Sample records for mouse models imm

  1. Integrated Mecical Model (IMM) 4.0 Verification and Validation (VV) Testing (HRP IWS 2016)

    NASA Technical Reports Server (NTRS)

    Walton, M; Kerstman, E.; Arellano, J.; Boley, L.; Reyes, D.; Young, M.; Garcia, Y.; Saile, L.; Myers, J.

    2016-01-01

    Timeline, partial treatment, and alternate medications were added to the IMM to improve the fidelity of this model to enhance decision support capabilities. Using standard design reference missions, IMM VV testing compared outputs from the current operational IMM (v3) with those from the model with added functionalities (v4). These new capabilities were examined in a comparative, stepwise approach as follows: a) comparison of the current operational IMM v3 with the enhanced functionality of timeline alone (IMM 4.T), b) comparison of IMM 4.T with the timeline and partial treatment (IMM 4.TPT), and c) comparison of IMM 4.TPT with timeline, partial treatment and alternative medication (IMM 4.0).

  2. Medical Updates Number 5 to the International Space Station Probability Risk Assessment (PRA) Model Using the Integrated Medical Model

    NASA Technical Reports Server (NTRS)

    Butler, Doug; Bauman, David; Johnson-Throop, Kathy

    2011-01-01

    The Integrated Medical Model (IMM) Project has been developing a probabilistic risk assessment tool, the IMM, to help evaluate in-flight crew health needs and impacts to the mission due to medical events. This package is a follow-up to a data package provided in June 2009. The IMM currently represents 83 medical conditions and associated ISS resources required to mitigate medical events. IMM end state forecasts relevant to the ISS PRA model include evacuation (EVAC) and loss of crew life (LOCL). The current version of the IMM provides the basis for the operational version of IMM expected in the January 2011 timeframe. The objectives of this data package are: 1. To provide a preliminary understanding of medical risk data used to update the ISS PRA Model. The IMM has had limited validation and an initial characterization of maturity has been completed using NASA STD 7009 Standard for Models and Simulation. The IMM has been internally validated by IMM personnel but has not been validated by an independent body external to the IMM Project. 2. To support a continued dialogue between the ISS PRA and IMM teams. To ensure accurate data interpretation, and that IMM output format and content meets the needs of the ISS Risk Management Office and ISS PRA Model, periodic discussions are anticipated between the risk teams. 3. To help assess the differences between the current ISS PRA and IMM medical risk forecasts of EVAC and LOCL. Follow-on activities are anticipated based on the differences between the current ISS PRA medical risk data and the latest medical risk data produced by IMM.

  3. Integrated Medical Model Verification, Validation, and Credibility

    NASA Technical Reports Server (NTRS)

    Walton, Marlei; Kerstman, Eric; Foy, Millennia; Shah, Ronak; Saile, Lynn; Boley, Lynn; Butler, Doug; Myers, Jerry

    2014-01-01

    The Integrated Medical Model (IMM) was designed to forecast relative changes for a specified set of crew health and mission success risk metrics by using a probabilistic (stochastic process) model based on historical data, cohort data, and subject matter expert opinion. A probabilistic approach is taken since exact (deterministic) results would not appropriately reflect the uncertainty in the IMM inputs. Once the IMM was conceptualized, a plan was needed to rigorously assess input information, framework and code, and output results of the IMM, and ensure that end user requests and requirements were considered during all stages of model development and implementation. METHODS: In 2008, the IMM team developed a comprehensive verification and validation (VV) plan, which specified internal and external review criteria encompassing 1) verification of data and IMM structure to ensure proper implementation of the IMM, 2) several validation techniques to confirm that the simulation capability of the IMM appropriately represents occurrences and consequences of medical conditions during space missions, and 3) credibility processes to develop user confidence in the information derived from the IMM. When the NASA-STD-7009 (7009) was published, the IMM team updated their verification, validation, and credibility (VVC) project plan to meet 7009 requirements and include 7009 tools in reporting VVC status of the IMM. RESULTS: IMM VVC updates are compiled recurrently and include 7009 Compliance and Credibility matrices, IMM VV Plan status, and a synopsis of any changes or updates to the IMM during the reporting period. Reporting tools have evolved over the lifetime of the IMM project to better communicate VVC status. This has included refining original 7009 methodology with augmentation from the NASA-STD-7009 Guidance Document. End user requests and requirements are being satisfied as evidenced by ISS Program acceptance of IMM risk forecasts, transition to an operational model and simulation tool, and completion of service requests from a broad end user consortium including Operations, Science and Technology Planning, and Exploration Planning. CONCLUSIONS: The VVC approach established by the IMM project of combining the IMM VV Plan with 7009 requirements is comprehensive and includes the involvement of end users at every stage in IMM evolution. Methods and techniques used to quantify the VVC status of the IMM have not only received approval from the local NASA community but have also garnered recognition by other federal agencies seeking to develop similar guidelines in the medical modeling community.

  4. Qualitative Validation of the IMM Model for ISS and STS Programs

    NASA Technical Reports Server (NTRS)

    Kerstman, E.; Walton, M.; Reyes, D.; Boley, L.; Saile, L.; Young, M.; Arellano, J.; Garcia, Y.; Myers, J. G.

    2016-01-01

    To validate and further improve the Integrated Medical Model (IMM), medical event data were obtained from 32 ISS and 122 STS person-missions. Using the crew characteristics from these observed missions, IMM v4.0 was used to forecast medical events and medical resource utilization. The IMM medical condition incidence values were compared to the actual observed medical event incidence values, and the IMM forecasted medical resource utilization was compared to actual observed medical resource utilization. Qualitative comparisons of these parameters were conducted for both the ISS and STS programs. The results of these analyses will provide validation of IMM v4.0 and reveal areas of the model requiring adjustments to improve the overall accuracy of IMM outputs. This validation effort should result in enhanced credibility of the IMM and improved confidence in the use of IMM as a decision support tool for human space flight.

  5. Integrated Medical Model (IMM) Project Verification, Validation, and Credibility (VVandC)

    NASA Technical Reports Server (NTRS)

    Walton, M.; Boley, L.; Keenan, L.; Kerstman, E.; Shah, R.; Young, M.; Saile, L.; Garcia, Y.; Meyers, J.; Reyes, D.

    2015-01-01

    The Integrated Medical Model (IMM) Project supports end user requests by employing the Integrated Medical Evidence Database (iMED) and IMM tools as well as subject matter expertise within the Project. The iMED houses data used by the IMM. The IMM is designed to forecast relative changes for a specified set of crew health and mission success risk metrics by using a probabilistic model based on historical data, cohort data, and subject matter expert opinion. A stochastic approach is taken because deterministic results would not appropriately reflect the uncertainty in the IMM inputs. Once the IMM was conceptualized, a plan was needed to rigorously assess input information, framework and code, and output results of the IMM, and ensure that end user requests and requirements were considered during all stages of model development and implementation, as well as lay the foundation for external review and application. METHODS: In 2008, the Project team developed a comprehensive verification and validation (VV) plan, which specified internal and external review criteria encompassing 1) verification of data and IMM structure to ensure proper implementation of the IMM, 2) several validation techniques to confirm that the simulation capability of the IMM appropriately represents occurrences and consequences of medical conditions during space missions, and 3) credibility processes to develop user confidence in the information derived from the IMM. When the NASA-STD-7009 (7009) [1] was published, the Project team updated their verification, validation, and credibility (VVC) project plan to meet 7009 requirements and include 7009 tools in reporting VVC status of the IMM. Construction of these tools included meeting documentation and evidence requirements sufficient to meet external review success criteria. RESULTS: IMM Project VVC updates are compiled recurrently and include updates to the 7009 Compliance and Credibility matrices. Reporting tools have evolved over the lifetime of the IMM Project to better communicate VVC status. This has included refining original 7009 methodology with augmentation from the HRP NASA-STD-7009 Guidance Document working group and the NASA-HDBK-7009 [2]. End user requests and requirements are being satisfied as evidenced by ISS Program acceptance of IMM risk forecasts, transition to an operational model and simulation tool, and completion of service requests from a broad end user consortium including operations, science and technology planning, and exploration planning. IMM v4.0 is slated for operational release in the FY015 and current VVC assessments illustrate the expected VVC status prior to the completion of customer lead external review efforts. CONCLUSIONS: The VVC approach established by the IMM Project of incorporating Project-specific recommended practices and guidelines for implementing the 7009 requirements is comprehensive and includes the involvement of end users at every stage in IMM evolution. Methods and techniques used to quantify the VVC status of the IMM Project represented a critical communication tool in providing clear and concise suitability assessments to IMM customers. These processes have not only received approval from the local NASA community but have also garnered recognition by other federal agencies seeking to develop similar guidelines in the medical modeling community.

  6. State estimation of stochastic non-linear hybrid dynamic system using an interacting multiple model algorithm.

    PubMed

    Elenchezhiyan, M; Prakash, J

    2015-09-01

    In this work, state estimation schemes for non-linear hybrid dynamic systems subjected to stochastic state disturbances and random errors in measurements using interacting multiple-model (IMM) algorithms are formulated. In order to compute both discrete modes and continuous state estimates of a hybrid dynamic system either an IMM extended Kalman filter (IMM-EKF) or an IMM based derivative-free Kalman filters is proposed in this study. The efficacy of the proposed IMM based state estimation schemes is demonstrated by conducting Monte-Carlo simulation studies on the two-tank hybrid system and switched non-isothermal continuous stirred tank reactor system. Extensive simulation studies reveal that the proposed IMM based state estimation schemes are able to generate fairly accurate continuous state estimates and discrete modes. In the presence and absence of sensor bias, the simulation studies reveal that the proposed IMM unscented Kalman filter (IMM-UKF) based simultaneous state and parameter estimation scheme outperforms multiple-model UKF (MM-UKF) based simultaneous state and parameter estimation scheme. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  7. An Improved Interacting Multiple Model Filtering Algorithm Based on the Cubature Kalman Filter for Maneuvering Target Tracking.

    PubMed

    Zhu, Wei; Wang, Wei; Yuan, Gannan

    2016-06-01

    In order to improve the tracking accuracy, model estimation accuracy and quick response of multiple model maneuvering target tracking, the interacting multiple models five degree cubature Kalman filter (IMM5CKF) is proposed in this paper. In the proposed algorithm, the interacting multiple models (IMM) algorithm processes all the models through a Markov Chain to simultaneously enhance the model tracking accuracy of target tracking. Then a five degree cubature Kalman filter (5CKF) evaluates the surface integral by a higher but deterministic odd ordered spherical cubature rule to improve the tracking accuracy and the model switch sensitivity of the IMM algorithm. Finally, the simulation results demonstrate that the proposed algorithm exhibits quick and smooth switching when disposing different maneuver models, and it also performs better than the interacting multiple models cubature Kalman filter (IMMCKF), interacting multiple models unscented Kalman filter (IMMUKF), 5CKF and the optimal mode transition matrix IMM (OMTM-IMM).

  8. The Integrated Medical Model: Statistical Forecasting of Risks to Crew Health and Mission Success

    NASA Technical Reports Server (NTRS)

    Fitts, M. A.; Kerstman, E.; Butler, D. J.; Walton, M. E.; Minard, C. G.; Saile, L. G.; Toy, S.; Myers, J.

    2008-01-01

    The Integrated Medical Model (IMM) helps capture and use organizational knowledge across the space medicine, training, operations, engineering, and research domains. The IMM uses this domain knowledge in the context of a mission and crew profile to forecast crew health and mission success risks. The IMM is most helpful in comparing the risk of two or more mission profiles, not as a tool for predicting absolute risk. The process of building the IMM adheres to Probability Risk Assessment (PRA) techniques described in NASA Procedural Requirement (NPR) 8705.5, and uses current evidence-based information to establish a defensible position for making decisions that help ensure crew health and mission success. The IMM quantitatively describes the following input parameters: 1) medical conditions and likelihood, 2) mission duration, 3) vehicle environment, 4) crew attributes (e.g. age, sex), 5) crew activities (e.g. EVA's, Lunar excursions), 6) diagnosis and treatment protocols (e.g. medical equipment, consumables pharmaceuticals), and 7) Crew Medical Officer (CMO) training effectiveness. It is worth reiterating that the IMM uses the data sets above as inputs. Many other risk management efforts stop at determining only likelihood. The IMM is unique in that it models not only likelihood, but risk mitigations, as well as subsequent clinical outcomes based on those mitigations. Once the mathematical relationships among the above parameters are established, the IMM uses a Monte Carlo simulation technique (a random sampling of the inputs as described by their statistical distribution) to determine the probable outcomes. Because the IMM is a stochastic model (i.e. the input parameters are represented by various statistical distributions depending on the data type), when the mission is simulated 10-50,000 times with a given set of medical capabilities (risk mitigations), a prediction of the most probable outcomes can be generated. For each mission, the IMM tracks which conditions occurred and decrements the pharmaceuticals and supplies required to diagnose and treat these medical conditions. If supplies are depleted, then the medical condition goes untreated, and crew and mission risk increase. The IMM currently models approximately 30 medical conditions. By the end of FY2008, the IMM will be modeling over 100 medical conditions, approximately 60 of which have been recorded to have occurred during short and long space missions.

  9. Integrated Medical Model (IMM) 4.0 Enhanced Functionalities

    NASA Technical Reports Server (NTRS)

    Young, M.; Keenan, A. B.; Saile, L.; Boley, L. A.; Walton, M. E.; Shah, R. V.; Kerstman, E. L.; Myers, J. G.

    2015-01-01

    The Integrated Medical Model is a probabilistic simulation model that uses input data on 100 medical conditions to simulate expected medical events, the resources required to treat, and the resulting impact to the mission for specific crew and mission characteristics. The newest development version of IMM, IMM v4.0, adds capabilities that remove some of the conservative assumptions that underlie the current operational version, IMM v3. While IMM v3 provides the framework to simulate whether a medical event occurred, IMMv4 also simulates when the event occurred during a mission timeline. This allows for more accurate estimation of mission time lost and resource utilization. In addition to the mission timeline, IMMv4.0 features two enhancements that address IMM v3 assumptions regarding medical event treatment. Medical events in IMMv3 are assigned the untreated outcome if any resource required to treat the event was unavailable. IMMv4 allows for partially treated outcomes that are proportional to the amount of required resources available, thus removing the dichotomous treatment assumption. An additional capability IMMv4 is to use an alternative medical resource when the primary resource assigned to the condition is depleted, more accurately reflecting the real-world system. The additional capabilities defining IMM v4.0the mission timeline, partial treatment, and alternate drug result in more realistic predicted mission outcomes. The primary model outcomes of IMM v4.0 for the ISS6 mission, including mission time lost, probability of evacuation, and probability of loss of crew life, are be compared to those produced by the current operational version of IMM to showcase enhanced prediction capabilities.

  10. Validation of the Integrated Medical Model Using Historical Space Flight Data

    NASA Technical Reports Server (NTRS)

    Kerstman, Eric L.; Minard, Charles G.; FreiredeCarvalho, Mary H.; Walton, Marlei E.; Myers, Jerry G., Jr.; Saile, Lynn G.; Lopez, Vilma; Butler, Douglas J.; Johnson-Throop, Kathy A.

    2010-01-01

    The Integrated Medical Model (IMM) utilizes Monte Carlo methodologies to predict the occurrence of medical events, utilization of resources, and clinical outcomes during space flight. Real-world data may be used to demonstrate the accuracy of the model. For this analysis, IMM predictions were compared to data from historical shuttle missions, not yet included as model source input. Initial goodness of fit test-ing on International Space Station data suggests that the IMM may overestimate the number of occurrences for three of the 83 medical conditions in the model. The IMM did not underestimate the occurrence of any medical condition. Initial comparisons with shuttle data demonstrate the importance of understanding crew preference (i.e., preferred analgesic) for accurately predicting the utilization of re-sources. The initial analysis demonstrates the validity of the IMM for its intended use and highlights areas for improvement.

  11. Integrated Medical Model Project - Overview and Summary of Historical Application

    NASA Technical Reports Server (NTRS)

    Myers, J.; Boley, L.; Butler, D.; Foy, M.; Goodenow, D.; Griffin, D.; Keenan, A.; Kerstman, E.; Melton, S.; McGuire, K.; hide

    2015-01-01

    Introduction: The Integrated Medical Model (IMM) Project represents one aspect of NASA's Human Research Program (HRP) to quantitatively assess medical risks to astronauts for existing operational missions as well as missions associated with future exploration and commercial space flight ventures. The IMM takes a probabilistic approach to assessing the likelihood and specific outcomes of one hundred medical conditions within the envelope of accepted space flight standards of care over a selectable range of mission capabilities. A specially developed Integrated Medical Evidence Database (iMED) maintains evidence-based, organizational knowledge across a variety of data sources. Since becoming operational in 2011, version 3.0 of the IMM, the supporting iMED, and the expertise of the IMM project team have contributed to a wide range of decision and informational processes for the space medical and human research community. This presentation provides an overview of the IMM conceptual architecture and range of application through examples of actual space flight community questions posed to the IMM project. Methods: Figure 1 [see document] illustrates the IMM modeling system and scenario process. As illustrated, the IMM computational architecture is based on Probabilistic Risk Assessment techniques. Nineteen assumptions and limitations define the IMM application domain. Scenario definitions include crew medical attributes and mission specific details. The IMM forecasts probabilities of loss of crew life (LOCL), evacuation (EVAC), quality time lost during the mission, number of medical resources utilized and the number and type of medical events by combining scenario information with in-flight, analog, and terrestrial medical information stored in the iMED. In addition, the metrics provide the integrated information necessary to estimate optimized in-flight medical kit contents under constraints of mass and volume or acceptable level of mission risk. Results and Conclusions: Historically, IMM simulations support Science and Technology planning, Exploration mission planning, and ISS program operations by supplying simulation support, iMED data information, and subject matter expertise to Crew Health and Safety and the HRP. Upcoming release of IMM version 4.0 seeks to provide enhanced functionality to increase the quality of risk decisions made using the IMM through a more accurate representation of the real world system.

  12. IMM-H004, A New Coumarin Derivative, Improved Focal Cerebral Ischemia via Blood-Brain Barrier Protection in Rats.

    PubMed

    Niu, Fei; Song, Xiu-Yun; Hu, Jin-Feng; Zuo, Wei; Kong, Ling-Lei; Wang, Xiao-Feng; Han, Ning; Chen, Nai-Hong

    2017-10-01

    IMM-H004 (7-hydroxy-5-methoxy-4-methyl-3-[4-methylpiperazin-1-yl]-2H-chromen-2-one) is a novel coumarin derivative that showed better effect in improving global cerebral ischemia in rats. However, the effects and mechanisms in focal cerebral ischemia were not clear. Blood-brain barrier (BBB) protection is a vital strategy for the treatment of cerebral ischemia. This study is to investigate whether IMM-H004 improves brain ischemia injury via BBB protection. Focal brain ischemia model was induced by middle cerebral artery occlusion for 1 hour and reperfusion (MCAO/R) for 24 hours in rats. IMM-H004 (1.5, 3, 6 mg/kg) and edaravone (positive drug, 6 mg/kg) were administered after 5 minutes of occlusion. Neurological score and TTC staining were used to evaluate the effect of IMM-H004. Evans Blue (EB) staining and electron microscopy were used to assess BBB permeability. Western blot, reverse transcription-polymerase chain reaction, and immunohistochemistry were used to detect the expression of BBB structure-related proteins. Compared with the model group, IMM-H004 in the focal brain ischemia model improved neurological function and reduced cerebral infarction size and edema content. IMM-H004 sharply reduced the EB content and alleviated BBB structure. In addition, IMM-H004 increased the level of zonula occludens (ZO-1) and occluding, decreased the level of aquaporin 4 and matrix metalloproteinase 9, either in cortex or in hippocampus. And all of these changed were related to BBB protection. IMM-H004 improved cerebral ischemia injury via BBB protection. For a potential therapy drug of cerebral ischemia, IMM-H004 merits further study. Copyright © 2017. Published by Elsevier Inc.

  13. Integrated Medical Model Overview

    NASA Technical Reports Server (NTRS)

    Myers, J.; Boley, L.; Foy, M.; Goodenow, D.; Griffin, D.; Keenan, A.; Kerstman, E.; Melton, S.; McGuire, K.; Saile, L.; hide

    2015-01-01

    The Integrated Medical Model (IMM) Project represents one aspect of NASA's Human Research Program (HRP) to quantitatively assess medical risks to astronauts for existing operational missions as well as missions associated with future exploration and commercial space flight ventures. The IMM takes a probabilistic approach to assessing the likelihood and specific outcomes of one hundred medical conditions within the envelope of accepted space flight standards of care over a selectable range of mission capabilities. A specially developed Integrated Medical Evidence Database (iMED) maintains evidence-based, organizational knowledge across a variety of data sources. Since becoming operational in 2011, version 3.0 of the IMM, the supporting iMED, and the expertise of the IMM project team have contributed to a wide range of decision and informational processes for the space medical and human research community. This presentation provides an overview of the IMM conceptual architecture and range of application through examples of actual space flight community questions posed to the IMM project.

  14. Estimated Probabililty of Chest Injury During an International Space Station Mission

    NASA Technical Reports Server (NTRS)

    Lewandowski, Beth E.; Milo, Eric A.; Brooker, John E.; Weaver, Aaron S.; Myers, Jerry G., Jr.

    2013-01-01

    The Integrated Medical Model (IMM) is a decision support tool that is useful to spaceflight mission planners and medical system designers when assessing risks and optimizing medical systems. The IMM project maintains a database of medical conditions that could occur during a spaceflight. The IMM project is in the process of assigning an incidence rate, the associated functional impairment, and a best and a worst case end state for each condition. The purpose of this work was to develop the IMM Chest Injury Module (CIM). The CIM calculates the incidence rate of chest injury per person-year of spaceflight on the International Space Station (ISS). The CIM was built so that the probability of chest injury during one year on ISS could be predicted. These results will be incorporated into the IMM Chest Injury Clinical Finding Form and used within the parent IMM model.

  15. Estimated Probability of Traumatic Abdominal Injury During an International Space Station Mission

    NASA Technical Reports Server (NTRS)

    Lewandowski, Beth E.; Brooker, John E.; Weavr, Aaron S.; Myers, Jerry G., Jr.; McRae, Michael P.

    2013-01-01

    The Integrated Medical Model (IMM) is a decision support tool that is useful to spaceflight mission planners and medical system designers when assessing risks and optimizing medical systems. The IMM project maintains a database of medical conditions that could occur during a spaceflight. The IMM project is in the process of assigning an incidence rate, the associated functional impairment, and a best and a worst case end state for each condition. The purpose of this work was to develop the IMM Abdominal Injury Module (AIM). The AIM calculates an incidence rate of traumatic abdominal injury per person-year of spaceflight on the International Space Station (ISS). The AIM was built so that the probability of traumatic abdominal injury during one year on ISS could be predicted. This result will be incorporated into the IMM Abdominal Injury Clinical Finding Form and used within the parent IMM model.

  16. Interacting Multiple Model (IMM) Fifth-Degree Spherical Simplex-Radial Cubature Kalman Filter for Maneuvering Target Tracking

    PubMed Central

    Liu, Hua; Wu, Wen

    2017-01-01

    For improving the tracking accuracy and model switching speed of maneuvering target tracking in nonlinear systems, a new algorithm named the interacting multiple model fifth-degree spherical simplex-radial cubature Kalman filter (IMM5thSSRCKF) is proposed in this paper. The new algorithm is a combination of the interacting multiple model (IMM) filter and the fifth-degree spherical simplex-radial cubature Kalman filter (5thSSRCKF). The proposed algorithm makes use of Markov process to describe the switching probability among the models, and uses 5thSSRCKF to deal with the state estimation of each model. The 5thSSRCKF is an improved filter algorithm, which utilizes the fifth-degree spherical simplex-radial rule to improve the filtering accuracy. Finally, the tracking performance of the IMM5thSSRCKF is evaluated by simulation in a typical maneuvering target tracking scenario. Simulation results show that the proposed algorithm has better tracking performance and quicker model switching speed when disposing maneuver models compared with the interacting multiple model unscented Kalman filter (IMMUKF), the interacting multiple model cubature Kalman filter (IMMCKF) and the interacting multiple model fifth-degree cubature Kalman filter (IMM5thCKF). PMID:28608843

  17. Interacting Multiple Model (IMM) Fifth-Degree Spherical Simplex-Radial Cubature Kalman Filter for Maneuvering Target Tracking.

    PubMed

    Liu, Hua; Wu, Wen

    2017-06-13

    For improving the tracking accuracy and model switching speed of maneuvering target tracking in nonlinear systems, a new algorithm named the interacting multiple model fifth-degree spherical simplex-radial cubature Kalman filter (IMM5thSSRCKF) is proposed in this paper. The new algorithm is a combination of the interacting multiple model (IMM) filter and the fifth-degree spherical simplex-radial cubature Kalman filter (5thSSRCKF). The proposed algorithm makes use of Markov process to describe the switching probability among the models, and uses 5thSSRCKF to deal with the state estimation of each model. The 5thSSRCKF is an improved filter algorithm, which utilizes the fifth-degree spherical simplex-radial rule to improve the filtering accuracy. Finally, the tracking performance of the IMM5thSSRCKF is evaluated by simulation in a typical maneuvering target tracking scenario. Simulation results show that the proposed algorithm has better tracking performance and quicker model switching speed when disposing maneuver models compared with the interacting multiple model unscented Kalman filter (IMMUKF), the interacting multiple model cubature Kalman filter (IMMCKF) and the interacting multiple model fifth-degree cubature Kalman filter (IMM5thCKF).

  18. The Integrated Medical Model: A Risk Assessment and Decision Support Tool for Space Flight Medical Systems

    NASA Technical Reports Server (NTRS)

    Kerstman, Eric; Minard, Charles; Saile, Lynn; deCarvalho, Mary Freire; Myers, Jerry; Walton, Marlei; Butler, Douglas; Iyengar, Sriram; Johnson-Throop, Kathy; Baumann, David

    2009-01-01

    The Integrated Medical Model (IMM) is a decision support tool that is useful to mission planners and medical system designers in assessing risks and designing medical systems for space flight missions. The IMM provides an evidence based approach for optimizing medical resources and minimizing risks within space flight operational constraints. The mathematical relationships among mission and crew profiles, medical condition incidence data, in-flight medical resources, potential crew functional impairments, and clinical end-states are established to determine probable mission outcomes. Stochastic computational methods are used to forecast probability distributions of crew health and medical resource utilization, as well as estimates of medical evacuation and loss of crew life. The IMM has been used in support of the International Space Station (ISS) medical kit redesign, the medical component of the ISS Probabilistic Risk Assessment, and the development of the Constellation Medical Conditions List. The IMM also will be used to refine medical requirements for the Constellation program. The IMM outputs for ISS and Constellation design reference missions will be presented to demonstrate the potential of the IMM in assessing risks, planning missions, and designing medical systems. The implementation of the IMM verification and validation plan will be reviewed. Additional planned capabilities of the IMM, including optimization techniques and the inclusion of a mission timeline, will be discussed. Given the space flight constraints of mass, volume, and crew medical training, the IMM is a valuable risk assessment and decision support tool for medical system design and mission planning.

  19. The Integrated Medical Model: Outcomes from Independent Review

    NASA Technical Reports Server (NTRS)

    Myers, J.; Garcia, Y.; Griffin, D.; Arellano, J.; Boley, L.; Goodenow, D. A.; Kerstman, E.; Reyes, D.; Saile, L.; Walton, M.; hide

    2017-01-01

    In 2016, the Integrated Medical Model (IMM) v4.0 underwent an extensive external review in preparation for transition to an operational status. In order to insure impartiality of the review process, the Exploration Medical Capabilities Element of NASA's Human Research Program convened the review through the Systems Review Office at NASA Goddard Space Flight Center (GSFC). The review board convened by GSFC consisted of persons from both NASA and academia with expertise in the fields of statistics, epidemiology, modeling, software development, aerospace medicine, and project management (see Figure 1). The board reviewed software and code standards, as well as evidence pedigree associated with both the input and outcomes information. The board also assesses the models verification, validation, sensitivity to parameters and ability to answer operational questions. This talk will discuss the processes for designing the review, how the review progressed and the findings from the board, as well as summarize the IMM project responses to those findings. Overall, the board found that the IMM is scientifically sound, represents a necessary, comprehensive approach to identifying medical and environmental risks facing astronauts in long duration missions and is an excellent tool for communication between engineers and physicians. The board also found IMM and its customer(s) should convene an additional review of the IMM data sources and to develop a sustainable approach to augment, peer review, and maintain the information utilized in the IMM. The board found this is critically important because medical knowledge continues to evolve. Delivery of IMM v4.0 to the Crew Health and Safety (CHS) Program will occur in the 2017. Once delivered for operational decision support, IMM v4.0 will provide CHS with additional quantitative capability in to assess astronaut medical risks and required medical capabilities to help drive down overall mission risks.

  20. Dynamic electrical impedance imaging with the interacting multiple model scheme.

    PubMed

    Kim, Kyung Youn; Kim, Bong Seok; Kim, Min Chan; Kim, Sin; Isaacson, David; Newell, Jonathan C

    2005-04-01

    In this paper, an effective dynamical EIT imaging scheme is presented for on-line monitoring of the abruptly changing resistivity distribution inside the object, based on the interacting multiple model (IMM) algorithm. The inverse problem is treated as a stochastic nonlinear state estimation problem with the time-varying resistivity (state) being estimated on-line with the aid of the IMM algorithm. In the design of the IMM algorithm multiple models with different process noise covariance are incorporated to reduce the modeling uncertainty. Simulations and phantom experiments are provided to illustrate the proposed algorithm.

  1. Integrated Medical Model (IMM) Optimization Version 4.0 Functional Improvements

    NASA Technical Reports Server (NTRS)

    Arellano, John; Young, M.; Boley, L.; Garcia, Y.; Saile, L.; Walton, M.; Kerstman, E.; Reyes, D.; Goodenow, D. A.; Myers, J. G.

    2016-01-01

    The IMMs ability to assess mission outcome risk levels relative to available resources provides a unique capability to provide guidance on optimal operational medical kit and vehicle resources. Post-processing optimization allows IMM to optimize essential resources to improve a specific model outcome such as maximization of the Crew Health Index (CHI), or minimization of the probability of evacuation (EVAC) or the loss of crew life (LOCL). Mass and or volume constrain the optimized resource set. The IMMs probabilistic simulation uses input data on one hundred medical conditions to simulate medical events that may occur in spaceflight, the resources required to treat those events, and the resulting impact to the mission based on specific crew and mission characteristics. Because IMM version 4.0 provides for partial treatment for medical events, IMM Optimization 4.0 scores resources at the individual resource unit increment level as opposed to the full condition-specific treatment set level, as done in version 3.0. This allows the inclusion of as many resources as possible in the event that an entire set of resources called out for treatment cannot satisfy the constraints. IMM Optimization version 4.0 adds capabilities that increase efficiency by creating multiple resource sets based on differing constraints and priorities, CHI, EVAC, or LOCL. It also provides sets of resources that improve mission-related IMM v4.0 outputs with improved performance compared to the prior optimization. The new optimization represents much improved fidelity that will improve the utility of the IMM 4.0 for decision support.

  2. IMM tracking of a theater ballistic missile during boost phase

    NASA Astrophysics Data System (ADS)

    Hutchins, Robert G.; San Jose, Anthony

    1998-09-01

    Since the SCUD launches in the Gulf War, theater ballistic missile (TBM) systems have become a growing concern for the US military. Detection, tracking and engagement during boost phase or shortly after booster cutoff are goals that grow in importance with the proliferation of weapons of mass destruction. This paper addresses the performance of tracking algorithms for TBMs during boost phase and across the transition to ballistic flight. Three families of tracking algorithms are examined: alpha-beta-gamma trackers, Kalman-based trackers, and the interactive multiple model (IMM) tracker. In addition, a variation on the IMM to include prior knowledge of a booster cutoff parameter is examined. Simulated data is used to compare algorithms. Also, the IMM tracker is run on an actual ballistic missile trajectory. Results indicate that IMM trackers show significant advantage in tracking through the model transition represented by booster cutoff.

  3. The Integrated Medical Model: A Risk Assessment and Decision Support Tool for Human Space Flight Missions

    NASA Technical Reports Server (NTRS)

    Kerstman, Eric L.; Minard, Charles; FreiredeCarvalho, Mary H.; Walton, Marlei E.; Myers, Jerry G., Jr.; Saile, Lynn G.; Lopez, Vilma; Butler, Douglas J.; Johnson-Throop, Kathy A.

    2011-01-01

    This slide presentation reviews the Integrated Medical Model (IMM) and its use as a risk assessment and decision support tool for human space flight missions. The IMM is an integrated, quantified, evidence-based decision support tool useful to NASA crew health and mission planners. It is intended to assist in optimizing crew health, safety and mission success within the constraints of the space flight environment for in-flight operations. It uses ISS data to assist in planning for the Exploration Program and it is not intended to assist in post flight research. The IMM was used to update Probability Risk Assessment (PRA) for the purpose of updating forecasts for the conditions requiring evacuation (EVAC) or Loss of Crew Life (LOC) for the ISS. The IMM validation approach includes comparison with actual events and involves both qualitative and quantitaive approaches. The results of these comparisons are reviewed. Another use of the IMM is to optimize the medical kits taking into consideration the specific mission and the crew profile. An example of the use of the IMM to optimize the medical kits is reviewed.

  4. Measuring motivational characteristics of courses: applying Keller's instructional materials motivation survey to a web-based course.

    PubMed

    Cook, David A; Beckman, Thomas J; Thomas, Kris G; Thompson, Warren G

    2009-11-01

    The Instructional Materials Motivation Survey (IMMS) purports to assess the motivational characteristics of instructional materials or courses using the Attention, Relevance, Confidence, and Satisfaction (ARCS) model of motivation. The IMMS has received little use or study in medical education. The authors sought to evaluate the validity of IMMS scores and compare scores between standard and adaptive Web-based learning modules. During the 2005-2006 academic year, 124 internal medicine residents at the Mayo School of Graduate Medical Education (Rochester, Minnesota) were asked to complete the IMMS for two Web-based learning modules. Participants were randomly assigned to use one module that adapted to their prior knowledge of the topic, and one module using a nonadaptive design. IMMS internal structure was evaluated using Cronbach alpha and interdimension score correlations. Relations to other variables were explored through correlation with global module satisfaction and regression with knowledge scores. Of the 124 eligible participants, 79 (64%) completed the IMMS at least once. Cronbach alpha was >or=0.75 for scores from all IMMS dimensions. Interdimension score correlations ranged 0.40 to 0.80, whereas correlations between IMMS scores and global satisfaction ratings ranged 0.40 to 0.63 (P<.001). Knowledge scores were associated with Attention and Relevance subscores (P=.033 and .01, respectively) but not with other IMMS dimensions (P>or=.07). IMMS scores were similar between module designs (on a five-point scale, differences ranged from 0.0 to 0.15, P>or=.33). These limited data generally support the validity of IMMS scores. Adaptive and standard Web-based instructional designs were similarly motivating. Cautious use and further study of the IMMS are warranted.

  5. Integrated Modeling, Mapping, and Simulation (IMMS) framework for planning exercises.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedman-Hill, Ernest J.; Plantenga, Todd D.

    2010-06-01

    The Integrated Modeling, Mapping, and Simulation (IMMS) program is designing and prototyping a simulation and collaboration environment for linking together existing and future modeling and simulation tools to enable analysts, emergency planners, and incident managers to more effectively, economically, and rapidly prepare, analyze, train, and respond to real or potential incidents. When complete, the IMMS program will demonstrate an integrated modeling and simulation capability that supports emergency managers and responders with (1) conducting 'what-if' analyses and exercises to address preparedness, analysis, training, operations, and lessons learned, and (2) effectively, economically, and rapidly verifying response tactics, plans and procedures.

  6. Sensitivity Analysis of the Integrated Medical Model for ISS Programs

    NASA Technical Reports Server (NTRS)

    Goodenow, D. A.; Myers, J. G.; Arellano, J.; Boley, L.; Garcia, Y.; Saile, L.; Walton, M.; Kerstman, E.; Reyes, D.; Young, M.

    2016-01-01

    Sensitivity analysis estimates the relative contribution of the uncertainty in input values to the uncertainty of model outputs. Partial Rank Correlation Coefficient (PRCC) and Standardized Rank Regression Coefficient (SRRC) are methods of conducting sensitivity analysis on nonlinear simulation models like the Integrated Medical Model (IMM). The PRCC method estimates the sensitivity using partial correlation of the ranks of the generated input values to each generated output value. The partial part is so named because adjustments are made for the linear effects of all the other input values in the calculation of correlation between a particular input and each output. In SRRC, standardized regression-based coefficients measure the sensitivity of each input, adjusted for all the other inputs, on each output. Because the relative ranking of each of the inputs and outputs is used, as opposed to the values themselves, both methods accommodate the nonlinear relationship of the underlying model. As part of the IMM v4.0 validation study, simulations are available that predict 33 person-missions on ISS and 111 person-missions on STS. These simulated data predictions feed the sensitivity analysis procedures. The inputs to the sensitivity procedures include the number occurrences of each of the one hundred IMM medical conditions generated over the simulations and the associated IMM outputs: total quality time lost (QTL), number of evacuations (EVAC), and number of loss of crew lives (LOCL). The IMM team will report the results of using PRCC and SRRC on IMM v4.0 predictions of the ISS and STS missions created as part of the external validation study. Tornado plots will assist in the visualization of the condition-related input sensitivities to each of the main outcomes. The outcomes of this sensitivity analysis will drive review focus by identifying conditions where changes in uncertainty could drive changes in overall model output uncertainty. These efforts are an integral part of the overall verification, validation, and credibility review of IMM v4.0.

  7. A missense mutation in MYH1 is associated with susceptibility to immune-mediated myositis in Quarter Horses.

    PubMed

    Finno, Carrie J; Gianino, Giuliana; Perumbakkam, Sudeep; Williams, Zoë J; Bordbari, Matthew H; Gardner, Keri L; Burns, Erin; Peng, Sichong; Durward-Akhurst, Sian A; Valberg, Stephanie J

    2018-03-06

    The cause of immune-mediated myositis (IMM), characterized by recurrent, rapid-onset muscle atrophy in Quarter Horses (QH), is unknown. The histopathologic hallmark of IMM is lymphocytic infiltration of myofibers. The purpose of this study was to identify putative functional variants associated with equine IMM. A genome-wide association (GWA) study was performed on 36 IMM QHs and 54 breed matched unaffected QHs from the same environment using the Equine SNP50 and SNP70 genotyping arrays. A mixed model analysis identified nine SNPs within a ~ 2.87 Mb region on chr11 that were significantly (P unadjusted  < 1.4 × 10 - 6 ) associated with the IMM phenotype. Associated haplotypes within this region encompassed 38 annotated genes, including four myosin genes (MYH1, MYH2, MYH3, and MYH13). Whole genome sequencing of four IMM and four unaffected QHs identified a single segregating nonsynonymous E321G mutation in MYH1 encoding myosin heavy chain 2X. Genotyping of additional 35 IMM and 22 unaffected QHs confirmed an association (P = 2.9 × 10 - 5 ), and the putative mutation was absent in 175 horses from 21 non-QH breeds. Lymphocytic infiltrates occurred in type 2X myofibers and the proportion of 2X fibers was decreased in the presence of inflammation. Protein modeling and contact/stability analysis identified 14 residues affected by the mutation which significantly decreased stability. We conclude that a mutation in MYH1 is highly associated with susceptibility to the IMM phenotype in QH-related breeds. This is the first report of a mutation in MYH1 and the first link between a skeletal muscle myosin mutation and autoimmune disease.

  8. The Integrated Medical Model

    NASA Technical Reports Server (NTRS)

    Butler, Douglas J.; Kerstman, Eric

    2010-01-01

    This slide presentation reviews the goals and approach for the Integrated Medical Model (IMM). The IMM is a software decision support tool that forecasts medical events during spaceflight and optimizes medical systems during simulations. It includes information on the software capabilities, program stakeholders, use history, and the software logic.

  9. Economic consequence of local control with radiotherapy: Cost analysis of internal mammary and medial supraclavicular lymph node radiotherapy in breast cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lievens, Yolande; Kesteloot, Katrien; Bogaert, Walter van den

    2005-11-15

    Purpose: To investigate the financial implications of radiotherapy (RT) to the internal mammary and medial supraclavicular lymph node chain (IM-MS) in postoperative breast cancer. Methods and Materials: A cost-effectiveness and cost-utility analysis were performed, using Markov models, comparing the early and delayed costs and effects of IM-MS during a 20-year time span from a societal viewpoint. The outcome estimates were based on Level I evidence from postoperative RT literature and the cost estimates on the standard practice of the Leuven University Hospitals, with the RT costs derived from an activity-based costing program developed in the department. Results: On the basismore » of the assumptions of the model and seen during a 20-year time span, primary treatment including IM-MS RT results in a cost savings (approximately EURO 10,000) compared with a strategy without RT. Because IM-MS RT also results in better clinical effectiveness and greater quality of life, the treatment with IM-MS dominates the approach without IM-MS. Sensitivity analyses confirmed the robustness of these results in all tested circumstances. Although threshold values were found for the cost of IM-MS, the cost at relapse, and the quality of life after treatment, these were substantially different from the baseline estimates, indicating that it is very unlikely that omitting IM-MS would become superior. Conclusion: This ex-ante cost evaluation of IM-MS RT showed that the upfront costs of locoregional RT are easily compensated for by avoiding the costs of treating locoregional and distant relapse at a later stage. The cost-sparing effect of RT should, however, be evaluated for a sufficiently long time span and is most specifically found in tumors with a rather slow natural history and a multitude of available systemic treatments at relapse, such as breast cancer.« less

  10. A longitudinal study of factors associated with acute and chronic mastitis and their impact on lamb growth rate in 10 suckler sheep flocks in Great Britain.

    PubMed

    Grant, Claire; Smith, Edward Mark; Green, Laura Elizabeth

    2016-05-01

    A 2-year prospective, longitudinal study of 10 suckler sheep flocks in Great Britain was run to identify factors associated with acute mastitis (AM) and chronic mastitis, and their impact on lamb growth rate. Data were collected on AM, intramammary masses (IMM; a marker for chronic mastitis), udder and teat conformation, teat lesions, body condition, ewe nutrition, litter size, lamb weight and general flock management. Each flock was visited twice each year, approximately 4 weeks before lambing and 9 weeks into lactation, for two years and all ewes present at a visit were examined. There were 7021 examinations in total. AM was reported in 2.1-3.0% of ewes/year; this ranged from 0.0% to 37.1% by flock. IMM were detected in 4.7% of ewes in pregnancy and 10.9% of ewes in lactation. Once an IMM had been detected there was an increased risk of future IMM although IMM were not consistently present. The majority of ewes had good udder conformation to suckle lambs. Factors associated with AM, IMM in pregnant and lactating ewes, udder conformation and lamb daily live weight gain were explored using mixed effect multivariable models. An increased risk of AM was associated with underfeeding protein in pregnancy (OR 4.05), forward pointing teats (OR 2.54), downward pointing teats (OR 4.68), rearing≥2 lambs (OR 2.65), non-traumatic teat lesions (OR 2.09); and marginally associated with the presence of IMM. An increased risk of IMM in lactation was associated with AM during lactation (OR 12.39), IMM in pregnancy (OR 4.79), IMM in the previous lactation (OR 4.77), underfeeding energy in pregnancy (OR 6.66) and traumatic teat lesions (OR 2.48). An increased risk of IMM in pregnancy was associated with IMM in the previous pregnancy, IMM in the previous lactation and underfeeding energy in the previous lactation (OR 2.95). Lower lamb daily live weight gain was associated with traumatic teat lesions, IMM in lactation (-0.01kg/day) and AM (-0.04kg/day). We conclude that inadequate nutrition is an important cause of mastitis in suckler ewes which farmers could address in part using current nutritional guidelines but further work is needed. The relationship between AM and IMM indicates that separating or culling ewes with IMM would help reduce AM. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Integration of Evidence Base into a Probabilistic Risk Assessment

    NASA Technical Reports Server (NTRS)

    Saile, Lyn; Lopez, Vilma; Bickham, Grandin; Kerstman, Eric; FreiredeCarvalho, Mary; Byrne, Vicky; Butler, Douglas; Myers, Jerry; Walton, Marlei

    2011-01-01

    INTRODUCTION: A probabilistic decision support model such as the Integrated Medical Model (IMM) utilizes an immense amount of input data that necessitates a systematic, integrated approach for data collection, and management. As a result of this approach, IMM is able to forecasts medical events, resource utilization and crew health during space flight. METHODS: Inflight data is the most desirable input for the Integrated Medical Model. Non-attributable inflight data is collected from the Lifetime Surveillance for Astronaut Health study as well as the engineers, flight surgeons, and astronauts themselves. When inflight data is unavailable cohort studies, other models and Bayesian analyses are used, in addition to subject matters experts input on occasion. To determine the quality of evidence of a medical condition, the data source is categorized and assigned a level of evidence from 1-5; the highest level is one. The collected data reside and are managed in a relational SQL database with a web-based interface for data entry and review. The database is also capable of interfacing with outside applications which expands capabilities within the database itself. Via the public interface, customers can access a formatted Clinical Findings Form (CLiFF) that outlines the model input and evidence base for each medical condition. Changes to the database are tracked using a documented Configuration Management process. DISSCUSSION: This strategic approach provides a comprehensive data management plan for IMM. The IMM Database s structure and architecture has proven to support additional usages. As seen by the resources utilization across medical conditions analysis. In addition, the IMM Database s web-based interface provides a user-friendly format for customers to browse and download the clinical information for medical conditions. It is this type of functionality that will provide Exploratory Medicine Capabilities the evidence base for their medical condition list. CONCLUSION: The IMM Database in junction with the IMM is helping NASA aerospace program improve the health care and reduce risk for the astronauts crew. Both the database and model will continue to expand to meet customer needs through its multi-disciplinary evidence based approach to managing data. Future expansion could serve as a platform for a Space Medicine Wiki of medical conditions.

  12. The Integrated Medical Model - A Risk Assessment and Decision Support Tool for Human Space Flight Missions

    NASA Technical Reports Server (NTRS)

    Kerstman, Eric; Minard, Charles G.; Saile, Lynn; FreiredeCarvalho, Mary; Myers, Jerry; Walton, Marlei; Butler, Douglas; Lopez, Vilma

    2010-01-01

    The Integrated Medical Model (IMM) is a decision support tool that is useful to space flight mission planners and medical system designers in assessing risks and optimizing medical systems. The IMM employs an evidence-based, probabilistic risk assessment (PRA) approach within the operational constraints of space flight.

  13. Interacting multiple model forward filtering and backward smoothing for maneuvering target tracking

    NASA Astrophysics Data System (ADS)

    Nandakumaran, N.; Sutharsan, S.; Tharmarasa, R.; Lang, Tom; McDonald, Mike; Kirubarajan, T.

    2009-08-01

    The Interacting Multiple Model (IMM) estimator has been proven to be effective in tracking agile targets. Smoothing or retrodiction, which uses measurements beyond the current estimation time, provides better estimates of target states. Various methods have been proposed for multiple model smoothing in the literature. In this paper, a new smoothing method, which involves forward filtering followed by backward smoothing while maintaining the fundamental spirit of the IMM, is proposed. The forward filtering is performed using the standard IMM recursion, while the backward smoothing is performed using a novel interacting smoothing recursion. This backward recursion mimics the IMM estimator in the backward direction, where each mode conditioned smoother uses standard Kalman smoothing recursion. Resulting algorithm provides improved but delayed estimates of target states. Simulation studies are performed to demonstrate the improved performance with a maneuvering target scenario. The comparison with existing methods confirms the improved smoothing accuracy. This improvement results from avoiding the augmented state vector used by other algorithms. In addition, the new technique to account for model switching in smoothing is a key in improving the performance.

  14. IMM-H007, a new therapeutic candidate for nonalcoholic fatty liver disease, improves hepatic steatosis in hamsters fed a high-fat diet.

    PubMed

    Shi, Huijie; Wang, Qingchun; Yang, Liu; Xie, Shouxia; Zhu, Haibo

    2017-09-01

    Nonalcoholic fatty liver disease (NAFLD), the most common chronic liver disease in humans, is characterized by the accumulation of triacylglycerols (TGs) in hepatocytes. We tested whether 2',3',5'-tri-acetyl-N6-(3-hydroxylaniline) adenosine (IMM-H007) can eliminate hepatic steatosis in hamsters fed a high-fat diet (HFD), as a model of NAFLD. Compared with HFD-only controls, IMM-H007 treatment significantly lowered serum levels of TG, total cholesterol, and free fatty acids (FFAs) in hamsters fed the HFD, with a prominent decrease in levels of serum transaminases and fasting insulin, without affecting fasting glucose levels. Moreover, 1 H-MRI and histopathological analyses revealed that hepatic lipid accumulation and fibrosis were improved by IMM-H007 treatment. These changes were accompanied by improvement of insulin resistance and oxidative stress, and attenuation of inflammation. IMM-H007 reduced expression of proteins involved in uptake of hepatic fatty acids and lipogenesis, and increased very low density lipoprotein secretion and expression of proteins responsible for fatty acid oxidation and autophagy. In studies in vivo , IMM-H007 inhibited fatty acid import into hepatocytes and liver lipogenesis, and concomitantly stimulated fatty acid oxidation, autophagy, and export of hepatic lipids. These data suggest that IMM-H007 resolves hepatic steatosis in HFD-fed hamsters by the regulation of lipid metabolism. Thus, IMM-H007 has therapeutic potential for NAFLD.

  15. The Use of the Integrated Medical Model for Forecasting and Mitigating Medical Risks for a Near-Earth Asteroid Mission

    NASA Technical Reports Server (NTRS)

    Kerstman, Eric; Saile, Lynn; Freire de Carvalho, Mary; Myers, Jerry; Walton, Marlei; Butler, Douglas; Lopez, Vilma

    2011-01-01

    Introduction The Integrated Medical Model (IMM) is a decision support tool that is useful to space flight mission managers and medical system designers in assessing risks and optimizing medical systems. The IMM employs an evidence-based, probabilistic risk assessment (PRA) approach within the operational constraints of space flight. Methods Stochastic computational methods are used to forecast probability distributions of medical events, crew health metrics, medical resource utilization, and probability estimates of medical evacuation and loss of crew life. The IMM can also optimize medical kits within the constraints of mass and volume for specified missions. The IMM was used to forecast medical evacuation and loss of crew life probabilities, as well as crew health metrics for a near-earth asteroid (NEA) mission. An optimized medical kit for this mission was proposed based on the IMM simulation. Discussion The IMM can provide information to the space program regarding medical risks, including crew medical impairment, medical evacuation and loss of crew life. This information is valuable to mission managers and the space medicine community in assessing risk and developing mitigation strategies. Exploration missions such as NEA missions will have significant mass and volume constraints applied to the medical system. Appropriate allocation of medical resources will be critical to mission success. The IMM capability of optimizing medical systems based on specific crew and mission profiles will be advantageous to medical system designers. Conclusion The IMM is a decision support tool that can provide estimates of the impact of medical events on human space flight missions, such as crew impairment, evacuation, and loss of crew life. It can be used to support the development of mitigation strategies and to propose optimized medical systems for specified space flight missions. Learning Objectives The audience will learn how an evidence-based decision support tool can be used to help assess risk, develop mitigation strategies, and optimize medical systems for exploration space flight missions.

  16. Analysis of Advanced Respiratory Support Onboard ISS and CCV

    NASA Technical Reports Server (NTRS)

    Shah, Ronak V.; Kertsman, Eric L.; Alexander, David J.; Duchesne, Ted; Law, Jennifer; Roden, Sean K.

    2014-01-01

    NASA is collaborating with private entities for the development of commercial space vehicles. The Space and Clinical Operations Division was tasked to review the oxygen and respiratory support system and recommend what capabilities, if any, the vehicle should have to support the return of an ill or injured crewmember. The Integrated Medical Model (IMM) was utilized as a data source for the development of these recommendations. The Integrated Medical Model (IMM) was used to simulate a six month, six crew, International Space Station (ISS) mission. Three medical system scenarios were considered based on the availability of (1) oxygen only, (2) oxygen and a ventilator, or (3) neither oxygen nor ventilator. The IMM analysis provided probability estimates of medical events that would require either oxygen or ventilator support. It also provided estimates of crew health, the probability of evacuation, and the probability of loss of crew life secondary to medical events for each of the three medical system scenarios. These IMM outputs were used as objective data to enable evidence-based decisions regarding oxygen and respiratory support system requirements for commercial crew vehicles. The IMM provides data that may be utilized to support informed decisions regarding the development of medical systems for commercial crew vehicles.

  17. Quantitative Validation of the Integrated Medical Model (IMM) for ISS Missions

    NASA Technical Reports Server (NTRS)

    Young, Millennia; Arellano, J.; Boley, L.; Garcia, Y.; Saile, L.; Walton, M.; Kerstman, E.; Reyes, D.; Goodenow, D. A.; Myers, J. G.

    2016-01-01

    Lifetime Surveillance of Astronaut Health (LSAH) provided observed medical event data on 33 ISS and 111 STS person-missions for use in further improving and validating the Integrated Medical Model (IMM). Using only the crew characteristics from these observed missions, the newest development version, IMM v4.0, will simulate these missions to predict medical events and outcomes. Comparing IMM predictions to the actual observed medical event counts will provide external validation and identify areas of possible improvement. In an effort to improve the power of detecting differences in this validation study, the total over each program ISS and STS will serve as the main quantitative comparison objective, specifically the following parameters: total medical events (TME), probability of loss of crew life (LOCL), and probability of evacuation (EVAC). Scatter plots of observed versus median predicted TMEs (with error bars reflecting the simulation intervals) will graphically display comparisons while linear regression will serve as the statistical test of agreement. Two scatter plots will be analyzed 1) where each point reflects a mission and 2) where each point reflects a condition-specific total number of occurrences. The coefficient of determination (R2) resulting from a linear regression with no intercept bias (intercept fixed at zero) will serve as an overall metric of agreement between IMM and the real world system (RWS). In an effort to identify as many possible discrepancies as possible for further inspection, the -level for all statistical tests comparing IMM predictions to observed data will be set to 0.1. This less stringent criterion, along with the multiple testing being conducted, should detect all perceived differences including many false positive signals resulting from random variation. The results of these analyses will reveal areas of the model requiring adjustment to improve overall IMM output, which will thereby provide better decision support for mission critical applications.

  18. The Integrated Medical Model

    NASA Technical Reports Server (NTRS)

    Kerstman, Eric; Minard, Charles; Saile, Lynn; Freiere deCarvalho, Mary; Myers, Jerry; Walton, Marlei; Butler, Douglas; Iyengar, Sriram; Johnson-Throop, Kathy; Baumann, David

    2010-01-01

    The goals of the Integrated Medical Model (IMM) are to develop an integrated, quantified, evidence-based decision support tool useful to crew health and mission planners and to help align science, technology, and operational activities intended to optimize crew health, safety, and mission success. Presentation slides address scope and approach, beneficiaries of IMM capabilities, history, risk components, conceptual models, development steps, and the evidence base. Space adaptation syndrome is used to demonstrate the model's capabilities.

  19. A Preliminary Validation of Attention, Relevance, Confidence and Satisfaction Model-Based Instructional Material Motivational Survey in a Computer-Based Tutorial Setting

    ERIC Educational Resources Information Center

    Huang, Wenhao; Huang, Wenyeh; Diefes-Dux, Heidi; Imbrie, Peter K.

    2006-01-01

    This paper describes a preliminary validation study of the Instructional Material Motivational Survey (IMMS) derived from the Attention, Relevance, Confidence and Satisfaction motivational design model. Previous studies related to the IMMS, however, suggest its practical application for motivational evaluation in various instructional settings…

  20. Characterization of two strains of selectively bred guinea-pigs. 2. Differences in immune response to synthetic polypeptides.

    PubMed

    Lundberg, L; Koch, C; Magnusson, M; Bertelsen, C

    1983-06-01

    Two strains of guinea-pigs selectively bred for either high (IMM/S) or low (IMM/R) responsiveness to ovalbumin-induced respiratory anaphylaxis were examined for their immune response to a copolymer of L-glutamic acid and L-alanine (GA), a copolymer of L-glutamic acid and L-tyrosine (GT), and to a dinitro-phenyl derivative of a homopolymer of L-lysine (DNP-PLL). Considerable differences between the strains in development of cellular hypersensitivity and in the production of antibodies were observed. Guinea-pigs from IMM/S were all responders to GA and DNP-PLL and non-responders to GT, while guinea-pigs from two of three lines from IMM/R were responders to GT and non-responders to GA and DNP-PLL. The third IMM/R line showed an immune response pattern similar to guinea-pigs of strain IMM/S. Preliminary breeding studies confirmed that the immune response to these three antigens is under the control of dominant autosomal genes, since (IMM/S x IMM/R) F1 animals responded to all three antigens. It is concluded that these three antigens may serve as immune response markers in genetic studies of the differences between guinea-pigs from IMM/S and IMM/R in their ability to develop respiratory anaphylaxis.

  1. Problems In Indoor Mapping and Modelling

    NASA Astrophysics Data System (ADS)

    Zlatanova, S.; Sithole, G.; Nakagawa, M.; Zhu, Q.

    2013-11-01

    Research in support of indoor mapping and modelling (IMM) has been active for over thirty years. This research has come in the form of As-Built surveys, Data structuring, Visualisation techniques, Navigation models and so forth. Much of this research is founded on advancements in photogrammetry, computer vision and image analysis, computer graphics, robotics, laser scanning and many others. While IMM used to be the privy of engineers, planners, consultants, contractors, and designers, this is no longer the case as commercial enterprises and individuals are also beginning to apply indoor models in their business process and applications. There are three main reasons for this. Firstly, the last two decades have seen greater use of spatial information by enterprises and the public. Secondly, IMM has been complimented by advancements in mobile computing and internet communications, making it easier than ever to access and interact with spatial information. Thirdly, indoor modelling has been advanced geometrically and semantically, opening doors for developing user-oriented, context-aware applications. This reshaping of the public's attitude and expectations with regards to spatial information has realised new applications and spurred demand for indoor models and the tools to use them. This paper examines the present state of IMM and considers the research areas that deserve attention in the future. In particular the paper considers problems in IMM that are relevant to commercial enterprises and the general public, groups this paper expects will emerge as the greatest users IMM. The subject of indoor modelling and mapping is discussed here in terms of Acquisitions and Sensors, Data Structures and Modelling, Visualisation, Applications, Legal Issues and Standards. Problems are discussed in terms of those that exist and those that are emerging. Existing problems are those that are currently being researched. Emerging problems are those problems or demands that are expected to arise because of social changes, technological advancements, or commercial interests. The motivation of this work is to define a set of research problems that are either being investigated or should be investigated. These will hopefully provide a framework for assessing progress and advances in indoor modelling. The framework will be developed in the form of a problem matrix, detailing existing and emerging problems, their solutions and present best practices. Once the framework is complete it will be published online so that the IMM community can discuss and modify it as necessary. When the framework has reached a steady state an empirical benchmark will be provided to test solutions to posed problems. A yearly evaluation of the problem matrix will follow, the results of which will be published.

  2. A Cost-Effective Vehicle Localization Solution Using an Interacting Multiple Model−Unscented Kalman Filters (IMM-UKF) Algorithm and Grey Neural Network

    PubMed Central

    Xu, Qimin; Li, Xu; Chan, Ching-Yao

    2017-01-01

    In this paper, we propose a cost-effective localization solution for land vehicles, which can simultaneously adapt to the uncertain noise of inertial sensors and bridge Global Positioning System (GPS) outages. First, three Unscented Kalman filters (UKFs) with different noise covariances are introduced into the framework of Interacting Multiple Model (IMM) algorithm to form the proposed IMM-based UKF, termed as IMM-UKF. The IMM algorithm can provide a soft switching among the three UKFs and therefore adapt to different noise characteristics. Further, two IMM-UKFs are executed in parallel when GPS is available. One fuses the information of low-cost GPS, in-vehicle sensors, and micro electromechanical system (MEMS)-based reduced inertial sensor systems (RISS), while the other fuses only in-vehicle sensors and MEMS-RISS. The differences between the state vectors of the two IMM-UKFs are considered as training data of a Grey Neural Network (GNN) module, which is known for its high prediction accuracy with a limited amount of samples. The GNN module can predict and compensate position errors when GPS signals are blocked. To verify the feasibility and effectiveness of the proposed solution, road-test experiments with various driving scenarios were performed. The experimental results indicate that the proposed solution outperforms all the compared methods. PMID:28629165

  3. Functionally interpretable local coordinate systems for the upper extremity using inertial & magnetic measurement systems.

    PubMed

    de Vries, W H K; Veeger, H E J; Cutti, A G; Baten, C; van der Helm, F C T

    2010-07-20

    Inertial Magnetic Measurement Systems (IMMS) are becoming increasingly popular by allowing for measurements outside the motion laboratory. The latest models enable long term, accurate measurement of segment motion in terms of joint angles, if initial segment orientations can accurately be determined. The standard procedure for definition of segmental orientation is based on the measurement of positions of bony landmarks (BLM). However, IMMS do not deliver position information, so an alternative method to establish IMMS based, anatomically understandable segment orientations is proposed. For five subjects, IMMS recordings were collected in a standard anatomical position for definition of static axes, and during a series of standardized motions for the estimation of kinematic axes of rotation. For all axes, the intra- and inter-individual dispersion was estimated. Subsequently, local coordinate systems (LCS) were constructed on the basis of the combination of IMMS axes with the lowest dispersion and compared with BLM based LCS. The repeatability of the method appeared to be high; for every segment at least two axes could be determined with a dispersion of at most 3.8 degrees. Comparison of IMMS based with BLM based LCS yielded compatible results for the thorax, but less compatible results for the humerus, forearm and hand, where differences in orientation rose to 17.2 degrees. Although different from the 'gold standard' BLM based LCS, IMMS based LCS can be constructed repeatable, enabling the estimation of segment orientations outside the laboratory. A procedure for the definition of local reference frames using IMMS is proposed. 2010 Elsevier Ltd. All rights reserved.

  4. Integrated Modeling, Mapping, and Simulation (IMMS) Framework for Exercise and Response Planning

    NASA Technical Reports Server (NTRS)

    Mapar, Jalal; Hoette, Trisha; Mahrous, Karim; Pancerella, Carmen M.; Plantenga, Todd; Yang, Christine; Yang, Lynn; Hopmeier, Michael

    2011-01-01

    EmergenCy management personnel at federal, stale, and local levels can benefit from the increased situational awareness and operational efficiency afforded by simulation and modeling for emergency preparedness, including planning, training and exercises. To support this goal, the Department of Homeland Security's Science & Technology Directorate is funding the Integrated Modeling, Mapping, and Simulation (IMMS) program to create an integrating framework that brings together diverse models for use by the emergency response community. SUMMIT, one piece of the IMMS program, is the initial software framework that connects users such as emergency planners and exercise developers with modeling resources, bridging the gap in expertise and technical skills between these two communities. SUMMIT was recently deployed to support exercise planning for National Level Exercise 2010. Threat, casualty. infrastructure, and medical surge models were combined within SUMMIT to estimate health care resource requirements for the exercise ground truth.

  5. Critical role of the neural pathway from the intermediate medial mesopallium to the intermediate hyperpallium apicale in filial imprinting of domestic chicks (Gallus gallus domesticus).

    PubMed

    Aoki, N; Yamaguchi, S; Kitajima, T; Takehara, A; Katagiri-Nakagawa, S; Matsui, R; Watanabe, D; Matsushima, T; Homma, K J

    2015-11-12

    Filial imprinting in precocial birds is a useful model for studying early learning and cognitive development, as it is characterized by a well-defined sensitive or critical period. We recently showed that the thyroid hormone 3,5,3'-triiodothyronine (T3) determines the onset of the sensitive period. Moreover, exogenous injection of T3 into the intermediate medial mesopallium (IMM) region (analogous to the associative cortex in mammals) enables imprinting even on post-hatch day 4 or 6 when the sensitive period has been terminated. However, the neural mechanisms downstream from T3 action in the IMM region remain elusive. Here, we analyzed the functional involvement of the intermediate hyperpallium apicale (IMHA) in T3 action. Bilateral excitotoxic ablation of the IMHA prevented imprinting in newly hatched chicks, and also suppressed the recovery of the sensitive period by systemic intra-venous or localized intra-IMM injection of T3 in day-4 chicks. In contrast to the effect in the IMM, direct injection of T3 into the IMHA did not enable imprinting in day-4 chicks. Moreover, bilateral ablation of IMHA after imprinting training impaired recall. These results suggest that the IMHA is critical for memory acquisition downstream following T3 action in the IMM and further, that it receives and retains information stored in the IMM for recall. Furthermore, both an avian adeno-associated viral construct containing an anterograde tracer (wheat-germ agglutinin) and a retrograde tracer (cholera toxin subunit B) revealed neural connections from the IMM to the IMHA. Taken together, our findings suggest that hierarchical processes from the primary area (IMM) to the secondary area (IMHA) are required for imprinting. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Hierarchical structure of the energy landscape of proteins revisited by time series analysis. I. Mimicking protein dynamics in different time scales

    NASA Astrophysics Data System (ADS)

    Alakent, Burak; Camurdan, Mehmet C.; Doruker, Pemra

    2005-10-01

    Time series models, which are constructed from the projections of the molecular-dynamics (MD) runs on principal components (modes), are used to mimic the dynamics of two proteins: tendamistat and immunity protein of colicin E7 (ImmE7). Four independent MD runs of tendamistat and three independent runs of ImmE7 protein in vacuum are used to investigate the energy landscapes of these proteins. It is found that mean-square displacements of residues along the modes in different time scales can be mimicked by time series models, which are utilized in dividing protein dynamics into different regimes with respect to the dominating motion type. The first two regimes constitute the dominance of intraminimum motions during the first 5ps and the random walk motion in a hierarchically higher-level energy minimum, which comprise the initial time period of the trajectories up to 20-40ps for tendamistat and 80-120ps for ImmE7. These are also the time ranges within which the linear nonstationary time series are completely satisfactory in explaining protein dynamics. Encountering energy barriers enclosing higher-level energy minima constrains the random walk motion of the proteins, and pseudorelaxation processes at different levels of minima are detected in tendamistat, depending on the sampling window size. Correlation (relaxation) times of 30-40ps and 150-200ps are detected for two energy envelopes of successive levels for tendamistat, which gives an overall idea about the hierarchical structure of the energy landscape. However, it should be stressed that correlation times of the modes are highly variable with respect to conformational subspaces and sampling window sizes, indicating the absence of an actual relaxation. The random-walk step sizes and the time length of the second regime are used to illuminate an important difference between the dynamics of the two proteins, which cannot be clarified by the investigation of relaxation times alone: ImmE7 has lower-energy barriers enclosing the higher-level energy minimum, preventing the protein to relax and letting it move in a random-walk fashion for a longer period of time.

  7. Autonomous, In-Flight Crew Health Risk Management for Exploration-Class Missions: Leveraging the Integrated Medical Model for the Exploration Medical System Demonstration Project

    NASA Technical Reports Server (NTRS)

    Butler, D. J.; Kerstman, E.; Saile, L.; Myers, J.; Walton, M.; Lopez, V.; McGrath, T.

    2011-01-01

    The Integrated Medical Model (IMM) captures organizational knowledge across the space medicine, training, operations, engineering, and research domains. IMM uses this knowledge in the context of a mission and crew profile to forecast risks to crew health and mission success. The IMM establishes a quantified, statistical relationship among medical conditions, risk factors, available medical resources, and crew health and mission outcomes. These relationships may provide an appropriate foundation for developing an in-flight medical decision support tool that helps optimize the use of medical resources and assists in overall crew health management by an autonomous crew with extremely limited interactions with ground support personnel and no chance of resupply.

  8. Investigation of imatinib loaded surface decorated biodegradable nanocarriers against glioblastoma cell lines: Intracellular uptake and cytotoxicity studies.

    PubMed

    Khan, Abrar M; Ahmad, Farhan Jalees; Panda, Amulya K; Talegaonkar, Sushama

    2016-06-30

    Overexpression of P-glycoprotein (P-gp) efflux transporter in glioma cells thwarts the build-up of therapeutic concentration of drugs usually resulting into poor therapeutic outcome. To surmount aforesaid challenge, Imatinib (IMM) loaded Poly-lactide-co-glycolic acid nanoparticles (IMM-PLGA-NPs) were developed and optimized by Box Behnken Design as a new treatment stratagem in malignant glioma. Optimized NPs were functionalized with Pluronic(®) P84, P-gp inhibitor (IMM-PLGA-P84-NPs) which showed size, PDI, zeta potential, drug loading, 182.63±13.56nm, 0.196±0.021, -15.2±1.49mV, 40.63±2.04μg/mg, respectively. Intracellular uptake study conducted on A172, U251MG and C6 glioma cells demonstrated significantly high uptake of IMM through NPs when compared with IMM solution (IMM-S), p<0.001. IMM-PLGA-P84-NPs showed better uptake in P-gp expressing cell line (U251MG and C6) while uncoated NPs showed higher uptake in non-P-gp expressing cell line (A-172). Cytotoxicity studies demonstrated significantly low IC50 for both IMM-PLGA-NPs and IMM-PLGA-P84-NPs when compared with IC50 of IMM-S. IMM-PLGA-P84-NPs showed a significantly low IC50 against P-gp overexpressing cell lines when compared with IC50 of IMM-PLGA-NPs. In contrary, IMM-PLGA-NPs showed lower IC50 against non P-gp expressing cell line. This study demonstrated the feasibility of targeting surface decorated NPs to multidrug resistant gliomas. However, to address its clinical utility extensive in vivo studies are required. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Optimization Routine for Generating Medical Kits for Spaceflight Using the Integrated Medical Model

    NASA Technical Reports Server (NTRS)

    Graham, Kimberli; Myers, Jerry; Goodenow, Deb

    2017-01-01

    The Integrated Medical Model (IMM) is a MATLAB model that provides probabilistic assessment of the medical risk associated with human spaceflight missions.Different simulations or profiles can be run in which input conditions regarding both mission characteristics and crew characteristics may vary. For each simulation, the IMM records the total medical events that occur and “treats” each event with resources drawn from import scripts. IMM outputs include Total Medical Events (TME), Crew Health Index (CHI), probability of Evacuation (pEVAC), and probability of Loss of Crew Life (pLOCL).The Crew Health Index is determined by the amount of quality time lost (QTL). Previously, an optimization code was implemented in order to efficiently generate medical kits. The kits were optimized to have the greatest benefit possible, given amass and/or volume constraint. A 6-crew, 14-day lunar mission was chosen for the simulation and run through the IMM for 100,000 trials. A built-in MATLAB solver, mixed-integer linear programming, was used for the optimization routine. Kits were generated in 10% increments ranging from 10%-100% of the benefit constraints. Conditions wheremass alone was minimized, volume alone was minimized, and where mass and volume were minimizedjointly were tested.

  10. IMM estimator with out-of-sequence measurements

    NASA Astrophysics Data System (ADS)

    Bar-Shalom, Yaakov; Chen, Huimin

    2004-08-01

    In multisensor tracking systems that operate in a centralized information processing architecture, measurements from the same target obtained by different sensors can arrive at the processing center out of sequence. In order to avoid either a delay in the output or the need for reordering and reprocessing an entire sequence of measurements, such measurements have to be processed as out-of-sequence measurements (OOSM). Recent work developed procedures for incorporating OOSMs into a Kalman filter (KF). Since the state of the art tracker for real (maneuvering) targets is the Interacting Multiple Model (IMM) estimator, this paper presents the algorithm for incorporating OOSMs into an IMM estimator. Both data association and estimation are considered. Simulation results are presented for two realistic problems using measurements from two airborne GMTI sensors. It is shown that the proposed algorithm for incorporating OOSMs into an IMM estimator yields practically the same performance as the reordering and in-sequence reprocessing of the measurements.

  11. Modeling of defect tolerance of IMM multijunction photovoltaics for space application

    NASA Astrophysics Data System (ADS)

    Mehrotra, Akhil; Freundlich, Alex

    2013-03-01

    Reduction of defects by use of thick sophisticated graded metamorphic buffers in inverted metamorphic solar cells has been a requirement to obtain high efficiency devices. With increase in number of metamorphic junctions to obtain higher efficiencies, these graded buffers constitute a significant part of growth time and cost for manufacturer of the solar cells. It's been shown that ultrathin 3 and 4 junction IMM devices perform better in presence of dislocations or/and radiation harsh environment compared to conventional thick IMM devices. Thickness optimization of the device would result in better defect and radiation tolerant behavior of 0.7ev and 1.0ev InGaAs sub-cells which would in turn require thinner buffers with higher efficiencies, hence reducing the total device thickness. It is also shown that for 3 and 4 junc. IMM, with an equivalent 1015 cm-2 1 MeV electron fluence radiation, very high EOL efficiencies can be afforded with substantially higher dislocation densities (<2×107 cm-2) than those commonly perceived as acceptable for IMM devices with remaining power factor as high as 0.85. The irregular radiation degradation behavior in 4-junc IMM is also explained by back photon reflection from gold contacts and reduced by using thickness optimization of 0.7ev and 1.0ev InGaAs sub-cells.

  12. A Bayesian approach to tracking patients having changing pharmacokinetic parameters

    NASA Technical Reports Server (NTRS)

    Bayard, David S.; Jelliffe, Roger W.

    2004-01-01

    This paper considers the updating of Bayesian posterior densities for pharmacokinetic models associated with patients having changing parameter values. For estimation purposes it is proposed to use the Interacting Multiple Model (IMM) estimation algorithm, which is currently a popular algorithm in the aerospace community for tracking maneuvering targets. The IMM algorithm is described, and compared to the multiple model (MM) and Maximum A-Posteriori (MAP) Bayesian estimation methods, which are presently used for posterior updating when pharmacokinetic parameters do not change. Both the MM and MAP Bayesian estimation methods are used in their sequential forms, to facilitate tracking of changing parameters. Results indicate that the IMM algorithm is well suited for tracking time-varying pharmacokinetic parameters in acutely ill and unstable patients, incurring only about half of the integrated error compared to the sequential MM and MAP methods on the same example.

  13. Architecture Mapping of the Inner Mitochondrial Membrane Proteome by Chemical Tools in Live Cells.

    PubMed

    Lee, Song-Yi; Kang, Myeong-Gyun; Shin, Sanghee; Kwak, Chulhwan; Kwon, Taejoon; Seo, Jeong Kon; Kim, Jong-Seo; Rhee, Hyun-Woo

    2017-03-15

    The inner mitochondrial membrane (IMM) proteome plays a central role in maintaining mitochondrial physiology and cellular metabolism. Various important biochemical reactions such as oxidative phosphorylation, metabolite production, and mitochondrial biogenesis are conducted by the IMM proteome, and mitochondria-targeted therapeutics have been developed for IMM proteins, which is deeply related for various human metabolic diseases including cancer and neurodegenerative diseases. However, the membrane topology of the IMM proteome remains largely unclear because of the lack of methods to evaluate it in live cells in a high-throughput manner. In this article, we reveal the in vivo topological direction of 135 IMM proteins, using an in situ-generated radical probe with genetically targeted peroxidase (APEX). Owing to the short lifetime of phenoxyl radicals generated in situ by submitochondrial targeted APEX and the impermeability of the IMM to small molecules, the solvent-exposed tyrosine residues of both the matrix and intermembrane space (IMS) sides of IMM proteins were exclusively labeled with the radical probe in live cells by Matrix-APEX and IMS-APEX, respectively and identified by mass spectrometry. From this analysis, we confirmed 58 IMM protein topologies and we could determine the topological direction of 77 IMM proteins whose topology at the IMM has not been fully characterized. We also found several IMM proteins (e.g., LETM1 and OXA1) whose topological information should be revised on the basis of our results. Overall, our identification of structural information on the mitochondrial inner-membrane proteome can provide valuable insights for the architecture and connectome of the IMM proteome in live cells.

  14. Validation of the Instructional Materials Motivation Survey (IMMS) in a Self-Directed Instructional Setting Aimed at Working with Technology

    ERIC Educational Resources Information Center

    Loorbach, Nicole; Peters, Oscar; Karreman, Joyce; Steehouder, Michaël

    2015-01-01

    The ARCS Model of Motivational Design has been used myriad times to design motivational instructions that focus on attention, relevance, confidence and satisfaction in order to motivate students. The Instructional Materials Motivation Survey (IMMS) is a 36-item situational measure of people's reactions to instructional materials in the light…

  15. Small-molecule intramimics of formin autoinhibition: a new strategy to target the cytoskeletal remodeling machinery in cancer cells.

    PubMed

    Lash, L Leanne; Wallar, Bradley J; Turner, Julie D; Vroegop, Steven M; Kilkuskie, Robert E; Kitchen-Goosen, Susan M; Xu, H Eric; Alberts, Arthur S

    2013-11-15

    Although the cancer cell cytoskeleton is a clinically validated target, few new strategies have emerged for selectively targeting cell division by modulating the cytoskeletal structure, particularly ways that could avoid the cardiotoxic and neurotoxic effects of current agents such as taxanes. We address this gap by describing a novel class of small-molecule agonists of the mammalian Diaphanous (mDia)-related formins, which act downstream of Rho GTPases to assemble actin filaments, and their organization with microfilaments to establish and maintain cell polarity during migration and asymmetric division. GTP-bound Rho activates mDia family members by disrupting the interaction between the DID and DAD autoregulatory domains, which releases the FH2 domain to modulate actin and microtubule dynamics. In screening for DID-DAD disruptors that activate mDia, we identified two molecules called intramimics (IMM-01 and -02) that were sufficient to trigger actin assembly and microtubule stabilization, serum response factor-mediated gene expression, cell-cycle arrest, and apoptosis. In vivo analysis of IMM-01 and -02 established their ability to slow tumor growth in a mouse xenograft model of colon cancer. Taken together, our work establishes the use of intramimics and mDia-related formins as a new general strategy for therapeutic targeting of the cytoskeletal remodeling machinery of cancer cells. ©2013 AACR

  16. Major Histocompatibility Complex I and II Expression and Lymphocytic Subtypes in Muscle of Horses with Immune-Mediated Myositis.

    PubMed

    Durward-Akhurst, S A; Finno, C J; Barnes, N; Shivers, J; Guo, L T; Shelton, G D; Valberg, S J

    2016-07-01

    Major histocompatibility complex (MHC) I and II expression is not normally detected on sarcolemma, but is detected with lymphocytic infiltrates in immune-mediated myositis (IMM) of humans and dogs and in dysferlin-deficient muscular dystrophy. To determine if sarcolemmal MHC is expressed in active IMM in horses, if MHC expression is associated with lymphocytic subtype, and if dysferlin is expressed in IMM. Twenty-one IMM horses of Quarter Horse-related breeds, 3 healthy and 6 disease controls (3 pasture myopathy, 3 amylase-resistant polysaccharide storage myopathy [PSSM]). Immunohistochemical staining for MHC I, II, and CD4+, CD8+, CD20+ lymphocytes was performed on archived muscle of IMM and control horses. Scores were given for MHC I, II, and lymphocytic subtypes. Immunofluorescent staining for dysferlin, dystrophin, and a-sarcoglycan was performed. Sarcolemmal MHC I and II expression was detected in 17/21 and 15/21 of IMM horses, respectively, and in specific fibers of PSSM horses, but not healthy or pasture myopathy controls. The CD4+, CD8+, and CD20+ cells were present in 20/21 IMM muscles with CD4+ predominance in 10/21 and CD8+ predominance in 6/21 of IMM horses. Dysferlin, dystrophin, and a-sarcoglycan staining were similar in IMM and control muscles. Deficiencies of dysferlin, dystrophin, and a-sarcoglycan are not associated with IMM. Sarcolemmal MHC I and II expression in a proportion of myofibers of IMM horses in conjunction with lymphocytic infiltration supports an immune-mediated etiology for IMM. The MHC expression also occured in specific myofibers in PSSM horses in the absence of lymphocytic infiltrates. Copyright © 2016 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  17. Nonspecific Resistance Induced by an Immunopharmacologic Agent Derived from Bordetella pertussis.

    DTIC Science & Technology

    1985-01-31

    NONSPECIFIC RESISTANCE INDUCED BY AN IMM1JNOPHAL’-ACOLOGIC AGENT DERIVED FROM a u’seeOG EoTwwE BORDE2’ELLA PERTUSSIS * OTATO RN UU~e AU THOR(*) B OTATO RN...antibodies 20. A 9STRPACT (Con tnue an revwre side It necessary and fdontitlP Ip 5149k IeebffJ LJ..JTreatment of mice with Bordetella pertueeis vaccine...resulted in * resistance to mouse adenovirus infection. Antiviral activity was associated with surface components of B. pertussie . Acellular fractions with

  18. Coming to Grips with Ambiguity: Ion Mobility-Mass Spectrometry for Protein Quaternary Structure Assignment

    NASA Astrophysics Data System (ADS)

    Eschweiler, Joseph D.; Frank, Aaron T.; Ruotolo, Brandon T.

    2017-10-01

    Multiprotein complexes are central to our understanding of cellular biology, as they play critical roles in nearly every biological process. Despite many impressive advances associated with structural characterization techniques, large and highly-dynamic protein complexes are too often refractory to analysis by conventional, high-resolution approaches. To fill this gap, ion mobility-mass spectrometry (IM-MS) methods have emerged as a promising approach for characterizing the structures of challenging assemblies due in large part to the ability of these methods to characterize the composition, connectivity, and topology of large, labile complexes. In this Critical Insight, we present a series of bioinformatics studies aimed at assessing the information content of IM-MS datasets for building models of multiprotein structure. Our computational data highlights the limits of current coarse-graining approaches, and compelled us to develop an improved workflow for multiprotein topology modeling, which we benchmark against a subset of the multiprotein complexes within the PDB. This improved workflow has allowed us to ascertain both the minimal experimental restraint sets required for generation of high-confidence multiprotein topologies, and quantify the ambiguity in models where insufficient IM-MS information is available. We conclude by projecting the future of IM-MS in the context of protein quaternary structure assignment, where we predict that a more complete knowledge of the ultimate information content and ambiguity within such models will undoubtedly lead to applications for a broader array of challenging biomolecular assemblies. [Figure not available: see fulltext.

  19. Evaluation of the efficacy of intramuscular versus intramammary treatment of subclinical Streptococcus agalactiae mastitis in dairy cows in Colombia.

    PubMed

    Reyes, J; Chaffer, M; Sanchez, J; Torres, G; Macias, D; Jaramillo, M; Duque, P C; Ceballos, A; Keefe, G P

    2015-08-01

    A randomized controlled trial was performed in 17 Colombian dairy herds to determine the cure risk among cows subclinically infected with Streptococcus agalactiae exposed to 2 antibiotic therapies. Composite milk samples were collected before milking at the onset of the trial (pretreatment) and 2 subsequent times over a period of approximately 63 d. The intramammary application (IMM) of ampicillin-cloxacillin was compared with the intramuscular application (IM) of penethamate hydriodide, and cure risks after an initial and retreatment application were assessed. Cure risk after the initial treatment was higher (82.4%) for the IMM treatment than for IM therapy (65.8%). However, no difference was observed in the cure risk of refractory cases after retreatment (IMM=52.6% vs. IM=51.2%). The cumulative cure risk (both initial and retreatment) was 90.4 and 82.9% for the IMM and IM products, respectively. A 2-level random effects logistic model that controlled for pretreatment cow-level somatic cell count, indicated that IM treatment (odds ratio=0.37) had a lower cure risk than IMM and a tendency for a lower cure risk with increasing baseline somatic cell count. Our findings suggest that both products and administration routes can reduce the prevalence of S. agalactiae in affected herds, but the IMM product had a better efficacy in curing the infection. In addition to the treatment protocol, the cow somatic cell count should be considered when making management decisions for cows infected with S. agalactiae. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. Bayesian Analysis for Risk Assessment of Selected Medical Events in Support of the Integrated Medical Model Effort

    NASA Technical Reports Server (NTRS)

    Gilkey, Kelly M.; Myers, Jerry G.; McRae, Michael P.; Griffin, Elise A.; Kallrui, Aditya S.

    2012-01-01

    The Exploration Medical Capability project is creating a catalog of risk assessments using the Integrated Medical Model (IMM). The IMM is a software-based system intended to assist mission planners in preparing for spaceflight missions by helping them to make informed decisions about medical preparations and supplies needed for combating and treating various medical events using Probabilistic Risk Assessment. The objective is to use statistical analyses to inform the IMM decision tool with estimated probabilities of medical events occurring during an exploration mission. Because data regarding astronaut health are limited, Bayesian statistical analysis is used. Bayesian inference combines prior knowledge, such as data from the general U.S. population, the U.S. Submarine Force, or the analog astronaut population located at the NASA Johnson Space Center, with observed data for the medical condition of interest. The posterior results reflect the best evidence for specific medical events occurring in flight. Bayes theorem provides a formal mechanism for combining available observed data with data from similar studies to support the quantification process. The IMM team performed Bayesian updates on the following medical events: angina, appendicitis, atrial fibrillation, atrial flutter, dental abscess, dental caries, dental periodontal disease, gallstone disease, herpes zoster, renal stones, seizure, and stroke.

  1. Genome Wide Identification of the Immunophilin Gene Family in Leptosphaeria maculans: A Causal Agent of Blackleg Disease in Oilseed Rape (Brassica napus)

    PubMed Central

    Zouhar, Miloslav; Mazakova, Jana; Rysanek, Pavel

    2014-01-01

    Abstract Phoma stem canker (blackleg) is a disease of world-wide importance on oilseed rape (Brassica napus) and can cause serious losses for crops globally. The disease is caused by dothideomycetous fungus, Leptosphaeria maculans, which is highly virulent/aggressive. Cyclophilins (CYPs) and FK506-binding proteins (FKBPs) are ubiquitous proteins belonging to the peptidyl-prolyl cis/trans isomerase (PPIase) family. They are collectively referred to as immunophilins (IMMs). In the present study, IMM genes, CYP and FKBP in haploid strain v23.1.3 of L. maculans genome, were identified and classified. Twelve CYPs and five FKBPs were determined in total. Domain architecture analysis revealed the presence of a conserved cyclophilin-like domain (CLD) in the case of CYPs and FKBP_C in the case of FKBPs. Interestingly, IMMs in L. maculans also subgrouped into single domain (SD) and multidomain (MD) proteins. They were primarily found to be localized in cytoplasm, nuclei, and mitochondria. Homologous and orthologous gene pairs were also determined by comparison with the model organism Saccharomyces cerevisiae. Remarkably, IMMs of L. maculans contain shorter introns in comparison to exons. Moreover, CYPs, in contrast with FKBPs, contain few exons. However, two CYPs were determined as being intronless. The expression profile of IMMs in both mycelium and infected primary leaves of B. napus demonstrated their potential role during infection. Secondary structure analysis revealed the presence of atypical eight β strands and two α helices fold architecture. Gene ontology analysis of IMMs predicted their significant role in protein folding and PPIase activity. Taken together, our findings for the first time present new prospects of this highly conserved gene family in phytopathogenic fungus. PMID:25259854

  2. ECP Bone Workshop Day 2, Session 1: Validation of Exercise Countermeasures

    NASA Technical Reports Server (NTRS)

    Myers, Jerry G.

    2007-01-01

    The thesis of this session of the ECP Bone workshop is that computer modeling is required in order to evaluate factor of risk for fracture when considering the uniquely localized bone loss conditions experienced by Astronauts. This session provides an opportunity to introduce the Integrated Medical Model Bone Fracture Risk (IMM-BFxRM) simulation approach and how this and other models improve understanding of the effects of exercise countermeasures. This workshop session also provides an opportunity for the panel to provide recommendations on this and other "complex modeling" approaches, as well as, the importance of funding the IMM-BFxRM and companion efforts by external scientists (Lang and Keyak).

  3. Integration of an Evidence Base into a Probabilistic Risk Assessment Model. The Integrated Medical Model Database: An Organized Evidence Base for Assessing In-Flight Crew Health Risk and System Design

    NASA Technical Reports Server (NTRS)

    Saile, Lynn; Lopez, Vilma; Bickham, Grandin; FreiredeCarvalho, Mary; Kerstman, Eric; Byrne, Vicky; Butler, Douglas; Myers, Jerry; Walton, Marlei

    2011-01-01

    This slide presentation reviews the Integrated Medical Model (IMM) database, which is an organized evidence base for assessing in-flight crew health risk. The database is a relational database accessible to many people. The database quantifies the model inputs by a ranking based on the highest value of the data as Level of Evidence (LOE) and the quality of evidence (QOE) score that provides an assessment of the evidence base for each medical condition. The IMM evidence base has already been able to provide invaluable information for designers, and for other uses.

  4. Regulation of gene expression in plasmid ColE1: delayed expression of the kil gene.

    PubMed Central

    Zhang, S P; Yan, L F; Zubay, G

    1988-01-01

    cea, imm, and kil are a cluster of three functionally related genes of the plasmid ColE1. The cea and kil genes are in the same inducible operon, with transcription being initiated from a promoter adjacent to the cea gene. The imm gene is located between the cea and kil genes, but it is transcribed in the opposite direction. Complementary interaction between the imm mRNA and the anti-imm sequences in the middle of the cea-kil transcript causes a pronounced delay in expression of the kil gene when the cea-kil operon is induced. A segment in the overlapping region between the cea and imm genes causes delayed expression of the kil gene in the absence of imm gene transcription. This delay effect increases the yields of colicin synthesized in induced cells. Images PMID:3142845

  5. Advancing the large-scale CCS database for metabolomics and lipidomics at the machine-learning era.

    PubMed

    Zhou, Zhiwei; Tu, Jia; Zhu, Zheng-Jiang

    2018-02-01

    Metabolomics and lipidomics aim to comprehensively measure the dynamic changes of all metabolites and lipids that are present in biological systems. The use of ion mobility-mass spectrometry (IM-MS) for metabolomics and lipidomics has facilitated the separation and the identification of metabolites and lipids in complex biological samples. The collision cross-section (CCS) value derived from IM-MS is a valuable physiochemical property for the unambiguous identification of metabolites and lipids. However, CCS values obtained from experimental measurement and computational modeling are limited available, which significantly restricts the application of IM-MS. In this review, we will discuss the recently developed machine-learning based prediction approach, which could efficiently generate precise CCS databases in a large scale. We will also highlight the applications of CCS databases to support metabolomics and lipidomics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Multiple particle tracking in 3-D+t microscopy: method and application to the tracking of endocytosed quantum dots.

    PubMed

    Genovesio, Auguste; Liedl, Tim; Emiliani, Valentina; Parak, Wolfgang J; Coppey-Moisan, Maité; Olivo-Marin, Jean-Christophe

    2006-05-01

    We propose a method to detect and track multiple moving biological spot-like particles showing different kinds of dynamics in image sequences acquired through multidimensional fluorescence microscopy. It enables the extraction and analysis of information such as number, position, speed, movement, and diffusion phases of, e.g., endosomal particles. The method consists of several stages. After a detection stage performed by a three-dimensional (3-D) undecimated wavelet transform, we compute, for each detected spot, several predictions of its future state in the next frame. This is accomplished thanks to an interacting multiple model (IMM) algorithm which includes several models corresponding to different biologically realistic movement types. Tracks are constructed, thereafter, by a data association algorithm based on the maximization of the likelihood of each IMM. The last stage consists of updating the IMM filters in order to compute final estimations for the present image and to improve predictions for the next image. The performances of the method are validated on synthetic image data and used to characterize the 3-D movement of endocytic vesicles containing quantum dots.

  7. Sizing and Discovery of Nanosized Polyoxometalate Clusters by Mass Spectrometry

    PubMed Central

    2016-01-01

    Ion mobility-mass spectrometry (IM-MS) is a powerful technique for structural characterization, e.g., sizing and conformation, particularly when combined with quantitative modeling and comparison to theoretical values. Traveling wave IM-MS (TW-IM-MS) has recently become commercially available to nonspecialist groups and has been exploited in the structural study of large biomolecules, however reliable calibrants for large anions have not been available. Polyoxometalate (POM) species—nanoscale inorganic anions—share many of the facets of large biomolecules, however, the full potential of IM-MS in their study has yet to be realized due to a lack of suitable calibration data or validated theoretical models. Herein we address these limitations by reporting DT-IM (drift tube) data for a set of POM clusters {M12} Keggin 1, {M18} Dawson 2, and two {M7} Anderson derivatives 3 and 4 which demonstrate their use as a TW-IM-MS calibrant set to facilitate characterization of very large (ca. 1–4 nm) anionic species. The data was also used to assess the validity of standard techniques to model the collision cross sections of large inorganic anions using the nanoscale family of compounds based upon the {Se2W29} unit including the trimer, {Se8W86O299} A, tetramer, {Se8W116O408} B, and hexamer {Se12W174O612} C, including their relative sizing in solution. Furthermore, using this data set, we demonstrated how IM-MS can be used to conveniently characterize and identify the synthesis of two new, i.e., previously unreported POM species, {P8W116}, unknown D, and {Te8W116}, unknown E, which are not amenable to analysis by other means with the approximate formulation of [H34W118X8M2O416]44–, where X = P and M = Co for D and X = Te and M = Mn for E. This work establishes a new type of inorganic calibrant for IM-MS allowing sizing, structural analysis, and discovery of molecular nanostructures directly from solution. PMID:26906879

  8. Comparison of two polymer-based immunohistochemical detection systems: ENVISION+ and ImmPRESS.

    PubMed

    Ramos-Vara, José A; Miller, Margaret A

    2006-11-01

    The non-specific background reaction produced in avidin-biotin-based immunohistochemistry, particularly after harsh antigen retrieval procedures, has promoted the use of non-avidin-biotin systems, yet there are few reports comparing the performance of non-avidin-biotin, polymer-based methods. In this study we compare two of these methods, ENVISION+trade mark and ImmPRESS, in animal tissues. We examined the immunoreactivity of 18 antigens in formalin-fixed, paraffin-embedded tissues. Antigens were located in the cytoplasmic membrane (CD11d, CD18 and CD79a), cytoplasm (calretinin, COX-1, COX-2, Glut-1, HepPar 1, KIT, Melan A, tryptase and uroplakin III) or nucleus (MUM-1, PGP 9.5 and thyroid transcription factor 1). We also evaluated three infectious agents (Aspergillus, calicivirus and West Nile virus). The staining with ENVISION+ or ImmPRESS was performed simultaneously for each antigen. The intensity of the reaction and background staining were scored. ImmPRESS yielded similar or higher reaction intensity than ENVISION+trade mark in 16/18 antigens. ImmPRESS produced abundant background with the other two antigens (calretinin and COX-2), which hindered interpretation of the specific reaction. The cost of ImmPRESS was 25% lower than for ENVISION+trade mark. Based on these results, ImmPRESS is a good polymer-based detection system for routine immunohistochemistry.

  9. Recent progress of Spectrolab high-efficiency space solar cells

    NASA Astrophysics Data System (ADS)

    Law, Daniel C.; Boisvert, J. C.; Rehder, E. M.; Chiu, P. T.; Mesropian, S.; Woo, R. L.; Liu, X. Q.; Hong, W. D.; Fetzer, C. M.; Singer, S. B.; Bhusari, D. M.; Edmondson, K. M.; Zakaria, A.; Jun, B.; Krut, D. D.; King, R. R.; Sharma, S. K.; Karam, N. H.

    2013-09-01

    Recent progress in III-V multijunction space solar cell has led to Spectrolab's GaInP/GaAs/Ge triple-junction, XTJ, cells with average 1-sun efficiency of 29% (AM0, 28°C) for cell size ranging from 59 to 72-cm2. High-efficiency inverted metamorphic (IMM) multijunction cells are developed as the next space solar cell architecture. Spectrolab's large-area IMM3J and IMM4J cells have achieved 33% and 34% 1-sun, AM0 efficiencies, respectively. The IMM3J and the IMM4J cells have both demonstrated normalized power retention of 0.86 at 5x1014 e-/cm2 fluence and 0.83 and 0.82 at 1x1015 e-/cm2 fluence post 1-MeV electron radiation, respectively. The IMM cells were further assembled into coverglass-interconnect-cell (CIC) strings and affixed to typical rigid aluminum honeycomb panels for thermal cycling characterization. Preliminary temperature cycling data of two coupons populated with IMM cell strings showed no performance degradation. Spectrolab has also developed semiconductor bonded technology (SBT) where highperformance component subcells were grown on GaAs and InP substrates separately then bonded directly to form the final multijunction cells. Large-area SBT 5-junction cells have achieved a 35.1% efficiency under 1-sun, AM0 condition.

  10. The Impact of Health Literacy Status on the Comparative Validity and Sensitivity of an Interactive Multimedia Beverage Intake Questionnaire.

    PubMed

    Hooper, Lucy P; Myers, Emily A; Zoellner, Jamie M; Davy, Brenda M; Hedrick, Valisa E

    2016-12-23

    Self-reported dietary assessment methods can be challenging to validate, and reporting errors for those with lower health literacy (HL) may be augmented. Interactive multimedia (IMM) based questionnaires could help overcome these limitations. The objectives of this investigation are to assess the comparative validity and sensitivity to change of an IMM beverage intake questionnaire (IMM-BEVQ) as compared to dietary recalls and determine the impact of HL. Adults completed three 24-h dietary recalls and the IMM-BEVQ at baseline and after a six-month intervention targeting either sugar-sweetened beverages (SSB) or physical activity. Correlations and paired-samples t -tests are presented. For validity ( n = 273), intake of SSB (mean difference = 10.6 fl oz) and total beverage consumption (mean difference = 16.0 fl oz) were significantly different ( p ≤ 0.001) at baseline between the IMM-BEVQ and dietary recalls for all participants. However, the differences in intake were generally greater in low HL participants than in adequate HL participants. For sensitivity ( n = 162), change in SSB intake (mean difference = 7.2 fl oz) was significantly different ( p ≤ 0.01) between pre-/post-IMM-BEVQ and pre-/post-dietary recalls, but not total beverage intake (mean difference = 7.6 fl oz) for all participants. Changes in SSB and total beverage intake were not significantly different for those with adequate HL. The IMM-BEVQ is a valid dietary assessment tool that is as responsive to detecting changes in beverage intake as dietary recalls. However, adults with lower HL may need additional guidance when completing the IMM-BEVQ.

  11. Lightweight IMM PV Flexible Blanket Assembly

    NASA Technical Reports Server (NTRS)

    Spence, Brian

    2015-01-01

    Deployable Space Systems (DSS) has developed an inverted metamorphic multijunction (IMM) photovoltaic (PV) integrated modular blanket assembly (IMBA) that can be rolled or z-folded. This IMM PV IMBA technology enables a revolutionary flexible PV blanket assembly that provides high specific power, exceptional stowed packaging efficiency, and high-voltage operation capability. DSS's technology also accommodates standard third-generation triple junction (ZTJ) PV device technologies to provide significantly improved performance over the current state of the art. This SBIR project demonstrated prototype, flight-like IMM PV IMBA panel assemblies specifically developed, designed, and optimized for NASA's high-voltage solar array missions.

  12. Polar versus Cartesian velocity models for maneuvering target tracking with IMM

    NASA Astrophysics Data System (ADS)

    Laneuville, Dann

    This paper compares various model sets in different IMM filters for the maneuvering target tracking problem. The aim is to see whether we can improve the tracking performance of what is certainly the most widely used model set in the literature for the maneuvering target tracking problem: a Nearly Constant Velocity model and a Nearly Coordinated Turn model. Our new challenger set consists of a mixed Cartesian position and polar velocity state vector to describe the uniform motion segments and is augmented with the turn rate to obtain the second model for the maneuvering segments. This paper also gives a general procedure to discretize up to second order any non-linear continuous time model with linear diffusion. Comparative simulations on an air defence scenario with a 2D radar, show that this new approach improves significantly the tracking performance in this case.

  13. The Impact of Health Literacy Status on the Comparative Validity and Sensitivity of an Interactive Multimedia Beverage Intake Questionnaire

    PubMed Central

    Hooper, Lucy P.; Myers, Emily A.; Zoellner, Jamie M.; Davy, Brenda M.; Hedrick, Valisa E.

    2016-01-01

    Self-reported dietary assessment methods can be challenging to validate, and reporting errors for those with lower health literacy (HL) may be augmented. Interactive multimedia (IMM) based questionnaires could help overcome these limitations. The objectives of this investigation are to assess the comparative validity and sensitivity to change of an IMM beverage intake questionnaire (IMM-BEVQ) as compared to dietary recalls and determine the impact of HL. Adults completed three 24-h dietary recalls and the IMM-BEVQ at baseline and after a six-month intervention targeting either sugar-sweetened beverages (SSB) or physical activity. Correlations and paired-samples t-tests are presented. For validity (n = 273), intake of SSB (mean difference = 10.6 fl oz) and total beverage consumption (mean difference = 16.0 fl oz) were significantly different (p ≤ 0.001) at baseline between the IMM-BEVQ and dietary recalls for all participants. However, the differences in intake were generally greater in low HL participants than in adequate HL participants. For sensitivity (n = 162), change in SSB intake (mean difference = 7.2 fl oz) was significantly different (p ≤ 0.01) between pre-/post-IMM-BEVQ and pre-/post-dietary recalls, but not total beverage intake (mean difference = 7.6 fl oz) for all participants. Changes in SSB and total beverage intake were not significantly different for those with adequate HL. The IMM-BEVQ is a valid dietary assessment tool that is as responsive to detecting changes in beverage intake as dietary recalls. However, adults with lower HL may need additional guidance when completing the IMM-BEVQ. PMID:28025538

  14. Assessment of Medical Risks and Optimization of their Management using Integrated Medical Model

    NASA Technical Reports Server (NTRS)

    Fitts, Mary A.; Madurai, Siram; Butler, Doug; Kerstman, Eric; Risin, Diana

    2008-01-01

    The Integrated Medical Model (IMM) Project is a software-based technique that will identify and quantify the medical needs and health risks of exploration crew members during space flight and evaluate the effectiveness of potential mitigation strategies. The IMM Project employs an evidence-based approach that will quantify probability and consequences of defined in-flight medical risks, mitigation strategies, and tactics to optimize crew member health. Using stochastic techniques, the IMM will ultimately inform decision makers at both programmatic and institutional levels and will enable objective assessment of crew health and optimization of mission success using data from relevant cohort populations and from the astronaut population. The objectives of the project include: 1) identification and documentation of conditions that may occur during exploration missions (Baseline Medical Conditions List [BMCL), 2) assessment of the likelihood of conditions in the BMCL occurring during exploration missions (incidence rate), 3) determination of the risk associated with these conditions and quantify in terms of end states (Loss of Crew, Loss of Mission, Evacuation), 4) optimization of in-flight hardware mass, volume, power, bandwidth and cost for a given level of risk or uncertainty, and .. validation of the methodologies used.

  15. An IMM-Aided ZUPT Methodology for an INS/DVL Integrated Navigation System.

    PubMed

    Yao, Yiqing; Xu, Xiaosu; Xu, Xiang

    2017-09-05

    Inertial navigation system (INS)/Doppler velocity log (DVL) integration is the most common navigation solution for underwater vehicles. Due to the complex underwater environment, the velocity information provided by DVL always contains some errors. To improve navigation accuracy, zero velocity update (ZUPT) technology is considered, which is an effective algorithm for land vehicles to mitigate the navigation error during the pure INS mode. However, in contrast to ground vehicles, the ZUPT solution cannot be used directly for underwater vehicles because of the existence of the water current. In order to leverage the strengths of the ZUPT method and the INS/DVL solution, an interactive multiple model (IMM)-aided ZUPT methodology for the INS/DVL-integrated underwater navigation system is proposed. Both the INS/DVL and INS/ZUPT models are constructed and operated in parallel, with weights calculated according to their innovations and innovation covariance matrices. Simulations are conducted to evaluate the proposed algorithm. The results indicate that the IMM-aided ZUPT solution outperforms both the INS/DVL solution and the INS/ZUPT solution in the underwater environment, which can properly distinguish between the ZUPT and non-ZUPT conditions. In addition, during DVL outage, the effectiveness of the proposed algorithm is also verified.

  16. The Integrated Medical Model - Optimizing In-flight Space Medical Systems to Reduce Crew Health Risk and Mission Impacts

    NASA Technical Reports Server (NTRS)

    Kerstman, Eric; Walton, Marlei; Minard, Charles; Saile, Lynn; Myers, Jerry; Butler, Doug; Lyengar, Sriram; Fitts, Mary; Johnson-Throop, Kathy

    2009-01-01

    The Integrated Medical Model (IMM) is a decision support tool used by medical system planners and designers as they prepare for exploration planning activities of the Constellation program (CxP). IMM provides an evidence-based approach to help optimize the allocation of in-flight medical resources for a specified level of risk within spacecraft operational constraints. Eighty medical conditions and associated resources are represented in IMM. Nine conditions are due to Space Adaptation Syndrome. The IMM helps answer fundamental medical mission planning questions such as What medical conditions can be expected? What type and quantity of medical resources are most likely to be used?", and "What is the probability of crew death or evacuation due to medical events?" For a specified mission and crew profile, the IMM effectively characterizes the sequence of events that could potentially occur should a medical condition happen. The mathematical relationships among mission and crew attributes, medical conditions and incidence data, in-flight medical resources, potential clinical and crew health end states are established to generate end state probabilities. A Monte Carlo computational method is used to determine the probable outcomes and requires up to 25,000 mission trials to reach convergence. For each mission trial, the pharmaceuticals and supplies required to diagnose and treat prevalent medical conditions are tracked and decremented. The uncertainty of patient response to treatment is bounded via a best-case, worst-case, untreated case algorithm. A Crew Health Index (CHI) metric, developed to account for functional impairment due to a medical condition, provides a quantified measure of risk and enables risk comparisons across mission scenarios. The use of historical in-flight medical data, terrestrial surrogate data as appropriate, and space medicine subject matter expertise has enabled the development of a probabilistic, stochastic decision support tool capable of optimizing in-flight medical systems based on crew and mission parameters. This presentation will illustrate how to apply quantitative risk assessment methods to optimize the mass and volume of space-based medical systems for a space flight mission given the level of crew health and mission risk.

  17. In-Source Reduction of Disulfide-Bonded Peptides Monitored by Ion Mobility Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Stocks, Bradley B.; Melanson, Jeremy E.

    2018-02-01

    Many peptides with antimicrobial activity and/or therapeutic potential contain disulfide bonds as a means to enhance stability, and their quantitation is often performed using electrospray ionization mass spectrometry (ESI-MS). Disulfides can be reduced during ESI under commonly used instrument conditions, which has the potential to hinder accurate peptide quantitation. We demonstrate that this in-source reduction (ISR) is predominantly observed for peptides infused from acidic solutions and subjected to elevated ESI voltages (3-4 kV). ISR is readily apparent in the mass spectrum of oxytocin—a small, single disulfide-containing peptide. However, subtle m/z shifts due to partial ISR of highly charged (z ≥ 3) peptides with multiple disulfide linkages may proceed unnoticed. Ion mobility (IM)-MS separates ions on the basis of charge and shape in the gas phase, and using insulin as a model system, we show that IM-MS arrival time distributions (ATDs) are particularly sensitive to partial ISR of large peptides. Isotope modeling allows for the relative quantitation of disulfide-intact and partially reduced states of the mobility-separated peptide conformers. Interestingly, hepcidin peptides ionized from acidic solutions at elevated ESI voltages undergo gas-phase compaction, ostensibly due to partial disulfide ISR. Our IM-MS results lead us to propose that residual acid is the likely cause of disparate ATDs recently measured for hepcidin from different suppliers [Anal. Bioanal. Chem. 409, 2559-2567 (2017)]. Overall, our results demonstrate the utility of IM-MS to detect partial ISR of disulfide-bonded peptides and reinforce the notion that peptide/protein measurements should be carried out using minimally activating instrument conditions. [Figure not available: see fulltext.

  18. Mass and Volume Optimization of Space Flight Medical Kits

    NASA Technical Reports Server (NTRS)

    Keenan, A. B.; Foy, Millennia Hope; Myers, Jerry

    2014-01-01

    Resource allocation is a critical aspect of space mission planning. All resources, including medical resources, are subject to a number of mission constraints such a maximum mass and volume. However, unlike many resources, there is often limited understanding in how to optimize medical resources for a mission. The Integrated Medical Model (IMM) is a probabilistic model that estimates medical event occurrences and mission outcomes for different mission profiles. IMM simulates outcomes and describes the impact of medical events in terms of lost crew time, medical resource usage, and the potential for medically required evacuation. Previously published work describes an approach that uses the IMM to generate optimized medical kits that maximize benefit to the crew subject to mass and volume constraints. We improve upon the results obtained previously and extend our approach to minimize mass and volume while meeting some benefit threshold. METHODS We frame the medical kit optimization problem as a modified knapsack problem and implement an algorithm utilizing dynamic programming. Using this algorithm, optimized medical kits were generated for 3 mission scenarios with the goal of minimizing the medical kit mass and volume for a specified likelihood of evacuation or Crew Health Index (CHI) threshold. The algorithm was expanded to generate medical kits that maximize likelihood of evacuation or CHI subject to mass and volume constraints. RESULTS AND CONCLUSIONS In maximizing benefit to crew health subject to certain constraints, our algorithm generates medical kits that more closely resemble the unlimited-resource scenario than previous approaches which leverage medical risk information generated by the IMM. Our work here demonstrates that this algorithm provides an efficient and effective means to objectively allocate medical resources for spaceflight missions and provides an effective means of addressing tradeoffs in medical resource allocations and crew mission success parameters.

  19. The Integrated Medical Model: A Decision Support Tool for In-flight Crew Health Care

    NASA Technical Reports Server (NTRS)

    Butler, Doug

    2009-01-01

    This viewgraph presentation reviews the development of an Integrated Medical Model (IMM) decision support tool for in-flight crew health care safety. Clinical methods, resources, and case scenarios are also addressed.

  20. Investigation of sliding DNA clamp dynamics by single-molecule fluorescence, mass spectrometry and structure-based modeling

    PubMed Central

    Gadkari, Varun V; Harvey, Sophie R; Raper, Austin T; Chu, Wen-Ting; Wang, Jin; Wysocki, Vicki H; Suo, Zucai

    2018-01-01

    Abstract Proliferating cell nuclear antigen (PCNA) is a trimeric ring-shaped clamp protein that encircles DNA and interacts with many proteins involved in DNA replication and repair. Despite extensive structural work to characterize the monomeric, dimeric, and trimeric forms of PCNA alone and in complex with interacting proteins, no structure of PCNA in a ring-open conformation has been published. Here, we use a multidisciplinary approach, including single-molecule Förster resonance energy transfer (smFRET), native ion mobility-mass spectrometry (IM-MS), and structure-based computational modeling, to explore the conformational dynamics of a model PCNA from Sulfolobus solfataricus (Sso), an archaeon. We found that Sso PCNA samples ring-open and ring-closed conformations even in the absence of its clamp loader complex, replication factor C, and transition to the ring-open conformation is modulated by the ionic strength of the solution. The IM-MS results corroborate the smFRET findings suggesting that PCNA dynamics are maintained in the gas phase and further establishing IM-MS as a reliable strategy to investigate macromolecular motions. Our molecular dynamic simulations agree with the experimental data and reveal that ring-open PCNA often adopts an out-of-plane left-hand geometry. Collectively, these results implore future studies to define the roles of PCNA dynamics in DNA loading and other PCNA-mediated interactions. PMID:29529283

  1. Risks from Solar Particle Events for Long Duration Space Missions Outside Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Over, S.; Myers, J.; Ford, J.

    2016-01-01

    The Integrated Medical Model (IMM) simulates the medical occurrences and mission outcomes for various mission profiles using probabilistic risk assessment techniques. As part of the work with the Integrated Medical Model (IMM), this project focuses on radiation risks from acute events during extended human missions outside low Earth orbit (LEO). Of primary importance in acute risk assessment are solar particle events (SPEs), which are low probability, high consequence events that could adversely affect mission outcomes through acute radiation damage to astronauts. SPEs can be further classified into coronal mass ejections (CMEs) and solar flares/impulsive events (Fig. 1). CMEs are an eruption of solar material and have shock enhancements that contribute to make these types of events higher in total fluence than impulsive events.

  2. An IMM-Aided ZUPT Methodology for an INS/DVL Integrated Navigation System

    PubMed Central

    Yao, Yiqing

    2017-01-01

    Inertial navigation system (INS)/Doppler velocity log (DVL) integration is the most common navigation solution for underwater vehicles. Due to the complex underwater environment, the velocity information provided by DVL always contains some errors. To improve navigation accuracy, zero velocity update (ZUPT) technology is considered, which is an effective algorithm for land vehicles to mitigate the navigation error during the pure INS mode. However, in contrast to ground vehicles, the ZUPT solution cannot be used directly for underwater vehicles because of the existence of the water current. In order to leverage the strengths of the ZUPT method and the INS/DVL solution, an interactive multiple model (IMM)-aided ZUPT methodology for the INS/DVL-integrated underwater navigation system is proposed. Both the INS/DVL and INS/ZUPT models are constructed and operated in parallel, with weights calculated according to their innovations and innovation covariance matrices. Simulations are conducted to evaluate the proposed algorithm. The results indicate that the IMM-aided ZUPT solution outperforms both the INS/DVL solution and the INS/ZUPT solution in the underwater environment, which can properly distinguish between the ZUPT and non-ZUPT conditions. In addition, during DVL outage, the effectiveness of the proposed algorithm is also verified. PMID:28872602

  3. Classification of rice (Oryza sativa L. Japonica nipponbare) immunophilins (FKBPs, CYPs) and expression patterns under water stress.

    PubMed

    Ahn, Jun Cheul; Kim, Dae-Won; You, Young Nim; Seok, Min Sook; Park, Jeong Mee; Hwang, Hyunsik; Kim, Beom-Gi; Luan, Sheng; Park, Hong-Seog; Cho, Hye Sun

    2010-11-18

    FK506 binding proteins (FKBPs) and cyclophilins (CYPs) are abundant and ubiquitous proteins belonging to the peptidyl-prolyl cis/trans isomerase (PPIase) superfamily, which regulate much of metabolism through a chaperone or an isomerization of proline residues during protein folding. They are collectively referred to as immunophilin (IMM), being present in almost all cellular organs. In particular, a number of IMMs relate to environmental stresses. FKBP and CYP proteins in rice (Oryza sativa cv. Japonica) were identified and classified, and given the appropriate name for each IMM, considering the ortholog-relation with Arabidopsis and Chlamydomonas or molecular weight of the proteins. 29 FKBP and 27 CYP genes can putatively be identified in rice; among them, a number of genes can be putatively classified as orthologs of Arabidopsis IMMs. However, some genes were novel, did not match with those of Arabidopsis and Chlamydomonas, and several genes were paralogs by genetic duplication. Among 56 IMMs in rice, a significant number are regulated by salt and/or desiccation stress. In addition, their expression levels responding to the water-stress have been analyzed in different tissues, and some subcellular IMMs located by means of tagging with GFP protein. Like other green photosynthetic organisms such as Arabidopsis (23 FKBPs and 29 CYPs) and Chlamydomonas (23 FKBs and 26 CYNs), rice has the highest number of IMM genes among organisms reported so far, suggesting that the numbers relate closely to photosynthesis. Classification of the putative FKBPs and CYPs in rice provides the information about their evolutional/functional significance when comparisons are drawn with the relatively well studied genera, Arabidopsis and Chlamydomonas. In addition, many of the genes upregulated by water stress offer the possibility of manipulating the stress responses in rice.

  4. Beneficial metabolic effects of 2', 3', 5'-tri-acetyl-N6-(3-hydroxylaniline) adenosine in multiple biological matrices and intestinal flora of hyperlipidemic hamsters.

    PubMed

    Li, Tianqi; Sun, Shanshan; Zhang, Jinyue; Qu, Kai; Yang, Liu; Ma, Changlu; Jin, Xiangju; Zhu, Haibo; Wang, Yinghong

    2018-06-21

    ABSTRACT:Hyperlipidemia is one of the main causes of obesity, type 2 diabetes mellitus (T2DM) and atherosclerosis. The adenosine derivative, 2', 3', 5'-tri-acetyl-N6-(3-hydroxylaniline) adenosine (IMM-H007) is an effective lipid-lowering compound that has important implications for the development of lipid-lowering drugs. Metabolomic analysis based on 1H-NMR was used to monitor dynamic changes in diverse biological media including serum, liver, urine, and feces in response to high-fat diet (HFD) and IMM-H007 treatments. Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and gas chromatography (GC) analyses were performed to quantify the bile acids and fatty acids in the liver and feces. Fecal microbiome profiling was performed using Illumina sequencing of the 16S ribosomal RNA (16S rRNA) gene. IMM-H007 improved the metabolism of carbohydrate, ketone bodies, fatty acids, amino acids and bile acids in hyperlipidemic hamsters. The correlation between metabolite changes was explored in different biological media. Significant changes in gut microbiota were observed in the HFD and IMM-H007 treatment groups. In the HFD group at the phylum level, we found high levels of the Firmicutes genus and low levels of Bacteroidetes. In contrast, the administration of IMM-H007 reversed the levels of Firmicutes and Bacteroidetes. This reversal suggested that IMM-H007 may have the ability to regulate the composition of the gut flora. We also analyzed the correlation between the gut flora and the metabolites. Our results indicate that IMM-H007 treatment improves the hyperlipidemic metabolism and the structure of the gut microbiota in hyperlipidemic hamsters.

  5. Combining tabular, rule-based, and procedural knowledge in computer-based guidelines for childhood immunization.

    PubMed

    Miller, P L; Frawley, S J; Sayward, F G; Yasnoff, W A; Duncan, L; Fleming, D W

    1997-06-01

    IMM/Serve is a computer program which implements the clinical guidelines for childhood immunization. IMM/Serve accepts as input a child's immunization history. It then indicates which vaccinations are due and which vaccinations should be scheduled next. The clinical guidelines for immunization are quite complex and are modified quite frequently. As a result, it is important that IMM/Serve's knowledge be represented in a format that facilitates the maintenance of that knowledge as the field evolves over time. To achieve this goal, IMM/Serve uses four representations for different parts of its knowledge base: (1) Immunization forecasting parameters that specify the minimum ages and wait-intervals for each dose are stored in tabular form. (2) The clinical logic that determines which set of forecasting parameters applies for a particular patient in each vaccine series is represented using if-then rules. (3) The temporal logic that combines dates, ages, and intervals to calculate recommended dates, is expressed procedurally. (4) The screening logic that checks each previous dose for validity is performed using a decision table that combines minimum ages and wait intervals with a small amount of clinical logic. A knowledge maintenance tool, IMM/Def, has been developed to help maintain the rule-based logic. The paper describes the design of IMM/Serve and the rationale and role of the different forms of knowledge used.

  6. Long-Term Anti-Allodynic Effect of Immediate Pulsed Radiofrequency Modulation through Down-Regulation of Insulin-Like Growth Factor 2 in a Neuropathic Pain Model.

    PubMed

    Yeh, Chun-Chang; Sun, Hsiao-Lun; Huang, Chi-Jung; Wong, Chih-Shung; Cherng, Chen-Hwan; Huh, Billy Keon; Wang, Jinn-Shyan; Chien, Chih-Cheng

    2015-11-13

    Pulsed radiofrequency (PRF) is effective in the treatment of neuropathic pain in clinical practice. Its application to sites proximal to nerve injury can inhibit the activity of extra-cellular signal-regulated kinase (ERK) for up to 28 days. The spared nerve injury (SNI)+ immPRF group (immediate exposure to PRF for 6 min after SNI) exhibited a greater anti-allodynic effect compared with the control group (SNI alone) or the SNI + postPRF group (application of PRF for 6 min on the 14th day after SNI). Insulin-like growth factor 2 (IGF2) was selected using microarray assays and according to web-based gene ontology annotations in the SNI + immPRF group. An increase in IGF2 and activation of ERK1/2 were attenuated by the immPRF treatment compared with an SNI control group. Using immunofluorescent staining, we detected co-localized phosphorylated ERK1/2 and IGF2 in the dorsal horn regions of rats from the SNI group, where the IGF2 protein predominantly arose in CD11b- or NeuN-positive cells, whereas IGF2 immunoreactivity was not detected in the SNI + immPRF group. Taken together, these results suggest that PRF treatment immediately after nerve injury significantly inhibited the development of neuropathic pain with a lasting effect, most likely through IGF2 down-regulation and the inhibition of ERK1/2 activity primarily in microglial cells.

  7. CoMIC, the hidden dynamics of mitochondrial inner compartments

    PubMed Central

    Cho, Bongki; Sun, Woong

    2017-01-01

    Mitochondria have evolutionarily, functionally and structurally distinct outer- (OMM) and inner-membranes (IMM). Thus, mitochondrial morphology is controlled by independent but coordinated activity of fission and fusion of the OMM and IMM. Constriction and division of the OMM are mediated by endocytosis-like machineries, which include dynamin-related protein 1 with additional cytosolic vesicle scissoring machineries such as actin filament and Dynamin 2. However, structural alteration of the IMM during mitochondrial division has been poorly understood. Recently, we found that the IMM and the inner compartments undergo transient and reversible constriction prior to the OMM division, which we termed CoMIC, Constriction of Mitochondrial Inner Compartment. In this short review, we further discuss the evolutionary perspective and the regulatory mechanism of CoMIC during mitochondrial division. PMID:28803609

  8. CoMIC, the hidden dynamics of mitochondrial inner compartments.

    PubMed

    Cho, Bongki; Sun, Woong

    2017-12-01

    Mitochondria have evolutionarily, functionally and structurally distinct outer- (OMM) and inner-membranes (IMM). Thus, mitochondrial morphology is controlled by independent but coordinated activity of fission and fusion of the OMM and IMM. Constriction and division of the OMM are mediated by endocytosis-like machineries, which include dynamin-related protein 1 with additional cytosolic vesicle scissoring machineries such as actin filament and Dynamin 2. However, structural alteration of the IMM during mitochondrial division has been poorly understood. Recently, we found that the IMM and the inner compartments undergo transient and reversible constriction prior to the OMM division, which we termed CoMIC, Constriction of Mitochondrial Inner Compartment. In this short review, we further discuss the evolutionary perspective and the regulatory mechanism of CoMIC during mitochondrial division. [BMB Reports 2017; 50(12): 597-598].

  9. Infrared measurement and composite tracking algorithm for air-breathing hypersonic vehicles

    NASA Astrophysics Data System (ADS)

    Zhang, Zhao; Gao, Changsheng; Jing, Wuxing

    2018-03-01

    Air-breathing hypersonic vehicles have capabilities of hypersonic speed and strong maneuvering, and thus pose a significant challenge to conventional tracking methodologies. To achieve desirable tracking performance for hypersonic targets, this paper investigates the problems related to measurement model design and tracking model mismatching. First, owing to the severe aerothermal effect of hypersonic motion, an infrared measurement model in near space is designed and analyzed based on target infrared radiation and an atmospheric model. Second, using information from infrared sensors, a composite tracking algorithm is proposed via a combination of the interactive multiple models (IMM) algorithm, fitting dynamics model, and strong tracking filter. During the procedure, the IMMs algorithm generates tracking data to establish a fitting dynamics model of the target. Then, the strong tracking unscented Kalman filter is employed to estimate the target states for suppressing the impact of target maneuvers. Simulations are performed to verify the feasibility of the presented composite tracking algorithm. The results demonstrate that the designed infrared measurement model effectively and continuously observes hypersonic vehicles, and the proposed composite tracking algorithm accurately and stably tracks these targets.

  10. Detecting abandoned objects using interacting multiple models

    NASA Astrophysics Data System (ADS)

    Becker, Stefan; Münch, David; Kieritz, Hilke; Hübner, Wolfgang; Arens, Michael

    2015-10-01

    In recent years, the wide use of video surveillance systems has caused an enormous increase in the amount of data that has to be stored, monitored, and processed. As a consequence, it is crucial to support human operators with automated surveillance applications. Towards this end an intelligent video analysis module for real-time alerting in case of abandoned objects in public spaces is proposed. The overall processing pipeline consists of two major parts. First, person motion is modeled using an Interacting Multiple Model (IMM) filter. The IMM filter estimates the state of a person according to a finite-state, discrete-time Markov chain. Second, the location of persons that stay at a fixed position defines a region of interest, in which a nonparametric background model with dynamic per-pixel state variables identifies abandoned objects. In case of a detected abandoned object, an alarm event is triggered. The effectiveness of the proposed system is evaluated on the PETS 2006 dataset and the i-Lids dataset, both reflecting prototypical surveillance scenarios.

  11. Analyzing slowly exchanging protein conformations by ion mobility mass spectrometry: study of the dynamic equilibrium of prolyl oligopeptidase.

    PubMed

    López, Abraham; Vilaseca, Marta; Madurga, Sergio; Varese, Monica; Tarragó, Teresa; Giralt, Ernest

    2016-07-01

    Ion mobility mass spectrometry (IMMS) is a biophysical technique that allows the separation of isobaric species on the basis of their size and shape. The high separation capacity, sensitivity and relatively fast time scale measurements confer IMMS great potential for the study of proteins in slow (µs-ms) conformational equilibrium in solution. However, the use of this technique for examining dynamic proteins is still not generalized. One of the major limitations is the instability of protein ions in the gas phase, which raises the question as to what extent the structures detected reflect those in solution. Here, we addressed this issue by analyzing the conformational landscape of prolyl oligopeptidase (POP) - a model of a large dynamic enzyme in the µs-ms range - by native IMMS and compared the results obtained in the gas phase with those obtained in solution. In order to interpret the experimental results, we used theoretical simulations. In addition, the stability of POP gaseous ions was explored by charge reduction and collision-induced unfolding experiments. Our experiments disclosed two species of POP in the gas phase, which correlated well with the open and closed conformations in equilibrium in solution; moreover, a gas-phase collapsed form of POP was also detected. Therefore, our findings not only support the potential of IMMS for the study of multiple co-existing conformations of large proteins in slow dynamic equilibrium in solution but also stress the need for careful data analysis to avoid artifacts. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  12. Effects of drift gas on collision cross sections of a protein standard in linear drift tube and traveling wave ion mobility mass spectrometry.

    PubMed

    Jurneczko, Ewa; Kalapothakis, Jason; Campuzano, Iain D G; Morris, Michael; Barran, Perdita E

    2012-10-16

    There has been a significant increase in the use of ion mobility mass spectrometry (IM-MS) to investigate conformations of proteins and protein complexes following electrospray ionization. Investigations which employ traveling wave ion mobility mass spectrometry (TW IM-MS) instrumentation rely on the use of calibrants to convert the arrival times of ions to collision cross sections (CCS) providing "hard numbers" of use to structural biology. It is common to use nitrogen as the buffer gas in TW IM-MS instruments and to calibrate by extrapolating from CCS measured in helium via drift tube (DT) IM-MS. In this work, both DT and TW IM-MS instruments are used to investigate the effects of different drift gases (helium, neon, nitrogen, and argon) on the transport of multiply charged ions of the protein myoglobin, frequently used as a standard in TW IM-MS studies. Irrespective of the drift gas used, recorded mass spectra are found to be highly similar. In contrast, the recorded arrival time distributions and the derived CCS differ greatly. At low charge states (7 ≤ z ≤ 11) where the protein is compact, the CCS scale with the polarizability of the gas; this is also the case for higher charge states (12 ≤ z ≤ 22) where the protein is more unfolded for the heavy gases (neon, argon, and nitrogen) but not the case for helium. This is here interpreted as a different conformational landscape being sampled by the lighter gas and potentially attributable to increased field heating by helium. Under nanoelectrospray ionization (nESI) conditions, where myoglobin is sprayed from an aqueous solution buffered to pH 6.8 with 20 mM ammonium acetate, in the DT IM-MS instrument, each buffer gas can yield a different arrival time distribution (ATD) for any given charge state.

  13. The Integrated Medical Model: A Probabilistic Simulation Model for Predicting In-Flight Medical Risks

    NASA Technical Reports Server (NTRS)

    Keenan, Alexandra; Young, Millennia; Saile, Lynn; Boley, Lynn; Walton, Marlei; Kerstman, Eric; Shah, Ronak; Goodenow, Debra A.; Myers, Jerry G.

    2015-01-01

    The Integrated Medical Model (IMM) is a probabilistic model that uses simulation to predict mission medical risk. Given a specific mission and crew scenario, medical events are simulated using Monte Carlo methodology to provide estimates of resource utilization, probability of evacuation, probability of loss of crew, and the amount of mission time lost due to illness. Mission and crew scenarios are defined by mission length, extravehicular activity (EVA) schedule, and crew characteristics including: sex, coronary artery calcium score, contacts, dental crowns, history of abdominal surgery, and EVA eligibility. The Integrated Medical Evidence Database (iMED) houses the model inputs for one hundred medical conditions using in-flight, analog, and terrestrial medical data. Inputs include incidence, event durations, resource utilization, and crew functional impairment. Severity of conditions is addressed by defining statistical distributions on the dichotomized best and worst-case scenarios for each condition. The outcome distributions for conditions are bounded by the treatment extremes of the fully treated scenario in which all required resources are available and the untreated scenario in which no required resources are available. Upon occurrence of a simulated medical event, treatment availability is assessed, and outcomes are generated depending on the status of the affected crewmember at the time of onset, including any pre-existing functional impairments or ongoing treatment of concurrent conditions. The main IMM outcomes, including probability of evacuation and loss of crew life, time lost due to medical events, and resource utilization, are useful in informing mission planning decisions. To date, the IMM has been used to assess mission-specific risks with and without certain crewmember characteristics, to determine the impact of eliminating certain resources from the mission medical kit, and to design medical kits that maximally benefit crew health while meeting mass and volume constraints.

  14. The Integrated Medical Model: A Probabilistic Simulation Model Predicting In-Flight Medical Risks

    NASA Technical Reports Server (NTRS)

    Keenan, Alexandra; Young, Millennia; Saile, Lynn; Boley, Lynn; Walton, Marlei; Kerstman, Eric; Shah, Ronak; Goodenow, Debra A.; Myers, Jerry G., Jr.

    2015-01-01

    The Integrated Medical Model (IMM) is a probabilistic model that uses simulation to predict mission medical risk. Given a specific mission and crew scenario, medical events are simulated using Monte Carlo methodology to provide estimates of resource utilization, probability of evacuation, probability of loss of crew, and the amount of mission time lost due to illness. Mission and crew scenarios are defined by mission length, extravehicular activity (EVA) schedule, and crew characteristics including: sex, coronary artery calcium score, contacts, dental crowns, history of abdominal surgery, and EVA eligibility. The Integrated Medical Evidence Database (iMED) houses the model inputs for one hundred medical conditions using in-flight, analog, and terrestrial medical data. Inputs include incidence, event durations, resource utilization, and crew functional impairment. Severity of conditions is addressed by defining statistical distributions on the dichotomized best and worst-case scenarios for each condition. The outcome distributions for conditions are bounded by the treatment extremes of the fully treated scenario in which all required resources are available and the untreated scenario in which no required resources are available. Upon occurrence of a simulated medical event, treatment availability is assessed, and outcomes are generated depending on the status of the affected crewmember at the time of onset, including any pre-existing functional impairments or ongoing treatment of concurrent conditions. The main IMM outcomes, including probability of evacuation and loss of crew life, time lost due to medical events, and resource utilization, are useful in informing mission planning decisions. To date, the IMM has been used to assess mission-specific risks with and without certain crewmember characteristics, to determine the impact of eliminating certain resources from the mission medical kit, and to design medical kits that maximally benefit crew health while meeting mass and volume constraints.

  15. Discrimination of Native-like States of Membrane Proteins with Implicit Membrane-based Scoring Functions.

    PubMed

    Dutagaci, Bercem; Wittayanarakul, Kitiyaporn; Mori, Takaharu; Feig, Michael

    2017-06-13

    A scoring protocol based on implicit membrane-based scoring functions and a new protocol for optimizing the positioning of proteins inside the membrane was evaluated for its capacity to discriminate native-like states from misfolded decoys. A decoy set previously established by the Baker lab (Proteins: Struct., Funct., Genet. 2006, 62, 1010-1025) was used along with a second set that was generated to cover higher resolution models. The Implicit Membrane Model 1 (IMM1), IMM1 model with CHARMM 36 parameters (IMM1-p36), generalized Born with simple switching (GBSW), and heterogeneous dielectric generalized Born versions 2 (HDGBv2) and 3 (HDGBv3) were tested along with the new HDGB van der Waals (HDGBvdW) model that adds implicit van der Waals contributions to the solvation free energy. For comparison, scores were also calculated with the distance-scaled finite ideal-gas reference (DFIRE) scoring function. Z-scores for native state discrimination, energy vs root-mean-square deviation (RMSD) correlations, and the ability to select the most native-like structures as top-scoring decoys were evaluated to assess the performance of the scoring functions. Ranking of the decoys in the Baker set that were relatively far from the native state was challenging and dominated largely by packing interactions that were captured best by DFIRE with less benefit of the implicit membrane-based models. Accounting for the membrane environment was much more important in the second decoy set where especially the HDGB-based scoring functions performed very well in ranking decoys and providing significant correlations between scores and RMSD, which shows promise for improving membrane protein structure prediction and refinement applications. The new membrane structure scoring protocol was implemented in the MEMScore web server ( http://feiglab.org/memscore ).

  16. Consistency of immigrant and country-of-birth suicide rates: a meta-analysis.

    PubMed

    Voracek, M; Loibl, L M

    2008-10-01

    Multifaceted evidence (family, twin, adoption, molecular genetic, geographic and surname studies of suicide) suggests genetic risk factors for suicide. Migrant studies are also informative in this context, but underused. In particular, a meta-analysis of the associations of immigrant (IMM) and country-of-birth (COB) suicide rates is unavailable. Thirty-three studies, reporting IMM suicide rates for nearly 50 nationalities in seven host countries (Australia, Austria, Canada, England, the Netherlands, Sweden and the USA), were retrieved. Total-population IMM and COB suicide rates were strongly positively associated (combined rank-order correlation across 20 eligible studies: 0.65, 95% CI: 0.56-0.73, P < 10(-9)). The effect generalized across both sexes, host countries and study periods. Following the logic of the migrant study design of genetic epidemiology, the correspondence of IMM and COB suicide rates is consistent with the assumption of population differences in the prevalence of genetic risk factors for suicide.

  17. High Radiation Resistance IMM Solar Cell

    NASA Technical Reports Server (NTRS)

    Pan, Noren

    2015-01-01

    Due to high launch costs, weight reduction is a key driver for the development of new solar cell technologies suitable for space applications. This project is developing a unique triple-junction inverted metamorphic multijunction (IMM) technology that enables the manufacture of very lightweight, low-cost InGaAsP-based multijunction solar cells. This IMM technology consists of indium (In) and phosphorous (P) solar cell active materials, which are designed to improve the radiation-resistant properties of the triple-junction solar cell while maintaining high efficiency. The intrinsic radiation hardness of InP materials makes them of great interest for building solar cells suitable for deployment in harsh radiation environments, such as medium Earth orbit and missions to the outer planets. NASA Glenn's recently developed epitaxial lift-off (ELO) process also will be applied to this new structure, which will enable the fabrication of the IMM structure without the substrate.

  18. Research of maneuvering target prediction and tracking technology based on IMM algorithm

    NASA Astrophysics Data System (ADS)

    Cao, Zheng; Mao, Yao; Deng, Chao; Liu, Qiong; Chen, Jing

    2016-09-01

    Maneuvering target prediction and tracking technology is widely used in both military and civilian applications, the study of those technologies is all along the hotspot and difficulty. In the Electro-Optical acquisition-tracking-pointing system (ATP), the primary traditional maneuvering targets are ballistic target, large aircraft and other big targets. Those targets have the features of fast velocity and a strong regular trajectory and Kalman Filtering and polynomial fitting have good effects when they are used to track those targets. In recent years, the small unmanned aerial vehicles developed rapidly for they are small, nimble and simple operation. The small unmanned aerial vehicles have strong maneuverability in the observation system of ATP although they are close-in, slow and small targets. Moreover, those vehicles are under the manual operation, therefore, the acceleration of them changes greatly and they move erratically. So the prediction and tracking precision is low when traditional algorithms are used to track the maneuvering fly of those targets, such as speeding up, turning, climbing and so on. The interacting multiple model algorithm (IMM) use multiple models to match target real movement trajectory, there are interactions between each model. The IMM algorithm can switch model based on a Markov chain to adapt to the change of target movement trajectory, so it is suitable to solve the prediction and tracking problems of the small unmanned aerial vehicles because of the better adaptability of irregular movement. This paper has set up model set of constant velocity model (CV), constant acceleration model (CA), constant turning model (CT) and current statistical model. And the results of simulating and analyzing the real movement trajectory data of the small unmanned aerial vehicles show that the prediction and tracking technology based on the interacting multiple model algorithm can get relatively lower tracking error and improve tracking precision comparing with traditional algorithms.

  19. Constrained State Estimation for Individual Localization in Wireless Body Sensor Networks

    PubMed Central

    Feng, Xiaoxue; Snoussi, Hichem; Liang, Yan; Jiao, Lianmeng

    2014-01-01

    Wireless body sensor networks based on ultra-wideband radio have recently received much research attention due to its wide applications in health-care, security, sports and entertainment. Accurate localization is a fundamental problem to realize the development of effective location-aware applications above. In this paper the problem of constrained state estimation for individual localization in wireless body sensor networks is addressed. Priori knowledge about geometry among the on-body nodes as additional constraint is incorporated into the traditional filtering system. The analytical expression of state estimation with linear constraint to exploit the additional information is derived. Furthermore, for nonlinear constraint, first-order and second-order linearizations via Taylor series expansion are proposed to transform the nonlinear constraint to the linear case. Examples between the first-order and second-order nonlinear constrained filters based on interacting multiple model extended kalman filter (IMM-EKF) show that the second-order solution for higher order nonlinearity as present in this paper outperforms the first-order solution, and constrained IMM-EKF obtains superior estimation than IMM-EKF without constraint. Another brownian motion individual localization example also illustrates the effectiveness of constrained nonlinear iterative least square (NILS), which gets better filtering performance than NILS without constraint. PMID:25390408

  20. FGF 19 and Bile Acids Increase Following Roux-en-Y Gastric Bypass but Not After Medical Management in Patients with Type 2 Diabetes.

    PubMed

    Sachdev, Saachi; Wang, Qi; Billington, Charles; Connett, John; Ahmed, Leaque; Inabnet, William; Chua, Streamson; Ikramuddin, Sayeed; Korner, Judith

    2016-05-01

    This study aims to quantify changes in fibroblast growth factor 19 (FGF19) and bile acids (BAs) in patients with uncontrolled type 2 diabetes randomized to Roux-en-Y gastric bypass (RYGB) vs intensive medical management (IMM) and matched for similar reduction in HbA1c after 1 year of treatment. Blood samples were drawn from patients who underwent a test meal challenge before and 1 year after IMM (n = 15) or RYGB (n = 15). Mean HbA1c decreased from 9.7 to 6.4% after RYGB and from 9.1 to 6.1% in the IMM group. At 12 months, the number of diabetes medications used per subject in the RYGB group (2.5 ± 0.5) was less than in the IMM group (4.6 ± 0.3). After RYGB, FGF19 increased in the fasted (93 ± 15 to 152 ± 19 pg/ml; P = 0.008) and postprandial states (area under the curve (AUC), 10.8 ± 1.9 to 23.4 ± 4.1 pg × h/ml × 10(3); P = 0.006) but remained unchanged following IMM. BAs increased after RYGB (AUC ×10(3), 6.63 ± 1.3 to 15.16 ± 2.56 μM × h; P = 0.003) and decreased after IMM (AUC ×10(3), 8.22 ± 1.24 to 5.70 ± 0.70; P = 0.01). No changes were observed in the ratio of 12α-hydroxylated/non-12α-hyroxylated BAs. Following RYGB, FGF19 AUC correlated with BAs (r = 0.54, P = 0.04) and trended negatively with HbA1c (r = -0.44; P = 0.09); these associations were not observed after IMM. BA and FGF19 levels increased after RYGB but not after IMM in subjects who achieved similar improvement in glycemic control. Further studies are necessary to determine whether these hormonal changes facilitate improved glucose homeostasis.

  1. Multi-Sensor Fusion with Interacting Multiple Model Filter for Improved Aircraft Position Accuracy

    PubMed Central

    Cho, Taehwan; Lee, Changho; Choi, Sangbang

    2013-01-01

    The International Civil Aviation Organization (ICAO) has decided to adopt Communications, Navigation, and Surveillance/Air Traffic Management (CNS/ATM) as the 21st century standard for navigation. Accordingly, ICAO members have provided an impetus to develop related technology and build sufficient infrastructure. For aviation surveillance with CNS/ATM, Ground-Based Augmentation System (GBAS), Automatic Dependent Surveillance-Broadcast (ADS-B), multilateration (MLAT) and wide-area multilateration (WAM) systems are being established. These sensors can track aircraft positions more accurately than existing radar and can compensate for the blind spots in aircraft surveillance. In this paper, we applied a novel sensor fusion method with Interacting Multiple Model (IMM) filter to GBAS, ADS-B, MLAT, and WAM data in order to improve the reliability of the aircraft position. Results of performance analysis show that the position accuracy is improved by the proposed sensor fusion method with the IMM filter. PMID:23535715

  2. Multi-sensor fusion with interacting multiple model filter for improved aircraft position accuracy.

    PubMed

    Cho, Taehwan; Lee, Changho; Choi, Sangbang

    2013-03-27

    The International Civil Aviation Organization (ICAO) has decided to adopt Communications, Navigation, and Surveillance/Air Traffic Management (CNS/ATM) as the 21st century standard for navigation. Accordingly, ICAO members have provided an impetus to develop related technology and build sufficient infrastructure. For aviation surveillance with CNS/ATM, Ground-Based Augmentation System (GBAS), Automatic Dependent Surveillance-Broadcast (ADS-B), multilateration (MLAT) and wide-area multilateration (WAM) systems are being established. These sensors can track aircraft positions more accurately than existing radar and can compensate for the blind spots in aircraft surveillance. In this paper, we applied a novel sensor fusion method with Interacting Multiple Model (IMM) filter to GBAS, ADS-B, MLAT, and WAM data in order to improve the reliability of the aircraft position. Results of performance analysis show that the position accuracy is improved by the proposed sensor fusion method with the IMM filter.

  3. Roux-en-Y Gastric Bypass versus Intensive Medical Management for the Control of Type 2 Diabetes, Hypertension and Hyperlipidemia: An International, Multicenter, Randomized Trial

    PubMed Central

    Ikramuddin, Sayeed; Korner, Judith; Lee, Wei-Jei; Connett, John E.; Inabnet, William B.; Billington, Charles B.; Thomas, Avis J.; Leslie, Daniel B.; Chong, Keong; Jeffery, Robert W.; Ahmed, Leaque; Vella, Adrian; Chuang, Lee-Ming; Bessler, Marc; Sarr, Michael G.; Swain, James M.; Laqua, Patricia; Jensen, Michael D.; Bantle, John P.

    2014-01-01

    Context Guideline directed care for diabetes calls for control of glycemia, blood pressure and cholesterol (composite goal). Most patients treated medically do not reach this goal. Objective Determine the efficacy and safety of Roux-en-Y gastric bypass (RYGB) added to lifestyle modification and intensive medical management (LS/IMM) to achieve control of all 3 endpoints. Design Two-arm unblinded randomized clinical trial with 120 participants. The primary endpoint of the composite outcome was assessed at 12 months. The study began in April 2008 and completed one year follow-up in all participants in December 2012. Setting Four academic teaching hospitals in the U.S. and Taiwan, involving five operating surgeons. Participants Inclusion criteria for the Diabetes Surgery Study (DSS) included HbA1c ≥ 8.0%, BMI 30.0-39.9 kg/m2, diagnosis and treatment of type 2 diabetes for at least six months, and stimulated C peptide > 1.0 ng/ml. Interventions All patients received lifestyle intervention modeled after the Look AHEAD study. Medications for hyperglycemia, hypertension, and dyslipidemia were prescribed according to protocol. RYGB techniques were standardized. Main Outcome Measure Attainment of a composite goal: HbA1c < 7.0%, LDL-C < 100 mg/dl, and SBP < 130 mmHg. Results One hundred and twenty participants were randomized with equal probability into LS/IMM or RYGB (60 in each group). Baseline characteristics were similar between groups. Mean BMI was 34.6 kg/m2 (95% CI 29.2 to 40.8 kg/m2) with 71 (59%; 95% CI 50% to 68%) participants having BMI < 35 kg/m2, and mean HbA1c was 9.6% (95% CI 9.4% to 9.8%). At 12 months the followup rate was 95%, and 11 (19%) in the LS/IMM group and 28 (49%) in the RYGB group achieved the primary endpoint (OR = 4.8, 95% CI 1.9 to 11.6). RYGB participants required 3.1 fewer medications than LS/IMM (4.8 versus 1.7, 95% CI -3.6 to -2.3). Weight loss was 7.9% LS/IMM vs. 26.1% RYGB (difference 18.2% 95% CI 14.2% to 20.7%). Regression analyses indicate that achieving the composite endpoint was primarily attributable to weight loss. There were 22 serious adverse events in the RYGB group, including one cardiovascular event, and 15 in the LS/IMM group. There were 4 peri-operative complications and 6 late postoperative complications in the RYGB group. Nutritional deficiency of iron, vitamin B12 and albumin were observed more frequently with RYGB. Conclusions In mild to moderately obese patients with type 2 diabetes addition of RYGB to LS/IMM resulted in greater likelihood of achieving the composite treatment goal. RYGB participants required fewer medications but had more complications. PMID:23736733

  4. Estimating the Risk of Renal Stone Events during Long-Duration Spaceflight

    NASA Technical Reports Server (NTRS)

    Reyes, David; Kerstman, Eric; Gray, Gary; Locke, James

    2014-01-01

    Introduction: Given the bone loss and increased urinary calcium excretion in the microgravity environment, persons participating in long-duration spaceflight may have an increased risk for renal stone formation. Renal stones are often an incidental finding of abdominal imaging studies done for other reasons. Thus, some crewmembers may have undiscovered, asymptomatic stones prior to their mission. Methods: An extensive literature search was conducted concerning the natural history of asymptomatic renal stones. For comparison, simulations were done using the Integrated Medical Model (IMM). The IMM is an evidence-based decision support tool that provides risk analysis and has the capability to optimize medical systems for missions by minimizing the occurrence of adverse mission outcomes such as evacuation and loss of crew life within specified mass and volume constraints. Results: The literature of the natural history of asymptomatic renal stones in the general medical population shows that the probability of symptomatic event is 8% to 34% at 1 to 3 years for stones < 7 mm. Extrapolated to a 6-month mission, for stones < 5 to 7 mm, the risk for any stone event is about 4 to 6%, with a 0.7% to 4% risk for intervention, respectively. IMM simulations compare favorably with risk estimates garnered from the terrestrial literature. The IMM forecasts that symptomatic renal stones may be one of the top drivers for medical evacuation of an International Space Station (ISS) mission. Discussion: Although the likelihood of a stone event is low, the consequences could be severe due to limitations of current ISS medical capabilities. Therefore, these risks need to be quantified to aid planning, limit crew morbidity and mitigate mission impacts. This will be especially critical for missions beyond earth orbit, where evacuation may not be an option.

  5. Estimating the Risk of Renal Stone Events During Long-Duration Spaceflight

    NASA Technical Reports Server (NTRS)

    Reyes, David; Kerstman, Eric; Locke, James

    2014-01-01

    Introduction: Given the bone loss and increased urinary calcium excretion in the microgravity environment, persons participating in long-duration spaceflight may have an increased risk for renal stone formation. Renal stones are often an incidental finding of abdominal imaging studies done for other reasons. Thus, some crewmembers may have undiscovered, asymptomatic stones prior to their mission. Methods: An extensive literature search was conducted concerning the natural history of asymptomatic renal stones. For comparison, simulations were done using the Integrated Medical Model (IMM). The IMM is an evidence-based decision support tool that provides risk analysis and has the capability to optimize medical systems for missions by minimizing the occurrence of adverse mission outcomes such as evacuation and loss of crew life within specified mass and volume constraints. Results: The literature of the natural history of asymptomatic renal stones in the general medical population shows that the probability of symptomatic event is 8% to 34% at 1 to 3 years for stones < 7 mm. Extrapolated to a 6-month mission, for stones < 5 to 7 mm, the risk for any stone event is about 4 to 6%, with a 0.7% to 4% risk for intervention, respectively. IMM simulations compare favorably with risk estimates garnered from the terrestrial literature. The IMM forecasts that symptomatic renal stones may be one of the top drivers for medical evacuation of an International Space Station (ISS) mission. Discussion: Although the likelihood of a stone event is low, the consequences could be severe due to limitations of current ISS medical capabilities. Therefore, these risks need to be quantified to aid planning, limit crew morbidity and mitigate mission impacts. This will be especially critical for missions beyond earth orbit, where evacuation may not be an option.

  6. Comparison of Different Ion Mobility Setups Using Poly (Ethylene Oxide) PEO Polymers: Drift Tube, TIMS, and T-Wave

    NASA Astrophysics Data System (ADS)

    Haler, Jean R. N.; Massonnet, Philippe; Chirot, Fabien; Kune, Christopher; Comby-Zerbino, Clothilde; Jordens, Jan; Honing, Maarten; Mengerink, Ynze; Far, Johann; Dugourd, Philippe; De Pauw, Edwin

    2018-01-01

    Over the years, polymer analyses using ion mobility-mass spectrometry (IM-MS) measurements have been performed on different ion mobility spectrometry (IMS) setups. In order to be able to compare literature data taken on different IM(-MS) instruments, ion heating and ion temperature evaluations have already been explored. Nevertheless, extrapolations to other analytes are difficult and thus straightforward same-sample instrument comparisons seem to be the only reliable way to make sure that the different IM(-MS) setups do not greatly change the gas-phase behavior. We used a large range of degrees of polymerization (DP) of poly(ethylene oxide) PEO homopolymers to measure IMS drift times on three different IM-MS setups: a homemade drift tube (DT), a trapped (TIMS), and a traveling wave (T-Wave) IMS setup. The drift time evolutions were followed for increasing polymer DPs (masses) and charge states, and they are found to be comparable and reproducible on the three instruments. [Figure not available: see fulltext.

  7. 48 CFR 208.7003-1 - Assignments under integrated materiel management (IMM).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 3 2014-10-01 2014-10-01 false Assignments under integrated materiel management (IMM). 208.7003-1 Section 208.7003-1 Federal Acquisition Regulations System... SUPPLIES AND SERVICES Coordinated Acquisition 208.7003-1 Assignments under integrated materiel management...

  8. 48 CFR 208.7003-1 - Assignments under integrated materiel management (IMM).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 3 2011-10-01 2011-10-01 false Assignments under integrated materiel management (IMM). 208.7003-1 Section 208.7003-1 Federal Acquisition Regulations System... SUPPLIES AND SERVICES Coordinated Acquisition 208.7003-1 Assignments under integrated materiel management...

  9. 48 CFR 208.7003-1 - Assignments under integrated materiel management (IMM).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 3 2012-10-01 2012-10-01 false Assignments under integrated materiel management (IMM). 208.7003-1 Section 208.7003-1 Federal Acquisition Regulations System... SUPPLIES AND SERVICES Coordinated Acquisition 208.7003-1 Assignments under integrated materiel management...

  10. 48 CFR 208.7003-1 - Assignments under integrated materiel management (IMM).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Assignments under integrated materiel management (IMM). 208.7003-1 Section 208.7003-1 Federal Acquisition Regulations System... SUPPLIES AND SERVICES Coordinated Acquisition 208.7003-1 Assignments under integrated materiel management...

  11. 48 CFR 208.7003-1 - Assignments under integrated materiel management (IMM).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 3 2013-10-01 2013-10-01 false Assignments under integrated materiel management (IMM). 208.7003-1 Section 208.7003-1 Federal Acquisition Regulations System... SUPPLIES AND SERVICES Coordinated Acquisition 208.7003-1 Assignments under integrated materiel management...

  12. Clinical evaluation of a Mucorales-specific real-time PCR assay in tissue and serum samples.

    PubMed

    Springer, Jan; Lackner, Michaela; Ensinger, Christian; Risslegger, Brigitte; Morton, Charles Oliver; Nachbaur, David; Lass-Flörl, Cornelia; Einsele, Hermann; Heinz, Werner J; Loeffler, Juergen

    2016-12-01

    Molecular diagnostic assays can accelerate the diagnosis of fungal infections and subsequently improve patient outcomes. In particular, the detection of infections due to Mucorales is still challenging for laboratories and physicians. The aim of this study was to evaluate a probe-based Mucorales-specific real-time PCR assay (Muc18S) using tissue and serum samples from patients suffering from invasive mucormycosis (IMM). This assay can detect a broad range of clinically relevant Mucorales species and can be used to complement existing diagnostic tests or to screen high-risk patients. An advantage of the Muc18S assay is that it exclusively detects Mucorales species allowing the diagnosis of Mucorales DNA without sequencing within a few hours. In paraffin-embedded tissue samples this PCR-based method allowed rapid identification of Mucorales in comparison with standard methods and showed 91 % sensitivity in the IMM tissue samples. We also evaluated serum samples, an easily accessible material, from patients at risk from IMM. Mucorales DNA was detected in all patients with probable/proven IMM (100 %) and in 29 % of the possible cases. Detection of IMM in serum could enable an earlier diagnosis (up to 21 days) than current methods including tissue samples, which were gained mainly post-mortem. A screening strategy for high-risk patients, which would enable targeted treatment to improve patient outcomes, is therefore possible.

  13. Broadband ion mobility deconvolution for rapid analysis of complex mixtures.

    PubMed

    Pettit, Michael E; Brantley, Matthew R; Donnarumma, Fabrizio; Murray, Kermit K; Solouki, Touradj

    2018-05-04

    High resolving power ion mobility (IM) allows for accurate characterization of complex mixtures in high-throughput IM mass spectrometry (IM-MS) experiments. We previously demonstrated that pure component IM-MS data can be extracted from IM unresolved post-IM/collision-induced dissociation (CID) MS data using automated ion mobility deconvolution (AIMD) software [Matthew Brantley, Behrooz Zekavat, Brett Harper, Rachel Mason, and Touradj Solouki, J. Am. Soc. Mass Spectrom., 2014, 25, 1810-1819]. In our previous reports, we utilized a quadrupole ion filter for m/z-isolation of IM unresolved monoisotopic species prior to post-IM/CID MS. Here, we utilize a broadband IM-MS deconvolution strategy to remove the m/z-isolation requirement for successful deconvolution of IM unresolved peaks. Broadband data collection has throughput and multiplexing advantages; hence, elimination of the ion isolation step reduces experimental run times and thus expands the applicability of AIMD to high-throughput bottom-up proteomics. We demonstrate broadband IM-MS deconvolution of two separate and unrelated pairs of IM unresolved isomers (viz., a pair of isomeric hexapeptides and a pair of isomeric trisaccharides) in a simulated complex mixture. Moreover, we show that broadband IM-MS deconvolution improves high-throughput bottom-up characterization of a proteolytic digest of rat brain tissue. To our knowledge, this manuscript is the first to report successful deconvolution of pure component IM and MS data from an IM-assisted data-independent analysis (DIA) or HDMSE dataset.

  14. Using Interactive Multimedia to Teach Pedestrian Safety: An Exploratory Study

    ERIC Educational Resources Information Center

    Glang, Ann; Noell, John; Ary, Dennis; Swartz, Lynne

    2005-01-01

    Objectives: To evaluate an interactive multimedia (IMM) program that teaches young children safe pedestrian skills. Methods: The program uses IMM (animation and video) to teach children critical skills for crossing streets safely. A computer-delivered video assessment and a real-life street simulation were used to measure the effectiveness of the…

  15. Food safety education using an interactive multimedia kiosk in a WIC setting: correlates of client satisfaction and practical issues.

    PubMed

    Trepka, Mary Jo; Newman, Frederick L; Huffman, Fatma G; Dixon, Zisca

    2010-01-01

    To assess acceptability of food safety education delivered by interactive multimedia (IMM) in a Supplemental Nutrition Program for Women, Infants and Children Program (WIC) clinic. Female clients or caregivers (n=176) completed the food-handling survey; then an IMM food safety education program on a computer kiosk. Satisfaction with program, participant demographics, and change in food-handling behavior were assessed by univariate analyses. Over 90% of the participants enjoyed the kiosk, and most (87.5%) reported using computers a lot. Compared with participants with education beyond high school, participants with less education were more likely to report enjoying the kiosk (98.2% vs 88.1%, P = .007), preferred learning with the kiosk (91.7% vs 79.1%, P = .02), and would like to learn about other topics using IMM (95.4% vs 86.6%, P = .04). Food safety education delivered by IMM was well accepted by inner-city WIC clinic clients, including those with less education. Copyright 2010 Society for Nutrition Education. Published by Elsevier Inc. All rights reserved.

  16. Fingernail Injuries and NASA's Integrated Medical Model

    NASA Technical Reports Server (NTRS)

    Kerstman, Eric; Butler, Doug

    2008-01-01

    The goal of space medicine is to optimize both crew health and performance. Currently, expert opinion is primarily relied upon for decision-making regarding medical equipment and supplies flown in space. Evidence-based decisions are preferred due to mass and volume limitations and the expense of space flight. The Integrated Medical Model (IMM) is an attempt to move us in that direction!

  17. Multi-Sensor Fusion with Interaction Multiple Model and Chi-Square Test Tolerant Filter.

    PubMed

    Yang, Chun; Mohammadi, Arash; Chen, Qing-Wei

    2016-11-02

    Motivated by the key importance of multi-sensor information fusion algorithms in the state-of-the-art integrated navigation systems due to recent advancements in sensor technologies, telecommunication, and navigation systems, the paper proposes an improved and innovative fault-tolerant fusion framework. An integrated navigation system is considered consisting of four sensory sub-systems, i.e., Strap-down Inertial Navigation System (SINS), Global Navigation System (GPS), the Bei-Dou2 (BD2) and Celestial Navigation System (CNS) navigation sensors. In such multi-sensor applications, on the one hand, the design of an efficient fusion methodology is extremely constrained specially when no information regarding the system's error characteristics is available. On the other hand, the development of an accurate fault detection and integrity monitoring solution is both challenging and critical. The paper addresses the sensitivity issues of conventional fault detection solutions and the unavailability of a precisely known system model by jointly designing fault detection and information fusion algorithms. In particular, by using ideas from Interacting Multiple Model (IMM) filters, the uncertainty of the system will be adjusted adaptively by model probabilities and using the proposed fuzzy-based fusion framework. The paper also addresses the problem of using corrupted measurements for fault detection purposes by designing a two state propagator chi-square test jointly with the fusion algorithm. Two IMM predictors, running in parallel, are used and alternatively reactivated based on the received information form the fusion filter to increase the reliability and accuracy of the proposed detection solution. With the combination of the IMM and the proposed fusion method, we increase the failure sensitivity of the detection system and, thereby, significantly increase the overall reliability and accuracy of the integrated navigation system. Simulation results indicate that the proposed fault tolerant fusion framework provides superior performance over its traditional counterparts.

  18. Multi-Sensor Fusion with Interaction Multiple Model and Chi-Square Test Tolerant Filter

    PubMed Central

    Yang, Chun; Mohammadi, Arash; Chen, Qing-Wei

    2016-01-01

    Motivated by the key importance of multi-sensor information fusion algorithms in the state-of-the-art integrated navigation systems due to recent advancements in sensor technologies, telecommunication, and navigation systems, the paper proposes an improved and innovative fault-tolerant fusion framework. An integrated navigation system is considered consisting of four sensory sub-systems, i.e., Strap-down Inertial Navigation System (SINS), Global Navigation System (GPS), the Bei-Dou2 (BD2) and Celestial Navigation System (CNS) navigation sensors. In such multi-sensor applications, on the one hand, the design of an efficient fusion methodology is extremely constrained specially when no information regarding the system’s error characteristics is available. On the other hand, the development of an accurate fault detection and integrity monitoring solution is both challenging and critical. The paper addresses the sensitivity issues of conventional fault detection solutions and the unavailability of a precisely known system model by jointly designing fault detection and information fusion algorithms. In particular, by using ideas from Interacting Multiple Model (IMM) filters, the uncertainty of the system will be adjusted adaptively by model probabilities and using the proposed fuzzy-based fusion framework. The paper also addresses the problem of using corrupted measurements for fault detection purposes by designing a two state propagator chi-square test jointly with the fusion algorithm. Two IMM predictors, running in parallel, are used and alternatively reactivated based on the received information form the fusion filter to increase the reliability and accuracy of the proposed detection solution. With the combination of the IMM and the proposed fusion method, we increase the failure sensitivity of the detection system and, thereby, significantly increase the overall reliability and accuracy of the integrated navigation system. Simulation results indicate that the proposed fault tolerant fusion framework provides superior performance over its traditional counterparts. PMID:27827832

  19. Best cost-effectiveness and worker productivity with initial triple DMARD therapy compared with methotrexate monotherapy in early rheumatoid arthritis: cost-utility analysis of the tREACH trial.

    PubMed

    de Jong, Pascal H P; Hazes, Johanna M; Buisman, Leander R; Barendregt, Pieternella J; van Zeben, Derkjen; van der Lubbe, Peter A; Gerards, Andreas H; de Jager, Mike H; de Sonnaville, Peter B J; Grillet, Bernard A; Luime, Jolanda J; Weel, Angelique E A M

    2016-12-01

    To evaluate direct and indirect costs per quality adjusted life year (QALY) for different initial treatment strategies in very early RA. The 1-year data of the treatment in the Rotterdam Early Arthritis Cohort trial were used. Patients with a high probability (>70%) according to their likelihood of progressing to persistent arthritis, based on the prediction model of Visser, were randomized into one of following initial treatment strategies: (A) initial triple DMARD therapy (iTDT) with glucocorticoids (GCs) intramuscular (n = 91); (B) iTDT with an oral GC tapering scheme (n = 93); and (C) initial MTX monotherapy (iMM) with GCs similar to B (n = 97). Data on QALYs, measured with the Dutch EuroQol, and direct and indirect cost were used. Direct costs are costs of treatment and medical consumption, whereas indirect costs are costs due to loss of productivity. Average QALYs (sd) for A, B and C were, respectively, 0.75 (0.12), 0.75 (0.10) and 0.73 (0.13) for Dutch EuroQol. Highest total costs per QALY (sd) were, respectively, €12748 (€18767), €10 380 (€15 608) and €17 408 (€21 828) for strategy A, B and C (P = 0.012, B vs C). Direct as well as indirect costs were higher with iMM (strategy C) compared with iTDT (strategy B). Higher direct costs were due to ∼40% more biologic usage over time. Higher indirect costs, on the other hand, were caused by more long-term sickness and reduction in contract hours. iTDT was >95% cost-effective across all willingness-to-pay thresholds compared with iMM. iTDT was more cost-effective and had better worker productivity compared with iMM. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Improving the Effectiveness of Penicillin Allergy De-labeling.

    PubMed

    Bourke, Jack; Pavlos, Rebecca; James, Ian; Phillips, Elizabeth

    2015-01-01

    Approximately 10-20% of hospitalized patients are labeled as penicillin allergic, and this is associated with significant health and economic costs. We looked at the effectiveness of penicillin allergy de-labeling in clinical practice with the aim of deriving risk stratification models to guide testing strategies. Consecutive patients aged 15 years or more, referred to a Western Australian public hospital drug allergy service between 2008 and 2013 for beta-lactam allergy, were included. Follow-up surveys were conducted. Results of skin prick testing and intradermal testing (SPT/IDT) and oral challenge (OC), and follow-up of post testing antibiotic usage were the main outcomes. SPT/IDT was performed in 401 consecutive patients with immediate (IMM) (≤ 1 hour) (n = 151) and nonimmediate (NIM) (>1 hour) (n = 250) reactions. Of 341 patients, 42 (12.3%) were SPT/IDT+ to ≥ 1 penicillin reagents, including 35/114 (30.4%) in the IMM group and 7/227 (3.1%) in the NIM group (P < .0001). Of 355 SPT/IDT patients, 3 (0.8%), all in the IMM group, had nonserious positive OC reactions to single dose penicillin VK (SPT/IDT negative predictive value [NPV] 99.2%). Selective or unrestricted beta-lactam was recommended in almost 90% overall, including 238/250 (95.2%) in the NIM group and 126/151 (83.4%) in the IMM group (P = .0001). Of 182 patients, 137 (75.3%) were following the allergy label modifications (ALM) at the time of follow-up. Penicillin SPT/IDT/OC safely de-labels penicillin-allergic patients and identifies selective beta-lactam allergies; however, incomplete adherence to ALM recommendations impairs effectiveness. Infrequent SPT/IDT+ and absent OC reactions in patients with NIM reactions suggest OC alone to be a safe and cost-effective de-labeling strategy that could improve the coverage of penicillin allergy de-labeling in lower risk populations. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  1. Inner Mitochondrial Membrane Disruption Links Apoptotic and Agonist-Initiated Phosphatidylserine Externalization in Platelets.

    PubMed

    Choo, Hyo-Jung; Kholmukhamedov, Andaleb; Zhou, ChengZing; Jobe, Shawn

    2017-08-01

    Phosphatidylserine exposure mediates platelet procoagulant function and regulates platelet life span. Apoptotic, necrotic, and integrin-mediated mechanisms have been implicated as intracellular determinants of platelet phosphatidylserine exposure. Here, we investigate (1) the role of mitochondrial events in platelet phosphatidylserine exposure initiated by these distinct stimuli and (2) the cellular interactions of the procoagulant platelet in vitro and in vivo. Key mitochondrial events were examined, including cytochrome c release and inner mitochondrial membrane (IMM) disruption. In both ABT-737 (apoptotic) and agonist (necrotic)-treated platelets, phosphatidylserine externalization was temporally correlated with IMM disruption. Agonist stimulation resulted in rapid cyclophilin D-dependent IMM disruption that coincided with phosphatidylserine exposure. ABT-737 treatment caused rapid cytochrome c release, eventually followed by caspase-dependent IMM disruption that again closely coincided with phosphatidylserine exposure. A nonmitochondrial and integrin-mediated mechanism has been implicated in the formation of a novel phosphatidylserine-externalizing platelet subpopulation. Using image cytometry, this subpopulation is demonstrated to be the result of the interaction of an aggregatory platelet and a procoagulant platelet rather than indicative of a novel intracellular mechanism regulating platelet phosphatidylserine externalization. Using electron microscopy, similar interactions between aggregatory and procoagulant platelets are demonstrated in vitro and in vivo within a mesenteric vein hemostatic thrombus. Platelet phosphatidylserine externalization is closely associated with the mitochondrial event of IMM disruption identifying a common pathway in phosphatidylserine-externalizing platelets. The limited interaction of procoagulant platelets and integrin-active aggregatory platelets identifies a potential mechanism for procoagulant platelet retention within the hemostatic thrombus. © 2017 American Heart Association, Inc.

  2. Estimating the Need for Medical Intervention due to Sleep Disruption on the International Space Station

    NASA Technical Reports Server (NTRS)

    Myers, Jerry G.; Lewandowski, Beth E.; Brooker, John E.; Hurst, S. R.; Mallis, Melissa M.; Caldwell, J. Lynn

    2008-01-01

    During ISS and shuttle missions, difficulties with sleep affect more than half of all US crews. Mitigation strategies to help astronauts cope with the challenges of disrupted sleep patterns can negatively impact both mission planning and vehicle design. The methods for addressing known detrimental impacts for some mission scenarios may have a substantial impact on vehicle specific consumable mass or volume or on the mission timeline. As part of the Integrated Medical Model (IMM) task, NASA Glenn Research Center is leading the development of a Monte Carlo based forecasting tool designed to determine the consumables required to address risks related to sleep disruption. The model currently focuses on the International Space Station and uses an algorithm that assembles representative mission schedules and feeds this into a well validated model that predicts relative levels of performance, and need for sleep (SAFTE Model, IBR Inc). Correlation of the resulting output to self-diagnosed needs for hypnotics, stimulants, and other pharmaceutical countermeasures, allows prediction of pharmaceutical use and the uncertainty of the specified prediction. This paper outlines a conceptual model for determining a rate of pharmaceutical utilization that can be used in the IMM model for comparison and optimization of mitigation methods with respect to all other significant medical needs and interventions.

  3. Food Safety Education Using an Interactive Multimedia Kiosk in a WIC Setting: Correlates of Client Satisfaction and Practical Issues

    ERIC Educational Resources Information Center

    Trepka, Mary Jo; Newman, Frederick L.; Huffman, Fatma G.; Dixon, Zisca

    2010-01-01

    Objective: To assess acceptability of food safety education delivered by interactive multimedia (IMM) in a Supplemental Nutrition Program for Women, Infants and Children Program (WIC) clinic. Methods: Female clients or caregivers (n = 176) completed the food-handling survey; then an IMM food safety education program on a computer kiosk.…

  4. Learner Perceptions on Instructional Design of Multimedia in Learning Abstract Concepts in Science at a Distance

    ERIC Educational Resources Information Center

    Kulasekara, Geetha Udayangani; Jayatilleke, Buddhini Gayathri; Coomaraswamy, Uma

    2011-01-01

    This study was carried out to explore learner perceptions on the instructional design features of interactive multimedia (IMM), which was especially designed to support the open and distance learners studying microbiology as a part of the BSc degree programme of the Open University of Sri Lanka (OUSL). The purpose of developing this IMM was to…

  5. Monoclonal TCR-redirected tumor cell killing.

    PubMed

    Liddy, Nathaniel; Bossi, Giovanna; Adams, Katherine J; Lissina, Anna; Mahon, Tara M; Hassan, Namir J; Gavarret, Jessie; Bianchi, Frayne C; Pumphrey, Nicholas J; Ladell, Kristin; Gostick, Emma; Sewell, Andrew K; Lissin, Nikolai M; Harwood, Naomi E; Molloy, Peter E; Li, Yi; Cameron, Brian J; Sami, Malkit; Baston, Emma E; Todorov, Penio T; Paston, Samantha J; Dennis, Rebecca E; Harper, Jane V; Dunn, Steve M; Ashfield, Rebecca; Johnson, Andy; McGrath, Yvonne; Plesa, Gabriela; June, Carl H; Kalos, Michael; Price, David A; Vuidepot, Annelise; Williams, Daniel D; Sutton, Deborah H; Jakobsen, Bent K

    2012-06-01

    T cell immunity can potentially eradicate malignant cells and lead to clinical remission in a minority of patients with cancer. In the majority of these individuals, however, there is a failure of the specific T cell receptor (TCR)–mediated immune recognition and activation process. Here we describe the engineering and characterization of new reagents termed immune-mobilizing monoclonal TCRs against cancer (ImmTACs). Four such ImmTACs, each comprising a distinct tumor-associated epitope-specific monoclonal TCR with picomolar affinity fused to a humanized cluster of differentiation 3 (CD3)-specific single-chain antibody fragment (scFv), effectively redirected T cells to kill cancer cells expressing extremely low surface epitope densities. Furthermore, these reagents potently suppressed tumor growth in vivo. Thus, ImmTACs overcome immune tolerance to cancer and represent a new approach to tumor immunotherapy.

  6. Structure and Inhibition of Quorum Sensing Target from Streptococcus pneumoniae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh,V.; Shi, W.; Almo, S.

    2006-01-01

    Streptococcus pneumoniae 5'-methylthioadenosine/S-adenosylhomocysteine hydrolase (MTAN) catalyzes the hydrolytic deadenylation of its substrates to form adenine and 5-methylthioribose or S-ribosylhomocysteine (SRH). MTAN is not found in mammals but is involved in bacterial quorum sensing. MTAN gene disruption affects the growth and pathogenicity of bacteria, making it a target for antibiotic design. Kinetic isotope effects and computational studies have established a dissociative S{sub N}1 transition state for Escherichia coli MTAN, and transition state analogues resembling the transition state are powerful inhibitors of the enzyme [Singh, V., Lee, J. L., Nunez, S., Howell, P. L., and Schramm, V. L. (2005) Biochemistry 44, 11647-11659].more » The sequence of MTAN from S. pneumoniae is 40% identical to that of E. coli MTAN, but S. pneumoniae MTAN exhibits remarkably distinct kinetic and inhibitory properties. 5'-Methylthio-Immucillin-A (MT-ImmA) is a transition state analogue resembling an early S{sub N}1 transition state. It is a weak inhibitor of S. pneumoniae MTAN with a K{sub i} of 1.0 {mu}M. The X-ray structure of S. pneumoniae MTAN with MT-ImmA indicates a dimer with the methylthio group in a flexible hydrophobic pocket. Replacing the methyl group with phenyl (PhT-ImmA), tolyl (p-TolT-ImmA), or ethyl (EtT-ImmA) groups increases the affinity to give K{sub i} values of 335, 60, and 40 nM, respectively. DADMe-Immucillins are geometric and electrostatic mimics of a fully dissociated transition state and bind more tightly than Immucillins. MT-DADMe-Immucillin-A inhibits with a K{sub i} value of 24 nM, and replacing the 5'-methyl group with p-Cl-phenyl (p-Cl-PhT-DADMe-ImmA) gave a K{sub i}* value of 0.36 nM. The inhibitory potential of DADMe-Immucillins relative to the Immucillins supports a fully dissociated transition state structure for S. pneumoniae MTAN. Comparison of active site contacts in the X-ray crystal structures of E. coli and S. pneumoniae MTAN with MT-ImmA would predict equal binding, yet most analogues bind 10{sup 3}-10{sup 4}-fold more tightly to the E. coli enzyme. Catalytic site efficiency is primarily responsible for this difference since k{sub cat}/K{sub m} for S. pneumoniae MTAN is decreased 845-fold relative to that of E. coli MTAN.« less

  7. Implicit membrane treatment of buried charged groups: application to peptide translocation across lipid bilayers.

    PubMed

    Lazaridis, Themis; Leveritt, John M; PeBenito, Leo

    2014-09-01

    The energetic cost of burying charged groups in the hydrophobic core of lipid bilayers has been controversial, with simulations giving higher estimates than certain experiments. Implicit membrane approaches are usually deemed too simplistic for this problem. Here we challenge this view. The free energy of transfer of amino acid side chains from water to the membrane center predicted by IMM1 is reasonably close to all-atom free energy calculations. The shape of the free energy profile, however, for the charged side chains needs to be modified to reflect the all-atom simulation findings (IMM1-LF). Membrane thinning is treated by combining simulations at different membrane widths with an estimate of membrane deformation free energy from elasticity theory. This approach is first tested on the voltage sensor and the isolated S4 helix of potassium channels. The voltage sensor is stably inserted in a transmembrane orientation for both the original and the modified model. The transmembrane orientation of the isolated S4 helix is unstable in the original model, but a stable local minimum in IMM1-LF, slightly higher in energy than the interfacial orientation. Peptide translocation is addressed by mapping the effective energy of the peptide as a function of vertical position and tilt angle, which allows identification of minimum energy pathways and transition states. The barriers computed for the S4 helix and other experimentally studied peptides are low enough for an observable rate. Thus, computational results and experimental studies on the membrane burial of peptide charged groups appear to be consistent. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. A Quantitative Risk-Benefit Analysis of Prophylactic Surgery Prior to Extended-Duration Spaceflight

    NASA Technical Reports Server (NTRS)

    Carroll, Danielle; Reyes, David; Kerstman, Eric; Walton, Marlei; Antonsen, Erik

    2017-01-01

    INTRODUCTION: Among otherwise healthy astronauts undertaking deep space missions, the risks for acute appendicitis (AA) and cholecystitis (AC) are not zero. If these conditions were to occur during spaceflight they may require surgery for definitive care. The proposed study quantifies and compares the risks of developing de novo AA and AC in-flight to the surgical risks of prophylactic laparoscopic appendectomy (LA) and cholecystectomy (LC) using NASA's Integrated Medical Model (IMM). METHODS: The IMM is a Monte Carlo simulation that forecasts medical events during spaceflight missions and estimates the impact of these medical events on crew health. In this study, four Design Reference Missions (DRMs) were created to assess the probability of an astronaut developing in-flight small-bowel obstruction (SBO) following prophylactic 1) LA, 2) LC, 3) LA and LC, or 4) neither surgery (SR# S-20160407-351). Model inputs were drawn from a large, population-based 2011 Swedish study that examined the incidence and risks of post-operative SBO over a 5-year follow-up period. The study group included 1,152 patients who underwent LA, and 16,371 who underwent LC. RESULTS: Preliminary results indicate that prophylactic LA may yield higher mission risks than the control DRM. Complete analyses are pending and will be subsequently available. DISCUSSION: The risk versus benefits of prophylactic surgery in astronauts to decrease the probability of acute surgical events during spaceflight has only been qualitatively examined in prior studies. Within the assumptions and limitations of the IMM, this work provides the first quantitative guidance that has previously been lacking to this important question for future deep space exploration missions.

  9. The targeted anti-oxidant MitoQ causes mitochondrial swelling and depolarization in kidney tissue.

    PubMed

    Gottwald, Esther M; Duss, Michael; Bugarski, Milica; Haenni, Dominik; Schuh, Claus D; Landau, Ehud M; Hall, Andrew M

    2018-04-01

    Kidney proximal tubules (PTs) contain a high density of mitochondria, which are required to generate ATP to power solute transport. Mitochondrial dysfunction is implicated in the pathogenesis of numerous kidney diseases. Damaged mitochondria are thought to produce excess reactive oxygen species (ROS), which can lead to oxidative stress and activation of cell death pathways. MitoQ is a mitochondrial targeted anti-oxidant that has shown promise in preclinical models of renal diseases. However, recent studies in nonkidney cells have suggested that MitoQ might also have adverse effects. Here, using a live imaging approach, and both in vitro and ex vivo models, we show that MitoQ induces rapid swelling and depolarization of mitochondria in PT cells, but these effects were not observed with SS-31, another targeted anti-oxidant. MitoQ consists of a lipophilic cation (Tetraphenylphosphonium [TPP]) joined to an anti-oxidant component (quinone) by a 10-carbon alkyl chain, which is thought to insert into the inner mitochondrial membrane (IMM). We found that mitochondrial swelling and depolarization was also induced by dodecyltriphenylphosphomium (DTPP), which consists of TPP and the alkyl chain, but not by TPP alone. Surprisingly, MitoQ-induced mitochondrial swelling occurred in the absence of a decrease in oxygen consumption rate. We also found that DTPP directly increased the permeability of artificial liposomes with a cardiolipin content similar to that of the IMM. In summary, MitoQ causes mitochondrial swelling and depolarization in PT cells by a mechanism unrelated to anti-oxidant activity, most likely because of increased IMM permeability due to insertion of the alkyl chain. © 2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  10. Treatments of clinical mastitis occurring in cows on 51 large dairy herds in Wisconsin.

    PubMed

    Oliveira, L; Ruegg, P L

    2014-09-01

    Antimicrobials are frequently used for treatment of bovine mastitis and few studies have examined modern treatment strategies on large US dairy farms. The objective of this study was to describe treatment practices for clinical mastitis occurring in cows on large dairy herds in Wisconsin. Treatments performed on 747 cows experiencing cases of mild, moderate, or severe symptoms of clinical mastitis were recorded on 51 Wisconsin dairy farms. Duplicate milk samples were collected from the affected quarter for microbiological analysis at the onset of clinical mastitis and 14 to 21 d after treatment ended. Cows were treated according to individual farm protocol. Drugs and doses used for treatments were recorded for each case. Among all herds, 5 intramammary (IMM) antimicrobials (amoxicillin, hetacillin, pirlimycin, ceftiofur, and cephapirin) were used to treat cows for clinical mastitis. Of 712 cows with complete treatment data, 71.6% were treated with IMM ceftiofur either solely or combined with other antimicrobials (administered either IMM or systemically). Of cows experiencing severe symptoms of clinical mastitis, 43.8% received IMM treatment concurrent with systemic antimicrobials. Of all cows treated, 23.1% received an additional secondary treatment (either IMM, systemic, or both) because of perceived lack of response to the initial treatment. The majority of IMM treatments were administered to cows with a microbiological diagnosis of no growth (34.9%) or Escherichia coli (27.2%). Half of the cows experiencing cases caused by E. coli were treated using systemic antimicrobials in contrast to only 6.8% of cows experiencing cases caused by coagulase-negative staphylococci. In conflict with FDA regulations, which do not allow extra-label treatments using sulfonamides, a total of 22 cows from 8 farms were treated with systemic sulfadimethoxine either solely or in combination with oxytetracycline. Antimicrobial drugs were used on all herds and many cows received extra-label treatments. Great opportunity exists to improve mastitis therapy on large dairy herds, but use of more diagnostic methodologies is necessary to guide treatments. Farmers and veterinarians should work together to create protocols based on the herd needs considering reduced inappropriate and excessive use of antimicrobials. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. Anopheles gambiae Purine Nucleoside Phosphorylase: Catalysis, Structure, and Inhibition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor,E.; Rinaldo-Matthis, A.; Li, L.

    The purine salvage pathway of Anopheles gambiae, a mosquito that transmits malaria, has been identified in genome searches on the basis of sequence homology with characterized enzymes. Purine nucleoside phosphorylase (PNP) is a target for the development of therapeutic agents in humans and purine auxotrophs, including malarial parasites. The PNP from Anopheles gambiae (AgPNP) was expressed in Escherichia coli and compared to the PNPs from Homo sapiens (HsPNP) and Plasmodium falciparum (PfPNP). AgPNP has kcat values of 54 and 41 s-1 for 2'-deoxyinosine and inosine, its preferred substrates, and 1.0 s-1 for guanosine. However, the chemical step is fast formore » AgPNP at 226 s-1 for guanosine in pre-steady-state studies. 5'-Deaza-1'-aza-2'-deoxy-1'-(9-methylene)-Immucillin-H (DADMe-ImmH) is a transition-state mimic for a 2'-deoxyinosine ribocation with a fully dissociated N-ribosidic bond and is a slow-onset, tight-binding inhibitor with a dissociation constant of 3.5 pM. This is the tightest-binding inhibitor known for any PNP, with a remarkable Km/Ki* of 5.4 x 107, and is consistent with enzymatic transition state predictions of enhanced transition-state analogue binding in enzymes with enhanced catalytic efficiency. Deoxyguanosine is a weaker substrate than deoxyinosine, and DADMe-Immucillin-G is less tightly bound than DADMe-ImmH, with a dissociation constant of 23 pM for AgPNP as compared to 7 pM for HsPNP. The crystal structure of AgPNP was determined in complex with DADMe-ImmH and phosphate to a resolution of 2.2 Angstroms to reveal the differences in substrate and inhibitor specificity. The distance from the N1' cation to the phosphate O4 anion is shorter in the AgPNP{center_dot}DADMe-ImmH{center_dot}PO4 complex than in HsPNP{center_dot}DADMe-ImmH{center_dot}SO4, offering one explanation for the stronger inhibitory effect of DADMe-ImmH for AgPNP.« less

  12. Differential Toxicity of mDia Formin-Directed Functional Agonists and Antagonists in Developing Zebrafish.

    PubMed

    LeCorgne, Hunter; Tudosie, Andrew M; Lavik, Kari; Su, Robin; Becker, Kathryn N; Moore, Sara; Walia, Yashna; Wisner, Alexander; Koehler, Daniel; Alberts, Arthur S; Williams, Frederick E; Eisenmann, Kathryn M

    2018-01-01

    The mammalian Diaphanous-related (mDia) formins are cytoskeletal regulators that assemble and, in some cases, bundle filamentous actin (F-actin), as well as stabilize microtubules. The development of small molecule antagonists and agonists that interrogate mDia formin function has allowed us to investigate the roles of formins in disease states. A small molecule inhibitor of FH2 domain (SMIFH2) inhibits mDia-dependent actin dynamics and abrogates tumor cell migration and cell division in vitro and ex vivo tissue explants. mDia formin activation with small molecule intramimics IMM01/02 and mDia2-DAD peptides inhibited glioblastoma motility and invasion in vitro and ex vivo rat brain slices. However, SMIFH2, IMMs, and mDia2 DAD efficacy in vivo remains largely unexplored and potential toxicity across a range of developmental phenotypes has not been thoroughly characterized. In this study, we performed an in vivo screen of early life-stage toxicity in Danio rerio zebrafish embryos 2 days post-fertilization (dpf) in response to SMIFH2, IMM01/02, and mDia2 DAD. SMIFH2 at concentrations ≥5-10 μM induced significant defects in developing zebrafish, including shorter body lengths, tail curvature and defective tail cellularity, craniofacial malformations, pericardial edema, absent and/or compromised vasculature function and flow, depressed heart rates and increased mortality. Conversely, IMM and mDia2 DAD peptides were minimally toxic at concentrations up to 10-20 and 50 μM, respectively. SMIFH2's therapeutic potential may therefore be limited by its substantial in vivo toxicity at functional concentrations. mDia formin agonism with IMMs and mDia2 DADs may therefore be a more effective and less toxic anti-invasive therapeutic approach.

  13. Differential Toxicity of mDia Formin-Directed Functional Agonists and Antagonists in Developing Zebrafish

    PubMed Central

    LeCorgne, Hunter; Tudosie, Andrew M.; Lavik, Kari; Su, Robin; Becker, Kathryn N.; Moore, Sara; Walia, Yashna; Wisner, Alexander; Koehler, Daniel; Alberts, Arthur S.; Williams, Frederick E.; Eisenmann, Kathryn M.

    2018-01-01

    The mammalian Diaphanous-related (mDia) formins are cytoskeletal regulators that assemble and, in some cases, bundle filamentous actin (F-actin), as well as stabilize microtubules. The development of small molecule antagonists and agonists that interrogate mDia formin function has allowed us to investigate the roles of formins in disease states. A small molecule inhibitor of FH2 domain (SMIFH2) inhibits mDia-dependent actin dynamics and abrogates tumor cell migration and cell division in vitro and ex vivo tissue explants. mDia formin activation with small molecule intramimics IMM01/02 and mDia2-DAD peptides inhibited glioblastoma motility and invasion in vitro and ex vivo rat brain slices. However, SMIFH2, IMMs, and mDia2 DAD efficacy in vivo remains largely unexplored and potential toxicity across a range of developmental phenotypes has not been thoroughly characterized. In this study, we performed an in vivo screen of early life-stage toxicity in Danio rerio zebrafish embryos 2 days post-fertilization (dpf) in response to SMIFH2, IMM01/02, and mDia2 DAD. SMIFH2 at concentrations ≥5–10 μM induced significant defects in developing zebrafish, including shorter body lengths, tail curvature and defective tail cellularity, craniofacial malformations, pericardial edema, absent and/or compromised vasculature function and flow, depressed heart rates and increased mortality. Conversely, IMM and mDia2 DAD peptides were minimally toxic at concentrations up to 10–20 and 50 μM, respectively. SMIFH2's therapeutic potential may therefore be limited by its substantial in vivo toxicity at functional concentrations. mDia formin agonism with IMMs and mDia2 DADs may therefore be a more effective and less toxic anti-invasive therapeutic approach. PMID:29692731

  14. Different forms of MARCKS protein are involved in memory formation in the learning process of imprinting.

    PubMed

    Solomonia, Revaz O; Apkhazava, David; Nozadze, Maia; Jackson, Antony P; McCabe, Brian J; Horn, Gabriel

    2008-06-01

    There is strong evidence that a restricted part of the chick forebrain, the IMM (formerly IMHV), stores information acquired through the learning process of visual imprinting. Twenty-four hours after imprinting training, a learning-specific increase in amount of myristoylated, alanine-rich C-kinase substrate (MARCKS) protein is known to occur in the homogenate fraction of IMM. We investigated the two components of this fraction, membrane-bound and cytoplasmic-phosphorylated MARCKS. In IMM, amount of membrane-bound MARCKS, but not of cytoplasmic-phosphorylated MARCKS, increased as chicks learned. No changes were observed for either form of MARCKS in PPN, a control forebrain region. The results indicate that there is a learning-specific increase in membrane-bound, non-phosphorylated MARCKS 24 h after training. This increase might contribute to stabilization of synaptic morphology.

  15. ImmPort, toward repurposing of open access immunological assay data for translational and clinical research.

    PubMed

    Bhattacharya, Sanchita; Dunn, Patrick; Thomas, Cristel G; Smith, Barry; Schaefer, Henry; Chen, Jieming; Hu, Zicheng; Zalocusky, Kelly A; Shankar, Ravi D; Shen-Orr, Shai S; Thomson, Elizabeth; Wiser, Jeffrey; Butte, Atul J

    2018-02-27

    Immunology researchers are beginning to explore the possibilities of reproducibility, reuse and secondary analyses of immunology data. Open-access datasets are being applied in the validation of the methods used in the original studies, leveraging studies for meta-analysis, or generating new hypotheses. To promote these goals, the ImmPort data repository was created for the broader research community to explore the wide spectrum of clinical and basic research data and associated findings. The ImmPort ecosystem consists of four components-Private Data, Shared Data, Data Analysis, and Resources-for data archiving, dissemination, analyses, and reuse. To date, more than 300 studies have been made freely available through the Shared Data portal (www.immport.org/immport-open), which allows research data to be repurposed to accelerate the translation of new insights into discoveries.

  16. Ion mobility-mass spectrometry as a tool to investigate protein-ligand interactions.

    PubMed

    Göth, Melanie; Pagel, Kevin

    2017-07-01

    Ion mobility-mass spectrometry (IM-MS) is a powerful tool for the simultaneous analysis of mass, charge, size, and shape of ionic species. It allows the characterization of even low-abundant species in complex samples and is therefore particularly suitable for the analysis of proteins and their assemblies. In the last few years even complex and intractable species have been investigated successfully with IM-MS and the number of publications in this field is steadily growing. This trend article highlights recent advances in which IM-MS was used to study protein-ligand complexes and in particular focuses on the catch and release (CaR) strategy and collision-induced unfolding (CIU). Graphical Abstract Native mass spectrometry and ion mobility-mass spectrometry are versatile tools to follow the stoichiometry, energetics, and structural impact of protein-ligand binding.

  17. Neural basis of imprinting behavior in chicks.

    PubMed

    Nakamori, Tomoharu; Maekawa, Fumihiko; Sato, Katsushige; Tanaka, Kohichi; Ohki-Hamazaki, Hiroko

    2013-01-01

    Newly hatched chicks memorize the characteristics of the first moving object they encounter, and subsequently show a preference for it. This "imprinting" behavior is an example of infant learning and is elicited by visual and/or auditory cues. Visual information of imprinting stimuli in chicks is first processed in the visual Wulst (VW), a telencephalic area corresponding to the mammalian visual cortex, congregates in the core region of the hyperpallium densocellulare (HDCo) cells, and transmitted to the intermediate medial mesopallium (IMM), a region similar to the mammalian association cortex. The imprinting memory is stored in the IMM, and activities of IMM neurons are altered by imprinting. Imprinting also induces functional and structural plastic changes of neurons in the circuit that links the VW and the IMM. Of these neurons, the activity of the HDCo cells is strongly influenced by imprinting. Expression and modulation of NR2B subunit-containing N-methyl-D-aspartate (NMDA) receptors in the HDCo cells are crucial for plastic changes in this circuit as well as the process of visual imprinting. Thus, elucidation of cellular and molecular mechanisms underlying the plastic changes that occurred in the HDCo cells may provide useful knowledge about infant learning. © 2012 The Authors Development, Growth & Differentiation © 2012 Japanese Society of Developmental Biologists.

  18. Production of Omega-3 Fatty Acid Ethyl Esters from Menhaden Oil Using Proteus vulgaris Lipase-Mediated One-Step Transesterification and Urea Complexation.

    PubMed

    Kim, Soo-Jin; Kim, Hyung Kwoun

    2016-05-01

    An organic solvent-stable lipase from Proteus vulgaris K80 was used to produce the omega-3 polyunsaturated fatty acid ethyl esters (ω-3 PUFA EEs). First, the lyophilized recombinant lipase K80 (LyoK80) was used to perform the transesterification reaction of menhaden oil and ethanol. LyoK80 produced the ω-3 PUFA EEs with a conversion yield of 82 % in the presence of 20 % water content via a three-step ethanol-feeding process; however, in a non-aqueous condition, LyoK80 produced only a slight amount of the ω-3 PUFA EEs. To enhance its reaction properties, the lipase K80 was immobilized on a hydrophobic bead to derive ImmK80; the biochemical properties and substrate specificity of ImmK80 are similar to those of LyoK80. ImmK80 was then used to produce ω-3 PUFA EEs in accordance with the same transesterification reaction. Unlike LyoK80, ImmK80 achieved a high ω-3 PUFA EE conversion yield of 86 % under a non-aqueous system via a one-step ethanol-feeding reaction. The ω-3 PUFA EEs were purified up to 92 % using a urea complexation method.

  19. [Analysis of elderly outpatients in relation to nutritional status, sarcopenia, renal function, and bone density].

    PubMed

    Salmaso, Franciany Viana; Vigário, Patrícia dos Santos; Mendonça, Laura Maria Carvalho de; Madeira, Miguel; Vieira Netto, Leonardo; Guimarães, Marcela Rodrigues Moreira; Farias, Maria Lucia Fleiuss de

    2014-04-01

    To evaluate relationships between nutritional status, sarcopenia and osteoporosis in older women. We studied 44 women, 67-94 years, by mini-nutritional assessment (MAN), glomerular filtration corr. 1.73 m(2), body mass index (BMI), arm circumference and calf (CP and CB), bone mineral density and body composition, DXA (fat mass MG; lean MM). We gauge sarcopenia: IMM MM = MSS + MIS/height(2). We used the Pearson correlation coefficient, p < 0.05 as significant. MNA and IMM were positively correlated with BMI, CP, CB and MG. Age influenced negatively FG corr., BMI, FM, IMM and CP. Fourteen had a history of osteoporotic fractures. The lowest T-score was directly related to MAN and MG. CONCLUSIONS The aging caused the decline of FG, fat mass and muscle; the calf circumference, and brachial reflected nutritional status and body composition; and major influences on BMD were nutritional status and fat mass.

  20. Insights on the mechanism of action of immunostimulants in relation to their pharmacological potency. The effects of imidazoquinolines on TLR8.

    PubMed

    Kubli-Garfias, Carlos; Vázquez-Ramírez, Ricardo; Trejo-Muñoz, Cynthia; Berber, Arturo

    2017-01-01

    Imidazoquinolines are powerful immunostimulants (IMMS) that function through Toll-like receptors, particularly TLR7 and TLR8. In addition to enhancing the immune response, IMMS also function as antineoplastic drugs and vaccine adjuvants. These small compounds display almost the same molecular structure, except in some cases in which atom in position 1 varies and changes the imidazole characteristics. A variable acyclic side chain is also always attached at atom in position 2, while another chain may be attached at atom in position 1. These structural differences alter immune responses, such as the production of interferon regulatory factor and nuclear factor-κB (IRF-NFκB). In this work, quantum mechanics theory and computational chemistry methods were applied to study the physicochemical properties of the crystal binding site of TLR8 complexed with the following six IMMS molecules: Hybrid-2, XG1-236, DS802, CL075, CL097 and R848 (resiquimod). The PDB IDs of the crystals were: 4R6A, 4QC0, 4QBZ, 3W3K, 3W3J, and 3W3N respectively. Thus, were calculated, the total energy, solvation energy, interaction energy (instead of free energy) of the system and interaction energy of the polar region of the IMMS. Additionally, the dipole moment, electrostatic potential, polar surface, atomic charges, hydrogen bonds, and polar and hydrophobic interactions, among others, were assessed. Together, these properties revealed important differences among the six TLR8-immunostimulant complexes, reflected as different interaction energies and therefore different electrostatic environments and binding energies. Remarkably, the interaction energy of a defined polar region composed of the highly polarized N3, N5 atoms and the N11 amino group, acted as a polar pharmacophore that correlates directly with the reported immunopharmacological potency of the six complexed molecules. Based on these results, it was concluded that accurate physicochemical analysis of the crystal binding site could reveal the binding energy (measured as interaction energy) and associated molecular mechanism of action between IMMS and TLR8. These findings may facilitate the development and design of improved small molecules with IMMS properties that are targeted to the TLR system and have enhanced pharmacological effectiveness and reduced toxicity.

  1. Insights on the mechanism of action of immunostimulants in relation to their pharmacological potency. The effects of imidazoquinolines on TLR8

    PubMed Central

    Kubli-Garfias, Carlos; Vázquez-Ramírez, Ricardo; Trejo-Muñoz, Cynthia; Berber, Arturo

    2017-01-01

    Imidazoquinolines are powerful immunostimulants (IMMS) that function through Toll-like receptors, particularly TLR7 and TLR8. In addition to enhancing the immune response, IMMS also function as antineoplastic drugs and vaccine adjuvants. These small compounds display almost the same molecular structure, except in some cases in which atom in position 1 varies and changes the imidazole characteristics. A variable acyclic side chain is also always attached at atom in position 2, while another chain may be attached at atom in position 1. These structural differences alter immune responses, such as the production of interferon regulatory factor and nuclear factor-κB (IRF-NFκB). In this work, quantum mechanics theory and computational chemistry methods were applied to study the physicochemical properties of the crystal binding site of TLR8 complexed with the following six IMMS molecules: Hybrid-2, XG1-236, DS802, CL075, CL097 and R848 (resiquimod). The PDB IDs of the crystals were: 4R6A, 4QC0, 4QBZ, 3W3K, 3W3J, and 3W3N respectively. Thus, were calculated, the total energy, solvation energy, interaction energy (instead of free energy) of the system and interaction energy of the polar region of the IMMS. Additionally, the dipole moment, electrostatic potential, polar surface, atomic charges, hydrogen bonds, and polar and hydrophobic interactions, among others, were assessed. Together, these properties revealed important differences among the six TLR8-immunostimulant complexes, reflected as different interaction energies and therefore different electrostatic environments and binding energies. Remarkably, the interaction energy of a defined polar region composed of the highly polarized N3, N5 atoms and the N11 amino group, acted as a polar pharmacophore that correlates directly with the reported immunopharmacological potency of the six complexed molecules. Based on these results, it was concluded that accurate physicochemical analysis of the crystal binding site could reveal the binding energy (measured as interaction energy) and associated molecular mechanism of action between IMMS and TLR8. These findings may facilitate the development and design of improved small molecules with IMMS properties that are targeted to the TLR system and have enhanced pharmacological effectiveness and reduced toxicity. PMID:28582454

  2. Collision cross sections of high-mannose N-glycans in commonly observed adduct states--identification of gas-phase conformers unique to [M-H](-) ions.

    PubMed

    Struwe, W B; Benesch, J L; Harvey, D J; Pagel, K

    2015-10-21

    We report collision cross sections (CCS) of high-mannose N-glycans as [M + Na](+), [M + K](+), [M + H](+), [M + Cl](-), [M + H2PO4](-) and [M - H](-) ions, measured by drift tube (DT) ion mobility-mass spectrometry (IM-MS) in helium and nitrogen gases. Further analysis using traveling wave (TW) IM-MS reveal the existence of distinct conformers exclusive to [M - H](-) ions.

  3. Multiple Gas-Phase Conformations of a Synthetic Linear Poly(acrylamide) Polymer Observed Using Ion Mobility-Mass Spectrometry.

    PubMed

    Haler, Jean R N; Far, Johann; Aqil, Abdelhafid; Claereboudt, Jan; Tomczyk, Nick; Giles, Kevin; Jérôme, Christine; De Pauw, Edwin

    2017-11-01

    Ion mobility-mass spectrometry (IM-MS) has emerged as a powerful separation and identification tool to characterize synthetic polymer mixtures and topologies (linear, cyclic, star-shaped,…). Electrospray coupled to IM-MS already revealed the coexistence of several charge state-dependent conformations for a single charge state of biomolecules with strong intramolecular interactions, even when limited resolving power IM-MS instruments were used. For synthetic polymers, the sample's polydispersity allows the observation of several chain lengths. A unique collision cross-section (CCS) trend is usually observed when increasing the degree of polymerization (DP) at constant charge state, allowing the deciphering of different polymer topologies. In this paper, we report multiple coexisting CCS trends when increasing the DP at constant charge state for linear poly(acrylamide) PAAm in the gas phase. This is similar to observations on peptides and proteins. Biomolecules show in addition population changes when collisionally heating the ions. In the case of synthetic PAAm, fragmentation occurred before reaching the energy for conformation conversion. These observations, which were made on two different IM-MS instruments (SYNAPT G2 HDMS and high resolution multi-pass cyclic T-Wave prototype from Waters), limit the use of ion mobility for synthetic polymer topology interpretations to polymers where unique CCS values are observed for each DP at constant charge state. Graphical Abstract ᅟ.

  4. Multiple Gas-Phase Conformations of a Synthetic Linear Poly(acrylamide) Polymer Observed Using Ion Mobility-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Haler, Jean R. N.; Far, Johann; Aqil, Abdelhafid; Claereboudt, Jan; Tomczyk, Nick; Giles, Kevin; Jérôme, Christine; De Pauw, Edwin

    2017-08-01

    Ion mobility-mass spectrometry (IM-MS) has emerged as a powerful separation and identification tool to characterize synthetic polymer mixtures and topologies (linear, cyclic, star-shaped,…). Electrospray coupled to IM-MS already revealed the coexistence of several charge state-dependent conformations for a single charge state of biomolecules with strong intramolecular interactions, even when limited resolving power IM-MS instruments were used. For synthetic polymers, the sample's polydispersity allows the observation of several chain lengths. A unique collision cross-section (CCS) trend is usually observed when increasing the degree of polymerization (DP) at constant charge state, allowing the deciphering of different polymer topologies. In this paper, we report multiple coexisting CCS trends when increasing the DP at constant charge state for linear poly(acrylamide) PAAm in the gas phase. This is similar to observations on peptides and proteins. Biomolecules show in addition population changes when collisionally heating the ions. In the case of synthetic PAAm, fragmentation occurred before reaching the energy for conformation conversion. These observations, which were made on two different IM-MS instruments (SYNAPT G2 HDMS and high resolution multi-pass cyclic T-Wave prototype from Waters), limit the use of ion mobility for synthetic polymer topology interpretations to polymers where unique CCS values are observed for each DP at constant charge state. [Figure not available: see fulltext.

  5. Mass Spectrometry and Ion Mobility Characterization of Bioactive Peptide-Synthetic Polymer Conjugates.

    PubMed

    Alalwiat, Ahlam; Tang, Wen; Gerişlioğlu, Selim; Becker, Matthew L; Wesdemiotis, Chrys

    2017-01-17

    The bioconjugate BMP2-(PEO-HA) 2 , composed of a dendron with two monodisperse poly(ethylene oxide) (PEO) branches terminated by a hydroxyapatite binding peptide (HA), and a focal point substituted with a bone growth stimulating peptide (BMP2), has been comprehensively characterized by mass spectrometry (MS) methods, encompassing matrix-assisted laser desorption ionization (MALDI), electrospray ionization (ESI), tandem mass spectrometry (MS 2 ), and ion mobility mass spectrometry (IM-MS). MS 2 experiments using different ion activation techniques validated the sequences of the synthetic, bioactive peptides HA and BMP2, which contained highly basic amino acid residues either at the N-terminus (BMP2) or C-terminus (HA). Application of MALDI-MS, ESI-MS, and IM-MS to the polymer-peptide biomaterial confirmed its composition. Collision cross-section measurements and molecular modeling indicated that BMP2-(PEO-HA) 2 exists in several folded and extended conformations, depending on the degree of protonation. Protonation of all basic sites of the hybrid material nearly doubles its conformational space and accessible surface area.

  6. Device characterization for design optimization of 4 junction inverted metamorphic concentrator solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geisz, John F.; France, Ryan M.; Steiner, Myles A.

    Quantitative electroluminescence (EL) and luminescent coupling (LC) analysis, along with more conventional characterization techniques, are combined to completely characterize the subcell JV curves within a fourjunction (4J) inverted metamorphic solar cell (IMM). The 4J performance under arbitrary spectral conditions can be predicted from these subcell JV curves. The internal radiative efficiency (IRE) of each junction has been determined as a function of current density from the external radiative efficiency using optical modeling, but this required the accurate determination of the individual junction current densities during the EL measurement as affected by LC. These measurement and analysis techniques can be appliedmore » to any multijunction solar cell. The 4J IMM solar cell used to illustrate these techniques showed excellent junction quality as exhibited by high IRE and a one-sun AM1.5D efficiency of 36.3%. This device operates up to 1000 suns without limitations due to any of the three tunnel junctions.« less

  7. Beating Heart Motion Accurate Prediction Method Based on Interactive Multiple Model: An Information Fusion Approach

    PubMed Central

    Xie, Weihong; Yu, Yang

    2017-01-01

    Robot-assisted motion compensated beating heart surgery has the advantage over the conventional Coronary Artery Bypass Graft (CABG) in terms of reduced trauma to the surrounding structures that leads to shortened recovery time. The severe nonlinear and diverse nature of irregular heart rhythm causes enormous difficulty for the robot to realize the clinic requirements, especially under arrhythmias. In this paper, we propose a fusion prediction framework based on Interactive Multiple Model (IMM) estimator, allowing each model to cover a distinguishing feature of the heart motion in underlying dynamics. We find that, at normal state, the nonlinearity of the heart motion with slow time-variant changing dominates the beating process. When an arrhythmia occurs, the irregularity mode, the fast uncertainties with random patterns become the leading factor of the heart motion. We deal with prediction problem in the case of arrhythmias by estimating the state with two behavior modes which can adaptively “switch” from one to the other. Also, we employed the signal quality index to adaptively determine the switch transition probability in the framework of IMM. We conduct comparative experiments to evaluate the proposed approach with four distinguished datasets. The test results indicate that the new proposed approach reduces prediction errors significantly. PMID:29124062

  8. Beating Heart Motion Accurate Prediction Method Based on Interactive Multiple Model: An Information Fusion Approach.

    PubMed

    Liang, Fan; Xie, Weihong; Yu, Yang

    2017-01-01

    Robot-assisted motion compensated beating heart surgery has the advantage over the conventional Coronary Artery Bypass Graft (CABG) in terms of reduced trauma to the surrounding structures that leads to shortened recovery time. The severe nonlinear and diverse nature of irregular heart rhythm causes enormous difficulty for the robot to realize the clinic requirements, especially under arrhythmias. In this paper, we propose a fusion prediction framework based on Interactive Multiple Model (IMM) estimator, allowing each model to cover a distinguishing feature of the heart motion in underlying dynamics. We find that, at normal state, the nonlinearity of the heart motion with slow time-variant changing dominates the beating process. When an arrhythmia occurs, the irregularity mode, the fast uncertainties with random patterns become the leading factor of the heart motion. We deal with prediction problem in the case of arrhythmias by estimating the state with two behavior modes which can adaptively "switch" from one to the other. Also, we employed the signal quality index to adaptively determine the switch transition probability in the framework of IMM. We conduct comparative experiments to evaluate the proposed approach with four distinguished datasets. The test results indicate that the new proposed approach reduces prediction errors significantly.

  9. Intelligence-aided multitarget tracking for urban operations - a case study: counter terrorism

    NASA Astrophysics Data System (ADS)

    Sathyan, T.; Bharadwaj, K.; Sinha, A.; Kirubarajan, T.

    2006-05-01

    In this paper, we present a framework for tracking multiple mobile targets in an urban environment based on data from multiple sources of information, and for evaluating the threat these targets pose to assets of interest (AOI). The motivating scenario is one where we have to track many targets, each with different (unknown) destinations and/or intents. The tracking algorithm is aided by information about the urban environment (e.g., road maps, buildings, hideouts), and strategic and intelligence data. The tracking algorithm needs to be dynamic in that it has to handle a time-varying number of targets and the ever-changing urban environment depending on the locations of the moving objects and AOI. Our solution uses the variable structure interacting multiple model (VS-IMM) estimator, which has been shown to be effective in tracking targets based on road map information. Intelligence information is represented as target class information and incorporated through a combined likelihood calculation within the VS-IMM estimator. In addition, we develop a model to calculate the probability that a particular target can attack a given AOI. This model for the calculation of the probability of attack is based on the target kinematic and class information. Simulation results are presented to demonstrate the operation of the proposed framework on a representative scenario.

  10. Alternative forms of lethality in mitomycin C-induced bacteria carrying ColE1 plasmids

    PubMed Central

    Suit, Joan L.; Fan, M.-L. Judy; Sabik, Joseph F.; Labarre, Robert; Luria, S. E.

    1983-01-01

    We have studied the physiological effects of mitomycin C induction on cells carrying ColE1 plasmids with differing configurations of three genes: the structural gene coding for colicin (cea), a gene responsible for mitomycin C lethality (kil) that we located as part of an operon with cea, and the immunity (imm) gene, which lies near cea but is not in the same operon. kil is close to or overlaps imm. When cea+ plasmids are present mitomycin C induction results in 100-fold or greater increases in the level of colicin. Within an hour after induction more than 90% of cells carrying cea+kil+ plasmids are killed and macromolecular synthesis stops, capacity for transport of proline, thiomethyl β-D-galactoside, and α-methyl glucoside is lost, and the membrane becomes abnormally permeable as indicated by an increased accessibility of intracellular β-galactosidase to the substrate o-nitrophenyl β-D-galactoside. All of these events occur when a cea-kil+imm+ plasmid is present and none does when the plasmid is cea+kil-imm+, so the damage can be attributed solely to the Kil function and not to the presence of colicin. However, cells carrying a cea+kil-imm- plasmid are killed upon induction, apparently by action of endogenous colicin on the nonimmune cytoplasmic membrane. The pattern of accompanying physiological damage is distinguished from the kil+-associated damage by an enhancement of α-methyl glucoside uptake and accumulation and efflux of α-methyl glucoside 6-phosphate and by an absence of the alteration in membrane permeability for o-nitrophenyl β-D-galactoside. These features are typical of colicin E1 action on the membrane. The induced damage is not prevented by trypsin and occurs in cells of a strain specifically tolerant to exogenous colicin E1, indicating that the attack is from inside the cell. PMID:6403939

  11. Implementation of a Parameterized Interacting Multiple Model Filter on an FPGA for Satellite Communications

    NASA Technical Reports Server (NTRS)

    Hackett, Timothy M.; Bilen, Sven G.; Ferreira, Paulo Victor R.; Wyglinski, Alexander M.; Reinhart, Richard C.

    2016-01-01

    In a communications channel, the space environment between a spacecraft and an Earth ground station can potentially cause the loss of a data link or at least degrade its performance due to atmospheric effects, shadowing, multipath, or other impairments. In adaptive and coded modulation, the signal power level at the receiver can be used in order to choose a modulation-coding technique that maximizes throughput while meeting bit error rate (BER) and other performance requirements. It is the goal of this research to implement a generalized interacting multiple model (IMM) filter based on Kalman filters for improved received power estimation on software-dened radio (SDR) technology for satellite communications applications. The IMM filter has been implemented in Verilog consisting of a customizable bank of Kalman filters for choosing between performance and resource utilization. Each Kalman filter can be implemented using either solely a Schur complement module (for high area efficiency) or with Schur complement, matrix multiplication, and matrix addition modules (for high performance). These modules were simulated and synthesized for the Virtex II platform on the JPL Radio Experimenter Development System (EDS) at NASA Glenn Research Center. The results for simulation, synthesis, and hardware testing are presented.

  12. Optimization of HAART with genetic algorithms and agent-based models of HIV infection.

    PubMed

    Castiglione, F; Pappalardo, F; Bernaschi, M; Motta, S

    2007-12-15

    Highly Active AntiRetroviral Therapies (HAART) can prolong life significantly to people infected by HIV since, although unable to eradicate the virus, they are quite effective in maintaining control of the infection. However, since HAART have several undesirable side effects, it is considered useful to suspend the therapy according to a suitable schedule of Structured Therapeutic Interruptions (STI). In the present article we describe an application of genetic algorithms (GA) aimed at finding the optimal schedule for a HAART simulated with an agent-based model (ABM) of the immune system that reproduces the most significant features of the response of an organism to the HIV-1 infection. The genetic algorithm helps in finding an optimal therapeutic schedule that maximizes immune restoration, minimizes the viral count and, through appropriate interruptions of the therapy, minimizes the dose of drug administered to the simulated patient. To validate the efficacy of the therapy that the genetic algorithm indicates as optimal, we ran simulations of opportunistic diseases and found that the selected therapy shows the best survival curve among the different simulated control groups. A version of the C-ImmSim simulator is available at http://www.iac.cnr.it/~filippo/c-ImmSim.html

  13. Time correlation between mononucleosis and initial symptoms of MS

    PubMed Central

    Endriz, John; Ho, Peggy P.

    2017-01-01

    Objective: To determine the average age of MS onset vs the age at which Epstein-Barr infection has previously occurred and stratify this analysis by sex and the blood level of Epstein-Barr nuclear antigen 1 (EBNA1) antibody. Methods: Using infectious mononucleosis (IM) as a temporal marker in data from the Swedish epidemiologic investigation of MS, 259 adult IM/MS cases were identified and then augmented to account for “missing” childhood data so that the average age of MS onset could be determined for cases binned by age of IM (as stratified by sex and EBNA1 titer level). Results: Mean age of IM vs mean age of MS reveals a positive time correlation for all IM ages (from ∼5 to ∼30 years), with IM-to-MS delay decreasing with increased age. When bifurcated by sex or EBNA1 blood titer levels, males and high-titer subpopulations show even stronger positive time correlation, while females and low-titer populations show negative time correlation in early childhood (long IM/MS delay). The correlation becomes positive in females beyond puberty. Conclusions: IM/MS time correlation implies causality if IM is time random. Alternative confounding models seem implausible, in light of constraints imposed by time-invariant delay observed here. Childhood infection with Epstein-Barr virus (EBV) in females and/or those genetically prone to low EBNA1 blood titers will develop MS slowly. Males and/or high EBNA1-prone develop MS more rapidly following IM infection at all ages. For all, postpubescent EBV infection is critical for the initiation and rapid development of MS. PMID:28271078

  14. Preliminary evidence of a neurophysiological basis for individual discrimination in filial imprinting.

    PubMed

    Town, Stephen Michael

    2011-12-01

    Filial imprinting involves a predisposition for biologically important stimuli and a learning process directing preferences towards a particular stimulus. Learning underlies discrimination between imprinted and unfamiliar individuals and depends upon the IMM (intermediate and medial mesopallium). Here, IMM neurons responded differentially to familiar and unfamiliar conspecifics following socialization and the neurophysiological effects of social experience differed between hemispheres. Such findings may provide a neurophysiological basis for individual discrimination in imprinting. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. A mission design for International Manned Mars Mission - From the 1991 International Space University (ISU) Design Project

    NASA Technical Reports Server (NTRS)

    Mendell, Wendell W.

    1991-01-01

    The International Space University (ISU) conducted a study of an international program to support human exploration of Mars as its annual Design Project activity during its 1991 summer session in Toulouse, France. Although an ISU Design Project strives to produce an in-depth analysis during the intense 10-week summer session, the International Mars Mission (IMM) project was conducted in a manner designed to provide a learning experience for young professionals working in an unusual multidisciplinary and multinational environment. The breadth of the IMM study exceeds that of most Mars mission studies of the past, encompassing political organization for long-term commitment, multinational management structure, cost analysis, mission architecture, vehicle configuration, crew health, life support, Mars surface infrastructure, mission operations, technology evaluation, risk assessment, scientific planning, exploration, communication networks, and Martian resource utilization. The IMM Final Report has particular value for those seeking insight into the choices made by a multinational group working in an apolitical environment on the problems of international cooperation in space.

  16. A defect in the thymidine kinase 2 gene causing isolated mitochondrial myopathy without mtDNA depletion.

    PubMed

    Leshinsky-Silver, E; Michelson, M; Cohen, S; Ginsberg, M; Sadeh, M; Barash, V; Lerman-Sagie, T; Lev, D

    2008-07-01

    Isolated mitochondrial myopathies (IMM) are either due to primary defects in mtDNA, in nuclear genes that control mtDNA abundance and structure such as thymidine kinase 2 (TK2), or due to CoQ deficiency. Defects in the TK2 gene have been found to be associated with mtDNA depletion attributed to a depleted mitochondrial dNTP pool in non-dividing cells. We report an unusual case of IMM, homozygous for the H90N mutation in the TK2 gene but unlike other cases with the same mutation, does not demonstrate mtDNA depletion. The patient's clinical course is relatively mild and a muscle biopsy showed ragged red muscle fibers with a mild decrease in complexes I and an increase in complexes IV and II activities. This report extends the phenotypic expression of TK2 defects and suggests that all patients who present with an IMM even with normal quantities of mtDNA should be screened for TK2 mutations.

  17. Collision Cross Sections and Ion Mobility Separation of Fragment Ions from Complex N-Glycans.

    PubMed

    Harvey, David J; Watanabe, Yasunori; Allen, Joel D; Rudd, Pauline; Pagel, Kevin; Crispin, Max; Struwe, Weston B

    2018-06-01

    Ion mobility mass spectrometry (IM-MS) holds great potential for structural glycobiology, in particular in its ability to resolve glycan isomers. Generally, IM-MS has largely been applied to intact glycoconjugate ions with reports focusing on the separation of different adduct types. Here, we explore IM separation and report the collision cross section (CCS) of complex type N-glycans and their fragments in negative ion mode following collision-induced dissociation (CID). CCSs of isomeric fragment ions were found, in some cases, to reveal structural details that were not present in CID spectra themselves. Many fragment ions were confirmed as possessing multiple structure, details of which could be obtained by comparing their drift time profiles to different glycans. By using fragmentation both before and after mobility separation, information was gathered on the fragmentation pathways producing some of the ions. These results help demonstrate the utility of IM and will contribute to the growing use of IM-MS for glycomics. Graphical Abstract ᅟ.

  18. Collision Cross Sections and Ion Mobility Separation of Fragment Ions from Complex N-Glycans

    NASA Astrophysics Data System (ADS)

    Harvey, David J.; Watanabe, Yasunori; Allen, Joel D.; Rudd, Pauline; Pagel, Kevin; Crispin, Max; Struwe, Weston B.

    2018-04-01

    Ion mobility mass spectrometry (IM-MS) holds great potential for structural glycobiology, in particular in its ability to resolve glycan isomers. Generally, IM-MS has largely been applied to intact glycoconjugate ions with reports focusing on the separation of different adduct types. Here, we explore IM separation and report the collision cross section (CCS) of complex type N-glycans and their fragments in negative ion mode following collision-induced dissociation (CID). CCSs of isomeric fragment ions were found, in some cases, to reveal structural details that were not present in CID spectra themselves. Many fragment ions were confirmed as possessing multiple structure, details of which could be obtained by comparing their drift time profiles to different glycans. By using fragmentation both before and after mobility separation, information was gathered on the fragmentation pathways producing some of the ions. These results help demonstrate the utility of IM and will contribute to the growing use of IM-MS for glycomics. [Figure not available: see fulltext.

  19. Constriction of the mitochondrial inner compartment is a priming event for mitochondrial division

    PubMed Central

    Cho, Bongki; Cho, Hyo Min; Jo, Youhwa; Kim, Hee Dae; Song, Myungjae; Moon, Cheil; Kim, Hyongbum; Kim, Kyungjin; Sesaki, Hiromi; Rhyu, Im Joo; Kim, Hyun; Sun, Woong

    2017-01-01

    Mitochondrial division is critical for the maintenance and regulation of mitochondrial function, quality and distribution. This process is controlled by cytosolic actin-based constriction machinery and dynamin-related protein 1 (Drp1) on mitochondrial outer membrane (OMM). Although mitochondrial physiology, including oxidative phosphorylation, is also important for efficient mitochondrial division, morphological alterations of the mitochondrial inner-membrane (IMM) have not been clearly elucidated. Here we report spontaneous and repetitive constriction of mitochondrial inner compartment (CoMIC) associated with subsequent division in neurons. Although CoMIC is potentiated by inhibition of Drp1 and occurs at the potential division spots contacting the endoplasmic reticulum, it appears on IMM independently of OMM. Intra-mitochondrial influx of Ca2+ induces and potentiates CoMIC, and leads to K+-mediated mitochondrial bulging and depolarization. Synergistically, optic atrophy 1 (Opa1) also regulates CoMIC via controlling Mic60-mediated OMM–IMM tethering. Therefore, we propose that CoMIC is a priming event for efficient mitochondrial division. PMID:28598422

  20. Ultra-High Resolution Ion Mobility Separations Utilizing Traveling Waves in a 13 m Serpentine Path Length Structures for Lossless Ion Manipulations Module

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Liulin; Ibrahim, Yehia M.; Hamid, Ahmed M.

    We report the development and initial evaluation of a 13-m path length Structures for Lossless Manipulations (SLIM) module for achieving high resolution separations using traveling waves (TW) with ion mobility (IM) spectrometry. The TW SLIM module was fabricated using two mirror-image printed circuit boards with appropriately configured RF, DC and TW electrodes and positioned with a 2.75-mm inter-surface gap. Ions were effective confined between the surfaces by RF-generated pseudopotential fields and moved losslessly through a serpentine path including 44 “U” turns using TWs. The ion mobility resolution was characterized at different pressures, gaps between the SLIM surfaces, TW and RFmore » parameters. After initial optimization the SLIM IM-MS module provided about 5-fold higher resolution separations than present commercially available drift tube or traveling wave IM-MS platforms. Peak capacity and peak generation rates achieved were 246 and 370 s-1, respectively, at a TW speed of 148 m/s. The high resolution achieved in the TW SLIM IM-MS enabled e.g., isomeric sugars (Lacto-N-fucopentaose I and Lacto-N-fucopentaose II) to be baseline resolved, and peptides from a albumin tryptic digest much better resolved than with existing commercial IM-MS platforms. The present work also provides a foundation for the development of much higher resolution SLIM devices based upon both considerably longer path lengths and multi-pass designs.« less

  1. Effectiveness of Interactive Multimedia Environment on Language Acquisition Skills of 6th Grade Students in the United Arab Emirates

    ERIC Educational Resources Information Center

    Almekhlafi, Abdurrahman Ghaleb

    2006-01-01

    This study investigated the effect of interactive multimedia (IMM) program on students' acquisition of some English as a second language (ESL) skills. An interactive multimedia CD-ROM was used with ninety 6th grade ESL students in Al-Ain Model School 2, United Arab Emirates. Students were selected and divided into experimental and control groups…

  2. Collection and processing of lymph nodes from large animals for RNA analysis: preparing for lymph node transcriptomic studies of large animal species

    USDA-ARS?s Scientific Manuscript database

    Large animals (both livestock and wildlife) serve as important reservoirs of zoonotic pathogens, including Brucella, Salmonella, and E. coli, as well as useful models for the study of pathogenesis and/or spread of the bacteria in non-murine hosts. With the key function of lymph nodes in the host imm...

  3. Adaptive Estimation and Heuristic Optimization of Nonlinear Spacecraft Attitude Dynamics

    DTIC Science & Technology

    2016-09-15

    Algorithm GPS Global Positioning System HOUF Higher Order Unscented Filter IC initial conditions IMM Interacting Multiple Model IMU Inertial Measurement Unit ...sources ranging from inertial measurement units to star sensors are used to construct observations for attitude estimation algorithms. The sensor...parameters. A single vector measurement will provide two independent parameters, as a unit vector constraint removes a DOF making the problem underdetermined

  4. Performance Evaluation Within CASE_ATTI of MHT and JVC Association Algorithms for COMDAT TD

    DTIC Science & Technology

    2007-05-01

    les résultats du travail effectué dans le cadre de l’analyse de sensibilité des algorithmes uti- lisés dans COMDAT, comparativement à ceux...is also very important in tracking system. Neverthe- less, tracking performance with even the best designed filter may become very degraded in the...for completeness. 2.2 IMM Some practical model of target motion is assumed for the design of the Kalman filter. This target kinematics model is

  5. The Effect of Pressure and Time on Information Recall

    DTIC Science & Technology

    2008-04-01

    retenu que 69 % de l’information visualisée à une profondeur de 40 m, comparativement à 90 % de celle-ci dans le cas d’un signalement immédiat. Après 2...from the diver, so it is vital that the diver proves complete and accurate information. This study was designed to quantify the amount and type of...de l’information sur l’objectif, comparativement à 90 % de celle-ci dans le cas d’un signalement immédiat. Après 2 heures, les plongeurs n’ont

  6. Optimizing Medical Kits for Spaceflight

    NASA Technical Reports Server (NTRS)

    Keenan, A. B,; Foy, Millennia; Myers, G.

    2014-01-01

    The Integrated Medical Model (IMM) is a probabilistic model that estimates medical event occurrences and mission outcomes for different mission profiles. IMM simulation outcomes describing the impact of medical events on the mission may be used to optimize the allocation of resources in medical kits. Efficient allocation of medical resources, subject to certain mass and volume constraints, is crucial to ensuring the best outcomes of in-flight medical events. We implement a new approach to this medical kit optimization problem. METHODS We frame medical kit optimization as a modified knapsack problem and implement an algorithm utilizing a dynamic programming technique. Using this algorithm, optimized medical kits were generated for 3 different mission scenarios with the goal of minimizing the probability of evacuation and maximizing the Crew Health Index (CHI) for each mission subject to mass and volume constraints. Simulation outcomes using these kits were also compared to outcomes using kits optimized..RESULTS The optimized medical kits generated by the algorithm described here resulted in predicted mission outcomes more closely approached the unlimited-resource scenario for Crew Health Index (CHI) than the implementation in under all optimization priorities. Furthermore, the approach described here improves upon in reducing evacuation when the optimization priority is minimizing the probability of evacuation. CONCLUSIONS This algorithm provides an efficient, effective means to objectively allocate medical resources for spaceflight missions using the Integrated Medical Model.

  7. Infliximab in ulcerative colitis: real-life analysis of factors predicting treatment discontinuation due to lack of response or colectomy: ECIA (ACAD Colitis and Infliximab Study).

    PubMed

    Fernández-Salazar, Luis; Muñoz, Fernando; Barrio, Jesús; Muñoz, Concepción; Pajares, Ramón; Rivero, Montserrat; Prieto, Vanessa; Legido, Jesús; Bouhmidi, Abdel; Herranz, Maite; Fernández, Nereida; Sánchez-Ocaña, Ramón; Joao, Diana; Santos, Fernando

    2016-01-01

    To describe clinical practice with infliximab (IFX) in ulcerative colitis (UC); identification of predictive factors for IFX treatment discontinuation due to insufficient response and for colectomy. Retrospective, multicentric and observational study including every UC IFX-treated patient in 10 Spanish hospitals. Variables analyzed: epidemiological data; variables for poor prognosis; IFX prior treatments; characteristics of the IFX treatment; time from the UC diagnosis to induction with IFX; time from induction to colectomy or until data collection. Predictive and protective factors for IFX discontinuation due to lack of response and for colectomy were analyzed with binary logistic regression and Cox analysis. Follow-up time from induction with IFX to the collection of data or colectomy: 36.7 ± 25.7 months. Prior treatment with immunomodulator medications (IMM): 79%; IFX + immunosuppressant therapy: 77%; discontinuation of IFX: 26%, colectomy 16%. Independent predictive or protective factors for IFX discontinuation: IMM resistance (OR: 2.9, p = 0.022, 95% CI: 1.2-7.2), prior use of leukocytapheresis (OR: 3.3, p = 0.024, 95% CI: 1.1-9.4), IFX + IMM therapy (OR: 0.3, p = 0.022, 95% CI: 0.1-0.9, and HR: 0.4, p = 0.006, 95% CI: 0.2-0.8) and corticosteroid use in induction (HR: 1.9, p = 0.049, 95% CI: 1.0-3.8). Independent predictive or protective factors for colectomy: Use of leukocytapheresis (OR: 3.0, p = 0.036, 95% CI: 1.1-8.4), IFX + IMM therapy (OR: 0.3, p = 0.022, 95% CI: 0.1-0.8, and HR: 0.3, p = 0.011, 95% CI: 0.1-0.8) and severe cortico-resistant flare-up (HR: 2.5, p = 0.032, 95% CI: 1.1-5.9). Prior use of IMM and leukocytapheresis, the use of corticosteroids in induction and a severe cortico-resistant flare predict a worse response to IFX and the need for colectomy. Combination therapy is a protective factor for both.

  8. Thirty years of collaboration with Gabriel Horn.

    PubMed

    Bateson, Patrick

    2015-03-01

    All the collaborative work described in this review was on the process of behavioural imprinting occurring early in the life of domestic chicks. Finding a link between learning and a change in the brain was only a first step in establishing a representation of the imprinting object. A series of overlapping experiments were necessary to eliminate alternative explanations. Once completed, a structure, the intermediate and medial mesopallium (IMM), was found to be strongly linked to the formation of a neural representation of the object used for imprinting the birds. With the site identified, lesion experiments showed that it was necessary for imprinting but not associative learning. Also the two sides of the brain responded differently with the left IMM acting as a permanent store and the right side acting as a way station to other parts of the brain. The collaborative work led to many studies by Gabriel Horn with others on the molecular and cellular bases of imprinting, and also to neural net modelling and behavioural studies with me on the nature of category formation in intact animals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Gradual changes in permeability of inner mitochondrial membrane precede the mitochondrial permeability transition.

    PubMed

    Balakirev, M Y; Zimmer, G

    1998-08-01

    Some compounds are known to induce solute-nonselective permeability of the inner mitochondrial membrane (IMM) in Ca2+-loaded mitochondria. Existing data suggest that this process, following the opening of a mitochondrial permeability transition pore, is preceded by different solute-selective permeable states of IMM. At pH 7, for instance, the K0.5 for Ca2+-induced pore opening is 16 microM, a value 80-fold above a therapeutically relevant shift of intracellular Ca2+ during ischemia in vivo. The present work shows that in the absence of Ca2+, phenylarsine oxide and tetraalkyl thiuram disulfides (TDs) are able to induce a complex sequence of IMM permeability changes. At first, these agents activated an electrogenic K+ influx into the mitochondria. This K+-specific pathway had K0.5 = 35 mM for K+ and was inhibited by bromsulfalein with Ki = 2.5 microM. The inhibitors of mitochondrial KATP channel, ATP and glibenclamide, did not inhibit K+ transport via this pathway. Moreover, 50 microM glibenclamide induced by itself K+ influx into the mitochondria. After the increase in K+ permeability of IMM, mitochondria become increasingly permeable to protons. Mechanisms of H+ leak and nonselective permeability increase could also be different depending on the type of mitochondrial permeability transition (MPT) inducer. Thus, permeabilization of mitochondria induced by phenylarsine oxide was fully prevented by ADP and/or cyclosporin A, whereas TD-induced membrane alterations were insensitive toward these inhibitors. It is suggested that MPT in vivo leading to irreversible apoptosis is irrelevant in reversible ischemia/reperfusion injury. Copyright 1998 Academic Press.

  10. Biomolecular signatures of diabetic wound healing by structural mass spectrometry

    PubMed Central

    Hines, Kelly M.; Ashfaq, Samir; Davidson, Jeffrey M.; Opalenik, Susan R.; Wikswo, John P.; McLean, John A.

    2013-01-01

    Wound fluid is a complex biological sample containing byproducts associated with the wound repair process. Contemporary techniques, such as immunoblotting and enzyme immunoassays, require extensive sample manipulation and do not permit the simultaneous analysis of multiple classes of biomolecular species. Structural mass spectrometry, implemented as ion mobility-mass spectrometry (IM-MS), comprises two sequential, gas-phase dispersion techniques well suited for the study of complex biological samples due to its ability to separate and simultaneously analyze multiple classes of biomolecules. As a model of diabetic wound healing, polyvinyl alcohol (PVA) sponges were inserted subcutaneously into non-diabetic (control) and streptozotocin-induced diabetic rats to elicit a granulation tissue response and to collect acute wound fluid. Sponges were harvested at days 2 or 5 to capture different stages of the early wound healing process. Utilizing IM-MS, statistical analysis, and targeted ultra-performance liquid chromatography (UPLC) analysis, biomolecular signatures of diabetic wound healing have been identified. The protein S100-A8 was highly enriched in the wound fluids collected from day 2 diabetic rats. Lysophosphatidylcholine (20:4) and cholic acid also contributed significantly to the differences between diabetic and control groups. This report provides a generalized workflow for wound fluid analysis demonstrated with a diabetic rat model. PMID:23452326

  11. A Hybrid Positioning Strategy for Vehicles in a Tunnel Based on RFID and In-Vehicle Sensors

    PubMed Central

    Song, Xiang; Li, Xu; Tang, Wencheng; Zhang, Weigong; Li, Bin

    2014-01-01

    Many intelligent transportation system applications require accurate, reliable, and continuous vehicle positioning. How to achieve such positioning performance in extended GPS-denied environments such as tunnels is the main challenge for land vehicles. This paper proposes a hybrid multi-sensor fusion strategy for vehicle positioning in tunnels. First, the preliminary positioning algorithm is developed. The Radio Frequency Identification (RFID) technology is introduced to achieve preliminary positioning in the tunnel. The received signal strength (RSS) is used as an indicator to calculate the distances between the RFID tags and reader, and then a Least Mean Square (LMS) federated filter is designed to provide the preliminary position information for subsequent global fusion. Further, to improve the positioning performance in the tunnel, an interactive multiple model (IMM)-based global fusion algorithm is developed to fuse the data from preliminary positioning results and low-cost in-vehicle sensors, such as electronic compasses and wheel speed sensors. In the actual implementation of IMM, the strong tracking extended Kalman filter (STEKF) algorithm is designed to replace the conventional extended Kalman filter (EKF) to achieve model individual filtering. Finally, the proposed strategy is evaluated through experiments. The results validate the feasibility and effectiveness of the proposed strategy. PMID:25490581

  12. A hybrid positioning strategy for vehicles in a tunnel based on RFID and in-vehicle sensors.

    PubMed

    Song, Xiang; Li, Xu; Tang, Wencheng; Zhang, Weigong; Li, Bin

    2014-12-05

    Many intelligent transportation system applications require accurate, reliable, and continuous vehicle positioning. How to achieve such positioning performance in extended GPS-denied environments such as tunnels is the main challenge for land vehicles. This paper proposes a hybrid multi-sensor fusion strategy for vehicle positioning in tunnels. First, the preliminary positioning algorithm is developed. The Radio Frequency Identification (RFID) technology is introduced to achieve preliminary positioning in the tunnel. The received signal strength (RSS) is used as an indicator to calculate the distances between the RFID tags and reader, and then a Least Mean Square (LMS) federated filter is designed to provide the preliminary position information for subsequent global fusion. Further, to improve the positioning performance in the tunnel, an interactive multiple model (IMM)-based global fusion algorithm is developed to fuse the data from preliminary positioning results and low-cost in-vehicle sensors, such as electronic compasses and wheel speed sensors. In the actual implementation of IMM, the strong tracking extended Kalman filter (STEKF) algorithm is designed to replace the conventional extended Kalman filter (EKF) to achieve model individual filtering. Finally, the proposed strategy is evaluated through experiments. The results validate the feasibility and effectiveness of the proposed strategy.

  13. Molecular mechanisms of memory in imprinting.

    PubMed

    Solomonia, Revaz O; McCabe, Brian J

    2015-03-01

    Converging evidence implicates the intermediate and medial mesopallium (IMM) of the domestic chick forebrain in memory for a visual imprinting stimulus. During and after imprinting training, neuronal responsiveness in the IMM to the familiar stimulus exhibits a distinct temporal profile, suggesting several memory phases. We discuss the temporal progression of learning-related biochemical changes in the IMM, relative to the start of this electrophysiological profile. c-fos gene expression increases <15 min after training onset, followed by a learning-related increase in Fos expression, in neurons immunopositive for GABA, taurine and parvalbumin (not calbindin). Approximately simultaneously or shortly after, there are increases in phosphorylation level of glutamate (AMPA) receptor subunits and in releasable neurotransmitter pools of GABA and taurine. Later, the mean area of spine synapse post-synaptic densities, N-methyl-D-aspartate receptor number and phosphorylation level of further synaptic proteins are elevated. After ∼ 15 h, learning-related changes in amounts of several synaptic proteins are observed. The results indicate progression from transient/labile to trophic synaptic modification, culminating in stable recognition memory. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  14. [Effect of filial imprinting procedure on cell proliferation in the chick brain].

    PubMed

    Komissarova, N V; Anokhin, K V

    2007-01-01

    In the present study we tested the hypothesis that memory formation during visual imprinting might be related to generation of new cells in the brain of newborn domestic chicks. Cell proliferation was examined in the intermediate medial mesopallium (IMM), arcopallium intermedium (AI), medial part of nidopallium and mesopallium (MNM), nidopallium dorso-caudalis (Ndc), hippocampus (Hp) and area parahippocampalis (APH), as well as in corresponding ventricular zones. Number of new cells was measured by BrdU incorporation 24 h or 7 days after training, BrdU was injected before training. 24 h after imprinting the number of BrdU-positive cells increased significantly in IMM. 7 days after training no changes were observed in IMM, while the number of new cells decreased in MNM and Ndc in comparison to the control group. These data suggest that newly generated cells in the brain of young chicks are influenced by imprinting procedure, which has opposite short-term and long-term effects. A possible reason for such double action of imprinting in contrast to conventional learning can be its additional stimulation of development of predisposition for features of natural parents.

  15. Molecular mechanisms of memory in imprinting

    PubMed Central

    Solomonia, Revaz O.; McCabe, Brian J.

    2015-01-01

    Converging evidence implicates the intermediate and medial mesopallium (IMM) of the domestic chick forebrain in memory for a visual imprinting stimulus. During and after imprinting training, neuronal responsiveness in the IMM to the familiar stimulus exhibits a distinct temporal profile, suggesting several memory phases. We discuss the temporal progression of learning-related biochemical changes in the IMM, relative to the start of this electrophysiological profile. c-fos gene expression increases <15 min after training onset, followed by a learning-related increase in Fos expression, in neurons immunopositive for GABA, taurine and parvalbumin (not calbindin). Approximately simultaneously or shortly after, there are increases in phosphorylation level of glutamate (AMPA) receptor subunits and in releasable neurotransmitter pools of GABA and taurine. Later, the mean area of spine synapse post-synaptic densities, N-methyl-d-aspartate receptor number and phosphorylation level of further synaptic proteins are elevated. After ∼15 h, learning-related changes in amounts of several synaptic proteins are observed. The results indicate progression from transient/labile to trophic synaptic modification, culminating in stable recognition memory. PMID:25280906

  16. Generalized isobaric multiplet mass equation and its application to the Nolen-Schiffer anomaly

    NASA Astrophysics Data System (ADS)

    Dong, J. M.; Zhang, Y. H.; Zuo, W.; Gu, J. Z.; Wang, L. J.; Sun, Y.

    2018-02-01

    The Wigner isobaric multiplet mass equation (IMME) is the most fundamental prediction in nuclear physics with the concept of isospin. However, it was deduced based on the Wigner-Eckart theorem with the assumption that all charge-violating interactions can be written as tensors of rank two. In the present work, the charge-symmetry breaking (CSB) and charge-independent breaking (CIB) components of the nucleon-nucleon force, which contribute to the effective interaction in nuclear medium, are established in the framework of Brueckner theory with AV18 and AV14 bare interactions. Because such charge-violating components can no longer be expressed as an irreducible tensor due to density dependence, its matrix element cannot be analytically reduced by the Wigner-Eckart theorem. With an alternative approach, we derive a generalized IMME (GIMME) that modifies the coefficients of the original IMME. As the first application of GIMME, we study the long-standing question of the origin of the Nolen-Schiffer anomaly (NSA) found in the Coulomb displacement energy of mirror nuclei. We find that the naturally emerged CSB term in GIMME is largely responsible for explaining the NSA.

  17. Development of a High Volume Capable Process to Manufacture High Performance Photovoltaic Cells: Cooperative Research and Development Final Report, CRADA Number CRD-08-322

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geisz, J. F.

    2012-11-01

    The intent of the work is for RFMD and NREL to cooperate in the development of a commercially viable and high volume capable process to manufacture high performance photovoltaic cells, based on inverted metamorphic (IMM) GaAs technology. The successful execution of the agreement will result in the production of a PV cell using technology that is capable of conversion efficiency at par with the market at the time of release (reference 2009: 37-38%), using RFMD's production facilities. The CRADA work has been divided into three phases: (1) a foundation phase where the teams will demonstrate the manufacturing of a basicmore » PV cell at RFMD's production facilities; (2) a technology demonstration phase where the teams will demonstrate the manufacturing of prototype PV cells using IMM technology at RFMD's production facilities, and; (3) a production readiness phase where the teams will demonstrate the capability to manufacture PV cells using IMM technology with high yields, high reliability, high reproducibility and low cost.« less

  18. Revalidation of the Isobaric Multiplet Mass Equation for the A =20 quintet

    NASA Astrophysics Data System (ADS)

    Glassman, Brent; Perez-Loureiro, D.; Wrede, C.; Allen, J.; Bardyan, D.; Bennett, M.; Brown, A.; Chipps, K.; Febbraro, M.; Fry, Cathleen; Hall, O.; Hall, M.; Liddick, S.; O'Malley, P.; Ong, W.; Pain, S.; Schwartz, S.; Shidling, P.; Sims, H.; Thompson, P.; Zhang, E.

    2016-03-01

    An unexpected breakdown of the Isobaric Multiplet Mass Equation (IMME) for the A =20, T =2 quintet was recently reported based on a precise measurement of the 20Mg mass and adopted data on the other members. The adopted value for 20Na presented the greatest deviation from the IMME fit and was based on relatively imprecise beta delayed proton decay measurements. We used the superallowed 0+ to 0+ beta decay of 20Mg to feed the lowest T =2 state in 20Na, and the high purity germanium detector array SeGA to detect its gamma-ray de-excitation for the first time. Using the gamma-ray energies, we were able to precisely measure the excitation energy to be 6498.4 +/-0 .2stat+/-0.4syst keV. By incorporating this newly measured value we find that the IMME is revalidated. We gratefully acknowledge the NSCL staff for technical assistance and for providing the 20Mg beam. This work was supported by the National Science Foundation (USA) under Grants No. PHY-1102511, No. PHY-1419765, and No. PHY-1404442.

  19. Building a Six-Junction Inverted Metamorphic Concentrator Solar Cell

    DOE PAGES

    Geisz, John F.; Steiner, Myles A.; Jain, Nikhil; ...

    2017-12-20

    We propose practical six-junction (6J) inverted metamorphic multijunction (IMM) concentrator solar cell designs with the potential to exceed 50% efficiency using moderately high quality junction materials. We demonstrate the top three junctions and their monolithic integration lattice matched to GaAs using 2.1-eV AlGaInP, 1.7-eV AlGaAs or GaInAsP, and 1.4-eV GaAs with external radiative efficiencies >0.1%. We demonstrate tunnel junctions with peak tunneling current >400 A/cm 2 that are transparent to <2.1-eV light. We compare the bottom three GaInAs(p) junctions with bandgaps of 1.2, 1.0, and 0.7 eV grown on InP and transparent metamorphic grades with low dislocation densities. The solutionmore » to an integration challenge resulting from Zn diffusion in the GaAs junction is illustrated in a five-junction IMM. Excellent 1-sun performance is demonstrated in a complete 6J IMM device with VOC = 5.15 V, and a promising pathway toward >50% efficiency at high concentrations is presented.« less

  20. Building a Six-Junction Inverted Metamorphic Concentrator Solar Cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geisz, John F.; Steiner, Myles A.; Jain, Nikhil

    We propose practical six-junction (6J) inverted metamorphic multijunction (IMM) concentrator solar cell designs with the potential to exceed 50% efficiency using moderately high quality junction materials. We demonstrate the top three junctions and their monolithic integration lattice matched to GaAs using 2.1-eV AlGaInP, 1.7-eV AlGaAs or GaInAsP, and 1.4-eV GaAs with external radiative efficiencies >0.1%. We demonstrate tunnel junctions with peak tunneling current >400 A/cm 2 that are transparent to <2.1-eV light. We compare the bottom three GaInAs(p) junctions with bandgaps of 1.2, 1.0, and 0.7 eV grown on InP and transparent metamorphic grades with low dislocation densities. The solutionmore » to an integration challenge resulting from Zn diffusion in the GaAs junction is illustrated in a five-junction IMM. Excellent 1-sun performance is demonstrated in a complete 6J IMM device with VOC = 5.15 V, and a promising pathway toward >50% efficiency at high concentrations is presented.« less

  1. Digestibility and retention of zinc, copper, manganese, iron, calcium, and phosphorus in pigs fed diets containing inorganic or organic minerals.

    PubMed

    Liu, Y; Ma, Y L; Zhao, J M; Vazquez-Añón, M; Stein, H H

    2014-08-01

    The objective of this experiment was to measure the apparent total tract digestibility (ATTD) and the retention rate of Zn, Cu, Mn, and Fe in pigs fed either inorganic or organic sources of Zn, Cu, Mn, and Fe. The experimental design was a randomized complete block design with a 2 × 3 factorial arrangement of treatments. There were 2 types of diets (corn grits-based or corn-soybean meal [SBM]-based diets) and 3 micromineral treatments (basal micromineral premix [BMM], inorganic micromineral premix [IMM], and organic micromineral premix [OMM]). The BMM contained no added Zn, Cu, Mn, or Fe; the IMM microminerals were provided as sulfates of Zn, Cu, Mn, and Fe at 40, 50, 20, and 100 mg/kg, respectively. The OMM contained the same levels of the 4 microminerals as IMM, but Zn, Cu, Mn, and Fe in this premix were provided by Zn(2-hydroxy-4-methylthio butanoic acid [HMTBa])2, Cu(HMTBa)2, Mn(HMTBa)2, and FeGly, respectively. Forty-eight barrows (initial BW: 31.1 ± 4.2 kg) were housed individually and allowed ad libitum access to the corn grits diet with BMM for 2 wk. All pigs were then moved to metabolism cages and randomly assigned to 1 of the 6 treatment diets with 8 replicates per diet. Fecal and urine samples were collected for 5 d following a 5-d adaptation period. Compared with corn grits diets, pigs fed corn-SBM diets had greater (P < 0.05) absorption and retention of Zn, Cu, and Mn but less (P < 0.05) ATTD of Zn and Cu. Compared with BMM, supplementation of IMM or OMM increased (P < 0.05) absorption, retention, ATTD, and retention rate of Zn, Cu, Mn, and Fe. Compared with IMM, adding OMM to the corn-SBM diet improved (P < 0.05) the absorption and retention of Cu and Mn and the ATTD of Cu, but these differences were not observed in the corn grits diets (interaction, P < 0.05). In addition, adding OMM to the corn-SBM diet increased (P < 0.05) absorption and retention of Zn and Fe and ATTD of Zn, Mn, and Fe compared with adding IMM to the corn-SBM diet. Supplementation of OMM also increased (P < 0.05) the ATTD and retention rate of P in corn-SBM diets. Results indicate that Zn(HMTBa)2 has greater digestibility and Cu(HMTBa)2 and Mn(HMTBa)2 have greater digestibility and retention rates compared with their inorganic sulfates, if included in a corn-SBM diet. Supplementation of organic microminerals also improves the digestibility of P in a corn-SBM diet.

  2. Weathering Tests on Protective Helmets Approved to Australian Standard AS 1698 (for Vehicle Users).

    DTIC Science & Technology

    1979-11-01

    Expanded Polystyrene HELMETI Colour Production; SAA Size ,Length Width j Mass Circumference Date Serial No. cm imm mm nu qm nun L A White July 󈨒 B535336...HELMET DETAILS Make: ARAI Model: S-75 Shell: Fibreglass Reinforced Polyester Resin Liner: Expanded Polystyrene HELMET Colour Production SAA Size...Reinforced Polyester Resin Liner; Expanded Polystyrene (with thin plastic inner shell) HELMET Colour Production’ SAA Size Length Width Mass

  3. Sleep Disruption Medical Intervention Forecasting (SDMIF) Module for the Integrated Medical Model

    NASA Technical Reports Server (NTRS)

    Lewandowski, Beth; Brooker, John; Mallis, Melissa; Hursh, Steve; Caldwell, Lynn; Myers, Jerry

    2011-01-01

    The NASA Integrated Medical Model (IMM) assesses the risk, including likelihood and impact of occurrence, of all credible in-flight medical conditions. Fatigue due to sleep disruption is a condition that could lead to operational errors, potentially resulting in loss of mission or crew. Pharmacological consumables are mitigation strategies used to manage the risks associated with sleep deficits. The likelihood of medical intervention due to sleep disruption was estimated with a well validated sleep model and a Monte Carlo computer simulation in an effort to optimize the quantity of consumables. METHODS: The key components of the model are the mission parameter program, the calculation of sleep intensity and the diagnosis and decision module. The mission parameter program was used to create simulated daily sleep/wake schedules for an ISS increment. The hypothetical schedules included critical events such as dockings and extravehicular activities and included actual sleep time and sleep quality. The schedules were used as inputs to the Sleep, Activity, Fatigue and Task Effectiveness (SAFTE) Model (IBR Inc., Baltimore MD), which calculated sleep intensity. Sleep data from an ISS study was used to relate calculated sleep intensity to the probability of sleep medication use, using a generalized linear model for binomial regression. A human yes/no decision process using a binomial random number was also factored into sleep medication use probability. RESULTS: These probability calculations were repeated 5000 times resulting in an estimate of the most likely amount of sleep aids used during an ISS mission and a 95% confidence interval. CONCLUSIONS: These results were transferred to the parent IMM for further weighting and integration with other medical conditions, to help inform operational decisions. This model is a potential planning tool for ensuring adequate sleep during sleep disrupted periods of a mission.

  4. AMPA receptor phosphorylation and recognition memory: learning-related, time-dependent changes in the chick brain following filial imprinting.

    PubMed

    Solomonia, Revaz O; Meparishvili, Maia; Mikautadze, Ekaterine; Kunelauri, Nana; Apkhazava, David; McCabe, Brian J

    2013-04-01

    There is strong evidence that a restricted part of the chick forebrain, the intermediate medial mesopallium (IMM), stores information acquired through the learning process of visual imprinting. We have previously demonstrated that at 1 h but not 24 h after imprinting training, a learning-specific increase in the amount of membrane Thr286-autophosphorylated α-calcium/calmodulin-dependent protein kinase II (αCaMKII), and in the proportion of total αCaMKII that is phosphorylated, occurs in the IMM but not in a control brain region, the posterior pole of the nidopallium (PPN). αCaMKII directly phosphorylates Ser831 in the GluA1 subunit of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor. In the present study we have inquired whether the learning-related increase in αCaMKII autophosphorylation is followed by changes in the Ser831 phosphorylation of GluA1 (P-GluA1) and in the total amount of this subunit (T-GluA1). Trained chicks together with untrained control chicks were killed either 1 or 24 h after training. Tissue was removed from the IMM together with tissue from the PPN as a control. Amounts of P-GluA1 and T-GluA1 were measured. In the left IMM of the 1 h group the P-GluA1/T-GluA1 ratio increased in a learning-specific way. No learning-related changes were observed in other brain regions at 1 h or in any region 24 h after training. The results indicate that a time- and regionally-dependent, learning-specific increase in GluA1 phosphorylation occurs early in recognition memory formation.

  5. Terrain mapping and control of unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Kang, Yeonsik

    In this thesis, methods for terrain mapping and control of unmanned aerial vehicles (UAVs) are proposed. First, robust obstacle detection and tracking algorithm are introduced to eliminate the clutter noise uncorrelated with the real obstacle. This is an important problem since most types of sensor measurements are vulnerable to noise. In order to eliminate such noise, a Kalman filter-based interacting multiple model (IMM) algorithm is employed to effectively detect obstacles and estimate their positions precisely. Using the outcome of the IMM-based obstacle detection algorithm, a new method of building a probabilistic occupancy grid map is proposed based on Bayes rule in probability theory. Since the proposed map update law uses the outputs of the IMM-based obstacle detection algorithm, simultaneous tracking of moving targets and mapping of stationary obstacles are possible. This can be helpful especially in a noisy outdoor environment where different types of obstacles exist. Another feature of the algorithm is its capability to eliminate clutter noise as well as measurement noise. The proposed algorithm is simulated in Matlab using realistic sensor models. The results show close agreement with the layout of real obstacles. An efficient method called "quadtree" is used to process massive geographical information in a convenient manner. The algorithm is evaluated in a realistic simulation environment called RIPTIDE, which the NASA Ames Research Center developed to access the performance of complicated software for UAVs. Supposing that a UAV is equipped with abovementioned obstacle detection and mapping algorithm, the control problem of a small fixed-wing UAV is studied. A Nonlinear Model Predictive Control (NMPC is designed as a high level controller for the fixed-wing UAV using a kinematic model of the UAV. The kinematic model is employed because of the assumption that there exist low level controls on the UAV. The UAV dynamics are nonlinear with input constraints which is the main challenge explored in this thesis. The control objective of the NMPC is determined to track a desired line, and the analysis of the designed NMPC's stability is followed to find the conditions that can assure stability. Then, the control objective is extended to track adjoined multiple line segments with obstacle avoidance capability. In simulation, the performance of the NMPC is superb with fast convergence and small overshoot. The computation time is not a burden for a fixed-wing UAV controller with a Pentium level on-board computer that provides a reasonable control update rate.

  6. Mass spectrometry methods for the analysis of biodegradable hybrid materials

    NASA Astrophysics Data System (ADS)

    Alalwiat, Ahlam

    This dissertation focuses on the characterization of hybrid materials and surfactant blends by using mass spectrometry (MS), tandem mass spectrometry (MS/MS), liquid chromatography (LC), and ion mobility (IM) spectrometry combined with measurement and simulation of molecular collision cross sections. Chapter II describes the principles and the history of mass spectrometry (MS) and liquid chromatography (LC). Chapter III introduces the materials and instrumentation used to complete this dissertation. In chapter IV, two hybrid materials containing poly(t-butyl acrylate) (PtBA) or poly(acrylic acid) (PAA) blocks attached to a hydrophobic peptide rich in valine and glycine (VG2), as well as the poly(acrylic acid) (PAA) and VG2 peptide precursor materials, are characterized by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), electrospray ionization mass spectrometry (ESI-MS) and ion mobility mass spectrometry (IM-MS). Collision cross-sections and molecular modeling have been used to determine the final architecture of both hybrid materials. Chapter V investigates a different hybrid material, [BMP-2(HA)2 ], comprised of a dendron with two polyethylene glycol (PEG) branches terminated by a hydroxyapatite binding peptide (HA), and a focal point substituted with a bone morphogenic protein mimicking peptide (BMP-2). MALDI-MS, ESI-MS and IM-MS have been used to characterize the HA and BMP-2 peptides. Collisionally activated dissociation (CAD) and electron transfer dissociation (ETD) have been employed in double stage (i.e. tandem) mass spectrometry (MS/MS) experiments to confirm the sequences of the two peptides HA and BMP-2. The MALDI-MS, ESI-MS and IM-MS methods were also applied to characterize the [BMP-2(HA)2] hybrid material. Collision cross-section measurements and molecular modeling indicated that [BMP-2(HA)2] can attain folded or extended conformation, depending on its degree of protonation (charge state). Chapter VI focuses on the analysis of alkyl polyglycoside (APG) surfactants by MALDI-MS and ESI-MS, MS/MS, and by combining MS and with ion mobility (IM) and/or ultra-performance liquid chromatography (UPLC) separation in LC-IM and LC-IM-MS experiments. Chapter VII summaries this dissertation's findings.

  7. Transfer of Wire Arc-Sprayed Metal Coatings onto Plastic Parts

    NASA Astrophysics Data System (ADS)

    Bobzin, K.; Öte, M.; Knoch, M. A.; Liao, X.; Hopmann, Ch.; Ochotta, P.

    2018-01-01

    By means of In-Mold-Metal-Spraying (IMMS), metal coatings deposited by means of arc spraying process (ASP) can be transferred onto plastic parts during injection molding, thus realizing an efficient production of metallized plastic parts. Parts produced by means of IMMS can be used in electrical applications. In the current study, the electrical resistivity of coatings applied with different feedstock materials was determined. As a starting point, pressurized air is used as atomizing gas for ASP. In contrast to Zn coatings, Cu coatings applied with pressurized air exhibit a significantly higher electrical resistivity in comparison with massive material. One possible reason is the more pronounced oxidation of Cu particles during ASP. Therefore, N2 and a mixture of N2 and H2 were used as atomizing gas. As a result, the electrical resistivity of coatings applied by means of IMMS could be significantly reduced. Furthermore, standoff distance, current and pressure of the atomizing gas were varied to investigate the influence of these process parameters on the electrical resistivity of Zn coatings using a full factorial experiment design with center point. It can be observed that the electrical resistivity of the Zn coatings increases with decreasing current and increasing standoff distance and pressure.

  8. Transfer of Wire Arc-Sprayed Metal Coatings onto Plastic Parts

    NASA Astrophysics Data System (ADS)

    Bobzin, K.; Öte, M.; Knoch, M. A.; Liao, X.; Hopmann, Ch.; Ochotta, P.

    2017-12-01

    By means of In-Mold-Metal-Spraying (IMMS), metal coatings deposited by means of arc spraying process (ASP) can be transferred onto plastic parts during injection molding, thus realizing an efficient production of metallized plastic parts. Parts produced by means of IMMS can be used in electrical applications. In the current study, the electrical resistivity of coatings applied with different feedstock materials was determined. As a starting point, pressurized air is used as atomizing gas for ASP. In contrast to Zn coatings, Cu coatings applied with pressurized air exhibit a significantly higher electrical resistivity in comparison with massive material. One possible reason is the more pronounced oxidation of Cu particles during ASP. Therefore, N2 and a mixture of N2 and H2 were used as atomizing gas. As a result, the electrical resistivity of coatings applied by means of IMMS could be significantly reduced. Furthermore, standoff distance, current and pressure of the atomizing gas were varied to investigate the influence of these process parameters on the electrical resistivity of Zn coatings using a full factorial experiment design with center point. It can be observed that the electrical resistivity of the Zn coatings increases with decreasing current and increasing standoff distance and pressure.

  9. Extended Survival after Complete Pathological Response in Metastatic Pancreatic Ductal Adenocarcinoma Following Induction Chemotherapy, Chemoradiotherapy, and a Novel Immunotherapy Agent, IMM-101

    PubMed Central

    Giakoustidis, Alex; Stamp, Gordon; Gaya, Andy; Mudan, Satvinder

    2015-01-01

    Pancreatic ductal adenocarcinoma (PDAC) has an extremely poor prognosis. Median survival for metastatic patients is six to nine months and survivors beyond one year are exceptional. Pancreatic cancer is resistant to conventional chemotherapy and is often diagnosed at advanced stages. However, immunotherapy is a rapidly advancing new treatment modality, which shows promise in many solid tumor types.​ We present a patient with metastatic pancreatic cancer who underwent a synchronous resection of the primary tumour (pancreatoduodenectomy) and metastatic site (left hepatectomy) after multimodality neoadjuvant treatment with gemcitabine, nab-paclitaxel, and immunotherapy backbone with IMM-101 (an intradermally applied immunomodulator), as well as consolidation chemoradiation. Pathology of the specimens showed a complete response in both sites of the disease. The patient remains alive four years from the initial diagnosis and continues on maintenance immunotherapy. This exceptional response to initial chemo-immunotherapy was followed by a novel and off-protocol approach of low-dose capecitabine and IMM-101 as a maintenance strategy. The survival benefit and sustained performance status could set this as a new paradigm for the treatment of oligometastatic pancreatic cancer following response to systemic therapy and immunotherapy.​ PMID:26870619

  10. Comparison of Combat Gauze and TraumaStat in Two Severe Groin Injury Models

    DTIC Science & Technology

    2011-07-01

    especially given their similarity in form to stan· dard gauze currently in use . Recently, two such prod· ucts, Combat Gauze (CBG) and TraumaStat (TMS...if acted upon imme- diately after injury. With proper compression on the wound site, use of adequate hemostatic dressing for bleeding control...be minimized. In an effort for better hemo- static control in noncompressible areas such as the neck or the groin where tourniquets cannot be used

  11. Inhibiting and Remodeling Toxic Amyloid-Beta Oligomer Formation Using a Computationally Designed Drug Molecule That Targets Alzheimer's Disease

    NASA Astrophysics Data System (ADS)

    Downey, Matthew A.; Giammona, Maxwell J.; Lang, Christian A.; Buratto, Steven K.; Singh, Ambuj; Bowers, Michael T.

    2018-04-01

    Alzheimer's disease (AD) is rapidly reaching epidemic status among a burgeoning aging population. Much evidence suggests the toxicity of this amyloid disease is most influenced by the formation of soluble oligomeric forms of amyloid β-protein, particularly the 42-residue alloform (Aβ42). Developing potential therapeutics in a directed, streamlined approach to treating this disease is necessary. Here we utilize the joint pharmacophore space (JPS) model to design a new molecule [AC0107] incorporating structural characteristics of known Aβ inhibitors, blood-brain barrier permeability, and limited toxicity. To test the molecule's efficacy experimentally, we employed ion mobility mass spectrometry (IM-MS) to discover [AC0107] inhibits the formation of the toxic Aβ42 dodecamer at both high (1:10) and equimolar concentrations of inhibitor. Atomic force microscopy (AFM) experiments reveal that [AC0107] prevents further aggregation of Aβ42, destabilizes preformed fibrils, and reverses Aβ42 aggregation. This trend continues for long-term interaction times of 2 days until only small aggregates remain with virtually no fibrils or higher order oligomers surviving. Pairing JPS with IM-MS and AFM presents a powerful and effective first step for AD drug development.

  12. Probabilistic Modeling of the Renal Stone Formation Module

    NASA Technical Reports Server (NTRS)

    Best, Lauren M.; Myers, Jerry G.; Goodenow, Debra A.; McRae, Michael P.; Jackson, Travis C.

    2013-01-01

    The Integrated Medical Model (IMM) is a probabilistic tool, used in mission planning decision making and medical systems risk assessments. The IMM project maintains a database of over 80 medical conditions that could occur during a spaceflight, documenting an incidence rate and end case scenarios for each. In some cases, where observational data are insufficient to adequately define the inflight medical risk, the IMM utilizes external probabilistic modules to model and estimate the event likelihoods. One such medical event of interest is an unpassed renal stone. Due to a high salt diet and high concentrations of calcium in the blood (due to bone depletion caused by unloading in the microgravity environment) astronauts are at a considerable elevated risk for developing renal calculi (nephrolithiasis) while in space. Lack of observed incidences of nephrolithiasis has led HRP to initiate the development of the Renal Stone Formation Module (RSFM) to create a probabilistic simulator capable of estimating the likelihood of symptomatic renal stone presentation in astronauts on exploration missions. The model consists of two major parts. The first is the probabilistic component, which utilizes probability distributions to assess the range of urine electrolyte parameters and a multivariate regression to transform estimated crystal density and size distributions to the likelihood of the presentation of nephrolithiasis symptoms. The second is a deterministic physical and chemical model of renal stone growth in the kidney developed by Kassemi et al. The probabilistic component of the renal stone model couples the input probability distributions describing the urine chemistry, astronaut physiology, and system parameters with the physical and chemical outputs and inputs to the deterministic stone growth model. These two parts of the model are necessary to capture the uncertainty in the likelihood estimate. The model will be driven by Monte Carlo simulations, continuously randomly sampling the probability distributions of the electrolyte concentrations and system parameters that are inputs into the deterministic model. The total urine chemistry concentrations are used to determine the urine chemistry activity using the Joint Expert Speciation System (JESS), a biochemistry model. Information used from JESS is then fed into the deterministic growth model. Outputs from JESS and the deterministic model are passed back to the probabilistic model where a multivariate regression is used to assess the likelihood of a stone forming and the likelihood of a stone requiring clinical intervention. The parameters used to determine to quantify these risks include: relative supersaturation (RS) of calcium oxalate, citrate/calcium ratio, crystal number density, total urine volume, pH, magnesium excretion, maximum stone width, and ureteral location. Methods and Validation: The RSFM is designed to perform a Monte Carlo simulation to generate probability distributions of clinically significant renal stones, as well as provide an associated uncertainty in the estimate. Initially, early versions will be used to test integration of the components and assess component validation and verification (V&V), with later versions used to address questions regarding design reference mission scenarios. Once integrated with the deterministic component, the credibility assessment of the integrated model will follow NASA STD 7009 requirements.

  13. Capacity of wild-type and chemokine-armed parvovirus H-1PV for inhibiting neo-angiogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lavie, Muriel; Struyf, Sofie; Stroh-Dege, Alexandra

    2013-12-15

    Anti-angiogenic therapy has been recognized as a powerful potential strategy for impeding the growth of various tumors. However no major therapeutic effects have been observed to date, mainly because of the emergence of several resistance mechanisms. Among novel strategies to target tumor vasculature, some oncolytic viruses open up new prospects. In this context, we addressed the question whether the rodent parvovirus H-1PV can target endothelial cells. We show that cultures of human normal (HUVEC) and immortalized (KS-IMM) endothelial cells sustain an abortive viral cycle upon infection with H-1PV and are sensitive to H-1PV cytotoxicity. H-1PV significantly inhibits infected KS-IMM tumormore » growth. This effect may be traced back by the virus ability to both kill proliferating endothelial cells and inhibit VEGF production Recombinant H-1PV vectors can also transduce tumor cells with chemokines endowed with anti-angiogenesis properties, and warrant further validation for the treatment of highly vascularized tumors. - Highlights: • The oncolytic parvovirus H-1PV can target endothelial cells. • Abortive viral cycle upon infection of endothelial cells with H-1PV. • Inhibition of VEGF expression and KS-IMM tumor growth by H-1PV.« less

  14. Guinea pigs inbred for studies of respiratory anaphylaxis.

    PubMed

    Lundberg, L

    1979-02-01

    A selective inbreeding of approximately 24 generations of albino guinea pigs by brother x sister mating has resulted in two strains, registered IMM/S and IMM/R, with high and low responsiveness, respectively, to ovalbumin-induced respiratory anaphylaxis. The two guinea pig strains differed in their ability to be immunized by the inhalation of antigen and produce antibodies, as well as to develop respiratory anaphylaxis. A correlation between the strength of the anaphylactic reactions and the amount of hemagglutinating antibodies produced was observed. When immunization was carried out by an intradermal injection of ovalbumin (OA), even in small doses incorporated in FCA, guinea pigs from both strains produced hemagglutinating antibodies in nearly the same amount. These antibodies do not influence the ability of the animals to react with a high respectively low anaphylactic response on subsequent challenge by inhalation of OA, neither in the actively sensitized animals nor in passively sensitized animals. However, with repeated inhalations of OA, desensitization occurred in the intradermally immunized high-responders, while the passively immunized high-responders could be provoked several times without any signs of desensitization. No systematical differences between the two strains with regard to sensitivity to inhalations of histamine were demonstrated. The low responders were found to be less resistant to infections than high-responders.

  15. Mitochondrial pyruvate transport: a historical perspective and future research directions

    PubMed Central

    McCommis, Kyle S.; Finck, Brian N.

    2015-01-01

    Pyruvate is the end-product of glycolysis, a major substrate for oxidative metabolism, and a branching point for glucose, lactate, fatty acid and amino acid synthesis. The mitochondrial enzymes that metabolize pyruvate are physically separated from cytosolic pyruvate pools and rely on a membrane transport system to shuttle pyruvate across the impermeable inner mitochondrial membrane (IMM). Despite long-standing acceptance that transport of pyruvate into the mitochondrial matrix by a carrier-mediated process is required for the bulk of its metabolism, it has taken almost 40 years to determine the molecular identity of an IMM pyruvate carrier. Our current understanding is that two proteins, mitochondrial pyruvate carriers MPC1 and MPC2, form a hetero-oligomeric complex in the IMM to facilitate pyruvate transport. This step is required for mitochondrial pyruvate oxidation and carboxylation – critical reactions in intermediary metabolism that are dysregulated in several common diseases. The identification of these transporter constituents opens the door to the identification of novel compounds that modulate MPC activity, with potential utility for treating diabetes, cardiovascular disease, cancer, neurodegenerative diseases, and other common causes of morbidity and mortality. The purpose of the present review is to detail the historical, current and future research investigations concerning mitochondrial pyruvate transport, and discuss the possible consequences of altered pyruvate transport in various metabolic tissues. PMID:25748677

  16. National Differences in Remission of Type 2 Diabetes Mellitus After Roux-en-Y Gastric Bypass Surgery-Subgroup Analysis of 2-Year Results of the Diabetes Surgery Study Comparing Taiwanese with Americans with Mild Obesity (BMI 30-35 kg/m2).

    PubMed

    Chong, Keong; Ikramuddin, Sayeed; Lee, Wei-Jei; Billington, Charles J; Bantle, John P; Wang, Qi; Thomas, Avis J; Connett, John E; Leslie, Daniel B; Inabnet, William B; Jeffery, Robert W; Sarr, Michael G; Jensen, Michael D; Vella, Adrian; Ahmed, Leaque; Belani, Kumar; Schone, Joyce L; Olofson, Amy E; Bainbridge, Heather A; Laqua, Patricia S; Korner, Judith; Chuang, Lee-Ming

    2017-05-01

    The purpose of this study is to compare effects of different nations on Roux-en-Y gastric bypass (RYGB) vs. intensive medical management (IMM) in achieving remission of type 2 diabetes mellitus (T2DM). Between April 2008 and December 2011, this randomized, controlled clinical trial was conducted at four teaching hospitals in the United States and Taiwan involving 71 participants with mild obesity (BMI 30-35 kg/m 2 ). Thirty-six of 71 participants were randomly assigned to the RYGB group, and the others were in IMM group. Partial or complete remission of T2DM was defined as blood HbA1c < 6.5 % (48 mmol/mol) or <6 % (42 mmol/mol) without any antihyperglycemic medication for at least 1-year duration, respectively. At baseline, Taiwanese participants had a lower BMI, younger age, and shorter duration of T2DM than American participants. At 24 months, weight loss was greater in the RYGB group in both populations than in the IMM group. No IMM participant of either population had partial or complete remission of T2DM. In the RYGB group, a substantial proportion of the subjects achieved complete or partial remission (57 % in Taiwanese and 27 % in American participants, P = 0.08). Logistic regression revealed stimulated C-peptide (Odds ratio 2.22, P = 0.02) but not nationality as a significant predictor of diabetes remission. Adding RYGB to lifestyle and medical management was associated with a greater likelihood of remission of T2DM in both Taiwanese and American subjects with mild obesity with type 2 diabetes. Residual beta-cell function at baseline appears to be the major factor predicting remission of T2DM. Trial registry number: clinicaltrials.gov Identifier: NCT00641251.

  17. Transformational Solar Array Final Report

    NASA Technical Reports Server (NTRS)

    Gaddy, Edward; Ballarotto, Mihaela; Drabenstadt, Christian; Nichols, John; Douglas, Mark; Spence, Brian; Stall, Richard A.; Sulyma, Chris; Sharps, Paul

    2017-01-01

    We have made outstanding progress in the Base Phase towards achieving the final NASA Research Announcement (NRA) goals. Progress is better than anticipated due to the lighter than predicted mass of the IMM solar cells. We look forward to further improvements in the IMM cell performance during Option I and Option II; so, we have confidence that the first four items listed in the table will improve to better than the NRA goals. The computation of the end of life blanket efficiency is uncertain because we have extrapolated the radiation damage from room temperature measurements. The last three items listed in the Table were not intended to be accomplished during the Base Phase; they will be achieved during Option I and Option II.

  18. Experimental and Theoretical Investigation of Sodiated Multimers of Steroid Epimers with Ion Mobility-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Chouinard, Christopher D.; Cruzeiro, Vinícius Wilian D.; Roitberg, Adrian E.; Yost, Richard A.

    2017-02-01

    Ion mobility-mass spectrometry (IM-MS) has recently seen increased use in the analysis of small molecules, especially in the field of metabolomics, for increased breadth of information and improved separation of isomers. In this study, steroid epimers androsterone and trans-androsterone were analyzed with IM-MS to investigate differences in their relative mobilities. Although sodiated monomers exhibited very similar collision cross-sections (CCS), baseline separation was observed for the sodiated dimer species (RS = 1.81), with measured CCS of 242.6 and 256.3 Å2, respectively. Theoretical modeling was performed to determine the most energetically stable structures of solution-phase and gas-phase monomer and dimer structures. It was revealed that these epimers differ in their preferred dimer binding mode in solution phase: androsterone adopts a R=O - Na+ - OH—R' configuration, whereas trans-androsterone adopts a R=O - Na+ - O=R' configuration. This difference contributes to a significant structural variation, and subsequent CCS calculations based on these structures relaxed in the gas phase were in agreement with experimentally measured values (ΔCCS 5%). Additionally, these calculations accurately predicted the relative difference in mobility between the epimers. This study illustrates the power of combining experimental and theoretical results to better elucidate gas-phase structures.

  19. Effect of charge on the conformation of highly basic peptides including the tail regions of histone proteins by ion mobility mass spectrometry.

    PubMed

    Akashi, Satoko; Downard, Kevin M

    2016-09-01

    The first systematic and comprehensive study of the charging behaviour and effect of charge on the conformation of specifically constructed arginine-rich peptides and its significance to the N- and C-terminal basic tail regions of histone proteins was conducted using ion mobility mass spectrometry (IM-MS). Among the basic amino acids, arginine has the greatest impact on the charging behaviour and structures of gas phase ions by virtue of its high proton affinity. A close linear correlation was found between either the maximum charge, or most abundant charge state, that the peptides support and their average collision cross section (CCS) values measured by ion mobility mass spectrometry. The calculated collision cross sections for the lowest energy solution state models predicted by the PEP-FOLD algorithm using a modified MOBCAL trajectory method were found to best correlate with the values measured by IM-MS. In the case of the histone peptides, more compact folded structures, supporting less than the maximum number of charges, were observed. These results are consistent with those previously reported for histone dimers where neutralization of the charge at the basic residues of the tail regions did not affect their CCS values.

  20. Flood predictions using the parallel version of distributed numerical physical rainfall-runoff model TOPKAPI

    NASA Astrophysics Data System (ADS)

    Boyko, Oleksiy; Zheleznyak, Mark

    2015-04-01

    The original numerical code TOPKAPI-IMMS of the distributed rainfall-runoff model TOPKAPI ( Todini et al, 1996-2014) is developed and implemented in Ukraine. The parallel version of the code has been developed recently to be used on multiprocessors systems - multicore/processors PC and clusters. Algorithm is based on binary-tree decomposition of the watershed for the balancing of the amount of computation for all processors/cores. Message passing interface (MPI) protocol is used as a parallel computing framework. The numerical efficiency of the parallelization algorithms is demonstrated for the case studies for the flood predictions of the mountain watersheds of the Ukrainian Carpathian regions. The modeling results is compared with the predictions based on the lumped parameters models.

  1. Optimizing Medical Kits for Space Flight

    NASA Technical Reports Server (NTRS)

    Minard, Charles G.; FreiredeCarvalho, Mary H.; Iyengar, M. Sriram

    2010-01-01

    The Integrated Medical Model (IMM) uses Monte Carlo methodologies to predict the occurrence of medical events, their mitigation, and the resources required during space flight. The model includes two modules that utilize output from a single model simulation to identify an optimized medical kit for a specified mission scenario. This poster describes two flexible optimization routines built into SAS 9.1. The first routine utilizes a systematic process of elimination to maximize (or minimize) outcomes subject to attribute constraints. The second routine uses a search and mutate approach to minimize medical kit attributes given a set of outcome constraints. There are currently 273 unique resources identified that are used to treat at least one of 83 medical conditions currently in the model.

  2. Ion mobility-mass spectrometry reveals conformational flexibility in the deubiquitinating enzyme USP5.

    PubMed

    Scott, Daniel; Layfield, Robert; Oldham, Neil J

    2015-08-01

    Many proteins exhibit conformation flexibility as part of their biological function, whether through the presence of a series of well-defined states or by the existence of intrinsic disorder. Ion mobility spectrometry, in combination with MS (IM-MS), offers a rapid and sensitive means of probing ensembles of protein structures through measurement of gas-phase collisional cross sections. We have applied IM-MS analysis to the multidomain deubiquitinating enzyme ubiquitin specific protease 5 (USP5), which is believed to exhibit significant conformational flexibility. Native ESI-MS measurement of the 94-kDa USP5 revealed two distinct charge-state distributions: [M + 17H](+) to [M + 21H](+) and [M + 24H](+) to [M + 29H](+). The collisional cross sections of these ions revealed clear groupings of 52 ± 4 nm(2) for the lower charges and 66 ± 6 nm(2) for the higher charges. Molecular dynamics simulation of a compact form of USP5, based on a crystal structure, produced structures of 53-54 nm(2) following 2 ns in the gas phase, while simulation of an extended form (based on small-angle X-ray scattering data) led to structures of 64 nm(2). These data demonstrate that IM-MS is a valuable tool in studying proteins with different discrete conformational states. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Simple Motor Control Concept Results High Efficiency at High Velocities

    NASA Astrophysics Data System (ADS)

    Starin, Scott; Engel, Chris

    2013-09-01

    The need for high velocity motors in space applications for reaction wheels and detectors has stressed the limits of Brushless Permanent Magnet Motors (BPMM). Due to inherent hysteresis core losses, conventional BPMMs try to balance the need for torque verses hysteresis losses. Cong-less motors have significantly less hysteresis losses but suffer from lower efficiencies. Additionally, the inherent low inductance in cog-less motors result in high ripple currents or high switching frequencies, which lowers overall efficiency and increases performance demands on the control electronics.However, using a somewhat forgotten but fully qualified technology of Isotropic Magnet Motors (IMM), extremely high velocities may be achieved at low power input using conventional drive electronics. This paper will discuss the trade study efforts and empirical test data on a 34,000 RPM IMM.

  4. Individual medication management system (IMMS) as a proposition of obeying the doctor's recommendation with pharmacist cooperation.

    PubMed

    Waszyk-Nowaczyk, Magdalena; Simon, Marek; Matwij, Karolina

    2012-01-01

    The pharmacist is an expert with the knowledge of drugs, who has a possibility to follow the patient's individual pharmacotherapy, which is the basis of the pharmaceutical care programme. The implementation of the Individual Medication Management System (IMMS) may be one of the proposals which will enable an analysis of the course of pharmacotherapy and elimination of drug problems, which are the chief goals of pharmaceutical care. In order to determine community pharmacy patients' degree of interest in the IMMS and to evaluate the degree of patients' discipline concerning the application of doctors' recommendations they were given an anonymous questionnaire. The research was done from August 2009 to May 2010 on a sample of 179 people selected at random. They were patients of community pharmacies in Poznań, where 70% were women and 30% were men, all of them aged between 20 and 85 years. The individual age groups were: 20-40 years--27.0%, 41-50 years--10.8%, 51-64 years--43.6%, 65 years or more--18.6%. The patients' education was as follows: primary--4.7%, vocational--8.0%, secondary--31.0%, incomplete university--12.0% and university--44.3%. The chi2 and Fisher-Freeman-Halton tests were used for statistical analysis of the results. Each time the level of statistical significance was assumed at p < 0.05. The collected results confirmed the fact that there is a higher number of specialists involved in patients' treatment with their age (p = 0.001), which indirectly leads to a higher number of prescribed drugs (p = 0.00000002). It was proved that more than 90% of the patients aged over 50 years take the prescribed drugs for more than a year (p = 0.00000002). The analysis confirmed the fact that there are mostly men which do not abide the indications concerning the dosage regimen (p = 0.049). The answers to the questions evaluating the patients' attitude to the IMMS revealed that 47.2% of the respondents indicate the advantages of the system. However, it was mostly women and respondents with university education that were the most interested in it. More than 50% of the patients aged 20-40 years and those aged over 65 years indicate the purposefulness of the systems. It is mainly the group aged 20-40 years that confirms facilitation in following the doctor's recommendations (p = 0.02). The respondents indicated their interest and confirmed the purposefulness of the IMMS mainly due to the fact that it helps to avoid drug-related problems resulting from omitting doses and helps to keep the dosage time and frequency in a long-term therapy. The research confirms the fact that individualized therapy will contribute to its higher efficacy, economy and safety.

  5. 77 FR 33640 - International Service Change-Timor-Leste

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-07

    ... Manual (IMM[supreg]), to reflect Timor-Leste's independence from Indonesia, and its joining the Universal... current listing for ``East Timor (Indonesia)'' to read ``East Timor (Timor-Leste)''. In addition insert a...

  6. Demonstration of a neural circuit critical for imprinting behavior in chicks.

    PubMed

    Nakamori, Tomoharu; Sato, Katsushige; Atoji, Yasuro; Kanamatsu, Tomoyuki; Tanaka, Kohichi; Ohki-Hamazaki, Hiroko

    2010-03-24

    Imprinting behavior in birds is elicited by visual and/or auditory cues. It has been demonstrated previously that visual cues are recognized and processed in the visual Wulst (VW), and imprinting memory is stored in the intermediate medial mesopallium (IMM) of the telencephalon. Alteration of neural responses in these two regions according to imprinting has been reported, yet direct evidence of the neural circuit linking these two regions is lacking. Thus, it remains unclear how memory is formed and expressed in this circuit. Here, we present anatomical as well as physiological evidence of the neural circuit connecting the VW and IMM and show that imprinting training during the critical period strengthens and refines this circuit. A functional connection established by imprint training resulted in an imprinting behavior. After the closure of the critical period, training could not activate this circuit nor induce the imprinting behavior. Glutamatergic neurons in the ventroposterior region of the VW, the core region of the hyperpallium densocellulare (HDCo), sent their axons to the periventricular part of the HD, just dorsal and afferent to the IMM. We found that the HDCo is important in imprinting behavior. The refinement and/or enhancement of this neural circuit are attributed to increased activity of HDCo cells, and the activity depended on NR2B-containing NMDA receptors. These findings show a neural connection in the telencephalon in Aves and demonstrate that NR2B function is indispensable for the plasticity of HDCo cells, which are key mediators of imprinting.

  7. Neutron structures of the Helicobacter pylori 5'-methylthioadenosine nucleosidase highlight proton sharing and protonation states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banco, Michael T.; Mishra, Vidhi; Ostermann, Andreas

    2016-11-16

    MTAN (5'-methylthioadenosine nucleosidase) catalyzes the hydrolysis of the N-ribosidic bond of a variety of adenosine-containing metabolites. The Helicobacter pylori MTAN (HpMTAN) hydrolyzes 6-amino-6-deoxyfutalosine in the second step of the alternative menaquinone biosynthetic pathway. Substrate binding of the adenine moiety is mediated almost exclusively by hydrogen bonds, and the proposed catalytic mechanism requires multiple proton-transfer events. Of particular interest is the protonation state of residue D198, which possesses a pKa above 8 and functions as a general acid to initiate the enzymatic reaction. In this study we present three corefined neutron/X-ray crystal structures of wild-type HpMTAN cocrystallized with S-adenosylhomocysteine (SAH), Formycinmore » A (FMA), and (3R,4S)-4-(4-Chlorophenylthiomethyl)-1-[(9-deaza-adenin-9-yl)methyl]-3-hydroxypyrrolidine (p-ClPh-Thio-DADMe-ImmA) as well as one neutron/X-ray crystal structure of an inactive variant (HpMTAN-D198N) cocrystallized with SAH. These results support a mechanism of D198 pKa elevation through the unexpected sharing of a proton with atom N7 of the adenine moiety possessing unconventional hydrogen-bond geometry. Additionally, the neutron structures also highlight active site features that promote the stabilization of the transition state and slight variations in these interactions that result in 100-fold difference in binding affinities between the DADMe-ImmA and ImmA analogs.« less

  8. Neutron structures of the Helicobacter pylori 5'-methylthioadenosine nucleosidase highlight proton sharing and protonation states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banco, Michael T.; Mishra, Vidhi; Ostermann, Andreas

    MTAN (5'-methylthioadenosine nucleosidase) catalyzes the hydrolysis of the N-ribosidic bond of a variety of adenosine-containing metabolites. The Helicobacter pylori MTAN (HpMTAN) hydrolyzes 6-amino-6-deoxyfutalosine in the second step of the alternative menaquinone biosynthetic pathway. Substrate binding of the adenine moiety is mediated almost exclusively by hydrogen bonds, and the proposed catalytic mechanism requires multiple proton-transfer events. Of particular interest is the protonation state of residue D198, which possesses a pK a above 8 and functions as a general acid to initiate the enzymatic reaction. In this study we present three corefined neutron/X-ray crystal structures of wild-type HpMTAN cocrystallized with S-adenosylhomocysteine (SAH),more » Formycin A (FMA), and (3R,4S)-4-(4-Chlorophenylthiomethyl)-1-[(9-deaza-adenin-9-yl)methyl]-3-hydroxypyrrolidine (p-ClPh-Thio-DADMe-ImmA) as well as one neutron/X-ray crystal structure of an inactive variant (HpMTAN-D198N) cocrystallized with SAH. These results support a mechanism of D198 pKa elevation through the unexpected sharing of a proton with atom N7 of the adenine moiety possessing unconventional hydrogen-bond geometry. Additionally, the neutron structures also highlight active site features that promote the stabilization of the transition state and slight variations in these interactions that result in 100-fold difference in binding affinities between the DADMe-ImmA and ImmA analogs.« less

  9. Calcium binding and transport by coenzyme Q.

    PubMed

    Bogeski, Ivan; Gulaboski, Rubin; Kappl, Reinhard; Mirceski, Valentin; Stefova, Marina; Petreska, Jasmina; Hoth, Markus

    2011-06-22

    Coenzyme Q10 (CoQ10) is one of the essential components of the mitochondrial electron-transport chain (ETC) with the primary function to transfer electrons along and protons across the inner mitochondrial membrane (IMM). The concomitant proton gradient across the IMM is essential for the process of oxidative phosphorylation and consequently ATP production. Cytochrome P450 (CYP450) monoxygenase enzymes are known to induce structural changes in a variety of compounds and are expressed in the IMM. However, it is unknown if CYP450 interacts with CoQ10 and how such an interaction would affect mitochondrial function. Using voltammetry, UV-vis spectrometry, electron paramagnetic resonance (EPR), nuclear magnetic resonance (NMR), fluorescence microscopy and high performance liquid chromatography-mass spectrometry (HPLC-MS), we show that both CoQ10 and its analogue CoQ1, when exposed to CYP450 or alkaline media, undergo structural changes through a complex reaction pathway and form quinone structures with distinct properties. Hereby, one or both methoxy groups at positions 2 and 3 on the quinone ring are replaced by hydroxyl groups in a time-dependent manner. In comparison with the native forms, the electrochemically reduced forms of the new hydroxylated CoQs have higher antioxidative potential and are also now able to bind and transport Ca(2+) across artificial biomimetic membranes. Our results open new perspectives on the physiological importance of CoQ10 and its analogues, not only as electron and proton transporters, but also as potential regulators of mitochondrial Ca(2+) and redox homeostasis.

  10. Neutron structures of the Helicobacter pylori 5'-methylthioadenosine nucleosidase highlight proton sharing and protonation states

    DOE PAGES

    Banco, Michael T.; Mishra, Vidhi; Ostermann, Andreas; ...

    2016-10-01

    MTAN (5'-methylthioadenosine nucleosidase) catalyzes the hydrolysis of the N-ribosidic bond of a variety of adenosine-containing metabolites. The Helicobacter pylori MTAN (HpMTAN) hydrolyzes 6-amino-6-deoxyfutalosine in the second step of the alternative menaquinone biosynthetic pathway. Substrate binding of the adenine moiety is mediated almost exclusively by hydrogen bonds, and the proposed catalytic mechanism requires multiple proton-transfer events. Of particular interest is the protonation state of residue D198, which possesses a pK a above 8 and functions as a general acid to initiate the enzymatic reaction. In this study we present three corefined neutron/X-ray crystal structures of wild-type HpMTAN cocrystallized with S-adenosylhomocysteine (SAH),more » Formycin A (FMA), and (3R,4S)-4-(4-Chlorophenylthiomethyl)-1-[(9-deaza-adenin-9-yl)methyl]-3-hydroxypyrrolidine (p-ClPh-Thio-DADMe-ImmA) as well as one neutron/X-ray crystal structure of an inactive variant (HpMTAN-D198N) cocrystallized with SAH. These results support a mechanism of D198 pKa elevation through the unexpected sharing of a proton with atom N7 of the adenine moiety possessing unconventional hydrogen-bond geometry. Additionally, the neutron structures also highlight active site features that promote the stabilization of the transition state and slight variations in these interactions that result in 100-fold difference in binding affinities between the DADMe-ImmA and ImmA analogs.« less

  11. Effect of moisture on typical Virginia surface treatment materials.

    DOT National Transportation Integrated Search

    1970-01-01

    Several aspects of the stripping and whip off characteristics of typical Virginia surface treatment materials were investigated. Sixty different binder-aggregate combinations were tested with the AASHO Designation T182-57 stripping test, a plate imme...

  12. Isothermogravimetric determination of the enthalpies of vaporization of 1-alkyl-3-methylimidazolium ionic liquids.

    PubMed

    Luo, Huimin; Baker, Gary A; Dai, Sheng

    2008-08-21

    Vaporization enthalpies for two series of ionic liquids (ILs) composed of 1- n-alkyl-3-methylimidazolium cations, [Imm1+] (m=2, 3, 4, 6, 8, or 10), paired with either the bis(trifluoromethanesulfonyl)amide, [Tf2N-], or the bis(perfluoroethylsulfonyl)amide anion, [beti-], were determined using a simple, convenient, and highly reproducible thermogravimetric approach, and from these values, Hildebrand solubility parameters were estimated. Our results reveal two interesting and unanticipated outcomes: (i) methylation at the C2 position of [Imm1+] affords a significantly higher vaporization enthalpy; (ii) in all cases, the [beti-] anion served to lower the enthalpy of vaporization relative to [Tf2N-]. The widespread availability of the apparatus required for these measurements coupled with the ease of automation suggests the broad potential of this methodology for determining this critical parameter in a multitude of ILs.

  13. Insights from native mass spectrometry approaches for top- and middle- level characterization of site-specific antibody-drug conjugates

    PubMed Central

    Botzanowski, Thomas; Erb, Stéphane; Hernandez-Alba, Oscar; Ehkirch, Anthony; Colas, Olivier; Wagner-Rousset, Elsa; Rabuka, David; Beck, Alain; Drake, Penelope M.; Cianférani, Sarah

    2017-01-01

    ABSTRACT Antibody-drug conjugates (ADCs) have emerged as a family of compounds with promise as efficient immunotherapies. First-generation ADCs were generated mostly via reactions on either lysine side-chain amines or cysteine thiol groups after reduction of the interchain disulfide bonds, resulting in heterogeneous populations with a variable number of drug loads per antibody. To control the position and the number of drug loads, new conjugation strategies aiming at the generation of more homogeneous site-specific conjugates have been developed. We report here the first multi-level characterization of a site-specific ADC by state-of-the-art mass spectrometry (MS) methods, including native MS and its hyphenation to ion mobility (IM-MS). We demonstrate the versatility of native MS methodologies for site-specific ADC analysis, with the unique ability to provide several critical quality attributes within one single run, along with a direct snapshot of ADC homogeneity/heterogeneity without extensive data interpretation. The capabilities of native IM-MS to directly access site-specific ADC conformational information are also highlighted. Finally, the potential of these techniques for assessing an ADC's heterogeneity/homogeneity is illustrated by comparing the analytical characterization of a site-specific DAR4 ADC to that of first-generation ADCs. Altogether, our results highlight the compatibility, versatility, and benefits of native MS approaches for the analytical characterization of all types of ADCs, including site-specific conjugates. Thus, we envision integrating native MS and IM-MS approaches, even in their latest state-of-the-art forms, into workflows that benchmark bioconjugation strategies. PMID:28406343

  14. Application of ion mobility-mass spectrometry to microRNA analysis.

    PubMed

    Takebayashi, Kosuke; Hirose, Kenji; Izumi, Yoshihiro; Bamba, Takeshi; Fukusaki, Eiichiro

    2013-03-01

    Liquid chromatography/mass spectrometry is widely used for studying sequence determination and modification analysis of small RNAs. However, the efficiency of liquid chromatography-based separation of intact small RNA species is insufficient, since the physiochemical properties among small RNAs are very similar. In this study, we focused on ion mobility-mass spectrometry (IM-MS), which is a gas-phase separation technique coupled with mass spectrometry; we have evaluated the utility of IM-MS for microRNA (miRNA) analysis. A multiply charged deprotonated ion derived from an 18-24-nt-long miRNA was formed by electrospray ionization, and then the time, called the "drift time", taken by each ion to migrate through a buffer gas was measured. Each multivalent ion was temporally separated on the basis of the charge state and structural formation; 3 types of unique mass-mobility correlation patterns (i.e., chainlike-form, hairpin-form, and dimer-form) were present on the two-dimensional mobility-mass spectrum. Moreover, we found that the ion size (sequence length) and the secondary structures of the small RNAs strongly contributed to the IM-MS-based separation, although solvent conditions such as pH had no effect. Therefore, sequence isomers could also be discerned by the selection of each specific charged ion, i.e., the 6(-) charged ion reflected a majority among chainlike-, hairpin-, and other structures. We concluded that the IM-MS provides additional capability for separation; thus, this analytical method will be a powerful tool for comprehensive small RNA analysis. Copyright © 2012. Published by Elsevier B.V.

  15. Motivation in computer-assisted instruction.

    PubMed

    Hu, Amanda; Shewokis, Patricia A; Ting, Kimberly; Fung, Kevin

    2016-08-01

    Computer-aided instruction (CAI) is defined as instruction in which computers play a central role as the means of information delivery and direct interaction with learners. Computer-aided instruction has become mainstream in medical school curricula. For example, a three-dimensional (3D) computer module of the larynx has been created to teach laryngeal anatomy. Although the novelty and educational potential of CAI has garnered much attention, these new technologies have been plagued with low utilization rates. Several experts attribute this problem to lack of motivation in students. Motivation is defined as the desire and action toward goal-oriented behavior. Psychologist Dr. John Keller developed the ARCS theory of motivational learning, which proposed four components: attention (A), relevance (R), concentration (C), and satisfaction (S). Keller believed that motivation is not only an innate characteristic of the pupil; it can also be influenced by external factors, such as the instructional design of the curriculum. Thus, understanding motivation is an important step to designing CAI appropriately. Keller also developed a 36-item validated instrument called the Instructional Materials Motivation Survey (IMMS) to measure motivation. The objective of this study was to study motivation in CAI. Medical students learning anatomy with the 3D computer module will have higher laryngeal anatomy test scores and higher IMMS motivation scores. Higher anatomy test scores will be positively associated with higher IMMS scores. Prospective, randomized, controlled trial. After obtaining institutional review board approval, 100 medical students (mean age 25.5 ± 2.5, 49% male) were randomized to either the 3D computer module (n = 49) or written text (n = 51). Information content was identical in both arms. Students were given 30 minutes to study laryngeal anatomy and then completed the laryngeal anatomy test and IMMS. Students were categorized as either junior (year 1 and 2) or senior (year 3 and 4). There were no significant differences in anatomy scores based on educational modality. There was significant interaction of educational modality by year [F(1,96) = 4.12, P = 0.045, ω(2)  = 0.031]. For the total score, there was a significant effect of year [F(1,96) = 22.28, P < 0.001, ω(2)  = 0.178], with seniors (15.4 ± 2.6) scoring significantly higher than juniors (12.8 ± 3.1). For the motivational score, the total IMMS score had two significant effects. With educational modality [F(1,96) = 5.18, P = 0.025, ω(2)  = 0.041], the 3D group (12.4 ± 2.8) scored significantly higher than the written text group (11.7 ± 3.2). With year [F(1,96) = 25.31, P < 0.001, ω(2)  = 0.198], seniors (13.4 ± 3.0) scored significantly higher than juniors (10.8 ± 2.5). Pearson's correlation showed positive associations (r = 0.22-0.91) between anatomy scores and IMMS motivation scores (P < 0.05). Computer-aided instruction conferred no measurable educational benefit over traditional written text in medical students; however, CAI was associated with higher motivational levels. Computer-aided instruction was found to have a greater positive impact on senior medical students with higher anatomy and motivational scores. Higher anatomy scores were positively associated with higher motivational scores. Computer-aided instruction may be better targeted toward senior students. N/A. Laryngoscope, 126:S5-S13, 2016. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  16. Noise Rating Criteria for Elevated Rapid Transit Structures

    DOT National Transportation Integrated Search

    1980-05-01

    The purpose of this report is to recommend criteria for rating the noise radiated from elevated rapid transit structures during train passages, so that different types of structures can be inter-compared with respect to their noise impact on the imme...

  17. Improved estimation of sediment source contributions by concentration-dependent Bayesian isotopic mixing model

    NASA Astrophysics Data System (ADS)

    Ram Upadhayay, Hari; Bodé, Samuel; Griepentrog, Marco; Bajracharya, Roshan Man; Blake, Will; Cornelis, Wim; Boeckx, Pascal

    2017-04-01

    The implementation of compound-specific stable isotope (CSSI) analyses of biotracers (e.g. fatty acids, FAs) as constraints on sediment-source contributions has become increasingly relevant to understand the origin of sediments in catchments. The CSSI fingerprinting of sediment utilizes CSSI signature of biotracer as input in an isotopic mixing model (IMM) to apportion source soil contributions. So far source studies relied on the linear mixing assumptions of CSSI signature of sources to the sediment without accounting for potential effects of source biotracer concentration. Here we evaluated the effect of FAs concentration in sources on the accuracy of source contribution estimations in artificial soil mixture of three well-separated land use sources. Soil samples from land use sources were mixed to create three groups of artificial mixture with known source contributions. Sources and artificial mixture were analysed for δ13C of FAs using gas chromatography-combustion-isotope ratio mass spectrometry. The source contributions to the mixture were estimated using with and without concentration-dependent MixSIAR, a Bayesian isotopic mixing model. The concentration-dependent MixSIAR provided the closest estimates to the known artificial mixture source contributions (mean absolute error, MAE = 10.9%, and standard error, SE = 1.4%). In contrast, the concentration-independent MixSIAR with post mixing correction of tracer proportions based on aggregated concentration of FAs of sources biased the source contributions (MAE = 22.0%, SE = 3.4%). This study highlights the importance of accounting the potential effect of a source FA concentration for isotopic mixing in sediments that adds realisms to mixing model and allows more accurate estimates of contributions of sources to the mixture. The potential influence of FA concentration on CSSI signature of sediments is an important underlying factor that determines whether the isotopic signature of a given source is observable even after equilibrium. Therefore inclusion of FA concentrations of the sources in the IMM formulation is standard procedure for accurate estimation of source contributions. The post model correction approach that dominates the CSSI fingerprinting causes bias, especially if the FAs concentration of sources differs substantially.

  18. Polyfunctional response by ImmTAC (IMCgp100) redirected CD8+ and CD4+ T cells.

    PubMed

    Boudousquie, Caroline; Bossi, Giovanna; Hurst, Jacob M; Rygiel, Karolina A; Jakobsen, Bent K; Hassan, Namir J

    2017-11-01

    The success of immune system-based cancer therapies depends on a broad immune response engaging a range of effector cells and mechanisms. Immune mobilizing monoclonal T cell receptors (TCRs) against cancer (ImmTAC™ molecules: fusion proteins consisting of a soluble, affinity enhanced TCR and an anti-CD3 scFv antibody) were previously shown to redirect CD8 + and CD4 + T cells against tumours. Here we present evidence that IMCgp100 (ImmTAC recognizing a peptide derived from the melanoma-specific protein, gp100, presented by HLA-A*0201) efficiently redirects and activates effector and memory cells from both CD8 + and CD4 + repertoires. Using isolated subpopulations of T cells, we find that both terminally differentiated and effector memory CD8 + T cells redirected by IMCgp100 are potent killers of melanoma cells. Furthermore, CD4 + effector memory T cells elicit potent cytotoxic activity leading to melanoma cell killing upon redirection by IMCgp100. The majority of T cell subsets belonging to both the CD8 + and CD4 + repertoires secrete key pro-inflammatory cytokines (tumour necrosis factor-α, interferon-γ, interleukin-6) and chemokines (macrophage inflammatory protein-1α-β, interferon-γ-inducible protein-10, monocyte chemoattractant protein-1). At an individual cell level, IMCgp100-redirected T cells display a polyfunctional phenotype, which is a hallmark of a potent anti-cancer response. This study demonstrates that IMCgp100 induces broad immune responses that extend beyond the induction of CD8 + T cell-mediated cytotoxicity. These findings are of particular importance because IMCgp100 is currently undergoing clinical trials as a single agent or in combination with check point inhibitors for patients with malignant melanoma. © 2017 The Authors. Immunology Published by John Wiley & Sons Ltd.

  19. Generation and Radiation of Acoustic Waves from a 2-D Shear Layer

    NASA Technical Reports Server (NTRS)

    Agarwal, Anurag; Morris, Philip J.

    2000-01-01

    A parallel numerical simulation of the radiation of sound from an acoustic source inside a 2-D jet is presented in this paper. This basic benchmark problem is used as a test case for scattering problems that are presently being solved by using the Impedance Mismatch Method (IMM). In this technique, a solid body in the domain is represented by setting the acoustic impedance of each medium, encountered by a wave, to a different value. This impedance discrepancy results in reflected and scattered waves with appropriate amplitudes. The great advantage of the use of this method is that no modifications to a simple Cartesian grid need to be made for complicated geometry bodies. Thus, high order finite difference schemes may be applied simply to all parts of the domain. In the IMM, the total perturbation field is split into incident and scattered fields. The incident pressure is assumed to be known and the equivalent sources for the scattered field are associated with the presence of the scattering body (through the impedance mismatch) and the propagation of the incident field through a non-uniform flow. An earlier version of the technique could only handle uniform flow in the vicinity of the source and at the outflow boundary. Scattering problems in non-uniform mean flow are of great practical importance (for example, scattering from a high lift device in a non-uniform mean flow or the effects of a fuselage boundary layer). The solution to this benchmark problem, which has an acoustic wave propagating through a non-uniform mean flow, serves as a test case for the extensions of the IMM technique.

  20. Distance geometry protocol to generate conformations of natural products to structurally interpret ion mobility-mass spectrometry collision cross sections.

    PubMed

    Stow, Sarah M; Goodwin, Cody R; Kliman, Michal; Bachmann, Brian O; McLean, John A; Lybrand, Terry P

    2014-12-04

    Ion mobility-mass spectrometry (IM-MS) allows the separation of ionized molecules based on their charge-to-surface area (IM) and mass-to-charge ratio (MS), respectively. The IM drift time data that is obtained is used to calculate the ion-neutral collision cross section (CCS) of the ionized molecule with the neutral drift gas, which is directly related to the ion conformation and hence molecular size and shape. Studying the conformational landscape of these ionized molecules computationally provides interpretation to delineate the potential structures that these CCS values could represent, or conversely, structural motifs not consistent with the IM data. A challenge in the IM-MS community is the ability to rapidly compute conformations to interpret natural product data, a class of molecules exhibiting a broad range of biological activity. The diversity of biological activity is, in part, related to the unique structural characteristics often observed for natural products. Contemporary approaches to structurally interpret IM-MS data for peptides and proteins typically utilize molecular dynamics (MD) simulations to sample conformational space. However, MD calculations are computationally expensive, they require a force field that accurately describes the molecule of interest, and there is no simple metric that indicates when sufficient conformational sampling has been achieved. Distance geometry is a computationally inexpensive approach that creates conformations based on sampling different pairwise distances between the atoms within the molecule and therefore does not require a force field. Progressively larger distance bounds can be used in distance geometry calculations, providing in principle a strategy to assess when all plausible conformations have been sampled. Our results suggest that distance geometry is a computationally efficient and potentially superior strategy for conformational analysis of natural products to interpret gas-phase CCS data.

  1. Distance Geometry Protocol to Generate Conformations of Natural Products to Structurally Interpret Ion Mobility-Mass Spectrometry Collision Cross Sections

    PubMed Central

    2015-01-01

    Ion mobility-mass spectrometry (IM-MS) allows the separation of ionized molecules based on their charge-to-surface area (IM) and mass-to-charge ratio (MS), respectively. The IM drift time data that is obtained is used to calculate the ion-neutral collision cross section (CCS) of the ionized molecule with the neutral drift gas, which is directly related to the ion conformation and hence molecular size and shape. Studying the conformational landscape of these ionized molecules computationally provides interpretation to delineate the potential structures that these CCS values could represent, or conversely, structural motifs not consistent with the IM data. A challenge in the IM-MS community is the ability to rapidly compute conformations to interpret natural product data, a class of molecules exhibiting a broad range of biological activity. The diversity of biological activity is, in part, related to the unique structural characteristics often observed for natural products. Contemporary approaches to structurally interpret IM-MS data for peptides and proteins typically utilize molecular dynamics (MD) simulations to sample conformational space. However, MD calculations are computationally expensive, they require a force field that accurately describes the molecule of interest, and there is no simple metric that indicates when sufficient conformational sampling has been achieved. Distance geometry is a computationally inexpensive approach that creates conformations based on sampling different pairwise distances between the atoms within the molecule and therefore does not require a force field. Progressively larger distance bounds can be used in distance geometry calculations, providing in principle a strategy to assess when all plausible conformations have been sampled. Our results suggest that distance geometry is a computationally efficient and potentially superior strategy for conformational analysis of natural products to interpret gas-phase CCS data. PMID:25360896

  2. Strategic Positioning and Biased Activity of the Mitochondrial Calcium Uniporter in Cardiac Muscle*

    PubMed Central

    De La Fuente, Sergio; Fernandez-Sanz, Celia; Vail, Caitlin; Agra, Elorm J.; Holmstrom, Kira; Sun, Junhui; Mishra, Jyotsna; Williams, Dewight; Finkel, Toren; Murphy, Elizabeth; Joseph, Suresh K.; Sheu, Shey-Shing; Csordás, György

    2016-01-01

    Control of myocardial energetics by Ca2+ signal propagation to the mitochondrial matrix includes local Ca2+ delivery from sarcoplasmic reticulum (SR) ryanodine receptors (RyR2) to the inner mitochondrial membrane (IMM) Ca2+ uniporter (mtCU). mtCU activity in cardiac mitochondria is relatively low, whereas the IMM surface is large, due to extensive cristae folding. Hence, stochastically distributed mtCU may not suffice to support local Ca2+ transfer. We hypothesized that mtCU concentrated at mitochondria-SR associations would promote the effective Ca2+ transfer. mtCU distribution was determined by tracking MCU and EMRE, the proteins essential for channel formation. Both proteins were enriched in the IMM-outer mitochondrial membrane (OMM) contact point submitochondrial fraction and, as super-resolution microscopy revealed, located more to the mitochondrial periphery (inner boundary membrane) than inside the cristae, indicating high accessibility to cytosol-derived Ca2+ inputs. Furthermore, MCU immunofluorescence distribution was biased toward the mitochondria-SR interface (RyR2), and this bias was promoted by Ca2+ signaling activity in intact cardiomyocytes. The SR fraction of heart homogenate contains mitochondria with extensive SR associations, and these mitochondria are highly enriched in EMRE. Size exclusion chromatography suggested for EMRE- and MCU-containing complexes a wide size range and also revealed MCU-containing complexes devoid of EMRE (thus disabled) in the mitochondrial but not the SR fraction. Functional measurements suggested more effective mtCU-mediated Ca2+ uptake activity by the mitochondria of the SR than of the mitochondrial fraction. Thus, mtCU “hot spots” can be formed at the cardiac muscle mitochondria-SR associations via localization and assembly bias, serving local Ca2+ signaling and the excitation-energetics coupling. PMID:27637331

  3. A chemometric approach for characterization of serum transthyretin in familial amyloidotic polyneuropathy type I (FAP-I) by electrospray ionization-ion mobility mass spectrometry.

    PubMed

    Pont, Laura; Sanz-Nebot, Victoria; Vilaseca, Marta; Jaumot, Joaquim; Tauler, Roma; Benavente, Fernando

    2018-05-01

    In this study, we describe a chemometric data analysis approach to assist in the interpretation of the complex datasets from the analysis of high-molecular mass oligomeric proteins by ion mobility mass spectrometry (IM-MS). The homotetrameric protein transthyretin (TTR) is involved in familial amyloidotic polyneuropathy type I (FAP-I). FAP-I is associated with a specific TTR mutant variant (TTR(Met30)) that can be easily detected analyzing the monomeric forms of the mutant protein. However, the mechanism of protein misfolding and aggregation onset, which could be triggered by structural changes in the native tetrameric protein, remains under investigation. Serum TTR from healthy controls and FAP-I patients was purified under non-denaturing conditions by conventional immunoprecipitation in solution and analyzed by IM-MS. IM-MS allowed separation and characterization of several tetrameric, trimeric and dimeric TTR gas ions due to their differential drift time. After an appropriate data pre-processing, multivariate curve resolution alternating least squares (MCR-ALS) was applied to the complex datasets. A group of seven independent components being characterized by their ion mobility profiles and mass spectra were resolved to explain the observed data variance in control and patient samples. Then, principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were considered for exploration and classification. Only four out of the seven resolved components were enough for an accurate differentiation. Furthermore, the specific TTR ions identified in the mass spectra of these components and the resolved ion mobility profiles provided a straightforward insight into the most relevant oligomeric TTR proteoforms for the disease. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. 78 FR 63433 - International Mailing Services: Proposed Price Changes-CPI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-24

    ... POSTAL SERVICE 39 CFR Part 20 International Mailing Services: Proposed Price Changes--CPI AGENCY... mailing services price adjustments with the Postal Regulatory Commission (PRC), effective on January 26... Postal Service, International Mail Manual (IMM[supreg]) to reflect these new price changes. DATES: We...

  5. 78 FR 63434 - International Mailing Services: Proposed Price Changes-Exigent

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-24

    ... POSTAL SERVICE 39 CFR Part 20 International Mailing Services: Proposed Price Changes--Exigent... notice of mailing services price adjustments with the Postal Regulatory Commission (PRC), effective on... United States Postal Service, International Mail Manual (IMM[supreg]) to reflect these new price changes...

  6. The effects of in-vehicle and infrastructure-based collision warnings at signalized intersections

    DOT National Transportation Integrated Search

    2009-12-01

    The potential effectiveness of warnings to drivers of the imminent threat of a collision with a red light violator was evaluated in an experiment that used a driving simulator. Three warnings were tested: (1) an infrastructure-based warning that imme...

  7. Neuronal plasticity and multisensory integration in filial imprinting.

    PubMed

    Town, Stephen Michael; McCabe, Brian John

    2011-03-10

    Many organisms sample their environment through multiple sensory systems and the integration of multisensory information enhances learning. However, the mechanisms underlying multisensory memory formation and their similarity to unisensory mechanisms remain unclear. Filial imprinting is one example in which experience is multisensory, and the mechanisms of unisensory neuronal plasticity are well established. We investigated the storage of audiovisual information through experience by comparing the activity of neurons in the intermediate and medial mesopallium of imprinted and naïve domestic chicks (Gallus gallus domesticus) in response to an audiovisual imprinting stimulus and novel object and their auditory and visual components. We find that imprinting enhanced the mean response magnitude of neurons to unisensory but not multisensory stimuli. Furthermore, imprinting enhanced responses to incongruent audiovisual stimuli comprised of mismatched auditory and visual components. Our results suggest that the effects of imprinting on the unisensory and multisensory responsiveness of IMM neurons differ and that IMM neurons may function to detect unexpected deviations from the audiovisual imprinting stimulus.

  8. Neuronal Plasticity and Multisensory Integration in Filial Imprinting

    PubMed Central

    Town, Stephen Michael; McCabe, Brian John

    2011-01-01

    Many organisms sample their environment through multiple sensory systems and the integration of multisensory information enhances learning. However, the mechanisms underlying multisensory memory formation and their similarity to unisensory mechanisms remain unclear. Filial imprinting is one example in which experience is multisensory, and the mechanisms of unisensory neuronal plasticity are well established. We investigated the storage of audiovisual information through experience by comparing the activity of neurons in the intermediate and medial mesopallium of imprinted and naïve domestic chicks (Gallus gallus domesticus) in response to an audiovisual imprinting stimulus and novel object and their auditory and visual components. We find that imprinting enhanced the mean response magnitude of neurons to unisensory but not multisensory stimuli. Furthermore, imprinting enhanced responses to incongruent audiovisual stimuli comprised of mismatched auditory and visual components. Our results suggest that the effects of imprinting on the unisensory and multisensory responsiveness of IMM neurons differ and that IMM neurons may function to detect unexpected deviations from the audiovisual imprinting stimulus. PMID:21423770

  9. RImmPort: an R/Bioconductor package that enables ready-for-analysis immunology research data.

    PubMed

    Shankar, Ravi D; Bhattacharya, Sanchita; Jujjavarapu, Chethan; Andorf, Sandra; Wiser, Jeffery A; Butte, Atul J

    2017-04-01

    : Open access to raw clinical and molecular data related to immunological studies has created a tremendous opportunity for data-driven science. We have developed RImmPort that prepares NIAID-funded research study datasets in ImmPort (immport.org) for analysis in R. RImmPort comprises of three main components: (i) a specification of R classes that encapsulate study data, (ii) foundational methods to load data of a specific study and (iii) generic methods to slice and dice data across different dimensions in one or more studies. Furthermore, RImmPort supports open formalisms, such as CDISC standards on the open source bioinformatics platform Bioconductor, to ensure that ImmPort curated study datasets are seamlessly accessible and ready for analysis, thus enabling innovative bioinformatics research in immunology. RImmPort is available as part of Bioconductor (bioconductor.org/packages/RImmPort). rshankar@stanford.edu. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  10. Discrimination of epimeric glycans and glycopeptides using IM-MS and its potential for carbohydrate sequencing

    NASA Astrophysics Data System (ADS)

    Both, P.; Green, A. P.; Gray, C. J.; Šardzík, R.; Voglmeir, J.; Fontana, C.; Austeri, M.; Rejzek, M.; Richardson, D.; Field, R. A.; Widmalm, G.; Flitsch, S. L.; Eyers, C. E.

    2014-01-01

    Mass spectrometry is the primary analytical technique used to characterize the complex oligosaccharides that decorate cell surfaces. Monosaccharide building blocks are often simple epimers, which when combined produce diastereomeric glycoconjugates indistinguishable by mass spectrometry. Structure elucidation frequently relies on assumptions that biosynthetic pathways are highly conserved. Here, we show that biosynthetic enzymes can display unexpected promiscuity, with human glycosyltransferase pp-α-GanT2 able to utilize both uridine diphosphate N-acetylglucosamine and uridine diphosphate N-acetylgalactosamine, leading to the synthesis of epimeric glycopeptides in vitro. Ion-mobility mass spectrometry (IM-MS) was used to separate these structures and, significantly, enabled characterization of the attached glycan based on the drift times of the monosaccharide product ions generated following collision-induced dissociation. Finally, ion-mobility mass spectrometry following fragmentation was used to determine the nature of both the reducing and non-reducing glycans of a series of epimeric disaccharides and the branched pentasaccharide Man3 glycan, demonstrating that this technique may prove useful for the sequencing of complex oligosaccharides.

  11. Preparation, Separation, and Conformational Analysis of Differentially Sulfated Heparin Octasaccharide Isomers using Ion Mobility Mass Spectrometry

    PubMed Central

    Seo, Youjin; Andaya, Armann; Leary, Julie A.

    2012-01-01

    Heparin is a linear sulfated polysaccharide widely used in medicine because of its anticoagulant properties. The various sulfation and/or acetylation patterns on heparin impart different degrees of conformational change around the glycosidic bonds and subsequently alter its function as an anticoagulant, anticancer, or antiviral drug. Characterization of these structures is important for eventual elucidation of its function but presents itself as an analytical challenge due to the inherent heterogeneity of the carbohydrates. Heparin octasaccharide structural isomers of various sulfation patterns were investigated using ion mobility mass spectrometry (IMMS). In addition to distinguishing the isomers, we report the preparation and tandem mass spectrometry analysis for multiple sulfated or acetylated oligosaccharides. Herein, our data indicate that heparin octasaccharide isomers were separated based on their structural conformations in the ion mobility cell. Subsequent to this separation, isomers were further distinguished using product ions resulting from tandem mass spectrometry. Overall, IMMS analysis was used to successfully characterize and separate individual isomers and subsequently measure their conformations. PMID:22283665

  12. Capacity of wild-type and chemokine-armed parvovirus H-1PV for inhibiting neo-angiogenesis.

    PubMed

    Lavie, Muriel; Struyf, Sofie; Stroh-Dege, Alexandra; Rommelaere, Jean; Van Damme, Jo; Dinsart, Christiane

    2013-12-01

    Anti-angiogenic therapy has been recognized as a powerful potential strategy for impeding the growth of various tumors. However no major therapeutic effects have been observed to date, mainly because of the emergence of several resistance mechanisms. Among novel strategies to target tumor vasculature, some oncolytic viruses open up new prospects. In this context, we addressed the question whether the rodent parvovirus H-1PV can target endothelial cells. We show that cultures of human normal (HUVEC) and immortalized (KS-IMM) endothelial cells sustain an abortive viral cycle upon infection with H-1PV and are sensitive to H-1PV cytotoxicity. H-1PV significantly inhibits infected KS-IMM tumor growth. This effect may be traced back by the virus ability to both kill proliferating endothelial cells and inhibit VEGF production Recombinant H-1PV vectors can also transduce tumor cells with chemokines endowed with anti-angiogenesis properties, and warrant further validation for the treatment of highly vascularized tumors. © 2013 Elsevier Inc. All rights reserved.

  13. Estimated Probability of a Cervical Spine Injury During an ISS Mission

    NASA Technical Reports Server (NTRS)

    Brooker, John E.; Weaver, Aaron S.; Myers, Jerry G.

    2013-01-01

    Introduction: The Integrated Medical Model (IMM) utilizes historical data, cohort data, and external simulations as input factors to provide estimates of crew health, resource utilization and mission outcomes. The Cervical Spine Injury Module (CSIM) is an external simulation designed to provide the IMM with parameter estimates for 1) a probability distribution function (PDF) of the incidence rate, 2) the mean incidence rate, and 3) the standard deviation associated with the mean resulting from injury/trauma of the neck. Methods: An injury mechanism based on an idealized low-velocity blunt impact to the superior posterior thorax of an ISS crewmember was used as the simulated mission environment. As a result of this impact, the cervical spine is inertially loaded from the mass of the head producing an extension-flexion motion deforming the soft tissues of the neck. A multibody biomechanical model was developed to estimate the kinematic and dynamic response of the head-neck system from a prescribed acceleration profile. Logistic regression was performed on a dataset containing AIS1 soft tissue neck injuries from rear-end automobile collisions with published Neck Injury Criterion values producing an injury transfer function (ITF). An injury event scenario (IES) was constructed such that crew 1 is moving through a primary or standard translation path transferring large volume equipment impacting stationary crew 2. The incidence rate for this IES was estimated from in-flight data and used to calculate the probability of occurrence. The uncertainty in the model input factors were estimated from representative datasets and expressed in terms of probability distributions. A Monte Carlo Method utilizing simple random sampling was employed to propagate both aleatory and epistemic uncertain factors. Scatterplots and partial correlation coefficients (PCC) were generated to determine input factor sensitivity. CSIM was developed in the SimMechanics/Simulink environment with a Monte Carlo wrapper (MATLAB) used to integrate the components of the module. Results: The probability of generating an AIS1 soft tissue neck injury from the extension/flexion motion induced by a low-velocity blunt impact to the superior posterior thorax was fitted with a lognormal PDF with mean 0.26409, standard deviation 0.11353, standard error of mean 0.00114, and 95% confidence interval [0.26186, 0.26631]. Combining the probability of an AIS1 injury with the probability of IES occurrence was fitted with a Johnson SI PDF with mean 0.02772, standard deviation 0.02012, standard error of mean 0.00020, and 95% confidence interval [0.02733, 0.02812]. The input factor sensitivity analysis in descending order was IES incidence rate, ITF regression coefficient 1, impactor initial velocity, ITF regression coefficient 2, and all others (equipment mass, crew 1 body mass, crew 2 body mass) insignificant. Verification and Validation (V&V): The IMM V&V, based upon NASA STD 7009, was implemented which included an assessment of the data sets used to build CSIM. The documentation maintained includes source code comments and a technical report. The software code and documentation is under Subversion configuration management. Kinematic validation was performed by comparing the biomechanical model output to established corridors.

  14. Pharmacologic Effects on Mitochondrial Function

    ERIC Educational Resources Information Center

    Cohen, Bruce H.

    2010-01-01

    The vast majority of energy necessary for cellular function is produced in mitochondria. Free-radical production and apoptosis are other critical mitochondrial functions. The complex structure, electrochemical properties of the inner mitochondrial membrane (IMM), and genetic control from both mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) are…

  15. 76 FR 50414 - International Mail Manual; Incorporation by Reference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-15

    ... POSTAL SERVICE 39 CFR Part 20 International Mail Manual; Incorporation by Reference AGENCY: Postal... Standards of the United States Postal Service, International Mail Manual (IMM[supreg]) dated April 17, 2011.... SUPPLEMENTARY INFORMATION: The International Mail Manual was issued on April 17, 2011, and was updated with...

  16. 75 FR 34017 - International Mail Manual; Incorporation by Reference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-16

    ... POSTAL SERVICE 39 CFR Part 20 International Mail Manual; Incorporation by Reference AGENCY: Postal... Mailing Standards of the United States Postal Service, International Mail Manual (IMM[supreg]) and its..., (202) 268-3789. SUPPLEMENTARY INFORMATION: Issue 36 of the International Mail Manual was issued on May...

  17. Determination of Polychlorinated Biphenyls in Soil and Sediment by Selective Pressurized Liquid Extraction with Immunochemical Detection

    EPA Science Inventory

    A selective liquid pressurized extraction (SPLE) method was developed as a streamlined sample preparation/cleanup procedure for determining Aroclors and coplanar polychlorinated biphenyls (PCBs) in soil and sediment matrices. The SPLE method was coupled with an enzyme-linked imm...

  18. 77 FR 12724 - International Postal Service-Global Expedited Package Services (GEPS) Contracts

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-02

    ... POSTAL SERVICE\\TM\\ 39 CFR Part 20 International Postal Service--Global Expedited Package Services (GEPS) Contracts AGENCY: Postal Service TM . ACTION: Final rule. SUMMARY: The Postal Service will revise Mailing Standards of the United States Postal Service, International Mail Manual (IMM[supreg]) to...

  19. Effect of 2 herbal intramammary products on milk quantity and quality compared with conventional and no dry cow therapy.

    PubMed

    Mullen, K A E; Anderson, K L; Washburn, S P

    2014-01-01

    Dry cow therapy, administered at the end of lactation, is aimed at eliminating current and preventing future intramammary (IMM) bacterial infections and typically involves intramammary administration of antibiotics. Certified organic dairies in the United States are restricted from using antibiotics and must consider an alternative therapy or no dry cow therapy. The current study compared 2 herbal products to conventional dry cow therapy and no treatment for a total of 5 treatments over 2 trials. Trial 1 was conducted over 3 yr on 1 research farm and trial 2 included 4 commercial farms plus the research herd over 2 yr. Treatments included (1) a conventional IMM antibiotic and internal teat sealant (penicillin-dihydrostreptomycin and bismuth subnitrate; CON); (2) an herbal IMM product purported to act as a teat sealant (Cinnatube, New AgriTech Enterprises, Locke, NY; CIN); (3) an herbal IMM product (Phyto-Mast, Bovinity Health LLC, Narvon, PA; P-M); (4) Phyto-Mast and Cinnatube (PC); or (5) no dry cow therapy (NT). Each treatment group was balanced by breed, lactation number, due date, herd, and year. However, the CON treatment was used only in the research herd because of the intent to avoid antibiotic usage on the other 4 farms. Comparisons among treatments included the difference between pre- and posttreatment 305-d mature equivalent milk production (trial 1), somatic cell score change from dry-off to freshening at the cow and quarter levels (trials 1 and 2), and milk microbiology change over the dry period (trial 2). We detected no significant differences among treatments for milk yield differences between the lactation following treatment and the lactation preceding treatment. Changes in somatic cell score from one lactation to the next also did not differ significantly among treatments in either trial. Cure rates were not significantly different among treatments; only 19.6% of all quarters were infected at dry off. The proportion of quarters with new infections at 3 to 5d postcalving did not significantly differ among treatments, except between CIN and NT. Percentages (least squares means ± standard error) of quarters with new infections were 24 ± 21% for CON, 15 ± 7% for CIN, 30 ± 10% for P-M, 32 ± 11% for PC, and 35 ± 11% for NT. The efficacy of the herbal products was similar to that of conventional therapy, and the herbal products had no apparent adverse effects. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. Integrated Display and Simulation for Automatic Dependent Surveillance-Broadcast and Traffic Collision Avoidance System Data Fusion.

    PubMed

    Wang, Yanran; Xiao, Gang; Dai, Zhouyun

    2017-11-13

    Automatic Dependent Surveillance-Broadcast (ADS-B) is the direction of airspace surveillance development. Research analyzing the benefits of Traffic Collision Avoidance System (TCAS) and ADS-B data fusion is almost absent. The paper proposes an ADS-B minimum system from ADS-B In and ADS-B Out. In ADS-B In, a fusion model with a variable sampling Variational Bayesian-Interacting Multiple Model (VSVB-IMM) algorithm is proposed for integrated display and an airspace traffic situation display is developed by using ADS-B information. ADS-B Out includes ADS-B Out transmission based on a simulator platform and an Unmanned Aerial Vehicle (UAV) platform. This paper describes the overall implementation of ADS-B minimum system, including theoretical model design, experimental simulation verification, engineering implementation, results analysis, etc. Simulation and implementation results show that the fused system has better performance than each independent subsystem and it can work well in engineering applications.

  1. Native mass spectrometry and ion mobility characterization of trastuzumab emtansine, a lysine-linked antibody drug conjugate.

    PubMed

    Marcoux, Julien; Champion, Thierry; Colas, Olivier; Wagner-Rousset, Elsa; Corvaïa, Nathalie; Van Dorsselaer, Alain; Beck, Alain; Cianférani, Sarah

    2015-08-01

    Antibody-drug conjugates (ADCs) are biochemotherapeutics consisting of a cytotoxic chemical drug linked covalently to a monoclonal antibody. Two main classes of ADCs, namely cysteine and lysine conjugates, are currently available on the market or involved in clinical trials. The complex structure and heterogeneity of ADCs makes their biophysical characterization challenging. For cysteine conjugates, hydrophobic interaction chromatography is the gold standard technique for studying drug distribution, the naked antibody content, and the average drug to antibody ratio (DAR). For lysine ADC conjugates on the other hand, which are not amenable to hydrophobic interaction chromatography because of their higher heterogeneity, denaturing mass spectrometry (MS) and UV/Vis spectroscopy are the most powerful approaches. We report here the use of native MS and ion mobility (IM-MS) for the characterization of trastuzumab emtansine (T-DM1, Kadcyla(®)). This lysine conjugate is currently being considered for the treatment of human epidermal growth factor receptor 2 (HER2)-positive breast cancer, and combines the anti-HER2 antibody trastuzumab (Herceptin(®)), with the cytotoxic microtubule-inhibiting maytansine derivative, DM1. We show that native MS combined with high-resolution measurements and/or charge reduction is beneficial in terms of the accurate values it provides of the average DAR and the drug load profiles. The use of spectral deconvolution is discussed in detail. We report furthermore the use of native IM-MS to directly determine DAR distribution profiles and average DAR values, as well as a molecular modeling investigation of positional isomers in T-DM1. © 2015 The Protein Society.

  2. High-Concentration III-V Multijunction Solar Cells | Photovoltaic Research

    Science.gov Websites

    | NREL High-Concentration III-V Multijunction Solar Cells High-Concentration III-V transfer to the high-efficiency cell industry, and the invention and development of the inverted metamorphic multijunction (IMM) cell technology. PV Research Other Materials & Devices pages: High

  3. MERCURY IN CRUDE OIL PROCESSED IN THE UNITED STATES (2004)

    EPA Science Inventory

    The mean and range of concentrations of mercury in crude oil processed in the U.S. were investigated using two analytical methods. The sample ensemble consisted of 329 samples from 170 separate crude oil streams that are processed by U.S. refineries. Samples were retrieved imme...

  4. 76 FR 7114 - International Mail: Mailing Services Price Change

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-09

    ... POSTAL SERVICE 39 CFR Part 20 International Mail: Mailing Services Price Change AGENCY: Postal... States Postal Service, International Mail Manual (IMM[supreg]) for Mailing Services. This price change correlates to the Postal Service's January 13, 2011 filing of Docket No. R2011-2, Notice of Price Adjustment...

  5. 77 FR 64724 - International Mail Manual; Incorporation by Reference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-23

    ... POSTAL SERVICE 39 CFR Part 20 International Mail Manual; Incorporation by Reference AGENCY: Postal... Standards of the United States Postal Service, International Mail Manual (IMM[supreg]) dated June 24, 2012... International Mail Manual was issued on June 24, 2012, and was updated with postal bulletin revisions through...

  6. Interactive Multimedia: Practice and Promise.

    ERIC Educational Resources Information Center

    Latchem, Colin, Ed.; And Others

    This book describes developments in interactive multimedia (IMM) in the early 1990s. Its aim is to provide educators, students, trainers, librarians, managers, and practitioners with an overview, not only of the directions and uses of the technology, but also of the research foundations and educational and contextual issues that need to be…

  7. Clinical Outcome Metrics for Optimization of Robust Training

    NASA Technical Reports Server (NTRS)

    Ebert, D.; Byrne, V. E.; McGuire, K. M.; Hurst, V. W., IV; Kerstman, E. L.; Cole, R. W.; Sargsyan, A. E.; Garcia, K. M.; Reyes, D.; Young, M.

    2016-01-01

    Introduction: The emphasis of this research is on the Human Research Program (HRP) Exploration Medical Capability's (ExMC) "Risk of Unacceptable Health and Mission Outcomes Due to Limitations of In-Flight Medical Capabilities." Specifically, this project aims to contribute to the closure of gap ExMC 2.02: We do not know how the inclusion of a physician crew medical officer quantitatively impacts clinical outcomes during exploration missions. The experiments are specifically designed to address clinical outcome differences between physician and non-physician cohorts in both near-term and longer-term (mission impacting) outcomes. Methods: Medical simulations will systematically compare success of individual diagnostic and therapeutic procedure simulations performed by physician and non-physician crew medical officer (CMO) analogs using clearly defined short-term (individual procedure) outcome metrics. In the subsequent step of the project, the procedure simulation outcomes will be used as input to a modified version of the NASA Integrated Medical Model (IMM) to analyze the effect of the outcome (degree of success) of individual procedures (including successful, imperfectly performed, and failed procedures) on overall long-term clinical outcomes and the consequent mission impacts. The procedures to be simulated are endotracheal intubation, fundoscopic examination, kidney/urinary ultrasound, ultrasound-guided intravenous catheter insertion, and a differential diagnosis exercise. Multiple assessment techniques will be used, centered on medical procedure simulation studies occurring at 3, 6, and 12 months after initial training (as depicted in the following flow diagram of the experiment design). Discussion: Analysis of procedure outcomes in the physician and non-physician groups and their subsets (tested at different elapsed times post training) will allow the team to 1) define differences between physician and non-physician CMOs in terms of both procedure performance (pre-IMM analysis) and overall mitigation of the mission medical impact (IMM analysis); 2) refine the procedure outcome and clinical outcome metrics themselves; 3) refine or develop innovative medical training products and solutions to maximize CMO performance; and 4) validate the methods and products of this experiment for operational use in the planning, execution, and quality assurance of the CMO training process The team has finalized training protocols and developed a software training/testing tool in collaboration with Butler Graphics (Detroit, MI). In addition to the "hands on" medical procedure modules, the software includes a differential diagnosis exercise (limited clinical decision support tool) to evaluate the diagnostic skills of participants. Human subject testing will occur over the next year.

  8. Conjugation-Mediated Transfer of Antibiotic-Resistance Plasmids Between Enterobacteriaceae in the Digestive Tract of Blaberus craniifer (Blattodea: Blaberidae).

    PubMed

    Anacarso, I; Iseppi, R; Sabia, C; Messi, P; Condò, C; Bondi, M; de Niederhäusern, S

    2016-05-01

    Cockroaches, insects of the order Blattodea, seem to play a crucial role in the possible conjugation-mediated genetic exchanges that occur among bacteria that harbor in the cockroach intestinal tract. The gut of these insects can be thought of as an effective in vivo model for the natural transfer of antimicrobial resistance plasmids among bacteria. In our study, we evaluated the conjugation-mediated horizontal transfer of resistance genes between Escherichia coli and other microorganisms of the same Enterobacteriaceae family within the intestinal tract of Blaberus craniifer Burmeister, 1838 (Blattodea: Blaberidae). Different in vivo mating experiments were performed using E. coli RP4 harboring the RP4 plasmid carrying ampicillin, kanamycin, and tetracycline resistance genes as the donor and E. coli K12 resistant to nalidixic acid or Salmonella enterica serovar Enteritidis IMM39 resistant to streptomycin as the recipients. The RP4 plasmid was successfully transferred to both recipients, producing E. coli K12-RP4 and S. Enteritidis IMM39-RP4 transconjugants. Conjugation frequencies in vivo were similar to those previously observed in vitro. The transfer of the RP4 plasmid in all transconjugants was confirmed by small-scale plasmid isolation and agar gel electrophoresis, suggesting that the intestinal tract of cockroaches is an effective in vivo model for natural gene transfer. Our results confirm that cockroaches allow for the exchange of antimicrobial resistance plasmids among bacteria and may represent a potential reservoir for the dissemination of antibiotic-resistant bacteria in different environments. These findings are particularly significant to human health in the context of health care settings such as hospitals. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Getting to Outcomes: A Best Practice Process to Help Schools Achieve Desired Outcomes

    ERIC Educational Resources Information Center

    Maras, Melissa A.; Wandersman, Abe; Splett, Joni Williams; Flaspohler, Paul; Weist, Mark

    2012-01-01

    This article describes Getting to Outcomes (GTO), a 10-step framework for accountability designed to facilitate effective implementation of evidence-based programs and improvement of home-grown practices (Getting to Outcomes and GTO are trademarks registered by the University of South Carolina and RAND; Wandersman, Imm, Chinman, & Kaftarian,…

  10. NREL Inks Technology Agreement for High Efficiency Multijunction Solar

    Science.gov Websites

    ) multijunction solar cells. While high-efficiency multijunction solar cells are commonly used for space Devices is excited to now be commercializing IMM solar cells for high-performance space and UAV Cells | News | NREL Inks Technology Agreement for High Efficiency Multijunction Solar Cells

  11. Medical Surveillance Monthly Report. Volume 19, Number 7

    DTIC Science & Technology

    2012-07-01

    education for recruits at acces- sion. While the Marine Corps and...other Services. This may reflect that most servicewomen receive chlamydia screening, treatment and education imme- diately upon accession, while... hemoglobin , the substance in red blood cells (RBCs) that carries oxygen from the lungs to the rest of the body. In the face of

  12. The Developer's Handbook to Interactive Multimedia: A Practical Guide for Educational Applications.

    ERIC Educational Resources Information Center

    Phillips, Rob

    Interactive multimedia (IMM) is a technology with the potential to change the way people learn, acquire information, and entertain themselves. This technology brings together a range of fields and requires the skills of professionals from those fields. This handbook offers practical advice on issues related to developing successful interactive…

  13. A Collaborative Decision Environment for UAV Operations

    NASA Technical Reports Server (NTRS)

    D'Ortenzio, Matthew V.; Enomoto, Francis Y.; Johan, Sandra L.

    2005-01-01

    NASA is developing Intelligent Mission Management (IMM) technology for science missions employing long endurance unmanned aerial vehicles (UAV's). The IMM groundbased component is the Collaborative Decision Environment (CDE), a ground system that provides the Mission/Science team with situational awareness, collaboration, and decisionmaking tools. The CDE is used for pre-flight planning, mission monitoring, and visualization of acquired data. It integrates external data products used for planning and executing a mission, such as weather, satellite data products, and topographic maps by leveraging established and emerging Open Geospatial Consortium (OGC) standards to acquire external data products via the Internet, and an industry standard geographic information system (GIs) toolkit for visualization As a Science/Mission team may be geographically dispersed, the CDE is capable of providing access to remote users across wide area networks using Web Services technology. A prototype CDE is being developed for an instrument checkout flight on a manned aircraft in the fall of 2005, in preparation for a full deployment in support of the US Forest Service and NASA Ames Western States Fire Mission in 2006.

  14. Aerosol Vacuum-Assisted Plasma Ionization (Aero-VaPI) Coupled to Ion Mobility-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Blair, Sandra L.; Ng, Nga L.; Zambrzycki, Stephen C.; Li, Anyin; Fernández, Facundo M.

    2018-02-01

    In this communication, we report on the real-time analysis of organic aerosol particles by Vacuum-assisted Plasma Ionization-Mass Spectrometry (Aero-VaPI-MS) using a home-built VaPI ion source coupled to a Synapt G2-S HDMS ion mobility-mass spectrometry (IM-MS) system. Standards of organic molecules of interest in prebiotic chemistry were used to generate aerosols. Monocaprin and decanoic acid aerosol particles were successfully detected in both the positive and negative ion modes, respectively. A complex aerosol mixture of different sizes of polymers of L-malic acid was also examined through ion mobility (IM) separations, resulting in the detection of polymers of up to eight monomeric units. This noncommercial plasma ion source is proposed as a low cost alternative to other plasma ionization platforms used for aerosol analysis, and a higher-performance alternative to more traditional aerosol mass spectrometers. VaPI provides robust online ionization of organics in aerosols without extensive ion activation, with the coupling to IM-MS providing higher peak capacity and excellent mass accuracy. [Figure not available: see fulltext.

  15. Uncovering the stoichiometry of Pyrococcus furiosus RNase P, a multi-subunit catalytic ribonucleoprotein complex, by surface-induced dissociation and ion mobility mass spectrometry.

    PubMed

    Ma, Xin; Lai, Lien B; Lai, Stella M; Tanimoto, Akiko; Foster, Mark P; Wysocki, Vicki H; Gopalan, Venkat

    2014-10-20

    We demonstrate that surface-induced dissociation (SID) coupled with ion mobility mass spectrometry (IM-MS) is a powerful tool for determining the stoichiometry of a multi-subunit ribonucleoprotein (RNP) complex assembled in a solution containing Mg(2+). We investigated Pyrococcus furiosus (Pfu) RNase P, an archaeal RNP that catalyzes tRNA 5' maturation. Previous step-wise, Mg(2+)-dependent reconstitutions of Pfu RNase P with its catalytic RNA subunit and two interacting protein cofactor pairs (RPP21⋅RPP29 and POP5⋅RPP30) revealed functional RNP intermediates en route to the RNase P enzyme, but provided no information on subunit stoichiometry. Our native MS studies with the proteins showed RPP21⋅RPP29 and (POP5⋅RPP30)2 complexes, but indicated a 1:1 composition for all subunits when either one or both protein complexes bind the cognate RNA. These results highlight the utility of SID and IM-MS in resolving conformational heterogeneity and yielding insights on RNP assembly. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. cea-kil operon of the ColE1 plasmid.

    PubMed Central

    Sabik, J F; Suit, J L; Luria, S E

    1983-01-01

    We isolated a series of Tn5 transposon insertion mutants and chemically induced mutants with mutations in the region of the ColE1 plasmid that includes the cea (colicin) and imm (immunity) genes. Bacterial cells harboring each of the mutant plasmids were tested for their response to the colicin-inducing agent mitomycin C. All insertion mutations within the cea gene failed to bring about cell killing after mitomycin C treatment. A cea- amber mutation exerted a polar effect on killing by mitomycin C. Two insertions beyond the cea gene but within or near the imm gene also prevented the lethal response to mitomycin C. These findings suggest the presence in the ColE1 plasmid of an operon containing the cea and kil genes whose product is needed for mitomycin C-induced lethality. Bacteria carrying ColE1 plasmids with Tn5 inserted within the cea gene produced serologically cross-reacting fragments of the colicin E1 molecule, the lengths of which were proportional to the distance between the insertion and the promoter end of the cea gene. Images PMID:6298187

  17. Recovery after chronic stress within spatial reference and working memory domains: correspondence with hippocampal morphology.

    PubMed

    Hoffman, A N; Krigbaum, A; Ortiz, J B; Mika, A; Hutchinson, K M; Bimonte-Nelson, H A; Conrad, C D

    2011-09-01

    Chronic stress results in reversible spatial learning impairments in the Morris water maze that correspond with hippocampal CA3 dendritic retraction in male rats. Whether chronic stress impacts different types of memory domains, and whether these can similarly recover, is unknown. This study assessed the effects of chronic stress with and without a post-stress delay to evaluate learning and memory deficits within two memory domains, reference and working memory, in the radial arm water maze (RAWM). Three groups of 5-month-old male Sprague-Dawley rats were either not stressed [control (CON)], or restrained (6 h/day for 21 days) and then tested on the RAWM either on the next day [stress immediate (STR-IMM)] or following a 21-day delay [stress delay (STR-DEL)]. Although the groups learned the RAWM task similarly, groups differed in their 24-h retention trial assessment. Specifically, the STR-IMM group made more errors within both the spatial reference and working memory domains, and these deficits corresponded with a reduction in apical branch points and length of hippocampal CA3 dendrites. In contrast, the STR-DEL group showed significantly fewer errors in both the reference and working memory domains than the STR-IMM group. Moreover, the STR-DEL group showed better RAWM performance in the reference memory domain than did the CON group, and this corresponded with restored CA3 dendritic complexity, revealing long-term enhancing actions of chronic stress. These results indicate that chronic stress-induced spatial working and reference memory impairments, and CA3 dendritic retraction, are reversible, with chronic stress having lasting effects that can benefit spatial reference memory, but with these lasting beneficial effects being independent of CA3 dendritic complexity. © 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  18. Fistulizing pattern in Crohn's disease and pancolitis in ulcerative colitis are independent risk factors for cancer: a single-center cohort study.

    PubMed

    Biancone, Livia; Zuzzi, Sara; Ranieri, Micaela; Petruzziello, Carmelina; Calabrese, Emma; Onali, Sara; Ascolani, Marta; Zorzi, Francesca; Condino, Giovanna; Iacobelli, Simona; Pallone, Francesco

    2012-06-01

    The combined role of immunomodulators (IMM) and clinical characteristics of Inflammatory Bowel Disease (IBD) in determining the cancer risk is undefined. The aim was to assess whether clinical characteristics of IBD are independent risk factors for cancer, when considering thiopurines and anti-TNFs use. In a single-center cohort study, clinical characteristics of IBD patients with IBD duration ≥1 year and ≥2 visits from 2000 to 2009 were considered. Tests for crude rates and survival analysis methods were used to assess differences of incidence of cancer between groups. The methods were adjusted for the time interval between diagnosis and immunomodulatory treatments. IBD population included 1222 patients :615 Crohn's disease (CD), 607 ulcerative colitis (UC). Cancer was diagnosed in 51 patients (34 CD,17 UC), with an incidence rate of 4.3/1000 pt/year. The incidence rate of cancer was comparable between CD and UC (4.6/1000 pt/year vs 2.9/1000 pt/year ;p=n.s.). Cancer most frequently involved the breast, the GI tract, the skin. Lymphoma was diagnosed in CD (1HL, 1NHL,0 HSTCL). Risk factors for cancer included older age at diagnosis of IBD (CD: HR 1.25;95%CI 1.08-1.45; UC:HR 1.33;95%CI 1.15-1.55 for an increase by 5 years; p=0.0023; p=0.0002), fistulizing pattern in CD (HR 2.55; 95%CI 1.11-5.86,p=0.0275), pancolitis in UC (HR 2.79;95%CI 1.05-7.40 p=0.0396 vs distal). IMM and anti-TNFs did not increase the cancer risk in CD, neither IMM in UC (anti-TNFs risk in UC not feasible as no cases observed). Fistulizing pattern in CD, pancolitis in UC and older age at diagnosis of IBD are independent risk factors for cancer. Copyright © 2011 European Crohn's and Colitis Organisation. Published by Elsevier B.V. All rights reserved.

  19. Distribution and geochemistry of selected trace elements in the Sacramento River near Keswick Reservoir

    USGS Publications Warehouse

    Antweiler, Ronald C.; Taylor, Howard E.; Alpers, Charles N.

    2012-01-01

    The effect of heavy metals from the Iron Mountain Mines (IMM) Superfund site on the upper Sacramento River is examined using data from water and bed sediment samples collected during 1996-97. Relative to surrounding waters, aluminum, cadmium, cobalt, copper, iron, lead, manganese, thallium, zinc and the rare-earth elements (REE) were all present in high concentrations in effluent from Spring Creek Reservoir (SCR), which enters into the Sacramento River in the Spring Creek Arm of Keswick Reservoir. SCR was constructed in part to regulate the flow of acidic, metal-rich waters draining the IMM Superfund site. Although virtually all of these metals exist in SCR in the dissolved form, upon entering Keswick Reservoir they at least partially converted via precipitation and/or adsorption to the particulate phase. In spite of this, few of the metals settled out; instead the vast majority was transported colloidally down the Sacramento River at least to Bend Bridge, 67. km from Keswick Dam.The geochemical influence of IMM on the upper Sacramento River was variable, chiefly dependent on the flow of Spring Creek. Although the average flow of the Sacramento River at Keswick Dam is 250m 3/s (cubic meters per second), even flows as low as 0.3m 3/s from Spring Creek were sufficient to account for more than 15% of the metals loading at Bend Bridge, and these proportions increased with increasing Spring Creek flow.The dissolved proportion of the total bioavailable load was dependent on the element but steadily decreased for all metals, from near 100% in Spring Creek to values (for some elements) of less than 1% at Bend Bridge; failure to account for the suspended sediment load in assessments of the effect of metals transport in the Sacramento River can result in estimates which are low by as much as a factor of 100. ?? 2012.

  20. Distribution and geochemistry of selected trace elements in the Sacramento River near Keswick Reservoir

    USGS Publications Warehouse

    Antweiler, Ronald C.; Taylor, Howard E.; Alpers, Charles N.

    2012-01-01

    The effect of heavy metals from the Iron Mountain Mines (IMM) Superfund site on the upper Sacramento River is examined using data from water and bed sediment samples collected during 1996-97. Relative to surrounding waters, aluminum, cadmium, cobalt, copper, iron, lead, manganese, thallium, zinc and the rare-earth elements (REE) were all present in high concentrations in effluent from Spring Creek Reservoir (SCR), which enters into the Sacramento River in the Spring Creek Arm of Keswick Reservoir. SCR was constructed in part to regulate the flow of acidic, metal-rich waters draining the IMM Superfund site. Although virtually all of these metals exist in SCR in the dissolved form, upon entering Keswick Reservoir they at least partially converted via precipitation and/or adsorption to the particulate phase. In spite of this, few of the metals settled out; instead the vast majority was transported colloidally down the Sacramento River at least to Bend Bridge, 67 km from Keswick Dam. The geochemical influence of IMM on the upper Sacramento River was variable, chiefly dependent on the flow of Spring Creek. Although the average flow of the Sacramento River at Keswick Dam is 250 m3/s (cubic meters per second), even flows as low as 0.3 m3/s from Spring Creek were sufficient to account for more than 15% of the metals loading at Bend Bridge, and these proportions increased with increasing Spring Creek flow. The dissolved proportion of the total bioavailable load was dependent on the element but steadily decreased for all metals, from near 100% in Spring Creek to values (for some elements) of less than 1% at Bend Bridge; failure to account for the suspended sediment load in assessments of the effect of metals transport in the Sacramento River can result in estimates which are low by as much as a factor of 100.

  1. Immediate Protein Dietary Effects on Movement and the Generalised Immunocompetence of Migrating Mormon Crickets Anabrus simplex (Orthoptera: Tettigoniidae)

    USDA-ARS?s Scientific Manuscript database

    1. Mormon crickets form large migratory bands that march over rangeland in the western United States seeking salt and protein. Immune defense is particularly relevant to survival in migratory bands, but little is known about the role of nutrition in insect immunocompetence. We hypothesized that imm...

  2. IMM Solar Cell Shows Its Versatility - Continuum Magazine | NREL

    Science.gov Websites

    . Inventing a new type of solar cell is one thing. Setting efficiency records with it and winning major awards add to the achievement. But when one of the world's leading manufacturers of compound semiconductor thin metal foil, and the substrate that the cell was grown on is removed. One advantage of this

  3. Moving towards Inclusive French as a Second Official Language Education in Canada

    ERIC Educational Resources Information Center

    Mady, Callie

    2013-01-01

    This paper examines French as a second official language (FSOL) teachers' perspectives as they relate to the inclusion of immigrants who are learning English (IMMs), in elementary FSOL education in an English-dominant region of Canada, in particular within French immersion. In this paper, I have tried to examine the question of access to…

  4. NREL Solar Cell Wins Federal Technology Transfer Prize | News | NREL

    Science.gov Websites

    Solar Cell Wins Federal Technology Transfer Prize News Release: NREL Solar Cell Wins Federal ) Solar Cell was named a winner of the 2009 Award for Excellence in Technology Transfer by the Federal Laboratory Consortium for Technology Transfer. The original IMM cell was invented by Mark Wanlass of NREL's

  5. 20180312 - Retrofitting an Estrogen Receptor Transactivation Assay with Metabolic Competence Using Alginate Immobilization of Metabolic Enzymes (AIME) (SOT)

    EPA Science Inventory

    The VM7Luc4E2 estrogen receptor (ER) transactivation assay is an OECD approved method (TG 457) for the detection of ER agonists and antagonists, and is also part of the Tox21 high-throughput screening (HTS) portfolio. Despite its international acceptance as a screening assay, imm...

  6. Utilizing Generalization Tactics to Promote Leisure-Time Physical Activity for Students with Intellectual Disabilities

    ERIC Educational Resources Information Center

    Haegele, Justin A.; Park, Seung Yeon

    2016-01-01

    Research suggests that school-aged individuals with intellectual disabilities (ID) tend to be less physically active than their typically developing peers (e.g., Shields, King, Corbett, & Imms, 2014). While these students can be successful in acquiring motor and sport-related skills during physical education, they tend not to use those skills…

  7. Integrated Display and Simulation for Automatic Dependent Surveillance–Broadcast and Traffic Collision Avoidance System Data Fusion

    PubMed Central

    Wang, Yanran; Xiao, Gang; Dai, Zhouyun

    2017-01-01

    Automatic Dependent Surveillance–Broadcast (ADS-B) is the direction of airspace surveillance development. Research analyzing the benefits of Traffic Collision Avoidance System (TCAS) and ADS-B data fusion is almost absent. The paper proposes an ADS-B minimum system from ADS-B In and ADS-B Out. In ADS-B In, a fusion model with a variable sampling Variational Bayesian-Interacting Multiple Model (VSVB-IMM) algorithm is proposed for integrated display and an airspace traffic situation display is developed by using ADS-B information. ADS-B Out includes ADS-B Out transmission based on a simulator platform and an Unmanned Aerial Vehicle (UAV) platform. This paper describes the overall implementation of ADS-B minimum system, including theoretical model design, experimental simulation verification, engineering implementation, results analysis, etc. Simulation and implementation results show that the fused system has better performance than each independent subsystem and it can work well in engineering applications. PMID:29137194

  8. On the Effect of Sphere-Overlap on Super Coarse-Grained Models of Protein Assemblies

    NASA Astrophysics Data System (ADS)

    Degiacomi, Matteo T.

    2018-05-01

    Ion mobility mass spectrometry (IM/MS) can provide structural information on intact protein complexes. Such data, including connectivity and collision cross sections (CCS) of assemblies' subunits, can in turn be used as a guide to produce representative super coarse-grained models. These models are constituted by ensembles of overlapping spheres, each representing a protein subunit. A model is considered plausible if the CCS and sphere-overlap levels of its subunits fall within predetermined confidence intervals. While the first is determined by experimental error, the latter is based on a statistical analysis on a range of protein dimers. Here, we first propose a new expression to describe the overlap between two spheres. Then we analyze the effect of specific overlap cutoff choices on the precision and accuracy of super coarse-grained models. Finally, we propose a method to determine overlap cutoff levels on a per-case scenario, based on collected CCS data, and show that it can be applied to the characterization of the assembly topology of symmetrical homo-multimers. [Figure not available: see fulltext.

  9. Architecture for Integrated Medical Model Dynamic Probabilistic Risk Assessment

    NASA Technical Reports Server (NTRS)

    Jaworske, D. A.; Myers, J. G.; Goodenow, D.; Young, M.; Arellano, J. D.

    2016-01-01

    Probabilistic Risk Assessment (PRA) is a modeling tool used to predict potential outcomes of a complex system based on a statistical understanding of many initiating events. Utilizing a Monte Carlo method, thousands of instances of the model are considered and outcomes are collected. PRA is considered static, utilizing probabilities alone to calculate outcomes. Dynamic Probabilistic Risk Assessment (dPRA) is an advanced concept where modeling predicts the outcomes of a complex system based not only on the probabilities of many initiating events, but also on a progression of dependencies brought about by progressing down a time line. Events are placed in a single time line, adding each event to a queue, as managed by a planner. Progression down the time line is guided by rules, as managed by a scheduler. The recently developed Integrated Medical Model (IMM) summarizes astronaut health as governed by the probabilities of medical events and mitigation strategies. Managing the software architecture process provides a systematic means of creating, documenting, and communicating a software design early in the development process. The software architecture process begins with establishing requirements and the design is then derived from the requirements.

  10. Finding mouse models of human lymphomas and leukemia's using the Jackson laboratory mouse tumor biology database.

    PubMed

    Begley, Dale A; Sundberg, John P; Krupke, Debra M; Neuhauser, Steven B; Bult, Carol J; Eppig, Janan T; Morse, Herbert C; Ward, Jerrold M

    2015-12-01

    Many mouse models have been created to study hematopoietic cancer types. There are over thirty hematopoietic tumor types and subtypes, both human and mouse, with various origins, characteristics and clinical prognoses. Determining the specific type of hematopoietic lesion produced in a mouse model and identifying mouse models that correspond to the human subtypes of these lesions has been a continuing challenge for the scientific community. The Mouse Tumor Biology Database (MTB; http://tumor.informatics.jax.org) is designed to facilitate use of mouse models of human cancer by providing detailed histopathologic and molecular information on lymphoma subtypes, including expertly annotated, on line, whole slide scans, and providing a repository for storing information on and querying these data for specific lymphoma models. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Mouse models rarely mimic the transcriptome of human neurodegenerative diseases: A systematic bioinformatics-based critique of preclinical models.

    PubMed

    Burns, Terry C; Li, Matthew D; Mehta, Swapnil; Awad, Ahmed J; Morgan, Alexander A

    2015-07-15

    Translational research for neurodegenerative disease depends intimately upon animal models. Unfortunately, promising therapies developed using mouse models mostly fail in clinical trials, highlighting uncertainty about how well mouse models mimic human neurodegenerative disease at the molecular level. We compared the transcriptional signature of neurodegeneration in mouse models of Alzheimer׳s disease (AD), Parkinson׳s disease (PD), Huntington׳s disease (HD) and amyotrophic lateral sclerosis (ALS) to human disease. In contrast to aging, which demonstrated a conserved transcriptome between humans and mice, only 3 of 19 animal models showed significant enrichment for gene sets comprising the most dysregulated up- and down-regulated human genes. Spearman׳s correlation analysis revealed even healthy human aging to be more closely related to human neurodegeneration than any mouse model of AD, PD, ALS or HD. Remarkably, mouse models frequently upregulated stress response genes that were consistently downregulated in human diseases. Among potential alternate models of neurodegeneration, mouse prion disease outperformed all other disease-specific models. Even among the best available animal models, conserved differences between mouse and human transcriptomes were found across multiple animal model versus human disease comparisons, surprisingly, even including aging. Relative to mouse models, mouse disease signatures demonstrated consistent trends toward preserved mitochondrial function protein catabolism, DNA repair responses, and chromatin maintenance. These findings suggest a more complex and multifactorial pathophysiology in human neurodegeneration than is captured through standard animal models, and suggest that even among conserved physiological processes such as aging, mice are less prone to exhibit neurodegeneration-like changes. This work may help explain the poor track record of mouse-based translational therapies for neurodegeneration and provides a path forward to critically evaluate and improve animal models of human disease. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Clustering of mutations within the inverted repeat regions of a serially-passaged attenuated gallid herpesvirus type 2 strain.

    USDA-ARS?s Scientific Manuscript database

    Marek’s disease (MD) is the leading cause of losses in chicken production in the world. Over the past 40 years significant progress has been made in the control of MD through the use of vaccines which reduce or delay tumor formation in vaccinated flocks. However, these vaccines fail to induce an imm...

  13. Learning French as a Second Official Language in Canada: Comparing Monolingual and Bilingual Students at Grade 6

    ERIC Educational Resources Information Center

    Mady, Callie

    2014-01-01

    This paper presents the results of a study that compared the French as a second official achievement of three groups of students: (1) Canadian-born English speaking (CBE), (2) Canadian-born multilingual (CBM), and (3) immigrant multilinguals (IMM) as determined by multiskills test results. ANOVAs and subsequent post hoc tests revealed that the…

  14. Pedagogical Design Considerations in Sex Education on Interactive Multimedia Using CD-Rom: An Example of Sexual Intercourse

    ERIC Educational Resources Information Center

    Goldman, Juliette D. G.; Torrisi-Steele, Geraldine

    2005-01-01

    Human sexuality is a significant issue for educators to understand and teach about, and for young people to learn about. The development of interactive multimedia technologies has added a range of new dimensions associated with designing pedagogies for sex education on Interactive Multimedia (IMM). Here, a module on CD-Rom on Sexuality and Human…

  15. Montanide ISA 71 VG adjuvant enhances antibody and cell-ediated immune responses to profilin subunit antigen vaccination and promotes protection against Eimeria acervulina and Eimeria tenella

    USDA-ARS?s Scientific Manuscript database

    The present study was conducted to investigate the immunoenhancing effects of ISA 71 VG adjuvant on profilin subunit antigen vaccination. Broiler chickens were immunized subcutaneously with a purified Eimeria acervulina recombinant profilin protein, either alone or mixed with ISA 71 VG, and host imm...

  16. Structural Characterization of Monomers and Oligomers of D-Amino Acid-Containing Peptides Using T-Wave Ion Mobility Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Pang, Xueqin; Jia, Chenxi; Chen, Zhengwei; Li, Lingjun

    2017-01-01

    The D-residues are crucial to biological function of D-amino acid containing peptides (DAACPs). Previous ion mobility mass spectrometry (IM-MS) studies revealing oligomerization patterns of amyloid cascade demonstrated conversion from native soluble unstructured assembly to fibril ß-sheet oligomers, which has been implicated in amyloid diseases, such as Alzheimer's disease and type 2 diabetes. Although neuropeptides are typically present at very low concentrations in circulation, their local concentrations could be much higher in large dense core vesicles, forming dimers or oligomers. We studied the oligomerization of protonated and metal-adducted achatin I and dermorphin peptide isomers with IM-MS. Our results suggested that dimerization, oligomerization, and metal adduction augment the structural differences between D/L peptide isomers compared to protonated monomers. Dimers and oligomers enhanced the structural differences between D/L peptide isomers in both aqueous and organic solvent system. Furthermore, some oligomer forms were only observed for either D- or L-isomers, indicating the importance of chiral center in oligomerization process. The oligomerization patterns of D/L isomers appear to be similar. Potassium adducts were detected to enlarge the structural differences between D/L isomers.

  17. Fuel processing in integrated micro-structured heat-exchanger reactors

    NASA Astrophysics Data System (ADS)

    Kolb, G.; Schürer, J.; Tiemann, D.; Wichert, M.; Zapf, R.; Hessel, V.; Löwe, H.

    Micro-structured fuel processors are under development at IMM for different fuels such as methanol, ethanol, propane/butane (LPG), gasoline and diesel. The target application are mobile, portable and small scale stationary auxiliary power units (APU) based upon fuel cell technology. The key feature of the systems is an integrated plate heat-exchanger technology which allows for the thermal integration of several functions in a single device. Steam reforming may be coupled with catalytic combustion in separate flow paths of a heat-exchanger. Reactors and complete fuel processors are tested up to the size range of 5 kW power output of a corresponding fuel cell. On top of reactor and system prototyping and testing, catalyst coatings are under development at IMM for numerous reactions such as steam reforming of LPG, ethanol and methanol, catalytic combustion of LPG and methanol, and for CO clean-up reactions, namely water-gas shift, methanation and the preferential oxidation of carbon monoxide. These catalysts are investigated in specially developed testing reactors. In selected cases 1000 h stability testing is performed on catalyst coatings at weight hourly space velocities, which are sufficiently high to meet the demands of future fuel processing reactors.

  18. Y-12 Integrated Materials Management System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alspaugh, D. H.; Hickerson, T. W.

    2002-06-03

    The Integrated Materials Management System, when fully implemented, will provide the Y-12 National Security Complex with advanced inventory information and analysis capabilities and enable effective assessment, forecasting and management of nuclear materials, critical non-nuclear materials, and certified supplies. These capabilities will facilitate future Y-12 stockpile management work, enhance interfaces to existing National Nuclear Security Administration (NNSA) corporate-level information systems, and enable interfaces to planned NNSA systems. In the current national nuclear defense environment where, for example, weapons testing is not permitted, material managers need better, faster, more complete information about material properties and characteristics. They now must manage non-special nuclearmore » material at the same high-level they have managed SNM, and information capabilities about both must be improved. The full automation and integration of business activities related to nuclear and non-nuclear materials that will be put into effect by the Integrated Materials Management System (IMMS) will significantly improve and streamline the process of providing vital information to Y-12 and NNSA managers. This overview looks at the kinds of information improvements targeted by the IMMS project, related issues, the proposed information architecture, and the progress to date in implementing the system.« less

  19. System parameters for erythropoiesis control model: Comparison of normal values in human and mouse model

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The computer model for erythropoietic control was adapted to the mouse system by altering system parameters originally given for the human to those which more realistically represent the mouse. Parameter values were obtained from a variety of literature sources. Using the mouse model, the mouse was studied as a potential experimental model for spaceflight. Simulation studies of dehydration and hypoxia were performed. A comparison of system parameters for the mouse and human models is presented. Aside from the obvious differences expected in fluid volumes, blood flows and metabolic rates, larger differences were observed in the following: erythrocyte life span, erythropoietin half-life, and normal arterial pO2.

  20. Human mammary microenvironment better regulates the biology of human breast cancer in humanized mouse model.

    PubMed

    Zheng, Ming-Jie; Wang, Jue; Xu, Lu; Zha, Xiao-Ming; Zhao, Yi; Ling, Li-Jun; Wang, Shui

    2015-02-01

    During the past decades, many efforts have been made in mimicking the clinical progress of human cancer in mouse models. Previously, we developed a human breast tissue-derived (HB) mouse model. Theoretically, it may mimic the interactions between "species-specific" mammary microenvironment of human origin and human breast cancer cells. However, detailed evidences are absent. The present study (in vivo, cellular, and molecular experiments) was designed to explore the regulatory role of human mammary microenvironment in the progress of human breast cancer cells. Subcutaneous (SUB), mammary fat pad (MFP), and HB mouse models were developed for in vivo comparisons. Then, the orthotopic tumor masses from three different mouse models were collected for primary culture. Finally, the biology of primary cultured human breast cancer cells was compared by cellular and molecular experiments. Results of in vivo mouse models indicated that human breast cancer cells grew better in human mammary microenvironment. Cellular and molecular experiments confirmed that primary cultured human breast cancer cells from HB mouse model showed a better proliferative and anti-apoptotic biology than those from SUB to MFP mouse models. Meanwhile, primary cultured human breast cancer cells from HB mouse model also obtained the migratory and invasive biology for "species-specific" tissue metastasis to human tissues. Comprehensive analyses suggest that "species-specific" mammary microenvironment of human origin better regulates the biology of human breast cancer cells in our humanized mouse model of breast cancer, which is more consistent with the clinical progress of human breast cancer.

  1. The Mouse Tumor Biology Database: A Comprehensive Resource for Mouse Models of Human Cancer.

    PubMed

    Krupke, Debra M; Begley, Dale A; Sundberg, John P; Richardson, Joel E; Neuhauser, Steven B; Bult, Carol J

    2017-11-01

    Research using laboratory mice has led to fundamental insights into the molecular genetic processes that govern cancer initiation, progression, and treatment response. Although thousands of scientific articles have been published about mouse models of human cancer, collating information and data for a specific model is hampered by the fact that many authors do not adhere to existing annotation standards when describing models. The interpretation of experimental results in mouse models can also be confounded when researchers do not factor in the effect of genetic background on tumor biology. The Mouse Tumor Biology (MTB) database is an expertly curated, comprehensive compendium of mouse models of human cancer. Through the enforcement of nomenclature and related annotation standards, MTB supports aggregation of data about a cancer model from diverse sources and assessment of how genetic background of a mouse strain influences the biological properties of a specific tumor type and model utility. Cancer Res; 77(21); e67-70. ©2017 AACR . ©2017 American Association for Cancer Research.

  2. Engineer Novel Anticancer Bioagents

    DTIC Science & Technology

    2009-10-01

    Nonribosomally by Bacteria Gene depH is depicted as one of the three post- nonribosomal peptide synthetase (NRPS; dark red)/ polyketide synthase (PKS... polyketide synthase -NRPS pathway for FK228 biosynthesis in C. violaceum no. 968 (Cheng et al., 2007). This pathway would lead to the production of an imme...biosynthesis revealing unprecedented architectural complexity for a hybrid polyketide synthase and nonribosomal peptide synthetase. Chem. Biol. 11, 33–45

  3. Labeled RFS-Based Track-Before-Detect for Multiple Maneuvering Targets in the Infrared Focal Plane Array.

    PubMed

    Li, Miao; Li, Jun; Zhou, Yiyu

    2015-12-08

    The problem of jointly detecting and tracking multiple targets from the raw observations of an infrared focal plane array is a challenging task, especially for the case with uncertain target dynamics. In this paper a multi-model labeled multi-Bernoulli (MM-LMB) track-before-detect method is proposed within the labeled random finite sets (RFS) framework. The proposed track-before-detect method consists of two parts-MM-LMB filter and MM-LMB smoother. For the MM-LMB filter, original LMB filter is applied to track-before-detect based on target and measurement models, and is integrated with the interacting multiple models (IMM) approach to accommodate the uncertainty of target dynamics. For the MM-LMB smoother, taking advantage of the track labels and posterior model transition probability, the single-model single-target smoother is extended to a multi-model multi-target smoother. A Sequential Monte Carlo approach is also presented to implement the proposed method. Simulation results show the proposed method can effectively achieve tracking continuity for multiple maneuvering targets. In addition, compared with the forward filtering alone, our method is more robust due to its combination of forward filtering and backward smoothing.

  4. Labeled RFS-Based Track-Before-Detect for Multiple Maneuvering Targets in the Infrared Focal Plane Array

    PubMed Central

    Li, Miao; Li, Jun; Zhou, Yiyu

    2015-01-01

    The problem of jointly detecting and tracking multiple targets from the raw observations of an infrared focal plane array is a challenging task, especially for the case with uncertain target dynamics. In this paper a multi-model labeled multi-Bernoulli (MM-LMB) track-before-detect method is proposed within the labeled random finite sets (RFS) framework. The proposed track-before-detect method consists of two parts—MM-LMB filter and MM-LMB smoother. For the MM-LMB filter, original LMB filter is applied to track-before-detect based on target and measurement models, and is integrated with the interacting multiple models (IMM) approach to accommodate the uncertainty of target dynamics. For the MM-LMB smoother, taking advantage of the track labels and posterior model transition probability, the single-model single-target smoother is extended to a multi-model multi-target smoother. A Sequential Monte Carlo approach is also presented to implement the proposed method. Simulation results show the proposed method can effectively achieve tracking continuity for multiple maneuvering targets. In addition, compared with the forward filtering alone, our method is more robust due to its combination of forward filtering and backward smoothing. PMID:26670234

  5. Drug discovery in prostate cancer mouse models.

    PubMed

    Valkenburg, Kenneth C; Pienta, Kenneth J

    2015-01-01

    The mouse is an important, though imperfect, organism with which to model human disease and to discover and test novel drugs in a preclinical setting. Many experimental strategies have been used to discover new biological and molecular targets in the mouse, with the hopes of translating these discoveries into novel drugs to treat prostate cancer in humans. Modeling prostate cancer in the mouse, however, has been challenging, and often drugs that work in mice have failed in human trials. The authors discuss the similarities and differences between mice and men; the types of mouse models that exist to model prostate cancer; practical questions one must ask when using a mouse as a model; and potential reasons that drugs do not often translate to humans. They also discuss the current value in using mouse models for drug discovery to treat prostate cancer and what needs are still unmet in field. With proper planning and following practical guidelines by the researcher, the mouse is a powerful experimental tool. The field lacks genetically engineered metastatic models, and xenograft models do not allow for the study of the immune system during the metastatic process. There remain several important limitations to discovering and testing novel drugs in mice for eventual human use, but these can often be overcome. Overall, mouse modeling is an essential part of prostate cancer research and drug discovery. Emerging technologies and better and ever-increasing forms of communication are moving the field in a hopeful direction.

  6. Orthology for comparative genomics in the mouse genome database.

    PubMed

    Dolan, Mary E; Baldarelli, Richard M; Bello, Susan M; Ni, Li; McAndrews, Monica S; Bult, Carol J; Kadin, James A; Richardson, Joel E; Ringwald, Martin; Eppig, Janan T; Blake, Judith A

    2015-08-01

    The mouse genome database (MGD) is the model organism database component of the mouse genome informatics system at The Jackson Laboratory. MGD is the international data resource for the laboratory mouse and facilitates the use of mice in the study of human health and disease. Since its beginnings, MGD has included comparative genomics data with a particular focus on human-mouse orthology, an essential component of the use of mouse as a model organism. Over the past 25 years, novel algorithms and addition of orthologs from other model organisms have enriched comparative genomics in MGD data, extending the use of orthology data to support the laboratory mouse as a model of human biology. Here, we describe current comparative data in MGD and review the history and refinement of orthology representation in this resource.

  7. Genetically Engineered Mouse Models for Studying Inflammatory Bowel Disease

    PubMed Central

    Mizoguchi, Atsushi; Takeuchi, Takahito; Himuro, Hidetomo; Okada, Toshiyuki; Mizoguchi, Emiko

    2015-01-01

    Inflammatory bowel disease (IBD) is a chronic intestinal inflammatory condition that is mediated by very complex mechanisms controlled by genetic, immune, and environmental factors. More than 74 kinds of genetically engineered mouse strains have been established since 1993 for studying IBD. Although mouse models cannot fully reflect human IBD, they have provided significant contributions for not only understanding the mechanism, but also developing new therapeutic means for IBD. Indeed, 20 kinds of genetically engineered mouse models carry the susceptibility genes identified in human IBD, and the functions of some other IBD susceptibility genes have also been dissected out using mouse models. Cutting-edge technologies such as cell-specific and inducible knockout systems, which were recently employed to mouse IBD models, have further enhanced the ability of investigators to provide important and unexpected rationales for developing new therapeutic strategies for IBD. In this review article, we briefly introduce 74 kinds of genetically engineered mouse models that spontaneously develop intestinal inflammation. PMID:26387641

  8. Fuzzy adaptive interacting multiple model nonlinear filter for integrated navigation sensor fusion.

    PubMed

    Tseng, Chien-Hao; Chang, Chih-Wen; Jwo, Dah-Jing

    2011-01-01

    In this paper, the application of the fuzzy interacting multiple model unscented Kalman filter (FUZZY-IMMUKF) approach to integrated navigation processing for the maneuvering vehicle is presented. The unscented Kalman filter (UKF) employs a set of sigma points through deterministic sampling, such that a linearization process is not necessary, and therefore the errors caused by linearization as in the traditional extended Kalman filter (EKF) can be avoided. The nonlinear filters naturally suffer, to some extent, the same problem as the EKF for which the uncertainty of the process noise and measurement noise will degrade the performance. As a structural adaptation (model switching) mechanism, the interacting multiple model (IMM), which describes a set of switching models, can be utilized for determining the adequate value of process noise covariance. The fuzzy logic adaptive system (FLAS) is employed to determine the lower and upper bounds of the system noise through the fuzzy inference system (FIS). The resulting sensor fusion strategy can efficiently deal with the nonlinear problem for the vehicle navigation. The proposed FUZZY-IMMUKF algorithm shows remarkable improvement in the navigation estimation accuracy as compared to the relatively conventional approaches such as the UKF and IMMUKF.

  9. The Pathophysiology of Combined Injury and Trauma: Proceedings of the International Symposium (1st) Held at the Uniformed Services University of the Health Sciences, Bethesda, Maryland on 27-29 April 1983

    DTIC Science & Technology

    1983-04-29

    311 antibacterial activity alone, but when used in conjunction with a beta-lactam . antibiotic, they are effective in treating infections caused by...1979) Antibacterial activity of bladder surface mucin duplicated by exogenous glycosarrino- glycan (heparin). Infect. Imm. 24:552-557. 34. Sugarman...436 Thyroid Function ................................................ 443 Catabolic Activity

  10. Military Standard: Military Training Programs

    DTIC Science & Technology

    1990-12-05

    Commander, Naval Sea Systems Command, SEA 55Z3, Department of the Navy, Washington, DC 20362-5101 by using the self -addressed Standardization Document...information to the trainee. 3.63 InMtructional media materials (IMM). Instructional materials that present a body of information and are largely self ...computer power and W storage in equipmnent which is self -contained (for example, videodisc player) - not necessarily part of a complt com utr system. For

  11. Surviving the Storm : Expanding Public Health’s Capabilities in Response to the Increasing Threats Posed by Novel Viruses

    DTIC Science & Technology

    2013-12-01

    Therapy Citations Uses Pros Cons Medical Efficacy Mono-Therapy: Class: Statins Atorvastatin (Lipitor) Rosuvastatin (Crestor) Simvastatin...Considerations Citations Good Choice for a State Stockpile? Yes or No Mono-Therapy: Statins Atorvastatin (Lipitor) ↓ Virus Rep: No ↓ Imm...www.goodrx.com/lipitor/price#/?distance=13&filter-location=&coords=&label= atorvastatin &formtablet &strength=40mg&quantity=custom&qty-custom=18450&language

  12. Refinements in the Combined Adjustment of Satellite Altimetry and Gravity Anomaly Data

    DTIC Science & Technology

    1977-07-12

    observations. - 151 UM Uj&liiäUäBä&immeä*,*^^ ^«^V^.^.v.rf ffM ’* ^.,/-=:jfcfe^te:^*ä*di 9.2 Spherical Harmonic Resolution The number of spherical harmonic...depend on the point mass parameters, 185 —--■ ^* p^^!?8!^ Bpp ^pg(p|SP!|p|g| we can write dr 1 dN 1 and use (9.44a). The presence of the state

  13. Reconfigurable C2 DDP System

    DTIC Science & Technology

    1988-07-01

    should be easily provided if the service requests can be handled simultaneously. 2.3.2 Internal Structure of Subsystems The internal structure of...Public Affairs Division (PA) and is releasable to the National Technical Information Service (NTIS). At NTIS it will be releasable to the general public...nmua n m n Imm I DISCLAIMER NOTICE THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO

  14. Searching for ancient balanced polymorphisms shared between Neanderthals and Modern Humans

    PubMed Central

    Viscardi, Lucas Henriques; Paixão-Côrtes, Vanessa Rodrigues; Comas, David; Salzano, Francisco Mauro; Rovaris, Diego; Bau, Claiton Dotto; Amorim, Carlos Eduardo G.; Bortolini, Maria Cátira

    2018-01-01

    Abstract Hominin evolution is characterized by adaptive solutions often rooted in behavioral and cognitive changes. If balancing selection had an important and long-lasting impact on the evolution of these traits, it can be hypothesized that genes associated with them should carry an excess of shared polymorphisms (trans- SNPs) across recent Homo species. In this study, we investigate the role of balancing selection in human evolution using available exomes from modern (Homo sapiens) and archaic humans (H. neanderthalensis and Denisovan) for an excess of trans-SNP in two gene sets: one associated with the immune system (IMMS) and another one with behavioral system (BEHS). We identified a significant excess of trans-SNPs in IMMS (N=547), of which six of these located within genes previously associated with schizophrenia. No excess of trans-SNPs was found in BEHS, but five genes in this system harbor potential signals for balancing selection and are associated with psychiatric or neurodevelopmental disorders. Our approach evidenced recent Homo trans-SNPs that have been previously implicated in psychiatric diseases such as schizophrenia, suggesting that a genetic repertoire common to the immune and behavioral systems could have been maintained by balancing selection starting before the split between archaic and modern humans. PMID:29658973

  15. Adsorbed States of phosphonate derivatives of N-heterocyclic aromatic compounds, imidazole, thiazole, and pyridine on colloidal silver: comparison with a silver electrode.

    PubMed

    Podstawka, Edyta; Olszewski, Tomasz K; Boduszek, Bogdan; Proniewicz, Leonard M

    2009-09-03

    Here, we report a systematic surface-enhanced Raman spectroscopy (SERS) study of the structures of phosphonate derivatives of the N-heterocyclic aromatic compounds imidazole (ImMeP ([hydroxy(1H-imidazol-5-yl)methyl]phosphonic acid) and (ImMe)(2)P (bis[hydroxy-(1H-imidazol-4-yl)-methyl]phosphinic acid)), thiazole (BAThMeP (butylaminothiazol-2-yl-methyl)phosphonic acid) and BzAThMeP (benzylaminothiazol-2-yl-methyl)phosphonic acid)), and pyridine ((PyMe)(2)P (bis[(hydroxypyridin-3-yl-methyl)]phosphinic acid)) adsorbed on nanometer-sized colloidal particles. We compared these structures to those on a roughened silver electrode surface to determine the relationship between the adsorption strength and the geometry. For example, we showed that all of these biomolecules interact with the colloidal surface through aromatic rings. However, for BzAThMeP, a preferential interaction between the benzene ring and the colloidal silver surface is observed more so than that between the thiazole ring and this substrate. The PC(OH)C fragment does not take part in the adsorption process, and the phosphonate moiety of ImMeP and (ImMe)(2)P, being removed from the surface, only assists in this process.

  16. Structural Evidence for the Tetrameric Assembly of Chemokine CCL11 and the Glycosaminoglycan Arixtra™

    PubMed Central

    Dykstra, Andrew B.; Sweeney, Matt D.; Leary, Julie A.

    2013-01-01

    Understanding chemokine interactions with glycosaminoglycans (GAG) is critical as these interactions have been linked to a number of inflammatory medical conditions, such as arthritis and asthma. To better characterize in vivo protein function, comprehensive knowledge of multimeric species, formed by chemokines under native conditions, is necessary. Herein is the first report of a tetrameric assembly of the human chemokine CCL11, which was shown bound to the GAG Arixtra™. Isothermal titration calorimetry data indicated that CCL11 interacts with Arixtra, and ion mobility mass spectrometry (IM-MS) was used to identify ions corresponding to the CCL11 tetrameric species bound to Arixtra. Collisional cross sections (CCS) of the CCL11 tetramer-Arixtra noncovalent complex were compared to theoretical CCS values calculated using a preliminary structure of the complex deduced using X-ray crystallography. Experimental CCS values were in agreement with theoretical values, strengthening the IM-MS evidence for the formation of the noncovalent complex. Tandem mass spectrometry data of the complex indicated that the tetramer-GAG complex dissociates into a monomer and a trimer-GAG species, suggesting that two CC-like dimers are bridged by Arixtra. As development of chemokine inhibitors is of utmost importance to treatment of medical inflammatory conditions, these results provide vital insights into chemokine-GAG interactions. PMID:24970196

  17. Structural Evidence for the Tetrameric Assembly of Chemokine CCL11 and the Glycosaminoglycan Arixtra™.

    PubMed

    Dykstra, Andrew B; Sweeney, Matt D; Leary, Julie A

    2013-11-06

    Understanding chemokine interactions with glycosaminoglycans (GAG) is critical as these interactions have been linked to a number of inflammatory medical conditions, such as arthritis and asthma. To better characterize in vivo protein function, comprehensive knowledge of multimeric species, formed by chemokines under native conditions, is necessary. Herein is the first report of a tetrameric assembly of the human chemokine CCL11, which was shown bound to the GAG Arixtra™. Isothermal titration calorimetry data indicated that CCL11 interacts with Arixtra, and ion mobility mass spectrometry (IM-MS) was used to identify ions corresponding to the CCL11 tetrameric species bound to Arixtra. Collisional cross sections (CCS) of the CCL11 tetramer-Arixtra noncovalent complex were compared to theoretical CCS values calculated using a preliminary structure of the complex deduced using X-ray crystallography. Experimental CCS values were in agreement with theoretical values, strengthening the IM-MS evidence for the formation of the noncovalent complex. Tandem mass spectrometry data of the complex indicated that the tetramer-GAG complex dissociates into a monomer and a trimer-GAG species, suggesting that two CC-like dimers are bridged by Arixtra. As development of chemokine inhibitors is of utmost importance to treatment of medical inflammatory conditions, these results provide vital insights into chemokine-GAG interactions.

  18. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics[S

    PubMed Central

    Hines, Kelly M.; Herron, Josi; Xu, Libin

    2017-01-01

    Ion mobility-mass spectrometry (IM-MS) has proven to be a highly informative technique for the characterization of lipids from cells and tissues. We report the combination of hydrophilic-interaction liquid chromatography (HILIC) with traveling-wave IM-MS (TWIM-MS) for comprehensive lipidomics analysis. Main lipid categories such as glycerolipids, sphingolipids, and glycerophospholipids are separated on the basis of their lipid backbones in the IM dimension, whereas subclasses of each category are mostly separated on the basis of their headgroups in the HILIC dimension, demonstrating the orthogonality of HILIC and IM separations. Using our previously established lipid calibrants for collision cross-section (CCS) measurements in TWIM, we measured over 250 CCS values covering 12 lipid classes in positive and negative modes. The coverage of the HILIC-IM-MS method is demonstrated in the analysis of Neuro2a neuroblastoma cells exposed to benzalkonium chlorides (BACs) with C10 or C16 alkyl chains, which we have previously shown to affect gene expression related to cholesterol and lipid homeostasis. We found that BAC exposure resulted in significant changes to several lipid classes, including glycerides, sphingomyelins, phosphatidylcholines, and phosphatidylethanolamines. Our results indicate that BAC exposure modifies lipid homeostasis in a manner that is dependent upon the length of the BAC alkyl chain. PMID:28167702

  19. Smart Grid Interoperability Maturity Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widergren, Steven E.; Levinson, Alex; Mater, J.

    2010-04-28

    The integration of automation associated with electricity resources (including transmission and distribution automation and demand-side resources operated by end-users) is key to supporting greater efficiencies and incorporating variable renewable resources and electric vehicles into the power system. The integration problems faced by this community are analogous to those faced in the health industry, emergency services, and other complex communities with many stakeholders. To highlight this issue and encourage communication and the development of a smart grid interoperability community, the GridWise Architecture Council (GWAC) created an Interoperability Context-Setting Framework. This "conceptual model" has been helpful to explain the importance of organizationalmore » alignment in addition to technical and informational interface specifications for "smart grid" devices and systems. As a next step to building a community sensitive to interoperability, the GWAC is investigating an interoperability maturity model (IMM) based on work done by others to address similar circumstances. The objective is to create a tool or set of tools that encourages a culture of interoperability in this emerging community. The tools would measure status and progress, analyze gaps, and prioritize efforts to improve the situation.« less

  20. Genome-wide expression profiling of five mouse models identifies similarities and differences with human psoriasis.

    PubMed

    Swindell, William R; Johnston, Andrew; Carbajal, Steve; Han, Gangwen; Wohn, Christian; Lu, Jun; Xing, Xianying; Nair, Rajan P; Voorhees, John J; Elder, James T; Wang, Xiao-Jing; Sano, Shigetoshi; Prens, Errol P; DiGiovanni, John; Pittelkow, Mark R; Ward, Nicole L; Gudjonsson, Johann E

    2011-04-04

    Development of a suitable mouse model would facilitate the investigation of pathomechanisms underlying human psoriasis and would also assist in development of therapeutic treatments. However, while many psoriasis mouse models have been proposed, no single model recapitulates all features of the human disease, and standardized validation criteria for psoriasis mouse models have not been widely applied. In this study, whole-genome transcriptional profiling is used to compare gene expression patterns manifested by human psoriatic skin lesions with those that occur in five psoriasis mouse models (K5-Tie2, imiquimod, K14-AREG, K5-Stat3C and K5-TGFbeta1). While the cutaneous gene expression profiles associated with each mouse phenotype exhibited statistically significant similarity to the expression profile of psoriasis in humans, each model displayed distinctive sets of similarities and differences in comparison to human psoriasis. For all five models, correspondence to the human disease was strong with respect to genes involved in epidermal development and keratinization. Immune and inflammation-associated gene expression, in contrast, was more variable between models as compared to the human disease. These findings support the value of all five models as research tools, each with identifiable areas of convergence to and divergence from the human disease. Additionally, the approach used in this paper provides an objective and quantitative method for evaluation of proposed mouse models of psoriasis, which can be strategically applied in future studies to score strengths of mouse phenotypes relative to specific aspects of human psoriasis.

  1. Multimeric complexes among ankyrin-repeat and SOCS-box protein 9 (ASB9), ElonginBC, and Cullin 5: insights into the structure and assembly of ECS-type Cullin-RING E3 ubiquitin ligases.

    PubMed

    Thomas, Jemima C; Matak-Vinkovic, Dijana; Van Molle, Inge; Ciulli, Alessio

    2013-08-06

    Proteins of the ankyrin-repeat and SOCS-box (ASB) family act as the substrate-recognition subunits of ECS-type (ElonginBC-Cullin-SOCS-box) Cullin RING E3 ubiquitin ligase (CRL) complexes that catalyze the specific polyubiquitination of cellular proteins to target them for degradation by the proteasome. Therefore, ASB multimeric complexes are involved in numerous cell processes and pathways; however, their interactions, assembly, and biological roles remain poorly understood. To enhance our understanding of ASB CRL systems, we investigated the structure, affinity, and assembly of the quaternary multisubunit complex formed by ASB9, Elongin B, Elongin C (EloBC), and Cullin 5. Here, we describe the application of several biophysical techniques including differential scanning fluorimetry, isothermal titration calorimetry (ITC), nanoelectrospray ionization, and ion-mobility mass spectrometry (IM-MS) to provide structural and thermodynamic information for a quaternary ASB CRL complex. We find that ASB9 is unstable alone but forms a stable ternary complex with EloBC that binds with high affinity to the Cullin 5 N-terminal domain (Cul5NTD) but not to Cul2NTD. The structure of the monomeric ASB9-EloBC-Cul5NTD quaternary complex is revealed by molecular modeling and is consistent with IM-MS and temperature-dependent ITC data. This is the first experimental study to validate structural information for the assembly of the quaternary N-terminal region of an ASB CRL complex. The results suggest that ASB E3 ligase complexes function and assemble in an analogous manner to that of other CRL systems and provide a platform for further molecular investigation of this important protein family. The data reported here will also be of use for the future development of chemical probes to examine the biological function and modulation of other ECS-type CRL systems.

  2. Enterprise Reference Library

    NASA Technical Reports Server (NTRS)

    Bickham, Grandin; Saile, Lynn; Havelka, Jacque; Fitts, Mary

    2011-01-01

    Introduction: Johnson Space Center (JSC) offers two extensive libraries that contain journals, research literature and electronic resources. Searching capabilities are available to those individuals residing onsite or through a librarian s search. Many individuals have rich collections of references, but no mechanisms to share reference libraries across researchers, projects, or directorates exist. Likewise, information regarding which references are provided to which individuals is not available, resulting in duplicate requests, redundant labor costs and associated copying fees. In addition, this tends to limit collaboration between colleagues and promotes the establishment of individual, unshared silos of information The Integrated Medical Model (IMM) team has utilized a centralized reference management tool during the development, test, and operational phases of this project. The Enterprise Reference Library project expands the capabilities developed for IMM to address the above issues and enhance collaboration across JSC. Method: After significant market analysis for a multi-user reference management tool, no available commercial tool was found to meet this need, so a software program was built around a commercial tool, Reference Manager 12 by The Thomson Corporation. A use case approach guided the requirements development phase. The premise of the design is that individuals use their own reference management software and export to SharePoint when their library is incorporated into the Enterprise Reference Library. This results in a searchable user-specific library application. An accompanying share folder will warehouse the electronic full-text articles, which allows the global user community to access full -text articles. Discussion: An enterprise reference library solution can provide a multidisciplinary collection of full text articles. This approach improves efficiency in obtaining and storing reference material while greatly reducing labor, purchasing and duplication costs. Most importantly, increasing collaboration across research groups provides unprecedented access to information relevant to NASA s mission. Conclusion: This project is an expansion and cost-effective leveraging of the existing JSC centralized library. Adding key word and author search capabilities and an alert function for notifications about new articles, based on users profiles, represent examples of future enhancements.

  3. Optimizing mouse models of neurodegenerative disorders: are therapeutics in sight?

    PubMed

    Lutz, Cathleen M; Osborne, Melissa A

    2013-01-01

    The genomic and biologic conservation between mice and humans, along with our increasing ability to manipulate the mouse genome, places the mouse as a premier model for deciphering disease mechanisms and testing potential new therapies. Despite these advantages, mouse models of neurodegenerative disease are sometimes difficult to generate and can present challenges that must be carefully addressed when used for preclinical studies. For those models that do exist, the standardization and optimization of the models is a critical step in ensuring success in both basic research and preclinical use. This review looks back on the history of model development for neurodegenerative diseases and highlights the key strategies that have been learned in order to improve the design, development and use of mouse models in the study of neurodegenerative disease.

  4. Applications and Limitations of Mouse Models for Understanding Human Atherosclerosis

    PubMed Central

    von Scheidt, Moritz; Zhao, Yuqi; Kurt, Zeyneb; Pan, Calvin; Zeng, Lingyao; Yang, Xia; Schunkert, Heribert; Lusis, Aldons J.

    2017-01-01

    Most of the biological understanding of mechanisms underlying coronary artery disease (CAD) derives from studies of mouse models. The identification of multiple CAD loci and strong candidate genes in large human genome-wide association studies (GWAS) presented an opportunity to examine the relevance of mouse models for the human disease. We comprehensively reviewed the mouse literature, including 827 literature-derived genes, and compared it to human data. First, we observed striking concordance of risk factors for atherosclerosis in mice and humans. Second, there was highly significant overlap of mouse genes with human genes identified by GWAS. In particular, of the 46 genes with strong association signals in CAD-GWAS that were studied in mouse models all but one exhibited consistent effects on atherosclerosis-related phenotypes. Third, we compared 178 CAD-associated pathways derived from human GWAS with 263 from mouse studies and observed that over 50% were consistent between both species. PMID:27916529

  5. Genetically engineered mouse models for studying inflammatory bowel disease.

    PubMed

    Mizoguchi, Atsushi; Takeuchi, Takahito; Himuro, Hidetomo; Okada, Toshiyuki; Mizoguchi, Emiko

    2016-01-01

    Inflammatory bowel disease (IBD) is a chronic intestinal inflammatory condition that is mediated by very complex mechanisms controlled by genetic, immune, and environmental factors. More than 74 kinds of genetically engineered mouse strains have been established since 1993 for studying IBD. Although mouse models cannot fully reflect human IBD, they have provided significant contributions for not only understanding the mechanism, but also developing new therapeutic means for IBD. Indeed, 20 kinds of genetically engineered mouse models carry the susceptibility genes identified in human IBD, and the functions of some other IBD susceptibility genes have also been dissected out using mouse models. Cutting-edge technologies such as cell-specific and inducible knockout systems, which were recently employed to mouse IBD models, have further enhanced the ability of investigators to provide important and unexpected rationales for developing new therapeutic strategies for IBD. In this review article, we briefly introduce 74 kinds of genetically engineered mouse models that spontaneously develop intestinal inflammation. Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  6. Mouse Tumor Biology (MTB): a database of mouse models for human cancer.

    PubMed

    Bult, Carol J; Krupke, Debra M; Begley, Dale A; Richardson, Joel E; Neuhauser, Steven B; Sundberg, John P; Eppig, Janan T

    2015-01-01

    The Mouse Tumor Biology (MTB; http://tumor.informatics.jax.org) database is a unique online compendium of mouse models for human cancer. MTB provides online access to expertly curated information on diverse mouse models for human cancer and interfaces for searching and visualizing data associated with these models. The information in MTB is designed to facilitate the selection of strains for cancer research and is a platform for mining data on tumor development and patterns of metastases. MTB curators acquire data through manual curation of peer-reviewed scientific literature and from direct submissions by researchers. Data in MTB are also obtained from other bioinformatics resources including PathBase, the Gene Expression Omnibus and ArrayExpress. Recent enhancements to MTB improve the association between mouse models and human genes commonly mutated in a variety of cancers as identified in large-scale cancer genomics studies, provide new interfaces for exploring regions of the mouse genome associated with cancer phenotypes and incorporate data and information related to Patient-Derived Xenograft models of human cancers. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. HRP's Healthcare Spin-Offs Through Computational Modeling and Simulation Practice Methodologies

    NASA Technical Reports Server (NTRS)

    Mulugeta, Lealem; Walton, Marlei; Nelson, Emily; Peng, Grace; Morrison, Tina; Erdemir, Ahmet; Myers, Jerry

    2014-01-01

    Spaceflight missions expose astronauts to novel operational and environmental conditions that pose health risks that are currently not well understood, and perhaps unanticipated. Furthermore, given the limited number of humans that have flown in long duration missions and beyond low Earth-orbit, the amount of research and clinical data necessary to predict and mitigate these health and performance risks are limited. Consequently, NASA's Human Research Program (HRP) conducts research and develops advanced methods and tools to predict, assess, and mitigate potential hazards to the health of astronauts. In this light, NASA has explored the possibility of leveraging computational modeling since the 1970s as a means to elucidate the physiologic risks of spaceflight and develop countermeasures. Since that time, substantial progress has been realized in this arena through a number of HRP funded activates such as the Digital Astronaut Project (DAP) and the Integrated Medical Model (IMM). Much of this success can be attributed to HRP's endeavor to establish rigorous verification, validation, and credibility (VV&C) processes that ensure computational models and simulations (M&S) are sufficiently credible to address issues within their intended scope. This presentation summarizes HRP's activities in credibility of modeling and simulation, in particular through its outreach to the community of modeling and simulation practitioners. METHODS: The HRP requires all M&S that can have moderate to high impact on crew health or mission success must be vetted in accordance to NASA Standard for Models and Simulations, NASA-STD-7009 (7009) [5]. As this standard mostly focuses on engineering systems, the IMM and DAP have invested substantial efforts to adapt the processes established in this standard for their application to biological M&S, which is more prevalent in human health and performance (HHP) and space biomedical research and operations [6,7]. These methods have also generated substantial interest by the broader medical community though institutions like the National Institutes of Health (NIH) and the Food and Drug Administration (FDA) to develop similar standards and guidelines applicable to the larger medical operations and research community. DISCUSSION: Similar to NASA, many leading government agencies, health institutions and medical product developers around the world are recognizing the potential of computational M&S to support clinical research and decision making. In this light, substantial investments are being made in computational medicine and notable discoveries are being realized [8]. However, there is a lack of broadly applicable practice guidance for the development and implementation of M&S in clinical care and research in a manner that instills confidence among medical practitioners and biological researchers [9,10]. In this presentation, we will give an overview on how HRP is working with the NIH's Interagency Modeling and Analysis Group (IMAG), the FDA and the American Society of Mechanical Engineers (ASME) to leverage NASA's biomedical VV&C processes to establish a new regulatory standard for Verification and Validation in Computational Modeling of Medical Devices, and Guidelines for Credible Practice of Computational Modeling and Simulation in Healthcare.

  8. The latest animal models of ovarian cancer for novel drug discovery.

    PubMed

    Magnotti, Elizabeth; Marasco, Wayne A

    2018-03-01

    Epithelial ovarian cancer is a heterogeneous disease classified into five subtypes, each with a different molecular profile. Most cases of ovarian cancer are diagnosed after metastasis of the primary tumor and are resistant to traditional platinum-based chemotherapeutics. Mouse models of ovarian cancer have been utilized to discern ovarian cancer tumorigenesis and the tumor's response to therapeutics. Areas covered: The authors provide a review of mouse models currently employed to understand ovarian cancer. This article focuses on advances in the development of orthotopic and patient-derived tumor xenograft (PDX) mouse models of ovarian cancer and discusses current humanized mouse models of ovarian cancer. Expert opinion: The authors suggest that humanized mouse models of ovarian cancer will provide new insight into the role of the human immune system in combating and augmenting ovarian cancer and aid in the development of novel therapeutics. Development of humanized mouse models will take advantage of the NSG and NSG-SGM3 strains of mice as well as new strains that are actively being derived.

  9. How Genetically Engineered Mouse Tumor Models Provide Insights Into Human Cancers

    PubMed Central

    Politi, Katerina; Pao, William

    2011-01-01

    Genetically engineered mouse models (GEMMs) of human cancer were first created nearly 30 years ago. These early transgenic models demonstrated that mouse cells could be transformed in vivo by expression of an oncogene. A new field emerged, dedicated to generating and using mouse models of human cancer to address a wide variety of questions in cancer biology. The aim of this review is to highlight the contributions of mouse models to the diagnosis and treatment of human cancers. Because of the breadth of the topic, we have selected representative examples of how GEMMs are clinically relevant rather than provided an exhaustive list of experiments. Today, as detailed here, sophisticated mouse models are being created to study many aspects of cancer biology, including but not limited to mechanisms of sensitivity and resistance to drug treatment, oncogene cooperation, early detection, and metastasis. Alternatives to GEMMs, such as chemically induced or spontaneous tumor models, are not discussed in this review. PMID:21263096

  10. Integrating model behavior, optimization, and sensitivity/uncertainty analysis: overview and application of the MOUSE software toolbox

    USDA-ARS?s Scientific Manuscript database

    This paper provides an overview of the Model Optimization, Uncertainty, and SEnsitivity Analysis (MOUSE) software application, an open-source, Java-based toolbox of visual and numerical analysis components for the evaluation of environmental models. MOUSE is based on the OPTAS model calibration syst...

  11. Disrupting the male germ line to find infertility and contraception targets.

    PubMed

    Archambeault, Denise R; Matzuk, Martin M

    2014-05-01

    Genetically-manipulated mouse models have become indispensible for broadening our understanding of genes and pathways related to male germ cell development. Until suitable in vitro systems for studying spermatogenesis are perfected, in vivo models will remain the gold standard for inquiry into testicular function. Here, we discuss exciting advances that are allowing researchers faster, easier, and more customizable access to their mouse models of interest. Specifically, the trans-NIH Knockout Mouse Project (KOMP) is working to generate knockout mouse models of every gene in the mouse genome. The related Knockout Mouse Phenotyping Program (KOMP2) is performing systematic phenotypic analysis of this genome-wide collection of knockout mice, including fertility screening. Together, these programs will not only uncover new genes involved in male germ cell development but also provide the research community with the mouse models necessary for further investigations. In addition to KOMP/KOMP2, another promising development in the field of mouse models is the advent of CRISPR (clustered regularly interspaced short palindromic repeat)-Cas technology. Utilizing 20 nucleotide guide sequences, CRISPR/Cas has the potential to introduce sequence-specific insertions, deletions, and point mutations to produce null, conditional, activated, or reporter-tagged alleles. CRISPR/Cas can also successfully target multiple genes in a single experimental step, forgoing the multiple generations of breeding traditionally required to produce mouse models with deletions, insertions, or mutations in multiple genes. In addition, CRISPR/Cas can be used to create mouse models carrying variants identical to those identified in infertile human patients, providing the opportunity to explore the effects of such mutations in an in vivo system. Both the KOMP/KOMP2 projects and the CRISPR/Cas system provide powerful, accessible genetic approaches to the study of male germ cell development in the mouse. A more complete understanding of male germ cell biology is critical for the identification of novel targets for potential non-hormonal contraceptive intervention. Copyright © 2014. Published by Elsevier Masson SAS.

  12. Genome-Wide Expression Profiling of Five Mouse Models Identifies Similarities and Differences with Human Psoriasis

    PubMed Central

    Swindell, William R.; Johnston, Andrew; Carbajal, Steve; Han, Gangwen; Wohn, Christian; Lu, Jun; Xing, Xianying; Nair, Rajan P.; Voorhees, John J.; Elder, James T.; Wang, Xiao-Jing; Sano, Shigetoshi; Prens, Errol P.; DiGiovanni, John; Pittelkow, Mark R.; Ward, Nicole L.; Gudjonsson, Johann E.

    2011-01-01

    Development of a suitable mouse model would facilitate the investigation of pathomechanisms underlying human psoriasis and would also assist in development of therapeutic treatments. However, while many psoriasis mouse models have been proposed, no single model recapitulates all features of the human disease, and standardized validation criteria for psoriasis mouse models have not been widely applied. In this study, whole-genome transcriptional profiling is used to compare gene expression patterns manifested by human psoriatic skin lesions with those that occur in five psoriasis mouse models (K5-Tie2, imiquimod, K14-AREG, K5-Stat3C and K5-TGFbeta1). While the cutaneous gene expression profiles associated with each mouse phenotype exhibited statistically significant similarity to the expression profile of psoriasis in humans, each model displayed distinctive sets of similarities and differences in comparison to human psoriasis. For all five models, correspondence to the human disease was strong with respect to genes involved in epidermal development and keratinization. Immune and inflammation-associated gene expression, in contrast, was more variable between models as compared to the human disease. These findings support the value of all five models as research tools, each with identifiable areas of convergence to and divergence from the human disease. Additionally, the approach used in this paper provides an objective and quantitative method for evaluation of proposed mouse models of psoriasis, which can be strategically applied in future studies to score strengths of mouse phenotypes relative to specific aspects of human psoriasis. PMID:21483750

  13. Rapid Pipeline Repair Technology for War Damage Recovery

    DTIC Science & Technology

    1993-06-01

    Design Manual 22, NAVFAC DM-22, Department of the Navy, Naval Facilities Engineering Command, Alexandria VA, August 1982. 2. U.S. Air Force Weapons...Inflatable Seal Over Replacement section ’"MOM Figure 10. Inflating the Seal With Manual Pump 19 Figure 11. Completed Inflatable Seal Coupler Repair 20...cumbersome repair manuals and stacks of blueprints normally used to make repairs. Since the probability of an expert being on hand imme- diately after an

  14. EMERGING INFECTIOUS DISEASES. Actions Needed to Address the Challenges of Responding to Zika Virus Disease Outbreaks

    DTIC Science & Technology

    2017-05-01

    Department of Health and Human Services 81 Appendix IV Zika Virus Case Definitions for National Notifiable Disease Reporting 86 Appendix V...Insecticide, Fungicide, and Rodenticide Act HHS Department of Health and Human Services IgG immunoglobulin G IgM immunoglobulin M IMM...Agency (EPA), and Department of Health and Human Services (HHS) including CDC, FDA and National Institutes of Health (NIH). We also convened, with

  15. JPRS Report, Science & Technology, USSR: Science & Technology Policy

    DTIC Science & Technology

    1990-10-15

    beings. They have developed various technologies of the transfer of genes from some plants to others. As a result so-called transgenic strains of...and in our country by means of the transgenic introduction of additional growth hormones giant carp and other fish have been obtained. In the imme...diate future transgenic animals can become producers of milk and wool of special quality and have resistance to diseases. PRAVDA: Is it not

  16. Adaptable Structural Logic System Synthesis with Bistable Snap-Through Elements

    DTIC Science & Technology

    2012-12-01

    It is well known that an unsymmetrical laminates exhibit out-of-plane displacements at room temperature even if cured flat . The unsymmetrical...various input frequencies and the loss factor of the system is evaluated. Figure VI-7: Three-cell test bed 59 \\ imm) W TELEDYNE SCIENTIFIC...design. 4- 4 Figure VI-9: Panoramic view of 10 cell test bed 60 w TELEDYNE SCIENTIFIC & IMAGING, LLC ATeledyne Technologies Company Table VI-2

  17. Study of Modern Instrumentation and Methods for Astronomic Positioning in the Field

    DTIC Science & Technology

    1987-03-01

    CALL AMAT(A.Y, UKK, KALPHA, DELTA) DO 40 kl.,2*K WR ITE( 3.300 )( A( I.M),.M=1,3) 300 FORMAT M, 3F18.12) 40 CONTINUE CALL BMAT (BY, UKKK, ALPHA, DELTA...1 20 CONTINUE RETURN END C C C SUBROUTINE BMAT (B, YU, KK, KALPHA, DELTA) C BMAT constructs the matrix 8 DIMENSION B(2*KK,3*KK)LY(KK,3),U(3),ALPHA(KK

  18. [Effect of topical application of a recombinant adenovirus carrying promyelocytic leukemia gene in a psoriasis-like mouse model].

    PubMed

    Wang, Qiongyu; Zhang, Aijun; Ma, Huiqun; Wang, Shijie; Ma, Yunyun; Zou, Xingwei; Li, Ruilian

    2013-03-01

    To investigate the effects of topical treatment with adenovirus-mediated promyelocytic leukemia gene (PML) gene in a psoriasis-like mouse model. The effect of adenovirus-mediated PML gene on the granular layer of mouse tail scale epidermis and epithelial mitosis were observed on longitudinal histological sections prepared from the tail skin and vaginal epithelium of the mice. Adenovirus-mediated PML gene significantly inhibited mitosis of mouse vaginal epithelial cells and promoted the formation of granular layer in mouse tail scale epidermis. The therapeutic effect of PML gene in the psoriasis-like mouse model may be associated with increased granular cells and suppressed epidemic cell proliferation.

  19. Generation of transgenic mouse model using PTTG as an oncogene.

    PubMed

    Kakar, Sham S; Kakar, Cohin

    2015-01-01

    The close physiological similarity between the mouse and human has provided tools to understanding the biological function of particular genes in vivo by introduction or deletion of a gene of interest. Using a mouse as a model has provided a wealth of resources, knowledge, and technology, helping scientists to understand the biological functions, translocation, trafficking, and interaction of a candidate gene with other intracellular molecules, transcriptional regulation, posttranslational modification, and discovery of novel signaling pathways for a particular gene. Most importantly, the generation of the mouse model for a specific human disease has provided a powerful tool to understand the etiology of a disease and discovery of novel therapeutics. This chapter describes in detail the step-by-step generation of the transgenic mouse model, which can be helpful in guiding new investigators in developing successful models. For practical purposes, we will describe the generation of a mouse model using pituitary tumor transforming gene (PTTG) as the candidate gene of interest.

  20. What Is the Predictive Value of Animal Models for Vaccine Efficacy in Humans? Reevaluating the Potential of Mouse Models for the Human Immune System.

    PubMed

    Jameson, Stephen C; Masopust, David

    2018-04-02

    Much of what we understand about immunology, including the response to vaccines, come from studies in mice because they provide many practical advantages compared with research in higher mammals and humans. Nevertheless, modalities for preventing or treating disease do not always translate from mouse to humans, which has led to increasing scrutiny of the continued merits of mouse research. Here, we summarize the pros and cons of current laboratory mouse models for immunology research and discuss whether overreliance on nonphysiological, ultra-hygienic animal husbandry approaches has limited the ultimate translation potential of mouse-derived data to humans. Alternative approaches are discussed that may extend the use of the mouse model for preclinical studies. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.

  1. Mouse Models in Bone Marrow Transplantation and Adoptive Cellular Therapy

    PubMed Central

    Arber, Caroline; Brenner, Malcolm K.; Reddy, Pavan

    2014-01-01

    Mouse models of transplantation have been indispensable to the development of bone marrow transplantation (BMT). Their role in the generation of basic science knowledge is invaluable and is subject to discussion below. However, this article focuses on the direct role and relevance of mouse models towards the clinical development and advances in BMT and adoptive T-cell therapy for human diseases. The authors aim to present a thoughtful perspective on the pros and cons of mouse models while noting that despite imperfections these models are obligatory for the development of science-based medicine. PMID:24216170

  2. Centralized mouse repositories.

    PubMed

    Donahue, Leah Rae; Hrabe de Angelis, Martin; Hagn, Michael; Franklin, Craig; Lloyd, K C Kent; Magnuson, Terry; McKerlie, Colin; Nakagata, Naomi; Obata, Yuichi; Read, Stuart; Wurst, Wolfgang; Hörlein, Andreas; Davisson, Muriel T

    2012-10-01

    Because the mouse is used so widely for biomedical research and the number of mouse models being generated is increasing rapidly, centralized repositories are essential if the valuable mouse strains and models that have been developed are to be securely preserved and fully exploited. Ensuring the ongoing availability of these mouse strains preserves the investment made in creating and characterizing them and creates a global resource of enormous value. The establishment of centralized mouse repositories around the world for distributing and archiving these resources has provided critical access to and preservation of these strains. This article describes the common and specialized activities provided by major mouse repositories around the world.

  3. Centralized Mouse Repositories

    PubMed Central

    Donahue, Leah Rae; de Angelis, Martin Hrabe; Hagn, Michael; Franklin, Craig; Lloyd, K. C. Kent; Magnuson, Terry; McKerlie, Colin; Nakagata, Naomi; Obata, Yuichi; Read, Stuart; Wurst, Wolfgang; Hörlein, Andreas; Davisson, Muriel T.

    2013-01-01

    Because the mouse is used so widely for biomedical research and the number of mouse models being generated is increasing rapidly, centralized repositories are essential if the valuable mouse strains and models that have been developed are to be securely preserved and fully exploited. Ensuring the ongoing availability of these mouse strains preserves the investment made in creating and characterizing them and creates a global resource of enormous value. The establishment of centralized mouse repositories around the world for distributing and archiving these resources has provided critical access to and preservation of these strains. This article describes the common and specialized activities provided by major mouse repositories around the world. PMID:22945696

  4. Molecular Indicators of Stress-Induced Neuroinflammation in a Mouse Model Simulating Features of Post-Traumatic Stress Disorder (Open Access)

    DTIC Science & Technology

    2017-05-23

    OPEN ORIGINAL ARTICLE Molecular indicators of stress-induced neuroinflammation in a mouse model simulating features of post -traumatic stress disorder... post -traumatic stress disorder (PTSD). The model involved exposure of an intruder (male C57BL/6) mouse to a resident aggressor (male SJL) mouse for 5...revealed that neurogenesis and synaptic plasticity pathways were activated during the early responses but were inhibited after the later post -trauma

  5. Genetic characterization and improved genotyping of the dysferlin-deficient mouse strain Dysf (tm1Kcam).

    PubMed

    Wiktorowicz, Tatiana; Kinter, Jochen; Kobuke, Kazuhiro; Campbell, Kevin P; Sinnreich, Michael

    2015-01-01

    Mouse models of dysferlinopathies are valuable tools with which to investigate the pathomechanisms underlying these diseases and to test novel therapeutic strategies. One such mouse model is the Dysf (tm1Kcam) strain, which was generated using a targeting vector to replace a 12-kb region of the dysferlin gene and which features a progressive muscular dystrophy. A prerequisite for successful animal studies using genetic mouse models is an accurate genotyping protocol. Unfortunately, the lack of robustness of currently available genotyping protocols for the Dysf (tm1Kcam) mouse has prevented efficient colony management. Initial attempts to improve the genotyping protocol based on the published genomic structure failed. These difficulties led us to analyze the targeted locus of the dysferlin gene of the Dysf (tm1Kcam) mouse in greater detail. In this study we resequenced and analyzed the targeted locus of the Dysf (tm1Kcam) mouse and developed a novel PCR protocol for genotyping. We found that instead of a deletion, the dysferlin locus in the Dysf (tm1Kcam) mouse carries a targeted insertion. This genetic characterization enabled us to establish a reliable method for genotyping of the Dysf (tm1Kcam) mouse, and thus has made efficient colony management possible. Our work will make the Dysf (tm1Kcam) mouse model more attractive for animal studies of dysferlinopathies.

  6. Mouse models of neurodegenerative diseases: criteria and general methodology.

    PubMed

    Janus, Christopher; Welzl, Hans

    2010-01-01

    The major symptom of Alzheimer's disease is rapidly progressing dementia, coinciding with the formation of amyloid and tau deposits in the central nervous system, and neuronal death. At present familial cases of dementias provide the most promising foundation for modelling neurodegeneration. We describe the mnemonic and other major behavioral symptoms of tauopathies, briefly outline the genetics underlying familiar cases and discuss the arising implications for modelling the disease in mostly transgenic mouse lines. We then depict to what degree the most recent mouse models replicate pathological and cognitive characteristics observed in patients.There is no universally valid behavioral test battery to evaluate mouse models. The selection of individual tests depends on the behavioral and/or memory system in focus, the type of a model and how well it replicates the pathology of a disease and the amount of control over the genetic background of the mouse model. However it is possible to provide guidelines and criteria for modelling the neurodegeneration, setting up the experiments and choosing relevant tests. One should not adopt a "one (trans)gene, one disease" interpretation, but should try to understand how the mouse genome copes with the protein expression of the transgene in question. Further, it is not possible to recommend some mouse models over others since each model is valuable within its own constraints, and the way experiments are performed often reflects the idiosyncratic reality of specific laboratories. Our purpose is to improve bridging molecular and behavioural approaches in translational research.

  7. Direct comparison of the pharmacodynamics of four antifungal drugs in a mouse model of disseminated candidiasis using microbiological assays of serum drug concentrations.

    PubMed

    Maki, Katsuyuki; Holmes, Ann R; Watabe, Etsuko; Iguchi, Yumi; Matsumoto, Satoru; Ikeda, Fumiaki; Tawara, Shuichi; Mutoh, Seitaro

    2007-01-01

    The aim of this study was to compare the pharmacodynamics of the azole antifungal drugs fluconazole, itraconazole and ketoconazole, and the polyene antifungal amphotericin B, in a mouse model of disseminated Candida albicans infection. In order to directly compare effective serum concentrations of these antifungals, drug concentrations were assayed microbiologically by measuring inhibition of C. albicans mycelial growth (mMIC) in a mouse serum-based assay (serum antifungal titer). Efficacy in the mouse infection model was determined using an organ-based (kidney burden) endpoint. For all four drugs, the serum antifungal titers, 8 hr after administration of single doses of drugs at a range of drug concentrations, correlated closely with C. albicans kidney fungal burden in the mouse model. The results showed that determining serum antifungal titer may be used to accurately represent kidney fungal burden in a mouse model of disseminated candidiasis and allowed direct comparison of the pharmacodynamics of differing classes of antifungal drugs.

  8. Mouse Models as Tools to Identify Genetic Pathways for Retinal Degeneration, as Exemplified by Leber's Congenital Amaurosis.

    PubMed

    Chang, Bo

    2016-01-01

    Leber's congenital amaurosis (LCA) is an inherited retinal degenerative disease characterized by severe loss of vision in the first year of life. In addition to early vision loss, a variety of other eye-related abnormalities including roving eye movements, deep-set eyes, and sensitivity to bright light also occur with this disease. Many animal models of LCA are available and the study them has led to a better understanding of the pathology of the disease, and has led to the development of therapeutic strategies aimed at curing or slowing down LCA. Mouse models, with their well-developed genetics and similarity to human physiology and anatomy, serve as powerful tools with which to investigate the etiology of human LCA. Such mice provide reproducible, experimental systems for elucidating pathways of normal development, function, designing strategies and testing compounds for translational research and gene-based therapies aimed at delaying the diseases progression. In this chapter, I describe tools used in the discovery and evaluation of mouse models of LCA including a Phoenix Image-Guided Optical Coherence Tomography (OCT) and a Diagnosys Espion Visual Electrophysiology System. Three mouse models are described, the rd3 mouse model for LCA12 and LCA1, the rd12 mouse model for LCA2, and the rd16 mouse model for LCA10.

  9. Differences in Pathogenesis for Salmonella enterica serovar Typhimurium in the Mouse Versus the Swine Model Identify Bacterial Gene Products Required for Systemic but not Gastrointestinal Disease

    USDA-ARS?s Scientific Manuscript database

    Over the last several decades, the mouse model of Typhoid fever has been an extremely productive model to investigate Salmonella enterica serovar Typhimurium pathogenesis. The mouse is the paradigm for investigating systemic disease due to infection by Salmonella; however, the swine model of gastro...

  10. Integrated Use of Planaria (Dugesia dorotocephala) and Bacillus thuringiensis var. Israelensis against Aedes Taeniorhynchus: A Laboratory Bioassay

    DTIC Science & Technology

    1990-12-01

    predatory planarian , Dugesia dorotoce- against Ae. taeniorhynchus under phala (Woodworth), and the microbial larvicide, andplanaria ins. u Bacillus...association between B.t.i. and planaria, The opinions or assertions contained herein are and planarian consumption of B.t.i.-dosed mos- the private views of...specifically, 3 Kenk, R. 1972. Freshwater planarians [Turbellarial of species of minnows, due to 2 factors: (1) imme- North America. Biota of

  11. Effect of Formalin Toxoiding on Pseudomonas Aeruginosa Toxin A: Biological Chemical and Immunochemical Studies

    DTIC Science & Technology

    1981-01-01

    incubated for an additional 10 min at 22°C. Immune rene test tubes. Samples were withdrawn aseptically complexes were collected by centrifugation at 3.000... tested imme- of assay buffer, and the final pellets were counted with diately in an assay, and the other was frozen at -70°C. a Beckman Biogamma counter... tested before and after activation immunoadsorbent for immune complexes containing with urea and dithiothreitol (13). Enzyme neutraliza

  12. Social predisposition dependent neuronal activity in the intermediate medial mesopallium of domestic chicks (Gallus gallus domesticus).

    PubMed

    Mayer, Uwe; Rosa-Salva, Orsola; Lorenzi, Elena; Vallortigara, Giorgio

    2016-09-01

    Species from phylogenetically distant animal groups, such as birds and primates including humans, share early experience-independent social predispositions that cause offspring, soon after birth, to attend to and learn about conspecifics. One example of this phenomenon is provided by the behaviour of newly-hatched visually-naïve domestic chicks that preferentially approach a stimulus resembling a conspecific (a stuffed fowl) rather than a less naturalistic object (a scrambled version of the stuffed fowl). However, the neuronal mechanisms underlying this behaviour are mostly unknown. Here we analysed chicks' brain activity with immunohistochemical detection of the transcription factor c-Fos. In a spontaneous choice test we confirmed a significant preference for approaching the stuffed fowl over a texture fowl (a fowl that was cut in small pieces attached to the sides of a box in scrambled order). Comparison of brain activation of a subgroup of chicks that approached either one or the other stimulus revealed differential activation in an area relevant for imprinting (IMM, intermediate medial mesopallium), suggesting that a different level of plasticity is associated with approach to naturalistic and artificial stimuli. c-Fos immunoreactive neurons were present also in the intermediate layers of the optic tectum (a plausible candidate for processing early social predispositions) showing a trend similar to the results for the IMM. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. [Neurobiology of imprinting].

    PubMed

    Ohki-Hamazaki, Hiroko

    2012-06-01

    Imprinting is an example of learning and memory acquisition in infancy. In the case of precocial birds, such as geese, ducks, and chickens, the baby birds learn the characteristics of the first moving object that they see within a critical period, and they imprint on it and follow it around. We analyzed the neural basis of this behavior in order to understand the neural mechanism of learning and memory in infancy. Information pertaining to a visual imprinting stimulus is recognized and processed in the visual Wulst, a region that corresponds to the mammalian visual cortex. It is then transmitted to the posterior region of the telencephalon, followed by the core region of the hyperpallium densocellulare (HDCo), periventricular region of the hyperpallium densocellulare (HDPe), and finally, the intermediate medial mesopallium (IMM), a region similar to the mammalian association cortex. Memory is stored in the IMM. After imprint training, plastic changes are observed in the visual Wulst as well as in the neurons of this circuit. HDCo cells, located at the center of this circuit, express N-methyl-D-aspartate (NMDA) receptors containing the NMDA receptor (NR) 2B subunit; the expression of this receptor increased after the imprint training. Inhibition of this receptor in the cells of the HDCo region leads to failure of imprinting and inactivation of this circuit. Thus, NMDA receptors bearing the NR2B subunit play a critical role in plastic changes in this circuit and in induction of imprinting.

  14. Frequency, predictors, and consequences of maintenance infliximab therapy intensification in ulcerative colitis.

    PubMed

    Fernández-Salazar, Luis; Barrio, Jesús; Muñoz, Fernando; Muñoz, Concepción; Pajares, Ramón; Rivero, Montserrat; Prieto, Vanesa; Legido, Jesús; Bouhmidi, Abdel; Herranz, Maite; González-Redondo, Guillermo; Fernández, Nereida; Santos, Fernando; Sánchez-Ocaña, Ramón; Joao, Diana

    2015-09-01

    Infliximab (IFX) therapy intensification in ulcerative colitis (UC) is more common than established in pivotal studies. To establish the frequency and form of intensification for UC in clinical practice, as well as predictors, and to compare outcomes between intensified and non-intensified treatment. A retrospective study of 10 hospitals and 144 patients with response to infliximab (IFX) induction. Predictive variables for intensification were analyzed using a Cox regression analysis. Outcome, loss of response to IFX, and colectomy were compared between intensified and non-intensified therapy. Follow-up time from induction to data collection: 38 months [interquartile range (IQR), 20-62]. Time on IFX therapy: 24 months (IQR, 10-44). In all, 37% of patients required intensification. Interval was shortened for 36 patients, dose was increased for 7, and 10 subjects received both. Concurrent thiopurine immunosuppressants (IMM) and IFX initiation was an independent predictor of intensification [Hazard ratio, 0.034; p, 0.006; CI, 0.003-0.371]. In patients on intensified therapy IFX discontinuation for loss of response (30.4% vs. 10.2%; p, 0.002), steroid reintroduction (35% vs. 18%; p, 0.018), and colectomy (22% vs. 6.4%; p, 0.011) were more common. Of patients on intensification, 17% returned to receiving 5 mg/kg every 8 weeks. Intensification is common and occasionally reversible. IMM initiation at the time of induction with IFX predictsnon-intensification. Intensification, while effective, is associated with poorer outcome.

  15. Precision mass measurements of magnesium isotopes and implications for the validity of the isobaric mass multiplet equation

    DOE PAGES

    Brodeur, M.; Kwiatkowski, A. A.; Drozdowski, O. M.; ...

    2017-09-18

    If the mass excess of neutron-deficient nuclei and their neutron-rich mirror partners are both known, it can be shown that deviations of the isobaric mass multiplet equation (IMME) in the form of a cubic term can be probed. Such a cubic term was probed by using the atomic mass of neutron-rich magnesium isotopes measured using the TITAN Penning trap and the recently measured proton-separation energies of 29Cl and 30Ar. The atomic mass of 27Mg was found to be within 1.6σ of the value stated in the Atomic Mass Evaluation. The atomic masses of 28,29Mg were measured to be both withinmore » 1σ, while being 7 and 33 times more precise, respectively. Using the 29Mg mass excess and previous measurements of 29Cl, we uncovered a cubic coefficient of d = 28(7)keV, which is the largest known cubic coefficient of the IMME. This departure, however, could also be caused by experimental data with unknown systematic errors. Hence there is a need to confirm the mass excess of 28S and the one-neutron separation energy of 29Cl, which have both come from a single measurement. Lastly, our results were compared with ab initio calculations from the valence-space in-medium similarity renormalization group, resulting in a good agreement.« less

  16. Manufacturing of High-Efficiency Bi-Facial Tandem Concentrator Solar Cells: February 20, 2009--August 20, 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wojtczuk , S.

    2011-06-01

    Spire Semiconductor made concentrator photovoltaic (CPV) cells using a new bi-facial growth process and met both main program goals: a) 42.5% efficiency 500X (AM1.5D, 25C, 100mW/cm2); and b) Ready to supply at least 3MW/year of such cells at end of program. We explored a unique simple fabrication process to make a N/P 3-junction InGaP/GaAs/InGaAs tandem cells . First, the InGaAs bottom cell is grown on the back of a GaAs wafer. The wafers are then loaded into a cassette, spin-rinsed to remove particles, dipped in dilute NH4OH and spin-dried. The wafers are then removed from the cassette loaded the reactormore » for GaAs middle and InGaP top cell growth on the opposite wafer face (bi-facial growth). By making the epitaxial growth process a bit more complex, we are able to avoid more complex processing (such as large area wafer bonding or epitaxial liftoff) used in the inverted metamorphic (IMM) approach to make similar tandem stacks. We believe the yield is improved compared to an IMM process. After bi-facial epigrowth, standard III-V cell steps (back metal, photolithography for front grid, cap etch, AR coat, dice) are used in the remainder of the process.« less

  17. Contact toxicity of insecticides for attract-and-kill applications against adult Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae).

    PubMed

    Campos, Manuel; Phillips, Thomas W

    2010-07-01

    The Indian meal moth (IMM), Plodia interpunctella (Hübner), is an important pest of stored food products. Contact toxicities of 13 insecticides applied to different surfaces were evaluated at registered label and a higher dose for killing adult males. The ultimate objective was to develop attract-and-kill technologies for P. interpunctella. Two-day-old adult males were exposed to treated surfaces for 2.0 s and then paired with virgin females for mating and oviposition over a 24 h period. Permethrins and pyrethrins (organic pyrethrin and pyrethrin plus a synergist) caused over 70% mortality to males. Oviposition was impacted by these insecticides, while egg hatch was not. A second experiment tested the 8 week residual toxicity of cyfluthrin, permethrin and pyrethrin at label and at a higher dose of 20 g AI L(-1) on five surfaces: plastic-coated paper, metal, painted plastic, unpainted plastic and wood. Permethrin at 20 g AI L(-1) suppressed males at over 80% for up to 8 weeks and retained activity on surfaces made with plastic-coated paper, metal or plastic. Oviposition was variable among treatments. Egg hatch was generally unaffected by treatment. Effective attract-and-kill surfaces can be developed for killing IMM males and thereby potentially lead to reduced reproduction and, ultimately, population suppression. Copyright (c) 2010 Society of Chemical Industry.

  18. Precision mass measurements of magnesium isotopes and implications for the validity of the isobaric mass multiplet equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brodeur, M.; Kwiatkowski, A. A.; Drozdowski, O. M.

    If the mass excess of neutron-deficient nuclei and their neutron-rich mirror partners are both known, it can be shown that deviations of the isobaric mass multiplet equation (IMME) in the form of a cubic term can be probed. Such a cubic term was probed by using the atomic mass of neutron-rich magnesium isotopes measured using the TITAN Penning trap and the recently measured proton-separation energies of 29Cl and 30Ar. The atomic mass of 27Mg was found to be within 1.6σ of the value stated in the Atomic Mass Evaluation. The atomic masses of 28,29Mg were measured to be both withinmore » 1σ, while being 7 and 33 times more precise, respectively. Using the 29Mg mass excess and previous measurements of 29Cl, we uncovered a cubic coefficient of d = 28(7)keV, which is the largest known cubic coefficient of the IMME. This departure, however, could also be caused by experimental data with unknown systematic errors. Hence there is a need to confirm the mass excess of 28S and the one-neutron separation energy of 29Cl, which have both come from a single measurement. Lastly, our results were compared with ab initio calculations from the valence-space in-medium similarity renormalization group, resulting in a good agreement.« less

  19. Mitochondria-targeted molecules determine the redness of the zebra finch bill.

    PubMed

    Cantarero, Alejandro; Alonso-Alvarez, Carlos

    2017-10-01

    The evolution and production mechanisms of red carotenoid-based ornaments in animals are poorly understood. Recently, it has been suggested that enzymes transforming yellow carotenoids to red pigments (ketolases) in animal cells may be positioned in the inner mitochondrial membrane (IMM) intimately linked to the electron transport chain. These enzymes may mostly synthesize coenzyme Q 10 (coQ 10 ), a key redox-cycler antioxidant molecularly similar to yellow carotenoids. It has been hypothesized that this shared pathway favours the evolution of red traits as sexually selected individual quality indices by revealing a well-adjusted oxidative metabolism. We administered mitochondria-targeted molecules to male zebra finches ( Taeniopygia guttata ) measuring their bill redness, a trait produced by transforming yellow carotenoids. One molecule included coQ 10 (mitoquinone mesylate, MitoQ) and the other one (decyl-triphenylphosphonium; dTPP) has the same structure without the coQ 10 aromatic ring. At the highest dose, the bill colour of MitoQ and dTPP birds strongly differed: MitoQ birds' bills were redder and dTPP birds showed paler bills even compared to birds injected with saline only. These results suggest that ketolases are indeed placed at the IMM and that coQ 10 antioxidant properties may improve their efficiency. The implications for evolutionary theories of sexual signalling are discussed. © 2017 The Author(s).

  20. Early steps in steroidogenesis: intracellular cholesterol trafficking

    PubMed Central

    Miller, Walter L.; Bose, Himangshu S.

    2011-01-01

    Steroid hormones are made from cholesterol, primarily derived from lipoproteins that enter cells via receptor-mediated endocytosis. In endo-lysosomes, cholesterol is released from cholesterol esters by lysosomal acid lipase (LAL; disordered in Wolman disease) and exported via Niemann-Pick type C (NPC) proteins (disordered in NPC disease). These diseases are characterized by accumulated cholesterol and cholesterol esters in most cell types. Mechanisms for trans-cytoplasmic cholesterol transport, membrane insertion, and retrieval from membranes are less clear. Cholesterol esters and “free” cholesterol are enzymatically interconverted in lipid droplets. Cholesterol transport to the cholesterol-poor outer mitochondrial membrane (OMM) appears to involve cholesterol transport proteins. Cytochrome P450scc (CYP11A1) then initiates steroidogenesis by converting cholesterol to pregnenolone on the inner mitochondrial membrane (IMM). Acute steroidogenic responses are regulated by cholesterol delivery from OMM to IMM, triggered by the steroidogenic acute regulatory protein (StAR). Chronic steroidogenic capacity is determined by CYP11A1 gene transcription. StAR mutations cause congenital lipoid adrenal hyperplasia, with absent steroidogenesis, potentially lethal salt loss, and 46,XY sex reversal. StAR mutations initially destroy most, but not all steroidogenesis; low levels of StAR-independent steroidogenesis are lost later due to cellular damage, explaining the clinical findings. Rare P450scc mutations cause a similar syndrome. This review addresses these early steps in steroid biosynthesis. PMID:21976778

  1. Characterisation of serum transthyretin by electrospray ionisation-ion mobility mass spectrometry: Application to familial amyloidotic polyneuropathy type I (FAP-I).

    PubMed

    Pont, Laura; Benavente, Fernando; Vilaseca, Marta; Giménez, Estela; Sanz-Nebot, Victoria

    2015-11-01

    Transthyretin (TTR) is a homotetrameric protein which is known to misfold and aggregate causing different types of amyloidosis, such as familial amyloidotic polyneuropathy type I (FAP-I). FAP-I is associated with a specific TTR mutant variant (TTR (Met30)) that can be easily detected analysing the monomeric forms of the mutant protein. Meanwhile, the mechanism of protein aggregation onset, which could be triggered by structural changes on the native tetrameric protein complex, remains uncertain. We developed and described herein a new sample pretreatment based on immunoprecipitation (IP) to purify TTR from serum under non-denaturing conditions. Later, a nano-electrospray ionization-ion mobility mass spectrometry (nano-ESI-IM-MS or IM-MS) method was optimised to analyse the protein complexes in serum samples from healthy controls and FAP-I patients. IM-MS allowed separation and characterisation of tetrameric, trimeric and dimeric TTR gas ions due to their differential drift time, which is related to ion size and charge. The tetramer-to-dimer abundance ratio was differential between healthy controls and FAP-I patients (asymptomatic, symptomatic and an iatrogenic patient originally without the mutation who received a liver transplant from an FAP-I patient), and was also indicative of the effectiveness of liver transplantation as a treatment for FAP-I. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. A unified model of the excitability of mouse sensory and motor axons.

    PubMed

    Makker, Preet G S; Matamala, José Manuel; Park, Susanna B; Lees, Justin G; Kiernan, Matthew C; Burke, David; Moalem-Taylor, Gila; Howells, James

    2018-06-19

    Non-invasive nerve excitability techniques have provided valuable insight into the understanding of neurological disorders. The widespread use of mice in translational research on peripheral nerve disorders and by pharmaceutical companies during drug development requires valid and reliable models that can be compared to humans. This study established a novel experimental protocol that enables comparative assessment of the excitability properties of motor and sensory axons at the same site in mouse caudal nerve, compared the mouse data to data for motor and sensory axons in human median nerve at the wrist, and constructed a mathematical model of the excitability of mouse axons. In a separate study, ischaemia was employed as an experimental manoeuvre to test the translational utility of this preparation. The patterns of mouse sensory and motor excitability were qualitatively similar to human studies under normal and ischaemic conditions. The most conspicuous differences between mouse and human studies were observed in the recovery cycle and the response to hyperpolarization. Modelling showed that an increase in temperature in mouse axons could account for most of the differences in the recovery cycle. The modelling also suggested a larger hyperpolarization-activated conductance in mouse axons. The kinetics of this conductance appeared to be much slower raising the possibility that an additional or different hyperpolarization-activated cyclic-nucleotide gated (HCN) channel isoform underlies the accommodation to hyperpolarization in mouse axons. Given a possible difference in HCN isoforms, caution should be exercised in extrapolating from studies of mouse motor and sensory axons to human nerve disorders. This article is protected by copyright. All rights reserved.

  3. Rapamycin improves sociability in the BTBR T(+)Itpr3(tf)/J mouse model of autism spectrum disorders.

    PubMed

    Burket, Jessica A; Benson, Andrew D; Tang, Amy H; Deutsch, Stephen I

    2014-01-01

    Overactivation of the mammalian target of rapamycin (mTOR) has been implicated in the pathogenesis of syndromic forms of autism spectrum disorders (ASDs), such as tuberous sclerosis complex, neurofibromatosis 1, and fragile X syndrome. Administration of mTORC1 (mTOR complex 1) inhibitors (e.g. rapamycin) in syndromic mouse models of ASDs improved behavior, cognition, and neuropathology. However, since only a minority of ASDs are due to the effects of single genes (∼10%), there is a need to explore inhibition of mTOR activity in mouse models that may be more relevant to the majority of nonsyndromic presentations, such as the genetically inbred BTBR T(+)Itpr3(tf)/J (BTBR) mouse model of ASDs. BTBR mice have social impairment and exhibit increased stereotypic behavior. In prior work, d-cycloserine, a partial glycineB site agonist that targets the N-methyl-d-aspartate (NMDA) receptor, was shown to improve sociability in both Balb/c and BTBR mouse models of ASDs. Importantly, NMDA receptor activation regulates mTOR signaling activity. The current study investigated the ability of rapamycin (10mg/kg, i.p.×four days), an mTORC1 inhibitor, to improve sociability and stereotypic behavior in BTBR mice. Using a standard paradigm to assess mouse social behavior, rapamycin improved several measures of sociability in the BTBR mouse, suggesting that mTOR overactivation represents a therapeutic target that mediates or contributes to impaired sociability in the BTBR mouse model of ASDs. Interestingly, there was no effect of rapamycin on stereotypic behaviors in this mouse model. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. In Vivo Hyperthermic Stress Model: An Easy Tool to Study the Effects of Oxidative Stress on Neuronal Tau Functionality in Mouse Brain.

    PubMed

    Chauderlier, Alban; Delattre, Lucie; Buée, Luc; Galas, Marie-Christine

    2017-01-01

    Oxidative damage is an early event in neurodegenerative disorders such as Alzheimer disease. To increase oxidative stress in AD-related mouse models is essential to study early mechanisms involved in the physiopathology of these diseases. In this chapter, we describe an experimental mouse model of transient and acute hyperthermic stress to induce in vivo an increase of oxidative stress in the brain of any kind of wild-type or transgenic mouse.

  5. Implementation of a manual for working with wobbler mice and criteria for discontinuation of the experiment.

    PubMed

    Ott, Bastian; Dahlke, Carolin; Meller, Karl; Napirei, Markus; Schmitt-John, Thomas; Brand-Saberi, Beate; Theiss, Carsten; Saberi, Darius

    2015-07-01

    Mouse breeding is of importance to a whole range of medical and biological research. There are many known mouse models for motor neuron diseases. However, it must be kept in mind that especially mouse models for amyotrophic lateral sclerosis develop severe symptoms causing intense stress. This article is designed to summarize conscientious work with the wobbler mouse, a model for the sporadic form of amyotrophic lateral sclerosis. This mouse model is characterized by a degeneration of α-motor-neurons leading to head tremor, loss of body weight and rapidly progressive paralysis. Although this mouse model has been known since 1956, there are no guidelines for breeding wobbler mice. Due to the lack of such guidelines the present study tries to close this gap and implements a manual for further studies. It includes the whole workflow in regard to wobbler mice from breeding and animal care taking, genotyping and phenotype analysis, but also gives some examples for the use of various neuronal tissues for histological investigation. Beside the progress in research a second aim should always be the enhancement of mouse welfare and reduction of stress for the laboratory animals. Copyright © 2015 Elsevier GmbH. All rights reserved.

  6. Medical Optimization Network for Space Telemedicine Resources

    NASA Technical Reports Server (NTRS)

    Rubin, D.; Shah, R. V.; Kerstman, E. L.; Reyes, D.; Mulcahy, R.; Antonsen, E.

    2017-01-01

    INTRODUCTION: Long-duration missions beyond low Earth orbit introduce new constraints to the space medical system. Beyond the traditional limitations in mass, power, and volume, consideration must be given to other factors such as the inability to evacuate to Earth, communication delays, and limitations in clinical skillsets. As NASA develops the medical system for an exploration mission, it must have an ability to evaluate the trade space of what resources will be most important. The Medical Optimization Network for Space Telemedicine Resources (MONSTR) was developed over the past year for this reason, and is now a system for managing data pertaining to medical resources and their relative importance when addressing medical conditions. METHODS: The MONSTR web application with a Microsoft SQL database backend was developed and made accessible to Tableau v9.3 for analysis and visualization. The database was initially populated with a list of medical conditions of concern for an exploration mission taken from the Integrated Medical Model (IMM), a probabilistic model designed to quantify in-flight medical risk. A team of physicians working within the Exploration Medical Capability Element of NASA's Human Research Program compiled a list diagnostic and treatment medical resources required to address best- and worst-case scenarios of each medical condition using a terrestrial standard of care and entered this data into the system. This list included both tangible resources (e.g. medical equipment, medications) and intangible resources (e.g. clinical skills required to perform a procedure). The physician team then assigned criticality values to each instance of a resource, representing the importance of that resource to diagnosing or treating its associated condition(s). Medical condition probabilities of occurrence during a Mars mission were pulled from the IMM and imported into the MONSTR database for use within a resource criticality-weighting algorithm. DISCUSSION: The MONSTR tool is a novel approach to assess the relative value of individual resources needed for the diagnosis and treatment of medical conditions. Future work will add resources for prevention and long term care of these conditions. Once data collection is complete, MONSTR will provide the operational and research communities at NASA with information to support informed decisions regarding areas of research investment, future crew training, and medical supplies manifested as part of any exploration medical system.

  7. Rational Design of Mouse Models for Cancer Research.

    PubMed

    Landgraf, Marietta; McGovern, Jacqui A; Friedl, Peter; Hutmacher, Dietmar W

    2018-03-01

    The laboratory mouse is widely considered as a valid and affordable model organism to study human disease. Attempts to improve the relevance of murine models for the investigation of human pathologies led to the development of various genetically engineered, xenograft and humanized mouse models. Nevertheless, most preclinical studies in mice suffer from insufficient predictive value when compared with cancer biology and therapy response of human patients. We propose an innovative strategy to improve the predictive power of preclinical cancer models. Combining (i) genomic, tissue engineering and regenerative medicine approaches for rational design of mouse models with (ii) rapid prototyping and computational benchmarking against human clinical data will enable fast and nonbiased validation of newly generated models. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Review of DoD Malaria Research Programs,

    DTIC Science & Technology

    1992-05-01

    the irraliated sporozoite vaccine. Work in the mouse model system and then extrapolate to human malarias. Study naturally acquired immune ...recombinant vaccines. Work simultaneously in the mouse model system and with human malarias. 3. Identify targets and mechanisms of protective immunity not...multivalent vaccines that attack these same targets. 3. Working again in the mouse model, non- human primate model, andI human systems we

  9. Animal models for prenatal gene therapy: rodent models for prenatal gene therapy.

    PubMed

    Roybal, Jessica L; Endo, Masayuki; Buckley, Suzanne M K; Herbert, Bronwen R; Waddington, Simon N; Flake, Alan W

    2012-01-01

    Fetal gene transfer has been studied in various animal models, including rabbits, guinea pigs, cats, dogs, and nonhuman primate; however, the most common model is the rodent, particularly the mouse. There are numerous advantages to mouse models, including a short gestation time of around 20 days, large litter size usually of more than six pups, ease of colony maintenance due to the small physical size, and the relatively low expense of doing so. Moreover, the mouse genome is well defined, there are many transgenic models particularly of human monogenetic disorders, and mouse-specific biological reagents are readily available. One criticism has been that it is difficult to perform procedures on the fetal mouse with suitable accuracy. Over the past decade, accumulation of technical expertise and development of technology such as high-frequency ultrasound have permitted accurate vector delivery to organs and tissues. Here, we describe our experiences of gene transfer to the fetal mouse with and without ultrasound guidance from mid to late gestation. Depending upon the vector type, the route of delivery and the age of the fetus, specific or widespread gene transfer can be achieved, making fetal mice excellent models for exploratory biodistribution studies.

  10. Mobile Laser Scanning for Indoor Modelling

    NASA Astrophysics Data System (ADS)

    Thomson, C.; Apostolopoulos, G.; Backes, D.; Boehm, J.

    2013-10-01

    The process of capturing and modelling buildings has gained increased focus in recent years with the rise of Building Information Modelling (BIM). At the heart of BIM is a process change for the construction and facilities management industries whereby a BIM aids more collaborative working through better information exchange, and as a part of the process Geomatic/Land Surveyors are not immune from the changes. Terrestrial laser scanning has been proscribed as the preferred method for rapidly capturing buildings for BIM geometry. This is a process change from a traditional measured building survey just with a total station and is aided by the increasing acceptance of point cloud data being integrated with parametric building models in BIM tools such as Autodesk Revit or Bentley Architecture. Pilot projects carried out previously by the authors to investigate the geometry capture and modelling of BIM confirmed the view of others that the process of data capture with static laser scan setups is slow and very involved requiring at least two people for efficiency. Indoor Mobile Mapping Systems (IMMS) present a possible solution to these issues especially in time saved. Therefore this paper investigates their application as a capture device for BIM geometry creation over traditional static methods through a fit-for-purpose test.

  11. Treatment of d-galactose induced mouse aging with Lycium barbarum polysaccharides and its mechanism study.

    PubMed

    Tang, Tao; He, Bixiu

    2013-01-01

    We evaluated the effects of Lycium barbarum polysaccharides LBP) on D-galactose aging model mouse, and explored its possible mechanism. Kunming mice were randomly divided into the control group, the model group, the high-dose LBP group, and the low-dose LBP group. Except the control group, D-galactose was used for modelling. The drug was administrated when modelling. Mouse behavioural, learning and memory changes were observed, and the contents of lipid peroxidation (LPO), lipofuscin (LF) and monoamine oxidase B (MAO-B) in mouse brain tissue and the weight of immune organs were measured after 6 weeks. Compared with the control group, mouse weight gain in the model group reduced significantly. Compared with model group, after mice drank LBP, the times of electric shock was less than aging mice (in which, the high-dose LBP group, P<0.05), and electric shock incubation period was longer (P<0.01). On Day 45 after modelling and drug administration, the contents of LPO, LF and MAO-B in mouse brain tissue in the model group increased significantly, while those in the drug administration groups decreased significantly. The thymus index in the aging model group decreased significantly; the thymus index and the spleen index in the high-dose LBP group and the low-dose LBP group rebounded significantly (P<0.01). We concluded that LBP has an anti-aging effect on D-galactose induced aging model mouse, and its mechanism may be related with the alleviation of glucose metabolism disorder and the resistance of the generation of lipid peroxide and other substances, which damage cell membrane lipid.

  12. Reflectance of micron-sized dust particles retrieved with the Umov law

    NASA Astrophysics Data System (ADS)

    Zubko, Evgenij; Videen, Gorden; Zubko, Nataliya; Shkuratov, Yuriy

    2017-03-01

    The maximum positive polarization Pmax that initially unpolarized light acquires when scattered from a particulate surface inversely correlates with its geometric albedo A. In the literature, this phenomenon is known as the Umov law. We investigate the Umov law in application to single-scattering submicron and micron-sized agglomerated debris particles, model particles that have highly irregular morphology. We find that if the complex refractive index m is constrained to Re(m)=1.4-1.7 and Im(m)=0-0.15, model particles of a given size distribution have a linear inverse correlation between log(Pmax) and log(A). This correlation resembles what is measured in particulate surfaces, suggesting a similar mechanism governing the Umov law in both systems. We parameterize the dependence of log(A) on log(Pmax) of single-scattering particles and analyze the airborne polarimetric measurements of atmospheric aerosols reported by Dolgos & Martins in [1]. We conclude that Pmax ≈ 50% measured by Dolgos & Martins corresponds to very dark aerosols having geometric albedo A=0.019 ± 0.005.

  13. Mutagenicity testing with transgenic mice. Part II: Comparison with the mouse spot test

    PubMed Central

    Wahnschaffe, Ulrich; Bitsch, Annette; Kielhorn, Janet; Mangelsdorf, Inge

    2005-01-01

    The mouse spot test, an in vivo mutation assay, has been used to assess a number of chemicals. It is at present the only in vivo mammalian test system capable of detecting somatic gene mutations according to OECD guidelines (OECD guideline 484). It is however rather insensitive, animal consuming and expensive type of test. More recently several assays using transgenic animals have been developed. From data in the literature, the present study compares the results of in vivo testing of over twenty chemicals using the mouse spot test and compares them with results from the two transgenic mouse models with the best data base available, the lacI model (commercially available as the Big Blue® mouse), and the lacZ model (commercially available as the Muta™ Mouse). There was agreement in the results from the majority of substances. No differences were found in the predictability of the transgenic animal assays and the mouse spot test for carcinogenicity. However, from the limited data available, it seems that the transgenic mouse assay has several advantages over the mouse spot test and may be a suitable test system replacing the mouse spot test for detection of gene but not chromosome mutations in vivo. PMID:15676065

  14. The Mouse Genome Database (MGD): facilitating mouse as a model for human biology and disease.

    PubMed

    Eppig, Janan T; Blake, Judith A; Bult, Carol J; Kadin, James A; Richardson, Joel E

    2015-01-01

    The Mouse Genome Database (MGD, http://www.informatics.jax.org) serves the international biomedical research community as the central resource for integrated genomic, genetic and biological data on the laboratory mouse. To facilitate use of mouse as a model in translational studies, MGD maintains a core of high-quality curated data and integrates experimentally and computationally generated data sets. MGD maintains a unified catalog of genes and genome features, including functional RNAs, QTL and phenotypic loci. MGD curates and provides functional and phenotype annotations for mouse genes using the Gene Ontology and Mammalian Phenotype Ontology. MGD integrates phenotype data and associates mouse genotypes to human diseases, providing critical mouse-human relationships and access to repositories holding mouse models. MGD is the authoritative source of nomenclature for genes, genome features, alleles and strains following guidelines of the International Committee on Standardized Genetic Nomenclature for Mice. A new addition to MGD, the Human-Mouse: Disease Connection, allows users to explore gene-phenotype-disease relationships between human and mouse. MGD has also updated search paradigms for phenotypic allele attributes, incorporated incidental mutation data, added a module for display and exploration of genes and microRNA interactions and adopted the JBrowse genome browser. MGD resources are freely available to the scientific community. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. Genetically engineered mouse models of craniopharyngioma: an opportunity for therapy development and understanding of tumor biology

    PubMed Central

    Martinez‐Barbera, Juan Pedro

    2017-01-01

    Abstract Adamantinomatous craniopharyngioma (ACP) is the commonest tumor of the sellar region in childhood. Two genetically engineered mouse models have been developed and are giving valuable insights into ACP biology. These models have identified novel pathways activated in tumors, revealed an important function of paracrine signalling and extended conventional theories about the role of organ‐specific stem cells in tumorigenesis. In this review, we summarize these mouse models, what has been learnt, their limitations and open questions for future research. We then discussed how these mouse models may be used to test novel therapeutics against potentially targetable pathways recently identified in human ACP. PMID:28414891

  16. Survey of Evaluated Isobaric Analog States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacCormick, M., E-mail: maccorm@ipno.in2p3.fr; Audi, G.

    Isobaric analog states (IAS) can be used to estimate the masses of members belonging to the same isospin multiplet. Experimental and estimated IAS have been used frequently within the Atomic Mass Evaluation (AME) in the past, but the associated set of evaluated masses have been published for the first time in AME2012 and NUBASE2012. In this paper the current trends of the isobaric multiplet mass equation (IMME) coefficients are shown. The T = 2 multiplet is used as a detailed illustration.

  17. Development of Spontaneous Mammary Tumors in BALB/c-p53+/-Mice: Detection of Early Genetic Alterations and the Mapping of BALB/c Susceptibility Genes

    DTIC Science & Technology

    2005-07-01

    type allele in the sample, with one being a papillary ductal study used all BALB/c female mice; therefore, both strain and gender hyperplasia and the...other being a solid adenocarcinoma but with a could be contributing to the difference in LOH frequency. To deter- significant fibrous stromal...Intracytoplasmic granular staining in the epithelium was the most common pattern of staining and was regarded as positive. Imm unoreactivity in inflammatory

  18. ALOFT Flight Test Report

    DTIC Science & Technology

    1977-10-01

    China Lake, CA 93555. USNWC ltr, 1Mar 1978 THIS REPORT HAS BEEN DELIMITED AND CLEARED FOR PUBLIC RELEASE UNDER DOD DIRECTIVE 5200,20 AND NO...wmmmmmmmmmmmm i ifmu.immM\\]i\\ ßinimm^mmmmviwmmiwui »vimtm twfjmmmmmmi c-f—rmSmn NWC TP 5954 ALOFT Flight Test Report by James D. Ross anrJ I.. M...results of tests on a fiber optic data link, manufactured by International Business Machines (IBM) under Contract No. N0O«3J6^򒹁 for the Naval

  19. Soviet Frontal Aviation Operations: Concepts and Problems,

    DTIC Science & Technology

    1981-06-01

    recent exercises. For example, during Operation " Neman " (23-27 July " ’ 1979 in the Baltic MD) a fighter/bomber squadron was assigned the mission of...area. For example, during Operation " Neman ", the commander of a helicopter strike force "did not succeed in imme lately orienting himself on the terrain...Kosmonavtika, #11, 1980) comparison of two different (one correct, one incorrect) techniques used in such operations during Exercise " Neman ". 2 6"Voyska PVO na

  20. Regulation of 2-5A Dependent RNase at the Level of its Phosphorylation

    DTIC Science & Technology

    1991-06-26

    extract as follows: 25 ul wheat germ extract 10 ul H2O 1 ul RNasin ribonuclease inhibitor (40 u/ml) 7 ul ImM amino acid mixture 1 ul IM...diacylglycerol (DAG) 2. TPA 3. Indolactam Figure 6. Chemical structure of: 1. H-7 (A kinase inhibitor) 2. okadaic acid (A phosphatase inhibitor) Figure 7...elevating agents: Forskolin and Cholera toxin Figure 17. Down-regulation of 2-5A-depRNase by Okadaic 77 acid : A phosphatase inhibitor Figure 18

  1. Mouse neuroblastoma cell based model and the effect of epileptic events on calcium oscillations and neural spikes

    NASA Astrophysics Data System (ADS)

    Kim, Suhwan; Baek, Juyeong; Jung, Unsang; Lee, Sangwon; Jung, Woonggyu; Kim, Jeehyun; Kang, Shinwon

    2013-05-01

    Recently, Mouse neuroblastoma cells are considered as an attractive model for the study of human neurological and prion diseases, and intensively used as a model system in different areas. Among those areas, differentiation of neuro2a (N2A) cells, receptor mediated ion current, and glutamate induced physiological response are actively investigated. The reason for the interest to mouse neuroblastoma N2A cells is that they have a fast growing rate than other cells in neural origin with a few another advantages. This study evaluated the calcium oscillations and neural spikes recording of mouse neuroblastoma N2A cells in an epileptic condition. Based on our observation of neural spikes in mouse N2A cell with our proposed imaging modality, we report that mouse neuroblastoma N2A cells can be an important model related to epileptic activity studies. It is concluded that the mouse neuroblastoma N2A cells produce the epileptic spikes in vitro in the same way as produced by the neurons or the astrocytes. This evidence advocates the increased and strong level of neurotransmitters release by enhancement in free calcium using the 4-aminopyridine which causes the mouse neuroblastoma N2A cells to produce the epileptic spikes and calcium oscillation.

  2. Dynamics of circulating gamma delta T cell activity in an immunocompetent mouse model of high-grade glioma

    USDA-ARS?s Scientific Manuscript database

    Human gamma delta T cells are potent effectors against glioma cell lines in vitro and in human/mouse xenograft models of glioblastoma, however, this effect has not been investigated in an immunocompetent mouse model. In this report, we established GL261 intracranial gliomas in syngeneic WT C57BL/6 m...

  3. Lack of species-specific difference in pulmonary function when using mouse versus human plasma in a mouse model of hemorrhagic shock.

    PubMed

    Peng, Zhanglong; Pati, Shibani; Fontaine, Magali J; Hall, Kelly; Herrera, Anthony V; Kozar, Rosemary A

    2016-11-01

    Clinical studies have demonstrated that the early and empiric use of plasma improves survival after hemorrhagic shock. We have demonstrated in rodent models of hemorrhagic shock that resuscitation with plasma is protective to the lungs compared with lactated Ringer's solution. As our long-term objective is to determine the molecular mechanisms that modulate plasma's protective effects in injured bleeding patients, we have used human plasma in a mouse model of hemorrhagic shock. The goal of the current experiments is to determine if there are significant adverse effects on lung injury when using human versus mouse plasma in an established murine model of hemorrhagic shock and laparotomy. Mice underwent laparotomy and 90 minutes of hemorrhagic shock to a mean arterial pressure (MAP) of 35 ± 5 mm Hg followed by resuscitation at 1× shed blood using either mouse fresh frozen plasma (FFP), human FFP, or human lyophilized plasma. Mean arterial pressure was recorded during shock and for the first 30 minutes of resuscitation. After 3 hours, animals were killed, and lungs collected for analysis. There was a significant increase in early MAP when mouse FFP was used to resuscitate animals compared with human FFP or human lyophilized plasma. However, despite these differences, analysis of the mouse lungs revealed no significant differences in pulmonary histopathology, lung permeability, or lung edema between all three plasma groups. Analysis of neutrophil infiltration in the lungs revealed that mouse FFP decreased neutrophil influx as measured by neutrophil staining; however, myeloperoxidase immunostaining revealed no significant differences in between groups. The study of human plasma in a mouse model of hemorrhagic shock is feasible but does reveal some differences compared with mouse plasma-based resuscitation in physiologic measures such as MAP postresuscitation. Measures of end organ function such as lung injury appear to be comparable in this acute model of hemorrhagic shock and resuscitation.

  4. In vivo quantitative bioluminescence tomography using heterogeneous and homogeneous mouse models.

    PubMed

    Liu, Junting; Wang, Yabin; Qu, Xiaochao; Li, Xiangsi; Ma, Xiaopeng; Han, Runqiang; Hu, Zhenhua; Chen, Xueli; Sun, Dongdong; Zhang, Rongqing; Chen, Duofang; Chen, Dan; Chen, Xiaoyuan; Liang, Jimin; Cao, Feng; Tian, Jie

    2010-06-07

    Bioluminescence tomography (BLT) is a new optical molecular imaging modality, which can monitor both physiological and pathological processes by using bioluminescent light-emitting probes in small living animal. Especially, this technology possesses great potential in drug development, early detection, and therapy monitoring in preclinical settings. In the present study, we developed a dual modality BLT prototype system with Micro-computed tomography (MicroCT) registration approach, and improved the quantitative reconstruction algorithm based on adaptive hp finite element method (hp-FEM). Detailed comparisons of source reconstruction between the heterogeneous and homogeneous mouse models were performed. The models include mice with implanted luminescence source and tumor-bearing mice with firefly luciferase report gene. Our data suggest that the reconstruction based on heterogeneous mouse model is more accurate in localization and quantification than the homogeneous mouse model with appropriate optical parameters and that BLT allows super-early tumor detection in vivo based on tomographic reconstruction of heterogeneous mouse model signal.

  5. Of Mice and Men: Comparative Analysis of Neuro-Inflammatory Mechanisms in Human and Mouse Using Cause-and-Effect Models.

    PubMed

    Kodamullil, Alpha Tom; Iyappan, Anandhi; Karki, Reagon; Madan, Sumit; Younesi, Erfan; Hofmann-Apitius, Martin

    2017-01-01

    Perturbance in inflammatory pathways have been identified as one of the major factors which leads to neurodegenerative diseases (NDD). Owing to the limited access of human brain tissues and the immense complexity of the brain, animal models, specifically mouse models, play a key role in advancing the NDD field. However, many of these mouse models fail to reproduce the clinical manifestations and end points of the disease. NDD drugs, which passed the efficacy test in mice, were repeatedly not successful in clinical trials. There are numerous studies which are supporting and opposing the applicability of mouse models in neuroinflammation and NDD. In this paper, we assessed to what extend a mouse can mimic the cellular and molecular interactions in humans at a mechanism level. Based on our mechanistic modeling approach, we investigate the failure of a neuroinflammation targeted drug in the late phases of clinical trials based on the comparative analyses between the two species.

  6. NCI Mouse Repository | FNLCR Staging

    Cancer.gov

    The NCI Mouse Repository is an NCI-funded resource for mouse cancer models and associated strains. The repository makes strains available to all members of the scientific community (academic, non-profit, and commercial). NCI Mouse Repository strains

  7. An extended Kalman filter for mouse tracking.

    PubMed

    Choi, Hongjun; Kim, Mingi; Lee, Onseok

    2018-05-19

    Animal tracking is an important tool for observing behavior, which is useful in various research areas. Animal specimens can be tracked using dynamic models and observation models that require several types of data. Tracking mouse has several barriers due to the physical characteristics of the mouse, their unpredictable movement, and cluttered environments. Therefore, we propose a reliable method that uses a detection stage and a tracking stage to successfully track mouse. The detection stage detects the surface area of the mouse skin, and the tracking stage implements an extended Kalman filter to estimate the state variables of a nonlinear model. The changes in the overall shape of the mouse are tracked using an oval-shaped tracking model to estimate the parameters for the ellipse. An experiment is conducted to demonstrate the performance of the proposed tracking algorithm using six video images showing various types of movement, and the ground truth values for synthetic images are compared to the values generated by the tracking algorithm. A conventional manual tracking method is also applied to compare across eight experimenters. Furthermore, the effectiveness of the proposed tracking method is also demonstrated by applying the tracking algorithm with actual images of mouse. Graphical abstract.

  8. Mouse Models for Down Syndrome-Associated Developmental Cognitive Disabilities

    PubMed Central

    Liu, Chunhong; Belichenko, Pavel V.; Zhang, Li; Fu, Dawei; Kleschevnikov, Alexander M.; Baldini, Antonio; Antonarakis, Stylianos E.; Mobley, William C.; Yu, Y. Eugene

    2011-01-01

    Down syndrome (DS) is mainly caused by the presence of an extra copy of human chromosome 21 (Hsa21) and is a leading genetic cause for developmental cognitive disabilities in humans. The mouse is a premier model organism for DS because the regions on Hsa21 are syntenically conserved with three regions in the mouse genome, which are located on mouse chromosome 10 (Mmu10), Mmu16 and Mmu17. With the advance of chromosomal manipulation technologies, new mouse mutants have been generated to mimic DS at both the genotypic and phenotypic levels. Further mouse-based molecular genetic studies in the future may lead to the unraveling of the mechanisms underlying DS-associated developmental cognitive disabilities, which would lay the groundwork for developing effective treatments for this phenotypic manifestation. In this review, we will discuss recent progress and future challenges in modeling DS-associated developmental cognitive disability in mice with an emphasis on hippocampus-related phenotypes. PMID:21865664

  9. Methods in Molecular Biology Mouse Genetics: Methods and Protocols | Center for Cancer Research

    Cancer.gov

    Mouse Genetics: Methods and Protocols provides selected mouse genetic techniques and their application in modeling varieties of human diseases. The chapters are mainly focused on the generation of different transgenic mice to accomplish the manipulation of genes of interest, tracing cell lineages, and modeling human diseases.

  10. Use of mouse models to study the mechanisms and consequences of RBC clearance

    PubMed Central

    Hod, E. A.; Arinsburg, S. A.; Francis, R. O.; Hendrickson, J. E.; Zimring, J. C.; Spitalnik, S. L.

    2013-01-01

    Mice provide tractable animal models for studying the pathophysiology of various human disorders. This review discusses the use of mouse models for understanding red-blood-cell (RBC) clearance. These models provide important insights into the pathophysiology of various clinically relevant entities, such as autoimmune haemolytic anaemia, haemolytic transfusion reactions, other complications of RBC transfusions and immunomodulation by Rh immune globulin therapy. Mouse models of both antibody- and non-antibody-mediated RBC clearance are reviewed. Approaches for exploring unanswered questions in transfusion medicine using these models are also discussed. PMID:20345515

  11. Generation Of A Mouse Model For Schwannomatosis

    DTIC Science & Technology

    2010-09-01

    TITLE: Generation of a Mouse Model for Schwannomatosis PRINCIPAL INVESTIGATOR: Long-Sheng Chang, Ph.D. CONTRACTING ORGANIZATION: The...Annual 3. DATES COVERED (From - To) 1 Sep 2009 - 31 Aug 2010 4. TITLE AND SUBTITLE Generation of a Mouse Model for Schwannomatosis 5a. CONTRACT...hypothesis involving inactivation of both the INI1/SNF5 and NF2 tumor suppressor genes in the formation of schwannomatosis -associated tumors. To

  12. Mouse Genome Database: From sequence to phenotypes and disease models

    PubMed Central

    Richardson, Joel E.; Kadin, James A.; Smith, Cynthia L.; Blake, Judith A.; Bult, Carol J.

    2015-01-01

    Summary The Mouse Genome Database (MGD, www.informatics.jax.org) is the international scientific database for genetic, genomic, and biological data on the laboratory mouse to support the research requirements of the biomedical community. To accomplish this goal, MGD provides broad data coverage, serves as the authoritative standard for mouse nomenclature for genes, mutants, and strains, and curates and integrates many types of data from literature and electronic sources. Among the key data sets MGD supports are: the complete catalog of mouse genes and genome features, comparative homology data for mouse and vertebrate genes, the authoritative set of Gene Ontology (GO) annotations for mouse gene functions, a comprehensive catalog of mouse mutations and their phenotypes, and a curated compendium of mouse models of human diseases. Here, we describe the data acquisition process, specifics about MGD's key data areas, methods to access and query MGD data, and outreach and user help facilities. genesis 53:458–473, 2015. © 2015 The Authors. Genesis Published by Wiley Periodicals, Inc. PMID:26150326

  13. Establishing a laboratory animal model from a transgenic animal: RasH2 mice as a model for carcinogenicity studies in regulatory science.

    PubMed

    Urano, K; Tamaoki, N; Nomura, T

    2012-01-01

    Transgenic animal models have been used in small numbers in gene function studies in vivo for a period of time, but more recently, the use of a single transgenic animal model has been approved as a second species, 6-month alternative (to the routine 2-year, 2-animal model) used in short-term carcinogenicity studies for generating regulatory application data of new drugs. This article addresses many of the issues associated with the creation and use of one of these transgenic models, the rasH2 mouse, for regulatory science. The discussion includes strategies for mass producing mice with the same stable phenotype, including constructing the transgene, choosing a founder mouse, and controlling both the transgene and background genes; strategies for developing the model for regulatory science, including measurements of carcinogen susceptibility, stability of a large-scale production system, and monitoring for uniform carcinogenicity responses; and finally, efficient use of the transgenic animal model on study. Approximately 20% of mouse carcinogenicity studies for new drug applications in the United States currently use transgenic models, typically the rasH2 mouse. The rasH2 mouse could contribute to animal welfare by reducing the numbers of animals used as well as reducing the cost of carcinogenicity studies. A better understanding of the advantages and disadvantages of the transgenic rasH2 mouse will result in greater and more efficient use of this animal model in the future.

  14. NCI Mouse Repository | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The NCI Mouse Repository is an NCI-funded resource for mouse cancer models and associated strains. The repository makes strains available to all members of the scientific community (academic, non-profit, and commercial). NCI Mouse Repository strains

  15. Therapeutic effects of autologous lymphocytes activated with trastuzumab for xenograft mouse models of human breast cancer.

    PubMed

    Nakagawa, Shinichiro; Matsuoka, Yusuke; Ichihara, Hideaki; Yoshida, Hitoji; Yoshida, Kenshi; Ueoka, Ryuichi

    2013-01-01

    Trastuzumab (TTZ) is molecular targeted drug used for metastatic breast cancer patients overexpressing human epidermal growth factor receptor 2 (HER2). Therapeutic effects of lymphocytes activated with TTZ (TTZ-LAK) using xenograft mouse models of human breast cancer (MDA-MB-453) cells were examined in vivo. Remarkable reduction of tumor volume in a xenograft mouse models intravenously treated with TTZ-LAK cells after the subcutaneously inoculated of MDA-MB-453 cells was verified in vivo. The migration of TTZ-LAK cells in tumor of mouse models subcutaneously inoculated MDA-MB-453 cells was observed on the basis of histological analysis using immunostaining with CD-3. Induction of apoptosis in tumor of xenograft mice treated with TTZ-LAK cells was observed in micrographs using terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) method. It was noteworthy that the therapeutic effects of TTZ-LAK cells along with apoptosis were obtained for xenograft mouse models of human breast tumor in vivo.

  16. Generation of a neuro-specific microarray reveals novel differentially expressed noncoding RNAs in mouse models for neurodegenerative diseases.

    PubMed

    Gstir, Ronald; Schafferer, Simon; Scheideler, Marcel; Misslinger, Matthias; Griehl, Matthias; Daschil, Nina; Humpel, Christian; Obermair, Gerald J; Schmuckermair, Claudia; Striessnig, Joerg; Flucher, Bernhard E; Hüttenhofer, Alexander

    2014-12-01

    We have generated a novel, neuro-specific ncRNA microarray, covering 1472 ncRNA species, to investigate their expression in different mouse models for central nervous system diseases. Thereby, we analyzed ncRNA expression in two mouse models with impaired calcium channel activity, implicated in Epilepsy or Parkinson's disease, respectively, as well as in a mouse model mimicking pathophysiological aspects of Alzheimer's disease. We identified well over a hundred differentially expressed ncRNAs, either from known classes of ncRNAs, such as miRNAs or snoRNAs or which represented entirely novel ncRNA species. Several differentially expressed ncRNAs in the calcium channel mouse models were assigned as miRNAs and target genes involved in calcium signaling, thus suggesting feedback regulation of miRNAs by calcium signaling. In the Alzheimer mouse model, we identified two snoRNAs, whose expression was deregulated prior to amyloid plaque formation. Interestingly, the presence of snoRNAs could be detected in cerebral spine fluid samples in humans, thus potentially serving as early diagnostic markers for Alzheimer's disease. In addition to known ncRNAs species, we also identified 63 differentially expressed, entirely novel ncRNA candidates, located in intronic or intergenic regions of the mouse genome, genomic locations, which previously have been shown to harbor the majority of functional ncRNAs. © 2014 Gstir et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  17. PDX-1 Is a Therapeutic Target for Pancreatic Cancer, Insulinoma and Islet Neoplasia Using a Novel RNA Interference Platform

    PubMed Central

    Liu, Shi-He; Rao, Donald D.; Nemunaitis, John; Senzer, Neil; Zhou, Guisheng; Dawson, David; Gingras, Marie-Claude; Wang, Zhaohui; Gibbs, Richard; Norman, Michael; Templeton, Nancy S.; DeMayo, Francesco J.; O'Malley, Bert; Sanchez, Robbi; Fisher, William E.; Brunicardi, F. Charles

    2012-01-01

    Pancreatic and duodenal homeobox-1 (PDX-1) is a transcription factor that regulates insulin expression and islet maintenance in the adult pancreas. Our recent studies demonstrate that PDX-1 is an oncogene for pancreatic cancer and is overexpressed in pancreatic cancer. The purpose of this study was to demonstrate that PDX-1 is a therapeutic target for both hormonal symptoms and tumor volume in mouse models of pancreatic cancer, insulinoma and islet neoplasia. Immunohistochemistry of human pancreatic and islet neoplasia specimens revealed marked PDX-1 overexpression, suggesting PDX-1 as a “drugable” target within these diseases. To do so, a novel RNA interference effector platform, bifunctional shRNAPDX-1, was developed and studied in mouse and human cell lines as well as in mouse models of pancreatic cancer, insulinoma and islet neoplasia. Systemic delivery of bi-shRNAhumanPDX-1 lipoplexes resulted in marked reduction of tumor volume and improved survival in a human pancreatic cancer xenograft mouse model. bi-shRNAmousePDX-1 lipoplexes prevented death from hyperinsulinemia and hypoglycemia in an insulinoma mouse model. shRNAmousePDX-1 lipoplexes reversed hyperinsulinemia and hypoglycemia in an immune-competent mouse model of islet neoplasia. PDX-1 was overexpressed in pancreatic neuroendocrine tumors and nesidioblastosis. These data demonstrate that PDX-1 RNAi therapy controls hormonal symptoms and tumor volume in mouse models of pancreatic cancer, insulinoma and islet neoplasia, therefore, PDX-1 is a potential therapeutic target for these pancreatic diseases. PMID:22905092

  18. Development and Characterization of a Mouse Model for Marburg Hemorrhagic Fever

    DTIC Science & Technology

    2009-07-01

    Microbiology. All Rights Reserved. Development and Characterization of a Mouse Model for Marburg Hemorrhagic Fever Kelly L. Warfield,* Steven B...mouse model has hampered an understanding of the pathogenesis and immunity of Marburg hemorrhagic fever (MHF), the disease caused by marburgvirus (MARV...cause severe hemorrhagic fevers in humans and non- human primates (27). The incubation time is estimated to be 3 to 21 days, with human case fatality

  19. Producing a Mouse Model to Explore the Linkages Between Tocopherol Biology and Prostate Cancer

    DTIC Science & Technology

    2005-07-01

    Edwards, Prostate cancer and supplementation with alpha-tocopherol and beta -carotene: incidence and mortality in a controlled trial. J Natl Cancer ...1-0153 TITLE: Producing a Mouse Model to Explore the Linkages Between Tocopherol Biology and Prostate Cancer ...TITLE AND SUBTITLE Producing a Mouse Model to Explore the Linkages Between Tocopherol 5a. CONTRACT NUMBER Biology and Prostate Cancer 5b. GRANT

  20. Synergistic Action of FOXP3 and TSC1 Pathways During Tumor Progression

    DTIC Science & Technology

    2015-10-01

    invasive carcinoma and, ultimately, metastatic disease [1-3]. Mouse models of PIN (mPIN) generated by a single- mutant gene in prostate do not progress...downstream target) is sufficient to significantly reduce the initiation of prostate cancer in the Pten conditional knockout mouse model [19-21...the possibility that these two genetic hits cooperate to promote tumor progression, and mouse models show that this cooperation accelerates

  1. Determination of cloxacillin residues in dairy cows after intramammary administration.

    PubMed

    Burmańczuk, A; Grabowski, T; Osypiuk, M; Polska, B; Kowalski, C

    2017-10-01

    The aim of this study was to perform a comparative analysis of the characteristics of cloxacillin (CLO) (MRL of withdrawal in bovine milk is 30 ng/g) after a single intramammary (IMM) dose in the dry period (DP) and lactation (LP), and to establish a high-performance liquid chromatography (HPLC) analytical method for CLO detection in milk. The research was conducted on a group of 10 cows in DP and 10 in LP. A single dose of 600 mg of CLO was administrated by the IMM route for a single quarter in DP and 500 mg for a single quarter in LP. CLO concentration was analyzed by HPLC. CLO was monitored at a wavelength of 206 nm. Pharmacokinetic calculations were performed using Phoenix ® WinNonlin ® 6.4 software. The calibration curve was linear over the range of 13.03-28 019.00 ng/g with the coefficient of determination R 2  > 0.999. CLO withdrawal in both the LP and DP group had a biphasic nature. The total CLO elimination in the DP and LP group was reached after 36 and 6.5 days, respectively. A quantitative and confirmatory method for the determination of CLO in fresh milk has been established. We have confirmed that the withdrawal of CLO in the DP group is not a linear process and has a stepwise character. © 2017 John Wiley & Sons Ltd.

  2. Measurement of Mitochondrial Cholesterol Import Using a Mitochondria-Targeted CYP11A1 Fusion Construct.

    PubMed

    Kennedy, Barry E; Charman, Mark; Karten, Barbara

    2017-01-01

    All animal membranes require cholesterol as an essential regulator of biophysical properties and function, but the levels of cholesterol vary widely among different subcellular compartments. Mitochondria, and in particular the inner mitochondrial membrane, have the lowest levels of cholesterol in the cell. Nevertheless, mitochondria need cholesterol for membrane maintenance and biogenesis, as well as oxysterol, steroid, and hepatic bile acid production. Alterations in mitochondrial cholesterol have been associated with a range of pathological conditions, including cancer, hepatosteatosis, cardiac ischemia, Alzheimer's, and Niemann-Pick Type C Disease. The mechanisms of mitochondrial cholesterol import are not fully elucidated yet, and may vary in different cell types and environmental conditions. Measuring cholesterol trafficking to the mitochondrial membranes is technically challenging because of its low abundance; for example, traditional pulse-chase experiments with isotope-labeled cholesterol are not feasible. Here, we describe improvements to a method first developed by the Miller group at the University of California to measure cholesterol trafficking to the inner mitochondrial membrane (IMM) through the conversion of cholesterol to pregnenolone. This method uses a mitochondria-targeted, ectopically expressed fusion construct of CYP11A1, ferredoxin reductase and ferredoxin. Pregnenolone is formed exclusively from cholesterol at the IMM, and can be analyzed with high sensitivity and specificity through ELISA or radioimmunoassay of the medium/buffer to reflect mitochondrial cholesterol import. This assay can be used to investigate the effects of genetic or pharmacological interventions on mitochondrial cholesterol import in cultured cells or isolated mitochondria.

  3. First in vivo assessment of "Outwalk": a novel protocol for clinical gait analysis based on inertial and magnetic sensors.

    PubMed

    Ferrari, Alberto; Cutti, Andrea Giovanni; Garofalo, Pietro; Raggi, Michele; Heijboer, Monique; Cappello, Angelo; Davalli, Angelo

    2010-01-01

    A protocol named "Outwalk" was recently proposed to measure the thorax-pelvis and lower-limb kinematics during gait in free-living conditions, by means of an inertial and magnetic measurement system (IMMS). The aim of this study was to validate Outwalk on four healthy subjects when it is used in combination with a specific IMMS (Xsens Technologies, NL), against a reference protocol (CAST) and measurement system (optoelectronic system; Vicon, Oxford Metrics Group, UK). For this purpose, we developed an original approach based on three tests, which allowed to separately investigate: (1) the consequences on joint kinematics of the differences between protocols (Outwalk vs. CAST), (2) the accuracy of the hardware (Xsens vs. Vicon), and (3) the summation of protocols' differences and hardware accuracy (Outwalk + Xsens vs. CAST + Vicon). In order to assess joint-angles similarity, the coefficient of multiple correlation (CMC) was used. For test 3, the CMC showed that Outwalk + Xsens and CAST + Vicon kinematics can be interchanged, offset included, for hip, knee and ankle flexion-extension, and hip ab-adduction (CMC > 0.88). The other joint-angles can be interchanged offset excluded (CMC > 0.85). Tests 1 and 2 also showed that differences in offset between joint-angles were predominantly induced by differences in the protocols; differences in correlation by both hardware and protocols; differences in range of motion by the Xsens accuracy. Results thus support the commencement of a clinical trial of Outwalk on transtibial amputees.

  4. Designing Mouse Behavioral Tasks Relevant to Autistic-Like Behaviors

    ERIC Educational Resources Information Center

    Crawley, Jacqueline N.

    2004-01-01

    The importance of genetic factors in autism has prompted the development of mutant mouse models to advance our understanding of biological mechanisms underlying autistic behaviors. Mouse models of human neuropsychiatric diseases are designed to optimize (1) face validity, i.e., resemblance to the human symptoms; (2) construct validity, i.e.,…

  5. Behavioral phenotypes of genetic mouse models of autism

    PubMed Central

    Kazdoba, T. M.; Leach, P. T.; Crawley, J. N.

    2016-01-01

    More than a hundred de novo single gene mutations and copy-number variants have been implicated in autism, each occurring in a small subset of cases. Mutant mouse models with syntenic mutations offer research tools to gain an understanding of the role of each gene in modulating biological and behavioral phenotypes relevant to autism. Knockout, knockin and transgenic mice incorporating risk gene mutations detected in autism spectrum disorder and comorbid neurodevelopmental disorders are now widely available. At present, autism spectrum disorder is diagnosed solely by behavioral criteria. We developed a constellation of mouse behavioral assays designed to maximize face validity to the types of social deficits and repetitive behaviors that are central to an autism diagnosis. Mouse behavioral assays for associated symptoms of autism, which include cognitive inflexibility, anxiety, hyperactivity, and unusual reactivity to sensory stimuli, are frequently included in the phenotypic analyses. Over the past 10 years, we and many other laboratories around the world have employed these and additional behavioral tests to phenotype a large number of mutant mouse models of autism. In this review, we highlight mouse models with mutations in genes that have been identified as risk genes for autism, which work through synaptic mechanisms and through the mTOR signaling pathway. Robust, replicated autism-relevant behavioral outcomes in a genetic mouse model lend credence to a causal role for specific gene contributions and downstream biological mechanisms in the etiology of autism. PMID:26403076

  6. Defining the role of polyamines in colon carcinogenesis using mouse models

    PubMed Central

    Ignatenko, Natalia A.; Gerner, Eugene W.; Besselsen, David G.

    2011-01-01

    Genetics and diet are both considered important risk determinants for colorectal cancer, a leading cause of death in the US and worldwide. Genetically engineered mouse (GEM) models have made a significant contribution to the characterization of colorectal cancer risk factors. Reliable, reproducible, and clinically relevant animal models help in the identification of the molecular events associated with disease progression and in the development of effictive treatment strategies. This review is focused on the use of mouse models for studying the role of polyamines in colon carcinogenesis. We describe how the available mouse models of colon cancer such as the multiple intestinal neoplasia (Min) mice and knockout genetic models facilitate understanding of the role of polyamines in colon carcinogenesis and help in the development of a rational strategy for colon cancer chemoprevention. PMID:21712957

  7. Targeting Cancer Protein Profiles with Split-Enzyme Reporter Fragments to Achieve Chemical Resolution for Molecular Imaging

    DTIC Science & Technology

    2013-08-01

    We next tested the utility of the construct to accumulate in tumors expressing EGFR using an orthotopic mouse model for brain tumors. Glioma cells...filament tumor marker, identified implanted cells within the orthotopic mouse model which were of human origin, i.e. Gli36Δ5 cells, and demonstrated that...forward into in vivo animal tumor model studies. • In vivo imaging of EGFR targeted-complex in orthotopic mouse model of brain tumor. • Ex vivo validation

  8. Genetically engineered mouse models of melanoma.

    PubMed

    Pérez-Guijarro, Eva; Day, Chi-Ping; Merlino, Glenn; Zaidi, M Raza

    2017-06-01

    Melanoma is a complex disease that exhibits highly heterogeneous etiological, histopathological, and genetic features, as well as therapeutic responses. Genetically engineered mouse (GEM) models provide powerful tools to unravel the molecular mechanisms critical for melanoma development and drug resistance. Here, we expound briefly the basis of the mouse modeling design, the available technology for genetic engineering, and the aspects influencing the use of GEMs to model melanoma. Furthermore, we describe in detail the currently available GEM models of melanoma. Cancer 2017;123:2089-103. © 2017 American Cancer Society. © 2017 American Cancer Society.

  9. CRISPR-Mediated Knockout of Cybb in NSG Mice Establishes a Model of Chronic Granulomatous Disease for Human Stem-Cell Gene Therapy Transplants.

    PubMed

    Sweeney, Colin L; Choi, Uimook; Liu, Chengyu; Koontz, Sherry; Ha, Seung-Kwon; Malech, Harry L

    2017-07-01

    Chronic granulomatous disease (CGD) is characterized by defects in the production of microbicidal reactive oxygen species (ROS) by phagocytes. Testing of gene and cell therapies for the treatment of CGD in human hematopoietic cells requires preclinical transplant models. The use of the lymphocyte-deficient NOD.Cg-Prkdc scid Il2rg tm1Wjl/ SzJ (NSG) mouse strain for human hematopoietic cell xenografts to test CGD therapies is complicated by the presence of functional mouse granulocytes capable of producing ROS for subsequent bacterial and fungal killing. To establish a phagocyte-defective mouse model of X-linked CGD (X-CGD) in NSG mice, clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 was utilized for targeted knockout of mouse Cybb on the X-chromosome by microinjection of NSG mouse zygotes with Cas9 mRNA and CRISPR single-guide RNA targeting Cybb exon 1 or exon 3. This resulted in a high incidence of indel formation at the CRISPR target site, with all mice exhibiting deletions in at least one Cybb allele based on sequence analysis of tail snip DNA. A female mouse heterozygous for a 235-bp deletion in Cybb exon 1 was bred to an NSG male to establish the X-CGD NSG mouse strain, NSG.Cybb[KO]. Resulting male offspring with the 235 bp deletion were found to be defective for production of ROS by neutrophils and other phagocytes, and demonstrated increased susceptibility to spontaneous bacterial and fungal infections with granulomatous inflammation. The establishment of the phagocyte-defective NSG.Cybb[KO] mouse model enables the in vivo assessment of gene and cell therapy strategies for treating CGD in human hematopoietic cell transplants without obfuscation by functional mouse phagocytes, and may also be useful for modeling other phagocyte disorders in humanized NSG mouse xenografts.

  10. Genetically engineered mouse models of craniopharyngioma: an opportunity for therapy development and understanding of tumor biology.

    PubMed

    Apps, John Richard; Martinez-Barbera, Juan Pedro

    2017-05-01

    Adamantinomatous craniopharyngioma (ACP) is the commonest tumor of the sellar region in childhood. Two genetically engineered mouse models have been developed and are giving valuable insights into ACP biology. These models have identified novel pathways activated in tumors, revealed an important function of paracrine signalling and extended conventional theories about the role of organ-specific stem cells in tumorigenesis. In this review, we summarize these mouse models, what has been learnt, their limitations and open questions for future research. We then discussed how these mouse models may be used to test novel therapeutics against potentially targetable pathways recently identified in human ACP. © 2017 The Authors. Brain Pathology published by John Wiley & Sons Ltd on behalf of International Society of Neuropathology.

  11. Compensatory Limb Use and Behavioral Assessment of Motor Skill Learning Following Sensorimotor Cortex Injury in a Mouse Model of Ischemic Stroke

    PubMed Central

    Kerr, Abigail L.; Tennant, Kelly A.

    2014-01-01

    Mouse models have become increasingly popular in the field of behavioral neuroscience, and specifically in studies of experimental stroke. As models advance, it is important to develop sensitive behavioral measures specific to the mouse. The present protocol describes a skilled motor task for use in mouse models of stroke. The Pasta Matrix Reaching Task functions as a versatile and sensitive behavioral assay that permits experimenters to collect accurate outcome data and manipulate limb use to mimic human clinical phenomena including compensatory strategies (i.e., learned non-use) and focused rehabilitative training. When combined with neuroanatomical tools, this task also permits researchers to explore the mechanisms that support behavioral recovery of function (or lack thereof) following stroke. The task is both simple and affordable to set up and conduct, offering a variety of training and testing options for numerous research questions concerning functional outcome following injury. Though the task has been applied to mouse models of stroke, it may also be beneficial in studies of functional outcome in other upper extremity injury models. PMID:25045916

  12. A comparison of some organizational characteristics of the mouse central retina and the human macula.

    PubMed

    Volland, Stefanie; Esteve-Rudd, Julian; Hoo, Juyea; Yee, Claudine; Williams, David S

    2015-01-01

    Mouse models have greatly assisted our understanding of retinal degenerations. However, the mouse retina does not have a macula, leading to the question of whether the mouse is a relevant model for macular degeneration. In the present study, a quantitative comparison between the organization of the central mouse retina and the human macula was made, focusing on some structural characteristics that have been suggested to be important in predisposing the macula to stresses leading to degeneration: photoreceptor density, phagocytic load on the RPE, and the relative thinness of Bruch's membrane. Light and electron microscopy measurements from retinas of two strains of mice, together with published data on human retinas, were used for calculations and subsequent comparisons. As in the human retina, the central region of the mouse retina possesses a higher photoreceptor cell density and a thinner Bruch's membrane than in the periphery; however, the magnitudes of these periphery to center gradients are larger in the human. Of potentially greater relevance is the actual photoreceptor cell density, which is much greater in the mouse central retina than in the human macula, underlying a higher phagocytic load for the mouse RPE. Moreover, at eccentricities that correspond to the peripheral half of the human macula, the rod to cone ratio is similar between mouse and human. Hence, with respect to photoreceptor density and phagocytic load of the RPE, the central mouse retina models at least the more peripheral part of the macula, where macular degeneration is often first evident.

  13. A Genetically Engineered Mouse Model of Neuroblastoma Driven by Mutated ALK and MYCN

    DTIC Science & Technology

    2014-09-01

    AWARD NUMBER: W81XWH-13-1-0220 TITLE: A Genetically Engineered Mouse Model of Neuroblastoma ...CONTRACT NUMBER A Genetically Engineered Mouse Model of Neuroblastoma Driven by Mutated ALK and MYCN 5b. GRANT NUMBER W81XWH-13-1-0220 5c...common ALK mutations in neuroblastoma , F1174L and R1275Q. We have determined that in tumors cells expressing mutated ALK, different downstream

  14. Developing Novel Therapeutic Approaches in Small Cell Lung Carcinoma Using Genetically Engineered Mouse Models and Human Circulating Tumor Cells

    DTIC Science & Technology

    2014-10-01

    AD_________________ Award Number: W81XWH-13-1-0325 TITLE: Developing Novel Therapeutic Approaches in Small Cell Lung Carcinoma Using ...Genetically Engineered Mouse Models and Human Circulating Tumor Cells PRINCIPAL INVESTIGATOR: Jeffrey Engelman MD PhD CONTRACTING ORGANIZATION ...Novel Therapeutic Approaches in Small Cell Lung 5a. CONTRACT NUMBER W81XWH-13-1-0325 Carcinoma Using Genetically Engineered Mouse Models and 5b

  15. Behavioural phenotyping assays for mouse models of autism

    PubMed Central

    Silverman, Jill L.; Yang, Mu; Lord, Catherine; Crawley, Jacqueline N.

    2011-01-01

    Autism is a heterogeneous neurodevelopmental disorder of unknown aetiology that affects 1 in 100–150 individuals. Diagnosis is based on three categories of behavioural criteria: abnormal social interactions, communication deficits and repetitive behaviours. Strong evidence for a genetic basis has prompted the development of mouse models with targeted mutations in candidate genes for autism. As the diagnostic criteria for autism are behavioural, phenotyping these mouse models requires behavioural assays with high relevance to each category of the diagnostic symptoms. Behavioural neuroscientists are generating a comprehensive set of assays for social interaction, communication and repetitive behaviours to test hypotheses about the causes of austism. Robust phenotypes in mouse models hold great promise as translational tools for discovering effective treatments for components of autism spectrum disorders. PMID:20559336

  16. A developmentally plastic adult mouse kidney cell line spontaneously generates multiple adult kidney structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webb, Carol F., E-mail: carol-webb@omrf.org; Immunobiology and Cancer Research, Oklahoma Medical Research Foundation, Oklahoma City, OK; Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK

    Despite exciting new possibilities for regenerative therapy posed by the ability to induce pluripotent stem cells, recapitulation of three-dimensional kidneys for repair or replacement has not been possible. ARID3a-deficient mouse tissues generated multipotent, developmentally plastic cells. Therefore, we assessed the adult mouse ARID3a−/− kidney cell line, KKPS5, which expresses renal progenitor surface markers as an alternative cell source for modeling kidney development. Remarkably, these cells spontaneously developed into multicellular nephron-like structures in vitro, and engrafted into immunocompromised medaka mesonephros, where they formed mouse nephron structures. These data implicate KKPS5 cells as a new model system for studying kidney development. - Highlights:more » • An ARID3a-deficient mouse kidney cell line expresses multiple progenitor markers. • This cell line spontaneously forms multiple nephron-like structures in vitro. • This cell line formed mouse kidney structures in immunocompromised medaka fish kidneys. • Our data identify a novel model system for studying kidney development.« less

  17. Mouse phenotyping.

    PubMed

    Fuchs, Helmut; Gailus-Durner, Valérie; Adler, Thure; Aguilar-Pimentel, Juan Antonio; Becker, Lore; Calzada-Wack, Julia; Da Silva-Buttkus, Patricia; Neff, Frauke; Götz, Alexander; Hans, Wolfgang; Hölter, Sabine M; Horsch, Marion; Kastenmüller, Gabi; Kemter, Elisabeth; Lengger, Christoph; Maier, Holger; Matloka, Mikolaj; Möller, Gabriele; Naton, Beatrix; Prehn, Cornelia; Puk, Oliver; Rácz, Ildikó; Rathkolb, Birgit; Römisch-Margl, Werner; Rozman, Jan; Wang-Sattler, Rui; Schrewe, Anja; Stöger, Claudia; Tost, Monica; Adamski, Jerzy; Aigner, Bernhard; Beckers, Johannes; Behrendt, Heidrun; Busch, Dirk H; Esposito, Irene; Graw, Jochen; Illig, Thomas; Ivandic, Boris; Klingenspor, Martin; Klopstock, Thomas; Kremmer, Elisabeth; Mempel, Martin; Neschen, Susanne; Ollert, Markus; Schulz, Holger; Suhre, Karsten; Wolf, Eckhard; Wurst, Wolfgang; Zimmer, Andreas; Hrabě de Angelis, Martin

    2011-02-01

    Model organisms like the mouse are important tools to learn more about gene function in man. Within the last 20 years many mutant mouse lines have been generated by different methods such as ENU mutagenesis, constitutive and conditional knock-out approaches, knock-down, introduction of human genes, and knock-in techniques, thus creating models which mimic human conditions. Due to pleiotropic effects, one gene may have different functions in different organ systems or time points during development. Therefore mutant mouse lines have to be phenotyped comprehensively in a highly standardized manner to enable the detection of phenotypes which might otherwise remain hidden. The German Mouse Clinic (GMC) has been established at the Helmholtz Zentrum München as a phenotyping platform with open access to the scientific community (www.mousclinic.de; [1]). The GMC is a member of the EUMODIC consortium which created the European standard workflow EMPReSSslim for the systemic phenotyping of mouse models (http://www.eumodic.org/[2]). Copyright © 2010 Elsevier Inc. All rights reserved.

  18. Human androgen deficiency: insights gained from androgen receptor knockout mouse models

    PubMed Central

    Rana, Kesha; Davey, Rachel A; Zajac, Jeffrey D

    2014-01-01

    The mechanism of androgen action is complex. Recently, significant advances have been made into our understanding of how androgens act via the androgen receptor (AR) through the use of genetically modified mouse models. A number of global and tissue-specific AR knockout (ARKO) models have been generated using the Cre-loxP system which allows tissue- and/or cell-specific deletion. These ARKO models have examined a number of sites of androgen action including the cardiovascular system, the immune and hemopoetic system, bone, muscle, adipose tissue, the prostate and the brain. This review focuses on the insights that have been gained into human androgen deficiency through the use of ARKO mouse models at each of these sites of action, and highlights the strengths and limitations of these Cre-loxP mouse models that should be considered to ensure accurate interpretation of the phenotype. PMID:24480924

  19. Modelling clinical systemic lupus erythematosus: similarities, differences and success stories

    PubMed Central

    Celhar, Teja

    2017-01-01

    Abstract Mouse models of SLE have been indispensable tools to study disease pathogenesis, to identify genetic susceptibility loci and targets for drug development, and for preclinical testing of novel therapeutics. Recent insights into immunological mechanisms of disease progression have boosted a revival in SLE drug development. Despite promising results in mouse studies, many novel drugs have failed to meet clinical end points. This is probably because of the complexity of the disease, which is driven by polygenic predisposition and diverse environmental factors, resulting in a heterogeneous clinical presentation. Each mouse model recapitulates limited aspects of lupus, especially in terms of the mechanism underlying disease progression. The main mouse models have been fairly successful for the evaluation of broad-acting immunosuppressants. However, the advent of targeted therapeutics calls for a selection of the most appropriate model(s) for testing and, ultimately, identification of patients who will be most likely to respond. PMID:28013204

  20. Mouse Models of Gastric Cancer

    PubMed Central

    Hayakawa, Yoku; Fox, James G.; Gonda, Tamas; Worthley, Daniel L.; Muthupalani, Sureshkumar; Wang, Timothy C.

    2013-01-01

    Animal models have greatly enriched our understanding of the molecular mechanisms of numerous types of cancers. Gastric cancer is one of the most common cancers worldwide, with a poor prognosis and high incidence of drug-resistance. However, most inbred strains of mice have proven resistant to gastric carcinogenesis. To establish useful models which mimic human gastric cancer phenotypes, investigators have utilized animals infected with Helicobacter species and treated with carcinogens. In addition, by exploiting genetic engineering, a variety of transgenic and knockout mouse models of gastric cancer have emerged, such as INS-GAS mice and TFF1 knockout mice. Investigators have used the combination of carcinogens and gene alteration to accelerate gastric cancer development, but rarely do mouse models show an aggressive and metastatic gastric cancer phenotype that could be relevant to preclinical studies, which may require more specific targeting of gastric progenitor cells. Here, we review current gastric carcinogenesis mouse models and provide our future perspectives on this field. PMID:24216700

  1. Phenotyping male infertility in the mouse: how to get the most out of a 'non-performer'.

    PubMed

    Borg, Claire L; Wolski, Katja M; Gibbs, Gerard M; O'Bryan, Moira K

    2010-01-01

    Functional male gametes are produced through complex processes that take place within the testis, epididymis and female reproductive tract. A breakdown at any of these phases can result in male infertility. The production of mutant mouse models often yields an unexpected male infertility phenotype. It is with this in mind that the current review has been written. The review aims to act as a guide to the 'non-reproductive biologist' to facilitate a systematic analysis of sterile or subfertile mice and to assist in extracting the maximum amount of information from each model. This is a review of the original literature on defects in the processes that take a mouse spermatogonial stem cell through to a fully functional spermatozoon, which result in male infertility. Based on literature searches and personal experience, we have outlined a step-by-step strategy for the analysis of an infertile male mouse line. A wide range of methods can be used to define the phenotype of an infertile male mouse. These methods range from histological methods such as electron microscopy and immunohistochemistry, to hormone analyses and methods to assess sperm maturation status and functional competence. With the increased rate of genetically modified mouse production, the generation of mouse models with unexpected male infertility is increasing. This manuscript will help to ensure that the maximum amount of information is obtained from each mouse model and, by extension, will facilitate the knowledge of both normal fertility processes and the causes of human infertility.

  2. Interactive Machine Learning at Scale with CHISSL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arendt, Dustin L.; Grace, Emily A.; Volkova, Svitlana

    We demonstrate CHISSL, a scalable client-server system for real-time interactive machine learning. Our system is capa- ble of incorporating user feedback incrementally and imme- diately without a structured or pre-defined prediction task. Computation is partitioned between a lightweight web-client and a heavyweight server. The server relies on representation learning and agglomerative clustering to learn a dendrogram, a hierarchical approximation of a representation space. The client uses only this dendrogram to incorporate user feedback into the model via transduction. Distances and predictions for each unlabeled instance are updated incrementally and deter- ministically, with O(n) space and time complexity. Our al- gorithmmore » is implemented in a functional prototype, designed to be easy to use by non-experts. The prototype organizes the large amounts of data into recommendations. This allows the user to interact with actual instances by dragging and drop- ping to provide feedback in an intuitive manner. We applied CHISSL to several domains including cyber, social media, and geo-temporal analysis.« less

  3. A surgical approach appropriate for targeted cochlear gene therapy in the mouse.

    PubMed

    Jero, J; Tseng, C J; Mhatre, A N; Lalwani, A K

    2001-01-01

    Therapeutic manipulations of the mammalian cochlea, including cochlear gene transfer, have been predominantly studied using the guinea pig as the experimental model. With the significant developments in mouse genomics and the availability of mutant strains of mice with well-characterized hearing loss, the mouse justifiably will be the preferred animal model for therapeutic manipulations. However, the potential advantages of the mouse model have not been fully realized due to the surgical difficulty of accessing its small cochlea. This study describes a ventral approach, instead of the routinely used postauricular approach in other rodents, for accessing the mouse middle and inner ear, and its application in cochlear gene transfer. This ventral approach enabled rapid and direct delivery of liposome-transgene complex to the mouse inner ear while avoiding blood loss, facial nerve morbidity, and mortality. Transgene expression at 3 days was detected in Reissner's membrane, spiral limbus, spiral ligament, and spiral ganglion cells, in a pattern similar to that previously described in the guinea pig. The successful access and delivery of material to the mouse cochlea and the replication of gene expression seen in the guinea pig demonstrated in this study should promote the use of the mouse in future studies investigating targeted cochlear therapy.

  4. Behavioral phenotypes of genetic mouse models of autism.

    PubMed

    Kazdoba, T M; Leach, P T; Crawley, J N

    2016-01-01

    More than a hundred de novo single gene mutations and copy-number variants have been implicated in autism, each occurring in a small subset of cases. Mutant mouse models with syntenic mutations offer research tools to gain an understanding of the role of each gene in modulating biological and behavioral phenotypes relevant to autism. Knockout, knockin and transgenic mice incorporating risk gene mutations detected in autism spectrum disorder and comorbid neurodevelopmental disorders are now widely available. At present, autism spectrum disorder is diagnosed solely by behavioral criteria. We developed a constellation of mouse behavioral assays designed to maximize face validity to the types of social deficits and repetitive behaviors that are central to an autism diagnosis. Mouse behavioral assays for associated symptoms of autism, which include cognitive inflexibility, anxiety, hyperactivity, and unusual reactivity to sensory stimuli, are frequently included in the phenotypic analyses. Over the past 10 years, we and many other laboratories around the world have employed these and additional behavioral tests to phenotype a large number of mutant mouse models of autism. In this review, we highlight mouse models with mutations in genes that have been identified as risk genes for autism, which work through synaptic mechanisms and through the mTOR signaling pathway. Robust, replicated autism-relevant behavioral outcomes in a genetic mouse model lend credence to a causal role for specific gene contributions and downstream biological mechanisms in the etiology of autism. © 2015 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  5. Using Genetic Mouse Models to Gain Insight into Glaucoma: Past Results and Future Possibilities

    PubMed Central

    Fernandes, Kimberly A.; Harder, Jeffrey M.; Williams, Pete A.; Rausch, Rebecca L.; Kiernan, Amy E.; Nair, K. Saidas; Anderson, Michael G.; John, Simon W.; Howell, Gareth R.; Libby, Richard T.

    2015-01-01

    While all forms of glaucoma are characterized by a specific pattern of retinal ganglion cell death, they are clinically divided into several distinct subclasses, including normal tension glaucoma, primary open angle glaucoma, congenital glaucoma, and secondary glaucoma. For each type of glaucoma there are likely numerous molecular pathways that control susceptibility to the disease. Given this complexity, a single animal model will never precisely model all aspects of all the different types of human glaucoma. Therefore, multiple animal models have been utilized to study glaucoma but more are needed. Because of the powerful genetic tools available to use in the laboratory mouse, it has proven to be a highly useful mammalian system for studying the pathophysiology of human disease. The similarity between human and mouse eyes coupled with the ability to use a combination of advanced cell biological and genetic tools in mice have led to a large increase in the number of studies using mice to model specific glaucoma phenotypes. Over the last decade, numerous new mouse models and genetic tools have emerged, providing important insight into the cell biology and genetics of glaucoma. In this review, we describe available mouse genetic models that can be used to study glaucoma-relevant disease/pathobiology. Furthermore, we discuss how these models have been used to gain insights into ocular hypertension (a major risk factor for glaucoma) and glaucomatous retinal ganglion cell death. Finally, the potential for developing new mouse models and using advanced genetic tools and resources for studying glaucoma are discussed. PMID:26116903

  6. Neurocognitive endophenotypes in CGG KI and Fmr1 KO mouse models of Fragile X-Associated disorders: an analysis of the state of the field

    PubMed Central

    Hunsaker, Michael R.

    2013-01-01

    It has become increasingly important that the field of behavioral genetics identifies not only the gross behavioral phenotypes associated with a given mutation, but also the behavioral endophenotypes that scale with the dosage of the particular mutation being studied. Over the past few years, studies evaluating the effects of the polymorphic CGG trinucleotide repeat on the FMR1 gene underlying Fragile X-Associated Disorders have reported preliminary evidence for a behavioral endophenotype in human Fragile X Premutation carrier populations as well as the CGG knock-in (KI) mouse model. More recently, the behavioral experiments used to test the CGG KI mouse model have been extended to the Fmr1 knock-out (KO) mouse model. When combined, these data provide compelling evidence for a clear neurocognitive endophenotype in the mouse models of Fragile X-Associated Disorders such that behavioral deficits scale predictably with genetic dosage. Similarly, it appears that the CGG KI mouse effectively models the histopathology in Fragile X-Associated Disorders across CGG repeats well into the full mutation range, resulting in a reliable histopathological endophenotype. These endophenotypes may influence future research directions into treatment strategies for not only Fragile X Syndrome, but also the Fragile X Premutation and Fragile X-Associated Tremor/Ataxia Syndrome (FXTAS). PMID:24627796

  7. Long non-coding RNA expression patterns in lung tissues of chronic cigarette smoke induced COPD mouse model.

    PubMed

    Zhang, Haiyun; Sun, Dejun; Li, Defu; Zheng, Zeguang; Xu, Jingyi; Liang, Xue; Zhang, Chenting; Wang, Sheng; Wang, Jian; Lu, Wenju

    2018-05-15

    Long non-coding RNAs (lncRNAs) have critical regulatory roles in protein-coding gene expression. Aberrant expression profiles of lncRNAs have been observed in various human diseases. In this study, we investigated transcriptome profiles in lung tissues of chronic cigarette smoke (CS)-induced COPD mouse model. We found that 109 lncRNAs and 260 mRNAs were significantly differential expressed in lungs of chronic CS-induced COPD mouse model compared with control animals. GO and KEGG analyses indicated that differentially expressed lncRNAs associated protein-coding genes were mainly involved in protein processing of endoplasmic reticulum pathway, and taurine and hypotaurine metabolism pathway. The combination of high throughput data analysis and the results of qRT-PCR validation in lungs of chronic CS-induced COPD mouse model, 16HBE cells with CSE treatment and PBMC from patients with COPD revealed that NR_102714 and its associated protein-coding gene UCHL1 might be involved in the development of COPD both in mouse and human. In conclusion, our study demonstrated that aberrant expression profiles of lncRNAs and mRNAs existed in lungs of chronic CS-induced COPD mouse model. From animal models perspective, these results might provide further clues to investigate biological functions of lncRNAs and their potential target protein-coding genes in the pathogenesis of COPD.

  8. Boundary Layer Structure and Its Relation to Precipitation Over the St. Louis Area.

    DTIC Science & Technology

    1980-10-01

    of METEORO LOGY SECTION 0i{1J ( 0I~) AT THE mp UNI VERSITY OV ILLINOIS0 SMISContract Report 241 T - BOUNDARY LAYER STRUCTURE AND ITS RELATION TO...PRECIPITATION OVER THE ST. LOUIS AREA Gary L. Achtemeier Meteorology Section Ill1inois State Water &uIvey, DTII CLeELEC T E C.> JAN 15 1981( Technical...in f r ’TNil PA&F rlhImm Does Rnteredl 𔄃. -. , .’.-..,. -.- -/" . ECumITYv CLASSFICATIOW Of TH t PAGE(Wfhn Date Entr,.e) 15529. 4-GS ?0. ABSTRACT

  9. Modeling bladder cancer in mice: opportunities and challenges

    PubMed Central

    Kobayashi, Takashi; Owczarek, Tomasz B.; McKiernan, James M.; Abate-Shen, Cory

    2015-01-01

    The prognosis and treatment of bladder cancer have hardly improved in the last 20 years. Bladder cancer remains a debilitating and often fatal disease, and among the most costly cancers to treat. The generation of informative mouse models has the potential to improve our understanding of bladder cancer progression, as well as impact its diagnosis and treatment. However, relatively few mouse models of bladder cancer have been described and particularly few that develop invasive cancer phenotypes. This review focuses on opportunities for improving the landscape of mouse models of bladder cancer. PMID:25533675

  10. Development and function of human innate immune cells in a humanized mouse model.

    PubMed

    Rongvaux, Anthony; Willinger, Tim; Martinek, Jan; Strowig, Till; Gearty, Sofia V; Teichmann, Lino L; Saito, Yasuyuki; Marches, Florentina; Halene, Stephanie; Palucka, A Karolina; Manz, Markus G; Flavell, Richard A

    2014-04-01

    Mice repopulated with human hematopoietic cells are a powerful tool for the study of human hematopoiesis and immune function in vivo. However, existing humanized mouse models cannot support development of human innate immune cells, including myeloid cells and natural killer (NK) cells. Here we describe two mouse strains called MITRG and MISTRG, in which human versions of four genes encoding cytokines important for innate immune cell development are knocked into their respective mouse loci. The human cytokines support the development and function of monocytes, macrophages and NK cells derived from human fetal liver or adult CD34(+) progenitor cells injected into the mice. Human macrophages infiltrated a human tumor xenograft in MITRG and MISTRG mice in a manner resembling that observed in tumors obtained from human patients. This humanized mouse model may be used to model the human immune system in scenarios of health and pathology, and may enable evaluation of therapeutic candidates in an in vivo setting relevant to human physiology.

  11. Development and function of human innate immune cells in a humanized mouse model

    PubMed Central

    Rongvaux, Anthony; Willinger, Tim; Martinek, Jan; Strowig, Till; Gearty, Sofia V.; Teichmann, Lino L.; Saito, Yasuyuki; Marches, Florentina; Halene, Stephanie; Palucka, A. Karolina; Manz, Markus G.; Flavell, Richard A.

    2014-01-01

    Mice repopulated with human hematopoietic cells are a powerful tool for the study of human hematopoiesis and immune function in vivo. However, existing humanized mouse models are unable to support development of human innate immune cells, including myeloid cells and NK cells. Here we describe a mouse strain, called MI(S)TRG, in which human versions of four genes encoding cytokines important for innate immune cell development are knocked in to their respective mouse loci. The human cytokines support the development and function of monocytes/macrophages and natural killer cells derived from human fetal liver or adult CD34+ progenitor cells injected into the mice. Human macrophages infiltrated a human tumor xenograft in MI(S)TRG mice in a manner resembling that observed in tumors obtained from human patients. This humanized mouse model may be used to model the human immune system in scenarios of health and pathology, and may enable evaluation of therapeutic candidates in an in vivo setting relevant to human physiology. PMID:24633240

  12. Effect of electroacupuncture on brain-derived neurotrophic factor mRNA expression in mouse hippocampus following cerebral ischemia-reperfusion injury.

    PubMed

    Zhao, Jianxin; Xu, Huazhou; Tian, Yuanxiang; Hu, Manxiang; Xiao, Hongling

    2013-04-01

    This work aims to observe the effects of electroacupuncture on brain-derived neurotrophic factor (BDNF) mRNA expression in mouse hippocampus following cerebral ischemia-reperfusion injury. The models of mouse cerebral ischemia-reperfusion injury were established. A total of 96 healthy mice were randomly assigned into 4 groups, namely, the sham surgery, model, model + electroacupuncture, and mode + hydergine groups. Mice in the model + electroacupuncture group were treated through electroacupuncture at the Shenshu (BL 23), Geshu (BL 17), and Baihui (GV 20) acupoints. Mice in the model+hydergine group were intragastrically administered with hydergine (0.77 mg/kg(-1) x day(-1)). The levels of BDNF mRNA expressions in the hippocampus were ana lyzed through a semi-quantitative reverse transcription-polymerase chain reaction assay on days 1 and 7 after the surgeries. BDNF mRNA expressions in the mouse hippocampus of the model group on days 1 and 7 after the surgery were higher than those of the sham surgery group (both P < 0.01). On days 1 and 7 of the electroacupuncture treatment, BDNF mRNA expression in the mouse hippocampus of the model + electroacupuncture group was significantly elevated compared with the model group (both P < 0.01) or the model + hydergine group (both P < 0.01). On days 1 and 7 of the hydergine treatment, BDNF mRNA expression in the mouse hippocampus of the model + hydergine group tended to increase compared with the model group; however, statistical significance was not achieved (both P > 0.05). Electroacupuncture treatment enhances endogenous BDNF expression, which may improve the survival environment for intracerebral neurons and inhibit the apoptosis of hippocampal cells.

  13. Intramyocardial Injection of siRNAs Can Efficiently Establish Myocardial Tissue-Specific Renalase Knockdown Mouse Model.

    PubMed

    Huang, Kun; Liu, Ju; Zhang, Hui; Wang, Jiliang; Li, Huili

    2016-01-01

    Ischaemia/reperfusion (I/R) injury will cause additional death of cardiomyocytes in ischaemic heart disease. Recent studies revealed that renalase was involved in the I/R injury. So, the myocardial tissue-specific knockdown mouse models were needed for the investigations of renalase. To establish the mouse models, intramyocardial injection of siRNAs targeting renalase was performed in mice. The wild distribution and high transfection efficiency of the siRNAs were approved. And the renalase expression was efficiently suppressed in myocardial tissue. Compared with the high cost, time consumption, and genetic compensation risk of the Cre/loxP technology, RNA interference (RNAi) technology is much cheaper and less time-consuming. Among the RNAi technologies, injection of siRNAs is safer than virus. And considering the properties of the I/R injury mouse models, the efficiency and durability of injection with siRNAs are acceptable for the studies. Altogether, intramyocardial injection of siRNAs targeting renalase is an economical, safe, and efficient method to establish myocardial tissue-specific renalase knockdown mouse models.

  14. Improvements and Limitations of Humanized Mouse Models for HIV Research: NIH/NIAID "Meet the Experts" 2015 Workshop Summary.

    PubMed

    Akkina, Ramesh; Allam, Atef; Balazs, Alejandro B; Blankson, Joel N; Burnett, John C; Casares, Sofia; Garcia, J Victor; Hasenkrug, Kim J; Kashanchi, Fatah; Kitchen, Scott G; Klein, Florian; Kumar, Priti; Luster, Andrew D; Poluektova, Larisa Y; Rao, Mangala; Sanders-Beer, Brigitte E; Shultz, Leonard D; Zack, Jerome A

    2016-02-01

    The number of humanized mouse models for the human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome (AIDS) and other infectious diseases has expanded rapidly over the past 8 years. Highly immunodeficient mouse strains, such as NOD/SCID/gamma chain(null) (NSG, NOG), support better human hematopoietic cell engraftment. Another improvement is the derivation of highly immunodeficient mice, transgenic with human leukocyte antigens (HLAs) and cytokines that supported development of HLA-restricted human T cells and heightened human myeloid cell engraftment. Humanized mice are also used to study the HIV reservoir using new imaging techniques. Despite these advances, there are still limitations in HIV immune responses and deficits in lymphoid structures in these models in addition to xenogeneic graft-versus-host responses. To understand and disseminate the improvements and limitations of humanized mouse models to the scientific community, the NIH sponsored and convened a meeting on April 15, 2015 to discuss the state of knowledge concerning these questions and best practices for selecting a humanized mouse model for a particular scientific investigation. This report summarizes the findings of the NIH meeting.

  15. Oral recombinant human or mouse lactoferrin reduces Mycobacterium tuberculosis TDM induced granulomatous lung pathology.

    PubMed

    Hwang, Shen-An; Kruzel, Marian L; Actor, Jeffrey K

    2017-02-01

    Trehalose 6'6-dimycolate (TDM) is the most abundant glycolipid on the cell wall of Mycobacterium tuberculosis (MTB). TDM is capable of inducing granulomatous pathology in mouse models that resembles those induced by MTB infection. Using the acute TDM model, this work investigates the effect of recombinant human and mouse lactoferrin to reduce granulomatous pathology. C57BL/6 mice were injected intravenously with TDM at a dose of 25 μg·mouse -1 . At day 4 and 6, recombinant human or mouse lactoferrin (1 mg·(100 μL) -1 ·mouse -1 ) were delivered by gavage. At day 7 after TDM injection, mice were evaluated for lung pathology, cytokine production, and leukocyte populations. Mice given human or mouse lactoferrin had reduced production of IL-12p40 in their lungs. Mouse lactoferrin increased IL-6 and KC (CXCL1) in lung tissue. Increased numbers of macrophages were observed in TDM-injected mice given human or mouse lactoferrin. Granulomatous pathology, composed of mainly migrated leukocytes, was visually reduced in mice that received human or mouse lactoferrin. Quantitation of granulomatous pathology demonstrated a significant decrease in mice given human or mouse lactoferrin compared with TDM control mice. This report is the first to directly compare the immune modulatory effects of both heterologous recombinant human and homologous mouse lactoferrin on the development of TDM-induced granulomas.

  16. Mouse neuroblastoma cell-based model and the effect of epileptic events on calcium oscillations and neural spikes

    NASA Astrophysics Data System (ADS)

    Kim, Suhwan; Jung, Unsang; Baek, Juyoung; Lee, Sangwon; Jung, Woonggyu; Kim, Jeehyun; Kang, Shinwon

    2013-01-01

    Recently, mouse neuroblastoma cells have been considered as an attractive model for the study of human neurological and prion diseases, and they have been intensively used as a model system in different areas. For example, the differentiation of neuro2a (N2A) cells, receptor-mediated ion current, and glutamate-induced physiological responses have been actively investigated with these cells. These mouse neuroblastoma N2A cells are of interest because they grow faster than other cells of neural origin and have a number of other advantages. The calcium oscillations and neural spikes of mouse neuroblastoma N2A cells in epileptic conditions are evaluated. Based on our observations of neural spikes in these cells with our proposed imaging modality, we reported that they can be an important model in epileptic activity studies. We concluded that mouse neuroblastoma N2A cells produce epileptic spikes in vitro in the same way as those produced by neurons or astrocytes. This evidence suggests that increased levels of neurotransmitter release due to the enhancement of free calcium from 4-aminopyridine causes the mouse neuroblastoma N2A cells to produce epileptic spikes and calcium oscillations.

  17. High-fertility phenotypes: two outbred mouse models exhibit substantially different molecular and physiological strategies warranting improved fertility.

    PubMed

    Langhammer, Martina; Michaelis, Marten; Hoeflich, Andreas; Sobczak, Alexander; Schoen, Jennifer; Weitzel, Joachim M

    2014-01-01

    Animal models are valuable tools in fertility research. Worldwide, there are more than 400 transgenic or knockout mouse models available showing a reproductive phenotype; almost all of them exhibit an infertile or at least subfertile phenotype. By contrast, animal models revealing an improved fertility phenotype are barely described. This article summarizes data on two outbred mouse models exhibiting a 'high-fertility' phenotype. These mouse lines were generated via selection over a time period of more than 40 years and 161 generations. During this selection period, the number of offspring per litter and the total birth weight of the entire litter nearly doubled. Concomitantly with the increased fertility phenotype, several endocrine parameters (e.g. serum testosterone concentrations in male animals), physiological parameters (e.g. body weight, accelerated puberty, and life expectancy), and behavioral parameters (e.g. behavior in an open field and endurance fitness on a treadmill) were altered. We demonstrate that the two independently bred high-fertility mouse lines warranted their improved fertility phenotype using different molecular and physiological strategies. The fertility lines display female- as well as male-specific characteristics. These genetically heterogeneous mouse models provide new insights into molecular and cellular mechanisms that enhance fertility. In view of decreasing fertility in men, these models will therefore be a precious information source for human reproductive medicine. Translated abstract A German translation of abstract is freely available at http://www.reproduction-online.org/content/147/4/427/suppl/DC1.

  18. Ultrasonic vocalizations: a tool for behavioural phenotyping of mouse models of neurodevelopmental disorders

    PubMed Central

    Scattoni, Maria Luisa; Crawley, Jacqueline; Ricceri, Laura

    2009-01-01

    In neonatal mice ultrasonic vocalizations have been studied both as an early communicative behavior of the pup-mother dyad and as a sign of an aversive affective state. Adult mice of both sexes produce complex ultrasonic vocalization patterns in different experimental/social contexts. All these vocalizations are becoming an increasingly valuable assay for behavioral phenotyping throughout the mouse life-span and alterations of the ultrasound patterns have been reported in several mouse models of neurodevelopmental disorders. Here we also show that the modulation of vocalizations by maternal cues (maternal potentiation paradigm) – originally identified and investigated in rats - can be measured in C57Bl/6 mouse pups with appropriate modifications of the rat protocol and can likely be applied to mouse behavioral phenotyping. In addition we suggest that a detailed qualitative evaluation of neonatal calls together with analysis of adult mouse vocalization patterns in both sexes in social settings, may lead to a greater understanding of the communication value of vocalizations in mice. Importantly, both neonatal and adult USV altered patterns can be determined during the behavioural phenotyping of mouse models of human neurodevelopmental and neuropsychiatric disorders, starting from those in which deficits in communication are a primary symptom. PMID:18771687

  19. A Comparison of Some Organizational Characteristics of the Mouse Central Retina and the Human Macula

    PubMed Central

    Hoo, Juyea; Yee, Claudine; Williams, David S.

    2015-01-01

    Mouse models have greatly assisted our understanding of retinal degenerations. However, the mouse retina does not have a macula, leading to the question of whether the mouse is a relevant model for macular degeneration. In the present study, a quantitative comparison between the organization of the central mouse retina and the human macula was made, focusing on some structural characteristics that have been suggested to be important in predisposing the macula to stresses leading to degeneration: photoreceptor density, phagocytic load on the RPE, and the relative thinness of Bruch’s membrane. Light and electron microscopy measurements from retinas of two strains of mice, together with published data on human retinas, were used for calculations and subsequent comparisons. As in the human retina, the central region of the mouse retina possesses a higher photoreceptor cell density and a thinner Bruch’s membrane than in the periphery; however, the magnitudes of these periphery to center gradients are larger in the human. Of potentially greater relevance is the actual photoreceptor cell density, which is much greater in the mouse central retina than in the human macula, underlying a higher phagocytic load for the mouse RPE. Moreover, at eccentricities that correspond to the peripheral half of the human macula, the rod to cone ratio is similar between mouse and human. Hence, with respect to photoreceptor density and phagocytic load of the RPE, the central mouse retina models at least the more peripheral part of the macula, where macular degeneration is often first evident. PMID:25923208

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Ying; Adachi, Hiroaki, E-mail: hadachi-ns@umin.org; Department of Neurology, University of Occupational and Environmental Health School of Medicine, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu 807-8555

    Spinal and bulbar muscular atrophy (SBMA) is an inherited motor neuron disease caused by the expansion of a polyglutamine (polyQ)-encoding tract within the androgen receptor (AR) gene. The pathologic features of SBMA are motor neuron loss in the spinal cord and brainstem and diffuse nuclear accumulation and nuclear inclusions of mutant AR in residual motor neurons and certain visceral organs. Hepatocyte growth factor (HGF) is a polypeptide growth factor which has neuroprotective properties. To investigate whether HGF overexpression can affect disease progression in a mouse model of SBMA, we crossed SBMA transgenic model mice expressing an AR gene with anmore » expanded CAG repeat with mice overexpressing HGF. Here, we report that high expression of HGF induces Akt phosphorylation and modestly ameliorated motor symptoms in an SBMA transgenic mouse model treated with or without castration. These findings suggest that HGF overexpression can provide a potential therapeutic avenue as a combination therapy with disease-modifying therapies in SBMA. - Highlights: • HGF overexpression ameliorates the motor phenotypes of the SBMA mouse model. • HGF overexpression induces Akt phosphorylation in the SBMA mouse model. • This is the first report of combination therapy in a mouse model of polyQ diseases.« less

  1. Defining the optimal animal model for translational research using gene set enrichment analysis.

    PubMed

    Weidner, Christopher; Steinfath, Matthias; Opitz, Elisa; Oelgeschläger, Michael; Schönfelder, Gilbert

    2016-08-01

    The mouse is the main model organism used to study the functions of human genes because most biological processes in the mouse are highly conserved in humans. Recent reports that compared identical transcriptomic datasets of human inflammatory diseases with datasets from mouse models using traditional gene-to-gene comparison techniques resulted in contradictory conclusions regarding the relevance of animal models for translational research. To reduce susceptibility to biased interpretation, all genes of interest for the biological question under investigation should be considered. Thus, standardized approaches for systematic data analysis are needed. We analyzed the same datasets using gene set enrichment analysis focusing on pathways assigned to inflammatory processes in either humans or mice. The analyses revealed a moderate overlap between all human and mouse datasets, with average positive and negative predictive values of 48 and 57% significant correlations. Subgroups of the septic mouse models (i.e., Staphylococcus aureus injection) correlated very well with most human studies. These findings support the applicability of targeted strategies to identify the optimal animal model and protocol to improve the success of translational research. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  2. Transgenic and gene knockout mice in gastric cancer research

    PubMed Central

    Jiang, Yannan; Yu, Yingyan

    2017-01-01

    Mouse models are useful tool for carcinogenic study. They will greatly enrich the understanding of pathogenesis and molecular mechanisms for gastric cancer. However, only few of mice could develop gastric cancer spontaneously. With the development and improvement of gene transfer technology, investigators created a variety of transgenic and knockout/knockin mouse models of gastric cancer, such as INS-GAS mice and gastrin knockout mice. Combined with helicobacter infection and carcinogens treatment, these transgenic/knockout/knockin mice developed precancerous or cancerous lesions, which are proper for gene function study or experimental therapy. Here we review the progression of genetically engineered mouse models on gastric cancer research, and emphasize the effects of chemical carcinogens or infectious factors on carcinogenesis of genetically modified mouse. We also emphasize the histological examination on mouse stomach. We expect to provide researchers with some inspirations on this field. PMID:27713138

  3. A Mouse Model to Investigate Postmenopausal Biology as an Etiology of Ovarian Cancer Risk

    DTIC Science & Technology

    2006-11-01

    Wv mice and genetic alterations such as p53, pten, or p27kip1, which are found in human ovarian cancer. 2. Body: Research Progress In the first year...press (Yang et al., Am. J. Pathology 2007). To collaborate with the mouse model study, we have also examined human ovaries obtained from prophylactic...results in the coming years. Xu, Xiangxi, Ph.D. 8 3. Key Research Accomplishments (1) Further verify the relevance of the Wv mouse model to human

  4. The Oncogenic Role of RhoGAPs in Basal-Like Breast Cancer

    DTIC Science & Technology

    2015-02-01

    cell lines, and mouse models . c) In vivo tumorigenesis and metastasis assays. Milestones: Identify whether ArhGAP11A and RacGAP1 can promote tumor growth...also upregulated in basal (C3(I)-Tag) but not luminal (MMTV-Neu) genetically- engineered mouse models (Fig. 1B). At the protein level, RacGAP1 was...hypothesis that these RhoGAPs are indeed playing an oncogenic role in these cells. Human Tumors Mouse Model Tumors Normal Luminal A Basal-like Normal

  5. A Physiologically Based Kinetic Model of Rat and Mouse Gestation: Disposition of a Weak Acid

    EPA Science Inventory

    A physiologically based toxicokinetic model of gestation in the rat mouse has been developed. The model is superimposed on the normal growth curve for nonpregnant females. It describes the entire gestation period including organogenesis. The model consists of uterus, mammary tiss...

  6. Priceless GEMMs: genetically engineered mouse models for colorectal cancer drug development.

    PubMed

    Roper, Jatin; Hung, Kenneth E

    2012-08-01

    To establish effective drug development for colorectal cancer (CRC), preclinical models that are robust surrogates for human disease are crucial. Mouse models are an attractive platform because of their relatively low cost, short life span, and ease of use. There are two main categories of mouse CRC models: xenografts derived from implantation of CRC cells or tumors in immunodeficient mice; and genetically engineered mouse models (GEMMs) derived from modification of human cancer predisposition genes, resulting in spontaneous tumor formation. Here, we review xenografts and GEMMs and focus on their potential application in translational research. Furthermore, we describe newer GEMMs for sporadic CRC that are particularly suitable for drug testing. Finally, we discuss recent advances in small-animal imaging, such as optical colonoscopy, which allow in vivo assessment of tumors. With the increasing sophistication of GEMMs, our preclinical armamentarium provides new hope for the ongoing war against CRC. Copyright © 2012. Published by Elsevier Ltd.

  7. A Genetically Engineered Mouse Model of Sporadic Colorectal Cancer.

    PubMed

    Betzler, Alexander M; Kochall, Susan; Blickensdörfer, Linda; Garcia, Sebastian A; Thepkaysone, May-Linn; Nanduri, Lahiri K; Muders, Michael H; Weitz, Jürgen; Reissfelder, Christoph; Schölch, Sebastian

    2017-07-06

    Despite the advantages of easy applicability and cost-effectiveness, colorectal cancer mouse models based on tumor cell injection have severe limitations and do not accurately simulate tumor biology and tumor cell dissemination. Genetically engineered mouse models have been introduced to overcome these limitations; however, such models are technically demanding, especially in large organs such as the colon in which only a single tumor is desired. As a result, an immunocompetent, genetically engineered mouse model of colorectal cancer was developed which develops highly uniform tumors and can be used for tumor biology studies as well as therapeutic trials. Tumor development is initiated by surgical, segmental infection of the distal colon with adeno-cre virus in compound conditionally mutant mice. The tumors can be easily detected and monitored via colonoscopy. We here describe the surgical technique of segmental adeno-cre infection of the colon, the surveillance of the tumor via high-resolution colonoscopy and present the resulting colorectal tumors.

  8. Absence of Prenatal Forebrain Defects in the Dp(16)1Yey/+ Mouse Model of Down Syndrome

    PubMed Central

    Goodliffe, Joseph W.; Olmos-Serrano, Jose Luis; Aziz, Nadine M.; Pennings, Jeroen L.A.; Guedj, Faycal; Bianchi, Diana W.

    2016-01-01

    Studies in humans with Down syndrome (DS) show that alterations in fetal brain development are followed by postnatal deficits in neuronal numbers, synaptic plasticity, and cognitive and motor function. This same progression is replicated in several mouse models of DS. Dp(16)1Yey/+ (hereafter called Dp16) is a recently developed mouse model of DS in which the entire region of mouse chromosome 16 that is homologous to human chromosome 21 has been triplicated. As such, Dp16 mice may more closely reproduce neurodevelopmental changes occurring in humans with DS. Here, we present the first comprehensive cellular and behavioral study of the Dp16 forebrain from embryonic to adult stages. Unexpectedly, our results demonstrate that Dp16 mice do not have prenatal brain defects previously reported in human fetal neocortex and in the developing forebrains of other mouse models, including microcephaly, reduced neurogenesis, and abnormal cell proliferation. Nevertheless, we found impairments in postnatal developmental milestones, fewer inhibitory forebrain neurons, and deficits in motor and cognitive performance in Dp16 mice. Therefore, although this new model does not express prenatal morphological phenotypes associated with DS, abnormalities in the postnatal period appear sufficient to produce significant cognitive deficits in Dp16. SIGNIFICANCE STATEMENT Down syndrome (DS) leads to intellectual disability. Several mouse models have increased our understanding of the neuropathology of DS and are currently being used to test therapeutic strategies. A new mouse model that contains an expanded number of DS-related genes, known as Dp(16)1Yey/+ (Dp16), has been generated recently. We sought to determine whether the extended triplication creates a better phenocopy of DS-related brain pathologies. We measured embryonic development, forebrain maturation, and perinatal/adult behavior and revealed an absence of prenatal phenotypes in Dp16 fetal brain, but specific cellular and behavioral deficits after the first 2 postnatal weeks. These results uncover important differences in prenatal phenotype between Dp16 animals and humans with DS and other DS mouse models. PMID:26961948

  9. Use of a highly sensitive strand-specific quantitative PCR to identify abortive replication in the mouse model of respiratory syncytial virus disease

    PubMed Central

    2010-01-01

    Background The BALB/c mouse is commonly used to study RSV infection and disease. However, despite the many advantages of this well-characterised model, the inoculum is large, viral replication is restricted and only a very small amount of virus can be recovered from infected animals. A key question in this model is the fate of the administered virus. Is replication really being measured or is the model measuring the survival of the virus over time? To answer these questions we developed a highly sensitive strand-specific quantitative PCR (QPCR) able to accurately quantify the amount of RSV replication in the BALB/c mouse lung, allowing characterisation of RSV negative and positive strand RNA dynamics. Results In the mouse lung, no increase in RSV genome was seen above the background of the original inoculum whilst only a limited transient increase (< 1 log) in positive strand, replicative intermediate (RI) RNA occurred. This RNA did however persist at detectable levels for 59 days post infection. As expected, ribavirin therapy reduced levels of infectious virus and RI RNA in the mouse lung. However, whilst Palivizumab therapy was also able to reduce levels of infectious virus, it failed to prevent production of intracellular RI RNA. A comparison of RSV RNA kinetics in human (A549) and mouse (KLN205) cell lines demonstrated that RSV replication was also severely delayed and impaired in vitro in the mouse cells. Conclusions This is the first time that such a sensitive strand-specific QPCR technique has been to the RSV mouse system. We have accurately quantified the restricted and abortive nature of RSV replication in the mouse. Further in vitro studies in human and mouse cells suggest this restricted replication is due at least in part to species-specific host cell-viral interactions. PMID:20860795

  10. Establishment of mouse neuron and microglial cell co-cultured models and its action mechanism.

    PubMed

    Zhang, Bo; Yang, Yunfeng; Tang, Jun; Tao, Yihao; Jiang, Bing; Chen, Zhi; Feng, Hua; Yang, Liming; Zhu, Gang

    2017-06-27

    The objective of this study is to establish a co-culture model of mouse neurons and microglial cells, and to analyze the mechanism of action of oxygen glucose deprivation (OGD) and transient oxygen glucose deprivation (tOGD) preconditioning cell models. Mouse primary neurons and BV2 microglial cells were successfully cultured, and the OGD and tOGD models were also established. In the co-culture of mouse primary neurons and microglial cells, the cell number of tOGD mouse neurons and microglial cells was larger than the OGD cell number, observed by a microscope. CCK-8 assay result showed that at 1h after treatment, the OD value in the control group is lower compared to all the other three groups (P < 0.05). The treatment group exhibited the highest OD value among the four groups. The results observed at 5h were consistent with the results at 1 h. Flow cytometry results showed that at 1h after treatment the apoptosis percentages is higher in the control group compared to other three groups (P < 0.05). Mouse brain tissues were collected and primary neurons cells were cultured. In the meantime mouse BV2 microglia cells were cultured. Two types of cells were co-cultured, and OGD and tOGD cell models were established. There were four groups in the experiment: control group (OGD), treatment group (tOGD+OGD), placebo group (tOGD+OGD+saline) and minocycline intervention group (tOGD+OGD+minocycline). CCK-8 kit was used to detect cell viability and flow cytometry was used to detect apoptosis. In this study, mouse primary neurons and microglial cells were co-cultured. The OGD and tOGD models were established successfully. tOGD was able to effectively protect neurons and microglial cells from damage, and inhibit the apoptosis caused by oxygen glucose deprivation.

  11. Actinic keratosis modelling in mice: A translational study

    PubMed Central

    Vandenberghe, Isabelle; Cartron, Valérie; Cèbe, Patrick; Blanchet, Jean-Christophe; Sibaud, Vincent; Guilbaud, Nicolas; Audoly, Laurent; Lamant, Laurence; Kruczynski, Anna

    2017-01-01

    Background Actinic keratoses (AK) are pre-malignant cutaneous lesions caused by prolonged exposure to ultraviolet radiation. As AKs lesions are generally accepted to be the initial lesions in a disease continuum that progresses to squamous cell carcinoma (SCC), AK lesions have to be treated. They are also the second most common reason for visits to the dermatologist. Several treatments are available but their efficacy still needs to be improved. The UV-B-induced KA lesion mouse model is used in preclinical studies to assess the efficacy of novel molecules, even though it is often more representative of advanced AK or SCC. Objectives Here we report on a translational study, comparing the various stages of AK development in humans and in the UV-B irradiated mouse model, as well as the optimization of photograph acquisition of AK lesions on mouse skin. Methods Human and mouse skin lesions were analysed by histology and immunohistochemistry. Mouse lesions were also assessed using a digital dermatoscope. Results An histological and phenotypic analysis, including p53, Ki67 and CD3 expression detection, performed on human and mouse AK lesions, shows that overall AK modelling in mice is relevant in the clinical situation. Some differences are observed, such as disorganization of keratinocytes of the basal layer and a number of atypical nuclei which are more numerous in human AK, whereas much more pronounced acanthosis is observed in skin lesion in mice. Thanks to this translational study, we are able to select appropriate experimental conditions for establishing either early or advanced stage AK or an SCC model. Furthermore, we optimized photograph acquisition of AK lesions on mouse skin by using a digital dermatoscope which is also used in clinics and allows reproducible photograph acquisition for further reliable assessment of mouse lesions. Use of this camera is illustrated through a pharmacological study assessing the activity of CARAC®. Conclusion These data demonstrate that this mouse model of UV-B-induced skin lesions is predictive for the identification of novel therapeutic treatments for both early and advanced stages of the disease. PMID:28662116

  12. Taltirelin alleviates fatigue-like behavior in mouse models of cancer-related fatigue.

    PubMed

    Dougherty, John P; Wolff, Brian S; Cullen, Mary J; Saligan, Leorey N; Gershengorn, Marvin C

    2017-10-01

    Fatigue affects most cancer patients and has numerous potential causes, including cancer itself and cancer treatment. Cancer-related fatigue (CRF) is not relieved by rest, can decrease quality of life, and has no FDA-approved therapy. Thyrotropin-releasing hormone (TRH) has been proposed as a potential novel treatment for CRF, but its efficacy against CRF remains largely untested. Thus, we tested the TRH analog, taltirelin (TAL), in mouse models of CRF. To model fatigue, we used a mouse model of chemotherapy, a mouse model of radiation therapy, and mice bearing colon 26 carcinoma tumors. We used the treadmill fatigue test to assess fatigue-like behavior after treatment with TAL. Additionally, we used wild-type and TRH receptor knockout mice to determine which TRH receptor was necessary for the actions of TAL. Tumor-bearing mice displayed muscle wasting and all models caused fatigue-like behavior, with mice running a shorter distance in the treadmill fatigue test than controls. TAL reversed fatigue-like behavior in all three models and the mouse TRH 1 receptor was necessary for the effects of TAL. These data suggest that TAL may be useful in alleviating fatigue in all cancer patients and provide further support for evaluating TAL as a potential therapy for CRF in humans. Published by Elsevier Ltd.

  13. MR images of mouse brain using clinical 3T MR scanner and 4CH-Mouse coil

    NASA Astrophysics Data System (ADS)

    Lim, Soo Mee; Park, Eun Mi; Lyoo, In Kyoon; Lee, Junghyun; Han, Bo Mi; Lee, Jeong Kyong; Lee, Su Bin

    2015-07-01

    Objectives: Although small-bore high-field magnets are useful for research in small rodent models,this technology, however, has not been easily accessible to most researchers. This current study, thus,tried to evaluate the usability of 4CH-Mouse coil (Philips Healthcare, Best, the Netherlands) forpreclinical investigations in clinical 3T MR scan environment. We evaluated the effects of ischemicpreconditioning (IP) in the mouse stroke model with clinical 3T MR scanner and 4CH-Mouse coil. Materials and Methods: Experiments were performed on male C57BL/6 mice that either received the IP or sham operation (control). Three different MR sequences including diffusion weighted images (DWI), T2-weighted images (T2WI), and fluid attenuated inversion recovery (FLAIR) were performed on the mouse brains following 24, 72 hours of middle cerebral artery occlusion (MCAO) and analyzed for infarct lesions. Results: The images showed that the IP-treated mouse brains had significantly smaller infarct volumes compared to the control group. Of the MR sequences employed, the T2WI showed the highest level of correlations with postmortem infarct volume measurements. Conclusions: The clinical 3T MR scanner turned out to have a solid potential as a practical tool for imaging small animal brains. MR sequences including DWI, T2WI, FLAIR were obtained with acceptable resolution and in a reasonable time constraint in evaluating a mouse stroke model brain.

  14. Mutagenicity testing with transgenic mice. Part I: Comparison with the mouse bone marrow micronucleus test

    PubMed Central

    Wahnschaffe, U; Bitsch, A; Kielhorn, J; Mangelsdorf, I

    2005-01-01

    As part of a larger literature study on transgenic animals in mutagenicity testing, test results from the transgenic mutagenicity assays (lacI model; commercially available as the Big Blue® mouse, and the lacZ model; commercially available as the Muta™Mouse), were compared with the results on the same substances in the more traditional mouse bone marrow micronucleus test. 39 substances were found which had been tested in the micronucleus assay and in the above transgenic mouse systems. Although, the transgenic animal mutation assay is not directly comparable with the micronucleus test, because different genetic endpoints are examined: chromosome aberration versus gene mutation, the results for the majority of substances were in agreement. Both test systems, the transgenic mouse assay and the mouse bone marrow micronucleus test, have advantages and they complement each other. However, the transgenic animal assay has some distinct advantages over the micronucleus test: it is not restricted to one target organ and detects systemic as well as local mutagenic effects. PMID:15655069

  15. In vivo characterization of a bigenic fluorescent mouse model of Alzheimer's disease with neurodegeneration.

    PubMed

    Crowe, Sarah E; Ellis-Davies, Graham C R

    2013-07-01

    The loss of cognitive function in Alzheimer's disease (AD) patients is strongly correlated with the loss of neurons in various regions of the brain. We have created a new fluorescent bigenic mouse model of AD by crossing "H-line" yellow fluorescent protein (YFP) mice with the 5xFAD mouse model, which we call the 5XY mouse model. The 5xFAD mouse has been shown to have significant loss of L5 pyramidal neurons by 12 months of age. These neurons are transgenically labeled with YFP in the 5XY mouse, which enable longitudinal imaging of structural changes. In the 5XY mice, we observed an appearance of axonal dystrophies, with two distinct morphologies in the early stages of the disease progression. Simple swelling dystrophies are transient in nature and are not directly associated with amyloid plaques. Rosette dystrophies are more complex structures that remained stable throughout all imaging sessions, and always surrounded an amyloid plaque. Plaque growth was followed over 4 weeks, and significant growth was seen between weekly imaging sessions. In addition to axonal dystrophy appearance and plaque growth, we were able to follow spine stability in 4-month old 5XY mice, which revealed no significant loss of spines. 5XY mice also showed a striking shrinkage of the neocortex at older ages (12-14 months). The 5XY mouse model may be a valuable tool for studying specific events in the degeneration of the neocortex, and may suggest new avenues for therapeutic intervention. Copyright © 2013 Wiley Periodicals, Inc.

  16. Technique Selectively Represses Immune System

    MedlinePlus

    ... from attacking myelin in a mouse model of multiple sclerosis. Dr David Furness, Wellcome Images. All rights reserved ... devised a way to successfully treat symptoms resembling multiple sclerosis in a mouse model. With further development, the ...

  17. Lipopolysaccharide-induced endotoxemia in corn oil-preloaded mice causes an extended course of lung injury and repair and pulmonary fibrosis: A translational mouse model of acute respiratory distress syndrome.

    PubMed

    Wu, Chaomin; Evans, Colin E; Dai, Zhiyu; Huang, Xiaojia; Zhang, Xianming; Jin, Hua; Hu, Guochang; Song, Yuanlin; Zhao, You-Yang

    2017-01-01

    Acute respiratory distress syndrome (ARDS) is characterized by acute hypoxemia respiratory failure, bilateral pulmonary infiltrates, and pulmonary edema of non-cardiac origin. Effective treatments for ARDS patients may arise from experimental studies with translational mouse models of this disease that aim to delineate the mechanisms underlying the disease pathogenesis. Mouse models of ARDS, however, can be limited by their rapid progression from injured to recovery state, which is in contrast to the course of ARDS in humans. Furthermore, current mouse models of ARDS do not recapitulate certain prominent aspects of the pathogenesis of ARDS in humans. In this study, we developed an improved endotoxemic mouse model of ARDS resembling many features of clinical ARDS including extended courses of injury and recovery as well as development of fibrosis following i.p. injection of lipopolysaccharide (LPS) to corn oil-preloaded mice. Compared with mice receiving LPS alone, those receiving corn oil and LPS exhibited extended course of lung injury and repair that occurred over a period of >2 weeks instead of 3-5days. Importantly, LPS challenge of corn oil-preloaded mice resulted in pulmonary fibrosis during the repair phase as often seen in ARDS patients. In summary, this simple novel mouse model of ARDS could represent a valuable experimental tool to elucidate mechanisms that regulate lung injury and repair in ARDS patients.

  18. Endometrial apoptosis and neutrophil infiltration during menstruation exhibits spatial and temporal dynamics that are recapitulated in a mouse model.

    PubMed

    Armstrong, Gregory M; Maybin, Jacqueline A; Murray, Alison A; Nicol, Moira; Walker, Catherine; Saunders, Philippa T K; Rossi, Adriano G; Critchley, Hilary O D

    2017-12-12

    Menstruation is characterised by synchronous shedding and restoration of tissue integrity. An in vivo model of menstruation is required to investigate mechanisms responsible for regulation of menstrual physiology and to investigate common pathologies such as heavy menstrual bleeding (HMB). We hypothesised that our mouse model of simulated menstruation would recapitulate the spatial and temporal changes in the inflammatory microenvironment of human menses. Three regulatory events were investigated: cell death (apoptosis), neutrophil influx and cytokine/chemokine expression. Well-characterised endometrial tissues from women were compared with uteri from a mouse model (tissue recovered 0, 4, 8, 24 and 48 h after removal of a progesterone-secreting pellet). Immunohistochemistry for cleaved caspase-3 (CC3) revealed significantly increased staining in human endometrium from late secretory and menstrual phases. In mice, CC3 was significantly increased at 8 and 24 h post-progesterone-withdrawal. Elastase + human neutrophils were maximal during menstruation; Ly6G + mouse neutrophils were maximal at 24 h. Human endometrial and mouse uterine cytokine/chemokine mRNA concentrations were significantly increased during menstrual phase and 24 h post-progesterone-withdrawal respectively. Data from dated human samples revealed time-dependent changes in endometrial apoptosis preceding neutrophil influx and cytokine/chemokine induction during active menstruation. These dynamic changes were recapitulated in the mouse model of menstruation, validating its use in menstrual research.

  19. The STR/ort mouse model of spontaneous osteoarthritis - an update.

    PubMed

    Staines, K A; Poulet, B; Wentworth, D N; Pitsillides, A A

    2017-06-01

    Osteoarthritis is a degenerative joint disease and a world-wide healthcare burden. Characterized by cartilage degradation, subchondral bone thickening and osteophyte formation, osteoarthritis inflicts much pain and suffering, for which there are currently no disease-modifying treatments available. Mouse models of osteoarthritis are proving critical in advancing our understanding of the underpinning molecular mechanisms. The STR/ort mouse is a well-recognized model which develops a natural form of osteoarthritis very similar to the human disease. In this Review we discuss the use of the STR/ort mouse in understanding this multifactorial disease with an emphasis on recent advances in its genetics and its bone, endochondral and immune phenotypes. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Mouse brain magnetic resonance microscopy: Applications in Alzheimer disease.

    PubMed

    Lin, Lan; Fu, Zhenrong; Xu, Xiaoting; Wu, Shuicai

    2015-05-01

    Over the past two decades, various Alzheimer's disease (AD) trangenetic mice models harboring genes with mutation known to cause familial AD have been created. Today, high-resolution magnetic resonance microscopy (MRM) technology is being widely used in the study of AD mouse models. It has greatly facilitated and advanced our knowledge of AD. In this review, most of the attention is paid to fundamental of MRM, the construction of standard mouse MRM brain template and atlas, the detection of amyloid plaques, following up on brain atrophy and the future applications of MRM in transgenic AD mice. It is believed that future testing of potential drugs in mouse models with MRM will greatly improve the predictability of drug effect in preclinical trials. © 2015 Wiley Periodicals, Inc.

  1. Enhanced clinical pharmacy service targeting tools: risk-predictive algorithms.

    PubMed

    El Hajji, Feras W D; Scullin, Claire; Scott, Michael G; McElnay, James C

    2015-04-01

    This study aimed to determine the value of using a mix of clinical pharmacy data and routine hospital admission spell data in the development of predictive algorithms. Exploration of risk factors in hospitalized patients, together with the targeting strategies devised, will enable the prioritization of clinical pharmacy services to optimize patient outcomes. Predictive algorithms were developed using a number of detailed steps using a 75% sample of integrated medicines management (IMM) patients, and validated using the remaining 25%. IMM patients receive targeted clinical pharmacy input throughout their hospital stay. The algorithms were applied to the validation sample, and predicted risk probability was generated for each patient from the coefficients. Risk threshold for the algorithms were determined by identifying the cut-off points of risk scores at which the algorithm would have the highest discriminative performance. Clinical pharmacy staffing levels were obtained from the pharmacy department staffing database. Numbers of previous emergency admissions and admission medicines together with age-adjusted co-morbidity and diuretic receipt formed a 12-month post-discharge and/or readmission risk algorithm. Age-adjusted co-morbidity proved to be the best index to predict mortality. Increased numbers of clinical pharmacy staff at ward level was correlated with a reduction in risk-adjusted mortality index (RAMI). Algorithms created were valid in predicting risk of in-hospital and post-discharge mortality and risk of hospital readmission 3, 6 and 12 months post-discharge. The provision of ward-based clinical pharmacy services is a key component to reducing RAMI and enabling the full benefits of pharmacy input to patient care to be realized. © 2014 John Wiley & Sons, Ltd.

  2. Bicuculline, a GABAA-receptor antagonist, blocked HPA axis activation induced by ghrelin under an acute stress.

    PubMed

    Gastón, M S; Cid, M P; Salvatierra, N A

    2017-03-01

    Ghrelin is a peptide of 28 amino acids with a homology between species, which acts on the central nervous system to regulate different actions, including the control of growth hormone secretion and metabolic regulation. It has been suggested that central ghrelin is a mediator of behavior linked to stress responses and induces anxiety in rodents and birds. Previously, we observed that the anxiogenic-like behavior induced by ghrelin injected into the intermediate medial mesopallium (IMM) of the forebrain was blocked by bicuculline (a GABA A receptor competitive antagonist) but not by diazepam (a GABA A receptor allosteric agonist) in neonatal meat-type chicks (Cobb). Numerous studies have indicated that hypothalamic-pituitary-adrenal (HPA) axis activation mediates the response to stress in mammals and birds. However, it is still unclear whether this effect of ghrelin is associated with HPA activation. Therefore, we investigated whether anxiety behavior induced by intra-IMM ghrelin and mediated through GABA A receptors could be associated with HPA axis activation in the neonatal chick. In the present study, in an Open Field test, intraperitoneal bicuculline methiodide blocked anxiogenic-like behavior as well as the increase in plasma ACTH and corticosterone levels induced by ghrelin (30pmol) in neonatal chicks. Moreover, we showed for the first time that a competitive antagonist of GABA A receptor suppressed the HPA axis activation induced by an anxiogenic dose of ghrelin. These results show that the anxiogenic ghrelin action involves the activation of the HPA axis, with a complex functional interaction with the GABA A receptor. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Charge Mediated Compaction and Rearrangement of Gas-Phase Proteins: A Case Study Considering Two Proteins at Opposing Ends of the Structure-Disorder Continuum

    NASA Astrophysics Data System (ADS)

    Jhingree, Jacquelyn R.; Bellina, Bruno; Pacholarz, Kamila J.; Barran, Perdita E.

    2017-07-01

    Charge reduction in the gas phase provides a direct means of manipulating protein charge state, and when coupled to ion mobility mass spectrometry (IM-MS), it is possible to monitor the effect of charge on protein conformation in the absence of solution. Use of the electron transfer reagent 1,3-dicyanobenzene, coupled with IM-MS, allows us to monitor the effect of charge reduction on the conformation of two proteins deliberately chosen from opposite sides of the order to disorder continuum: bovine pancreatic trypsin inhibitor (BPTI) and beta casein. The ordered BPTI presents compact conformers for each of three charge states accompanied by narrow collision cross-section distributions (TWCCSDN2→He). Upon reduction of BPTI, irrespective of precursor charge state, the TWCCSN2→He decreases to a similar distribution as found for the nESI generated ion of identical charge. The behavior of beta casein upon charge reduction is more complex. It presents over a wide charge state range (9-28), and intermediate charge states (13-18) have broad TWCCSDN2→He with multiple conformations, where both compaction and rearrangement are seen. Further, we see that the TWCCSDN2→He of the latter charge states are even affected by the presence of radical anions. Overall, we conclude that the flexible nature of some proteins result in broad conformational distributions comprised of many families, even for single charge states, and the barrier between different states can be easily overcome by an alteration of the net charge.

  4. Editorial overview: Omics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barran, Perdita; Baker, Erin

    The great complexity of biological systems and their environment poses similarly vast challenges for accurate analytical evaluations of their identity, structure and quantity. Post genomic science, has predicted much regarding the static populations of biological systems, but a further challenge for analysis is to test the accuracy of these predictions, as well as provide a better representation of the transient nature of the molecules of life. Accurate measurements of biological systems have wide applications for biological, forensic, biotechnological and healthcare fields. Therefore, the holy grail is to find a technique which can identify and quantify biological molecules with high throughput,more » sensitivity and robustness, as well evaluate molecular structure(s) in order to understand how the specific molecules interact and function. While wrapping all of these characteristics into one platform may sound difficult, ion mobility spectrometry (IMS) is addressing all of these challenges. Over the last decade, the number of analytical studies utilizing IMS for the evaluation of complex biological and environmental samples has greatly increased. In most cases IMS is coupled with mass spectrometry (IM-MS), but even alone IMS provides the unique capability of rapidly assessing a molecule’s structure, which can be extremely difficult with other techniques. The robustness of the IMS measurement is bourne out by its widespread use in security, environmental and military applications. The multidimensional IM-MS measurements however have been proven to be ever more powerful, as applied to complex mixtures as they enable the evaluation of both the structure and mass of every molecular component in a sample during a single measurement, without the need for continual reference calibration.« less

  5. Better Utilization of Mouse Models of Neurodegenerative Diseases in Preclinical Studies: From the Bench to the Clinic.

    PubMed

    Janus, Christopher; Hernandez, Carolina; deLelys, Victoria; Roder, Hanno; Welzl, Hans

    2016-01-01

    The major symptom of Alzheimer's disease is dementia progressing with age. Its clinical diagnosis is preceded by a long prodromal period of brain pathology that encompasses both formation of extracellular amyloid and intraneuronal tau deposits in the brain and widespread neuronal death. At present, familial cases of dementia provide the most promising foundation for modeling neurodegenerative tauopathies, a group of heterogeneous disorders characterized by prominent intracellular accumulation of hyperphosphorylated tau protein. In this chapter, we describe major behavioral hallmarks of tauopathies, briefly outline the genetics underlying familial cases, and discuss the arising implications for modeling the disease in transgenic mouse systems. The selection of tests performed to evaluate the phenotype of a model should be guided by the key behavioral hallmarks that characterize human disorder and their homology to mouse cognitive systems. We attempt to provide general guidelines and establish criteria for modeling dementia in a mouse; however, interpretations of obtained results should avoid a reductionist "one gene, one disease" explanation of model characteristics. Rather, the focus should be directed to the question of how the mouse genome can cope with the over-expression of the protein coded by transgene(s). While each model is valuable within its own constraints and the experiments performed are guided by specific hypotheses, we seek to expand upon their methodology by offering guidance spanning from issues of mouse husbandry to choices of behavioral tests and routes of drug administration that might increase the external validity of studies and consequently optimize the translational aspect of preclinical research.

  6. Rodent models of congenital and hereditary cataract in man.

    PubMed

    Tripathi, B J; Tripathi, R C; Borisuth, N S; Dhaliwal, R; Dhaliwal, D

    1991-01-01

    Because the organogenesis and physiology of the lens are essentially similar in various mammals, an understanding of the etiology and pathogenesis of the formation of cataract in an animal model will enhance our knowledge of cataractogenesis in man. In this review, we summarize the background, etiology, and pathogenesis of cataracts that occur in rodents. The main advantages of using rodent mutants include the well-researched genetics of the animals and the comparative ease of breeding of large litters. Numerous rodent models of congenital and hereditary cataracts have been studied extensively. In mice, the models include the Cts strain, Fraser mouse, lens opacity gene (Lop) strain, Lop-2 and Lop-3 strains, Philly mouse, Nakano mouse, Nop strain, Deer mouse, Emory mouse, Swiss Webster strain, Balb/c-nct/nct mouse, and SAM-R/3 strain. The rat models include BUdR, ICR, Sprague-Dawley, and Wistar rats, the spontaneously hypertensive rat (SHR), the John Rapp inbred strain of Dahl salt-sensitive rat, as well as WBN/Kob, Royal College of Surgeons (RCS), and Brown-Norway rats. Other proposed models for the study of hereditary cataract include the degu and the guinea pig. Because of the ease of making clinical observations in vivo and the subsequent availability of the intact lens for laboratory analyses at different stages of cataract formation, these animals provide excellent models for clinicopathologic correlations, for monitoring of the natural history of the aging process and of metabolic defects, as well as for investigations on the effect of cataract-modulating agents and drugs, including the prospect of gene therapy.

  7. Mouse Genome Informatics (MGI) Is the International Resource for Information on the Laboratory Mouse.

    PubMed

    Law, MeiYee; Shaw, David R

    2018-01-01

    Mouse Genome Informatics (MGI, http://www.informatics.jax.org/ ) web resources provide free access to meticulously curated information about the laboratory mouse. MGI's primary goal is to help researchers investigate the genetic foundations of human diseases by translating information from mouse phenotypes and disease models studies to human systems. MGI provides comprehensive phenotypes for over 50,000 mutant alleles in mice and provides experimental model descriptions for over 1500 human diseases. Curated data from scientific publications are integrated with those from high-throughput phenotyping and gene expression centers. Data are standardized using defined, hierarchical vocabularies such as the Mammalian Phenotype (MP) Ontology, Mouse Developmental Anatomy and the Gene Ontologies (GO). This chapter introduces you to Gene and Allele Detail pages and provides step-by-step instructions for simple searches and those that take advantage of the breadth of MGI data integration.

  8. Differential biological effects of dehydroepiandrosterone (DHEA) between mouse (B16F10) and human melanoma (BLM) cell lines.

    PubMed

    Joshi, Kumud; Hassan, Sherif S; Ramaraj, Pandurangan

    2017-01-01

    Dehydroepiandrosterone (DHEA) is a weak androgen and had been shown to have anti-cancer, anti-adipogenic and anti-inflammatory effects on mouse and other rodent models, but not on humans, suggesting a systemic level difference between mouse and human. Our previous study on DHEA biological functions involving a variety of cell lines, suggested that the functional differences between mouse and human existed even at the cellular level. Hence, using mouse and human melanoma cell models, in-vitro effects of DHEA on cell growth, mechanism of cell death and mechanism of DHEA action were studied. Results indicated a differential biological effects of DHEA between mouse and human melanoma cell lines. These in-vitro studies also suggested that the differential biological effects observed between these two cell lines could be due to the difference in the way DHEA was processed or metabolized inside the cell.

  9. Current State of Animal (Mouse) Modeling in Melanoma Research.

    PubMed

    Kuzu, Omer F; Nguyen, Felix D; Noory, Mohammad A; Sharma, Arati

    2015-01-01

    Despite the considerable progress in understanding the biology of human cancer and technological advancement in drug discovery, treatment failure remains an inevitable outcome for most cancer patients with advanced diseases, including melanoma. Despite FDA-approved BRAF-targeted therapies for advanced stage melanoma showed a great deal of promise, development of rapid resistance limits the success. Hence, the overall success rate of melanoma therapy still remains to be one of the worst compared to other malignancies. Advancement of next-generation sequencing technology allowed better identification of alterations that trigger melanoma development. As development of successful therapies strongly depends on clinically relevant preclinical models, together with the new findings, more advanced melanoma models have been generated. In this article, besides traditional mouse models of melanoma, we will discuss recent ones, such as patient-derived tumor xenografts, topically inducible BRAF mouse model and RCAS/TVA-based model, and their advantages as well as limitations. Although mouse models of melanoma are often criticized as poor predictors of whether an experimental drug would be an effective treatment, development of new and more relevant models could circumvent this problem in the near future.

  10. Identification of novel mRNAs and lncRNAs associated with mouse experimental colitis and human inflammatory bowel disease.

    PubMed

    Rankin, Carl Robert; Theodorou, Evangelos; Law, Ivy Ka Man; Rowe, Lorraine; Kokkotou, Efi; Pekow, Joel; Wang, Jiafang; Martin, Martin G; Pothoulakis, Charalabos; Padua, David Miguel

    2018-06-28

    Inflammatory bowel disease (IBD) is a complex disorder that is associated with significant morbidity. While many recent advances have been made with new diagnostic and therapeutic tools, a deeper understanding of its basic pathophysiology is needed to continue this trend towards improving treatments. By utilizing an unbiased, high-throughput transcriptomic analysis of two well-established mouse models of colitis, we set out to uncover novel coding and non-coding RNAs that are differentially expressed in the setting of colonic inflammation. RNA-seq analysis was performed using colonic tissue from two mouse models of colitis, a dextran sodium sulfate induced model and a genetic-induced model in mice lacking IL-10. We identified 81 coding RNAs that were commonly altered in both experimental models. Of these coding RNAs, 12 of the human orthologs were differentially expressed in a transcriptomic analysis of IBD patients. Interestingly, 5 of the 12 of human differentially expressed genes have not been previously identified as IBD-associated genes, including ubiquitin D. Our analysis also identified 15 non-coding RNAs that were differentially expressed in either mouse model. Surprisingly, only three non-coding RNAs were commonly dysregulated in both of these models. The discovery of these new coding and non-coding RNAs expands our transcriptional knowledge of mouse models of IBD and offers additional targets to deepen our understanding of the pathophysiology of IBD.

  11. A Dynamic Simulation of Musculoskeletal Function in the Mouse Hindlimb During Trotting Locomotion

    PubMed Central

    Charles, James P.; Cappellari, Ornella; Hutchinson, John R.

    2018-01-01

    Mice are often used as animal models of various human neuromuscular diseases, and analysis of these models often requires detailed gait analysis. However, little is known of the dynamics of the mouse musculoskeletal system during locomotion. In this study, we used computer optimization procedures to create a simulation of trotting in a mouse, using a previously developed mouse hindlimb musculoskeletal model in conjunction with new experimental data, allowing muscle forces, activation patterns, and levels of mechanical work to be estimated. Analyzing musculotendon unit (MTU) mechanical work throughout the stride allowed a deeper understanding of their respective functions, with the rectus femoris MTU dominating the generation of positive and negative mechanical work during the swing and stance phases. This analysis also tested previous functional inferences of the mouse hindlimb made from anatomical data alone, such as the existence of a proximo-distal gradient of muscle function, thought to reflect adaptations for energy-efficient locomotion. The results do not strongly support the presence of this gradient within the mouse musculoskeletal system, particularly given relatively high negative net work output from the ankle plantarflexor MTUs, although more detailed simulations could test this further. This modeling analysis lays a foundation for future studies of the control of vertebrate movement through the development of neuromechanical simulations. PMID:29868576

  12. Can We Trust Computational Modeling for Medical Applications?

    NASA Technical Reports Server (NTRS)

    Mulugeta, Lealem; Walton, Marlei; Nelson, Emily; Myers, Jerry

    2015-01-01

    Operations in extreme environments such as spaceflight pose human health risks that are currently not well understood and potentially unanticipated. In addition, there are limited clinical and research data to inform development and implementation of therapeutics for these unique health risks. In this light, NASA's Human Research Program (HRP) is leveraging biomedical computational models and simulations (M&S) to help inform, predict, assess and mitigate spaceflight health and performance risks, and enhance countermeasure development. To ensure that these M&S can be applied with confidence to the space environment, it is imperative to incorporate a rigorous verification, validation and credibility assessment (VV&C) processes to ensure that the computational tools are sufficiently reliable to answer questions within their intended use domain. In this presentation, we will discuss how NASA's Integrated Medical Model (IMM) and Digital Astronaut Project (DAP) have successfully adapted NASA's Standard for Models and Simulations, NASA-STD-7009 (7009) to achieve this goal. These VV&C methods are also being leveraged by organization such as the Food and Drug Administration (FDA), National Institute of Health (NIH) and the American Society of Mechanical Engineers (ASME) to establish new M&S VV&C standards and guidelines for healthcare applications. Similarly, we hope to provide some insight to the greater aerospace medicine community on how to develop and implement M&S with sufficient confidence to augment medical research and operations.

  13. Additive interactions between 1-methyl-1,2,3,4-tetrahydroisoquinoline and clobazam in the mouse maximal electroshock-induced tonic seizure model--an isobolographic analysis for parallel dose-response relationship curves.

    PubMed

    Andres-Mach, Marta; Haratym-Maj, Agnieszka; Zagaja, Mirosław; Luszczki, Jarogniew J

    2014-01-01

    The aim of this study was to characterize the anticonvulsant effect of 1-methyl-1,2,3,4-tetrahydroisoquinoline (1-MeTHIQ) in combination with clobazam (CLB) in the mouse maximal electroshock-induced seizure (MES) model. The anticonvulsant interaction profile between 1-MeTHIQ and CLB in the mouse MES model was determined using an isobolographic analysis for parallel dose-response relationship curves. Electroconvulsions were produced in albino Swiss mice by a current (sine wave, 25 mA, 500 V, 50 Hz, 0.2-second stimulus duration) delivered via auricular electrodes by a Hugo Sachs generator. There was an additive effect of the combination of 1-MeTHIQ with CLB (at the fixed ratios of 1:3, 1:1 and 3:1) in the mouse MES-induced tonic seizure model. The additive interaction of the combination of 1-MeTHIQ with CLB (at fixed-ratios of 1:3, 1:1 and 3:1) in the mouse MES model seems to be pharmacodynamic in nature and worth of considering in further clinical practice. © 2014 S. Karger AG, Basel.

  14. Improvements and Limitations of Humanized Mouse Models for HIV Research: NIH/NIAID “Meet the Experts” 2015 Workshop Summary

    PubMed Central

    Akkina, Ramesh; Allam, Atef; Balazs, Alejandro B.; Blankson, Joel N.; Burnett, John C.; Casares, Sofia; Garcia, J. Victor; Hasenkrug, Kim J.; Kitchen, Scott G.; Klein, Florian; Kumar, Priti; Luster, Andrew D.; Poluektova, Larisa Y.; Rao, Mangala; Shultz, Leonard D.; Zack, Jerome A.

    2016-01-01

    Abstract The number of humanized mouse models for the human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome (AIDS) and other infectious diseases has expanded rapidly over the past 8 years. Highly immunodeficient mouse strains, such as NOD/SCID/gamma chainnull (NSG, NOG), support better human hematopoietic cell engraftment. Another improvement is the derivation of highly immunodeficient mice, transgenic with human leukocyte antigens (HLAs) and cytokines that supported development of HLA-restricted human T cells and heightened human myeloid cell engraftment. Humanized mice are also used to study the HIV reservoir using new imaging techniques. Despite these advances, there are still limitations in HIV immune responses and deficits in lymphoid structures in these models in addition to xenogeneic graft-versus-host responses. To understand and disseminate the improvements and limitations of humanized mouse models to the scientific community, the NIH sponsored and convened a meeting on April 15, 2015 to discuss the state of knowledge concerning these questions and best practices for selecting a humanized mouse model for a particular scientific investigation. This report summarizes the findings of the NIH meeting. PMID:26670361

  15. Behavioral assays with mouse models of Alzheimer’s disease: practical considerations and guidelines

    PubMed Central

    Puzzo, Daniela; Lee, Linda; Palmeri, Agostino; Calabrese, Giorgio; Arancio, Ottavio

    2014-01-01

    In Alzheimer’s disease (AD) basic research and drug discovery, mouse models are essential resources for uncovering biological mechanisms, validating molecular targets and screening potential compounds. Both transgenic and non-genetically modified mouse models enable access to different types of AD-like pathology in vivo. Although there is a wealth of genetic and biochemical studies on proposed AD pathogenic pathways, as a disease that centrally features cognitive failure, the ultimate readout for any interventions should be measures of learning and memory. This is particularly important given the lack of knowledge on disease etiology – assessment by cognitive assays offers the advantage of targeting relevant memory systems without requiring assumptions about pathogenesis. A multitude of behavioral assays are available for assessing cognitive functioning in mouse models, including ones specific for hippocampal-dependent learning and memory. Here we review the basics of available transgenic and non-transgenic AD mouse models and detail three well-established behavioral tasks commonly used for testing hippocampal-dependent cognition in mice – contextual fear conditioning, radial arm water maze and Morris water maze. In particular, we discuss the practical considerations, requirements and caveats of these behavioral testing paradigms. PMID:24462904

  16. Icotinib inhibits EGFR signaling and alleviates psoriasis-like symptoms in animal models.

    PubMed

    Tan, Fenlai; Yang, Guiqun; Wang, Yanping; Chen, Haibo; Yu, Bo; Li, He; Guo, Jing; Huang, Xiaoling; Deng, Yifang; Yu, Pengxia; Ding, Lieming

    2018-02-01

    To investigate the effects of icotinib hydrochloride and a derivative cream on epidermal growth factor receptor (EGFR) signaling and within animal psoriasis models, respectively. The effect of icotinib on EGFR signaling was examined in HaCaT cells, while its effect on angiogenesis was tested in chick embryo chorioallantoic membranes (CAM). The effectiveness of icotinib in treating psoriasis was tested in three psoriasis models, including diethylstilbestrol-treated mouse vaginal epithelial cells, mouse tail granular cell layer formation, and propranolol-induced psoriasis-like features in guinea pig ear skin. Icotinib treatment blocked EGFR signaling and reduced HaCaT cell viability as well as suppressed CAM angiogenesis. Topical application of icotinib ameliorated psoriasis-like histological characteristics in mouse and guinea pig psoriasis models. Icotinib also significantly inhibited mouse vaginal epithelium mitosis, promoted mouse tail squamous epidermal granular layer formation, and reduced the thickness of the horny layer in propranolol treated auricular dorsal surface of guinea pig. We conclude that icotinib can effectively inhibit psoriasis in animal models. Future clinical studies should be conducted to explore the therapeutic effects of icotinb in humans. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. Pathogenicity of swine influenza viruses possessing an avian or swine-origin PB2 polymerase gene evaluated in mouse and pig models.

    PubMed

    Ma, Wenjun; Lager, Kelly M; Li, Xi; Janke, Bruce H; Mosier, Derek A; Painter, Laura E; Ulery, Eva S; Ma, Jingqun; Lekcharoensuk, Porntippa; Webby, Richard J; Richt, Jürgen A

    2011-02-05

    PB2 627K is a determinant of influenza host range and contributes to the pathogenicity of human-, avian-, and mouse-adapted influenza viruses in the mouse model. Here we used mouse and pig models to analyze the contribution of a swine-origin and avian-origin PB2 carrying either 627K or 627E in the background of the classical swine H1N1 (A/Swine/Iowa/15/30; 1930) virus. The results showed PB2 627K is crucial for virulence in the mouse model, independent of whether PB2 is derived from an avian or swine influenza virus (SIV). In the pig model, PB2 627E decreases pathogenicity of the classical 1930 SIV when it contains the swine-origin PB2, but not when it possesses the avian-origin PB2. Our study suggests the pathogenicity of SIVs with different PB2 genes and mutation of codon 627 in mice does not correlate with the pathogenicity of the same SIVs in the natural host, the pig. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. An Immunocompetent Mouse Model of Zika Virus Infection.

    PubMed

    Gorman, Matthew J; Caine, Elizabeth A; Zaitsev, Konstantin; Begley, Matthew C; Weger-Lucarelli, James; Uccellini, Melissa B; Tripathi, Shashank; Morrison, Juliet; Yount, Boyd L; Dinnon, Kenneth H; Rückert, Claudia; Young, Michael C; Zhu, Zhe; Robertson, Shelly J; McNally, Kristin L; Ye, Jing; Cao, Bin; Mysorekar, Indira U; Ebel, Gregory D; Baric, Ralph S; Best, Sonja M; Artyomov, Maxim N; Garcia-Sastre, Adolfo; Diamond, Michael S

    2018-05-09

    Progress toward understanding Zika virus (ZIKV) pathogenesis is hindered by lack of immunocompetent small animal models, in part because ZIKV fails to effectively antagonize Stat2-dependent interferon (IFN) responses in mice. To address this limitation, we first passaged an African ZIKV strain (ZIKV-Dak-41525) through Rag1 -/- mice to obtain a mouse-adapted virus (ZIKV-Dak-MA) that was more virulent than ZIKV-Dak-41525 in mice treated with an anti-Ifnar1 antibody. A G18R substitution in NS4B was the genetic basis for the increased replication, and resulted in decreased IFN-β production, diminished IFN-stimulated gene expression, and the greater brain infection observed with ZIKV-Dak-MA. To generate a fully immunocompetent mouse model of ZIKV infection, human STAT2 was introduced into the mouse Stat2 locus (hSTAT2 KI). Subcutaneous inoculation of pregnant hSTAT2 KI mice with ZIKV-Dak-MA resulted in spread to the placenta and fetal brain. An immunocompetent mouse model of ZIKV infection may prove valuable for evaluating countermeasures to limit disease. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Histologic scoring of gastritis and gastric cancer in mouse models.

    PubMed

    Rogers, Arlin B

    2012-01-01

    Histopathology is a defining endpoint in mouse models of experimental gastritis and gastric adenocarcinoma. Presented here is an overview of the histology of gastritis and gastric cancer in mice experimentally infected with Helicobacter pylori or H. felis. A modular histopathologic scoring scheme is provided that incorporates relevant disease-associated changes. Whereas the guide uses Helicobacter infection as the prototype challenge, features may be applied to chemical and genetically engineered mouse models of stomach cancer as well. Specific criteria included in the combined gastric histologic activity index (HAI) include inflammation, epithelial defects, oxyntic atrophy, hyperplasia, pseudopyloric metaplasia, and dysplasia or neoplasia. Representative photomicrographs accompany descriptions for each lesion grade. Differentiation of genuine tumor invasion from pseudoinvasion is highlighted. A brief comparison of normal rodent versus human stomach anatomy and physiology is accompanied by an introduction to mouse-specific lesions including mucous metaplasia and eosinophilic droplets (hyalinosis). In conjunction with qualified pathology support, this guide is intended to assist research scientists, postdoctoral fellows, graduate students, and medical professionals from affiliated disciplines in the interpretation and histologic grading of chronic gastritis and gastric carcinoma in mouse models.

  20. Astonishing advances in mouse genetic tools for biomedical research.

    PubMed

    Kaczmarczyk, Lech; Jackson, Walker S

    2015-01-01

    The humble house mouse has long been a workhorse model system in biomedical research. The technology for introducing site-specific genome modifications led to Nobel Prizes for its pioneers and opened a new era of mouse genetics. However, this technology was very time-consuming and technically demanding. As a result, many investigators continued to employ easier genome manipulation methods, though resulting models can suffer from overlooked or underestimated consequences. Another breakthrough, invaluable for the molecular dissection of disease mechanisms, was the invention of high-throughput methods to measure the expression of a plethora of genes in parallel. However, the use of samples containing material from multiple cell types could obfuscate data, and thus interpretations. In this review we highlight some important issues in experimental approaches using mouse models for biomedical research. We then discuss recent technological advances in mouse genetics that are revolutionising human disease research. Mouse genomes are now easily manipulated at precise locations thanks to guided endonucleases, such as transcription activator-like effector nucleases (TALENs) or the CRISPR/Cas9 system, both also having the potential to turn the dream of human gene therapy into reality. Newly developed methods of cell type-specific isolation of transcriptomes from crude tissue homogenates, followed by detection with next generation sequencing (NGS), are vastly improving gene regulation studies. Taken together, these amazing tools simplify the creation of much more accurate mouse models of human disease, and enable the extraction of hitherto unobtainable data.

  1. Mutational landscape of a chemically-induced mouse model of liver cancer.

    PubMed

    Connor, Frances; Rayner, Tim F; Aitken, Sarah J; Feig, Christine; Lukk, Margus; Santoyo-Lopez, Javier; Odom, Duncan T

    2018-06-26

    Carcinogen-induced mouse models of liver cancer are used extensively to study pathogenesis of the disease and have a critical role in validating candidate therapeutics. These models can recapitulate molecular and histological features of human disease. However, it is not known if the genomic alterations driving these mouse tumour genomes are comparable to those found in human tumours. Here, we provide a detailed genomic characterisation of tumours from a commonly used mouse model of hepatocellular carcinoma (HCC). We analysed whole exome sequences of liver tumours arising in mice exposed to diethylnitrosamine (DEN). DEN-initiated tumours had a high, uniform number of somatic single nucleotide variants (SNVs), with few insertions, deletions or copy number alterations, consistent with the known genotoxic action of DEN. Exposure of hepatocytes to DEN left a reproducible mutational imprint in resulting tumour exomes which we could computationally reconstruct using six known COSMIC mutational signatures. The tumours carried a high diversity of low-incidence, non-synonymous point mutations in many oncogenes and tumour suppressors, reflecting the stochastic introduction of SNVs into the hepatocyte genome by the carcinogen. We identified four recurrently mutated genes that were putative oncogenic drivers of HCC in this model. Every neoplasm carried activating hotspot mutations either in codon 61 of Hras, in codon 584 of Braf or in codon 254 of Egfr. Truncating mutations of Apc occurred in 21% of neoplasms, which were exclusively carcinomas supporting a role for deregulation of Wnt/β-catenin signalling in cancer progression. Our study provides detailed insight into the mutational landscape of tumours arising in a commonly-used carcinogen model of HCC, facilitating the future use of this model to understand the human disease. Mouse models are widely used to study the biology of cancer and to test potential therapies. Here, we have described the mutational landscape of tumours arising in a carcinogen-induced mouse model of liver cancer. Since cancer is a disease caused by genomic alterations, information about the patterns and types of mutations in the tumours in this mouse model should facilitate its use to study human liver cancer. Copyright © 2018 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  2. Chip Based Magnetic Imager for Molecular Profiling of Ovarian Cancer Cells

    DTIC Science & Technology

    2016-12-01

    2015) Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell 160:1246-1260. PMC4380877, PMID:25748654. Acknowledgement of...Weissleder R, Lee H, Zhang F, Sharp PA (2015) Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell 160:1246-1260. 5. Im H, Shao H...Lett 32(10):1229–1231. 6 of 6 | www.pnas.org/cgi/doi/10.1073/pnas.1501815112 Im et al. Resource Genome-wide CRISPR Screen in a Mouse Model of Tumor

  3. Using a Novel Transgenic Mouse Model to Study c-Myc Oncogenic Pathway in Castration Resistance and Chemoresistance of Prostate Cancer

    DTIC Science & Technology

    2017-12-01

    AWARD NUMBER: W81XWH-13-1-0162 TITLE: Using a Novel Transgenic Mouse Model to Study c-Myc Oncogenic Pathway in Castration Resistance and...DATES COVERED 15Sept2013 - 14Sept2017 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Using a Novel Transgenic Mouse Model to Study c-Myc Oncogenic...for concisely studying castration response and CRPC. However, most mice never developed significant tumors. Here, we showed that ablation of p53 in this

  4. Mouse Models for Drug Discovery. Can New Tools and Technology Improve Translational Power?

    PubMed Central

    Zuberi, Aamir; Lutz, Cathleen

    2016-01-01

    Abstract The use of mouse models in biomedical research and preclinical drug evaluation is on the rise. The advent of new molecular genome-altering technologies such as CRISPR/Cas9 allows for genetic mutations to be introduced into the germ line of a mouse faster and less expensively than previous methods. In addition, the rapid progress in the development and use of somatic transgenesis using viral vectors, as well as manipulations of gene expression with siRNAs and antisense oligonucleotides, allow for even greater exploration into genomics and systems biology. These technological advances come at a time when cost reductions in genome sequencing have led to the identification of pathogenic mutations in patient populations, providing unprecedented opportunities in the use of mice to model human disease. The ease of genetic engineering in mice also offers a potential paradigm shift in resource sharing and the speed by which models are made available in the public domain. Predictively, the knowledge alone that a model can be quickly remade will provide relief to resources encumbered by licensing and Material Transfer Agreements. For decades, mouse strains have provided an exquisite experimental tool to study the pathophysiology of the disease and assess therapeutic options in a genetically defined system. However, a major limitation of the mouse has been the limited genetic diversity associated with common laboratory mice. This has been overcome with the recent development of the Collaborative Cross and Diversity Outbred mice. These strains provide new tools capable of replicating genetic diversity to that approaching the diversity found in human populations. The Collaborative Cross and Diversity Outbred strains thus provide a means to observe and characterize toxicity or efficacy of new therapeutic drugs for a given population. The combination of traditional and contemporary mouse genome editing tools, along with the addition of genetic diversity in new modeling systems, are synergistic and serve to make the mouse a better model for biomedical research, enhancing the potential for preclinical drug discovery and personalized medicine. PMID:28053071

  5. Mouse Model for the Preclinical Study of Metastatic Disease | NCI Technology Transfer Center | TTC

    Cancer.gov

    The Laboratory of Cancer Biology and Genetics, National Cancer Institute seeks partners for collaborative research to co-develop a mouse model that shows preclinical therapeutic response of residual metastatic disease.

  6. Role of Growth Hormone in Prostate Cancer

    DTIC Science & Technology

    2007-02-01

    syndrome produced by targeted disruption of the mouse growth hormone receptor/binding protein gene (the Laron mouse). Proc Natl Acad Sci USA 94:13215... Laron mouse, in which the gene coding for both GHR and GH binding protein has been disrupted or knocked out, with the C3(1)/Tag mouse, which develops...the Laron mouse). Nevertheless, the new model presented here demonstrates that the loss of GHR produced a significant reduction in the level of PIN in

  7. Bat-mouse bone marrow chimera: a novel animal model for dissecting the uniqueness of the bat immune system.

    PubMed

    Yong, Kylie Su Mei; Ng, Justin Han Jia; Her, Zhisheng; Hey, Ying Ying; Tan, Sue Yee; Tan, Wilson Wei Sheng; Irac, Sergio Erdal; Liu, Min; Chan, Xue Ying; Gunawan, Merry; Foo, Randy Jee Hiang; Low, Dolyce Hong Wen; Mendenhall, Ian Hewitt; Chionh, Yok Teng; Dutertre, Charles-Antoine; Chen, Qingfeng; Wang, Lin-Fa

    2018-03-16

    Bats are an important animal model with long lifespans, low incidences of tumorigenesis and an ability to asymptomatically harbour pathogens. Currently, in vivo studies of bats are hampered due to their low reproduction rates. To overcome this, we transplanted bat cells from bone marrow (BM) and spleen into an immunodeficient mouse strain NOD-scid IL-2R -/- (NSG), and have successfully established stable, long-term reconstitution of bat immune cells in mice (bat-mice). Immune functionality of our bat-mouse model was demonstrated through generation of antigen-specific antibody response by bat cells following immunization. Post-engraftment of total bat BM cells and splenocytes, bat immune cells survived, expanded and repopulated the mouse without any observable clinical abnormalities. Utilizing bat's remarkable immunological functions, this novel model has a potential to be transformed into a powerful platform for basic and translational research.

  8. Galantamine improves olfactory learning in the Ts65Dn mouse model of Down syndrome

    PubMed Central

    Simoes de Souza, Fabio M.; Busquet, Nicolas; Blatner, Megan; Maclean, Kenneth N.; Restrepo, Diego

    2011-01-01

    Down syndrome (DS) is the most common form of congenital intellectual disability. Although DS involves multiple disturbances in various tissues, there is little doubt that in terms of quality of life cognitive impairment is the most serious facet and there is no effective treatment for this aspect of the syndrome. The Ts65Dn mouse model of DS recapitulates multiple aspects of DS including cognitive impairment. Here the Ts65Dn mouse model of DS was evaluated in an associative learning paradigm based on olfactory cues. In contrast to disomic controls, trisomic mice exhibited significant deficits in olfactory learning. Treatment of trisomic mice with the acetylcholinesterase inhibitor galantamine resulted in a significant improvement in olfactory learning. Collectively, our study indicates that olfactory learning can be a sensitive tool for evaluating deficits in associative learning in mouse models of DS and that galantamine has therapeutic potential for improving cognitive abilities. PMID:22355654

  9. Galantamine improves olfactory learning in the Ts65Dn mouse model of Down syndrome.

    PubMed

    de Souza, Fabio M Simoes; Busquet, Nicolas; Blatner, Megan; Maclean, Kenneth N; Restrepo, Diego

    2011-01-01

    Down syndrome (DS) is the most common form of congenital intellectual disability. Although DS involves multiple disturbances in various tissues, there is little doubt that in terms of quality of life cognitive impairment is the most serious facet and there is no effective treatment for this aspect of the syndrome. The Ts65Dn mouse model of DS recapitulates multiple aspects of DS including cognitive impairment. Here the Ts65Dn mouse model of DS was evaluated in an associative learning paradigm based on olfactory cues. In contrast to disomic controls, trisomic mice exhibited significant deficits in olfactory learning. Treatment of trisomic mice with the acetylcholinesterase inhibitor galantamine resulted in a significant improvement in olfactory learning. Collectively, our study indicates that olfactory learning can be a sensitive tool for evaluating deficits in associative learning in mouse models of DS and that galantamine has therapeutic potential for improving cognitive abilities.

  10. A candidate model for Angelman syndrome in the mouse.

    PubMed

    Cattanach, B M; Barr, J A; Beechey, C V; Martin, J; Noebels, J; Jones, J

    1997-07-01

    Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are well-recognized examples of imprinting in humans. They occur most commonly with paternal and maternal 15q11-13 deletions, but also with maternal and paternal disomy. Both syndromes have also occurred more rarely in association with smaller deletions seemingly causing abnormal imprinting. A putative mouse model of PWS, occurring with maternal duplication (partial maternal disomy) for the homologous region, has been described in a previous paper but, although a second imprinting effect that could have provided a mouse model of AS was found, it appeared to be associated with a slightly different region of the chromosome. Here, we provide evidence that the same region is in fact involved and further demonstrate that animals with paternal duplication for the region exhibit characteristics of AS patients. A mouse model of AS is, therefore, strongly indicated.

  11. Development and testing of a mouse simulated space flight model

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald

    1987-01-01

    The development and testing of a mouse model for simulating some aspects of weightlessness that occurs during space flight, and the carrying out of immunological experiments on animals undergoing space flight is examined. The mouse model developed was an antiorthostatic, hypokinetic, hypodynamic suspension model similar to one used with rats. The study was divided into two parts. The first involved determination of which immunological parameters should be observed on animals flown during space flight or studied in the suspension model. The second involved suspending mice and determining which of those immunological parameters were altered by the suspension. Rats that were actually flown in Space Shuttle SL-3 were used to test the hypotheses.

  12. Multiple Drug Treatments That Increase cAMP Signaling Restore Long-Term Memory and Aberrant Signaling in Fragile X Syndrome Models.

    PubMed

    Choi, Catherine H; Schoenfeld, Brian P; Bell, Aaron J; Hinchey, Joseph; Rosenfelt, Cory; Gertner, Michael J; Campbell, Sean R; Emerson, Danielle; Hinchey, Paul; Kollaros, Maria; Ferrick, Neal J; Chambers, Daniel B; Langer, Steven; Sust, Steven; Malik, Aatika; Terlizzi, Allison M; Liebelt, David A; Ferreiro, David; Sharma, Ali; Koenigsberg, Eric; Choi, Richard J; Louneva, Natalia; Arnold, Steven E; Featherstone, Robert E; Siegel, Steven J; Zukin, R Suzanne; McDonald, Thomas V; Bolduc, Francois V; Jongens, Thomas A; McBride, Sean M J

    2016-01-01

    Fragile X is the most common monogenic disorder associated with intellectual disability (ID) and autism spectrum disorders (ASD). Additionally, many patients are afflicted with executive dysfunction, ADHD, seizure disorder and sleep disturbances. Fragile X is caused by loss of FMRP expression, which is encoded by the FMR1 gene. Both the fly and mouse models of fragile X are also based on having no functional protein expression of their respective FMR1 homologs. The fly model displays well defined cognitive impairments and structural brain defects and the mouse model, although having subtle behavioral defects, has robust electrophysiological phenotypes and provides a tool to do extensive biochemical analysis of select brain regions. Decreased cAMP signaling has been observed in samples from the fly and mouse models of fragile X as well as in samples derived from human patients. Indeed, we have previously demonstrated that strategies that increase cAMP signaling can rescue short term memory in the fly model and restore DHPG induced mGluR mediated long term depression (LTD) in the hippocampus to proper levels in the mouse model (McBride et al., 2005; Choi et al., 2011, 2015). Here, we demonstrate that the same three strategies used previously with the potential to be used clinically, lithium treatment, PDE-4 inhibitor treatment or mGluR antagonist treatment can rescue long term memory in the fly model and alter the cAMP signaling pathway in the hippocampus of the mouse model.

  13. The Virtual Mouse Brain: A Computational Neuroinformatics Platform to Study Whole Mouse Brain Dynamics.

    PubMed

    Melozzi, Francesca; Woodman, Marmaduke M; Jirsa, Viktor K; Bernard, Christophe

    2017-01-01

    Connectome-based modeling of large-scale brain network dynamics enables causal in silico interrogation of the brain's structure-function relationship, necessitating the close integration of diverse neuroinformatics fields. Here we extend the open-source simulation software The Virtual Brain (TVB) to whole mouse brain network modeling based on individual diffusion magnetic resonance imaging (dMRI)-based or tracer-based detailed mouse connectomes. We provide practical examples on how to use The Virtual Mouse Brain (TVMB) to simulate brain activity, such as seizure propagation and the switching behavior of the resting state dynamics in health and disease. TVMB enables theoretically driven experimental planning and ways to test predictions in the numerous strains of mice available to study brain function in normal and pathological conditions.

  14. Monitoring blood-flow in the mouse cochlea using an endoscopic laser speckle contrast imaging system

    PubMed Central

    Yu, Sunkon; Jung, Byungjo; Choi, Jin Sil

    2018-01-01

    Laser speckle contrast imaging (LSCI) enables continuous high-resolution assessment of microcirculation in real-time. We applied an endoscope to LSCI to measure cochlear blood-flow in an ischemia–reperfusion mouse model. We also explored whether using xenon light in combination with LSCI facilitates visualization of anatomical position. Based on a previous preliminary study, the appropriate wavelength for penetrating the thin bony cochlea was 830 nm. A 2.7-mm-diameter endoscope was used, as appropriate for the size of the mouse cochlea. Our endoscopic LSCI system was used to illuminate the right cochlea after dissection of the mouse. We observed changes in the speckle signals when we applied the endoscopic LSCI system to the ischemia-reperfusion mouse model. The anatomical structure of the mouse cochlea and surrounding structures were clearly visible using the xenon light. The speckle signal of the cochlea was scattered, with an intensity that varied between that of the stapes (with the lowest signal), the negative control, and the stapedial artery (with the highest signal), the positive control. In the cochlear ischemia–reperfusion mouse model, the speckle signal of the cochlea decreased during the ischemic phase, and increased during the reperfusion phase, clearly reflecting cochlear blood-flow. The endoscopic LSCI system generates high-resolution images in real-time, allowing visualization of blood-flow and its changes in the mouse cochlea. Anatomical structures were clearly matched using LSCI along with visible light. PMID:29489849

  15. Monitoring blood-flow in the mouse cochlea using an endoscopic laser speckle contrast imaging system.

    PubMed

    Kong, Tae Hoon; Yu, Sunkon; Jung, Byungjo; Choi, Jin Sil; Seo, Young Joon

    2018-01-01

    Laser speckle contrast imaging (LSCI) enables continuous high-resolution assessment of microcirculation in real-time. We applied an endoscope to LSCI to measure cochlear blood-flow in an ischemia-reperfusion mouse model. We also explored whether using xenon light in combination with LSCI facilitates visualization of anatomical position. Based on a previous preliminary study, the appropriate wavelength for penetrating the thin bony cochlea was 830 nm. A 2.7-mm-diameter endoscope was used, as appropriate for the size of the mouse cochlea. Our endoscopic LSCI system was used to illuminate the right cochlea after dissection of the mouse. We observed changes in the speckle signals when we applied the endoscopic LSCI system to the ischemia-reperfusion mouse model. The anatomical structure of the mouse cochlea and surrounding structures were clearly visible using the xenon light. The speckle signal of the cochlea was scattered, with an intensity that varied between that of the stapes (with the lowest signal), the negative control, and the stapedial artery (with the highest signal), the positive control. In the cochlear ischemia-reperfusion mouse model, the speckle signal of the cochlea decreased during the ischemic phase, and increased during the reperfusion phase, clearly reflecting cochlear blood-flow. The endoscopic LSCI system generates high-resolution images in real-time, allowing visualization of blood-flow and its changes in the mouse cochlea. Anatomical structures were clearly matched using LSCI along with visible light.

  16. ANALYSIS OF TMEFF2 ALLOGRAFTS AND TRANSGENIC MOUSE MODELS REVEALS ROLES IN PROSTATE REGENERATION AND CANCER

    PubMed Central

    Corbin, JM.; Overcash, RF.; Wren, JD.; Coburn, A.; Tipton, GJ.; Ezzell, JA.; McNaughton, KK.; Fung, KM; Kosanke, SD.; Ruiz-Echevarria, MJ

    2015-01-01

    BACKGROUND Previous results from our lab indicate a tumor suppressor role for the transmembrane protein with epidermal growth factor and two follistatin motifs 2 (TMEFF2) in prostate cancer (PCa). Here, we further characterize this role and uncover new functions for TMEFF2 in cancer and adult prostate regeneration. METHODS The role of TMEFF2 was examined in PCa cells using Matrigel™ cultures and allograft models of PCa cells. In addition, we developed a transgenic mouse model that expresses TMEFF2 from a prostate specific promoter. Anatomical, histological and metabolic characterizations of the transgenic mouse prostate were conducted. The effect of TMEFF2 in prostate regeneration was studied by analyzing branching morphogenesis in the TMEFF2-expressing mouse lobes and alterations in branching morphogenesis were correlated with the metabolomic profiles of the mouse lobes. The role of TMEFF2 in prostate tumorigenesis in whole animals was investigated by crossing the TMEFF2 transgenic mice with the TRAMP mouse model of PCa and analyzing the histopathological changes in the progeny. RESULTS Ectopic expression of TMEFF2 impairs growth of PCa cells in Matrigel or allograft models. Surprisingly, while TMEFF2 expression in the TRAMP mouse did not have a significant effect on the glandular prostate epithelial lesions, the double TRAMP/TMEFF2 transgenic mice displayed an increased incidence of neuroendocrine type tumors. In addition, TMEFF2 promoted increased branching specifically in the dorsal lobe of the prostate suggesting a potential role in developmental processes. These results correlated with data indicating an alteration in the metabolic profile of the dorsal lobe of the transgenic TMEFF2 mice. CONCLUSIONS Collectively, our results confirm the tumor suppressor role of TMEFF2 and suggest that ectopic expression of TMEFF2 in mouse prostate leads to additional lobe-specific effects in prostate regeneration and tumorigenesis. This points to a complex and multifunctional role for TMEFF2 during PCa progression. PMID:26417683

  17. Analysis of TMEFF2 allografts and transgenic mouse models reveals roles in prostate regeneration and cancer.

    PubMed

    Corbin, Joshua M; Overcash, Ryan F; Wren, Jonathan D; Coburn, Anita; Tipton, Greg J; Ezzell, Jennifer A; McNaughton, Kirk K; Fung, Kar-Ming; Kosanke, Stanley D; Ruiz-Echevarria, Maria J

    2016-01-01

    Previous results from our lab indicate a tumor suppressor role for the transmembrane protein with epidermal growth factor and two follistatin motifs 2 (TMEFF2) in prostate cancer (PCa). Here, we further characterize this role and uncover new functions for TMEFF2 in cancer and adult prostate regeneration. The role of TMEFF2 was examined in PCa cells using Matrigel(TM) cultures and allograft models of PCa cells. In addition, we developed a transgenic mouse model that expresses TMEFF2 from a prostate specific promoter. Anatomical, histological, and metabolic characterizations of the transgenic mouse prostate were conducted. The effect of TMEFF2 in prostate regeneration was studied by analyzing branching morphogenesis in the TMEFF2-expressing mouse lobes and alterations in branching morphogenesis were correlated with the metabolomic profiles of the mouse lobes. The role of TMEFF2 in prostate tumorigenesis in whole animals was investigated by crossing the TMEFF2 transgenic mice with the TRAMP mouse model of PCa and analyzing the histopathological changes in the progeny. Ectopic expression of TMEFF2 impairs growth of PCa cells in Matrigel or allograft models. Surprisingly, while TMEFF2 expression in the TRAMP mouse did not have a significant effect on the glandular prostate epithelial lesions, the double TRAMP/TMEFF2 transgenic mice displayed an increased incidence of neuroendocrine type tumors. In addition, TMEFF2 promoted increased branching specifically in the dorsal lobe of the prostate suggesting a potential role in developmental processes. These results correlated with data indicating an alteration in the metabolic profile of the dorsal lobe of the transgenic TMEFF2 mice. Collectively, our results confirm the tumor suppressor role of TMEFF2 and suggest that ectopic expression of TMEFF2 in mouse prostate leads to additional lobe-specific effects in prostate regeneration and tumorigenesis. This points to a complex and multifunctional role for TMEFF2 during PCa progression. © 2015 Wiley Periodicals, Inc.

  18. What do mouse models of muscular dystrophy tell us about the DAPC and its components?

    PubMed

    Whitmore, Charlotte; Morgan, Jennifer

    2014-12-01

    There are over 30 mouse models with mutations or inactivations in the dystrophin-associated protein complex. This complex is thought to play a crucial role in the functioning of muscle, as both a shock absorber and signalling centre, although its role in the pathogenesis of muscular dystrophy is not fully understood. The first mouse model of muscular dystrophy to be identified with a mutation in a component of the dystrophin-associated complex (dystrophin) was the mdx mouse in 1984. Here, we evaluate the key characteristics of the mdx in comparison with other mouse mutants with inactivations in DAPC components, along with key modifiers of the disease phenotype. By discussing the differences between the individual phenotypes, we show that the functioning of the DAPC and consequently its role in the pathogenesis is more complicated than perhaps currently appreciated. © 2014 The Authors. International Journal of Experimental Pathology © 2014 International Journal of Experimental Pathology.

  19. Characterisation of a C1qtnf5 Ser163Arg Knock-In Mouse Model of Late-Onset Retinal Macular Degeneration

    PubMed Central

    Shu, Xinhua; Luhmann, Ulrich F. O.; Aleman, Tomas S.; Barker, Susan E.; Lennon, Alan; Tulloch, Brian; Chen, Mei; Xu, Heping; Jacobson, Samuel G.; Ali, Robin; Wright, Alan F.

    2011-01-01

    A single founder mutation resulting in a Ser163Arg substitution in the C1QTNF5 gene product causes autosomal dominant late-onset retinal macular degeneration (L-ORMD) in humans, which has clinical and pathological features resembling age-related macular degeneration. We generated and characterised a mouse “knock-in” model carrying the Ser163Arg mutation in the orthologous murine C1qtnf5 gene by site-directed mutagenesis and homologous recombination into mouse embryonic stem cells. Biochemical, immunological, electron microscopic, fundus autofluorescence, electroretinography and laser photocoagulation analyses were used to characterise the mouse model. Heterozygous and homozygous knock-in mice showed no significant abnormality in any of the above measures at time points up to 2 years. This result contrasts with another C1qtnf5 Ser163Arg knock-in mouse which showed most of the features of L-ORMD but differed in genetic background and targeting construct. PMID:22110650

  20. Live dynamic imaging and analysis of developmental cardiac defects in mouse models with optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Lopez, Andrew L.; Wang, Shang; Garcia, Monica; Valladolid, Christian; Larin, Kirill V.; Larina, Irina V.

    2015-03-01

    Understanding mouse embryonic development is an invaluable resource for our interpretation of normal human embryology and congenital defects. Our research focuses on developing methods for live imaging and dynamic characterization of early embryonic development in mouse models of human diseases. Using multidisciplinary methods: optical coherence tomography (OCT), live mouse embryo manipulations and static embryo culture, molecular biology, advanced image processing and computational modeling we aim to understand developmental processes. We have developed an OCT based approach to image live early mouse embryos (E8.5 - E9.5) cultured on an imaging stage and visualize developmental events with a spatial resolution of a few micrometers (less than the size of an individual cell) and a frame rate of up to hundreds of frames per second and reconstruct cardiodynamics in 4D (3D+time). We are now using these methods to study how specific embryonic lethal mutations affect cardiac morphology and function during early development.

  1. Scattered Dose Calculations and Measurements in a Life-Like Mouse Phantom

    PubMed Central

    Welch, David; Turner, Leah; Speiser, Michael; Randers-Pehrson, Gerhard; Brenner, David J.

    2017-01-01

    Anatomically accurate phantoms are useful tools for radiation dosimetry studies. In this work, we demonstrate the construction of a new generation of life-like mouse phantoms in which the methods have been generalized to be applicable to the fabrication of any small animal. The mouse phantoms, with built-in density inhomogeneity, exhibit different scattering behavior dependent on where the radiation is delivered. Computer models of the mouse phantoms and a small animal irradiation platform were devised in Monte Carlo N-Particle code (MCNP). A baseline test replicating the irradiation system in a computational model shows minimal differences from experimental results from 50 Gy down to 0.1 Gy. We observe excellent agreement between scattered dose measurements and simulation results from X-ray irradiations focused at either the lung or the abdomen within our phantoms. This study demonstrates the utility of our mouse phantoms as measurement tools with the goal of using our phantoms to verify complex computational models. PMID:28140787

  2. Overview of genetically engineered mouse models of colorectal carcinoma to enable translational biology and drug development.

    PubMed

    Roper, Jatin; Martin, Eric S; Hung, Kenneth E

    2014-06-16

    Preclinical models for colorectal cancer (CRC) are critical for translational biology and drug development studies to characterize and treat this condition. Mouse models of human cancer are particularly popular because of their relatively low cost, short life span, and ease of use. Genetically engineered mouse models (GEMMs) of CRC are engineered from germline or somatic modification of critical tumor suppressor genes and/or oncogenes that drive mutations in human disease. Detailed in this overview are the salient features of several useful colorectal cancer GEMMs and their value as tools for translational biology and preclinical drug development. Copyright © 2014 John Wiley & Sons, Inc.

  3. Application of Mouse Models to Research in Hearing and Balance.

    PubMed

    Ohlemiller, Kevin K; Jones, Sherri M; Johnson, Kenneth R

    2016-12-01

    Laboratory mice (Mus musculus) have become the major model species for inner ear research. The major uses of mice include gene discovery, characterization, and confirmation. Every application of mice is founded on assumptions about what mice represent and how the information gained may be generalized. A host of successes support the continued use of mice to understand hearing and balance. Depending on the research question, however, some mouse models and research designs will be more appropriate than others. Here, we recount some of the history and successes of the use of mice in hearing and vestibular studies and offer guidelines to those considering how to apply mouse models.

  4. Continuous imaging of the blood vessels in tumor mouse dorsal skin window chamber model by using SD-OCT

    NASA Astrophysics Data System (ADS)

    Peng, Xiao; Yang, Shaozhuang; Yu, Bin; Wang, Qi; Lin, Danying; Gao, Jian; Zhang, Peiqi; Ma, Yiqun; Qu, Junle; Niu, Hanben

    2016-03-01

    Optical Coherence Tomography (OCT) has been widely applied into microstructure imaging of tissues or blood vessels with a series of advantages, including non-destructiveness, real-time imaging, high resolution and high sensitivity. In this study, a Spectral Domain OCT (SD-OCT) system with higher sensitivity and signal-to-noise ratio (SNR) was built up, which was used to observe the blood vessel distribution and blood flow in the dorsal skin window chamber of the nude mouse tumor model. In order to obtain comparable data, the distribution images of blood vessels were collected from the same mouse before and after tumor injection. In conclusion, in vivo blood vessel distribution images of the tumor mouse model have been continuously obtained during around two weeks.

  5. Graded Maximal Exercise Testing to Assess Mouse Cardio-Metabolic Phenotypes

    PubMed Central

    Petrosino, Jennifer M.; Heiss, Valerie J.; Maurya, Santosh K.; Kalyanasundaram, Anuradha; Periasamy, Muthu; LaFountain, Richard A.; Wilson, Jacob M.; Simonetti, Orlando P.; Ziouzenkova, Ouliana

    2016-01-01

    Functional assessments of cardiovascular fitness (CVF) are needed to establish animal models of dysfunction, test the effects of novel therapeutics, and establish the cardio-metabolic phenotype of mice. In humans, the graded maximal exercise test (GXT) is a standardized diagnostic for assessing CVF and mortality risk. These tests, which consist of concurrent staged increases in running speed and inclination, provide diagnostic cardio-metabolic parameters, such as, VO2max, anaerobic threshold, and metabolic crossover. Unlike the human-GXT, published mouse treadmill tests have set, not staged, increases in inclination as speed progress until exhaustion (PXT). Additionally, they often lack multiple cardio-metabolic parameters. Here, we developed a mouse-GXT with the intent of improving mouse-exercise testing sensitivity and developing translatable parameters to assess CVF in healthy and dysfunctional mice. The mouse-GXT, like the human-GXT, incorporated staged increases in inclination, speed, and intensity; and, was designed by considering imitations of the PXT and differences between human and mouse physiology. The mouse-GXT and PXTs were both tested in healthy mice (C57BL/6J, FVBN/J) to determine their ability to identify cardio-metabolic parameters (anaerobic threshold, VO2max, metabolic crossover) observed in human-GXTs. Next, theses assays were tested on established diet-induced (obese-C57BL/6J) and genetic (cardiac isoform Casq2-/-) models of cardiovascular dysfunction. Results showed that both tests reported VO2max and provided reproducible data about performance. Only the mouse-GXT reproducibly identified anaerobic threshold, metabolic crossover, and detected impaired CVF in dysfunctional models. Our findings demonstrated that the mouse-GXT is a sensitive, non-invasive, and cost-effective method for assessing CVF in mice. This new test can be used as a functional assessment to determine the cardio-metabolic phenotype of various animal models or the effects of novel therapeutics. PMID:26859763

  6. Graded Maximal Exercise Testing to Assess Mouse Cardio-Metabolic Phenotypes.

    PubMed

    Petrosino, Jennifer M; Heiss, Valerie J; Maurya, Santosh K; Kalyanasundaram, Anuradha; Periasamy, Muthu; LaFountain, Richard A; Wilson, Jacob M; Simonetti, Orlando P; Ziouzenkova, Ouliana

    2016-01-01

    Functional assessments of cardiovascular fitness (CVF) are needed to establish animal models of dysfunction, test the effects of novel therapeutics, and establish the cardio-metabolic phenotype of mice. In humans, the graded maximal exercise test (GXT) is a standardized diagnostic for assessing CVF and mortality risk. These tests, which consist of concurrent staged increases in running speed and inclination, provide diagnostic cardio-metabolic parameters, such as, VO2max, anaerobic threshold, and metabolic crossover. Unlike the human-GXT, published mouse treadmill tests have set, not staged, increases in inclination as speed progress until exhaustion (PXT). Additionally, they often lack multiple cardio-metabolic parameters. Here, we developed a mouse-GXT with the intent of improving mouse-exercise testing sensitivity and developing translatable parameters to assess CVF in healthy and dysfunctional mice. The mouse-GXT, like the human-GXT, incorporated staged increases in inclination, speed, and intensity; and, was designed by considering imitations of the PXT and differences between human and mouse physiology. The mouse-GXT and PXTs were both tested in healthy mice (C57BL/6J, FVBN/J) to determine their ability to identify cardio-metabolic parameters (anaerobic threshold, VO2max, metabolic crossover) observed in human-GXTs. Next, theses assays were tested on established diet-induced (obese-C57BL/6J) and genetic (cardiac isoform Casq2-/-) models of cardiovascular dysfunction. Results showed that both tests reported VO2max and provided reproducible data about performance. Only the mouse-GXT reproducibly identified anaerobic threshold, metabolic crossover, and detected impaired CVF in dysfunctional models. Our findings demonstrated that the mouse-GXT is a sensitive, non-invasive, and cost-effective method for assessing CVF in mice. This new test can be used as a functional assessment to determine the cardio-metabolic phenotype of various animal models or the effects of novel therapeutics.

  7. Bridging gaps: On the performance of airborne LiDAR to model wood mouse-habitat structure relationships in pine forests.

    PubMed

    Jaime-González, Carlos; Acebes, Pablo; Mateos, Ana; Mezquida, Eduardo T

    2017-01-01

    LiDAR technology has firmly contributed to strengthen the knowledge of habitat structure-wildlife relationships, though there is an evident bias towards flying vertebrates. To bridge this gap, we investigated and compared the performance of LiDAR and field data to model habitat preferences of wood mouse (Apodemus sylvaticus) in a Mediterranean high mountain pine forest (Pinus sylvestris). We recorded nine field and 13 LiDAR variables that were summarized by means of Principal Component Analyses (PCA). We then analyzed wood mouse's habitat preferences using three different models based on: (i) field PCs predictors, (ii) LiDAR PCs predictors; and (iii) both set of predictors in a combined model, including a variance partitioning analysis. Elevation was also included as a predictor in the three models. Our results indicate that LiDAR derived variables were better predictors than field-based variables. The model combining both data sets slightly improved the predictive power of the model. Field derived variables indicated that wood mouse was positively influenced by the gradient of increasing shrub cover and negatively affected by elevation. Regarding LiDAR data, two LiDAR PCs, i.e. gradients in canopy openness and complexity in forest vertical structure positively influenced wood mouse, although elevation interacted negatively with the complexity in vertical structure, indicating wood mouse's preferences for plots with lower elevations but with complex forest vertical structure. The combined model was similar to the LiDAR-based model and included the gradient of shrub cover measured in the field. Variance partitioning showed that LiDAR-based variables, together with elevation, were the most important predictors and that part of the variation explained by shrub cover was shared. LiDAR derived variables were good surrogates of environmental characteristics explaining habitat preferences by the wood mouse. Our LiDAR metrics represented structural features of the forest patch, such as the presence and cover of shrubs, as well as other characteristics likely including time since perturbation, food availability and predation risk. Our results suggest that LiDAR is a promising technology for further exploring habitat preferences by small mammal communities.

  8. Ultrastructural study of Rift Valley fever virus in the mouse model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed, Christopher; Steele, Keith E.; Honko, Anna

    Detailed ultrastructural studies of Rift Valley fever virus (RVFV) in the mouse model are needed to develop and characterize a small animal model of RVF for the evaluation of potential vaccines and therapeutics. In this study, the ultrastructural features of RVFV infection in the mouse model were analyzed. The main changes in the liver included the presence of viral particles in hepatocytes and hepatic stem cells accompanied by hepatocyte apoptosis. However, viral particles were observed rarely in the liver; in contrast, particles were extremely abundant in the CNS. Despite extensive lymphocytolysis, direct evidence of viral replication was not observed inmore » the lymphoid tissue. These results correlate with the acute-onset hepatitis and delayed-onset encephalitis that are dominant features of severe human RVF, but suggest that host immune-mediated mechanisms contribute significantly to pathology. The results of this study expand our knowledge of RVFV-host interactions and further characterize the mouse model of RVF.« less

  9. Diverse Application of Magnetic Resonance Imaging for Mouse Phenotyping

    PubMed Central

    Wu, Yijen L.; Lo, Cecilia W.

    2017-01-01

    Small animal models, particularly mouse models, of human diseases are becoming an indispensable tool for biomedical research. Studies in animal models have provided important insights into the etiology of diseases and accelerated the development of therapeutic strategies. Detailed phenotypic characterization is essential, both for the development of such animal models and mechanistic studies into disease pathogenesis and testing the efficacy of experimental therapeutics. Magnetic Resonance Imaging (MRI) is a versatile and non-invasive imaging modality with excellent penetration depth, tissue coverage, and soft tissue contrast. MRI, being a multi-modal imaging modality, together with proven imaging protocols and availability of good contrast agents, is ideally suited for phenotyping mutant mouse models. Here we describe the applications of MRI for phenotyping structural birth defects involving the brain, heart, and kidney in mice. The versatility of MRI and its ease of use are well suited to meet the rapidly increasing demands for mouse phenotyping in the coming age of functional genomics. PMID:28544650

  10. A G542X cystic fibrosis mouse model for examining nonsense mutation directed therapies.

    PubMed

    McHugh, Daniel R; Steele, Miarasa S; Valerio, Dana M; Miron, Alexander; Mann, Rachel J; LePage, David F; Conlon, Ronald A; Cotton, Calvin U; Drumm, Mitchell L; Hodges, Craig A

    2018-01-01

    Nonsense mutations are present in 10% of patients with CF, produce a premature termination codon in CFTR mRNA causing early termination of translation, and lead to lack of CFTR function. There are no currently available animal models which contain a nonsense mutation in the endogenous Cftr locus that can be utilized to test nonsense mutation therapies. In this study, we create a CF mouse model carrying the G542X nonsense mutation in Cftr using CRISPR/Cas9 gene editing. The G542X mouse model has reduced Cftr mRNA levels, demonstrates absence of CFTR function, and displays characteristic manifestations of CF mice such as reduced growth and intestinal obstruction. Importantly, CFTR restoration is observed in G542X intestinal organoids treated with G418, an aminoglycoside with translational readthrough capabilities. The G542X mouse model provides an invaluable resource for the identification of potential therapies of CF nonsense mutations as well as the assessment of in vivo effectiveness of these potential therapies targeting nonsense mutations.

  11. Humanized Mouse Models for the Study of Human Malaria Parasite Biology, Pathogenesis, and Immunity.

    PubMed

    Minkah, Nana K; Schafer, Carola; Kappe, Stefan H I

    2018-01-01

    Malaria parasite infection continues to inflict extensive morbidity and mortality in resource-poor countries. The insufficiently understood parasite biology, continuously evolving drug resistance and the lack of an effective vaccine necessitate intensive research on human malaria parasites that can inform the development of new intervention tools. Humanized mouse models have been greatly improved over the last decade and enable the direct study of human malaria parasites in vivo in the laboratory. Nevertheless, no small animal model developed so far is capable of maintaining the complete life cycle of Plasmodium parasites that infect humans. The ultimate goal is to develop humanized mouse systems in which a Plasmodium infection closely reproduces all stages of a parasite infection in humans, including pre-erythrocytic infection, blood stage infection and its associated pathology, transmission as well as the human immune response to infection. Here, we discuss current humanized mouse models and the future directions that should be taken to develop next-generation models for human malaria parasite research.

  12. In utero mouse embryonic imaging with OCT for ophthalmologic research

    NASA Astrophysics Data System (ADS)

    Syed, Saba H.; Larina, Irina V.; Dickinson, Mary E.; Larin, Kirill V.

    2011-03-01

    Live imaging of an eye during embryonic development in mammalian model is important for understanding dynamic aspects of normal and abnormal eye morphogenesis. In this study, we used Swept Source Optical Coherence Tomography (SS-OCT) for live structural imaging of mouse embryonic eye through the uterine wall. The eye structure was reconstructed in mouse embryos at 13.5 to 17.5 days post coitus (dpc). Despite the limited imaging depth of OCT in turbid tissues, we were able to visualize the whole eye globe at these stages. These results suggest that live in utero OCT imaging is a useful tool to study embryonic eye development in the mouse model.

  13. A physiologically based pharmacokinetic model for atrazine and its main metabolites in the adult male C57BL/6 mouse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin Zhoumeng; Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602; Fisher, Jeffrey W.

    Atrazine (ATR) is a chlorotriazine herbicide that is widely used and relatively persistent in the environment. In laboratory rodents, excessive exposure to ATR is detrimental to the reproductive, immune, and nervous systems. To better understand the toxicokinetics of ATR and to fill the need for a mouse model, a physiologically based pharmacokinetic (PBPK) model for ATR and its main chlorotriazine metabolites (Cl-TRIs) desethyl atrazine (DE), desisopropyl atrazine (DIP), and didealkyl atrazine (DACT) was developed for the adult male C57BL/6 mouse. Taking advantage of all relevant and recently made available mouse-specific data, a flow-limited PBPK model was constructed. The ATR andmore » DACT sub-models included blood, brain, liver, kidney, richly and slowly perfused tissue compartments, as well as plasma protein binding and red blood cell binding, whereas the DE and DIP sub-models were constructed as simple five-compartment models. The model adequately simulated plasma levels of ATR and Cl-TRIs and urinary dosimetry of Cl-TRIs at four single oral dose levels (250, 125, 25, and 5 mg/kg). Additionally, the model adequately described the dose dependency of brain and liver ATR and DACT concentrations. Cumulative urinary DACT amounts were accurately predicted across a wide dose range, suggesting the model's potential use for extrapolation to human exposures by performing reverse dosimetry. The model was validated using previously reported data for plasma ATR and DACT in mice and rats. Overall, besides being the first mouse PBPK model for ATR and its Cl-TRIs, this model, by analogy, provides insights into tissue dosimetry for rats. The model could be used in tissue dosimetry prediction and as an aid in the exposure assessment to this widely used herbicide.« less

  14. Comparative mRNA analysis of behavioral and genetic mouse models of aggression.

    PubMed

    Malki, Karim; Tosto, Maria G; Pain, Oliver; Sluyter, Frans; Mineur, Yann S; Crusio, Wim E; de Boer, Sietse; Sandnabba, Kenneth N; Kesserwani, Jad; Robinson, Edward; Schalkwyk, Leonard C; Asherson, Philip

    2016-04-01

    Mouse models of aggression have traditionally compared strains, most notably BALB/cJ and C57BL/6. However, these strains were not designed to study aggression despite differences in aggression-related traits and distinct reactivity to stress. This study evaluated expression of genes differentially regulated in a stress (behavioral) mouse model of aggression with those from a recent genetic mouse model aggression. The study used a discovery-replication design using two independent mRNA studies from mouse brain tissue. The discovery study identified strain (BALB/cJ and C57BL/6J) × stress (chronic mild stress or control) interactions. Probe sets differentially regulated in the discovery set were intersected with those uncovered in the replication study, which evaluated differences between high and low aggressive animals from three strains specifically bred to study aggression. Network analysis was conducted on overlapping genes uncovered across both studies. A significant overlap was found with the genetic mouse study sharing 1,916 probe sets with the stress model. Fifty-one probe sets were found to be strongly dysregulated across both studies mapping to 50 known genes. Network analysis revealed two plausible pathways including one centered on the UBC gene hub which encodes ubiquitin, a protein well-known for protein degradation, and another on P38 MAPK. Findings from this study support the stress model of aggression, which showed remarkable molecular overlap with a genetic model. The study uncovered a set of candidate genes including the Erg2 gene, which has previously been implicated in different psychopathologies. The gene networks uncovered points at a Redox pathway as potentially being implicated in aggressive related behaviors. © 2016 Wiley Periodicals, Inc.

  15. The Dipeptidyl Peptidases 4, 8, and 9 in Mouse Monocytes and Macrophages: DPP8/9 Inhibition Attenuates M1 Macrophage Activation in Mice.

    PubMed

    Waumans, Yannick; Vliegen, Gwendolyn; Maes, Lynn; Rombouts, Miche; Declerck, Ken; Van Der Veken, Pieter; Vanden Berghe, Wim; De Meyer, Guido R Y; Schrijvers, Dorien; De Meester, Ingrid

    2016-02-01

    Atherosclerosis remains the leading cause of death in Western countries. Dipeptidyl peptidase (DPP) 4 has emerged as a novel target for the prevention and treatment of atherosclerosis. Family members DPP8 and 9 are abundantly present in macrophage-rich regions of atherosclerotic plaques, and DPP9 inhibition attenuates activation of human M1 macrophages in vitro. Studying this family in a mouse model for atherosclerosis would greatly advance our knowledge regarding their potential as therapeutic targets. We found that DPP4 is downregulated during mouse monocyte-to-macrophage differentiation. DPP8 and 9 expression seems relatively low in mouse monocytes and macrophages. Viability of primary mouse macrophages is unaffected by DPP4 or DPP8/9 inhibition. Importantly, DPP8/9 inhibition attenuates macrophage activation as IL-6 secretion is significantly decreased. Mouse macrophages respond similarly to DPP inhibition, compared to human macrophages. This shows that the mouse could become a valid model species for the study of DPPs as therapeutic targets in atherosclerosis.

  16. Engine Fluid Leakage Detection: A Feasibility Study

    DTIC Science & Technology

    2011-07-01

    2011 © Sa Majesté la Reine (en droit du Canada), telle que représentée par le ministre de la Défense nationale, 2011 DRDC Atlantic TM 2011-050 i... de détecter tout problème possible lié à la sécurité ou aux performances des moteurs à turbine à gaz d’aéronefs. Le signalement immédiat d’une fuite...carburant ou d’huile moteur nuisent non seulement aux performances d’un moteur, mais elles représentent également une menace réelle pour la sécurité de

  17. Strategy Toward the Total Synthesis of Epothilones A and B

    DTIC Science & Technology

    1999-07-01

    2-(iV-morpholino)ethanesulfonic acid ). 1 mM EGTA(1.2-di(2-aminoethoxy)ethane-/V..V..V’.Af’-tetraaceticacid). 0.5 mM MgCl2, 1 mM GTP. and 3 M... acid ), 1 mM EGTA. 0.5 nM MgCU. ImM GTP and 3M glyceropH £6- Tta concentration of tubulin in MTP was estimated to be about 85%. Assembly was...fragment projected for the olefin metathesis step. For this purpose, it would be appropriate to reach a carboxylic acid (cf. 28, Scheme 4) for

  18. Using Nonequilibrium Alloying Techniques for Corrosion Inhibition in Gr/ Al and Gr/Mg Metal Matrix Composites

    DTIC Science & Technology

    1994-06-15

    of AI-12Mg-13Sf Before and After Heat Treament at 400C for 1, 2 and 8 hre and 5000C for I hr, Polarized in Quiescent 0. IM NaCI, pH 8, 2W°C. 8 0.8 AI...C4 4R o00qI i co c cc o !00§ " 00- 0-coo 88 88-- o IMM CCO 00 PP0M 3I34 -1.2 M9 - TreaMent #1 .1.4 ~ 1.5 .7 -6 -5 -4 -3 -2 - Current Denedty, log (A

  19. Dyadic social interaction of C57BL/6 mice versus interaction with a toy mouse: conditioned place preference/aversion, substrain differences, and no development of a hierarchy.

    PubMed

    Pinheiro, Barbara S; Seidl, Simon S; Habazettl, Eva; Gruber, Bernadette E; Bregolin, Tanja; Zernig, Gerald

    2016-04-01

    Impaired social interaction is a hallmark symptom of many psychiatric diseases, including dependence syndromes (substance use disorders). Helping the addict reorient her/his behavior away from the drug of abuse toward social interaction would be of considerable therapeutic benefit. To study the neural basis of such a reorientation, we have developed several animal models in which the attractiveness of a dyadic (i.e. one-to-one) social interaction (DSI) can be compared directly with that of cocaine as a prototypical drug of abuse. Our models are based on the conditioned place preference (CPP) paradigm. In an ongoing effort to validate our experimental paradigms in C57BL/6 mice to make use of the plethora of transgenic models available in this genus, we found the following: (a) DSI with a live mouse produced CPP, whereas an interaction with an inanimate mouse-like object (i.e. a 'toy mouse'; toy mouse interaction) led to conditioned place aversion - but only in the Jackson substrain (C57BL/6J). (b) In the NIH substrain (C57BL/6N), both DSI and toy mouse interaction produced individual aversion in more than 50% of the tested mice. (c) Four 15 min DSI episodes did not result in the development of an observable hierarchy, that is, dominance/subordination behavior in the overwhelming majority (i.e. 30 of 32) of the tested Jackson mouse pairs. Therefore, dominance/subordination does not seem to be a confounding variable in our paradigm, at least not in C57BL/6J mice. Respective data for NIH mice were too limited to allow any conclusion. The present findings indicate that (a) DSI with a live mouse produces CPP to a greater degree than an interaction with an inanimate object resembling a mouse and that (b) certain substrain differences with respect to CPP/aversion to DSI do exist between the Jax and NIH substrain of C57BL/6 mice. These differences have to be considered when choosing a proper mouse substrain model for investigating the neural basis of DSI reward versus drug reward.

  20. Quantitative volumetric imaging of normal, neoplastic and hyperplastic mouse prostate using ultrasound.

    PubMed

    Singh, Shalini; Pan, Chunliu; Wood, Ronald; Yeh, Chiuan-Ren; Yeh, Shuyuan; Sha, Kai; Krolewski, John J; Nastiuk, Kent L

    2015-09-21

    Genetically engineered mouse models are essential to the investigation of the molecular mechanisms underlying human prostate pathology and the effects of therapy on the diseased prostate. Serial in vivo volumetric imaging expands the scope and accuracy of experimental investigations of models of normal prostate physiology, benign prostatic hyperplasia and prostate cancer, which are otherwise limited by the anatomy of the mouse prostate. Moreover, accurate imaging of hyperplastic and tumorigenic prostates is now recognized as essential to rigorous pre-clinical trials of new therapies. Bioluminescent imaging has been widely used to determine prostate tumor size, but is semi-quantitative at best. Magnetic resonance imaging can determine prostate volume very accurately, but is expensive and has low throughput. We therefore sought to develop and implement a high throughput, low cost, and accurate serial imaging protocol for the mouse prostate. We developed a high frequency ultrasound imaging technique employing 3D reconstruction that allows rapid and precise assessment of mouse prostate volume. Wild-type mouse prostates were examined (n = 4) for reproducible baseline imaging, and treatment effects on volume were compared, and blinded data analyzed for intra- and inter-operator assessments of reproducibility by correlation and for Bland-Altman analysis. Examples of benign prostatic hyperplasia mouse model prostate (n = 2) and mouse prostate implantation of orthotopic human prostate cancer tumor and its growth (n =  ) are also demonstrated. Serial measurement volume of the mouse prostate revealed that high frequency ultrasound was very precise. Following endocrine manipulation, regression and regrowth of the prostate could be monitored with very low intra- and interobserver variability. This technique was also valuable to monitor the development of prostate growth in a model of benign prostatic hyperplasia. Additionally, we demonstrate accurate ultrasound image-guided implantation of orthotopic tumor xenografts and monitoring of subsequent tumor growth from ~10 to ~750 mm(3) volume. High frequency ultrasound imaging allows precise determination of normal, neoplastic and hyperplastic mouse prostate. Low cost and small image size allows incorporation of this imaging modality inside clean animal facilities, and thereby imaging of immunocompromised models. 3D reconstruction for volume determination is easily mastered, and both small and large relative changes in volume are accurately visualized. Ultrasound imaging does not rely on penetration of exogenous imaging agents, and so may therefore better measure poorly vascularized or necrotic diseased tissue, relative to bioluminescent imaging (IVIS). Our method is precise and reproducible with very low inter- and intra-observer variability. Because it is non-invasive, mouse models of prostatic disease states can be imaged serially, reducing inter-animal variability, and enhancing the power to detect small volume changes following therapeutic intervention.

Top