Priceless GEMMs: genetically engineered mouse models for colorectal cancer drug development.
Roper, Jatin; Hung, Kenneth E
2012-08-01
To establish effective drug development for colorectal cancer (CRC), preclinical models that are robust surrogates for human disease are crucial. Mouse models are an attractive platform because of their relatively low cost, short life span, and ease of use. There are two main categories of mouse CRC models: xenografts derived from implantation of CRC cells or tumors in immunodeficient mice; and genetically engineered mouse models (GEMMs) derived from modification of human cancer predisposition genes, resulting in spontaneous tumor formation. Here, we review xenografts and GEMMs and focus on their potential application in translational research. Furthermore, we describe newer GEMMs for sporadic CRC that are particularly suitable for drug testing. Finally, we discuss recent advances in small-animal imaging, such as optical colonoscopy, which allow in vivo assessment of tumors. With the increasing sophistication of GEMMs, our preclinical armamentarium provides new hope for the ongoing war against CRC. Copyright © 2012. Published by Elsevier Ltd.
How Genetically Engineered Mouse Tumor Models Provide Insights Into Human Cancers
Politi, Katerina; Pao, William
2011-01-01
Genetically engineered mouse models (GEMMs) of human cancer were first created nearly 30 years ago. These early transgenic models demonstrated that mouse cells could be transformed in vivo by expression of an oncogene. A new field emerged, dedicated to generating and using mouse models of human cancer to address a wide variety of questions in cancer biology. The aim of this review is to highlight the contributions of mouse models to the diagnosis and treatment of human cancers. Because of the breadth of the topic, we have selected representative examples of how GEMMs are clinically relevant rather than provided an exhaustive list of experiments. Today, as detailed here, sophisticated mouse models are being created to study many aspects of cancer biology, including but not limited to mechanisms of sensitivity and resistance to drug treatment, oncogene cooperation, early detection, and metastasis. Alternatives to GEMMs, such as chemically induced or spontaneous tumor models, are not discussed in this review. PMID:21263096
Genetically engineered mouse models in oncology research and cancer medicine.
Kersten, Kelly; de Visser, Karin E; van Miltenburg, Martine H; Jonkers, Jos
2017-02-01
Genetically engineered mouse models (GEMMs) have contributed significantly to the field of cancer research. In contrast to cancer cell inoculation models, GEMMs develop de novo tumors in a natural immune-proficient microenvironment. Tumors arising in advanced GEMMs closely mimic the histopathological and molecular features of their human counterparts, display genetic heterogeneity, and are able to spontaneously progress toward metastatic disease. As such, GEMMs are generally superior to cancer cell inoculation models, which show no or limited heterogeneity and are often metastatic from the start. Given that GEMMs capture both tumor cell-intrinsic and cell-extrinsic factors that drive de novo tumor initiation and progression toward metastatic disease, these models are indispensable for preclinical research. GEMMs have successfully been used to validate candidate cancer genes and drug targets, assess therapy efficacy, dissect the impact of the tumor microenvironment, and evaluate mechanisms of drug resistance. In vivo validation of candidate cancer genes and therapeutic targets is further accelerated by recent advances in genetic engineering that enable fast-track generation and fine-tuning of GEMMs to more closely resemble human patients. In addition, aligning preclinical tumor intervention studies in advanced GEMMs with clinical studies in patients is expected to accelerate the development of novel therapeutic strategies and their translation into the clinic. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.
Diede, Scott J; Yao, Zizhen; Keyes, C Chip; Tyler, Ashlee E; Dey, Joyoti; Hackett, Christopher S; Elsaesser, Katrina; Kemp, Christopher J; Neiman, Paul E; Weiss, William A; Olson, James M; Tapscott, Stephen J
2013-12-01
Genetic and epigenetic alterations are essential for the initiation and progression of human cancer. We previously reported that primary human medulloblastomas showed extensive cancer-specific CpG island DNA hypermethylation in critical developmental pathways. To determine whether genetically engineered mouse models (GEMMs) of medulloblastoma have comparable epigenetic changes, we assessed genome-wide DNA methylation in three mouse models of medulloblastoma. In contrast to human samples, very few loci with cancer-specific DNA hypermethylation were detected, and in almost all cases the degree of methylation was relatively modest compared with the dense hypermethylation in the human cancers. To determine if this finding was common to other GEMMs, we examined a Burkitt lymphoma and breast cancer model and did not detect promoter CpG island DNA hypermethylation, suggesting that human cancers and at least some GEMMs are fundamentally different with respect to this epigenetic modification. These findings provide an opportunity to both better understand the mechanism of aberrant DNA methylation in human cancer and construct better GEMMs to serve as preclinical platforms for therapy development.
Genetically engineered mouse models for epithelial ovarian cancer: are we there yet?
Howell, Viive M
2014-03-01
The development of preclinical spontaneous genetically engineered mouse models (GEMMs) requires an understanding of the genetic basis of the human disease. Such robust models have proven invaluable for increasing understanding of human malignancies as well as identifying new biomarkers and testing new therapies for these diseases. While GEMMs have been reported for ovarian cancer, the majority have proven disappointing overall in their recapitulation of paired genetic and histological features especially for serous ovarian epithelial cancer. This review describes GEMMs for ovarian cancer, in particular, high grade serous ovarian cancer and assesses these in light of recent changes in our understanding of the human malignancy. Copyright © 2014 Elsevier Ltd. All rights reserved.
Roper, Jatin; Martin, Eric S; Hung, Kenneth E
2014-06-16
Preclinical models for colorectal cancer (CRC) are critical for translational biology and drug development studies to characterize and treat this condition. Mouse models of human cancer are particularly popular because of their relatively low cost, short life span, and ease of use. Genetically engineered mouse models (GEMMs) of CRC are engineered from germline or somatic modification of critical tumor suppressor genes and/or oncogenes that drive mutations in human disease. Detailed in this overview are the salient features of several useful colorectal cancer GEMMs and their value as tools for translational biology and preclinical drug development. Copyright © 2014 John Wiley & Sons, Inc.
Genetically Engineered Mouse Models of Pituitary Tumors
Cano, David A.; Soto-Moreno, Alfonso; Leal-Cerro, Alfonso
2014-01-01
Animal models constitute valuable tools for investigating the pathogenesis of cancer as well as for preclinical testing of novel therapeutics approaches. However, the pathogenic mechanisms of pituitary-tumor formation remain poorly understood, particularly in sporadic adenomas, thus, making it a challenge to model pituitary tumors in mice. Nevertheless, genetically engineered mouse models (GEMMs) of pituitary tumors have provided important insight into pituitary tumor biology. In this paper, we review various GEMMs of pituitary tumors, highlighting their contributions and limitations, and discuss opportunities for research in the field. PMID:25136513
Kocher, Brandon; Piwnica-Worms, David
2013-01-01
Bioluminescent imaging (BLI) is a powerful non-invasive tool that has dramatically accelerated the in vivo interrogation of cancer systems and longitudinal analysis of mouse models of cancer over the past decade. Various luciferase enzymes have been genetically engineered into mouse models (GEMMs) of cancer which permit investigation of cellular and molecular events associated with oncogenic transcription, post-transcriptional processing, protein-protein interactions, transformation and oncogene addiction in live cells and animals. Luciferase-coupled GEMMs ultimately serve as a non-invasive, repetitive, longitudinal, and physiological means by which cancer systems and therapeutic responses can be investigated accurately within the autochthonous context of a living animal. PMID:23585416
McFadden, David G.; Politi, Katerina; Bhutkar, Arjun; Chen, Frances K.; Song, Xiaoling; Pirun, Mono; Santiago, Philip M.; Kim-Kiselak, Caroline; Platt, James T.; Lee, Emily; Hodges, Emily; Rosebrock, Adam P.; Bronson, Roderick T.; Socci, Nicholas D.; Hannon, Gregory J.; Jacks, Tyler; Varmus, Harold
2016-01-01
Genetically engineered mouse models (GEMMs) of cancer are increasingly being used to assess putative driver mutations identified by large-scale sequencing of human cancer genomes. To accurately interpret experiments that introduce additional mutations, an understanding of the somatic genetic profile and evolution of GEMM tumors is necessary. Here, we performed whole-exome sequencing of tumors from three GEMMs of lung adenocarcinoma driven by mutant epidermal growth factor receptor (EGFR), mutant Kirsten rat sarcoma viral oncogene homolog (Kras), or overexpression of MYC proto-oncogene. Tumors from EGFR- and Kras-driven models exhibited, respectively, 0.02 and 0.07 nonsynonymous mutations per megabase, a dramatically lower average mutational frequency than observed in human lung adenocarcinomas. Tumors from models driven by strong cancer drivers (mutant EGFR and Kras) harbored few mutations in known cancer genes, whereas tumors driven by MYC, a weaker initiating oncogene in the murine lung, acquired recurrent clonal oncogenic Kras mutations. In addition, although EGFR- and Kras-driven models both exhibited recurrent whole-chromosome DNA copy number alterations, the specific chromosomes altered by gain or loss were different in each model. These data demonstrate that GEMM tumors exhibit relatively simple somatic genotypes compared with human cancers of a similar type, making these autochthonous model systems useful for additive engineering approaches to assess the potential of novel mutations on tumorigenesis, cancer progression, and drug sensitivity. PMID:27702896
McFadden, David G; Politi, Katerina; Bhutkar, Arjun; Chen, Frances K; Song, Xiaoling; Pirun, Mono; Santiago, Philip M; Kim-Kiselak, Caroline; Platt, James T; Lee, Emily; Hodges, Emily; Rosebrock, Adam P; Bronson, Roderick T; Socci, Nicholas D; Hannon, Gregory J; Jacks, Tyler; Varmus, Harold
2016-10-18
Genetically engineered mouse models (GEMMs) of cancer are increasingly being used to assess putative driver mutations identified by large-scale sequencing of human cancer genomes. To accurately interpret experiments that introduce additional mutations, an understanding of the somatic genetic profile and evolution of GEMM tumors is necessary. Here, we performed whole-exome sequencing of tumors from three GEMMs of lung adenocarcinoma driven by mutant epidermal growth factor receptor (EGFR), mutant Kirsten rat sarcoma viral oncogene homolog (Kras), or overexpression of MYC proto-oncogene. Tumors from EGFR- and Kras-driven models exhibited, respectively, 0.02 and 0.07 nonsynonymous mutations per megabase, a dramatically lower average mutational frequency than observed in human lung adenocarcinomas. Tumors from models driven by strong cancer drivers (mutant EGFR and Kras) harbored few mutations in known cancer genes, whereas tumors driven by MYC, a weaker initiating oncogene in the murine lung, acquired recurrent clonal oncogenic Kras mutations. In addition, although EGFR- and Kras-driven models both exhibited recurrent whole-chromosome DNA copy number alterations, the specific chromosomes altered by gain or loss were different in each model. These data demonstrate that GEMM tumors exhibit relatively simple somatic genotypes compared with human cancers of a similar type, making these autochthonous model systems useful for additive engineering approaches to assess the potential of novel mutations on tumorigenesis, cancer progression, and drug sensitivity.
Combest, Austin J.; Roberts, Patrick J.; Dillon, Patrick M.; Sandison, Katie; Hanna, Suzan K.; Ross, Charlene; Habibi, Sohrab; Zamboni, Beth; Müller, Markus; Brunner, Martin; Sharpless, Norman E.
2012-01-01
Background. Rodent studies are a vital step in the development of novel anticancer therapeutics and are used in pharmacokinetic (PK), toxicology, and efficacy studies. Traditionally, anticancer drug development has relied on xenograft implantation of human cancer cell lines in immunocompromised mice for efficacy screening of a candidate compound. The usefulness of xenograft models for efficacy testing, however, has been questioned, whereas genetically engineered mouse models (GEMMs) and orthotopic syngeneic transplants (OSTs) may offer some advantages for efficacy assessment. A critical factor influencing the predictability of rodent tumor models is drug PKs, but a comprehensive comparison of plasma and tumor PK parameters among xenograft models, OSTs, GEMMs, and human patients has not been performed. Methods. In this work, we evaluated the plasma and tumor dispositions of an antimelanoma agent, carboplatin, in patients with cutaneous melanoma compared with four different murine melanoma models (one GEMM, one human cell line xenograft, and two OSTs). Results. Using microdialysis to sample carboplatin tumor disposition, we found that OSTs and xenografts were poor predictors of drug exposure in human tumors, whereas the GEMM model exhibited PK parameters similar to those seen in human tumors. Conclusions. The tumor PKs of carboplatin in a GEMM of melanoma more closely resembles the tumor disposition in patients with melanoma than transplanted tumor models. GEMMs show promise in becoming an improved prediction model for intratumoral PKs and response in patients with solid tumors. PMID:22993143
Overview of Genetically Engineered Mouse Models of Distinct Breast Cancer Subtypes.
Usary, Jerry; Darr, David Brian; Pfefferle, Adam D; Perou, Charles M
2016-03-18
Advances in the screening of new therapeutic options have significantly reduced the breast cancer death rate over the last decade. Despite these advances, breast cancer remains the second leading cause of cancer death among women. This is due in part to the complexity of the disease, which is characterized by multiple subtypes that are driven by different genetic mechanisms and that likely arise from different cell types of origin. Because these differences often drive treatment options and outcomes, it is important to select relevant preclinical model systems to study new therapeutic interventions and tumor biology. Described in this unit are the characteristics and applications of validated genetically engineered mouse models (GEMMs) of basal-like, luminal, and claudin-low human subtypes of breast cancer. These different subtypes have different clinical outcomes and require different treatment strategies. These GEMMs can be considered faithful surrogates of their human disease counterparts. They represent alternative preclinical tumor models to cell line and patient-derived xenografts for preclinical drug discovery and tumor biology studies. Copyright © 2016 John Wiley & Sons, Inc.
Culturing primary mouse pancreatic ductal cells.
Reichert, Maximilian; Rhim, Andrew D; Rustgi, Anil K
2015-06-01
The most common subtype of pancreatic cancer is pancreatic ductal adenocarcinoma (PDAC). PDAC resembles ductal cells morphologically. To study pancreatic ductal cell (PDC) and pancreatic intraepithelial neoplasia (PanIN)/PDAC biology, it is essential to have reliable in vitro culture conditions. Here we describe a methodology to isolate, culture, and passage PDCs and duct-like cells from the mouse pancreas. It can be used to isolate cells from genetically engineered mouse models (GEMMs), providing a valuable tool to study disease models in vitro to complement in vivo findings. The culture conditions allow epithelial cells to outgrow fibroblast and other "contaminating" cell types within a few passages. However, the resulting cultures, although mostly epithelial, are not completely devoid of fibroblasts. Regardless, this protocol provides guidelines for a robust in vitro culture system to isolate, maintain, and expand primary pancreatic ductal epithelial cells. It can be applied to virtually all GEMMs of pancreatic disease and other diseases and cancers that arise from ductal structures. Because most carcinomas resemble ductal structures, this protocol has utility in the study of other cancers in addition to PDAC, such as breast and prostate cancers. © 2015 Cold Spring Harbor Laboratory Press.
What underlies the diversity of brain tumors?
Swartling, Fredrik J.; Hede, Sanna-Maria; Weiss, William A.
2012-01-01
Glioma and medulloblastoma represent the most commonly occurring malignant brain tumors in adults and in children respectively. Recent genomic and transcriptional approaches present a complex group of diseases, and delineate a number of molecular subgroups within tumors that share a common histopathology. Differences in cells of origin, regional niches, developmental timing and genetic events all contribute to this heterogeneity. In an attempt to recapitulate the diversity of brain tumors, an increasing array of genetically engineered mouse models (GEMMs) has been developed. These models often utilize promoters and genetic drivers from normal brain development, and can provide insight into specific cells from which these tumors originate. GEMMs show promise in both developmental biology and developmental therapeutics. This review describes numerous murine brain tumor models in the context of normal brain development, and the potential for these animals to impact brain tumor research. PMID:23085857
Combined MEK and PI3K inhibition in a mouse model of pancreatic cancer.
Alagesan, Brinda; Contino, Gianmarco; Guimaraes, Alex R; Corcoran, Ryan B; Deshpande, Vikram; Wojtkiewicz, Gregory R; Hezel, Aram F; Wong, Kwok-Kin; Loda, Massimo; Weissleder, Ralph; Benes, Cyril H; Engelman, Jeffrey; Bardeesy, Nabeel
2015-01-15
Improved therapeutic approaches are needed for the treatment of pancreatic ductal adenocarcinoma (PDAC). As dual MEK and PI3K inhibition is presently being used in clinical trials for patients with PDAC, we sought to test the efficacy of combined targeting of these pathways in PDAC using both in vitro drug screens and genetically engineered mouse models (GEMM). We performed high-throughput screening of >500 human cancer cell lines (including 46 PDAC lines), for sensitivity to 50 clinically relevant compounds, including MEK and PI3K inhibitors. We tested the top hit in the screen, the MEK1/2 inhibitor, AZD6244, for efficacy alone or in combination with the PI3K inhibitors, BKM120 or GDC-0941, in a Kras(G12D)-driven GEMM that recapitulates the histopathogenesis of human PDAC. In vitro screens revealed that PDAC cell lines are relatively resistant to single-agent therapies. The response profile to the MEK1/2 inhibitor, AZD6244, was an outlier, showing the highest selective efficacy in PDAC. Although MEK inhibition alone was mainly cytostatic, apoptosis was induced when combined with PI3K inhibitors (BKM120 or GDC-0941). When tested in a PDAC GEMM and compared with the single agents or vehicle controls, the combination delayed tumor formation in the setting of prevention and extended survival when used to treat advanced tumors, although no durable responses were observed. Our studies point to important contributions of MEK and PI3K signaling to PDAC pathogenesis and suggest that dual targeting of these pathways may provide benefit in some patients with PDAC. Clin Cancer Res; 21(2); 396-404. ©2014 AACR. ©2014 American Association for Cancer Research.
Combined MEK and PI3K inhibition in a mouse model of pancreatic cancer
Guimaraes, Alex R.; Corcoran, Ryan B.; Deshpande, Vikram; Wojtkiewicz, Gregory R.; Hezel, Aram F.; Wong, Kwok-Kin; Loda, Massimo; Weissleder, Ralph; Benes, Cyril H.; Engelman, Jeffrey; Bardeesy, Nabeel
2015-01-01
Purpose Improved therapeutic approaches are needed for the treatment of pancreatic ductal adenocarcinoma (PDAC). As dual MEK and PI3K inhibition is presently being employed in clinical trials for PDAC patients, we sought to test the efficacy of combined targeting of these pathways in PDAC using both in vitro drug screens and genetically engineered mouse models (GEMMs). Experimental Design We performed high-throughput screening of >500 human cancer cell lines (including 46 PDAC lines), for sensitivity to 50 clinically-relevant compounds, including MEK and PI3K inhibitors. We tested the top hit in the screen, the MEK1/2 inhibitor, AZD-6244, for efficacy alone or in combination with the PI3K inhibitors, BKM-120 or GDC-0941, in a KRASG12D-driven GEMM that recapitulates the histopathogenesis of human PDAC. Results In vitro screens revealed that PDAC cell lines are relatively resistant to single-agent therapies. The response profile to the MEK1/2 inhibitor, AZD-6244, was an outlier, showing the highest selective efficacy in PDAC. While MEK inhibition alone was mainly cytostatic, apoptosis was induced when combined with PI3K inhibitors (BKM-120 or GDC-0941). When tested in a PDAC GEMM and compared to the single agents or vehicle controls, the combination delayed tumor formation in the setting of prevention and extended survival when used to treat advanced tumors, although no durable responses were observed. Conclusions Our studies point to important contributions of MEK and PI3K signaling to PDAC pathogenesis and suggest that dual targeting of these pathways may provide benefit in some PDAC patients. PMID:25348516
A next-generation dual-recombinase system for time and host specific targeting of pancreatic cancer
Schachtler, Christina; Zukowska, Magdalena; Eser, Stefan; Feyerabend, Thorsten B.; Paul, Mariel C.; Eser, Philipp; Klein, Sabine; Lowy, Andrew M.; Banerjee, Ruby; Yang, Fangtang; Lee, Chang-Lung; Moding, Everett J.; Kirsch, David G.; Scheideler, Angelika; Alessi, Dario R.; Varela, Ignacio; Bradley, Allan; Kind, Alexander; Schnieke, Angelika E.; Rodewald, Hans-Reimer; Rad, Roland; Schmid, Roland M.; Schneider, Günter; Saur, Dieter
2014-01-01
Genetically engineered mouse models (GEMMs) have dramatically improved our understanding of tumor evolution and therapeutic resistance. However, sequential genetic manipulation of gene expression and targeting of the host is almost impossible using conventional Cre-loxP–based models. We have developed an inducible dual-recombinase system by combining flippase-FRT (Flp-FRT) and Cre-loxP recombination technologies to improve GEMMs of pancreatic cancer. This enables investigation of multistep carcinogenesis, genetic manipulation of tumor subpopulations (such as cancer stem cells), selective targeting of the tumor microenvironment and genetic validation of therapeutic targets in autochthonous tumors on a genome-wide scale. As a proof of concept, we performed tumor cell–autonomous and nonautonomous targeting, recapitulated hallmarks of human multistep carcinogenesis, validated genetic therapy by 3-phosphoinositide-dependent protein kinase inactivation as well as cancer cell depletion and show that mast cells in the tumor microenvironment, which had been thought to be key oncogenic players, are dispensable for tumor formation. PMID:25326799
Schönhuber, Nina; Seidler, Barbara; Schuck, Kathleen; Veltkamp, Christian; Schachtler, Christina; Zukowska, Magdalena; Eser, Stefan; Feyerabend, Thorsten B; Paul, Mariel C; Eser, Philipp; Klein, Sabine; Lowy, Andrew M; Banerjee, Ruby; Yang, Fangtang; Lee, Chang-Lung; Moding, Everett J; Kirsch, David G; Scheideler, Angelika; Alessi, Dario R; Varela, Ignacio; Bradley, Allan; Kind, Alexander; Schnieke, Angelika E; Rodewald, Hans-Reimer; Rad, Roland; Schmid, Roland M; Schneider, Günter; Saur, Dieter
2014-11-01
Genetically engineered mouse models (GEMMs) have dramatically improved our understanding of tumor evolution and therapeutic resistance. However, sequential genetic manipulation of gene expression and targeting of the host is almost impossible using conventional Cre-loxP-based models. We have developed an inducible dual-recombinase system by combining flippase-FRT (Flp-FRT) and Cre-loxP recombination technologies to improve GEMMs of pancreatic cancer. This enables investigation of multistep carcinogenesis, genetic manipulation of tumor subpopulations (such as cancer stem cells), selective targeting of the tumor microenvironment and genetic validation of therapeutic targets in autochthonous tumors on a genome-wide scale. As a proof of concept, we performed tumor cell-autonomous and nonautonomous targeting, recapitulated hallmarks of human multistep carcinogenesis, validated genetic therapy by 3-phosphoinositide-dependent protein kinase inactivation as well as cancer cell depletion and show that mast cells in the tumor microenvironment, which had been thought to be key oncogenic players, are dispensable for tumor formation.
Melis, Monique H M; Nevedomskaya, Ekaterina; van Burgsteden, Johan; Cioni, Bianca; van Zeeburg, Hester J T; Song, Ji-Ying; Zevenhoven, John; Hawinkels, Lukas J A C; de Visser, Karin E; Bergman, Andries M
2017-11-07
Increasing evidence from epidemiological and pathological studies suggests a role of the immune system in the initiation and progression of multiple cancers, including prostate cancer. Reports on the contribution of the adaptive immune system are contradictive, since both suppression and acceleration of disease development have been reported. This study addresses the functional role of lymphocytes in prostate cancer development using a genetically engineered mouse model (GEMM) of human c-Myc driven prostate cancer (Hi-Myc mice) combined with B and T cell deficiency (RAG1 -/- mice). From a pre-cancerous stage on, Hi-Myc mice showed higher accumulation of immune cells in their prostates then wild-type mice, of which macrophages were the most abundant. The onset of invasive adenocarcinoma was delayed in Hi-MycRAG1 -/- compared to Hi-Myc mice and associated with decreased infiltration of leukocytes into the prostate. In addition, lower levels of the cytokines CXCL2, CCL5 and TGF-β1 were detected in Hi-MycRAG1 -/- compared to Hi-Myc mouse prostates. These results from a GEMM of prostate cancer provide new insights into the promoting role of the adaptive immune system in prostate cancer development. Our findings indicate that the endogenous adaptive immune system does not protect against de novo prostate carcinogenesis in Hi-Myc transgenic mice, but rather accelerates the formation of invasive adenocarcinomas. This may have implications for the development of novel treatment strategies.
Towne, Justin W; Wagner, April M; Griffin, Kurt J; Buntzman, Adam S; Frelinger, Jeffrey A; Besselsen, David G
2014-01-01
Multiple NOD.Cg-Prkdcscid Il2rgtm1WjlTg(HLA-A2.1)Enge/Sz (NSG/A2) transgenic mice maintained in a mouse barrier facility were submitted for necropsy to determine the cause of facial alopecia, tachypnea, dyspnea, and sudden death. Pneumonia and soft-tissue abscesses were observed, and Pasteurella pneumotropica biotype Jawetz was consistently isolated from the upper respiratory tract, lung, and abscesses. Epidemiologic investigation within the facility revealed presence of this pathogen in mice generated or rederived by the intramural Genetically Engineered Mouse Model (GEMM) Core but not in mice procured from several approved commercial vendors. Epidemiologic data suggested the infection originated from female or vasectomized male ND4 mice obtained from a commercial vendor and then comingled by the GEMM Core to induce pseudopregnancy in female mice for embryo implantation. Enrofloxacin delivered in drinking water (85 mg/kg body weight daily) for 14 d was sufficient to clear bacterial infection in normal, breeding, and immune-deficient mice without the need to change the antibiotic water source. This modified treatment regimen was administered to 2400 cages of mice to eradicate Pasteurella pneumotropica from the facility. Follow-up PCR testing for P. pneumotropica biotype Jawetz remained uniformly negative at 2, 6, 12, and 52 wk after treatment in multiple strains of mice that were originally infected. Together, these data indicate that enrofloxacin can eradicate P. pneumotropica from infected mice in a less labor-intensive approach that does not require breeding cessation and that is easily adaptable to the standard biweekly cage change schedule for individually ventilated cages. PMID:25255075
Roper, Jatin; Tammela, Tuomas; Akkad, Adam; Almeqdadi, Mohammad; Santos, Sebastian B; Jacks, Tyler; Yilmaz, Ömer H
2018-02-01
Most genetically engineered mouse models (GEMMs) of colorectal cancer are limited by tumor formation in the small intestine, a high tumor burden that limits metastasis, and the need to generate and cross mutant mice. Cell line or organoid transplantation models generally produce tumors in ectopic locations-such as the subcutaneous space, kidney capsule, or cecal wall-that do not reflect the native stromal environment of the colon mucosa. Here, we describe detailed protocols to rapidly and efficiently induce site-directed tumors in the distal colon of mice that are based on colonoscopy-guided mucosal injection. These techniques can be adapted to deliver viral vectors carrying Cre recombinase, CRISPR-Cas9 components, CRISPR-engineered mouse tumor organoids, or human cancer organoids to mice to model the adenoma-carcinoma-metastasis sequence of tumor progression. The colonoscopy injection procedure takes ∼15 min, including preparation. In our experience, anyone with reasonable hand-eye coordination can become proficient with mouse colonoscopy and mucosal injection with a few hours of practice. These approaches are ideal for a wide range of applications, including assessment of gene function in tumorigenesis, examination of tumor-stroma interactions, studies of cancer metastasis, and translational research with patient-derived cancers.
Estrogen loss upregulates hematopoiesis in the mouse: a mediating role of IL-6.
Jilka, R L; Passeri, G; Girasole, G; Cooper, S; Abrams, J; Broxmeyer, H; Manolagas, S C
1995-06-01
We have previously demonstrated that ovariectomy causes an increase in the number of colony-forming unit granulocyte/macrophage (CFU-GM) and an upregulation of osteoclastogenesis in mice, both of which are mediated by interleukin-6 (IL-6). IL-6 is involved in the development of several hematopoietic progenitors, including the burst-forming unit-erythroid (BFU-E) and multipotent CFUs (CFU-GEMM). Therefore, we performed studies to examine if other hematopoietic progenitors, besides CFU-GM and their progeny, are affected by estrogen loss. We found that ovariectomy caused an increase in the number of CFU-GEMM and BFU-E, as well as an increase of CFU-GM in marrow cells of the femur. Administration of 17 beta-estradiol or a neutralizing antibody against IL-6 prevented the ovariectomy-induced increase in the number of these progenitors in the marrow. Ovariectomy also caused an increase in the number of circulating lymphocytes, neutrophils, and monocytes, which were suppressed by administration of 17 beta-estradiol or the neutralizing antibody against IL-6; however, the number of circulating platelets was unaffected by loss of ovarian function. These data establish that, in addition to upregulation of osteoclastogenesis, loss of estrogens in the mouse causes widespread effects on hematopoiesis, which are apparently mediated by IL-6.
Fang, Bingliang
2016-01-01
Activating mutations of oncogenic RAS genes are frequently detected in human cancers. The studies in genetically engineered mouse models (GEMMs) reveal that Kras-activating mutations predispose mice to early onset tumors in the lung, pancreas, and gastrointestinal tract. Nevertheless, most of these tumors do not have metastatic phenotypes. Metastasis occurs when tumors acquire additional genetic changes in other cancer driver genes. Studies on clinical specimens also demonstrated that KRAS mutations are present in premalignant tissues and that most of KRAS mutant human cancers have co-mutations in other cancer driver genes, including TP53, STK11, CDKN2A, and KMT2C in lung cancer; APC, TP53, and PIK3CA in colon cancer; and TP53, CDKN2A, SMAD4, and MED12 in pancreatic cancer. Extensive efforts have been devoted to develop therapeutic agents that target enzymes involved in RAS posttranslational modifications, that inhibit downstream effectors of RAS signaling pathways, and that kill RAS mutant cancer cells through synthetic lethality. Recent clinical studies have revealed that sorafenib, a pan-RAF and VEGFR inhibitor, has impressive benefits for KRAS mutant lung cancer patients. Combination therapy of MEK inhibitors with either docetaxel, AKT inhibitors, or PI3K inhibitors also led to improved clinical responses in some KRAS mutant cancer patients. This review discusses knowledge gained from GEMMs, human cancer cells, and patient-related studies on RAS-mediated tumorigenesis and anti-RAS therapy. Emerging evidence demonstrates that RAS mutant cancers are heterogeneous because of the presence of different mutant alleles and/or co-mutations in other cancer driver genes. Effective subclassifications of RAS mutant cancers may be necessary to improve patients' outcomes through personalized precision medicine. © The Author 2015. Published by ABBS Editorial Office in association with Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences.
Defining New Treatment Approaches for KRAS-Mutant Lung Cancer
2014-10-01
mutant NSCLC , a challenge we must meet to make progress in this clinically challenging NSCLC subset. Mutant KRAS, like ALK or EGFR, is a bone fide NSCLC ...required for KRAS G12D-driven NSCLC . Specific Aim 1. To identify gene products specifically essential for KRAS-driven NSCLC , we will perform a shRNA...screen of thousands of mouse genes, looking for essentiality in multiple independent cell lines derived from two NSCLC GEMMs: one RAF- dependent and
Exploiting Multiple Levels of Parallelism in Sparse Matrix-Matrix Multiplication
Azad, Ariful; Ballard, Grey; Buluc, Aydin; ...
2016-11-08
Sparse matrix-matrix multiplication (or SpGEMM) is a key primitive for many high-performance graph algorithms as well as for some linear solvers, such as algebraic multigrid. The scaling of existing parallel implementations of SpGEMM is heavily bound by communication. Even though 3D (or 2.5D) algorithms have been proposed and theoretically analyzed in the flat MPI model on Erdös-Rényi matrices, those algorithms had not been implemented in practice and their complexities had not been analyzed for the general case. In this work, we present the first implementation of the 3D SpGEMM formulation that exploits multiple (intranode and internode) levels of parallelism, achievingmore » significant speedups over the state-of-the-art publicly available codes at all levels of concurrencies. We extensively evaluate our implementation and identify bottlenecks that should be subject to further research.« less
Farrugia, M K; Sharma, S B; Lin, C-C; McLaughlin, S L; Vanderbilt, D B; Ammer, A G; Salkeni, M A; Stoilov, P; Agazie, Y M; Creighton, C J; Ruppert, J M
2015-01-01
The Kruppel-like transcription factors (KLFs) 4 and 5 (KLF4/5) are coexpressed in mouse embryonic stem cells, where they function redundantly to maintain pluripotency. In mammary carcinoma, KLF4/5 can each impact the malignant phenotype, but potential linkages to drug resistance remain unclear. In primary human breast cancers, we observed a positive correlation between KLF4/5 transcript abundance, particularly in the human epidermal growth factor receptor 2 (HER2)-enriched subtype. Furthermore, KLF4/5 protein was rapidly upregulated in human breast cancer cells following treatment with the HER2/epidermal growth factor receptor inhibitor, lapatinib. In addition, we observed a positive correlation between these factors in the primary tumors of genetically engineered mouse models (GEMMs). In particular, the levels of both factors were enriched in the basal-like tumors of the C3(1) TAg (SV40 large T antigen transgenic mice under control of the C3(1)/prostatein promoter) GEMM. Using tumor cells derived from this model as well as human breast cancer cells, suppression of KLF4 and/or KLF5 sensitized HER2-overexpressing cells to lapatinib. Indicating cooperativity, greater effects were observed when both genes were depleted. KLF4/5-deficient cells had reduced basal mRNA and protein levels of the anti-apoptotic factors myeloid cell leukemia 1 (MCL1) and B-cell lymphoma-extra large (BCL-XL). Moreover, MCL1 was upregulated by lapatinib in a KLF4/5-dependent manner, and enforced expression of MCL1 in KLF4/5-deficient cells restored drug resistance. In addition, combined suppression of KLF4/5 in cultured tumor cells additively inhibited anchorage-independent growth, resistance to anoikis and tumor formation in immunocompromised mice. Consistent with their cooperative role in drug resistance and other malignant properties, KLF4/5 levels selectively stratified human HER2-enriched breast cancer by distant metastasis-free survival. These results identify KLF4 and KLF5 as cooperating protumorigenic factors and critical participants in resistance to lapatinib, furthering the rationale for combining anti-MCL1/BCL-XL inhibitors with conventional HER2-targeted therapies. PMID:25789974
Robust Decision Making in a Nonlinear World
ERIC Educational Resources Information Center
Dougherty, Michael R.; Thomas, Rick P.
2012-01-01
The authors propose a general modeling framework called the general monotone model (GeMM), which allows one to model psychological phenomena that manifest as nonlinear relations in behavior data without the need for making (overly) precise assumptions about functional form. Using both simulated and real data, the authors illustrate that GeMM…
Targeted depletion of a MDSC subset unmasks pancreatic ductal adenocarcinoma to adaptive immunity
Stromnes, Ingunn M.; Brockenbrough, Scott; Izeradjene, Kamel; Carlson, Markus A.; Cuevas, Carlos; Simmons, Randi M.; Greenberg, Philip D.; Hingorani, Sunil R.
2015-01-01
Objective Pancreatic ductal adenocarcinoma (PDA) is characterized by a robust desmoplasia, including the notable accumulation of immunosuppressive cells that shield neoplastic cells from immune detection. Immune evasion may be further enhanced if the malignant cells fail to express high levels of antigens that are sufficiently immunogenic to engender an effector T cell response. In this report, we investigate the predominant subsets of immunosuppressive cancer-conditioned myeloid cells that chronicle and shape pancreas cancer progression. We show that selective depletion of one subset of myeloid-derived suppressor cells (MDSC) in an autochthonous, genetically engineered mouse model (GEMM) of PDA unmasks the ability of the adaptive immune response to engage and target tumor epithelial cells. Methods A combination of in vivo and in vitro studies were performed employing a GEMM that faithfully recapitulates the cardinal features of human PDA. The predominant cancer-conditioned myeloid cell subpopulation was specifically targeted in vivo and the biological outcomes determined. Results PDA orchestrates the induction of distinct subsets of cancer-associated myeloid cells through the production of factors known to influence myelopoeisis. These immature myeloid cells inhibit the proliferation and induce apoptosis of activated T cells. Targeted depletion of granulocytic MDSC (Gr-MDSC) in autochthonous PDA increases the intratumoral accumulation of activated CD8 T cells and apoptosis of tumor epithelial cells, and also remodels the tumor stroma. Conclusions Neoplastic ductal cells of the pancreas induce distinct myeloid cell subsets that promote tumor cell survival and accumulation. Targeted depletion of a single myeloid subset, the Gr-MDSC, can unmask an endogenous T cell response, revealing an unexpected latent immunity and invoking targeting of Gr-MDSC as a potential strategy to exploit for treating this highly lethal disease. PMID:24555999
High-performance sparse matrix-matrix products on Intel KNL and multicore architectures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagasaka, Y; Matsuoka, S; Azad, A
Sparse matrix-matrix multiplication (SpGEMM) is a computational primitive that is widely used in areas ranging from traditional numerical applications to recent big data analysis and machine learning. Although many SpGEMM algorithms have been proposed, hardware specific optimizations for multi- and many-core processors are lacking and a detailed analysis of their performance under various use cases and matrices is not available. We firstly identify and mitigate multiple bottlenecks with memory management and thread scheduling on Intel Xeon Phi (Knights Landing or KNL). Specifically targeting multi- and many-core processors, we develop a hash-table-based algorithm and optimize a heap-based shared-memory SpGEMM algorithm. Wemore » examine their performance together with other publicly available codes. Different from the literature, our evaluation also includes use cases that are representative of real graph algorithms, such as multi-source breadth-first search or triangle counting. Our hash-table and heap-based algorithms are showing significant speedups from libraries in the majority of the cases while different algorithms dominate the other scenarios with different matrix size, sparsity, compression factor and operation type. We wrap up in-depth evaluation results and make a recipe to give the best SpGEMM algorithm for target scenario. A critical finding is that hash-table-based SpGEMM gets a significant performance boost if the nonzeros are not required to be sorted within each row of the output matrix.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chow, Paik Wah; Toxicology Laboratory, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur; Abdul Hamid, Zariyantey, E-mail: zyantey@ukm.edu.my
Hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) are sensitive targets for benzene-induced hematotoxicity and leukemogenesis. The impact of benzene exposure on the complex microenvironment of HSCs and HPCs remains elusive. This study aims to investigate the mechanism linking benzene exposure to targeting HSCs and HPCs using phenotypic and clonogenic analyses. Mouse bone marrow (BM) cells were exposed ex vivo to the benzene metabolite, 1,4-benzoquinone (1,4-BQ), for 24 h. Expression of cellular surface antigens for HSC (Sca-1), myeloid (Gr-1, CD11b), and lymphoid (CD45, CD3e) populations were confirmed by flow cytometry. The clonogenicity of cells was studied using the colony-formingmore » unit (CFU) assay for multilineage (CFU-GM and CFU-GEMM) and single-lineage (CFU-E, BFU-E, CFU-G, and CFU-M) progenitors. 1,4-BQ demonstrated concentration-dependent cytotoxicity in mouse BM cells. The percentage of apoptotic cells increased (p < 0.05) following 1,4-BQ exposure. Exposure to 1,4-BQ showed no significant effect on CD3e{sup +} cells but reduced the total counts of Sca-1{sup +}, CD11b{sup +}, Gr-1{sup +}, and CD45{sup +} cells at 7 and 12 μM (p < 0.05). Furthermore, the CFU assay showed reduced (p < 0.05) clonogenicity in 1,4-BQ-treated cells. 1,4-BQ induced CFU-dependent cytotoxicity by significantly inhibiting colony growth for CFU-E, BFU-E, CFU-G, and CFU-M starting at a low concentration of exposure (5 μM); whereas for the CFU-GM and CFU-GEMM, the inhibition of colony growth was remarkable only at 7 and 12 μM of 1,4-BQ, respectively. Taken together, 1,4-BQ caused lineage-related cytotoxicity in mouse HPCs, demonstrating greater toxicity in single-lineage progenitors than in those of multi-lineage. - Highlights: • We examine 1,4-BQ toxicity targeting mouse hematopoietic cell lineages. • 1,4-BQ induces concentration-dependent cytotoxicity in bone marrow (BM) cells. • 1,4-BQ shows lineage-related toxicity on hematopoietic stem and progenitors. • 1,4-BQ toxicity is greater in single- than multilineage committed progenitors.« less
Genetically engineered mouse models of human B-cell precursor leukemias.
Hauer, Julia; Borkhardt, Arndt; Sánchez-García, Isidro; Cobaleda, César
2014-01-01
B-cell precursor acute lymphoblastic leukemias (pB-ALLs) are the most frequent type of malignancies of the childhood, and also affect an important proportion of adult patients. In spite of their apparent homogeneity, pB-ALL comprises a group of diseases very different both clinically and pathologically, and with very diverse outcomes as a consequence of their biology, and underlying molecular alterations. Their understanding (as a prerequisite for their cure) will require a sustained multidisciplinary effort from professionals coming from many different fields. Among all the available tools for pB-ALL research, the use of animal models stands, as of today, as the most powerful approach, not only for the understanding of the origin and evolution of the disease, but also for the development of new therapies. In this review we go over the most relevant (historically, technically or biologically) genetically engineered mouse models (GEMMs) of human pB-ALLs that have been generated over the last 20 years. Our final aim is to outline the most relevant guidelines that should be followed to generate an "ideal" animal model that could become a standard for the study of human pB-ALL leukemia, and which could be shared among research groups and drug development companies in order to unify criteria for studies like drug testing, analysis of the influence of environmental risk factors, or studying the role of both low-penetrance mutations and cancer susceptibility alterations.
Virus Delivery of CRISPR Guides to the Murine Prostate for Gene Alteration.
Riedel, Maria; Berthelsen, Martin F; Bakiri, Latifa; Wagner, Erwin F; Thomsen, Martin K
2018-04-27
With an increasing incidence of prostate cancer, identification of new tumor drivers or modulators is crucial. Genetically engineered mouse models (GEMM) for prostate cancer are hampered by tumor heterogeneity and its complex microevolution dynamics. Traditional prostate cancer mouse models include, amongst others, germline and conditional knockouts, transgenic expression of oncogenes, and xenograft models. Generation of de novo mutations in these models is complex, time-consuming, and costly. In addition, most of traditional models target the majority of the prostate epithelium, whereas human prostate cancer is well known to evolve as an isolated event in only a small subset of cells. Valuable models need to simulate not only prostate cancer initiation, but also progression to advanced disease. Here we describe a method to target a few cells in the prostate epithelium by transducing cells by viral particles. The delivery of an engineered virus to the murine prostate allows alteration of gene expression in the prostate epithelia. Virus type and quantity will hereby define the number of targeted cells for gene alteration by transducing a few cells for cancer initiation and many cells for gene therapy. Through surgery-based injection in the anterior lobe, distal from the urinary track, the tumor in this model can expand without impairing the urinary function of the animal. Furthermore, by targeting only a subset of prostate epithelial cells the technique enables clonal expansion of the tumor, and therefore mimics human tumor initiation, progression, as well as invasion through the basal membrane. This novel technique provides a powerful prostate cancer model with improved physiological relevance. Animal suffering is limited, and since no additional breeding is required, overall animal count is reduced. At the same time, analysis of new candidate genes and pathways is accelerated, which in turn is more cost efficient.
Benezra, Miriam; Hambardzumyan, Dolores; Penate-Medina, Oula; Veach, Darren R; Pillarsetty, Nagavarakishore; Smith-Jones, Peter; Phillips, Evan; Ozawa, Tatsuya; Zanzonico, Pat B; Longo, Valerie; Holland, Eric C; Larson, Steven M; Bradbury, Michelle S
2012-01-01
Dasatinib, a new-generation Src and platelet-derived growth factor receptor (PDGFR) inhibitor, is currently under evaluation in high-grade glioma clinical trials. To achieve optimum physicochemical and/or biologic properties, alternative drug delivery vehicles may be needed. We used a novel fluorinated dasatinib derivative (F-SKI249380), in combination with nanocarrier vehicles and metabolic imaging tools (microPET) to evaluate drug delivery and uptake in a platelet-derived growth factor B (PDGFB)-driven genetically engineered mouse model (GEMM) of high-grade glioma. We assessed dasatinib survival benefit on the basis of measured tumor volumes. Using brain tumor cells derived from PDGFB-driven gliomas, dose-dependent uptake and time-dependent inhibitory effects of F-SKI249380 on biologic activity were investigated and compared with the parent drug. PDGFR receptor status and tumor-specific targeting were non-invasively evaluated in vivo using 18F-SKI249380 and 18F-SKI249380-containing micellar and liposomal nanoformulations. A statistically significant survival benefit was found using dasatinib (95 mg/kg) versus saline vehicle (P < .001) in tumor volume-matched GEMM pairs. Competitive binding and treatment assays revealed comparable biologic properties for F-SKI249380 and the parent drug. In vivo, Significantly higher tumor uptake was observed for 18F-SKI249380-containing micelle formulations [4.9 percentage of the injected dose per gram tissue (%ID/g); P = .002] compared to control values (1.6%ID/g). Saturation studies using excess cold dasatinib showed marked reduction of tumor uptake values to levels in normal brain (1.5%ID/g), consistent with in vivo binding specificity. Using 18F-SKI249380-containing micelles as radiotracers to estimate therapeutic dosing requirements, we calculated intratumoral drug concentrations (24–60 nM) that were comparable to in vitro 50% inhibitory concentration values. 18F-SKI249380 is a PDGFR-selective tracer, which demonstrates improved delivery to PDGFB-driven high-grade gliomas and facilitates treatment planning when coupled with nanoformulations and quantitative PET imaging approaches. PMID:23308046
Beta-blockade prevents hematopoietic progenitor cell suppression after hemorrhagic shock.
Elhassan, Ihab O; Hannoush, Edward J; Sifri, Ziad C; Jones, Eyone; Alzate, Walter D; Rameshwar, Pranela; Livingston, David H; Mohr, Alicia M
2011-08-01
Severe injury is accompanied by sympathetic stimulation that induces bone marrow (BM) dysfunction by both suppression of hematopoietic progenitor cell (HPC) growth and loss of cells via HPC mobilization to the peripheral circulation and sites of injury. Previous work demonstrated that beta-blockade (BB) given prior to tissue injury both reduces HPC mobilization and restores HPC colony growth within the BM. This study examined the effect and timing of BB on BM function in a hemorrhagic shock (HS) model. Male Sprague-Dawley rats underwent HS via blood withdrawal, maintaining the mean arterial blood pressure at 30-40 mm Hg for 45 min, after which the extracted blood was reinfused. Propranolol (10 mg/kg) was given either prior to or immediately after HS. Blood pressure, heart rate, BM cellularity, and death were recorded. Bone marrow HPC growth was assessed by counting colony-forming unit-granulocyte-, erythrocyte-, monocyte-, megakaryocyte (CFU-GEMM), burst-forming unit-erythroid (BFU-E), and colony-forming unit-erythroid (CFU-E) cells. Administration of BB prior to injury restored HPC growth to that of naïve animals (CFU-GEMM 59 ± 11 vs. 61 ± 4, BFU-E 68 ± 9 vs. 73 ± 3, and CFU-E 81 ± 35 vs. 78 ± 14 colonies/plate). Beta-blockade given after HS increased the growth of CFU-GEMM, BFU-E, and CFU-E significantly and improved BM cellularity compared with HS alone. The mortality rate was not increased in the groups receiving BB. Administration of propranolol either prior to injury or immediately after resuscitation significantly reduced post-shock BM suppression. After HS, BB may improve BM cellularity by decreasing HPC mobilization. Therefore, the early use of BB post-injury may play an important role in attenuating the BM dysfunction accompanying HS.
Buchanan, Sandhya S.; Pyatt, David W.; Carpenter, John F.
2010-01-01
Progenitor cell therapies show great promise, but their potential for clinical applications requires improved storage and transportation. Desiccated cells stored at ambient temperature would provide economic and practical advantages over approaches employing cell freezing and subzero temperature storage. The objectives of this study were to assess a method for loading the stabilizing sugar, trehalose, into hematopoietic stem and progenitor cells (HPC) and to evaluate the effects of subsequent freeze-drying and storage at ambient temperature on differentiation and clonogenic potential. HPC were isolated from human umbilical cord blood and loaded with trehalose using an endogenous cell surface receptor, termed P2Z. Solution containing trehalose-loaded HPC was placed into vials, which were transferred to a tray freeze-dryer and removed during each step of the freeze-drying process to assess differentiation and clonogenic potential. Control groups for these experiments were freshly isolated HPC. Control cells formed 1450±230 CFU-GM, 430±140 BFU-E, and 50±40 CFU-GEMM per 50 µL. Compared to the values for the control cells, there was no statistical difference observed for cells removed at the end of the freezing step or at the end of primary drying. There was a gradual decrease in the number of CFU-GM and BFU-E for cells removed at different temperatures during secondary drying; however, there were no significant differences in the number of CFU-GEMM. To determine storage stability of lyophilized HPC, cells were stored for 4 weeks at 25°C in the dark. Cells reconstituted immediately after lyophilization produced 580±90 CFU-GM (∼40%, relative to unprocessed controls p<0.0001), 170±70 BFU-E (∼40%, p<0.0001), and 41±22 CFU-GEMM (∼82%, p = 0.4171), and cells reconstituted after 28 days at room temperature produced 513±170 CFU-GM (∼35%, relative to unprocessed controls, p<0.0001), 112±68 BFU-E (∼26%, p<0.0001), and 36±17 CFU-GEMM (∼82%, p = 0.2164) These studies are the first to document high level retention of CFU-GEMM following lyophilization and storage for 4 weeks at 25°C. This type of flexible storage stability would potentially permit the ability to ship and store HPC without the need for refrigeration. PMID:20824143
Buchanan, Sandhya S; Pyatt, David W; Carpenter, John F
2010-09-01
Progenitor cell therapies show great promise, but their potential for clinical applications requires improved storage and transportation. Desiccated cells stored at ambient temperature would provide economic and practical advantages over approaches employing cell freezing and subzero temperature storage. The objectives of this study were to assess a method for loading the stabilizing sugar, trehalose, into hematopoietic stem and progenitor cells (HPC) and to evaluate the effects of subsequent freeze-drying and storage at ambient temperature on differentiation and clonogenic potential. HPC were isolated from human umbilical cord blood and loaded with trehalose using an endogenous cell surface receptor, termed P2Z. Solution containing trehalose-loaded HPC was placed into vials, which were transferred to a tray freeze-dryer and removed during each step of the freeze-drying process to assess differentiation and clonogenic potential. Control groups for these experiments were freshly isolated HPC. Control cells formed 1450+/-230 CFU-GM, 430+/-140 BFU-E, and 50+/-40 CFU-GEMM per 50 microL. Compared to the values for the control cells, there was no statistical difference observed for cells removed at the end of the freezing step or at the end of primary drying. There was a gradual decrease in the number of CFU-GM and BFU-E for cells removed at different temperatures during secondary drying; however, there were no significant differences in the number of CFU-GEMM. To determine storage stability of lyophilized HPC, cells were stored for 4 weeks at 25 degrees C in the dark. Cells reconstituted immediately after lyophilization produced 580+/-90 CFU-GM ( approximately 40%, relative to unprocessed controls p<0.0001), 170+/-70 BFU-E (approximately 40%, p<0.0001), and 41+/-22 CFU-GEMM (approximately 82%, p = 0.4171), and cells reconstituted after 28 days at room temperature produced 513+/-170 CFU-GM (approximately 35%, relative to unprocessed controls, p<0.0001), 112+/-68 BFU-E (approximately 26%, p<0.0001), and 36+/-17 CFU-GEMM ( approximately 82%, p = 0.2164) These studies are the first to document high level retention of CFU-GEMM following lyophilization and storage for 4 weeks at 25 degrees C. This type of flexible storage stability would potentially permit the ability to ship and store HPC without the need for refrigeration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allada, Veerendra, Benjegerdes, Troy; Bode, Brett
Commodity clusters augmented with application accelerators are evolving as competitive high performance computing systems. The Graphical Processing Unit (GPU) with a very high arithmetic density and performance per price ratio is a good platform for the scientific application acceleration. In addition to the interconnect bottlenecks among the cluster compute nodes, the cost of memory copies between the host and the GPU device have to be carefully amortized to improve the overall efficiency of the application. Scientific applications also rely on efficient implementation of the BAsic Linear Algebra Subroutines (BLAS), among which the General Matrix Multiply (GEMM) is considered as themore » workhorse subroutine. In this paper, they study the performance of the memory copies and GEMM subroutines that are critical to port the computational chemistry algorithms to the GPU clusters. To that end, a benchmark based on the NetPIPE framework is developed to evaluate the latency and bandwidth of the memory copies between the host and the GPU device. The performance of the single and double precision GEMM subroutines from the NVIDIA CUBLAS 2.0 library are studied. The results have been compared with that of the BLAS routines from the Intel Math Kernel Library (MKL) to understand the computational trade-offs. The test bed is a Intel Xeon cluster equipped with NVIDIA Tesla GPUs.« less
Ng, Kimberly; Futalan, Diahnn; Shen, Ying; Akers, Johnny C.; Steed, Tyler; Kushwaha, Deepa; Schlabach, Michael; Carter, Bob S.; Kwon, Chang-Hyuk; Furnari, Frank; Cavenee, Webster; Elledge, Stephen; Chen, Clark C.
2014-01-01
Glioblastoma remains one of the deadliest of human cancers, with most patients succumbing to the disease within two years of diagnosis. The available data suggest that simultaneous inactivation of critical nodes within the glioblastoma molecular circuitry will be required for meaningful clinical efficacy. We conducted parallel genome-wide shRNA screens to identify such nodes and uncovered a number of G-Protein Coupled Receptor (GPCR) neurotransmitter pathways, including the Dopamine Receptor D2 (DRD2) signaling pathway. Supporting the importance of DRD2 in glioblastoma, DRD2 mRNA and protein expression were elevated in clinical glioblastoma specimens relative to matched non-neoplastic cerebrum. Treatment with independent si-/shRNAs against DRD2 or with DRD2 antagonists suppressed the growth of patient-derived glioblastoma lines both in vitro and in vivo. Importantly, glioblastoma lines derived from independent genetically engineered mouse models (GEMMs) were more sensitive to haloperidol, an FDA approved DRD2 antagonist, than the premalignant astrocyte lines by approximately an order of magnitude. The pro-proliferative effect of DRD2 was, in part, mediated through a GNAI2/Rap1/Ras/ERK signaling axis. Combined inhibition of DRD2 and Epidermal Growth Factor Receptor (EGFR) led to synergistic tumoricidal activity as well as ERK suppression in independent in vivo and in vitro glioblastoma models. Our results suggest combined EGFR and DRD2 inhibition as a promising strategy for glioblastoma treatment. PMID:24658464
Li, Jie; Zhu, Shan; Kozono, David; Ng, Kimberly; Futalan, Diahnn; Shen, Ying; Akers, Johnny C; Steed, Tyler; Kushwaha, Deepa; Schlabach, Michael; Carter, Bob S; Kwon, Chang-Hyuk; Furnari, Frank; Cavenee, Webster; Elledge, Stephen; Chen, Clark C
2014-02-28
Glioblastoma remains one of the deadliest of human cancers, with most patients succumbing to the disease within two years of diagnosis. The available data suggest that simultaneous inactivation of critical nodes within the glioblastoma molecular circuitry will be required for meaningful clinical efficacy. We conducted parallel genome-wide shRNA screens to identify such nodes and uncovered a number of G-Protein Coupled Receptor (GPCR) neurotransmitter pathways, including the Dopamine Receptor D2 (DRD2) signaling pathway. Supporting the importance of DRD2 in glioblastoma, DRD2 mRNA and protein expression were elevated in clinical glioblastoma specimens relative to matched non-neoplastic cerebrum. Treatment with independent si-/shRNAs against DRD2 or with DRD2 antagonists suppressed the growth of patient-derived glioblastoma lines both in vitro and in vivo. Importantly, glioblastoma lines derived from independent genetically engineered mouse models (GEMMs) were more sensitive to haloperidol, an FDA approved DRD2 antagonist, than the premalignant astrocyte lines by approximately an order of magnitude. The pro-proliferative effect of DRD2 was, in part, mediated through a GNAI2/Rap1/Ras/ERK signaling axis. Combined inhibition of DRD2 and Epidermal Growth Factor Receptor (EGFR) led to synergistic tumoricidal activity as well as ERK suppression in independent in vivo and in vitro glioblastoma models. Our results suggest combined EGFR and DRD2 inhibition as a promising strategy for glioblastoma treatment.
IDH mutations in liver cell plasticity and biliary cancer
Saha, Supriya K; Parachoniak, Christine A; Bardeesy, Nabeel
2014-01-01
Intrahepatic cholangiocarcinoma (ICC) is an aggressive cancer associated with the bile ducts within the liver. These tumors are characterized by frequent gain-of-function mutations in the isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) genes—that are also common in subsets of neural, haematopoietic and bone tumors, but rare or absent in the other types of gastrointestinal malignancy. Mutant IDH acts through a novel mechanism of oncogenesis, producing high levels of the metabolite 2-hydroxyglutarate, which interferes with the function of α-ketoglutarate-dependent enzymes that regulate diverse cellular processes including histone demethylation and DNA modification. Recently, we used in vitro stem cell systems and genetically engineered mouse models (GEMMs) to demonstrate that mutant IDH promotes ICC formation by blocking hepatocyte differentiation and increasing pools of hepatic progenitors that are susceptible to additional oncogenic hits leading to ICC. We found that silencing of HNF4A—encoding a master transcriptional regulator of hepatocyte identity and quiescence—was critical to mutant IDH-mediated inhibition of liver differentiation. In line with these findings, human ICC with IDH mutations are characterized by a hepatic progenitor cell transcriptional signature suggesting that they are a distinct ICC subtype as compared to IDH wild type tumors. The role of mutant IDH in controlling hepatic differentiation state suggests the potential of newly developed inhibitors of the mutant enzyme as a form of differentiation therapy in a solid tumor. PMID:25485496
Assi, Mohamad; Dauguet, Nicolas; Jacquemin, Patrick
2018-01-01
The isolation of ribonucleic acid (RNA) suitable for gene expression studies is challenging in the pancreas, due to its high ribonuclease activity. This is even more complicated during pancreatitis, a condition associated with inflammation and fibrosis. Our aim was to implement a time-effective and reproducible protocol to isolate high quality RNA from specific pancreatic cell subtypes, in normal and inflammatory conditions. We used two genetically engineered mouse models (GEMM), Ela-CreER/YFP and Sox9-CreER/YFP, to isolate acinar and ductal cells, respectively. To induce pancreatitis, mice received a caerulein treatment (125 μg/kg) for 8 and 72 h. We alternatively used EGTA and calcium buffers that contain collagenase P (0.6 mg/mL) to rapidly digest the pancreas into individual cells. Most of the cells from normal and injured pancreas were single-dissociated, exhibited a round morphology and did not incorporate trypan blue dye. Cell suspensions from Ela- and Sox9-CreER/YFP pancreas were then sorted by flow cytometry to isolate the YFP-positive acinar and ductal cells, respectively. Sorted cells kept a round shape and emitted fluorescence detected by the 38 HE green fluorescence filter. RNA was isolated by column-based purification approach. The RNA integrity number (RIN) was high in sorted acinar cell fractions treated with or without caerulein (8.6 ± 0.17 and 8.4 ± 0.09, respectively), compared to the whole pancreas fraction (4.8 ± 1.1). Given the low number of sorted ductal cells, the RIN value was slightly lower compared to acini (7.4 ± 0.4). Quantitative-PCR experiments indicated that sorted acinar and ductal cells express the specific acinar and ductal markers, respectively. Additionally, RNA preparations from caerulein-treated acinar cells were free from significant contamination with immune cell RNA. We thus validated the DIE (Digestion, Isolation, and Extraction)-RNA tool as a reproducible and efficient protocol to isolate pure acinar and ductal cells in vivo and to extract high quality RNA from these cells. PMID:29535635
Assi, Mohamad; Dauguet, Nicolas; Jacquemin, Patrick
2018-01-01
The isolation of ribonucleic acid (RNA) suitable for gene expression studies is challenging in the pancreas, due to its high ribonuclease activity. This is even more complicated during pancreatitis, a condition associated with inflammation and fibrosis. Our aim was to implement a time-effective and reproducible protocol to isolate high quality RNA from specific pancreatic cell subtypes, in normal and inflammatory conditions. We used two genetically engineered mouse models (GEMM), Ela-CreER/YFP and Sox9-CreER/YFP, to isolate acinar and ductal cells, respectively. To induce pancreatitis, mice received a caerulein treatment (125 μg/kg) for 8 and 72 h. We alternatively used EGTA and calcium buffers that contain collagenase P (0.6 mg/mL) to rapidly digest the pancreas into individual cells. Most of the cells from normal and injured pancreas were single-dissociated, exhibited a round morphology and did not incorporate trypan blue dye. Cell suspensions from Ela- and Sox9-CreER/YFP pancreas were then sorted by flow cytometry to isolate the YFP-positive acinar and ductal cells, respectively. Sorted cells kept a round shape and emitted fluorescence detected by the 38 HE green fluorescence filter. RNA was isolated by column-based purification approach. The RNA integrity number (RIN) was high in sorted acinar cell fractions treated with or without caerulein (8.6 ± 0.17 and 8.4 ± 0.09, respectively), compared to the whole pancreas fraction (4.8 ± 1.1). Given the low number of sorted ductal cells, the RIN value was slightly lower compared to acini (7.4 ± 0.4). Quantitative-PCR experiments indicated that sorted acinar and ductal cells express the specific acinar and ductal markers, respectively. Additionally, RNA preparations from caerulein-treated acinar cells were free from significant contamination with immune cell RNA. We thus validated the DIE (Digestion, Isolation, and Extraction)-RNA tool as a reproducible and efficient protocol to isolate pure acinar and ductal cells in vivo and to extract high quality RNA from these cells.
Targeting HER2 Aberrations in Non-Small Cell Lung Cancer with Osimertinib.
Liu, Shengwu; Li, Shuai; Hai, Josephine; Wang, Xiaoen; Chen, Ting; Quinn, Max M; Gao, Peng; Zhang, Yanxi; Ji, Hongbin; Cross, Darren A E; Wong, Kwok-Kin
2018-01-03
Purpose: HER2 (or ERBB2 ) aberrations, including both amplification and mutations, have been classified as oncogenic drivers that contribute to 2% to 6% of lung adenocarcinomas. HER2 amplification is also an important mechanism for acquired resistance to EGFR tyrosine kinase inhibitors (TKI). However, due to limited preclinical studies and clinical trials, currently there is still no available standard of care for lung cancer patients with HER2 aberrations. To fulfill the clinical need for targeting HER2 in patients with non-small cell lung cancer (NSCLC), we performed a comprehensive preclinical study to evaluate the efficacy of a third-generation TKI, osimertinib (AZD9291). Experimental Design: Three genetically modified mouse models (GEMM) mimicking individual HER2 alterations in NSCLC were generated, and osimertinib was tested for its efficacy against these HER2 aberrations in vivo Results: Osimertinib treatment showed robust efficacy in HER2 wt overexpression and EGFR del19/HER2 models, but not in HER2 exon 20 insertion tumors. Interestingly, we further identified that combined treatment with osimertinib and the BET inhibitor JQ1 significantly increased the response rate in HER2 -mutant NSCLC, whereas JQ1 single treatment did not show efficacy. Conclusions: Overall, our data indicated robust antitumor efficacy of osimertinib against multiple HER2 aberrations in lung cancer, either as a single agent or in combination with JQ1. Our study provides a strong rationale for future clinical trials using osimertinib either alone or in combination with epigenetic drugs to target aberrant HER2 in patients with NSCLC. Clin Cancer Res; 24(11); 1-11. ©2018 AACR. See related commentary by Cappuzzo and Landi, p. 2470 . ©2018 American Association for Cancer Research.
Functional activities of acidic isoferritins and lactoferrin in vitro and in vivo.
Broxmeyer, H E; Gentile, P; Cooper, S; Lu, L; Juliano, L; Piacibello, W; Meyers, P A; Cavanna, F
1984-01-01
The functional activities of acidic isoferritins (AIF) and lactoferin (LF) were evaluated. The inhibitory activity of AIF (AIFIA) was inactivated by preincubation with a monoclonal antibody (2A4) against AIF, but AIFIA was not inactivated by another monoclonal antibody against AIF (1C5), by a monoclonal antibody (3A5) against basic isoferritins, or by a heteroantiserum (LFT) against basic isoferritins. Monoclonal 2A4 also inactivated the inhibitory activity against colony formation by granulocyte-macrophage (CFU-GM) progenitor cells that was constitutively released by human monocytes or induced by human monocytes in the presence of OKT4+ lymphocytes. In addition to OKT4+ lymphocytes, the release of AIFIA from human monocytes was modulated by iron-saturated human LF and OKT8+ lymphocytes, both of which suppressed the release of AIFIA. Evidence for the physiologic relevance of AIF as a regulator of myelopoiesis was presented, in that human AIF suppressed the numbers of CFU-GM, BFU-E, and CFU-GEMM per femur and the cycling status of these cells in mice recovering from a sublethal dosage of Cytoxan. Abnormalities in LF and AIF interactions were found with cells from a pediatric patient with neutrophilia of unknown etiology that were consistent with the disease manifestations of neutrophilia. Polymorphonuclear neutrophils (PMN) from the patient contained low levels (1%-10% of control) of immunologically reactive LF and the LF found was ineffective as a suppressor molecule for the release of GM-CSF from normal mononuclear blood cells. In addition, the patient's GM-CSF releasing mononuclear blood cells were insensitive to the suppressive effects of purified LF, and colony formation by the patient's CFU-GM, but not BFU-E or CFU-GEMM, were insensitive to the suppressive effects of purified AIF. When the activity of purified AIF was assessed against mouse bone marrow cells under serum-free conditions, it was apparent that serum was not needed for the suppressive activity of AIF and that in some cases, serum actually masked the effects of AIF. Human monoblast cell line U937 was found to be a good model in vitro for the actions of LF and AIF; U937 cells induced for Ia-antigens by human gamma interferon were separated into populations of Ia-antigen+ and Ia-antigen- cells by fluorescence activated cell sorting (FACS), and LF and AIF suppressed colony formation only by the Ia-antigen+ U937 cells. A comparative analysis of bovine and human LF against release of GM-CSF from human mononuclear cells demonstrated that both were active in their iron-saturated form.(ABSTRACT TRUNCATED AT 400 WORDS)
Mesenchymal Stem Cells Reverse Bone Marrow Dysfunction Following Injury and Stress
Gore, Amy V.; Bible, Letitia E.; Livingston, David H.; Mohr, Alicia M.; Sifri, Ziad C.
2015-01-01
Background Bone marrow (BM) dysfunction following experimental lung contusion (LC) resolves in 7 days, however, if followed by chronic stress (CS) following, BM dysfunction is persistent. Mesenchymal stem cells (MSC) have protective immunomodulatory effects. We hypothesize that MSC can protect the BM against the deleterious effect of CS following LC. Methods Male Sprague-Dawley rats (n=6–7/group) underwent LC or LC/CS ± MSC injection. CS consisted of a daily 2-hour period of restraint with repositioning and alarming every 30 minutes to prevent habituation. A single intravenous dose of 5 × 106 MSC was given within ten minutes following LC. Animals were sacrificed at day seven and peripheral blood (PB) and BM were collected. Flow cytometry was used to assess hematopoietic progenitor cells (HPCs) mobilized to PB. Plasma G-CSF levels were measured by ELISA. BM cellularity and growth of BM HPC colonies (CFU-E, BFU-E, CFU-GEMM) were also evaluated. Results As previously reported, the addition of CS to LC resulted in a 32% decrease in BM cellularity, significant decreases in CFU-GEMM, BFU-E, and CFU-E and marked increase in HPC in the PB as compared naïve animals. The addition of MSC to LC/CS resulted in a 22% increase in BM cellularity and significant increases in CFU-GEMM, BFU-E, and CFU-E cultured from the BM. MSCs additionally reduced plasma G-CSF, prevented prolonged mobilization of HPC to PB, and restored colony growth to naïve levels. Conclusion Chronic stress following LC results in persistent BM dysfunction manifested by a significant decrease in cellularity, HPC colony growth, and increased G-CSF levels and HPC mobilization to the PB at seven days following injury. The addition of a single dose of MSCs following acute traumatic injury reverses the deleterious effects of CS on BM function. Further study is warranted to better understand the mechanisms behind MSC-mediated protection of BM function in the setting of CS. PMID:26402534
GEMMs shine a light on resistance to androgen deprivation therapy for prostate cancer
Karantanos, Theodoros; Thompson, Timothy C.
2013-01-01
Summary Androgen deprivation therapy (ADT) for advanced prostate cancer inexorably leads to resistance, and clinically useful biomarkers are lacking. The value of genetically engineered mice for co-clinical studies is clearly demonstrated in a recent publication that reveals XAF1, XIAP, and SRD5A1 as novel predictive biomarkers and therapeutic targets for ADT resistance. PMID:23845440
GEMMs shine a light on resistance to androgen deprivation therapy for prostate cancer.
Karantanos, Theodoros; Thompson, Timothy C
2013-07-08
Androgen deprivation therapy (ADT) for advanced prostate cancer inexorably leads to resistance, and clinically useful biomarkers are lacking. The value of genetically engineered mice for coclinical studies is clearly demonstrated in a recent publication that reveals XAF1, XIAP, and SRD5A1 as novel predictive biomarkers and therapeutic targets for ADT resistance. Copyright © 2013 Elsevier Inc. All rights reserved.
[Effect of cryopreservation on umbilical blood cells and its mechanism].
Li, Xin; Chen, Fangping; Jiang, Tiebin; Wang, Erhua; Liu, Jing
2013-07-01
To evaluate the effect of cryopreservation on clonogenic ability and apoptosis rate of mono-nuclear cells and CD34+ cells in umbilical blood (UB), and to choose the index to present the freezing injury and optimize the cryopreservation of UB. The mono-nuclear cells (MNC) and CD34+ cells were separated from UB and frozen.After 30 days, they were thawed in warm water. Clonogenic capacity and clonogenic recovery before and after the cryopreservation was compared. We also used Annexin V-FITC-PI to investigate the apoptosis rate of the cells before and after the cryopreservation of these 2 types of cells. The number of colony forming unit-granulocyte/monocyte (CFU-GMs) was not changed after freezing and thawing in both MNCs and CD34+ cells, while the number of colony forming unit-granulocyte, erythrocyte, monocyte and megakaryocyte (CFU-GEMM) was obviously reduced after freezing in CD34+ cells. The 2 types of cryopreserved cells had certain degree of apoptosis before the cryopreservation. MNC-type cryopreservation increased the cells apoptosis a little, while CD34+-type cryopreservation increased more. The cells have certain degree of apoptosis before the cryopreservation. The freezing and thawing procedure does affect the early stage progenitor cells-CFU-GEMM in the CD34+- type cryopreserved cells in UB. The damage may be induced by the cell apoptosis.
Autologous bone marrow purging with LAK cells.
Giuliodori, L; Moretti, L; Stramigioli, S; Luchetti, F; Annibali, G M; Baldi, A
1993-12-01
In this study we will demonstrate that LAK cells, in vitro, can lyse hematologic neoplastic cells with a minor toxicity of the staminal autologous marrow cells. In fact, after bone marrow and LAK co-culture at a ratio of 1/1 for 8 hours, the inhibition on the GEMM colonies resulted to be 20% less compared to the untreated marrow. These data made LAK an inviting agent for marrow purging in autologous bone marrow transplantation.
Bastarrachea, Raúl A; López-Alvarenga, Juan Carlos; Kent, Jack W; Laviada-Molina, Hugo A; Cerda-Flores, Ricardo M; Calderón-Garcidueñas, Ana Laura; Torres-Salazar, Amada; Torres-Salazar, Amanda; Nava-González, Edna J; Solis-Pérez, Elizabeth; Gallegos-Cabrales, Esther C; Cole, Shelley A; Comuzzie, Anthony G
2008-01-01
We describe the methodology used to analyze multiple transcripts using microarray techniques in simultaneous biopsies of muscle, adipose tissue and lymphocytes obtained from the same individual as part of the standard protocol of the Genetics of Metabolic Diseases in Mexico: GEMM Family Study. We recruited 4 healthy male subjects with BM1 20-41, who signed an informed consent letter. Subjects participated in a clinical examination that included anthropometric and body composition measurements, muscle biopsies (vastus lateralis) subcutaneous fat biopsies anda blood draw. All samples provided sufficient amplified RNA for microarray analysis. Total RNA was extracted from the biopsy samples and amplified for analysis. Of the 48,687 transcript targets queried, 39.4% were detectable in a least one of the studied tissues. Leptin was not detectable in lymphocytes, weakly expressed in muscle, but overexpressed and highly correlated with BMI in subcutaneous fat. Another example was GLUT4, which was detectable only in muscle and not correlated with BMI. Expression level concordance was 0.7 (p< 0.001) for the three tissues studied. We demonstrated the feasibility of carrying out simultaneous analysis of gene expression in multiple tissues, concordance of genetic expression in different tissues, and obtained confidence that this method corroborates the expected biological relationships among LEPand GLUT4. TheGEMM study will provide a broad and valuable overview on metabolic diseases, including obesity and type 2 diabetes.
The Warsaw Pact Short-Warning Nuclear Attack: How Viable an Option?
1979-05-01
yion in&vc err mi Iiar-j districts urhhvearmirked for north ern -.nd centr:al ~nc mlom.: n pls soviot, East Germa -- n , Czcchoslo%-akian and Pclii units...special- ists in 5-ill time tazn-lo%-, ent and several interr-tionallv kn7ca-. n inistitutions in business. There are as mzany ways to leck at the...o..W *0e - ~~~~Breerlavmnoo, tsmn: po n , Garstedt( y NETHERLANDS ~FEDERAL~ %,.JPLN I 2 EP BLI * GERMAN -5?’ ~52- GEMM A NY DEMOCRATIC REPUBLIC Bonn@®O
NASA Technical Reports Server (NTRS)
Pohorille, Andrew; Peyvan, Kia; Karouia, Fathi; Ricco, Antonio
2012-01-01
The capability to measure gene expression on board spacecraft opens the door to a large number of high-value experiments on the influence of the space environment on biological systems. For example, measurements of gene expression will help us to understand adaptation of terrestrial life to conditions beyond the planet of origin, identify deleterious effects of the space environment on a wide range of organisms from microbes to humans, develop effective countermeasures against these effects, and determine the metabolic bases of microbial pathogenicity and drug resistance. These and other applications hold significant potential for discoveries in space biology, biotechnology, and medicine. Supported by funding from the NASA Astrobiology Science and Technology Instrument Development Program, we are developing a fully automated, miniaturized, integrated fluidic system for small spacecraft capable of in-situ measurement of expression of several hundreds of microbial genes from multiple samples. The instrument will be capable of (1) lysing cell walls of bacteria sampled from cultures grown in space, (2) extracting and purifying RNA released from cells, (3) hybridizing the RNA on a microarray and (4) providing readout of the microarray signal, all in a single microfluidics cartridge. The device is suitable for deployment on nanosatellite platforms developed by NASA Ames' Small Spacecraft Division. To meet space and other technical constraints imposed by these platforms, a number of technical innovations are being implemented. The integration and end-to-end technological and biological validation of the instrument are carried out using as a model the photosynthetic bacterium Synechococcus elongatus, known for its remarkable metabolic diversity and resilience to adverse conditions. Each step in the measurement process-lysis, nucleic acid extraction, purification, and hybridization to an array-is assessed through comparison of the results obtained using the instrument with those from standard laboratory protocols. Once developed, the system can be used with minor modifications for multiple experiments on different platforms in space, including extension to higher organisms and microbial monitoring. A proposed version of GEMM that is capable of handling both microbial and tissue samples on the International Space Station will be briefly summarized.
Laming, Eleanor; Melzi, Eleonora; Scholes, Sandra F E; Connelly, Maira; Bell, Charlotte R; Ballingall, Keith T; Dagleish, Mark P; Rocchi, Mara S; Willoughby, Kim
2012-10-30
Bovine neonatal pancytopenia (BNP) is a syndrome characterised by thrombocytopenia associated with marked bone marrow destruction in calves, widely reported since 2007 in several European countries and since 2011 in New Zealand. The disease is epidemiologically associated with the use of an inactivated bovine virus diarrhoea (BVD) vaccine and is currently considered to be caused by absorption of colostral antibody produced by some vaccinated cows ("BNP dams"). Alloantibodies capable of binding to the leukocyte surface have been detected in BNP dams and antibodies recognising bovine MHC class I and β-2-microglobulin have been detected in vaccinated cattle. In this study, calves were challenged with pooled colostrum collected from BNP dams or from non-BNP dams and their bone marrow hematopoietic progenitor cells (HPC) cultured in vitro from sternal biopsies taken at 24 hours and 6 days post-challenge. Clonogenic assay demonstrated that CFU-GEMM (colony forming unit-granulocyte/erythroid/macrophage/megakaryocyte; pluripotential progenitor cell) colony development was compromised from HPCs harvested as early as 24 hour post-challenge. By 6 days post challenge, HPCs harvested from challenged calves failed to develop CFU-E (erythroid) colonies and the development of both CFU-GEMM and CFU-GM (granulocyte/macrophage) was markedly reduced. This study suggests that the bone marrow pathology and clinical signs associated with BNP are related to an insult which compromises the pluripotential progenitor cell within the first 24 hours of life but that this does not initially include all cell types.
Mesenchymal Stem Cells Reverse T/HS Induced Bone Marrow Dysfunction
Gore, Amy V.; Bible, Letitia E.; Livingston, David H.; Mohr, Alicia M.; Sifri, Ziad C.
2015-01-01
Intro Lung contusion (LC) followed by hemorrhagic shock (HS) causes persistent bone marrow (BM) dysfunction lasting up to seven days after injury. Mesenchymal stem cells (MSC) are multipotent cells that can hasten healing as well as exert protective immunomodulatory effects. We hypothesize that MSC can attenuate BM dysfunction following combined LCHS. Materials and Methods Male Sprague-Dawley (SD) rats (n=5-6/group) underwent LC+45 minutes of HS (MAP of 30-35). Allogeneic MSCs (5 × 106 cells) were injected IV following resuscitation. At seven days, BM was analyzed for cellularity and growth of hematopoetic progenitor cell (HPC) colonies (CFU-E, BFU-E, CFU-GEMM). Flow cytometry measured %HPCs in peripheral blood (PB); plasma G-CSF levels were measured via ELISA. Data was analyzed by one-way ANOVA followed by Tukey's multiple comparison test. Results As previously shown, at seven days, LCHS resulted in 22, 30, and 24% decreases in CFU-GEMM, BFU-E and CFU-E colony growth respectively vs. naïve. Treatment with MSCs returned all BM parameters to naïve levels. There was no difference in %HPCs in PB between groups, however, G-CSF remained elevated up to seven days following LCHS. MSCs returned G-CSF to naïve levels. Plasma from animals receiving MSCs was not suppressive to the BM. Conclusion One week following injury, the persistent BM dysfunction seen in animals undergoing LCHS is reversed by treatment with MSCs with an associated return of plasma G-CSF levels to normal. Plasma from animals undergoing LCHS+MSCs was not suppressive to BM cells in vitro. Treatment with MSCs following injury and shock reverses BM suppression and returns plasma G-CSF levels to normal. PMID:26193832
Yang, Mo; Li, Karen; Ng, Pak Cheung; Chuen, Carmen Ka Yee; Lau, Tze Kin; Cheng, Yuan Shan; Liu, Yuan Sheng; Li, Chi Kong; Yuen, Patrick Man Pan; James, Anthony Edward; Lee, Shuk Man; Fok, Tai Fai
2007-07-01
Serotonin is a monoamine neurotransmitter that has multiple extraneuronal functions. We previously reported that serotonin exerted mitogenic stimulation on megakaryocytopoiesis mediated by 5-hydroxytryptamine (5-HT)2 receptors. In this study, we investigated effects of serotonin on ex vivo expansion of human cord blood CD34+ cells, bone marrow (BM) stromal cell colony-forming unit-fibroblast (CFU-F) formation, and antiapoptosis of megakaryoblastic M-07e cells. Our results showed that serotonin at 200 nM significantly enhanced the expansion of CD34+ cells to early stem/progenitors (CD34+ cells, colony-forming unit-mixed [CFU-GEMM]) and multilineage committed progenitors (burst-forming unit/colony-forming unit-erythroid [BFU/CFU-E], colony-forming unit-granulocyte macrophage, colony-forming unit-megakaryocyte, CD61+ CD41+ cells). Serotonin also increased nonobese diabetic/severe combined immunodeficient repopulating cells in the expansion culture in terms of human CD45+, CD33+, CD14+ cells, BFU/CFU-E, and CFU-GEMM engraftment in BM of animals 6 weeks post-transplantation. Serotonin alone or in addition to fibroblast growth factor, platelet-derived growth factor, or vascular endothelial growth factor stimulated BM CFU-F formation. In M-07e cells, serotonin exerted antiapoptotic effects (annexin V, caspase-3, and propidium iodide staining) and reduced mitochondria membrane potential damage. The addition of ketanserin, a competitive antagonist of 5-HT2 receptor, nullified the antiapoptotic effects of serotonin. Our data suggest the involvement of serotonin in promoting hematopoietic stem cells and the BM microenvironment. Serotonin could be developed for clinical ex vivo expansion of hematopoietic stem cells for transplantation. Disclosure of potential conflicts of interest is found at the end of this article.
Begley, Dale A; Sundberg, John P; Krupke, Debra M; Neuhauser, Steven B; Bult, Carol J; Eppig, Janan T; Morse, Herbert C; Ward, Jerrold M
2015-12-01
Many mouse models have been created to study hematopoietic cancer types. There are over thirty hematopoietic tumor types and subtypes, both human and mouse, with various origins, characteristics and clinical prognoses. Determining the specific type of hematopoietic lesion produced in a mouse model and identifying mouse models that correspond to the human subtypes of these lesions has been a continuing challenge for the scientific community. The Mouse Tumor Biology Database (MTB; http://tumor.informatics.jax.org) is designed to facilitate use of mouse models of human cancer by providing detailed histopathologic and molecular information on lymphoma subtypes, including expertly annotated, on line, whole slide scans, and providing a repository for storing information on and querying these data for specific lymphoma models. Copyright © 2015 Elsevier Inc. All rights reserved.
Burns, Terry C; Li, Matthew D; Mehta, Swapnil; Awad, Ahmed J; Morgan, Alexander A
2015-07-15
Translational research for neurodegenerative disease depends intimately upon animal models. Unfortunately, promising therapies developed using mouse models mostly fail in clinical trials, highlighting uncertainty about how well mouse models mimic human neurodegenerative disease at the molecular level. We compared the transcriptional signature of neurodegeneration in mouse models of Alzheimer׳s disease (AD), Parkinson׳s disease (PD), Huntington׳s disease (HD) and amyotrophic lateral sclerosis (ALS) to human disease. In contrast to aging, which demonstrated a conserved transcriptome between humans and mice, only 3 of 19 animal models showed significant enrichment for gene sets comprising the most dysregulated up- and down-regulated human genes. Spearman׳s correlation analysis revealed even healthy human aging to be more closely related to human neurodegeneration than any mouse model of AD, PD, ALS or HD. Remarkably, mouse models frequently upregulated stress response genes that were consistently downregulated in human diseases. Among potential alternate models of neurodegeneration, mouse prion disease outperformed all other disease-specific models. Even among the best available animal models, conserved differences between mouse and human transcriptomes were found across multiple animal model versus human disease comparisons, surprisingly, even including aging. Relative to mouse models, mouse disease signatures demonstrated consistent trends toward preserved mitochondrial function protein catabolism, DNA repair responses, and chromatin maintenance. These findings suggest a more complex and multifactorial pathophysiology in human neurodegeneration than is captured through standard animal models, and suggest that even among conserved physiological processes such as aging, mice are less prone to exhibit neurodegeneration-like changes. This work may help explain the poor track record of mouse-based translational therapies for neurodegeneration and provides a path forward to critically evaluate and improve animal models of human disease. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
1979-01-01
The computer model for erythropoietic control was adapted to the mouse system by altering system parameters originally given for the human to those which more realistically represent the mouse. Parameter values were obtained from a variety of literature sources. Using the mouse model, the mouse was studied as a potential experimental model for spaceflight. Simulation studies of dehydration and hypoxia were performed. A comparison of system parameters for the mouse and human models is presented. Aside from the obvious differences expected in fluid volumes, blood flows and metabolic rates, larger differences were observed in the following: erythrocyte life span, erythropoietin half-life, and normal arterial pO2.
Zheng, Ming-Jie; Wang, Jue; Xu, Lu; Zha, Xiao-Ming; Zhao, Yi; Ling, Li-Jun; Wang, Shui
2015-02-01
During the past decades, many efforts have been made in mimicking the clinical progress of human cancer in mouse models. Previously, we developed a human breast tissue-derived (HB) mouse model. Theoretically, it may mimic the interactions between "species-specific" mammary microenvironment of human origin and human breast cancer cells. However, detailed evidences are absent. The present study (in vivo, cellular, and molecular experiments) was designed to explore the regulatory role of human mammary microenvironment in the progress of human breast cancer cells. Subcutaneous (SUB), mammary fat pad (MFP), and HB mouse models were developed for in vivo comparisons. Then, the orthotopic tumor masses from three different mouse models were collected for primary culture. Finally, the biology of primary cultured human breast cancer cells was compared by cellular and molecular experiments. Results of in vivo mouse models indicated that human breast cancer cells grew better in human mammary microenvironment. Cellular and molecular experiments confirmed that primary cultured human breast cancer cells from HB mouse model showed a better proliferative and anti-apoptotic biology than those from SUB to MFP mouse models. Meanwhile, primary cultured human breast cancer cells from HB mouse model also obtained the migratory and invasive biology for "species-specific" tissue metastasis to human tissues. Comprehensive analyses suggest that "species-specific" mammary microenvironment of human origin better regulates the biology of human breast cancer cells in our humanized mouse model of breast cancer, which is more consistent with the clinical progress of human breast cancer.
The Mouse Tumor Biology Database: A Comprehensive Resource for Mouse Models of Human Cancer.
Krupke, Debra M; Begley, Dale A; Sundberg, John P; Richardson, Joel E; Neuhauser, Steven B; Bult, Carol J
2017-11-01
Research using laboratory mice has led to fundamental insights into the molecular genetic processes that govern cancer initiation, progression, and treatment response. Although thousands of scientific articles have been published about mouse models of human cancer, collating information and data for a specific model is hampered by the fact that many authors do not adhere to existing annotation standards when describing models. The interpretation of experimental results in mouse models can also be confounded when researchers do not factor in the effect of genetic background on tumor biology. The Mouse Tumor Biology (MTB) database is an expertly curated, comprehensive compendium of mouse models of human cancer. Through the enforcement of nomenclature and related annotation standards, MTB supports aggregation of data about a cancer model from diverse sources and assessment of how genetic background of a mouse strain influences the biological properties of a specific tumor type and model utility. Cancer Res; 77(21); e67-70. ©2017 AACR . ©2017 American Association for Cancer Research.
Drug discovery in prostate cancer mouse models.
Valkenburg, Kenneth C; Pienta, Kenneth J
2015-01-01
The mouse is an important, though imperfect, organism with which to model human disease and to discover and test novel drugs in a preclinical setting. Many experimental strategies have been used to discover new biological and molecular targets in the mouse, with the hopes of translating these discoveries into novel drugs to treat prostate cancer in humans. Modeling prostate cancer in the mouse, however, has been challenging, and often drugs that work in mice have failed in human trials. The authors discuss the similarities and differences between mice and men; the types of mouse models that exist to model prostate cancer; practical questions one must ask when using a mouse as a model; and potential reasons that drugs do not often translate to humans. They also discuss the current value in using mouse models for drug discovery to treat prostate cancer and what needs are still unmet in field. With proper planning and following practical guidelines by the researcher, the mouse is a powerful experimental tool. The field lacks genetically engineered metastatic models, and xenograft models do not allow for the study of the immune system during the metastatic process. There remain several important limitations to discovering and testing novel drugs in mice for eventual human use, but these can often be overcome. Overall, mouse modeling is an essential part of prostate cancer research and drug discovery. Emerging technologies and better and ever-increasing forms of communication are moving the field in a hopeful direction.
Orthology for comparative genomics in the mouse genome database.
Dolan, Mary E; Baldarelli, Richard M; Bello, Susan M; Ni, Li; McAndrews, Monica S; Bult, Carol J; Kadin, James A; Richardson, Joel E; Ringwald, Martin; Eppig, Janan T; Blake, Judith A
2015-08-01
The mouse genome database (MGD) is the model organism database component of the mouse genome informatics system at The Jackson Laboratory. MGD is the international data resource for the laboratory mouse and facilitates the use of mice in the study of human health and disease. Since its beginnings, MGD has included comparative genomics data with a particular focus on human-mouse orthology, an essential component of the use of mouse as a model organism. Over the past 25 years, novel algorithms and addition of orthologs from other model organisms have enriched comparative genomics in MGD data, extending the use of orthology data to support the laboratory mouse as a model of human biology. Here, we describe current comparative data in MGD and review the history and refinement of orthology representation in this resource.
Genetically Engineered Mouse Models for Studying Inflammatory Bowel Disease
Mizoguchi, Atsushi; Takeuchi, Takahito; Himuro, Hidetomo; Okada, Toshiyuki; Mizoguchi, Emiko
2015-01-01
Inflammatory bowel disease (IBD) is a chronic intestinal inflammatory condition that is mediated by very complex mechanisms controlled by genetic, immune, and environmental factors. More than 74 kinds of genetically engineered mouse strains have been established since 1993 for studying IBD. Although mouse models cannot fully reflect human IBD, they have provided significant contributions for not only understanding the mechanism, but also developing new therapeutic means for IBD. Indeed, 20 kinds of genetically engineered mouse models carry the susceptibility genes identified in human IBD, and the functions of some other IBD susceptibility genes have also been dissected out using mouse models. Cutting-edge technologies such as cell-specific and inducible knockout systems, which were recently employed to mouse IBD models, have further enhanced the ability of investigators to provide important and unexpected rationales for developing new therapeutic strategies for IBD. In this review article, we briefly introduce 74 kinds of genetically engineered mouse models that spontaneously develop intestinal inflammation. PMID:26387641
Swindell, William R; Johnston, Andrew; Carbajal, Steve; Han, Gangwen; Wohn, Christian; Lu, Jun; Xing, Xianying; Nair, Rajan P; Voorhees, John J; Elder, James T; Wang, Xiao-Jing; Sano, Shigetoshi; Prens, Errol P; DiGiovanni, John; Pittelkow, Mark R; Ward, Nicole L; Gudjonsson, Johann E
2011-04-04
Development of a suitable mouse model would facilitate the investigation of pathomechanisms underlying human psoriasis and would also assist in development of therapeutic treatments. However, while many psoriasis mouse models have been proposed, no single model recapitulates all features of the human disease, and standardized validation criteria for psoriasis mouse models have not been widely applied. In this study, whole-genome transcriptional profiling is used to compare gene expression patterns manifested by human psoriatic skin lesions with those that occur in five psoriasis mouse models (K5-Tie2, imiquimod, K14-AREG, K5-Stat3C and K5-TGFbeta1). While the cutaneous gene expression profiles associated with each mouse phenotype exhibited statistically significant similarity to the expression profile of psoriasis in humans, each model displayed distinctive sets of similarities and differences in comparison to human psoriasis. For all five models, correspondence to the human disease was strong with respect to genes involved in epidermal development and keratinization. Immune and inflammation-associated gene expression, in contrast, was more variable between models as compared to the human disease. These findings support the value of all five models as research tools, each with identifiable areas of convergence to and divergence from the human disease. Additionally, the approach used in this paper provides an objective and quantitative method for evaluation of proposed mouse models of psoriasis, which can be strategically applied in future studies to score strengths of mouse phenotypes relative to specific aspects of human psoriasis.
Optimizing mouse models of neurodegenerative disorders: are therapeutics in sight?
Lutz, Cathleen M; Osborne, Melissa A
2013-01-01
The genomic and biologic conservation between mice and humans, along with our increasing ability to manipulate the mouse genome, places the mouse as a premier model for deciphering disease mechanisms and testing potential new therapies. Despite these advantages, mouse models of neurodegenerative disease are sometimes difficult to generate and can present challenges that must be carefully addressed when used for preclinical studies. For those models that do exist, the standardization and optimization of the models is a critical step in ensuring success in both basic research and preclinical use. This review looks back on the history of model development for neurodegenerative diseases and highlights the key strategies that have been learned in order to improve the design, development and use of mouse models in the study of neurodegenerative disease.
Applications and Limitations of Mouse Models for Understanding Human Atherosclerosis
von Scheidt, Moritz; Zhao, Yuqi; Kurt, Zeyneb; Pan, Calvin; Zeng, Lingyao; Yang, Xia; Schunkert, Heribert; Lusis, Aldons J.
2017-01-01
Most of the biological understanding of mechanisms underlying coronary artery disease (CAD) derives from studies of mouse models. The identification of multiple CAD loci and strong candidate genes in large human genome-wide association studies (GWAS) presented an opportunity to examine the relevance of mouse models for the human disease. We comprehensively reviewed the mouse literature, including 827 literature-derived genes, and compared it to human data. First, we observed striking concordance of risk factors for atherosclerosis in mice and humans. Second, there was highly significant overlap of mouse genes with human genes identified by GWAS. In particular, of the 46 genes with strong association signals in CAD-GWAS that were studied in mouse models all but one exhibited consistent effects on atherosclerosis-related phenotypes. Third, we compared 178 CAD-associated pathways derived from human GWAS with 263 from mouse studies and observed that over 50% were consistent between both species. PMID:27916529
Genetically engineered mouse models for studying inflammatory bowel disease.
Mizoguchi, Atsushi; Takeuchi, Takahito; Himuro, Hidetomo; Okada, Toshiyuki; Mizoguchi, Emiko
2016-01-01
Inflammatory bowel disease (IBD) is a chronic intestinal inflammatory condition that is mediated by very complex mechanisms controlled by genetic, immune, and environmental factors. More than 74 kinds of genetically engineered mouse strains have been established since 1993 for studying IBD. Although mouse models cannot fully reflect human IBD, they have provided significant contributions for not only understanding the mechanism, but also developing new therapeutic means for IBD. Indeed, 20 kinds of genetically engineered mouse models carry the susceptibility genes identified in human IBD, and the functions of some other IBD susceptibility genes have also been dissected out using mouse models. Cutting-edge technologies such as cell-specific and inducible knockout systems, which were recently employed to mouse IBD models, have further enhanced the ability of investigators to provide important and unexpected rationales for developing new therapeutic strategies for IBD. In this review article, we briefly introduce 74 kinds of genetically engineered mouse models that spontaneously develop intestinal inflammation. Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Mouse Tumor Biology (MTB): a database of mouse models for human cancer.
Bult, Carol J; Krupke, Debra M; Begley, Dale A; Richardson, Joel E; Neuhauser, Steven B; Sundberg, John P; Eppig, Janan T
2015-01-01
The Mouse Tumor Biology (MTB; http://tumor.informatics.jax.org) database is a unique online compendium of mouse models for human cancer. MTB provides online access to expertly curated information on diverse mouse models for human cancer and interfaces for searching and visualizing data associated with these models. The information in MTB is designed to facilitate the selection of strains for cancer research and is a platform for mining data on tumor development and patterns of metastases. MTB curators acquire data through manual curation of peer-reviewed scientific literature and from direct submissions by researchers. Data in MTB are also obtained from other bioinformatics resources including PathBase, the Gene Expression Omnibus and ArrayExpress. Recent enhancements to MTB improve the association between mouse models and human genes commonly mutated in a variety of cancers as identified in large-scale cancer genomics studies, provide new interfaces for exploring regions of the mouse genome associated with cancer phenotypes and incorporate data and information related to Patient-Derived Xenograft models of human cancers. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
The latest animal models of ovarian cancer for novel drug discovery.
Magnotti, Elizabeth; Marasco, Wayne A
2018-03-01
Epithelial ovarian cancer is a heterogeneous disease classified into five subtypes, each with a different molecular profile. Most cases of ovarian cancer are diagnosed after metastasis of the primary tumor and are resistant to traditional platinum-based chemotherapeutics. Mouse models of ovarian cancer have been utilized to discern ovarian cancer tumorigenesis and the tumor's response to therapeutics. Areas covered: The authors provide a review of mouse models currently employed to understand ovarian cancer. This article focuses on advances in the development of orthotopic and patient-derived tumor xenograft (PDX) mouse models of ovarian cancer and discusses current humanized mouse models of ovarian cancer. Expert opinion: The authors suggest that humanized mouse models of ovarian cancer will provide new insight into the role of the human immune system in combating and augmenting ovarian cancer and aid in the development of novel therapeutics. Development of humanized mouse models will take advantage of the NSG and NSG-SGM3 strains of mice as well as new strains that are actively being derived.
USDA-ARS?s Scientific Manuscript database
This paper provides an overview of the Model Optimization, Uncertainty, and SEnsitivity Analysis (MOUSE) software application, an open-source, Java-based toolbox of visual and numerical analysis components for the evaluation of environmental models. MOUSE is based on the OPTAS model calibration syst...
Disrupting the male germ line to find infertility and contraception targets.
Archambeault, Denise R; Matzuk, Martin M
2014-05-01
Genetically-manipulated mouse models have become indispensible for broadening our understanding of genes and pathways related to male germ cell development. Until suitable in vitro systems for studying spermatogenesis are perfected, in vivo models will remain the gold standard for inquiry into testicular function. Here, we discuss exciting advances that are allowing researchers faster, easier, and more customizable access to their mouse models of interest. Specifically, the trans-NIH Knockout Mouse Project (KOMP) is working to generate knockout mouse models of every gene in the mouse genome. The related Knockout Mouse Phenotyping Program (KOMP2) is performing systematic phenotypic analysis of this genome-wide collection of knockout mice, including fertility screening. Together, these programs will not only uncover new genes involved in male germ cell development but also provide the research community with the mouse models necessary for further investigations. In addition to KOMP/KOMP2, another promising development in the field of mouse models is the advent of CRISPR (clustered regularly interspaced short palindromic repeat)-Cas technology. Utilizing 20 nucleotide guide sequences, CRISPR/Cas has the potential to introduce sequence-specific insertions, deletions, and point mutations to produce null, conditional, activated, or reporter-tagged alleles. CRISPR/Cas can also successfully target multiple genes in a single experimental step, forgoing the multiple generations of breeding traditionally required to produce mouse models with deletions, insertions, or mutations in multiple genes. In addition, CRISPR/Cas can be used to create mouse models carrying variants identical to those identified in infertile human patients, providing the opportunity to explore the effects of such mutations in an in vivo system. Both the KOMP/KOMP2 projects and the CRISPR/Cas system provide powerful, accessible genetic approaches to the study of male germ cell development in the mouse. A more complete understanding of male germ cell biology is critical for the identification of novel targets for potential non-hormonal contraceptive intervention. Copyright © 2014. Published by Elsevier Masson SAS.
Swindell, William R.; Johnston, Andrew; Carbajal, Steve; Han, Gangwen; Wohn, Christian; Lu, Jun; Xing, Xianying; Nair, Rajan P.; Voorhees, John J.; Elder, James T.; Wang, Xiao-Jing; Sano, Shigetoshi; Prens, Errol P.; DiGiovanni, John; Pittelkow, Mark R.; Ward, Nicole L.; Gudjonsson, Johann E.
2011-01-01
Development of a suitable mouse model would facilitate the investigation of pathomechanisms underlying human psoriasis and would also assist in development of therapeutic treatments. However, while many psoriasis mouse models have been proposed, no single model recapitulates all features of the human disease, and standardized validation criteria for psoriasis mouse models have not been widely applied. In this study, whole-genome transcriptional profiling is used to compare gene expression patterns manifested by human psoriatic skin lesions with those that occur in five psoriasis mouse models (K5-Tie2, imiquimod, K14-AREG, K5-Stat3C and K5-TGFbeta1). While the cutaneous gene expression profiles associated with each mouse phenotype exhibited statistically significant similarity to the expression profile of psoriasis in humans, each model displayed distinctive sets of similarities and differences in comparison to human psoriasis. For all five models, correspondence to the human disease was strong with respect to genes involved in epidermal development and keratinization. Immune and inflammation-associated gene expression, in contrast, was more variable between models as compared to the human disease. These findings support the value of all five models as research tools, each with identifiable areas of convergence to and divergence from the human disease. Additionally, the approach used in this paper provides an objective and quantitative method for evaluation of proposed mouse models of psoriasis, which can be strategically applied in future studies to score strengths of mouse phenotypes relative to specific aspects of human psoriasis. PMID:21483750
Multi-threaded Sparse Matrix Sparse Matrix Multiplication for Many-Core and GPU Architectures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deveci, Mehmet; Trott, Christian Robert; Rajamanickam, Sivasankaran
Sparse Matrix-Matrix multiplication is a key kernel that has applications in several domains such as scientific computing and graph analysis. Several algorithms have been studied in the past for this foundational kernel. In this paper, we develop parallel algorithms for sparse matrix- matrix multiplication with a focus on performance portability across different high performance computing architectures. The performance of these algorithms depend on the data structures used in them. We compare different types of accumulators in these algorithms and demonstrate the performance difference between these data structures. Furthermore, we develop a meta-algorithm, kkSpGEMM, to choose the right algorithm and datamore » structure based on the characteristics of the problem. We show performance comparisons on three architectures and demonstrate the need for the community to develop two phase sparse matrix-matrix multiplication implementations for efficient reuse of the data structures involved.« less
Multi-threaded Sparse Matrix-Matrix Multiplication for Many-Core and GPU Architectures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deveci, Mehmet; Rajamanickam, Sivasankaran; Trott, Christian Robert
Sparse Matrix-Matrix multiplication is a key kernel that has applications in several domains such as scienti c computing and graph analysis. Several algorithms have been studied in the past for this foundational kernel. In this paper, we develop parallel algorithms for sparse matrix-matrix multiplication with a focus on performance portability across different high performance computing architectures. The performance of these algorithms depend on the data structures used in them. We compare different types of accumulators in these algorithms and demonstrate the performance difference between these data structures. Furthermore, we develop a meta-algorithm, kkSpGEMM, to choose the right algorithm and datamore » structure based on the characteristics of the problem. We show performance comparisons on three architectures and demonstrate the need for the community to develop two phase sparse matrix-matrix multiplication implementations for efficient reuse of the data structures involved.« less
Wang, Qiongyu; Zhang, Aijun; Ma, Huiqun; Wang, Shijie; Ma, Yunyun; Zou, Xingwei; Li, Ruilian
2013-03-01
To investigate the effects of topical treatment with adenovirus-mediated promyelocytic leukemia gene (PML) gene in a psoriasis-like mouse model. The effect of adenovirus-mediated PML gene on the granular layer of mouse tail scale epidermis and epithelial mitosis were observed on longitudinal histological sections prepared from the tail skin and vaginal epithelium of the mice. Adenovirus-mediated PML gene significantly inhibited mitosis of mouse vaginal epithelial cells and promoted the formation of granular layer in mouse tail scale epidermis. The therapeutic effect of PML gene in the psoriasis-like mouse model may be associated with increased granular cells and suppressed epidemic cell proliferation.
Generation of transgenic mouse model using PTTG as an oncogene.
Kakar, Sham S; Kakar, Cohin
2015-01-01
The close physiological similarity between the mouse and human has provided tools to understanding the biological function of particular genes in vivo by introduction or deletion of a gene of interest. Using a mouse as a model has provided a wealth of resources, knowledge, and technology, helping scientists to understand the biological functions, translocation, trafficking, and interaction of a candidate gene with other intracellular molecules, transcriptional regulation, posttranslational modification, and discovery of novel signaling pathways for a particular gene. Most importantly, the generation of the mouse model for a specific human disease has provided a powerful tool to understand the etiology of a disease and discovery of novel therapeutics. This chapter describes in detail the step-by-step generation of the transgenic mouse model, which can be helpful in guiding new investigators in developing successful models. For practical purposes, we will describe the generation of a mouse model using pituitary tumor transforming gene (PTTG) as the candidate gene of interest.
Jameson, Stephen C; Masopust, David
2018-04-02
Much of what we understand about immunology, including the response to vaccines, come from studies in mice because they provide many practical advantages compared with research in higher mammals and humans. Nevertheless, modalities for preventing or treating disease do not always translate from mouse to humans, which has led to increasing scrutiny of the continued merits of mouse research. Here, we summarize the pros and cons of current laboratory mouse models for immunology research and discuss whether overreliance on nonphysiological, ultra-hygienic animal husbandry approaches has limited the ultimate translation potential of mouse-derived data to humans. Alternative approaches are discussed that may extend the use of the mouse model for preclinical studies. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.
Mouse Models in Bone Marrow Transplantation and Adoptive Cellular Therapy
Arber, Caroline; Brenner, Malcolm K.; Reddy, Pavan
2014-01-01
Mouse models of transplantation have been indispensable to the development of bone marrow transplantation (BMT). Their role in the generation of basic science knowledge is invaluable and is subject to discussion below. However, this article focuses on the direct role and relevance of mouse models towards the clinical development and advances in BMT and adoptive T-cell therapy for human diseases. The authors aim to present a thoughtful perspective on the pros and cons of mouse models while noting that despite imperfections these models are obligatory for the development of science-based medicine. PMID:24216170
Centralized mouse repositories.
Donahue, Leah Rae; Hrabe de Angelis, Martin; Hagn, Michael; Franklin, Craig; Lloyd, K C Kent; Magnuson, Terry; McKerlie, Colin; Nakagata, Naomi; Obata, Yuichi; Read, Stuart; Wurst, Wolfgang; Hörlein, Andreas; Davisson, Muriel T
2012-10-01
Because the mouse is used so widely for biomedical research and the number of mouse models being generated is increasing rapidly, centralized repositories are essential if the valuable mouse strains and models that have been developed are to be securely preserved and fully exploited. Ensuring the ongoing availability of these mouse strains preserves the investment made in creating and characterizing them and creates a global resource of enormous value. The establishment of centralized mouse repositories around the world for distributing and archiving these resources has provided critical access to and preservation of these strains. This article describes the common and specialized activities provided by major mouse repositories around the world.
Centralized Mouse Repositories
Donahue, Leah Rae; de Angelis, Martin Hrabe; Hagn, Michael; Franklin, Craig; Lloyd, K. C. Kent; Magnuson, Terry; McKerlie, Colin; Nakagata, Naomi; Obata, Yuichi; Read, Stuart; Wurst, Wolfgang; Hörlein, Andreas; Davisson, Muriel T.
2013-01-01
Because the mouse is used so widely for biomedical research and the number of mouse models being generated is increasing rapidly, centralized repositories are essential if the valuable mouse strains and models that have been developed are to be securely preserved and fully exploited. Ensuring the ongoing availability of these mouse strains preserves the investment made in creating and characterizing them and creates a global resource of enormous value. The establishment of centralized mouse repositories around the world for distributing and archiving these resources has provided critical access to and preservation of these strains. This article describes the common and specialized activities provided by major mouse repositories around the world. PMID:22945696
2017-05-23
OPEN ORIGINAL ARTICLE Molecular indicators of stress-induced neuroinflammation in a mouse model simulating features of post -traumatic stress disorder... post -traumatic stress disorder (PTSD). The model involved exposure of an intruder (male C57BL/6) mouse to a resident aggressor (male SJL) mouse for 5...revealed that neurogenesis and synaptic plasticity pathways were activated during the early responses but were inhibited after the later post -trauma
Wiktorowicz, Tatiana; Kinter, Jochen; Kobuke, Kazuhiro; Campbell, Kevin P; Sinnreich, Michael
2015-01-01
Mouse models of dysferlinopathies are valuable tools with which to investigate the pathomechanisms underlying these diseases and to test novel therapeutic strategies. One such mouse model is the Dysf (tm1Kcam) strain, which was generated using a targeting vector to replace a 12-kb region of the dysferlin gene and which features a progressive muscular dystrophy. A prerequisite for successful animal studies using genetic mouse models is an accurate genotyping protocol. Unfortunately, the lack of robustness of currently available genotyping protocols for the Dysf (tm1Kcam) mouse has prevented efficient colony management. Initial attempts to improve the genotyping protocol based on the published genomic structure failed. These difficulties led us to analyze the targeted locus of the dysferlin gene of the Dysf (tm1Kcam) mouse in greater detail. In this study we resequenced and analyzed the targeted locus of the Dysf (tm1Kcam) mouse and developed a novel PCR protocol for genotyping. We found that instead of a deletion, the dysferlin locus in the Dysf (tm1Kcam) mouse carries a targeted insertion. This genetic characterization enabled us to establish a reliable method for genotyping of the Dysf (tm1Kcam) mouse, and thus has made efficient colony management possible. Our work will make the Dysf (tm1Kcam) mouse model more attractive for animal studies of dysferlinopathies.
Mouse models of neurodegenerative diseases: criteria and general methodology.
Janus, Christopher; Welzl, Hans
2010-01-01
The major symptom of Alzheimer's disease is rapidly progressing dementia, coinciding with the formation of amyloid and tau deposits in the central nervous system, and neuronal death. At present familial cases of dementias provide the most promising foundation for modelling neurodegeneration. We describe the mnemonic and other major behavioral symptoms of tauopathies, briefly outline the genetics underlying familiar cases and discuss the arising implications for modelling the disease in mostly transgenic mouse lines. We then depict to what degree the most recent mouse models replicate pathological and cognitive characteristics observed in patients.There is no universally valid behavioral test battery to evaluate mouse models. The selection of individual tests depends on the behavioral and/or memory system in focus, the type of a model and how well it replicates the pathology of a disease and the amount of control over the genetic background of the mouse model. However it is possible to provide guidelines and criteria for modelling the neurodegeneration, setting up the experiments and choosing relevant tests. One should not adopt a "one (trans)gene, one disease" interpretation, but should try to understand how the mouse genome copes with the protein expression of the transgene in question. Further, it is not possible to recommend some mouse models over others since each model is valuable within its own constraints, and the way experiments are performed often reflects the idiosyncratic reality of specific laboratories. Our purpose is to improve bridging molecular and behavioural approaches in translational research.
Maki, Katsuyuki; Holmes, Ann R; Watabe, Etsuko; Iguchi, Yumi; Matsumoto, Satoru; Ikeda, Fumiaki; Tawara, Shuichi; Mutoh, Seitaro
2007-01-01
The aim of this study was to compare the pharmacodynamics of the azole antifungal drugs fluconazole, itraconazole and ketoconazole, and the polyene antifungal amphotericin B, in a mouse model of disseminated Candida albicans infection. In order to directly compare effective serum concentrations of these antifungals, drug concentrations were assayed microbiologically by measuring inhibition of C. albicans mycelial growth (mMIC) in a mouse serum-based assay (serum antifungal titer). Efficacy in the mouse infection model was determined using an organ-based (kidney burden) endpoint. For all four drugs, the serum antifungal titers, 8 hr after administration of single doses of drugs at a range of drug concentrations, correlated closely with C. albicans kidney fungal burden in the mouse model. The results showed that determining serum antifungal titer may be used to accurately represent kidney fungal burden in a mouse model of disseminated candidiasis and allowed direct comparison of the pharmacodynamics of differing classes of antifungal drugs.
Chang, Bo
2016-01-01
Leber's congenital amaurosis (LCA) is an inherited retinal degenerative disease characterized by severe loss of vision in the first year of life. In addition to early vision loss, a variety of other eye-related abnormalities including roving eye movements, deep-set eyes, and sensitivity to bright light also occur with this disease. Many animal models of LCA are available and the study them has led to a better understanding of the pathology of the disease, and has led to the development of therapeutic strategies aimed at curing or slowing down LCA. Mouse models, with their well-developed genetics and similarity to human physiology and anatomy, serve as powerful tools with which to investigate the etiology of human LCA. Such mice provide reproducible, experimental systems for elucidating pathways of normal development, function, designing strategies and testing compounds for translational research and gene-based therapies aimed at delaying the diseases progression. In this chapter, I describe tools used in the discovery and evaluation of mouse models of LCA including a Phoenix Image-Guided Optical Coherence Tomography (OCT) and a Diagnosys Espion Visual Electrophysiology System. Three mouse models are described, the rd3 mouse model for LCA12 and LCA1, the rd12 mouse model for LCA2, and the rd16 mouse model for LCA10.
USDA-ARS?s Scientific Manuscript database
Over the last several decades, the mouse model of Typhoid fever has been an extremely productive model to investigate Salmonella enterica serovar Typhimurium pathogenesis. The mouse is the paradigm for investigating systemic disease due to infection by Salmonella; however, the swine model of gastro...
A unified model of the excitability of mouse sensory and motor axons.
Makker, Preet G S; Matamala, José Manuel; Park, Susanna B; Lees, Justin G; Kiernan, Matthew C; Burke, David; Moalem-Taylor, Gila; Howells, James
2018-06-19
Non-invasive nerve excitability techniques have provided valuable insight into the understanding of neurological disorders. The widespread use of mice in translational research on peripheral nerve disorders and by pharmaceutical companies during drug development requires valid and reliable models that can be compared to humans. This study established a novel experimental protocol that enables comparative assessment of the excitability properties of motor and sensory axons at the same site in mouse caudal nerve, compared the mouse data to data for motor and sensory axons in human median nerve at the wrist, and constructed a mathematical model of the excitability of mouse axons. In a separate study, ischaemia was employed as an experimental manoeuvre to test the translational utility of this preparation. The patterns of mouse sensory and motor excitability were qualitatively similar to human studies under normal and ischaemic conditions. The most conspicuous differences between mouse and human studies were observed in the recovery cycle and the response to hyperpolarization. Modelling showed that an increase in temperature in mouse axons could account for most of the differences in the recovery cycle. The modelling also suggested a larger hyperpolarization-activated conductance in mouse axons. The kinetics of this conductance appeared to be much slower raising the possibility that an additional or different hyperpolarization-activated cyclic-nucleotide gated (HCN) channel isoform underlies the accommodation to hyperpolarization in mouse axons. Given a possible difference in HCN isoforms, caution should be exercised in extrapolating from studies of mouse motor and sensory axons to human nerve disorders. This article is protected by copyright. All rights reserved.
Rapamycin improves sociability in the BTBR T(+)Itpr3(tf)/J mouse model of autism spectrum disorders.
Burket, Jessica A; Benson, Andrew D; Tang, Amy H; Deutsch, Stephen I
2014-01-01
Overactivation of the mammalian target of rapamycin (mTOR) has been implicated in the pathogenesis of syndromic forms of autism spectrum disorders (ASDs), such as tuberous sclerosis complex, neurofibromatosis 1, and fragile X syndrome. Administration of mTORC1 (mTOR complex 1) inhibitors (e.g. rapamycin) in syndromic mouse models of ASDs improved behavior, cognition, and neuropathology. However, since only a minority of ASDs are due to the effects of single genes (∼10%), there is a need to explore inhibition of mTOR activity in mouse models that may be more relevant to the majority of nonsyndromic presentations, such as the genetically inbred BTBR T(+)Itpr3(tf)/J (BTBR) mouse model of ASDs. BTBR mice have social impairment and exhibit increased stereotypic behavior. In prior work, d-cycloserine, a partial glycineB site agonist that targets the N-methyl-d-aspartate (NMDA) receptor, was shown to improve sociability in both Balb/c and BTBR mouse models of ASDs. Importantly, NMDA receptor activation regulates mTOR signaling activity. The current study investigated the ability of rapamycin (10mg/kg, i.p.×four days), an mTORC1 inhibitor, to improve sociability and stereotypic behavior in BTBR mice. Using a standard paradigm to assess mouse social behavior, rapamycin improved several measures of sociability in the BTBR mouse, suggesting that mTOR overactivation represents a therapeutic target that mediates or contributes to impaired sociability in the BTBR mouse model of ASDs. Interestingly, there was no effect of rapamycin on stereotypic behaviors in this mouse model. Copyright © 2013 Elsevier Inc. All rights reserved.
Chauderlier, Alban; Delattre, Lucie; Buée, Luc; Galas, Marie-Christine
2017-01-01
Oxidative damage is an early event in neurodegenerative disorders such as Alzheimer disease. To increase oxidative stress in AD-related mouse models is essential to study early mechanisms involved in the physiopathology of these diseases. In this chapter, we describe an experimental mouse model of transient and acute hyperthermic stress to induce in vivo an increase of oxidative stress in the brain of any kind of wild-type or transgenic mouse.
Ott, Bastian; Dahlke, Carolin; Meller, Karl; Napirei, Markus; Schmitt-John, Thomas; Brand-Saberi, Beate; Theiss, Carsten; Saberi, Darius
2015-07-01
Mouse breeding is of importance to a whole range of medical and biological research. There are many known mouse models for motor neuron diseases. However, it must be kept in mind that especially mouse models for amyotrophic lateral sclerosis develop severe symptoms causing intense stress. This article is designed to summarize conscientious work with the wobbler mouse, a model for the sporadic form of amyotrophic lateral sclerosis. This mouse model is characterized by a degeneration of α-motor-neurons leading to head tremor, loss of body weight and rapidly progressive paralysis. Although this mouse model has been known since 1956, there are no guidelines for breeding wobbler mice. Due to the lack of such guidelines the present study tries to close this gap and implements a manual for further studies. It includes the whole workflow in regard to wobbler mice from breeding and animal care taking, genotyping and phenotype analysis, but also gives some examples for the use of various neuronal tissues for histological investigation. Beside the progress in research a second aim should always be the enhancement of mouse welfare and reduction of stress for the laboratory animals. Copyright © 2015 Elsevier GmbH. All rights reserved.
Rational Design of Mouse Models for Cancer Research.
Landgraf, Marietta; McGovern, Jacqui A; Friedl, Peter; Hutmacher, Dietmar W
2018-03-01
The laboratory mouse is widely considered as a valid and affordable model organism to study human disease. Attempts to improve the relevance of murine models for the investigation of human pathologies led to the development of various genetically engineered, xenograft and humanized mouse models. Nevertheless, most preclinical studies in mice suffer from insufficient predictive value when compared with cancer biology and therapy response of human patients. We propose an innovative strategy to improve the predictive power of preclinical cancer models. Combining (i) genomic, tissue engineering and regenerative medicine approaches for rational design of mouse models with (ii) rapid prototyping and computational benchmarking against human clinical data will enable fast and nonbiased validation of newly generated models. Copyright © 2017 Elsevier Ltd. All rights reserved.
Review of DoD Malaria Research Programs,
1992-05-01
the irraliated sporozoite vaccine. Work in the mouse model system and then extrapolate to human malarias. Study naturally acquired immune ...recombinant vaccines. Work simultaneously in the mouse model system and with human malarias. 3. Identify targets and mechanisms of protective immunity not...multivalent vaccines that attack these same targets. 3. Working again in the mouse model, non- human primate model, andI human systems we
Animal models for prenatal gene therapy: rodent models for prenatal gene therapy.
Roybal, Jessica L; Endo, Masayuki; Buckley, Suzanne M K; Herbert, Bronwen R; Waddington, Simon N; Flake, Alan W
2012-01-01
Fetal gene transfer has been studied in various animal models, including rabbits, guinea pigs, cats, dogs, and nonhuman primate; however, the most common model is the rodent, particularly the mouse. There are numerous advantages to mouse models, including a short gestation time of around 20 days, large litter size usually of more than six pups, ease of colony maintenance due to the small physical size, and the relatively low expense of doing so. Moreover, the mouse genome is well defined, there are many transgenic models particularly of human monogenetic disorders, and mouse-specific biological reagents are readily available. One criticism has been that it is difficult to perform procedures on the fetal mouse with suitable accuracy. Over the past decade, accumulation of technical expertise and development of technology such as high-frequency ultrasound have permitted accurate vector delivery to organs and tissues. Here, we describe our experiences of gene transfer to the fetal mouse with and without ultrasound guidance from mid to late gestation. Depending upon the vector type, the route of delivery and the age of the fetus, specific or widespread gene transfer can be achieved, making fetal mice excellent models for exploratory biodistribution studies.
Tang, Tao; He, Bixiu
2013-01-01
We evaluated the effects of Lycium barbarum polysaccharides LBP) on D-galactose aging model mouse, and explored its possible mechanism. Kunming mice were randomly divided into the control group, the model group, the high-dose LBP group, and the low-dose LBP group. Except the control group, D-galactose was used for modelling. The drug was administrated when modelling. Mouse behavioural, learning and memory changes were observed, and the contents of lipid peroxidation (LPO), lipofuscin (LF) and monoamine oxidase B (MAO-B) in mouse brain tissue and the weight of immune organs were measured after 6 weeks. Compared with the control group, mouse weight gain in the model group reduced significantly. Compared with model group, after mice drank LBP, the times of electric shock was less than aging mice (in which, the high-dose LBP group, P<0.05), and electric shock incubation period was longer (P<0.01). On Day 45 after modelling and drug administration, the contents of LPO, LF and MAO-B in mouse brain tissue in the model group increased significantly, while those in the drug administration groups decreased significantly. The thymus index in the aging model group decreased significantly; the thymus index and the spleen index in the high-dose LBP group and the low-dose LBP group rebounded significantly (P<0.01). We concluded that LBP has an anti-aging effect on D-galactose induced aging model mouse, and its mechanism may be related with the alleviation of glucose metabolism disorder and the resistance of the generation of lipid peroxide and other substances, which damage cell membrane lipid.
Mutagenicity testing with transgenic mice. Part II: Comparison with the mouse spot test
Wahnschaffe, Ulrich; Bitsch, Annette; Kielhorn, Janet; Mangelsdorf, Inge
2005-01-01
The mouse spot test, an in vivo mutation assay, has been used to assess a number of chemicals. It is at present the only in vivo mammalian test system capable of detecting somatic gene mutations according to OECD guidelines (OECD guideline 484). It is however rather insensitive, animal consuming and expensive type of test. More recently several assays using transgenic animals have been developed. From data in the literature, the present study compares the results of in vivo testing of over twenty chemicals using the mouse spot test and compares them with results from the two transgenic mouse models with the best data base available, the lacI model (commercially available as the Big Blue® mouse), and the lacZ model (commercially available as the Muta™ Mouse). There was agreement in the results from the majority of substances. No differences were found in the predictability of the transgenic animal assays and the mouse spot test for carcinogenicity. However, from the limited data available, it seems that the transgenic mouse assay has several advantages over the mouse spot test and may be a suitable test system replacing the mouse spot test for detection of gene but not chromosome mutations in vivo. PMID:15676065
The Mouse Genome Database (MGD): facilitating mouse as a model for human biology and disease.
Eppig, Janan T; Blake, Judith A; Bult, Carol J; Kadin, James A; Richardson, Joel E
2015-01-01
The Mouse Genome Database (MGD, http://www.informatics.jax.org) serves the international biomedical research community as the central resource for integrated genomic, genetic and biological data on the laboratory mouse. To facilitate use of mouse as a model in translational studies, MGD maintains a core of high-quality curated data and integrates experimentally and computationally generated data sets. MGD maintains a unified catalog of genes and genome features, including functional RNAs, QTL and phenotypic loci. MGD curates and provides functional and phenotype annotations for mouse genes using the Gene Ontology and Mammalian Phenotype Ontology. MGD integrates phenotype data and associates mouse genotypes to human diseases, providing critical mouse-human relationships and access to repositories holding mouse models. MGD is the authoritative source of nomenclature for genes, genome features, alleles and strains following guidelines of the International Committee on Standardized Genetic Nomenclature for Mice. A new addition to MGD, the Human-Mouse: Disease Connection, allows users to explore gene-phenotype-disease relationships between human and mouse. MGD has also updated search paradigms for phenotypic allele attributes, incorporated incidental mutation data, added a module for display and exploration of genes and microRNA interactions and adopted the JBrowse genome browser. MGD resources are freely available to the scientific community. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Martinez‐Barbera, Juan Pedro
2017-01-01
Abstract Adamantinomatous craniopharyngioma (ACP) is the commonest tumor of the sellar region in childhood. Two genetically engineered mouse models have been developed and are giving valuable insights into ACP biology. These models have identified novel pathways activated in tumors, revealed an important function of paracrine signalling and extended conventional theories about the role of organ‐specific stem cells in tumorigenesis. In this review, we summarize these mouse models, what has been learnt, their limitations and open questions for future research. We then discussed how these mouse models may be used to test novel therapeutics against potentially targetable pathways recently identified in human ACP. PMID:28414891
NASA Astrophysics Data System (ADS)
Kim, Suhwan; Baek, Juyeong; Jung, Unsang; Lee, Sangwon; Jung, Woonggyu; Kim, Jeehyun; Kang, Shinwon
2013-05-01
Recently, Mouse neuroblastoma cells are considered as an attractive model for the study of human neurological and prion diseases, and intensively used as a model system in different areas. Among those areas, differentiation of neuro2a (N2A) cells, receptor mediated ion current, and glutamate induced physiological response are actively investigated. The reason for the interest to mouse neuroblastoma N2A cells is that they have a fast growing rate than other cells in neural origin with a few another advantages. This study evaluated the calcium oscillations and neural spikes recording of mouse neuroblastoma N2A cells in an epileptic condition. Based on our observation of neural spikes in mouse N2A cell with our proposed imaging modality, we report that mouse neuroblastoma N2A cells can be an important model related to epileptic activity studies. It is concluded that the mouse neuroblastoma N2A cells produce the epileptic spikes in vitro in the same way as produced by the neurons or the astrocytes. This evidence advocates the increased and strong level of neurotransmitters release by enhancement in free calcium using the 4-aminopyridine which causes the mouse neuroblastoma N2A cells to produce the epileptic spikes and calcium oscillation.
USDA-ARS?s Scientific Manuscript database
Human gamma delta T cells are potent effectors against glioma cell lines in vitro and in human/mouse xenograft models of glioblastoma, however, this effect has not been investigated in an immunocompetent mouse model. In this report, we established GL261 intracranial gliomas in syngeneic WT C57BL/6 m...
Peng, Zhanglong; Pati, Shibani; Fontaine, Magali J; Hall, Kelly; Herrera, Anthony V; Kozar, Rosemary A
2016-11-01
Clinical studies have demonstrated that the early and empiric use of plasma improves survival after hemorrhagic shock. We have demonstrated in rodent models of hemorrhagic shock that resuscitation with plasma is protective to the lungs compared with lactated Ringer's solution. As our long-term objective is to determine the molecular mechanisms that modulate plasma's protective effects in injured bleeding patients, we have used human plasma in a mouse model of hemorrhagic shock. The goal of the current experiments is to determine if there are significant adverse effects on lung injury when using human versus mouse plasma in an established murine model of hemorrhagic shock and laparotomy. Mice underwent laparotomy and 90 minutes of hemorrhagic shock to a mean arterial pressure (MAP) of 35 ± 5 mm Hg followed by resuscitation at 1× shed blood using either mouse fresh frozen plasma (FFP), human FFP, or human lyophilized plasma. Mean arterial pressure was recorded during shock and for the first 30 minutes of resuscitation. After 3 hours, animals were killed, and lungs collected for analysis. There was a significant increase in early MAP when mouse FFP was used to resuscitate animals compared with human FFP or human lyophilized plasma. However, despite these differences, analysis of the mouse lungs revealed no significant differences in pulmonary histopathology, lung permeability, or lung edema between all three plasma groups. Analysis of neutrophil infiltration in the lungs revealed that mouse FFP decreased neutrophil influx as measured by neutrophil staining; however, myeloperoxidase immunostaining revealed no significant differences in between groups. The study of human plasma in a mouse model of hemorrhagic shock is feasible but does reveal some differences compared with mouse plasma-based resuscitation in physiologic measures such as MAP postresuscitation. Measures of end organ function such as lung injury appear to be comparable in this acute model of hemorrhagic shock and resuscitation.
In vivo quantitative bioluminescence tomography using heterogeneous and homogeneous mouse models.
Liu, Junting; Wang, Yabin; Qu, Xiaochao; Li, Xiangsi; Ma, Xiaopeng; Han, Runqiang; Hu, Zhenhua; Chen, Xueli; Sun, Dongdong; Zhang, Rongqing; Chen, Duofang; Chen, Dan; Chen, Xiaoyuan; Liang, Jimin; Cao, Feng; Tian, Jie
2010-06-07
Bioluminescence tomography (BLT) is a new optical molecular imaging modality, which can monitor both physiological and pathological processes by using bioluminescent light-emitting probes in small living animal. Especially, this technology possesses great potential in drug development, early detection, and therapy monitoring in preclinical settings. In the present study, we developed a dual modality BLT prototype system with Micro-computed tomography (MicroCT) registration approach, and improved the quantitative reconstruction algorithm based on adaptive hp finite element method (hp-FEM). Detailed comparisons of source reconstruction between the heterogeneous and homogeneous mouse models were performed. The models include mice with implanted luminescence source and tumor-bearing mice with firefly luciferase report gene. Our data suggest that the reconstruction based on heterogeneous mouse model is more accurate in localization and quantification than the homogeneous mouse model with appropriate optical parameters and that BLT allows super-early tumor detection in vivo based on tomographic reconstruction of heterogeneous mouse model signal.
Kodamullil, Alpha Tom; Iyappan, Anandhi; Karki, Reagon; Madan, Sumit; Younesi, Erfan; Hofmann-Apitius, Martin
2017-01-01
Perturbance in inflammatory pathways have been identified as one of the major factors which leads to neurodegenerative diseases (NDD). Owing to the limited access of human brain tissues and the immense complexity of the brain, animal models, specifically mouse models, play a key role in advancing the NDD field. However, many of these mouse models fail to reproduce the clinical manifestations and end points of the disease. NDD drugs, which passed the efficacy test in mice, were repeatedly not successful in clinical trials. There are numerous studies which are supporting and opposing the applicability of mouse models in neuroinflammation and NDD. In this paper, we assessed to what extend a mouse can mimic the cellular and molecular interactions in humans at a mechanism level. Based on our mechanistic modeling approach, we investigate the failure of a neuroinflammation targeted drug in the late phases of clinical trials based on the comparative analyses between the two species.
NCI Mouse Repository | FNLCR Staging
The NCI Mouse Repository is an NCI-funded resource for mouse cancer models and associated strains. The repository makes strains available to all members of the scientific community (academic, non-profit, and commercial). NCI Mouse Repository strains
An extended Kalman filter for mouse tracking.
Choi, Hongjun; Kim, Mingi; Lee, Onseok
2018-05-19
Animal tracking is an important tool for observing behavior, which is useful in various research areas. Animal specimens can be tracked using dynamic models and observation models that require several types of data. Tracking mouse has several barriers due to the physical characteristics of the mouse, their unpredictable movement, and cluttered environments. Therefore, we propose a reliable method that uses a detection stage and a tracking stage to successfully track mouse. The detection stage detects the surface area of the mouse skin, and the tracking stage implements an extended Kalman filter to estimate the state variables of a nonlinear model. The changes in the overall shape of the mouse are tracked using an oval-shaped tracking model to estimate the parameters for the ellipse. An experiment is conducted to demonstrate the performance of the proposed tracking algorithm using six video images showing various types of movement, and the ground truth values for synthetic images are compared to the values generated by the tracking algorithm. A conventional manual tracking method is also applied to compare across eight experimenters. Furthermore, the effectiveness of the proposed tracking method is also demonstrated by applying the tracking algorithm with actual images of mouse. Graphical abstract.
Mouse Models for Down Syndrome-Associated Developmental Cognitive Disabilities
Liu, Chunhong; Belichenko, Pavel V.; Zhang, Li; Fu, Dawei; Kleschevnikov, Alexander M.; Baldini, Antonio; Antonarakis, Stylianos E.; Mobley, William C.; Yu, Y. Eugene
2011-01-01
Down syndrome (DS) is mainly caused by the presence of an extra copy of human chromosome 21 (Hsa21) and is a leading genetic cause for developmental cognitive disabilities in humans. The mouse is a premier model organism for DS because the regions on Hsa21 are syntenically conserved with three regions in the mouse genome, which are located on mouse chromosome 10 (Mmu10), Mmu16 and Mmu17. With the advance of chromosomal manipulation technologies, new mouse mutants have been generated to mimic DS at both the genotypic and phenotypic levels. Further mouse-based molecular genetic studies in the future may lead to the unraveling of the mechanisms underlying DS-associated developmental cognitive disabilities, which would lay the groundwork for developing effective treatments for this phenotypic manifestation. In this review, we will discuss recent progress and future challenges in modeling DS-associated developmental cognitive disability in mice with an emphasis on hippocampus-related phenotypes. PMID:21865664
Methods in Molecular Biology Mouse Genetics: Methods and Protocols | Center for Cancer Research
Mouse Genetics: Methods and Protocols provides selected mouse genetic techniques and their application in modeling varieties of human diseases. The chapters are mainly focused on the generation of different transgenic mice to accomplish the manipulation of genes of interest, tracing cell lineages, and modeling human diseases.
Use of mouse models to study the mechanisms and consequences of RBC clearance
Hod, E. A.; Arinsburg, S. A.; Francis, R. O.; Hendrickson, J. E.; Zimring, J. C.; Spitalnik, S. L.
2013-01-01
Mice provide tractable animal models for studying the pathophysiology of various human disorders. This review discusses the use of mouse models for understanding red-blood-cell (RBC) clearance. These models provide important insights into the pathophysiology of various clinically relevant entities, such as autoimmune haemolytic anaemia, haemolytic transfusion reactions, other complications of RBC transfusions and immunomodulation by Rh immune globulin therapy. Mouse models of both antibody- and non-antibody-mediated RBC clearance are reviewed. Approaches for exploring unanswered questions in transfusion medicine using these models are also discussed. PMID:20345515
Generation Of A Mouse Model For Schwannomatosis
2010-09-01
TITLE: Generation of a Mouse Model for Schwannomatosis PRINCIPAL INVESTIGATOR: Long-Sheng Chang, Ph.D. CONTRACTING ORGANIZATION: The...Annual 3. DATES COVERED (From - To) 1 Sep 2009 - 31 Aug 2010 4. TITLE AND SUBTITLE Generation of a Mouse Model for Schwannomatosis 5a. CONTRACT...hypothesis involving inactivation of both the INI1/SNF5 and NF2 tumor suppressor genes in the formation of schwannomatosis -associated tumors. To
Mouse Genome Database: From sequence to phenotypes and disease models
Richardson, Joel E.; Kadin, James A.; Smith, Cynthia L.; Blake, Judith A.; Bult, Carol J.
2015-01-01
Summary The Mouse Genome Database (MGD, www.informatics.jax.org) is the international scientific database for genetic, genomic, and biological data on the laboratory mouse to support the research requirements of the biomedical community. To accomplish this goal, MGD provides broad data coverage, serves as the authoritative standard for mouse nomenclature for genes, mutants, and strains, and curates and integrates many types of data from literature and electronic sources. Among the key data sets MGD supports are: the complete catalog of mouse genes and genome features, comparative homology data for mouse and vertebrate genes, the authoritative set of Gene Ontology (GO) annotations for mouse gene functions, a comprehensive catalog of mouse mutations and their phenotypes, and a curated compendium of mouse models of human diseases. Here, we describe the data acquisition process, specifics about MGD's key data areas, methods to access and query MGD data, and outreach and user help facilities. genesis 53:458–473, 2015. © 2015 The Authors. Genesis Published by Wiley Periodicals, Inc. PMID:26150326
Urano, K; Tamaoki, N; Nomura, T
2012-01-01
Transgenic animal models have been used in small numbers in gene function studies in vivo for a period of time, but more recently, the use of a single transgenic animal model has been approved as a second species, 6-month alternative (to the routine 2-year, 2-animal model) used in short-term carcinogenicity studies for generating regulatory application data of new drugs. This article addresses many of the issues associated with the creation and use of one of these transgenic models, the rasH2 mouse, for regulatory science. The discussion includes strategies for mass producing mice with the same stable phenotype, including constructing the transgene, choosing a founder mouse, and controlling both the transgene and background genes; strategies for developing the model for regulatory science, including measurements of carcinogen susceptibility, stability of a large-scale production system, and monitoring for uniform carcinogenicity responses; and finally, efficient use of the transgenic animal model on study. Approximately 20% of mouse carcinogenicity studies for new drug applications in the United States currently use transgenic models, typically the rasH2 mouse. The rasH2 mouse could contribute to animal welfare by reducing the numbers of animals used as well as reducing the cost of carcinogenicity studies. A better understanding of the advantages and disadvantages of the transgenic rasH2 mouse will result in greater and more efficient use of this animal model in the future.
NCI Mouse Repository | Frederick National Laboratory for Cancer Research
The NCI Mouse Repository is an NCI-funded resource for mouse cancer models and associated strains. The repository makes strains available to all members of the scientific community (academic, non-profit, and commercial). NCI Mouse Repository strains
Nakagawa, Shinichiro; Matsuoka, Yusuke; Ichihara, Hideaki; Yoshida, Hitoji; Yoshida, Kenshi; Ueoka, Ryuichi
2013-01-01
Trastuzumab (TTZ) is molecular targeted drug used for metastatic breast cancer patients overexpressing human epidermal growth factor receptor 2 (HER2). Therapeutic effects of lymphocytes activated with TTZ (TTZ-LAK) using xenograft mouse models of human breast cancer (MDA-MB-453) cells were examined in vivo. Remarkable reduction of tumor volume in a xenograft mouse models intravenously treated with TTZ-LAK cells after the subcutaneously inoculated of MDA-MB-453 cells was verified in vivo. The migration of TTZ-LAK cells in tumor of mouse models subcutaneously inoculated MDA-MB-453 cells was observed on the basis of histological analysis using immunostaining with CD-3. Induction of apoptosis in tumor of xenograft mice treated with TTZ-LAK cells was observed in micrographs using terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) method. It was noteworthy that the therapeutic effects of TTZ-LAK cells along with apoptosis were obtained for xenograft mouse models of human breast tumor in vivo.
Gstir, Ronald; Schafferer, Simon; Scheideler, Marcel; Misslinger, Matthias; Griehl, Matthias; Daschil, Nina; Humpel, Christian; Obermair, Gerald J; Schmuckermair, Claudia; Striessnig, Joerg; Flucher, Bernhard E; Hüttenhofer, Alexander
2014-12-01
We have generated a novel, neuro-specific ncRNA microarray, covering 1472 ncRNA species, to investigate their expression in different mouse models for central nervous system diseases. Thereby, we analyzed ncRNA expression in two mouse models with impaired calcium channel activity, implicated in Epilepsy or Parkinson's disease, respectively, as well as in a mouse model mimicking pathophysiological aspects of Alzheimer's disease. We identified well over a hundred differentially expressed ncRNAs, either from known classes of ncRNAs, such as miRNAs or snoRNAs or which represented entirely novel ncRNA species. Several differentially expressed ncRNAs in the calcium channel mouse models were assigned as miRNAs and target genes involved in calcium signaling, thus suggesting feedback regulation of miRNAs by calcium signaling. In the Alzheimer mouse model, we identified two snoRNAs, whose expression was deregulated prior to amyloid plaque formation. Interestingly, the presence of snoRNAs could be detected in cerebral spine fluid samples in humans, thus potentially serving as early diagnostic markers for Alzheimer's disease. In addition to known ncRNAs species, we also identified 63 differentially expressed, entirely novel ncRNA candidates, located in intronic or intergenic regions of the mouse genome, genomic locations, which previously have been shown to harbor the majority of functional ncRNAs. © 2014 Gstir et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
Liu, Shi-He; Rao, Donald D.; Nemunaitis, John; Senzer, Neil; Zhou, Guisheng; Dawson, David; Gingras, Marie-Claude; Wang, Zhaohui; Gibbs, Richard; Norman, Michael; Templeton, Nancy S.; DeMayo, Francesco J.; O'Malley, Bert; Sanchez, Robbi; Fisher, William E.; Brunicardi, F. Charles
2012-01-01
Pancreatic and duodenal homeobox-1 (PDX-1) is a transcription factor that regulates insulin expression and islet maintenance in the adult pancreas. Our recent studies demonstrate that PDX-1 is an oncogene for pancreatic cancer and is overexpressed in pancreatic cancer. The purpose of this study was to demonstrate that PDX-1 is a therapeutic target for both hormonal symptoms and tumor volume in mouse models of pancreatic cancer, insulinoma and islet neoplasia. Immunohistochemistry of human pancreatic and islet neoplasia specimens revealed marked PDX-1 overexpression, suggesting PDX-1 as a “drugable” target within these diseases. To do so, a novel RNA interference effector platform, bifunctional shRNAPDX-1, was developed and studied in mouse and human cell lines as well as in mouse models of pancreatic cancer, insulinoma and islet neoplasia. Systemic delivery of bi-shRNAhumanPDX-1 lipoplexes resulted in marked reduction of tumor volume and improved survival in a human pancreatic cancer xenograft mouse model. bi-shRNAmousePDX-1 lipoplexes prevented death from hyperinsulinemia and hypoglycemia in an insulinoma mouse model. shRNAmousePDX-1 lipoplexes reversed hyperinsulinemia and hypoglycemia in an immune-competent mouse model of islet neoplasia. PDX-1 was overexpressed in pancreatic neuroendocrine tumors and nesidioblastosis. These data demonstrate that PDX-1 RNAi therapy controls hormonal symptoms and tumor volume in mouse models of pancreatic cancer, insulinoma and islet neoplasia, therefore, PDX-1 is a potential therapeutic target for these pancreatic diseases. PMID:22905092
Development and Characterization of a Mouse Model for Marburg Hemorrhagic Fever
2009-07-01
Microbiology. All Rights Reserved. Development and Characterization of a Mouse Model for Marburg Hemorrhagic Fever Kelly L. Warfield,* Steven B...mouse model has hampered an understanding of the pathogenesis and immunity of Marburg hemorrhagic fever (MHF), the disease caused by marburgvirus (MARV...cause severe hemorrhagic fevers in humans and non- human primates (27). The incubation time is estimated to be 3 to 21 days, with human case fatality
Producing a Mouse Model to Explore the Linkages Between Tocopherol Biology and Prostate Cancer
2005-07-01
Edwards, Prostate cancer and supplementation with alpha-tocopherol and beta -carotene: incidence and mortality in a controlled trial. J Natl Cancer ...1-0153 TITLE: Producing a Mouse Model to Explore the Linkages Between Tocopherol Biology and Prostate Cancer ...TITLE AND SUBTITLE Producing a Mouse Model to Explore the Linkages Between Tocopherol 5a. CONTRACT NUMBER Biology and Prostate Cancer 5b. GRANT
Synergistic Action of FOXP3 and TSC1 Pathways During Tumor Progression
2015-10-01
invasive carcinoma and, ultimately, metastatic disease [1-3]. Mouse models of PIN (mPIN) generated by a single- mutant gene in prostate do not progress...downstream target) is sufficient to significantly reduce the initiation of prostate cancer in the Pten conditional knockout mouse model [19-21...the possibility that these two genetic hits cooperate to promote tumor progression, and mouse models show that this cooperation accelerates
Designing Mouse Behavioral Tasks Relevant to Autistic-Like Behaviors
ERIC Educational Resources Information Center
Crawley, Jacqueline N.
2004-01-01
The importance of genetic factors in autism has prompted the development of mutant mouse models to advance our understanding of biological mechanisms underlying autistic behaviors. Mouse models of human neuropsychiatric diseases are designed to optimize (1) face validity, i.e., resemblance to the human symptoms; (2) construct validity, i.e.,…
Behavioral phenotypes of genetic mouse models of autism
Kazdoba, T. M.; Leach, P. T.; Crawley, J. N.
2016-01-01
More than a hundred de novo single gene mutations and copy-number variants have been implicated in autism, each occurring in a small subset of cases. Mutant mouse models with syntenic mutations offer research tools to gain an understanding of the role of each gene in modulating biological and behavioral phenotypes relevant to autism. Knockout, knockin and transgenic mice incorporating risk gene mutations detected in autism spectrum disorder and comorbid neurodevelopmental disorders are now widely available. At present, autism spectrum disorder is diagnosed solely by behavioral criteria. We developed a constellation of mouse behavioral assays designed to maximize face validity to the types of social deficits and repetitive behaviors that are central to an autism diagnosis. Mouse behavioral assays for associated symptoms of autism, which include cognitive inflexibility, anxiety, hyperactivity, and unusual reactivity to sensory stimuli, are frequently included in the phenotypic analyses. Over the past 10 years, we and many other laboratories around the world have employed these and additional behavioral tests to phenotype a large number of mutant mouse models of autism. In this review, we highlight mouse models with mutations in genes that have been identified as risk genes for autism, which work through synaptic mechanisms and through the mTOR signaling pathway. Robust, replicated autism-relevant behavioral outcomes in a genetic mouse model lend credence to a causal role for specific gene contributions and downstream biological mechanisms in the etiology of autism. PMID:26403076
Defining the role of polyamines in colon carcinogenesis using mouse models
Ignatenko, Natalia A.; Gerner, Eugene W.; Besselsen, David G.
2011-01-01
Genetics and diet are both considered important risk determinants for colorectal cancer, a leading cause of death in the US and worldwide. Genetically engineered mouse (GEM) models have made a significant contribution to the characterization of colorectal cancer risk factors. Reliable, reproducible, and clinically relevant animal models help in the identification of the molecular events associated with disease progression and in the development of effictive treatment strategies. This review is focused on the use of mouse models for studying the role of polyamines in colon carcinogenesis. We describe how the available mouse models of colon cancer such as the multiple intestinal neoplasia (Min) mice and knockout genetic models facilitate understanding of the role of polyamines in colon carcinogenesis and help in the development of a rational strategy for colon cancer chemoprevention. PMID:21712957
2013-08-01
We next tested the utility of the construct to accumulate in tumors expressing EGFR using an orthotopic mouse model for brain tumors. Glioma cells...filament tumor marker, identified implanted cells within the orthotopic mouse model which were of human origin, i.e. Gli36Δ5 cells, and demonstrated that...forward into in vivo animal tumor model studies. • In vivo imaging of EGFR targeted-complex in orthotopic mouse model of brain tumor. • Ex vivo validation
Genetically engineered mouse models of melanoma.
Pérez-Guijarro, Eva; Day, Chi-Ping; Merlino, Glenn; Zaidi, M Raza
2017-06-01
Melanoma is a complex disease that exhibits highly heterogeneous etiological, histopathological, and genetic features, as well as therapeutic responses. Genetically engineered mouse (GEM) models provide powerful tools to unravel the molecular mechanisms critical for melanoma development and drug resistance. Here, we expound briefly the basis of the mouse modeling design, the available technology for genetic engineering, and the aspects influencing the use of GEMs to model melanoma. Furthermore, we describe in detail the currently available GEM models of melanoma. Cancer 2017;123:2089-103. © 2017 American Cancer Society. © 2017 American Cancer Society.
Sweeney, Colin L; Choi, Uimook; Liu, Chengyu; Koontz, Sherry; Ha, Seung-Kwon; Malech, Harry L
2017-07-01
Chronic granulomatous disease (CGD) is characterized by defects in the production of microbicidal reactive oxygen species (ROS) by phagocytes. Testing of gene and cell therapies for the treatment of CGD in human hematopoietic cells requires preclinical transplant models. The use of the lymphocyte-deficient NOD.Cg-Prkdc scid Il2rg tm1Wjl/ SzJ (NSG) mouse strain for human hematopoietic cell xenografts to test CGD therapies is complicated by the presence of functional mouse granulocytes capable of producing ROS for subsequent bacterial and fungal killing. To establish a phagocyte-defective mouse model of X-linked CGD (X-CGD) in NSG mice, clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 was utilized for targeted knockout of mouse Cybb on the X-chromosome by microinjection of NSG mouse zygotes with Cas9 mRNA and CRISPR single-guide RNA targeting Cybb exon 1 or exon 3. This resulted in a high incidence of indel formation at the CRISPR target site, with all mice exhibiting deletions in at least one Cybb allele based on sequence analysis of tail snip DNA. A female mouse heterozygous for a 235-bp deletion in Cybb exon 1 was bred to an NSG male to establish the X-CGD NSG mouse strain, NSG.Cybb[KO]. Resulting male offspring with the 235 bp deletion were found to be defective for production of ROS by neutrophils and other phagocytes, and demonstrated increased susceptibility to spontaneous bacterial and fungal infections with granulomatous inflammation. The establishment of the phagocyte-defective NSG.Cybb[KO] mouse model enables the in vivo assessment of gene and cell therapy strategies for treating CGD in human hematopoietic cell transplants without obfuscation by functional mouse phagocytes, and may also be useful for modeling other phagocyte disorders in humanized NSG mouse xenografts.
Apps, John Richard; Martinez-Barbera, Juan Pedro
2017-05-01
Adamantinomatous craniopharyngioma (ACP) is the commonest tumor of the sellar region in childhood. Two genetically engineered mouse models have been developed and are giving valuable insights into ACP biology. These models have identified novel pathways activated in tumors, revealed an important function of paracrine signalling and extended conventional theories about the role of organ-specific stem cells in tumorigenesis. In this review, we summarize these mouse models, what has been learnt, their limitations and open questions for future research. We then discussed how these mouse models may be used to test novel therapeutics against potentially targetable pathways recently identified in human ACP. © 2017 The Authors. Brain Pathology published by John Wiley & Sons Ltd on behalf of International Society of Neuropathology.
Kerr, Abigail L.; Tennant, Kelly A.
2014-01-01
Mouse models have become increasingly popular in the field of behavioral neuroscience, and specifically in studies of experimental stroke. As models advance, it is important to develop sensitive behavioral measures specific to the mouse. The present protocol describes a skilled motor task for use in mouse models of stroke. The Pasta Matrix Reaching Task functions as a versatile and sensitive behavioral assay that permits experimenters to collect accurate outcome data and manipulate limb use to mimic human clinical phenomena including compensatory strategies (i.e., learned non-use) and focused rehabilitative training. When combined with neuroanatomical tools, this task also permits researchers to explore the mechanisms that support behavioral recovery of function (or lack thereof) following stroke. The task is both simple and affordable to set up and conduct, offering a variety of training and testing options for numerous research questions concerning functional outcome following injury. Though the task has been applied to mouse models of stroke, it may also be beneficial in studies of functional outcome in other upper extremity injury models. PMID:25045916
Epigenetic targeting of Hedgehog pathway transcriptional output through BET bromodomain inhibition
Tang, Yujie; Gholamin, Sharareh; Schubert, Simone; Willardson, Minde I.; Lee, Alex; Bandopadhayay, Pratiti; Bergthold, Guillame; Masoud, Sabran; Nguyen, Brian; Vue, Nujsaubnusi; Balansay, Brianna; Yu, Furong; Oh, Sekyung; Woo, Pamelyn; Chen, Spenser; Ponnuswami, Anitha; Monje, Michelle; Atwood, Scott X.; Whitson, Ramon J.; Mitra, Siddhartha; Cheshier, Samuel H.; Qi, Jun; Beroukhim, Rameen; Tang, Jean Y.; Wechsler-Reya, Rob; Oro, Anthony E.; Link, Brian A.; Bradner, James E.; Cho, Yoon-Jae
2014-01-01
Hedgehog signaling drives oncogenesis in several cancers and strategies targeting this pathway have been developed, most notably through inhibition of Smoothened. However, resistance to Smoothened inhibitors occurs via genetic changes of Smoothened or other downstream Hedgehog components. Here, we overcome these resistance mechanisms by modulating GLI transcription via inhibition of BET bromodomain proteins. We show the BET bromodomain protein, BRD4, regulates GLI transcription downstream of SMO and SUFU and chromatin immunoprecipitation studies reveal BRD4 directly occupies GLI1 and GLI2 promoters, with a substantial decrease in engagement of these sites upon treatment with JQ1, a small molecule inhibitor targeting BRD4. Globally, genes associated with medulloblastoma-specific GLI1 binding sites are downregulated in response to JQ1 treatment, supporting direct regulation of GLI activity by BRD4. Notably, patient- and GEMM-derived Hedgehog-driven tumors (basal cell carcinoma, medulloblastoma and atypical teratoid/rhabdoid tumor) respond to JQ1 even when harboring genetic lesions rendering them resistant to Smoothened antagonists. PMID:24973920
Volland, Stefanie; Esteve-Rudd, Julian; Hoo, Juyea; Yee, Claudine; Williams, David S
2015-01-01
Mouse models have greatly assisted our understanding of retinal degenerations. However, the mouse retina does not have a macula, leading to the question of whether the mouse is a relevant model for macular degeneration. In the present study, a quantitative comparison between the organization of the central mouse retina and the human macula was made, focusing on some structural characteristics that have been suggested to be important in predisposing the macula to stresses leading to degeneration: photoreceptor density, phagocytic load on the RPE, and the relative thinness of Bruch's membrane. Light and electron microscopy measurements from retinas of two strains of mice, together with published data on human retinas, were used for calculations and subsequent comparisons. As in the human retina, the central region of the mouse retina possesses a higher photoreceptor cell density and a thinner Bruch's membrane than in the periphery; however, the magnitudes of these periphery to center gradients are larger in the human. Of potentially greater relevance is the actual photoreceptor cell density, which is much greater in the mouse central retina than in the human macula, underlying a higher phagocytic load for the mouse RPE. Moreover, at eccentricities that correspond to the peripheral half of the human macula, the rod to cone ratio is similar between mouse and human. Hence, with respect to photoreceptor density and phagocytic load of the RPE, the central mouse retina models at least the more peripheral part of the macula, where macular degeneration is often first evident.
A Genetically Engineered Mouse Model of Neuroblastoma Driven by Mutated ALK and MYCN
2014-09-01
AWARD NUMBER: W81XWH-13-1-0220 TITLE: A Genetically Engineered Mouse Model of Neuroblastoma ...CONTRACT NUMBER A Genetically Engineered Mouse Model of Neuroblastoma Driven by Mutated ALK and MYCN 5b. GRANT NUMBER W81XWH-13-1-0220 5c...common ALK mutations in neuroblastoma , F1174L and R1275Q. We have determined that in tumors cells expressing mutated ALK, different downstream
2014-10-01
AD_________________ Award Number: W81XWH-13-1-0325 TITLE: Developing Novel Therapeutic Approaches in Small Cell Lung Carcinoma Using ...Genetically Engineered Mouse Models and Human Circulating Tumor Cells PRINCIPAL INVESTIGATOR: Jeffrey Engelman MD PhD CONTRACTING ORGANIZATION ...Novel Therapeutic Approaches in Small Cell Lung 5a. CONTRACT NUMBER W81XWH-13-1-0325 Carcinoma Using Genetically Engineered Mouse Models and 5b
Behavioural phenotyping assays for mouse models of autism
Silverman, Jill L.; Yang, Mu; Lord, Catherine; Crawley, Jacqueline N.
2011-01-01
Autism is a heterogeneous neurodevelopmental disorder of unknown aetiology that affects 1 in 100–150 individuals. Diagnosis is based on three categories of behavioural criteria: abnormal social interactions, communication deficits and repetitive behaviours. Strong evidence for a genetic basis has prompted the development of mouse models with targeted mutations in candidate genes for autism. As the diagnostic criteria for autism are behavioural, phenotyping these mouse models requires behavioural assays with high relevance to each category of the diagnostic symptoms. Behavioural neuroscientists are generating a comprehensive set of assays for social interaction, communication and repetitive behaviours to test hypotheses about the causes of austism. Robust phenotypes in mouse models hold great promise as translational tools for discovering effective treatments for components of autism spectrum disorders. PMID:20559336
DOE Office of Scientific and Technical Information (OSTI.GOV)
Webb, Carol F., E-mail: carol-webb@omrf.org; Immunobiology and Cancer Research, Oklahoma Medical Research Foundation, Oklahoma City, OK; Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
Despite exciting new possibilities for regenerative therapy posed by the ability to induce pluripotent stem cells, recapitulation of three-dimensional kidneys for repair or replacement has not been possible. ARID3a-deficient mouse tissues generated multipotent, developmentally plastic cells. Therefore, we assessed the adult mouse ARID3a−/− kidney cell line, KKPS5, which expresses renal progenitor surface markers as an alternative cell source for modeling kidney development. Remarkably, these cells spontaneously developed into multicellular nephron-like structures in vitro, and engrafted into immunocompromised medaka mesonephros, where they formed mouse nephron structures. These data implicate KKPS5 cells as a new model system for studying kidney development. - Highlights:more » • An ARID3a-deficient mouse kidney cell line expresses multiple progenitor markers. • This cell line spontaneously forms multiple nephron-like structures in vitro. • This cell line formed mouse kidney structures in immunocompromised medaka fish kidneys. • Our data identify a novel model system for studying kidney development.« less
Fuchs, Helmut; Gailus-Durner, Valérie; Adler, Thure; Aguilar-Pimentel, Juan Antonio; Becker, Lore; Calzada-Wack, Julia; Da Silva-Buttkus, Patricia; Neff, Frauke; Götz, Alexander; Hans, Wolfgang; Hölter, Sabine M; Horsch, Marion; Kastenmüller, Gabi; Kemter, Elisabeth; Lengger, Christoph; Maier, Holger; Matloka, Mikolaj; Möller, Gabriele; Naton, Beatrix; Prehn, Cornelia; Puk, Oliver; Rácz, Ildikó; Rathkolb, Birgit; Römisch-Margl, Werner; Rozman, Jan; Wang-Sattler, Rui; Schrewe, Anja; Stöger, Claudia; Tost, Monica; Adamski, Jerzy; Aigner, Bernhard; Beckers, Johannes; Behrendt, Heidrun; Busch, Dirk H; Esposito, Irene; Graw, Jochen; Illig, Thomas; Ivandic, Boris; Klingenspor, Martin; Klopstock, Thomas; Kremmer, Elisabeth; Mempel, Martin; Neschen, Susanne; Ollert, Markus; Schulz, Holger; Suhre, Karsten; Wolf, Eckhard; Wurst, Wolfgang; Zimmer, Andreas; Hrabě de Angelis, Martin
2011-02-01
Model organisms like the mouse are important tools to learn more about gene function in man. Within the last 20 years many mutant mouse lines have been generated by different methods such as ENU mutagenesis, constitutive and conditional knock-out approaches, knock-down, introduction of human genes, and knock-in techniques, thus creating models which mimic human conditions. Due to pleiotropic effects, one gene may have different functions in different organ systems or time points during development. Therefore mutant mouse lines have to be phenotyped comprehensively in a highly standardized manner to enable the detection of phenotypes which might otherwise remain hidden. The German Mouse Clinic (GMC) has been established at the Helmholtz Zentrum München as a phenotyping platform with open access to the scientific community (www.mousclinic.de; [1]). The GMC is a member of the EUMODIC consortium which created the European standard workflow EMPReSSslim for the systemic phenotyping of mouse models (http://www.eumodic.org/[2]). Copyright © 2010 Elsevier Inc. All rights reserved.
Human androgen deficiency: insights gained from androgen receptor knockout mouse models
Rana, Kesha; Davey, Rachel A; Zajac, Jeffrey D
2014-01-01
The mechanism of androgen action is complex. Recently, significant advances have been made into our understanding of how androgens act via the androgen receptor (AR) through the use of genetically modified mouse models. A number of global and tissue-specific AR knockout (ARKO) models have been generated using the Cre-loxP system which allows tissue- and/or cell-specific deletion. These ARKO models have examined a number of sites of androgen action including the cardiovascular system, the immune and hemopoetic system, bone, muscle, adipose tissue, the prostate and the brain. This review focuses on the insights that have been gained into human androgen deficiency through the use of ARKO mouse models at each of these sites of action, and highlights the strengths and limitations of these Cre-loxP mouse models that should be considered to ensure accurate interpretation of the phenotype. PMID:24480924
Modelling clinical systemic lupus erythematosus: similarities, differences and success stories
Celhar, Teja
2017-01-01
Abstract Mouse models of SLE have been indispensable tools to study disease pathogenesis, to identify genetic susceptibility loci and targets for drug development, and for preclinical testing of novel therapeutics. Recent insights into immunological mechanisms of disease progression have boosted a revival in SLE drug development. Despite promising results in mouse studies, many novel drugs have failed to meet clinical end points. This is probably because of the complexity of the disease, which is driven by polygenic predisposition and diverse environmental factors, resulting in a heterogeneous clinical presentation. Each mouse model recapitulates limited aspects of lupus, especially in terms of the mechanism underlying disease progression. The main mouse models have been fairly successful for the evaluation of broad-acting immunosuppressants. However, the advent of targeted therapeutics calls for a selection of the most appropriate model(s) for testing and, ultimately, identification of patients who will be most likely to respond. PMID:28013204
Mouse Models of Gastric Cancer
Hayakawa, Yoku; Fox, James G.; Gonda, Tamas; Worthley, Daniel L.; Muthupalani, Sureshkumar; Wang, Timothy C.
2013-01-01
Animal models have greatly enriched our understanding of the molecular mechanisms of numerous types of cancers. Gastric cancer is one of the most common cancers worldwide, with a poor prognosis and high incidence of drug-resistance. However, most inbred strains of mice have proven resistant to gastric carcinogenesis. To establish useful models which mimic human gastric cancer phenotypes, investigators have utilized animals infected with Helicobacter species and treated with carcinogens. In addition, by exploiting genetic engineering, a variety of transgenic and knockout mouse models of gastric cancer have emerged, such as INS-GAS mice and TFF1 knockout mice. Investigators have used the combination of carcinogens and gene alteration to accelerate gastric cancer development, but rarely do mouse models show an aggressive and metastatic gastric cancer phenotype that could be relevant to preclinical studies, which may require more specific targeting of gastric progenitor cells. Here, we review current gastric carcinogenesis mouse models and provide our future perspectives on this field. PMID:24216700
Phenotyping male infertility in the mouse: how to get the most out of a 'non-performer'.
Borg, Claire L; Wolski, Katja M; Gibbs, Gerard M; O'Bryan, Moira K
2010-01-01
Functional male gametes are produced through complex processes that take place within the testis, epididymis and female reproductive tract. A breakdown at any of these phases can result in male infertility. The production of mutant mouse models often yields an unexpected male infertility phenotype. It is with this in mind that the current review has been written. The review aims to act as a guide to the 'non-reproductive biologist' to facilitate a systematic analysis of sterile or subfertile mice and to assist in extracting the maximum amount of information from each model. This is a review of the original literature on defects in the processes that take a mouse spermatogonial stem cell through to a fully functional spermatozoon, which result in male infertility. Based on literature searches and personal experience, we have outlined a step-by-step strategy for the analysis of an infertile male mouse line. A wide range of methods can be used to define the phenotype of an infertile male mouse. These methods range from histological methods such as electron microscopy and immunohistochemistry, to hormone analyses and methods to assess sperm maturation status and functional competence. With the increased rate of genetically modified mouse production, the generation of mouse models with unexpected male infertility is increasing. This manuscript will help to ensure that the maximum amount of information is obtained from each mouse model and, by extension, will facilitate the knowledge of both normal fertility processes and the causes of human infertility.
A surgical approach appropriate for targeted cochlear gene therapy in the mouse.
Jero, J; Tseng, C J; Mhatre, A N; Lalwani, A K
2001-01-01
Therapeutic manipulations of the mammalian cochlea, including cochlear gene transfer, have been predominantly studied using the guinea pig as the experimental model. With the significant developments in mouse genomics and the availability of mutant strains of mice with well-characterized hearing loss, the mouse justifiably will be the preferred animal model for therapeutic manipulations. However, the potential advantages of the mouse model have not been fully realized due to the surgical difficulty of accessing its small cochlea. This study describes a ventral approach, instead of the routinely used postauricular approach in other rodents, for accessing the mouse middle and inner ear, and its application in cochlear gene transfer. This ventral approach enabled rapid and direct delivery of liposome-transgene complex to the mouse inner ear while avoiding blood loss, facial nerve morbidity, and mortality. Transgene expression at 3 days was detected in Reissner's membrane, spiral limbus, spiral ligament, and spiral ganglion cells, in a pattern similar to that previously described in the guinea pig. The successful access and delivery of material to the mouse cochlea and the replication of gene expression seen in the guinea pig demonstrated in this study should promote the use of the mouse in future studies investigating targeted cochlear therapy.
Behavioral phenotypes of genetic mouse models of autism.
Kazdoba, T M; Leach, P T; Crawley, J N
2016-01-01
More than a hundred de novo single gene mutations and copy-number variants have been implicated in autism, each occurring in a small subset of cases. Mutant mouse models with syntenic mutations offer research tools to gain an understanding of the role of each gene in modulating biological and behavioral phenotypes relevant to autism. Knockout, knockin and transgenic mice incorporating risk gene mutations detected in autism spectrum disorder and comorbid neurodevelopmental disorders are now widely available. At present, autism spectrum disorder is diagnosed solely by behavioral criteria. We developed a constellation of mouse behavioral assays designed to maximize face validity to the types of social deficits and repetitive behaviors that are central to an autism diagnosis. Mouse behavioral assays for associated symptoms of autism, which include cognitive inflexibility, anxiety, hyperactivity, and unusual reactivity to sensory stimuli, are frequently included in the phenotypic analyses. Over the past 10 years, we and many other laboratories around the world have employed these and additional behavioral tests to phenotype a large number of mutant mouse models of autism. In this review, we highlight mouse models with mutations in genes that have been identified as risk genes for autism, which work through synaptic mechanisms and through the mTOR signaling pathway. Robust, replicated autism-relevant behavioral outcomes in a genetic mouse model lend credence to a causal role for specific gene contributions and downstream biological mechanisms in the etiology of autism. © 2015 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.
Using Genetic Mouse Models to Gain Insight into Glaucoma: Past Results and Future Possibilities
Fernandes, Kimberly A.; Harder, Jeffrey M.; Williams, Pete A.; Rausch, Rebecca L.; Kiernan, Amy E.; Nair, K. Saidas; Anderson, Michael G.; John, Simon W.; Howell, Gareth R.; Libby, Richard T.
2015-01-01
While all forms of glaucoma are characterized by a specific pattern of retinal ganglion cell death, they are clinically divided into several distinct subclasses, including normal tension glaucoma, primary open angle glaucoma, congenital glaucoma, and secondary glaucoma. For each type of glaucoma there are likely numerous molecular pathways that control susceptibility to the disease. Given this complexity, a single animal model will never precisely model all aspects of all the different types of human glaucoma. Therefore, multiple animal models have been utilized to study glaucoma but more are needed. Because of the powerful genetic tools available to use in the laboratory mouse, it has proven to be a highly useful mammalian system for studying the pathophysiology of human disease. The similarity between human and mouse eyes coupled with the ability to use a combination of advanced cell biological and genetic tools in mice have led to a large increase in the number of studies using mice to model specific glaucoma phenotypes. Over the last decade, numerous new mouse models and genetic tools have emerged, providing important insight into the cell biology and genetics of glaucoma. In this review, we describe available mouse genetic models that can be used to study glaucoma-relevant disease/pathobiology. Furthermore, we discuss how these models have been used to gain insights into ocular hypertension (a major risk factor for glaucoma) and glaucomatous retinal ganglion cell death. Finally, the potential for developing new mouse models and using advanced genetic tools and resources for studying glaucoma are discussed. PMID:26116903
Hunsaker, Michael R.
2013-01-01
It has become increasingly important that the field of behavioral genetics identifies not only the gross behavioral phenotypes associated with a given mutation, but also the behavioral endophenotypes that scale with the dosage of the particular mutation being studied. Over the past few years, studies evaluating the effects of the polymorphic CGG trinucleotide repeat on the FMR1 gene underlying Fragile X-Associated Disorders have reported preliminary evidence for a behavioral endophenotype in human Fragile X Premutation carrier populations as well as the CGG knock-in (KI) mouse model. More recently, the behavioral experiments used to test the CGG KI mouse model have been extended to the Fmr1 knock-out (KO) mouse model. When combined, these data provide compelling evidence for a clear neurocognitive endophenotype in the mouse models of Fragile X-Associated Disorders such that behavioral deficits scale predictably with genetic dosage. Similarly, it appears that the CGG KI mouse effectively models the histopathology in Fragile X-Associated Disorders across CGG repeats well into the full mutation range, resulting in a reliable histopathological endophenotype. These endophenotypes may influence future research directions into treatment strategies for not only Fragile X Syndrome, but also the Fragile X Premutation and Fragile X-Associated Tremor/Ataxia Syndrome (FXTAS). PMID:24627796
Zhang, Haiyun; Sun, Dejun; Li, Defu; Zheng, Zeguang; Xu, Jingyi; Liang, Xue; Zhang, Chenting; Wang, Sheng; Wang, Jian; Lu, Wenju
2018-05-15
Long non-coding RNAs (lncRNAs) have critical regulatory roles in protein-coding gene expression. Aberrant expression profiles of lncRNAs have been observed in various human diseases. In this study, we investigated transcriptome profiles in lung tissues of chronic cigarette smoke (CS)-induced COPD mouse model. We found that 109 lncRNAs and 260 mRNAs were significantly differential expressed in lungs of chronic CS-induced COPD mouse model compared with control animals. GO and KEGG analyses indicated that differentially expressed lncRNAs associated protein-coding genes were mainly involved in protein processing of endoplasmic reticulum pathway, and taurine and hypotaurine metabolism pathway. The combination of high throughput data analysis and the results of qRT-PCR validation in lungs of chronic CS-induced COPD mouse model, 16HBE cells with CSE treatment and PBMC from patients with COPD revealed that NR_102714 and its associated protein-coding gene UCHL1 might be involved in the development of COPD both in mouse and human. In conclusion, our study demonstrated that aberrant expression profiles of lncRNAs and mRNAs existed in lungs of chronic CS-induced COPD mouse model. From animal models perspective, these results might provide further clues to investigate biological functions of lncRNAs and their potential target protein-coding genes in the pathogenesis of COPD.
Modeling bladder cancer in mice: opportunities and challenges
Kobayashi, Takashi; Owczarek, Tomasz B.; McKiernan, James M.; Abate-Shen, Cory
2015-01-01
The prognosis and treatment of bladder cancer have hardly improved in the last 20 years. Bladder cancer remains a debilitating and often fatal disease, and among the most costly cancers to treat. The generation of informative mouse models has the potential to improve our understanding of bladder cancer progression, as well as impact its diagnosis and treatment. However, relatively few mouse models of bladder cancer have been described and particularly few that develop invasive cancer phenotypes. This review focuses on opportunities for improving the landscape of mouse models of bladder cancer. PMID:25533675
Development and function of human innate immune cells in a humanized mouse model.
Rongvaux, Anthony; Willinger, Tim; Martinek, Jan; Strowig, Till; Gearty, Sofia V; Teichmann, Lino L; Saito, Yasuyuki; Marches, Florentina; Halene, Stephanie; Palucka, A Karolina; Manz, Markus G; Flavell, Richard A
2014-04-01
Mice repopulated with human hematopoietic cells are a powerful tool for the study of human hematopoiesis and immune function in vivo. However, existing humanized mouse models cannot support development of human innate immune cells, including myeloid cells and natural killer (NK) cells. Here we describe two mouse strains called MITRG and MISTRG, in which human versions of four genes encoding cytokines important for innate immune cell development are knocked into their respective mouse loci. The human cytokines support the development and function of monocytes, macrophages and NK cells derived from human fetal liver or adult CD34(+) progenitor cells injected into the mice. Human macrophages infiltrated a human tumor xenograft in MITRG and MISTRG mice in a manner resembling that observed in tumors obtained from human patients. This humanized mouse model may be used to model the human immune system in scenarios of health and pathology, and may enable evaluation of therapeutic candidates in an in vivo setting relevant to human physiology.
Development and function of human innate immune cells in a humanized mouse model
Rongvaux, Anthony; Willinger, Tim; Martinek, Jan; Strowig, Till; Gearty, Sofia V.; Teichmann, Lino L.; Saito, Yasuyuki; Marches, Florentina; Halene, Stephanie; Palucka, A. Karolina; Manz, Markus G.; Flavell, Richard A.
2014-01-01
Mice repopulated with human hematopoietic cells are a powerful tool for the study of human hematopoiesis and immune function in vivo. However, existing humanized mouse models are unable to support development of human innate immune cells, including myeloid cells and NK cells. Here we describe a mouse strain, called MI(S)TRG, in which human versions of four genes encoding cytokines important for innate immune cell development are knocked in to their respective mouse loci. The human cytokines support the development and function of monocytes/macrophages and natural killer cells derived from human fetal liver or adult CD34+ progenitor cells injected into the mice. Human macrophages infiltrated a human tumor xenograft in MI(S)TRG mice in a manner resembling that observed in tumors obtained from human patients. This humanized mouse model may be used to model the human immune system in scenarios of health and pathology, and may enable evaluation of therapeutic candidates in an in vivo setting relevant to human physiology. PMID:24633240
Zhao, Jianxin; Xu, Huazhou; Tian, Yuanxiang; Hu, Manxiang; Xiao, Hongling
2013-04-01
This work aims to observe the effects of electroacupuncture on brain-derived neurotrophic factor (BDNF) mRNA expression in mouse hippocampus following cerebral ischemia-reperfusion injury. The models of mouse cerebral ischemia-reperfusion injury were established. A total of 96 healthy mice were randomly assigned into 4 groups, namely, the sham surgery, model, model + electroacupuncture, and mode + hydergine groups. Mice in the model + electroacupuncture group were treated through electroacupuncture at the Shenshu (BL 23), Geshu (BL 17), and Baihui (GV 20) acupoints. Mice in the model+hydergine group were intragastrically administered with hydergine (0.77 mg/kg(-1) x day(-1)). The levels of BDNF mRNA expressions in the hippocampus were ana lyzed through a semi-quantitative reverse transcription-polymerase chain reaction assay on days 1 and 7 after the surgeries. BDNF mRNA expressions in the mouse hippocampus of the model group on days 1 and 7 after the surgery were higher than those of the sham surgery group (both P < 0.01). On days 1 and 7 of the electroacupuncture treatment, BDNF mRNA expression in the mouse hippocampus of the model + electroacupuncture group was significantly elevated compared with the model group (both P < 0.01) or the model + hydergine group (both P < 0.01). On days 1 and 7 of the hydergine treatment, BDNF mRNA expression in the mouse hippocampus of the model + hydergine group tended to increase compared with the model group; however, statistical significance was not achieved (both P > 0.05). Electroacupuncture treatment enhances endogenous BDNF expression, which may improve the survival environment for intracerebral neurons and inhibit the apoptosis of hippocampal cells.
Huang, Kun; Liu, Ju; Zhang, Hui; Wang, Jiliang; Li, Huili
2016-01-01
Ischaemia/reperfusion (I/R) injury will cause additional death of cardiomyocytes in ischaemic heart disease. Recent studies revealed that renalase was involved in the I/R injury. So, the myocardial tissue-specific knockdown mouse models were needed for the investigations of renalase. To establish the mouse models, intramyocardial injection of siRNAs targeting renalase was performed in mice. The wild distribution and high transfection efficiency of the siRNAs were approved. And the renalase expression was efficiently suppressed in myocardial tissue. Compared with the high cost, time consumption, and genetic compensation risk of the Cre/loxP technology, RNA interference (RNAi) technology is much cheaper and less time-consuming. Among the RNAi technologies, injection of siRNAs is safer than virus. And considering the properties of the I/R injury mouse models, the efficiency and durability of injection with siRNAs are acceptable for the studies. Altogether, intramyocardial injection of siRNAs targeting renalase is an economical, safe, and efficient method to establish myocardial tissue-specific renalase knockdown mouse models.
Akkina, Ramesh; Allam, Atef; Balazs, Alejandro B; Blankson, Joel N; Burnett, John C; Casares, Sofia; Garcia, J Victor; Hasenkrug, Kim J; Kashanchi, Fatah; Kitchen, Scott G; Klein, Florian; Kumar, Priti; Luster, Andrew D; Poluektova, Larisa Y; Rao, Mangala; Sanders-Beer, Brigitte E; Shultz, Leonard D; Zack, Jerome A
2016-02-01
The number of humanized mouse models for the human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome (AIDS) and other infectious diseases has expanded rapidly over the past 8 years. Highly immunodeficient mouse strains, such as NOD/SCID/gamma chain(null) (NSG, NOG), support better human hematopoietic cell engraftment. Another improvement is the derivation of highly immunodeficient mice, transgenic with human leukocyte antigens (HLAs) and cytokines that supported development of HLA-restricted human T cells and heightened human myeloid cell engraftment. Humanized mice are also used to study the HIV reservoir using new imaging techniques. Despite these advances, there are still limitations in HIV immune responses and deficits in lymphoid structures in these models in addition to xenogeneic graft-versus-host responses. To understand and disseminate the improvements and limitations of humanized mouse models to the scientific community, the NIH sponsored and convened a meeting on April 15, 2015 to discuss the state of knowledge concerning these questions and best practices for selecting a humanized mouse model for a particular scientific investigation. This report summarizes the findings of the NIH meeting.
Hwang, Shen-An; Kruzel, Marian L; Actor, Jeffrey K
2017-02-01
Trehalose 6'6-dimycolate (TDM) is the most abundant glycolipid on the cell wall of Mycobacterium tuberculosis (MTB). TDM is capable of inducing granulomatous pathology in mouse models that resembles those induced by MTB infection. Using the acute TDM model, this work investigates the effect of recombinant human and mouse lactoferrin to reduce granulomatous pathology. C57BL/6 mice were injected intravenously with TDM at a dose of 25 μg·mouse -1 . At day 4 and 6, recombinant human or mouse lactoferrin (1 mg·(100 μL) -1 ·mouse -1 ) were delivered by gavage. At day 7 after TDM injection, mice were evaluated for lung pathology, cytokine production, and leukocyte populations. Mice given human or mouse lactoferrin had reduced production of IL-12p40 in their lungs. Mouse lactoferrin increased IL-6 and KC (CXCL1) in lung tissue. Increased numbers of macrophages were observed in TDM-injected mice given human or mouse lactoferrin. Granulomatous pathology, composed of mainly migrated leukocytes, was visually reduced in mice that received human or mouse lactoferrin. Quantitation of granulomatous pathology demonstrated a significant decrease in mice given human or mouse lactoferrin compared with TDM control mice. This report is the first to directly compare the immune modulatory effects of both heterologous recombinant human and homologous mouse lactoferrin on the development of TDM-induced granulomas.
NASA Astrophysics Data System (ADS)
Karouia, Fathi; Ricco, Antonio; Pohorille, Andrew; Peyvan, Kianoosh
2012-07-01
The capability to measure gene expression on board spacecrafts opens the doors to a large number of experiments on the influence of space environment on biological systems that will profoundly impact our ability to conduct safe and effective space travel, and might also shed light on terrestrial physiology or biological function and human disease and aging processes. Measurements of gene expression will help us to understand adaptation of terrestrial life to conditions beyond the planet of origin, identify deleterious effects of the space environment on a wide range of organisms from microbes to humans, develop effective countermeasures against these effects, determine metabolic basis of microbial pathogenicity and drug resistance, test our ability to sustain and grow in space organisms that can be used for life support and in situ resource utilization during long-duration space exploration, and monitor both the spacecraft environment and crew health. These and other applications hold significant potential for discoveries in space biology, biotechnology and medicine. Accordingly, supported by funding from the NASA Astrobiology Science and Technology Instrument Development Program, we are developing a fully automated, miniaturized, integrated fluidic system for small spacecraft capable of in-situ measuring microbial expression of thousands of genes from multiple samples. The instrument will be capable of (1) lysing bacterial cell walls, (2) extracting and purifying RNA released from cells, (3) hybridizing it on a microarray and (4) providing electrochemical readout, all in a microfluidics cartridge. The prototype under development is suitable for deployment on nanosatellite platforms developed by the NASA Small Spacecraft Office. The first target application is to cultivate and measure gene expression of the photosynthetic bacterium Synechococcus elongatus, i.e. a cyanobacterium known to exhibit remarkable metabolic diversity and resilience to adverse conditions, under light and dark cycles exposed to polar orbit for a period of 6 months. The integration and end-to-end technology validation of this instrument will be discussed. In particular, preliminary results demonstrating that the instrument properly carries out cellular lysis, nucleic acid extraction and its purification is being assessed by reverse transcription polymerase chain reaction (PCR) and real time PCR, in addition to microarray analysis of selected genes. Once developed, the system can be used with minor modifications for multiple experiments on different platforms in space, including extensions to higher organisms and microbial monitoring. A proposed version of GEMM that is capable of handing both microbial and tissue samples on the International Space Station will be briefly reviewed.
NASA Astrophysics Data System (ADS)
Kim, Suhwan; Jung, Unsang; Baek, Juyoung; Lee, Sangwon; Jung, Woonggyu; Kim, Jeehyun; Kang, Shinwon
2013-01-01
Recently, mouse neuroblastoma cells have been considered as an attractive model for the study of human neurological and prion diseases, and they have been intensively used as a model system in different areas. For example, the differentiation of neuro2a (N2A) cells, receptor-mediated ion current, and glutamate-induced physiological responses have been actively investigated with these cells. These mouse neuroblastoma N2A cells are of interest because they grow faster than other cells of neural origin and have a number of other advantages. The calcium oscillations and neural spikes of mouse neuroblastoma N2A cells in epileptic conditions are evaluated. Based on our observations of neural spikes in these cells with our proposed imaging modality, we reported that they can be an important model in epileptic activity studies. We concluded that mouse neuroblastoma N2A cells produce epileptic spikes in vitro in the same way as those produced by neurons or astrocytes. This evidence suggests that increased levels of neurotransmitter release due to the enhancement of free calcium from 4-aminopyridine causes the mouse neuroblastoma N2A cells to produce epileptic spikes and calcium oscillations.
Langhammer, Martina; Michaelis, Marten; Hoeflich, Andreas; Sobczak, Alexander; Schoen, Jennifer; Weitzel, Joachim M
2014-01-01
Animal models are valuable tools in fertility research. Worldwide, there are more than 400 transgenic or knockout mouse models available showing a reproductive phenotype; almost all of them exhibit an infertile or at least subfertile phenotype. By contrast, animal models revealing an improved fertility phenotype are barely described. This article summarizes data on two outbred mouse models exhibiting a 'high-fertility' phenotype. These mouse lines were generated via selection over a time period of more than 40 years and 161 generations. During this selection period, the number of offspring per litter and the total birth weight of the entire litter nearly doubled. Concomitantly with the increased fertility phenotype, several endocrine parameters (e.g. serum testosterone concentrations in male animals), physiological parameters (e.g. body weight, accelerated puberty, and life expectancy), and behavioral parameters (e.g. behavior in an open field and endurance fitness on a treadmill) were altered. We demonstrate that the two independently bred high-fertility mouse lines warranted their improved fertility phenotype using different molecular and physiological strategies. The fertility lines display female- as well as male-specific characteristics. These genetically heterogeneous mouse models provide new insights into molecular and cellular mechanisms that enhance fertility. In view of decreasing fertility in men, these models will therefore be a precious information source for human reproductive medicine. Translated abstract A German translation of abstract is freely available at http://www.reproduction-online.org/content/147/4/427/suppl/DC1.
Scattoni, Maria Luisa; Crawley, Jacqueline; Ricceri, Laura
2009-01-01
In neonatal mice ultrasonic vocalizations have been studied both as an early communicative behavior of the pup-mother dyad and as a sign of an aversive affective state. Adult mice of both sexes produce complex ultrasonic vocalization patterns in different experimental/social contexts. All these vocalizations are becoming an increasingly valuable assay for behavioral phenotyping throughout the mouse life-span and alterations of the ultrasound patterns have been reported in several mouse models of neurodevelopmental disorders. Here we also show that the modulation of vocalizations by maternal cues (maternal potentiation paradigm) – originally identified and investigated in rats - can be measured in C57Bl/6 mouse pups with appropriate modifications of the rat protocol and can likely be applied to mouse behavioral phenotyping. In addition we suggest that a detailed qualitative evaluation of neonatal calls together with analysis of adult mouse vocalization patterns in both sexes in social settings, may lead to a greater understanding of the communication value of vocalizations in mice. Importantly, both neonatal and adult USV altered patterns can be determined during the behavioural phenotyping of mouse models of human neurodevelopmental and neuropsychiatric disorders, starting from those in which deficits in communication are a primary symptom. PMID:18771687
A Comparison of Some Organizational Characteristics of the Mouse Central Retina and the Human Macula
Hoo, Juyea; Yee, Claudine; Williams, David S.
2015-01-01
Mouse models have greatly assisted our understanding of retinal degenerations. However, the mouse retina does not have a macula, leading to the question of whether the mouse is a relevant model for macular degeneration. In the present study, a quantitative comparison between the organization of the central mouse retina and the human macula was made, focusing on some structural characteristics that have been suggested to be important in predisposing the macula to stresses leading to degeneration: photoreceptor density, phagocytic load on the RPE, and the relative thinness of Bruch’s membrane. Light and electron microscopy measurements from retinas of two strains of mice, together with published data on human retinas, were used for calculations and subsequent comparisons. As in the human retina, the central region of the mouse retina possesses a higher photoreceptor cell density and a thinner Bruch’s membrane than in the periphery; however, the magnitudes of these periphery to center gradients are larger in the human. Of potentially greater relevance is the actual photoreceptor cell density, which is much greater in the mouse central retina than in the human macula, underlying a higher phagocytic load for the mouse RPE. Moreover, at eccentricities that correspond to the peripheral half of the human macula, the rod to cone ratio is similar between mouse and human. Hence, with respect to photoreceptor density and phagocytic load of the RPE, the central mouse retina models at least the more peripheral part of the macula, where macular degeneration is often first evident. PMID:25923208
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Ying; Adachi, Hiroaki, E-mail: hadachi-ns@umin.org; Department of Neurology, University of Occupational and Environmental Health School of Medicine, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu 807-8555
Spinal and bulbar muscular atrophy (SBMA) is an inherited motor neuron disease caused by the expansion of a polyglutamine (polyQ)-encoding tract within the androgen receptor (AR) gene. The pathologic features of SBMA are motor neuron loss in the spinal cord and brainstem and diffuse nuclear accumulation and nuclear inclusions of mutant AR in residual motor neurons and certain visceral organs. Hepatocyte growth factor (HGF) is a polypeptide growth factor which has neuroprotective properties. To investigate whether HGF overexpression can affect disease progression in a mouse model of SBMA, we crossed SBMA transgenic model mice expressing an AR gene with anmore » expanded CAG repeat with mice overexpressing HGF. Here, we report that high expression of HGF induces Akt phosphorylation and modestly ameliorated motor symptoms in an SBMA transgenic mouse model treated with or without castration. These findings suggest that HGF overexpression can provide a potential therapeutic avenue as a combination therapy with disease-modifying therapies in SBMA. - Highlights: • HGF overexpression ameliorates the motor phenotypes of the SBMA mouse model. • HGF overexpression induces Akt phosphorylation in the SBMA mouse model. • This is the first report of combination therapy in a mouse model of polyQ diseases.« less
Defining the optimal animal model for translational research using gene set enrichment analysis.
Weidner, Christopher; Steinfath, Matthias; Opitz, Elisa; Oelgeschläger, Michael; Schönfelder, Gilbert
2016-08-01
The mouse is the main model organism used to study the functions of human genes because most biological processes in the mouse are highly conserved in humans. Recent reports that compared identical transcriptomic datasets of human inflammatory diseases with datasets from mouse models using traditional gene-to-gene comparison techniques resulted in contradictory conclusions regarding the relevance of animal models for translational research. To reduce susceptibility to biased interpretation, all genes of interest for the biological question under investigation should be considered. Thus, standardized approaches for systematic data analysis are needed. We analyzed the same datasets using gene set enrichment analysis focusing on pathways assigned to inflammatory processes in either humans or mice. The analyses revealed a moderate overlap between all human and mouse datasets, with average positive and negative predictive values of 48 and 57% significant correlations. Subgroups of the septic mouse models (i.e., Staphylococcus aureus injection) correlated very well with most human studies. These findings support the applicability of targeted strategies to identify the optimal animal model and protocol to improve the success of translational research. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.
Transgenic and gene knockout mice in gastric cancer research
Jiang, Yannan; Yu, Yingyan
2017-01-01
Mouse models are useful tool for carcinogenic study. They will greatly enrich the understanding of pathogenesis and molecular mechanisms for gastric cancer. However, only few of mice could develop gastric cancer spontaneously. With the development and improvement of gene transfer technology, investigators created a variety of transgenic and knockout/knockin mouse models of gastric cancer, such as INS-GAS mice and gastrin knockout mice. Combined with helicobacter infection and carcinogens treatment, these transgenic/knockout/knockin mice developed precancerous or cancerous lesions, which are proper for gene function study or experimental therapy. Here we review the progression of genetically engineered mouse models on gastric cancer research, and emphasize the effects of chemical carcinogens or infectious factors on carcinogenesis of genetically modified mouse. We also emphasize the histological examination on mouse stomach. We expect to provide researchers with some inspirations on this field. PMID:27713138
A Mouse Model to Investigate Postmenopausal Biology as an Etiology of Ovarian Cancer Risk
2006-11-01
Wv mice and genetic alterations such as p53, pten, or p27kip1, which are found in human ovarian cancer. 2. Body: Research Progress In the first year...press (Yang et al., Am. J. Pathology 2007). To collaborate with the mouse model study, we have also examined human ovaries obtained from prophylactic...results in the coming years. Xu, Xiangxi, Ph.D. 8 3. Key Research Accomplishments (1) Further verify the relevance of the Wv mouse model to human
The Oncogenic Role of RhoGAPs in Basal-Like Breast Cancer
2015-02-01
cell lines, and mouse models . c) In vivo tumorigenesis and metastasis assays. Milestones: Identify whether ArhGAP11A and RacGAP1 can promote tumor growth...also upregulated in basal (C3(I)-Tag) but not luminal (MMTV-Neu) genetically- engineered mouse models (Fig. 1B). At the protein level, RacGAP1 was...hypothesis that these RhoGAPs are indeed playing an oncogenic role in these cells. Human Tumors Mouse Model Tumors Normal Luminal A Basal-like Normal
A Physiologically Based Kinetic Model of Rat and Mouse Gestation: Disposition of a Weak Acid
A physiologically based toxicokinetic model of gestation in the rat mouse has been developed. The model is superimposed on the normal growth curve for nonpregnant females. It describes the entire gestation period including organogenesis. The model consists of uterus, mammary tiss...
A Genetically Engineered Mouse Model of Sporadic Colorectal Cancer.
Betzler, Alexander M; Kochall, Susan; Blickensdörfer, Linda; Garcia, Sebastian A; Thepkaysone, May-Linn; Nanduri, Lahiri K; Muders, Michael H; Weitz, Jürgen; Reissfelder, Christoph; Schölch, Sebastian
2017-07-06
Despite the advantages of easy applicability and cost-effectiveness, colorectal cancer mouse models based on tumor cell injection have severe limitations and do not accurately simulate tumor biology and tumor cell dissemination. Genetically engineered mouse models have been introduced to overcome these limitations; however, such models are technically demanding, especially in large organs such as the colon in which only a single tumor is desired. As a result, an immunocompetent, genetically engineered mouse model of colorectal cancer was developed which develops highly uniform tumors and can be used for tumor biology studies as well as therapeutic trials. Tumor development is initiated by surgical, segmental infection of the distal colon with adeno-cre virus in compound conditionally mutant mice. The tumors can be easily detected and monitored via colonoscopy. We here describe the surgical technique of segmental adeno-cre infection of the colon, the surveillance of the tumor via high-resolution colonoscopy and present the resulting colorectal tumors.
Absence of Prenatal Forebrain Defects in the Dp(16)1Yey/+ Mouse Model of Down Syndrome
Goodliffe, Joseph W.; Olmos-Serrano, Jose Luis; Aziz, Nadine M.; Pennings, Jeroen L.A.; Guedj, Faycal; Bianchi, Diana W.
2016-01-01
Studies in humans with Down syndrome (DS) show that alterations in fetal brain development are followed by postnatal deficits in neuronal numbers, synaptic plasticity, and cognitive and motor function. This same progression is replicated in several mouse models of DS. Dp(16)1Yey/+ (hereafter called Dp16) is a recently developed mouse model of DS in which the entire region of mouse chromosome 16 that is homologous to human chromosome 21 has been triplicated. As such, Dp16 mice may more closely reproduce neurodevelopmental changes occurring in humans with DS. Here, we present the first comprehensive cellular and behavioral study of the Dp16 forebrain from embryonic to adult stages. Unexpectedly, our results demonstrate that Dp16 mice do not have prenatal brain defects previously reported in human fetal neocortex and in the developing forebrains of other mouse models, including microcephaly, reduced neurogenesis, and abnormal cell proliferation. Nevertheless, we found impairments in postnatal developmental milestones, fewer inhibitory forebrain neurons, and deficits in motor and cognitive performance in Dp16 mice. Therefore, although this new model does not express prenatal morphological phenotypes associated with DS, abnormalities in the postnatal period appear sufficient to produce significant cognitive deficits in Dp16. SIGNIFICANCE STATEMENT Down syndrome (DS) leads to intellectual disability. Several mouse models have increased our understanding of the neuropathology of DS and are currently being used to test therapeutic strategies. A new mouse model that contains an expanded number of DS-related genes, known as Dp(16)1Yey/+ (Dp16), has been generated recently. We sought to determine whether the extended triplication creates a better phenocopy of DS-related brain pathologies. We measured embryonic development, forebrain maturation, and perinatal/adult behavior and revealed an absence of prenatal phenotypes in Dp16 fetal brain, but specific cellular and behavioral deficits after the first 2 postnatal weeks. These results uncover important differences in prenatal phenotype between Dp16 animals and humans with DS and other DS mouse models. PMID:26961948
2010-01-01
Background The BALB/c mouse is commonly used to study RSV infection and disease. However, despite the many advantages of this well-characterised model, the inoculum is large, viral replication is restricted and only a very small amount of virus can be recovered from infected animals. A key question in this model is the fate of the administered virus. Is replication really being measured or is the model measuring the survival of the virus over time? To answer these questions we developed a highly sensitive strand-specific quantitative PCR (QPCR) able to accurately quantify the amount of RSV replication in the BALB/c mouse lung, allowing characterisation of RSV negative and positive strand RNA dynamics. Results In the mouse lung, no increase in RSV genome was seen above the background of the original inoculum whilst only a limited transient increase (< 1 log) in positive strand, replicative intermediate (RI) RNA occurred. This RNA did however persist at detectable levels for 59 days post infection. As expected, ribavirin therapy reduced levels of infectious virus and RI RNA in the mouse lung. However, whilst Palivizumab therapy was also able to reduce levels of infectious virus, it failed to prevent production of intracellular RI RNA. A comparison of RSV RNA kinetics in human (A549) and mouse (KLN205) cell lines demonstrated that RSV replication was also severely delayed and impaired in vitro in the mouse cells. Conclusions This is the first time that such a sensitive strand-specific QPCR technique has been to the RSV mouse system. We have accurately quantified the restricted and abortive nature of RSV replication in the mouse. Further in vitro studies in human and mouse cells suggest this restricted replication is due at least in part to species-specific host cell-viral interactions. PMID:20860795
Establishment of mouse neuron and microglial cell co-cultured models and its action mechanism.
Zhang, Bo; Yang, Yunfeng; Tang, Jun; Tao, Yihao; Jiang, Bing; Chen, Zhi; Feng, Hua; Yang, Liming; Zhu, Gang
2017-06-27
The objective of this study is to establish a co-culture model of mouse neurons and microglial cells, and to analyze the mechanism of action of oxygen glucose deprivation (OGD) and transient oxygen glucose deprivation (tOGD) preconditioning cell models. Mouse primary neurons and BV2 microglial cells were successfully cultured, and the OGD and tOGD models were also established. In the co-culture of mouse primary neurons and microglial cells, the cell number of tOGD mouse neurons and microglial cells was larger than the OGD cell number, observed by a microscope. CCK-8 assay result showed that at 1h after treatment, the OD value in the control group is lower compared to all the other three groups (P < 0.05). The treatment group exhibited the highest OD value among the four groups. The results observed at 5h were consistent with the results at 1 h. Flow cytometry results showed that at 1h after treatment the apoptosis percentages is higher in the control group compared to other three groups (P < 0.05). Mouse brain tissues were collected and primary neurons cells were cultured. In the meantime mouse BV2 microglia cells were cultured. Two types of cells were co-cultured, and OGD and tOGD cell models were established. There were four groups in the experiment: control group (OGD), treatment group (tOGD+OGD), placebo group (tOGD+OGD+saline) and minocycline intervention group (tOGD+OGD+minocycline). CCK-8 kit was used to detect cell viability and flow cytometry was used to detect apoptosis. In this study, mouse primary neurons and microglial cells were co-cultured. The OGD and tOGD models were established successfully. tOGD was able to effectively protect neurons and microglial cells from damage, and inhibit the apoptosis caused by oxygen glucose deprivation.
Actinic keratosis modelling in mice: A translational study
Vandenberghe, Isabelle; Cartron, Valérie; Cèbe, Patrick; Blanchet, Jean-Christophe; Sibaud, Vincent; Guilbaud, Nicolas; Audoly, Laurent; Lamant, Laurence; Kruczynski, Anna
2017-01-01
Background Actinic keratoses (AK) are pre-malignant cutaneous lesions caused by prolonged exposure to ultraviolet radiation. As AKs lesions are generally accepted to be the initial lesions in a disease continuum that progresses to squamous cell carcinoma (SCC), AK lesions have to be treated. They are also the second most common reason for visits to the dermatologist. Several treatments are available but their efficacy still needs to be improved. The UV-B-induced KA lesion mouse model is used in preclinical studies to assess the efficacy of novel molecules, even though it is often more representative of advanced AK or SCC. Objectives Here we report on a translational study, comparing the various stages of AK development in humans and in the UV-B irradiated mouse model, as well as the optimization of photograph acquisition of AK lesions on mouse skin. Methods Human and mouse skin lesions were analysed by histology and immunohistochemistry. Mouse lesions were also assessed using a digital dermatoscope. Results An histological and phenotypic analysis, including p53, Ki67 and CD3 expression detection, performed on human and mouse AK lesions, shows that overall AK modelling in mice is relevant in the clinical situation. Some differences are observed, such as disorganization of keratinocytes of the basal layer and a number of atypical nuclei which are more numerous in human AK, whereas much more pronounced acanthosis is observed in skin lesion in mice. Thanks to this translational study, we are able to select appropriate experimental conditions for establishing either early or advanced stage AK or an SCC model. Furthermore, we optimized photograph acquisition of AK lesions on mouse skin by using a digital dermatoscope which is also used in clinics and allows reproducible photograph acquisition for further reliable assessment of mouse lesions. Use of this camera is illustrated through a pharmacological study assessing the activity of CARAC®. Conclusion These data demonstrate that this mouse model of UV-B-induced skin lesions is predictive for the identification of novel therapeutic treatments for both early and advanced stages of the disease. PMID:28662116
Taltirelin alleviates fatigue-like behavior in mouse models of cancer-related fatigue.
Dougherty, John P; Wolff, Brian S; Cullen, Mary J; Saligan, Leorey N; Gershengorn, Marvin C
2017-10-01
Fatigue affects most cancer patients and has numerous potential causes, including cancer itself and cancer treatment. Cancer-related fatigue (CRF) is not relieved by rest, can decrease quality of life, and has no FDA-approved therapy. Thyrotropin-releasing hormone (TRH) has been proposed as a potential novel treatment for CRF, but its efficacy against CRF remains largely untested. Thus, we tested the TRH analog, taltirelin (TAL), in mouse models of CRF. To model fatigue, we used a mouse model of chemotherapy, a mouse model of radiation therapy, and mice bearing colon 26 carcinoma tumors. We used the treadmill fatigue test to assess fatigue-like behavior after treatment with TAL. Additionally, we used wild-type and TRH receptor knockout mice to determine which TRH receptor was necessary for the actions of TAL. Tumor-bearing mice displayed muscle wasting and all models caused fatigue-like behavior, with mice running a shorter distance in the treadmill fatigue test than controls. TAL reversed fatigue-like behavior in all three models and the mouse TRH 1 receptor was necessary for the effects of TAL. These data suggest that TAL may be useful in alleviating fatigue in all cancer patients and provide further support for evaluating TAL as a potential therapy for CRF in humans. Published by Elsevier Ltd.
MR images of mouse brain using clinical 3T MR scanner and 4CH-Mouse coil
NASA Astrophysics Data System (ADS)
Lim, Soo Mee; Park, Eun Mi; Lyoo, In Kyoon; Lee, Junghyun; Han, Bo Mi; Lee, Jeong Kyong; Lee, Su Bin
2015-07-01
Objectives: Although small-bore high-field magnets are useful for research in small rodent models,this technology, however, has not been easily accessible to most researchers. This current study, thus,tried to evaluate the usability of 4CH-Mouse coil (Philips Healthcare, Best, the Netherlands) forpreclinical investigations in clinical 3T MR scan environment. We evaluated the effects of ischemicpreconditioning (IP) in the mouse stroke model with clinical 3T MR scanner and 4CH-Mouse coil. Materials and Methods: Experiments were performed on male C57BL/6 mice that either received the IP or sham operation (control). Three different MR sequences including diffusion weighted images (DWI), T2-weighted images (T2WI), and fluid attenuated inversion recovery (FLAIR) were performed on the mouse brains following 24, 72 hours of middle cerebral artery occlusion (MCAO) and analyzed for infarct lesions. Results: The images showed that the IP-treated mouse brains had significantly smaller infarct volumes compared to the control group. Of the MR sequences employed, the T2WI showed the highest level of correlations with postmortem infarct volume measurements. Conclusions: The clinical 3T MR scanner turned out to have a solid potential as a practical tool for imaging small animal brains. MR sequences including DWI, T2WI, FLAIR were obtained with acceptable resolution and in a reasonable time constraint in evaluating a mouse stroke model brain.
Wahnschaffe, U; Bitsch, A; Kielhorn, J; Mangelsdorf, I
2005-01-01
As part of a larger literature study on transgenic animals in mutagenicity testing, test results from the transgenic mutagenicity assays (lacI model; commercially available as the Big Blue® mouse, and the lacZ model; commercially available as the Muta™Mouse), were compared with the results on the same substances in the more traditional mouse bone marrow micronucleus test. 39 substances were found which had been tested in the micronucleus assay and in the above transgenic mouse systems. Although, the transgenic animal mutation assay is not directly comparable with the micronucleus test, because different genetic endpoints are examined: chromosome aberration versus gene mutation, the results for the majority of substances were in agreement. Both test systems, the transgenic mouse assay and the mouse bone marrow micronucleus test, have advantages and they complement each other. However, the transgenic animal assay has some distinct advantages over the micronucleus test: it is not restricted to one target organ and detects systemic as well as local mutagenic effects. PMID:15655069
Crowe, Sarah E; Ellis-Davies, Graham C R
2013-07-01
The loss of cognitive function in Alzheimer's disease (AD) patients is strongly correlated with the loss of neurons in various regions of the brain. We have created a new fluorescent bigenic mouse model of AD by crossing "H-line" yellow fluorescent protein (YFP) mice with the 5xFAD mouse model, which we call the 5XY mouse model. The 5xFAD mouse has been shown to have significant loss of L5 pyramidal neurons by 12 months of age. These neurons are transgenically labeled with YFP in the 5XY mouse, which enable longitudinal imaging of structural changes. In the 5XY mice, we observed an appearance of axonal dystrophies, with two distinct morphologies in the early stages of the disease progression. Simple swelling dystrophies are transient in nature and are not directly associated with amyloid plaques. Rosette dystrophies are more complex structures that remained stable throughout all imaging sessions, and always surrounded an amyloid plaque. Plaque growth was followed over 4 weeks, and significant growth was seen between weekly imaging sessions. In addition to axonal dystrophy appearance and plaque growth, we were able to follow spine stability in 4-month old 5XY mice, which revealed no significant loss of spines. 5XY mice also showed a striking shrinkage of the neocortex at older ages (12-14 months). The 5XY mouse model may be a valuable tool for studying specific events in the degeneration of the neocortex, and may suggest new avenues for therapeutic intervention. Copyright © 2013 Wiley Periodicals, Inc.
Technique Selectively Represses Immune System
... from attacking myelin in a mouse model of multiple sclerosis. Dr David Furness, Wellcome Images. All rights reserved ... devised a way to successfully treat symptoms resembling multiple sclerosis in a mouse model. With further development, the ...
Wu, Chaomin; Evans, Colin E; Dai, Zhiyu; Huang, Xiaojia; Zhang, Xianming; Jin, Hua; Hu, Guochang; Song, Yuanlin; Zhao, You-Yang
2017-01-01
Acute respiratory distress syndrome (ARDS) is characterized by acute hypoxemia respiratory failure, bilateral pulmonary infiltrates, and pulmonary edema of non-cardiac origin. Effective treatments for ARDS patients may arise from experimental studies with translational mouse models of this disease that aim to delineate the mechanisms underlying the disease pathogenesis. Mouse models of ARDS, however, can be limited by their rapid progression from injured to recovery state, which is in contrast to the course of ARDS in humans. Furthermore, current mouse models of ARDS do not recapitulate certain prominent aspects of the pathogenesis of ARDS in humans. In this study, we developed an improved endotoxemic mouse model of ARDS resembling many features of clinical ARDS including extended courses of injury and recovery as well as development of fibrosis following i.p. injection of lipopolysaccharide (LPS) to corn oil-preloaded mice. Compared with mice receiving LPS alone, those receiving corn oil and LPS exhibited extended course of lung injury and repair that occurred over a period of >2 weeks instead of 3-5days. Importantly, LPS challenge of corn oil-preloaded mice resulted in pulmonary fibrosis during the repair phase as often seen in ARDS patients. In summary, this simple novel mouse model of ARDS could represent a valuable experimental tool to elucidate mechanisms that regulate lung injury and repair in ARDS patients.
Armstrong, Gregory M; Maybin, Jacqueline A; Murray, Alison A; Nicol, Moira; Walker, Catherine; Saunders, Philippa T K; Rossi, Adriano G; Critchley, Hilary O D
2017-12-12
Menstruation is characterised by synchronous shedding and restoration of tissue integrity. An in vivo model of menstruation is required to investigate mechanisms responsible for regulation of menstrual physiology and to investigate common pathologies such as heavy menstrual bleeding (HMB). We hypothesised that our mouse model of simulated menstruation would recapitulate the spatial and temporal changes in the inflammatory microenvironment of human menses. Three regulatory events were investigated: cell death (apoptosis), neutrophil influx and cytokine/chemokine expression. Well-characterised endometrial tissues from women were compared with uteri from a mouse model (tissue recovered 0, 4, 8, 24 and 48 h after removal of a progesterone-secreting pellet). Immunohistochemistry for cleaved caspase-3 (CC3) revealed significantly increased staining in human endometrium from late secretory and menstrual phases. In mice, CC3 was significantly increased at 8 and 24 h post-progesterone-withdrawal. Elastase + human neutrophils were maximal during menstruation; Ly6G + mouse neutrophils were maximal at 24 h. Human endometrial and mouse uterine cytokine/chemokine mRNA concentrations were significantly increased during menstrual phase and 24 h post-progesterone-withdrawal respectively. Data from dated human samples revealed time-dependent changes in endometrial apoptosis preceding neutrophil influx and cytokine/chemokine induction during active menstruation. These dynamic changes were recapitulated in the mouse model of menstruation, validating its use in menstrual research.
The STR/ort mouse model of spontaneous osteoarthritis - an update.
Staines, K A; Poulet, B; Wentworth, D N; Pitsillides, A A
2017-06-01
Osteoarthritis is a degenerative joint disease and a world-wide healthcare burden. Characterized by cartilage degradation, subchondral bone thickening and osteophyte formation, osteoarthritis inflicts much pain and suffering, for which there are currently no disease-modifying treatments available. Mouse models of osteoarthritis are proving critical in advancing our understanding of the underpinning molecular mechanisms. The STR/ort mouse is a well-recognized model which develops a natural form of osteoarthritis very similar to the human disease. In this Review we discuss the use of the STR/ort mouse in understanding this multifactorial disease with an emphasis on recent advances in its genetics and its bone, endochondral and immune phenotypes. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Mouse brain magnetic resonance microscopy: Applications in Alzheimer disease.
Lin, Lan; Fu, Zhenrong; Xu, Xiaoting; Wu, Shuicai
2015-05-01
Over the past two decades, various Alzheimer's disease (AD) trangenetic mice models harboring genes with mutation known to cause familial AD have been created. Today, high-resolution magnetic resonance microscopy (MRM) technology is being widely used in the study of AD mouse models. It has greatly facilitated and advanced our knowledge of AD. In this review, most of the attention is paid to fundamental of MRM, the construction of standard mouse MRM brain template and atlas, the detection of amyloid plaques, following up on brain atrophy and the future applications of MRM in transgenic AD mice. It is believed that future testing of potential drugs in mouse models with MRM will greatly improve the predictability of drug effect in preclinical trials. © 2015 Wiley Periodicals, Inc.
Janus, Christopher; Hernandez, Carolina; deLelys, Victoria; Roder, Hanno; Welzl, Hans
2016-01-01
The major symptom of Alzheimer's disease is dementia progressing with age. Its clinical diagnosis is preceded by a long prodromal period of brain pathology that encompasses both formation of extracellular amyloid and intraneuronal tau deposits in the brain and widespread neuronal death. At present, familial cases of dementia provide the most promising foundation for modeling neurodegenerative tauopathies, a group of heterogeneous disorders characterized by prominent intracellular accumulation of hyperphosphorylated tau protein. In this chapter, we describe major behavioral hallmarks of tauopathies, briefly outline the genetics underlying familial cases, and discuss the arising implications for modeling the disease in transgenic mouse systems. The selection of tests performed to evaluate the phenotype of a model should be guided by the key behavioral hallmarks that characterize human disorder and their homology to mouse cognitive systems. We attempt to provide general guidelines and establish criteria for modeling dementia in a mouse; however, interpretations of obtained results should avoid a reductionist "one gene, one disease" explanation of model characteristics. Rather, the focus should be directed to the question of how the mouse genome can cope with the over-expression of the protein coded by transgene(s). While each model is valuable within its own constraints and the experiments performed are guided by specific hypotheses, we seek to expand upon their methodology by offering guidance spanning from issues of mouse husbandry to choices of behavioral tests and routes of drug administration that might increase the external validity of studies and consequently optimize the translational aspect of preclinical research.
Rodent models of congenital and hereditary cataract in man.
Tripathi, B J; Tripathi, R C; Borisuth, N S; Dhaliwal, R; Dhaliwal, D
1991-01-01
Because the organogenesis and physiology of the lens are essentially similar in various mammals, an understanding of the etiology and pathogenesis of the formation of cataract in an animal model will enhance our knowledge of cataractogenesis in man. In this review, we summarize the background, etiology, and pathogenesis of cataracts that occur in rodents. The main advantages of using rodent mutants include the well-researched genetics of the animals and the comparative ease of breeding of large litters. Numerous rodent models of congenital and hereditary cataracts have been studied extensively. In mice, the models include the Cts strain, Fraser mouse, lens opacity gene (Lop) strain, Lop-2 and Lop-3 strains, Philly mouse, Nakano mouse, Nop strain, Deer mouse, Emory mouse, Swiss Webster strain, Balb/c-nct/nct mouse, and SAM-R/3 strain. The rat models include BUdR, ICR, Sprague-Dawley, and Wistar rats, the spontaneously hypertensive rat (SHR), the John Rapp inbred strain of Dahl salt-sensitive rat, as well as WBN/Kob, Royal College of Surgeons (RCS), and Brown-Norway rats. Other proposed models for the study of hereditary cataract include the degu and the guinea pig. Because of the ease of making clinical observations in vivo and the subsequent availability of the intact lens for laboratory analyses at different stages of cataract formation, these animals provide excellent models for clinicopathologic correlations, for monitoring of the natural history of the aging process and of metabolic defects, as well as for investigations on the effect of cataract-modulating agents and drugs, including the prospect of gene therapy.
Law, MeiYee; Shaw, David R
2018-01-01
Mouse Genome Informatics (MGI, http://www.informatics.jax.org/ ) web resources provide free access to meticulously curated information about the laboratory mouse. MGI's primary goal is to help researchers investigate the genetic foundations of human diseases by translating information from mouse phenotypes and disease models studies to human systems. MGI provides comprehensive phenotypes for over 50,000 mutant alleles in mice and provides experimental model descriptions for over 1500 human diseases. Curated data from scientific publications are integrated with those from high-throughput phenotyping and gene expression centers. Data are standardized using defined, hierarchical vocabularies such as the Mammalian Phenotype (MP) Ontology, Mouse Developmental Anatomy and the Gene Ontologies (GO). This chapter introduces you to Gene and Allele Detail pages and provides step-by-step instructions for simple searches and those that take advantage of the breadth of MGI data integration.
Joshi, Kumud; Hassan, Sherif S; Ramaraj, Pandurangan
2017-01-01
Dehydroepiandrosterone (DHEA) is a weak androgen and had been shown to have anti-cancer, anti-adipogenic and anti-inflammatory effects on mouse and other rodent models, but not on humans, suggesting a systemic level difference between mouse and human. Our previous study on DHEA biological functions involving a variety of cell lines, suggested that the functional differences between mouse and human existed even at the cellular level. Hence, using mouse and human melanoma cell models, in-vitro effects of DHEA on cell growth, mechanism of cell death and mechanism of DHEA action were studied. Results indicated a differential biological effects of DHEA between mouse and human melanoma cell lines. These in-vitro studies also suggested that the differential biological effects observed between these two cell lines could be due to the difference in the way DHEA was processed or metabolized inside the cell.
Current State of Animal (Mouse) Modeling in Melanoma Research.
Kuzu, Omer F; Nguyen, Felix D; Noory, Mohammad A; Sharma, Arati
2015-01-01
Despite the considerable progress in understanding the biology of human cancer and technological advancement in drug discovery, treatment failure remains an inevitable outcome for most cancer patients with advanced diseases, including melanoma. Despite FDA-approved BRAF-targeted therapies for advanced stage melanoma showed a great deal of promise, development of rapid resistance limits the success. Hence, the overall success rate of melanoma therapy still remains to be one of the worst compared to other malignancies. Advancement of next-generation sequencing technology allowed better identification of alterations that trigger melanoma development. As development of successful therapies strongly depends on clinically relevant preclinical models, together with the new findings, more advanced melanoma models have been generated. In this article, besides traditional mouse models of melanoma, we will discuss recent ones, such as patient-derived tumor xenografts, topically inducible BRAF mouse model and RCAS/TVA-based model, and their advantages as well as limitations. Although mouse models of melanoma are often criticized as poor predictors of whether an experimental drug would be an effective treatment, development of new and more relevant models could circumvent this problem in the near future.
Rankin, Carl Robert; Theodorou, Evangelos; Law, Ivy Ka Man; Rowe, Lorraine; Kokkotou, Efi; Pekow, Joel; Wang, Jiafang; Martin, Martin G; Pothoulakis, Charalabos; Padua, David Miguel
2018-06-28
Inflammatory bowel disease (IBD) is a complex disorder that is associated with significant morbidity. While many recent advances have been made with new diagnostic and therapeutic tools, a deeper understanding of its basic pathophysiology is needed to continue this trend towards improving treatments. By utilizing an unbiased, high-throughput transcriptomic analysis of two well-established mouse models of colitis, we set out to uncover novel coding and non-coding RNAs that are differentially expressed in the setting of colonic inflammation. RNA-seq analysis was performed using colonic tissue from two mouse models of colitis, a dextran sodium sulfate induced model and a genetic-induced model in mice lacking IL-10. We identified 81 coding RNAs that were commonly altered in both experimental models. Of these coding RNAs, 12 of the human orthologs were differentially expressed in a transcriptomic analysis of IBD patients. Interestingly, 5 of the 12 of human differentially expressed genes have not been previously identified as IBD-associated genes, including ubiquitin D. Our analysis also identified 15 non-coding RNAs that were differentially expressed in either mouse model. Surprisingly, only three non-coding RNAs were commonly dysregulated in both of these models. The discovery of these new coding and non-coding RNAs expands our transcriptional knowledge of mouse models of IBD and offers additional targets to deepen our understanding of the pathophysiology of IBD.
A Dynamic Simulation of Musculoskeletal Function in the Mouse Hindlimb During Trotting Locomotion
Charles, James P.; Cappellari, Ornella; Hutchinson, John R.
2018-01-01
Mice are often used as animal models of various human neuromuscular diseases, and analysis of these models often requires detailed gait analysis. However, little is known of the dynamics of the mouse musculoskeletal system during locomotion. In this study, we used computer optimization procedures to create a simulation of trotting in a mouse, using a previously developed mouse hindlimb musculoskeletal model in conjunction with new experimental data, allowing muscle forces, activation patterns, and levels of mechanical work to be estimated. Analyzing musculotendon unit (MTU) mechanical work throughout the stride allowed a deeper understanding of their respective functions, with the rectus femoris MTU dominating the generation of positive and negative mechanical work during the swing and stance phases. This analysis also tested previous functional inferences of the mouse hindlimb made from anatomical data alone, such as the existence of a proximo-distal gradient of muscle function, thought to reflect adaptations for energy-efficient locomotion. The results do not strongly support the presence of this gradient within the mouse musculoskeletal system, particularly given relatively high negative net work output from the ankle plantarflexor MTUs, although more detailed simulations could test this further. This modeling analysis lays a foundation for future studies of the control of vertebrate movement through the development of neuromechanical simulations. PMID:29868576
Andres-Mach, Marta; Haratym-Maj, Agnieszka; Zagaja, Mirosław; Luszczki, Jarogniew J
2014-01-01
The aim of this study was to characterize the anticonvulsant effect of 1-methyl-1,2,3,4-tetrahydroisoquinoline (1-MeTHIQ) in combination with clobazam (CLB) in the mouse maximal electroshock-induced seizure (MES) model. The anticonvulsant interaction profile between 1-MeTHIQ and CLB in the mouse MES model was determined using an isobolographic analysis for parallel dose-response relationship curves. Electroconvulsions were produced in albino Swiss mice by a current (sine wave, 25 mA, 500 V, 50 Hz, 0.2-second stimulus duration) delivered via auricular electrodes by a Hugo Sachs generator. There was an additive effect of the combination of 1-MeTHIQ with CLB (at the fixed ratios of 1:3, 1:1 and 3:1) in the mouse MES-induced tonic seizure model. The additive interaction of the combination of 1-MeTHIQ with CLB (at fixed-ratios of 1:3, 1:1 and 3:1) in the mouse MES model seems to be pharmacodynamic in nature and worth of considering in further clinical practice. © 2014 S. Karger AG, Basel.
Akkina, Ramesh; Allam, Atef; Balazs, Alejandro B.; Blankson, Joel N.; Burnett, John C.; Casares, Sofia; Garcia, J. Victor; Hasenkrug, Kim J.; Kitchen, Scott G.; Klein, Florian; Kumar, Priti; Luster, Andrew D.; Poluektova, Larisa Y.; Rao, Mangala; Shultz, Leonard D.; Zack, Jerome A.
2016-01-01
Abstract The number of humanized mouse models for the human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome (AIDS) and other infectious diseases has expanded rapidly over the past 8 years. Highly immunodeficient mouse strains, such as NOD/SCID/gamma chainnull (NSG, NOG), support better human hematopoietic cell engraftment. Another improvement is the derivation of highly immunodeficient mice, transgenic with human leukocyte antigens (HLAs) and cytokines that supported development of HLA-restricted human T cells and heightened human myeloid cell engraftment. Humanized mice are also used to study the HIV reservoir using new imaging techniques. Despite these advances, there are still limitations in HIV immune responses and deficits in lymphoid structures in these models in addition to xenogeneic graft-versus-host responses. To understand and disseminate the improvements and limitations of humanized mouse models to the scientific community, the NIH sponsored and convened a meeting on April 15, 2015 to discuss the state of knowledge concerning these questions and best practices for selecting a humanized mouse model for a particular scientific investigation. This report summarizes the findings of the NIH meeting. PMID:26670361
Behavioral assays with mouse models of Alzheimer’s disease: practical considerations and guidelines
Puzzo, Daniela; Lee, Linda; Palmeri, Agostino; Calabrese, Giorgio; Arancio, Ottavio
2014-01-01
In Alzheimer’s disease (AD) basic research and drug discovery, mouse models are essential resources for uncovering biological mechanisms, validating molecular targets and screening potential compounds. Both transgenic and non-genetically modified mouse models enable access to different types of AD-like pathology in vivo. Although there is a wealth of genetic and biochemical studies on proposed AD pathogenic pathways, as a disease that centrally features cognitive failure, the ultimate readout for any interventions should be measures of learning and memory. This is particularly important given the lack of knowledge on disease etiology – assessment by cognitive assays offers the advantage of targeting relevant memory systems without requiring assumptions about pathogenesis. A multitude of behavioral assays are available for assessing cognitive functioning in mouse models, including ones specific for hippocampal-dependent learning and memory. Here we review the basics of available transgenic and non-transgenic AD mouse models and detail three well-established behavioral tasks commonly used for testing hippocampal-dependent cognition in mice – contextual fear conditioning, radial arm water maze and Morris water maze. In particular, we discuss the practical considerations, requirements and caveats of these behavioral testing paradigms. PMID:24462904
Icotinib inhibits EGFR signaling and alleviates psoriasis-like symptoms in animal models.
Tan, Fenlai; Yang, Guiqun; Wang, Yanping; Chen, Haibo; Yu, Bo; Li, He; Guo, Jing; Huang, Xiaoling; Deng, Yifang; Yu, Pengxia; Ding, Lieming
2018-02-01
To investigate the effects of icotinib hydrochloride and a derivative cream on epidermal growth factor receptor (EGFR) signaling and within animal psoriasis models, respectively. The effect of icotinib on EGFR signaling was examined in HaCaT cells, while its effect on angiogenesis was tested in chick embryo chorioallantoic membranes (CAM). The effectiveness of icotinib in treating psoriasis was tested in three psoriasis models, including diethylstilbestrol-treated mouse vaginal epithelial cells, mouse tail granular cell layer formation, and propranolol-induced psoriasis-like features in guinea pig ear skin. Icotinib treatment blocked EGFR signaling and reduced HaCaT cell viability as well as suppressed CAM angiogenesis. Topical application of icotinib ameliorated psoriasis-like histological characteristics in mouse and guinea pig psoriasis models. Icotinib also significantly inhibited mouse vaginal epithelium mitosis, promoted mouse tail squamous epidermal granular layer formation, and reduced the thickness of the horny layer in propranolol treated auricular dorsal surface of guinea pig. We conclude that icotinib can effectively inhibit psoriasis in animal models. Future clinical studies should be conducted to explore the therapeutic effects of icotinb in humans. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Ma, Wenjun; Lager, Kelly M; Li, Xi; Janke, Bruce H; Mosier, Derek A; Painter, Laura E; Ulery, Eva S; Ma, Jingqun; Lekcharoensuk, Porntippa; Webby, Richard J; Richt, Jürgen A
2011-02-05
PB2 627K is a determinant of influenza host range and contributes to the pathogenicity of human-, avian-, and mouse-adapted influenza viruses in the mouse model. Here we used mouse and pig models to analyze the contribution of a swine-origin and avian-origin PB2 carrying either 627K or 627E in the background of the classical swine H1N1 (A/Swine/Iowa/15/30; 1930) virus. The results showed PB2 627K is crucial for virulence in the mouse model, independent of whether PB2 is derived from an avian or swine influenza virus (SIV). In the pig model, PB2 627E decreases pathogenicity of the classical 1930 SIV when it contains the swine-origin PB2, but not when it possesses the avian-origin PB2. Our study suggests the pathogenicity of SIVs with different PB2 genes and mutation of codon 627 in mice does not correlate with the pathogenicity of the same SIVs in the natural host, the pig. Copyright © 2010 Elsevier Inc. All rights reserved.
An Immunocompetent Mouse Model of Zika Virus Infection.
Gorman, Matthew J; Caine, Elizabeth A; Zaitsev, Konstantin; Begley, Matthew C; Weger-Lucarelli, James; Uccellini, Melissa B; Tripathi, Shashank; Morrison, Juliet; Yount, Boyd L; Dinnon, Kenneth H; Rückert, Claudia; Young, Michael C; Zhu, Zhe; Robertson, Shelly J; McNally, Kristin L; Ye, Jing; Cao, Bin; Mysorekar, Indira U; Ebel, Gregory D; Baric, Ralph S; Best, Sonja M; Artyomov, Maxim N; Garcia-Sastre, Adolfo; Diamond, Michael S
2018-05-09
Progress toward understanding Zika virus (ZIKV) pathogenesis is hindered by lack of immunocompetent small animal models, in part because ZIKV fails to effectively antagonize Stat2-dependent interferon (IFN) responses in mice. To address this limitation, we first passaged an African ZIKV strain (ZIKV-Dak-41525) through Rag1 -/- mice to obtain a mouse-adapted virus (ZIKV-Dak-MA) that was more virulent than ZIKV-Dak-41525 in mice treated with an anti-Ifnar1 antibody. A G18R substitution in NS4B was the genetic basis for the increased replication, and resulted in decreased IFN-β production, diminished IFN-stimulated gene expression, and the greater brain infection observed with ZIKV-Dak-MA. To generate a fully immunocompetent mouse model of ZIKV infection, human STAT2 was introduced into the mouse Stat2 locus (hSTAT2 KI). Subcutaneous inoculation of pregnant hSTAT2 KI mice with ZIKV-Dak-MA resulted in spread to the placenta and fetal brain. An immunocompetent mouse model of ZIKV infection may prove valuable for evaluating countermeasures to limit disease. Copyright © 2018 Elsevier Inc. All rights reserved.
Histologic scoring of gastritis and gastric cancer in mouse models.
Rogers, Arlin B
2012-01-01
Histopathology is a defining endpoint in mouse models of experimental gastritis and gastric adenocarcinoma. Presented here is an overview of the histology of gastritis and gastric cancer in mice experimentally infected with Helicobacter pylori or H. felis. A modular histopathologic scoring scheme is provided that incorporates relevant disease-associated changes. Whereas the guide uses Helicobacter infection as the prototype challenge, features may be applied to chemical and genetically engineered mouse models of stomach cancer as well. Specific criteria included in the combined gastric histologic activity index (HAI) include inflammation, epithelial defects, oxyntic atrophy, hyperplasia, pseudopyloric metaplasia, and dysplasia or neoplasia. Representative photomicrographs accompany descriptions for each lesion grade. Differentiation of genuine tumor invasion from pseudoinvasion is highlighted. A brief comparison of normal rodent versus human stomach anatomy and physiology is accompanied by an introduction to mouse-specific lesions including mucous metaplasia and eosinophilic droplets (hyalinosis). In conjunction with qualified pathology support, this guide is intended to assist research scientists, postdoctoral fellows, graduate students, and medical professionals from affiliated disciplines in the interpretation and histologic grading of chronic gastritis and gastric carcinoma in mouse models.
Astonishing advances in mouse genetic tools for biomedical research.
Kaczmarczyk, Lech; Jackson, Walker S
2015-01-01
The humble house mouse has long been a workhorse model system in biomedical research. The technology for introducing site-specific genome modifications led to Nobel Prizes for its pioneers and opened a new era of mouse genetics. However, this technology was very time-consuming and technically demanding. As a result, many investigators continued to employ easier genome manipulation methods, though resulting models can suffer from overlooked or underestimated consequences. Another breakthrough, invaluable for the molecular dissection of disease mechanisms, was the invention of high-throughput methods to measure the expression of a plethora of genes in parallel. However, the use of samples containing material from multiple cell types could obfuscate data, and thus interpretations. In this review we highlight some important issues in experimental approaches using mouse models for biomedical research. We then discuss recent technological advances in mouse genetics that are revolutionising human disease research. Mouse genomes are now easily manipulated at precise locations thanks to guided endonucleases, such as transcription activator-like effector nucleases (TALENs) or the CRISPR/Cas9 system, both also having the potential to turn the dream of human gene therapy into reality. Newly developed methods of cell type-specific isolation of transcriptomes from crude tissue homogenates, followed by detection with next generation sequencing (NGS), are vastly improving gene regulation studies. Taken together, these amazing tools simplify the creation of much more accurate mouse models of human disease, and enable the extraction of hitherto unobtainable data.
Mutational landscape of a chemically-induced mouse model of liver cancer.
Connor, Frances; Rayner, Tim F; Aitken, Sarah J; Feig, Christine; Lukk, Margus; Santoyo-Lopez, Javier; Odom, Duncan T
2018-06-26
Carcinogen-induced mouse models of liver cancer are used extensively to study pathogenesis of the disease and have a critical role in validating candidate therapeutics. These models can recapitulate molecular and histological features of human disease. However, it is not known if the genomic alterations driving these mouse tumour genomes are comparable to those found in human tumours. Here, we provide a detailed genomic characterisation of tumours from a commonly used mouse model of hepatocellular carcinoma (HCC). We analysed whole exome sequences of liver tumours arising in mice exposed to diethylnitrosamine (DEN). DEN-initiated tumours had a high, uniform number of somatic single nucleotide variants (SNVs), with few insertions, deletions or copy number alterations, consistent with the known genotoxic action of DEN. Exposure of hepatocytes to DEN left a reproducible mutational imprint in resulting tumour exomes which we could computationally reconstruct using six known COSMIC mutational signatures. The tumours carried a high diversity of low-incidence, non-synonymous point mutations in many oncogenes and tumour suppressors, reflecting the stochastic introduction of SNVs into the hepatocyte genome by the carcinogen. We identified four recurrently mutated genes that were putative oncogenic drivers of HCC in this model. Every neoplasm carried activating hotspot mutations either in codon 61 of Hras, in codon 584 of Braf or in codon 254 of Egfr. Truncating mutations of Apc occurred in 21% of neoplasms, which were exclusively carcinomas supporting a role for deregulation of Wnt/β-catenin signalling in cancer progression. Our study provides detailed insight into the mutational landscape of tumours arising in a commonly-used carcinogen model of HCC, facilitating the future use of this model to understand the human disease. Mouse models are widely used to study the biology of cancer and to test potential therapies. Here, we have described the mutational landscape of tumours arising in a carcinogen-induced mouse model of liver cancer. Since cancer is a disease caused by genomic alterations, information about the patterns and types of mutations in the tumours in this mouse model should facilitate its use to study human liver cancer. Copyright © 2018 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Chip Based Magnetic Imager for Molecular Profiling of Ovarian Cancer Cells
2016-12-01
2015) Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell 160:1246-1260. PMC4380877, PMID:25748654. Acknowledgement of...Weissleder R, Lee H, Zhang F, Sharp PA (2015) Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell 160:1246-1260. 5. Im H, Shao H...Lett 32(10):1229–1231. 6 of 6 | www.pnas.org/cgi/doi/10.1073/pnas.1501815112 Im et al. Resource Genome-wide CRISPR Screen in a Mouse Model of Tumor
2017-12-01
AWARD NUMBER: W81XWH-13-1-0162 TITLE: Using a Novel Transgenic Mouse Model to Study c-Myc Oncogenic Pathway in Castration Resistance and...DATES COVERED 15Sept2013 - 14Sept2017 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Using a Novel Transgenic Mouse Model to Study c-Myc Oncogenic...for concisely studying castration response and CRPC. However, most mice never developed significant tumors. Here, we showed that ablation of p53 in this
Mouse Models for Drug Discovery. Can New Tools and Technology Improve Translational Power?
Zuberi, Aamir; Lutz, Cathleen
2016-01-01
Abstract The use of mouse models in biomedical research and preclinical drug evaluation is on the rise. The advent of new molecular genome-altering technologies such as CRISPR/Cas9 allows for genetic mutations to be introduced into the germ line of a mouse faster and less expensively than previous methods. In addition, the rapid progress in the development and use of somatic transgenesis using viral vectors, as well as manipulations of gene expression with siRNAs and antisense oligonucleotides, allow for even greater exploration into genomics and systems biology. These technological advances come at a time when cost reductions in genome sequencing have led to the identification of pathogenic mutations in patient populations, providing unprecedented opportunities in the use of mice to model human disease. The ease of genetic engineering in mice also offers a potential paradigm shift in resource sharing and the speed by which models are made available in the public domain. Predictively, the knowledge alone that a model can be quickly remade will provide relief to resources encumbered by licensing and Material Transfer Agreements. For decades, mouse strains have provided an exquisite experimental tool to study the pathophysiology of the disease and assess therapeutic options in a genetically defined system. However, a major limitation of the mouse has been the limited genetic diversity associated with common laboratory mice. This has been overcome with the recent development of the Collaborative Cross and Diversity Outbred mice. These strains provide new tools capable of replicating genetic diversity to that approaching the diversity found in human populations. The Collaborative Cross and Diversity Outbred strains thus provide a means to observe and characterize toxicity or efficacy of new therapeutic drugs for a given population. The combination of traditional and contemporary mouse genome editing tools, along with the addition of genetic diversity in new modeling systems, are synergistic and serve to make the mouse a better model for biomedical research, enhancing the potential for preclinical drug discovery and personalized medicine. PMID:28053071
Mouse Model for the Preclinical Study of Metastatic Disease | NCI Technology Transfer Center | TTC
The Laboratory of Cancer Biology and Genetics, National Cancer Institute seeks partners for collaborative research to co-develop a mouse model that shows preclinical therapeutic response of residual metastatic disease.
Role of Growth Hormone in Prostate Cancer
2007-02-01
syndrome produced by targeted disruption of the mouse growth hormone receptor/binding protein gene (the Laron mouse). Proc Natl Acad Sci USA 94:13215... Laron mouse, in which the gene coding for both GHR and GH binding protein has been disrupted or knocked out, with the C3(1)/Tag mouse, which develops...the Laron mouse). Nevertheless, the new model presented here demonstrates that the loss of GHR produced a significant reduction in the level of PIN in
Yong, Kylie Su Mei; Ng, Justin Han Jia; Her, Zhisheng; Hey, Ying Ying; Tan, Sue Yee; Tan, Wilson Wei Sheng; Irac, Sergio Erdal; Liu, Min; Chan, Xue Ying; Gunawan, Merry; Foo, Randy Jee Hiang; Low, Dolyce Hong Wen; Mendenhall, Ian Hewitt; Chionh, Yok Teng; Dutertre, Charles-Antoine; Chen, Qingfeng; Wang, Lin-Fa
2018-03-16
Bats are an important animal model with long lifespans, low incidences of tumorigenesis and an ability to asymptomatically harbour pathogens. Currently, in vivo studies of bats are hampered due to their low reproduction rates. To overcome this, we transplanted bat cells from bone marrow (BM) and spleen into an immunodeficient mouse strain NOD-scid IL-2R -/- (NSG), and have successfully established stable, long-term reconstitution of bat immune cells in mice (bat-mice). Immune functionality of our bat-mouse model was demonstrated through generation of antigen-specific antibody response by bat cells following immunization. Post-engraftment of total bat BM cells and splenocytes, bat immune cells survived, expanded and repopulated the mouse without any observable clinical abnormalities. Utilizing bat's remarkable immunological functions, this novel model has a potential to be transformed into a powerful platform for basic and translational research.
Galantamine improves olfactory learning in the Ts65Dn mouse model of Down syndrome
Simoes de Souza, Fabio M.; Busquet, Nicolas; Blatner, Megan; Maclean, Kenneth N.; Restrepo, Diego
2011-01-01
Down syndrome (DS) is the most common form of congenital intellectual disability. Although DS involves multiple disturbances in various tissues, there is little doubt that in terms of quality of life cognitive impairment is the most serious facet and there is no effective treatment for this aspect of the syndrome. The Ts65Dn mouse model of DS recapitulates multiple aspects of DS including cognitive impairment. Here the Ts65Dn mouse model of DS was evaluated in an associative learning paradigm based on olfactory cues. In contrast to disomic controls, trisomic mice exhibited significant deficits in olfactory learning. Treatment of trisomic mice with the acetylcholinesterase inhibitor galantamine resulted in a significant improvement in olfactory learning. Collectively, our study indicates that olfactory learning can be a sensitive tool for evaluating deficits in associative learning in mouse models of DS and that galantamine has therapeutic potential for improving cognitive abilities. PMID:22355654
Galantamine improves olfactory learning in the Ts65Dn mouse model of Down syndrome.
de Souza, Fabio M Simoes; Busquet, Nicolas; Blatner, Megan; Maclean, Kenneth N; Restrepo, Diego
2011-01-01
Down syndrome (DS) is the most common form of congenital intellectual disability. Although DS involves multiple disturbances in various tissues, there is little doubt that in terms of quality of life cognitive impairment is the most serious facet and there is no effective treatment for this aspect of the syndrome. The Ts65Dn mouse model of DS recapitulates multiple aspects of DS including cognitive impairment. Here the Ts65Dn mouse model of DS was evaluated in an associative learning paradigm based on olfactory cues. In contrast to disomic controls, trisomic mice exhibited significant deficits in olfactory learning. Treatment of trisomic mice with the acetylcholinesterase inhibitor galantamine resulted in a significant improvement in olfactory learning. Collectively, our study indicates that olfactory learning can be a sensitive tool for evaluating deficits in associative learning in mouse models of DS and that galantamine has therapeutic potential for improving cognitive abilities.
A candidate model for Angelman syndrome in the mouse.
Cattanach, B M; Barr, J A; Beechey, C V; Martin, J; Noebels, J; Jones, J
1997-07-01
Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are well-recognized examples of imprinting in humans. They occur most commonly with paternal and maternal 15q11-13 deletions, but also with maternal and paternal disomy. Both syndromes have also occurred more rarely in association with smaller deletions seemingly causing abnormal imprinting. A putative mouse model of PWS, occurring with maternal duplication (partial maternal disomy) for the homologous region, has been described in a previous paper but, although a second imprinting effect that could have provided a mouse model of AS was found, it appeared to be associated with a slightly different region of the chromosome. Here, we provide evidence that the same region is in fact involved and further demonstrate that animals with paternal duplication for the region exhibit characteristics of AS patients. A mouse model of AS is, therefore, strongly indicated.
Development and testing of a mouse simulated space flight model
NASA Technical Reports Server (NTRS)
Sonnenfeld, Gerald
1987-01-01
The development and testing of a mouse model for simulating some aspects of weightlessness that occurs during space flight, and the carrying out of immunological experiments on animals undergoing space flight is examined. The mouse model developed was an antiorthostatic, hypokinetic, hypodynamic suspension model similar to one used with rats. The study was divided into two parts. The first involved determination of which immunological parameters should be observed on animals flown during space flight or studied in the suspension model. The second involved suspending mice and determining which of those immunological parameters were altered by the suspension. Rats that were actually flown in Space Shuttle SL-3 were used to test the hypotheses.
Choi, Catherine H; Schoenfeld, Brian P; Bell, Aaron J; Hinchey, Joseph; Rosenfelt, Cory; Gertner, Michael J; Campbell, Sean R; Emerson, Danielle; Hinchey, Paul; Kollaros, Maria; Ferrick, Neal J; Chambers, Daniel B; Langer, Steven; Sust, Steven; Malik, Aatika; Terlizzi, Allison M; Liebelt, David A; Ferreiro, David; Sharma, Ali; Koenigsberg, Eric; Choi, Richard J; Louneva, Natalia; Arnold, Steven E; Featherstone, Robert E; Siegel, Steven J; Zukin, R Suzanne; McDonald, Thomas V; Bolduc, Francois V; Jongens, Thomas A; McBride, Sean M J
2016-01-01
Fragile X is the most common monogenic disorder associated with intellectual disability (ID) and autism spectrum disorders (ASD). Additionally, many patients are afflicted with executive dysfunction, ADHD, seizure disorder and sleep disturbances. Fragile X is caused by loss of FMRP expression, which is encoded by the FMR1 gene. Both the fly and mouse models of fragile X are also based on having no functional protein expression of their respective FMR1 homologs. The fly model displays well defined cognitive impairments and structural brain defects and the mouse model, although having subtle behavioral defects, has robust electrophysiological phenotypes and provides a tool to do extensive biochemical analysis of select brain regions. Decreased cAMP signaling has been observed in samples from the fly and mouse models of fragile X as well as in samples derived from human patients. Indeed, we have previously demonstrated that strategies that increase cAMP signaling can rescue short term memory in the fly model and restore DHPG induced mGluR mediated long term depression (LTD) in the hippocampus to proper levels in the mouse model (McBride et al., 2005; Choi et al., 2011, 2015). Here, we demonstrate that the same three strategies used previously with the potential to be used clinically, lithium treatment, PDE-4 inhibitor treatment or mGluR antagonist treatment can rescue long term memory in the fly model and alter the cAMP signaling pathway in the hippocampus of the mouse model.
Melozzi, Francesca; Woodman, Marmaduke M; Jirsa, Viktor K; Bernard, Christophe
2017-01-01
Connectome-based modeling of large-scale brain network dynamics enables causal in silico interrogation of the brain's structure-function relationship, necessitating the close integration of diverse neuroinformatics fields. Here we extend the open-source simulation software The Virtual Brain (TVB) to whole mouse brain network modeling based on individual diffusion magnetic resonance imaging (dMRI)-based or tracer-based detailed mouse connectomes. We provide practical examples on how to use The Virtual Mouse Brain (TVMB) to simulate brain activity, such as seizure propagation and the switching behavior of the resting state dynamics in health and disease. TVMB enables theoretically driven experimental planning and ways to test predictions in the numerous strains of mice available to study brain function in normal and pathological conditions.
Monitoring blood-flow in the mouse cochlea using an endoscopic laser speckle contrast imaging system
Yu, Sunkon; Jung, Byungjo; Choi, Jin Sil
2018-01-01
Laser speckle contrast imaging (LSCI) enables continuous high-resolution assessment of microcirculation in real-time. We applied an endoscope to LSCI to measure cochlear blood-flow in an ischemia–reperfusion mouse model. We also explored whether using xenon light in combination with LSCI facilitates visualization of anatomical position. Based on a previous preliminary study, the appropriate wavelength for penetrating the thin bony cochlea was 830 nm. A 2.7-mm-diameter endoscope was used, as appropriate for the size of the mouse cochlea. Our endoscopic LSCI system was used to illuminate the right cochlea after dissection of the mouse. We observed changes in the speckle signals when we applied the endoscopic LSCI system to the ischemia-reperfusion mouse model. The anatomical structure of the mouse cochlea and surrounding structures were clearly visible using the xenon light. The speckle signal of the cochlea was scattered, with an intensity that varied between that of the stapes (with the lowest signal), the negative control, and the stapedial artery (with the highest signal), the positive control. In the cochlear ischemia–reperfusion mouse model, the speckle signal of the cochlea decreased during the ischemic phase, and increased during the reperfusion phase, clearly reflecting cochlear blood-flow. The endoscopic LSCI system generates high-resolution images in real-time, allowing visualization of blood-flow and its changes in the mouse cochlea. Anatomical structures were clearly matched using LSCI along with visible light. PMID:29489849
Kong, Tae Hoon; Yu, Sunkon; Jung, Byungjo; Choi, Jin Sil; Seo, Young Joon
2018-01-01
Laser speckle contrast imaging (LSCI) enables continuous high-resolution assessment of microcirculation in real-time. We applied an endoscope to LSCI to measure cochlear blood-flow in an ischemia-reperfusion mouse model. We also explored whether using xenon light in combination with LSCI facilitates visualization of anatomical position. Based on a previous preliminary study, the appropriate wavelength for penetrating the thin bony cochlea was 830 nm. A 2.7-mm-diameter endoscope was used, as appropriate for the size of the mouse cochlea. Our endoscopic LSCI system was used to illuminate the right cochlea after dissection of the mouse. We observed changes in the speckle signals when we applied the endoscopic LSCI system to the ischemia-reperfusion mouse model. The anatomical structure of the mouse cochlea and surrounding structures were clearly visible using the xenon light. The speckle signal of the cochlea was scattered, with an intensity that varied between that of the stapes (with the lowest signal), the negative control, and the stapedial artery (with the highest signal), the positive control. In the cochlear ischemia-reperfusion mouse model, the speckle signal of the cochlea decreased during the ischemic phase, and increased during the reperfusion phase, clearly reflecting cochlear blood-flow. The endoscopic LSCI system generates high-resolution images in real-time, allowing visualization of blood-flow and its changes in the mouse cochlea. Anatomical structures were clearly matched using LSCI along with visible light.
Corbin, JM.; Overcash, RF.; Wren, JD.; Coburn, A.; Tipton, GJ.; Ezzell, JA.; McNaughton, KK.; Fung, KM; Kosanke, SD.; Ruiz-Echevarria, MJ
2015-01-01
BACKGROUND Previous results from our lab indicate a tumor suppressor role for the transmembrane protein with epidermal growth factor and two follistatin motifs 2 (TMEFF2) in prostate cancer (PCa). Here, we further characterize this role and uncover new functions for TMEFF2 in cancer and adult prostate regeneration. METHODS The role of TMEFF2 was examined in PCa cells using Matrigel™ cultures and allograft models of PCa cells. In addition, we developed a transgenic mouse model that expresses TMEFF2 from a prostate specific promoter. Anatomical, histological and metabolic characterizations of the transgenic mouse prostate were conducted. The effect of TMEFF2 in prostate regeneration was studied by analyzing branching morphogenesis in the TMEFF2-expressing mouse lobes and alterations in branching morphogenesis were correlated with the metabolomic profiles of the mouse lobes. The role of TMEFF2 in prostate tumorigenesis in whole animals was investigated by crossing the TMEFF2 transgenic mice with the TRAMP mouse model of PCa and analyzing the histopathological changes in the progeny. RESULTS Ectopic expression of TMEFF2 impairs growth of PCa cells in Matrigel or allograft models. Surprisingly, while TMEFF2 expression in the TRAMP mouse did not have a significant effect on the glandular prostate epithelial lesions, the double TRAMP/TMEFF2 transgenic mice displayed an increased incidence of neuroendocrine type tumors. In addition, TMEFF2 promoted increased branching specifically in the dorsal lobe of the prostate suggesting a potential role in developmental processes. These results correlated with data indicating an alteration in the metabolic profile of the dorsal lobe of the transgenic TMEFF2 mice. CONCLUSIONS Collectively, our results confirm the tumor suppressor role of TMEFF2 and suggest that ectopic expression of TMEFF2 in mouse prostate leads to additional lobe-specific effects in prostate regeneration and tumorigenesis. This points to a complex and multifunctional role for TMEFF2 during PCa progression. PMID:26417683
Corbin, Joshua M; Overcash, Ryan F; Wren, Jonathan D; Coburn, Anita; Tipton, Greg J; Ezzell, Jennifer A; McNaughton, Kirk K; Fung, Kar-Ming; Kosanke, Stanley D; Ruiz-Echevarria, Maria J
2016-01-01
Previous results from our lab indicate a tumor suppressor role for the transmembrane protein with epidermal growth factor and two follistatin motifs 2 (TMEFF2) in prostate cancer (PCa). Here, we further characterize this role and uncover new functions for TMEFF2 in cancer and adult prostate regeneration. The role of TMEFF2 was examined in PCa cells using Matrigel(TM) cultures and allograft models of PCa cells. In addition, we developed a transgenic mouse model that expresses TMEFF2 from a prostate specific promoter. Anatomical, histological, and metabolic characterizations of the transgenic mouse prostate were conducted. The effect of TMEFF2 in prostate regeneration was studied by analyzing branching morphogenesis in the TMEFF2-expressing mouse lobes and alterations in branching morphogenesis were correlated with the metabolomic profiles of the mouse lobes. The role of TMEFF2 in prostate tumorigenesis in whole animals was investigated by crossing the TMEFF2 transgenic mice with the TRAMP mouse model of PCa and analyzing the histopathological changes in the progeny. Ectopic expression of TMEFF2 impairs growth of PCa cells in Matrigel or allograft models. Surprisingly, while TMEFF2 expression in the TRAMP mouse did not have a significant effect on the glandular prostate epithelial lesions, the double TRAMP/TMEFF2 transgenic mice displayed an increased incidence of neuroendocrine type tumors. In addition, TMEFF2 promoted increased branching specifically in the dorsal lobe of the prostate suggesting a potential role in developmental processes. These results correlated with data indicating an alteration in the metabolic profile of the dorsal lobe of the transgenic TMEFF2 mice. Collectively, our results confirm the tumor suppressor role of TMEFF2 and suggest that ectopic expression of TMEFF2 in mouse prostate leads to additional lobe-specific effects in prostate regeneration and tumorigenesis. This points to a complex and multifunctional role for TMEFF2 during PCa progression. © 2015 Wiley Periodicals, Inc.
What do mouse models of muscular dystrophy tell us about the DAPC and its components?
Whitmore, Charlotte; Morgan, Jennifer
2014-12-01
There are over 30 mouse models with mutations or inactivations in the dystrophin-associated protein complex. This complex is thought to play a crucial role in the functioning of muscle, as both a shock absorber and signalling centre, although its role in the pathogenesis of muscular dystrophy is not fully understood. The first mouse model of muscular dystrophy to be identified with a mutation in a component of the dystrophin-associated complex (dystrophin) was the mdx mouse in 1984. Here, we evaluate the key characteristics of the mdx in comparison with other mouse mutants with inactivations in DAPC components, along with key modifiers of the disease phenotype. By discussing the differences between the individual phenotypes, we show that the functioning of the DAPC and consequently its role in the pathogenesis is more complicated than perhaps currently appreciated. © 2014 The Authors. International Journal of Experimental Pathology © 2014 International Journal of Experimental Pathology.
Shu, Xinhua; Luhmann, Ulrich F. O.; Aleman, Tomas S.; Barker, Susan E.; Lennon, Alan; Tulloch, Brian; Chen, Mei; Xu, Heping; Jacobson, Samuel G.; Ali, Robin; Wright, Alan F.
2011-01-01
A single founder mutation resulting in a Ser163Arg substitution in the C1QTNF5 gene product causes autosomal dominant late-onset retinal macular degeneration (L-ORMD) in humans, which has clinical and pathological features resembling age-related macular degeneration. We generated and characterised a mouse “knock-in” model carrying the Ser163Arg mutation in the orthologous murine C1qtnf5 gene by site-directed mutagenesis and homologous recombination into mouse embryonic stem cells. Biochemical, immunological, electron microscopic, fundus autofluorescence, electroretinography and laser photocoagulation analyses were used to characterise the mouse model. Heterozygous and homozygous knock-in mice showed no significant abnormality in any of the above measures at time points up to 2 years. This result contrasts with another C1qtnf5 Ser163Arg knock-in mouse which showed most of the features of L-ORMD but differed in genetic background and targeting construct. PMID:22110650
NASA Astrophysics Data System (ADS)
Lopez, Andrew L.; Wang, Shang; Garcia, Monica; Valladolid, Christian; Larin, Kirill V.; Larina, Irina V.
2015-03-01
Understanding mouse embryonic development is an invaluable resource for our interpretation of normal human embryology and congenital defects. Our research focuses on developing methods for live imaging and dynamic characterization of early embryonic development in mouse models of human diseases. Using multidisciplinary methods: optical coherence tomography (OCT), live mouse embryo manipulations and static embryo culture, molecular biology, advanced image processing and computational modeling we aim to understand developmental processes. We have developed an OCT based approach to image live early mouse embryos (E8.5 - E9.5) cultured on an imaging stage and visualize developmental events with a spatial resolution of a few micrometers (less than the size of an individual cell) and a frame rate of up to hundreds of frames per second and reconstruct cardiodynamics in 4D (3D+time). We are now using these methods to study how specific embryonic lethal mutations affect cardiac morphology and function during early development.
Scattered Dose Calculations and Measurements in a Life-Like Mouse Phantom
Welch, David; Turner, Leah; Speiser, Michael; Randers-Pehrson, Gerhard; Brenner, David J.
2017-01-01
Anatomically accurate phantoms are useful tools for radiation dosimetry studies. In this work, we demonstrate the construction of a new generation of life-like mouse phantoms in which the methods have been generalized to be applicable to the fabrication of any small animal. The mouse phantoms, with built-in density inhomogeneity, exhibit different scattering behavior dependent on where the radiation is delivered. Computer models of the mouse phantoms and a small animal irradiation platform were devised in Monte Carlo N-Particle code (MCNP). A baseline test replicating the irradiation system in a computational model shows minimal differences from experimental results from 50 Gy down to 0.1 Gy. We observe excellent agreement between scattered dose measurements and simulation results from X-ray irradiations focused at either the lung or the abdomen within our phantoms. This study demonstrates the utility of our mouse phantoms as measurement tools with the goal of using our phantoms to verify complex computational models. PMID:28140787
Application of Mouse Models to Research in Hearing and Balance.
Ohlemiller, Kevin K; Jones, Sherri M; Johnson, Kenneth R
2016-12-01
Laboratory mice (Mus musculus) have become the major model species for inner ear research. The major uses of mice include gene discovery, characterization, and confirmation. Every application of mice is founded on assumptions about what mice represent and how the information gained may be generalized. A host of successes support the continued use of mice to understand hearing and balance. Depending on the research question, however, some mouse models and research designs will be more appropriate than others. Here, we recount some of the history and successes of the use of mice in hearing and vestibular studies and offer guidelines to those considering how to apply mouse models.
NASA Astrophysics Data System (ADS)
Peng, Xiao; Yang, Shaozhuang; Yu, Bin; Wang, Qi; Lin, Danying; Gao, Jian; Zhang, Peiqi; Ma, Yiqun; Qu, Junle; Niu, Hanben
2016-03-01
Optical Coherence Tomography (OCT) has been widely applied into microstructure imaging of tissues or blood vessels with a series of advantages, including non-destructiveness, real-time imaging, high resolution and high sensitivity. In this study, a Spectral Domain OCT (SD-OCT) system with higher sensitivity and signal-to-noise ratio (SNR) was built up, which was used to observe the blood vessel distribution and blood flow in the dorsal skin window chamber of the nude mouse tumor model. In order to obtain comparable data, the distribution images of blood vessels were collected from the same mouse before and after tumor injection. In conclusion, in vivo blood vessel distribution images of the tumor mouse model have been continuously obtained during around two weeks.
Graded Maximal Exercise Testing to Assess Mouse Cardio-Metabolic Phenotypes
Petrosino, Jennifer M.; Heiss, Valerie J.; Maurya, Santosh K.; Kalyanasundaram, Anuradha; Periasamy, Muthu; LaFountain, Richard A.; Wilson, Jacob M.; Simonetti, Orlando P.; Ziouzenkova, Ouliana
2016-01-01
Functional assessments of cardiovascular fitness (CVF) are needed to establish animal models of dysfunction, test the effects of novel therapeutics, and establish the cardio-metabolic phenotype of mice. In humans, the graded maximal exercise test (GXT) is a standardized diagnostic for assessing CVF and mortality risk. These tests, which consist of concurrent staged increases in running speed and inclination, provide diagnostic cardio-metabolic parameters, such as, VO2max, anaerobic threshold, and metabolic crossover. Unlike the human-GXT, published mouse treadmill tests have set, not staged, increases in inclination as speed progress until exhaustion (PXT). Additionally, they often lack multiple cardio-metabolic parameters. Here, we developed a mouse-GXT with the intent of improving mouse-exercise testing sensitivity and developing translatable parameters to assess CVF in healthy and dysfunctional mice. The mouse-GXT, like the human-GXT, incorporated staged increases in inclination, speed, and intensity; and, was designed by considering imitations of the PXT and differences between human and mouse physiology. The mouse-GXT and PXTs were both tested in healthy mice (C57BL/6J, FVBN/J) to determine their ability to identify cardio-metabolic parameters (anaerobic threshold, VO2max, metabolic crossover) observed in human-GXTs. Next, theses assays were tested on established diet-induced (obese-C57BL/6J) and genetic (cardiac isoform Casq2-/-) models of cardiovascular dysfunction. Results showed that both tests reported VO2max and provided reproducible data about performance. Only the mouse-GXT reproducibly identified anaerobic threshold, metabolic crossover, and detected impaired CVF in dysfunctional models. Our findings demonstrated that the mouse-GXT is a sensitive, non-invasive, and cost-effective method for assessing CVF in mice. This new test can be used as a functional assessment to determine the cardio-metabolic phenotype of various animal models or the effects of novel therapeutics. PMID:26859763
Graded Maximal Exercise Testing to Assess Mouse Cardio-Metabolic Phenotypes.
Petrosino, Jennifer M; Heiss, Valerie J; Maurya, Santosh K; Kalyanasundaram, Anuradha; Periasamy, Muthu; LaFountain, Richard A; Wilson, Jacob M; Simonetti, Orlando P; Ziouzenkova, Ouliana
2016-01-01
Functional assessments of cardiovascular fitness (CVF) are needed to establish animal models of dysfunction, test the effects of novel therapeutics, and establish the cardio-metabolic phenotype of mice. In humans, the graded maximal exercise test (GXT) is a standardized diagnostic for assessing CVF and mortality risk. These tests, which consist of concurrent staged increases in running speed and inclination, provide diagnostic cardio-metabolic parameters, such as, VO2max, anaerobic threshold, and metabolic crossover. Unlike the human-GXT, published mouse treadmill tests have set, not staged, increases in inclination as speed progress until exhaustion (PXT). Additionally, they often lack multiple cardio-metabolic parameters. Here, we developed a mouse-GXT with the intent of improving mouse-exercise testing sensitivity and developing translatable parameters to assess CVF in healthy and dysfunctional mice. The mouse-GXT, like the human-GXT, incorporated staged increases in inclination, speed, and intensity; and, was designed by considering imitations of the PXT and differences between human and mouse physiology. The mouse-GXT and PXTs were both tested in healthy mice (C57BL/6J, FVBN/J) to determine their ability to identify cardio-metabolic parameters (anaerobic threshold, VO2max, metabolic crossover) observed in human-GXTs. Next, theses assays were tested on established diet-induced (obese-C57BL/6J) and genetic (cardiac isoform Casq2-/-) models of cardiovascular dysfunction. Results showed that both tests reported VO2max and provided reproducible data about performance. Only the mouse-GXT reproducibly identified anaerobic threshold, metabolic crossover, and detected impaired CVF in dysfunctional models. Our findings demonstrated that the mouse-GXT is a sensitive, non-invasive, and cost-effective method for assessing CVF in mice. This new test can be used as a functional assessment to determine the cardio-metabolic phenotype of various animal models or the effects of novel therapeutics.
Jaime-González, Carlos; Acebes, Pablo; Mateos, Ana; Mezquida, Eduardo T
2017-01-01
LiDAR technology has firmly contributed to strengthen the knowledge of habitat structure-wildlife relationships, though there is an evident bias towards flying vertebrates. To bridge this gap, we investigated and compared the performance of LiDAR and field data to model habitat preferences of wood mouse (Apodemus sylvaticus) in a Mediterranean high mountain pine forest (Pinus sylvestris). We recorded nine field and 13 LiDAR variables that were summarized by means of Principal Component Analyses (PCA). We then analyzed wood mouse's habitat preferences using three different models based on: (i) field PCs predictors, (ii) LiDAR PCs predictors; and (iii) both set of predictors in a combined model, including a variance partitioning analysis. Elevation was also included as a predictor in the three models. Our results indicate that LiDAR derived variables were better predictors than field-based variables. The model combining both data sets slightly improved the predictive power of the model. Field derived variables indicated that wood mouse was positively influenced by the gradient of increasing shrub cover and negatively affected by elevation. Regarding LiDAR data, two LiDAR PCs, i.e. gradients in canopy openness and complexity in forest vertical structure positively influenced wood mouse, although elevation interacted negatively with the complexity in vertical structure, indicating wood mouse's preferences for plots with lower elevations but with complex forest vertical structure. The combined model was similar to the LiDAR-based model and included the gradient of shrub cover measured in the field. Variance partitioning showed that LiDAR-based variables, together with elevation, were the most important predictors and that part of the variation explained by shrub cover was shared. LiDAR derived variables were good surrogates of environmental characteristics explaining habitat preferences by the wood mouse. Our LiDAR metrics represented structural features of the forest patch, such as the presence and cover of shrubs, as well as other characteristics likely including time since perturbation, food availability and predation risk. Our results suggest that LiDAR is a promising technology for further exploring habitat preferences by small mammal communities.
Ultrastructural study of Rift Valley fever virus in the mouse model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reed, Christopher; Steele, Keith E.; Honko, Anna
Detailed ultrastructural studies of Rift Valley fever virus (RVFV) in the mouse model are needed to develop and characterize a small animal model of RVF for the evaluation of potential vaccines and therapeutics. In this study, the ultrastructural features of RVFV infection in the mouse model were analyzed. The main changes in the liver included the presence of viral particles in hepatocytes and hepatic stem cells accompanied by hepatocyte apoptosis. However, viral particles were observed rarely in the liver; in contrast, particles were extremely abundant in the CNS. Despite extensive lymphocytolysis, direct evidence of viral replication was not observed inmore » the lymphoid tissue. These results correlate with the acute-onset hepatitis and delayed-onset encephalitis that are dominant features of severe human RVF, but suggest that host immune-mediated mechanisms contribute significantly to pathology. The results of this study expand our knowledge of RVFV-host interactions and further characterize the mouse model of RVF.« less
Diverse Application of Magnetic Resonance Imaging for Mouse Phenotyping
Wu, Yijen L.; Lo, Cecilia W.
2017-01-01
Small animal models, particularly mouse models, of human diseases are becoming an indispensable tool for biomedical research. Studies in animal models have provided important insights into the etiology of diseases and accelerated the development of therapeutic strategies. Detailed phenotypic characterization is essential, both for the development of such animal models and mechanistic studies into disease pathogenesis and testing the efficacy of experimental therapeutics. Magnetic Resonance Imaging (MRI) is a versatile and non-invasive imaging modality with excellent penetration depth, tissue coverage, and soft tissue contrast. MRI, being a multi-modal imaging modality, together with proven imaging protocols and availability of good contrast agents, is ideally suited for phenotyping mutant mouse models. Here we describe the applications of MRI for phenotyping structural birth defects involving the brain, heart, and kidney in mice. The versatility of MRI and its ease of use are well suited to meet the rapidly increasing demands for mouse phenotyping in the coming age of functional genomics. PMID:28544650
A G542X cystic fibrosis mouse model for examining nonsense mutation directed therapies.
McHugh, Daniel R; Steele, Miarasa S; Valerio, Dana M; Miron, Alexander; Mann, Rachel J; LePage, David F; Conlon, Ronald A; Cotton, Calvin U; Drumm, Mitchell L; Hodges, Craig A
2018-01-01
Nonsense mutations are present in 10% of patients with CF, produce a premature termination codon in CFTR mRNA causing early termination of translation, and lead to lack of CFTR function. There are no currently available animal models which contain a nonsense mutation in the endogenous Cftr locus that can be utilized to test nonsense mutation therapies. In this study, we create a CF mouse model carrying the G542X nonsense mutation in Cftr using CRISPR/Cas9 gene editing. The G542X mouse model has reduced Cftr mRNA levels, demonstrates absence of CFTR function, and displays characteristic manifestations of CF mice such as reduced growth and intestinal obstruction. Importantly, CFTR restoration is observed in G542X intestinal organoids treated with G418, an aminoglycoside with translational readthrough capabilities. The G542X mouse model provides an invaluable resource for the identification of potential therapies of CF nonsense mutations as well as the assessment of in vivo effectiveness of these potential therapies targeting nonsense mutations.
Humanized Mouse Models for the Study of Human Malaria Parasite Biology, Pathogenesis, and Immunity.
Minkah, Nana K; Schafer, Carola; Kappe, Stefan H I
2018-01-01
Malaria parasite infection continues to inflict extensive morbidity and mortality in resource-poor countries. The insufficiently understood parasite biology, continuously evolving drug resistance and the lack of an effective vaccine necessitate intensive research on human malaria parasites that can inform the development of new intervention tools. Humanized mouse models have been greatly improved over the last decade and enable the direct study of human malaria parasites in vivo in the laboratory. Nevertheless, no small animal model developed so far is capable of maintaining the complete life cycle of Plasmodium parasites that infect humans. The ultimate goal is to develop humanized mouse systems in which a Plasmodium infection closely reproduces all stages of a parasite infection in humans, including pre-erythrocytic infection, blood stage infection and its associated pathology, transmission as well as the human immune response to infection. Here, we discuss current humanized mouse models and the future directions that should be taken to develop next-generation models for human malaria parasite research.
In utero mouse embryonic imaging with OCT for ophthalmologic research
NASA Astrophysics Data System (ADS)
Syed, Saba H.; Larina, Irina V.; Dickinson, Mary E.; Larin, Kirill V.
2011-03-01
Live imaging of an eye during embryonic development in mammalian model is important for understanding dynamic aspects of normal and abnormal eye morphogenesis. In this study, we used Swept Source Optical Coherence Tomography (SS-OCT) for live structural imaging of mouse embryonic eye through the uterine wall. The eye structure was reconstructed in mouse embryos at 13.5 to 17.5 days post coitus (dpc). Despite the limited imaging depth of OCT in turbid tissues, we were able to visualize the whole eye globe at these stages. These results suggest that live in utero OCT imaging is a useful tool to study embryonic eye development in the mouse model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin Zhoumeng; Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602; Fisher, Jeffrey W.
Atrazine (ATR) is a chlorotriazine herbicide that is widely used and relatively persistent in the environment. In laboratory rodents, excessive exposure to ATR is detrimental to the reproductive, immune, and nervous systems. To better understand the toxicokinetics of ATR and to fill the need for a mouse model, a physiologically based pharmacokinetic (PBPK) model for ATR and its main chlorotriazine metabolites (Cl-TRIs) desethyl atrazine (DE), desisopropyl atrazine (DIP), and didealkyl atrazine (DACT) was developed for the adult male C57BL/6 mouse. Taking advantage of all relevant and recently made available mouse-specific data, a flow-limited PBPK model was constructed. The ATR andmore » DACT sub-models included blood, brain, liver, kidney, richly and slowly perfused tissue compartments, as well as plasma protein binding and red blood cell binding, whereas the DE and DIP sub-models were constructed as simple five-compartment models. The model adequately simulated plasma levels of ATR and Cl-TRIs and urinary dosimetry of Cl-TRIs at four single oral dose levels (250, 125, 25, and 5 mg/kg). Additionally, the model adequately described the dose dependency of brain and liver ATR and DACT concentrations. Cumulative urinary DACT amounts were accurately predicted across a wide dose range, suggesting the model's potential use for extrapolation to human exposures by performing reverse dosimetry. The model was validated using previously reported data for plasma ATR and DACT in mice and rats. Overall, besides being the first mouse PBPK model for ATR and its Cl-TRIs, this model, by analogy, provides insights into tissue dosimetry for rats. The model could be used in tissue dosimetry prediction and as an aid in the exposure assessment to this widely used herbicide.« less
Comparative mRNA analysis of behavioral and genetic mouse models of aggression.
Malki, Karim; Tosto, Maria G; Pain, Oliver; Sluyter, Frans; Mineur, Yann S; Crusio, Wim E; de Boer, Sietse; Sandnabba, Kenneth N; Kesserwani, Jad; Robinson, Edward; Schalkwyk, Leonard C; Asherson, Philip
2016-04-01
Mouse models of aggression have traditionally compared strains, most notably BALB/cJ and C57BL/6. However, these strains were not designed to study aggression despite differences in aggression-related traits and distinct reactivity to stress. This study evaluated expression of genes differentially regulated in a stress (behavioral) mouse model of aggression with those from a recent genetic mouse model aggression. The study used a discovery-replication design using two independent mRNA studies from mouse brain tissue. The discovery study identified strain (BALB/cJ and C57BL/6J) × stress (chronic mild stress or control) interactions. Probe sets differentially regulated in the discovery set were intersected with those uncovered in the replication study, which evaluated differences between high and low aggressive animals from three strains specifically bred to study aggression. Network analysis was conducted on overlapping genes uncovered across both studies. A significant overlap was found with the genetic mouse study sharing 1,916 probe sets with the stress model. Fifty-one probe sets were found to be strongly dysregulated across both studies mapping to 50 known genes. Network analysis revealed two plausible pathways including one centered on the UBC gene hub which encodes ubiquitin, a protein well-known for protein degradation, and another on P38 MAPK. Findings from this study support the stress model of aggression, which showed remarkable molecular overlap with a genetic model. The study uncovered a set of candidate genes including the Erg2 gene, which has previously been implicated in different psychopathologies. The gene networks uncovered points at a Redox pathway as potentially being implicated in aggressive related behaviors. © 2016 Wiley Periodicals, Inc.
Waumans, Yannick; Vliegen, Gwendolyn; Maes, Lynn; Rombouts, Miche; Declerck, Ken; Van Der Veken, Pieter; Vanden Berghe, Wim; De Meyer, Guido R Y; Schrijvers, Dorien; De Meester, Ingrid
2016-02-01
Atherosclerosis remains the leading cause of death in Western countries. Dipeptidyl peptidase (DPP) 4 has emerged as a novel target for the prevention and treatment of atherosclerosis. Family members DPP8 and 9 are abundantly present in macrophage-rich regions of atherosclerotic plaques, and DPP9 inhibition attenuates activation of human M1 macrophages in vitro. Studying this family in a mouse model for atherosclerosis would greatly advance our knowledge regarding their potential as therapeutic targets. We found that DPP4 is downregulated during mouse monocyte-to-macrophage differentiation. DPP8 and 9 expression seems relatively low in mouse monocytes and macrophages. Viability of primary mouse macrophages is unaffected by DPP4 or DPP8/9 inhibition. Importantly, DPP8/9 inhibition attenuates macrophage activation as IL-6 secretion is significantly decreased. Mouse macrophages respond similarly to DPP inhibition, compared to human macrophages. This shows that the mouse could become a valid model species for the study of DPPs as therapeutic targets in atherosclerosis.
Pinheiro, Barbara S; Seidl, Simon S; Habazettl, Eva; Gruber, Bernadette E; Bregolin, Tanja; Zernig, Gerald
2016-04-01
Impaired social interaction is a hallmark symptom of many psychiatric diseases, including dependence syndromes (substance use disorders). Helping the addict reorient her/his behavior away from the drug of abuse toward social interaction would be of considerable therapeutic benefit. To study the neural basis of such a reorientation, we have developed several animal models in which the attractiveness of a dyadic (i.e. one-to-one) social interaction (DSI) can be compared directly with that of cocaine as a prototypical drug of abuse. Our models are based on the conditioned place preference (CPP) paradigm. In an ongoing effort to validate our experimental paradigms in C57BL/6 mice to make use of the plethora of transgenic models available in this genus, we found the following: (a) DSI with a live mouse produced CPP, whereas an interaction with an inanimate mouse-like object (i.e. a 'toy mouse'; toy mouse interaction) led to conditioned place aversion - but only in the Jackson substrain (C57BL/6J). (b) In the NIH substrain (C57BL/6N), both DSI and toy mouse interaction produced individual aversion in more than 50% of the tested mice. (c) Four 15 min DSI episodes did not result in the development of an observable hierarchy, that is, dominance/subordination behavior in the overwhelming majority (i.e. 30 of 32) of the tested Jackson mouse pairs. Therefore, dominance/subordination does not seem to be a confounding variable in our paradigm, at least not in C57BL/6J mice. Respective data for NIH mice were too limited to allow any conclusion. The present findings indicate that (a) DSI with a live mouse produces CPP to a greater degree than an interaction with an inanimate object resembling a mouse and that (b) certain substrain differences with respect to CPP/aversion to DSI do exist between the Jax and NIH substrain of C57BL/6 mice. These differences have to be considered when choosing a proper mouse substrain model for investigating the neural basis of DSI reward versus drug reward.
Singh, Shalini; Pan, Chunliu; Wood, Ronald; Yeh, Chiuan-Ren; Yeh, Shuyuan; Sha, Kai; Krolewski, John J; Nastiuk, Kent L
2015-09-21
Genetically engineered mouse models are essential to the investigation of the molecular mechanisms underlying human prostate pathology and the effects of therapy on the diseased prostate. Serial in vivo volumetric imaging expands the scope and accuracy of experimental investigations of models of normal prostate physiology, benign prostatic hyperplasia and prostate cancer, which are otherwise limited by the anatomy of the mouse prostate. Moreover, accurate imaging of hyperplastic and tumorigenic prostates is now recognized as essential to rigorous pre-clinical trials of new therapies. Bioluminescent imaging has been widely used to determine prostate tumor size, but is semi-quantitative at best. Magnetic resonance imaging can determine prostate volume very accurately, but is expensive and has low throughput. We therefore sought to develop and implement a high throughput, low cost, and accurate serial imaging protocol for the mouse prostate. We developed a high frequency ultrasound imaging technique employing 3D reconstruction that allows rapid and precise assessment of mouse prostate volume. Wild-type mouse prostates were examined (n = 4) for reproducible baseline imaging, and treatment effects on volume were compared, and blinded data analyzed for intra- and inter-operator assessments of reproducibility by correlation and for Bland-Altman analysis. Examples of benign prostatic hyperplasia mouse model prostate (n = 2) and mouse prostate implantation of orthotopic human prostate cancer tumor and its growth (n = ) are also demonstrated. Serial measurement volume of the mouse prostate revealed that high frequency ultrasound was very precise. Following endocrine manipulation, regression and regrowth of the prostate could be monitored with very low intra- and interobserver variability. This technique was also valuable to monitor the development of prostate growth in a model of benign prostatic hyperplasia. Additionally, we demonstrate accurate ultrasound image-guided implantation of orthotopic tumor xenografts and monitoring of subsequent tumor growth from ~10 to ~750 mm(3) volume. High frequency ultrasound imaging allows precise determination of normal, neoplastic and hyperplastic mouse prostate. Low cost and small image size allows incorporation of this imaging modality inside clean animal facilities, and thereby imaging of immunocompromised models. 3D reconstruction for volume determination is easily mastered, and both small and large relative changes in volume are accurately visualized. Ultrasound imaging does not rely on penetration of exogenous imaging agents, and so may therefore better measure poorly vascularized or necrotic diseased tissue, relative to bioluminescent imaging (IVIS). Our method is precise and reproducible with very low inter- and intra-observer variability. Because it is non-invasive, mouse models of prostatic disease states can be imaged serially, reducing inter-animal variability, and enhancing the power to detect small volume changes following therapeutic intervention.
Practical use of advanced mouse models for lung cancer.
Safari, Roghaiyeh; Meuwissen, Ralph
2015-01-01
To date a variety of non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) mouse models have been developed that mimic human lung cancer. Chemically induced or spontaneous lung cancer in susceptible inbred strains has been widely used, but the more recent genetically engineered somatic mouse models recapitulate much better the genotype-phenotype correlations found in human lung cancer. Additionally, improved orthotopic transplantation of primary human cancer tissue fragments or cells into lungs of immune-compromised mice can be valuable tools for preclinical research such as antitumor drug tests. Here we give a short overview of most somatic mouse models for lung cancer that are currently in use. We accompany each different model with a description of its practical use and application for all major lung tumor types, as well as the intratracheal injection or direct injection of fresh or freeze-thawed tumor cells or tumor cell lines into lung parenchyma of recipient mice. All here presented somatic mouse models are based on the ability to (in) activate specific alleles at a time, and in a tissue-specific cell type, of choice. This spatial-temporal controlled induction of genetic lesions allows the selective introduction of main genetic lesions in an adult mouse lung as found in human lung cancer. The resulting conditional somatic mouse models can be used as versatile powerful tools in basic lung cancer research and preclinical translational studies alike. These distinctively advanced lung cancer models permit us to investigate initiation (cell of origin) and progression of lung cancer, along with response and resistance to drug therapy. Cre/lox or FLP/frt recombinase-mediated methods are now well-used techniques to develop tissue-restricted lung cancer in mice with tumor-suppressor gene and/or oncogene (in)activation. Intranasal or intratracheal administration of engineered adenovirus-Cre or lentivirus-Cre has been optimized for introducing Cre recombinase activity into pulmonary tissues, and we discuss here the different techniques underlying these applications. Concomitant with Cre/Flp recombinase-based models are the tetracycline (Tet)-inducible bitransgenic systems in which presence or absence of doxycycline can turn the expression of a specific oncogene on or off. The use of several Tet-inducible lung cancer models for NSCLC is presented here in which the reversal of oncogene expression led to complete tumor regression and provided us with important insight of how oncogene dependence influence lung cancer survival and growth. As alternative to Tet-inducible models, we discuss the application of reversible expressed, transgenic mutant estrogen receptor (ER) fusion proteins, which are regulated via systemic tamoxifen administration. Most of the various lung cancer models can be combined through the generation of transgenic compound mice so that the use of these somatic mouse models can be even more enhanced for the study of specific molecular pathways that facilitate growth and maintenance of lung cancer. Finally, this description of the practical application and methodology of mouse models for lung cancer should be helpful in assisting researchers to make the best choices and optimal use of (existing) somatic models that suits the specific experimental needs in their study of lung cancer.
Clayton, Stephen; Prigmore, Elena; Langley, Elizabeth; Yang, Fengtang; Maguire, Sean; Fu, Beiyuan; Rajan, Diana; Sheppard, Olivia; Scott, Carol; Hauser, Heidi; Stephens, Philip J.; Stebbings, Lucy A.; Ng, Bee Ling; Fitzgerald, Tomas; Quail, Michael A.; Banerjee, Ruby; Rothkamm, Kai; Tybulewicz, Victor L. J.; Fisher, Elizabeth M. C.; Carter, Nigel P.
2013-01-01
Down syndrome (DS) is caused by trisomy of chromosome 21 (Hsa21) and presents a complex phenotype that arises from abnormal dosage of genes on this chromosome. However, the individual dosage-sensitive genes underlying each phenotype remain largely unknown. To help dissect genotype – phenotype correlations in this complex syndrome, the first fully transchromosomic mouse model, the Tc1 mouse, which carries a copy of human chromosome 21 was produced in 2005. The Tc1 strain is trisomic for the majority of genes that cause phenotypes associated with DS, and this freely available mouse strain has become used widely to study DS, the effects of gene dosage abnormalities, and the effect on the basic biology of cells when a mouse carries a freely segregating human chromosome. Tc1 mice were created by a process that included irradiation microcell-mediated chromosome transfer of Hsa21 into recipient mouse embryonic stem cells. Here, the combination of next generation sequencing, array-CGH and fluorescence in situ hybridization technologies has enabled us to identify unsuspected rearrangements of Hsa21 in this mouse model; revealing one deletion, six duplications and more than 25 de novo structural rearrangements. Our study is not only essential for informing functional studies of the Tc1 mouse but also (1) presents for the first time a detailed sequence analysis of the effects of gamma radiation on an entire human chromosome, which gives some mechanistic insight into the effects of radiation damage on DNA, and (2) overcomes specific technical difficulties of assaying a human chromosome on a mouse background where highly conserved sequences may confound the analysis. Sequence data generated in this study is deposited in the ENA database, Study Accession number: ERP000439. PMID:23596509
eIF4E/Fmr1 double mutant mice display cognitive impairment in addition to ASD-like behaviors.
Huynh, Thu N; Shah, Manan; Koo, So Yeon; Faraud, Kirsten S; Santini, Emanuela; Klann, Eric
2015-11-01
Autism spectrum disorder (ASD) is a group of heritable disorders with complex and unclear etiology. Classic ASD symptoms include social interaction and communication deficits as well as restricted, repetitive behaviors. In addition, ASD is often comorbid with intellectual disability. Fragile X syndrome (FXS) is the leading genetic cause of ASD, and is the most commonly inherited form of intellectual disability. Several mouse models of ASD and FXS exist, however the intellectual disability observed in ASD patients is not well modeled in mice. Using the Fmr1 knockout mouse and the eIF4E transgenic mouse, two previously characterized mouse models of fragile X syndrome and ASD, respectively, we generated the eIF4E/Fmr1 double mutant mouse. Our study shows that the eIF4E/Fmr1 double mutant mice display classic ASD behaviors, as well as cognitive dysfunction. Importantly, the learning impairments displayed by the double mutant mice spanned multiple cognitive tasks. Moreover, the eIF4E/Fmr1 double mutant mice display increased levels of basal protein synthesis. The results of our study suggest that the eIF4E/Fmr1 double mutant mouse may be a reliable model to study cognitive dysfunction in the context of ASD. Copyright © 2015 Elsevier Inc. All rights reserved.
Choi, Jaesung P.; Foley, Matthew; Zhou, Zinan; Wong, Weng-Yew; Gokoolparsadh, Naveena; Arthur, J. Simon C.; Li, Dean Y.; Zheng, Xiangjian
2016-01-01
Mutations in CCM1 (aka KRIT1), CCM2, or CCM3 (aka PDCD10) gene cause cerebral cavernous malformation in humans. Mouse models of CCM disease have been established by deleting Ccm genes in postnatal animals. These mouse models provide invaluable tools to investigate molecular mechanism and therapeutic approaches for CCM disease. However, the full value of these animal models is limited by the lack of an accurate and quantitative method to assess lesion burden and progression. In the present study we have established a refined and detailed contrast enhanced X-ray micro-CT method to measure CCM lesion burden in mouse brains. As this study utilized a voxel dimension of 9.5μm (leading to a minimum feature size of approximately 25μm), it is therefore sufficient to measure CCM lesion volume and number globally and accurately, and provide high-resolution 3-D mapping of CCM lesions in mouse brains. Using this method, we found loss of Ccm1 or Ccm2 in neonatal endothelium confers CCM lesions in the mouse hindbrain with similar total volume and number. This quantitative approach also demonstrated a rescue of CCM lesions with simultaneous deletion of one allele of Mekk3. This method would enhance the value of the established mouse models to study the molecular basis and potential therapies for CCM and other cerebrovascular diseases. PMID:27513872
The terminator mouse: salvation for primary cell culture.
Kabgani, Nazanin; Moeller, Marcus J
2013-11-01
The Terminator had to come back from the future already several times in an effort to bring salvation to mankind. In the present issue of Kidney International, Guo et al. brought us a novel transgenic mouse model: the terminator mouse. This highly elegant mouse may facilitate significantly the derivation of primary cultures of a specific cell type from a tissue containing multiple cell populations.
Mouse Xenograft Model for Mesothelioma | NCI Technology Transfer Center | TTC
The National Cancer Institute is seeking parties interested in collaborative research to co-develop, evaluate, or commercialize a new mouse model for monoclonal antibodies and immunoconjugates that target malignant mesotheliomas. Applications of the technology include models for screening compounds as potential therapeutics for mesothelioma and for studying the pathology of mesothelioma.
HUPO BPP Workshop on Mouse Models for Neurodegeneration--Choosing the right models.
Hamacher, Michael; Marcus, Katrin; Stephan, Christian; van Hall, Andre; Meyer, Helmut E
2005-09-01
The HUPO Brain Proteome Project met during the 4th Dutch Endo-Neuro-Psycho Meeting in Doorwerth, The Netherlands, on June 1, 2005, in order to discuss appropriate (mouse) models for neurodegenerative diseases as well as to conceptualise sophisticated proteomics analyses strategies. Here, the topics of the meeting are summarised.
AOM/DSS Model of Colitis-Associated Cancer
Parang, Bobak; Barret, Caitlyn W.; Williams, Christopher S.
2016-01-01
Summary Our understanding of colitis-associated carcinoma (CAC) has benefited substantially from mouse models that faithfully recapitulate human CAC. Chemical models, in particular, have enabled fast and efficient analysis of genetic and environmental modulators of CAC without the added requirement of time-intensive genetic crossings. Here we describe the Azoxymethane (AOM)/Dextran Sodium Sulfate (DSS) mouse model of inflammatory colorectal cancer. PMID:27246042
Magnetic resonance imaging of amyloid plaques in transgenic mouse models of Alzheimer's disease
Chamberlain, Ryan; Wengenack, Thomas M.; Poduslo, Joseph F.; Garwood, Michael; Jack, Clifford R.
2011-01-01
A major objective in the treatment of Alzheimer's disease is amyloid plaque reduction. Transgenic mouse models of Alzheimer's disease provide a controlled and consistent environment for studying amyloid plaque deposition in Alzheimer's disease. Magnetic resonance imaging is an attractive tool for longitudinal studies because it offers non-invasive monitoring of amyloid plaques. Recent studies have demonstrated the ability of magnetic resonance imaging to detect individual plaques in living mice. This review discusses the mouse models, MR pulse sequences, and parameters that have been used to image plaques and how they can be optimized for future studies. PMID:21499442
Standardization of deep partial-thickness scald burns in C57BL/6 mice
Medina, Jorge L; Fourcaudot, Andrea B; Sebastian, Eliza A; Shankar, Ravi; Brown, Ammon W; Leung, Kai P
2018-01-01
Mouse burn models are used to understand the wound healing process and having a reproducible model is important. The different protocols used by researchers can lead to differences in depth of partial-thickness burn wounds. Additionally, standardizing a protocol for mouse burns in the laboratory for one strain may result in substantially different results in other strains. In our current study we describe the model development of a deep partial-thickness burn in C57BL/6 mice using hot water scalding as the source of thermal injury. As part of our model development we designed a template with specifications to allow for even contact of bare mouse skin (2×3 cm) with hot water while protecting the rest of the mouse. Burn depth was evaluated with H&E, Masson’s trichrome, and TUNEL staining. Final results were validated with pathology analysis. A water temperature of 54°C with a scalding time of 20 seconds produced consistent deep partial-thickness burns with available equipment described. Other than temperature and time, factors such as template materials and cooling steps after the burn could affect the uniformity of the burns. These findings are useful to burn research by providing some key parameters essential for researchers to simplify the development of their own mouse burn models. PMID:29755839
Campbell, Jerry L.; Clewell, Harvey J.; Zhou, Yi-Hui; Wright, Fred A.; Guyton, Kathryn Z.
2014-01-01
Background: Quantitative estimation of toxicokinetic variability in the human population is a persistent challenge in risk assessment of environmental chemicals. Traditionally, interindividual differences in the population are accounted for by default assumptions or, in rare cases, are based on human toxicokinetic data. Objectives: We evaluated the utility of genetically diverse mouse strains for estimating toxicokinetic population variability for risk assessment, using trichloroethylene (TCE) metabolism as a case study. Methods: We used data on oxidative and glutathione conjugation metabolism of TCE in 16 inbred and 1 hybrid mouse strains to calibrate and extend existing physiologically based pharmacokinetic (PBPK) models. We added one-compartment models for glutathione metabolites and a two-compartment model for dichloroacetic acid (DCA). We used a Bayesian population analysis of interstrain variability to quantify variability in TCE metabolism. Results: Concentration–time profiles for TCE metabolism to oxidative and glutathione conjugation metabolites varied across strains. Median predictions for the metabolic flux through oxidation were less variable (5-fold range) than that through glutathione conjugation (10-fold range). For oxidative metabolites, median predictions of trichloroacetic acid production were less variable (2-fold range) than DCA production (5-fold range), although the uncertainty bounds for DCA exceeded the predicted variability. Conclusions: Population PBPK modeling of genetically diverse mouse strains can provide useful quantitative estimates of toxicokinetic population variability. When extrapolated to lower doses more relevant to environmental exposures, mouse population-derived variability estimates for TCE metabolism closely matched population variability estimates previously derived from human toxicokinetic studies with TCE, highlighting the utility of mouse interstrain metabolism studies for addressing toxicokinetic variability. Citation: Chiu WA, Campbell JL Jr, Clewell HJ III, Zhou YH, Wright FA, Guyton KZ, Rusyn I. 2014. Physiologically based pharmacokinetic (PBPK) modeling of interstrain variability in trichloroethylene metabolism in the mouse. Environ Health Perspect 122:456–463; http://dx.doi.org/10.1289/ehp.1307623 PMID:24518055
Postdoctoral Fellow | Center for Cancer Research
The Genetics of Cancer Susceptibility Section in the Mouse Cancer Genetics Program at NCI is seeking a highly motivated postdoctoral researcher to identify novel genetic interactors of BRCA2 using CRISPR-based genetic screen in mouse embryonic stem cells and perform functional studies in mouse models.
Nygaard, Unni Cecilie; Vinje, Nina Eriksen; Samuelsen, Mari; Andreassen, Monica; Groeng, Else-Carin; Bølling, Anette Kocbach; Becher, Rune; Lovik, Martinus; Bodin, Johanna
2015-09-01
The impact of early life exposure to bisphenol A (BPA) through drinking water was investigated in mouse models of respiratory allergy, food allergy and oral tolerance. Balb/c mice were exposed to BPA (0, 10 or 100 μg/ml), and the offspring were intranasally exposed to the allergen ovalbumin (OVA). C3H/HeJ offspring were sensitized with the food allergen lupin by intragastric gavage, after exposure to BPA (0, 1, 10 or 100 μg/ml). In separate offspring, oral tolerance was induced by gavage of 5 mg lupin one week before entering the protocol for the food allergy induction. In the airway allergy model, BPA (100 μg/ml) caused increased eosinophil numbers in bronchoalveolar lavage fluid (BALF) and a trend of increased OVA-specific IgE levels. In the food allergy and tolerance models, BPA did not alter the clinical anaphylaxis or antibody responses, but induced alterations in splenocyte cytokines and decreased mouse mast cell protease (MMCP)-1 serum levels. In conclusion, early life exposure to BPA through drinking water modestly augmented allergic responses in a mouse model of airway allergy only at high doses, and not in mouse models for food allergy and tolerance. Thus, our data do not support that BPA promotes allergy development at exposure levels relevant for humans. Copyright © 2015 Elsevier Ltd. All rights reserved.
Harrill, Alison H; McAllister, Kimberly A
2017-08-15
This paper provides an introduction for environmental health scientists to emerging population-based rodent resources. Mouse reference populations provide an opportunity to model environmental exposures and gene-environment interactions in human disease and to inform human health risk assessment. This review will describe several mouse populations for toxicity assessment, including older models such as the Mouse Diversity Panel (MDP), and newer models that include the Collaborative Cross (CC) and Diversity Outbred (DO) models. This review will outline the features of the MDP, CC, and DO mouse models and will discuss published case studies investigating the use of these mouse population resources in each step of the risk assessment paradigm. These unique resources have the potential to be powerful tools for generating hypotheses related to gene-environment interplay in human disease, performing controlled exposure studies to understand the differential responses in humans for susceptibility or resistance to environmental exposures, and identifying gene variants that influence sensitivity to toxicity and disease states. These new resources offer substantial advances to classical toxicity testing paradigms by including genetically sensitive individuals that may inform toxicity risks for sensitive subpopulations. Both in vivo and complementary in vitro resources provide platforms with which to reduce uncertainty by providing population-level data around biological variability. https://doi.org/10.1289/EHP1274.
A Consensus Definition of Cataplexy in Mouse Models of Narcolepsy
Scammell, Thomas E.; Willie, Jon T.; Guilleminault, Christian; Siegel, Jerome M.
2009-01-01
People with narcolepsy often have episodes of cataplexy, brief periods of muscle weakness triggered by strong emotions. Many researchers are now studying mouse models of narcolepsy, but definitions of cataplexy-like behavior in mice differ across labs. To establish a common language, the International Working Group on Rodent Models of Narcolepsy reviewed the literature on cataplexy in people with narcolepsy and in dog and mouse models of narcolepsy and then developed a consensus definition of murine cataplexy. The group concluded that murine cataplexy is an abrupt episode of nuchal atonia lasting at least 10 seconds. In addition, theta activity dominates the EEG during the episode, and video recordings document immobility. To distinguish a cataplexy episode from REM sleep after a brief awakening, at least 40 seconds of wakefulness must precede the episode. Bouts of cataplexy fitting this definition are common in mice with disrupted orexin/hypocretin signaling, but these events almost never occur in wild type mice. It remains unclear whether murine cataplexy is triggered by strong emotions or whether mice remain conscious during the episodes as in people with narcolepsy. This working definition provides helpful insights into murine cataplexy and should allow objective and accurate comparisons of cataplexy in future studies using mouse models of narcolepsy. Citation: Scammell TE; Willie JT; Guilleminault C; Siegel JM. A consensus definition of cataplexy in mouse models of narcolepsy. SLEEP 2009;32(1):111-116. PMID:19189786
Harrill, Alison H.
2017-01-01
Background: This paper provides an introduction for environmental health scientists to emerging population-based rodent resources. Mouse reference populations provide an opportunity to model environmental exposures and gene–environment interactions in human disease and to inform human health risk assessment. Objectives: This review will describe several mouse populations for toxicity assessment, including older models such as the Mouse Diversity Panel (MDP), and newer models that include the Collaborative Cross (CC) and Diversity Outbred (DO) models. Methods: This review will outline the features of the MDP, CC, and DO mouse models and will discuss published case studies investigating the use of these mouse population resources in each step of the risk assessment paradigm. Discussion: These unique resources have the potential to be powerful tools for generating hypotheses related to gene–environment interplay in human disease, performing controlled exposure studies to understand the differential responses in humans for susceptibility or resistance to environmental exposures, and identifying gene variants that influence sensitivity to toxicity and disease states. Conclusions: These new resources offer substantial advances to classical toxicity testing paradigms by including genetically sensitive individuals that may inform toxicity risks for sensitive subpopulations. Both in vivo and complementary in vitro resources provide platforms with which to reduce uncertainty by providing population-level data around biological variability. https://doi.org/10.1289/EHP1274 PMID:28886592
Okumura, Masaki; Ichihara, Hideaki; Matsumoto, Yoko
2018-11-01
Hybrid liposomes (HLs) can be prepared by simply sonicating a mixture of vesicular and micellar molecules in a buffer solution. This study aimed to elucidate the therapeutic effects and ability of HLs to detect (diagnosis) cancer in an orthotopic graft mouse model of colorectal cancer with HCT116 cells for the use of HLs as theranostic agents. In the absence of a chemotherapeutic drug, HLs exhibited therapeutic effects by inhibiting the growth of HCT116 colorectal cancer cells in vitro, possibly through an increase in apoptosis. Intravenously administered HLs also caused a remarkable reduction in the relative cecum weight in an orthotopic graft mouse model of colorectal cancer. A decrease in tumor size in the cecal sections was confirmed by histological analysis using HE staining. TUNEL staining indicated an induction of apoptosis in HCT116 cells in the orthotopic graft mouse model of colorectal cancer. For the detection (diagnosis) of colorectal cancer by HLs, the accumulation of HLs encapsulating a fluorescent probe (ICG) was observed in HCT116 cells in the in vivo colorectal cancer model following intravenous administration. These data indicate that HLs can accumulate in tumor cells in the cecum of the orthotopic graft mouse model of colorectal cancer for a prolonged period of time, and inhibit the growth of HCT116 cells.
Murine Models of Systemic Lupus Erythematosus
Perry, Daniel; Sang, Allison; Yin, Yiming; Zheng, Ying-Yi; Morel, Laurence
2011-01-01
Systemic lupus erythematosus (SLE) is a multifactorial autoimmune disorder. The study of diverse mouse models of lupus has provided clues to the etiology of SLE. Spontaneous mouse models of lupus have led to identification of numerous susceptibility loci from which several candidate genes have emerged. Meanwhile, induced models of lupus have provided insight into the role of environmental factors in lupus pathogenesis as well as provided a better understanding of cellular mechanisms involved in the onset and progression of disease. The SLE-like phenotypes present in these models have also served to screen numerous potential SLE therapies. Due to the complex nature of SLE, it is necessary to understand the effect specific targeted therapies have on immune homeostasis. Furthermore, knowledge gained from mouse models will provide novel therapy targets for the treatment of SLE. PMID:21403825
CCL11 elicits secretion of RNases from mouse eosinophils and their cell-free granules
Shamri, Revital; Melo, Rossana C. N.; Young, Kristen M.; Bivas-Benita, Maytal; Xenakis, Jason J.; Spencer, Lisa A.; Weller, Peter F.
2012-01-01
Rapid secretion of eosinophil-associated RNases (EARs), such as the human eosinophilic cationic protein (ECP), from intracellular granules is central to the role of eosinophils in allergic diseases and host immunity. Our knowledge regarding allergic inflammation has advanced based on mouse experimental models. However, unlike human eosinophils, capacities of mouse eosinophils to secrete granule proteins have been controversial. To study mechanisms of mouse eosinophil secretion and EAR release, we combined an RNase assay of mouse EARs with ultrastructural studies. In vitro, mouse eosinophils stimulated with the chemokine eotaxin-1 (CCL11) secreted enzymatically active EARs (EC50 5 nM) by piecemeal degranulation. In vivo, in a mouse model of allergic airway inflammation, increased airway eosinophil infiltration (24-fold) correlated with secretion of active RNases (3-fold). Moreover, we found that eosinophilic inflammation in mice can involve eosinophil cytolysis and release of cell-free granules. Cell-free mouse eosinophil granules expressed functional CCR3 receptors and secreted their granule proteins, including EAR and eosinophil peroxidase in response to CCL11. Collectively, these data demonstrate chemokine-dependent secretion of EARs from both intact mouse eosinophils and their cell-free granules, findings pertinent to understanding the pathogenesis of eosinophil-associated diseases, in which EARs are key factors.—Shamri, R., Melo, R. C. N., Young, K. M., B.-B, M., Xenakis, J. J., Spencer, L. A., Weller, P. F. CCL11 elicits secretion of RNases from mouse eosinophils and their cell-free granules. PMID:22294786
Choi, Catherine H.; Schoenfeld, Brian P.; Bell, Aaron J.; Hinchey, Joseph; Rosenfelt, Cory; Gertner, Michael J.; Campbell, Sean R.; Emerson, Danielle; Hinchey, Paul; Kollaros, Maria; Ferrick, Neal J.; Chambers, Daniel B.; Langer, Steven; Sust, Steven; Malik, Aatika; Terlizzi, Allison M.; Liebelt, David A.; Ferreiro, David; Sharma, Ali; Koenigsberg, Eric; Choi, Richard J.; Louneva, Natalia; Arnold, Steven E.; Featherstone, Robert E.; Siegel, Steven J.; Zukin, R. Suzanne; McDonald, Thomas V.; Bolduc, Francois V.; Jongens, Thomas A.; McBride, Sean M. J.
2016-01-01
Fragile X is the most common monogenic disorder associated with intellectual disability (ID) and autism spectrum disorders (ASD). Additionally, many patients are afflicted with executive dysfunction, ADHD, seizure disorder and sleep disturbances. Fragile X is caused by loss of FMRP expression, which is encoded by the FMR1 gene. Both the fly and mouse models of fragile X are also based on having no functional protein expression of their respective FMR1 homologs. The fly model displays well defined cognitive impairments and structural brain defects and the mouse model, although having subtle behavioral defects, has robust electrophysiological phenotypes and provides a tool to do extensive biochemical analysis of select brain regions. Decreased cAMP signaling has been observed in samples from the fly and mouse models of fragile X as well as in samples derived from human patients. Indeed, we have previously demonstrated that strategies that increase cAMP signaling can rescue short term memory in the fly model and restore DHPG induced mGluR mediated long term depression (LTD) in the hippocampus to proper levels in the mouse model (McBride et al., 2005; Choi et al., 2011, 2015). Here, we demonstrate that the same three strategies used previously with the potential to be used clinically, lithium treatment, PDE-4 inhibitor treatment or mGluR antagonist treatment can rescue long term memory in the fly model and alter the cAMP signaling pathway in the hippocampus of the mouse model. PMID:27445731
Mouse Models as Predictors of Human Responses: Evolutionary Medicine.
Uhl, Elizabeth W; Warner, Natalie J
Mice offer a number of advantages and are extensively used to model human diseases and drug responses. Selective breeding and genetic manipulation of mice have made many different genotypes and phenotypes available for research. However, in many cases, mouse models have failed to be predictive. Important sources of the prediction problem have been the failure to consider the evolutionary basis for species differences, especially in drug metabolism, and disease definitions that do not reflect the complexity of gene expression underlying disease phenotypes. Incorporating evolutionary insights into mouse models allow for unique opportunities to characterize the effects of diet, different gene expression profiles, and microbiomics underlying human drug responses and disease phenotypes.
NASA Astrophysics Data System (ADS)
Ni, Ruiqing; Vaas, Markus; Ren, Wuwei; Klohs, Jan
2018-02-01
Matrix metalloproteinases (MMPs) play important roles in the pathophysiology of cerebral ischemia. Here we visualized in vivo MMP activity in the transient middle cerebral artery occlusion (tMCAO) mouse model using multispectral optoacoustic imaging (MSOT) with a MMP-activatable probe. MSOT data was co-registered with structural magnetic resonance imaging (MRI) obtained at 7 T for localization of signal distribution. We demonstrated upregulated MMP signal within the focal ischemic lesion in the tMCAO mouse model using MSOT/MRI multimodal imaging. This convenient non-invasive method will allow repetitive measurement following the time course of MMP-lesion development in ischemic stroke animal model.
Autism Spectrum Disorders: Translating human deficits into mouse behavior.
Pasciuto, E; Borrie, S C; Kanellopoulos, A K; Santos, A R; Cappuyns, E; D'Andrea, L; Pacini, L; Bagni, C
2015-10-01
Autism Spectrum Disorders are a heterogeneous group of neurodevelopmental disorders, with rising incidence but little effective therapeutic intervention available. Currently two main clinical features are described to diagnose ASDs: impaired social interaction and communication, and repetitive behaviors. Much work has focused on understanding underlying causes of ASD by generating animal models of the disease, in the hope of discovering signaling pathways and cellular targets for drug intervention. Here we review how ASD behavioral phenotypes can be modeled in the mouse, the most common animal model currently in use in this field, and discuss examples of genetic mouse models of ASD with behavioral features that recapitulate various symptoms of ASD. Copyright © 2015 Elsevier Inc. All rights reserved.
Mouse models of ciliopathies: the state of the art
Norris, Dominic P.; Grimes, Daniel T.
2012-01-01
The ciliopathies are an apparently disparate group of human diseases that all result from defects in the formation and/or function of cilia. They include disorders such as Meckel-Grüber syndrome (MKS), Joubert syndrome (JBTS), Bardet-Biedl syndrome (BBS) and Alström syndrome (ALS). Reflecting the manifold requirements for cilia in signalling, sensation and motility, different ciliopathies exhibit common elements. The mouse has been used widely as a model organism for the study of ciliopathies. Although many mutant alleles have proved lethal, continued investigations have led to the development of better models. Here, we review current mouse models of a core set of ciliopathies, their utility and future prospects. PMID:22566558
Wöhr, Markus
2015-01-01
An important diagnostic criterion for social communication deficits in autism spectrum disorders (ASD) are difficulties in adjusting behavior to suit different social contexts. While the BTBR T+tf/J (BTBR) inbred strain of mice is one of the most commonly used mouse models for ASD, little is known about whether BTBR mice display deficits in detecting changes in social context and their ability to adjust to them. Here, it was tested therefore whether the emission of isolation-induced ultrasonic vocalizations (USV) in BTBR mouse pups is affected by the social odor context, in comparison to the standard control strain with high sociability, C57BL/6J (B6). It is known that the presence of odors from mothers and littermates leads to a calming of the isolated mouse pup, and hence to a reduction in isolation-induced USV emission. In accordance with their behavioral phenotypes with relevance to all diagnostic core symptoms of ASD, it was predicted that BTBR mouse pups would not display a calming response when tested under soiled bedding conditions with home cage bedding material containing maternal odors, and that similar isolation-induced USV emission rates would be seen in BTBR mice tested under clean and soiled bedding conditions. Unexpectedly, however, the present findings show that BTBR mouse pups display such a calming response and emit fewer isolation-induced USV when tested under soiled as compared to clean bedding conditions, similar to B6 mouse pups. Yet, in contrast to B6 mouse pups, which emitted isolation-induced USV with shorter call durations and lower levels of frequency modulation under soiled bedding conditions, social odor context had no effect on acoustic call features in BTBR mouse pups. This indicates that the BTBR mouse model for ASD does not display deficits in detecting changes in social context, but has a limited ability and/or reduced motivation to adjust to them. PMID:25852455
Kathman, Steven J; Potts, Ryan J; Ayres, Paul H; Harp, Paul R; Wilson, Cody L; Garner, Charles D
2010-10-01
The mouse dermal assay has long been used to assess the dermal tumorigenicity of cigarette smoke condensate (CSC). This mouse skin model has been developed for use in carcinogenicity testing utilizing the SENCAR mouse as the standard strain. Though the model has limitations, it remains as the most relevant method available to study the dermal tumor promoting potential of mainstream cigarette smoke. In the typical SENCAR mouse CSC bioassay, CSC is applied for 29 weeks following the application of a tumor initiator such as 7,12-dimethylbenz[a]anthracene (DMBA). Several endpoints are considered for analysis including: the percentage of animals with at least one mass, latency, and number of masses per animal. In this paper, a relatively straightforward analytic model and procedure is presented for analyzing the time course of the incidence of masses. The procedure considered here takes advantage of Bayesian statistical techniques, which provide powerful methods for model fitting and simulation. Two datasets are analyzed to illustrate how the model fits the data, how well the model may perform in predicting data from such trials, and how the model may be used as a decision tool when comparing the dermal tumorigenicity of cigarette smoke condensate from multiple cigarette types. The analysis presented here was developed as a statistical decision tool for differentiating between two or more prototype products based on the dermal tumorigenicity. Copyright (c) 2010 Elsevier Inc. All rights reserved.
Validation of the Glaucoma Filtration Surgical Mouse Model for Antifibrotic Drug Evaluation
Seet, Li-Fong; Lee, Wing Sum; Su, Roseline; Finger, Sharon N; Crowston, Jonathan G; Wong, Tina T
2011-01-01
Glaucoma is a progressive optic neuropathy, which, if left untreated, leads to blindness. The most common and most modifiable risk factor in glaucoma is elevated intraocular pressure (IOP), which can be managed surgically by filtration surgery. The postoperative subconjunctival scarring response, however, remains the major obstacle to achieving long-term surgical success. Antiproliferatives such as mitomycin C are commonly used to prevent postoperative scarring. Efficacy of these agents has been tested extensively on monkey and rabbit models of glaucoma filtration surgery. As these models have inherent limitations, we have developed a model of glaucoma filtration surgery in the mouse. We show, for the first time, that the mouse model typically scarred within 14 d, but when augmented with mitomycin C, more animals maintained lower intraocular pressures for a longer period of time concomitant with prolonged bleb survival to beyond 28 d. The morphology of the blebs following mitomycin C treatment also resembled well-documented clinical observations, thus confirming the validity and clinical relevance of this model. We demonstrate that the antiscarring response to mitomycin C is likely to be due to its effects on conjunctival fibroblast proliferation, apoptosis and collagen deposition and the suppression of inflammation. Indeed, we verified some of these properties on mouse conjunctival fibroblasts cultured in vitro. These data support the suitability of this mouse model for studying the wound healing response in glaucoma filtration surgery, and as a potentially useful tool for the in vivo evaluation of antifibrotic therapeutics in the eye. PMID:21229189
Mouse Vocal Communication System: Are Ultrasounds Learned or Innate?
ERIC Educational Resources Information Center
Arriaga, Gustavo; Jarvis, Erich D.
2013-01-01
Mouse ultrasonic vocalizations (USVs) are often used as behavioral readouts of internal states, to measure effects of social and pharmacological manipulations, and for behavioral phenotyping of mouse models for neuropsychiatric and neurodegenerative disorders. However, little is known about the neurobiological mechanisms of rodent USV production.…
Cell Source and Mechanism of Hair Cell Regeneration in the Neonatal Mouse Cochlea
2015-09-30
indicating that the neonatal mouse cochlea can, to a limited ex tent. pro liferate in response to HC loss and th at some of these RESEARCH ARTICLE Atoh1...cations for other tetracycline-inducible mouse models used in inner ear research . Our studies also highlight potential problems with long term expression... studies for the 10% HC death model are underway. Further research is in progress to obtain a tamoxifen induction paradigm that will target 25% ofHCs
Ruwanpura, Saleela M; McLeod, Louise; Dousha, Lovisa F; Seow, Huei J; Alhayyani, Sultan; Tate, Michelle D; Deswaerte, Virginie; Brooks, Gavin D; Bozinovski, Steven; MacDonald, Martin; Garbers, Christoph; King, Paul T; Bardin, Philip G; Vlahos, Ross; Rose-John, Stefan; Anderson, Gary P; Jenkins, Brendan J
2016-12-15
The potent immunomodulatory cytokine IL-6 is consistently up-regulated in human lungs with emphysema and in mouse emphysema models; however, the mechanisms by which IL-6 promotes emphysema remain obscure. IL-6 signals using two distinct modes: classical signaling via its membrane-bound IL-6 receptor (IL-6R), and trans-signaling via a naturally occurring soluble IL-6R. To identify whether IL-6 trans-signaling and/or classical signaling contribute to the pathogenesis of emphysema. We used the gp130 F/F genetic mouse model for spontaneous emphysema and cigarette smoke-induced emphysema models. Emphysema in mice was quantified by various methods including in vivo lung function and stereology, and terminal deoxynucleotidyl transferase dUTP nick end labeling assay was used to assess alveolar cell apoptosis. In mouse and human lung tissues, the expression level and location of IL-6 signaling-related genes and proteins were measured, and the levels of IL-6 and related proteins in sera from emphysematous mice and patients were also assessed. Lung tissues from patients with emphysema, and from spontaneous and cigarette smoke-induced emphysema mouse models, were characterized by excessive production of soluble IL-6R. Genetic blockade of IL-6 trans-signaling in emphysema mouse models and therapy with the IL-6 trans-signaling antagonist sgp130Fc ameliorated emphysema by suppressing augmented alveolar type II cell apoptosis. Furthermore, IL-6 trans-signaling-driven emphysematous changes in the lung correlated with mechanistic target of rapamycin complex 1 hyperactivation, and treatment of emphysema mouse models with the mechanistic target of rapamycin complex 1 inhibitor rapamycin attenuated emphysematous changes. Collectively, our data reveal that specific targeting of IL-6 trans-signaling may represent a novel treatment strategy for emphysema.
Kidd, Kameha R; Dal Ponte, Donny B; Kellar, Robert S; Williams, Stuart K
2002-03-15
End product application is an important consideration when evaluating a material in an in vivo setting (Didisheim, Cardiovasc Pathol 1993;2:1S-2S). Small animal models allow high through-put evaluation of biocompatability. Previous preclinical evaluations have often used a rat subcutaneous model for the characterization of material-tissue interaction. Recent advances in genetic manipulation have provided mouse models with selective expression of a wide range of critical proteins. The rat model does not have many of the resources (i.e., knockouts, SCID, nude) that are present in mouse strains. The availability of these mice provides a resource to delineate the mechanisms regulating the healing associated with implants. However, before the mouse models can be used, they must be validated with respect to their ability to accurately assess tissue responses to materials. In this study the tissue responses after the implantation of expanded polytetrafluoroethylene (ePTFE) were compared between rat and mouse. Discs of ePTFE (30-microm internodal distance) were implanted in subcutaneous and epididymal fat tissue of rats (Sprague-Dawley) and mice (129-SVJ). After 5 weeks the samples were removed and evaluated for vascular density, inflammation, and fibrous encapsulation. No difference in the vessel density was observed within the peri-implant subcutaneous and adipose tissue or within the porous material. However, a significant difference was found in the number of activated macrophages and giant cells between these two species. Implants in the rat exhibited greater numbers of activated inflammatory cells in the peri-implant tissue. The data indicate that the mouse and rat provide a comparable model for evaluating angiogenesis and neovascularization associated with synthetic porous implants. Copyright 2001 John Wiley & Sons, Inc. J Biomed Mater Res 59: 682-689, 2002
Leach, P T; Crawley, J N
2017-12-20
Mutant mouse models of neurodevelopmental disorders with intellectual disabilities provide useful translational research tools, especially in cases where robust cognitive deficits are reproducibly detected. However, motor, sensory and/or health issues consequent to the mutation may introduce artifacts that preclude testing in some standard cognitive assays. Touchscreen learning and memory tasks in small operant chambers have the potential to circumvent these confounds. Here we use touchscreen visual discrimination learning to evaluate performance in the maternally derived Ube3a mouse model of Angelman syndrome, the Ts65Dn trisomy mouse model of Down syndrome, and the Mecp2 Bird mouse model of Rett syndrome. Significant deficits in acquisition of a 2-choice visual discrimination task were detected in both Ube3a and Ts65Dn mice. Procedural control measures showed no genotype differences during pretraining phases or during acquisition. Mecp2 males did not survive long enough for touchscreen training, consistent with previous reports. Most Mecp2 females failed on pretraining criteria. Significant impairments on Morris water maze spatial learning were detected in both Ube3a and Ts65Dn, replicating previous findings. Abnormalities on rotarod in Ube3a, and on open field in Ts65Dn, replicating previous findings, may have contributed to the observed acquisition deficits and swim speed abnormalities during water maze performance. In contrast, these motor phenotypes do not appear to have affected touchscreen procedural abilities during pretraining or visual discrimination training. Our findings of slower touchscreen learning in 2 mouse models of neurodevelopmental disorders with intellectual disabilities indicate that operant tasks offer promising outcome measures for the preclinical discovery of effective pharmacological therapeutics. © 2017 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.
Voltage-dependent ion channels in the mouse RPE: comparison with Norrie disease mice.
Wollmann, Guido; Lenzner, Steffen; Berger, Wolfgang; Rosenthal, Rita; Karl, Mike O; Strauss, Olaf
2006-03-01
We studied electrophysiological properties of cultured retinal pigment epithelial (RPE) cells from mouse and a mouse model for Norrie disease. Wild-type RPE cells revealed the expression of ion channels known from other species: delayed-rectifier K(+) channels composed of Kv1.3 subunits, inward rectifier K(+) channels, Ca(V)1.3 L-type Ca(2+) channels and outwardly rectifying Cl(-) channels. Expression pattern and the ion channel characteristics current density, blocker sensitivity, kinetics and voltage-dependence were compared in cells from wild-type and Norrie mice. Although no significant differences were observed, our study provides a base for future studies on ion channel function and dysfunction in transgenic mouse models.
Riluzole does not improve lifespan or motor function in three ALS mouse models.
Hogg, Marion C; Halang, Luise; Woods, Ina; Coughlan, Karen S; Prehn, Jochen H M
2018-08-01
Riluzole is the most widespread therapeutic for treatment of the progressive degenerative disease amyotrophic lateral sclerosis (ALS). Riluzole gained FDA approval in 1995 before the development of ALS mouse models. We assessed riluzole in three transgenic ALS mouse models: the SOD1 G93A model, the TDP-43 A315T model, and the recently developed FUS (1-359) model. Age, sex and litter-matched mice were treated with riluzole (22 mg/kg) in drinking water or vehicle (DMSO) from symptom onset. Lifespan was assessed and motor function tests were carried out twice weekly to determine whether riluzole slowed disease progression. Riluzole treatment had no significant benefit on lifespan in any of the ALS mouse models tested. Riluzole had no significant impact on decline in motor performance in the FUS (1-359) and SOD1 G93A transgenic mice as assessed by Rotarod and stride length analysis. Riluzole is widely prescribed for ALS patients despite questions surrounding its efficacy. Our data suggest that if riluzole was identified as a therapeutic candidate today it would not progress past pre-clinical assessment. This raises questions about the standards used in pre-clinical assessment of therapeutic candidates for the treatment of ALS.
Mouse-based genetic modeling and analysis of Down syndrome
Xing, Zhuo; Li, Yichen; Pao, Annie; Bennett, Abigail S.; Tycko, Benjamin; Mobley, William C.; Yu, Y. Eugene
2016-01-01
Introduction Down syndrome (DS), caused by human trisomy 21 (Ts21), can be considered as a prototypical model for understanding the effects of chromosomal aneuploidies in other diseases. Human chromosome 21 (Hsa21) is syntenically conserved with three regions in the mouse genome. Sources of data A review of recent advances in genetic modeling and analysis of DS. Using Cre/loxP-mediated chromosome engineering, a substantial number of new mouse models of DS have recently been generated, which facilitates better understanding of disease mechanisms in DS. Areas of agreement Based on evolutionary conservation, Ts21 can be modeled by engineered triplication of Hsa21 syntenic regions in mice. The validity of the models is supported by the exhibition of DS-related phenotypes. Areas of controversy Although substantial progress has been made, it remains a challenge to unravel the relative importance of specific candidate genes and molecular mechanisms underlying the various clinical phenotypes. Growing points Further understanding of mechanisms based on data from mouse models, in parallel with human studies, may lead to novel therapies for clinical manifestations of Ts21 and insights to the roles of aneuploidies in other developmental disorders and cancers. PMID:27789459
Grover, Ajay; Troy, Amber; Rowe, Jenny; Troudt, JoLynn M; Creissen, Elizabeth; McLean, Jennifer; Banerjee, Prabal; Feuer, Gerold; Izzo, Angelo A
2017-09-01
The humanized mouse model has been developed as a model to identify and characterize human immune responses to human pathogens and has been used to better identify vaccine candidates. In the current studies, the humanized mouse was used to determine the ability of a vaccine to affect the immune response to infection with Mycobacterium tuberculosis. Both human CD4 + and CD8 + T cells responded to infection in humanized mice as a result of infection. In humanized mice vaccinated with either BCG or with CpG-C, a liposome-based formulation containing the M. tuberculosis antigen ESAT-6, both CD4 and CD8 T cells secreted cytokines that are known to be required for induction of protective immunity. In comparison to the C57BL/6 mouse model and Hartley guinea pig model of tuberculosis, data obtained from humanized mice complemented the data observed in the former models and provided further evidence that a vaccine can induce a human T-cell response. Humanized mice provide a crucial pre-clinical platform for evaluating human T-cell immune responses in vaccine development against M. tuberculosis. © 2017 John Wiley & Sons Ltd.
Orellana-Paucar, Adriana Monserrath; Afrikanova, Tatiana; Thomas, Joice; Aibuldinov, Yelaman K; Dehaen, Wim; de Witte, Peter A M; Esguerra, Camila V
2013-01-01
In a previous study, we uncovered the anticonvulsant properties of turmeric oil and its sesquiterpenoids (ar-turmerone, α-, β-turmerone and α-atlantone) in both zebrafish and mouse models of chemically-induced seizures using pentylenetetrazole (PTZ). In this follow-up study, we aimed at evaluating the anticonvulsant activity of ar-turmerone further. A more in-depth anticonvulsant evaluation of ar-turmerone was therefore carried out in the i.v. PTZ and 6-Hz mouse models. The potential toxic effects of ar-turmerone were evaluated using the beam walking test to assess mouse motor function and balance. In addition, determination of the concentration-time profile of ar-turmerone was carried out for a more extended evaluation of its bioavailability in the mouse brain. Ar-turmerone displayed anticonvulsant properties in both acute seizure models in mice and modulated the expression patterns of two seizure-related genes (c-fos and brain-derived neurotrophic factor [bdnf]) in zebrafish. Importantly, no effects on motor function and balance were observed in mice after treatment with ar-turmerone even after administering a dose 500-fold higher than the effective dose in the 6-Hz model. In addition, quantification of its concentration in mouse brains revealed rapid absorption after i.p. administration, capacity to cross the BBB and long-term brain residence. Hence, our results provide additional information on the anticonvulsant properties of ar-turmerone and support further evaluation towards elucidating its mechanism of action, bioavailability, toxicity and potential clinical application.
Orellana-Paucar, Adriana Monserrath; Afrikanova, Tatiana; Thomas, Joice; Aibuldinov, Yelaman K.; Dehaen, Wim; de Witte, Peter A. M.; Esguerra, Camila V.
2013-01-01
In a previous study, we uncovered the anticonvulsant properties of turmeric oil and its sesquiterpenoids (ar-turmerone, α-, β-turmerone and α-atlantone) in both zebrafish and mouse models of chemically-induced seizures using pentylenetetrazole (PTZ). In this follow-up study, we aimed at evaluating the anticonvulsant activity of ar-turmerone further. A more in-depth anticonvulsant evaluation of ar-turmerone was therefore carried out in the i.v. PTZ and 6-Hz mouse models. The potential toxic effects of ar-turmerone were evaluated using the beam walking test to assess mouse motor function and balance. In addition, determination of the concentration-time profile of ar-turmerone was carried out for a more extended evaluation of its bioavailability in the mouse brain. Ar-turmerone displayed anticonvulsant properties in both acute seizure models in mice and modulated the expression patterns of two seizure-related genes (c-fos and brain-derived neurotrophic factor [bdnf]) in zebrafish. Importantly, no effects on motor function and balance were observed in mice after treatment with ar-turmerone even after administering a dose 500-fold higher than the effective dose in the 6-Hz model. In addition, quantification of its concentration in mouse brains revealed rapid absorption after i.p. administration, capacity to cross the BBB and long-term brain residence. Hence, our results provide additional information on the anticonvulsant properties of ar-turmerone and support further evaluation towards elucidating its mechanism of action, bioavailability, toxicity and potential clinical application. PMID:24349101
Lee, Jung-Rok; Appelmann, Iris; Miething, Cornelius; Shultz, Tyler O.; Ruderman, Daniel; Kim, Dokyoon; Mallick, Parag; Lowe, Scott W.; Wang, Shan X.
2018-01-01
Cancer proteomics is the manifestation of relevant biological processes in cancer development. Thus, it reflects the activities of tumor cells, host-tumor interactions, and systemic responses to cancer therapy. To understand the causal effects of tumorigenesis or therapeutic intervention, longitudinal studies are greatly needed. However, most of the conventional mouse experiments are unlikely to accommodate frequent collection of serum samples with a large enough volume for multiple protein assays towards single-object analysis. Here, we present a technique based on magneto-nanosensors to longitudinally monitor the protein profiles in individual mice of lymphoma models using a small volume of a sample for multiplex assays. Methods: Drug-sensitive and -resistant cancer cell lines were used to develop the mouse models that render different outcomes upon the drug treatment. Two groups of mice were inoculated with each cell line, and treated with either cyclophosphamide or vehicle solution. Serum samples taken longitudinally from each mouse in the groups were measured with 6-plex magneto-nanosensor cytokine assays. To find the origin of IL-6, experiments were performed using IL-6 knock-out mice. Results: The differences in serum IL-6 and GCSF levels between the drug-treated and untreated groups were revealed by the magneto-nanosensor measurement on individual mice. Using the multiplex assays and mouse models, we found that IL-6 is secreted by the host in the presence of tumor cells upon the drug treatment. Conclusion: The multiplex magneto-nanosensor assays enable longitudinal proteomic studies on mouse tumor models to understand tumor development and therapy mechanisms more precisely within a single biological object. PMID:29507628
Lee, Jung-Rok; Appelmann, Iris; Miething, Cornelius; Shultz, Tyler O; Ruderman, Daniel; Kim, Dokyoon; Mallick, Parag; Lowe, Scott W; Wang, Shan X
2018-01-01
Cancer proteomics is the manifestation of relevant biological processes in cancer development. Thus, it reflects the activities of tumor cells, host-tumor interactions, and systemic responses to cancer therapy. To understand the causal effects of tumorigenesis or therapeutic intervention, longitudinal studies are greatly needed. However, most of the conventional mouse experiments are unlikely to accommodate frequent collection of serum samples with a large enough volume for multiple protein assays towards single-object analysis. Here, we present a technique based on magneto-nanosensors to longitudinally monitor the protein profiles in individual mice of lymphoma models using a small volume of a sample for multiplex assays. Methods: Drug-sensitive and -resistant cancer cell lines were used to develop the mouse models that render different outcomes upon the drug treatment. Two groups of mice were inoculated with each cell line, and treated with either cyclophosphamide or vehicle solution. Serum samples taken longitudinally from each mouse in the groups were measured with 6-plex magneto-nanosensor cytokine assays. To find the origin of IL-6, experiments were performed using IL-6 knock-out mice. Results: The differences in serum IL-6 and GCSF levels between the drug-treated and untreated groups were revealed by the magneto-nanosensor measurement on individual mice. Using the multiplex assays and mouse models, we found that IL-6 is secreted by the host in the presence of tumor cells upon the drug treatment. Conclusion: The multiplex magneto-nanosensor assays enable longitudinal proteomic studies on mouse tumor models to understand tumor development and therapy mechanisms more precisely within a single biological object.
"Mouse Clone Model" for evaluating the immunogenicity and tumorigenicity of pluripotent stem cells.
Zhang, Gang; Zhang, Yi
2015-12-18
To investigate the immune-rejection and tumor-formation potentials of induced pluripotent stem cells and other stem cells, we devised a model-designated the "Mouse Clone Model"-which combined the theory of somatic animal cloning, tetraploid complementation, and induced pluripotent stem cells to demonstrate the applicability of stem cells for transplantation therapy.
Investigating Mechanisms of Chronic Kidney Disease in Mouse Models
Eddy, Allison A.; Okamura, Daryl M.; Yamaguchi, Ikuyo; López-Guisa, Jesús M.
2011-01-01
Animal models of chronic kidney disease (CKD) are important experimental tools that are used to investigate novel mechanistic pathways and to validate potential new therapeutic interventions prior to pre-clinical testing in humans. Over the past several years, mouse CKD models have been extensively used for these purposes. Despite significant limitations, the model of unilateral ureteral obstruction (UUO) has essentially become the high throughput in vivo model, as it recapitulates the fundamental pathogenetic mechanisms that typify all forms of CKD in a relatively short time span. In addition, several alternative mouse models are available that can be used to validate new mechanistic paradigms and/or novel therapies. Several models are reviewed – both genetic and experimentally induced – that provide investigators with an opportunity to include renal functional study end-points together with quantitative measures of fibrosis severity, something that is not possible with the UUO model. PMID:21695449
CHARACTERIZATION OF AEROMONAS VIRULENCE USING AN IMMUNOCOMPROMISED MOUSE MODEL
An immunocompromised mouse model was used to characterize Aeromonas strains for their ability to cause opportunistic, extraintestinal infections. A total of 34 isolates of Aeromonas (A. hydrophila [n = 12]), A. veronii biotype sobria [n = 7], A. caviae [n = 4], A. enchelia [n = 4...
Systematic comparison of the behaviors produced by computational models of epileptic neocortex.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warlaumont, A. S.; Lee, H. C.; Benayoun, M.
2010-12-01
Two existing models of brain dynamics in epilepsy, one detailed (i.e., realistic) and one abstract (i.e., simplified) are compared in terms of behavioral range and match to in vitro mouse recordings. A new method is introduced for comparing across computational models that may have very different forms. First, high-level metrics were extracted from model and in vitro output time series. A principal components analysis was then performed over these metrics to obtain a reduced set of derived features. These features define a low-dimensional behavior space in which quantitative measures of behavioral range and degree of match to real data canmore » be obtained. The detailed and abstract models and the mouse recordings overlapped considerably in behavior space. Both the range of behaviors and similarity to mouse data were similar between the detailed and abstract models. When no high-level metrics were used and principal components analysis was computed over raw time series, the models overlapped minimally with the mouse recordings. The method introduced here is suitable for comparing across different kinds of model data and across real brain recordings. It appears that, despite differences in form and computational expense, detailed and abstract models do not necessarily differ in their behaviors.« less
Genetics of SLE: evidence from mouse models.
Morel, Laurence
2010-06-01
Great progress has been made in the field of lupus genetics in the past few years, notably with the publication of genome-wide association studies in humans and the identification of susceptibility genes (including Fcgr2b, Ly108, Kallikrein genes and Coronin-1A) in mouse models of spontaneous lupus. This influx of new information has revealed an ever-increasing interdependence between the mouse and human systems for unraveling the genetic basis of lupus susceptibility. Studies in the 1980s and 1990s established that mice prone to spontaneous lupus constitute excellent models of the genetic architecture of human systemic lupus erythematosus (SLE). This notion has been greatly strengthened by the convergence of the functional pathways that are defective in both human and murine lupus. Within these pathways, variants in a number of genes have now been shown to be directly associated with lupus in both species. Consequently, mouse models will continue to serve a pre-eminent role in lupus genetics research, with an increased emphasis on mechanistic and molecular studies of human susceptibility alleles.
The role of vertebrate models in understanding craniosynostosis.
Holmes, Greg
2012-09-01
Craniosynostosis (CS), the premature fusion of cranial sutures, is a relatively common pediatric anomaly, occurring in isolation or as part of a syndrome. A growing number of genes with pathologic mutations have been identified for syndromic and nonsyndromic CS. The study of human sutural material obtained post-operatively is not sufficient to understand the etiology of CS, for which animal models are indispensable. The similarity of the human and murine calvarial structure, our knowledge of mouse genetics and biology, and ability to manipulate the mouse genome make the mouse the most valuable model organism for CS research. A variety of mouse mutants are available that model specific human CS mutations or have CS phenotypes. These allow characterization of the biochemical and morphological events, often embryonic, which precede suture fusion. Other vertebrate organisms have less functional genetic utility than mice, but the rat, rabbit, chick, zebrafish, and frog provide alternative systems in which to validate or contrast molecular functions relevant to CS.
Connor, Kip M; Krah, Nathan M; Dennison, Roberta J; Aderman, Christopher M; Chen, Jing; Guerin, Karen I; Sapieha, Przemyslaw; Stahl, Andreas; Willett, Keirnan L; Smith, Lois E H
2013-01-01
The mouse model of oxygen-induced retinopathy (OIR) has been widely used in studies related to retinopathy of prematurity, proliferative diabetic retinopathy and in studies evaluating the efficacy of antiangiogenic compounds. In this model, 7-d-old (P7) mouse pups with nursing mothers are subjected to hyperoxia (75% oxygen) for 5 d, which inhibits retinal vessel growth and causes significant vessel loss. on P12, mice are returned to room air and the hypoxic avascular retina triggers both normal vessel regrowth and retinal neovascularization (NV), which is maximal at P17. neovascularization spontaneously regresses between P17 and P25. although the OIR model has been the cornerstone of studies investigating proliferative retinopathies, there is currently no harmonized protocol to assess aspects of angiogenesis and treatment outcome. In this protocol we describe standards for mouse size, sample size, retinal preparation, quantification of vascular loss, vascular regrowth, NV and neovascular regression. PMID:19816419
Biology and therapy of inherited retinal degenerative disease: insights from mouse models
Veleri, Shobi; Lazar, Csilla H.; Chang, Bo; Sieving, Paul A.; Banin, Eyal; Swaroop, Anand
2015-01-01
Retinal neurodegeneration associated with the dysfunction or death of photoreceptors is a major cause of incurable vision loss. Tremendous progress has been made over the last two decades in discovering genes and genetic defects that lead to retinal diseases. The primary focus has now shifted to uncovering disease mechanisms and designing treatment strategies, especially inspired by the successful application of gene therapy in some forms of congenital blindness in humans. Both spontaneous and laboratory-generated mouse mutants have been valuable for providing fundamental insights into normal retinal development and for deciphering disease pathology. Here, we provide a review of mouse models of human retinal degeneration, with a primary focus on diseases affecting photoreceptor function. We also describe models associated with retinal pigment epithelium dysfunction or synaptic abnormalities. Furthermore, we highlight the crucial role of mouse models in elucidating retinal and photoreceptor biology in health and disease, and in the assessment of novel therapeutic modalities, including gene- and stem-cell-based therapies, for retinal degenerative diseases. PMID:25650393
A Progressive Translational Mouse Model of Human VCP Disease: The VCP R155H/+ Mouse
Nalbandian, Angèle; Llewellyn, Katrina J.; Badadani, Mallikarjun; Yin, Hong Z.; Nguyen, Christopher; Katheria, Veeral; Watts, Giles; Mukherjee, Jogeshwar; Vesa, Jouni; Caiozzo, Vincent; Mozaffar, Tahseen; Weiss, John H.; Kimonis, Virginia E.
2012-01-01
Introduction Mutations in the valosin containing protein (VCP) gene cause hereditary Inclusion Body Myopathy (hIBM) associated with Paget disease of bone (PDB), and frontotemporal dementia (FTD). More recently they have been linked to 2% of familial ALS cases. A knock-in mouse model offers the opportunity to study VCP-associated pathogenesis. Methods The VCPR155H/+ knock-in mouse model was assessed for muscle strength, immunohistochemical, Western, apoptosis, autophagy and MicroPET/CT imaging analyses. Results VCPR155H/+ mice developed significant progressive muscle weakness, and the quadriceps and brain developed progressive cytoplasmic accumulation of TDP-43, ubiquitin-positive inclusion bodies and increased LC3-II staining. MicroCT analyses revealed Paget-like lesions at the ends of long bones. Spinal cord demonstrated neurodegenerative changes, ubiquitin, and TDP-43 pathology of motor neurons. Discussion VCPR155H/+ knock-in mice represent an excellent pre-clinical model for understanding VCP-associated disease mechanisms and future treatments. PMID:23169451
CaveCAD: a tool for architectural design in immersive virtual environments
NASA Astrophysics Data System (ADS)
Schulze, Jürgen P.; Hughes, Cathleen E.; Zhang, Lelin; Edelstein, Eve; Macagno, Eduardo
2014-02-01
Existing 3D modeling tools were designed to run on desktop computers with monitor, keyboard and mouse. To make 3D modeling possible with mouse and keyboard, many 3D interactions, such as point placement or translations of geometry, had to be mapped to the 2D parameter space of the mouse, possibly supported by mouse buttons or keyboard keys. We hypothesize that had the designers of these existing systems had been able to assume immersive virtual reality systems as their target platforms, they would have been able to design 3D interactions much more intuitively. In collaboration with professional architects, we created a simple, but complete 3D modeling tool for virtual environments from the ground up and use direct 3D interaction wherever possible and adequate. In this publication, we present our approaches for interactions for typical 3D modeling functions, such as geometry creation, modification of existing geometry, and assignment of surface materials. We also discuss preliminary user experiences with this system.
IN VIVO ANTI-INFLAMMATORY EFFECTS OF TARAXASTEROL AGAINST ANIMAL MODELS
Wang, Ying; Li, Guan-Hao; Liu, Xin-Yu; Xu, Lu; Wang, Sha-Sha; Zhang, Xue-Mei
2017-01-01
Background: Traditional Chinese medicine Taraxacum officinale has been widely used to treat various inflammatory diseases. Taraxasterol is one of the main active components isolated from Taraxacum officinale. Recently, we have demonstrated that taraxasterol has the in vitro anti-inflammatory effects. This study aims to determine the in vivo anti-inflammatory effects of taraxasterol against animal models. Materials and Methods: Anti-inflammatory effects were assessed in four animal models by using dimethylbenzene-induced mouse ear edema, carrageenan-induced rat paw edema, acetic acid-induced mouse vascular permeability and cotton pellet-induced rat granuloma tests. Results: Our results demonstrated that taraxasterol dose-dependently attenuated dimethylbenzene-induced mouse ear edema and carrageenan-induced rat paw edema, decreased acetic acid-induced mouse vascular permeability and inhibited cotton pellet-induced rat granuloma formation. Conclusion: Our finding indicates that taraxasterol has obvious in vivo anti-inflammatory effects against animal models. It will provide experimental evidences for the traditional use of Taraxacum officinale and taraxasterol in inflammatory diseases. PMID:28480383
Zhang, Le; Dasuri, Kalavathi; Fernandez-Kim, Sun-Ok; Bruce-Keller, Annadora J; Freeman, Linnea R; Pepping, Jennifer K; Beckett, Tina L; Murphy, M Paul; Keller, Jeffrey N
2013-09-01
Cerebral amyloid angiopathy (CAA) occurs in nearly every individual with Alzheimer's disease (AD) and Down's syndrome, and is the second largest cause of intracerebral hemorrhage. Mouse models of CAA have demonstrated evidence for increased gliosis contributing to CAA pathology. Nearly two thirds of Americans are overweight or obese, with little known about the effects of obesity on the brain, although increasingly the vasculature appears to be a principle target of obesity effects on the brain. In the current study we describe for the first time whether diet induced obesity (DIO) modulates glial reactivity, amyloid levels, and inflammatory signaling in a mouse model of CAA. In these studies we identify surprisingly that DIO does not significantly increase Aβ levels, astrocyte (GFAP) or microglial (IBA-1) gliosis in the CAA mice. However, within the hippocampal gyri a localized increase in reactive microglia were increased in the CA1 and stratum oriens relative to CAA mice on a control diet. DIO was observed to selectively increase IL-6 in CAA mice, with IL-1β and TNF-α not increased in CAA mice in response to DIO. Taken together, these data show that prolonged DIO has only modest effects towards Aβ in a mouse model of CAA, but appears to elevate some localized microglial reactivity within the hippocampal gyri and selective markers of inflammatory signaling. These data are consistent with the majority of the existing literature in other models of Aβ pathology, which surprisingly show a mixed profile of DIO effects towards pathological processes in mouse models of neurodegenerative disease. The importance for considering the potential impact of ceiling effects in pathology within mouse models of Aβ pathogenesis, and the current experimental limitations for DIO in mice to fully replicate metabolic dysfunction present in human obesity, are discussed. This article is part of a Special Issue entitled: Animal Models of Disease. Copyright © 2012. Published by Elsevier B.V.
Histological and reference system for the analysis of mouse intervertebral disc.
Tam, Vivian; Chan, Wilson C W; Leung, Victor Y L; Cheah, Kathryn S E; Cheung, Kenneth M C; Sakai, Daisuke; McCann, Matthew R; Bedore, Jake; Séguin, Cheryle A; Chan, Danny
2018-01-01
A new scoring system based on histo-morphology of mouse intervertebral disc (IVD) was established to assess changes in different mouse models of IVD degeneration and repair. IVDs from mouse strains of different ages, transgenic mice, or models of artificially induced IVD degeneration were assessed. Morphological features consistently observed in normal, and early/later stages of degeneration were categorized into a scoring system focused on nucleus pulposus (NP) and annulus fibrosus (AF) changes. "Normal NP" exhibited a highly cellularized cell mass that decreased with natural ageing and in disc degeneration. "Normal AF" consisted of distinct concentric lamellar structures, which was disrupted in severe degeneration. NP/AF clefts indicated more severe changes. Consistent scores were obtained between experienced and new users. Altogether, our scoring system effectively differentiated IVD changes in various strains of wild-type and genetically modified mice and in induced models of IVD degeneration, and is applicable from the post-natal stage to the aged mouse. This scoring tool and reference resource addresses a pressing need in the field for studying IVD changes and cross-study comparisons in mice, and facilitates a means to normalize mouse IVD assessment between different laboratories. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:233-243, 2018. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Generation of a mouse model for studying the role of upregulated RTEL1 activity in tumorigenesis.
Wu, Xiaoli; Sandhu, Sumit; Nabi, Zinnatun; Ding, Hao
2012-10-01
Regulator of telomere length 1 (RTEL1) is a DNA helicase protein that has been demonstrated to be required for the maintenance of telomere length and genomic stability. It has also been found to be essential for DNA homologous recombination during DNA repairing. Human RTEL1 genomic locus (20q13.3) is frequently amplified in multiple types of human cancers, including hepatocellular carcinoma and gastrointestinal tract tumors, indicating that upregulated RTEL1 activity could be important for tumorigenesis. In this study, we have developed a conditional transgenic mouse model that overexpress mouse Rtel1 in a Cre-excision manner. By crossing with a ubiquitous Cre mouse line, we further demonstrated that these established Rtel1 conditional transgenic mice allow to efficiently and highly express a functional Rtel1 that is able to rescue the embryonic defects of Rtel1 null mouse allele. Furthermore, we demonstrated that more than 70% transgenic mice that widely overexpress Rtel1 developed liver tumors that recapitulate many malignant features of human hepatocellular carcinoma (HCC). Our work not only generated a valuable mouse model for determining the role of RTEL1 in the development of cancers, but also provided the first genetic evidence to support that amplification of RTEL1, as observed in several types of human cancers, is tumorigenic.
Fitzpatrick, Collin J.; Suschak, John J.; Richards, Michelle J.; Badger, Catherine V.; Six, Carolyn M.; Martin, Jacqueline D.; Hannaman, Drew; Zivcec, Marko; Bergeron, Eric; Koehler, Jeffrey W.; Schmaljohn, Connie S.
2017-01-01
Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne virus capable of causing a severe hemorrhagic fever disease in humans. There are currently no licensed vaccines to prevent CCHFV-associated disease. We developed a DNA vaccine expressing the M-segment glycoprotein precursor gene of CCHFV and assessed its immunogenicity and protective efficacy in two lethal mouse models of disease: type I interferon receptor knockout (IFNAR-/-) mice; and a novel transiently immune suppressed (IS) mouse model. Vaccination of mice by muscle electroporation of the M-segment DNA vaccine elicited strong antigen-specific humoral immune responses with neutralizing titers after three vaccinations in both IFNAR-/- and IS mouse models. To compare the protective efficacy of the vaccine in the two models, groups of vaccinated mice (7–10 per group) were intraperitoneally (IP) challenged with a lethal dose of CCHFV strain IbAr 10200. Weight loss was markedly reduced in CCHFV DNA-vaccinated mice as compared to controls. Furthermore, whereas all vector-control vaccinated mice succumbed to disease by day 5, the DNA vaccine protected >60% of the animals from lethal disease. Mice from both models developed comparable levels of antibodies, but the IS mice had a more balanced Th1/Th2 response to vaccination. There were no statistical differences in the protective efficacies of the vaccine in the two models. Our results provide the first comparison of these two mouse models for assessing a vaccine against CCHFV and offer supportive data indicating that a DNA vaccine expressing the glycoprotein genes of CCHFV elicits protective immunity against CCHFV. PMID:28922426
Garrison, Aura R; Shoemaker, Charles J; Golden, Joseph W; Fitzpatrick, Collin J; Suschak, John J; Richards, Michelle J; Badger, Catherine V; Six, Carolyn M; Martin, Jacqueline D; Hannaman, Drew; Zivcec, Marko; Bergeron, Eric; Koehler, Jeffrey W; Schmaljohn, Connie S
2017-09-01
Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne virus capable of causing a severe hemorrhagic fever disease in humans. There are currently no licensed vaccines to prevent CCHFV-associated disease. We developed a DNA vaccine expressing the M-segment glycoprotein precursor gene of CCHFV and assessed its immunogenicity and protective efficacy in two lethal mouse models of disease: type I interferon receptor knockout (IFNAR-/-) mice; and a novel transiently immune suppressed (IS) mouse model. Vaccination of mice by muscle electroporation of the M-segment DNA vaccine elicited strong antigen-specific humoral immune responses with neutralizing titers after three vaccinations in both IFNAR-/- and IS mouse models. To compare the protective efficacy of the vaccine in the two models, groups of vaccinated mice (7-10 per group) were intraperitoneally (IP) challenged with a lethal dose of CCHFV strain IbAr 10200. Weight loss was markedly reduced in CCHFV DNA-vaccinated mice as compared to controls. Furthermore, whereas all vector-control vaccinated mice succumbed to disease by day 5, the DNA vaccine protected >60% of the animals from lethal disease. Mice from both models developed comparable levels of antibodies, but the IS mice had a more balanced Th1/Th2 response to vaccination. There were no statistical differences in the protective efficacies of the vaccine in the two models. Our results provide the first comparison of these two mouse models for assessing a vaccine against CCHFV and offer supportive data indicating that a DNA vaccine expressing the glycoprotein genes of CCHFV elicits protective immunity against CCHFV.
Mouse Models for Drug Discovery. Can New Tools and Technology Improve Translational Power?
Zuberi, Aamir; Lutz, Cathleen
2016-12-01
The use of mouse models in biomedical research and preclinical drug evaluation is on the rise. The advent of new molecular genome-altering technologies such as CRISPR/Cas9 allows for genetic mutations to be introduced into the germ line of a mouse faster and less expensively than previous methods. In addition, the rapid progress in the development and use of somatic transgenesis using viral vectors, as well as manipulations of gene expression with siRNAs and antisense oligonucleotides, allow for even greater exploration into genomics and systems biology. These technological advances come at a time when cost reductions in genome sequencing have led to the identification of pathogenic mutations in patient populations, providing unprecedented opportunities in the use of mice to model human disease. The ease of genetic engineering in mice also offers a potential paradigm shift in resource sharing and the speed by which models are made available in the public domain. Predictively, the knowledge alone that a model can be quickly remade will provide relief to resources encumbered by licensing and Material Transfer Agreements. For decades, mouse strains have provided an exquisite experimental tool to study the pathophysiology of the disease and assess therapeutic options in a genetically defined system. However, a major limitation of the mouse has been the limited genetic diversity associated with common laboratory mice. This has been overcome with the recent development of the Collaborative Cross and Diversity Outbred mice. These strains provide new tools capable of replicating genetic diversity to that approaching the diversity found in human populations. The Collaborative Cross and Diversity Outbred strains thus provide a means to observe and characterize toxicity or efficacy of new therapeutic drugs for a given population. The combination of traditional and contemporary mouse genome editing tools, along with the addition of genetic diversity in new modeling systems, are synergistic and serve to make the mouse a better model for biomedical research, enhancing the potential for preclinical drug discovery and personalized medicine. © The Author 2016. Published by Oxford University Press.
Mice Expressing RHAG and RHD Human Blood Group Genes
Goossens, Dominique; da Silva, Nelly; Metral, Sylvain; Cortes, Ulrich; Callebaut, Isabelle; Picot, Julien; Mouro-Chanteloup, Isabelle; Cartron, Jean-Pierre
2013-01-01
Anti-RhD prophylaxis of haemolytic disease of the fetus and newborn (HDFN) is highly effective, but as the suppressive mechanism remains uncertain, a mouse model would be of interest. Here we have generated transgenic mice expressing human RhAG and RhD erythrocyte membrane proteins in the presence and, for human RhAG, in the absence, of mouse Rhag. Human RhAG associates with mouse Rh but not mouse Rhag on red blood cells. In Rhag knockout mice transgenic for human RHAG, the mouse Rh protein is “rescued” (re-expressed), and co-immunoprecipitates with human RhAG, indicating the presence of hetero-complexes which associate mouse and human proteins. RhD antigen was expressed from a human RHD gene on a BAC or from RHD cDNA under control of β-globin regulatory elements. RhD was never observed alone, strongly indicative that its expression absolutely depends on the presence of transgenic human RhAG. This first expression of RhD in mice is an important step in the creation of a mouse model of RhD allo-immunisation and HDFN, in conjunction with the Rh-Rhag knockout mice we have developed previously. PMID:24260394
Chopra, Vanita; Quinti, Luisa; Khanna, Prarthana; Paganetti, Paolo; Kuhn, Rainer; Young, Anne B.; Kazantsev, Aleksey G.; Hersch, Steven
2016-01-01
Background: Modulation of gene transcription by HDAC inhibitors has been shown repeatedly to be neuroprotective in cellular, invertebrate, and rodent models of Huntington’s disease (HD). It has been difficult to translate these treatments to the clinic, however, because existing compounds have limited potency or brain bioavailability. Objective: In the present study, we assessed the therapeutic potential of LBH589, an orally bioavailable hydroxamic acid-derived nonselective HDAC inhibitor in mouse models of HD. Method: The efficacy of LBH589 is tested in two HD mouse models using various biochemical, behavioral and neuropathological outcome measures. Results: We show that LBH589 crosses the blood brain barrier; induces histone hyperacetylation and prevents striatal neuronal shrinkage in R6/2 HD mice. In full-length knock-in HD mice LBH589-treatment improves motor performance and reduces neuronal atrophy. Conclusions: Our efficacious results of LBH589 in fragment and full-length mouse models of HD suggest that LBH589 is a promising candidate for clinical assessment in HD patients and provides confirmation that non-selective HDAC inhibitors can be viable clinical candidates. PMID:27983565
De Wilde, Bram; Beckers, Anneleen; Lindner, Sven; Kristina, Althoff; De Preter, Katleen; Depuydt, Pauline; Mestdagh, Pieter; Sante, Tom; Lefever, Steve; Hertwig, Falk; Peng, Zhiyu; Shi, Le-Ming; Lee, Sangkyun; Vandermarliere, Elien; Martens, Lennart; Menten, Björn; Schramm, Alexander; Fischer, Matthias; Schulte, Johannes; Vandesompele, Jo; Speleman, Frank
2018-02-02
Genetically engineered mouse models have proven to be essential tools for unraveling fundamental aspects of cancer biology and for testing novel therapeutic strategies. To optimally serve these goals, it is essential that the mouse model faithfully recapitulates the human disease. Recently, novel mouse models for neuroblastoma have been developed. Here, we report on the further genomic characterization through exome sequencing and DNA copy number analysis of four of the currently available murine neuroblastoma model systems ( ALK, Th- MYCN, Dbh- MYCN and Lin28b ). The murine tumors revealed a low number of genomic alterations - in keeping with human neuroblastoma - and a positive correlation of the number of genetic lesions with the time to onset of tumor formation was observed. Gene copy number alterations are the hallmark of both murine and human disease and frequently affect syntenic genomic regions. Despite low mutational load, the genes mutated in murine disease were found to be enriched for genes mutated in human disease. Taken together, our study further supports the validity of the tested mouse models for mechanistic and preclinical studies of human neuroblastoma.
Chopra, Vanita; Quinti, Luisa; Khanna, Prarthana; Paganetti, Paolo; Kuhn, Rainer; Young, Anne B; Kazantsev, Aleksey G; Hersch, Steven
2016-12-15
Modulation of gene transcription by HDAC inhibitors has been shown repeatedly to be neuroprotective in cellular, invertebrate, and rodent models of Huntington's disease (HD). It has been difficult to translate these treatments to the clinic, however, because existing compounds have limited potency or brain bioavailability. In the present study, we assessed the therapeutic potential of LBH589, an orally bioavailable hydroxamic acid-derived nonselective HDAC inhibitor in mouse models of HD. The efficacy of LBH589 is tested in two HD mouse models using various biochemical, behavioral and neuropathological outcome measures. We show that LBH589 crosses the blood brain barrier; induces histone hyperacetylation and prevents striatal neuronal shrinkage in R6/2 HD mice. In full-length knock-in HD mice LBH589-treatment improves motor performance and reduces neuronal atrophy. Our efficacious results of LBH589 in fragment and full-length mouse models of HD suggest that LBH589 is a promising candidate for clinical assessment in HD patients and provides confirmation that non-selective HDAC inhibitors can be viable clinical candidates.
Atherosclerotic lesions in mouse and man: is it the same disease?
Bentzon, Jacob Fog; Falk, Erling
2010-10-01
Genetically-engineered mice with hyperlipidemia are the most widely used atherosclerosis models today, but recent advances in transgenesis open the possibility to create new models in alternative species, such as the rat and pig. It seems relevant at this point in time to review some of the strengths and weaknesses of the mouse. The histology of lesion development in mouse and man has more similarities than differences, and comparative genetics show that many mechanisms of murine and human atherogenesis are shared. Unfortunately, the most feared complication of human atherosclerosis, that is, plaque rupture and thrombosis, occur extremely rarely in mice. This is a major problem. Most patients today are not treated before symptoms ensue, and at this late stage of the disease, mechanisms identified during plaque development in the mouse may not be very important. Murine atherosclerosis models are highly valuable for identifying atherogenic mechanisms that can be targeted by preventive medicine. However, models with thrombotic complications and large animal models suitable for interventional procedures and imaging would be more supportive for current clinical practice and are highly wanted.
Wild-derived mouse stocks: an underappreciated tool for aging research
2008-01-01
Virtually all biomedical research makes use of a relatively small pool of laboratory-adapted, inbred, isogenic stocks of mice. Although the advantages of these models are many, there are a number of disadvantages as well. When studying a multifaceted process such as aging, the problems associated with using laboratory stocks are greatly inflated. On the other hand, wild-derived mouse stocks, loosely defined here as either wild-caught individuals or the recent progeny of wild-caught individuals, have much to offer to biogerontology research. Hence, the aims of this review are threefold: (1) to (re)acquaint readers with the pros and cons of using a typical inbred laboratory mouse model for aging research; (2) to reintroduce the notion of using wild-derived mouse stocks in aging research as championed by Austad, Miller and others for more than a decade, and (3) to provide an overview of recent advances in biogerontology using wild-derived mouse stocks. PMID:19424863
Colinot, Darrelle L; Garbuz, Tamila; Bosland, Maarten C; Wang, Liang; Rice, Susan E; Sullivan, William J; Arrizabalaga, Gustavo; Jerde, Travis J
2017-07-01
Inflammation is the most prevalent and widespread histological finding in the human prostate, and associates with the development and progression of benign prostatic hyperplasia and prostate cancer. Several factors have been hypothesized to cause inflammation, yet the role each may play in the etiology of prostatic inflammation remains unclear. This study examined the possibility that the common protozoan parasite Toxoplasma gondii induces prostatic inflammation and reactive hyperplasia in a mouse model. Male mice were infected systemically with T. gondii parasites and prostatic inflammation was scored based on severity and focality of infiltrating leukocytes and epithelial hyperplasia. We characterized inflammatory cells with flow cytometry and the resulting epithelial proliferation with bromodeoxyuridine (BrdU) incorporation. We found that T. gondii infects the mouse prostate within the first 14 days of infection and can establish parasite cysts that persist for at least 60 days. T. gondii infection induces a substantial and chronic inflammatory reaction in the mouse prostate characterized by monocytic and lymphocytic inflammatory infiltrate. T. gondii-induced inflammation results in reactive hyperplasia, involving basal and luminal epithelial proliferation, and the exhibition of proliferative inflammatory microglandular hyperplasia in inflamed mouse prostates. This study identifies the common parasite T. gondii as a new trigger of prostatic inflammation, which we used to develop a novel mouse model of prostatic inflammation. This is the first report that T. gondii chronically encysts and induces chronic inflammation within the prostate of any species. Furthermore, T. gondii-induced prostatic inflammation persists and progresses without genetic manipulation in mice, offering a powerful new mouse model for the study of chronic prostatic inflammation and microglandular hyperplasia. © 2017 Wiley Periodicals, Inc.
The Mouse Lemur, a Genetic Model Organism for Primate Biology, Behavior, and Health
Ezran, Camille; Karanewsky, Caitlin J.; Pendleton, Jozeph L.; Sholtz, Alex; Krasnow, Maya R.; Willick, Jason; Razafindrakoto, Andriamahery; Zohdy, Sarah; Albertelli, Megan A.; Krasnow, Mark A.
2017-01-01
Systematic genetic studies of a handful of diverse organisms over the past 50 years have transformed our understanding of biology. However, many aspects of primate biology, behavior, and disease are absent or poorly modeled in any of the current genetic model organisms including mice. We surveyed the animal kingdom to find other animals with advantages similar to mice that might better exemplify primate biology, and identified mouse lemurs (Microcebus spp.) as the outstanding candidate. Mouse lemurs are prosimian primates, roughly half the genetic distance between mice and humans. They are the smallest, fastest developing, and among the most prolific and abundant primates in the world, distributed throughout the island of Madagascar, many in separate breeding populations due to habitat destruction. Their physiology, behavior, and phylogeny have been studied for decades in laboratory colonies in Europe and in field studies in Malagasy rainforests, and a high quality reference genome sequence has recently been completed. To initiate a classical genetic approach, we developed a deep phenotyping protocol and have screened hundreds of laboratory and wild mouse lemurs for interesting phenotypes and begun mapping the underlying mutations, in collaboration with leading mouse lemur biologists. We also seek to establish a mouse lemur gene “knockout” library by sequencing the genomes of thousands of mouse lemurs to identify null alleles in most genes from the large pool of natural genetic variants. As part of this effort, we have begun a citizen science project in which students across Madagascar explore the remarkable biology around their schools, including longitudinal studies of the local mouse lemurs. We hope this work spawns a new model organism and cultivates a deep genetic understanding of primate biology and health. We also hope it establishes a new and ethical method of genetics that bridges biological, behavioral, medical, and conservation disciplines, while providing an example of how hands-on science education can help transform developing countries. PMID:28592502
The Mouse Lemur, a Genetic Model Organism for Primate Biology, Behavior, and Health.
Ezran, Camille; Karanewsky, Caitlin J; Pendleton, Jozeph L; Sholtz, Alex; Krasnow, Maya R; Willick, Jason; Razafindrakoto, Andriamahery; Zohdy, Sarah; Albertelli, Megan A; Krasnow, Mark A
2017-06-01
Systematic genetic studies of a handful of diverse organisms over the past 50 years have transformed our understanding of biology. However, many aspects of primate biology, behavior, and disease are absent or poorly modeled in any of the current genetic model organisms including mice. We surveyed the animal kingdom to find other animals with advantages similar to mice that might better exemplify primate biology, and identified mouse lemurs ( Microcebus spp.) as the outstanding candidate. Mouse lemurs are prosimian primates, roughly half the genetic distance between mice and humans. They are the smallest, fastest developing, and among the most prolific and abundant primates in the world, distributed throughout the island of Madagascar, many in separate breeding populations due to habitat destruction. Their physiology, behavior, and phylogeny have been studied for decades in laboratory colonies in Europe and in field studies in Malagasy rainforests, and a high quality reference genome sequence has recently been completed. To initiate a classical genetic approach, we developed a deep phenotyping protocol and have screened hundreds of laboratory and wild mouse lemurs for interesting phenotypes and begun mapping the underlying mutations, in collaboration with leading mouse lemur biologists. We also seek to establish a mouse lemur gene "knockout" library by sequencing the genomes of thousands of mouse lemurs to identify null alleles in most genes from the large pool of natural genetic variants. As part of this effort, we have begun a citizen science project in which students across Madagascar explore the remarkable biology around their schools, including longitudinal studies of the local mouse lemurs. We hope this work spawns a new model organism and cultivates a deep genetic understanding of primate biology and health. We also hope it establishes a new and ethical method of genetics that bridges biological, behavioral, medical, and conservation disciplines, while providing an example of how hands-on science education can help transform developing countries. Copyright © 2017 by the Genetics Society of America.
Ariyasu, Hiroyuki; Akamizu, Takashi
2015-01-01
Ghrelin, an endogenous ligand for the growth hormone (GH) secretagogue receptor (GHS-R or ghrelin receptor), is a 28-amino acid acylated peptide mainly produced in the stomach. The pharmacological administration of ghrelin is known to exert diverse effects, such as stimulating GH secretion, promoting food intake, and increasing adiposity. In recent years, genetically engineered mouse models have provided important insights into the physiology of various hormones. In this review, we discuss current knowledge regarding the physiological significance of ghrelin on the basis of studies using genetically engineered mouse models with modifications in the ghrelin system.
Idiopathic paraproteinaemia. I. Studies in an animal model--the ageing C57BL/KaLwRij mouse.
Radl, J; Hollander, C F; van den Berg, P; de Glopper, E
1978-01-01
A search for a suitable animal model for studies on idiopathic paraproteinaemia showed that an age-dependent increase in the appearance of homogeneous immunoglobulins in serum was common to all of the seven mouse strains investigated to date. The highest frequency was found in C57Bl/KaLwRij mice. Further investigations in this strain demonstrated that, except for some quantitative differences, most of the features of human and C57BL Mouse idiopathic paraproteinaemia were essentially the same. No clear-cut correlation was found between the idiopathic paraproteinaemia and, in the old C57B1 mice, a rather frequently occurring reticulum cell sarcoma B and amyloidosis. The mouse idiopathic paraproteinaemia can be regarded as an analogue of the human idiopathic paraproteinaemia and therefore as a suitable model for further experimental studies. PMID:367647
HEMATOPOIETIC STEM CELL GENE THERAPY: ASSESSING THE RELEVANCE OF PRE-CLINICAL MODELS
Larochelle, Andre; Dunbar, Cynthia E.
2013-01-01
The modern laboratory mouse has become a central tool for biomedical research with a notable influence in the field of hematopoiesis. Application of retroviral-based gene transfer approaches to mouse hematopoietic stem cells (HSCs) has led to a sophisticated understanding of the hematopoietic hierarchy in this model. However, the assumption that gene transfer methodologies developed in the mouse could be similarly applied to human HSCs for the treatment of human diseases left the field of gene therapy in a decade-long quandary. It is not until more relevant humanized xenograft mouse models and phylogenetically related large animal species were used to optimize gene transfer methodologies that unequivocal clinical successes were achieved. However, the subsequent reporting of severe adverse events in these clinical trials casted doubts on the predictive value of conventional pre-clinical testing, and encouraged the development of new assays for assessing the relative genotoxicity of various vector designs. PMID:24014892
A Redox Sensitive Pathway in the Mouse ES Cell Assay Modeled From ToxCast HTS Data
The broad chemical landscape coupled with the lack of developmental toxicity information across most environmental chemicals has motivated the need for high- throughput screening methods and predictive models of developmental toxicity. Towards this end, we used the mouse embryoni...
New Mouse Model May Aid in Developing Effective Therapies for Ovarian Cancer | Poster
By Frank Blanchard, Staff Writer A new genetically engineered mouse model appears promising as an effective tool for preclinical testing of novel therapies for ovarian cancer, which tends to be diagnosed in late stage. There are few effective treatments for the disease.
Martins-Bach, Aurea B; Malheiros, Jackeline; Matot, Béatrice; Martins, Poliana C M; Almeida, Camila F; Caldeira, Waldir; Ribeiro, Alberto F; Loureiro de Sousa, Paulo; Azzabou, Noura; Tannús, Alberto; Carlier, Pierre G; Vainzof, Mariz
2015-01-01
Quantitative nuclear magnetic resonance imaging (MRI) has been considered a promising non-invasive tool for monitoring therapeutic essays in small size mouse models of muscular dystrophies. Here, we combined MRI (anatomical images and transverse relaxation time constant-T2-measurements) to texture analyses in the study of four mouse strains covering a wide range of dystrophic phenotypes. Two still unexplored mouse models of muscular dystrophies were analyzed: The severely affected Largemyd mouse and the recently generated and worst double mutant mdx/Largemyd mouse, as compared to the mildly affected mdx and normal mice. The results were compared to histopathological findings. MRI showed increased intermuscular fat and higher muscle T2 in the three dystrophic mouse models when compared to the wild-type mice (T2: mdx/Largemyd: 37.6±2.8 ms; mdx: 35.2±4.5 ms; Largemyd: 36.6±4.0 ms; wild-type: 29.1±1.8 ms, p<0.05), in addition to higher muscle T2 in the mdx/Largemyd mice when compared to mdx (p<0.05). The areas with increased muscle T2 in the MRI correlated spatially with the identified histopathological alterations such as necrosis, inflammation, degeneration and regeneration foci. Nevertheless, muscle T2 values were not correlated with the severity of the phenotype in the 3 dystrophic mouse strains, since the severely affected Largemyd showed similar values than both the mild mdx and worst mdx/Largemyd lineages. On the other hand, all studied mouse strains could be unambiguously identified with texture analysis, which reflected the observed differences in the distribution of signals in muscle MRI. Thus, combined T2 intensity maps and texture analysis is a powerful approach for the characterization and differentiation of dystrophic muscles with diverse genotypes and phenotypes. These new findings provide important noninvasive tools in the evaluation of the efficacy of new therapies, and most importantly, can be directly applied in human translational research.
Martins-Bach, Aurea B.; Malheiros, Jackeline; Matot, Béatrice; Martins, Poliana C. M.; Almeida, Camila F.; Caldeira, Waldir; Ribeiro, Alberto F.; Loureiro de Sousa, Paulo; Azzabou, Noura; Tannús, Alberto; Carlier, Pierre G.; Vainzof, Mariz
2015-01-01
Quantitative nuclear magnetic resonance imaging (MRI) has been considered a promising non-invasive tool for monitoring therapeutic essays in small size mouse models of muscular dystrophies. Here, we combined MRI (anatomical images and transverse relaxation time constant—T2—measurements) to texture analyses in the study of four mouse strains covering a wide range of dystrophic phenotypes. Two still unexplored mouse models of muscular dystrophies were analyzed: The severely affected Largemyd mouse and the recently generated and worst double mutant mdx/Largemyd mouse, as compared to the mildly affected mdx and normal mice. The results were compared to histopathological findings. MRI showed increased intermuscular fat and higher muscle T2 in the three dystrophic mouse models when compared to the wild-type mice (T2: mdx/Largemyd: 37.6±2.8 ms; mdx: 35.2±4.5 ms; Largemyd: 36.6±4.0 ms; wild-type: 29.1±1.8 ms, p<0.05), in addition to higher muscle T2 in the mdx/Largemyd mice when compared to mdx (p<0.05). The areas with increased muscle T2 in the MRI correlated spatially with the identified histopathological alterations such as necrosis, inflammation, degeneration and regeneration foci. Nevertheless, muscle T2 values were not correlated with the severity of the phenotype in the 3 dystrophic mouse strains, since the severely affected Largemyd showed similar values than both the mild mdx and worst mdx/Largemyd lineages. On the other hand, all studied mouse strains could be unambiguously identified with texture analysis, which reflected the observed differences in the distribution of signals in muscle MRI. Thus, combined T2 intensity maps and texture analysis is a powerful approach for the characterization and differentiation of dystrophic muscles with diverse genotypes and phenotypes. These new findings provide important noninvasive tools in the evaluation of the efficacy of new therapies, and most importantly, can be directly applied in human translational research. PMID:25710816
Development and testing of a mouse simulated space flight model
NASA Technical Reports Server (NTRS)
Sonnenfeld, G.
1985-01-01
The development and testing of a mouse model for simulating some aspects of weightlessness that occur during space flight, and the carrying out of immunological flight experiments on animals was discussed. The mouse model is an antiorthostatic, hypokinetic, hypodynamic suspension model similar to the one used with rats. It is shown that this murine model yield similar results to the rat model of antiorthostatic suspension for simulating some aspects of weightlessness. It is also shown that mice suspended in this model have decreased interferon-alpha/beta production as compared to control, nonsuspended mice or to orthostatically suspended mice. It is suggested that the conditions occuring during space flight could possibly affect interferon production. The regulatory role of interferon in nonviral diseases is demonstrated including several bacterial and protozoan infections indicating the great significance of interferon in resistance to many types of infectious diseases.
Generation of a pancreatic cancer model using a Pdx1-Flp recombinase knock-in allele
Wu, Jinghai; Liu, Xin; Nayak, Sunayana G.; Pitarresi, Jason R.; Cuitiño, Maria C.; Yu, Lianbo; Hildreth, Blake E.; Thies, Katie A.; Schilling, Daniel J.; Fernandez, Soledad A.; Leone, Gustavo
2017-01-01
The contribution of the tumor microenvironment to the development of pancreatic adenocarcinoma (PDAC) is unclear. The LSL-KrasG12D/+;LSL-p53R172H/+;Pdx-1-Cre (KPC) tumor model, which is widely utilized to faithfully recapitulate human pancreatic cancer, depends on Cre-mediated recombination in the epithelial lineage to drive tumorigenesis. Therefore, specific Cre-loxP recombination in stromal cells cannot be applied in this model, limiting the in vivo investigation of stromal genetics in tumor initiation and progression. To address this issue, we generated a new Pdx1FlpO knock-in mouse line, which represents the first mouse model to physiologically express FlpO recombinase in pancreatic epithelial cells. This mouse specifically recombines Frt loci in pancreatic epithelial cells, including acinar, ductal, and islet cells. When combined with the Frt-STOP-Frt KrasG12D and p53Frt mouse lines, simultaneous Pdx1FlpO activation of mutant Kras and deletion of p53 results in the spectrum of pathologic changes seen in PDAC, including PanIN lesions and ductal carcinoma. Combination of this KPF mouse model with any stroma-specific Cre can be used to conditionally modify target genes of interest. This will provide an excellent in vivo tool to study the roles of genes in different cell types and multiple cell compartments within the pancreatic tumor microenvironment. PMID:28934293
Suarez-Martinez, Ariana D; Bierschenk, Susanne; Huang, Katie; Kaplan, Dana; Bayer, Carolyn L; Meadows, Stryder M; Sperandio, Markus; Murfee, Walter L
2018-05-18
The development of models that incorporate intact microvascular networks enables the investigation of multicellular dynamics during angiogenesis. Our laboratory introduced the rat mesentery culture model as such a tool, which would be enhanced with mouse tissue. Since mouse mesentery is avascular, an alternative is mouse mesometrium, the connective tissue of uterine horns. The study's objective was to demonstrate that mouse mesometrium contains microvascular networks that can be cultured to investigate multicellular dynamics during angiogenesis. Harvested mesometrium tissues from C57Bl/6 female mice were cultured in media with serum for up to 7 days. PECAM, NG2, αSMA, and LYVE-1 labeling identified endothelial cells, pericytes, smooth muscle cells, and lymphatic endothelial cells, respectively. These cells comprised microvascular networks with arterioles, venules, and capillaries. Compared to day 0, capillary sprouts per vascular length were increased by 3 and 5 days in culture (day 0, 0.08 ± 0.01; day 3, 3.19 ± 0.78; day 5, 2.49 ± 0.05 sprouts/mm; p < 0.05). Time-lapse imaging of cultured tissues from FlkEGFP mice showcases the use of the model for lineage studies. The impact is supported by the identification of endothelial cell jumping from one sprout to another. These results introduce a novel culture model for investigating multicellular dynamics during angiogenesis in real-time ex vivo microvascular networks. © 2018 S. Karger AG, Basel.
Zhang, Xiaomin; Xie, Xiangdong; Cheng, Jie; Ning, Jing; Yuan, Yong; Pan, Jie; Yang, Guoshan
2012-01-01
A set of conversion coefficients from kerma free-in-air to the organ absorbed dose for external photon beams from 10 keV to 10 MeV are presented based on a newly developed voxel mouse model, for the purpose of radiation effect evaluation. The voxel mouse model was developed from colour images of successive cryosections of a normal nude male mouse, in which 14 organs or tissues were segmented manually and filled with different colours, while each colour was tagged by a specific ID number for implementation of mouse model in Monte Carlo N-particle code (MCNP). Monte Carlo simulation with MCNP was carried out to obtain organ dose conversion coefficients for 22 external monoenergetic photon beams between 10 keV and 10 MeV under five different irradiation geometries conditions (left lateral, right lateral, dorsal-ventral, ventral-dorsal, and isotropic). Organ dose conversion coefficients were presented in tables and compared with the published data based on a rat model to investigate the effect of body size and weight on the organ dose. The calculated and comparison results show that the organ dose conversion coefficients varying the photon energy exhibits similar trend for most organs except for the bone and skin, and the organ dose is sensitive to body size and weight at a photon energy approximately <0.1 MeV.
Rapamycin inhibits anal carcinogenesis in two preclinical animal models.
Stelzer, Marie K; Pitot, Henry C; Liem, Amy; Lee, Denis; Kennedy, Gregory D; Lambert, Paul F
2010-12-01
The incidence of anal cancer is increasing especially among HIV-infected persons in the HAART era. Treatment of this cancer is based upon traditional chemoradiotherapeutic approaches, which are associated with high morbidity and of limited effectiveness for patients with high-grade disease. The mammalian target of rapamycin (mTOR) pathway has been implicated in several human cancers, and is being investigated as a potential therapeutic target. In archival human anal cancers, we observed mTOR pathway activation. To assess response of anal cancer to mTOR inhibition, we utilized two newly developed mouse models, one in which anal cancers are induced to arise in HPV16 transgenic mice and the second a human anal cancer xenograft model. Using the transgenic mouse model, we assessed the preventative effect of rapamycin on neoplastic disease. We saw significant changes in the overall incidence of tumors, and tumor growth rate was also reduced. Using both the transgenic mouse and human anal xenograft mouse models, we studied the therapeutic effect of rapamycin on preexisting anal cancer. Rapamycin was found to significantly slow, if not stop, the growth of both mouse and human anal cancers. As has been seen in other cancers, rapamycin treatment led to an activation of the MAPK pathway. These results provide us cause to pursue further the evaluation of rapamycin as a therapeutic agent in the control of anal cancer. ©2010 AACR.
ATF1 and RAS in exosomes are potential clinical diagnostic markers for cervical cancer.
Shi, Yanhua; Wang, Wei; Yang, Baozhi; Tian, Hongge
2017-10-01
Cervical cancer is one of the most common cancers among women worldwide. It is highly lethal yet can be treated when found in early stage. Thus, early detection is of significant important for early diagnosis of cervical cancer. Exosomes have been used as biomarkers in clinical diagnosis. It is unknown that whether blood exosomes associated with cervical cancer can be detected and if these exosomes can accurately represent the developmental stage of cervical cancer. Mouse models were made out of a relapsed cervical cancer patient's tumour sample for original and recurrent cervical cancer, and gene analysis in both tumours and exosomes in these mouse models were performed. We found that activating transcription factor 1 (ATF1) and RAS genes were significantly up-regulated in tumours of both primary and recurrent cervical cancer mouse model, and they can also be detected in the blood exosomes of the mouse model. Our results indicated that ATF1 and RAS could be potential candidate biomarkers for cervical cancer in early diagnosis. ATF1 and RAS genes were found significantly elevated in tumours of primary and recurrent cervical cancer mouse model, and they were also detected in the blood exosomes. Therefore, ATF1 and RAS could be used as a diagnostic marker for cervical cancer in the future. Copyright © 2017 John Wiley & Sons, Ltd.
Ford, Dayton J; Ropka, Stacie L; Collins, George H; Jubelt, Burk
2002-09-01
Human paralytic poliomyelitis results from the destruction of spinal cord anterior horn motor neurons by human poliovirus (PV). CNS disease pathology similar to human poliomyelitis has been observed in experimentally infected chimpanzees, monkeys and wild-type mice. In this study we present a detailed examination of the clinical and histopathological features in the wild-type mouse after intracranial (i.c.) and novel intramuscular (i.m.) injection of poliovirus. Either route of poliovirus administration results in a clinical disease characterized predominately by flaccid paralysis. The observed histopathological features are compared with the histopathology reported for human paralytic poliomyelitis, experimentally infected chimpanzees, monkeys and transgenic mice expressing the human poliovirus receptor (hPVR). The observation of flaccid paralysis and anterior horn motor neuron destruction mirrors what is observed in human paralytic poliomyelitis. Our results suggest that the neuropathology observed in the wild-type mouse model is similar to what has been observed in both the human disease and in other experimental animal models, with the possible exception of the transgenic mouse model. The observed neuropathology of the wild-type mouse model more closely reflects what has been observed in human poliomyelitis, as well as in experimentally infected chimpanzees and monkeys, than does the hPVR transgenic mouse model. The previously reported poliovirus-induced white matter demyelinating disease was not observed.
Preclinical Testing of Novel Oxytocin Receptor Activators in Models of Autism Phenotypes
2014-09-01
AD_________________ Award Number: TITLE: Preclinical Testing of Novel Oxytocin Receptor Activators in Models of Autism ...AUG 2013-7 Aug 2014 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Preclinical Testing of Novel Oxytocin Receptor Activators in Models of Autism ...a genetic mouse model of autism -like phenotypes, the Grin1 knockdown mouse. The Grin1 gene encodes the NR1 subunit of the NMDA receptor . In the
Kiszonas, Alecia M; Fuerst, E Patrick; Morris, Craig F
2015-07-01
Whole grain wheat (Triticum aestivum L.) foods can provide critical nutrients for health and nutrition in the human diet. Potential flavor differences among varieties can be examined using consumption discrimination of the house mouse (Mus musculus L.) as a model system. This study examines consistency and repeatability of the mouse model and potentially, wheat grain flavor. A single elimination tournament design was used to measure relative consumption preference for hard red spring and hard white spring varieties across all 3 experiments in combination with 2 mouse cohorts. Fifteen replicate mice were used in 24-h trials to examine differences in preference among paired wheat varieties until an overall "winner" was established as the most highly preferred variety of wheat. In all 3 experiment-cohort combinations, the same varieties were preferred as the "winner" of both the hard red spring and hard white spring wheat varieties, Hollis and BR 7030, respectively. Despite the consistent preference for these varieties across experiments, the degree (magnitude) to which the mice preferred these varieties varied across experiments. For the hard white spring wheat varieties, the small number of varieties and confounding effects of experiment and cohort limited our ability to accurately gauge repeatability. Conversely, for the hard red spring wheat varieties, consumption preferences were consistent across experiments and mice cohorts. The single-elimination tournament model was effective in providing repeatable results in an effort to more fully understand the mouse model system and possible flavor differences among wheat varieties. The mouse model system used here is effective in identifying wheat varieties that may be more or less desirable to humans in whole wheat foods. The system identifies consistent differences across different mouse cohorts and crop years. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
Evaluation of synthetic vascular grafts in a mouse carotid grafting model.
Chan, Alex H P; Tan, Richard P; Michael, Praveesuda L; Lee, Bob S L; Vanags, Laura Z; Ng, Martin K C; Bursill, Christina A; Wise, Steven G
2017-01-01
Current animal models for the evaluation of synthetic grafts are lacking many of the molecular tools and transgenic studies available to other branches of biology. A mouse model of vascular grafting would allow for the study of molecular mechanisms of graft failure, including in the context of clinically relevant disease states. In this study, we comprehensively characterise a sutureless grafting model which facilitates the evaluation of synthetic grafts in the mouse carotid artery. Using conduits electrospun from polycaprolactone (PCL) we show the gradual development of a significant neointima within 28 days, found to be greatest at the anastomoses. Histological analysis showed temporal increases in smooth muscle cell and collagen content within the neointima, demonstrating its maturation. Endothelialisation of the PCL grafts, assessed by scanning electron microscopy (SEM) analysis and CD31 staining, was near complete within 28 days, together replicating two critical aspects of graft performance. To further demonstrate the potential of this mouse model, we used longitudinal non-invasive tracking of bone-marrow mononuclear cells from a transgenic mouse strain with a dual reporter construct encoding both luciferase and green fluorescent protein (GFP). This enabled characterisation of mononuclear cell homing and engraftment to PCL using bioluminescence imaging and histological staining over time (7, 14 and 28 days). We observed peak luminescence at 7 days post-graft implantation that persisted until sacrifice at 28 days. Collectively, we have established and characterised a high-throughput model of grafting that allows for the evaluation of key clinical drivers of graft performance.
Beaumont, Vahri; Mrzljak, Ladislav; Dijkman, Ulrike; Freije, Robert; Heins, Mariette; Rassoulpour, Arash; Tombaugh, Geoffrey; Gelman, Simon; Bradaia, Amyaouch; Steidl, Esther; Gleyzes, Melanie; Heikkinen, Taneli; Lehtimäki, Kimmo; Puoliväli, Jukka; Kontkanen, Outi; Javier, Robyn M; Neagoe, Ioana; Deisemann, Heike; Winkler, Dirk; Ebneth, Andreas; Khetarpal, Vinod; Toledo-Sherman, Leticia; Dominguez, Celia; Park, Larry C; Munoz-Sanjuan, Ignacio
2016-08-01
Dysregulation of the kynurenine (Kyn) pathway has been associated with the progression of Huntington's disease (HD). In particular, elevated levels of the kynurenine metabolites 3-hydroxy kynurenine (3-OH-Kyn) and quinolinic acid (Quin), have been reported in the brains of HD patients as well as in rodent models of HD. The production of these metabolites is controlled by the activity of kynurenine mono-oxygenase (KMO), an enzyme which catalyzes the synthesis of 3-OH-Kyn from Kyn. In order to determine the role of KMO in the phenotype of mouse models of HD, we have developed a potent and selective KMO inhibitor termed CHDI-340246. We show that this compound, when administered orally to transgenic mouse models of HD, potently and dose-dependently modulates the Kyn pathway in peripheral tissues and in the central nervous system. The administration of CHDI-340246 leads to an inhibition of the formation of 3-OH-Kyn and Quin, and to an elevation of Kyn and Kynurenic acid (KynA) levels in brain tissues. We show that administration of CHDI-340246 or of Kyn and of KynA can restore several electrophysiological alterations in mouse models of HD, both acutely and after chronic administration. However, using a comprehensive panel of behavioral tests, we demonstrate that the chronic dosing of a selective KMO inhibitor does not significantly modify behavioral phenotypes or natural progression in mouse models of HD. Copyright © 2016. Published by Elsevier Inc.
The clinical implications of mouse models of enhanced anxiety
Sartori, Simone B; Landgraf, Rainer; Singewald, Nicolas
2011-01-01
Mice are increasingly overtaking the rat model organism in important aspects of anxiety research, including drug development. However, translating the results obtained in mouse studies into information that can be applied in clinics remains challenging. One reason may be that most of the studies so far have used animals displaying ‘normal’ anxiety rather than ‘psychopathological’ animal models with abnormal (elevated) anxiety, which more closely reflect core features and sensitivities to therapeutic interventions of human anxiety disorders, and which would, thus, narrow the translational gap. Here, we discuss manipulations aimed at persistently enhancing anxiety-related behavior in the laboratory mouse using phenotypic selection, genetic techniques and/or environmental manipulations. It is hoped that such models with enhanced construct validity will provide improved ways of studying the neurobiology and treatment of pathological anxiety. Examples of findings from mouse models of enhanced anxiety-related behavior will be discussed, as well as their relation to findings in anxiety disorder patients regarding neuroanatomy, neurobiology, genetic involvement and epigenetic modifications. Finally, we highlight novel targets for potential anxiolytic pharmacotherapeutics that have been established with the help of research involving mice. Since the use of psychopathological mouse models is only just beginning to increase, it is still unclear as to the extent to which such approaches will enhance the success rate of drug development in translating identified therapeutic targets into clinical trials and, thus, helping to introduce the next anxiolytic class of drugs. PMID:21901080
Wang, Le; Wang, Chong; Mei, Huan; Shen, Yongnian; Lv, Guixia; Zeng, Rong; Zhan, Ping; Li, Dongmei; Liu, Weida
2016-02-01
Mouse model is an appropriate tool for pathogenic determination and study of host defenses during the fungal infection. Here, we established a mouse model of candidiasis with concurrent oral and vaginal mucosal infection. Two C. albicans strains sourced from clinical candidemia (SC5314) and mucosal infection (ATCC62342) were tested in ICR mice. The different combinational panels covering estrogen and immunosuppressive agents, cortisone, prednisolone and cyclophosphamide were used for concurrent oral and vaginal candidiasis establishment. Prednisolone in combination with estrogen proved an optimal mode for concurrent mucosal infection establishment. The model maintained for 1 week with fungal burden reached at least 10(5) cfu/g of tissue. This mouse model was evaluated by in vivo pharmacodynamics of fluconazole and host mucosal immunity of IL-17 and IL-23. Mice infected by SC5314 were cured by fluconazole. An increase in IL-23 in both oral and vaginal homogenates was observed after infection, while IL-17 only had a prominent elevation in oral tissue. This model could properly mimic complicated clinical conditions and provides a valuable means for antifungal assay in vivo and may also provide a useful method for the evaluation of host-fungal interactions.
Mouse and Guinea Pig Models of Tuberculosis.
Orme, Ian M; Ordway, Diane J
2016-08-01
This article describes the nature of the host response to Mycobacterium tuberculosis in the mouse and guinea pig models of infection. It describes the great wealth of information obtained from the mouse model, reflecting the general availability of immunological reagents, as well as genetic manipulations of the mouse strains themselves. This has led to a good understanding of the nature of the T-cell response to the infection, as well as an appreciation of the complexity of the response involving multiple cytokine- and chemokine-mediated systems. As described here and elsewhere, we have a growing understanding of how multiple CD4-positive T-cell subsets are involved, including regulatory T cells, TH17 cells, as well as the subsequent emergence of effector and central memory T-cell subsets. While, in contrast, our understanding of the host response in the guinea pig model is less advanced, considerable strides have been made in the past decade in terms of defining the basis of the immune response, as well as a better understanding of the immunopathologic process. This model has long been the gold standard for vaccine testing, and more recently is being revisited as a model for testing new drug regimens (bedaquiline being the latest example).
Greek, Ray; Hansen, Lawrence A
2013-11-01
We surveyed the scientific literature regarding amyotrophic lateral sclerosis, the SOD1 mouse model, complex adaptive systems, evolution, drug development, animal models, and philosophy of science in an attempt to analyze the SOD1 mouse model of amyotrophic lateral sclerosis in the context of evolved complex adaptive systems. Humans and animals are examples of evolved complex adaptive systems. It is difficult to predict the outcome from perturbations to such systems because of the characteristics of complex systems. Modeling even one complex adaptive system in order to predict outcomes from perturbations is difficult. Predicting outcomes to one evolved complex adaptive system based on outcomes from a second, especially when the perturbation occurs at higher levels of organization, is even more problematic. Using animal models to predict human outcomes to perturbations such as disease and drugs should have a very low predictive value. We present empirical evidence confirming this and suggest a theory to explain this phenomenon. We analyze the SOD1 mouse model of amyotrophic lateral sclerosis in order to illustrate this position. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.
Garlick, David S; Li, Jing; Sansoucy, Brian; Wang, Tao; Griffith, Leeanne; FitzGerald, TJ; Butterfield, Julie; Charbonneau, Bridget; Violette, Shelia M; Weinreb, Paul H; Ratliff, Timothy L; Liao, Chun-Peng; Roy-Burman, Pradip; Vietri, Michele; Lian, Jane B; Stein, Gary S; Altieri, Dario C; Languino, Lucia R
2012-01-01
Chronic inflammation is proposed to prime the development of prostate cancer. However, the mechanisms of prostate cancer initiation and development are not completely understood. The αvβ6 integrin has been shown to play a role in epithelial development, wound healing and some epithelial cancers [1, 2]. Here, we investigate the expression of αvβ6 in mouse models of prostatic inflammation and prostate cancer to establish a possible relationship between inflammation of the prostate, αvβ6 expression and the progression of prostate cancer. Using immunohistochemical techniques, we show expression of αvβ6 in two in vivo mouse models; the Ptenpc-/- model containing a prostate- specific Pten tumor suppressor deletion that causes cancer, and the prostate ovalbumin-expressing transgenic (POET) inflammation mouse model. We show that the αvβ6 integrin is induced in prostate cancer and inflammation in vivo in these two mouse models. αvβ6 is expressed in all the mice with cancer in the Ptenpc-/- model but not in age-matched wild-type mice. In the POET inflammation model, αvβ6 is expressed in mice injected with activated T-cells, but in none of the control mice. In the POET model, we also used real time PCR to assess the expression of Transforming Growth Factor Beta 1 (TGFβ1), a factor in inflammation that is activated by αvβ6. In conclusion, through in vivo evidence, we conclude that αvβ6 integrin may be a crucial link between prostatic inflammation and prostatic adenocarcinoma. PMID:22611469
Garlick, David S; Li, Jing; Sansoucy, Brian; Wang, Tao; Griffith, Leeanne; Fitzgerald, Tj; Butterfield, Julie; Charbonneau, Bridget; Violette, Shelia M; Weinreb, Paul H; Ratliff, Timothy L; Liao, Chun-Peng; Roy-Burman, Pradip; Vietri, Michele; Lian, Jane B; Stein, Gary S; Altieri, Dario C; Languino, Lucia R
2012-01-01
Chronic inflammation is proposed to prime the development of prostate cancer. However, the mechanisms of prostate cancer initiation and development are not completely understood. The α(v)β(6) integrin has been shown to play a role in epithelial development, wound healing and some epithelial cancers [1, 2]. Here, we investigate the expression of α(v)β(6) in mouse models of prostatic inflammation and prostate cancer to establish a possible relationship between inflammation of the prostate, α(v)β(6) expression and the progression of prostate cancer. Using immunohistochemical techniques, we show expression of α(v)β(6) in two in vivo mouse models; the Pten(pc)-/- model containing a prostate- specific Pten tumor suppressor deletion that causes cancer, and the prostate ovalbumin-expressing transgenic (POET) inflammation mouse model. We show that the α(v)β(6) integrin is induced in prostate cancer and inflammation in vivo in these two mouse models. α(v)β(6) is expressed in all the mice with cancer in the Pten(pc-/-) model but not in age-matched wild-type mice. In the POET inflammation model, α(v)β(6) is expressed in mice injected with activated T-cells, but in none of the control mice. In the POET model, we also used real time PCR to assess the expression of Transforming Growth Factor Beta 1 (TGFβ1), a factor in inflammation that is activated by α(v)β(6). In conclusion, through in vivo evidence, we conclude that α(v)β(6) integrin may be a crucial link between prostatic inflammation and prostatic adenocarcinoma.
Mullen, Yoko
2017-04-01
In 1974, the discovery of a mouse and a rat that spontaneously developed hyperglycemia led to the development of 2 autoimmune diabetes models: nonobese diabetic (NOD) mouse and Bio-Breeding rat. These models have contributed to our understanding of autoimmune diabetes, provided tools to dissect autoimmune islet damage, and facilitated development of early detection, prevention, and treatment of type 1 diabetes. The genetic characterization, monoclonal antibodies, and congenic strains have made NOD mice especially useful.Although the establishment of the inbred NOD mouse strain was documented by Makino et al (Jikken Dobutsu. 1980;29:1-13), this review will focus on the not-as-well-known history leading to the discovery of a glycosuric female mouse by Yoshihiro Tochino. This discovery was spearheaded by years of effort by Japanese scientists from different disciplines and dedicated animal care personnel and by the support of the Shionogi Pharmaceutical Company, Osaka, Japan. The history is based on the early literature, mostly written in Japanese, and personal communications especially with Dr Tochino, who was involved in diabetes animal model development and who contributed to the release of NOD mice to the international scientific community. This article also reviews the scientific contributions made by the Bio-Breeding rat to autoimmune diabetes.
Nakahara, Keiko; Bannai, Makoto; Maruyama, Keisuke; Suzuki, Yoshihiro; Okame, Rieko; Murakami, Noboru
2013-08-01
Obesity is a critical risk factor for the development of metabolic syndrome, and many obese animal models are used to investigate the mechanisms responsible for the appearance of symptoms. To establish a new obese mouse model, we screened ∼13,000 ICR mice and discovered a mouse demonstrating spontaneous obesity. We named this mouse "Daruma" after a traditional Japanese ornament. Following the fixation of the genotype, these animals exhibited obese phenotypes according to Mendel's law of inheritance. In the Daruma mouse, the leptin receptor gene sequence carried two base mutations that are good candidates for the variation(s) responsible for the obese phenotype. The Daruma mice developed characteristic visceral fat accumulation at 4 wk of age, and the white adipose and liver tissues exhibited increases in cell size and lipid droplets, respectively. No histological abnormalities were observed in other tissues of the Daruma mice, even after the mice reached 25 wk of age. Moreover, the onset of impaired leptin signaling was early and manifested as hyperleptinemia and hyperinsulinemia. Pair feeding completely inhibited obesity, although these mice rapidly developed hyperphagia and obesity followed by hyperleptinemia when pair feeding ceased and free-access feeding was permitted. Therefore, the Daruma mice exhibited unique characteristics and may be a good model for studying human metabolic syndrome.
In utero imaging of mouse embryonic development with optical coherence tomography
NASA Astrophysics Data System (ADS)
Syed, Saba H.; Dickinson, Mary E.; Larin, Kirill V.; Larina, Irina V.
2011-03-01
Studying progression of congenital diseases in animal models can greatly benefit from live embryonic imaging Mouse have long served as a model of mammalian embryonic developmental processes, however, due to intra-uterine nature of mammalian development live imaging is challenging. In this report we present results on live mouse embryonic imaging in utero with Optical Coherence Tomography. Embryos from 12.5 through 17.5 days post-coitus (dpc) were studied through the uterine wall. In longitudinal studies, same embryos were imaged at developmental stages 13.5, 15.5 and 17.5 dpc. This study suggests that OCT can serve as a powerful tool for live mouse embryo imaging. Potentially this technique can contribute to our understanding developmental abnormalities associated with mutations, toxic drugs.
Teratology studies in the mouse.
Marsden, Edward; Leroy, Mariline
2013-01-01
The rat is the routine species of choice as the rodent model for regulatory safety testing of xenobiotics such as medicinal products, food additives, and other chemicals. However, the rat is not always suitable for pharmacological, toxicological, immunogenic, pharmacokinetic, or even practical reasons. Under such circumstances, the mouse offers an alternative for finding a suitable rodent model acceptable to the regulatory authorities. Since all essential routes of administration are possible, the short reproductive cycle and large litter size of the mouse make it a species well adapted for use in teratology studies. Given that good quality animals, including virgin mated females, can be acquired relatively easily and inexpensively, the mouse has been used in reproductive toxicity studies for decades and study protocols are well established.
Two new rodent models for actinide toxicity studies. [/sup 237/Pu, /sup 241/Am
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, G.N.; Jones, C.W.; Gardner, P.A.
1981-04-01
Two small rodent species, the grasshopper mouse (Onychomys leucogaster) and the deer mouse (Peromyscus maniculatus), have tenacious and high retention in the liver and skeleton of plutonium and americium following intraperitoneal injection of Pu and Am in citrate solution. Liver retention of Pu and Am in the grasshopper mouse is higher than liver retention in the deer mouse. Both of these rodents are relatively long-lived, breed well in captivity, and adapt suitably to laboratory conditions. It is suggested that these two species of mice, in which plutonium retention is high and prolonged in both the skeleton and liver, as itmore » is in man, may be useful animal models for actinide toxicity studies.« less
Temporospatial distribution of microglial activation in a murine model of scrapie
USDA-ARS?s Scientific Manuscript database
Mouse models of prion disease offer the advantages of genetic homogeneity and short incubation times while retaining the disease phenotype of natural mammalian hosts. Intracranial (IC) inoculation of C57BL/6 mice with a mouse-adapted scrapie strain (RML) yields uniform incubation periods with a rapi...
75 FR 51823 - Government-Owned Inventions; Availability for Licensing
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-23
... applications. Transforming Growth Factor Beta-1 (TGF-[beta]1) Transgenic Mouse Model Description of Technology... developed a transgenic mouse model, designated [beta]1\\glo\\, which permits conditional, gene-specific... gene by Cre recombinase allows expression of TGF-[beta]1. Thus, these mice may be cross-bred with a...
The Oak Ridge Polycystic Kidney mouse: modeling ciliopathies of mice and men.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lehman, J M; Michaud III, Edward J; Schoeb, T
2008-08-01
The Oak Ridge Polycystic Kidney (ORPK) mouse was described nearly 14 years ago as a model for human recessive polycystic kidney disease. The ORPK mouse arose through integration of a transgene into an intron of the Ift88 gene resulting in a hypomorphic allele (Ift88Tg737Rpw). The Ift88Tg737Rpw mutation impairs intraflagellar transport (IFT), a process required for assembly of motile and immotile cilia. Historically, the primary immotile cilium was thought to have minimal importance for human health; however, a rapidly expanding number of human disorders have now been attributed to ciliary defects. Importantly, many of these phenotypes are present and can bemore » analyzed using the ORPK mouse. In this review, we highlight the research conducted using the OPRK mouse and the phenotypes shared with human cilia disorders. Furthermore, we describe an additional follicular dysplasia phenotype in the ORPK mouse, which alongside the ectodermal dysplasias seen in human Ellis-van Creveld and Sensenbrenner's syndromes, suggests an unappreciated role for primary cilia in the skin and hair follicle.« less
Establishment of a patient-derived orthotopic osteosarcoma mouse model.
Blattmann, Claudia; Thiemann, Markus; Stenzinger, Albrecht; Roth, Eva K; Dittmar, Anne; Witt, Hendrik; Lehner, Burkhard; Renker, Eva; Jugold, Manfred; Eichwald, Viktoria; Weichert, Wilko; Huber, Peter E; Kulozik, Andreas E
2015-04-30
Osteosarcoma (OS) is the most common pediatric primary malignant bone tumor. As the prognosis for patients following standard treatment did not improve for almost three decades, functional preclinical models that closely reflect important clinical cancer characteristics are urgently needed to develop and evaluate new treatment strategies. The objective of this study was to establish an orthotopic xenotransplanted mouse model using patient-derived tumor tissue. Fresh tumor tissue from an adolescent female patient with osteosarcoma after relapse was surgically xenografted into the right tibia of 6 immunodeficient BALB/c Nu/Nu mice as well as cultured into medium. Tumor growth was serially assessed by palpation and with magnetic resonance imaging (MRI). In parallel, a primary cell line of the same tumor was established. Histology and high-resolution array-based comparative genomic hybridization (aCGH) were used to investigate both phenotypic and genotypic characteristics of different passages of human xenografts and the cell line compared to the tissue of origin. A primary OS cell line and a primary patient-derived orthotopic xenotranplanted mouse model were established. MRI analyses and histopathology demonstrated an identical architecture in the primary tumor and in the xenografts. Array-CGH analyses of the cell line and all xenografts showed highly comparable patterns of genomic progression. So far, three further primary patient-derived orthotopic xenotranplanted mouse models could be established. We report the first orthotopic OS mouse model generated by transplantation of tumor fragments directly harvested from the patient. This model represents the morphologic and genomic identity of the primary tumor and provides a preclinical platform to evaluate new treatment strategies in OS.
Humanized mouse models: Application to human diseases.
Ito, Ryoji; Takahashi, Takeshi; Ito, Mamoru
2018-05-01
Humanized mice are superior to rodents for preclinical evaluation of the efficacy and safety of drug candidates using human cells or tissues. During the past decade, humanized mouse technology has been greatly advanced by the establishment of novel platforms of genetically modified immunodeficient mice. Several human diseases can be recapitulated using humanized mice due to the improved engraftment and differentiation capacity of human cells or tissues. In this review, we discuss current advanced humanized mouse models that recapitulate human diseases including cancer, allergy, and graft-versus-host disease. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Bai, Bing; Joshi, Anand; Brandhorst, Sebastian; Longo, Valter D.; Conti, Peter S.; Leahy, Richard M.
2014-04-01
Obesity is a global health problem, particularly in the U.S. where one third of adults are obese. A reliable and accurate method of quantifying obesity is necessary. Visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) are two measures of obesity that reflect different associated health risks, but accurate measurements in humans or rodent models are difficult. In this paper we present an automatic, registration-based segmentation method for mouse adiposity studies using microCT images. We co-register the subject CT image and a mouse CT atlas. Our method is based on surface matching of the microCT image and an atlas. Surface-based elastic volume warping is used to match the internal anatomy. We acquired a whole body scan of a C57BL6/J mouse injected with contrast agent using microCT and created a whole body mouse atlas by manually delineate the boundaries of the mouse and major organs. For method verification we scanned a C57BL6/J mouse from the base of the skull to the distal tibia. We registered the obtained mouse CT image to our atlas. Preliminary results show that we can warp the atlas image to match the posture and shape of the subject CT image, which has significant differences from the atlas. We plan to use this software tool in longitudinal obesity studies using mouse models.
Freidl, Raphaela; Gstoettner, Antonia; Baranyi, Ulrike; Swoboda, Ines; Stolz, Frank; Focke-Tejkl, Margarete; Wekerle, Thomas; van Ree, Ronald; Valenta, Rudolf; Linhart, Birgit
2017-01-01
Background Fish is a frequent elicitor of severe IgE-mediated allergic reactions. Beside avoidance, there is currently no allergen-specific therapy available. Hypoallergenic variants of the major fish allergen, parvalbumin, for specific immunotherapy based on mutation of the 2 calcium-binding sites have been developed. Objectives This study sought to establish a mouse model of fish allergy resembling human disease and to investigate whether mouse and rabbit IgG antibodies induced by immunization with a hypoallergenic mutant of the major carp allergen protect against allergic symptoms in sensitized mice. Methods C3H/HeJ mice were sensitized with recombinant wildtype Cyp c 1 or carp extract by intragastric gavage. Antibody, cellular immune responses, and epitope specificity in sensitized mice were investigated by ELISA, rat basophil leukemia assay, T-cell proliferation experiments using recombinant wildtype Cyp c 1, and overlapping peptides spanning the Cyp c 1 sequence. Anti-hypoallergenic Cyp c 1 mutant mouse and rabbit sera were tested for their ability to inhibit IgE recognition of Cyp c 1, Cyp c 1–specific basophil degranulation, and Cyp c 1–induced allergic symptoms in the mouse model. Results A mouse model of fish allergy mimicking human disease regarding IgE epitope recognition and symptoms as close as possible was established. Administration of antisera generated in mice and rabbits by immunization with a hypoallergenic Cyp c 1 mutant inhibited IgE binding to Cyp c 1, Cyp c 1–induced basophil degranulation, and allergic symptoms caused by allergen challenge in sensitized mice. Conclusions Antibodies induced by immunization with a hypoallergenic Cyp c 1 mutant protect against allergic reactions in a murine model of fish allergy. PMID:27876628
Freidl, Raphaela; Gstoettner, Antonia; Baranyi, Ulrike; Swoboda, Ines; Stolz, Frank; Focke-Tejkl, Margarete; Wekerle, Thomas; van Ree, Ronald; Valenta, Rudolf; Linhart, Birgit
2017-06-01
Fish is a frequent elicitor of severe IgE-mediated allergic reactions. Beside avoidance, there is currently no allergen-specific therapy available. Hypoallergenic variants of the major fish allergen, parvalbumin, for specific immunotherapy based on mutation of the 2 calcium-binding sites have been developed. This study sought to establish a mouse model of fish allergy resembling human disease and to investigate whether mouse and rabbit IgG antibodies induced by immunization with a hypoallergenic mutant of the major carp allergen protect against allergic symptoms in sensitized mice. C3H/HeJ mice were sensitized with recombinant wildtype Cyp c 1 or carp extract by intragastric gavage. Antibody, cellular immune responses, and epitope specificity in sensitized mice were investigated by ELISA, rat basophil leukemia assay, T-cell proliferation experiments using recombinant wildtype Cyp c 1, and overlapping peptides spanning the Cyp c 1 sequence. Anti-hypoallergenic Cyp c 1 mutant mouse and rabbit sera were tested for their ability to inhibit IgE recognition of Cyp c 1, Cyp c 1-specific basophil degranulation, and Cyp c 1-induced allergic symptoms in the mouse model. A mouse model of fish allergy mimicking human disease regarding IgE epitope recognition and symptoms as close as possible was established. Administration of antisera generated in mice and rabbits by immunization with a hypoallergenic Cyp c 1 mutant inhibited IgE binding to Cyp c 1, Cyp c 1-induced basophil degranulation, and allergic symptoms caused by allergen challenge in sensitized mice. Antibodies induced by immunization with a hypoallergenic Cyp c 1 mutant protect against allergic reactions in a murine model of fish allergy. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Neuronal Representation of Ultraviolet Visual Stimuli in Mouse Primary Visual Cortex
Tan, Zhongchao; Sun, Wenzhi; Chen, Tsai-Wen; Kim, Douglas; Ji, Na
2015-01-01
The mouse has become an important model for understanding the neural basis of visual perception. Although it has long been known that mouse lens transmits ultraviolet (UV) light and mouse opsins have absorption in the UV band, little is known about how UV visual information is processed in the mouse brain. Using a custom UV stimulation system and in vivo calcium imaging, we characterized the feature selectivity of layer 2/3 neurons in mouse primary visual cortex (V1). In adult mice, a comparable percentage of the neuronal population responds to UV and visible stimuli, with similar pattern selectivity and receptive field properties. In young mice, the orientation selectivity for UV stimuli increased steadily during development, but not direction selectivity. Our results suggest that, by expanding the spectral window through which the mouse can acquire visual information, UV sensitivity provides an important component for mouse vision. PMID:26219604
A protocol to study ex vivo mouse working heart at human-like heart rate.
Feng, Han-Zhong; Jin, Jian-Ping
2018-01-01
Genetically modified mice are widely used as experimental models to study human heart function and diseases. However, the fast rate of normal mouse heart at 400-600bpm limits its capacity of assessing kinetic parameters that are important for the physiology and pathophysiology of human heart that beats at a much slower rate (75-180bpm). To extend the value of mouse models, we established a protocol to study ex vivo mouse working hearts at a human-like heart rate. In the presence of 300μM lidocaine to lower pacemaker and conductive activities and prevent arrhythmia, a stable rate of 120-130bpm at 37°C is achieved for ex vivo mouse working hearts. The negative effects of decreased heart rate on force-frequency dependence and lidocaine as a myocardial depressant on intracellular calcium can be compensated by using a higher but still physiological level of calcium (2.75mM) in the perfusion media. Multiple parameters were studied to compare the function at the human-like heart rate with that of ex vivo mouse working hearts at the standard rate of 480bpm. The results showed that the conditions for slower heart rate in the presence of 300μM lidocaine did not have depressing effect on left ventricular pressure development, systolic and diastolic velocities and stroke volume with maintained positive inotropic and lusitropic responses to β-adrenergic stimulation. Compared with that at 480bpm, the human-like heart rate increased ventricular filling and end diastolic volume with enhanced Frank-Starling responses. Coronary perfusion was increased from longer relaxation time and interval between beats whereas cardiac efficiency was significantly improved. Although the intrinsic differences between mouse and human heart remain, this methodology for ex vivo mouse hearts to work at human-like heart rate extends the value of using genetically modified mouse models to study cardiac function and human heart diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.
Emoto, Miho C; Sato-Akaba, Hideo; Hirata, Hiroshi; Fujii, Hirotada G
2014-09-01
Electron paramagnetic resonance (EPR) imaging using nitroxides as redox-sensitive probes is a powerful, noninvasive method that can be used under various physiological conditions to visualize changes in redox status that result from oxidative damage. Two blood-brain barrier-permeative nitroxides, 3-hydroxymethyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl (HMP) and 3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine-1-yloxy (MCP), have been widely used as redox-sensitive probes in the brains of small animals, but their in vivo distribution and properties have not yet been analyzed in detail. In this study, a custom-made continuous-wave three-dimensional (3D) EPR imager was used to obtain 3D EPR images of mouse heads using MCP or HMP. This EPR imager made it possible to take 3D EPR images reconstructed from data from 181 projections acquired every 60s. Using this improved EPR imager and magnetic resonance imaging, the distribution and reduction time courses of HMP and MCP were examined in mouse heads. EPR images of living mice revealed that HMP and MCP have different distributions and different time courses for entering the brain. Based on the pharmacokinetics of the reduction reactions of HMP and MCP in the mouse head, the half-lives of HMP and MCP were clearly and accurately mapped pixel by pixel. An ischemic mouse model was prepared, and the half-life of MCP was mapped in the mouse head. Compared to the half-life in control mice, the half-life of MCP in the ischemic model mouse brain was significantly increased, suggesting a shift in the redox balance. This in vivo EPR imaging method using BBB-permeative MCP is a useful noninvasive method for assessing changes in the redox status in mouse brains under oxidative stress. Copyright © 2014 Elsevier Inc. All rights reserved.
SU-E-T-664: Radiobiological Modeling of Prophylactic Cranial Irradiation in Mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, D; Debeb, B; Woodward, W
Purpose: Prophylactic cranial irradiation (PCI) is a clinical technique used to reduce the incidence of brain metastasis and improve overall survival in select patients with ALL and SCLC, and we have shown the potential of PCI in select breast cancer patients through a mouse model (manuscript in preparation). We developed a computational model using our experimental results to demonstrate the advantage of treating brain micro-metastases early. Methods: MATLAB was used to develop the computational model of brain metastasis and PCI in mice. The number of metastases per mouse and the volume of metastases from four- and eight-week endpoints were fitmore » to normal and log-normal distributions, respectively. Model input parameters were optimized so that model output would match the experimental number of metastases per mouse. A limiting dilution assay was performed to validate the model. The effect of radiation at different time points was computationally evaluated through the endpoints of incidence, number of metastases, and tumor burden. Results: The correlation between experimental number of metastases per mouse and the Gaussian fit was 87% and 66% at the two endpoints. The experimental volumes and the log-normal fit had correlations of 99% and 97%. In the optimized model, the correlation between number of metastases per mouse and the Gaussian fit was 96% and 98%. The log-normal volume fit and the model agree 100%. The model was validated by a limiting dilution assay, where the correlation was 100%. The model demonstrates that cells are very sensitive to radiation at early time points, and delaying treatment introduces a threshold dose at which point the incidence and number of metastases decline. Conclusion: We have developed a computational model of brain metastasis and PCI in mice that is highly correlated to our experimental data. The model shows that early treatment of subclinical disease is highly advantageous.« less
Genetically Engineered Humanized Mouse Models for Preclinical Antibody Studies
Proetzel, Gabriele; Wiles, Michael V.; Roopenian, Derry C.
2015-01-01
The use of genetic engineering has vastly improved our capabilities to create animal models relevant in preclinical research. With the recent advances in gene-editing technologies, it is now possible to very rapidly create highly tunable mouse models as needs arise. Here, we provide an overview of genetic engineering methods, as well as the development of humanized neonatal Fc receptor (FcRn) models and their use for monoclonal antibody in vivo studies. PMID:24150980
Evaluation of Cannabidiol in Animal Seizure Models by the Epilepsy Therapy Screening Program (ETSP).
Klein, Brian D; Jacobson, Catherine A; Metcalf, Cameron S; Smith, Misty D; Wilcox, Karen S; Hampson, Aidan J; Kehne, John H
2017-07-01
Cannabidiol (CBD) is a cannabinoid component of marijuana that has no significant activity at cannabinoid receptors or psychoactive effects. There is considerable interest in CBD as a therapy for epilepsy. Almost a third of epilepsy patients are not adequately controlled by clinically available anti-seizure drugs (ASDs). Initial studies appear to demonstrate that CBD preparations may be a useful treatment for pharmacoresistant epilepsy. The National Institute of Neurological Disorders and Stroke (NINDS) funded Epilepsy Therapy Screening Program (ETSP) investigated CBD in a battery of seizure models using a refocused screening protocol aimed at identifying pharmacotherapies to address the unmet need in pharmacoresistant epilepsy. Applying this new screening workflow, CBD was investigated in mouse 6 Hz 44 mA, maximal electroshock (MES), corneal kindling models and rat MES and lamotrigine-resistant amygdala kindling models. Following intraperitoneal (i.p.) pretreatment, CBD produced dose-dependent protection in the acute seizure models; mouse 6 Hz 44 mA (ED 50 164 mg/kg), mouse MES (ED 50 83.5 mg/kg) and rat MES (ED 50 88.9 mg/kg). In chronic models, CBD produced dose-dependent protection in the corneal kindled mouse (ED 50 119 mg/kg) but CBD (up to 300 mg/kg) was not protective in the lamotrigine-resistant amygdala kindled rat. Motor impairment assessed in conjunction with the acute seizure models showed that CBD exerted seizure protection at non-impairing doses. The ETSP investigation demonstrates that CBD exhibits anti-seizure properties in acute seizure models and the corneal kindled mouse. However, further preclinical and clinical studies are needed to determine the potential for CBD to address the unmet needs in pharmacoresistant epilepsy.
Hrycay, E G; Bandiera, S M
2009-12-01
The present review focuses on the expression, function and regulation of mouse cytochrome P450 (Cyp) enzymes. Information compiled for mouse Cyp enzymes is compared with data collected for human CYP enzymes. To date, approximately 40 pairs of orthologous mouse-human CYP genes have been identified that encode enzymes performing similar metabolic functions. Recent knowledge concerning the tissue expression of mouse Cyp enzymes from families 1 to 51 is summarized. The catalytic activities of microsomal, mitochondrial and recombinant mouse Cyp enzymes are discussed and their involvement in the metabolism of exogenous and endogenous compounds is highlighted. The role of nuclear receptors, such as the aryl hydrocarbon receptor, constitutive androstane receptor and pregnane X receptor, in regulating the expression of mouse Cyp enzymes is examined. Targeted disruption of selected Cyp genes has generated numerous Cyp null mouse lines used to decipher the role of Cyp enzymes in metabolic, toxicological and biological processes. In conclusion, the laboratory mouse is an indispensable model for exploring human CYP-mediated activities.
Mouse assay for determination of arsenic bioavailability in contaminated soils.
Bradham, Karen D; Diamond, Gary L; Scheckel, Kirk G; Hughes, Michael F; Casteel, Stan W; Miller, Bradley W; Klotzbach, Julie M; Thayer, William C; Thomas, David J
2013-01-01
A mouse assay for measuring the relative bioavailability (RBA) of arsenic (As) in soil was developed. In this study, results are presented of RBA assays of 16 soils, including multiple assays of the same soils, which provide a quantitative assessment of reproducibility of mouse assay results, as well as a comparison of results from the mouse assay with results from a swine and monkey assay applied to the same test soils. The mouse assay is highly reproducible; three repeated assays on the same soils yielded RBA estimates that ranged from 1 to 3% of the group mean. The mouse, monkey, and swine models yielded similar results for some, but not all, test materials. RBA estimates for identical soils (nine test soils and three standard reference materials [SRM]) assayed in mice and swine were significantly correlated (r = 0.70). Swine RBA estimates for 6 of the 12 test materials were higher than those from the mouse assay. RBA estimates for three standard reference materials (SRM) were not statistically different (mouse/swine ratio ranged from 0.86-1). When four test soils from the same orchard were assessed in the mouse, monkey, and swine assays, the mean soil As RBA were not statistically different. Mouse and swine models predicted similar steady state urinary excretion fractions (UEF) for As of 62 and 74%, respectively, during repeated ingestion doses of sodium arsenate, the water-soluble As form used as the reference in the calculation of RBA. In the mouse assay, the UEF for water soluble As(V) (sodium arsenate) and As(III) (sodium [meta] arsenite) were 62% and 66%, respectively, suggesting similar absolute bioavailabilities for the two As species. The mouse assay can serve as a highly cost-effective alternative or supplement to monkey and swine assays for improving As risk assessments by providing site-specific assessments of RBA of As in soils.
Preclinical Mouse Models of Neurofibromatosis
2004-10-01
collaborated closely and have shared expertise and reagents extensively. This NF Consortium is a member of the Moue Models of Human Cancer Consortium...of the National Cancer Institute and is participating fully in the activities of the group. The current award will support these collaborative...studies through 2005. 14. SUBJECT TERMS 15. NUMBER OF PAGES Neurofibromatosis, cancer , mouse models 48 16. PRICE CODE 17. SECURITY CLASSIFICATION 78
Lai, Jin-Lun; Liu, Yu-Hui; Peng, Yong-Chong; Ge, Pan; He, Chen-Fei; Liu, Chang; Chen, Ying-Yu; Guo, Ai-Zhen; Hu, Chang-Min
2017-01-01
Indirubin is a Chinese medicine extracted from indigo and known to be effective for treating chronic myelogenous leukemia, neoplasia, and inflammatory disease. This study evaluated the in vivo anti-inflammatory activity of indirubin in a lipopolysaccharide- (LPS-) induced mouse mastitis model. The indirubin mechanism and targets were evaluated in vitro in mouse mammary epithelial cells. In the mouse model, indirubin significantly attenuated the severity of inflammatory lesions, edema, inflammatory hyperemia, milk stasis and local tissue necrosis, and neutrophil infiltration. Indirubin significantly decreased myeloperoxidase activity and downregulated the production of tumor necrosis factor- α , interleukin-1 β (IL-1 β ), and IL-6 caused by LPS. In vitro, indirubin inhibited LPS-stimulated expression of proinflammatory cytokines in a dose-dependent manner. It also downregulated LPS-induced toll-like receptor 4 (TLR4) expression and inhibited phosphorylation of LPS-induced nuclear transcription factor-kappa B (NF- κ B) P65 protein and inhibitor of kappa B. In addition to its effect on the NF- κ B signaling pathway, indirubin suppressed the mitogen-activated protein kinase (MAPK) signaling by inhibiting phosphorylation of extracellular signal-regulated kinase (ERK), P38, and c-jun NH2-terminal kinase (JNK). Indirubin improved LPS-induced mouse mastitis by suppressing TLR4 and downstream NF- κ B and MAPK pathway inflammatory signals and might be a potential treatment of mastitis and other inflammatory diseases.
Dewald, Oliver; Ren, Guofeng; Duerr, Georg D.; Zoerlein, Martin; Klemm, Christina; Gersch, Christine; Tincey, Sophia; Michael, Lloyd H.; Entman, Mark L.; Frangogiannis, Nikolaos G.
2004-01-01
Large animal models have provided much of the descriptive data regarding the cellular and molecular events in myocardial infarction and repair. The availability of genetically altered mice may provide a valuable tool for specific cellular and molecular dissection of these processes. In this report we compare closed chest models of canine and mouse infarction/reperfusion qualitatively and quantitatively for temporal, cellular, and spatial differences. Much like the canine model, reperfused mouse hearts are associated with marked induction of endothelial adhesion molecules, cytokines, and chemokines. Reperfused mouse infarcts show accelerated replacement of cardiomyocytes by granulation tissue leading to a thin mature scar at 14 days, when the canine infarction is still cellular and evolving. Infarcted mouse hearts demonstrate a robust but transient postreperfusion inflammatory reaction, associated with a rapid up-regulation of interleukin-10 and transforming growth factor-β. Unlike canine infarcts, infarcted mouse hearts show only transient macrophage infiltration and no significant mast cell accumulation. In correlation, the growth factor for macrophages, M-CSF, shows modest and transient up-regulation in the early days of reperfusion; and the obligate growth factor for mast cells, stem cell factor, SCF, is not induced. In summary, the postinfarction inflammatory response and resultant repair in the mouse heart shares many common characteristics with large mammalian species, but has distinct temporal and qualitative features. These important species-specific differences should be considered when interpreting findings derived from studies using genetically altered mice. PMID:14742270
Grimm, Christian; Wenzel, Andreas; Stanescu, Dinu; Samardzija, Marijana; Hotop, Svenja; Groszer, Mathias; Naash, Muna; Gassmann, Max; Remé, Charlotte
2010-01-01
Elevation of erythropoietin (Epo) concentrations by hypoxic preconditioning or application of recombinant human Epo (huEpo) protects the mouse retina against light-induced degeneration by inhibiting photoreceptor cell apoptosis. Because photoreceptor apoptosis is also the common path to cell loss in retinal dystrophies such as retinitis pigmentosa (RP), we tested whether high levels of huEpo would reduce apoptotic cell death in two mouse models of human RP. We combined the two respective mutant mouse lines with a transgenic line (tg6) that constitutively overexpresses huEpo mainly in neural tissues. Transgenic expression of huEpo caused constitutively high levels of Epo in the retina and protected photoreceptors against light-induced degeneration; however, the presence of high levels of huEpo did not affect the course or the extent of retinal degeneration in a light-independent (rd1) and a light-accelerated (VPP) mouse model of RP. Similarly, repetitive intraperitoneal injections of recombinant huEpo did not protect the retina in the rd1 and the VPP mouse. Lack of neuroprotection by Epo in the two models of inherited retinal degeneration was not caused by adaptational downregulation of Epo receptor. Our results suggest that apoptotic mechanisms during acute, light-induced photoreceptor cell death differ from those in genetically based retinal degeneration. Therapeutic intervention with cell death in inherited retinal degeneration may therefore require different drugs and treatments. PMID:15215287
Large-scale topology and the default mode network in the mouse connectome
Stafford, James M.; Jarrett, Benjamin R.; Miranda-Dominguez, Oscar; Mills, Brian D.; Cain, Nicholas; Mihalas, Stefan; Lahvis, Garet P.; Lattal, K. Matthew; Mitchell, Suzanne H.; David, Stephen V.; Fryer, John D.; Nigg, Joel T.; Fair, Damien A.
2014-01-01
Noninvasive functional imaging holds great promise for serving as a translational bridge between human and animal models of various neurological and psychiatric disorders. However, despite a depth of knowledge of the cellular and molecular underpinnings of atypical processes in mouse models, little is known about the large-scale functional architecture measured by functional brain imaging, limiting translation to human conditions. Here, we provide a robust processing pipeline to generate high-resolution, whole-brain resting-state functional connectivity MRI (rs-fcMRI) images in the mouse. Using a mesoscale structural connectome (i.e., an anterograde tracer mapping of axonal projections across the mouse CNS), we show that rs-fcMRI in the mouse has strong structural underpinnings, validating our procedures. We next directly show that large-scale network properties previously identified in primates are present in rodents, although they differ in several ways. Last, we examine the existence of the so-called default mode network (DMN)—a distributed functional brain system identified in primates as being highly important for social cognition and overall brain function and atypically functionally connected across a multitude of disorders. We show the presence of a potential DMN in the mouse brain both structurally and functionally. Together, these studies confirm the presence of basic network properties and functional networks of high translational importance in structural and functional systems in the mouse brain. This work clears the way for an important bridge measurement between human and rodent models, enabling us to make stronger conclusions about how regionally specific cellular and molecular manipulations in mice relate back to humans. PMID:25512496
Broad AOX expression in a genetically tractable mouse model does not disturb normal physiology
Szibor, Marten; Dhandapani, Praveen K.; Dufour, Eric; Holmström, Kira M.; Zhuang, Yuan; Salwig, Isabelle; Wittig, Ilka; Heidler, Juliana; Gizatullina, Zemfira; Fuchs, Helmut; Gailus-Durner, Valérie; de Angelis, Martin Hrabě; Nandania, Jatin; Velagapudi, Vidya; Wietelmann, Astrid; Rustin, Pierre; Gellerich, Frank N.; Braun, Thomas
2017-01-01
ABSTRACT Plants and many lower organisms, but not mammals, express alternative oxidases (AOXs) that branch the mitochondrial respiratory chain, transferring electrons directly from ubiquinol to oxygen without proton pumping. Thus, they maintain electron flow under conditions when the classical respiratory chain is impaired, limiting excess production of oxygen radicals and supporting redox and metabolic homeostasis. AOX from Ciona intestinalis has been used to study and mitigate mitochondrial impairments in mammalian cell lines, Drosophila disease models and, most recently, in the mouse, where multiple lentivector-AOX transgenes conferred substantial expression in specific tissues. Here, we describe a genetically tractable mouse model in which Ciona AOX has been targeted to the Rosa26 locus for ubiquitous expression. The AOXRosa26 mouse exhibited only subtle phenotypic effects on respiratory complex formation, oxygen consumption or the global metabolome, and showed an essentially normal physiology. AOX conferred robust resistance to inhibitors of the respiratory chain in organello; moreover, animals exposed to a systemically applied LD50 dose of cyanide did not succumb. The AOXRosa26 mouse is a useful tool to investigate respiratory control mechanisms and to decipher mitochondrial disease aetiology in vivo. PMID:28067626
[Development of the next generation humanized mouse for drug discovery].
Ito, Ryoji
A humanized mouse, which is efficiently engrafted human cells and tissues, is an important tool to mimic human physiology for biomedical researches. Since 2000s, severe combined immunodeficient mouse strains such as NOG, BRG, and NSG mice have been generated. They are great recipients to create humanized mouse models compared to previous other immunodeficient strains due to their multiple dysfunctions of innate and acquired immunity. Especially, the transfer of human hematopoietic stem cells into these immunodeficient mice has been enabled to reconstitute human immune systems, because the mice show high engraftment level of human leukocyte in peripheral blood (~50%), spleen and bone marrow (60~90%) and generate well-differentiated multilineage human immune cells including lymphoid and myeloid lineage cells. Using these mice, several human disease models such as cancer, allergy, graft-versus-host disease (GVHD), and etc. have been established to understand the pathogenic mechanisms of the diseases and to evaluate the efficacy and safety of novel drugs. In this review, I provide an overview of recent advances in the humanized mouse technology, including generation of novel platforms of genetically modified NOG (next generation NOG) mice and some applications of them to create human disease models for drug discovery in preclinical researches.
Sturdevant, Gail L; Caldwell, Harlan D
2014-10-01
Chlamydia muridarum and Chlamydia trachomatis, mouse and human strains, respectively, have been used to study immunity in a murine model of female genital tract infection. Despite evidence that unique genes of these otherwise genomically similar strains could play a role in innate immune evasion in their respective mouse and human hosts, there have been no animal model findings to directly support this conclusion. Here, we infected C57BL/6 and adaptive immune-deficient Rag1(-/-) female mice with these strains and evaluated their ability to spontaneously resolve genital infection. Predictably, C57BL/6 mice spontaneously cleared infection caused by both chlamydial strains. In contrast, Rag1(-/-) mice which lack mature T and B cell immunity but maintain functional innate immune effectors were incapable of resolving C. muridarum infection but spontaneously cleared C. trachomatis infection. This distinct dichotomy in adaptive and innate immune-mediated clearance between mouse and human strains has important cautionary implications for the study of natural immunity and vaccine development in the mouse model. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Ratelade, Julien; Verkman, A S
2014-11-01
Neuromyelitis optica (NMO) is an inflammatory demyelinating disease of the central nervous system in which anti-aquaporin-4 (AQP4) autoantibodies (AQP4-IgG) cause damage to astrocytes by complement-dependent cytotoxicity (CDC). Various approaches have been attempted to produce NMO lesions in rodents, some involving genetically modified mice with altered immune cell function. Here, we found that mouse serum strongly inhibits complement from multiple species, preventing AQP4-IgG-dependent CDC. Effects of mouse serum on complement activation were tested in CDC assays in which AQP4-expressing cells were incubated with AQP4-IgG and complement from different species. Biochemical assays and mass spectrometry were used to characterize complement inhibitor(s) in mouse serum. Sera from different strains of mice produced almost no AQP4-IgG-dependent CDC compared with human, rat and guinea pig sera. Remarkably, addition of mouse serum prevented AQP4-IgG-dependent CDC caused by human, rat or guinea pig serum, with 50% inhibition at <5% mouse serum. Hemolysis assays indicated that the inhibitor(s) in mouse serum target the classical and not the alternative complement pathway. We found that the complement inhibitor(s) in mouse serum were contained in a serum fraction purified with protein-A resin; however, the inhibitor was not IgG as determined using serum from IgG-deficient mice. Mass spectrometry on the protein A-purified fraction produced several inhibitor candidates. The low intrinsic complement activity of mouse serum and the presence of complement inhibitor(s) limit the utility of mouse models to study disorders, such as NMO, involving the classical complement pathway. Copyright © 2014 Elsevier Ltd. All rights reserved.
Assas, B M; Levison, S E; Little, M; England, H; Battrick, L; Bagnall, J; McLaughlin, J T; Paszek, P; Else, K J; Pennock, J L
2017-02-01
Infliximab (IFX) has been used repeatedly in mouse preclinical models with associated claims that anti-inflammatory effects are due to inhibition of mouse tumour necrosis factor (TNF)-α. However, the mechanism of action in mice remains unclear. In this study, the binding specificity of IFX for mouse TNF-α was investigated ex vivo using enzyme-linked immunosorbent assay (ELISA), flow cytometry and Western blot. Infliximab (IFX) did not bind directly to soluble or membrane-bound mouse TNF-α nor did it have any effect on TNF-α-induced nuclear factor kappa B (NF-κB) stimulation in mouse fibroblasts. The efficacy of IFX treatment was then investigated in vivo using a TNF-α-independent Trichuris muris-induced infection model of chronic colitis. Infection provoked severe transmural colonic inflammation by day 35 post-infection. Colonic pathology, macrophage phenotype and cell death were determined. As predicted from the in-vitro data, in-vivo treatment of T. muris-infected mice with IFX had no effect on clinical outcome, nor did it affect macrophage cell phenotype or number. IFX enhanced apoptosis of colonic immune cells significantly, likely to be driven by a direct effect of the humanized antibody itself. We have demonstrated that although IFX does not bind directly to TNF-α, observed anti-inflammatory effects in other mouse models may be through host cell apoptosis. We suggest that more careful consideration of xenogeneic responses should be made when utilizing IFX in preclinical models. © 2016 The Authors. Clinical & Experimental Immunology published by John Wiley & Sons Ltd on behalf of British Society for Immunology.
The Use of the Humanized Mouse Model in Gene Therapy and Immunotherapy for HIV and Cancer
Carrillo, Mayra A.; Zhen, Anjie; Kitchen, Scott G.
2018-01-01
HIV and cancer remain prevailing sources of morbidity and mortality worldwide. There are current efforts to discover novel therapeutic strategies for the treatment or cure of these diseases. Humanized mouse models provide the investigative tool to study the interaction between HIV or cancer and the human immune system in vivo. These humanized models consist of immunodeficient mice transplanted with human cells, tissues, or hematopoietic stem cells that result in reconstitution with a nearly full human immune system. In this review, we discuss preclinical studies evaluating therapeutic approaches in stem cell-based gene therapy and T cell-based immunotherapies for HIV and cancer using a humanized mouse model and some recent advances in using checkpoint inhibitors to improve antiviral or antitumor responses. PMID:29755454
Augmented Computer Mouse Would Measure Applied Force
NASA Technical Reports Server (NTRS)
Li, Larry C. H.
1993-01-01
Proposed computer mouse measures force of contact applied by user. Adds another dimension to two-dimensional-position-measuring capability of conventional computer mouse; force measurement designated to represent any desired continuously variable function of time and position, such as control force, acceleration, velocity, or position along axis perpendicular to computer video display. Proposed mouse enhances sense of realism and intuition in interaction between operator and computer. Useful in such applications as three-dimensional computer graphics, computer games, and mathematical modeling of dynamics.
Investigation of a redox-sensitive predictive model of mouse embryonic stem cell differentiation via quantitative nuclease protection assays and glutathione redox status Chandler KJ,Hansen JM, Knudsen T,and Hunter ES 1. U.S. Environmental Protection Agency, Research Triangl...
USDA-ARS?s Scientific Manuscript database
The skeletal muscles in Duchenne muscular dystrophy and the mdx mouse model lack functional dystrophin and undergo repeated bouts of necrosis, regeneration, and growth. These processes have a high metabolic cost. However, the consequences for whole body energy and protein metabolism, and on the diet...
USDA-ARS?s Scientific Manuscript database
Whole wheat products provide critical nutrients for human health, though differences in wheat flavor are not well understood. Using the house mouse as a model system, flavor was examined using a two-choice feeding system and the Student’s t statistic. To eliminate the confounding effect of processin...
C9orf72 BAC Mouse Model with Motor Deficits and Neurodegenerative Features of ALS/FTD.
Liu, Yuanjing; Pattamatta, Amrutha; Zu, Tao; Reid, Tammy; Bardhi, Olgert; Borchelt, David R; Yachnis, Anthony T; Ranum, Laura P W
2016-05-04
To define how the C9orf72 GGGGCC expansion mutation causes ALS/FTD and to facilitate therapy development, a mouse model that recapitulates the molecular and phenotypic features of the disease is urgently needed. Two groups recently reported BAC mouse models that produce RNA foci and RAN proteins but, surprisingly, do not develop the neurodegenerative or behavioral features of ALS/FTD. We now report a BAC mouse model of C9orf72 ALS/FTD that shows decreased survival, paralysis, muscle denervation, motor neuron loss, anxiety-like behavior, and cortical and hippocampal neurodegeneration. These mice express C9orf72 sense transcripts and upregulated antisense transcripts. In contrast to sense RNA foci, antisense foci preferentially accumulate in ALS/FTD-vulnerable cell populations. RAN protein accumulation increases with age and disease, and TDP-43 inclusions are found in degenerating brain regions in end-stage animals. The ALS/FTD phenotypes in our mice provide a unique tool that will facilitate developing therapies targeting pathways that prevent neurodegeneration and increase survival. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Jian; Zhang, Xiangming; Wang, Ping; Wang, Xiang; Farris, Alton B.; Wang, Ya
2016-06-01
Unlike terrestrial ionizing radiation, space radiation, especially galactic cosmic rays (GCR), contains high energy charged (HZE) particles with high linear energy transfer (LET). Due to a lack of epidemiologic data for high-LET radiation exposure, it is highly uncertain how high the carcinogenesis risk is for astronauts following exposure to space radiation during space missions. Therefore, using mouse models is necessary to evaluate the risk of space radiation-induced tumorigenesis; however, which mouse model is better for these studies remains uncertain. Since lung tumorigenesis is the leading cause of cancer death among both men and women, and low-LET radiation exposure increases human lung carcinogenesis, evaluating space radiation-induced lung tumorigenesis is critical to enable safe Mars missions. Here, by comparing lung tumorigenesis obtained from different mouse strains, as well as miR-21 in lung tissue/tumors and serum, we believe that wild type mice with a low spontaneous tumorigenesis background are ideal for evaluating the risk of space radiation-induced lung tumorigenesis, and circulating miR-21 from such mice model might be used as a biomarker for predicting the risk.
The senescence accelerated mouse prone 8 (SAMP8): A novel murine model for cardiac aging.
Karuppagounder, Vengadeshprabhu; Arumugam, Somasundaram; Babu, Sahana Suresh; Palaniyandi, Suresh S; Watanabe, Kenichi; Cooke, John P; Thandavarayan, Rajarajan A
2017-05-01
Because cardiovascular disease remains the major cause of mortality and morbidity world-wide, there remains a compelling need for new insights and novel therapeutic avenues. In this regard, the senescence-accelerated mouse prone 8 (SAMP8) line is a particularly good model for studying the effects of aging on cardiovascular health. Accumulating evidence suggests that this model may shed light on age-associated cardiac and vascular dysfunction and disease. These animals manifest evidence of inflammation, oxidative stress and adverse cardiac remodeling that may recapitulate processes involved in human disease. Early alterations in oxidative damage promote endoplasmic reticulum stress to trigger apoptosis and cytokine production in this genetically susceptible mouse strain. Conversely, pharmacological treatments that reduce inflammation and oxidative stress improve cardiac function in these animals. Therefore, the SAMP8 mouse model provides an exciting opportunity to expand our knowledge of aging in cardiovascular disease and the potential identification of novel targets of treatment. Herein, we review the previous studies performed in SAMP8 mice that provide insight into age-related cardiovascular alterations. Copyright © 2016 Elsevier B.V. All rights reserved.
The mouse and ferret models for studying the novel avian-origin human influenza A (H7N9) virus.
Xu, Lili; Bao, Linlin; Deng, Wei; Zhu, Hua; Chen, Ting; Lv, Qi; Li, Fengdi; Yuan, Jing; Xiang, Zhiguang; Gao, Kai; Xu, Yanfeng; Huang, Lan; Li, Yanhong; Liu, Jiangning; Yao, Yanfeng; Yu, Pin; Yong, Weidong; Wei, Qiang; Zhang, Lianfeng; Qin, Chuan
2013-08-08
The current study was conducted to establish animal models (including mouse and ferret) for the novel avian-origin H7N9 influenza virus. A/Anhui/1/2013 (H7N9) virus was administered by intranasal instillation to groups of mice and ferrets, and animals developed typical clinical signs including body weight loss (mice and ferrets), ruffled fur (mice), sneezing (ferrets), and death (mice). Peak virus shedding from respiratory tract was observed on 2 days post inoculation (d.p.i.) for mice and 3-5 d.p.i. for ferrets. Virus could also be detected in brain, liver, spleen, kidney, and intestine from inoculated mice, and in heart, liver, and olfactory bulb from inoculated ferrets. The inoculation of H7N9 could elicit seroconversion titers up to 1280 in ferrets and 160 in mice. Leukopenia, significantly reduced lymphocytes but increased neutrophils were also observed in mouse and ferret models. The mouse and ferret model enables detailed studies of the pathogenesis of this illness and lay the foundation for drug or vaccine evaluation.
Mouse Models for Investigating the Developmental Bases of Human Birth Defects
MOON, ANNE M.
2006-01-01
Clinicians and basic scientists share an interest in discovering how genetic or environmental factors interact to perturb normal development and cause birth defects and human disease. Given the complexity of such interactions, it is not surprising that 4% of human infants are born with a congenital malformation, and cardiovascular defects occur in nearly 1%. Our research is based on the fundamental hypothesis that an understanding of normal and abnormal development will permit us to generate effective strategies for both prevention and treatment of human birth defects. Animal models are invaluable in these efforts because they allow one to interrogate the genetic, molecular and cellular events that distinguish normal from abnormal development. Several features of the mouse make it a particularly powerful experimental model: it is a mammalian system with similar embryology, anatomy and physiology to humans; genes, proteins and regulatory programs are largely conserved between human and mouse; and finally, gene targeting in murine embryonic stem cells has made the mouse genome amenable to sophisticated genetic manipulation currently unavailable in any other model organism. PMID:16641221
Follistatin does not influence the course of Escherichia coli K1 sepsis in a mouse model.
Dieelberg, Catharina; Ribes, Sandra; Michel, Uwe; Redlich, Sandra; Brück, Wolfgang; Nau, Roland; Schütze, Sandra
2012-12-01
Follistatin (FS) is the binding protein of activin A and inhibits its actions. The activin/FS system participates in the fine tuning of the immune response, and concentrations of activin A and FS are elevated in serum of patients with sepsis. Intraperitoneal injection of FS markedly reduced mortality after lipopolysaccharide-induced inflammation in a mouse model. Here, we investigated whether FS also influences the disease course in a mouse model of sepsis induced by intraperitoneal injection of Escherichia coli K1, a gram-negative bacterium frequently causing septic bacterial infections. Intraperitoneal injection of 10 μg/mL FS 30 min before infection did not influence survival, weight, motor performance, or bacterial titers of the infected mice. Thus, we could not confirm the protective effect of FS observed during lipopolysaccharide-induced inflammation in our mouse model of E. coli sepsis. Although it is a promising therapeutic tool in chronic or acute inflammatory conditions not caused by virulent pathogens, FS does not seem to increase the resistance to bacterial infections.
A chimeric human-mouse model of Sjögren's syndrome.
Young, Nicholas A; Wu, Lai-Chu; Bruss, Michael; Kaffenberger, Benjamin H; Hampton, Jeffrey; Bolon, Brad; Jarjour, Wael N
2015-01-01
Despite recent advances in the understanding of Sjögren's Syndrome (SjS), the pathogenic mechanisms remain elusive and an ideal model for early drug discovery is not yet available. To establish a humanized mouse model of SjS, peripheral blood mononuclear cells (PBMCs) from healthy volunteers or patients with SjS were transferred into immunodeficient NOD-scid IL-2rγ(null) mouse recipients to produce chimeric mice. While no difference was observed in the distribution of cells, chimeric mice transferred with PBMCs from SjS patients produced enhanced cytokine levels, most significantly IFN-γ and IL-10. Histological examination revealed enhanced inflammatory responses in the lacrimal and salivary glands of SjS chimeras, as measured by digital image analysis and blinded histopathological scoring. Infiltrates were primarily CD4+, with minimal detection of CD8+ T-cells and B-cells. These results demonstrate a novel chimeric mouse model of human SjS that provides a unique in vivo environment to test experimental therapeutics and investigate T-cell disease pathology. Copyright © 2014. Published by Elsevier Inc.
O’Hagan, Rónán C.; Heyer, Joerg
2011-01-01
KRAS is a potent oncogene and is mutated in about 30% of all human cancers. However, the biological context of KRAS-dependent oncogenesis is poorly understood. Genetically engineered mouse models of cancer provide invaluable tools to study the oncogenic process, and insights from KRAS-driven models have significantly increased our understanding of the genetic, cellular, and tissue contexts in which KRAS is competent for oncogenesis. Moreover, variation among tumors arising in mouse models can provide insight into the mechanisms underlying response or resistance to therapy in KRAS-dependent cancers. Hence, it is essential that models of KRAS-driven cancers accurately reflect the genetics of human tumors and recapitulate the complex tumor-stromal intercommunication that is manifest in human cancers. Here, we highlight the progress made in modeling KRAS-dependent cancers and the impact that these models have had on our understanding of cancer biology. In particular, the development of models that recapitulate the complex biology of human cancers enables translational insights into mechanisms of therapeutic intervention in KRAS-dependent cancers. PMID:21779503
How Mouse-tracking Can Advance Social Cognitive Theory.
Stillman, Paul E; Shen, Xi; Ferguson, Melissa J
2018-06-01
Mouse-tracking - measuring computer-mouse movements made by participants while they choose between response options - is an emerging tool that offers an accessible, data-rich, and real-time window into how people categorize and make decisions. In the present article we review recent research in social cognition that uses mouse-tracking to test models and advance theory. In particular, mouse-tracking allows examination of nuanced predictions about both the nature of conflict (e.g., its antecedents and consequences) as well as how this conflict is resolved (e.g., how decisions evolve). We demonstrate how mouse-tracking can further our theoretical understanding by highlighting research in two domains - social categorization and self-control. We conclude with future directions and a discussion of the limitations of mouse-tracking as a method. Copyright © 2018 Elsevier Ltd. All rights reserved.
Impaired spatial processing in a mouse model of fragile X syndrome.
Ghilan, Mohamed; Bettio, Luis E B; Noonan, Athena; Brocardo, Patricia S; Gil-Mohapel, Joana; Christie, Brian R
2018-05-17
Fragile X syndrome (FXS) is the most common form of inherited intellectual impairment. The Fmr1 -/y mouse model has been previously shown to have deficits in context discrimination tasks but not in the elevated plus-maze. To further characterize this FXS mouse model and determine whether hippocampal-mediated behaviours are affected in these mice, dentate gyrus (DG)-dependent spatial processing and Cornu ammonis 1 (CA1)-dependent temporal order discrimination tasks were evaluated. In agreement with previous findings of long-term potentiation deficits in the DG of this transgenic model of FXS, the results reported here demonstrate that Fmr1 -/y mice perform poorly in the DG-dependent metric change spatial processing task. However, Fmr1 -/y mice did not present deficits in the CA1-dependent temporal order discrimination task, and were able to remember the order in which objects were presented to them to the same extent as their wild-type littermate controls. These data suggest that the previously reported subregional-specific differences in hippocampal synaptic plasticity observed in the Fmr1 -/y mouse model may manifest as selective behavioural deficits in hippocampal-dependent tasks. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.
Isolation of Circulating Tumor Cells in an Orthotopic Mouse Model of Colorectal Cancer.
Kochall, Susan; Thepkaysone, May-Linn; García, Sebastián A; Betzler, Alexander M; Weitz, Jürgen; Reissfelder, Christoph; Schölch, Sebastian
2017-07-18
Despite the advantages of easy applicability and cost-effectiveness, subcutaneous mouse models have severe limitations and do not accurately simulate tumor biology and tumor cell dissemination. Orthotopic mouse models have been introduced to overcome these limitations; however, such models are technically demanding, especially in hollow organs such as the large bowel. In order to produce uniform tumors which reliably grow and metastasize, standardized techniques of tumor cell preparation and injection are critical. We have developed an orthotopic mouse model of colorectal cancer (CRC) which develops highly uniform tumors and can be used for tumor biology studies as well as therapeutic trials. Tumor cells from either primary tumors, 2-dimensional (2D) cell lines or 3-dimensional (3D) organoids are injected into the cecum and, depending on the metastatic potential of the injected tumor cells, form highly metastatic tumors. In addition, CTCs can be found regularly. We here describe the technique of tumor cell preparation from both 2D cell lines and 3D organoids as well as primary tumor tissue, the surgical and injection techniques as well as the isolation of CTCs from the tumor-bearing mice, and present tips for troubleshooting.
How informative is the mouse for human gut microbiota research?
Nguyen, Thi Loan Anh; Vieira-Silva, Sara; Liston, Adrian; Raes, Jeroen
2015-01-01
The microbiota of the human gut is gaining broad attention owing to its association with a wide range of diseases, ranging from metabolic disorders (e.g. obesity and type 2 diabetes) to autoimmune diseases (such as inflammatory bowel disease and type 1 diabetes), cancer and even neurodevelopmental disorders (e.g. autism). Having been increasingly used in biomedical research, mice have become the model of choice for most studies in this emerging field. Mouse models allow perturbations in gut microbiota to be studied in a controlled experimental setup, and thus help in assessing causality of the complex host-microbiota interactions and in developing mechanistic hypotheses. However, pitfalls should be considered when translating gut microbiome research results from mouse models to humans. In this Special Article, we discuss the intrinsic similarities and differences that exist between the two systems, and compare the human and murine core gut microbiota based on a meta-analysis of currently available datasets. Finally, we discuss the external factors that influence the capability of mouse models to recapitulate the gut microbiota shifts associated with human diseases, and investigate which alternative model systems exist for gut microbiota research. PMID:25561744
How informative is the mouse for human gut microbiota research?
Nguyen, Thi Loan Anh; Vieira-Silva, Sara; Liston, Adrian; Raes, Jeroen
2015-01-01
The microbiota of the human gut is gaining broad attention owing to its association with a wide range of diseases, ranging from metabolic disorders (e.g. obesity and type 2 diabetes) to autoimmune diseases (such as inflammatory bowel disease and type 1 diabetes), cancer and even neurodevelopmental disorders (e.g. autism). Having been increasingly used in biomedical research, mice have become the model of choice for most studies in this emerging field. Mouse models allow perturbations in gut microbiota to be studied in a controlled experimental setup, and thus help in assessing causality of the complex host-microbiota interactions and in developing mechanistic hypotheses. However, pitfalls should be considered when translating gut microbiome research results from mouse models to humans. In this Special Article, we discuss the intrinsic similarities and differences that exist between the two systems, and compare the human and murine core gut microbiota based on a meta-analysis of currently available datasets. Finally, we discuss the external factors that influence the capability of mouse models to recapitulate the gut microbiota shifts associated with human diseases, and investigate which alternative model systems exist for gut microbiota research. © 2015. Published by The Company of Biologists Ltd.
Ishihara, Keiichi
2017-01-01
Down syndrome, caused by the triplication of human chromosome 21, is the most frequent genetic cause of mental retardation. Mice with a segmental trisomy for mouse chromosome 16, which is orthologous to human chromosome 21, exhibit abnormalities similar to those in individuals with Down syndrome and therefore offer the opportunity for a genotype-phenotype correlation. In the current review, I present several mouse lines with trisomic regions of various lengths and discuss their usefulness for elucidating the mechanisms underlying Down syndrome-associated developmental cognitive disabilities. In addition, our recent comprehensive study attempting to identify molecules with disturbed expression in the brain of a mouse model of Down syndrome in order to develop a pharmacologic therapy for Down syndrome is described.
Gene Suppression of Mouse Testis In Vivo Using Small Interfering RNA Derived from Plasmid Vectors
Takizawa, Takami; Ishikawa, Tomoko; Kosuge, Takuji; Mizuguchi, Yoshiaki; Sato, Yoko; Koji, Takehiko; Araki, Yoshihiko; Takizawa, Toshihiro
2012-01-01
We evaluated whether inhibiting gene expression by small interfering RNA (siRNA) can be used for an in vivo model using a germ cell-specific gene (Tex101) as a model target in mouse testis. We generated plasmid-based expression vectors of siRNA targeting the Tex101 gene and transfected them into postnatal day 10 mouse testes by in vivo electroporation. After optimizing the electroporation conditions using a vector transfected into the mouse testis, a combination of high- and low-voltage pulses showed excellent transfection efficiency for the vectors with minimal tissue damage, but gene suppression was transient. Gene suppression by in vivo electroporation may be helpful as an alternative approach when designing experiments to unravel the basic role of testicular molecules. PMID:22489107
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leonardi, Roberta; Zhang, Yong-Mei; Lykidis, Athanasios
2007-09-07
Coenzyme A (CoA) biosynthesis is initiated by pantothenatekinase (PanK) and CoA levels are controlled through differentialexpression and feedback regulation of PanK isoforms. PanK2 is amitochondrial protein in humans, but comparative genomics revealed thatacquisition of a mitochondrial targeting signal was limited to primates.Human and mouse PanK2 possessed similar biochemical properties, withinhibition by acetylCoA and activation by palmitoylcarnitine. Mouse PanK2localized in the cytosol, and the expression of PanK2 was higher in humanbrain compared to mouse brain. Differences in expression and subcellularlocalization should be considered in developing a mouse model for humanPanK2 deficiency.
Expression of endogenous mouse APP modulates β-amyloid deposition in hAPP-transgenic mice.
Steffen, Johannes; Krohn, Markus; Schwitlick, Christina; Brüning, Thomas; Paarmann, Kristin; Pietrzik, Claus U; Biverstål, Henrik; Jansone, Baiba; Langer, Oliver; Pahnke, Jens
2017-06-20
Amyloid-β (Aβ) deposition is one of the hallmarks of the amyloid hypothesis in Alzheimer's disease (AD). Mouse models using APP-transgene overexpression to generate amyloid plaques have shown to model only certain parts of the disease. The extent to which the data from mice can be transferred to man remains controversial. Several studies have shown convincing treatment results in reducing Aβ and enhancing cognition in mice but failed totally in human. One model-dependent factor has so far been almost completely neglected: the endogenous expression of mouse APP and its effects on the transgenic models and the readout for therapeutic approaches.Here, we report that hAPP-transgenic models of amyloidosis devoid of endogenous mouse APP expression (mAPP-knockout / mAPPko) show increased amounts and higher speed of Aβ deposition than controls with mAPP. The number of senile plaques and the level of aggregated hAβ were elevated in mAPPko mice, while the deposition in cortical blood vessels was delayed, indicating an alteration in the general aggregation propensity of hAβ together with endogenous mAβ. Furthermore, the cellular response to Aβ deposition was modulated: mAPPko mice developed a pronounced and age-dependent astrogliosis, while microglial association to amyloid plaques was diminished. The expression of human and murine aggregation-prone proteins with differing amino acid sequences within the same mouse model might not only alter the extent of deposition but also modulate the route of pathogenesis, and thus, decisively influence the study outcome, especially in translational research.
Livestock in biomedical research: history, current status and future prospective.
Polejaeva, Irina A; Rutigliano, Heloisa M; Wells, Kevin D
2016-01-01
Livestock models have contributed significantly to biomedical and surgical advances. Their contribution is particularly prominent in the areas of physiology and assisted reproductive technologies, including understanding developmental processes and disorders, from ancient to modern times. Over the past 25 years, biomedical research that traditionally embraced a diverse species approach shifted to a small number of model species (e.g. mice and rats). The initial reasons for focusing the main efforts on the mouse were the availability of murine embryonic stem cells (ESCs) and genome sequence data. This powerful combination allowed for precise manipulation of the mouse genome (knockouts, knockins, transcriptional switches etc.) leading to ground-breaking discoveries on gene functions and regulation, and their role in health and disease. Despite the enormous contribution to biomedical research, mouse models have some major limitations. Their substantial differences compared with humans in body and organ size, lifespan and inbreeding result in pronounced metabolic, physiological and behavioural differences. Comparative studies of strategically chosen domestic species can complement mouse research and yield more rigorous findings. Because genome sequence and gene manipulation tools are now available for farm animals (cattle, pigs, sheep and goats), a larger number of livestock genetically engineered (GE) models will be accessible for biomedical research. This paper discusses the use of cattle, goats, sheep and pigs in biomedical research, provides an overview of transgenic technology in farm animals and highlights some of the beneficial characteristics of large animal models of human disease compared with the mouse. In addition, status and origin of current regulation of GE biomedical models is also reviewed.
Choi, Catherine H.; Schoenfeld, Brian P.; Weisz, Eliana D.; Bell, Aaron J.; Chambers, Daniel B.; Hinchey, Joseph; Choi, Richard J.; Hinchey, Paul; Kollaros, Maria; Gertner, Michael J.; Ferrick, Neal J.; Terlizzi, Allison M.; Yohn, Nicole; Koenigsberg, Eric; Liebelt, David A.; Zukin, R. Suzanne; Woo, Newton H.; Tranfaglia, Michael R.; Louneva, Natalia; Arnold, Steven E.; Siegel, Steven J.
2015-01-01
Fragile X syndrome (FXS) is the leading cause of both intellectual disability and autism resulting from a single gene mutation. Previously, we characterized cognitive impairments and brain structural defects in a Drosophila model of FXS and demonstrated that these impairments were rescued by treatment with metabotropic glutamate receptor (mGluR) antagonists or lithium. A well-documented biochemical defect observed in fly and mouse FXS models and FXS patients is low cAMP levels. cAMP levels can be regulated by mGluR signaling. Herein, we demonstrate PDE-4 inhibition as a therapeutic strategy to ameliorate memory impairments and brain structural defects in the Drosophila model of fragile X. Furthermore, we examine the effects of PDE-4 inhibition by pharmacologic treatment in the fragile X mouse model. We demonstrate that acute inhibition of PDE-4 by pharmacologic treatment in hippocampal slices rescues the enhanced mGluR-dependent LTD phenotype observed in FXS mice. Additionally, we find that chronic treatment of FXS model mice, in adulthood, also restores the level of mGluR-dependent LTD to that observed in wild-type animals. Translating the findings of successful pharmacologic intervention from the Drosophila model into the mouse model of FXS is an important advance, in that this identifies and validates PDE-4 inhibition as potential therapeutic intervention for the treatment of individuals afflicted with FXS. PMID:25568131
A Mouse Model to Evaluate the Impact of Species, Sex, and Lipid Load on Lymphatic Drug Transport
Caliph, Suzanne M.; Nguyen, Gary; Tso, Patrick; Charman, William N.
2014-01-01
Purpose To establish a lymph-cannulated mouse model, and use the model to investigate the impact of lipid dose on exogenous and endogenous lipid recruitment, and drug transport, into the lymph of males versus females. Finally, lymphatic transport and drug absorption in the mouse were compared to other pre-clinical models (rats/dogs). Methods Animals were orally or intraduodenally administered 1.6 mg/kg halofantrine in low or high 14C-lipid doses. For bioavailability calculation, animals were intravenuosly administered halofantrine. Lymph or blood samples were taken and halofantrine, triglyceride, phospholipid and 14C-lipid concentrations measured. Results Lymphatic lipid transport increased linearly with lipid dose, was similar across species and in male/female animals. In contrast, lymphatic transport of halofantrine differed markedly across species (dogs>rats>mice) and plateaued at higher lipid doses. Lower bioavailability appeared responsible for some species differences in halofantrine lymphatic transport; however other systematic differences were involved. Conclusions A contemporary lymph-cannulated mouse model was established which will enable investigation of lymphatic transport in transgenic and disease models. The current study found halofantrine absorption and lymphatic transport are reduced in small animals. Future analyses will investigate mechanisms involved, and if similar trends occur for other drugs, to establish the most relevant model(s) to predict lymphatic transport in humans. PMID:23430484
Mouse Models for Unraveling the Importance of Diet in Colon Cancer Prevention
Tammariello, Alexandra E.; Milner, John A.
2010-01-01
Diet and genetics are both considered important risk determinants for colorectal cancer, a leading cause of death worldwide. Several genetically engineered mouse models have been created, including the ApcMin mouse, to aid in the identification of key cancer related processes and to assist with the characterization of environmental factors, including the diet, which influence risk. Current research using these models provides evidence that several bioactive food components can inhibit genetically predisposed colorectal cancer, while others increase risk. Specifically, calorie restriction or increased exposure to n-3 fatty acids, sulforaphane, chafuroside, curcumin, and dibenzoylmethane were reported protective. Total fat, calories and all-trans retinoic acid are associated with an increased risk. Unraveling the importance of specific dietary components in these models is complicated by the basal diet used, the quantity of test components provided, and interactions among food components. Newer models are increasingly available to evaluate fundamental cellular processes, including DNA mismatch repair, immune function and inflammation as markers for colon cancer risk. Unfortunately, these models have been used infrequently to examine the influence of specific dietary components. The enhanced use of these models can shed mechanistic insights about the involvement of specific bioactive food and components and energy as determinants of colon cancer risk. However, the use of available mouse models to exactly represent processes important to human gastrointestinal cancers will remain a continued scientific challenge. PMID:20122631
Rat astrocytes are more supportive for mouse OPC self-renewal than mouse astrocytes in culture.
Cheng, Xuejun; Xie, Binghua; Qi, Jiajun; Zhao, Xiaofeng; Zhang, Zunyi; Qiu, Mengsheng; Yang, Junlin
2017-09-01
Mouse primary oligodendrocyte precursor cells (OPCs) are increasingly used to study the molecular mechanisms underlying the phenotype changes in oligodendrocyte differentiation and axonal myelination observed in transgenic or mutant mouse models. However, mouse OPCs are much more difficult to be isolated by the simple dissociation culture of brain tissues than their rat counterparts. To date, the mechanisms underlying the species difference in OPC preparation remain obscure. In this study, we showed that astrocytes from rats have a stronger effect than those from mouse in promoting OPC proliferation and survival in vitro. Mouse astrocytes displayed significantly weaker viability in culture and reduced potential in maintaining OPC self-renewal, as confirmed by culturing OPCs with conditioned media from rat or mouse astrocytes. These results explained the reason for why stratified cultures of OPCs and astrocytes are difficult to be achieved in mouse CNS tissues. Based on these findings, we adopted inactivated rat astrocytes as feeder cells to support the self-renewal of mouse cortical OPCs and preparation of high-purity mouse OPCs. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 907-916, 2017. © 2016 Wiley Periodicals, Inc.
Kim, So-Hyun; K. Cho, Somi; Min, Tae-Sun; Kim, Yujin; Yang, Seung-Ok; Kim, Hee-Su; Hyun, Sun-Hee; Kim, Hana; Kim, Young-Suk; Choi, Hyung-Kyoon
2011-01-01
The ameliorating effects of Mango (Mangifera indica L.) flesh and peel samples on plasma ethanol level were investigated using a mouse model. Mango fruit samples remarkably decreased mouse plasma ethanol levels and increased the activities of alcohol dehydrogenase and acetaldehyde dehydrogenase. The 1H-NMR-based metabolomic technique was employed to investigate the differences in metabolic profiles of mango fruits, and mouse plasma samples fed with mango fruit samples. The partial least squares-discriminate analysis of 1H-NMR spectral data of mouse plasma demonstrated that there were clear separations among plasma samples from mice fed with buffer, mango flesh and peel. A loading plot demonstrated that metabolites from mango fruit, such as fructose and aspartate, might stimulate alcohol degradation enzymes. This study suggests that mango flesh and peel could be used as resources for functional foods intended to decrease plasma ethanol level after ethanol uptake. PMID:21562641
Haldipur, Parthiv; Dang, Derek; Aldinger, Kimberly A; Janson, Olivia K; Guimiot, Fabien; Adle-Biasette, Homa; Dobyns, William B; Siebert, Joseph R; Russo, Rosa; Millen, Kathleen J
2017-01-16
FOXC1 loss contributes to Dandy-Walker malformation (DWM), a common human cerebellar malformation. Previously, we found that complete Foxc1 loss leads to aberrations in proliferation, neuronal differentiation and migration in the embryonic mouse cerebellum (Haldipur et al., 2014). We now demonstrate that hypomorphic Foxc1 mutant mice have granule and Purkinje cell abnormalities causing subsequent disruptions in postnatal cerebellar foliation and lamination. Particularly striking is the presence of a partially formed posterior lobule which echoes the posterior vermis DW 'tail sign' observed in human imaging studies. Lineage tracing experiments in Foxc1 mutant mouse cerebella indicate that aberrant migration of granule cell progenitors destined to form the posterior-most lobule causes this unique phenotype. Analyses of rare human del chr 6p25 fetal cerebella demonstrate extensive phenotypic overlap with our Foxc1 mutant mouse models, validating our DWM models and demonstrating that many key mechanisms controlling cerebellar development are likely conserved between mouse and human.
Morphological phenotyping of mouse hearts using optical coherence tomography
NASA Astrophysics Data System (ADS)
Cua, Michelle; Lin, Eric; Lee, Ling; Sheng, Xiaoye; Wong, Kevin S. K.; Tibbits, Glen F.; Beg, Mirza Faisal; Sarunic, Marinko V.
2014-11-01
Transgenic mouse models have been instrumental in the elucidation of the molecular mechanisms behind many genetically based cardiovascular diseases such as Marfan syndrome (MFS). However, the characterization of their cardiac morphology has been hampered by the small size of the mouse heart. In this report, we adapted optical coherence tomography (OCT) for imaging fixed adult mouse hearts, and applied tools from computational anatomy to perform morphometric analyses. The hearts were first optically cleared and imaged from multiple perspectives. The acquired volumes were then corrected for refractive distortions, and registered and stitched together to form a single, high-resolution OCT volume of the whole heart. From this volume, various structures such as the valves and myofibril bundles were visualized. The volumetric nature of our dataset also allowed parameters such as wall thickness, ventricular wall masses, and luminal volumes to be extracted. Finally, we applied the entire acquisition and processing pipeline in a preliminary study comparing the cardiac morphology of wild-type mice and a transgenic mouse model of MFS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, J.C.-W.
Andrographolide (AGP) and 14-deoxy-11,12-didehydroandrographolide (DDAG), two main diterpenoid constituents of Andrographis paniculata were previously shown to ameliorate asthmatic symptoms in a mouse model. However, due to inadequacies of both compounds in terms of drug-likeness, DDAG analogues were semisynthesised for assessment of their anti-asthma activity. A selected analogue, 3,19-diacetyl-14-deoxy-11,12-didehydroandrographolide (SRS27), was tested for inhibitory activity of NF-κB activation in TNF-α-induced A549 cells and was subsequently evaluated in a mouse model of ovalbumin (OVA)-induced asthma. Female BALB/c mice, 6–8 weeks old were sensitized on days 0 and 14, and challenged on days 22, 23 and 24 with OVA. Compound or vehicle (3%more » dimethyl sulfoxide) was administered intraperitoneally 1 h before and 11 h after each OVA aerosol challenge. On day 25, pulmonary eosinophilia, airway hyperresponsiveness, mucus hypersecretion, inflammatory cytokines such as IL-4, -5 and -13 in BAL fluid, gene expression of inflammatory mediators such as 5-LOX, E-selectin, VCAM-1, CCL5, TNF-α, AMCase, Ym2, YKL-40, Muc5ac, CCL2 and iNOS in animal lung tissues, and serum IgE were determined. SRS27 at 30 μM was found to suppress NF-κB nuclear translocation in A549 cells. In the ovalbumin-induced mouse asthma model, SRS27 at 3 mg/kg displayed a substantial decrease in pulmonary eosinophilia, BAL fluid inflammatory cytokines level, serum IgE production, mucus hypersecretion and gene expression of inflammatory mediators in lung tissues. SRS27 is the first known DDAG analogue effective in ameliorating inflammation and airway hyperresponsiveness in the ovalbumin-induced mouse asthma model. - Highlights: • SRS27 was synthesised to overcome inadequacies of its parent compound in terms of drug-likeness. • SRS27 was tested in TNF-α-induced A549 lung cells and ovalbumin (OVA)-induced mouse asthma model. • SRS27 suppressed NF-κB nuclear translocation in A549 cells. • SRS27 alleviated lung inflammation and airway hyperresponsiveness in mouse asthma model. • SRS27 is the first known DDAG analogue tested positive in ameliorating asthma.« less
Superior diastolic function with KATP channel opener diazoxide in a novel mouse Langendorff model.
Makepeace, Carol M; Suarez-Pierre, Alejandro; Kanter, Evelyn M; Schuessler, Richard B; Nichols, Colin G; Lawton, Jennifer S
2018-07-01
Adenosine triphosphate-sensitive potassium (K ATP ) channel openers have been found to be cardioprotective in multiple animal models via an unknown mechanism. Mouse models allow genetic manipulation of K ATP channel components for the investigation of this mechanism. Mouse Langendorff models using 30 min of global ischemia are known to induce measurable myocardial infarction and injury. Prolongation of global ischemia in a mouse Langendorff model could allow the determination of the mechanisms involved in K ATP channel opener cardioprotection. Mouse hearts (C57BL/6) underwent baseline perfusion with Krebs-Henseleit buffer (30 min), assessment of function using a left ventricular balloon, delivery of test solution, and prolonged global ischemia (90 min). Hearts underwent reperfusion (30 min) and functional assessment. Coronary flow was measured using an inline probe. Test solutions included were as follows: hyperkalemic cardioplegia alone (CPG, n = 11) or with diazoxide (CPG + DZX, n = 12). Although the CPG + DZX group had greater percent recovery of developed pressure and coronary flow, this was not statistically significant. Following a mean of 74 min (CPG) and 77 min (CPG + DZX), an additional increase in end-diastolic pressure was noted (plateau), which was significantly higher in the CPG group. Similarly, the end-diastolic pressure (at reperfusion and at the end of experiment) was significantly higher in the CPG group. Prolongation of global ischemia demonstrated added benefit when DZX was added to traditional hyperkalemic CPG. This model will allow the investigation of DZX mechanism of cardioprotection following manipulation of targeted K ATP channel components. This model will also allow translation to prolonged ischemic episodes associated with cardiac surgery. Copyright © 2018 Elsevier Inc. All rights reserved.
A Longitudinal Motor Characterisation of the HdhQ111 Mouse Model of Huntington's Disease.
Yhnell, Emma; Dunnett, Stephen B; Brooks, Simon P
2016-05-31
Huntington's disease (HD) is a rare, incurable neurodegenerative disorder caused by a CAG trinucleotide expansion with the first exon of the huntingtin gene. Numerous knock-in mouse models are currently available for modelling HD. However, before their use in scientific research, these models must be characterised to determine their face and predictive validity as models of the disease and their reliability in recapitulating HD symptoms. Manifest HD is currently diagnosed upon the onset of motor symptoms, thus we sought to longitudinally characterise the progression and severity of motor signs in the HdhQ111 knock-in mouse model of HD, in heterozygous mice. An extensive battery of motor tests including: rotarod, inverted lid test, balance beam, spontaneous locomotor activity and gait analysis were applied longitudinally to a cohort of HdhQ111 heterozygous mice in order to progressively assess motor function. A progressive failure to gain body weight was demonstrated from 11 months of age and motor problems in all measures of balance beam performance were shown in HdhQ111 heterozygous animals in comparison to wild type control animals from 9 months of age. A decreased latency to fall from the rotarod was demonstrated in HdhQ111 heterozygous animals in comparison to wild type animals, although this was not progressive with time. No genotype specific differences were demonstrated in any of the other motor tests included in the test battery. The HdhQ111 heterozygous mouse demonstrates a subtle and progressive motor phenotype that begins at 9 months of age. This mouse model represents an early disease stage and would be ideal for testing therapeutic strategies that require elongated lead-in times, such as viral gene therapies or striatal transplantation.
Lim, Jung-Ah; Moon, Jangsup; Kim, Tae-Joon; Jun, Jin-Sun; Park, Byeongsu; Byun, Jung-Ick; Sunwoo, Jun-Sang; Park, Kyung-Il; Lee, Soon-Tae; Jung, Keun-Hwa; Jung, Ki-Young; Kim, Manho; Jeon, Daejong; Chu, Kon; Lee, Sang Kun
2018-01-01
Seizure clustering is a common and significant phenomenon in patients with epilepsy. The clustering of spontaneous recurrent seizures (SRSs) in animal models of epilepsy, including mouse pilocarpine models, has been reported. However, most studies have analyzed seizures for a short duration after the induction of status epilepticus (SE). In this study, we investigated the detailed characteristics of seizure clustering in the chronic stage of a mouse pilocarpine-induced epilepsy model for an extended duration by continuous 24/7 video-EEG monitoring. A seizure cluster was defined as the occurrence of one or more seizures per day for at least three consecutive days and at least five seizures during the cluster period. We analyzed the cluster duration, seizure-free period, cluster interval, and numbers of seizures within and outside the seizure clusters. The video-EEG monitoring began 84.5±33.7 days after the induction of SE and continued for 53.7±20.4 days. Every mouse displayed seizure clusters, and 97.0% of the seizures occurred within a cluster period. The seizure clusters were followed by long seizure-free periods of 16.3±6.8 days, showing a cyclic pattern. The SRSs also occurred in a grouped pattern within a day. We demonstrate that almost all seizures occur in clusters with a cyclic pattern in the chronic stage of a mouse pilocarpine-induced epilepsy model. The seizure-free periods between clusters were long. These findings should be considered when performing in vivo studies using this animal model. Furthermore, this model might be appropriate for studying the unrevealed mechanism of ictogenesis.
Qosa, Hisham; Abuasal, Bilal S; Romero, Ignacio A; Weksler, Babette; Couraud, Pierre-Oliver; Keller, Jeffrey N; Kaddoumi, Amal
2014-04-01
Alzheimer's disease (AD) has a characteristic hallmark of amyloid-β (Aβ) accumulation in the brain. This accumulation of Aβ has been related to its faulty cerebral clearance. Indeed, preclinical studies that used mice to investigate Aβ clearance showed that efflux across blood-brain barrier (BBB) and brain degradation mediate efficient Aβ clearance. However, the contribution of each process to Aβ clearance remains unclear. Moreover, it is still uncertain how species differences between mouse and human could affect Aβ clearance. Here, a modified form of the brain efflux index method was used to estimate the contribution of BBB and brain degradation to Aβ clearance from the brain of wild type mice. We estimated that 62% of intracerebrally injected (125)I-Aβ40 is cleared across BBB while 38% is cleared by brain degradation. Furthermore, in vitro and in silico studies were performed to compare Aβ clearance between mouse and human BBB models. Kinetic studies for Aβ40 disposition in bEnd3 and hCMEC/D3 cells, representative in vitro mouse and human BBB models, respectively, demonstrated 30-fold higher rate of (125)I-Aβ40 uptake and 15-fold higher rate of degradation by bEnd3 compared to hCMEC/D3 cells. Expression studies showed both cells to express different levels of P-glycoprotein and RAGE, while LRP1 levels were comparable. Finally, we established a mechanistic model, which could successfully predict cellular levels of (125)I-Aβ40 and the rate of each process. Established mechanistic model suggested significantly higher rates of Aβ uptake and degradation in bEnd3 cells as rationale for the observed differences in (125)I-Aβ40 disposition between mouse and human BBB models. In conclusion, current study demonstrates the important role of BBB in the clearance of Aβ from the brain. Moreover, it provides insight into the differences between mouse and human BBB with regards to Aβ clearance and offer, for the first time, a mathematical model that describes Aβ clearance across BBB. Copyright © 2014 Elsevier Ltd. All rights reserved.
Qosa, Hisham; Abuasal, Bilal S.; Romero, Ignacio A.; Weksler, Babette; Couraud, Pierre-Oliver; Keller, Jeffrey N.; Kaddoumi, Amal
2014-01-01
Alzheimer’s disease (AD) has a characteristic hallmark of amyloid-β (Aβ) accumulation in the brain. This accumulation of Aβ has been related to its faulty cerebral clearance. Indeed, preclinical studies that used mice to investigate Aβ clearance showed that efflux across blood-brain barrier (BBB) and brain degradation mediate efficient Aβ clearance. However, the contribution of each process to Aβ clearance remains unclear. Moreover, it is still uncertain how species differences between mouse and human could affect Aβ clearance. Here, a modified form of the brain efflux index method was used to estimate the contribution of BBB and brain degradation to Aβ clearance from the brain of wild type mice. We estimated that 62% of intracerebrally injected 125I-Aβ40 is cleared across BBB while 38% is cleared by brain degradation. Furthermore, in vitro and in silico studies were performed to compare Aβ clearance between mouse and human BBB models. Kinetic studies for Aβ40 disposition in bEnd3 and hCMEC/D3 cells, representative in vitro mouse and human BBB models, respectively, demonstrated 30-fold higher rate of 125I-Aβ40 uptake and 15-fold higher rate of degradation by bEnd3 compared to hCMEC/D3 cells. Expression studies showed both cells to express different levels of P-glycoprotein and RAGE, while LRP1 levels were comparable. Finally, we established a mechanistic model, which could successfully predict cellular levels of 125I-Aβ40 and the rate of each process. Established mechanistic model suggested significantly higher rates of Aβ uptake and degradation in bEnd3 cells as rationale for the observed differences in 125I-Aβ40 disposition between mouse and human BBB models. In conclusion, current study demonstrates the important role of BBB in the clearance of Aβ from the brain. Moreover, it provides insight into the differences between mouse and human BBB with regards to Aβ clearance and offer, for the first time, a mathematical model that describes Aβ clearance across BBB. PMID:24467845
Engineering a new mouse model for vitiligo.
Manga, Prashiela; Orlow, Seth J
2012-07-01
Although the precise mechanisms that trigger vitiligo remain elusive, autoimmune responses mediate its progression. The development of therapies has been impeded by a paucity of animal models, since mice lack interfollicular melanocytes, the primary targets in vitiligo. In this issue, Harris et al. describe a mouse model in which interfollicular melanocytes are retained by Kit ligand overexpression and an immune response is initiated by transplanting melanocyte-targeting CD8+ T cells.
Cardiff, Robert D; Hubbard, Neil E; Engelberg, Jesse A; Munn, Robert J; Miller, Claramae H; Walls, Judith E; Chen, Jane Q; Velásquez-García, Héctor A; Galvez, Jose J; Bell, Katie J; Beckett, Laurel A; Li, Yue-Ju; Borowsky, Alexander D
2013-01-01
Quantitative Image Analysis (QIA) of digitized whole slide images for morphometric parameters and immunohistochemistry of breast cancer antigens was used to evaluate the technical reproducibility, biological variability, and intratumoral heterogeneity in three transplantable mouse mammary tumor models of human breast cancer. The relative preservation of structure and immunogenicity of the three mouse models and three human breast cancers was also compared when fixed with representatives of four distinct classes of fixatives. The three mouse mammary tumor cell models were an ER + /PR + model (SSM2), a Her2 + model (NDL), and a triple negative model (MET1). The four breast cancer antigens were ER, PR, Her2, and Ki67. The fixatives included examples of (1) strong cross-linkers, (2) weak cross-linkers, (3) coagulants, and (4) combination fixatives. Each parameter was quantitatively analyzed using modified Aperio Technologies ImageScope algorithms. Careful pre-analytical adjustments to the algorithms were required to provide accurate results. The QIA permitted rigorous statistical analysis of results and grading by rank order. The analyses suggested excellent technical reproducibility and confirmed biological heterogeneity within each tumor. The strong cross-linker fixatives, such as formalin, consistently ranked higher than weak cross-linker, coagulant and combination fixatives in both the morphometric and immunohistochemical parameters. PMID:23399853
Cooke, Rachel E; Gherardin, Nicholas A; Harrison, Simon J; Quach, Hang; Godfrey, Dale I; Prince, Miles; Koldej, Rachel; Ritchie, David S
2016-09-06
The Vk*MYC transgenic and transplant mouse models of multiple myeloma (MM) are well established as a research tool for anti-myeloma drug discovery. However, little is known of the immune response in these models. Understanding the immunological relevance of these models is of increasing importance as immunotherapeutic drugs are developed against MM. We set out to examine how cellular immunity is affected in Vk*MYC mouse models and compare that to the immunology of patients with newly diagnosed and relapsed/refractory MM. We found that there were significant immunological responses in mice developing either spontaneous (transgenic) or transplanted MM as a consequence of the degree of tumor burden. Particularly striking were the profound B cell lymphopenia and the expansion of CD8(+) effector memory T cells within the lymphocyte population that progressively developed with advancing disease burden, mirroring changes seen in human MM. High disease burden was also associated with increased inflammatory cytokine production by T lymphocytes, which is more fitting with relapsed/refractory MM in humans. These findings have important implications for the application of this mouse model in the development of MM immunotherapies. Trial registration LitVacc ANZCTR trial ID ACTRN12613000344796; RevLite ANZCTR trial ID NCT00482261.
Goto, Tatsuhiko; Toyoda, Atsushi
2015-01-01
Stressful life events often increase the incidence of depression in humans. To study the mechanisms of depression, the development of animal models of depression is essential. Because there are several types of depression, various animal models are needed for a deeper understanding of the disorder. Previously, a mouse model of subchronic and mild social defeat stress (sCSDS) using a modified chronic social defeat stress (CSDS) paradigm was established. In the paradigm, to reduce physical injuries from aggressors, the duration of physical contact between the aggressor and a subordinate was reduced compared to in the original CSDS paradigm. sCSDS mice showed increased body weight gain, food intake, and water intake during the stress period, and their social behaviors were suppressed after the stress period. In terms of the face validity of the stress-induced overeating and overdrinking following the increased body weight gain, the sCSDS mice may show some features related to atypical depression in humans. Thus, a mouse model of sCSDS may be useful for studying the pathogenic mechanisms underlying depression. This protocol will help establish the sCSDS mouse model, especially for studying the mechanisms underlying stress-induced weight gain and polydipsia- and hyperphagia-like symptoms. PMID:26650680
Shazeeb, Mohammed Salman; Cox, Megan K; Gupta, Anurag; Tang, Wen; Singh, Kuldeep; Pryce, Cynthia T; Fogle, Robert; Mu, Ying; Weber, William D; Bangari, Dinesh S; Ying, Xiaoyou; Sabbagh, Yves
2018-01-11
Achondroplasia, the most common form of dwarfism, affects more than a quarter million people worldwide and remains an unmet medical need. Achondroplasia is caused by mutations in the fibroblast growth factor receptor 3 (FGFR3) gene which results in over-activation of the receptor, interfering with normal skeletal development leading to disproportional short stature. Multiple mouse models have been generated to study achondroplasia. The characterization of these preclinical models has been primarily done with 2D measurements. In this study, we explored the transgenic model expressing mouse Fgfr3 containing the achondroplasia mutation G380R under the Col2 promoter (Ach). Survival and growth rate of the Ach mice were reduced compared to wild-type (WT) littermates. Axial skeletal defects and abnormalities of the sternebrae and vertebrae were observed in the Ach mice. Further evaluation of the Ach mouse model was performed by developing 3D parameters from micro-computed tomography (micro-CT) and magnetic resonance imaging (MRI). The 3-week-old mice showed greater differences between the Ach and WT groups compared to the 6-week-old mice for all parameters. Deeper understanding of skeletal abnormalities of this model will help guide future studies for evaluating novel and effective therapeutic approaches for the treatment of achondroplasia.
White matter injuries induced by MK-801 in a mouse model of schizophrenia based on NMDA antagonism.
Xiu, Yun; Kong, Xiang-Ru; Zhang, Lei; Qiu, Xuan; Chao, Feng-Lei; Peng, Chao; Gao, Yuan; Huang, Chun-Xia; Wang, San-Rong; Tang, Yong
2014-08-01
The etiology of schizophrenia (SZ) is complex and largely unknown. Neuroimaging and postmortem studies have suggested white matter disturbances in SZ. In the present study, we tested the white matter deficits hypothesis of SZ using a mouse model of SZ induced by NMDA receptor antagonist MK-801. We found that mice with repeated chronic MK-801 administration showed increased locomotor activity in the open field test, less exploration of a novel environment in the hole-board test, and increased anxiety in the elevated plus maze but no impairments were observed in coordination or motor function on accelerating rota-rod. The total white matter volume and corpus callosum volume in mice treated with MK-801 were significantly decreased compared to control mice treated with saline. Myelin basic protein and 2', 3'-cyclic nucleotide 3'-phosphodiesterase were also significantly decreased in the mouse model of SZ. Furthermore, we observed degenerative changes of myelin sheaths in the mouse model of SZ. These results provide further evidence of white matter deficits in SZ and indicate that the animal model of SZ induced by MK-801 is a useful model to investigate mechanisms underlying white matter abnormalities in SZ. Copyright © 2014 Wiley Periodicals, Inc.
Yarlett, Nigel; Waters, W. Ray; Harp, James A.; Wannemuehler, Michael J.; Morada, Mary; Bellcastro, Josephine; Upton, Steve J.; Marton, Laurence J.; Frydman, Benjamin J.
2007-01-01
The in vivo effectiveness of a series of conformationally restricted polyamine analogues alone and selected members in combination with dl-α-difluoromethylarginine against Cryptosporidium parvum infection in a T-cell receptor alpha-deficient mouse model was tested. Polyamine analogues were selected from the extended bis(ethyl)-sym-homospermidine or bis(ethyl)-spermine backbone having cis or trans double bonds at the center of the molecule. The cis isomers were found to have significantly greater efficacy in both preventing and curing infection in a mouse model than the trans polyamine analogues when tested in a T-cell receptor alpha-deficient mouse model. When tested in combination with dl-α-difluoromethylarginine, the cis-restricted analogues were found to be more effective in preventing oocyst shedding. This study demonstrates the potential of polyamine analogues as anticryptosporidial agents and highlights the presence of multiple points in polyamine synthesis by this parasite that are susceptible to inhibition resulting in growth inhibition. PMID:17242149
Magez, S; Caljon, G
2011-08-01
African trypanosomiasis is a parasitic disease that affects a variety of mammals, including humans, on the sub-Saharan African continent. To understand the diverse parameters that govern the host-parasite-vector interactions, mouse models for the disease have proven to be a cornerstone. Despite the fact that most trypanosomes cannot be considered natural pathogens for rodents, experimental infections in mice have shed a tremendous amount of light on the general biology of these parasites and their interaction with and evasion of the mammalian immune system. Different aspects including inflammation, vaccine failure, antigenic variation, resistance/sensitivity to normal human serum and the influence of tsetse compounds on parasite transmission have all been addressed using mouse models. In more recent years, the introduction of various 'knock-out' mouse strains has allowed to analyse the implication of various cytokines, particularly TNF, IFNγ and IL-10, in the regulation of parasitaemia and induction of pathological conditions during infection. © 2011 Blackwell Publishing Ltd.
Transcranial magnetic stimulation of mouse brain using high-resolution anatomical models
NASA Astrophysics Data System (ADS)
Crowther, L. J.; Hadimani, R. L.; Kanthasamy, A. G.; Jiles, D. C.
2014-05-01
Transcranial magnetic stimulation (TMS) offers the possibility of non-invasive treatment of brain disorders in humans. Studies on animals can allow rapid progress of the research including exploring a variety of different treatment conditions. Numerical calculations using animal models are needed to help design suitable TMS coils for use in animal experiments, in particular, to estimate the electric field induced in animal brains. In this paper, we have implemented a high-resolution anatomical MRI-derived mouse model consisting of 50 tissue types to accurately calculate induced electric field in the mouse brain. Magnetic field measurements have been performed on the surface of the coil and compared with the calculations in order to validate the calculated magnetic and induced electric fields in the brain. Results show how the induced electric field is distributed in a mouse brain and allow investigation of how this could be improved for TMS studies using mice. The findings have important implications in further preclinical development of TMS for treatment of human diseases.
O'Brien, Lyn M; Stokes, Margaret G; Lonsdale, Stephen G; Maslowski, David R; Smither, Sophie J; Lever, Mark S; Laws, Thomas R; Perkins, Stuart D
2014-03-01
The resistance of adult immunocompetent mice to infection with ebolaviruses has led to the development of alternative small animal models that utilise immunodeficient mice, for example the interferon α/β receptor knock-out mouse (IFNR(-/-)). IFNR(-/-) mice have been shown to be susceptible to infection with ebolaviruses by multiple routes but it is not known if this murine model is suitable for testing therapeutics that rely on the generation of an immune response for efficacy. We have tested recombinant adenovirus vectors for their ability to protect IFNR(-/-) mice from challenge with Ebola virus and have analysed the humoral response generated after immunisation. The recombinant vaccines elicited good levels of protection in the knock-out mouse and the antibody response in IFNR(-/-) mice was similar to that observed in vaccinated wild-type mice. These results indicate that the IFNR(-/-) mouse is a relevant small animal model for studying ebolavirus-specific therapeutics. Copyright © 2014. Published by Elsevier Inc.
A New Mouse Model That Spontaneously Develops Chronic Liver Inflammation and Fibrosis
Fransén-Pettersson, Nina; Duarte, Nadia; Nilsson, Julia; Lundholm, Marie; Mayans, Sofia; Larefalk, Åsa; Hannibal, Tine D.; Hansen, Lisbeth; Schmidt-Christensen, Anja; Ivars, Fredrik; Cardell, Susanna; Palmqvist, Richard; Rozell, Björn
2016-01-01
Here we characterize a new animal model that spontaneously develops chronic inflammation and fibrosis in multiple organs, the non-obese diabetic inflammation and fibrosis (N-IF) mouse. In the liver, the N-IF mouse displays inflammation and fibrosis particularly evident around portal tracts and central veins and accompanied with evidence of abnormal intrahepatic bile ducts. The extensive cellular infiltration consists mainly of macrophages, granulocytes, particularly eosinophils, and mast cells. This inflammatory syndrome is mediated by a transgenic population of natural killer T cells (NKT) induced in an immunodeficient NOD genetic background. The disease is transferrable to immunodeficient recipients, while polyclonal T cells from unaffected syngeneic donors can inhibit the disease phenotype. Because of the fibrotic component, early on-set, spontaneous nature and reproducibility, this novel mouse model provides a unique tool to gain further insight into the underlying mechanisms mediating transformation of chronic inflammation into fibrosis and to evaluate intervention protocols for treating conditions of fibrotic disorders. PMID:27441847
Primary amines protect against retinal degeneration in mouse models of retinopathies
Maeda, Akiko; Golczak, Marcin; Chen, Yu; Okano, Kiichiro; Kohno, Hideo; Shiose, Satomi; Ishikawa, Kaede; Harte, William; Palczewska, Grazyna; Maeda, Tadao; Palczewski, Krzysztof
2011-01-01
Vertebrate vision is initiated by photoisomerization of the visual pigment chromophore, 11-cis-retinal, and is maintained by continuous regeneration of this retinoid through a series of reactions termed the retinoid cycle. However, toxic side reaction products, especially those involving reactive aldehyde groups of the photoisomered product, all-trans-retinal, can cause severe retinal pathology. Here we lowered peak concentrations of free all-trans-retinal with primary amine-containing FDA-approved drugs that did not inhibit chromophore regeneration in mouse models of retinal degeneration. Schiff base adducts between all-trans-retinal and these amines were identified by mass spectrometry. Adducts were observed in mouse eyes only when an experimental drug protected the retina from degeneration in both short-term and long-term treatment experiments. This study demonstrates a molecular basis of all-trans-retinal-induced retinal pathology and identifies an assemblage of FDA-approved compounds with protective effects against this pathology in a mouse model that displays features of Stargardt’s and age-related retinal degeneration. PMID:22198730
Whiteaker, Jeffrey R; Zhang, Heidi; Zhao, Lei; Wang, Pei; Kelly-Spratt, Karen S; Ivey, Richard G; Piening, Brian D; Feng, Li-Chia; Kasarda, Erik; Gurley, Kay E; Eng, Jimmy K; Chodosh, Lewis A; Kemp, Christopher J; McIntosh, Martin W; Paulovich, Amanda G
2007-10-01
Despite their potential to impact diagnosis and treatment of cancer, few protein biomarkers are in clinical use. Biomarker discovery is plagued with difficulties ranging from technological (inability to globally interrogate proteomes) to biological (genetic and environmental differences among patients and their tumors). We urgently need paradigms for biomarker discovery. To minimize biological variation and facilitate testing of proteomic approaches, we employed a mouse model of breast cancer. Specifically, we performed LC-MS/MS of tumor and normal mammary tissue from a conditional HER2/Neu-driven mouse model of breast cancer, identifying 6758 peptides representing >700 proteins. We developed a novel statistical approach (SASPECT) for prioritizing proteins differentially represented in LC-MS/MS datasets and identified proteins over- or under-represented in tumors. Using a combination of antibody-based approaches and multiple reaction monitoring-mass spectrometry (MRM-MS), we confirmed the overproduction of multiple proteins at the tissue level, identified fibulin-2 as a plasma biomarker, and extensively characterized osteopontin as a plasma biomarker capable of early disease detection in the mouse. Our results show that a staged pipeline employing shotgun-based comparative proteomics for biomarker discovery and multiple reaction monitoring for confirmation of biomarker candidates is capable of finding novel tissue and plasma biomarkers in a mouse model of breast cancer. Furthermore, the approach can be extended to find biomarkers relevant to human disease.
Modeling fragile X syndrome in the Fmr1 knockout mouse
Kazdoba, Tatiana M.; Leach, Prescott T.; Silverman, Jill L.; Crawley, Jacqueline N.
2014-01-01
Summary Fragile X Syndrome (FXS) is a commonly inherited form of intellectual disability and one of the leading genetic causes for autism spectrum disorder. Clinical symptoms of FXS can include impaired cognition, anxiety, hyperactivity, social phobia, and repetitive behaviors. FXS is caused by a CGG repeat mutation which expands a region on the X chromosome containing the FMR1 gene. In FXS, a full mutation (> 200 repeats) leads to hypermethylation of FMR1, an epigenetic mechanism that effectively silences FMR1 gene expression and reduces levels of the FMR1 gene product, fragile X mental retardation protein (FMRP). FMRP is an RNA-binding protein that is important for the regulation of protein expression. In an effort to further understand how loss of FMR1 and FMRP contribute to FXS symptomology, several FXS animal models have been created. The most well characterized rodent model is the Fmr1 knockout (KO) mouse, which lacks FMRP protein due to a disruption in its Fmr1 gene. Here, we review the behavioral phenotyping of the Fmr1 KO mouse to date, and discuss the clinical relevance of this mouse model to the human FXS condition. While much remains to be learned about FXS, the Fmr1 KO mouse is a valuable tool for understanding the repercussions of functional loss of FMRP and assessing the efficacy of pharmacological compounds in ameliorating the molecular and behavioral phenotypes relevant to FXS. PMID:25606362
Generation of an inducible colon-specific Cre enzyme mouse line for colon cancer research.
Tetteh, Paul W; Kretzschmar, Kai; Begthel, Harry; van den Born, Maaike; Korving, Jeroen; Morsink, Folkert; Farin, Henner; van Es, Johan H; Offerhaus, G Johan A; Clevers, Hans
2016-10-18
Current mouse models for colorectal cancer often differ significantly from human colon cancer, being largely restricted to the small intestine. Here, we aim to develop a colon-specific inducible mouse model that can faithfully recapitulate human colon cancer initiation and progression. Carbonic anhydrase I (Car1) is a gene expressed uniquely in colonic epithelial cells. We generated a colon-specific inducible Car1 CreER knock-in (KI) mouse with broad Cre activity in epithelial cells of the proximal colon and cecum. Deletion of the tumor suppressor gene Apc using the Car1 CreER KI caused tumor formation in the cecum but did not yield adenomas in the proximal colon. Mutation of both Apc and Kras yielded microadenomas in both the cecum and the proximal colon, which progressed to macroadenomas with significant morbidity. Aggressive carcinomas with some invasion into lymph nodes developed upon combined induction of oncogenic mutations of Apc, Kras, p53, and Smad4 Importantly, no adenomas were observed in the small intestine. Additionally, we observed tumors from differentiated Car1-expressing cells with Apc/Kras mutations, suggesting that a top-down model of intestinal tumorigenesis can occur with multiple mutations. Our results establish the Car1 CreER KI as a valuable mouse model to study colon-specific tumorigenesis and metastasis as well as cancer-cell-of-origin questions.
Micro-imaging of the Mouse Lung via MRI
NASA Astrophysics Data System (ADS)
Wang, Wei
Quantitative measurement of lung microstructure is of great significance in assessment of pulmonary disease, particularly in the earliest stages. Conventional stereological assessment of ex-vivo fixed tissue specimens under the microscope has a long and successful tradition and is regarded as a gold standard, but the invasive nature limits its applications and the practicality of use in longitudinal studies. The technique for diffusion MRI-based 3He lung morphometry was previously developed and validated for human lungs, and was recently extended to ex-vivo mouse lungs. The technique yields accurate, quantitative information about the microstructure and geometry of acinar airways. In this dissertation, the 3He lung morphometry technique is for the first time successfully implemented for in-vivo studies of mice. It can generate spatially-resolved maps of parameters that reveal the microstructure of mouse lung. Results in healthy mice indicate excellent agreement between in-vivo morphometry via 3He MRI and microscopic morphometry after sacrifice. The implementation and validation of 3He morphometry in healthy mice open up new avenues for application of the technique as a precise, noninvasive, in-vivo biomarker of changes in lung microstructure, within various mouse models of lung disease. We have applied 3He morphometry to the Sendai mouse model of lung disease. Specifically, the Sendai-virus model of chronic obstructive lung disease has demonstrated an innate immune response in mouse airways that exhibits similarities to the chronic airway inflammation in human COPD and asthma, but the effect on distal lung parenchyma had not been investigated. We imaged the time course and regional distribution of mouse lung microstructural changes in vivo after Sendai virus (SeV) infection with 1H and 3He diffusion MRI. 1H MR images detected the SeV-induced pulmonary inflammation in vivo and 3He lung morphometry showed modest increase in alveolar duct radius distal to airway inflammation, particularly in the lung periphery, indicating airspace enlargement after virus infection. Another important application of the imaging technique is the study of lung regeneration in a pneumonectomy (PNX) model. Partial resection of the lung by unilateral PNX is a robust model of compensatory lung growth. It is typically studied by postmortem morphometry in which longitudinal assessment in the same animal cannot be achieved. Here we successfully assess the microstructural changes and quantify the compensatory lung growth in vivo in the PNX mouse model via 1H and hyperpolarized 3He diffusion MRI. Our results show complete restoration in lung volume and total alveolar number with enlargement of alveolar size, which is consistent with prior histological studies conducted in different animals at various time points. This dissertation demonstrates that 3He lung morphometry has good sensitivity in quantifying small microstructural changes in the mouse lung and can be applied to a variety of mouse pulmonary models. Particularly, it has great potential to become a valuable tool in understanding the time course and the mechanism of lung growth in individual animals and may provide insight into post-natal lung growth and lung regeneration.
2007-01-01
Cunha GR, Donjacour AA, Matusik RJ, Rosen JM. Prostate cancer in a transgenic mouse . Proc Natl Acad Sci U S A.1995;92(8):3439- 43 . Kanai F...data not shown). GFP expression in all cell lines was confirmed by UV microscopy and flow cytometry . Evaluation of RM1 cells for assessment of CDUPRT...for prostate cancer in a mouse model that imitates the development of human disease. J. Gene Med. (2004) 6(1): 43 -54. 108. MARTINIELLO-WILKS R
Vocal development and auditory perception in CBA/CaJ mice
NASA Astrophysics Data System (ADS)
Radziwon, Kelly E.
Mice are useful laboratory subjects because of their small size, their modest cost, and the fact that researchers have created many different strains to study a variety of disorders. In particular, researchers have found nearly 100 naturally occurring mouse mutations with hearing impairments. For these reasons, mice have become an important model for studies of human deafness. Although much is known about the genetic makeup and physiology of the laboratory mouse, far less is known about mouse auditory behavior. To fully understand the effects of genetic mutations on hearing, it is necessary to determine the hearing abilities of these mice. Two experiments here examined various aspects of mouse auditory perception using CBA/CaJ mice, a commonly used mouse strain. The frequency difference limens experiment tested the mouse's ability to discriminate one tone from another based solely on the frequency of the tone. The mice had similar thresholds as wild mice and gerbils but needed a larger change in frequency than humans and cats. The second psychoacoustic experiment sought to determine which cue, frequency or duration, was more salient when the mice had to identify various tones. In this identification task, the mice overwhelmingly classified the tones based on frequency instead of duration, suggesting that mice are using frequency when differentiating one mouse vocalization from another. The other two experiments were more naturalistic and involved both auditory perception and mouse vocal production. Interest in mouse vocalizations is growing because of the potential for mice to become a model of human speech disorders. These experiments traced mouse vocal development from infant to adult, and they tested the mouse's preference for various vocalizations. This was the first known study to analyze the vocalizations of individual mice across development. Results showed large variation in calling rates among the three cages of adult mice but results were highly consistent across all infant vocalizations. Although the preference experiment did not reveal significant differences between various mouse vocalizations, suggestions are given for future attempts to identify mouse preferences for auditory stimuli.
Immune Response to Human Metapneumovirus Infection: What We Have Learned from the Mouse Model
Cheemarla, Nagarjuna R.; Guerrero-Plata, Antonieta
2015-01-01
Human Metapneumovirus (hMPV) is a leading respiratory viral pathogen associated with bronchiolitis, pneumonia, and asthma exacerbation in young children, the elderly and immunocompromised individuals. The development of a potential vaccine against hMPV requires detailed understanding of the host immune system, which plays a significant role in hMPV pathogenesis, susceptibility and vaccine efficacy. As a result, animal models have been developed to better understand the mechanisms by which hMPV causes disease. Several animal models have been evaluated and established so far to study the host immune responses and pathophysiology of hMPV infection. However, inbred laboratory mouse strains have been one of the most used animal species for experimental modeling and therefore used for the studies of immunity and immunopathogenesis to hMPV. This review summarizes the contributions of the mouse model to our understanding of the immune response against hMPV infection. PMID:26393657
Immune Response to Human Metapneumovirus Infection: What We Have Learned from the Mouse Model.
Cheemarla, Nagarjuna R; Guerrero-Plata, Antonieta
2015-09-18
Human Metapneumovirus (hMPV) is a leading respiratory viral pathogen associated with bronchiolitis, pneumonia, and asthma exacerbation in young children, the elderly and immunocompromised individuals. The development of a potential vaccine against hMPV requires detailed understanding of the host immune system, which plays a significant role in hMPV pathogenesis, susceptibility and vaccine efficacy. As a result, animal models have been developed to better understand the mechanisms by which hMPV causes disease. Several animal models have been evaluated and established so far to study the host immune responses and pathophysiology of hMPV infection. However, inbred laboratory mouse strains have been one of the most used animal species for experimental modeling and therefore used for the studies of immunity and immunopathogenesis to hMPV. This review summarizes the contributions of the mouse model to our understanding of the immune response against hMPV infection.
The top skin-associated genes: a comparative analysis of human and mouse skin transcriptomes.
Gerber, Peter Arne; Buhren, Bettina Alexandra; Schrumpf, Holger; Homey, Bernhard; Zlotnik, Albert; Hevezi, Peter
2014-06-01
The mouse represents a key model system for the study of the physiology and biochemistry of skin. Comparison of skin between mouse and human is critical for interpretation and application of data from mouse experiments to human disease. Here, we review the current knowledge on structure and immunology of mouse and human skin. Moreover, we present a systematic comparison of human and mouse skin transcriptomes. To this end, we have recently used a genome-wide database of human gene expression to identify genes highly expressed in skin, with no, or limited expression elsewhere - human skin-associated genes (hSAGs). Analysis of our set of hSAGs allowed us to generate a comprehensive molecular characterization of healthy human skin. Here, we used a similar database to generate a list of mouse skin-associated genes (mSAGs). A comparative analysis between the top human (n=666) and mouse (n=873) skin-associated genes (SAGs) revealed a total of only 30.2% identity between the two lists. The majority of shared genes encode proteins that participate in structural and barrier functions. Analysis of the top functional annotation terms revealed an overlap for morphogenesis, cell adhesion, structure, and signal transduction. The results of this analysis, discussed in the context of published data, illustrate the diversity between the molecular make up of skin of both species and grants a probable explanation, why results generated in murine in vivo models often fail to translate into the human.
Methods of in-vivo mouse lung micro-CT
NASA Astrophysics Data System (ADS)
Recheis, Wolfgang A.; Nixon, Earl; Thiesse, Jacqueline; McLennan, Geoffrey; Ross, Alan; Hoffman, Eric
2005-04-01
Micro-CT will have a profound influence on the accumulation of anatomical and physiological phenotypic changes in natural and transgenetic mouse models. Longitudinal studies will be greatly facilitated, allowing for a more complete and accurate description of events if in-vivo studies are accomplished. The purpose of the ongoing project is to establish a feasible and reproducible setup for in-vivo mouse lung micro-computed tomography (μCT). We seek to use in-vivo respiratory-gated μCT to follow mouse models of lung disease with subsequent recovery of the mouse. Methodologies for optimizing scanning parameters and gating for the in-vivo mouse lung are presented. A Scireq flexiVent ventilated the gas-anesthetized mice at 60 breaths/minute, 30 cm H20 PEEP, 30 ml/kg tidal volume and provided a respiratory signal to gate a Skyscan 1076 μCT. Physiologic monitoring allowed the control of vital functions and quality of anesthesia, e.g. via ECG monitoring. In contrary to longer exposure times with ex-vivo scans, scan times for in-vivo were reduced using 35μm pixel size, 158ms exposure time and 18μm pixel size, 316ms exposure time to reduce motion artifacts. Gating via spontaneous breathing was also tested. Optimal contrast resolution was achieved at 50kVp, 200μA, applying an aluminum filter (0.5mm). There were minimal non-cardiac related motion artifacts. Both 35μm and 1μm voxel size images were suitable for evaluation of the airway lumen and parenchymal density. Total scan times were 30 and 65 minutes respectively. The mice recovered following scanning protocols. In-vivo lung scanning with recovery of the mouse delivered reasonable image quality for longitudinal studies, e.g. mouse asthma models. After examining 10 mice, we conclude μCT is a feasible tool evaluating mouse models of lung pathology in longitudinal studies with increasing anatomic detail available for evaluation as one moves from in-vivo to ex-vivo studies. Further developments include automated bronchial tree segmentation and airway wall thickness measurement tools. Improvements in Hounsfield unit calibration have to be performed when the interest of the study lies in determining and quantifying parenchymal changes and rely on estimating partial volume contributions of underlying structures to voxel densities.
Pinheiro, Barbara S.; Seidl, Simon S.; Habazettl, Eva; Gruber, Bernadette E.; Bregolin, Tanja
2016-01-01
Impaired social interaction is a hallmark symptom of many psychiatric diseases, including dependence syndromes (substance use disorders). Helping the addict reorient her/his behavior away from the drug of abuse toward social interaction would be of considerable therapeutic benefit. To study the neural basis of such a reorientation, we have developed several animal models in which the attractiveness of a dyadic (i.e. one-to-one) social interaction (DSI) can be compared directly with that of cocaine as a prototypical drug of abuse. Our models are based on the conditioned place preference (CPP) paradigm. In an ongoing effort to validate our experimental paradigms in C57BL/6 mice to make use of the plethora of transgenic models available in this genus, we found the following: (a) DSI with a live mouse produced CPP, whereas an interaction with an inanimate mouse-like object (i.e. a ‘toy mouse’; toy mouse interaction) led to conditioned place aversion – but only in the Jackson substrain (C57BL/6J). (b) In the NIH substrain (C57BL/6N), both DSI and toy mouse interaction produced individual aversion in more than 50% of the tested mice. (c) Four 15 min DSI episodes did not result in the development of an observable hierarchy, that is, dominance/subordination behavior in the overwhelming majority (i.e. 30 of 32) of the tested Jackson mouse pairs. Therefore, dominance/subordination does not seem to be a confounding variable in our paradigm, at least not in C57BL/6J mice. Respective data for NIH mice were too limited to allow any conclusion. The present findings indicate that (a) DSI with a live mouse produces CPP to a greater degree than an interaction with an inanimate object resembling a mouse and that (b) certain substrain differences with respect to CPP/aversion to DSI do exist between the Jax and NIH substrain of C57BL/6 mice. These differences have to be considered when choosing a proper mouse substrain model for investigating the neural basis of DSI reward versus drug reward. PMID:26905190
Basal glycogenolysis in mouse skeletal muscle: in vitro model predicts in vivo fluxes
NASA Technical Reports Server (NTRS)
Lambeth, Melissa J.; Kushmerick, Martin J.; Marcinek, David J.; Conley, Kevin E.
2002-01-01
A previously published mammalian kinetic model of skeletal muscle glycogenolysis, consisting of literature in vitro parameters, was modified by substituting mouse specific Vmax values. The model demonstrates that glycogen breakdown to lactate is under ATPase control. Our criteria to test whether in vitro parameters could reproduce in vivo dynamics was the ability of the model to fit phosphocreatine (PCr) and inorganic phosphate (Pi) dynamic NMR data from ischemic basal mouse hindlimbs and predict biochemically-assayed lactate concentrations. Fitting was accomplished by optimizing four parameters--the ATPase rate coefficient, fraction of activated glycogen phosphorylase, and the equilibrium constants of creatine kinase and adenylate kinase (due to the absence of pH in the model). The optimized parameter values were physiologically reasonable, the resultant model fit the [PCr] and [Pi] timecourses well, and the model predicted the final measured lactate concentration. This result demonstrates that additional features of in vivo enzyme binding are not necessary for quantitative description of glycogenolytic dynamics.
Induction of DNA adducts, tumors, and Ki-ras oncogene mutations in strain AlJ mouse lung by ip. administration of dibenz[a,h]anthracene
Previous studies of polycyclic aromatic hydrocarbon (P AH) induced lung tumors in the strain NJ mouse model system have demonstrated qua...
Crispo, Martina; Van Maele, Laurye; Tabareau, Julien; Cayet, Delphine; Errea, Agustina; Ferreira, Ana María; Rumbo, Martin; Sirard, Jean Claude
2013-01-01
The chemokine CCL20, the unique ligand of CCR6 functions as an attractant of immune cells. Expression of CCL20 is induced by Toll-like Receptor (TLR) signaling or proinflammatory cytokine stimulation. However CCL20 is also constitutively produced at specific epithelial sites of mucosa. This expression profile is achieved by transcriptional regulation. In the present work we characterized regulatory features of mouse Ccl20 gene. Transcriptional fusions between the mouse Ccl20 promoter and the firefly luciferase (luc) encoding gene were constructed and assessed in in vitro and in vivo assays. We found that liver CCL20 expression and luciferase activity were upregulated by systemic administration of the TLR5 agonist flagellin. Using shRNA and dominant negative form specific for mouse TLR5, we showed that this expression was controlled by TLR5. To address in situ the regulation of gene activity, a transgenic mouse line harboring a functional Ccl20-luc fusion was generated. The luciferase expression was highly concordant with Ccl20 expression in different tissues. Our data indicate that the transgenic mouse model can be used to monitor activation of innate response in vivo.
A Comprehensive Atlas of the Adult Mouse Penis
Phillips, Tiffany R.; Wright, David K.; Gradie, Paul E.; Johnston, Leigh A.; Pask, Andrew J.
2016-01-01
Mice are routinely used to study the development of the external genitalia and, in particular, the process of male urethral closure. This is because misplacement of the male penile urethra, or hypospadias, is amongst the most common birth defects reported in humans. While mice present a tractable model to study penile development, several structures differ between mice and humans, and there is a lack of consensus in the literature on their annotation and developmental origins. Defining the ontology of the mouse prepuce is especially important for the relevance and interpretation of mouse models of hypospadias to human conditions. We have developed a detailed annotation of the adult mouse penis that addresses these differences and enables an accurate comparison of murine and human hypospadias phenotypes. Through MRI data, gross morphology and section histology, we define the origin of the mouse external and internal prepuces, their relationship to the single human foreskin as well as provide a comprehensive view of the various structures of the mouse penis and their associated muscle attachments within the body. These data are combined to annotate structures in a novel 3D adult penis atlas that can be downloaded, viewed at any angle, and manipulated to examine the relationship of various structures. PMID:26112156
Crispo, Martina; Van Maele, Laurye; Tabareau, Julien; Cayet, Delphine; Errea, Agustina; Ferreira, Ana María; Rumbo, Martin; Sirard, Jean Claude
2013-01-01
The chemokine CCL20, the unique ligand of CCR6 functions as an attractant of immune cells. Expression of CCL20 is induced by Toll-like Receptor (TLR) signaling or proinflammatory cytokine stimulation. However CCL20 is also constitutively produced at specific epithelial sites of mucosa. This expression profile is achieved by transcriptional regulation. In the present work we characterized regulatory features of mouse Ccl20 gene. Transcriptional fusions between the mouse Ccl20 promoter and the firefly luciferase (luc) encoding gene were constructed and assessed in in vitro and in vivo assays. We found that liver CCL20 expression and luciferase activity were upregulated by systemic administration of the TLR5 agonist flagellin. Using shRNA and dominant negative form specific for mouse TLR5, we showed that this expression was controlled by TLR5. To address in situ the regulation of gene activity, a transgenic mouse line harboring a functional Ccl20-luc fusion was generated. The luciferase expression was highly concordant with Ccl20 expression in different tissues. Our data indicate that the transgenic mouse model can be used to monitor activation of innate response in vivo. PMID:24265691
USDA-ARS?s Scientific Manuscript database
Barbering, where a “barber” mouse plucks hair from its cagemates or itself, is both a spontaneously occurring abnormal behavior in mice and a well validated model of Trichotillomania (TTM). N-Acetylcysteine, (NAC) a cysteine derived food additive, is remarkably effective in treating TTM patients, bu...
Comparative Exposure to Soy Biodiesel Emissions in an Allergic Mouse Model
We assessed the immunological effects following inhalation of emissions from 100% Soy biodiesel (S100) or a 20% mix with conventional petrodiesel (S20), in a house dust mite (HDM) allergic Balb/cJ mouse model. Female mice (8/group) were exposed whole body (4 hr/d, 5 d/wk, 4wk) to...
Methylpyrrole inhibitors of BET bromodomains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasvold, Lisa A.; Sheppard, George S.; Wang, Le
2017-05-01
An NMR fragment screen for binders to the bromodomains of BRD4 identified 2-methyl-3-ketopyrroles 1 and 2. Elaboration of these fragments guided by structure-based design provided lead molecules with significant activity in a mouse tumor model. Further modifications to the methylpyrrole core provided compounds with improved properties and enhanced activity in a mouse model of multiple myeloma.
USDA-ARS?s Scientific Manuscript database
Whole wheat products provide critical nutrients for human health, differences in wheat flavor are not well understood. Using the house mouse as a model system, flavor preference and discrimination were examined using a two-choice feeding system and 24-h trials and the Student’s t statistic. To elimi...
Activity-Dependent Changes in MAPK Activation in the Angelman Syndrome Mouse Model
ERIC Educational Resources Information Center
Filonova, Irina; Trotter, Justin H.; Banko, Jessica L.; Weeber, Edwin J.
2014-01-01
Angelman Syndrome (AS) is a devastating neurological disorder caused by disruption of the maternal "UBE3A" gene. Ube3a protein is identified as an E3 ubiquitin ligase that shows neuron-specific imprinting. Despite extensive research evaluating the localization and basal expression profiles of Ube3a in mouse models, the molecular…
USDA-ARS?s Scientific Manuscript database
Ethanol (EtOH) metabolism is involved in both initiating and promoting mechanisms in hepatocellular carcinoma progression in chronic alcoholics. In this study, we developed a mouse model to test the hypothesis that chronic EtOH consumption promotes tumor growth irrespective of EtOH-related initiati...
2016-01-01
The renewed urgency to develop new treatments for Mycobacterium tuberculosis (Mtb) infection has resulted in large-scale phenotypic screening and thousands of new active compounds in vitro. The next challenge is to identify candidates to pursue in a mouse in vivo efficacy model as a step to predicting clinical efficacy. We previously analyzed over 70 years of this mouse in vivo efficacy data, which we used to generate and validate machine learning models. Curation of 60 additional small molecules with in vivo data published in 2014 and 2015 was undertaken to further test these models. This represents a much larger test set than for the previous models. Several computational approaches have now been applied to analyze these molecules and compare their molecular properties beyond those attempted previously. Our previous machine learning models have been updated, and a novel aspect has been added in the form of mouse liver microsomal half-life (MLM t1/2) and in vitro-based Mtb models incorporating cytotoxicity data that were used to predict in vivo activity for comparison. Our best Mtbin vivo models possess fivefold ROC values > 0.7, sensitivity > 80%, and concordance > 60%, while the best specificity value is >40%. Use of an MLM t1/2 Bayesian model affords comparable results for scoring the 60 compounds tested. Combining MLM stability and in vitroMtb models in a novel consensus workflow in the best cases has a positive predicted value (hit rate) > 77%. Our results indicate that Bayesian models constructed with literature in vivoMtb data generated by different laboratories in various mouse models can have predictive value and may be used alongside MLM t1/2 and in vitro-based Mtb models to assist in selecting antitubercular compounds with desirable in vivo efficacy. We demonstrate for the first time that consensus models of any kind can be used to predict in vivo activity for Mtb. In addition, we describe a new clustering method for data visualization and apply this to the in vivo training and test data, ultimately making the method accessible in a mobile app. PMID:27335215
Extinction of an instrumental response: a cognitive behavioral assay in Fmr1 knockout mice.
Sidorov, M S; Krueger, D D; Taylor, M; Gisin, E; Osterweil, E K; Bear, M F
2014-06-01
Fragile X (FX) is the most common genetic cause of intellectual disability and autism. Previous studies have shown that partial inhibition of metabotropic glutamate receptor signaling is sufficient to correct behavioral phenotypes in a mouse model of FX, including audiogenic seizures, open-field hyperactivity and social behavior. These phenotypes model well the epilepsy (15%), hyperactivity (20%) and autism (30%) that are comorbid with FX in human patients. Identifying reliable and robust mouse phenotypes to model cognitive impairments is critical considering the 90% comorbidity of FX and intellectual disability. Recent work characterized a five-choice visuospatial discrimination assay testing cognitive flexibility, in which FX model mice show impairments associated with decreases in synaptic proteins in prefrontal cortex (PFC). In this study, we sought to determine whether instrumental extinction, another process requiring PFC, is altered in FX model mice, and whether downregulation of metabotropic glutamate receptor signaling pathways is sufficient to correct both visuospatial discrimination and extinction phenotypes. We report that instrumental extinction is consistently exaggerated in FX model mice. However, neither the extinction phenotype nor the visuospatial discrimination phenotype is corrected by approaches targeting metabotropic glutamate receptor signaling. This work describes a novel behavioral extinction assay to model impaired cognition in mouse models of neurodevelopmental disorders, provides evidence that extinction is exaggerated in the FX mouse model and suggests possible limitations of metabotropic glutamate receptor-based pharmacotherapy. © 2014 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.
Jacome, Luis F; Burket, Jessica A; Herndon, Amy L; Deutsch, Stephen I
2011-12-01
The Balb/c mouse is proposed as a model of human disorders with prominent deficits of sociability, such as autism spectrum disorders (ASDs) that may involve pathophysiological disruption of NMDA receptor-mediated neurotransmission. A standard procedure was used to measure sociability in 8-week-old male genetically inbred Balb/c and outbred Swiss Webster mice. Moreover, because impaired sociability may influence the social behavior of stimulus mice, we also measured the proportion of total episodes of social approach made by the stimulus mouse while test and stimulus mice were allowed to interact freely. Three raters with good inter-rater agreement evaluated operationally defined measures of sociability chosen because of their descriptive similarity to deficits of social behavior reported in persons with ASDs. The data support previous reports that the Balb/c mouse is a genetic mouse model of impaired sociability. The data also show that the behavior of the social stimulus mouse is influenced by the impaired sociability of the Balb/c strain. Interestingly, operationally defined measures of sociability did not necessarily correlate with each other within mouse strain and the profile of correlated measures differed between strains. Finally, "stereotypic" behaviors (i.e. rearing, grooming and wall climbing) recorded during the session of free interaction between the test and social stimulus mice were more intensely displayed by Swiss Webster than Balb/c mice, suggesting that the domains of sociability and "restricted repetitive and stereotyped patterns of behavior" are independent of each other in the Balb/c strain. Copyright © 2011, International Society for Autism Research, Wiley-Liss, Inc.
Henson, Kerstin; Luzader, Angelina; Lindstrom, Merle; Spooner, Muriel; Steffy, Brian M.; Suzuki, Oscar; Janse, Chris; Waters, Andrew P.; Zhou, Yingyao; Wiltshire, Tim; Winzeler, Elizabeth A.
2010-01-01
The genetic background of a patient determines in part if a person develops a mild form of malaria and recovers, or develops a severe form and dies. We have used a mouse model to detect genes involved in the resistance or susceptibility to Plasmodium berghei malaria infection. To this end we first characterized 32 different mouse strains infected with P. berghei and identified survival as the best trait to discriminate between the strains. We found a locus on chromosome 6 by linking the survival phenotypes of the mouse strains to their genetic variations using genome wide analyses such as haplotype associated mapping and the efficient mixed-model for association. This new locus involved in malaria resistance contains only two genes and confirms the importance of Ppar-γ in malaria infection. PMID:20531941
Zhang, Yunsong; Zhu, Yingbo; Gupta, Asheesh; Huang, Yingying; Murray, Clinton K.; Vrahas, Mark S.; Sherwood, Margaret E.; Baer, David G.; Hamblin, Michael R.; Dai, Tianhong
2014-01-01
In this study, we investigated the utility of antimicrobial blue light therapy for multidrug-resistant Acinetobacter baumannii infection in a mouse burn model. A bioluminescent clinical isolate of multidrug-resistant A. baumannii was obtained. The susceptibility of A. baumannii to blue light (415 nm)–inactivation was compared in vitro to that of human keratinocytes. Repeated cycles of sublethal inactivation of bacterial by blue light were performed to investigate the potential resistance development of A. baumannii to blue light. A mouse model of third degree burn infected with A. baumannii was developed. A single exposure of blue light was initiated 30 minutes after bacterial inoculation to inactivate A. baumannii in mouse burns. It was found that the multidrug-resistant A. baumannii strain was significantly more susceptible than keratinocytes to blue light inactivation. Transmission electron microscopy revealed blue light–induced ultrastructural damage in A. baumannii cells. Fluorescence spectroscopy suggested that endogenous porphyrins exist in A. baumannii cells. Blue light at an exposure of 55.8 J/cm2 significantly reduced the bacterial burden in mouse burns. No resistance development to blue light inactivation was observed in A. baumannii after 10 cycles of sublethal inactivation of bacteria. No significant DNA damage was detected in mouse skin by means of a skin TUNEL assay after a blue light exposure of 195 J/cm2. PMID:24381206
NIH Mouse Metabolic Phenotyping Centers: the power of centralized phenotyping.
Laughlin, Maren R; Lloyd, K C Kent; Cline, Gary W; Wasserman, David H
2012-10-01
The Mouse Metabolic Phenotyping Centers (MMPCs) were founded in 2001 by the National Institutes of Health (NIH) to advance biomedical research by providing the scientific community with standardized, high-quality phenotyping services for mouse models of diabetes, obesity, and their complications. The intent is to allow researchers to take optimum advantage of the many new mouse models produced in labs and in high-throughput public efforts. The six MMPCs are located at universities around the country and perform complex metabolic tests in intact mice and hormone and analyte assays in tissues on a fee-for-service basis. Testing is subsidized by the NIH in order to reduce the barriers for mouse researchers. Although data derived from these tests belong to the researcher submitting mice or tissues, these data are archived after publication in a public database run by the MMPC Coordinating and Bioinformatics Unit. It is hoped that data from experiments performed in many mouse models of metabolic diseases, using standard protocols, will be useful in understanding the nature of these complex disorders. The current areas of expertise include energy balance and body composition, insulin action and secretion, whole-body and tissue carbohydrate and lipid metabolism, cardiovascular and renal function, and metabolic pathway kinetics. In addition to providing services, the MMPC staff provides expertise and advice to researchers, and works to develop and refine test protocols to best meet the community's needs in light of current scientific developments. Test technology is disseminated by publications and through annual courses.
Agrawal, Sonal; Fox, Julia; Thyagarajan, Baskaran; Fox, Jonathan H
2018-05-20
Mitochondrial bioenergetic dysfunction is involved in neurodegeneration in Huntington's disease (HD). Iron is critical for normal mitochondrial bioenergetics but can also contribute to pathogenic oxidation. The accumulation of iron in the brain occurs in mouse models and in human HD. Yet the role of mitochondria-related iron dysregulation as a contributor to bioenergetic pathophysiology in HD is unclear. We demonstrate here that human HD and mouse model HD (12-week R6/2 and 12-month YAC128) brains accumulated mitochondrial iron and showed increased expression of iron uptake protein mitoferrin 2 and decreased iron-sulfur cluster synthesis protein frataxin. Mitochondria-enriched fractions from mouse HD brains had deficits in membrane potential and oxygen uptake and increased lipid peroxidation. In addition, the membrane-permeable iron-selective chelator deferiprone (1 μM) rescued these effects ex-vivo, whereas hydrophilic iron and copper chelators did not. A 10-day oral deferiprone treatment in 9-week R6/2 HD mice indicated that deferiprone removed mitochondrial iron, restored mitochondrial potentials, decreased lipid peroxidation, and improved motor endurance. Neonatal iron supplementation potentiates neurodegeneration in mouse models of HD by unknown mechanisms. We found that neonatal iron supplementation increased brain mitochondrial iron accumulation and potentiated markers of mitochondrial dysfunction in HD mice. Therefore, bi-directional manipulation of mitochondrial iron can potentiate and protect against markers of mouse HD. Our findings thus demonstrate the significance of iron as a mediator of mitochondrial dysfunction and injury in mouse models of human HD and suggest that targeting the iron-mitochondrial pathway may be protective. Copyright © 2018 Elsevier Inc. All rights reserved.
Zielińska, Marta; Jarmuż, Agata; Wasilewski, Andrzej; Cami-Kobeci, Gerta; Husbands, Stephen; Fichna, Jakub
2017-04-01
Diarrhea-predominant irritable bowel syndrome (IBS-D) is a functional disorder of the gastrointestinal (GI) tract. The major IBS-D symptoms include diarrhea, abdominal pain and discomfort. High density of opioid receptors (ORs) in the GI tract and their participation in the maintenance of GI homeostasis make ORs ligands an attractive option for developing new anti-IBS-D treatments. The aim of this study was to characterize the effect of methyl-orvinol on the GI motility and secretion and in mouse models mimicking symptoms of IBS-D. In vitro, the effects of methyl-orvinol on electrical field stimulated smooth muscle contractility and epithelial ion transport were characterized in the mouse colon. In vivo, the following tests were used to determine methyl-orvinol effect on mouse GI motility: colonic bead expulsion, whole GI transit and fecal pellet output. An antinociceptive action of methyl-orvinol was assessed in the mouse model of visceral pain induced by mustard oil. Methyl-orvinol (10 -10 to 10 -6 M) inhibited colonic smooth muscle contractions in a concentration-dependent manner. This effect was reversed by naloxone (non-selective opioid antagonist) and β-funaltrexamine (selective MOP antagonist). Experiments with a selective KOP receptor agonist, U50488 revealed that methyl-orvinol is a KOP receptor antagonist in the GI tract. Methyl-orvinol enhanced epithelial ion transport. In vivo, methyl-orvinol inhibited colonic bead expulsion and prolonged GI transit. Methyl-orvinol improved hypermotility and reduced abdominal pain in the mouse models mimicking IBS-D symptoms. Methyl-orvinol could become a promising drug candidate in chronic therapy of functional GI diseases such as IBS-D. Copyright © 2016 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.
The Snowballing Literature on Imiquimod-Induced Skin Inflammation in Mice: A Critical Appraisal
Hawkes, Jason E.; Gudjonsson, Johann E.; Ward, Nicole L.
2016-01-01
Since 2009, the imiquimod- or Aldara-induced (3M Pharmaceuticals, St. Paul, MN) model of acute skin inflammation has become the most widely used mouse model in preclinical psoriasis studies. Although this model offers researchers numerous benefits, there are important limitations and possible confounding variables to consider. The imiquimod model requires careful consideration and warrants scrutiny of the data generated by its use. In this perspective, we provide an overview of the advantages and disadvantages of this mouse model and offer suggestions for its use in psoriasis research. PMID:27955901
BATTLE: Biomarker-Based Approaches of Targeted Therapy for Lung Cancer Elimination
2007-04-01
localization, which • The combination of erlotinib and Ad-dnIGF-1R synergistically inhibits the growth of tumors in xenograft mouse models . able outcomes...of erlotinib and Ad-dnIGF-1R synergistically inhibits the growth of tumors in xenograft mouse models . Specific Aim 2.3: To investigate the...biomarkers and adaptive randomization via hierarchical Bayes modeling . 2) To study the molecular mechanisms of response and resistance to targeted
Angiogenic Signaling in Living Breast Tumor Models
2010-06-01
harmonic generation imaging of the diseased state osteogenesis imperfecta : experiment and simulation,” Biophys. J. 94(11), 4504–4514 (2008). 3. O...biopsies, mouse models of breast cancer, and dermis from mouse models of Osteogenesis Imperfecta (OIM) [1–5,7]. The F/B ratio revealed the length scale of...interest in discriminating skin with Osteogenesis Imperfecta [2] from normal dermis [2] and SHG F/B ratio measurements have been used to help determine
Differentiated NSC-34 cells as an in vitro Cell Model for VX
2014-09-11
potential candidate drugs/antidotes. The development of an in vitro cellular model to aid in discovering new NA therapeutics would be highly beneficial...principally as potent cholinesterase inhibitors. The toxicity of these compounds and their mode of action are attributed to the inhibition of the enzyme ...of motor neuron- enriched, embryonic mouse spinal cord cells with mouse neuroblastoma as a potential neuronal model (Durham et al., 1993). This cell
Zloza, Andrew; Karolina Palucka, A; Coussens, Lisa M; Gotwals, Philip J; Headley, Mark B; Jaffee, Elizabeth M; Lund, Amanda W; Sharpe, Arlene H; Sznol, Mario; Wainwright, Derek A; Wong, Kwok-Kin; Bosenberg, Marcus W
2017-09-19
Understanding how murine models can elucidate the mechanisms underlying antitumor immune responses and advance immune-based drug development is essential to advancing the field of cancer immunotherapy. The Society for Immunotherapy of Cancer (SITC) convened a workshop titled, "Challenges, Insights, and Future Directions for Mouse and Humanized Models in Cancer Immunology and Immunotherapy" as part of the SITC 31st Annual Meeting and Associated Programs on November 10, 2016 in National Harbor, MD. The workshop focused on key issues in optimizing models for cancer immunotherapy research, with discussions on the strengths and weaknesses of current models, approaches to improve the predictive value of mouse models, and advances in cancer modeling that are anticipated in the near future. This full-day program provided an introduction to the most common immunocompetent and humanized models used in cancer immunology and immunotherapy research, and addressed the use of models to evaluate immune-targeting therapies. Here, we summarize the workshop presentations and subsequent panel discussion.
Mancini, Irene; Lampronti, Ilaria; Salvatori, Francesca; Fabbri, Enrica; Zuccato, Cristina; Cosenza, Lucia C.; Montagner, Giulia; Borgatti, Monica; Altruda, Fiorella; Fagoonee, Sharmila; Carandina, Gianni; Aiello, Vincenzo; Breda, Laura; Rivella, Stefano; Gambari, Roberto
2015-01-01
Mouse models that carry mutations causing thalassemia represent a suitable tool to test in vivo new mutation-specific therapeutic approaches. Transgenic mice carrying the β-globin IVSI-6 mutation (the most frequent in Middle-Eastern regions and recurrent in Italy and Greece) are, at present, not available. We report the production and characterization of a transgenic mouse line (TG-β-IVSI-6) carrying the IVSI-6 thalassemia point mutation within the human β-globin gene. In the TG-β-IVSI-6 mouse (a) the transgenic integration region is located in mouse chromosome 7; (b) the expression of the transgene is tissue specific; (c) as expected, normally spliced human β-globin mRNA is produced, giving rise to β-globin production and formation of a human-mouse tetrameric chimeric hemoglobin mu α-globin2/hu β-globin2 and, more importantly, (d) the aberrant β-globin-IVSI-6 RNAs are present in blood cells. The TG-β-IVSI-6 mouse reproduces the molecular features of IVSI-6 β-thalassemia and might be used as an in vivo model to characterize the effects of antisense oligodeoxynucleotides targeting the cryptic sites responsible for the generation of aberrantly spliced β-globin RNA sequences, caused by the IVSI-6 mutation. These experiments are expected to be crucial for the development of a personalized therapy for β-thalassemia. PMID:26097845
Kukreja, L; Shahidehpour, R; Kim, G; Keegan, J; Sadleir, K R; Russell, T; Csernansky, J; Mesulam, M; Vassar, R J; Wang, L; Dong, H; Geula, C
2018-05-28
Frontotemporal lobar degeneration (FTLD) is among the most prevalent dementias of early-onset. Pathologically, FTLD presents with tauopathy or TAR DNA-binding protein 43 (TDP-43) proteinopathy. A biallelic mouse model of FTLD was produced on a mix FVB/129SVE background overexpressing wild-type human TDP-43 (hTDP-43) employing tetracycline transactivator (tTA), a system widely used in mouse models of neurological disorders. tTA activates hTDP-43 which is placed downstream of the tetracycline response element (TRE). The original study on this transgenic mouse found hippocampal degeneration following hTDP-43 expression, but did not account for independent effects of tTA protein. Here, we initially analyzed the neurotoxic effects of tTA in post-weaning age mice of either sex using immunostaining and area measurements of select brain regions. We observed tTA-dependent toxicity selectively in the hippocampus affecting the dentate gyrus significantly more than CA fields, whereas hTDP-43-dependent toxicity in bigenic mice occurred in most other cortical regions. Atrophy was associated with inflammation, activation of caspase-3 and loss of neurons. The atrophy associated with tTA expression was rescuable by tetracycline analog, doxycycline in the diet. MRI studies corroborated the patterns of atrophy. tTA-induced degeneration was strain-dependent and was rescued by moving the transgene onto a congenic C57BL/6 background. Despite significant hippocampal atrophy, behavioral tests in bigenic mice revealed no hippocampally mediated memory impairment. Significant atrophy in most cortical areas due solely to TDP-43 expression indicates that this mouse model remains useful for providing critical insight into co-occurrence of TDP-43 pathology, neurodegeneration and behavioral deficits in FTLD. SIGNIFICANCE STATEMENT The tTA expression system has been widely used in mice to model neurological disorders. The technique allows investigators to reversibly turn on or off disease causing genes. Here, we report on a mouse model that overexpresses human TDP-43 using tTA and attempt to recapitulate features of TDP-43 pathology present in human FTLD. The tTA expression system is problematic, resulting in dramatic degeneration of the hippocampus. Thus, our study adds a note of caution for the use of the tTA system. However, since FTLD is primarily characterized by cortical degeneration and our mouse model shows significant atrophy in most cortical areas due to human TDP-43 overexpression, our animal model remains useful for providing critical insight on this human disease. Copyright © 2018 the authors.
Mo, Christina; Renoir, Thibault; Hannan, Anthony J
2016-05-30
The mechanistic understanding of lifestyle contributions to disease has been largely driven by work in laboratory rodent models using environmental interventions. These interventions show an array of methodologies and sometimes unclear collective conclusions, hampering clinical interpretations. Here we discuss environmental enrichment, exercise and stress interventions to illustrate how different protocols can affect the interpretations of environmental factors in disease. We use Huntington's disease (HD) as an example because its mouse models exhibit excellent validity and HD was the first genetic animal model in which environmental stimulation was found to be beneficial. We make a number of observations and recommendations. Firstly, environmental enrichment and voluntary exercise generally show benefits across laboratories and mouse models. However, the extent to which these environmental interventions have beneficial effects depends on parameters such as the structural complexity of the cage in the case of enrichment, the timing of the intervention and the nature of the control conditions. In particular, clinical interpretations should consider deprived control living conditions and the ethological relevance of the enrichment. Secondly, stress can have negative effects on the phenotype in mouse models of HD and other brain disorders. When modeling stress, the effects of more than one type of experimental stressor should be investigated due to the heterogeneity and complexity of stress responses. With stress in particular, but ideally in all studies, both sexes should be used and the randomized group sizes need to be sufficiently powered to detect any sex effects. Opportunities for clinical translation will be guided by the 'environmental construct validity' of the preclinical data, including the culmination of complementary protocols across multiple animal models. Environmental interventions in mouse models of HD provide illustrative examples of how valid preclinical studies can lead to conclusions relevant to clinical populations. Copyright © 2015 Elsevier B.V. All rights reserved.
He, Xuzhi; Cruz, Jazmina L; Joseph, Shannon; Pett, Nicola; Chew, Hui Yi; Tuong, Zewen K; Okano, Satomi; Kelly, Gabrielle; Veitch, Margaret; Simpson, Fiona; Wells, James W
2018-02-23
The Epidermal Growth Factor Receptor (EGFR) is selectively expressed on the surface of numerous tumours, such as non-small cell lung, ovarian, colorectal and head and neck carcinomas. EGFR has therefore become a target for cancer therapy. Cetuximab is a chimeric human/mouse monoclonal antibody (mAb) that binds to EGFR, where it both inhibits signaling and induces cell death by antibody-dependent cell mediated cytotoxicity (ADCC). Cetuximab has been approved for clinical use in patients with head and neck squamous cell carcinoma (HNSCC) and colorectal cancer. However, only 15-20% patients benefit from this drug, thus new strategies to improve cetuximab efficiency are required. We aimed to develop a reliable and easy preclinical mouse model to evaluate the efficacy of EGFR-targeted antibodies and examine the immune mechanisms involved in tumour regression. We selected an anti-mouse EGFR mAb, 7A7, which has been reported to be "mouse cetuximab" and to exhibit similar properties to its human counterpart. Unfortunately, we were unable to reproduce previous results obtained with the 7A7 mAb. In our hands, 7A7 failed to recognize mouse EGFR, both in native and reducing conditions. Moreover, in vivo administration of 7A7 in an EGFR-expressing HPV38 tumour model did not have any impact on tumour regression or animal survival. We conclude that 7A7 does not recognize mouse EGFR and therefore cannot be used as the mouse equivalent of cetuximab use in humans. As a number of groups have spent effort and resources with similar issues we feel that publication is a responsible approach.
4D atlas of the mouse embryo for precise morphological staging.
Wong, Michael D; van Eede, Matthijs C; Spring, Shoshana; Jevtic, Stefan; Boughner, Julia C; Lerch, Jason P; Henkelman, R Mark
2015-10-15
After more than a century of research, the mouse remains the gold-standard model system, for it recapitulates human development and disease and is quickly and highly tractable to genetic manipulations. Fundamental to the power and success of using a mouse model is the ability to stage embryonic mouse development accurately. Past staging systems were limited by the technologies of the day, such that only surface features, visible with a light microscope, could be recognized and used to define stages. With the advent of high-throughput 3D imaging tools that capture embryo morphology in microscopic detail, we now present the first 4D atlas staging system for mouse embryonic development using optical projection tomography and image registration methods. By tracking 3D trajectories of every anatomical point in the mouse embryo from E11.5 to E14.0, we established the first 4D atlas compiled from ex vivo 3D mouse embryo reference images. The resulting 4D atlas comprises 51 interpolated 3D images in this gestational range, resulting in a temporal resolution of 72 min. From this 4D atlas, any mouse embryo image can be subsequently compared and staged at the global, voxel and/or structural level. Assigning an embryonic stage to each point in anatomy allows for unprecedented quantitative analysis of developmental asynchrony among different anatomical structures in the same mouse embryo. This comprehensive developmental data set offers developmental biologists a new, powerful staging system that can identify and compare differences in developmental timing in wild-type embryos and shows promise for localizing deviations in mutant development. © 2015. Published by The Company of Biologists Ltd.
Menalled, Liliana B; Kudwa, Andrea E; Miller, Sam; Fitzpatrick, Jon; Watson-Johnson, Judy; Keating, Nicole; Ruiz, Melinda; Mushlin, Richard; Alosio, William; McConnell, Kristi; Connor, David; Murphy, Carol; Oakeshott, Steve; Kwan, Mei; Beltran, Jose; Ghavami, Afshin; Brunner, Dani; Park, Larry C; Ramboz, Sylvie; Howland, David
2012-01-01
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder characterized by motor, cognitive and psychiatric manifestations. Since the mutation responsible for the disease was identified as an unstable expansion of CAG repeats in the gene encoding the huntingtin protein in 1993, numerous mouse models of HD have been generated to study disease pathogenesis and evaluate potential therapeutic approaches. Of these, knock-in models best mimic the human condition from a genetic perspective since they express the mutation in the appropriate genetic and protein context. Behaviorally, however, while some abnormal phenotypes have been detected in knock-in mouse models, a model with an earlier and more robust phenotype than the existing models is required. We describe here for the first time a new mouse line, the zQ175 knock-in mouse, derived from a spontaneous expansion of the CAG copy number in our CAG 140 knock-in colony [1]. Given the inverse relationship typically observed between age of HD onset and length of CAG repeat, since this new mouse line carries a significantly higher CAG repeat length it was expected to be more significantly impaired than the parent line. Using a battery of behavioral tests we evaluated both heterozygous and homozygous zQ175 mice. Homozygous mice showed motor and grip strength abnormalities with an early onset (8 and 4 weeks of age, respectively), which were followed by deficits in rotarod and climbing activity at 30 weeks of age and by cognitive deficits at around 1 year of age. Of particular interest for translational work, we also found clear behavioral deficits in heterozygous mice from around 4.5 months of age, especially in the dark phase of the diurnal cycle. Decreased body weight was observed in both heterozygotes and homozygotes, along with significantly reduced survival in the homozygotes. In addition, we detected an early and significant decrease of striatal gene markers from 12 weeks of age. These data suggest that the zQ175 knock-in line could be a suitable model for the evaluation of therapeutic approaches and early events in the pathogenesis of HD.
Pyo, Kyoung Ho; Lim, Sun Min; Kim, Hye Ryun; Sung, Young Hoon; Yun, Mi Ran; Kim, Sung-Moo; Kim, Hwan; Kang, Han Na; Lee, Ji Min; Kim, Sang Gyun; Park, Chae Won; Chang, Hyun; Shim, Hyo Sup; Lee, Han-Woong; Cho, Byoung Chul
2017-03-01
Anaplastic lymphoma receptor tyrosine kinase gene (ALK) fusion is a distinct molecular subclassification of NSCLC that is targeted by anaplastic lymphoma kinase (ALK) inhibitors. We established a transgenic mouse model that expresses tumors highly resembling human NSCLC harboring echinoderm microtubule associated protein like 4 gene (EML)-ALK fusion. We aimed to test an EML4-ALK transgenic mouse model as a platform for assessing the efficacy of ALK inhibitors and examining mechanisms of acquired resistance to ALK inhibitors. Transgenic mouse lines harboring LoxP-STOP-LoxP-FLAGS-tagged human EML4-ALK (variant 1) transgene was established by using C57BL/6N mice. The transgenic mouse model with highly lung-specific, inducible expression of echinoderm microtubule associated protein like 4-ALK fusion protein was established by crossing the EML4-ALK transgenic mice with mice expressing Cre-estrogen receptor fusion protein under the control of surfactant protein C gene (SPC). Expression of EML4-ALK transgene was induced by intraperitoneally injecting mice with tamoxifen. When the lung tumor of the mice treated with the ALK inhibitor crizotinib for 2 weeks was measured, tumor shrinkage was observed. EML4-ALK tumor developed after 1 week of tamoxifen treatment. Echinoderm microtubule associated protein like 4-ALK was strongly expressed in the lung but not in other organs. ALK and FLAGS expressions were observed by immunohistochemistry. Treatment of EML4-ALK tumor-bearing mice with crizotinib for 2 weeks induced dramatic shrinkage of tumors with no signs of toxicity. Furthermore, prolonged treatment with crizotinib led to acquired resistance in tumors, resulting in regrowth and disease progression. The resistant tumor nodules revealed acquired ALK G1202R mutations. An EML4-ALK transgenic mouse model for study of drug resistance was successfully established with short duration of tumorigenesis. This model should be a strong preclinical model for testing efficacy of ALK TKIs, providing a useful tool for investigating the mechanisms of acquired resistance and pursuing novel treatment strategies in ALK-positive lung cancer. Copyright © 2016 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.
Tumour and normal tissue radiobiology in mouse models: how close are mice to mini-humans?
Koontz, Bridget F; Verhaegen, Frank; De Ruysscher, Dirk
2017-01-01
Animal modelling is essential to the study of radiobiology and the advancement of clinical radiation oncology by providing preclinical data. Mouse models in particular have been highly utilized in the study of both tumour and normal tissue radiobiology because of their cost effectiveness and versatility. Technology has significantly advanced in preclinical radiation techniques to allow highly conformal image-guided irradiation of small animals in an effort to mimic human treatment capabilities. However, the biological and physical limitations of animal modelling should be recognized and considered when interpreting preclinical radiotherapy (RT) studies. Murine tumour and normal tissue radioresponse has been shown to vary from human cellular and molecular pathways. Small animal irradiation techniques utilize different anatomical boundaries and may have different physical properties than human RT. This review addresses the difference between the human condition and mouse models and discusses possible strategies for future refinement of murine models of cancer and radiation for the benefit of both basic radiobiology and clinical translation.
Tumour and normal tissue radiobiology in mouse models: how close are mice to mini-humans?
Verhaegen, Frank; De Ruysscher, Dirk
2017-01-01
Animal modelling is essential to the study of radiobiology and the advancement of clinical radiation oncology by providing preclinical data. Mouse models in particular have been highly utilized in the study of both tumour and normal tissue radiobiology because of their cost effectiveness and versatility. Technology has significantly advanced in preclinical radiation techniques to allow highly conformal image-guided irradiation of small animals in an effort to mimic human treatment capabilities. However, the biological and physical limitations of animal modelling should be recognized and considered when interpreting preclinical radiotherapy (RT) studies. Murine tumour and normal tissue radioresponse has been shown to vary from human cellular and molecular pathways. Small animal irradiation techniques utilize different anatomical boundaries and may have different physical properties than human RT. This review addresses the difference between the human condition and mouse models and discusses possible strategies for future refinement of murine models of cancer and radiation for the benefit of both basic radiobiology and clinical translation. PMID:27612010
Cone-Specific Promoters for Gene Therapy of Achromatopsia and Other Retinal Diseases
Ye, Guo-Jie; Budzynski, Ewa; Sonnentag, Peter; Nork, T. Michael; Sheibani, Nader; Gurel, Zafer; Boye, Sanford L.; Peterson, James J.; Boye, Shannon E.; Hauswirth, William W.; Chulay, Jeffrey D.
2016-01-01
Adeno-associated viral (AAV) vectors containing cone-specific promoters have rescued cone photoreceptor function in mouse and dog models of achromatopsia, but cone-specific promoters have not been optimized for use in primates. Using AAV vectors administered by subretinal injection, we evaluated a series of promoters based on the human L-opsin promoter, or a chimeric human cone transducin promoter, for their ability to drive gene expression of green fluorescent protein (GFP) in mice and nonhuman primates. Each of these promoters directed high-level GFP expression in mouse photoreceptors. In primates, subretinal injection of an AAV-GFP vector containing a 1.7-kb L-opsin promoter (PR1.7) achieved strong and specific GFP expression in all cone photoreceptors and was more efficient than a vector containing the 2.1-kb L-opsin promoter that was used in AAV vectors that rescued cone function in mouse and dog models of achromatopsia. A chimeric cone transducin promoter that directed strong GFP expression in mouse and dog cone photoreceptors was unable to drive GFP expression in primate cones. An AAV vector expressing a human CNGB3 gene driven by the PR1.7 promoter rescued cone function in the mouse model of achromatopsia. These results have informed the design of an AAV vector for treatment of patients with achromatopsia. PMID:26603570
Gao, Yang; Vincent, David F.; Davis, Anna Jane; Sansom, Owen J.; Bartholin, Laurent; Li, Qinglei
2016-01-01
Despite the well-established tumor suppressive role of TGFβ proteins, depletion of key TGFβ signaling components in the mouse ovary does not induce a growth advantage. To define the role of TGFβ signaling in ovarian tumorigenesis, we created a mouse model expressing a constitutively active TGFβ receptor 1 (TGFBR1) in ovarian somatic cells using conditional gain-of-function approach. Remarkably, these mice developed ovarian sex cord-stromal tumors with complete penetrance, leading to reproductive failure and mortality. The tumors expressed multiple granulosa cell markers and caused elevated serum inhibin and estradiol levels, reminiscent of granulosa cell tumors. Consistent with the tumorigenic effect, overactivation of TGFBR1 altered tumor microenvironment by promoting angiogenesis and enhanced ovarian cell proliferation, accompanied by impaired cell differentiation and dysregulated expression of critical genes in ovarian function. By further exploiting complementary genetic models, we substantiated our finding that constitutively active TGFBR1 is a potent oncogenic switch in mouse granulosa cells. In summary, overactivation of TGFBR1 drives gonadal tumor development. The TGFBR1 constitutively active mouse model phenocopies a number of morphological, hormonal, and molecular features of human granulosa cell tumors and are potentially valuable for preclinical testing of targeted therapies to treat granulosa cell tumors, a class of poorly defined ovarian malignancies. PMID:27344183
Yamazaki, Tomoko; Li, Wenling; Yang, Ling; Li, Ping; Cao, Haiming; Motegi, Sei-Ichiro; Udey, Mark C; Bernhard, Elise; Nakamura, Takahisa; Mukouyama, Yoh-Suke
2018-01-11
Obesity and type 2 diabetes are frequently associated with peripheral neuropathy. Though there are multiple methods for diagnosis and analysis of morphological changes of peripheral nerves and blood vessels, three-dimensional high-resolution imaging is necessary to appreciate the pathogenesis with an anatomically recognizable branching morphogenesis and patterning. Here we established a novel technique for whole-mount imaging of adult mouse ear skin to visualize branching morphogenesis and patterning of peripheral nerves and blood vessels. Whole-mount immunostaining of adult mouse ear skin showed that peripheral sensory and sympathetic nerves align with large-diameter blood vessels. Diet-induced obesity (DIO) mice exhibit defective vascular smooth muscle cells (VSMCs) coverage, while there is no significant change in the amount of peripheral nerves. The leptin receptor-deficient db/db mice, a severe obese and type 2 diabetic mouse model, exhibit defective VSMC coverage and a large increase in the amount of smaller-diameter nerve bundles with myelin sheath and unmyelinated nerve fibers. Interestingly, an increase in the amount of myeloid immune cells was observed in the DIO but not db/db mouse skin. These data suggest that our whole-mount imaging method enables us to investigate the neuro-vascular and neuro-immune phenotypes in the animal models of obesity and diabetes.
Cone-Specific Promoters for Gene Therapy of Achromatopsia and Other Retinal Diseases.
Ye, Guo-Jie; Budzynski, Ewa; Sonnentag, Peter; Nork, T Michael; Sheibani, Nader; Gurel, Zafer; Boye, Sanford L; Peterson, James J; Boye, Shannon E; Hauswirth, William W; Chulay, Jeffrey D
2016-01-01
Adeno-associated viral (AAV) vectors containing cone-specific promoters have rescued cone photoreceptor function in mouse and dog models of achromatopsia, but cone-specific promoters have not been optimized for use in primates. Using AAV vectors administered by subretinal injection, we evaluated a series of promoters based on the human L-opsin promoter, or a chimeric human cone transducin promoter, for their ability to drive gene expression of green fluorescent protein (GFP) in mice and nonhuman primates. Each of these promoters directed high-level GFP expression in mouse photoreceptors. In primates, subretinal injection of an AAV-GFP vector containing a 1.7-kb L-opsin promoter (PR1.7) achieved strong and specific GFP expression in all cone photoreceptors and was more efficient than a vector containing the 2.1-kb L-opsin promoter that was used in AAV vectors that rescued cone function in mouse and dog models of achromatopsia. A chimeric cone transducin promoter that directed strong GFP expression in mouse and dog cone photoreceptors was unable to drive GFP expression in primate cones. An AAV vector expressing a human CNGB3 gene driven by the PR1.7 promoter rescued cone function in the mouse model of achromatopsia. These results have informed the design of an AAV vector for treatment of patients with achromatopsia.
Treatment with antioxidants ameliorates oxidative damage in a mouse model of propionic acidemia.
Rivera-Barahona, Ana; Alonso-Barroso, Esmeralda; Pérez, Belén; Murphy, Michael P; Richard, Eva; Desviat, Lourdes R
2017-09-01
Oxidative stress contributes to the pathogenesis of propionic acidemia (PA), a life threatening disease caused by the deficiency of propionyl CoA-carboxylase, in the catabolic pathway of branched-chain amino acids, odd-number chain fatty acids and cholesterol. Patients develop multisystemic complications including seizures, extrapyramidal symptoms, basal ganglia deterioration, pancreatitis and cardiomyopathy. The accumulation of toxic metabolites results in mitochondrial dysfunction, increased reactive oxygen species and oxidative damage, all of which have been documented in patients' samples and in a hypomorphic mouse model. Here we set out to investigate whether treatment with a mitochondria-targeted antioxidant, MitoQ, or with the natural polyphenol resveratrol, which is reported to have antioxidant and mitochondrial activation properties, could ameliorate the altered redox status and its functional consequences in the PA mouse model. The results show that oral treatment with MitoQ or resveratrol decreases lipid peroxidation and the expression levels of DNA repair enzyme OGG1 in PA mouse liver, as well as inducing tissue-specific changes in the expression of antioxidant enzymes. Notably, treatment decreased the cardiac hypertrophy marker BNP that is found upregulated in the PA mouse heart. Overall, the results provide in vivo evidence to justify more in depth investigations of antioxidants as adjuvant therapy in PA. Copyright © 2017 Elsevier Inc. All rights reserved.
Rowan, Daniel J.; Tomatsu, Shunji; Grubb, Jeffrey H.; Montaño, Adriana M.; Sly, William S.
2012-01-01
Summary Mucopolysaccharidoses (MPS) are a group of lysosomal storage diseases caused by mutations in lysosomal enzymes involved in degradation of glycosaminoglycans (GAGs). Patients with MPS grow poorly and become physically disabled due to systemic bone disease. While many of the major skeletal effects in mouse models for MPS have been described, no detailed analysis that compares GAGs levels and characteristics of bone by micro-CT has been done. The aims of this study were to assess severity of bone dysplasia among four MPS mouse models (MPS I, IIIA, IVA and VII), to determine the relationship between severity of bone dysplasia and serum keratan sulfate (KS) and heparan sulfate (HS) levels in those models, and to explore the mechanism of KS elevation in MPS I, IIIA, and VII mouse models. Clinically, MPS VII mice had the most severe bone pathology; however, MPS I and IVA mice also showed skeletal pathology. MPS I and VII mice showed severe bone dysplasia, higher bone mineral density, narrowed spinal canal, and shorter sclerotic bones by micro-CT and radiographs. Serum KS and HS levels were elevated in MPS I, IIIA, and VII mice. Severity of skeletal disease displayed by micro-CT, radiographs and histopathology correlated with the level of KS elevation. We showed that elevated HS levels in MPS mouse models could inhibit N-acetylgalactosamine-6-sulfate sulfatase enzyme. These studies suggest that KS could be released from chondrocytes affected by accumulation of other GAGs and that KS could be useful as a biomarker for severity of bone dysplasia in MPS disorders. PMID:22971960
Hahn, Anne; Salomon, Johanna J; Leitz, Dominik; Feigenbutz, Dennis; Korsch, Lisa; Lisewski, Ina; Schrimpf, Katrin; Millar-Büchner, Pamela; Mall, Marcus A; Frings, Stephan; Möhrlen, Frank
2018-06-02
Physiological processes of vital importance are often safeguarded by compensatory systems that substitute for primary processes in case these are damaged by gene mutation. Ca 2+ -dependent Cl - secretion in airway epithelial cells may provide such a compensatory mechanism for impaired Cl - secretion via cystic fibrosis transmembrane conductance regulator (CFTR) channels in cystic fibrosis (CF). Anoctamin 1 (ANO1) Ca 2+ -gated Cl - channels are known to contribute to calcium-dependent Cl - secretion in tracheal and bronchial epithelia. In the present study, two mouse models of CF were examined to assess a potential protective function of Ca 2+ -dependent Cl - secretion, a CFTR deletion model (cftr -/- ), and a CF pathology model that overexpresses the epithelial Na + channel β-subunit (βENaC), which is encoded by the Scnn1b gene, specifically in airway epithelia (Scnn1b-Tg). The expression levels of ANO1 were examined by mRNA and protein content, and the channel protein distribution between ciliated and non-ciliated epithelial cells was analyzed. Moreover, Ussing chamber experiments were conducted to compare Ca 2+ -dependent Cl - secretion between wild-type animals and the two mouse models. Our results demonstrate that CFTR and ANO1 channels were co-expressed with ENaC in non-ciliated cells of mouse tracheal and bronchial epithelia. Ciliated cells did not express these proteins. Despite co-localization of CFTR and ANO1 in the same cell type, cells in cftr -/- mice displayed no altered expression of ANO1. Similarly, ANO1 expression was unaffected by βENaC overexpression in the Scnn1b-Tg line. These results suggest that the CF-related environment in the two mouse models did not induce ANO1 overexpression as a compensatory system.
Effects of gypenosides on anxiety disorders in MPTP-lesioned mouse model of Parkinson's disease.
Shin, Keon Sung; Zhao, Ting Ting; Choi, Hyun Sook; Hwang, Bang Yeon; Lee, Chong Kil; Lee, Myung Koo
2014-06-03
Ethanol extract (GP-EX) of Gynostemma pentaphyllum (GP) ameliorates chronic stress-induced anxiety in mice. The present study investigated the effects of gypenoside-enriched components (GPS), GP-EX and water extract of GP (GP-WX) on MPTP lesion-induced affective disorders in C57BL/6 mice. GPS (50mg/kg) and GP-EX (50mg/kg) for 21 day-treatment period improved the symptom of anxiety disorders in the MPTP-lesioned mouse model of PD with or without L-DOPA treatment, which was examined by the elevated plus-maze and marble burying tests. In these states, treatments with GPS (50mg/kg) and GP-EX (50mg/kg) significantly increased the brain levels of dopamine and serotonin in the MPTP-lesioned mouse model of PD with or without l-DOPA treatment. In addition, treatments with GPS (50mg/kg) and GP-EX (50mg/kg) showed protective effects on dopaminergic neurons in MPTP-lesioned mouse model of PD with or without L-DOPA treatment. In contrast, GPS (30 mg/kg) and GP-WX (50mg/kg) showed anxiolytic effects in the same animal models, but it was not significant. These results suggest that GPS (50mg/kg) and GP-EX (50mg/kg) showed anxiolytic effects on affective disorders and protective effects on dopaminergic neurons by modulating the brain levels of dopamine and serotonin in the MPTP-lesioned mouse model of PD with or without l-DOPA treatment. Clinical trials of GPS and GP-EX need to be conducted further so as to develop adjuvant therapeutic agents for PD patients. Copyright © 2014 Elsevier B.V. All rights reserved.
Castro, Hoanna; Kul, Emre; Buijsen, Ronald A M; Severijnen, Lies-Anne W F M; Willemsen, Rob; Hukema, Renate K; Stork, Oliver; Santos, Mónica
2017-06-01
A CGG-repeat expansion in the premutation range in the Fragile X mental retardation 1 gene (FMR1) has been identified as the genetic cause of Fragile X-associated tremor/ataxia syndrome (FXTAS), a late-onset neurodegenerative disorder that manifests with action tremor, gait ataxia and cognitive impairments. In this study, we used a bigenic mouse model, in which expression of a 90CGG premutation tract is activated in neural cells upon doxycycline administration-P90CGG mouse model. We, here, demonstrate the behavioural manifestation of clinically relevant features of FXTAS patients and premutation carrier individuals in this inducible mouse model. P90CGG mice display heightened anxiety, deficits in motor coordination and impaired gait and represent the first FXTAS model that exhibits an ataxia phenotype as observed in patients. The behavioural phenotype is accompanied by the formation of ubiquitin/FMRpolyglycine-positive intranuclear inclusions, as another hallmark of FXTAS, in the cerebellum, hippocampus and amygdala. Strikingly, upon cessation of transgene induction the anxiety phenotype of mice recovers along with a reduction of intranuclear inclusions in dentate gyrus and amygdala. In contrast, motor function deteriorates further and no reduction in intranuclear inclusions can be observed in the cerebellum. Our data thus demonstrate that expression of a 90CGG premutation expansion outside of the FMR1 context is sufficient to evoke an FXTAS-like behavioural phenotype. Brain region-specific neuropathology and (partial) behavioural reversibility make the inducible P90CGG a valuable mouse model for testing pathogenic mechanisms and therapeutic intervention methods. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Kim, Heung Deok; Jeong, Kyoung Hoon; Jung, Un Ju; Kim, Sang Ryong
2016-02-01
We recently reported that treatment with naringin, a major flavonoid found in grapefruit and citrus fruits, attenuated neurodegeneration in a rat model of Parkinson's disease (PD) in vivo. In order to investigate whether its effects are universally applied to a different model of PD and whether its treatment induces restorative effects on the lesioned nigrostriatal dopaminergic (DA) projection, we observed the effects of pre-treatment or post-treatment with naringin in a mouse model of PD. For neuroprotective effects, 6-hydroxydopamine (6-OHDA) was unilaterally injected into the striatum of mouse brains for a neurotoxin model of PD in the presence or absence of naringin by daily intraperitoneal injection. Our results showed that naringin protected the nigrostriatal DA projection from 6-OHDA-induced neurotoxicity. Moreover, similar to the effects in rat brains, this treatment induced the activation of mammalian target of rapamycin complex 1 (mTORC1), which is well known as an important survival factor for DA neurons, and inhibited microglial activation in the substantia nigra (SN) of mouse brains treated with 6-OHDA. However, there was no significant change of DA phenotypes in the SN and striatum post-treated with naringin compared with 6-OHDA-lesioned mice, despite the treatment being continued for 12 weeks. These results suggest that post-treatment with naringin alone may not be enough to restore the nigrostriatal DA projection in a mouse model of PD. However, our results apparently suggest that naringin is a beneficial natural product to prevent DA degeneration, which is involved in PD. Copyright © 2015 Elsevier Inc. All rights reserved.
An Orthotopic Mouse Model of Spontaneous Breast Cancer Metastasis.
Paschall, Amy V; Liu, Kebin
2016-08-14
Metastasis is the primary cause of mortality of breast cancer patients. The mechanism underlying cancer cell metastasis, including breast cancer metastasis, is largely unknown and is a focus in cancer research. Various breast cancer spontaneous metastasis mouse models have been established. Here, we report a simplified procedure to establish orthotopic transplanted breast cancer primary tumor and resultant spontaneous metastasis that mimic human breast cancer metastasis. Combined with the bioluminescence live tumor imaging, this mouse model allows tumor growth and progression kinetics to be monitored and quantified. In this model, a low dose (1 x 10(4) cells) of 4T1-Luc breast cancer cells was injected into BALB/c mouse mammary fat pad using a tuberculin syringe. Mice were injected with luciferin and imaged at various time points using a bioluminescent imaging system. When the primary tumors grew to the size limit as in the IACUC-approved protocol (approximately 30 days), mice were anesthetized under constant flow of 2% isoflurane and oxygen. The tumor area was sterilized with 70% ethanol. The mouse skin around the tumor was excised to expose the tumor which was removed with a pair of sterile scissors. Removal of the primary tumor extends the survival of the 4T-1 tumor-bearing mice for one month. The mice were then repeatedly imaged for metastatic tumor spreading to distant organs. Therapeutic agents can be administered to suppress tumor metastasis at this point. This model is simple and yet sensitive in quantifying breast cancer cell growth in the primary site and progression kinetics to distant organs, and thus is an excellent model for studying breast cancer growth and progression, and for testing anti-metastasis therapeutic and immunotherapeutic agents in vivo.
The Molecular Basis of Muscular Dystrophy in the mdx Mouse: A Point Mutation
NASA Astrophysics Data System (ADS)
Sicinski, Piotr; Geng, Yan; Ryder-Cook, Allan S.; Barnard, Eric A.; Darlison, Mark G.; Barnard, Pene J.
1989-06-01
The mdx mouse is an X-linked myopathic mutant, an animal model for human Duchenne muscular dystrophy. In both mouse and man the mutations lie within the dystrophin gene, but the phenotypic differences of the disease in the two species confer much interest on the molecular basis of the mdx mutation. The complementary DNA for mouse dystrophin has been cloned, and the sequence has been used in the polymerase chain reaction to amplify normal and mdx dystrophin transcripts in the area of the mdx mutation. Sequence analysis of the amplification products showed that the mdx mouse has a single base substitution within an exon, which causes premature termination of the polypeptide chain.
Martelli, Alain; Friedman, Lisa S.; Reutenauer, Laurence; Messaddeq, Nadia; Perlman, Susan L.; Lynch, David R.; Fedosov, Kathrin; Schulz, Jörg B.; Pandolfo, Massimo; Puccio, Hélène
2012-01-01
SUMMARY Friedreich’s ataxia (FRDA) is the most common hereditary ataxia in the caucasian population and is characterized by a mixed spinocerebellar and sensory ataxia, hypertrophic cardiomyopathy and increased incidence of diabetes. FRDA is caused by impaired expression of the FXN gene coding for the mitochondrial protein frataxin. During the past ten years, the development of mouse models of FRDA has allowed better understanding of the pathophysiology of the disease. Among the mouse models of FRDA, the liver conditional mouse model pointed to a tumor suppressor activity of frataxin leading to the hypothesis that individuals with FRDA might be predisposed to cancer. In the present work, we investigated the presence and the incidence of neoplasia in the largest FRDA patient cohorts from the USA, Australia and Europe. As no predisposition to cancer could be observed in both cohorts, we revisited the phenotype of the liver conditional mouse model. Our results show that frataxin-deficient livers developed early mitochondriopathy, iron-sulfur cluster deficits and intramitochondrial dense deposits, classical hallmarks observed in frataxin-deficient tissues and cells. With age, a minority of mice developed structures similar to the ones previously associated with tumor formation. However, these peripheral structures contained dying, frataxin-deficient hepatocytes, whereas the inner liver structure was composed of a pool of frataxin-positive cells, due to inefficient Cre-mediated recombination of the Fxn gene, that contributed to regeneration of a functional liver. Together, our data demonstrate that frataxin deficiency and tumorigenesis are not associated. PMID:22736457
Probabilistic dose-response modeling: case study using dichloromethane PBPK model results.
Marino, Dale J; Starr, Thomas B
2007-12-01
A revised assessment of dichloromethane (DCM) has recently been reported that examines the influence of human genetic polymorphisms on cancer risks using deterministic PBPK and dose-response modeling in the mouse combined with probabilistic PBPK modeling in humans. This assessment utilized Bayesian techniques to optimize kinetic variables in mice and humans with mean values from posterior distributions used in the deterministic modeling in the mouse. To supplement this research, a case study was undertaken to examine the potential impact of probabilistic rather than deterministic PBPK and dose-response modeling in mice on subsequent unit risk factor (URF) determinations. Four separate PBPK cases were examined based on the exposure regimen of the NTP DCM bioassay. These were (a) Same Mouse (single draw of all PBPK inputs for both treatment groups); (b) Correlated BW-Same Inputs (single draw of all PBPK inputs for both treatment groups except for bodyweights (BWs), which were entered as correlated variables); (c) Correlated BW-Different Inputs (separate draws of all PBPK inputs for both treatment groups except that BWs were entered as correlated variables); and (d) Different Mouse (separate draws of all PBPK inputs for both treatment groups). Monte Carlo PBPK inputs reflect posterior distributions from Bayesian calibration in the mouse that had been previously reported. A minimum of 12,500 PBPK iterations were undertaken, in which dose metrics, i.e., mg DCM metabolized by the GST pathway/L tissue/day for lung and liver were determined. For dose-response modeling, these metrics were combined with NTP tumor incidence data that were randomly selected from binomial distributions. Resultant potency factors (0.1/ED(10)) were coupled with probabilistic PBPK modeling in humans that incorporated genetic polymorphisms to derive URFs. Results show that there was relatively little difference, i.e., <10% in central tendency and upper percentile URFs, regardless of the case evaluated. Independent draws of PBPK inputs resulted in the slightly higher URFs. Results were also comparable to corresponding values from the previously reported deterministic mouse PBPK and dose-response modeling approach that used LED(10)s to derive potency factors. This finding indicated that the adjustment from ED(10) to LED(10) in the deterministic approach for DCM compensated for variability resulting from probabilistic PBPK and dose-response modeling in the mouse. Finally, results show a similar degree of variability in DCM risk estimates from a number of different sources including the current effort even though these estimates were developed using very different techniques. Given the variety of different approaches involved, 95th percentile-to-mean risk estimate ratios of 2.1-4.1 represent reasonable bounds on variability estimates regarding probabilistic assessments of DCM.
Imamizu, Hiroshi; Kuroda, Tomoe; Yoshioka, Toshinori; Kawato, Mitsuo
2004-02-04
An internal model is a neural mechanism that can mimic the input-output properties of a controlled object such as a tool. Recent research interests have moved on to how multiple internal models are learned and switched under a given context of behavior. Two representative computational models for task switching propose distinct neural mechanisms, thus predicting different brain activity patterns in the switching of internal models. In one model, called the mixture-of-experts architecture, switching is commanded by a single executive called a "gating network," which is different from the internal models. In the other model, called the MOSAIC (MOdular Selection And Identification for Control), the internal models themselves play crucial roles in switching. Consequently, the mixture-of-experts model predicts that neural activities related to switching and internal models can be temporally and spatially segregated, whereas the MOSAIC model predicts that they are closely intermingled. Here, we directly examined the two predictions by analyzing functional magnetic resonance imaging activities during the switching of one common tool (an ordinary computer mouse) and two novel tools: a rotated mouse, the cursor of which appears in a rotated position, and a velocity mouse, the cursor velocity of which is proportional to the mouse position. The switching and internal model activities temporally and spatially overlapped each other in the cerebellum and in the parietal cortex, whereas the overlap was very small in the frontal cortex. These results suggest that switching mechanisms in the frontal cortex can be explained by the mixture-of-experts architecture, whereas those in the cerebellum and the parietal cortex are explained by the MOSAIC model.
Zhou, Ting; Kinney, Marsha C; Scott, Linda M; Zinkel, Sandra S; Rebel, Vivienne I
2015-08-27
Much-needed attention has been given of late to diseases specifically associated with an expanding elderly population. Myelodysplastic syndrome (MDS), a hematopoietic stem cell-based blood disease, is one of these. The lack of clear understanding of the molecular mechanisms underlying the pathogenesis of this disease has hampered the development of efficacious therapies, especially in the presence of comorbidities. Mouse models could potentially provide new insights into this disease, although primary human MDS cells grow poorly in xenografted mice. This makes genetically engineered murine models a more attractive proposition, although this approach is not without complications. In particular, it is unclear if or how myelodysplasia (abnormal blood cell morphology), a key MDS feature in humans, presents in murine cells. Here, we evaluate the histopathologic features of wild-type mice and 23 mouse models with verified myelodysplasia. We find that certain features indicative of myelodysplasia in humans, such as Howell-Jolly bodies and low neutrophilic granularity, are commonplace in healthy mice, whereas other features are similarly abnormal in humans and mice. Quantitative hematopoietic parameters, such as blood cell counts, are required to distinguish between MDS and related diseases. We provide data that mouse models of MDS can be genetically engineered and faithfully recapitulate human disease. © 2015 by The American Society of Hematology.
Updates on Dietary Models of Nonalcoholic Fatty Liver Disease: Current Studies and Insights
Stephenson, Kristen; Kennedy, Lindsey; Hargrove, Laura; Demieville, Jennifer; Thomson, Joanne; Alpini, Gianfranco; Francis, Heather
2018-01-01
Nonalcoholic fatty liver disease (NAFLD) is a disease of increasing interest, as its prevalence is on the rise. NAFLD has been linked to metabolic syndrome, which is becoming more common due to the Western diet. Because NAFLD can lead to cirrhosis and related complications including hepatocellular carcinoma, the increasing prevalence is concerning, and medical therapy aimed at treating NAFLD is of great interest. Researchers studying the effects of medical therapy on NAFLD use dietary mouse models. The two main types of mouse model diets are the methionine- and choline-deficient (MCD) diet and the Western-like diet (WD). Although both induce NAFLD, the mechanisms are very different. We reviewed several studies conducted within the last 5 years that used MCD diet or WD mouse models in order to mimic this disease in a way most similar to humans. The MCD diet inconsistently induces NAFLD and fibrosis and does not completely induce metabolic syndrome. Thus, the clinical significance of the MCD diet is questionable. In contrast, WD mouse models consisting of high fat, cholesterol, and a combination of high-fructose corn syrup, sucrose, fructose, or glucose not only lead to metabolic syndrome but also induce NAFLD with fibrosis, making these choices most suitable for research. PMID:29096730
Pan, Qiuhui; Fichna, Jakub; Zheng, Lijun; Wang, Kesheng; Yu, Zhen; Li, Yongyu; Li, Kun; Song, Aihong; Liu, Zhongchen; Song, Zhenshun; Kreis, Martin
2015-01-01
Background and Aims Berberine and its derivatives display potent analgesic, anti-inflammatory and anticancer activity. Here we aimed at characterizing the mechanism of action of berberine in the gastrointestinal (GI) tract and cortical neurons using animal models and in vitro tests. Methods The effect of berberine was characterized in murine models mimicking diarrhea-predominant irritable bowel syndrome (IBS-D) symptoms. Then the opioidantagonists were used to identify the receptors involved. Furthermore, the effect of berberineon opioid receptors expression was established in the mouse intestine and rat fetal cortical neurons. Results In mouse models, berberine prolonged GI transit and time to diarrhea in a dose-dependent manner, and significantly reduced visceral pain. In physiological conditions the effects of berberine were mediated by mu- (MOR) and delta- (DOR) opioidreceptors; hypermotility, excessive secretion and nociception were reversed by berberine through MOR and DOR-dependent action. We also found that berberine increased the expression of MOR and DOR in the mouse bowel and rat fetal cortical neurons. Conclusion Berberine significantly improved IBS-D symptoms in animal models, possibly through mu- and delta- opioid receptors. Berberine may become a new drug candidate for the successful treatment of IBS-D in clinical conditions. PMID:26700862
A consensus definition of cataplexy in mouse models of narcolepsy.
Scammell, Thomas E; Willie, Jon T; Guilleminault, Christian; Siegel, Jerome M
2009-01-01
People with narcolepsy often have episodes of cataplexy, brief periods of muscle weakness triggered by strong emotions. Many researchers are now studying mouse models of narcolepsy, but definitions of cataplexy-like behavior in mice differ across labs. To establish a common language, the International Working Group on Rodent Models of Narcolepsy reviewed the literature on cataplexy in people with narcolepsy and in dog and mouse models of narcolepsy and then developed a consensus definition of murine cataplexy. The group concluded that murine cataplexy is an abrupt episode of nuchal atonia lasting at least 10 seconds. In addition, theta activity dominates the EEG during the episode, and video recordings document immobility. To distinguish a cataplexy episode from REM sleep after a brief awakening, at least 40 seconds of wakefulness must precede the episode. Bouts of cataplexy fitting this definition are common in mice with disrupted orexin/hypocretin signaling, but these events almost never occur in wild type mice. It remains unclear whether murine cataplexy is triggered by strong emotions or whether mice remain conscious during the episodes as in people with narcolepsy. This working definition provides helpful insights into murine cataplexy and should allow objective and accurate comparisons of cataplexy in future studies using mouse models of narcolepsy.
Novel In Vivo Model for Combinatorial Fluorescence Labeling in Mouse Prostate
Fang, Xiaolan; Gyabaah, Kenneth; Nickkholgh, Bita; Cline, J. Mark; Balaji, K.C.
2015-01-01
BACKGROUND The epithelial layer of prostate glands contains several types of cells, including luminal and basal cells. Yet there is paucity of animal models to study the cellular origin of normal or neoplastic development in the prostate to facilitate the treatment of heterogenous prostate diseases by targeting individual cell lineages. METHODS We developed a mouse model that expresses different types of fluorescent proteins (XFPs) specifically in prostatic cells. Using an in vivo stochastic fluorescent protein combinatorial strategy, XFP signals were expressed specifically in prostate of Protein Kinase D1 (PKD1) knock-out, K-RasG12D knock-in, and Phosphatase and tensin homolog (PTEN) and PKD1 double knock-out mice under the control of PB-Cre promoter. RESULTS In vivo XFP signals were observed in prostate of PKD1 knock-out, K-RasG12D knock-in, and PTEN PKD1 double knock-out mice, which developed normal, hyperplastic, and neoplastic prostate, respectively. The patchy expression pattern of XFPs in neoplasia tissue indicated the clonal origin of cancer cells in the prostate. CONCLUSIONS The transgenic mouse models demonstrate combinatorial fluorescent protein expression in normal and cancerous prostatic tissues. This novel prostate-specific fluorescent labeled mouse model, which we named Prorainbow, could be useful in studying benign and malignant pathology of prostate. PMID:25753731
Novel In Vivo model for combinatorial fluorescence labeling in mouse prostate.
Fang, Xiaolan; Gyabaah, Kenneth; Nickkholgh, Bita; Cline, J Mark; Balaji, K C
2015-06-15
The epithelial layer of prostate glands contains several types of cells, including luminal and basal cells. Yet there is paucity of animal models to study the cellular origin of normal or neoplastic development in the prostate to facilitate the treatment of heterogenous prostate diseases by targeting individual cell lineages. We developed a mouse model that expresses different types of fluorescent proteins (XFPs) specifically in prostatic cells. Using an in vivo stochastic fluorescent protein combinatorial strategy, XFP signals were expressed specifically in prostate of Protein Kinase D1 (PKD1) knock-out, K-Ras(G) (12) (D) knock-in, and Phosphatase and tensin homolog (PTEN) and PKD1 double knock-out mice under the control of PB-Cre promoter. In vivo XFP signals were observed in prostate of PKD1 knock-out, K-Ras(G) (12) (D) knock-in, and PTEN PKD1 double knock-out mice, which developed normal, hyperplastic, and neoplastic prostate, respectively. The patchy expression pattern of XFPs in neoplasia tissue indicated the clonal origin of cancer cells in the prostate. The transgenic mouse models demonstrate combinatorial fluorescent protein expression in normal and cancerous prostatic tissues. This novel prostate-specific fluorescent labeled mouse model, which we named Prorainbow, could be useful in studying benign and malignant pathology of prostate. © 2015 Wiley Periodicals, Inc.
Of Mice & Men: Advancements in the Understanding of Down Syndrome
ERIC Educational Resources Information Center
Silverman, Wayne
2007-01-01
Mice have become the model of choice for studies of Down syndrome due to the fact that mouse chromosome 16 bears a striking resemblance to human chromosome 21. This has allowed researchers to create various mouse models of Down syndrome, but this is a tricky business on many levels. Great expertise is required to manipulate DNA to create these…
Obesity-Linked Mouse Models of Liver Cancer | Center for Cancer Research
Jimmy Stauffer, Ph.D., and colleagues working with Robert Wiltrout, Ph.D., in CCR’s Cancer and Inflammation Program, along with collaborators in the Laboratory of Human Carcinogenesis, have developed a novel mouse model that demonstrates how fat-producing phenotypes can influence the development of hepatic cancer. The team recently reported their findings in Cancer Research.
2012-09-01
patched-1-deficient mouse medulloblastoma . Cancer Res. 2009;69:4682-4690. 14. Mao XG, Zhang X, Xue XY, et al. Brain Tumor Stem-Like Cells Identified by...propagating cells in a mouse model of medulloblastoma . Cancer Cell. 2009;15:135-147. 16. Yagi H, Yanagisawa M, Suzuki Y, et al. HNK-1 epitope-carrying
The virulence of multiple Aeromonas spp. were assessed using two models, a neonatal mouse assay and a mouse intestinal cell culture. Transcriptional responses to both infection models were assessed using microarrays. After artificial infection with a variety of Aeromonas spp., ...
Brief Report: Altered Social Behavior in Isolation-Reared "Fmr1" Knockout Mice
ERIC Educational Resources Information Center
Heitzer, Andrew M.; Roth, Alexandra K.; Nawrocki, Lauren; Wrenn, Craige C.; Valdovinos, Maria G.
2013-01-01
Social behavior abnormalities in Fragile X syndrome (FXS) are characterized by social withdrawal, anxiety, and deficits in social cognition. To assess these deficits, a model of FXS, the "Fmr1" knockout mouse ("Fmr1" KO), has been utilized. This mouse model has a null mutation in the fragile X mental retardation 1 gene ("Fmr1") and displays…
Choi, Catherine H; Schoenfeld, Brian P; Weisz, Eliana D; Bell, Aaron J; Chambers, Daniel B; Hinchey, Joseph; Choi, Richard J; Hinchey, Paul; Kollaros, Maria; Gertner, Michael J; Ferrick, Neal J; Terlizzi, Allison M; Yohn, Nicole; Koenigsberg, Eric; Liebelt, David A; Zukin, R Suzanne; Woo, Newton H; Tranfaglia, Michael R; Louneva, Natalia; Arnold, Steven E; Siegel, Steven J; Bolduc, Francois V; McDonald, Thomas V; Jongens, Thomas A; McBride, Sean M J
2015-01-07
Fragile X syndrome (FXS) is the leading cause of both intellectual disability and autism resulting from a single gene mutation. Previously, we characterized cognitive impairments and brain structural defects in a Drosophila model of FXS and demonstrated that these impairments were rescued by treatment with metabotropic glutamate receptor (mGluR) antagonists or lithium. A well-documented biochemical defect observed in fly and mouse FXS models and FXS patients is low cAMP levels. cAMP levels can be regulated by mGluR signaling. Herein, we demonstrate PDE-4 inhibition as a therapeutic strategy to ameliorate memory impairments and brain structural defects in the Drosophila model of fragile X. Furthermore, we examine the effects of PDE-4 inhibition by pharmacologic treatment in the fragile X mouse model. We demonstrate that acute inhibition of PDE-4 by pharmacologic treatment in hippocampal slices rescues the enhanced mGluR-dependent LTD phenotype observed in FXS mice. Additionally, we find that chronic treatment of FXS model mice, in adulthood, also restores the level of mGluR-dependent LTD to that observed in wild-type animals. Translating the findings of successful pharmacologic intervention from the Drosophila model into the mouse model of FXS is an important advance, in that this identifies and validates PDE-4 inhibition as potential therapeutic intervention for the treatment of individuals afflicted with FXS. Copyright © 2015 the authors 0270-6474/15/350396-13$15.00/0.
Synuclein impairs trafficking and signaling of BDNF in a mouse model of Parkinson's disease.
Fang, Fang; Yang, Wanlin; Florio, Jazmin B; Rockenstein, Edward; Spencer, Brian; Orain, Xavier M; Dong, Stephanie X; Li, Huayan; Chen, Xuqiao; Sung, Kijung; Rissman, Robert A; Masliah, Eliezer; Ding, Jianqing; Wu, Chengbiao
2017-06-20
Recent studies have demonstrated that hyperphosphorylation of tau protein plays a role in neuronal toxicities of α-synuclein (ASYN) in neurodegenerative disease such as familial Alzheimer's disease (AD), dementia with Lewy bodies (DLB) and Parkinson's disease. Using a transgenic mouse model of Parkinson's disease (PD) that expresses GFP-ASYN driven by the PDGF-β promoter, we investigated how accumulation of ASYN impacted axonal function. We found that retrograde axonal trafficking of brain-derived neurotrophic factor (BDNF) in DIV7 cultures of E18 cortical neurons was markedly impaired at the embryonic stage, even though hyperphosphorylation of tau was not detectable in these neurons at this stage. Interestingly, we found that overexpressed ASYN interacted with dynein and induced a significant increase in the activated levels of small Rab GTPases such as Rab5 and Rab7, both key regulators of endocytic processes. Furthermore, expression of ASYN resulted in neuronal atrophy in DIV7 cortical cultures of either from E18 transgenic mouse model or from rat E18 embryos that were transiently transfected with ASYN-GFP for 72 hrs. Our studies suggest that excessive ASYN likely alters endocytic pathways leading to axonal dysfunction in embryonic cortical neurons in PD mouse models.
Nozeret, Karine; Loll, François; Cardoso, Gildas Mouta; Escudé, Christophe; Boutorine, Alexandre S
2018-06-01
Pericentromeric heterochromatin plays important roles in controlling gene expression and cellular differentiation. Fluorescent pyrrole-imidazole polyamides targeting murine pericentromeric DNA (major satellites) can be used for the visualization of pericentromeric heterochromatin foci in live mouse cells. New derivatives targeting human repeated DNA sequences (α-satellites) were synthesized and their interaction with target DNA was characterized. The possibility to use major satellite and α -satellite binding polyamides as tools for staining pericentromeric heterochromatin was further investigated in fixed and living mouse and human cells. The staining that was previously observed using the mouse model was further characterized and optimized, but remained limited regarding the fluorophores that can be used. The promising results regarding the staining in the mouse model could not be extended to the human model. Experiments performed in human cells showed chromosomal DNA staining without selectivity. Factors limiting the use of fluorescent polyamides, in particular probe aggregation in the cytoplasm, were investigated. Results are discussed with regards to structure and affinity of probes, density of target sites and chromatin accessibility in both models. Copyright © 2018 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.
Wang, Jian; Zhang, Xiangming; Wang, Ping; Wang, Xiang; Farris, Alton B; Wang, Ya
2016-06-01
Unlike terrestrial ionizing radiation, space radiation, especially galactic cosmic rays (GCR), contains high energy charged (HZE) particles with high linear energy transfer (LET). Due to a lack of epidemiologic data for high-LET radiation exposure, it is highly uncertain how high the carcinogenesis risk is for astronauts following exposure to space radiation during space missions. Therefore, using mouse models is necessary to evaluate the risk of space radiation-induced tumorigenesis; however, which mouse model is better for these studies remains uncertain. Since lung tumorigenesis is the leading cause of cancer death among both men and women, and low-LET radiation exposure increases human lung carcinogenesis, evaluating space radiation-induced lung tumorigenesis is critical to enable safe Mars missions. Here, by comparing lung tumorigenesis obtained from different mouse strains, as well as miR-21 in lung tissue/tumors and serum, we believe that wild type mice with a low spontaneous tumorigenesis background are ideal for evaluating the risk of space radiation-induced lung tumorigenesis, and circulating miR-21 from such mice model might be used as a biomarker for predicting the risk. Copyright © 2016 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.
Interactions between Trichomonas vaginalis and vaginal flora in a mouse model.
Meysick, K C; Garber, G E
1992-02-01
To study the role of vaginal flora and pH in the pathogenesis of Trichomonas vaginalis, an intravaginal mouse model of infection was established. By employing this model, the vaginal flora and pH of mice could be monitored for changes caused by the parasite. As a baseline, the endemic vaginal flora of BALB/c mice was examined first and found to consist mainly of Staphylococcus aureus and Enterococcus species (32-76%). Lactobacilli and enteric bacilli were moderate (16-32%) in their frequency of isolation, and the prevalence of both anaerobic species and coagulase-negative staphylococci was low (4-16%). Vaginal pH was recorded at 6.5 +/- 0.3. Estrogenization, which was required for a sustained T. vaginalis infection, did not significantly alter vaginal flora; however, a slight rise in the number of bacterial species isolated per mouse and a drop in vaginal pH (6.2 +/- 0.5) were observed. Trichomonas vaginalis-infected mice did not appear to show significant changes in vaginal flora although vaginal pH was slightly increased. This mouse model could have applications in both immunologic and pathogenic studies of T. vaginalis and, with further modifications, aid in the study of protist-bacterial interactions.
Spatio-temporal Model of Xenobiotic Distribution and Metabolism in an in Silico Mouse Liver Lobule
NASA Astrophysics Data System (ADS)
Fu, Xiao; Sluka, James; Clendenon, Sherry; Glazier, James; Ryan, Jennifer; Dunn, Kenneth; Wang, Zemin; Klaunig, James
Our study aims to construct a structurally plausible in silico model of a mouse liver lobule to simulate the transport of xenobiotics and the production of their metabolites. We use a physiologically-based model to calculate blood-flow rates in a network of mouse liver sinusoids and simulate transport, uptake and biotransformation of xenobiotics within the in silico lobule. Using our base model, we then explore the effects of variations of compound-specific (diffusion, transport and metabolism) and compound-independent (temporal alteration of blood flow pattern) parameters, and examine their influence on the distribution of xenobiotics and metabolites. Our simulations show that the transport mechanism (diffusive and transporter-mediated) of xenobiotics and blood flow both impact the regional distribution of xenobiotics in a mouse hepatic lobule. Furthermore, differential expression of metabolic enzymes along each sinusoid's portal to central axis, together with differential cellular availability of xenobiotics, induce non-uniform production of metabolites. Thus, the heterogeneity of the biochemical and biophysical properties of xenobiotics, along with the complexity of blood flow, result in different exposures to xenobiotics for hepatocytes at different lobular locations. We acknowledge support from National Institute of Health GM 077138 and GM 111243.
Yoshimura, Masashi; Ono, Masahiro; Watanabe, Hiroyuki; Kimura, Hiroyuki; Saji, Hideo
2016-06-15
While islet amyloid deposition comprising amylin is one of pathological hallmarks of type 2 diabetes mellitus (T2DM), no useful amylin-imaging probe has been reported. In this study, we evaluated two (99m)Tc-labeled pyridyl benzofuran derivatives as novel amylin-imaging probes using the newly established islet amyloid model mouse. Binding experiments in vitro demonstrated that [(99m)Tc]1 displayed a higher affinity for amylin aggregates than [(99m)Tc]2. Autoradiographic studies using human pancreas sections with T2DM revealed that [(99m)Tc]1 clearly labeled islet amyloid in T2DM pancreatic sections, while [(99m)Tc]2 did not. Although the initial uptake of [(99m)Tc]1 by the normal mouse pancreas was low (0.74%ID/g at 2 min post-injection), [(99m)Tc]1 showed higher retention in the model mouse pancreas than that of the normal mouse, and exhibited strong binding to amylin aggregates in the living pancreas of the model mice. These results suggest that [(99m)Tc]1 is a potential imaging probe targeting islet amyloids in the T2DM pancreas.
Neuillé, Marion; El Shamieh, Said; Orhan, Elise; Michiels, Christelle; Antonio, Aline; Lancelot, Marie-Elise; Condroyer, Christel; Bujakowska, Kinga; Poch, Olivier; Sahel, José-Alain; Audo, Isabelle; Zeitz, Christina
2014-01-01
Mutations in LRIT3, coding for a Leucine-Rich Repeat, immunoglobulin-like and transmembrane domains 3 protein lead to autosomal recessive complete congenital stationary night blindness (cCSNB). The role of the corresponding protein in the ON-bipolar cell signaling cascade remains to be elucidated. Here we genetically and functionally characterize a commercially available Lrit3 knock-out mouse, a model to study the function and the pathogenic mechanism of LRIT3. We confirm that the insertion of a Bgeo/Puro cassette in the knock-out allele introduces a premature stop codon, which presumably codes for a non-functional protein. The mouse line does not harbor other mutations present in common laboratory mouse strains or in other known cCSNB genes. Lrit3 mutant mice exhibit a so-called no b-wave (nob) phenotype with lacking or severely reduced b-wave amplitudes in the scotopic and photopic electroretinogram (ERG), respectively. Optomotor tests reveal strongly decreased optomotor responses in scotopic conditions. No obvious fundus auto-fluorescence or histological retinal structure abnormalities are observed. However, spectral domain optical coherence tomography (SD-OCT) reveals thinned inner nuclear layer and part of the retina containing inner plexiform layer, ganglion cell layer and nerve fiber layer in these mice. To our knowledge, this is the first time that SD-OCT technology is used to characterize an animal model for CSNB. This phenotype is noted at 6 weeks and at 6 months. The stationary nob phenotype of mice lacking Lrit3, which we named nob6, confirms the findings previously reported in patients carrying LRIT3 mutations and is similar to other cCSNB mouse models. This novel mouse model will be useful for investigating the pathogenic mechanism(s) associated with LRIT3 mutations and clarifying the role of LRIT3 in the ON-bipolar cell signaling cascade.
Ræder, Helge; Vesterhus, Mette; El Ouaamari, Abdelfattah; Paulo, Joao A; McAllister, Fiona E; Liew, Chong Wee; Hu, Jiang; Kawamori, Dan; Molven, Anders; Gygi, Steven P; Njølstad, Pål R; Kahn, C Ronald; Kulkarni, Rohit N
2013-01-01
CEL-MODY is a monogenic form of diabetes with exocrine pancreatic insufficiency caused by mutations in CARBOXYL-ESTER LIPASE (CEL). The pathogenic processes underlying CEL-MODY are poorly understood, and the global knockout mouse model of the CEL gene (CELKO) did not recapitulate the disease. We therefore aimed to create and phenotype a mouse model specifically over-expressing mutated CEL in the pancreas. We established a monotransgenic floxed (flanking LOX sequences) mouse line carrying the human CEL mutation c.1686delT and crossed it with an elastase-Cre mouse to derive a bitransgenic mouse line with pancreas-specific over-expression of CEL carrying this disease-associated mutation (TgCEL). Following confirmation of murine pancreatic expression of the human transgene by real-time quantitative PCR, we phenotyped the mouse model fed a normal chow and compared it with mice fed a 60% high fat diet (HFD) as well as the effects of short-term and long-term cerulein exposure. Pancreatic exocrine function was normal in TgCEL mice on normal chow as assessed by serum lipid and lipid-soluble vitamin levels, fecal elastase and fecal fat absorption, and the normoglycemic mice exhibited normal pancreatic morphology. On 60% HFD, the mice gained weight to the same extent as controls, had normal pancreatic exocrine function and comparable glucose tolerance even after resuming normal diet and follow up up to 22 months of age. The cerulein-exposed TgCEL mice gained weight and remained glucose tolerant, and there were no detectable mutation-specific differences in serum amylase, islet hormones or the extent of pancreatic tissue inflammation. In this murine model of human CEL-MODY diabetes, we did not detect mutation-specific endocrine or exocrine pancreatic phenotypes, in response to altered diets or exposure to cerulein.
Tode, Jan; Richert, Elisabeth; Koinzer, Stefan; Klettner, Alexa; von der Burchard, Claus; Brinkmann, Ralf; Lucius, Ralph; Roider, Johann
2018-05-01
To investigate the effect of thermal stimulation of the retina (TS-R) on Bruch's membrane (BrM) thickness in age-related macular degeneration (AMD) mouse models as a novel concept for the prophylaxis and treatment of dry AMD. Two knockout AMD mouse models, B6.129P2-Apoe tm1Unc /J (ApoE-/-) and B6.129X1-Nfe2I2 tm1Ywk /J (NRF2-/-), were chosen. One randomized eye of each mouse in four different groups (two of different age, two of different genotype) of five mice was treated by TS-R (532 nm, 10-ms duration, 50-μm spot size), the fellow eye served as control. Laser power was titrated to barely visible laser burns, then reduced by 70% to guarantee for thermal elevation without damage to the neuroretina, then applied uniformly to the murine retina. Fundus, optical coherence tomography (OCT), and fluorescein angiography (FLA) images were obtained at the day of treatment and 1 month after treatment. Eyes were enucleated thereafter to analyze BrM thickness by transmission electron microscopy (TEM) in a standardized blinded manner. Fundus images revealed that all ApoE-/- and NRF2-/- mice had AMD associated retinal alterations. BrM thickness was increased in untreated controls of both mouse models. Subvisible TS-R laser spots were not detectable by fundus imaging, OCT, or FLA 2 hours or 1 month after laser treatment. TEM revealed a significant reduction of BrM thickness in laser-treated eyes of all four groups compared to their fellow control eyes. TS-R reduces BrM thickness in AMD mouse models ApoE-/- and NRF2-/- without damage to the neuroretina. It may become a prophylactic or even therapeutic treatment option for dry AMD. TS-R may become a prophylactic or even therapeutic treatment option for dry AMD.
Patinkin, Deborah; Milman, Garry; Breuer, Aviva; Fride, Ester; Mechoulam, Raphael
2008-10-24
The ethanolamides of arachidonic, myristic and linoleic acids reduce bone marrow cell migration, while the 2-glyceryl esters of these acids enhance migration. Thus the 2 major endocannabinoids, anandamide (arachidonoyl ethanolamide) and 2-AG (2-arachidonoyl glycerol), whose structural difference lies in the nature of the end-group alone, work in opposite directions. The endocannabinoid arachidonoyl serine, a vasodilator, also reduces migration. The effect of 2-AG is mediated, in part at least, through the cannabinoid receptors, while the effect of anandamide, as well as the rest of the compounds assayed, are not mediated through them. Almost all cannabinoids tested, including anandamide and 2-AG, lead to approximate doubling of CFU-GEMM (colony-forming unit: granulocyte, erythrocyte, macrophage, megakaryocyte) colonies. The effect of anandamide is considerably more potent than that of 2-AG. A surprising dose-response increase of erythroid cells is noted in cultures with the ester cannabinoids (in the absence of the cytokine erythropoietin), while a considerable dose-response augmentation of megakaryocytes is noted in cultures with the ethanolamide cannabinoids (in the presence of erythropoietin). This is suggestive of some cross-talk between two different regulatory systems, one governed by glycoprotein ligands and the other by endocannabinoids.
Rodent models in Down syndrome research: impact and future opportunities
2017-01-01
ABSTRACT Down syndrome is caused by trisomy of chromosome 21. To date, a multiplicity of mouse models with Down-syndrome-related features has been developed to understand this complex human chromosomal disorder. These mouse models have been important for determining genotype-phenotype relationships and identification of dosage-sensitive genes involved in the pathophysiology of the condition, and in exploring the impact of the additional chromosome on the whole genome. Mouse models of Down syndrome have also been used to test therapeutic strategies. Here, we provide an overview of research in the last 15 years dedicated to the development and application of rodent models for Down syndrome. We also speculate on possible and probable future directions of research in this fast-moving field. As our understanding of the syndrome improves and genome engineering technologies evolve, it is necessary to coordinate efforts to make all Down syndrome models available to the community, to test therapeutics in models that replicate the whole trisomy and design new animal models to promote further discovery of potential therapeutic targets. PMID:28993310
Rodent models in Down syndrome research: impact and future opportunities.
Herault, Yann; Delabar, Jean M; Fisher, Elizabeth M C; Tybulewicz, Victor L J; Yu, Eugene; Brault, Veronique
2017-10-01
Down syndrome is caused by trisomy of chromosome 21. To date, a multiplicity of mouse models with Down-syndrome-related features has been developed to understand this complex human chromosomal disorder. These mouse models have been important for determining genotype-phenotype relationships and identification of dosage-sensitive genes involved in the pathophysiology of the condition, and in exploring the impact of the additional chromosome on the whole genome. Mouse models of Down syndrome have also been used to test therapeutic strategies. Here, we provide an overview of research in the last 15 years dedicated to the development and application of rodent models for Down syndrome. We also speculate on possible and probable future directions of research in this fast-moving field. As our understanding of the syndrome improves and genome engineering technologies evolve, it is necessary to coordinate efforts to make all Down syndrome models available to the community, to test therapeutics in models that replicate the whole trisomy and design new animal models to promote further discovery of potential therapeutic targets. © 2017. Published by The Company of Biologists Ltd.
Animal models for studying neural crest development: is the mouse different?
Barriga, Elias H; Trainor, Paul A; Bronner, Marianne; Mayor, Roberto
2015-05-01
The neural crest is a uniquely vertebrate cell type and has been well studied in a number of model systems. Zebrafish, Xenopus and chick embryos largely show consistent requirements for specific genes in early steps of neural crest development. By contrast, knockouts of homologous genes in the mouse often do not exhibit comparable early neural crest phenotypes. In this Spotlight article, we discuss these species-specific differences, suggest possible explanations for the divergent phenotypes in mouse and urge the community to consider these issues and the need for further research in complementary systems. © 2015. Published by The Company of Biologists Ltd.
Characterization of a knock-in mouse model of the homozygous p.V37I variant in Gjb2.
Chen, Ying; Hu, Lingxiang; Wang, Xueling; Sun, Changling; Lin, Xin; Li, Lei; Mei, Ling; Huang, Zhiwu; Yang, Tao; Wu, Hao
2016-09-13
The homozygous p.V37I variant in GJB2 is prevalent in East and Southeast Asians and may lead to mild-to-moderate hearing loss with reduced penetrance. To investigate the pathogenic mechanism underlying this variant, we generated a knock-in mouse model of homozygous p.V37I by an embryonic stem cell gene targeting method. Auditory brainstem response test showed that the knock-in mice developed progressive, mild-to-moderate hearing loss over the first 4-9 months. Overall no significant developmental and morphological abnormality was observed in the knock-in mouse cochlea, while confocal immunostaining and electron microscopic scanning revealed minor loss of the outer hair cells. Gene expression microarray analysis identified 105 up-regulated and 43 down-regulated genes in P5 knock-in mouse cochleae (P < 0.05 adjusted by the Benjamini &Hochberg method), among which four top candidate genes with the highest fold-changes or implication to deafness Fcer1g, Nnmt and Lars2 and Cuedc1 were verified by quantitative real-time PCR. Our study demonstrated that the homozygous p.V37I knock-in mouse modeled the hearing phenotype of the human patients and can serve as a useful animal model for further studies. The differentially expressed genes identified in this study may shed new insights into the understanding of the pathogenic mechanism and the phenotypic modification of homozygous p.V37I.
Jin, Jing; Peng, Qi; Hou, Zhipeng; Jiang, Mali; Wang, Xin; Langseth, Abraham J.; Tao, Michael; Barker, Peter B.; Mori, Susumu; Bergles, Dwight E.; Ross, Christopher A.; Detloff, Peter J.; Zhang, Jiangyang; Duan, Wenzhen
2015-01-01
White matter abnormalities have been reported in premanifest Huntington's disease (HD) subjects before overt striatal neuronal loss, but whether the white matter changes represent a necessary step towards further pathology and the underlying mechanism of these changes remains unknown. Here, we characterized a novel knock-in mouse model that expresses mouse HD gene homolog (Hdh) with extended CAG repeat- HdhQ250, which was derived from the selective breeding of HdhQ150 mice. HdhQ250 mice manifest an accelerated and robust phenotype compared with its parent line. HdhQ250 mice exhibit progressive motor deficits, reduction in striatal and cortical volume, accumulation of mutant huntingtin aggregation, decreased levels of DARPP32 and BDNF and altered striatal metabolites. The abnormalities detected in this mouse model are reminiscent of several aspects of human HD. In addition, disturbed myelination was evident in postnatal Day 14 HdhQ250 mouse brain, including reduced levels of myelin regulatory factor and myelin basic protein, and decreased numbers of myelinated axons in the corpus callosum. Thinner myelin sheaths, indicated by increased G-ratio of myelin, were also detected in the corpus callosum of adult HdhQ250 mice. Moreover, proliferation of oligodendrocyte precursor cells is altered by mutant huntingtin both in vitro and in vivo. Our data indicate that this model is suitable for understanding comprehensive pathogenesis of HD in white matter and gray matter as well as developing therapeutics for HD. PMID:25609071
A fully humanized transgenic mouse model of Huntington disease
Southwell, Amber L.; Warby, Simon C.; Carroll, Jeffrey B.; Doty, Crystal N.; Skotte, Niels H.; Zhang, Weining; Villanueva, Erika B.; Kovalik, Vlad; Xie, Yuanyun; Pouladi, Mahmoud A.; Collins, Jennifer A.; Yang, X. William; Franciosi, Sonia; Hayden, Michael R.
2013-01-01
Silencing the mutant huntingtin gene (muHTT) is a direct and simple therapeutic strategy for the treatment of Huntington disease (HD) in principle. However, targeting the HD mutation presents challenges because it is an expansion of a common genetic element (a CAG tract) that is found throughout the genome. Moreover, the HTT protein is important for neuronal health throughout life, and silencing strategies that also reduce the wild-type HTT allele may not be well tolerated during the long-term treatment of HD. Several HTT silencing strategies are in development that target genetic sites in HTT that are outside of the CAG expansion, including HD mutation-linked single-nucleotide polymorphisms and the HTT promoter. Preclinical testing of these genetic therapies has required the development of a new mouse model of HD that carries these human-specific genetic targets. To generate a fully humanized mouse model of HD, we have cross-bred BACHD and YAC18 on the Hdh−/− background. The resulting line, Hu97/18, is the first murine model of HD that fully genetically recapitulates human HD having two human HTT genes, no mouse Hdh genes and heterozygosity of the HD mutation. We find that Hu97/18 mice display many of the behavioral changes associated with HD including motor, psychiatric and cognitive deficits, as well as canonical neuropathological abnormalities. This mouse line will be useful for gaining additional insights into the disease mechanisms of HD as well as for testing genetic therapies targeting human HTT. PMID:23001568
2014-10-01
Previously I had determined that Rpl22 functions as a haploinsufficient tumor suppressor in mouse T - cell lymphoma model by activating the NF B and...preclinical animal models of T cell malignancy as well as in the manipulation of development of primary hematopoietic stem cells in vitro and in vivo...allelic inactivation can accelerate the development of T - cell lymphoma in a mouse model where disease is driven by a MyrAkt2-transgene. Rpl22 inactivation
Dendritic spine dysgenesis in Autism Related Disorders
Phillips, Mary; Pozzo-Miller, Lucas
2015-01-01
The activity-dependent structural and functional plasticity of dendritic spines has led to the long-standing belief that these neuronal compartments are the subcellular sites of learning and memory. Of relevance to human health, central neurons in several neuropsychiatric illnesses, including autism related disorders, have atypical numbers and morphologies of dendritic spines. These so-called dendritic spine dysgeneses found in individuals with autism related disorders are consistently replicated in experimental mouse models. Dendritic spine dysgenesis reflects the underlying synaptopathology that drives clinically relevant behavioral deficits in experimental mouse models, providing a platform for testing new therapeutic approaches. By examining molecular signaling pathways, synaptic deficits, and spine dysgenesis in experimental mouse models of autism related disorders we find strong evidence for mTOR to be a critical point of convergence and promising therapeutic target. PMID:25578949
Shanmugam, Victoria K; Tassi, Elena; Schmidt, Marcel O; McNish, Sean; Baker, Stephen; Attinger, Christopher; Wang, Hong; Shara, Nawar; Wellstein, Anton
2015-12-01
To study the complex cellular interactions involved in wound healing, it is essential to have an animal model that adequately mimics the human wound microenvironment. Currently available murine models are limited because wound contraction introduces bias into wound surface area measurements. The purpose of this study was to demonstrate utility of a human-mouse xenograft model for studying human wound healing. Normal human skin was harvested from elective abdominoplasty surgery, xenografted onto athymic nude (nu/nu) mice, and allowed to engraft for 3 months. The graft was then wounded using a 2-mm punch biopsy. Wounds were harvested on sequential days to allow tissue-based markers of wound healing to be followed sequentially. On the day of wound harvest, mice were injected with XenoLight RediJect cyclooxygenase-2 (COX-2) probe and imaged according to package instructions. Immunohistochemistry confirms that this human-mouse xenograft model is effective for studying human wound healing in vivo. Additionally, in vivo fluorescent imaging for inducible COX-2 demonstrated upregulation from baseline to day 4 (P = 0·03) with return to baseline levels by day 10, paralleling the reepithelialisation of the wound. This human-mouse xenograft model, combined with in vivo fluorescent imaging provides a useful mechanism for studying molecular pathways of human wound healing. © 2013 The Authors. International Wound Journal © 2013 Medicalhelplines.com Inc and John Wiley & Sons Ltd.
Wang, Weiwen; LeBlanc, Michelle E; Chen, Xiuping; Chen, Ping; Ji, Yanli; Brewer, Megan; Tian, Hong; Spring, Samantha R; Webster, Keith A; Li, Wei
2017-11-01
Angiogenic factors play an important role in the pathogenesis of diabetic retinopathy (DR), neovascular age-related macular degeneration (nAMD) and retinopathy of prematurity (ROP). Pleiotrophin, a well-known angiogenic factor, was recently reported to be upregulated in the vitreous fluid of patients with proliferative DR (PDR). However, its pathogenic role and therapeutic potential in ocular vascular diseases have not been defined in vivo. Here using corneal pocket assays, we demonstrated that pleiotrophin induced angiogenesis in vivo. To investigate the pathological role of pleiotrophin we used neutralizing antibody to block its function in multiple in vivo models of ocular vascular diseases. In a mouse model of DR, intravitreal injection of pleiotrophin-neutralizing antibody alleviated diabetic retinal vascular leakage. In a mouse model of oxygen-induced retinopathy (OIR), which is a surrogate model of ROP and PDR, we demonstrated that intravitreal injection of anti-pleiotrophin antibody prevented OIR-induced pathological retinal neovascularization and aberrant vessel tufts. Finally, pleiotrophin-neutralizing antibody ameliorated laser-induced choroidal neovascularization, a mouse model of nAMD, suggesting that pleiotrophin is involved in choroidal vascular disease. These findings suggest that pleiotrophin plays an important role in the pathogenesis of DR with retinal vascular leakage, ROP with retinal neovascularization and nAMD with choroidal neovascularization. The results also support pleiotrophin as a promising target for anti-angiogenic therapy.
Carraro, Mattia; Park, Albert H; Harrison, Robert V
2016-02-01
Some forms of sensorineural hearing loss involve damage or degenerative changes to the stria vascularis and/or other vascular structures in the cochlea. In animal models, many methods for anatomical assessment of cochlear vasculature exist, each with advantages and limitations. One methodology, corrosion casting, has proved useful in some species, however in the mouse model this technique is difficult to achieve because digestion of non vascular tissue results in collapse of the delicate cast specimen. We have developed a partial corrosion cast method that allows visualization of vasculature along much of the cochlear length but maintains some structural integrity of the specimen. We provide a detailed step-by-step description of this novel technique. We give some illustrative examples of the use of the method in mouse models of presbycusis and cytomegalovirus (CMV) infection. Copyright © 2015 Elsevier B.V. All rights reserved.
Efficient generation of mouse models of human diseases via ABE- and BE-mediated base editing.
Liu, Zhen; Lu, Zongyang; Yang, Guang; Huang, Shisheng; Li, Guanglei; Feng, Songjie; Liu, Yajing; Li, Jianan; Yu, Wenxia; Zhang, Yu; Chen, Jia; Sun, Qiang; Huang, Xingxu
2018-06-14
A recently developed adenine base editor (ABE) efficiently converts A to G and is potentially useful for clinical applications. However, its precision and efficiency in vivo remains to be addressed. Here we achieve A-to-G conversion in vivo at frequencies up to 100% by microinjection of ABE mRNA together with sgRNAs. We then generate mouse models harboring clinically relevant mutations at Ar and Hoxd13, which recapitulates respective clinical defects. Furthermore, we achieve both C-to-T and A-to-G base editing by using a combination of ABE and SaBE3, thus creating mouse model harboring multiple mutations. We also demonstrate the specificity of ABE by deep sequencing and whole-genome sequencing (WGS). Taken together, ABE is highly efficient and precise in vivo, making it feasible to model and potentially cure relevant genetic diseases.
Iommarini, Luisa; Peralta, Susana; Torraco, Alessandra; Diaz, Francisca
2015-01-01
Mitochondrial disorders are defined as defects that affect the oxidative phosphorylation system (OXPHOS). They are characterized by a heterogeneous array of clinical presentations due in part to a wide variety of factors required for proper function of the components of the OXPHOS system. There is no cure for these disorders owing our poor knowledge of the pathogenic mechanisms of disease. To understand the mechanisms of human disease numerous mouse models have been developed in recent years. Here we summarize the features of several mouse models of mitochondrial diseases directly related to those factors affecting mtDNA maintenance, replication, transcription, translation as well to other proteins that are involved in mitochondrial dynamics and quality control which affect mitochondrial OXPHOS function without been intrinsic components of the system. We discuss how these models have contributed to our understanding of mitochondrial diseases and their pathogenic mechanisms. PMID:25640959
A model for gas and nutrient exchange in the chorionic vasculature system of the mouse placenta
NASA Astrophysics Data System (ADS)
Mirbod, Parisa; Sled, John
2015-11-01
The aim of this study is to develop an analytical model for the oxygen and nutrient transport from the umbilical cord to the small villous capillaries. The nutrient and carbon dioxide removal from the fetal cotyledons in the mouse placental system has also been considered. This model describes the mass transfer between the fetal and the maternal red blood cells in the chorionic arterial vasculature system. The model reveals the detail fetal vasculature system and its geometry and the precise mechanisms of mass transfer through the placenta. The dimensions of the villous capillaries, the total length of the villous trees, the total villi surface area, and the total resistance to mass transport in the fetal villous trees has also been defined. This is the first effort to explain the reason why there are at least 7 lobules in the mouse placenta from the fluid dynamics point of view.
Dissecting Alzheimer disease in Down syndrome using mouse models
Choong, Xun Yu; Tosh, Justin L.; Pulford, Laura J.; Fisher, Elizabeth M. C.
2015-01-01
Down syndrome (DS) is a common genetic condition caused by the presence of three copies of chromosome 21 (trisomy 21). This greatly increases the risk of Alzheimer disease (AD), but although virtually all people with DS have AD neuropathology by 40 years of age, not all develop dementia. To dissect the genetic contribution of trisomy 21 to DS phenotypes including those relevant to AD, a range of DS mouse models has been generated which are trisomic for chromosome segments syntenic to human chromosome 21. Here, we consider key characteristics of human AD in DS (AD-DS), and our current state of knowledge on related phenotypes in AD and DS mouse models. We go on to review important features needed in future models of AD-DS, to understand this type of dementia and so highlight pathogenic mechanisms relevant to all populations at risk of AD. PMID:26528151
Dissecting Alzheimer disease in Down syndrome using mouse models.
Choong, Xun Yu; Tosh, Justin L; Pulford, Laura J; Fisher, Elizabeth M C
2015-01-01
Down syndrome (DS) is a common genetic condition caused by the presence of three copies of chromosome 21 (trisomy 21). This greatly increases the risk of Alzheimer disease (AD), but although virtually all people with DS have AD neuropathology by 40 years of age, not all develop dementia. To dissect the genetic contribution of trisomy 21 to DS phenotypes including those relevant to AD, a range of DS mouse models has been generated which are trisomic for chromosome segments syntenic to human chromosome 21. Here, we consider key characteristics of human AD in DS (AD-DS), and our current state of knowledge on related phenotypes in AD and DS mouse models. We go on to review important features needed in future models of AD-DS, to understand this type of dementia and so highlight pathogenic mechanisms relevant to all populations at risk of AD.
Mouse models for gastric cancer: Matching models to biological questions
Poh, Ashleigh R; O'Donoghue, Robert J J
2016-01-01
Abstract Gastric cancer is the third leading cause of cancer‐related mortality worldwide. This is in part due to the asymptomatic nature of the disease, which often results in late‐stage diagnosis, at which point there are limited treatment options. Even when treated successfully, gastric cancer patients have a high risk of tumor recurrence and acquired drug resistance. It is vital to gain a better understanding of the molecular mechanisms underlying gastric cancer pathogenesis to facilitate the design of new‐targeted therapies that may improve patient survival. A number of chemically and genetically engineered mouse models of gastric cancer have provided significant insight into the contribution of genetic and environmental factors to disease onset and progression. This review outlines the strengths and limitations of current mouse models of gastric cancer and their relevance to the pre‐clinical development of new therapeutics. PMID:26809278
Haldipur, Parthiv; Dang, Derek; Aldinger, Kimberly A; Janson, Olivia K; Guimiot, Fabien; Adle-Biasette, Homa; Dobyns, William B; Siebert, Joseph R; Russo, Rosa; Millen, Kathleen J
2017-01-01
FOXC1 loss contributes to Dandy-Walker malformation (DWM), a common human cerebellar malformation. Previously, we found that complete Foxc1 loss leads to aberrations in proliferation, neuronal differentiation and migration in the embryonic mouse cerebellum (Haldipur et al., 2014). We now demonstrate that hypomorphic Foxc1 mutant mice have granule and Purkinje cell abnormalities causing subsequent disruptions in postnatal cerebellar foliation and lamination. Particularly striking is the presence of a partially formed posterior lobule which echoes the posterior vermis DW 'tail sign' observed in human imaging studies. Lineage tracing experiments in Foxc1 mutant mouse cerebella indicate that aberrant migration of granule cell progenitors destined to form the posterior-most lobule causes this unique phenotype. Analyses of rare human del chr 6p25 fetal cerebella demonstrate extensive phenotypic overlap with our Foxc1 mutant mouse models, validating our DWM models and demonstrating that many key mechanisms controlling cerebellar development are likely conserved between mouse and human. DOI: http://dx.doi.org/10.7554/eLife.20898.001 PMID:28092268
Ershun, Zhou; Yunhe, Fu; Zhengkai, Wei; Yongguo, Cao; Naisheng, Zhang; Zhengtao, Yang
2014-04-01
Cepharanthine (CEP), a biscoclaurine alkaloid isolated from Stephania cepharantha Hayata, has been reported to have potent anti-inflammatory properties. However, the anti-inflammatory effects of CEP on a mouse model of lipopolysaccharide (LPS)-induced mastitis and its underlying molecular mechanisms remain to be elucidated. The purpose of the present study was to investigate the effects of CEP on LPS-induced mouse mastitis. The mouse model of mastitis was induced by inoculation of LPS through the canals of the mammary gland. CEP was administered intraperitoneally at 1 h before and 12 h after induction of LPS. The results show that CEP significantly attenuates the infiltration of neutrophils, suppresses myeloperoxidase activity, and reduces the levels of TNF-α, IL-1β, and IL-6 in LPS-induced mouse mastitis. Furthermore, CEP inhibited the phosphorylation of NF-κB p65 subunit and the degradation of its inhibitor IκBα. All the results suggest that CEP exerts potent anti-inflammatory effects on LPS-induced mouse mastitis. Accordingly, CEP might be a potential therapeutic agent for mastitis.
Cheng, Cuilin; Baranenko, Denis; Wang, Jiaping; Li, Yongzhi; Lu, Weihong
2018-01-01
The active compounds in Acanthopanax senticosus (AS) have different pharmacokinetic characteristics in mouse models. Cmax and AUC of Acanthopanax senticosus polysaccharides (ASPS) were significantly reduced in radiation-injured mice, suggesting that the blood flow of mouse was blocked or slowed, due to the pathological state of ischemia and hypoxia, which are caused by radiation. In contrast, the ability of various metabolizing enzymes to inactivate, capacity of biofilm transport decrease, and lessening of renal blood flow accounts for radiation, resulting in the accumulation of syringin and eleutheroside E in the irradiated mouse. Therefore, there were higher pharmacokinetic parameters—AUC, MRT, and t1/2 of the two compounds in radiation-injured mouse, when compared with normal mouse. In order to investigate the intrinsic mechanism of AS on radiation injury, AS extract’s protective effects on brain, the main part of mouse that suffered from radiation, were explored. The function of AS extract in repressing expression changes of radiation response proteins in prefrontal cortex (PFC) of mouse brain included tubulin protein family (α-, β-tubulin subunits), dihydropyrimidinase-related protein 2 (CRMP2), γ-actin, 14-3-3 protein family (14-3-3ζ, ε), heat shock protein 90β (HSP90β), and enolase 2. The results demonstrated the AS extract had positive effects on nerve cells’ structure, adhesion, locomotion, fission, and phagocytosis, through regulating various action pathways, such as Hippo, phagosome, PI3K/Akt (phosphatidylinositol 3 kinase/protein kinase B), Neurotrophin, Rap1 (Ras-related protein RAP-1A), gap junction glycolysis/gluconeogenesis, and HIF-1 (Hypoxia-inducible factor 1) signaling pathways to maintain normal mouse neurological activity. All of the results indicated that AS may be a promising alternative medicine for the treatment of radiation injury in mouse brain. It would be tested that whether the bioactive ingredients of AS could be effective through the blood–brain barrier in the future. PMID:29342911
Technical approaches for mouse models of human disease.
Justice, Monica J; Siracusa, Linda D; Stewart, A Francis
2011-05-01
The mouse is the leading organism for disease research. A rich resource of genetic variation occurs naturally in inbred and special strains owing to spontaneous mutations. However, one can also obtain desired gene mutations by using the following processes: targeted mutations that eliminate function in the whole organism or in a specific tissue; forward genetic screens using chemicals or transposons; or the introduction of exogenous transgenes as DNAs, bacterial artificial chromosomes (BACs) or reporter constructs. The mouse is the only mammal that provides such a rich resource of genetic diversity coupled with the potential for extensive genome manipulation, and is therefore a powerful application for modeling human disease. This poster review outlines the major genome manipulations available in the mouse that are used to understand human disease: natural variation, reverse genetics, forward genetics, transgenics and transposons. Each of these applications will be essential for understanding the diversity that is being discovered within the human population.
Sukoff Rizzo, Stacey J; Crawley, Jacqueline N
2017-02-08
Animal models offer heuristic research tools to understand the causes of human diseases and to identify potential treatments. With rapidly evolving genetic engineering technologies, mutations identified in a human disorder can be generated in the mouse genome. Phenotypic outcomes of the mutation are then explicated to confirm hypotheses about causes and to discover effective therapeutics. Most neurodevelopmental, neurodegenerative, and psychiatric disorders are diagnosed primarily by their prominent behavioral symptoms. Mouse behavioral assays analogous to the human symptoms have been developed to analyze the consequences of mutations and to evaluate proposed therapeutics preclinically. Here we describe the range of mouse behavioral tests available in the established behavioral neuroscience literature, along with examples of their translational applications. Concepts presented have been successfully used in other species, including flies, worms, fish, rats, pigs, and nonhuman primates. Identical strategies can be employed to test hypotheses about environmental causes and gene × environment interactions.
Hyperpolarized 13C pyruvate mouse brain metabolism with absorptive-mode EPSI at 1 T
NASA Astrophysics Data System (ADS)
Miloushev, Vesselin Z.; Di Gialleonardo, Valentina; Salamanca-Cardona, Lucia; Correa, Fabian; Granlund, Kristin L.; Keshari, Kayvan R.
2017-02-01
The expected signal in echo-planar spectroscopic imaging experiments was explicitly modeled jointly in spatial and spectral dimensions. Using this as a basis, absorptive-mode type detection can be achieved by appropriate choice of spectral delays and post-processing techniques. We discuss the effects of gradient imperfections and demonstrate the implementation of this sequence at low field (1.05 T), with application to hyperpolarized [1-13C] pyruvate imaging of the mouse brain. The sequence achieves sufficient signal-to-noise to monitor the conversion of hyperpolarized [1-13C] pyruvate to lactate in the mouse brain. Hyperpolarized pyruvate imaging of mouse brain metabolism using an absorptive-mode EPSI sequence can be applied to more sophisticated murine disease and treatment models. The simple modifications presented in this work, which permit absorptive-mode detection, are directly translatable to human clinical imaging and generate improved absorptive-mode spectra without the need for refocusing pulses.
van Wyk, Michiel; Schneider, Sabine; Kleinlogel, Sonja
2015-01-01
Recent advances in optogenetics and gene therapy have led to promising new treatment strategies for blindness caused by retinal photoreceptor loss. Preclinical studies often rely on the retinal degeneration 1 (rd1 or Pde6b(rd1)) retinitis pigmentosa (RP) mouse model. The rd1 founder mutation is present in more than 100 actively used mouse lines. Since secondary genetic traits are well-known to modify the phenotypic progression of photoreceptor degeneration in animal models and human patients with RP, negligence of the genetic background in the rd1 mouse model is unwarranted. Moreover, the success of various potential therapies, including optogenetic gene therapy and prosthetic implants, depends on the progress of retinal degeneration, which might differ between rd1 mice. To examine the prospect of phenotypic expressivity in the rd1 mouse model, we compared the progress of retinal degeneration in two common rd1 lines, C3H/HeOu and FVB/N. We followed retinal degeneration over 24 weeks in FVB/N, C3H/HeOu, and congenic Pde6b(+) seeing mouse lines, using a range of experimental techniques including extracellular recordings from retinal ganglion cells, PCR quantification of cone opsin and Pde6b transcripts, in vivo flash electroretinogram (ERG), and behavioral optokinetic reflex (OKR) recordings. We demonstrated a substantial difference in the speed of retinal degeneration and accompanying loss of visual function between the two rd1 lines. Photoreceptor degeneration and loss of vision were faster with an earlier onset in the FVB/N mice compared to C3H/HeOu mice, whereas the performance of the Pde6b(+) mice did not differ significantly in any of the tests. By postnatal week 4, the FVB/N mice expressed significantly less cone opsin and Pde6b mRNA and had neither ERG nor OKR responses. At 12 weeks of age, the retinal ganglion cells of the FVB/N mice had lost all light responses. In contrast, 4-week-old C3H/HeOu mice still had ERG and OKR responses, and we still recorded light responses from C3H/HeOu retinal ganglion cells until the age of 24 weeks. These results show that genetic background plays an important role in the rd1 mouse pathology. Analogous to human RP, the mouse genetic background strongly influences the rd1 phenotype. Thus, different rd1 mouse lines may follow different timelines of retinal degeneration, making exact knowledge of genetic background imperative in all studies that use rd1 models.
Response of a mouse hybridoma cell line to heat shock, agitation, and sparging
NASA Technical Reports Server (NTRS)
Passini, Cheryl A.; Goochee, Charles F.
1989-01-01
A mouse hybridoma cell line is used as a model system for studying the effect of environmental stress on attachment-independent mammalian cells. The full time course of recovery for a mouse hybridoma cell line from both a mild and intermediate heat shock is examined. The pattern of intracellular synthesis is compared for actively growing, log phase cells and nondividing, stationary phase cells.
Bylander, John E; Bertenshaw, Greg P; Matters, Gail L; Hubbard, Simon J; Bond, Judith S
2007-11-01
Meprin metalloproteinases have been implicated in the susceptibility to and progression of diabetic nephropathy and inflammatory bowel diseases. Our studies with experimental models of these diseases in mice are congruent with the conclusion that meprins modulate the inflammatory responses and tissue damage. To determine whether the mouse and human enzymes differ, recombinant forms of meprin A from the two species were compared with respect to structure, substrates and inhibitors. Human homo-oligomeric meprin A formed oligomers ranging from 950,000 to 1,500,000 Da vs. 900,000 Da for mouse meprin A. Human and mouse meprin A exhibited similar activity against azocasein, fibronectin, collagen IV, and peptides such as parathyroid hormone, ghrelin, and gastrin-releasing peptide. The human enzyme had lower activity against gelatin, bradykinin, alpha-melanocyte-stimulating hormone and neurotensin, and higher activity against secretin and orcokinin. Human meprin A showed a preference for acidic residues in the P1' position of the substrate, unlike mouse meprin A. Several metalloproteinase inhibitors had IC(50) values in the nanomolar range, but potency ranged from similar values to a difference of several orders of magnitude for meprins from the two species. This work provides valuable data to improve predictability for human systems based on meprin functions in mouse models.