice. These findings indicate that local P450-dependent activities play an important role in the nephrotoxicity induced by chloroform. Our results also demonstrate the usefulness of these novel mouse models for studies of chemical-induced kidney toxicity. - Highlights: • New mouse models were developed with varying P450 activities in the proximal tubule. • These mouse models were treated with chloroform, a nephrotoxicant. • Studies showed the importance of local P450s in chloroform-induced nephrotoxicity.

  19. Therapeutic Efficacy of Human Hepatocyte Transplantation in a SCID/uPA Mouse Model with Inducible Liver Disease

    PubMed Central

    Douglas, Donna N.; Kawahara, Toshiyasu; Sis, Banu; Bond, David; Fischer, Karl P.; Tyrrell, D. Lorne J.; Lewis, Jamie T.; Kneteman, Norman M.

    2010-01-01

    Background Severe Combined Immune Deficient (SCID)/Urokinase-type Plasminogen Activator (uPA) mice undergo liver failure and are useful hosts for the propagation of transplanted human hepatocytes (HH) which must compete with recipient-derived hepatocytes for replacement of the diseased liver parenchyma. While partial replacement by HH has proven useful for studies with Hepatitis C virus, complete replacement of SCID/uPA mouse liver by HH has never been achieved and limits the broader application of these mice for other areas of biomedical research. The herpes simplex virus type-1 thymidine kinase (HSVtk)/ganciclovir (GCV) system is a powerful tool for cell-specific ablation in transgenic animals. The aim of this study was to selectively eliminate murine-derived parenchymal liver cells from humanized SCID/uPA mouse liver in order to achieve mice with completely humanized liver parenchyma. Thus, we reproduced the HSVtk (vTK)/GCV system of hepatic failure in SCID/uPA mice. Methodology/Principal Findings In vitro experiments demonstrated efficient killing of vTK expressing hepatoma cells after GCV treatment. For in vivo experiments, expression of vTK was targeted to the livers of FVB/N and SCID/uPA mice. Hepatic sensitivity to GCV was first established in FVB/N mice since these mice do not undergo liver failure inherent to SCID/uPA mice. Hepatic vTK expression was found to be an integral component of GCV-induced pathologic and biochemical alterations and caused death due to liver dysfunction in vTK transgenic FVB/N and non-transplanted SCID/uPA mice. In SCID/uPA mice with humanized liver, vTK/GCV caused death despite extensive replacement of the mouse liver parenchyma with HH (ranging from 32–87%). Surprisingly, vTK/GCV-dependent apoptosis and mitochondrial aberrations were also localized to bystander vTK-negative HH. Conclusions/Significance Extensive replacement of mouse liver parenchyma by HH does not provide a secure therapeutic advantage against vTK/GCV-induced

  20. Human Metapneumovirus Virus-Like Particles Induce Protective B and T Cell Responses in a Mouse Model

    PubMed Central

    Cox, Reagan G.; Erickson, John J.; Hastings, Andrew K.; Becker, Jennifer C.; Johnson, Monika; Craven, Ryan E.; Tollefson, Sharon J.; Boyd, Kelli L.

    2014-01-01

    ABSTRACT Human metapneumovirus (HMPV) is a leading cause of respiratory disease in infants, children, and the elderly worldwide, yet no licensed vaccines exist. Live-attenuated vaccines present safety challenges, and protein subunit vaccines induce primarily antibody responses. Virus-like particles (VLPs) are an attractive alternative vaccine approach because of reduced safety concerns compared with live vaccines. We generated HMPV VLPs by expressing viral proteins in suspension-adapted human embryonic kidney epithelial (293-F) cells and found that the viral matrix (M) and fusion (F) proteins were sufficient to form VLPs. We previously reported that the VLPs resemble virus morphology and incorporate fusion-competent F protein (R. G. Cox, S. B. Livesay, M. Johnson, M. D. Ohi, and J. V. Williams, J. Virol. 86:12148–12160, 2012), which we hypothesized would elicit F-specific antibody and T cell responses. In this study, we tested whether VLP immunization could induce protective immunity to HMPV by using a mouse model. C57BL/6 mice were injected twice intraperitoneally with VLPs alone or with adjuvant and subsequently challenged with HMPV. Mice were euthanized 5 days postinfection, and virus titers, levels of neutralizing antibodies, and numbers of CD3+ T cells were quantified. Mice immunized with VLPs mounted an F-specific antibody response and generated CD8+ T cells recognizing an F protein-derived epitope. VLP immunization induced a neutralizing-antibody response that was enhanced by the addition of either TiterMax Gold or α-galactosylceramide adjuvant, though adjuvant reduced cellular immune responses. Two doses of VLPs conferred complete protection from HMPV replication in the lungs of mice and were not associated with a Th2-skewed cytokine response. These results suggest that nonreplicating VLPs are a promising vaccine candidate for HMPV. IMPORTANCE Human metapneumovirus (HMPV) is a leading cause of acute respiratory infection in infants, children, and the

  1. mTOR inhibition prevents rapid-onset of carcinogen-induced malignancies in a novel inducible HPV-16 E6/E7 mouse model.

    PubMed

    Callejas-Valera, Juan Luis; Iglesias-Bartolome, Ramiro; Amornphimoltham, Panomwat; Palacios-Garcia, Julia; Martin, Daniel; Califano, Joseph A; Molinolo, Alfredo A; Gutkind, J Silvio

    2016-10-01

    The rising incidence of human papillomavirus (HPV)-associated malignancies, especially for oropharyngeal cancers, has highlighted the urgent need to understand how the interplay between high-risk HPV oncogenes and carcinogenic exposure results in squamous cell carcinoma (SCC) development. Here, we describe an inducible mouse model expressing high risk HPV-16 E6/E7 oncoproteins in adults, bypassing the impact of these viral genes during development. HPV-16 E6/E7 genes were targeted to the basal squamous epithelia in transgenic mice using a doxycycline inducible cytokeratin 5 promoter (cK5-rtTA) system. After doxycycline induction, both E6 and E7 were highly expressed, resulting in rapid epidermal hyperplasia with a remarkable expansion of the proliferative cell compartment to the suprabasal layers. Surprisingly, in spite of the massive growth of epithelial cells and their stem cell progenitors, HPV-E6/E7 expression was not sufficient to trigger mTOR activation, a key oncogenic driver in HPV-associated malignancies, and malignant progression to SCC. However, these mice develop SCC rapidly after a single exposure to a skin carcinogen, DMBA, which was increased by the prolonged exposure to a tumor promoter, 12-O-tetradecanoylphorbol-13-acetate (TPA). Thus, only few oncogenic hits may be sufficient to induce cancer in E6/E7 expressing cells. All HPV-E6/E7 expressing SCC lesions exhibited increased mTOR activation. Remarkably, rapamycin, an mTOR inhibitor, abolished tumor development when administered to HPV-E6/E7 mice prior to DMBA exposure. Our findings revealed that mTOR inhibition protects HPV-E6/E7 expressing tissues form SCC development upon carcinogen exposure, thus supporting the potential clinical use of mTOR inhibitors as a molecular targeted approach for prevention of HPV-associated malignancies. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Hepatoprotective Effects of Antrodia cinnamomea: The Modulation of Oxidative Stress Signaling in a Mouse Model of Alcohol-Induced Acute Liver Injury

    PubMed Central

    Liu, Yange; Wang, Juan; Li, Lanzhou; Hu, Wenji; Qu, Yidi; Ding, Yipei; Meng, Lina

    2017-01-01

    In the present study, the components of A. cinnamomea (AC) mycelia were systematically analyzed. Subsequently, its hepatoprotective effects and the underlying mechanisms were explored using a mouse model of acute alcohol-induced liver injury. AC contained 25 types of fatty acid, 16 types of amino acid, 3 types of nucleotide, and 8 types of mineral. The hepatoprotective effects were observed after 2 weeks of AC treatment at doses of 75 mg/kg, 225 mg/kg, and 675 mg/kg in the mouse model. These effects were indicated by the changes in the levels of aspartate aminotransferase, alanine aminotransferase, several oxidation-related factors, and inflammatory cytokines in serum and/or liver samples. AC reduced the incidence rate of necrosis, inflammatory infiltration, fatty droplets formation, and cell apoptosis in liver detecting via histological and TUNEL assay. In addition, AC reduced the expression of cleaved caspase-3, -8, and -9 and the levels of phosphor-protein kinase B (Akt) and phosphor-nuclear factor-κB (NF-κB) in the liver samples. Collectively, AC-mediated hepatoprotective effects in a mouse model of acute alcohol-induced liver injury are the result of reduction in oxidative stress. This may be associated with Akt/NF-κB signaling. These results provide valuable evidence to support the use of A. cinnamomea as a functional food and/or medicine. PMID:28337253

  3. Hepatoprotective Effects of Antrodia cinnamomea: The Modulation of Oxidative Stress Signaling in a Mouse Model of Alcohol-Induced Acute Liver Injury.

    PubMed

    Liu, Yange; Wang, Juan; Li, Lanzhou; Hu, Wenji; Qu, Yidi; Ding, Yipei; Meng, Lina; Teng, Lirong; Wang, Di

    2017-01-01

    In the present study, the components of A. cinnamomea (AC) mycelia were systematically analyzed. Subsequently, its hepatoprotective effects and the underlying mechanisms were explored using a mouse model of acute alcohol-induced liver injury. AC contained 25 types of fatty acid, 16 types of amino acid, 3 types of nucleotide, and 8 types of mineral. The hepatoprotective effects were observed after 2 weeks of AC treatment at doses of 75 mg/kg, 225 mg/kg, and 675 mg/kg in the mouse model. These effects were indicated by the changes in the levels of aspartate aminotransferase, alanine aminotransferase, several oxidation-related factors, and inflammatory cytokines in serum and/or liver samples. AC reduced the incidence rate of necrosis, inflammatory infiltration, fatty droplets formation, and cell apoptosis in liver detecting via histological and TUNEL assay. In addition, AC reduced the expression of cleaved caspase-3, -8, and -9 and the levels of phosphor-protein kinase B (Akt) and phosphor-nuclear factor-κB (NF-κB) in the liver samples. Collectively, AC-mediated hepatoprotective effects in a mouse model of acute alcohol-induced liver injury are the result of reduction in oxidative stress. This may be associated with Akt/NF-κB signaling. These results provide valuable evidence to support the use of A. cinnamomea as a functional food and/or medicine.

  4. Mouse Models of Prostate Cancer

    PubMed Central

    Valkenburg, Kenneth C.; Williams, Bart O.

    2011-01-01

    The development and optimization of high-throughput screening methods has identified a multitude of genetic changes associated with human disease. The use of immunodeficient and genetically engineered mouse models that mimic the human disease has been crucial in validating the importance of these genetic pathways in prostate cancer. These models provide a platform for finding novel therapies to treat human patients afflicted with prostate cancer as well as those who have debilitating bone metastases. In this paper, we focus on the historical development and phenotypic descriptions of mouse models used to study prostate cancer. We also comment on how closely each model recapitulates human prostate cancer. PMID:22111002

  5. Mouse Models of Frontotemporal Dementia

    PubMed Central

    Roberson, Erik D.

    2012-01-01

    The pace of discovery in frontotemporal dementia (FTD) has accelerated dramatically with the discovery of new genetic causes and pathological substrates of the disease. MAPT/Tau, GRN/progranulin, and C9ORF72 have emerged as common FTD genes, and TARDBP/TDP-43, VCP, FUS, and CHMP2B have been identified as less common genetic causes. TDP-43 and FUS have joined Tau as common neuropathological substrates of the disease. Mouse models provide an important tool for understanding the role of these molecules in FTD pathogenesis. Here, we review recent progress with mouse models based on Tau, TDP-43, progranulin, VCP, and CHMP2B. We also consider future prospects for FTD models, including developing new models to address unanswered questions. There are also opportunities for capitalizing on conservation of the salience network, which is selectively vulnerable in FTD, and the availability of FTD-related behavioral paradigms to analyze mouse models of the disease. PMID:23280835

  6. Mouse models for graft arteriosclerosis.

    PubMed

    Qin, Lingfeng; Yu, Luyang; Min, Wang

    2013-05-14

    Graft arteriosclerois (GA), also called allograft vasculopathy, is a pathologic lesion that develops over months to years in transplanted organs characterized by diffuse, circumferential stenosis of the entire graft vascular tree. The most critical component of GA pathogenesis is the proliferation of smooth muscle-like cells within the intima. When a human coronary artery segment is interposed into the infra-renal aortae of immunodeficient mice, the intimas could be expand in response to adoptively transferred human T cells allogeneic to the artery donor or exogenous human IFN-γ in the absence of human T cells. Interposition of a mouse aorta from one strain into another mouse strain recipient is limited as a model for chronic rejection in humans because the acute cell-mediated rejection response in this mouse model completely eliminates all donor-derived vascular cells from the graft within two-three weeks. We have recently developed two new mouse models to circumvent these problems. The first model involves interposition of a vessel segment from a male mouse into a female recipient of the same inbred strain (C57BL/6J). Graft rejection in this case is directed only against minor histocompatibility antigens encoded by the Y chromosome (present in the male but not the female) and the rejection response that ensues is sufficiently indolent to preserve donor-derived smooth muscle cells for several weeks. The second model involves interposing an artery segment from a wild type C57BL/6J mouse donor into a host mouse of the same strain and gender that lacks the receptor for IFN-γ followed by administration of mouse IFN-γ (delivered via infection of the mouse liver with an adenoviral vector. There is no rejection in this case as both donor and recipient mice are of the same strain and gender but donor smooth muscle cells proliferate in response to the cytokine while host-derived cells, lacking receptor for this cytokine, are unresponsive. By backcrossing additional

  7. Systemic autoimmunity induced by the TLR7/8 agonist Resiquimod causes myocarditis and dilated cardiomyopathy in a new mouse model of autoimmune heart disease

    PubMed Central

    Hasham, Muneer G.; Baxan, Nicoleta; Stuckey, Daniel J.; Branca, Jane; Perkins, Bryant; Dent, Oliver; Duffy, Ted; Hameed, Tolani S.; Stella, Sarah E.; Bellahcene, Mohammed; Schneider, Michael D.; Harding, Sian E.; Rosenthal, Nadia

    2017-01-01

    ABSTRACT Systemic autoimmune diseases such as systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA) show significant heart involvement and cardiovascular morbidity, which can be due to systemically increased levels of inflammation or direct autoreactivity targeting cardiac tissue. Despite high clinical relevance, cardiac damage secondary to systemic autoimmunity lacks inducible rodent models. Here, we characterise immune-mediated cardiac tissue damage in a new model of SLE induced by topical application of the Toll-like receptor 7/8 (TLR7/8) agonist Resiquimod. We observe a cardiac phenotype reminiscent of autoimmune-mediated dilated cardiomyopathy, and identify auto-antibodies as major contributors to cardiac tissue damage. Resiquimod-induced heart disease is a highly relevant mouse model for mechanistic and therapeutic studies aiming to protect the heart during autoimmunity. PMID:28250051

  8. Geniposide inhibited endothelial-mesenchymal transition via the mTOR signaling pathway in a bleomycin-induced scleroderma mouse model

    PubMed Central

    Qi, Qing; Mao, Yueping; Tian, Yongzhen; Zhu, Ke; Cha, Xushan; Wu, Minghua; Zhou, Xiaodong

    2017-01-01

    Aim: Geniposide is an iridoid glycoside isolated from the gardenia plant. It has multiple biological activities. The roles of geniposide in systemic sclerosis (SSc) and in endothelial-to-mesenchymal transition (EndMT) are unclear. We investigated the protective effects of geniposide in a bleomycin-induced SSc mouse model, and its potential mechanisms. Methods: The effects of geniposide were evaluated as follows: (1) histological and immunochemical changes in mouse skin tissue; (2) changes in cellular morphology of human umbilical vein endothelial cells (HUVECs); (3) expression of endothelial cell biomarkers (E-Cadherin, CD31, and CD34), mesenchymal cell markers (FSP1, Collagen, and α-SMA), and key factors of EndMT (Slug, Snail, and Twist) using real time PCR, Western blot, and immunofluorescence; (4) tube formation in HUVECs; (5) mTOR signaling pathway transcription factors using Western blot analysis. Results: Treatment with bleomycin induced up-regulation of mesenchymal cell biomarkers and down-regulation of endothelial cell biomarkers in in vivo and in vitro bleomycin-induced scleroderma models. Geniposide treatment suppressed these effects. Geniposide remedied bleomycin-induced dermal capillary loss and fibrosis in mice. The expression of key EndMT factors (Slug, Snail, and Twist) and the mTOR signaling pathway (mTOR and S6) were also attenuated by geniposide treatment. Conclusion: Geniposide had protective effects on endothelial cells in the bleomycin-induced scleroderma mouse model. These effects may occur via inhibition of the mTOR signaling pathway activation. The results suggested that geniposide could be a potential candidate drug for treatment of vascular damage in SSc patients. PMID:28386330

  9. Obesity-Induced Diabetes and Lower Urinary Tract Fibrosis Promote Urinary Voiding Dysfunction in a Mouse Model

    PubMed Central

    Gharaee-Kermani, Mehrnaz; Rodriguez-Nieves, Jose A.; Mehra, Rohit; Vezina, Chad A.; Sarma, Aruna V.; Macoska, Jill A.

    2017-01-01

    BACKGROUND Progressive aging- and inflammation-associated fibrosis effectively remodels the extracellular matrix (ECM) to increase prostate tissue stiffness and reduce urethral flexibility, resulting in urinary flow obstruction and lower urinary tract symptoms (LUTS). In the current study, we sought to test whether senescence-accelerated mouse prone (SAMP)6 mice, which were reported to develop prostatic fibrosis, would also develop LUTS, and whether these symptoms would be exacerbated by diet-induced