Sample records for mouse mutants lacking

  1. Development of the mouse vestibular system in the absence of gravity perception

    NASA Technical Reports Server (NTRS)

    Smith, Michael; Yuan Wang, Xiang; Wolgemuth, Debra J.; Murashov, Alexander K.

    2003-01-01

    The tilted mutant mouse, which lacks otoconia in the inner ear, was used to study development of the mouse vestibular system in the absence of gravity perception. Otoconia are dense particles composed of proteins and calcium carbonate crystals suspended in the gelatinous macular membrane. They enhance, and are largely responsible for, sensitivity to gravity. Morphometric analysis of the vestibular ganglion showed that the mutant developed more slowly than the normal controls, both in rate of development and cell number, particularly during the first week of post-natal development. The mutant ganglia also exhibited a reduction of cells during the first 6 days of post-natal development.

  2. Letter to the Editor, Response to Commentary "Re-Evaluation of the Big Blue® Mouse Assay of Propiconazole Suggests Lack of Mutagenicity"

    EPA Science Inventory

    In their commentary titled "Re-Evaluation of the Big Blue® Mouse Assay of Propiconazole Suggests Lack of Mutagenicity", Shane et 01. present an overview of portions of our previously reported work examining the potential for some conazole fungicides to induce increases in mutant ...

  3. Anaerobic respiration of Escherichia coli in the mouse intestine.

    PubMed

    Jones, Shari A; Gibson, Terri; Maltby, Rosalie C; Chowdhury, Fatema Z; Stewart, Valley; Cohen, Paul S; Conway, Tyrrell

    2011-10-01

    The intestine is inhabited by a large microbial community consisting primarily of anaerobes and, to a lesser extent, facultative anaerobes, such as Escherichia coli, which we have shown requires aerobic respiration to compete successfully in the mouse intestine (S. A. Jones et al., Infect. Immun. 75:4891-4899, 2007). If facultative anaerobes efficiently lower oxygen availability in the intestine, then their sustained growth must also depend on anaerobic metabolism. In support of this idea, mutants lacking nitrate reductase or fumarate reductase have extreme colonization defects. Here, we further explore the role of anaerobic respiration in colonization using the streptomycin-treated mouse model. We found that respiratory electron flow is primarily via the naphthoquinones, which pass electrons to cytochrome bd oxidase and the anaerobic terminal reductases. We found that E. coli uses nitrate and fumarate in the intestine, but not nitrite, dimethyl sulfoxide, or trimethylamine N-oxide. Competitive colonizations revealed that cytochrome bd oxidase is more advantageous than nitrate reductase or fumarate reductase. Strains lacking nitrate reductase outcompeted fumarate reductase mutants once the nitrate concentration in cecal mucus reached submillimolar levels, indicating that fumarate is the more important anaerobic electron acceptor in the intestine because nitrate is limiting. Since nitrate is highest in the absence of E. coli, we conclude that E. coli is the only bacterium in the streptomycin-treated mouse large intestine that respires nitrate. Lastly, we demonstrated that a mutant lacking the NarXL regulator (activator of the NarG system), but not a mutant lacking the NarP-NarQ regulator, has a colonization defect, consistent with the advantage provided by NarG. The emerging picture is one in which gene regulation is tuned to balance expression of the terminal reductases that E. coli uses to maximize its competitiveness and achieve the highest possible population in the intestine.

  4. Dampened Hedgehog signaling but normal Wnt signaling in zebrafish without cilia

    PubMed Central

    Huang, Peng; Schier, Alexander F.

    2009-01-01

    Summary Cilia have been implicated in Hedgehog (Hh) and Wnt signaling in mouse but not in Drosophila. To determine whether the role of cilia is conserved in zebrafish, we generated maternal-zygotic (MZ) oval (ovl; ift88) mutants that lack all cilia. MZovl mutants display normal canonical and non-canonical Wnt signaling but show defects in Hh signaling. As in mouse, zebrafish cilia are required to mediate the activities of Hh, Ptc, Smo and PKA. However, in contrast to mouse Ift88 mutants, which show a dramatic reduction in Hh signaling, zebrafish MZovl mutants display dampened, but expanded, Hh pathway activity. This activity is largely due to gli1, the expression of which is fully dependent on Hh signaling in mouse but not in zebrafish. These results reveal a conserved requirement for cilia in transducing the activity of upstream regulators of Hh signaling but distinct phenotypic effects due to differential regulation and differing roles of transcriptional mediators. PMID:19700616

  5. Acentriolar mitosis activates a p53-dependent apoptosis pathway in the mouse embryo

    PubMed Central

    Bazzi, Hisham; Anderson, Kathryn V.

    2014-01-01

    Centrosomes are the microtubule-organizing centers of animal cells that organize interphase microtubules and mitotic spindles. Centrioles are the microtubule-based structures that organize centrosomes, and a defined set of proteins, including spindle assembly defective-4 (SAS4) (CPAP/CENPJ), is required for centriole biogenesis. The biological functions of centrioles and centrosomes vary among animals, and the functions of mammalian centrosomes have not been genetically defined. Here we use a null mutation in mouse Sas4 to define the cellular and developmental functions of mammalian centrioles in vivo. Sas4-null embryos lack centrosomes but survive until midgestation. As expected, Sas4−/− mutants lack primary cilia and therefore cannot respond to Hedgehog signals, but other developmental signaling pathways are normal in the mutants. Unlike mutants that lack cilia, Sas4−/− embryos show widespread apoptosis associated with global elevated expression of p53. Cell death is rescued in Sas4−/− p53−/− double-mutant embryos, demonstrating that mammalian centrioles prevent activation of a p53-dependent apoptotic pathway. Expression of p53 is not activated by abnormalities in bipolar spindle organization, chromosome segregation, cell-cycle profile, or DNA damage response, which are normal in Sas4−/− mutants. Instead, live imaging shows that the duration of prometaphase is prolonged in the mutants while two acentriolar spindle poles are assembled. Independent experiments show that prolonging spindle assembly is sufficient to trigger p53-dependent apoptosis. We conclude that a short delay in the prometaphase caused by the absence of centrioles activates a previously undescribed p53-dependent cell death pathway in the rapidly dividing cells of the mouse embryo. PMID:24706806

  6. Lack of genetic interaction between Tbx20 and Tbx3 in early mouse heart development.

    PubMed

    Gavrilov, Svetlana; Harvey, Richard P; Papaioannou, Virginia E

    2013-01-01

    Members of the T-box family of transcription factors are important regulators orchestrating the complex regionalization of the developing mammalian heart. Individual mutations in Tbx20 and Tbx3 cause distinct congenital heart abnormalities in the mouse: Tbx20 mutations result in failure of heart looping, developmental arrest and lack of chamber differentiation, while hearts of Tbx3 mutants progress further, loop normally but show atrioventricular convergence and outflow tract defects. The two genes have overlapping areas of expression in the atrioventricular canal and outflow tract of the heart but their potential genetic interaction has not been previously investigated. In this study we produced compound mutants to investigate potential genetic interactions at the earliest stages of heart development. We find that Tbx20; Tbx3 double heterozygous mice are viable and fertile with no apparent abnormalities, while double homozygous mutants are embryonic lethal by midgestation. Double homozygous mutant embryos display abnormal cardiac morphogenesis, lack of heart looping, expression patterns of cardiac genes and time of death that are indistinguishable from Tbx20 homozygous mutants. Prior to death, the double homozygotes show an overall developmental delay similar to Tbx3 homozygous mutants. Thus the effects of Tbx20 are epistatic to Tbx3 in the heart but Tbx3 is epistatic to Tbx20 with respect to developmental delay.

  7. Zebrafish pit1 mutants lack three pituitary cell types and develop severe dwarfism.

    PubMed

    Nica, Gabriela; Herzog, Wiebke; Sonntag, Carmen; Hammerschmidt, Matthias

    2004-05-01

    The Pou domain transcription factor Pit-1 is required for lineage determination and cellular commitment processes during mammalian adenohypophysis development. Here we report the cloning and mutational analysis of a pit1 homolog from zebrafish. Compared with mouse, zebrafish pit1 starts to be expressed at a much earlier stage of adenohypophysis development. However, as in the mouse, expression is restricted to a subset of pituitary cell types, excluding proopiomelanocortin (pomc)-expressing cells (corticotropes, melanotropes) and possibly gonadotropes. We could identify two N-ethyl-N-nitrosourea-induced zebrafish pit1 null mutants. Most mutants die during larval stages, whereas survivors develop severe dwarfism. Mutant larvae lack lactotropes, somatotropes, and thyrotropes, although the adenohypophysis is of normal size, without any sign of increased apoptosis rates. Instead, mutant embryos initiate ectopic expression of pomc in pit1-positive cells, leading to an expansion of the Pomc lineage. Similarly, the number of gonadotropes seems increased, as indicated by the expression of gsualpha, a marker for thyrotropes and gonadotropes. In pit1 mutants, the total number of gsualpha-positive cells is normal despite the loss of gsualpha and tshbeta coexpressing cells. Together, these data suggest a transfating of the Pit1 lineage to the Pomc and possibly the gonadotroph lineages in the mutant, and a pomc- and gonadotropin-repressive role of Pit1 during normal zebrafish development. This is different from mouse, for which a repressive role of Pit-1 has only been reported for the gonadotropin Lhbeta, but not for Pomc. In sum, our data point to both conserved and class-specific aspects of Pit1 function during pituitary development in different vertebrate species.

  8. Development and Function of the Mouse Vestibular System in the Absence of Gravity Perception

    NASA Technical Reports Server (NTRS)

    Wolgemuth, Debra J.

    2005-01-01

    The hypothesis that was tested in this research was that the absence of gravity perception, such as would occur in space, would affect the development and function of the vestibular and central nervous systems. Further, we postulated that these effects would be more significant at specific stages of post-natal development of the animal. We also proposed the use of molecular genetic approaches that would provide important information as to the hierarchy of gene function during the development and subsequent function of the vestibular system. The tilted (tlt) mutant mouse has been characterized as lacking the ability to provide sensory input to the gravity receptors. The tlt/tlt mutant mice were a particularly attractive model for the study of vestibular function since the primary defect was limited to the receptor part of the vestibular system, and there were no detectable abnormal phenotypes in other organ systems. The goal of the proposed studies was to assess immediate and delayed effects of the lack of gravity perception on the vestibular system. Particular attention was paid to characterizing primarily affected periods of vestibular morphogenesis, and to identifying downstream genetic pathways that are altered in the CNS of the tlt/tlt mutant mouse. The specific aims were: (1) to characterize the postnatal morphogenesis of the CNS in the tlt mutant mouse, using detailed morphometric analysis of isolated vestibular ganglia and brain tissue at different stages of postnatal development and assessment of apoptotic cell death; (2) to examine the expression of selected genes implicated by mutational analysis to be important in vestibular development or function by in situ hybridization or immunohistochemistry in the mutant mice; and (3) to identify other genes involved in vestibular development and function, using differential cloning strategies to isolate genes whose expression is changed in the mutant versus normal vestibular system.

  9. Host range and cell cycle activation properties of polyomavirus large T-antigen mutants defective in pRB binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freund, R.; Bauer, P.H.; Benjamin, T.L.

    1994-11-01

    The authors have examined the growth properties of polyomavirus large T-antigen mutants that ar unable to bind pRB, the product of the retinoblastoma tumor suppressor gene. These mutants grow poorly on primary mouse cells yet grow well on NIH 3T3 and other established mouse cell lines. Preinfection of primary baby mouse kidney (BMK) epithelial cells with wild-type simian virus 40 renders these cells permissive to growth of pRB-binding polyomavirus mutants. Conversely, NIH 3T3 cells transfected by and expressing wild-type human pRB become nonpermissive. Primary fibroblasts for mouse embryos that carry a homozygous knockout of the RB gene are permissive, whilemore » those from normal littermates are nonpermissive. The host range of polyomavirus pRB-binding mutants is thus determined by expression or lack of expression of functional pRB by the host. These results demonstrate the importance of pRB binding by large T antigen for productive viral infection in primary cells. Failure of pRB-binding mutants to grow well in BMK cells correlates with their failure to induce progression from G{sub 0} or G{sub 1} through the S phase of the cell cycle. Time course studies show delayed synthesis and lower levels of accumulation of large T antigen, viral DNA, and VP1 in mutant compared with wild-type virus-infected BMK cells. These results support a model in which productive infection by polyomavirus in normal mouse cells is tightly coupled to the induction and progression of the cell cycle. 48 refs., 6 figs., 5 tabs.« less

  10. Functional domains of the poliovirus receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koike, Satoshi; Ise, Iku; Nomoto, Akio

    1991-05-15

    A number of mutant cDNAs of the human poliovirus receptor were constructed to identify essential regions of the molecule as the receptor. All mutant cDNAs carrying the sequence coding for the entire N-terminal immunoglobulin-like domain (domain I) confer permissiveness for poliovirus to mouse L cells, but a mutant cDNA lacking the sequence for domain I does not. The transformants permissive for poliovirus were able to bind the virus and were also recognized by monoclonal antibody D171, which competes with poliovirus for the cellular receptor. These results strongly suggest that the poliovirus binding site resides in domain I of the receptor.more » Mutant cDNAs for the sequence encoding the intracellular peptide were also constructed and expressed in mouse L cells. Susceptibility of these cells to poliovirus revealed that the entire putative cytoplasmic domain is not essential for virus infection. Thus, the cytoplasmic domain of the molecule appears not to play a role in the penetration of poliovirus.« less

  11. The circling mutant Pcdh15roda is a new mouse model for hearing loss.

    PubMed

    Torres, Adriana Amorim; Rzadzinska, Agnieszka K; Ribeiro, Andrea Frozino; Silva, Daniel Almeida da Silva E; Guénet, Jean-Louis; Massironi, Sílvia Maria Gomes; Godard, Ana Lúcia Brunialti

    2013-01-01

    Mouse mutagenesis is a key tool for studying gene function and several mutant alleles have been described and constitute mouse models for human hereditary diseases. Genetic hearing loss represents over 50% of all hearing loss cases in children and, due to the heterogeneity of the disorder, there is still a demand for the isolation and characterization of new genes and alleles. Here we report phenotypic and molecular characterization of a new mouse model for hereditary hearing loss. The mutant rodador, isolated by Massironi and colleagues in 2006, presents an autosomal recessive disorder characterized by deafness and balance dysfunction associated with abnormal stereocilia in the inner ear. The mutation was mapped to mouse chromosome 10, and characterization of the gene Pcdh15 revealed an AT-to-GC transition in intron 23 of mutant animals. The alteration led to the switch of a dinucleotide ApA for ApG, creating a novel intronic acceptor splice site, which leads to incorporation of eight intronic bases into the processed mRNA and alteration of the downstream reading frame. In silico analysis indicated that the mutated protein is truncated and lacks two cadherin domains, and the transmembrane and cytoplasmic domains. Real Time PCR analyses revealed a significantly reduced Pcdh15 mRNA level in the brain of mutant mice, which might be due to the mechanism of non-sense mediated decay. In man, mutations in the orthologue PCDH15 cause non-syndromic deafness and Usher Syndrome Type 1F, a genetic disorder characterized by hearing loss and retinitis pigmentosa. Rodador mouse constitutes a new model for studying deafness in these conditions and may help in the comprehension of the pathogeneses of the disease, as well as of the mechanisms involved in the morphogenesis and function of inner ear stereocilia. This is a new ENU-induced allele and the first isolated in a BALB/c background. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Insights from the Study of Animals Lacking Functional Estrogen Receptor

    NASA Astrophysics Data System (ADS)

    Korach, Kenneth S.

    1994-12-01

    Estrogen hormones produce physiological actions within a variety of target sites in the body and during development by activating a specific receptor protein. Hormone responsiveness for the estrogen receptor protein was investigated at different stages of development with the use of gene knockout techniques because no natural genetic mutants have been described. A mutant mouse line without a functional estrogen receptor was created and is being used to assess estrogen responsiveness. Both sexes of these mutant animals are infertile and show a variety of phenotypic changes, some of which are associated with the gonads, mammary glands, reproductive tracts, and skeletal tissues.

  13. Purkinje Cell Compartmentation in the Cerebellum of the Lysosomal Acid Phosphatase 2 Mutant Mouse (Nax - Naked-Ataxia Mutant Mouse)

    PubMed Central

    Bailey, Karen; Rahimi Balaei, Maryam; Mannan, Ashraf; Del Bigio, Marc R.; Marzban, Hassan

    2014-01-01

    The Acp2 gene encodes the beta subunit of lysosomal acid phosphatase, which is an isoenzyme that hydrolyzes orthophosphoric monoesters. In mice, a spontaneous mutation in Acp2 results in severe cerebellar defects. These include a reduced size, abnormal lobulation, and an apparent anterior cerebellar disorder with an absent or hypoplastic vermis. Based on differential gene expression in the cerebellum, the mouse cerebellar cortex can normally be compartmentalized anteroposteriorly into four transverse zones and mediolaterally into parasagittal stripes. In this study, immunohistochemistry was performed using various Purkinje cell compartmentation markers to examine their expression patterns in the Acp2 mutant. Despite the abnormal lobulation and anterior cerebellar defects, zebrin II and PLCβ4 showed similar expression patterns in the nax mutant and wild type cerebellum. However, fewer stripes were found in the anterior zone of the nax mutant, which could be due to a lack of Purkinje cells or altered expression of the stripe markers. HSP25 expression was uniform in the central zone of the nax mutant cerebellum at around postnatal day (P) 18–19, suggesting that HSP25 immunonegative Purkinje cells are absent or delayed in stripe pattern expression compared to the wild type. HSP25 expression became heterogeneous around P22–23, with twice the number of parasagittal stripes in the nax mutant compared to the wild type. Aside from reduced size and cortical disorganization, both the posterior zone and nodular zone in the nax mutant appeared less abnormal than the rest of the cerebellum. From these results, it is evident that the anterior zone of the nax mutant cerebellum is the most severely affected, and this extends beyond the primary fissure into the rostral central zone/vermis. This suggests that ACP2 has critical roles in the development of the anterior cerebellum and it may regulate anterior and central zone compartmentation. PMID:24722417

  14. E2-EPF UCP regulates stability and functions of missense mutant pVHL via ubiquitin mediated proteolysis.

    PubMed

    Park, Kyeong-Su; Kim, Ju Hee; Shin, Hee Won; Chung, Kyung-Sook; Im, Dong-Soo; Lim, Jung Hwa; Jung, Cho-Rok

    2015-10-26

    Missense mutation of VHL gene is frequently detected in type 2 VHL diseases and linked to a wide range of pVHL functions and stability. Certain mutant pVHLs retain ability to regulate HIFs but lose their function by instability. In this case, regulating of degradation of mutant pVHLs, can be postulated as therapeutic method. The stability and cellular function of missense mutant pVHLs were determine in HEK293T transient expressing cell and 786-O stable cell line. Ubiquitination assay of mutant VHL proteins was performed in vitro system. Anticancer effect of adenovirus mediated shUCP expressing was evaluated using ex vivo mouse xenograft assay. Three VHL missense mutants (V155A, L158Q, and Q164R) are directly ubiquitinated by E2-EPF UCP (UCP) in vitro. Mutant pVHLs are more unstable than wild type in cell. Missense mutant pVHLs interact with UCP directly in both in vitro and cellular systems. Lacking all of lysine residues of pVHL result in resistance to ubiquitination thereby increase its stability. Missense mutant pVHLs maintained the function of E3 ligase to ubiquitinate HIF-1α in vitro. In cells expressing mutant pVHLs, Glut-1 and VEGF were relatively upregulated compared to their levels in cells expressing wild-type. Depletion of UCP restored missense mutant pVHLs levels and inhibited cell growth. Adenovirus-mediated shUCP RNA delivery inhibited tumor growth in ex vivo mouse xenograft model. These data suggest that targeting of UCP can be one of therapeutic method in type 2 VHL disease caused by unstable but functional missense mutant pVHL.

  15. A Dimeric Mutant of Human Pancreatic Ribonuclease with Selective Cytotoxicity toward Malignant Cells

    NASA Astrophysics Data System (ADS)

    Piccoli, Renata; di Gaetano, Sonia; de Lorenzo, Claudia; Grauso, Michela; Monaco, Carmen; Spalletti-Cernia, Daniela; Laccetti, Paolo; Cinatl, Jaroslav; Matousek, Josef; D'Alessio, Giuseppe

    1999-07-01

    Monomeric human pancreatic RNase, devoid of any biological activity other than its RNA degrading ability, was engineered into a dimeric protein with a cytotoxic action on mouse and human tumor cells, but lacking any appreciable toxicity on mouse and human normal cells. This dimeric variant of human pancreas RNase selectively sensitizes to apoptotic death cells derived from a human thyroid tumor. Because of its selectivity for tumor cells, and because of its human origin, this protein represents a potentially very attractive, novel tool for anticancer therapy.

  16. Genetic inactivation of mGlu5 receptor improves motor coordination in the Grm1crv4 mouse model of SCAR13 ataxia.

    PubMed

    Bossi, Simone; Musante, Ilaria; Bonfiglio, Tommaso; Bonifacino, Tiziana; Emionite, Laura; Cerminara, Maria; Cervetto, Chiara; Marcoli, Manuela; Bonanno, Giambattista; Ravazzolo, Roberto; Pittaluga, Anna; Puliti, Aldamaria

    2018-01-01

    Deleterious mutations in the glutamate receptor metabotropic 1 gene (GRM1) cause a recessive form of cerebellar ataxia, SCAR13. GRM1 and GRM5 code for the metabotropic glutamate type 1 (mGlu1) and type 5 (mGlu5) receptors, respectively. Their different expression profiles suggest they could have distinct functional roles. In a previous study, homozygous mice lacking mGlu1 receptors (Grm1 crv4/crv4 ) and exhibiting ataxia presented cerebellar overexpression of mGlu5 receptors, that was proposed to contribute to the mouse phenotype. To test this hypothesis, we here crossed Grm1 crv4 and Grm5 ko mice to generate double mutants (Grm1 crv4/crv4 Grm5 ko/ko ) lacking both mGlu1 and mGlu5 receptors. Double mutants and control mice were analyzed for spontaneous behavior and for motor activity by rotarod and footprint analyses. In the same mice, the release of glutamate from cerebellar nerve endings (synaptosomes) elicited by 12mM KCl or by α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) was also evaluated. Motor coordination resulted improved in double mutants when compared to Grm1 crv4/crv4 mice. Furthermore, in in vitro studies, glutamate release elicited by both KCl depolarization and activation of AMPA autoreceptors resulted reduced in Grm1 crv4/crv4 mice compared to wild type mice, while it presented normal levels in double mutants. Moreover, we found that Grm1 crv4/crv4 mice showed reduced expression of GluA2/3 AMPA receptor subunits in cerebellar synaptosomes, while it resulted restored to wild type level in double mutants. To conclude, blocking of mGlu5 receptor reduced the dysregulation of glutamate transmission and improved motor coordination in the Grm1 crv4 mouse model of SCAR13, thus suggesting the possible usefulness of pharmacological therapies based on modulation of mGlu5 receptor activity for the treatment of this type of ataxia. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. The Justy mutant mouse strain produces a spontaneous murine model of salivary gland cancer with myoepithelial and basal cell differentiation

    PubMed Central

    Simons, Andrean L.; Lu, Ping; Gibson-Corley, Katherine N.; Robinson, Robert A.; Meyerholz, David K.; Colgan, John D.

    2013-01-01

    We previously identified a novel mutant mouse strain on the C3HeB/FeJ background named Justy. This strain bears a recessive mutation in the Gon4l gene that greatly reduces expression of the encoded protein, a nuclear factor implicated in transcriptional regulation. Here, we report that Justy mutant mice aged 6 months or older spontaneously developed carcinomas with myoepithelial and basaloid differentiation in salivary glands with an incidence of ~25%. Tumors developed proximate to submandibular glands and to a lesser extent in the sublingual and parotid glands. Histologically, tumors often had central cavitary lesions filled with necrotic debris that was lined by tumors cells and had spindle and epithelioid cell differentiation with lesser basaloid to clear cell features. Tumor tissue often had variable evidence of a high mitotic rate, pleomorphism and invasion into adjacent salivary glands. Neoplastic cells had diffuse immunoreactivity for pancytokeratin (AE1/AE3) and p63. While CK5/6 immunostaining was seen in the much of the tumor cells, it was often lacking in pleomorphic areas. Tumor cells lacked immunoreactivity for alpha-smooth muscle actin, S100, c-Kit and glial fibrillary acid protein. Additionally, tumors had immunoreactivity for phosphorylated and total epidermal growth factor receptor (EGFR), suggesting that EGFR signaling may participate in growth regulation of these tumors. These findings indicate that the salivary gland carcinomas occur spontaneously in Justy mice and that these tumors may offer a valuable model for study of EGFR regulation. Combined, our data suggest that Justy mice warrant further investigation for use as a mouse model for human salivary gland neoplasia. PMID:23608756

  18. Lack of centrioles and primary cilia in STIL−/− mouse embryos

    PubMed Central

    David, Ahuvit; Liu, Fengying; Tibelius, Alexandra; Vulprecht, Julia; Wald, Diana; Rothermel, Ulrike; Ohana, Reut; Seitel, Alexander; Metzger, Jasmin; Ashery-Padan, Ruth; Meinzer, Hans-Peter; Gröne, Hermann-Josef; Izraeli, Shai; Krämer, Alwin

    2014-01-01

    Although most animal cells contain centrosomes, consisting of a pair of centrioles, their precise contribution to cell division and embryonic development is unclear. Genetic ablation of STIL, an essential component of the centriole replication machinery in mammalian cells, causes embryonic lethality in mice around mid gestation associated with defective Hedgehog signaling. Here, we describe, by focused ion beam scanning electron microscopy, that STIL−/− mouse embryos do not contain centrioles or primary cilia, suggesting that these organelles are not essential for mammalian development until mid gestation. We further show that the lack of primary cilia explains the absence of Hedgehog signaling in STIL−/− cells. Exogenous re-expression of STIL or STIL microcephaly mutants compatible with human survival, induced non-templated, de novo generation of centrioles in STIL−/− cells. Thus, while the abscence of centrioles is compatible with mammalian gastrulation, lack of centrioles and primary cilia impairs Hedgehog signaling and further embryonic development. PMID:25486474

  19. Lack of centrioles and primary cilia in STIL(-/-) mouse embryos.

    PubMed

    David, Ahuvit; Liu, Fengying; Tibelius, Alexandra; Vulprecht, Julia; Wald, Diana; Rothermel, Ulrike; Ohana, Reut; Seitel, Alexander; Metzger, Jasmin; Ashery-Padan, Ruth; Meinzer, Hans-Peter; Gröne, Hermann-Josef; Izraeli, Shai; Krämer, Alwin

    2014-01-01

    Although most animal cells contain centrosomes, consisting of a pair of centrioles, their precise contribution to cell division and embryonic development is unclear. Genetic ablation of STIL, an essential component of the centriole replication machinery in mammalian cells, causes embryonic lethality in mice around mid gestation associated with defective Hedgehog signaling. Here, we describe, by focused ion beam scanning electron microscopy, that STIL(-/-) mouse embryos do not contain centrioles or primary cilia, suggesting that these organelles are not essential for mammalian development until mid gestation. We further show that the lack of primary cilia explains the absence of Hedgehog signaling in STIL(-/-) cells. Exogenous re-expression of STIL or STIL microcephaly mutants compatible with human survival, induced non-templated, de novo generation of centrioles in STIL(-/-) cells. Thus, while the abscence of centrioles is compatible with mammalian gastrulation, lack of centrioles and primary cilia impairs Hedgehog signaling and further embryonic development.

  20. Serotonin signaling in the brain of adult female mice is required for sexual preference

    PubMed Central

    Zhang, Shasha; Liu, Yan; Rao, Yi

    2013-01-01

    A role for serotonin in male sexual preference was recently uncovered by our finding that male mutant mice lacking serotonin have lost sexual preference. Here we show that female mouse mutants lacking either central serotonergic neurons or serotonin prefer female over male genital odors when given a choice, and displayed increased female–female mounting when presented either with a choice of a male and a female target or only with a female target. Pharmacological manipulations and genetic rescue experiments showed that serotonin is required in adults. Behavioral changes caused by deficient serotonergic signaling were not due to changes in plasma concentrations of sex hormones. We demonstrate that a genetic manipulation reverses sexual preference without involving sex hormones. Our results indicate that serotonin controls sexual preference. PMID:23716677

  1. Gamma motor neurons survive and exacerbate alpha motor neuron degeneration in ALS.

    PubMed

    Lalancette-Hebert, Melanie; Sharma, Aarti; Lyashchenko, Alexander K; Shneider, Neil A

    2016-12-20

    The molecular and cellular basis of selective motor neuron (MN) vulnerability in amyotrophic lateral sclerosis (ALS) is not known. In genetically distinct mouse models of familial ALS expressing mutant superoxide dismutase-1 (SOD1), TAR DNA-binding protein 43 (TDP-43), and fused in sarcoma (FUS), we demonstrate selective degeneration of alpha MNs (α-MNs) and complete sparing of gamma MNs (γ-MNs), which selectively innervate muscle spindles. Resistant γ-MNs are distinct from vulnerable α-MNs in that they lack synaptic contacts from primary afferent (I A ) fibers. Elimination of these synapses protects α-MNs in the SOD1 mutant, implicating this excitatory input in MN degeneration. Moreover, reduced I A activation by targeted reduction of γ-MNs in SOD1 G93A mutants delays symptom onset and prolongs lifespan, demonstrating a pathogenic role of surviving γ-MNs in ALS. This study establishes the resistance of γ-MNs as a general feature of ALS mouse models and demonstrates that synaptic excitation of MNs within a complex circuit is an important determinant of relative vulnerability in ALS.

  2. Gamma motor neurons survive and exacerbate alpha motor neuron degeneration in ALS

    PubMed Central

    Lalancette-Hebert, Melanie; Sharma, Aarti; Lyashchenko, Alexander K.; Shneider, Neil A.

    2016-01-01

    The molecular and cellular basis of selective motor neuron (MN) vulnerability in amyotrophic lateral sclerosis (ALS) is not known. In genetically distinct mouse models of familial ALS expressing mutant superoxide dismutase-1 (SOD1), TAR DNA-binding protein 43 (TDP-43), and fused in sarcoma (FUS), we demonstrate selective degeneration of alpha MNs (α-MNs) and complete sparing of gamma MNs (γ-MNs), which selectively innervate muscle spindles. Resistant γ-MNs are distinct from vulnerable α-MNs in that they lack synaptic contacts from primary afferent (IA) fibers. Elimination of these synapses protects α-MNs in the SOD1 mutant, implicating this excitatory input in MN degeneration. Moreover, reduced IA activation by targeted reduction of γ-MNs in SOD1G93A mutants delays symptom onset and prolongs lifespan, demonstrating a pathogenic role of surviving γ-MNs in ALS. This study establishes the resistance of γ-MNs as a general feature of ALS mouse models and demonstrates that synaptic excitation of MNs within a complex circuit is an important determinant of relative vulnerability in ALS. PMID:27930290

  3. Primary Ovarian Insufficiency Induced by Fanconi Anemia E Mutation in a Mouse Model.

    PubMed

    Fu, Chun; Begum, Khurshida; Overbeek, Paul A

    2016-01-01

    In most cases of primary ovarian insufficiency (POI), the cause of the depletion of ovarian follicles is unknown. Fanconi anemia (FA) proteins are known to play important roles in follicular development. Using random insertional mutagenesis with a lentiviral transgene, we identified a family with reduced fertility in the homozygous transgenic mice. We identified the integration site and found that the lentivirus had integrated into intron 8 of the Fanconi E gene (Fance). By RT-PCR and in situ hybridization, we found that Fance transcript levels were significantly reduced. The Fance homozygous mutant mice were assayed for changes in ovarian development, follicle numbers and estrous cycle. Ovarian dysplasias and a severe lack of follicles were seen in the mutant mice. In addition, the estrous cycle was disrupted in adult females. Our results suggest that POI has been induced by the Fance mutation in this new mouse model.

  4. The Candida albicans Pho4 Transcription Factor Mediates Susceptibility to Stress and Influences Fitness in a Mouse Commensalism Model

    PubMed Central

    Urrialde, Verónica; Prieto, Daniel; Pla, Jesús; Alonso-Monge, Rebeca

    2016-01-01

    The Pho4 transcription factor is required for growth under low environmental phosphate concentrations in Saccharomyces cerevisiae. A characterization of Candida albicans pho4 mutants revealed that these cells are more susceptible to both osmotic and oxidative stress and that this effect is diminished in the presence of 5% CO2 or anaerobiosis, reflecting the relevance of oxygen metabolism in the Pho4-mediated response. A pho4 mutant was as virulent as wild type strain when assayed in the Galleria mellonella infection model and was even more resistant to murine macrophages in ex vivo killing assays. The lack of Pho4 neither impairs the ability to colonize the murine gut nor alters the localization in the gastrointestinal tract. However, we found that Pho4 influenced the colonization of C. albicans in the mouse gut in competition assays; pho4 mutants were unable to attain high colonization levels when inoculated simultaneously with an isogenic wild type strain. Moreover, pho4 mutants displayed a reduced adherence to the intestinal mucosa in a competitive ex vivo assays with wild type cells. In vitro competitive assays also revealed defects in fitness for this mutant compared to the wild type strain. Thus, Pho4, a transcription factor involved in phosphate metabolism, is required for adaptation to stress and fitness in C. albicans. PMID:27458452

  5. Defective transport of the obesity mutant PC1/3 N222D contributes to loss of function.

    PubMed

    Prabhu, Yogikala; Blanco, Elias H; Liu, Ming; Peinado, Juan R; Wheeler, Matthew C; Gekakis, Nicholas; Arvan, Peter; Lindberg, Iris

    2014-07-01

    Mutations in the PCSK1 gene encoding prohormone convertase 1/3 (PC1/3) are strongly associated with obesity in humans. The PC1/3(N222D) mutant mouse thus far represents the only mouse model that mimics the PC1/3 obesity phenotype in humans. The present investigation addresses the cell biology of the N222D mutation. Metabolic labeling experiments reveal a clear defect in the kinetics of insulin biosynthesis in islets from PC1/3(N222D) mutant mice, resulting in an increase in both proinsulin and its processing intermediates, predominantly lacking cleavage at the Arg-Arg site. Although the mutant PC1/3 zymogen is correctly processed to the 87-kDa form, pulse-chase immunoprecipitation experiments, labeling, and immunohistochemical experiments using uncleavable variants all demonstrate that the PC1/3-N222D protein is largely mislocalized compared with similar wild-type (WT) constructs, being predominantly retained in the endoplasmic reticulum. The PC1/3-N222D mutant also undergoes more efficient degradation via the ubiquitin-proteasome system than the WT enzyme. Lastly, the mutant PC1/3-N222D protein coimmunoprecipitates with WT PC1/3 and exerts a modest effect on intracellular retention of the WT enzyme. These profound alterations in the cell biology of PC1/3-N222D are likely to contribute to the defective insulin biosynthetic events observed in the mutant mice and may be relevant to the dramatic contributions of polymorphisms in this gene to human obesity.

  6. Defective Transport of the Obesity Mutant PC1/3 N222D Contributes to Loss of Function

    PubMed Central

    Prabhu, Yogikala; Blanco, Elias H.; Liu, Ming; Peinado, Juan R.; Wheeler, Matthew C.; Gekakis, Nicholas; Arvan, Peter

    2014-01-01

    Mutations in the PCSK1 gene encoding prohormone convertase 1/3 (PC1/3) are strongly associated with obesity in humans. The PC1/3N222D mutant mouse thus far represents the only mouse model that mimics the PC1/3 obesity phenotype in humans. The present investigation addresses the cell biology of the N222D mutation. Metabolic labeling experiments reveal a clear defect in the kinetics of insulin biosynthesis in islets from PC1/3N222D mutant mice, resulting in an increase in both proinsulin and its processing intermediates, predominantly lacking cleavage at the Arg-Arg site. Although the mutant PC1/3 zymogen is correctly processed to the 87-kDa form, pulse-chase immunoprecipitation experiments, labeling, and immunohistochemical experiments using uncleavable variants all demonstrate that the PC1/3-N222D protein is largely mislocalized compared with similar wild-type (WT) constructs, being predominantly retained in the endoplasmic reticulum. The PC1/3-N222D mutant also undergoes more efficient degradation via the ubiquitin-proteasome system than the WT enzyme. Lastly, the mutant PC1/3-N222D protein coimmunoprecipitates with WT PC1/3 and exerts a modest effect on intracellular retention of the WT enzyme. These profound alterations in the cell biology of PC1/3-N222D are likely to contribute to the defective insulin biosynthetic events observed in the mutant mice and may be relevant to the dramatic contributions of polymorphisms in this gene to human obesity. PMID:24828610

  7. The Role of Transition Metal Transporters for Iron, Zinc, Manganese, and Copper in the Pathogenesis of Yersinia pestis

    PubMed Central

    Perry, Robert D.; Bobrov, Alexander G.; Fetherston, Jacqueline D.

    2015-01-01

    Yersinia pestis, the causative agent of bubonic, septicemic and pneumonic plague, encodes a multitude of Fe transport systems. Some of these are defective due to frameshift or IS element insertions, while others are functional in vitro but have no established role in causing infections. Indeed only 3 Fe transporters (Ybt, Yfe and Feo) have been shown to be important in at least one form of plague. The yersiniabactin (Ybt) system is essential in the early dermal/lymphatic stages of bubonic plague, irrelevant in the septicemic stage, and critical in pneumonic plague. Two Mn transporters have been characterized (Yfe and MntH). These two systems play a role in bubonic plague but the double yfe mntH mutant is fully virulent in a mouse model of pneumonic plague. The same in vivo phenotype occurs with a mutant lacking two (Yfe and Feo) of four ferrous transporters. A role for the Ybt siderophore in Zn acquisition has been revealed. Ybt-dependent Zn acquisition uses a transport system completely independent of the Fe-Ybt uptake system. Together Ybt components and ZnuABC play a critical role in Zn acquisition in vivo. Single mutants in either system retain high virulence in a mouse model of septicemic plague while the double mutant is completely avirulent. PMID:25891079

  8. The role of transition metal transporters for iron, zinc, manganese, and copper in the pathogenesis of Yersinia pestis.

    PubMed

    Perry, Robert D; Bobrov, Alexander G; Fetherston, Jacqueline D

    2015-06-01

    Yersinia pestis, the causative agent of bubonic, septicemic and pneumonic plague, encodes a multitude of Fe transport systems. Some of these are defective due to frameshift or IS element insertions, while others are functional in vitro but have no established role in causing infections. Indeed only 3 Fe transporters (Ybt, Yfe and Feo) have been shown to be important in at least one form of plague. The yersiniabactin (Ybt) system is essential in the early dermal/lymphatic stages of bubonic plague, irrelevant in the septicemic stage, and critical in pneumonic plague. Two Mn transporters have been characterized (Yfe and MntH). These two systems play a role in bubonic plague but the double yfe mntH mutant is fully virulent in a mouse model of pneumonic plague. The same in vivo phenotype occurs with a mutant lacking two (Yfe and Feo) of four ferrous transporters. A role for the Ybt siderophore in Zn acquisition has been revealed. Ybt-dependent Zn acquisition uses a transport system completely independent of the Fe-Ybt uptake system. Together Ybt components and ZnuABC play a critical role in Zn acquisition in vivo. Single mutants in either system retain high virulence in a mouse model of septicemic plague while the double mutant is completely avirulent.

  9. Immunogenicity and protection induced by a Mycobacterium tuberculosis sigE mutant in a BALB/c mouse model of progressive pulmonary tuberculosis.

    PubMed

    Hernandez Pando, Rogelio; Aguilar, Leon Diana; Smith, Issar; Manganelli, Riccardo

    2010-07-01

    Tuberculosis is still one of the main challenges to human global health, leading to about two million deaths every year. One of the reasons for its success is the lack of efficacy of the widely used vaccine Mycobacterium bovis BCG. In this article, we analyze the potential use of an attenuated mutant of Mycobacterium tuberculosis H37Rv lacking the sigma factor sigma(E) as a live vaccine. We have demonstrated that BALB/c mice infected by the intratracheal route with this mutant strain showed significantly higher survival rates and less tissue damage than animals infected with the parental or complemented mutant strain. Although animals infected with the sigE mutant had low bacillary loads, their lungs showed significantly higher production of the protective factors gamma interferon (IFN-gamma), tumor necrosis factor alpha (TNF-alpha), inducible nitric oxide synthase (iNOS), and beta-defensins than those of animals infected with the parental or complemented mutant strain. Moreover, we demonstrate that the sigE mutant, when inoculated subcutaneously, was more attenuated than BCG in immunodeficient nude mice, thus representing a good candidate for a novel attenuated live vaccine strain. Finally, when we used the sigE mutant as a subcutaneous vaccine, it was able to induce a higher level of protection than did BCG with both H37Rv and a highly virulent strain of M. tuberculosis (Beijing code 9501000). Taken together, our findings suggest that the sigE mutant is a very promising strain for the development of a new vaccine against tuberculosis.

  10. TRPA1 and TRPV1 are required for lidocaine-evoked calcium influx and neuropeptide release but not cytotoxicity in mouse sensory neurons.

    PubMed

    Eberhardt, Mirjam; Stueber, Thomas; de la Roche, Jeanne; Herzog, Christine; Leffler, Andreas; Reeh, Peter W; Kistner, Katrin

    2017-01-01

    Local anaesthetics (LA) reduce neuronal excitability by inhibiting voltage-gated Na+ channels. When applied at high concentrations in the direct vicinity of nerves, LAs can also induce relevant irritation and neurotoxicity via mechanisms involving an increase of intracellular Ca2+. In the present study we explored the role of the Ca2+-permeable ion channels TRPA1 and TRPV1 for lidocaine-induced Ca2+-influx, neuropeptide release and neurotoxicity in mouse sensory neurons. Cultured dorsal root ganglion (DRG) neurons from wildtype and mutant mice lacking TRPV1, TRPA1 or both channels were explored by means of calcium imaging, whole-cell patch clamp recordings and trypan blue staining for cell death. Release of calcitonin gene-related peptide (CGRP) from isolated mouse peripheral nerves was determined with ELISA. Lidocaine up to 10 mM induced a concentration-dependent reversible increase in intracellular Ca2+ in DRG neurons from wildtype and mutant mice lacking one of the two receptors, but not in neurons lacking both TRPA1 and TRPV1. 30 mM lidocaine also released Ca2+ from intracellular stores, presumably from the endoplasmic reticulum. While 10 mM lidocaine evoked an axonal CGRP release requiring expression of either TRPA1 or TRPV1, CGRP release induced by 30 mM lidocaine again mobilized internal Ca2+ stores. Lidocaine-evoked cell death required neither TRPV1 nor TRPA1. Depending on the concentration, lidocaine employs TRPV1, TRPA1 and intracellular Ca2+ stores to induce a Ca2+-dependent release of the neuropeptide CGRP. Lidocaine-evoked cell death does not seem to require Ca2+ influx through TRPV1 or TRPV1.

  11. TRPA1 and TRPV1 are required for lidocaine-evoked calcium influx and neuropeptide release but not cytotoxicity in mouse sensory neurons

    PubMed Central

    Eberhardt, Mirjam; Stueber, Thomas; de la Roche, Jeanne; Herzog, Christine; Leffler, Andreas; Reeh, Peter W.

    2017-01-01

    Background Local anaesthetics (LA) reduce neuronal excitability by inhibiting voltage-gated Na+ channels. When applied at high concentrations in the direct vicinity of nerves, LAs can also induce relevant irritation and neurotoxicity via mechanisms involving an increase of intracellular Ca2+. In the present study we explored the role of the Ca2+-permeable ion channels TRPA1 and TRPV1 for lidocaine-induced Ca2+-influx, neuropeptide release and neurotoxicity in mouse sensory neurons. Methods Cultured dorsal root ganglion (DRG) neurons from wildtype and mutant mice lacking TRPV1, TRPA1 or both channels were explored by means of calcium imaging, whole-cell patch clamp recordings and trypan blue staining for cell death. Release of calcitonin gene-related peptide (CGRP) from isolated mouse peripheral nerves was determined with ELISA. Results Lidocaine up to 10 mM induced a concentration-dependent reversible increase in intracellular Ca2+ in DRG neurons from wildtype and mutant mice lacking one of the two receptors, but not in neurons lacking both TRPA1 and TRPV1. 30 mM lidocaine also released Ca2+ from intracellular stores, presumably from the endoplasmic reticulum. While 10 mM lidocaine evoked an axonal CGRP release requiring expression of either TRPA1 or TRPV1, CGRP release induced by 30 mM lidocaine again mobilized internal Ca2+ stores. Lidocaine-evoked cell death required neither TRPV1 nor TRPA1. Summary Depending on the concentration, lidocaine employs TRPV1, TRPA1 and intracellular Ca2+ stores to induce a Ca2+-dependent release of the neuropeptide CGRP. Lidocaine-evoked cell death does not seem to require Ca2+ influx through TRPV1 or TRPV1. PMID:29141003

  12. EMMA—mouse mutant resources for the international scientific community

    PubMed Central

    Wilkinson, Phil; Sengerova, Jitka; Matteoni, Raffaele; Chen, Chao-Kung; Soulat, Gaetan; Ureta-Vidal, Abel; Fessele, Sabine; Hagn, Michael; Massimi, Marzia; Pickford, Karen; Butler, Richard H.; Marschall, Susan; Mallon, Ann-Marie; Pickard, Amanda; Raspa, Marcello; Scavizzi, Ferdinando; Fray, Martin; Larrigaldie, Vanessa; Leyritz, Johan; Birney, Ewan; Tocchini-Valentini, Glauco P.; Brown, Steve; Herault, Yann; Montoliu, Lluis; de Angelis, Martin Hrabé; Smedley, Damian

    2010-01-01

    The laboratory mouse is the premier animal model for studying human disease and thousands of mutants have been identified or produced, most recently through gene-specific mutagenesis approaches. High throughput strategies by the International Knockout Mouse Consortium (IKMC) are producing mutants for all protein coding genes. Generating a knock-out line involves huge monetary and time costs so capture of both the data describing each mutant alongside archiving of the line for distribution to future researchers is critical. The European Mouse Mutant Archive (EMMA) is a leading international network infrastructure for archiving and worldwide provision of mouse mutant strains. It operates in collaboration with the other members of the Federation of International Mouse Resources (FIMRe), EMMA being the European component. Additionally EMMA is one of four repositories involved in the IKMC, and therefore the current figure of 1700 archived lines will rise markedly. The EMMA database gathers and curates extensive data on each line and presents it through a user-friendly website. A BioMart interface allows advanced searching including integrated querying with other resources e.g. Ensembl. Other resources are able to display EMMA data by accessing our Distributed Annotation System server. EMMA database access is publicly available at http://www.emmanet.org. PMID:19783817

  13. Mouse d-Amino-Acid Oxidase: Distribution and Physiological Substrates

    PubMed Central

    Koga, Reiko; Miyoshi, Yurika; Sakaue, Hiroaki; Hamase, Kenji; Konno, Ryuichi

    2017-01-01

    d-Amino-acid oxidase (DAO) catalyzes the oxidative deamination of d-amino acids. DAO is present in a wide variety of organisms and has important roles. Here, we review the distribution and physiological substrates of mouse DAO. Mouse DAO is present in the kidney, brain, and spinal cord, like DAOs in other mammals. However, in contrast to other animals, it is not present in the mouse liver. Recently, DAO has been detected in the neutrophils, retina, and small intestine in mice. To determine the physiological substrates of mouse DAO, mutant mice lacking DAO activity are helpful. As DAO has wide substrate specificity and degrades various d-amino acids, many d-amino acids accumulate in the tissues and body fluids of the mutant mice. These amino acids are d-methionine, d-alanine, d-serine, d-leucine, d-proline, d-phenylalanine, d-tyrosine, and d-citrulline. Even in wild-type mice, administration of DAO inhibitors elevates D-serine levels in the plasma and brain. Among the above d-amino acids, the main physiological substrates of mouse DAO are d-alanine and d-serine. These two d-amino acids are most abundant in the tissues and body fluids of mice. d-Alanine derives from bacteria and produces bactericidal reactive oxygen species by the action of DAO. d-Serine is synthesized by serine racemase and is present especially in the central nervous system, where it serves as a neuromodulator. DAO is responsible for the metabolism of d-serine. Since DAO has been implicated in the etiology of neuropsychiatric diseases, mouse DAO has been used as a representative model. Recent reports, however, suggest that mouse DAO is different from human DAO with respect to important properties. PMID:29255714

  14. Fmr-1 as an offspring genetic and a maternal environmental factor in neurodevelopmental disease.

    PubMed

    Zupan, Bojana; Toth, Miklos

    2012-01-01

    Since fragile X syndrome (FXS) is a typical X-linked mendelian disorder, the protein product associated with the disease (FMRP) is absent or reduced not only in the affected individuals but, in case of full mutation, also in their mothers. Here, by using the mouse model of the disease, we provide evidence that hyperactivity, a typical symptom of FXS, is not wholly induced by the lack of Fmrp in mice but also occurs as a result of its reduced expression in their mother. Genetically wild-type offspring of mutant mothers also had hyperactivity, albeit less pronounced than the mutant offspring. However, other features of FXS reproduced in the mouse model, such as sensory hyperreactivity and seizure susceptibility, were exclusively associated with the absence of Fmrp in the offspring. These data indicate that fmr-1, the gene encoding Fmrp, can be both an offspring genetic and a maternal environmental factor in producing a neurodevelopmental condition.

  15. Expansion of stem cells counteracts age-related mammary regression in compound Timp1/Timp3 null mice.

    PubMed

    Jackson, Hartland W; Waterhouse, Paul; Sinha, Ankit; Kislinger, Thomas; Berman, Hal K; Khokha, Rama

    2015-03-01

    Age is the primary risk factor for breast cancer in women. Bipotent basal stem cells actively maintain the adult mammary ductal tree, but with age tissues atrophy. We show that cell-extrinsic factors maintain the adult stem cell pool during ageing and dictate tissue stoichiometry. Mammary stem cells spontaneously expand more than 11-fold in virgin adult female mice lacking specific genes for TIMPs, the natural metalloproteinase inhibitors. Compound Timp1/Timp3 null glands exhibit Notch activation and accelerated gestational differentiation. Proteomics of mutant basal cells uncover altered cytoskeletal and extracellular protein repertoires, and we identify aberrant mitotic spindle orientation in these glands, a process that instructs asymmetric cell division and fate. We find that progenitor activity normally declines with age, but enriched stem/progenitor pools prevent tissue regression in Timp mutant mammary glands without affecting carcinogen-induced cancer susceptibility. Thus, improved stem cell content can extend mouse mammary tissue lifespan without altering cancer risk in this mouse model.

  16. Candida albicans ISW2 Regulates Chlamydospore Suspensor Cell Formation and Virulence In Vivo in a Mouse Model of Disseminated Candidiasis

    PubMed Central

    Lionakis, Michail S.; Nickerson, Kenneth W.

    2016-01-01

    Formation of chlamydospores by Candida albicans was an established medical diagnostic test to confirm candidiasis before the molecular era. However, the functional role and pathological relevance of this in vitro morphological transition to pathogenesis in vivo remain unclear. We compared the physical properties of in vitro-induced chlamydospores with those of large C. albicans cells purified by density gradient centrifugation from Candida-infected mouse kidneys. The morphological and physical properties of these cells in kidneys of mice infected intravenously with wild type C. albicans confirmed that chlamydospores can form in infected kidneys. A previously reported chlamydospore-null Δisw2/Δisw2 mutant was used to investigate its role in virulence and chlamydospore induction. Virulence of the Δisw2/Δisw2 mutant strain was reduced 3.4-fold compared to wild type C. albicans or the ISW2 reconstituted strain. Altered host inflammatory reactions to the null mutant further indicate that ISW2 is a virulence factor in C. albicans. ISW2 deletion abolished chlamydospore formation within infected mouse kidneys, whereas the reconstituted strain restored chlamydospore formation in kidneys. Under chlamydospore inducing conditions in vitro, deletion of ISW2 significantly delayed chlamydospore formation, and those late induced chlamydospores lacked associated suspensor cells while attaching laterally to hyphae via novel spore-hypha septa. Our findings establish the induction of chlamydospores by C. albicans during mouse kidney colonization. Our results indicate that ISW2 is not strictly required for chlamydospores formation but is necessary for suspensor cell formation. The importance of ISW2 in chlamydospore morphogenesis and virulence may lead to additional insights into morphological differentiation and pathogenesis of C. albicans in the host microenvironment. PMID:27727302

  17. The extradomain a of fibronectin enhances the efficacy of lipopolysaccharide defective Salmonella bacterins as vaccines in mice

    PubMed Central

    2012-01-01

    The Extradomain A from fibronectin (EDA) has an immunomodulatory role as fusion protein with viral and tumor antigens, but its effect when administered with bacteria has not been assessed. Here, we investigated the adjuvant effect of EDA in mice immunizations against Salmonella enterica subspecies enterica serovar Enteritidis (Salmonella Enteritidis). Since lipopolysaccharide (LPS) is a major virulence factor and the LPS O-polysaccharide (O-PS) is the immunodominant antigen in serological diagnostic tests, Salmonella mutants lacking O-PS (rough mutants) represent an interesting approach for developing new vaccines and diagnostic tests to differentiate infected and vaccinated animals (DIVA tests). Here, antigenic preparations (hot-saline extracts and formalin-inactivated bacterins) from two Salmonella Enteritidis rough mutants, carrying either intact (SEΔwaaL) or deep-defective (SEΔgal) LPS-Core, were used in combination with EDA. Biotinylated bacterins, in particular SEΔwaaL bacterin, decorated with EDAvidin (EDA and streptavidin fusion protein) improved the protection conferred by hot-saline or bacterins alone and prevented significantly the virulent infection at least to the levels of live attenuated rough mutants. These findings demonstrate the adjuvant effect of EDAvidin when administered with biotinylated bacterins from Salmonella Enteritidis lacking O-PS and the usefulness of BEDA-SEΔwaaL as non-live vaccine in the mouse model. PMID:22515195

  18. Mutants in the mouse NuRD/Mi2 component P66alpha are embryonic lethal.

    PubMed

    Marino, Susan; Nusse, Roel

    2007-06-13

    The NuRD/Mi2 chromatin complex is involved in histone modifications and contains a large number of subunits, including the p66 protein. There are two mouse and human p66 paralogs, p66alpha and p66beta. The functions of these genes are not clear, in part because there are no mutants available, except in invertebrate model systems. We made loss of function mutants in the mouse p66alpha gene (mp66alpha, official name Gatad2a, MGI:2384585). We found that mp66alpha is essential for development, as mutant embryos die around day 10 of embryogenesis. The gene is not required for normal blastocyst development or for implantation. The phenotype of mutant embryos and the pattern of gene expression in mutants are consistent with a role of mp66alpha in gene silencing. mp66alpha is an essential gene, required for early mouse development. The lethal phenotype supports a role in execution of methylated DNA silencing.

  19. Reduced heart size and increased myocardial fuel substrate oxidation in ACC2 mutant mice

    PubMed Central

    Essop, M. Faadiel; Camp, Heidi S.; Choi, Cheol Soo; Sharma, Saumya; Fryer, Ryan M.; Reinhart, Glenn A.; Guthrie, Patrick H.; Bentebibel, Assia; Gu, Zeiwei; Shulman, Gerald I.; Taegtmeyer, Heinrich; Wakil, Salih J.; Abu-Elheiga, Lutfi

    2008-01-01

    The cardiac-enriched isoform of acetyl-CoA carboxylase (ACC2) is a key regulator of mitochondrial fatty acid (FA) uptake via carnitine palmitoyltransferase 1 (CPT1). To test the hypothesis that oxidative metabolism is upregulated in hearts from animals lacking ACC2 (employing a transgenic Acc2-mutant mouse), we assessed cardiac function in vivo and determined rates of myocardial substrate oxidation ex vivo. When examined by echocardiography, there was no difference in systolic function, but left ventricular mass of the Acc2-mutant (MUT) mouse was significantly reduced (∼25%) compared with wild-types (WT). Reduced activation of the mammalian target of rapamycin (mTOR) and its downstream target p70S6K was found in MUT hearts. Exogenous oxidation rates of oleate were increased ∼22%, and, unexpectedly, exogenous glucose oxidation rates were also increased in MUT hearts. Using a hyperinsulinemic-euglycemic clamp, we found that glucose uptake in MUT hearts was increased by ∼83%. Myocardial triglyceride levels were significantly reduced in MUT vs. WT while glycogen content was the same. In parallel, transcript levels of PPARα and its target genes, pyruvate dehydrogenase kinase-4 (PDK-4), malonyl-CoA decarboxylase (MCD), and mCPT1, were downregulated in MUT mice. In summary, we report that 1) Acc2-mutant hearts exhibit a marked preference for the oxidation of both glucose and FAs coupled with greater utilization of endogenous fuel substrates (triglycerides), 2) attenuated mTOR signaling may result in reduced heart sizes observed in Acc2-mutant mice, and 3) Acc2-mutant hearts displayed normal functional parameters despite a significant decrease in size. PMID:18487439

  20. Functional Analysis of Glycosylation of Zika Virus Envelope Protein.

    PubMed

    Fontes-Garfias, Camila R; Shan, Chao; Luo, Huanle; Muruato, Antonio E; Medeiros, Daniele B A; Mays, Elizabeth; Xie, Xuping; Zou, Jing; Roundy, Christopher M; Wakamiya, Maki; Rossi, Shannan L; Wang, Tian; Weaver, Scott C; Shi, Pei-Yong

    2017-10-31

    Zika virus (ZIKV) infection causes devastating congenital abnormities and Guillain-Barré syndrome. The ZIKV envelope (E) protein is responsible for viral entry and represents a major determinant for viral pathogenesis. Like other flaviviruses, the ZIKV E protein is glycosylated at amino acid N154. To study the function of E glycosylation, we generated a recombinant N154Q ZIKV that lacks the E glycosylation and analyzed the mutant virus in mammalian and mosquito hosts. In mouse models, the mutant was attenuated, as evidenced by lower viremia, decreased weight loss, and no mortality; however, knockout of E glycosylation did not significantly affect neurovirulence. Mice immunized with the mutant virus developed a robust neutralizing antibody response and were completely protected from wild-type ZIKV challenge. In mosquitoes, the mutant virus exhibited diminished oral infectivity for the Aedes aegypti vector. Collectively, the results demonstrate that E glycosylation is critical for ZIKV infection of mammalian and mosquito hosts. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  1. ketu mutant mice uncover an essential meiotic function for the ancient RNA helicase YTHDC2

    PubMed Central

    Jain, Devanshi; Puno, M Rhyan; Meydan, Cem; Lailler, Nathalie; Mason, Christopher E; Lima, Christopher D; Anderson, Kathryn V

    2018-01-01

    Mechanisms regulating mammalian meiotic progression are poorly understood. Here we identify mouse YTHDC2 as a critical component. A screen yielded a sterile mutant, ‘ketu’, caused by a Ythdc2 missense mutation. Mutant germ cells enter meiosis but proceed prematurely to aberrant metaphase and apoptosis, and display defects in transitioning from spermatogonial to meiotic gene expression programs. ketu phenocopies mutants lacking MEIOC, a YTHDC2 partner. Consistent with roles in post-transcriptional regulation, YTHDC2 is cytoplasmic, has 3′→5′ RNA helicase activity in vitro, and has similarity within its YTH domain to an N6-methyladenosine recognition pocket. Orthologs are present throughout metazoans, but are diverged in nematodes and, more dramatically, Drosophilidae, where Bgcn is descended from a Ythdc2 gene duplication. We also uncover similarity between MEIOC and Bam, a Bgcn partner unique to schizophoran flies. We propose that regulation of gene expression by YTHDC2-MEIOC is an evolutionarily ancient strategy for controlling the germline transition into meiosis. PMID:29360036

  2. eIF4E/Fmr1 double mutant mice display cognitive impairment in addition to ASD-like behaviors.

    PubMed

    Huynh, Thu N; Shah, Manan; Koo, So Yeon; Faraud, Kirsten S; Santini, Emanuela; Klann, Eric

    2015-11-01

    Autism spectrum disorder (ASD) is a group of heritable disorders with complex and unclear etiology. Classic ASD symptoms include social interaction and communication deficits as well as restricted, repetitive behaviors. In addition, ASD is often comorbid with intellectual disability. Fragile X syndrome (FXS) is the leading genetic cause of ASD, and is the most commonly inherited form of intellectual disability. Several mouse models of ASD and FXS exist, however the intellectual disability observed in ASD patients is not well modeled in mice. Using the Fmr1 knockout mouse and the eIF4E transgenic mouse, two previously characterized mouse models of fragile X syndrome and ASD, respectively, we generated the eIF4E/Fmr1 double mutant mouse. Our study shows that the eIF4E/Fmr1 double mutant mice display classic ASD behaviors, as well as cognitive dysfunction. Importantly, the learning impairments displayed by the double mutant mice spanned multiple cognitive tasks. Moreover, the eIF4E/Fmr1 double mutant mice display increased levels of basal protein synthesis. The results of our study suggest that the eIF4E/Fmr1 double mutant mouse may be a reliable model to study cognitive dysfunction in the context of ASD. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Relationships between levels of membrane-bound glucuronidase and the associated protein egasyn in mouse tissues

    PubMed Central

    1977-01-01

    Mouse beta-glucuronidase has a dual intracellular localization, being present in both endoplasmic reticulum and lysosomes of several tissues. Previous studies demonstrated that the protein egasyn is complexed with microsomal but not lysosomal glucuronidase and that a mutant lacking egasyn is deficient in microsomal, but not lysosomal, glucuronidase. By means of a recently developed radioimmunoassay for egasyn, the relationship between microsomal glucuronidase levels and egasyn levels has been examined in various adult tissues, during postnatal development in liver, and after androgen induction of glucuronidase in kidney. The results indicate that the relative availability of egasyn determines the balance between glucuronidase incorporation into membranes and that into lysosomes. PMID:873997

  4. Synovial joint formation requires local Ext1 expression and heparan sulfate production in developing mouse embryo limbs and spine.

    PubMed

    Mundy, Christina; Yasuda, Tadashi; Kinumatsu, Takashi; Yamaguchi, Yu; Iwamoto, Masahiro; Enomoto-Iwamoto, Motomi; Koyama, Eiki; Pacifici, Maurizio

    2011-03-01

    Heparan sulfate proteoglycans (HSPGs) regulate a number of major developmental processes, but their roles in synovial joint formation remain unknown. Here we created conditional mouse embryo mutants lacking Ext1 in developing joints by mating Ext1(f/f) and Gdf5-Cre mice. Ext1 encodes a subunit of the Ext1/Ext2 Golgi-associated protein complex responsible for heparan sulfate (HS) synthesis. The proximal limb joints did form in the Gdf5-Cre;Ext1(f/f) mutants, but contained an uneven articulating superficial zone that expressed very low lubricin levels. The underlying cartilaginous epiphysis was deranged as well and displayed random patterns of cell proliferation and matrillin-1 and collagen IIA expression, indicative of an aberrant phenotypic definition of the epiphysis itself. Digit joints were even more affected, lacked a distinct mesenchymal interzone and were often fused likely as a result of local abnormal BMP and hedgehog activity and signaling. Interestingly, overall growth and lengthening of long bones were also delayed in the mutants. To test whether Ext1 function is needed for joint formation at other sites, we examined the spine. Indeed, entire intervertebral discs, normally composed by nucleus pulposus surrounded by the annulus fibrosus, were often missing in Gdf5-Cre;Ext1(f/f) mice. When disc remnants were present, they displayed aberrant organization and defective joint marker expression. Similar intervertebral joint defects and fusions occurred in Col2-Cre;β-catenin(f/f) mutants. The study provides novel evidence that local Ext1 expression and HS production are needed to maintain the phenotype and function of joint-forming cells and coordinate local signaling by BMP, hedgehog and Wnt/β-catenin pathways. The data indicate also that defects in joint formation reverberate on, and delay, overall long bone growth. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Muscarinic cholinergic receptor (M2) plays a crucial role in the development of myopia in mice

    PubMed Central

    Barathi, Veluchamy A.; Kwan, Jia Lin; Tan, Queenie S. W.; Weon, Sung Rhan; Seet, Li Fong; Goh, Liang Kee; Vithana, Eranga N.; Beuerman, Roger W.

    2013-01-01

    SUMMARY Myopia is a huge public health problem worldwide, reaching the highest incidence in Asia. Identification of susceptible genes is crucial for understanding the biological basis of myopia. In this paper, we have identified and characterized a functional myopia-associated gene using a specific mouse-knockout model. Mice lacking the muscarinic cholinergic receptor gene (M2; also known as Chrm2) were less susceptible to lens-induced myopia compared with wild-type mice, which showed significantly increased axial length and vitreous chamber depth when undergoing experimental induction of myopia. The key findings of this present study are that the sclera of M2 mutant mice has higher expression of collagen type I and lower expression of collagen type V than do wild-type mice and mice that are mutant for other muscarinic subtypes, and, therefore, M2 mutant mice were resistant to the development of experimental myopia. Pharmacological blockade of M2 muscarinic receptor proteins retarded myopia progression in the mouse. These results suggest for the first time a role of M2 in growth-related changes in extracellular matrix genes during myopia development in a mammalian model. M2 receptor antagonists might thus provide a targeted therapeutic approach to the management of this refractive error. PMID:23649821

  6. Deficient plasticity in the primary visual cortex of alpha-calcium/calmodulin-dependent protein kinase II mutant mice.

    PubMed

    Gordon, J A; Cioffi, D; Silva, A J; Stryker, M P

    1996-09-01

    The recent characterization of plasticity in the mouse visual cortex permits the use of mutant mice to investigate the cellular mechanisms underlying activity-dependent development. As calcium-dependent signaling pathways have been implicated in neuronal plasticity, we examined visual cortical plasticity in mice lacking the alpha-isoform of calcium/calmodulin-dependent protein kinase II (alpha CaMKII). In wild-type mice, brief occlusion of vision in one eye during a critical period reduces responses in the visual cortex. In half of the alpha CaMKII-deficient mice, visual cortical responses developed normally, but visual cortical plasticity was greatly diminished. After intensive training, spatial learning in the Morris water maze was severely impaired in a similar fraction of mutant animals. These data indicate that loss of alpha CaMKII results in a severe but variable defect in neuronal plasticity.

  7. Probing transcription-specific outputs of β-catenin in vivo

    PubMed Central

    Valenta, Tomas; Gay, Max; Steiner, Sarah; Draganova, Kalina; Zemke, Martina; Hoffmans, Raymond; Cinelli, Paolo; Aguet, Michel; Sommer, Lukas; Basler, Konrad

    2011-01-01

    β-Catenin, apart from playing a cell-adhesive role, is a key nuclear effector of Wnt signaling. Based on activity assays in Drosophila, we generated mouse strains where the endogenous β-catenin protein is replaced by mutant forms, which retain the cell adhesion function but lack either or both of the N- and the C-terminal transcriptional outputs. The C-terminal activity is essential for mesoderm formation and proper gastrulation, whereas N-terminal outputs are required later during embryonic development. By combining the double-mutant β-catenin with a conditional null allele and a Wnt1-Cre driver, we probed the role of Wnt/β-catenin signaling in dorsal neural tube development. While loss of β-catenin protein in the neural tube results in severe cell adhesion defects, the morphology of cells and tissues expressing the double-mutant form is normal. Surprisingly, Wnt/β-catenin signaling activity only moderately regulates cell proliferation, but is crucial for maintaining neural progenitor identity and for neuronal differentiation in the dorsal spinal cord. Our model animals thus allow dissecting signaling and structural functions of β-catenin in vivo and provide the first genetic tool to generate cells and tissues that entirely and exclusively lack canonical Wnt pathway activity. PMID:22190459

  8. Mutants in the Mouse NuRD/Mi2 Component P66α Are Embryonic Lethal

    PubMed Central

    Marino, Susan; Nusse, Roel

    2007-01-01

    Background The NuRD/Mi2 chromatin complex is involved in histone modifications and contains a large number of subunits, including the p66 protein. There are two mouse and human p66 paralogs, p66α and p66β. The functions of these genes are not clear, in part because there are no mutants available, except in invertebrate model systems. Methodology We made loss of function mutants in the mouse p66α gene (mp66α, official name Gatad2a, MGI:2384585). We found that mp66α is essential for development, as mutant embryos die around day 10 of embryogenesis. The gene is not required for normal blastocyst development or for implantation. The phenotype of mutant embryos and the pattern of gene expression in mutants are consistent with a role of mp66α in gene silencing. Conclusion mp66α is an essential gene, required for early mouse development. The lethal phenotype supports a role in execution of methylated DNA silencing. PMID:17565372

  9. Prevention of ventricular arrhythmia and calcium dysregulation in a catecholaminergic polymorphic ventricular tachycardia mouse model carrying calsequestrin-2 mutation.

    PubMed

    Alcalai, Ronny; Wakimoto, Hiroko; Arad, Michael; Planer, David; Konno, Tetsuo; Wang, Libin; Seidman, Jon G; Seidman, Christine E; Berul, Charles I

    2011-03-01

    Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a familial arrhythmic syndrome caused by mutations in genes encoding the calcium-regulation proteins cardiac ryanodine receptor (RyR2) or calsequestrin-2 (CASQ2). Mechanistic studies indicate that CPVT is mediated by diastolic Ca(2+) overload and increased Ca(2+) leak through the RyR2 channel, implying that treatment targeting these defects might be efficacious in CPVT. CPVT mouse models that lack CASQ2 were treated with Ca(2+) -channel inhibitors, β-adrenergic inhibitors, or Mg(2+) . Treatment effects on ventricular arrhythmia, sarcoplasmic reticulum (SR) protein expression and Ca(2+) transients of isolated myocytes were assessed. Each study agent reduced the frequency of stress-induced ventricular arrhythmia in mutant mice. The Ca(2+) channel blocker verapamil was most efficacious and completely prevented arrhythmia in 85% of mice. Verapamil significantly increased the SR Ca(2+) content in mutant myocytes, diminished diastolic Ca(2+) overload, increased systolic Ca(2+) amplitude, and prevented Ca(2+) oscillations in stressed mutant myocytes. Ca(2+) channel inhibition by verapamil rectified abnormal calcium handling in CPVT myocytes and prevented ventricular arrhythmias. Verapamil-induced partial normalization of SR Ca(2+) content in mutant myocytes implicates CASQ2 as modulator of RyR2 activity, rather than or in addition to, Ca(2+) buffer protein. Agents such as verapamil that attenuate cardiomyocyte calcium overload are appropriate for assessing clinical efficacy in human CPVT. © 2010 Wiley Periodicals, Inc.

  10. Prevention of Ventricular Arrhythmia and Calcium Dysregulation in a Catecholaminergic Polymorphic Ventricular Tachycardia Mouse Model Carrying Calsequestrin-2 Mutation

    PubMed Central

    Alcalai, Ronny; Wakimoto, Hiroko; Arad, Michael; Planer, David; Konno, Tetsuo; Wang, Libin; Seidman, Jon G.; Seidman, Christine E.; Berul, Charles I

    2010-01-01

    Background Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a familial arrhythmic syndrome caused by mutations in genes encoding the calcium-regulation proteins cardiac ryanodine receptor (RyR2) or calsequestrin-2 (CASQ2). Mechanistic studies indicate that CPVT is mediated by diastolic Ca2+ overload and increased Ca2+ leak through the RyR2 channel, implying that treatment targeting these defects might be efficacious in CPVT. Method and results CPVT mouse models that lack CASQ2 were treated with Ca2+-channel inhibitors, β-adrenergic inhibitors, or Mg2+. Treatment effects on ventricular arrhythmia, sarcoplasmic reticulum (SR) protein expression and Ca2+ transients of isolated myocytes were assessed. Each study agent reduced the frequency of stress-induced ventricular arrhythmia in mutant mice. The Ca2+ channel blocker verapamil was most efficacious and completely prevented arrhythmia in 85% of mice. Verapamil significantly increased the SR Ca2+ content in mutant myocytes, diminished diastolic Ca2+ overload, increased systolic Ca2+ amplitude, and prevented Ca2+ oscillations in stressed mutant myocytes. Conclusions Ca2+ channel inhibition by verapamil rectified abnormal calcium handling in CPVT myocytes and prevented ventricular arrhythmias. Verapamil-induced partial normalization of SR Ca2+ content in mutant myocytes implicates CASQ2 as modulator of RyR2 activity, rather than or in addition to, Ca2+ buffer protein. Agents such as verapamil that attenuate cardiomyocyte calcium overload are appropriate for assessing clinical efficacy in human CPVT. PMID:20807279

  11. TDP-43 causes differential pathology in neuronal versus glial cells in the mouse brain

    PubMed Central

    Yan, Sen; Wang, Chuan-En; Wei, Wenjie; Gaertig, Marta A.; Lai, Liangxue; Li, Shihua; Li, Xiao-Jiang

    2014-01-01

    Mutations in TAR DNA-binding protein 43 (TDP-43) are associated with familial forms of amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Although recent studies have revealed that mutant TDP-43 in neuronal and glial cells is toxic, how mutant TDP-43 causes primarily neuronal degeneration in an age-dependent manner remains unclear. Using adeno-associated virus (AAV) that expresses mutant TDP-43 (M337V) ubiquitously, we found that mutant TDP-43 accumulates preferentially in neuronal cells in the postnatal mouse brain. We then ubiquitously or selectively expressed mutant TDP-43 in neuronal and glial cells in the striatum of adult mouse brains via stereotaxic injection of AAV vectors and found that it also preferentially accumulates in neuronal cells. Expression of mutant TDP-43 in neurons in the striatum causes more severe degeneration, earlier death and more robust symptoms in mice than expression of mutant TDP-43 in glial cells; however, aging increases the expression of mutant TDP-43 in glial cells, and expression of mutant TDP-43 in older mice caused earlier onset of phenotypes and more severe neuropathology than that in younger mice. Although expression of mutant TDP-43 in glial cells via stereotaxic injection does not lead to robust neurological phenotypes, systemic inhibition of the proteasome activity via MG132 in postnatal mice could exacerbate glial TDP-43-mediated toxicity and cause mice to die earlier. Consistently, this inhibition increases the expression of mutant TDP-43 in glial cells in mouse brains. Thus, the differential accumulation of mutant TDP-43 in neuronal versus glial cells contributes to the preferential toxicity of mutant TDP-43 in neuronal cells and age-dependent pathology. PMID:24381309

  12. TDP-43 causes differential pathology in neuronal versus glial cells in the mouse brain.

    PubMed

    Yan, Sen; Wang, Chuan-En; Wei, Wenjie; Gaertig, Marta A; Lai, Liangxue; Li, Shihua; Li, Xiao-Jiang

    2014-05-15

    Mutations in TAR DNA-binding protein 43 (TDP-43) are associated with familial forms of amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Although recent studies have revealed that mutant TDP-43 in neuronal and glial cells is toxic, how mutant TDP-43 causes primarily neuronal degeneration in an age-dependent manner remains unclear. Using adeno-associated virus (AAV) that expresses mutant TDP-43 (M337V) ubiquitously, we found that mutant TDP-43 accumulates preferentially in neuronal cells in the postnatal mouse brain. We then ubiquitously or selectively expressed mutant TDP-43 in neuronal and glial cells in the striatum of adult mouse brains via stereotaxic injection of AAV vectors and found that it also preferentially accumulates in neuronal cells. Expression of mutant TDP-43 in neurons in the striatum causes more severe degeneration, earlier death and more robust symptoms in mice than expression of mutant TDP-43 in glial cells; however, aging increases the expression of mutant TDP-43 in glial cells, and expression of mutant TDP-43 in older mice caused earlier onset of phenotypes and more severe neuropathology than that in younger mice. Although expression of mutant TDP-43 in glial cells via stereotaxic injection does not lead to robust neurological phenotypes, systemic inhibition of the proteasome activity via MG132 in postnatal mice could exacerbate glial TDP-43-mediated toxicity and cause mice to die earlier. Consistently, this inhibition increases the expression of mutant TDP-43 in glial cells in mouse brains. Thus, the differential accumulation of mutant TDP-43 in neuronal versus glial cells contributes to the preferential toxicity of mutant TDP-43 in neuronal cells and age-dependent pathology.

  13. Isolation and characterization of Xenopus laevis homologs of the mouse inv gene and functional analysis of the conserved calmodulin binding sites.

    PubMed

    Yasuhiko, Yukuto; Shiokawa, Koichiro; Mochizuki, Toshio; Asashima, Makoto; Yokoyama, Takahiko

    2006-04-01

    The homozygous inv (inversion of embryonic turning) mouse mutant shows situs inversus and polycystic kidney disease, both of which result from the lack of the inv gene. Previously, we suggested that inv may be important for the left-right axis formation, not only in mice but also in Xenopus, and that calmodulin regulates this inv protein function. Here, we isolated and characterized two Xenopus laevis homologs (Xinv-1 and Xinv-2) of the mouse inv gene, and performed functional analysis of the conserved IQ motifs that interact with calmodulin. Xinv-1 expresses early in development in the same manner as mouse inv does. Unexpectedly, a full-length Xenopus inv mRNA did not randomize cardiac orientation when injected into Xenopus embryos, which is different from mouse inv mRNA. Contrary to mouse inv mRNA, Xenopus inv mRNA with mutated IQ randomized cardiac orientation. The present study indicates that calmodulin binding sites (IQ motifs) are crucial in controlling the biological activity of both mouse and Xenopus inv proteins. Although mouse and Xenopus inv genes have a quite similar structure, the interaction with calmodulin and IQ motifs of Xenopus inv and mouse inv proteins may regulate their function in different ways.

  14. Hematopoietic Kit Deficiency, rather than Lack of Mast Cells, Protects Mice from Obesity and Insulin Resistance.

    PubMed

    Gutierrez, Dario A; Muralidhar, Sathya; Feyerabend, Thorsten B; Herzig, Stephan; Rodewald, Hans-Reimer

    2015-05-05

    Obesity, insulin resistance, and related pathologies are associated with immune-mediated chronic inflammation. Kit mutant mice are protected from diet-induced obesity and associated co-morbidities, and this phenotype has previously been attributed to their lack of mast cells. We performed a comprehensive metabolic analysis of Kit-dependent Kit(W/Wv) and Kit-independent Cpa3(Cre/+) mast-cell-deficient mouse strains, employing diet-induced or genetic (Lep(Ob/Ob) background) models of obesity. Our results show that mast cell deficiency, in the absence of Kit mutations, plays no role in the regulation of weight gain or insulin resistance. Moreover, we provide evidence that the metabolic phenotype observed in Kit mutant mice, while independent of mast cells, is immune regulated. Our data underscore the value of definitive mast cell deficiency models to conclusively test the involvement of this enigmatic cell in immune-mediated pathologies and identify Kit as a key hematopoietic factor in the pathogenesis of metabolic syndrome. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Imaging of Chromosome Dynamics in Mouse Testis Tissue by Immuno-FISH.

    PubMed

    Scherthan, Harry

    2017-01-01

    The mouse (Mus musculus) represents the central mammalian genetic model system for biomedical and developmental research. Mutant mouse models have provided important insights into chromosome dynamics during the complex meiotic differentiation program that compensates for the genome doubling at fertilization. Homologous chromosomes (homologues) undergo dynamic pairing and recombine during first meiotic prophase before they become partitioned into four haploid sets by two consecutive meiotic divisions that lack an intervening S-phase. Fluorescence in situ hybridization (FISH) has been instrumental in the visualization and imaging of the dynamic reshaping of chromosome territories and mobility during prophase I, in which meiotic telomeres were found to act as pacemakers for the chromosome pairing dance. FISH combined with immunofluorescence (IF) co-staining of nuclear proteins has been instrumental for the visualization and imaging of mammalian meiotic chromosome behavior. This chapter describes FISH and IF methods for the analysis of chromosome dynamics in nuclei of paraffin-embedded mouse testes. The techniques have proven useful for fresh and archived paraffin testis material of several mammalian species.

  16. Two-Pore Channels: Lessons from Mutant Mouse Models

    PubMed Central

    Ruas, Margarida; Galione, Antony; Parrington, John

    2016-01-01

    Recent interest in two-pore channels (TPCs) has resulted in a variety of studies dealing with the functional role and mechanism of action of these endo-lysosomal proteins in diverse physiological processes. With the availability of mouse lines harbouring mutant alleles for Tpcnl and/or Tpcn2 genes, several studies have made use of them to validate, consolidate and discover new roles for these channels not only at the cellular level but, importantly, also at the level of the whole organism. The different mutant mouse lines that have been used were derived from distinct genetic manipulation strategies, with the aim of knocking out expression of TPC proteins. However, the expression of different residual TPC sequences predicted to occur in these mutant mouse lines, together with the varied degree to which the effects on Tpcn expression have been studied, makes it important to assess the true knockout status of some of the lines. In this review we summarize these Tpcn mutant mouse lines with regard to their predicted effect on Tpcn expression and the extent to which they have been characterized. Additionally, we discuss how results derived from studies using these Tpcn mutant mouse lines have consolidated previously proposed roles for TPCs, such as mediators of NAADP signalling, endo-lysosomal functions, and pancreatic β cell physiology. We will also review how they have been instrumental in the assignment of new physiological roles for these cation channels in processes such as membrane electrical excitability, neoangiogenesis, viral infection and brown adipose tissue and heart function, revealing, in some cases, a specific contribution of a particular TPC isoform. PMID:27330869

  17. Deletion of the gene encoding the glycolytic enzyme triosephosphate isomerase (tpi) alters morphology of Salmonella enterica serovar Typhimurium and decreases fitness in mice.

    PubMed

    Paterson, Gavin K; Cone, Danielle B; Northen, Helen; Peters, Sarah E; Maskell, Duncan J

    2009-05-01

    The glycolytic enzyme triosephosphate isomerase (tpi) (EC 5.3.1.1) plays a key role in central carbon metabolism yet few studies have characterized isogenic bacterial mutants lacking this enzyme and none have examined its role in the in vivo fitness of a bacterial pathogen. Here we have deleted tpiA in Salmonella enterica serovar Typhimurium and found that the mutant had an altered morphology, displaying an elongated shape compared with the wild type. In a mouse model of typhoid fever the tpiA mutant was attenuated for growth as assessed by bacterial counts in the livers and spleens of infected mice. However, this attenuation was not deemed sufficient for consideration of a tpiA mutant as a live attenuated vaccine strain. These phenotypes were complemented by provision of tpiA on pBR322. We therefore provide the first demonstration that tpiA is required for full in vivo fitness of a bacterial pathogen, and that it has a discernable impact on cell morphology.

  18. Absence of Nrf2 or Its Selective Overexpression in Neurons and Muscle Does Not Affect Survival in ALS-Linked Mutant hSOD1 Mouse Models

    PubMed Central

    Vargas, Marcelo R.; Burton, Neal C.; Gan, Li; Johnson, Delinda A.; Schäfer, Matthias; Werner, Sabine; Johnson, Jeffrey A.

    2013-01-01

    The nuclear factor erythroid 2-related factor 2 (Nrf2) governs the expression of antioxidant and phase II detoxifying enzymes. Nrf2 activation can prevent or reduce cellular damage associated with several types of injury in many different tissues and organs. Dominant mutations in Cu/Zn-superoxide dismutase (SOD1) cause familial forms of amyotrophic lateral sclerosis (ALS), a fatal disorder characterized by the progressive loss of motor neurons and subsequent muscular atrophy. We have previously shown that Nrf2 activation in astrocytes delays neurodegeneration in ALS mouse models. To further investigate the role of Nrf2 in ALS we determined the effect of absence of Nrf2 or its restricted overexpression in neurons or type II skeletal muscle fibers on symptoms onset and survival in mutant hSOD1 expressing mice. We did not observe any detrimental effect associated with the lack of Nrf2 in two different mutant hSOD1 animal models of ALS. However, restricted Nrf2 overexpression in neurons or type II skeletal muscle fibers delayed disease onset but failed to extend survival in hSOD1G93A mice. These results highlight the concept that not only the pharmacological target but also the cell type targeted may be relevant when considering a Nrf2-mediated therapeutic approach for ALS. PMID:23418589

  19. Absence of Nrf2 or its selective overexpression in neurons and muscle does not affect survival in ALS-linked mutant hSOD1 mouse models.

    PubMed

    Vargas, Marcelo R; Burton, Neal C; Kutzke, Jennifer; Gan, Li; Johnson, Delinda A; Schäfer, Matthias; Werner, Sabine; Johnson, Jeffrey A

    2013-01-01

    The nuclear factor erythroid 2-related factor 2 (Nrf2) governs the expression of antioxidant and phase II detoxifying enzymes. Nrf2 activation can prevent or reduce cellular damage associated with several types of injury in many different tissues and organs. Dominant mutations in Cu/Zn-superoxide dismutase (SOD1) cause familial forms of amyotrophic lateral sclerosis (ALS), a fatal disorder characterized by the progressive loss of motor neurons and subsequent muscular atrophy. We have previously shown that Nrf2 activation in astrocytes delays neurodegeneration in ALS mouse models. To further investigate the role of Nrf2 in ALS we determined the effect of absence of Nrf2 or its restricted overexpression in neurons or type II skeletal muscle fibers on symptoms onset and survival in mutant hSOD1 expressing mice. We did not observe any detrimental effect associated with the lack of Nrf2 in two different mutant hSOD1 animal models of ALS. However, restricted Nrf2 overexpression in neurons or type II skeletal muscle fibers delayed disease onset but failed to extend survival in hSOD1(G93A) mice. These results highlight the concept that not only the pharmacological target but also the cell type targeted may be relevant when considering a Nrf2-mediated therapeutic approach for ALS.

  20. A Toll/interleukin (IL)-1 receptor domain protein from Yersinia pestis interacts with mammalian IL-1/Toll-like receptor pathways but does not play a central role in the virulence of Y. pestis in a mouse model of bubonic plague.

    PubMed

    Spear, Abigail M; Rana, Rohini R; Jenner, Dominic C; Flick-Smith, Helen C; Oyston, Petra C F; Simpson, Peter; Matthews, Stephen J; Byrne, Bernadette; Atkins, Helen S

    2012-06-01

    The Toll/interleukin (IL)-1 receptor (TIR) domain is an essential component of eukaryotic innate immune signalling pathways. Interaction between TIR domains present in Toll-like receptors and associated adaptors initiates and propagates an immune signalling cascade. Proteins containing TIR domains have also been discovered in bacteria. Studies have subsequently shown that these proteins are able to modulate mammalian immune signalling pathways dependent on TIR interactions and that this may represent an evasion strategy for bacterial pathogens. Here, we investigate a TIR domain protein from the highly virulent bacterium Yersinia pestis, the causative agent of plague. When overexpressed in vitro this protein is able to downregulate IL-1β- and LPS-dependent signalling to NFκB and to interact with the TIR adaptor protein MyD88. This interaction is dependent on a single proline residue. However, a Y. pestis knockout mutant lacking the TIR domain protein was not attenuated in virulence in a mouse model of bubonic plague. Minor alterations in the host cytokine response to the mutant were indicated, suggesting a potential subtle role in pathogenesis. The Y. pestis mutant also showed increased auto-aggregation and reduced survival in high-salinity conditions, phenotypes which may contribute to pathogenesis or survival.

  1. mtDNA lineage analysis of mouse L-cell lines reveals the accumulation of multiple mtDNA mutants and intermolecular recombination

    PubMed Central

    Fan, Weiwei; Lin, Chun Shi; Potluri, Prasanth; Procaccio, Vincent; Wallace, Douglas C.

    2012-01-01

    The role of mitochondrial DNA (mtDNA) mutations and mtDNA recombination in cancer cell proliferation and developmental biology remains controversial. While analyzing the mtDNAs of several mouse L cell lines, we discovered that every cell line harbored multiple mtDNA mutants. These included four missense mutations, two frameshift mutations, and one tRNA homopolymer expansion. The LA9 cell lines lacked wild-type mtDNAs but harbored a heteroplasmic mixture of mtDNAs, each with a different combination of these variants. We isolated each of the mtDNAs in a separate cybrid cell line. This permitted determination of the linkage phase of each mtDNA and its physiological characteristics. All of the polypeptide mutations inhibited their oxidative phosphorylation (OXPHOS) complexes. However, they also increased mitochondrial reactive oxygen species (ROS) production, and the level of ROS production was proportional to the cellular proliferation rate. By comparing the mtDNA haplotypes of the different cell lines, we were able to reconstruct the mtDNA mutational history of the L–L929 cell line. This revealed that every heteroplasmic L-cell line harbored a mtDNA that had been generated by intracellular mtDNA homologous recombination. Therefore, deleterious mtDNA mutations that increase ROS production can provide a proliferative advantage to cancer or stem cells, and optimal combinations of mutant loci can be generated through recombination. PMID:22345519

  2. Novel DNA Motif Binding Activity Observed In Vivo With an Estrogen Receptor α Mutant Mouse

    PubMed Central

    Li, Leping; Grimm, Sara A.; Winuthayanon, Wipawee; Hamilton, Katherine J.; Pockette, Brianna; Rubel, Cory A.; Pedersen, Lars C.; Fargo, David; Lanz, Rainer B.; DeMayo, Francesco J.; Schütz, Günther; Korach, Kenneth S.

    2014-01-01

    Estrogen receptor α (ERα) interacts with DNA directly or indirectly via other transcription factors, referred to as “tethering.” Evidence for tethering is based on in vitro studies and a widely used “KIKO” mouse model containing mutations that prevent direct estrogen response element DNA- binding. KIKO mice are infertile, due in part to the inability of estradiol (E2) to induce uterine epithelial proliferation. To elucidate the molecular events that prevent KIKO uterine growth, regulation of the pro-proliferative E2 target gene Klf4 and of Klf15, a progesterone (P4) target gene that opposes the pro-proliferative activity of KLF4, was evaluated. Klf4 induction was impaired in KIKO uteri; however, Klf15 was induced by E2 rather than by P4. Whole uterine chromatin immunoprecipitation-sequencing revealed enrichment of KIKO ERα binding to hormone response elements (HREs) motifs. KIKO binding to HRE motifs was verified using reporter gene and DNA-binding assays. Because the KIKO ERα has HRE DNA-binding activity, we evaluated the “EAAE” ERα, which has more severe DNA-binding domain mutations, and demonstrated a lack of estrogen response element or HRE reporter gene induction or DNA-binding. The EAAE mouse has an ERα null–like phenotype, with impaired uterine growth and transcriptional activity. Our findings demonstrate that the KIKO mouse model, which has been used by numerous investigators, cannot be used to establish biological functions for ERα tethering, because KIKO ERα effectively stimulates transcription using HRE motifs. The EAAE-ERα DNA-binding domain mutant mouse demonstrates that ERα DNA-binding is crucial for biological and transcriptional processes in reproductive tissues and that ERα tethering may not contribute to estrogen responsiveness in vivo. PMID:24713037

  3. The NOTCH3 score: a pre-clinical CADASIL biomarker in a novel human genomic NOTCH3 transgenic mouse model with early progressive vascular NOTCH3 accumulation.

    PubMed

    Rutten, Julie W; Klever, Roselin R; Hegeman, Ingrid M; Poole, Dana S; Dauwerse, Hans G; Broos, Ludo A M; Breukel, Cor; Aartsma-Rus, Annemieke M; Verbeek, J Sjef; van der Weerd, Louise; van Duinen, Sjoerd G; van den Maagdenberg, Arn M J M; Lesnik Oberstein, Saskia A J

    2015-12-29

    CADASIL (Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy) is a hereditary small vessel disease caused by mutations in the NOTCH3 gene, leading to toxic NOTCH3 protein accumulation in the small- to medium sized arterioles. The accumulation is systemic but most pronounced in the brain vasculature where it leads to clinical symptoms of recurrent stroke and dementia. There is no therapy for CADASIL, and therapeutic development is hampered by a lack of feasible clinical outcome measures and biomarkers, both in mouse models and in CADASIL patients. To facilitate pre-clinical therapeutic interventions for CADASIL, we aimed to develop a novel, translational CADASIL mouse model. We generated transgenic mice in which we overexpressed the full length human NOTCH3 gene from a genomic construct with the archetypal c.544C > T, p.Arg182Cys mutation. The four mutant strains we generated have respective human NOTCH3 RNA expression levels of 100, 150, 200 and 350 % relative to endogenous mouse Notch3 RNA expression. Immunohistochemistry on brain sections shows characteristic vascular human NOTCH3 accumulation in all four mutant strains, with human NOTCH3 RNA expression levels correlating with age at onset and progression of NOTCH3 accumulation. This finding was the basis for developing the 'NOTCH3 score', a quantitative measure for the NOTCH3 accumulation load. This score proved to be a robust and sensitive method to assess the progression of NOTCH3 accumulation, and a feasible biomarker for pre-clinical therapeutic testing. This novel, translational CADASIL mouse model is a suitable model for pre-clinical testing of therapeutic strategies aimed at delaying or reversing NOTCH3 accumulation, using the NOTCH3 score as a biomarker.

  4. Dependence of paranodal junctional gap width on transverse bands.

    PubMed

    Rosenbluth, Jack; Petzold, Chris; Peles, Elior

    2012-08-15

    Mouse mutants with paranodal junctional (PNJ) defects display variable degrees of neurological impairment. In this study we compare control paranodes with those from three mouse mutants that differ with respect to a conspicuous PNJ component, the transverse bands (TBs). We hypothesize that TBs link the apposed junctional membranes together at a fixed distance and thereby determine the width of the junctional gap, which may in turn determine the extent to which nodal action currents can be short-circuited underneath the myelin sheath. Electron micrographs of aldehyde-fixed control PNJs, in which TBs are abundant, show a consistent junctional gap of ∼3.5 nm. In Caspr-null PNJs, which lack TBs entirely, the gap is wider (∼6-7 nm) and more variable. In CST-null PNJs, which have only occasional TBs, the mean PNJ gap width is comparable to that in Caspr-null mice. In the shaking mutant, in contrast, which has approximately 60% of the normal complement of TBs, mean PNJ gap width is not significantly different from that in controls. Correspondingly, shaking mice are much less impaired neurologically than either Caspr-null or CST-null mice. We conclude that in the absence or gross diminution of TBs, mean PNJ gap width increases significantly and suggest that this difference could underlie some of the neurological impairment seen in those mutants. Surprisingly, even in the absence of TBs, paranodes are to some extent maintained in their usual form, implying that in addition to TBs, other factors govern the formation and maintenance of overall paranodal structure. Copyright © 2012 Wiley Periodicals, Inc.

  5. Molecular and Genetic Analyses of Collagen Type IV Mutant Mouse Models of Spontaneous Intracerebral Hemorrhage Identify Mechanisms for Stroke Prevention.

    PubMed

    Jeanne, Marion; Jorgensen, Jeff; Gould, Douglas B

    2015-05-05

    Collagen type IV alpha1 (COL4A1) and alpha2 (COL4A2) form heterotrimers critical for vascular basement membrane stability and function. Patients with COL4A1 or COL4A2 mutations suffer from diverse cerebrovascular diseases, including cerebral microbleeds, porencephaly, and fatal intracerebral hemorrhage (ICH). However, the pathogenic mechanisms remain unknown, and there is a lack of effective treatment. Using Col4a1 and Col4a2 mutant mouse models, we investigated the genetic complexity and cellular mechanisms underlying the disease. We found that Col4a1 mutations cause abnormal vascular development, which triggers small-vessel disease, recurrent hemorrhagic strokes, and age-related macroangiopathy. We showed that allelic heterogeneity, genetic context, and environmental factors such as intense exercise or anticoagulant medication modulated disease severity and contributed to phenotypic heterogeneity. We found that intracellular accumulation of mutant collagen in vascular endothelial cells and pericytes was a key triggering factor of ICH. Finally, we showed that treatment of mutant mice with a US Food and Drug Administration-approved chemical chaperone resulted in a decreased collagen intracellular accumulation and a significant reduction in ICH severity. Our data are the first to show therapeutic prevention in vivo of ICH resulting from Col4a1 mutation and imply that a mechanism-based therapy promoting protein folding might also prevent ICH in patients with COL4A1 and COL4A2 mutations. © 2015 American Heart Association, Inc.

  6. Peroxisomal biogenesis is genetically and biochemically linked to carbohydrate metabolism in Drosophila and mouse

    PubMed Central

    Chao, Yu-Hsin; Giagtzoglou, Nikolaos; Putluri, Nagireddy; Coarfa, Cristian; Donti, Taraka; Faust, Joseph E.; McNew, James A.; Sardiello, Marco; Baes, Myriam; Bellen, Hugo J.

    2017-01-01

    Peroxisome biogenesis disorders (PBD) are a group of multi-system human diseases due to mutations in the PEX genes that are responsible for peroxisome assembly and function. These disorders lead to global defects in peroxisomal function and result in severe brain, liver, bone and kidney disease. In order to study their pathogenesis we undertook a systematic genetic and biochemical study of Drosophila pex16 and pex2 mutants. These mutants are short-lived with defects in locomotion and activity. Moreover these mutants exhibit severe morphologic and functional peroxisomal defects. Using metabolomics we uncovered defects in multiple biochemical pathways including defects outside the canonical specialized lipid pathways performed by peroxisomal enzymes. These included unanticipated changes in metabolites in glycolysis, glycogen metabolism, and the pentose phosphate pathway, carbohydrate metabolic pathways that do not utilize known peroxisomal enzymes. In addition, mutant flies are starvation sensitive and are very sensitive to glucose deprivation exhibiting dramatic shortening of lifespan and hyperactivity on low-sugar food. We use bioinformatic transcriptional profiling to examine gene co-regulation between peroxisomal genes and other metabolic pathways and we observe that the expression of peroxisomal and carbohydrate pathway genes in flies and mouse are tightly correlated. Indeed key steps in carbohydrate metabolism were found to be strongly co-regulated with peroxisomal genes in flies and mice. Moreover mice lacking peroxisomes exhibit defective carbohydrate metabolism at the same key steps in carbohydrate breakdown. Our data indicate an unexpected link between these two metabolic processes and suggest metabolism of carbohydrates could be a new therapeutic target for patients with PBD. PMID:28640802

  7. Biological effects of CCS in the absence of SOD1 enzyme activation: implications for disease in a mouse model for ALS.

    PubMed

    Proescher, Jody B; Son, Marjatta; Elliott, Jeffrey L; Culotta, Valeria C

    2008-06-15

    The CCS copper chaperone is critical for maturation of Cu, Zn-superoxide dismutase (SOD1) through insertion of the copper co-factor and oxidization of an intra-subunit disulfide. The disulfide helps stabilize the SOD1 polypeptide, which can be particularly important in cases of amyotrophic lateral sclerosis (ALS) linked to misfolding of mutant SOD1. Surprisingly, however, over-expressed CCS was recently shown to greatly accelerate disease in a G93A SOD1 mouse model for ALS. Herein we show that disease in these G93A/CCS mice correlates with incomplete oxidation of the SOD1 disulfide. In the brain and spinal cord, CCS over-expression failed to enhance oxidation of the G93A SOD1 disulfide and if anything, effected some accumulation of disulfide-reduced SOD1. This effect was mirrored in culture with a C244,246S mutant of CCS that has the capacity to interact with SOD1 but can neither insert copper nor oxidize the disulfide. In spite of disulfide effects, there was no evidence for increased SOD1 aggregation. If anything, CCS over-expression prevented SOD1 misfolding in culture as monitored by detergent insolubility. This protection against SOD1 misfolding does not require SOD1 enzyme activation as the same effect was obtained with the C244,246S allele of CCS. In the G93A SOD1 mouse, CCS over-expression was likewise associated with a lack of obvious SOD1 misfolding marked by detergent insolubility. CCS over-expression accelerates SOD1-linked disease without the hallmarks of misfolding and aggregation seen in other mutant SOD1 models. These studies are the first to indicate biological effects of CCS in the absence of SOD1 enzymatic activation.

  8. Requirements for FGF3 and FGF10 during inner ear formation.

    PubMed

    Alvarez, Yolanda; Alonso, Maria Teresa; Vendrell, Victor; Zelarayan, Laura Cecilia; Chamero, Pablo; Theil, Thomas; Bösl, Michael R; Kato, Shigeaki; Maconochie, Mark; Riethmacher, Dieter; Schimmang, Thomas

    2003-12-01

    Members of the fibroblast growth factor (FGF) gene family control formation of the body plan and organogenesis in vertebrates. FGF3 is expressed in the developing hindbrain and has been shown to be involved in inner ear development of different vertebrate species, including zebrafish, Xenopus, chick and mouse. In the mouse, insertion of a neomycin resistance gene into the Fgf3 gene via homologous recombination results in severe developmental defects during differentiation of the otic vesicle. We have addressed the precise roles of FGF3 and other FGF family members during formation of the murine inner ear using both loss- and gain-of-function experiments. We generated a new mutant allele lacking the entire FGF3-coding region but surprisingly found no evidence for severe defects either during inner ear development or in the mature sensory organ, suggesting the functional involvement of other FGF family members during its formation. Ectopic expression of FGF10 in the developing hindbrain of transgenic mice leads to the formation of ectopic vesicles, expressing some otic marker genes and thus indicating a role for FGF10 during otic vesicle formation. Expression analysis of FGF10 during mouse embryogenesis reveals a highly dynamic pattern of expression in the developing hindbrain, partially overlapping with FGF3 expression and coinciding with formation of the inner ear. However, FGF10 mutant mice have been reported to display only mild defects during inner ear differentiation. We thus created double mutant mice for FGF3 and FGF10, which form severely reduced otic vesicles, suggesting redundant roles of these FGFs, acting in combination as neural signals for otic vesicle formation.

  9. Effects of mutation and some environmental factors on the physiology and pathogenicity of selected bacteria

    NASA Technical Reports Server (NTRS)

    Decicco, B. T.

    1974-01-01

    Studies with mutants of Staphylococcus aureus lacking some virulence factors suggest that the presence of deoxyribonuclease correlates with mouse pathogenicity of S. aureus, while the ability to ferment mannitol or the possession of coagulases are not required for virulence. Autotrophy investigations on mycobacteria demonstrate a complete correlation between the ability to grow with hydrogen and the species of scotochromogenic mycobacterium tested. All tested strains of M. gordonae, a saprophyte, could grow autotrophically while none of the tested strains of M. scrofulaceum, a clinically important species, possessed this ability. A series of heat tolerant mutants of Pseudomonas fluorescences were obtained which can grow at temperatures up to 54 C, in contrast to a maximum growth temperature of 37 C for the wild type.

  10. Probing transcription-specific outputs of β-catenin in vivo.

    PubMed

    Valenta, Tomas; Gay, Max; Steiner, Sarah; Draganova, Kalina; Zemke, Martina; Hoffmans, Raymond; Cinelli, Paolo; Aguet, Michel; Sommer, Lukas; Basler, Konrad

    2011-12-15

    β-Catenin, apart from playing a cell-adhesive role, is a key nuclear effector of Wnt signaling. Based on activity assays in Drosophila, we generated mouse strains where the endogenous β-catenin protein is replaced by mutant forms, which retain the cell adhesion function but lack either or both of the N- and the C-terminal transcriptional outputs. The C-terminal activity is essential for mesoderm formation and proper gastrulation, whereas N-terminal outputs are required later during embryonic development. By combining the double-mutant β-catenin with a conditional null allele and a Wnt1-Cre driver, we probed the role of Wnt/β-catenin signaling in dorsal neural tube development. While loss of β-catenin protein in the neural tube results in severe cell adhesion defects, the morphology of cells and tissues expressing the double-mutant form is normal. Surprisingly, Wnt/β-catenin signaling activity only moderately regulates cell proliferation, but is crucial for maintaining neural progenitor identity and for neuronal differentiation in the dorsal spinal cord. Our model animals thus allow dissecting signaling and structural functions of β-catenin in vivo and provide the first genetic tool to generate cells and tissues that entirely and exclusively lack canonical Wnt pathway activity. © 2011 by Cold Spring Harbor Laboratory Press

  11. Flies lacking all synapsins are unexpectedly healthy but are impaired in complex behaviour.

    PubMed

    Godenschwege, Tanja A; Reisch, Dietmar; Diegelmann, Sören; Eberle, Kai; Funk, Natalja; Heisenberg, Martin; Hoppe, Viviane; Hoppe, Jürgen; Klagges, Bert R E; Martin, Jean-René; Nikitina, Ekaterina A; Putz, Gabi; Reifegerste, Rita; Reisch, Natascha; Rister, Jens; Schaupp, Michael; Scholz, Henrike; Schwärzel, Martin; Werner, Ursula; Zars, Troy D; Buchner, Sigrid; Buchner, Erich

    2004-08-01

    Vertebrate synapsins are abundant synaptic vesicle phosphoproteins that have been proposed to fine-regulate neurotransmitter release by phosphorylation-dependent control of synaptic vesicle motility. However, the consequences of a total lack of all synapsin isoforms due to a knock-out of all three mouse synapsin genes have not yet been investigated. In Drosophila a single synapsin gene encodes several isoforms and is expressed in most synaptic terminals. Thus the targeted deletion of the synapsin gene of Drosophila eliminates the possibility of functional knock-out complementation by other isoforms. Unexpectedly, synapsin null mutant flies show no obvious defects in brain morphology, and no striking qualitative changes in behaviour are observed. Ultrastructural analysis of an identified 'model' synapse of the larval nerve muscle preparation revealed no difference between wild-type and mutant, and spontaneous or evoked excitatory junction potentials at this synapse were normal up to a stimulus frequency of 5 Hz. However, when several behavioural responses were analysed quantitatively, specific differences between mutant and wild-type flies are noted. Adult locomotor activity, optomotor responses at high pattern velocities, wing beat frequency, and visual pattern preference are modified. Synapsin mutant flies show faster habituation of an olfactory jump response, enhanced ethanol tolerance, and significant defects in learning and memory as measured using three different paradigms. Larval behavioural defects are described in a separate paper. We conclude that Drosophila synapsins play a significant role in nervous system function, which is subtle at the cellular level but manifests itself in complex behaviour.

  12. Cox4i2, Ifit2, and Prdm11 Mutant Mice: Effective Selection of Genes Predisposing to an Altered Airway Inflammatory Response from a Large Compendium of Mutant Mouse Lines.

    PubMed

    Horsch, Marion; Aguilar-Pimentel, Juan Antonio; Bönisch, Clemens; Côme, Christophe; Kolster-Fog, Cathrine; Jensen, Klaus T; Lund, Anders H; Lee, Icksoo; Grossman, Lawrence I; Sinkler, Christopher; Hüttemann, Maik; Bohn, Erwin; Fuchs, Helmut; Ollert, Markus; Gailus-Durner, Valérie; de Angelis, Martin Hrabĕ; Beckers, Johannes

    2015-01-01

    We established a selection strategy to identify new models for an altered airway inflammatory response from a large compendium of mutant mouse lines that were systemically phenotyped in the German Mouse Clinic (GMC). As selection criteria we included published gene functional data, as well as immunological and transcriptome data from GMC phenotyping screens under standard conditions. Applying these criteria we identified a few from several hundred mutant mouse lines and further characterized the Cox4i2tm1Hutt, Ifit2tm1.1Ebsb, and Prdm11tm1.1ahl lines following ovalbumin (OVA) sensitization and repeated OVA airway challenge. Challenged Prdm11tm1.1ahl mice exhibited changes in B cell counts, CD4+ T cell counts, and in the number of neutrophils in bronchoalveolar lavages, whereas challenged Ifit2tm1.1Ebsb mice displayed alterations in plasma IgE, IgG1, IgG3, and IgM levels compared to the challenged wild type littermates. In contrast, challenged Cox4i2tm1Hutt mutant mice did not show alterations in the humoral or cellular immune response compared to challenged wild type mice. Transcriptome analyses from lungs of the challenged mutant mouse lines showed extensive changes in gene expression in Prdm11tm1.1ahl mice. Functional annotations of regulated genes of all three mutant mouse lines were primarily related to inflammation and airway smooth muscle (ASM) remodeling. We were thus able to define an effective selection strategy to identify new candidate genes for the predisposition to an altered airway inflammatory response under OVA challenge conditions. Similar selection strategies may be used for the analysis of additional genotype-envirotype interactions for other diseases.

  13. Cox4i2, Ifit2, and Prdm11 Mutant Mice: Effective Selection of Genes Predisposing to an Altered Airway Inflammatory Response from a Large Compendium of Mutant Mouse Lines

    PubMed Central

    Bönisch, Clemens; Côme, Christophe; Kolster-Fog, Cathrine; Jensen, Klaus T.; Lund, Anders H.; Lee, Icksoo; Grossman, Lawrence I.; Sinkler, Christopher; Hüttemann, Maik; Bohn, Erwin; Fuchs, Helmut; Ollert, Markus; Gailus-Durner, Valérie; Hrabĕ de Angelis, Martin; Beckers, Johannes

    2015-01-01

    We established a selection strategy to identify new models for an altered airway inflammatory response from a large compendium of mutant mouse lines that were systemically phenotyped in the German Mouse Clinic (GMC). As selection criteria we included published gene functional data, as well as immunological and transcriptome data from GMC phenotyping screens under standard conditions. Applying these criteria we identified a few from several hundred mutant mouse lines and further characterized the Cox4i2tm1Hutt, Ifit2tm1.1Ebsb, and Prdm11tm1.1ahl lines following ovalbumin (OVA) sensitization and repeated OVA airway challenge. Challenged Prdm11tm1.1ahl mice exhibited changes in B cell counts, CD4+ T cell counts, and in the number of neutrophils in bronchoalveolar lavages, whereas challenged Ifit2tm1.1Ebsb mice displayed alterations in plasma IgE, IgG1, IgG3, and IgM levels compared to the challenged wild type littermates. In contrast, challenged Cox4i2tm1Hutt mutant mice did not show alterations in the humoral or cellular immune response compared to challenged wild type mice. Transcriptome analyses from lungs of the challenged mutant mouse lines showed extensive changes in gene expression in Prdm11tm1.1ahl mice. Functional annotations of regulated genes of all three mutant mouse lines were primarily related to inflammation and airway smooth muscle (ASM) remodeling. We were thus able to define an effective selection strategy to identify new candidate genes for the predisposition to an altered airway inflammatory response under OVA challenge conditions. Similar selection strategies may be used for the analysis of additional genotype – envirotype interactions for other diseases. PMID:26263558

  14. Morphogenesis of the mouse neural plate depends on distinct roles of cofilin 1 in apical and basal epithelial domains

    PubMed Central

    Grego-Bessa, Joaquim; Hildebrand, Jeffrey; Anderson, Kathryn V.

    2015-01-01

    The genetic control of mammalian epithelial polarity and dynamics can be studied in vivo at cellular resolution during morphogenesis of the mouse neural tube. The mouse neural plate is a simple epithelium that is transformed into a columnar pseudostratified tube over the course of ∼24 h. Apical F-actin is known to be important for neural tube closure, but the precise roles of actin dynamics in the neural epithelium are not known. To determine how the organization of the neural epithelium and neural tube closure are affected when actin dynamics are blocked, we examined the cellular basis of the neural tube closure defect in mouse mutants that lack the actin-severing protein cofilin 1 (CFL1). Although apical localization of the adherens junctions, the Par complex, the Crumbs complex and SHROOM3 is normal in the mutants, CFL1 has at least two distinct functions in the apical and basal domains of the neural plate. Apically, in the absence of CFL1 myosin light chain does not become phosphorylated, indicating that CFL1 is required for the activation of apical actomyosin required for neural tube closure. On the basal side of the neural plate, loss of CFL1 has the opposite effect on myosin: excess F-actin and myosin accumulate and the ectopic myosin light chain is phosphorylated. The basal accumulation of F-actin is associated with the assembly of ectopic basal tight junctions and focal disruptions of the basement membrane, which eventually lead to a breakdown of epithelial organization. PMID:25742799

  15. Parent-of-origin effects on schizophrenia-relevant behaviours of type III neuregulin 1 mutant mice.

    PubMed

    Shang, Kani; Talmage, David A; Karl, Tim

    2017-08-14

    A robust, disease-relevant phenotype is paramount to the validity of genetic mouse models, which are an important tool in understanding complex diseases. Recent evidence from genome-wide association studies suggests the genetic contribution of parents to offspring is not equivalent. Despite this, few studies to date have examined the potential impact of parent genotype (i.e. origin of mutation) on the offspring of disease-relevant genetic mouse models. To elucidate the potential impact of the sex of the mutant parent on offspring phenotype, we characterized male and female offspring of an established schizophrenia mouse model, which had been generated using two different breeding schemes, in a range of disease-relevant behaviours. We compared heterozygous type III neuregulin 1 mutant (type III Nrg1 +/- ) and wild type-like control (WT) offspring from mutant father x WT mother pairings with offspring from mutant mother x WT father pairings. Offspring were tested in schizophrenia-relevant paradigms including the elevated plus maze (EPM), fear conditioning (FC), prepulse inhibition (PPI), social interaction (SI), and open field (OF). We found type III Nrg1 +/- males from mutant fathers, but not mutant mothers, showed deficits in contextual fear-associated memory and exhibited increased social interaction, compared to their WT littermates. Type III Nrg1 +/- females across breeding colonies only exhibited a subtle change to their acoustic startle response and sensorimotor gating. These results suggest a paternal-dependent transmission of genetically induced behavioural characteristics. Though the mechanisms governing this phenomenon are unclear, our results show that parental origin of mutation can alter the behavioural phenotype of genetic mouse models. Thus, researchers should carefully consider their breeding scheme when dealing with genetic mouse models of diseases such as schizophrenia. Copyright © 2017. Published by Elsevier B.V.

  16. A defect in inducible beta-galactosidase of B lymphocytes in the osteopetrotic (mi/mi) mouse.

    PubMed Central

    Yamamoto, N; Naraparaju, V R

    1996-01-01

    Macrophages were activated by administration of an inflammatory lipid metabolite, lysophosphatidylcholine (lyso-Pc), to wild type mice but not murine (microphthalmic) osteopetrotic (mi/mi) mutant mice. In vitro treatment of wild type mouse peritoneal cells with lyso-Pc efficiently activated macrophages whereas lyso-Pc-treatment of mi mutant mouse peritoneal cells resulted in no activation of macrophages. Generation of macrophage activating factor requires a precursor protein, serum vitamin D binding protein (DBP), and participation of lyso-Pc-inducible beta-galactosidase of B lymphocytes. Lyso-Pc-inducible beta-galactosidase of B lymphocytes was found to be defective in mi mutant mice. PMID:8881764

  17. Lack of Parkin Anticipates the Phenotype and Affects Mitochondrial Morphology and mtDNA Levels in a Mouse Model of Parkinson's Disease.

    PubMed

    Pinto, Milena; Nissanka, Nadee; Moraes, Carlos T

    2018-01-24

    PARK2 is the most common gene mutated in monogenic recessive familial cases of Parkinson's disease (PD). Pathogenic mutations cause a loss of function of the encoded protein Parkin. ParkinKO mice, however, poorly represent human PD symptoms as they only exhibit mild motor phenotypes, minor dopamine metabolism abnormalities, and no signs of dopaminergic neurodegeneration. Parkin has been shown to participate in mitochondrial turnover, by targeting damaged mitochondria with low membrane potential to mitophagy. We studied the role of Parkin on mitochondrial quality control in vivo by knocking out Parkin in the PD-mito- Pst I mouse (males), where the mitochondrial DNA (mtDNA) undergoes double-strand breaks only in dopaminergic neurons. The lack of Parkin promoted earlier onset of dopaminergic neurodegeneration and motor defects in the PD-mito- Pst I mice, but it did not worsen the pathology. The lack of Parkin affected mitochondrial morphology in dopaminergic axons and was associated with an increase in mtDNA levels (mutant and wild type). Unexpectedly, it did not cause a parallel increase in mitochondrial mass or mitophagy. Our results suggest that Parkin affects mtDNA levels in a mitophagy-independent manner. SIGNIFICANCE STATEMENT Parkinson's disease is characterized by progressive motor symptoms due to the selective loss of dopaminergic neurons in the substantia nigra. Loss-of-function mutations of Parkin cause some monogenic forms of Parkinson's disease, possibly through its role in mitochondrial turnover and quality control. To study whether Parkin has a role in vivo in the context of mitochondrial damage, we knocked out Parkin in a mouse model in which the mitochondrial DNA is damaged in dopaminergic neurons. We found that the loss of Parkin did not exacerbate the parkinsonian pathology already present in the mice, but it was associated with an increase in mtDNA levels (mutant and wild-type) without altering mitochondrial mass. These results shed new light on the function of Parkin in vivo . Copyright © 2018 the authors 0270-6474/18/381042-12$15.00/0.

  18. Mild deficits in mice lacking pituitary adenylate cyclase-activating polypeptide receptor type 1 (PAC1) performing on memory tasks.

    PubMed

    Sauvage, M; Brabet, P; Holsboer, F; Bockaert, J; Steckler, T

    2000-12-08

    Pituitary adenylate cyclase-activating polypeptide (PACAP) and its receptor subtype 1 (PAC1) have been suggested to play a role in the modulation of learning and memory. However, behavioral evidence for altered mnemonic function due to altered PAC1 activity is missing. Therefore, the role of PAC1 in learning and memory was studied in mouse mutants lacking this receptor (PAC1 knock-out mice), tested in water maze two-choice spatial discrimination, one-trial contextual and cued fear conditioning, and multiple-session contextual discrimination. Water maze spatial discrimination was unaffected in PAC1 mutants, while a mild deficit was observed in multiple session contextual discrimination in PAC1 knock-out mice. Furthermore, PAC1 knock-out mice were able to learn the association between context and shock in one-trial contextual conditioning, but showed faster return to baseline than wild-type mice. Thus, the effects of PAC1 knock-out on modulating performance in these tasks were subtle and suggest that PAC1 only plays a limited role in learning and memory.

  19. Myelin/oligodendrocyte glycoprotein–deficient (MOG-deficient) mice reveal lack of immune tolerance to MOG in wild-type mice

    PubMed Central

    Delarasse, Cécile; Daubas, Philippe; Mars, Lennart T.; Vizler, Csaba; Litzenburger, Tobias; Iglesias, Antonio; Bauer, Jan; Della Gaspera, Bruno; Schubart, Anna; Decker, Laurence; Dimitri, Dalia; Roussel, Guy; Dierich, Andrée; Amor, Sandra; Dautigny, André; Liblau, Roland; Pham-Dinh, Danielle

    2003-01-01

    We studied the immunological basis for the very potent encephalitogenicity of myelin/oligodendrocyte glycoprotein (MOG), a minor component of myelin in the CNS that is widely used to induce experimental autoimmune encephalomyelitis (EAE). For this purpose, we generated a mutant mouse lacking a functional mog gene. This MOG-deficient mouse presents no clinical or histological abnormalities, permitting us to directly assess the role of MOG as a target autoantigen in EAE. In contrast to WT mice, which developed severe EAE following immunization with whole myelin, MOG-deficient mice had a mild phenotype, demonstrating that the anti-MOG response is a major pathogenic component of the autoimmune response directed against myelin. Moreover, while MOG transcripts are expressed in lymphoid organs in minute amounts, both MOG-deficient and WT mice show similar T and B cell responses against the extracellular domain of MOG, including the immunodominant MOG 35–55 T cell epitope. Furthermore, no differences in the fine specificity of the T cell responses to overlapping peptides covering the complete mouse MOG sequence were observed between MOG+/+ and MOG–/– mice. In addition, upon adoptive transfer, MOG-specific T cells from WT mice and those from MOG-deficient mice are equally pathogenic. This total lack of immune tolerance to MOG in WT C57BL/6 mice may be responsible for the high pathogenicity of the anti-MOG immune response as well as the high susceptibility of most animal strains to MOG-induced EAE. PMID:12925695

  20. Suppression of KRas-mutant cancer through the combined inhibition of KRAS with PLK1 and ROCK

    PubMed Central

    Wang, Jieqiong; Hu, Kewen; Guo, Jiawei; Cheng, Feixiong; Lv, Jing; Jiang, Wenhao; Lu, Weiqiang; Liu, Jinsong; Pang, Xiufeng; Liu, Mingyao

    2016-01-01

    No effective targeted therapies exist for cancers with somatic KRAS mutations. Here we develop a synthetic lethal chemical screen in isogenic KRAS-mutant and wild-type cells to identify clinical drug pairs. Our results show that dual inhibition of polo-like kinase 1 and RhoA/Rho kinase (ROCK) leads to the synergistic effects in KRAS-mutant cancers. Microarray analysis reveals that this combinatory inhibition significantly increases transcription and activity of cyclin-dependent kinase inhibitor p21WAF1/CIP1, leading to specific G2/M phase blockade in KRAS-mutant cells. Overexpression of p21WAF1/CIP1, either by cDNA transfection or clinical drugs, preferentially impairs the growth of KRAS-mutant cells, suggesting a druggable synthetic lethal interaction between KRAS and p21WAF1/CIP1. Co-administration of BI-2536 and fasudil either in the LSL-KRASG12D mouse model or in a patient tumour explant mouse model of KRAS-mutant lung cancer suppresses tumour growth and significantly prolongs mouse survival, suggesting a strong synergy in vivo and a potential avenue for therapeutic treatment of KRAS-mutant cancers. PMID:27193833

  1. Heparan sulfate C5-epimerase is essential for heparin biosynthesis in mast cells.

    PubMed

    Feyerabend, Thorsten B; Li, Jin-Ping; Lindahl, Ulf; Rodewald, Hans-Reimer

    2006-04-01

    Biosynthesis of heparin, a mast cell-derived glycosaminoglycan with widespread importance in medicine, has not been fully elucidated. In biosynthesis of heparan sulfate (HS), a structurally related polysaccharide, HS glucuronyl C5-epimerase (Hsepi) converts D-glucuronic acid (GlcA) to L-iduronic acid (IdoA) residues. We have generated Hsepi-null mouse mutant mast cells, and we show that the same enzyme catalyzes the generation of IdoA in heparin and that 'heparin' lacking IdoA shows a distorted O-sulfation pattern.

  2. Host range phenotype induced by mutations in the internal ribosomal entry site of poliovirus RNA.

    PubMed Central

    Shiroki, K; Ishii, T; Aoki, T; Ota, Y; Yang, W X; Komatsu, T; Ami, Y; Arita, M; Abe, S; Hashizume, S; Nomoto, A

    1997-01-01

    Most poliovirus strains infect only primates. The host range (HR) of poliovirus is thought to be primarily determined by a cell surface molecule that functions as poliovirus receptor (PVR), since it has been shown that transgenic mice are made poliovirus sensitive by introducing the human PVR gene into the genome. The relative levels of neurovirulence of polioviruses tested in these transgenic mice were shown to correlate well with the levels tested in monkeys (H. Horie et al., J. Virol. 68:681-688, 1994). Mutants of the virulent Mahoney strain of poliovirus have been generated by disruption of nucleotides 128 to 134, at stem-loop II within the 5' noncoding region, and four of these mutants multiplicated well in human HeLa cells but poorly in mouse TgSVA cells that had been established from the kidney of the poliovirus-sensitive transgenic mouse. Neurovirulence tests using the two animal models revealed that these mutants were strongly attenuated only in tests with the mouse model and were therefore HR mutants. The virus infection cycle in TgSVA cells was restricted by an internal ribosomal entry site (IRES)-dependent initiation process of translation. Viral protein synthesis and the associated block of cellular protein synthesis were not observed in TgSVA cells infected with three of four HR mutants and was evident at only a low level in the remaining mutant. The mutant RNAs were functional in a cell-free protein synthesis system from HeLa cells but not in those from TgSVA and mouse neuroblastoma NS20Y cells. These results suggest that host factor(s) affecting IRES-dependent translation of poliovirus differ between human and mouse cells and that the mutant IRES constructs detect species differences in such host factor(s). The IRES could potentially be a host range determinant for poliovirus infection. PMID:8985316

  3. Combinational Deletion of Three Membrane Protein-Encoding Genes Highly Attenuates Yersinia pestis while Retaining Immunogenicity in a Mouse Model of Pneumonic Plague

    PubMed Central

    Tiner, Bethany L.; Kirtley, Michelle L.; Erova, Tatiana E.; Popov, Vsevolod L.; Baze, Wallace B.; van Lier, Christina J.; Ponnusamy, Duraisamy; Andersson, Jourdan A.; Motin, Vladimir L.; Chauhan, Sadhana

    2015-01-01

    Previously, we showed that deletion of genes encoding Braun lipoprotein (Lpp) and MsbB attenuated Yersinia pestis CO92 in mouse and rat models of bubonic and pneumonic plague. While Lpp activates Toll-like receptor 2, the MsbB acyltransferase modifies lipopolysaccharide. Here, we deleted the ail gene (encoding the attachment-invasion locus) from wild-type (WT) strain CO92 or its lpp single and Δlpp ΔmsbB double mutants. While the Δail single mutant was minimally attenuated compared to the WT bacterium in a mouse model of pneumonic plague, the Δlpp Δail double mutant and the Δlpp ΔmsbB Δail triple mutant were increasingly attenuated, with the latter being unable to kill mice at a 50% lethal dose (LD50) equivalent to 6,800 LD50s of WT CO92. The mutant-infected animals developed balanced TH1- and TH2-based immune responses based on antibody isotyping. The triple mutant was cleared from mouse organs rapidly, with concurrent decreases in the production of various cytokines and histopathological lesions. When surviving animals infected with increasing doses of the triple mutant were subsequently challenged on day 24 with the bioluminescent WT CO92 strain (20 to 28 LD50s), 40 to 70% of the mice survived, with efficient clearing of the invading pathogen, as visualized in real time by in vivo imaging. The rapid clearance of the triple mutant, compared to that of WT CO92, from animals was related to the decreased adherence and invasion of human-derived HeLa and A549 alveolar epithelial cells and to its inability to survive intracellularly in these cells as well as in MH-S murine alveolar and primary human macrophages. An early burst of cytokine production in macrophages elicited by the triple mutant compared to WT CO92 and the mutant's sensitivity to the bactericidal effect of human serum would further augment bacterial clearance. Together, deletion of the ail gene from the Δlpp ΔmsbB double mutant severely attenuated Y. pestis CO92 to evoke pneumonic plague in a mouse model while retaining the required immunogenicity needed for subsequent protection against infection. PMID:25605764

  4. Combinational deletion of three membrane protein-encoding genes highly attenuates yersinia pestis while retaining immunogenicity in a mouse model of pneumonic plague.

    PubMed

    Tiner, Bethany L; Sha, Jian; Kirtley, Michelle L; Erova, Tatiana E; Popov, Vsevolod L; Baze, Wallace B; van Lier, Christina J; Ponnusamy, Duraisamy; Andersson, Jourdan A; Motin, Vladimir L; Chauhan, Sadhana; Chopra, Ashok K

    2015-04-01

    Previously, we showed that deletion of genes encoding Braun lipoprotein (Lpp) and MsbB attenuated Yersinia pestis CO92 in mouse and rat models of bubonic and pneumonic plague. While Lpp activates Toll-like receptor 2, the MsbB acyltransferase modifies lipopolysaccharide. Here, we deleted the ail gene (encoding the attachment-invasion locus) from wild-type (WT) strain CO92 or its lpp single and Δlpp ΔmsbB double mutants. While the Δail single mutant was minimally attenuated compared to the WT bacterium in a mouse model of pneumonic plague, the Δlpp Δail double mutant and the Δlpp ΔmsbB Δail triple mutant were increasingly attenuated, with the latter being unable to kill mice at a 50% lethal dose (LD50) equivalent to 6,800 LD50s of WT CO92. The mutant-infected animals developed balanced TH1- and TH2-based immune responses based on antibody isotyping. The triple mutant was cleared from mouse organs rapidly, with concurrent decreases in the production of various cytokines and histopathological lesions. When surviving animals infected with increasing doses of the triple mutant were subsequently challenged on day 24 with the bioluminescent WT CO92 strain (20 to 28 LD50s), 40 to 70% of the mice survived, with efficient clearing of the invading pathogen, as visualized in real time by in vivo imaging. The rapid clearance of the triple mutant, compared to that of WT CO92, from animals was related to the decreased adherence and invasion of human-derived HeLa and A549 alveolar epithelial cells and to its inability to survive intracellularly in these cells as well as in MH-S murine alveolar and primary human macrophages. An early burst of cytokine production in macrophages elicited by the triple mutant compared to WT CO92 and the mutant's sensitivity to the bactericidal effect of human serum would further augment bacterial clearance. Together, deletion of the ail gene from the Δlpp ΔmsbB double mutant severely attenuated Y. pestis CO92 to evoke pneumonic plague in a mouse model while retaining the required immunogenicity needed for subsequent protection against infection. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  5. K2P TASK-2 and KCNQ1-KCNE3 K+ channels are major players contributing to intestinal anion and fluid secretion.

    PubMed

    Julio-Kalajzić, Francisca; Villanueva, Sandra; Burgos, Johanna; Ojeda, Margarita; Cid, L Pablo; Jentsch, Thomas J; Sepúlveda, Francisco V

    2018-02-01

    K + channels are important in intestinal epithelium as they ensure the ionic homeostasis and electrical potential of epithelial cells during anion and fluid secretion. Intestinal epithelium cAMP-activated anion secretion depends on the activity of the (also cAMP dependent) KCNQ1-KCNE3 K + channel, but the secretory process survives after genetic inactivation of the K + channel in the mouse. Here we use double mutant mice to investigate which alternative K + channels come into action to compensate for the absence of KCNQ1-KCNE3 K + channels. Our data establish that whilst Ca 2+ -activated K Ca 3.1 channels are not involved, K 2P two-pore domain TASK-2 K + channels are major players providing an alternative conductance to sustain the intestinal secretory process. Work with double mutant mice lacking both TASK-2 and KCNQ1-KCNE3 channels nevertheless points to yet-unidentified K + channels that contribute to the robustness of the cAMP-activated anion secretion process. Anion and fluid secretion across the intestinal epithelium, a process altered in cystic fibrosis and secretory diarrhoea, is mediated by cAMP-activated CFTR Cl - channels and requires the simultaneous activity of basolateral K + channels to maintain cellular ionic homeostasis and membrane potential. This function is fulfilled by the cAMP-activated K + channel formed by the association of pore-forming KCNQ1 with its obligatory KCNE3 β-subunit. Studies using mice show sizeable cAMP-activated intestinal anion secretion in the absence of either KCNQ1 or KCNE3 suggesting that an alternative K + conductance must compensate for the loss of KCNQ1-KCNE3 activity. We used double mutant mouse and pharmacological approaches to identify such a conductance. Ca 2+ -dependent anion secretion can also be supported by Ca 2+ -dependent K Ca 3.1 channels after independent CFTR activation, but cAMP-dependent anion secretion is not further decreased in the combined absence of K Ca 3.1 and KCNQ1-KCNE3 K + channel activity. We show that the K 2P K + channel TASK-2 is expressed in the epithelium of the small and large intestine. Tetrapentylammonium, a TASK-2 inhibitor, abolishes anion secretory current remaining in the absence of KCNQ1-KCNE3 activity. A double mutant mouse lacking both KCNQ1-KCNE3 and TASK-2 showed a much reduced cAMP-mediated anion secretion compared to that observed in the single KCNQ1-KCNE3 deficient mouse. We conclude that KCNQ1-KCNE3 and TASK-2 play major roles in the intestinal anion and fluid secretory phenotype. The persistence of an, admittedly reduced, secretory activity in the absence of these two conductances suggests that further additional K + channel(s) as yet unidentified contribute to the robustness of the intestinal anion secretory process. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  6. Phenotypic outcomes in Mouse and Human Foxc1 dependent Dandy-Walker cerebellar malformation suggest shared mechanisms.

    PubMed

    Haldipur, Parthiv; Dang, Derek; Aldinger, Kimberly A; Janson, Olivia K; Guimiot, Fabien; Adle-Biasette, Homa; Dobyns, William B; Siebert, Joseph R; Russo, Rosa; Millen, Kathleen J

    2017-01-16

    FOXC1 loss contributes to Dandy-Walker malformation (DWM), a common human cerebellar malformation. Previously, we found that complete Foxc1 loss leads to aberrations in proliferation, neuronal differentiation and migration in the embryonic mouse cerebellum (Haldipur et al., 2014). We now demonstrate that hypomorphic Foxc1 mutant mice have granule and Purkinje cell abnormalities causing subsequent disruptions in postnatal cerebellar foliation and lamination. Particularly striking is the presence of a partially formed posterior lobule which echoes the posterior vermis DW 'tail sign' observed in human imaging studies. Lineage tracing experiments in Foxc1 mutant mouse cerebella indicate that aberrant migration of granule cell progenitors destined to form the posterior-most lobule causes this unique phenotype. Analyses of rare human del chr 6p25 fetal cerebella demonstrate extensive phenotypic overlap with our Foxc1 mutant mouse models, validating our DWM models and demonstrating that many key mechanisms controlling cerebellar development are likely conserved between mouse and human.

  7. High-Throughput, Signature-Tagged Mutagenic Approach To Identify Novel Virulence Factors of Yersinia pestis CO92 in a Mouse Model of Infection

    PubMed Central

    Ponnusamy, Duraisamy; Fitts, Eric C.; Erova, Tatiana E.; Kozlova, Elena V.; Kirtley, Michelle L.; Tiner, Bethany L.; Andersson, Jourdan A.

    2015-01-01

    The identification of new virulence factors in Yersinia pestis and understanding their molecular mechanisms during an infection process are necessary in designing a better vaccine or to formulate an appropriate therapeutic intervention. By using a high-throughput, signature-tagged mutagenic approach, we created 5,088 mutants of Y. pestis strain CO92 and screened them in a mouse model of pneumonic plague at a dose equivalent to 5 50% lethal doses (LD50) of wild-type (WT) CO92. From this screen, we obtained 118 clones showing impairment in disseminating to the spleen, based on hybridization of input versus output DNA from mutant pools with 53 unique signature tags. In the subsequent screen, 20/118 mutants exhibited attenuation at 8 LD50 when tested in a mouse model of bubonic plague, with infection by 10/20 of the aforementioned mutants resulting in 40% or higher survival rates at an infectious dose of 40 LD50. Upon sequencing, six of the attenuated mutants were found to carry interruptions in genes encoding hypothetical proteins or proteins with putative functions. Mutants with in-frame deletion mutations of two of the genes identified from the screen, namely, rbsA, which codes for a putative sugar transport system ATP-binding protein, and vasK, a component of the type VI secretion system, were also found to exhibit some attenuation at 11 or 12 LD50 in a mouse model of pneumonic plague. Likewise, among the remaining 18 signature-tagged mutants, 9 were also attenuated (40 to 100%) at 12 LD50 in a pneumonic plague mouse model. Previously, we found that deleting genes encoding Braun lipoprotein (Lpp) and acyltransferase (MsbB), the latter of which modifies lipopolysaccharide function, reduced the virulence of Y. pestis CO92 in mouse models of bubonic and pneumonic plague. Deletion of rbsA and vasK genes from either the Δlpp single or the Δlpp ΔmsbB double mutant augmented the attenuation to provide 90 to 100% survivability to mice in a pneumonic plague model at 20 to 50 LD50. The mice infected with the Δlpp ΔmsbB ΔrbsA triple mutant at 50 LD50 were 90% protected upon subsequent challenge with 12 LD50 of WT CO92, suggesting that this mutant or others carrying combinational deletions of genes identified through our screen could potentially be further tested and developed into a live attenuated plague vaccine(s). PMID:25754198

  8. High-throughput, signature-tagged mutagenic approach to identify novel virulence factors of Yersinia pestis CO92 in a mouse model of infection.

    PubMed

    Ponnusamy, Duraisamy; Fitts, Eric C; Sha, Jian; Erova, Tatiana E; Kozlova, Elena V; Kirtley, Michelle L; Tiner, Bethany L; Andersson, Jourdan A; Chopra, Ashok K

    2015-05-01

    The identification of new virulence factors in Yersinia pestis and understanding their molecular mechanisms during an infection process are necessary in designing a better vaccine or to formulate an appropriate therapeutic intervention. By using a high-throughput, signature-tagged mutagenic approach, we created 5,088 mutants of Y. pestis strain CO92 and screened them in a mouse model of pneumonic plague at a dose equivalent to 5 50% lethal doses (LD50) of wild-type (WT) CO92. From this screen, we obtained 118 clones showing impairment in disseminating to the spleen, based on hybridization of input versus output DNA from mutant pools with 53 unique signature tags. In the subsequent screen, 20/118 mutants exhibited attenuation at 8 LD50 when tested in a mouse model of bubonic plague, with infection by 10/20 of the aforementioned mutants resulting in 40% or higher survival rates at an infectious dose of 40 LD50. Upon sequencing, six of the attenuated mutants were found to carry interruptions in genes encoding hypothetical proteins or proteins with putative functions. Mutants with in-frame deletion mutations of two of the genes identified from the screen, namely, rbsA, which codes for a putative sugar transport system ATP-binding protein, and vasK, a component of the type VI secretion system, were also found to exhibit some attenuation at 11 or 12 LD50 in a mouse model of pneumonic plague. Likewise, among the remaining 18 signature-tagged mutants, 9 were also attenuated (40 to 100%) at 12 LD50 in a pneumonic plague mouse model. Previously, we found that deleting genes encoding Braun lipoprotein (Lpp) and acyltransferase (MsbB), the latter of which modifies lipopolysaccharide function, reduced the virulence of Y. pestis CO92 in mouse models of bubonic and pneumonic plague. Deletion of rbsA and vasK genes from either the Δlpp single or the Δlpp ΔmsbB double mutant augmented the attenuation to provide 90 to 100% survivability to mice in a pneumonic plague model at 20 to 50 LD50. The mice infected with the Δlpp ΔmsbB ΔrbsA triple mutant at 50 LD50 were 90% protected upon subsequent challenge with 12 LD50 of WT CO92, suggesting that this mutant or others carrying combinational deletions of genes identified through our screen could potentially be further tested and developed into a live attenuated plague vaccine(s). Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  9. Structure-function analysis of mouse Sry reveals dual essential roles of the C-terminal polyglutamine tract in sex determination.

    PubMed

    Zhao, Liang; Ng, Ee Ting; Davidson, Tara-Lynne; Longmuss, Enya; Urschitz, Johann; Elston, Marlee; Moisyadi, Stefan; Bowles, Josephine; Koopman, Peter

    2014-08-12

    The mammalian sex-determining factor SRY comprises a conserved high-mobility group (HMG) box DNA-binding domain and poorly conserved regions outside the HMG box. Mouse Sry is unusual in that it includes a C-terminal polyglutamine (polyQ) tract that is absent in nonrodent SRY proteins, and yet, paradoxically, is essential for male sex determination. To dissect the molecular functions of this domain, we generated a series of Sry mutants, and studied their biochemical properties in cell lines and transgenic mouse embryos. Sry protein lacking the polyQ domain was unstable, due to proteasomal degradation. Replacing this domain with irrelevant sequences stabilized the protein but failed to restore Sry's ability to up-regulate its key target gene SRY-box 9 (Sox9) and its sex-determining function in vivo. These functions were restored only when a VP16 transactivation domain was substituted. We conclude that the polyQ domain has important roles in protein stabilization and transcriptional activation, both of which are essential for male sex determination in mice. Our data disprove the hypothesis that the conserved HMG box domain is the only functional domain of Sry, and highlight an evolutionary paradox whereby mouse Sry has evolved a novel bifunctional module to activate Sox9 directly, whereas SRY proteins in other taxa, including humans, seem to lack this ability, presumably making them dependent on partner proteins(s) to provide this function.

  10. Escherichia coli msbB gene as a virulence factor and a therapeutic target.

    PubMed

    Somerville, J E; Cassiano, L; Darveau, R P

    1999-12-01

    A mutation in the msbB gene of Escherichia coli results in the synthesis of E. coli lipopolysaccharide (LPS) that lacks the myristic acid moiety of lipid A. Although such mutant E. coli cells and their purified LPS have a greatly reduced ability to stimulate human immune cells, a minor reduction in the mouse inflammatory response is observed. When the msbB mutation is transferred into a clinical isolate of E. coli, there is a significant loss in virulence, as assessed by lethality in BALB/c mice. When a cloned msbB gene is provided to functionally complement the msbB mutant, virulence returns, providing direct evidence that the msbB gene product is an important virulence factor in a murine model of E. coli pathogenicity. In the genetic background of the clinical E. coli isolate, the msbB mutation also results in filamentation of the cells at 37 degrees C but not at 30 degrees C, a reduction in the level of the K1 capsule, an increase in the level of complement C3 deposition, and an increase in both opsonic and nonopsonic phagocytosis of the msbB mutant, phenotypes that can help to explain the loss in virulence. The demonstration that the inhibition of msbB gene function reduces the virulence of E. coli in a mouse infection model warrants further investigation of the msbB gene product as a novel target for antibiotic therapy.

  11. [Orthopoxvirus genes for kelch-like proteins. III. Construction of mousepox (ectromelia) virus variants with targeted gene deletions].

    PubMed

    Kochneva, G V; Kolosova, I V; Lupan, T A; Sivolobova, G F; Iudin, P V; Grazhdantseva, A A; Riabchikova, E I; Kandrina, N Iu; Shchelkunov, S N

    2009-01-01

    Mousepox (ectromelia) virus genome contains four genes encoding for kelch-like proteins EVM018, EVM027, EVM150 and EVM167. A complete set of insertion plasmids was constructed to allow the production of recombinant ectromelia viruses with targeted deletions of one to four genes of kelch family both individually (single mutants) and in different combinations (double, triple and quadruple mutants). It was shown that deletion of any of the three genes EVMO18, EVM027 or EVM167 resulted in reduction of 50% lethal dose (LD50) by five and more orders in outbred white mice infected intraperitoneally. Deletion of mousepox kelch-gene EVM150 did not influence the virus virulence. Two or more kelch-genes deletion also resulted in high level of attenuation, which could evidently be due to the lack of three genes EVM167, EVM018 and/or EVM027 identified as virulence factors. The local inflammatory process on the model of intradermal injection of mouse ear pinnae (vasodilatation level, hyperemia, cutaneous edema, arterial thrombosis) was significantly more intensive for wild type virus and virulent mutant deltaEVM150 in comparison with avirulent mutant AEVM167.

  12. Lasp1 misexpression influences chondrocyte differentiation in the vertebral column.

    PubMed

    Hermann-Kleiter, Natascha; Ghaffari-Tabrizi, Nassim; Blumer, Michael J F; Schwarzer, Christoph; Mazur, Magdalena A; Artner, Isabella

    2009-01-01

    The mouse mutant wavy tail Tg(Col1a1-lacZ)304ng was created through transgene insertion and exhibits defects of the vertebral column. Homozygous mutant animals have compressed tail vertebrae and wedge-shaped intervertebral discs, resulting in a meandering tail. Delayed closure of lumbar neural arches and lack of processus spinosi have been observed; these defects become most prominent during the transition from cartilage to bone. The spina bifida was resistant to folic acid treatment, while retinoic acid administration caused severe skeletal defects in the mutant, but none in wild type control animals. The transgene integrated at chromosome 11 band D, in an area of high gene density. The insertion site was located between the transcription start sites of the Rpl23 and Lasp1 genes. LASP1 (an actin binding protein involved in cell migration and survival) was found to be produced in resting and hypertrophic chondrocytes in the vertebrae. In mutant vertebrae, temporal and spatial misexpression of Lasp1 was observed, indicating that alterations in Lasp1 transcription are most likely responsible for the observed phenotype. These data reveal a yet unappreciated role of Lasp1 in chondrocyte differentiation during cartilage to bone transition.

  13. Secisbp2 Is Essential for Embryonic Development and Enhances Selenoprotein Expression

    PubMed Central

    Seeher, Sandra; Atassi, Tarik; Mahdi, Yassin; Carlson, Bradley A.; Braun, Doreen; Wirth, Eva K.; Klein, Marc O.; Reix, Nathalie; Miniard, Angela C.; Schomburg, Lutz; Hatfield, Dolph L.; Driscoll, Donna M.

    2014-01-01

    Abstract Aims: The selenocysteine insertion sequence (SECIS)-binding protein 2 (Secisbp2) binds to SECIS elements located in the 3′-untranslated region of eukaryotic selenoprotein mRNAs. Selenoproteins contain the rare amino acid selenocysteine (Sec). Mutations in SECISBP2 in humans lead to reduced selenoprotein expression thereby affecting thyroid hormone-dependent growth and differentiation processes. The most severe cases also display myopathy, hearing impairment, male infertility, increased photosensitivity, mental retardation, and ataxia. Mouse models are needed to understand selenoprotein-dependent processes underlying the patients' pleiotropic phenotypes. Results: Unlike tRNA[Ser]Sec-deficient embryos, homozygous Secisbp2-deleted embryos implant, but fail before gastrulation. Heterozygous inactivation of Secisbp2 reduced the amount of selenoprotein expressed, but did not affect the thyroid hormone axis or growth. Conditional deletion of Secisbp2 in hepatocytes significantly decreased selenoprotein expression. Unexpectedly, the loss of Secisbp2 reduced the abundance of many, but not all, selenoprotein mRNAs. Transcript-specific and gender-selective effects on selenoprotein mRNA abundance were greater in Secisbp2-deficient hepatocytes than in tRNA[Ser]Sec-deficient cells. Despite the massive reduction of Dio1 and Sepp1 mRNAs, significantly more corresponding protein was detected in primary hepatocytes lacking Secisbp2 than in cells lacking tRNA[Ser]Sec. Regarding selenoprotein expression, compensatory nuclear factor, erythroid-derived, like 2 (Nrf2)-dependent gene expression, or embryonic development, phenotypes were always milder in Secisbp2-deficient than in tRNA[Ser]Sec-deficient mice. Innovation: We report the first Secisbp2 mutant mouse models. The conditional mutants provide a model for analyzing Secisbp2 function in organs not accessible in patients. Conclusion: In hepatocyte-specific conditional mouse models, Secisbp2 gene inactivation is less detrimental than tRNA[Ser]Sec inactivation. A role of Secisbp2 in stabilizing selenoprotein mRNAs in vivo was uncovered. Antioxid. Redox Signal. 21, 835–849. PMID:24274065

  14. Glutamate Receptors within the Mesolimbic Dopamine System Mediate Alcohol Relapse Behavior.

    PubMed

    Eisenhardt, Manuela; Leixner, Sarah; Luján, Rafael; Spanagel, Rainer; Bilbao, Ainhoa

    2015-11-25

    Glutamatergic input within the mesolimbic dopamine (DA) pathway plays a critical role in the development of addictive behavior. Although this is well established for some drugs of abuse, it is not known whether glutamate receptors within the mesolimbic system are involved in mediating the addictive properties of chronic alcohol use. Here we evaluated the contribution of mesolimbic NMDARs and AMPARs in mediating alcohol-seeking responses induced by environmental stimuli and relapse behavior using four inducible mutant mouse lines lacking the glutamate receptor genes Grin1 or Gria1 in either DA transporter (DAT) or D1R-expressing neurons. We first demonstrate the lack of GluN1 or GluA1 in either DAT- or D1R-expressing neurons in our mutant mouse lines by colocalization studies. We then show that GluN1 and GluA1 receptor subunits within these neuronal subpopulations mediate the alcohol deprivation effect, while having no impact on context- plus cue-induced reinstatement of alcohol-seeking behavior. We further validated these results pharmacologically by demonstrating similar reductions in the alcohol deprivation effect after infusion of the NMDAR antagonist memantine into the nucleus accumbens and ventral tegmental area of control mice, and a rescue of the mutant phenotype via pharmacological potentiation of AMPAR activity using aniracetam. In conclusion, dopamine neurons as well as D1R-expressing medium spiny neurons and their glutamatergic inputs via NMDARs and AMPARs act in concert to influence relapse responses. These results provide a neuroanatomical and molecular substrate for relapse behavior and emphasize the importance of glutamatergic drugs in modulating relapse behavior. Here we provide genetic and pharmacological evidence that glutamate receptors within the mesolimbic dopamine system play an essential role in alcohol relapse. Using various inducible and site-specific transgenic mouse models and pharmacological validation experiments, we show that critical subunits of NMDARs and AMPARs expressed either in dopamine neurons or in dopamine receptor D1-containing neurons play an important role in the alcohol deprivation effect (the increase in alcohol intake after a period of abstinence) while having no impact on context- plus cue-induced reinstatement of alcohol-seeking responses. Medications targeting glutamatergic neurotransmission by selective inactivation of these glutamate receptors might have therapeutic efficacy. Copyright © 2015 the authors 0270-6474/15/3515523-16$15.00/0.

  15. Hush puppy: a new mouse mutant with pinna, ossicle, and inner ear defects.

    PubMed

    Pau, Henry; Fuchs, Helmut; de Angelis, Martin Hrabé; Steel, Karen P

    2005-01-01

    Deafness can be associated with abnormalities of the pinna, ossicles, and cochlea. The authors studied a newly generated mouse mutant with pinna defects and asked whether these defects are associated with peripheral auditory or facial skeletal abnormalities, or both. Furthermore, the authors investigated where the mutation responsible for these defects was located in the mouse genome. The hearing of hush puppy mutants was assessed by Preyer reflex and electrophysiological measurement. The morphological features of their middle and inner ears were investigated by microdissection, paint-filling of the labyrinth, and scanning electron microscopy. Skeletal staining of skulls was performed to assess the craniofacial dimensions. Genome scanning was performed using microsatellite markers to localize the mutation to a chromosomal region. Some hush puppy mutants showed early onset of hearing impairment. They had small, bat-like pinnae and normal malleus but abnormal incus and stapes. Some mutants had asymmetrical defects and showed reduced penetrance of the ear abnormalities. Paint-filling of newborns' inner ears revealed no morphological abnormality, although half of the mice studied were expected to carry the mutation. Reduced numbers of outer hair cells were demonstrated in mutants' cochlea on scanning electron microscopy. Skeletal staining showed that the mutants have significantly shorter snouts and mandibles. Genome scan revealed that the mutation lies on chromosome 8 between markers D8Mit58 and D8Mit289. The study results indicate developmental problems of the first and second branchial arches and otocyst as a result of a single gene mutation. Similar defects are found in humans, and hush puppy provides a mouse model for investigation of such defects.

  16. Intestinal cell kinase, a protein associated with endocrine-cerebro-osteodysplasia syndrome, is a key regulator of cilia length and Hedgehog signaling.

    PubMed

    Moon, Heejung; Song, Jieun; Shin, Jeong-Oh; Lee, Hankyu; Kim, Hong-Kyung; Eggenschwiller, Jonathan T; Bok, Jinwoong; Ko, Hyuk Wan

    2014-06-10

    Endocrine-cerebro-osteodysplasia (ECO) syndrome is a recessive genetic disorder associated with multiple congenital defects in endocrine, cerebral, and skeletal systems that is caused by a missense mutation in the mitogen-activated protein kinase-like intestinal cell kinase (ICK) gene. In algae and invertebrates, ICK homologs are involved in flagellar formation and ciliogenesis, respectively. However, it is not clear whether this role of ICK is conserved in mammals and how a lack of functional ICK results in the characteristic phenotypes of human ECO syndrome. Here, we generated Ick knockout mice to elucidate the precise role of ICK in mammalian development and to examine the pathological mechanisms of ECO syndrome. Ick null mouse embryos displayed cleft palate, hydrocephalus, polydactyly, and delayed skeletal development, closely resembling ECO syndrome phenotypes. In cultured cells, down-regulation of Ick or overexpression of kinase-dead or ECO syndrome mutant ICK resulted in an elongation of primary cilia and abnormal Sonic hedgehog (Shh) signaling. Wild-type ICK proteins were generally localized in the proximal region of cilia near the basal bodies, whereas kinase-dead ICK mutant proteins accumulated in the distal part of bulged ciliary tips. Consistent with these observations in cultured cells, Ick knockout mouse embryos displayed elongated cilia and reduced Shh signaling during limb digit patterning. Taken together, these results indicate that ICK plays a crucial role in controlling ciliary length and that ciliary defects caused by a lack of functional ICK leads to abnormal Shh signaling, resulting in congenital disorders such as ECO syndrome.

  17. Distinct roles for motor neuron autophagy early and late in the SOD1G93A mouse model of ALS

    PubMed Central

    Rudnick, Noam D.; Griffey, Christopher J.; Guarnieri, Paolo; Gerbino, Valeria; Wang, Xueyong; Piersaint, Jason A.; Tapia, Juan Carlos; Rich, Mark M.; Maniatis, Tom

    2017-01-01

    Mutations in autophagy genes can cause familial and sporadic amyotrophic lateral sclerosis (ALS). However, the role of autophagy in ALS pathogenesis is poorly understood, in part due to the lack of cell type-specific manipulations of this pathway in animal models. Using a mouse model of ALS expressing mutant superoxide dismutase 1 (SOD1G93A), we show that motor neurons form large autophagosomes containing ubiquitinated aggregates early in disease progression. To investigate whether this response is protective or detrimental, we generated mice in which the critical autophagy gene Atg7 was specifically disrupted in motor neurons (Atg7 cKO). Atg7 cKO mice were viable but exhibited structural and functional defects at a subset of vulnerable neuromuscular junctions. By crossing Atg7 cKO mice to the SOD1G93A mouse model, we found that autophagy inhibition accelerated early neuromuscular denervation of the tibialis anterior muscle and the onset of hindlimb tremor. Surprisingly, however, lifespan was extended in Atg7 cKO; SOD1G93A double-mutant mice. Autophagy inhibition did not prevent motor neuron cell death, but it reduced glial inflammation and blocked activation of the stress-related transcription factor c-Jun in spinal interneurons. We conclude that motor neuron autophagy is required to maintain neuromuscular innervation early in disease but eventually acts in a non–cell-autonomous manner to promote disease progression. PMID:28904095

  18. Blocking antibodies induced by immunization with a hypoallergenic parvalbumin mutant reduce allergic symptoms in a mouse model of fish allergy

    PubMed Central

    Freidl, Raphaela; Gstoettner, Antonia; Baranyi, Ulrike; Swoboda, Ines; Stolz, Frank; Focke-Tejkl, Margarete; Wekerle, Thomas; van Ree, Ronald; Valenta, Rudolf; Linhart, Birgit

    2017-01-01

    Background Fish is a frequent elicitor of severe IgE-mediated allergic reactions. Beside avoidance, there is currently no allergen-specific therapy available. Hypoallergenic variants of the major fish allergen, parvalbumin, for specific immunotherapy based on mutation of the 2 calcium-binding sites have been developed. Objectives This study sought to establish a mouse model of fish allergy resembling human disease and to investigate whether mouse and rabbit IgG antibodies induced by immunization with a hypoallergenic mutant of the major carp allergen protect against allergic symptoms in sensitized mice. Methods C3H/HeJ mice were sensitized with recombinant wildtype Cyp c 1 or carp extract by intragastric gavage. Antibody, cellular immune responses, and epitope specificity in sensitized mice were investigated by ELISA, rat basophil leukemia assay, T-cell proliferation experiments using recombinant wildtype Cyp c 1, and overlapping peptides spanning the Cyp c 1 sequence. Anti-hypoallergenic Cyp c 1 mutant mouse and rabbit sera were tested for their ability to inhibit IgE recognition of Cyp c 1, Cyp c 1–specific basophil degranulation, and Cyp c 1–induced allergic symptoms in the mouse model. Results A mouse model of fish allergy mimicking human disease regarding IgE epitope recognition and symptoms as close as possible was established. Administration of antisera generated in mice and rabbits by immunization with a hypoallergenic Cyp c 1 mutant inhibited IgE binding to Cyp c 1, Cyp c 1–induced basophil degranulation, and allergic symptoms caused by allergen challenge in sensitized mice. Conclusions Antibodies induced by immunization with a hypoallergenic Cyp c 1 mutant protect against allergic reactions in a murine model of fish allergy. PMID:27876628

  19. Blocking antibodies induced by immunization with a hypoallergenic parvalbumin mutant reduce allergic symptoms in a mouse model of fish allergy.

    PubMed

    Freidl, Raphaela; Gstoettner, Antonia; Baranyi, Ulrike; Swoboda, Ines; Stolz, Frank; Focke-Tejkl, Margarete; Wekerle, Thomas; van Ree, Ronald; Valenta, Rudolf; Linhart, Birgit

    2017-06-01

    Fish is a frequent elicitor of severe IgE-mediated allergic reactions. Beside avoidance, there is currently no allergen-specific therapy available. Hypoallergenic variants of the major fish allergen, parvalbumin, for specific immunotherapy based on mutation of the 2 calcium-binding sites have been developed. This study sought to establish a mouse model of fish allergy resembling human disease and to investigate whether mouse and rabbit IgG antibodies induced by immunization with a hypoallergenic mutant of the major carp allergen protect against allergic symptoms in sensitized mice. C3H/HeJ mice were sensitized with recombinant wildtype Cyp c 1 or carp extract by intragastric gavage. Antibody, cellular immune responses, and epitope specificity in sensitized mice were investigated by ELISA, rat basophil leukemia assay, T-cell proliferation experiments using recombinant wildtype Cyp c 1, and overlapping peptides spanning the Cyp c 1 sequence. Anti-hypoallergenic Cyp c 1 mutant mouse and rabbit sera were tested for their ability to inhibit IgE recognition of Cyp c 1, Cyp c 1-specific basophil degranulation, and Cyp c 1-induced allergic symptoms in the mouse model. A mouse model of fish allergy mimicking human disease regarding IgE epitope recognition and symptoms as close as possible was established. Administration of antisera generated in mice and rabbits by immunization with a hypoallergenic Cyp c 1 mutant inhibited IgE binding to Cyp c 1, Cyp c 1-induced basophil degranulation, and allergic symptoms caused by allergen challenge in sensitized mice. Antibodies induced by immunization with a hypoallergenic Cyp c 1 mutant protect against allergic reactions in a murine model of fish allergy. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  20. The streptomycin-treated mouse intestine selects Escherichia coli envZ missense mutants that interact with dense and diverse intestinal microbiota.

    PubMed

    Leatham-Jensen, Mary P; Frimodt-Møller, Jakob; Adediran, Jimmy; Mokszycki, Matthew E; Banner, Megan E; Caughron, Joyce E; Krogfelt, Karen A; Conway, Tyrrell; Cohen, Paul S

    2012-05-01

    Previously, we reported that the streptomycin-treated mouse intestine selected nonmotile Escherichia coli MG1655 flhDC deletion mutants of E. coli MG1655 with improved colonizing ability that grow 15% faster in vitro in mouse cecal mucus and 15 to 30% faster on sugars present in mucus (M. P. Leatham et al., Infect. Immun. 73:8039-8049, 2005). Here, we report that the 10 to 20% remaining motile E. coli MG1655 are envZ missense mutants that are also better colonizers of the mouse intestine than E. coli MG1655. One of the flhDC mutants, E. coli MG1655 ΔflhD, and one of the envZ missense mutants, E. coli MG1655 mot-1, were studied further. E. coli MG1655 mot-1 is more resistant to bile salts and colicin V than E. coli MG1655 ΔflhD and grows ca. 15% slower in vitro in mouse cecal mucus and on several sugars present in mucus compared to E. coli MG1655 ΔflhD but grows 30% faster on galactose. Moreover, E. coli MG1655 mot-1 and E. coli MG1655 ΔflhD appear to colonize equally well in one intestinal niche, but E. coli MG1655 mot-1 appears to use galactose to colonize a second, smaller intestinal niche either not colonized or colonized poorly by E. coli MG1655 ΔflhD. Evidence is also presented that E. coli MG1655 is a minority member of mixed bacterial biofilms in the mucus layer of the streptomycin-treated mouse intestine. We offer a hypothesis, which we call the "Restaurant" hypothesis, that explains how nutrient acquisition in different biofilms comprised of different anaerobes can account for our results.

  1. Bm-muted, orthologous to mouse muted and encoding a subunit of the BLOC-1 complex, is responsible for the otm translucent mutation of the silkworm Bombyx mori.

    PubMed

    Zhang, Haokun; Kiuchi, Takashi; Wang, Lingyan; Kawamoto, Munetaka; Suzuki, Yutaka; Sugano, Sumio; Banno, Yutaka; Katsuma, Susumu; Shimada, Toru

    2017-09-20

    "Tanaka's mottled translucent" (otm) is a mutation of the silkworm Bombyx mori that exhibits translucent skin during larval stages. We performed positional cloning of the gene responsible for otm and mapped it to a 364-kb region on chromosome 5 that contains 22 hypothetical protein-coding genes. We performed RNA-seq analysis of the epidermis and fat body of otm larvae and determined that the gene BGIBMGA002619 may be responsible for the otm mutation. BGIBMGA002619 encodes the biosynthesis of lysosome-related organelles complex 1 (BLOC-1) subunit 5, whose ortholog is responsible for the Muted mutant in mouse. Accordingly, we named this gene Bm-muted. We discovered that the expression of Bm-muted in the epidermis and fat body of otm mutants was dramatically suppressed compared with the wild type. We determined the nucleotide sequences of the full-length cDNA and genomic region corresponding to Bm-muted and found that a 538-bp long DNA sequence similar to B. mori transposon Organdy was inserted into the 3' end of the first intron of Bm-muted in two otm strains. The Bm-muted cDNA of otm mutants lacked exon 2, and accordingly generated a premature stop codon in exon 3. In addition, short interfering RNA (siRNA)-mediated knockdown of this gene caused localized partial translucency of larval skin. These data indicate that the mutation in Bm-muted caused the otm-mutant phenotype. We propose that the insertion of Organdy caused a splicing disorder in Bm-muted in the otm mutant, resulting in a null mutation of Bm-muted. This mutation is likely to cause deficiencies in urate granule formation in epidermal cells that result in translucent larval skin. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Catheter-Associated Urinary Tract Infection by Pseudomonas aeruginosa Is Mediated by Exopolysaccharide-Independent Biofilms

    PubMed Central

    Cole, Stephanie J.; Records, Angela R.; Orr, Mona W.; Linden, Sara B.

    2014-01-01

    Pseudomonas aeruginosa is an opportunistic human pathogen that is especially adept at forming surface-associated biofilms. P. aeruginosa causes catheter-associated urinary tract infections (CAUTIs) through biofilm formation on the surface of indwelling catheters. P. aeruginosa encodes three extracellular polysaccharides, PEL, PSL, and alginate, and utilizes the PEL and PSL polysaccharides to form biofilms in vitro; however, the requirement of these polysaccharides during in vivo infections is not well understood. Here we show in a murine model of CAUTI that PAO1, a strain harboring pel, psl, and alg genes, and PA14, a strain harboring pel and alg genes, form biofilms on the implanted catheters. To determine the requirement of exopolysaccharide during in vivo biofilm infections, we tested isogenic mutants lacking the pel, psl, and alg operons and showed that PA14 mutants lacking these operons can successfully form biofilms on catheters in the CAUTI model. To determine the host factor(s) that induces the ΔpelD mutant to form biofilm, we tested mouse, human, and artificial urine and show that urine can induce biofilm formation by the PA14 ΔpelD mutant. By testing the major constituents of urine, we show that urea can induce a pel-, psl-, and alg-independent biofilm. These pel-, psl-, and alg-independent biofilms are mediated by the release of extracellular DNA. Treatment of biofilms formed in urea with DNase I reduced the biofilm, indicating that extracellular DNA supports biofilm formation. Our results indicate that the opportunistic pathogen P. aeruginosa utilizes a distinct program to form biofilms that are independent of exopolysaccharides during CAUTI. PMID:24595142

  3. A spontaneous and novel Pax3 mutant mouse that models Waardenburg syndrome and neural tube defects.

    PubMed

    Ohnishi, Tetsuo; Miura, Ikuo; Ohba, Hisako; Shimamoto, Chie; Iwayama, Yoshimi; Wakana, Shigeharu; Yoshikawa, Takeo

    2017-04-05

    Genes responsible for reduced pigmentation phenotypes in rodents are associated with human developmental defects, such as Waardenburg syndrome, where patients display congenital deafness along with various abnormalities mostly related to neural crest development deficiency. In this study, we identified a spontaneous mutant mouse line Rwa, which displays variable white spots on mouse bellies and white digits and tail, on a C57BL/6N genetic background. Curly tail and spina bifida were also observed, although at a lower penetrance. These phenotypes were dominantly inherited by offspring. We searched for the genetic mechanism of the observed phenotypes. We harnessed a rapid mouse gene mapping system newly developed in our laboratories to identify a responsible gene. We detected a region within chromosome 1 as a probable locus for the causal mutation. Dense mapping using interval markers narrowed the locus down to a 670-kbp region, containing four genes including Pax3, a gene known to be implicated in the types I and III Waardenburg syndrome. Extensive mutation screening of Pax3 detected an 841-bp deletion, spanning the promoter region and intron 1 of the gene. The defective allele of Pax3, named Pax3 Rwa , lacked the first coding exon and co-segregated perfectly with the phenotypes, confirming its causal nature. The genetic background of Rwa mice is almost identical to that of inbred C57BL/6N. These results highlight Pax3 Rwa mice as a beneficial tool for analyzing biological processes involving Pax3, in particular the development and migration of neural crest cells and melanocytes. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. A new spontaneous allele at the pink-eyed dilution (p) locus discovered in Mus musculus castaneus.

    PubMed

    Tsuji, A; Wakayama, T; Ishikawa, A

    1995-10-01

    Mutant mice characterized by a cream coat and pink eyes were spontaneously discovered among the descendants of Indonesian wild mice (Mus musculus castaneus). This mutant phenotype was controlled by a single autosomal recessive gene that was allelic to the pink-eyed dilution (p) gene. The mutant mouse phenotypically resembled the original p mouse which was the first mutant identified at this locus. Nevertheless, these two alleles differed in origin, a previous report suggesting that the original p allele was derived from Japanese wild mice (M. m. molossinus). Thus the symbol pcas (pink-eyed castaneus) was proposed for the present mutation allele.

  5. Molecular mechanism of mast cell–mediated innate defense against endothelin and snake venom sarafotoxin

    PubMed Central

    Schneider, Lars A.; Schlenner, Susan M.; Feyerabend, Thorsten B.; Wunderlin, Markus; Rodewald, Hans-Reimer

    2007-01-01

    Mast cells are protective against snake venom sarafotoxins that belong to the endothelin (ET) peptide family. The molecular mechanism underlying this recently recognized innate defense pathway is unknown, but secretory granule proteases have been invoked. To specifically disrupt a single protease function without affecting expression of other proteases, we have generated a mouse mutant selectively lacking mast cell carboxypeptidase A (Mc-cpa) activity. Using this mutant, we have now identified Mc-cpa as the essential protective mast cell enzyme. Mass spectrometry of peptide substrates after cleavage by normal or mutant mast cells showed that removal of a single amino acid, the C-terminal tryptophan, from ET and sarafotoxin by Mc-cpa is the principle molecular mechanism underlying this very rapid mast cell response. Mast cell proteases can also cleave ET and sarafotoxin internally, but such “nicking” is not protective because intramolecular disulfide bridges maintain peptide function. We conclude that mast cells attack ET and sarafotoxin exactly at the structure required for toxicity, and hence sarafotoxins could not “evade” Mc-cpa's substrate specificity without loss of toxicity. PMID:17923505

  6. Activity-induced Ca2+ signaling in perisynaptic Schwann cells of the early postnatal mouse is mediated by P2Y1 receptors and regulates muscle fatigue

    PubMed Central

    Heredia, Dante J; Feng, Cheng-Yuan; Hennig, Grant W; Renden, Robert B

    2018-01-01

    Perisynaptic glial cells respond to neural activity by increasing cytosolic calcium, but the significance of this pathway is unclear. Terminal/perisynaptic Schwann cells (TPSCs) are a perisynaptic glial cell at the neuromuscular junction that respond to nerve-derived substances such as acetylcholine and purines. Here, we provide genetic evidence that activity-induced calcium accumulation in neonatal TPSCs is mediated exclusively by one subtype of metabotropic purinergic receptor. In P2ry1 mutant mice lacking these responses, postsynaptic, rather than presynaptic, function was altered in response to nerve stimulation. This impairment was correlated with a greater susceptibility to activity-induced muscle fatigue. Interestingly, fatigue in P2ry1 mutants was more greatly exacerbated by exposure to high potassium than in control mice. High potassium itself increased cytosolic levels of calcium in TPSCs, a response which was also reduced P2ry1 mutants. These results suggest that activity-induced calcium responses in TPSCs regulate postsynaptic function and muscle fatigue by regulating perisynaptic potassium. PMID:29384476

  7. Methods for genetic modification of megakaryocytes and platelets.

    PubMed

    Pendaries, Caroline; Watson, Stephen P; Spalton, Jennifer C

    2007-09-01

    During recent decades there have been major advances in the fields of thrombosis and haemostasis, in part through development of powerful molecular and genetic technologies. Nevertheless, genetic modification of megakaryocytes and generation of mutant platelets in vitro remains a highly specialized area of research. Developments are hampered by the low frequency of megakaryocytes and their progenitors, a poor efficiency of transfection and a lack of understanding with regard to the mechanism by which megakaryocytes release platelets. Current methods used in the generation of genetically modified megakaryocytes and platelets include mutant mouse models, cell line studies and use of viruses to transform primary megakaryocytes or haematopoietic precursor cells. This review summarizes the advantages, limitations and technical challenges of such methods, with a particular focus on recent successes and advances in this rapidly progressing field including the potential for use in gene therapy for treatment of patients with platelet disorders.

  8. Non-cell autonomous influence of MeCP2-deficient glia on neuronal dendritic morphology

    PubMed Central

    Ballas, Nurit; Lioy, Daniel T.; Grunseich, Christopher; Mandel, Gail

    2011-01-01

    The neurodevelopmental disorder Rett Syndrome (RTT) is caused by sporadic mutations in the transcriptional factor methyl-CpG binding protein 2 (MeCP2). Although it is thought that the primary cause of RTT is cell autonomous due to lack of functional MeCP2 in neurons, whether non-cell autonomous factors contribute to the disease, is unknown. Here, we show that loss of MeCP2 occurs not only in neurons but also in glial cells of RTT brain. Using an in vitro co-culture system, we find that mutant astrocytes from a RTT mouse model, and their conditioned medium, fail to support normal dendritic morphology of either wild-type or mutant hippocampal neurons. Our studies suggest that in RTT brain, astrocytes carrying MeCP2 mutations have a non-cell autonomous effect on neuronal properties, likely due to aberrant secretion of soluble factor(s). PMID:19234456

  9. Mutant laboratory mice with abnormalities in hair follicle morphogenesis, cycling, and/or structure: an update.

    PubMed

    Nakamura, Motonobu; Schneider, Marlon R; Schmidt-Ullrich, Ruth; Paus, Ralf

    2013-01-01

    Human hair disorders comprise a number of different types of alopecia, atrichia, hypotrichosis, distinct hair shaft disorders as well as hirsutism and hypertrichosis. Their causes vary from genodermatoses (e.g. hypotrichoses) via immunological disorders (e.g. alopecia areata, autoimmune cicatrical alopecias) to hormone-dependent abnormalities (e.g. androgenetic alopecia). A large number of spontaneous mouse mutants and genetically engineered mice develop abnormalities in hair follicle morphogenesis, cycling, and/or hair shaft formation, whose analysis has proven invaluable to define the molecular regulation of hair growth, ranging from hair follicle development, and cycling to hair shaft formation and stem cell biology. Also, the accumulating reports on hair phenotypes of mouse strains provide important pointers to better understand the molecular mechanisms underlying human hair growth disorders. Since numerous new mouse mutants with a hair phenotype have been reported since the publication of our earlier review on this matter a decade ago, we present here an updated, tabulated mini-review. The updated annotated tables list a wide selection of mouse mutants with hair growth abnormalities, classified into four categories: Mutations that affect hair follicle (1) morphogenesis, (2) cycling, (3) structure, and (4) mutations that induce extrafollicular events (for example immune system defects) resulting in secondary hair growth abnormalities. This synthesis is intended to provide a useful source of reference when studying the molecular controls of hair follicle growth and differentiation, and whenever the hair phenotypes of a newly generated mouse mutant need to be compared with existing ones. Copyright © 2012 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  10. Phenotypic outcomes in Mouse and Human Foxc1 dependent Dandy-Walker cerebellar malformation suggest shared mechanisms

    PubMed Central

    Haldipur, Parthiv; Dang, Derek; Aldinger, Kimberly A; Janson, Olivia K; Guimiot, Fabien; Adle-Biasette, Homa; Dobyns, William B; Siebert, Joseph R; Russo, Rosa; Millen, Kathleen J

    2017-01-01

    FOXC1 loss contributes to Dandy-Walker malformation (DWM), a common human cerebellar malformation. Previously, we found that complete Foxc1 loss leads to aberrations in proliferation, neuronal differentiation and migration in the embryonic mouse cerebellum (Haldipur et al., 2014). We now demonstrate that hypomorphic Foxc1 mutant mice have granule and Purkinje cell abnormalities causing subsequent disruptions in postnatal cerebellar foliation and lamination. Particularly striking is the presence of a partially formed posterior lobule which echoes the posterior vermis DW 'tail sign' observed in human imaging studies. Lineage tracing experiments in Foxc1 mutant mouse cerebella indicate that aberrant migration of granule cell progenitors destined to form the posterior-most lobule causes this unique phenotype. Analyses of rare human del chr 6p25 fetal cerebella demonstrate extensive phenotypic overlap with our Foxc1 mutant mouse models, validating our DWM models and demonstrating that many key mechanisms controlling cerebellar development are likely conserved between mouse and human. DOI: http://dx.doi.org/10.7554/eLife.20898.001 PMID:28092268

  11. Mechanisms of Lipid Accumulation in the Bone Morphogenetic Protein Receptor Type 2 Mutant Right Ventricle

    PubMed Central

    Brittain, Evan L.; Fessel, Joshua P.; Penner, Niki; Atkinson, James; Funke, Mitch; Grueter, Carrie; Jerome, W. Gray; Freeman, Michael; Newman, John H.; West, James; Hemnes, Anna R.

    2016-01-01

    Rationale: In heritable pulmonary arterial hypertension with germline mutation in the bone morphogenetic protein receptor type 2 (BMPR2) gene, right ventricle (RV) dysfunction is associated with RV lipotoxicity; however, the underlying mechanism for lipid accumulation is not known. Objectives: We hypothesized that lipid accumulation in cardiomyocytes with BMPR2 mutation occurs owing to alterations in lipid transport and impaired fatty acid oxidation (FAO), which is exacerbated by a high-lipid (Western) diet (WD). Methods: We used a transgenic mouse model of pulmonary arterial hypertension with mutant BMPR2 and generated a cardiomyocyte cell line with BMPR2 mutation. Electron microscopy and metabolomic analysis were performed on mouse RVs. Measurements and Main Results: By metabolomics analysis, we found an increase in long-chain fatty acids in BMPR2 mutant mouse RVs compared with controls, which correlated with cardiac index. BMPR2-mutant cardiomyocytes had increased lipid compared with controls. Direct measurement of FAO in the WD-fed BMPR2-mutant RV showed impaired palmitate-linked oxygen consumption, and metabolomics analysis showed reduced indices of FAO. Using both mutant BMPR2 mouse RVs and cardiomyocytes, we found an increase in the uptake of 14C-palmitate and fatty acid transporter CD36 that was further exacerbated by WD. Conclusions: Taken together, our data suggest that impaired FAO and increased expression of the lipid transporter CD36 are key mechanisms underlying lipid deposition in the BMPR2-mutant RV, which are exacerbated in the presence of dietary lipids. These findings suggest important features leading to RV lipotoxicity in pulmonary arterial hypertension and may point to novel areas of therapeutic intervention. PMID:27077479

  12. Early Molecular Events in Murine Gastric Epithelial Cells Mediated by Helicobacter pylori CagA.

    PubMed

    Banerjee, Aditi; Basu, Malini; Blanchard, Thomas G; Chintalacharuvu, Subba R; Guang, Wei; Lillehoj, Erik P; Czinn, Steven J

    2016-10-01

    Murine models of Helicobacter pylori infection are used to study host-pathogen interactions, but lack of severe gastritis in this model has limited its usefulness in studying pathogenesis. We compared the murine gastric epithelial cell line GSM06 to the human gastric epithelial AGS cell line to determine whether similar events occur when cultured with H. pylori. The lysates of cells infected with H. pylori isolates or an isogenic cagA-deficient mutant were assessed for translocation and phosphorylation of CagA and for activation of stress pathway kinases by immunoblot. Phosphorylated CagA was detected in both cell lines within 60 minutes. Phospho-ERK 1/2 was present within several minutes and distinctly present in GSM06 cells at 60 minutes. Similar results were obtained for phospho-JNK, although the 54 kDa phosphoprotein signal was dominant in AGS, whereas the lower molecular weight band was dominant in GSM06 cells. These results demonstrate that early events in H. pylori pathogenesis occur within mouse epithelial cells similar to human cells and therefore support the use of the mouse model for the study of acute CagA-associated host cell responses. These results also indicate that reduced disease in H. pylori-infected mice may be due to lack of the Cag PAI, or by differences in the mouse response downstream of the initial activation events. © 2016 John Wiley & Sons Ltd.

  13. Constitutive Overexpression of Human Erythropoietin Protects the Mouse Retina against Induced But Not Inherited Retinal Degeneration

    PubMed Central

    Grimm, Christian; Wenzel, Andreas; Stanescu, Dinu; Samardzija, Marijana; Hotop, Svenja; Groszer, Mathias; Naash, Muna; Gassmann, Max; Remé, Charlotte

    2010-01-01

    Elevation of erythropoietin (Epo) concentrations by hypoxic preconditioning or application of recombinant human Epo (huEpo) protects the mouse retina against light-induced degeneration by inhibiting photoreceptor cell apoptosis. Because photoreceptor apoptosis is also the common path to cell loss in retinal dystrophies such as retinitis pigmentosa (RP), we tested whether high levels of huEpo would reduce apoptotic cell death in two mouse models of human RP. We combined the two respective mutant mouse lines with a transgenic line (tg6) that constitutively overexpresses huEpo mainly in neural tissues. Transgenic expression of huEpo caused constitutively high levels of Epo in the retina and protected photoreceptors against light-induced degeneration; however, the presence of high levels of huEpo did not affect the course or the extent of retinal degeneration in a light-independent (rd1) and a light-accelerated (VPP) mouse model of RP. Similarly, repetitive intraperitoneal injections of recombinant huEpo did not protect the retina in the rd1 and the VPP mouse. Lack of neuroprotection by Epo in the two models of inherited retinal degeneration was not caused by adaptational downregulation of Epo receptor. Our results suggest that apoptotic mechanisms during acute, light-induced photoreceptor cell death differ from those in genetically based retinal degeneration. Therapeutic intervention with cell death in inherited retinal degeneration may therefore require different drugs and treatments. PMID:15215287

  14. Functional characterization of double-knockout mouse sperm lacking SPAM1 and ACR or SPAM1 and PRSS21 in fertilization.

    PubMed

    Zhou, Chong; Kang, Woojin; Baba, Tadashi

    2012-01-01

    Mammalian fertilization requires sperm to penetrate the cumulus to reach the oocyte. Although sperm hyaluronidase has long been believed to participate in the penetration process, our previous works revealed that neither of two sperm hyaluronidases, SPAM1 and HYAL5, are essential for fertilization. In this study, we have produced double-knockout mice lacking SPAM1 and either one of two sperm serine proteases, ACR and PRSS21, and characterized the mutant sperm. The SPAM1/ACR- and SPAM1/PRSS21-deficient males were fertile, whereas epididymal sperm of the mutant mice exhibited a reduced capacity to fertilize the oocytes in vitro. Despite normal motility, the ability of sperm to traverse the cumulus matrix was more severely impaired by the loss of SPAM1 and ACR or SPAM1 and PRSS21 than by the loss of only SPAM1. Moreover, SPAM1/ACR- and SPAM1/PRSS21-deficient sperm accumulated on the surface (outer edge) of the cumulus more abundantly than SPAM1-deficient sperm. These results suggest that ACR or PRSS21 or both may function cooperatively with SPAM1 in sperm/cumulus penetration.

  15. Mutant IDH1 Disrupts the Mouse Subventricular Zone and Alters Brain Tumor Progression

    PubMed Central

    Pirozzi, Christopher J.; Carpenter, Austin B.; Waitkus, Matthew S.; Wang, Catherine Y.; Zhu, Huishan; Hansen, Landon J.; Chen, Lee H.; Greer, Paula K.; Feng, Jie; Wang, Yu; Bock, Cheryl B.; Fan, Ping; Spasojevic, Ivan; McLendon, Roger E.; Bigner, Darell D.; He, Yiping; Yan, Hai

    2017-01-01

    IDH1 mutations occur in the majority of low-grade gliomas and lead to the production of the oncometabolite, D-2-hydroxyglutarate (D-2HG). To understand the effects of tumor-associated mutant IDH1 (IDH1-R132H) on both the neural stem cell (NSC) population and brain tumorigenesis, genetically faithful cell lines and mouse model systems were generated. Here, it is reported that mouse NSCs expressing Idh1-R132H displayed reduced proliferation due to p53-mediated cell cycle arrest as well as a decreased ability to undergo neuronal differentiation. In vivo, Idh1-R132H expression reduced proliferation of cells within the germinal zone of the subventricular zone (SVZ). The NSCs within this area were dispersed and disorganized in mutant animals, suggesting that Idh1-R132H perturbed the NSCs and the microenvironment from which gliomas arise. Additionally, tumor-bearing animals expressing mutant Idh1 displayed a prolonged survival and also overexpressed Olig2, features consistent with IDH1-mutated human gliomas. These data indicate that mutant Idh1 disrupts the NSC microenvironment and the candidate cell of origin for glioma; thus, altering the progression of tumorigenesis. Additionally, this study provides a mutant Idh1 brain tumor model that genetically recapitulates human disease, laying the foundation for future investigations on mutant IDH1-mediated brain tumorigenesis and targeted therapy. PMID:28148827

  16. A targeted deletion/insertion in the mouse Pcsk1 locus is associated with homozygous embryo preimplantation lethality, mutant allele preferential transmission and heterozygous female susceptibility to dietary fat.

    PubMed

    Mbikay, Majambu; Croissandeau, Gilles; Sirois, Francine; Anini, Younes; Mayne, Janice; Seidah, Nabil G; Chrétien, Michel

    2007-06-15

    Proprotein convertase 1 (PC1) is a neuroendocrine proteinase involved in the proteolytic activation of precursors to hormones and neuropeptides. To determine the physiological importance of PC1, we produced a mutant mouse from embryonic stem cells in which its locus (Pcsk1) had been inactivated by homologous recombination. The inactivating mutation consisted of a 32.7-kb internal deletion and a 1.8 kb insertion of the bacterial neomycin resistance gene (neo) under the mouse phosphoglycerate kinase 1 protein (PGKneo). Intercross of Pcsk1(+/-) mice produced no Pcsk1(-/-) offspring or blastocysts; in addition, more than 80% of the offspring were Pcsk1(+/-). These observations suggested that the mutation caused preimplantation lethality of homozygous embryos and preferential transmission of the mutant allele. Interestingly, RT-PCR analysis on RNA from endocrine tissues from Pcsk1(+/-) mice revealed the presence of aberrant transcripts specifying the N-terminal half of the PC1 propeptide fused to neo gene product. Mass spectrometric profiles of proopiomelanocortin-derived peptides in the anterior pituitary were similar between Pcsk1(+/-) and Pcsk1(+/+) mice, but significantly different between male and female mice of the same genotype. Relative to their wild-type counterparts, female mutant mice exhibited stunted growth under a low fat diet, and catch-up growth under a high-fat diet. The complex phenotype exhibited by this Pcsk1 mutant mouse model may be due to PC1 deficiency aggravated by expression of aberrant gene products from the mutant allele.

  17. Three-dimensional Organization of Layered Apical Cytoskeletal Networks Associated with Mouse Airway Tissue Development

    NASA Astrophysics Data System (ADS)

    Tateishi, Kazuhiro; Nishida, Tomoki; Inoue, Kanako; Tsukita, Sachiko

    2017-03-01

    The cytoskeleton is an essential cellular component that enables various sophisticated functions of epithelial cells by forming specialized subcellular compartments. However, the functional and structural roles of cytoskeletons in subcellular compartmentalization are still not fully understood. Here we identified a novel network structure consisting of actin filaments, intermediate filaments, and microtubules directly beneath the apical membrane in mouse airway multiciliated cells and in cultured epithelial cells. Three-dimensional imaging by ultra-high voltage electron microscopy and immunofluorescence revealed that the morphological features of each network depended on the cell type and were spatiotemporally integrated in association with tissue development. Detailed analyses using Odf2 mutant mice, which lack ciliary basal feet and apical microtubules, suggested a novel contribution of the intermediate filaments to coordinated ciliary beating. These findings provide a new perspective for viewing epithelial cell differentiation and tissue morphogenesis through the structure and function of apical cytoskeletal networks.

  18. BDNF and its pro-peptide are stored in presynaptic dense core vesicles in brain neurons

    PubMed Central

    Dieni, Sandra; Matsumoto, Tomoya; Dekkers, Martijn; Rauskolb, Stefanie; Ionescu, Mihai S.; Deogracias, Ruben; Gundelfinger, Eckart D.; Kojima, Masami; Nestel, Sigrun; Frotscher, Michael

    2012-01-01

    Although brain-derived neurotrophic factor (BDNF) regulates numerous and complex biological processes including memory retention, its extremely low levels in the mature central nervous system have greatly complicated attempts to reliably localize it. Using rigorous specificity controls, we found that antibodies reacting either with BDNF or its pro-peptide both stained large dense core vesicles in excitatory presynaptic terminals of the adult mouse hippocampus. Both moieties were ∼10-fold more abundant than pro-BDNF. The lack of postsynaptic localization was confirmed in Bassoon mutants, a seizure-prone mouse line exhibiting markedly elevated levels of BDNF. These findings challenge previous conclusions based on work with cultured neurons, which suggested activity-dependent dendritic synthesis and release of BDNF. They instead provide an ultrastructural basis for an anterograde mode of action of BDNF, contrasting with the long-established retrograde model derived from experiments with nerve growth factor in the peripheral nervous system. PMID:22412021

  19. The Absence of Sensory Axon Bifurcation Affects Nociception and Termination Fields of Afferents in the Spinal Cord

    PubMed Central

    Tröster, Philip; Haseleu, Julia; Petersen, Jonas; Drees, Oliver; Schmidtko, Achim; Schwaller, Frederick; Lewin, Gary R.; Ter-Avetisyan, Gohar; Winter, York; Peters, Stefanie; Feil, Susanne; Feil, Robert; Rathjen, Fritz G.; Schmidt, Hannes

    2018-01-01

    A cGMP signaling cascade composed of C-type natriuretic peptide, the guanylyl cyclase receptor Npr2 and cGMP-dependent protein kinase I (cGKI) controls the bifurcation of sensory axons upon entering the spinal cord during embryonic development. However, the impact of axon bifurcation on sensory processing in adulthood remains poorly understood. To investigate the functional consequences of impaired axon bifurcation during adult stages we generated conditional mouse mutants of Npr2 and cGKI (Npr2fl/fl;Wnt1Cre and cGKIKO/fl;Wnt1Cre) that lack sensory axon bifurcation in the absence of additional phenotypes observed in the global knockout mice. Cholera toxin labeling in digits of the hind paw demonstrated an altered shape of sensory neuron termination fields in the spinal cord of conditional Npr2 mouse mutants. Behavioral testing of both sexes indicated that noxious heat sensation and nociception induced by chemical irritants are impaired in the mutants, whereas responses to cold sensation, mechanical stimulation, and motor coordination are not affected. Recordings from C-fiber nociceptors in the hind limb skin showed that Npr2 function was not required to maintain normal heat sensitivity of peripheral nociceptors. Thus, the altered behavioral responses to noxious heat found in Npr2fl/fl;Wnt1Cre mice is not due to an impaired C-fiber function. Overall, these data point to a critical role of axonal bifurcation for the processing of pain induced by heat or chemical stimuli. PMID:29472841

  20. GD3- and O-acetylated GD3-gangliosides in the GM2 synthase-deficient mouse brain and their immunohistochemical localization

    PubMed Central

    Matsuda, Junko; Vanier, Marie T.; Popa, Iuliana; Portoukalian, Jacques; Suzuki, Kunihiko

    2006-01-01

    Gangliosides in the brain of the knockout mouse deficient in the activity of β1,4 N-acetylgalactosaminyl transferase (β1,4 GalNAc-T)(GM2 synthase) consisted of nearly exclusively of GM3- and GD3-gangliosides as expected from the known substrate specificity of the enzyme and in confirmation of the initial reports from two laboratories that generated the mutant mouse experimentally. The total molar amount of gangliosides was approximately 30% higher in the mutant mouse brain than that in the wild-type brain. However, contrary to the initial reports, one-fourth of total GD3-ganglioside was O-acetylated. It reacted positively with an anti-O-acetylated GD3 monoclonal antibody and disappeared with a corresponding increase in GD3-ganglioside after mild alkaline treatment. The absence of O-acetylated GD3 in the initial reports can be explained by the saponification step included in their analytical procedures. Although quantitatively much less and identification tentative, we also detected GT3 and O-acetylated GT3. Anti-GD3 and anti-O-acetylated GD3 monoclonal antibodies gave positive reactions in the brain of mutant mouse as expected from the analytical results. Either antibody barely stained wild-type brain except for immunoreactivity of GD3 in the cerebellar Purkinje cells. The distributions of GD3 and O-acetylated GD3 in the brain of mutant mouse were similar but differential localization was noted in the cerebellar Purkinje cells and cerebral cortex. PMID:25792782

  1. La Crosse bunyavirus nonstructural protein NSs serves to suppress the type I interferon system of mammalian hosts.

    PubMed

    Blakqori, Gjon; Delhaye, Sophie; Habjan, Matthias; Blair, Carol D; Sánchez-Vargas, Irma; Olson, Ken E; Attarzadeh-Yazdi, Ghassem; Fragkoudis, Rennos; Kohl, Alain; Kalinke, Ulrich; Weiss, Siegfried; Michiels, Thomas; Staeheli, Peter; Weber, Friedemann

    2007-05-01

    La Crosse virus (LACV) is a mosquito-transmitted member of the Bunyaviridae family that causes severe encephalitis in children. For the LACV nonstructural protein NSs, previous overexpression studies with mammalian cells had suggested two different functions, namely induction of apoptosis and inhibition of RNA interference (RNAi). Here, we demonstrate that mosquito cells persistently infected with LACV do not undergo apoptosis and mount a specific RNAi response. Recombinant viruses that either express (rLACV) or lack (rLACVdelNSs) the NSs gene similarly persisted and were prone to the RNAi-mediated resistance to superinfection. Furthermore, in mosquito cells overexpressed LACV NSs was unable to inhibit RNAi against Semliki Forest virus. In mammalian cells, however, the rLACVdelNSs mutant virus strongly activated the antiviral type I interferon (IFN) system, whereas rLACV as well as overexpressed NSs suppressed IFN induction. Consequently, rLACVdelNSs was attenuated in IFN-competent mouse embryo fibroblasts and animals but not in systems lacking the type I IFN receptor. In situ analyses of mouse brains demonstrated that wild-type and mutant LACV mainly infect neuronal cells and that NSs is able to suppress IFN induction in the central nervous system. Thus, our data suggest little relevance of the NSs-induced apoptosis or RNAi inhibition for growth or pathogenesis of LACV in the mammalian host and indicate that NSs has no function in the insect vector. Since deletion of the viral NSs gene can be fully complemented by inactivation of the host's IFN system, we propose that the major biological function of NSs is suppression of the mammalian innate immune response.

  2. Functional PAK-2 knockout and replacement with a caspase cleavage-deficient mutant in mice reveals differential requirements of full-length PAK-2 and caspase-activated PAK-2p34.

    PubMed

    Marlin, Jerry W; Chang, Yu-Wen E; Ober, Margaret; Handy, Amy; Xu, Wenhao; Jakobi, Rolf

    2011-06-01

    p21-Activated protein kinase 2 (PAK-2) has both anti- and pro-apoptotic functions depending on its mechanism of activation. Activation of full-length PAK-2 by the monomeric GTPases Cdc42 or Rac stimulates cell survival, whereas caspase activation of PAK-2 to the PAK-2p34 fragment is involved in the apoptotic response. In this study we use functional knockout of PAK-2 and gene replacement with the caspase cleavage-deficient PAK-2D212N mutant to differentiate the biological functions of full-length PAK-2 and caspase-activated PAK-2p34. Knockout of PAK-2 results in embryonic lethality at early stages before organ development, whereas replacement with the caspase cleavage-deficient PAK-2D212N results in viable and healthy mice, indicating that early embryonic lethality is caused by deficiency of full-length PAK-2 rather than lack of caspase activation to the PAK-2p34 fragment. However, deficiency of caspase activation of PAK-2 decreased spontaneous cell death of primary mouse embryonic fibroblasts and increased cell growth at high cell density. In contrast, stress-induced cell death by treatment with the anti-cancer drug cisplatin was not reduced by deficiency of caspase activation of PAK-2, but switched from an apoptotic to a nonapoptotic, caspase-independent mechanism. Homozygous PAK-2D212N primary mouse embryonic fibroblasts that lack the ability to generate the proapoptotic PAK-2p34 show less activation of the effector caspase 3, 6, and 7, indicating that caspase activation of PAK-2 amplifies the apoptotic response through a positive feedback loop resulting in more activation of effector caspases.

  3. Delayed pubertal onset and prepubertal Kiss1 expression in female mice lacking central oestrogen receptor beta.

    PubMed

    Naulé, Lydie; Robert, Vincent; Parmentier, Caroline; Martini, Mariangela; Keller, Matthieu; Cohen-Solal, Martine; Hardin-Pouzet, Hélène; Grange-Messent, Valérie; Franceschini, Isabelle; Mhaouty-Kodja, Sakina

    2015-12-20

    Ovarian oestradiol is essential for pubertal maturation and adult physiology of the female reproductive axis. It acts at central and peripheral sites through two main oestrogen receptors (ER) α and β. Here we investigate the role of ERβ on central effects of oestradiol, by generating a mouse line specifically lacking the ERβ gene in neuronal and glial cells. Central ERβ deletion delays the age at vaginal opening and first oestrous and reduces uterine weight without affecting body growth. Analysis of factors necessary for pubertal progression shows reduced levels of Kiss1 transcripts at postnatal (P) day 25 in the preoptic area, but not in the mediobasal hypothalamus (MBH) of mutant females. In agreement with these data, the number of kisspeptin-immunoreactive neurons was decreased by 57-72% in the three subdivisions of the rostral periventricular area of the third ventricle (RP3V), whereas the density of kisspeptin-immunoreactive fibres was unchanged in the arcuate nucleus of mutant mice. These alterations do not involve changes in ERα mRNAs in the preoptic area and protein levels in the RP3V. The number and distribution of GnRH-immunoreactive cells were unaffected, but gonadotropin-releasing hormone (GnRH) transcript levels were higher in the P25 preoptic area of mutants. At adulthood, mutant females have normal oestrous cyclicity, kisspeptin system and exhibit unaltered sexual behaviour. They display, however, reduced ovary weight and increased anxiety-related behaviour during the follicular phase. This argues for the specific involvement of central ERβ in the regulation of pubertal onset in female reproduction, possibly through prepubertal induction of kisspeptin expression in the RP3V. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. AKAP13 Rho-GEF and PKD-Binding Domain Deficient Mice Develop Normally but Have an Abnormal Response to β-Adrenergic-Induced Cardiac Hypertrophy

    PubMed Central

    Spindler, Matthew J.; Burmeister, Brian T.; Huang, Yu; Hsiao, Edward C.; Salomonis, Nathan; Scott, Mark J.; Srivastava, Deepak; Carnegie, Graeme K.; Conklin, Bruce R.

    2013-01-01

    Background A-kinase anchoring proteins (AKAPs) are scaffolding molecules that coordinate and integrate G-protein signaling events to regulate development, physiology, and disease. One family member, AKAP13, encodes for multiple protein isoforms that contain binding sites for protein kinase A (PKA) and D (PKD) and an active Rho-guanine nucleotide exchange factor (Rho-GEF) domain. In mice, AKAP13 is required for development as null embryos die by embryonic day 10.5 with cardiovascular phenotypes. Additionally, the AKAP13 Rho-GEF and PKD-binding domains mediate cardiomyocyte hypertrophy in cell culture. However, the requirements for the Rho-GEF and PKD-binding domains during development and cardiac hypertrophy are unknown. Methodology/Principal Findings To determine if these AKAP13 protein domains are required for development, we used gene-trap events to create mutant mice that lacked the Rho-GEF and/or the protein kinase D-binding domains. Surprisingly, heterozygous matings produced mutant mice at Mendelian ratios that had normal viability and fertility. The adult mutant mice also had normal cardiac structure and electrocardiograms. To determine the role of these domains during β-adrenergic-induced cardiac hypertrophy, we stressed the mice with isoproterenol. We found that heart size was increased similarly in mice lacking the Rho-GEF and PKD-binding domains and wild-type controls. However, the mutant hearts had abnormal cardiac contractility as measured by fractional shortening and ejection fraction. Conclusions These results indicate that the Rho-GEF and PKD-binding domains of AKAP13 are not required for mouse development, normal cardiac architecture, or β-adrenergic-induced cardiac hypertrophic remodeling. However, these domains regulate aspects of β-adrenergic-induced cardiac hypertrophy. PMID:23658642

  5. CARDIAC SULFONYLUREA RECEPTOR SHORT FORM-BASED CHANNELS CONFER A GLIBENCLAMIDE-INSENSITIVE KATP ACTIVITY

    PubMed Central

    Pu, Jie-Lin,; Ye, Bin; Kroboth, Stacie L.; McNally, Elizabeth M.; Makielski, Jonathan C.; Shi, Nian-Qing

    2008-01-01

    The cardiac sarcolemmal ATP-sensitive potassium channel (KATP) consists of a Kir6.2 pore and a SUR2 regulatory subunit, which is an ATP-binding cassette (ABC) transporter. KATP channels have been proposed to play protective roles during ischemic preconditioning. A SUR2 mutant mouse was previously generated by disrupting the first nucleotide-binding domain (NBD1), where a glibenclamide action site was located. In the mutant ventricular myocytes, a non-conventional glibenclamide-insensitive (10 μM), ATP-sensitive current (IKATPn) was detected in 33% of single-channel recordings with an average amplitude of 12.3±5.4 pA per patch, an IC50 to ATP inhibition at 10 μM, and a mean burst duration at 20.6±1.8 ms. Newly designed SUR2-isoform or variant-specific antibodies identified novel SUR2 short forms in the sizes of 28 and 68 kDa in addition to a 150-kDa long form in the sarcolemmal membrane of wild-type (WT) heart. We hypothesized that channels constituted by these short forms that lack NBD1, confer IKATPn. The absence of the long form in the mutant corresponded to loss of the conventional glibenclamide-sensitive KATP currents (IKATP) in isolated cardiomyocytes and vascular smooth muscle cells but the SUR2 short forms remained intact. Nested exonic RT-PCR in the mutant indicated that the short forms lacked NBD1 but contained NBD2. The SUR2 short forms co-immunoprecipitated with Kir6.1 or Kir6.2 suggesting that the short forms may function as hemi-transporters reported in other eukaryotic ABC transporter subgroups. Our results indicate that different KATP compositions may co-exist in cardiac sarcolemmal membrane. PMID:18001767

  6. Aberrant Muscle Antigen Exposure in Mice Is Sufficient to Cause Myositis in a Treg Cell–Deficient Milieu

    PubMed Central

    Young, Nicholas A; Sharma, Rahul; Friedman, Alexandra K; Kaffenberger, Benjamin H; Bolon, Brad; Jarjour, Wael N

    2013-01-01

    Objective Myositis is associated with muscle-targeted inflammation and is observed in some Treg cell–deficient mouse models. Because an autoimmune pathogenesis has been strongly implicated, the aim of this study was to investigate the hypothesis that abnormal exposure to muscle antigens, as observed in muscle injury, can induce autoimmune-mediated myositis in susceptible hosts. Methods FoxP3 mutant (scurfy) mice were mated to synaptotagmin VII (Syt VII) mutant mice, which resulted in a new mouse strain that combines impaired membrane resealing with Treg cell deficiency. Lymphocyte preparations from double-mutant mice were adoptively transferred intraperitoneally, with or without purified Treg cells, into recombination-activating gene 1 (RAG-1)–null recipients. Lymph node cells from mice with the FoxP3 mutation were transferred into RAG-1–null mice either 1) intraperitoneally in conjunction with muscle homogenate or purified myosin protein or 2) intramuscularly with or without cotransfer of purified Treg cells. Results FoxP3-deficient mouse lymph node cells transferred in conjunction with myosin protein or muscle homogenate induced robust skeletal muscle inflammation. The infiltrates consisted predominantly of CD4+ and CD8+ T cells, a limited number of macrophages, and no B cells. Significant inflammation was also seen in similar experiments using lymph node cells from FoxP3/Syt VII double-mutant mice but was absent in experiments using adoptive transfer of FoxP3 mutant mouse cells alone. The cotransfer of Treg cells completely suppressed myositis. Conclusion These data, derived from a new, reproducible model, demonstrate the critical roles of Treg cell deficiency and aberrant muscle antigen exposure in the priming of autoreactive cells to induce myositis. This mouse system has multifaceted potential for examining the interplay in vivo between tissue injury and autoimmunity. PMID:24022275

  7. Ectromelia virus lacking the E3L ortholog is replication-defective and nonpathogenic but does induce protective immunity in a mouse strain susceptible to lethal mousepox.

    PubMed

    Frey, Tiffany R; Forsyth, Katherine S; Sheehan, Maura M; De Haven, Brian C; Pevarnik, Julia G; Hand, Erin S; Pizzorno, Marie C; Eisenlohr, Laurence C; Hersperger, Adam R

    2018-05-01

    All known orthopoxviruses, including ectromelia virus (ECTV), contain a gene in the E3L family. The protein product of this gene, E3, is a double-stranded RNA-binding protein. It can impact host range and is used by orthopoxviruses to combat cellular defense pathways, such as PKR and RNase L. In this work, we constructed an ECTV mutant with a targeted disruption of the E3L open reading frame (ECTVΔE3L). Infection with this virus resulted in an abortive replication cycle in all cell lines tested. We detected limited transcription of late genes but no significant translation of these mRNAs. Notably, the replication defects of ECTVΔE3L were rescued in human and mouse cells lacking PKR. ECTVΔE3L was nonpathogenic in BALB/c mice, a strain susceptible to lethal mousepox disease. However, infection with ECTVΔE3L induced protective immunity upon subsequent challenge with wild-type virus. In summary, E3L is an essential gene for ECTV. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Lrit3 deficient mouse (nob6): a novel model of complete congenital stationary night blindness (cCSNB).

    PubMed

    Neuillé, Marion; El Shamieh, Said; Orhan, Elise; Michiels, Christelle; Antonio, Aline; Lancelot, Marie-Elise; Condroyer, Christel; Bujakowska, Kinga; Poch, Olivier; Sahel, José-Alain; Audo, Isabelle; Zeitz, Christina

    2014-01-01

    Mutations in LRIT3, coding for a Leucine-Rich Repeat, immunoglobulin-like and transmembrane domains 3 protein lead to autosomal recessive complete congenital stationary night blindness (cCSNB). The role of the corresponding protein in the ON-bipolar cell signaling cascade remains to be elucidated. Here we genetically and functionally characterize a commercially available Lrit3 knock-out mouse, a model to study the function and the pathogenic mechanism of LRIT3. We confirm that the insertion of a Bgeo/Puro cassette in the knock-out allele introduces a premature stop codon, which presumably codes for a non-functional protein. The mouse line does not harbor other mutations present in common laboratory mouse strains or in other known cCSNB genes. Lrit3 mutant mice exhibit a so-called no b-wave (nob) phenotype with lacking or severely reduced b-wave amplitudes in the scotopic and photopic electroretinogram (ERG), respectively. Optomotor tests reveal strongly decreased optomotor responses in scotopic conditions. No obvious fundus auto-fluorescence or histological retinal structure abnormalities are observed. However, spectral domain optical coherence tomography (SD-OCT) reveals thinned inner nuclear layer and part of the retina containing inner plexiform layer, ganglion cell layer and nerve fiber layer in these mice. To our knowledge, this is the first time that SD-OCT technology is used to characterize an animal model for CSNB. This phenotype is noted at 6 weeks and at 6 months. The stationary nob phenotype of mice lacking Lrit3, which we named nob6, confirms the findings previously reported in patients carrying LRIT3 mutations and is similar to other cCSNB mouse models. This novel mouse model will be useful for investigating the pathogenic mechanism(s) associated with LRIT3 mutations and clarifying the role of LRIT3 in the ON-bipolar cell signaling cascade.

  9. Altered fast- and slow-twitch muscle fibre characteristics in female mice with a (S248F) knock-in mutation of the brain neuronal nicotinic acetylcholine receptor.

    PubMed

    Cannata, David J; Finkelstein, David I; Gantois, Ilse; Teper, Yaroslav; Drago, John; West, Jan M

    2009-01-01

    We generated a mouse line with a missense mutation (S248F) in the gene (CHRNA4) encoding the alpha4 subunit of neuronal nicotinic acetylcholine receptor (nAChR). Mutant mice demonstrate brief nicotine induced dystonia that resembles the clinical events seen in patients with the same mutation. Drug-induced dystonia is more pronounced in female mice, thus our aim was to determine if the S248F mutation changed the properties of fast- and slow-twitch muscle fibres from female mutant mice. Reverse transcriptase-PCR confirmed CHRNA4 gene expression in the brain but not skeletal muscles in normal and mutant mice. Ca(2+) and Sr(2+) force activation curves were obtained using skinned muscle fibres prepared from slow-twitch (soleus) and fast-twitch (EDL) muscles. Two significant results were found: (1) the (pCa(50) - pSr(50)) value from EDL fibres was smaller in mutant mice than in wild type (1.01 vs. 1.30), (2) the percentage force produced at pSr 5.5 was larger in mutants than in wild type (5.76 vs. 0.24%). Both results indicate a shift to slow-twitch characteristics in the mutant. This conclusion is supported by the identification of the myosin heavy chain (MHC) isoforms. Mutant EDL fibres expressed MHC I (usually only found in slow-twitch fibres) as well as MHC IIa. Despite the lack of spontaneous dystonic events, our findings suggest that mutant mice may be having subclinical events or the mutation results in a chronic alteration to muscle neural input.

  10. Neurobehavioral Mutants Identified in an ENU Mutagenesis Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, Melloni N.; Dunning, Jonathan P; Wiley, Ronald G

    2007-01-01

    We report on a behavioral screening test battery that successfully identified several neurobehavioral mutants among a large-scale ENU-mutagenized mouse population. Large numbers of ENU mutagenized mice were screened for abnormalities in central nervous system function based on abnormal performance in a series of behavior tasks. We developed and employed a high-throughput screen of behavioral tasks to detect behavioral outliers. Twelve mutant pedigrees, representing a broad range of behavioral phenotypes, have been identified. Specifically, we have identified two open field mutants (one displaying hyper-locomotion, the other hypo-locomotion), four tail suspension mutants (all displaying increased immobility), one nociception mutant (displaying abnormal responsivenessmore » to thermal pain), two prepulse inhibition mutants (displaying poor inhibition of the startle response), one anxiety-related mutant (displaying decreased anxiety in the light/dark test), and one learning and memory mutant (displaying reduced response to the conditioned stimulus) These findings highlight the utility of a set of behavioral tasks used in a high throughput screen to identify neurobehavioral mutants. Further analysis (i.e., behavioral and genetic mapping studies) of mutants is in progress with the ultimate goal of identification of novel genes and mouse models relevant to human disorders as well as the identification of novel therapeutic targets.« less

  11. The First Scube3 Mutant Mouse Line with Pleiotropic Phenotypic Alterations

    PubMed Central

    Fuchs, Helmut; Sabrautzki, Sibylle; Przemeck, Gerhard K. H.; Leuchtenberger, Stefanie; Lorenz-Depiereux, Bettina; Becker, Lore; Rathkolb, Birgit; Horsch, Marion; Garrett, Lillian; Östereicher, Manuela A.; Hans, Wolfgang; Abe, Koichiro; Sagawa, Nobuho; Rozman, Jan; Vargas-Panesso, Ingrid L.; Sandholzer, Michael; Lisse, Thomas S.; Adler, Thure; Aguilar-Pimentel, Juan Antonio; Calzada-Wack, Julia; Ehrhard, Nicole; Elvert, Ralf; Gau, Christine; Hölter, Sabine M.; Micklich, Katja; Moreth, Kristin; Prehn, Cornelia; Puk, Oliver; Racz, Ildiko; Stoeger, Claudia; Vernaleken, Alexandra; Michel, Dian; Diener, Susanne; Wieland, Thomas; Adamski, Jerzy; Bekeredjian, Raffi; Busch, Dirk H.; Favor, John; Graw, Jochen; Klingenspor, Martin; Lengger, Christoph; Maier, Holger; Neff, Frauke; Ollert, Markus; Stoeger, Tobias; Yildirim, Ali Önder; Strom, Tim M.; Zimmer, Andreas; Wolf, Eckhard; Wurst, Wolfgang; Klopstock, Thomas; Beckers, Johannes; Gailus-Durner, Valerie; Hrabé de Angelis, Martin

    2016-01-01

    The vertebrate Scube (Signal peptide, CUB, and EGF-like domain-containing protein) family consists of three independent members, Scube1–3, which encode secreted cell surface-associated membrane glycoproteins. Limited information about the general function of this gene family is available, and their roles during adulthood. Here, we present the first Scube3 mutant mouse line (Scube3N294K/N294K), which clearly shows phenotypic alterations by carrying a missense mutation in exon 8, and thus contributes to our understanding of SCUBE3 functions. We performed a detailed phenotypic characterization in the German Mouse Clinic (GMC). Scube3N294K/N294K mutants showed morphological abnormalities of the skeleton, alterations of parameters relevant for bone metabolism, changes in renal function, and hearing impairments. These findings correlate with characteristics of the rare metabolic bone disorder Paget disease of bone (PDB), associated with the chromosomal region of human SCUBE3. In addition, alterations in energy metabolism, behavior, and neurological functions were detected in Scube3N294K/N294K mice. The Scube3N294K/N294K mutant mouse line may serve as a new model for further studying the effect of impaired SCUBE3 gene function. PMID:27815347

  12. Absence of opioid stress-induced analgesia in mice lacking beta-endorphin by site-directed mutagenesis.

    PubMed

    Rubinstein, M; Mogil, J S; Japón, M; Chan, E C; Allen, R G; Low, M J

    1996-04-30

    A physiological role for beta-endorphin in endogenous pain inhibition was investigated by targeted mutagenesis of the proopiomelanocortin gene in mouse embryonic stem cells. The tyrosine codon at position 179 of the proopiomelanocortin gene was converted to a premature translational stop codon. The resulting transgenic mice display no overt developmental or behavioral alterations and have a normally functioning hypothalamic-pituitary-adrenal axis. Homozygous transgenic mice with a selective deficiency of beta-endorphin exhibit normal analgesia in response to morphine, indicating the presence of functional mu-opiate receptors. However, these mice lack the opioid (naloxone reversible) analgesia induced by mild swim stress. Mutant mice also display significantly greater nonopioid analgesia in response to cold water swim stress compared with controls and display paradoxical naloxone-induced analgesia. These changes may reflect compensatory upregulation of alternative pain inhibitory mechanisms.

  13. Mutations in Alternative Carbon Utilization Pathways in Candida albicans Attenuate Virulence and Confer Pleiotropic Phenotypes▿

    PubMed Central

    Ramírez, Melissa A.; Lorenz, Michael C.

    2007-01-01

    The interaction between Candida albicans and cells of the innate immune system is a key determinant of disease progression. Transcriptional profiling has revealed that C. albicans has a complex response to phagocytosis, much of which is similar to carbon starvation. This suggests that nutrient limitation is a significant stress in vivo, and we have shown that glyoxylate cycle mutants are less virulent in mice. To examine whether other aspects of carbon metabolism are important in vivo during an infection, we have constructed strains lacking FOX2 and FBP1, which encode key components of fatty acid β-oxidation and gluconeogenesis, respectively. As expected, fox2Δ mutants failed to utilize several fatty acids as carbon sources. Surprisingly, however, these mutants also failed to grow in the presence of several other carbon sources, whose assimilation is independent of β-oxidation, including ethanol and citric acid. Mutants lacking the glyoxylate enzyme ICL1 also had more severe carbon utilization phenotypes than were expected. These results suggest that the regulation of alternative carbon metabolism in C. albicans is significantly different from that in other fungi. In vivo, fox2Δ mutants show a moderate but significant reduction in virulence in a mouse model of disseminated candidiasis, while disruption of the glyoxylate cycle or gluconeogenesis confers a severe attenuation in this model. These data indicate that C. albicans often encounters carbon-poor conditions during growth in the host and that the ability to efficiently utilize multiple nonfermentable carbon sources is a virulence determinant. Consistent with this in vivo requirement, C. albicans uniquely regulates carbon metabolism in a more integrated manner than in Saccharomyces cerevisiae, such that defects in one part of the machinery have wider impacts than expected. These aspects of alternative carbon metabolism may then be useful as targets for therapeutic intervention. PMID:17158734

  14. RipA, a Cytoplasmic Membrane Protein Conserved among Francisella Species, Is Required for Intracellular Survival▿

    PubMed Central

    Fuller, James R.; Craven, Robin R.; Hall, Joshua D.; Kijek, Todd M.; Taft-Benz, Sharon; Kawula, Thomas H.

    2008-01-01

    Francisella tularensis is a highly virulent bacterial pathogen that invades and replicates within numerous host cell types, including macrophages and epithelial cells. In an effort to better understand this process, we screened a transposon insertion library of the F. tularensis live vaccine strain (LVS) for mutant strains that invaded but failed to replicate within alveolar epithelial cell lines. One such strain isolated from this screen contained an insertion in the gene FTL_1914, which is conserved among all sequenced Francisella species yet lacks significant homology to any gene with known function. A deletion strain lacking FTL_1914 was constructed. This strain did not replicate in either epithelial or macrophage-like cells, and intracellular replication was restored by the wild-type allele in trans. Based on the deletion mutant phenotype, FTL_1914 was termed ripA (required for intracellular proliferation, factor A). Following uptake by J774.A1 cells, F. tularensis LVS ΔripA colocalized with LAMP-1 then escaped the phagosome at the same rate and frequency as wild-type LVS-infected cells. Electron micrographs of the F. tularensis LVS ΔripA mutant demonstrated the reentry of the mutant bacteria into double membrane vacuoles characteristic of autophagosomes in a process that was not dependent on replication. The F. tularensis LVS ΔripA mutant was significantly impaired in its ability to persist in the lung and in its capacity to disseminate and colonize the liver and spleen in a mouse model of pulmonary tularemia. The RipA protein was expressed during growth in laboratory media and localized to the cytoplasmic membrane. Thus, RipA is a cytoplasmic membrane protein conserved among Francisella species that is required for intracellular replication within the host cell cytoplasm as well as disease progression, dissemination, and virulence. PMID:18765722

  15. Altered striatal function in a mutant mouse lacking D1A dopamine receptors.

    PubMed Central

    Drago, J; Gerfen, C R; Lachowicz, J E; Steiner, H; Hollon, T R; Love, P E; Ooi, G T; Grinberg, A; Lee, E J; Huang, S P

    1994-01-01

    Of the five known dopamine receptors, D1A and D2 represent the major subtypes expressed in the striatum of the adult brain. Within the striatum, these two subtypes are differentially distributed in the two main neuronal populations that provide direct and indirect pathways between the striatum and the output nuclei of the basal ganglia. Movement disorders, including Parkinson disease and various dystonias, are thought to result from imbalanced activity in these pathways. Dopamine regulates movement through its differential effects on D1A receptors expressed by direct output neurons and D2 receptors expressed by indirect output neurons. To further examine the interaction of D1A and D2 neuronal pathways in the striatum, we used homologous recombination to generate mutant mice lacking functional D1A receptors (D1A-/-). D1A-/- mutants are growth retarded and die shortly after weaning age unless their diet is supplemented with hydrated food. With such treatment the mice gain weight and survive to adulthood. Neurologically, D1A-/- mice exhibit normal coordination and locomotion, although they display a significant decrease in rearing behavior. Examination of the striatum revealed changes associated with the altered phenotype of these mutants. D1A receptor binding was absent in striatal sections from D1A-/- mice. Striatal neurons normally expressing functional D1A receptors are formed and persist in adult homozygous mutants. Moreover, substance P mRNA, which is colocalized specifically in striatal neurons with D1A receptors, is expressed at a reduced level. In contrast, levels of enkephalin mRNA, which is expressed in striatal neurons with D2 receptors, are unaffected. These findings show that D1A-/- mice exhibit selective functional alterations in the striatal neurons giving rise to the direct striatal output pathway. Images Fig. 2 Fig. 4 PMID:7809078

  16. The NS2 proteins of parvovirus minute virus of mice are required for efficient nuclear egress of progeny virions in mouse cells.

    PubMed

    Eichwald, Virginie; Daeffler, Laurent; Klein, Michèle; Rommelaere, Jean; Salomé, Nathalie

    2002-10-01

    The small nonstructural NS2 proteins of parvovirus minute virus of mice (MVMp) were previously shown to interact with the nuclear export receptor Crm1. We report here the analysis of two MVM mutant genomic clones generating NS2 proteins that are unable to interact with Crm1 as a result of amino acid substitutions within their nuclear export signal (NES) sequences. Upon transfection of human and mouse cells, the MVM-NES21 and MVM-NES22 mutant genomic clones were proficient in synthesis of the four virus-encoded proteins. While the MVM-NES22 clone was further able to produce infectious mutant virions, no virus could be recovered from cells transfected with the MVM-NES21 clone. Whereas the defect of MVM-NES21 appeared to be complex, the phenotype of MVM-NES22 could be traced back to a novel distinct NS2 function. Infection of mouse cells with the MVM-NES22 mutant led to stronger nuclear retention not only of the NS2 proteins but also of infectious progeny MVM particles. This nuclear sequestration correlated with a severe delay in the release of mutant virions in the medium and with prolonged survival of the infected cell populations compared with wild-type virus-treated cultures. This defect could explain, at least in part, the small size of the plaques generated by the MVM-NES22 mutant when assayed on mouse indicator cells. Altogether, our data indicate that the interaction of MVMp NS2 proteins with the nuclear export receptor Crm1 plays a critical role at a late stage of the parvovirus life cycle involved in release of progeny viruses.

  17. The NS2 Proteins of Parvovirus Minute Virus of Mice Are Required for Efficient Nuclear Egress of Progeny Virions in Mouse Cells

    PubMed Central

    Eichwald, Virginie; Daeffler, Laurent; Klein, Michèle; Rommelaere, Jean; Salomé, Nathalie

    2002-01-01

    The small nonstructural NS2 proteins of parvovirus minute virus of mice (MVMp) were previously shown to interact with the nuclear export receptor Crm1. We report here the analysis of two MVM mutant genomic clones generating NS2 proteins that are unable to interact with Crm1 as a result of amino acid substitutions within their nuclear export signal (NES) sequences. Upon transfection of human and mouse cells, the MVM-NES21 and MVM-NES22 mutant genomic clones were proficient in synthesis of the four virus-encoded proteins. While the MVM-NES22 clone was further able to produce infectious mutant virions, no virus could be recovered from cells transfected with the MVM-NES21 clone. Whereas the defect of MVM-NES21 appeared to be complex, the phenotype of MVM-NES22 could be traced back to a novel distinct NS2 function. Infection of mouse cells with the MVM-NES22 mutant led to stronger nuclear retention not only of the NS2 proteins but also of infectious progeny MVM particles. This nuclear sequestration correlated with a severe delay in the release of mutant virions in the medium and with prolonged survival of the infected cell populations compared with wild-type virus-treated cultures. This defect could explain, at least in part, the small size of the plaques generated by the MVM-NES22 mutant when assayed on mouse indicator cells. Altogether, our data indicate that the interaction of MVMp NS2 proteins with the nuclear export receptor Crm1 plays a critical role at a late stage of the parvovirus life cycle involved in release of progeny viruses. PMID:12239307

  18. TectaY1870C/+ mice with alterations in the structure and porosity of the tectorial membrane display large numbers of spontaneous emissions

    NASA Astrophysics Data System (ADS)

    Cheatham, M. A.; Ahmad, A.; Dallos, P.; Richardson, G. P.

    2018-05-01

    Spontaneous otoacoustic emissions (SOAEs) are a signature of cochlear amplification, a process associated with outer hair cell (OHC) function and required for the sensitivity and frequency selectivity of cochlear responses. Although normal mice rarely exhibit these signals, those with mutations that influence the structure of the tectorial membrane (TM) show a greater incidence of these phenomena. In this report, we study mouse models with mutations affecting the striated-sheet matrix that forms the body of this accessory structure. In addition to CEACAM16, the matrix is composed of both α- and β-tectorin (TECTA and TECTB respectively) and these latter two noncollagenous proteins are the focus of this study. Of all the mutants tested to date, mice heterozygous (het) for a missense mutation (c.5609A>G, p.Tyr1870Cys) in Tecta (TectaY1870C/+ mice) are prolific emitters with an average of ˜7 SOAEs per cochlea, which is higher than in the very few normal mice with SOAEs where the average is 2-3 per cochlea. A small number of homozygous Tectb-/- mice lacking TECTB are also emitters, but they produce only one SOAE in any given ear. Although both mouse mutants have hearing loss, SOAE frequencies coincide with frequency regions where some degree of amplification is retained. The larger number of SOAEs in TectaY1870C/+ mice appears to correlate with an increase in porosity (1), which controls the spread of excitation of tectorial membrane traveling waves. Sellon and colleagues reported that this change in the material properties of the TM was associated with the larger size of nanoscale pores linked to the Y1870C missense mutation in TECTA. In mice lacking Tectb, where porosity is wild-type like, the number of SOAEs per cochlea is small and only a few of these animals present with this phenomenon. Characterization of traveling-wave properties in other emitting TM mutants will be required to know if the correlation between increased porosity and increased numbers of SOAEs reliably causes the change in phenotype.

  19. The Homolog of the Gene bstA of the BTP1 Phage from Salmonella enterica Serovar Typhimurium ST313 Is an Antivirulence Gene in Salmonella enterica Serovar Dublin.

    PubMed

    Herrero-Fresno, Ana; Espinel, Irene Cartas; Spiegelhauer, Malene Roed; Guerra, Priscila Regina; Andersen, Karsten Wiber; Olsen, John Elmerdahl

    2018-01-01

    In a previous study, a novel virulence gene, bstA , identified in a Salmonella enterica serovar Typhimurium sequence type 313 (ST313) strain was found to be conserved in all published Salmonella enterica serovar Dublin genomes. In order to analyze the role of this gene in the host-pathogen interaction in S Dublin, a mutant where this gene was deleted ( S Dublin Δ bstA ) and a mutant which was further genetically complemented with bstA ( S Dublin 3246-C) were constructed and tested in models of in vitro and in vivo infection as well as during growth competition assays in M9 medium, Luria-Bertani broth, and cattle blood. In contrast to the results obtained for a strain of S Typhimurium ST313, the lack of bstA was found to be associated with increased virulence in S Dublin. Thus, S Dublin Δ bstA showed higher levels of uptake than the wild-type strain during infection of mouse and cattle macrophages and higher net replication within human THP-1 cells. Furthermore, during mouse infections, S Dublin Δ bstA was more virulent than the wild type following a single intraperitoneal infection and showed an increased competitive index during competitive infection assays. Deletion of bstA did not affect either the amount of cytokines released by THP-1 macrophages or the cytotoxicity toward these cells. The histology of the livers and spleens of mice infected with the wild-type strain and the S Dublin Δ bstA mutant revealed similar levels of inflammation between the two groups. The gene was not important for adherence to or invasion of human epithelial cells and did not influence bacterial growth in rich medium, minimal medium, or cattle blood. In conclusion, a lack of bstA affects the pathogenicity of S Dublin by decreasing its virulence. Therefore, it might be regarded as an antivirulence gene in this serovar. Copyright © 2017 American Society for Microbiology.

  20. The Canonical Immediate Early 3 Gene Product pIE611 of Mouse Cytomegalovirus Is Dispensable for Viral Replication but Mediates Transcriptional and Posttranscriptional Regulation of Viral Gene Products.

    PubMed

    Rattay, Stephanie; Trilling, Mirko; Megger, Dominik A; Sitek, Barbara; Meyer, Helmut E; Hengel, Hartmut; Le-Trilling, Vu Thuy Khanh

    2015-08-01

    Transcription of mouse cytomegalovirus (MCMV) immediate early ie1 and ie3 is controlled by the major immediate early promoter/enhancer (MIEP) and requires differential splicing. Based on complete loss of genome replication of an MCMV mutant carrying a deletion of the ie3-specific exon 5, the multifunctional IE3 protein (611 amino acids; pIE611) is considered essential for viral replication. Our analysis of ie3 transcription resulted in the identification of novel ie3 isoforms derived from alternatively spliced ie3 transcripts. Construction of an IE3-hemagglutinin (IE3-HA) virus by insertion of an in-frame HA epitope sequence allowed detection of the IE3 isoforms in infected cells, verifying that the newly identified transcripts code for proteins. This prompted the construction of an MCMV mutant lacking ie611 but retaining the coding capacity for the newly identified isoforms ie453 and ie310. Using Δie611 MCMV, we demonstrated the dispensability of the canonical ie3 gene product pIE611 for viral replication. To determine the role of pIE611 for viral gene expression during MCMV infection in an unbiased global approach, we used label-free quantitative mass spectrometry to delineate pIE611-dependent changes of the MCMV proteome. Interestingly, further analysis revealed transcriptional as well as posttranscriptional regulation of MCMV gene products by pIE611. Cytomegaloviruses are pathogenic betaherpesviruses persisting in a lifelong latency from which reactivation can occur under conditions of immunosuppression, immunoimmaturity, or inflammation. The switch from latency to reactivation requires expression of immediate early genes. Therefore, understanding of immediate early gene regulation might add insights into viral pathogenesis. The mouse cytomegalovirus (MCMV) immediate early 3 protein (611 amino acids; pIE611) is considered essential for viral replication. The identification of novel protein isoforms derived from alternatively spliced ie3 transcripts prompted the construction of an MCMV mutant lacking ie611 but retaining the coding capacity for the newly identified isoforms ie453 and ie310. Using Δie611 MCMV, we demonstrated the dispensability of the canonical ie3 gene product pIE611 for viral replication and delineated pIE611-dependent changes of the MCMV proteome. Our findings have fundamental implications for the interpretation of earlier studies on pIE3 functions and highlight the complex orchestration of MCMV gene regulation. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  1. Cholesterol: a novel regulatory role in myelin formation.

    PubMed

    Saher, Gesine; Quintes, Susanne; Nave, Klaus-Armin

    2011-02-01

    Myelin consists of tightly compacted membranes that form an insulating sheath around axons. The function of myelin for rapid saltatory nerve conduction is dependent on its unique composition, highly enriched in glycosphingolipids and cholesterol. Cholesterol emerged as the only integral myelin component that is essential and rate limiting for the development of CNS and PNS myelin. Experiments with conditional mouse mutants that lack cholesterol biosynthesis in oligodendrocytes revealed that only minimal changes of the CNS myelin lipid composition are tolerated. In Schwann cells of the PNS, protein trafficking and myelin compaction depend on cholesterol. In this review, the authors summarize the role of cholesterol in myelin biogenesis and myelin disease.

  2. The RNA-Editing Enzyme ADAR1 Controls Innate Immune Responses to RNA

    PubMed Central

    Mannion, Niamh M.; Greenwood, Sam M.; Young, Robert; Cox, Sarah; Brindle, James; Read, David; Nellåker, Christoffer; Vesely, Cornelia; Ponting, Chris P.; McLaughlin, Paul J.; Jantsch, Michael F.; Dorin, Julia; Adams, Ian R.; Scadden, A.D.J.; Öhman, Marie; Keegan, Liam P.; O’Connell, Mary A.

    2014-01-01

    Summary The ADAR RNA-editing enzymes deaminate adenosine bases to inosines in cellular RNAs. Aberrant interferon expression occurs in patients in whom ADAR1 mutations cause Aicardi-Goutières syndrome (AGS) or dystonia arising from striatal neurodegeneration. Adar1 mutant mouse embryos show aberrant interferon induction and die by embryonic day E12.5. We demonstrate that Adar1 embryonic lethality is rescued to live birth in Adar1; Mavs double mutants in which the antiviral interferon induction response to cytoplasmic double-stranded RNA (dsRNA) is prevented. Aberrant immune responses in Adar1 mutant mouse embryo fibroblasts are dramatically reduced by restoring the expression of editing-active cytoplasmic ADARs. We propose that inosine in cellular RNA inhibits antiviral inflammatory and interferon responses by altering RLR interactions. Transfecting dsRNA oligonucleotides containing inosine-uracil base pairs into Adar1 mutant mouse embryo fibroblasts reduces the aberrant innate immune response. ADAR1 mutations causing AGS affect the activity of the interferon-inducible cytoplasmic isoform more severely than the nuclear isoform. PMID:25456137

  3. Genes and Alcohol Consumption: Studies with Mutant Mice

    PubMed Central

    Mayfield, Jody; Arends, Michael A.; Harris, R. Adron; Blednov, Yuri A.

    2017-01-01

    In this chapter, we review the effects of global null mutant and overexpressing transgenic mouse lines on voluntary self-administration of alcohol. We examine approximately 200 publications pertaining to the effects of 155 mouse genes on alcohol consumption in different drinking models. The targeted genes vary in function and include neurotransmitter, ion channel, neuroimmune, and neuropeptide signaling systems. The alcohol self-administration models include operant conditioning, two- and four-bottle choice continuous and intermittent access, drinking in the dark limited access, chronic intermittent ethanol, and scheduled high alcohol consumption tests. Comparisons of different drinking models using the same mutant mice are potentially the most informative, and we will highlight those examples. More mutants have been tested for continuous two-bottle choice consumption than any other test; of the 137 mouse genes examined using this model, 97 (72%) altered drinking in at least one sex. Overall, the effects of genetic manipulations on alcohol drinking often depend on the sex of the mice, alcohol concentration and time of access, genetic background, as well as the drinking test. PMID:27055617

  4. The Role of Epithelial Stat3 in Amelogenesis during Mouse Incisor Renewal.

    PubMed

    Zhang, Bin; Meng, Bo; Viloria, Edward; Naveau, Adrien; Ganss, Bernhard; Jheon, Andrew H

    2018-03-16

    The aim of this study was to evaluate the role of epithelial signal transducer and activator of transcription 3 (STAT3) in mouse incisor amelogenesis. Since Stat3 is expressed in the epithelial component of developing and adult mouse teeth, we generated and analyzed Krt14Cre/+;Stat3fl/fl mutant mice in which Stat3 was inactivated in epithelia including ameloblast progenitors and ameloblasts, the cells responsible for enamel formation. Histological analysis showed little enamel matrix in mutant incisors compared to controls. Delayed incisor enamel mineralization was demonstrated using micro-computed X-ray tomography analysis and was supported by an increase in the pre-expression distance of enamel-enriched proteins such as amelogenin, ameloblastin, and kallikrein-4. Lastly, scanning electron microscopy analysis showed little enamel mineralization in mutant incisors underneath the mesial root of the 1st molar; however, the micro-architecture of enamel mineralization was similar in the erupted portion of control and mutant incisors. Taken together, our findings demonstrate for the first time that the absence of epithelial Stat3 in mice leads to delayed incisor amelogenesis. © 2018 S. Karger AG, Basel.

  5. Mouse mutants from chemically mutagenized embryonic stem cells

    PubMed Central

    Munroe, Robert J.; Bergstrom, Rebecca A.; Zheng, Qing Yin; Libby, Brian; Smith, Richard; John, Simon W.M.; Schimenti, Kerry J.; Browning, Victoria L.; Schimenti, John C.

    2010-01-01

    The drive to characterize functions of human genes on a global scale has stimulated interest in large-scale generation of mouse mutants. Conventional germ-cell mutagenesis with N-ethyl-N-nitrosourea (ENU) is compromised by an inability to monitor mutation efficiency, strain1 and interlocus2 variation in mutation induction, and extensive husbandry requirements. To overcome these obstacles and develop new methods for generating mouse mutants, we devised protocols to generate germline chi-maeric mice from embryonic stem (ES) cells heavily mutagenized with ethylmethanesulphonate (EMS). Germline chimaeras were derived from cultures that underwent a mutation rate of up to 1 in 1,200 at the Hprt locus (encoding hypoxanthine guanine phosphoribosyl transferase). The spectrum of mutations induced by EMS and the frameshift mutagen ICR191 was consistent with that observed in other mammalian cells. Chimaeras derived from ES cells treated with EMS transmitted mutations affecting several processes, including limb development, hair growth, hearing and gametogenesis. This technology affords several advantages over traditional mutagenesis, including the ability to conduct shortened breeding schemes and to screen for mutant phenotypes directly in ES cells or their differentiated derivatives. PMID:10700192

  6. The RNA-editing enzyme ADAR1 controls innate immune responses to RNA.

    PubMed

    Mannion, Niamh M; Greenwood, Sam M; Young, Robert; Cox, Sarah; Brindle, James; Read, David; Nellåker, Christoffer; Vesely, Cornelia; Ponting, Chris P; McLaughlin, Paul J; Jantsch, Michael F; Dorin, Julia; Adams, Ian R; Scadden, A D J; Ohman, Marie; Keegan, Liam P; O'Connell, Mary A

    2014-11-20

    The ADAR RNA-editing enzymes deaminate adenosine bases to inosines in cellular RNAs. Aberrant interferon expression occurs in patients in whom ADAR1 mutations cause Aicardi-Goutières syndrome (AGS) or dystonia arising from striatal neurodegeneration. Adar1 mutant mouse embryos show aberrant interferon induction and die by embryonic day E12.5. We demonstrate that Adar1 embryonic lethality is rescued to live birth in Adar1; Mavs double mutants in which the antiviral interferon induction response to cytoplasmic double-stranded RNA (dsRNA) is prevented. Aberrant immune responses in Adar1 mutant mouse embryo fibroblasts are dramatically reduced by restoring the expression of editing-active cytoplasmic ADARs. We propose that inosine in cellular RNA inhibits antiviral inflammatory and interferon responses by altering RLR interactions. Transfecting dsRNA oligonucleotides containing inosine-uracil base pairs into Adar1 mutant mouse embryo fibroblasts reduces the aberrant innate immune response. ADAR1 mutations causing AGS affect the activity of the interferon-inducible cytoplasmic isoform more severely than the nuclear isoform. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Functional Analysis of Human NF1 in Drosophila

    DTIC Science & Technology

    2008-12-01

    also have learning problem. Such learning phenotypes have been recapitulated in animal models, including in mouse and Drosophila mutants. This proposal...by examining the phenotypes of mutated human genes expressed in Drosophila NF1 null mutants. We also propose that Gsα/NF1 activated AC pathway...in both Drosophila and mouse NF1 models. Our previous work has shown that defective cAMP signaling leads to the learning phenotype in Drosophila Nf1

  8. Gasdermin D (Gsdmd) is dispensable for mouse intestinal epithelium development.

    PubMed

    Fujii, Tomoaki; Tamura, Masaru; Tanaka, Shigekazu; Kato, Yoriko; Yamamoto, Hiromi; Mizushina, Youichi; Shiroishi, Toshihiko

    2008-08-01

    Members of the novel gene family Gasdermin (Gsdm) are exclusively expressed in a highly tissue-specific manner in the epithelium of skin and the gastrointestinal tract. Based on their expression patterns and the phenotype of the Gsdma3 spontaneous mutations, it is inferred that the Gsdm family genes are involved in epithelial cell growth and/or differentiations in different tissues. To investigate possible roles of the Gsdm gene family in the development of intestinal tracts, we generated a Gsdmd mutant mouse, which is a solitary member of the Gsdmd subfamily and which is predominantly expressed in the intestinal tract by means of targeted disruption. In the mutant homozygotes, we found no abnormality of intestinal tract morphology. Moreover, in mutant mice, there was normal differentiation of all constituent cell types of the intestinal epithelium. Thus, this study clearly shows that Gsdmd is not essential for development of mouse intestinal tract or epithelial cell differentiation.

  9. Mutations in Prickle Orthologs Cause Seizures in Flies, Mice, and Humans

    PubMed Central

    Tao, Hirotaka; Manak, J. Robert; Sowers, Levi; Mei, Xue; Kiyonari, Hiroshi; Abe, Takaya; Dahdaleh, Nader S.; Yang, Tian; Wu, Shu; Chen, Shan; Fox, Mark H.; Gurnett, Christina; Montine, Thomas; Bird, Thomas; Shaffer, Lisa G.; Rosenfeld, Jill A.; McConnell, Juliann; Madan-Khetarpal, Suneeta; Berry-Kravis, Elizabeth; Griesbach, Hilary; Saneto, Russell P.; Scott, Matthew P.; Antic, Dragana; Reed, Jordan; Boland, Riley; Ehaideb, Salleh N.; El-Shanti, Hatem; Mahajan, Vinit B.; Ferguson, Polly J.; Axelrod, Jeffrey D.; Lehesjoki, Anna-Elina; Fritzsch, Bernd; Slusarski, Diane C.; Wemmie, John; Ueno, Naoto; Bassuk, Alexander G.

    2011-01-01

    Epilepsy is heritable, yet few causative gene mutations have been identified, and thus far no human epilepsy gene mutations have been found to produce seizures in invertebrates. Here we show that mutations in prickle genes are associated with seizures in humans, mice, and flies. We identified human epilepsy patients with heterozygous mutations in either PRICKLE1 or PRICKLE2. In overexpression assays in zebrafish, prickle mutations resulted in aberrant prickle function. A seizure phenotype was present in the Prickle1-null mutant mouse, two Prickle1 point mutant (missense and nonsense) mice, and a Prickle2-null mutant mouse. Drosophila with prickle mutations displayed seizures that were responsive to anti-epileptic medication, and homozygous mutant embryos showed neuronal defects. These results suggest that prickle mutations have caused seizures throughout evolution. PMID:21276947

  10. A Mouse β-Globin Mutant That Is an Exact Model of Hemoglobin Rainier in Man

    PubMed Central

    Peters, J.; Andrews, S. J.; Loutit, J. F.; Clegg, J. B.

    1985-01-01

    A mutation induced by ethylnitrosourea in a spermatogonial stem cell of a 101/H mouse has resulted in a structurally altered β-diffuse major globin in one of his offspring. The mutant hemoglobin is associated with polycythemia, rubor, increased oxygen affinity and decreased hem-hem interaction. The mutant haplotype has been designated Hbb d4, polycythemia. Amino acid analysis of the mutant globin has shown that a single substitution β145 Tyr → Cys has occurred, and it is proposed that ethylnitrosourea induced an A → G transition in the tyrosine codon (TAC → TGC). This murine polycythemia is homologous with hemoglobin Rainier in man, in which the amino acid substitution is also β145 Tyr → Cys and which is associated with similar physiological consequences. PMID:3839762

  11. Live dynamic OCT imaging of cardiac structure and function in mouse embryos with 43 Hz direct volumetric data acquisition

    NASA Astrophysics Data System (ADS)

    Wang, Shang; Singh, Manmohan; Lopez, Andrew L.; Wu, Chen; Raghunathan, Raksha; Schill, Alexander; Li, Jiasong; Larin, Kirill V.; Larina, Irina V.

    2016-03-01

    Efficient phenotyping of cardiac dynamics in live mouse embryos has significant implications on understanding of early mammalian heart development and congenital cardiac defects. Recent studies established optical coherence tomography (OCT) as a powerful tool for live embryonic heart imaging in various animal models. However, current four-dimensional (4D) OCT imaging of the beating embryonic heart largely relies on gated data acquisition or postacquisition synchronization, which brings errors when cardiac cycles lack perfect periodicity and is time consuming and computationally expensive. Here, we report direct 4D OCT imaging of the structure and function of cardiac dynamics in live mouse embryos achieved by employing a Fourier domain mode-locking swept laser source that enables ~1.5 MHz A-line rate. Through utilizing both forward and backward scans of a resonant mirror, we obtained a ~6.4 kHz frame rate, which allows for a direct volumetric data acquisition speed of ~43 Hz, around 20 times of the early-stage mouse embryonic heart rate. Our experiments were performed on mouse embryos at embryonic day 9.5. Time-resolved 3D cardiodynamics clearly shows the heart structure in motion. We present analysis of cardiac wall movement and its velocity from the primitive atrium and ventricle. Our results suggest that the combination of ultrahigh-speed OCT imaging with live embryo culture could be a useful embryonic heart phenotyping approach for mouse mutants modeling human congenital heart diseases.

  12. Lack of AcrB Efflux Function Confers Loss of Virulence on Salmonella enterica Serovar Typhimurium

    PubMed Central

    Wang-Kan, Xuan; Chirullo, Barbara; Betts, Jonathan; La Ragione, Roberto M.; Ivens, Alasdair; Ricci, Vito; Opperman, Timothy J.

    2017-01-01

    ABSTRACT AcrAB-TolC is the paradigm resistance-nodulation-division (RND) multidrug resistance efflux system in Gram-negative bacteria, with AcrB being the pump protein in this complex. We constructed a nonfunctional AcrB mutant by replacing D408, a highly conserved residue essential for proton translocation. Western blotting confirmed that the AcrB D408A mutant had the same native level of expression of AcrB as the parental strain. The mutant had no growth deficiencies in rich or minimal medium. However, compared with wild-type SL1344, the mutant had increased accumulation of Hoechst 33342 dye and decreased efflux of ethidium bromide and was multidrug hypersusceptible. The D408A mutant was attenuated in vivo in mouse and Galleria mellonella models and showed significantly reduced invasion into intestinal epithelial cells and macrophages in vitro. A dose-dependent inhibition of invasion was also observed when two different efflux pump inhibitors were added to the wild-type strain during infection of epithelial cells. RNA sequencing (RNA-seq) revealed downregulation of bacterial factors necessary for infection, including those in the Salmonella pathogenicity islands 1, 2, and 4; quorum sensing genes; and phoPQ. Several general stress response genes were upregulated, probably due to retention of noxious molecules inside the bacterium. Unlike loss of AcrB protein, loss of efflux function did not induce overexpression of other RND efflux pumps. Our data suggest that gene deletion mutants are unsuitable for studying membrane transporters and, importantly, that inhibitors of AcrB efflux function will not induce expression of other RND pumps. PMID:28720734

  13. Vsx2 Controls Eye Organogenesis and Retinal Progenitor Identity Via Homeodomain and Non-Homeodomain Residues Required for High Affinity DNA Binding

    PubMed Central

    Zou, Changjiang; Levine, Edward M.

    2012-01-01

    The homeodomain and adjacent CVC domain in the visual system homeobox (VSX) proteins are conserved from nematodes to humans. Humans with missense mutations in these regions of VSX2 have microphthalmia, suggesting both regions are critical for function. To assess this, we generated the corresponding mutations in mouse Vsx2. The homeodomain mutant protein lacked DNA binding activity and the knock-in mutant phenocopied the null mutant, ocular retardation J. The CVC mutant protein exhibited weakened DNA binding; and, although the corresponding knock-in allele was recessive, it unexpectedly caused the strongest phenotype, as indicated by severe microphthalmia and hyperpigmentation of the neural retina. This occurred through a cryptic transcriptional feedback loop involving the transcription factors Mitf and Otx1 and the Cdk inhibitor p27Kip1. Our data suggest that the phenotypic severity of the CVC mutant depends on the weakened DNA binding activity elicited by the CVC mutation and a previously unknown protein interaction between Vsx2 and its regulatory target Mitf. Our data also suggest that an essential function of the CVC domain is to assist the homeodomain in high-affinity DNA binding, which is required for eye organogenesis and unhindered execution of the retinal progenitor program in mammals. Finally, the genetic and phenotypic behaviors of the CVC mutation suggest it has the characteristics of a recessive neomorph, a rare type of genetic allele. PMID:23028343

  14. A Point Mutation in the Gene for Asparagine-Linked Glycosylation 10B (Alg10b) Causes Nonsyndromic Hearing Impairment in Mice (Mus musculus)

    PubMed Central

    Probst, Frank J.; Corrigan, Rebecca R.; del Gaudio, Daniela; Salinger, Andrew P.; Lorenzo, Isabel; Gao, Simon S.; Chiu, Ilene; Xia, Anping

    2013-01-01

    The study of mouse hearing impairment mutants has led to the identification of a number of human hearing impairment genes and has greatly furthered our understanding of the physiology of hearing. The novel mouse mutant neurological/sensory 5 (nse5) demonstrates a significantly reduced or absent startle response to sound and is therefore a potential murine model of human hearing impairment. Genetic analysis of 500 intercross progeny localized the mutant locus to a 524 kilobase (kb) interval on mouse chromosome 15. A missense mutation in a highly-conserved amino acid was found in the asparagine-linked glycosylation 10B gene (Alg10b), which is within the critical interval for the nse5 mutation. A 20.4 kb transgene containing a wildtype copy of the Alg10b gene rescued the mutant phenotype in nse5/nse5 homozygous animals, confirming that the mutation in Alg10b is responsible for the nse5/nse5 mutant phenotype. Homozygous nse5/nse5 mutants had abnormal auditory brainstem responses (ABRs), distortion product otoacoustic emissions (DPOAEs), and cochlear microphonics (CMs). Endocochlear potentials (EPs), on the other hand, were normal. ABRs and DPOAEs also confirmed the rescue of the mutant nse5/nse5 phenotype by the wildtype Alg10b transgene. These results suggested a defect in the outer hair cells of mutant animals, which was confirmed by histologic analysis. This is the first report of mutation in a gene involved in the asparagine (N)-linked glycosylation pathway causing nonsyndromic hearing impairment, and it suggests that the hearing apparatus, and the outer hair cells in particular, are exquisitely sensitive to perturbations of the N-linked glycosylation pathway. PMID:24303013

  15. Mutation of the Diamond-Blackfan Anemia Gene Rps7 in Mouse Results in Morphological and Neuroanatomical Phenotypes

    PubMed Central

    Watkins-Chow, Dawn E.; Cooke, Joanna; Pidsley, Ruth; Edwards, Andrew; Slotkin, Rebecca; Leeds, Karen E.; Mullen, Raymond; Baxter, Laura L.; Campbell, Thomas G.; Salzer, Marion C.; Biondini, Laura; Gibney, Gretchen; Phan Dinh Tuy, Françoise; Chelly, Jamel; Morris, H. Douglas; Riegler, Johannes; Lythgoe, Mark F.; Arkell, Ruth M.; Loreni, Fabrizio; Flint, Jonathan

    2013-01-01

    The ribosome is an evolutionarily conserved organelle essential for cellular function. Ribosome construction requires assembly of approximately 80 different ribosomal proteins (RPs) and four different species of rRNA. As RPs co-assemble into one multi-subunit complex, mutation of the genes that encode RPs might be expected to give rise to phenocopies, in which the same phenotype is associated with loss-of-function of each individual gene. However, a more complex picture is emerging in which, in addition to a group of shared phenotypes, diverse RP gene-specific phenotypes are observed. Here we report the first two mouse mutations (Rps7Mtu and Rps7Zma) of ribosomal protein S7 (Rps7), a gene that has been implicated in Diamond-Blackfan anemia. Rps7 disruption results in decreased body size, abnormal skeletal morphology, mid-ventral white spotting, and eye malformations. These phenotypes are reported in other murine RP mutants and, as demonstrated for some other RP mutations, are ameliorated by Trp53 deficiency. Interestingly, Rps7 mutants have additional overt malformations of the developing central nervous system and deficits in working memory, phenotypes that are not reported in murine or human RP gene mutants. Conversely, Rps7 mouse mutants show no anemia or hyperpigmentation, phenotypes associated with mutation of human RPS7 and other murine RPs, respectively. We provide two novel RP mouse models and expand the repertoire of potential phenotypes that should be examined in RP mutants to further explore the concept of RP gene-specific phenotypes. PMID:23382688

  16. Development of a novel pink-eyed dilution mouse model showing progressive darkening of the eyes and coat hair with aging

    PubMed Central

    ISHIKAWA, Akira; SUGIYAMA, Makoto; HONDO, Eiichi; KINOSHITA, Keiji; YAMAGISHI, Yuki

    2015-01-01

    Oca2p-cas (oculocutaneous albinism II; pink-eyed dilution castaneus) is a coat color mutant gene on mouse chromosome 7 that arose spontaneously in wild Mus musculus castaneus mice. Mice homozygous for Oca2p-cas usually exhibit pink eyes and gray coat hair on the non-agouti genetic background, and this ordinary phenotype remains unchanged throughout life. During breeding of a mixed strain carrying this gene on the C57BL/6J background, we discovered a novel spontaneous mutation that causes darkening of the eyes and coat hair with aging. In this study, we developed a novel mouse model showing this unique phenotype. Gross observations revealed that the pink eyes and gray coat hair of the novel mutant young mice became progressively darker in color by approximately 3 months after birth. Light and transmission-electron microscopic observations revealed a marked increase in melanin pigmentation of coat hair shafts and choroid of the eye in the novel mice compared to that in the ordinary mice. Sequence analysis of Oca2p-cas revealed a 4.1-kb deletion involving exons 15 and 16 of its wild-type gene. However, there was no sequence difference between the two types of mutant mice. Mating experiments suggested that the novel mutant phenotype was not inherited in a simple fashion, due to incomplete penetrance. The novel spontaneous mutant mouse is the first example of progressive hair darkening animals and is an essential animal model for understanding of the regulation mechanisms of melanin biosynthesis with aging. PMID:25739360

  17. Development of a novel pink-eyed dilution mouse model showing progressive darkening of the eyes and coat hair with aging.

    PubMed

    Ishikawa, Akira; Sugiyama, Makoto; Hondo, Eiichi; Kinoshita, Keiji; Yamagishi, Yuki

    2015-01-01

    Oca2(p-cas) (oculocutaneous albinism II; pink-eyed dilution castaneus) is a coat color mutant gene on mouse chromosome 7 that arose spontaneously in wild Mus musculus castaneus mice. Mice homozygous for Oca2(p-cas) usually exhibit pink eyes and gray coat hair on the non-agouti genetic background, and this ordinary phenotype remains unchanged throughout life. During breeding of a mixed strain carrying this gene on the C57BL/6J background, we discovered a novel spontaneous mutation that causes darkening of the eyes and coat hair with aging. In this study, we developed a novel mouse model showing this unique phenotype. Gross observations revealed that the pink eyes and gray coat hair of the novel mutant young mice became progressively darker in color by approximately 3 months after birth. Light and transmission-electron microscopic observations revealed a marked increase in melanin pigmentation of coat hair shafts and choroid of the eye in the novel mice compared to that in the ordinary mice. Sequence analysis of Oca2(p-cas) revealed a 4.1-kb deletion involving exons 15 and 16 of its wild-type gene. However, there was no sequence difference between the two types of mutant mice. Mating experiments suggested that the novel mutant phenotype was not inherited in a simple fashion, due to incomplete penetrance. The novel spontaneous mutant mouse is the first example of progressive hair darkening animals and is an essential animal model for understanding of the regulation mechanisms of melanin biosynthesis with aging.

  18. Mouse phenotyping.

    PubMed

    Fuchs, Helmut; Gailus-Durner, Valérie; Adler, Thure; Aguilar-Pimentel, Juan Antonio; Becker, Lore; Calzada-Wack, Julia; Da Silva-Buttkus, Patricia; Neff, Frauke; Götz, Alexander; Hans, Wolfgang; Hölter, Sabine M; Horsch, Marion; Kastenmüller, Gabi; Kemter, Elisabeth; Lengger, Christoph; Maier, Holger; Matloka, Mikolaj; Möller, Gabriele; Naton, Beatrix; Prehn, Cornelia; Puk, Oliver; Rácz, Ildikó; Rathkolb, Birgit; Römisch-Margl, Werner; Rozman, Jan; Wang-Sattler, Rui; Schrewe, Anja; Stöger, Claudia; Tost, Monica; Adamski, Jerzy; Aigner, Bernhard; Beckers, Johannes; Behrendt, Heidrun; Busch, Dirk H; Esposito, Irene; Graw, Jochen; Illig, Thomas; Ivandic, Boris; Klingenspor, Martin; Klopstock, Thomas; Kremmer, Elisabeth; Mempel, Martin; Neschen, Susanne; Ollert, Markus; Schulz, Holger; Suhre, Karsten; Wolf, Eckhard; Wurst, Wolfgang; Zimmer, Andreas; Hrabě de Angelis, Martin

    2011-02-01

    Model organisms like the mouse are important tools to learn more about gene function in man. Within the last 20 years many mutant mouse lines have been generated by different methods such as ENU mutagenesis, constitutive and conditional knock-out approaches, knock-down, introduction of human genes, and knock-in techniques, thus creating models which mimic human conditions. Due to pleiotropic effects, one gene may have different functions in different organ systems or time points during development. Therefore mutant mouse lines have to be phenotyped comprehensively in a highly standardized manner to enable the detection of phenotypes which might otherwise remain hidden. The German Mouse Clinic (GMC) has been established at the Helmholtz Zentrum München as a phenotyping platform with open access to the scientific community (www.mousclinic.de; [1]). The GMC is a member of the EUMODIC consortium which created the European standard workflow EMPReSSslim for the systemic phenotyping of mouse models (http://www.eumodic.org/[2]). Copyright © 2010 Elsevier Inc. All rights reserved.

  19. Mice That Lack Thrombospondin 2 Display Connective Tissue Abnormalities That Are Associated with Disordered Collagen Fibrillogenesis, an Increased Vascular Density, and a Bleeding Diathesis

    PubMed Central

    Kyriakides, Themis R.; Zhu, Yu-Hong; Smith, Lynne T.; Bain, Steven D.; Yang, Zhantao; Lin, Ming T.; Danielson, Keith G.; Iozzo, Renato V.; LaMarca, Mary; McKinney, Cindy E.; Ginns, Edward I.; Bornstein, Paul

    1998-01-01

    Thrombospondin (TSP) 2, and its close relative TSP1, are extracellular proteins whose functions are complex, poorly understood, and controversial. In an attempt to determine the function of TSP2, we disrupted the Thbs2 gene by homologous recombination in embryonic stem cells, and generated TSP2-null mice by blastocyst injection and appropriate breeding of mutant animals. Thbs2−/− mice were produced with the expected Mendelian frequency, appeared overtly normal, and were fertile. However, on closer examination, these mice displayed a wide variety of abnormalities. Collagen fiber patterns in skin were disordered, and abnormally large fibrils with irregular contours were observed by electron microscopy in both skin and tendon. As a functional correlate of these findings, the skin was fragile and had reduced tensile strength, and the tail was unusually flexible. Mutant skin fibroblasts were defective in attachment to a substratum. An increase in total density and in cortical thickness of long bones was documented by histology and quantitative computer tomography. Mutant mice also manifested an abnormal bleeding time, and histologic surveys of mouse tissues, stained with an antibody to von Willebrand factor, showed a significant increase in blood vessels. The basis for the unusual phenotype of the TSP2-null mouse could derive from the structural role that TSP2 might play in collagen fibrillogenesis in skin and tendon. However, it seems likely that some of the diverse manifestations of this genetic disorder result from the ability of TSP2 to modulate the cell surface properties of mesenchymal cells, and thus, to affect cell functions such as adhesion and migration. PMID:9442117

  20. A novel candidate gene for mouse and human preaxial polydactyly with altered expression in limbs of Hemimelic extra-toes mutant mice.

    PubMed

    Clark, R M; Marker, P C; Kingsley, D M

    2000-07-01

    Polydactyly is a common malformation of vertebrate limbs. In humans a major locus for nonsyndromic pre-axial polydactyly (PPD) has been mapped previously to 7q36. The mouse Hemimelic extra-toes (Hx) mutation maps to a homologous chromosome segment and has been proposed to affect a homologous gene. To understand the molecular changes underlying PPD, we used a positional cloning approach to identify the gene or genes disrupted by the Hx mutation and a closely linked limb mutation, Hammertoe (Hm). High resolution genetic mapping identified a small candidate interval for the mouse mutations located 1.2 cM distal to the Shh locus. The nonrecombinant interval was completely cloned in bacterial artificial chromosomes and searched for genes using a combination of exon trapping, sample sequencing, and mapping of known genes. Two novel genes, Lmbr1 and Lmbr2, are entirely within the candidate interval we defined genetically. The open reading frame of both genes is intact in mutant mice, but the expression of the Lmbr1 gene is dramatically altered in developing limbs of Hx mutant mice. The correspondence between the spatial and temporal changes in Lmbr1 expression and the embryonic onset of the Hx mutant phenotype suggests that the mouse Hx mutation may be a regulatory allele of Lmbr1. The human ortholog of Lmbr1 maps within the recently described interval for human PPD, strengthening the possibility that both mouse and human limb abnormalities are due to defects in the same highly conserved gene.

  1. Loss of Activity-Induced Phosphorylation of MeCP2 Enhances Synaptogenesis, LTP, and Spatial Memory

    PubMed Central

    Li, Hongda; Zhong, Xiaofen; Chau, Kevin Fongching; Williams, Emily Cunningham; Chang, Qiang

    2012-01-01

    DNA methylation-dependent epigenetic mechanisms underlie the development and function of the mammalian brain. MeCP2 expresses highly in neurons, and functions as a molecular linker between DNA methylation, chromatin remodeling and transcription regulation. Previous in vitro studies showed neuronal activity-induced phosphorylation (NAIP) of MeCP2 precedes its release from the Bdnf promoter and the ensuing Bdnf transcription. However, the in vivo function of this phosphorylation event remains elusive. We generated knockin mice that lack NAIP of MeCP2, and show here the Mecp2 phospho-mutant mice perform better in hippocampus-dependent memory tests, present enhanced LTP at two synapses in the hippocampus, and show increased excitatory synaptogenesis. At the molecular level, the phospho-mutant MeCP2 protein binds more tightly to several MeCP2 target gene promoters and alters the expression of these genes. Our results supply the first genetic evidence that NAIP of MeCP2 is required in modulating dynamic functions of the adult mouse brain. PMID:21765426

  2. Attenuated mutant strain of Salmonella Typhimurium lacking the ZnuABC transporter contrasts tumor growth promoting anti-cancer immune response.

    PubMed

    Chirullo, Barbara; Ammendola, Serena; Leonardi, Leonardo; Falcini, Roberto; Petrucci, Paola; Pistoia, Claudia; Vendetti, Silvia; Battistoni, Andrea; Pasquali, Paolo

    2015-07-10

    Salmonella Typhimurium has been shown to be highly effective as antitumor agent. The aim of this study was to investigate the tumor targeting efficacy and the mechanism of action of a specific attenuated mutant strain of Salmonella Typhimurium (STM) devoid of the whole operon coding for the high-affinity zinc transporter ZnuABC, which is required for bacterial growth in environments poor in zinc and for conferring full virulence to different Gram-negative pathogens.We showed that STM is able to penetrate and replicate into tumor cells in in vitro and in vivo models. The subcutaneous administration of STM in mammary adenocarcinoma mouse model led to both reduction of tumor growth and increase in life expectancy of STM treated mice. Moreover, investigating the potential mechanism behind the favorable clinical outcomes, we provide evidence that STM stimulates a potent inflammatory response and a specific immune pattern, recruiting a large number of innate and adaptive immune cells capable to contrast the immunosuppressive environment generated by tumors.

  3. Heme deficiency in erythroid lineage causes differentiation arrest and cytoplasmic iron overload.

    PubMed Central

    Nakajima, O; Takahashi, S; Harigae, H; Furuyama, K; Hayashi, N; Sassa, S; Yamamoto, M

    1999-01-01

    Erythroid 5-aminolevulinate synthase (ALAS-E) catalyzes the first step of heme biosynthesis in erythroid cells. Mutation of human ALAS-E causes the disorder X-linked sideroblastic anemia. To examine the roles of heme during hematopoiesis, we disrupted the mouse ALAS-E gene. ALAS-E-null embryos showed no hemoglobinized cells and died by embryonic day 11.5, indicating that ALAS-E is the principal isozyme contributing to erythroid heme biosynthesis. In the ALAS-E-null mutant embryos, erythroid differentiation was arrested, and an abnormal hematopoietic cell fraction emerged that accumulated a large amount of iron diffusely in the cytoplasm. In contrast, we found typical ring sideroblasts that accumulated iron mostly in mitochondria in adult mice chimeric for ALAS-E-null mutant cells, indicating that the mode of iron accumulation caused by the lack of ALAS-E is different in primitive and definitive erythroid cells. These results demonstrate that ALAS-E, and hence heme supply, is necessary for differentiation and iron metabolism of erythroid cells. PMID:10562540

  4. Identification of Ski as a target for Aurora A kinase

    PubMed Central

    Mosquera, Jocelyn; Armisen, Ricardo; Zhao, Hong Ling; Rojas, Diego A.; Maldonado, Edio; Tapia, Julio C; Colombo, Alicia; Hayman, Michael J; Marcelain, Katherine

    2011-01-01

    Ski is a negative regulator of the transforming growth factor-β and other signalling pathways. The absence of SKI in mouse fibroblasts leads to chromosome segregation defects and genomic instability, suggesting a role for Ski during mitosis. At this stage, Ski is phosphorylated but to date little is known about the kinases involved in this process. Here, we show that Aurora A kinase is able to phosphorylate Ski in vitro. In vivo, Aurora A and Ski co-localized at the centrosomes and co-immunoprecipitated. Conversely, a C-terminal truncation mutant of Ski (SkiΔ491–728) lacking a coiled-coil domain, displayed decreased centrosomal localization. This mutant no longer co-immunoprecipitated with Aurora-A in vivo, but was still phosphorylated in vitro, indicating that the Ski-Aurora A interaction takes place at the centrosomes. These data identify Ski as a novel target of Aurora A and contribute to an understanding of the role of these proteins in the mitotic process. PMID:21600873

  5. In Vivo Regulation of NGF-Mediated Functions by Nedd4-2 Ubiquitination of TrkA

    PubMed Central

    Yu, Tao; Calvo, Laura; Anta, Begoña; López-Benito, Saray; López-Bellido, Roger; Vicente-García, Cristina; Tessarollo, Lino; Rodriguez, Raquel E.

    2014-01-01

    Trk neurotrophin receptor ubiquitination in response to ligand activation regulates signaling, trafficking, and degradation of the receptors. However, the in vivo consequences of Trk ubiquitination remain to be addressed. We have developed a mouse model with a mutation in the TrkA neurotrophin receptor (P782S) that results in reduced ubiquitination due to a lack of binding to the E3 ubiquitin ligase, Nedd4-2. In vivo analyses of TrkAP782S indicate that defective ubiquitination of the TrkA mutant results in an altered trafficking and degradation of the receptor that affects the survival of sensory neurons. The dorsal root ganglia from the TrkAP782S knock-in mice display an increased number of neurons expressing CGRP and substance P. Moreover, the mutant mice show enhanced sensitivity to thermal and inflammatory pain. Our results indicate that the ubiquitination of the TrkA neurotrophin receptor plays a critical role in NGF-mediated functions, such as neuronal survival and sensitivity to pain. PMID:24760869

  6. Profilin1 activity in cerebellar granule neurons is required for radial migration in vivo

    PubMed Central

    Kullmann, Jan A; Wickertsheim, Ines; Minnerup, Lara; Costell, Mercedes; Friauf, Eckhard; Rust, Marco B

    2015-01-01

    Neuron migration defects are an important aspect of human neuropathies. The underlying molecular mechanisms of such migration defects are largely unknown. Actin dynamics has been recognized as an important determinant of neuronal migration, and we recently found that the actin-binding protein profilin1 is relevant for radial migration of cerebellar granule neurons (CGN). As the exploited brain-specific mutants lacked profilin1 in both neurons and glial cells, it remained unknown whether profilin1 activity in CGN is relevant for CGN migration in vivo. To test this, we capitalized on a transgenic mouse line that expresses a tamoxifen-inducible Cre variant in CGN, but no other cerebellar cell type. In these profilin1 mutants, the cell density was elevated in the molecular layer, and ectopic CGN occurred. Moreover, 5-bromo-2′-deoxyuridine tracing experiments revealed impaired CGN radial migration. Hence, our data demonstrate the cell autonomous role of profilin1 activity in CGN for radial migration. PMID:25495756

  7. Apollo contributes to G overhang maintenance and protects leading-end telomeres.

    PubMed

    Wu, Peng; van Overbeek, Megan; Rooney, Sean; de Lange, Titia

    2010-08-27

    Mammalian telomeres contain a single-stranded 3' overhang that is thought to mediate telomere protection. Here we identify the TRF2-interacting factor Apollo as a nuclease that contributes to the generation/maintenance of this overhang. The function of mouse Apollo was determined using Cre-mediated gene deletion, complementation with Apollo mutants, and the TRF2-F120A mutant that cannot bind Apollo. Cells lacking Apollo activated the ATM kinase at their telomeres in S phase and showed leading-end telomere fusions. These telomere dysfunction phenotypes were accompanied by a reduction in the telomeric overhang signal. The telomeric functions of Apollo required its TRF2-interaction and nuclease motifs. Thus, TRF2 recruits the Apollo nuclease to process telomere ends synthesized by leading-strand DNA synthesis, thereby creating a terminal structure that avoids ATM activation and resists end-joining. These data establish that the telomeric overhang is required for the protection of telomeres from the DNA damage response. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  8. Disruption of DNA methylation-dependent long gene repression in Rett syndrome

    PubMed Central

    Gabel, Harrison W.; Kinde, Benyam Z.; Stroud, Hume; Gilbert, Caitlin S.; Harmin, David A.; Kastan, Nathaniel R.; Hemberg, Martin; Ebert, Daniel H.; Greenberg, Michael E.

    2015-01-01

    Disruption of the MECP2 gene leads to Rett syndrome (RTT), a severe neurological disorder with features of autism1. MECP2 encodes a methyl-DNA-binding protein2 that has been proposed to function as a transcriptional repressor, but despite numerous studies examining neuronal gene expression in Mecp2 mutants, no clear model has emerged for how MeCP2 regulates transcription3–9. Here we identify a genome-wide length-dependent increase in gene expression in MeCP2 mutant mouse models and human RTT brains. We present evidence that MeCP2 represses gene expression by binding to methylated CA sites within long genes, and that in neurons lacking MeCP2, decreasing the expression of long genes attenuates RTT-associated cellular deficits. In addition, we find that long genes as a population are enriched for neuronal functions and selectively expressed in the brain. These findings suggest that mutations in MeCP2 may cause neurological dysfunction by specifically disrupting long gene expression in the brain. PMID:25762136

  9. Peroxisome proliferator-activated receptor δ promotes the progression of posttraumatic osteoarthritis in a mouse model.

    PubMed

    Ratneswaran, A; LeBlanc, E A; Walser, E; Welch, I; Mort, J S; Borradaile, N; Beier, F

    2015-02-01

    Osteoarthritis (OA) is a serious disease of the entire joint, characterized by articular cartilage degeneration, subchondral bone changes, osteophyte formation, and synovial hyperplasia. Currently, there are no pharmaceutical treatments that can slow the disease progression, resulting in greatly reduced quality of life for patients and the need for joint replacement surgeries in many cases. The lack of available treatments for OA is partly due to our incomplete understanding of the molecular mechanisms that promote disease initiation and progression. The purpose of the present study was to examine the role of the nuclear receptor peroxisome proliferator-activated receptor δ (PPARδ) as a promoter of cartilage degeneration in a mouse model of posttraumatic OA. Mouse chondrocytes and knee explants were treated with a pharmacologic agonist of PPARδ (GW501516) to evaluate changes in gene expression, histologic features, and matrix glycosaminoglycan breakdown. In vivo, PPARδ was specifically deleted from the cartilage of mice. Histopathologic scoring according to the Osteoarthritis Research Society International (OARSI) system and immunohistochemical analysis were used to compare mutant and control mice subjected to surgical destabilization of the medial meniscus (DMM). In vitro, PPARδ activation by GW501516 resulted in increased expression of several proteases in chondrocytes, as well as aggrecan degradation and glycosaminoglycan release in knee joint explants. In vivo, cartilage-specific PPARδ-knockout mice did not display any abnormalities of skeletal development but showed marked protection in the DMM model of posttraumatic OA (as compared to control littermates). OARSI scoring and immunohistochemical analyses confirmed strong protection of mutant mice from DMM-induced cartilage degeneration. These data demonstrate a catabolic role of endogenous PPARδ in posttraumatic OA and suggest that pharmacologic inhibition of PPARδ is a promising therapeutic strategy. Copyright © 2015 by the American College of Rheumatology.

  10. In vitro and in vivo evidence for orphan nuclear receptor RORα function in bone metabolism

    PubMed Central

    Meyer, Thomas; Kneissel, Michaela; Mariani, Jean; Fournier, Brigitte

    2000-01-01

    Bone is a major target site for steroid hormone action. Steroid hormones like cortisol, vitamin D, and estradiol are responsible for principal events associated with bone formation and resorption. Over the past decade, new members of the nuclear hormone gene family have been identified that lack known ligands. These orphan receptors can be used to uncover signaling molecules that regulate yet unidentified physiological networks. In the present study the function of retinoic acid receptor-related orphan receptor (ROR) α in bone metabolism has been examined. We showed that RORα and RORγ, but not RORβ, are expressed in mesenchymal stem cells derived from bone marrow. Interestingly, for RORα we observed an increased messenger signal expression between control cells and cells undergoing osteogenic differentiation. Furthermore, the direct activation of mouse bone sialoprotein by RORα, typically 7-fold, has been shown. In contrast, transient overexpression of RORα overrides the activation of the osteocalcin promoter by 1α,25-dihydroxyvitamin D3. In addition, we have investigated bone mass parameters and bone geometry in the mouse mutant staggerer (sg/sg), a mouse strain that carries a deletion within the RORα gene. Homozygote mutants have thin long bones compared with the heterozygote animals and wild-type littermates. More interestingly, the bones of the sg/sg animals are osteopenic as indicated by the comparison of bone mineral contents of sg/sg animals to the heterozygote and wild-type animals. We conclude that these in vitro and in vivo results suggest a function for RORα in bone biology. RORα most likely acts by direct modulation of a bone matrix component. PMID:10900268

  11. Absence of opioid stress-induced analgesia in mice lacking beta-endorphin by site-directed mutagenesis.

    PubMed Central

    Rubinstein, M; Mogil, J S; Japón, M; Chan, E C; Allen, R G; Low, M J

    1996-01-01

    A physiological role for beta-endorphin in endogenous pain inhibition was investigated by targeted mutagenesis of the proopiomelanocortin gene in mouse embryonic stem cells. The tyrosine codon at position 179 of the proopiomelanocortin gene was converted to a premature translational stop codon. The resulting transgenic mice display no overt developmental or behavioral alterations and have a normally functioning hypothalamic-pituitary-adrenal axis. Homozygous transgenic mice with a selective deficiency of beta-endorphin exhibit normal analgesia in response to morphine, indicating the presence of functional mu-opiate receptors. However, these mice lack the opioid (naloxone reversible) analgesia induced by mild swim stress. Mutant mice also display significantly greater nonopioid analgesia in response to cold water swim stress compared with controls and display paradoxical naloxone-induced analgesia. These changes may reflect compensatory upregulation of alternative pain inhibitory mechanisms. Images Fig. 1 Fig. 2 PMID:8633004

  12. Role of the Yersinia pestis yersiniabactin iron acquisition system in the incidence of flea-borne plague.

    PubMed

    Sebbane, Florent; Jarrett, Clayton; Gardner, Donald; Long, Daniel; Hinnebusch, B Joseph

    2010-12-17

    Plague is a flea-borne zoonosis caused by the bacterium Yersinia pestis. Y. pestis mutants lacking the yersiniabactin (Ybt) siderophore-based iron transport system are avirulent when inoculated intradermally but fully virulent when inoculated intravenously in mice. Presumably, Ybt is required to provide sufficient iron at the peripheral injection site, suggesting that Ybt would be an essential virulence factor for flea-borne plague. Here, using a flea-to-mouse transmission model, we show that a Y. pestis strain lacking the Ybt system causes fatal plague at low incidence when transmitted by fleas. Bacteriology and histology analyses revealed that a Ybt-negative strain caused only primary septicemic plague and atypical bubonic plague instead of the typical bubonic form of disease. The results provide new evidence that primary septicemic plague is a distinct clinical entity and suggest that unusual forms of plague may be caused by atypical Y. pestis strains.

  13. Tissue-Specific Profiling Reveals Transcriptome Alterations in Arabidopsis Mutants Lacking Morphological Phenotypes[C][W

    PubMed Central

    Simon, Marissa; Bruex, Angela; Kainkaryam, Raghunandan M.; Zheng, Xiaohua; Huang, Ling; Woolf, Peter J.; Schiefelbein, John

    2013-01-01

    Traditional genetic analysis relies on mutants with observable phenotypes. Mutants lacking visible abnormalities may nevertheless exhibit molecular differences useful for defining gene function. To examine this, we analyzed tissue-specific transcript profiles from Arabidopsis thaliana transcription factor gene mutants with known roles in root epidermis development, but lacking a single-gene mutant phenotype due to genetic redundancy. We discovered substantial transcriptional changes in each mutant, preferentially affecting root epidermal genes in a manner consistent with the known double mutant effects. Furthermore, comparing transcript profiles of single and double mutants, we observed remarkable variation in the sensitivity of target genes to the loss of one or both paralogous genes, including preferential effects on specific branches of the epidermal gene network, likely reflecting the pathways of paralog subfunctionalization during evolution. In addition, we analyzed the root epidermal transcriptome of the transparent testa glabra2 mutant to clarify its role in the network. These findings provide insight into the molecular basis of genetic redundancy and duplicate gene diversification at the level of a specific gene regulatory network, and they demonstrate the usefulness of tissue-specific transcript profiling to define gene function in mutants lacking informative visible changes in phenotype. PMID:24014549

  14. Brucella ovis PA mutants for outer membrane proteins Omp10, Omp19, SP41, and BepC are not altered in their virulence and outer membrane properties.

    PubMed

    Sidhu-Muñoz, Rebeca S; Sancho, Pilar; Vizcaíno, Nieves

    2016-04-15

    Mutants in several genes have been obtained on the genetic background of virulent rough (lacking O-polysaccharide) Brucella ovis PA. The target genes encode outer membrane proteins previously associated with the virulence of smooth (bearing O-polysaccharide chains in the lipopolysaccharide) Brucella strains. Multiple attempts to delete omp16, coding for a homologue to peptidoglycan-associated lipoproteins, were unsuccessful, which suggests that Omp16 is probably essential for in vitro survival of B. ovis PA. Single deletion of omp10 or omp19-that encode two other outer membrane lipoproteins--was achieved, but the simultaneous removal of both genes failed, suggesting an essential complementary function between both proteins. Two other deletion mutants, defective in the Tol-C-homologue BepC or in the SP41 adhesin, were also obtained. Surprisingly when compared to previous results obtained with smooth Brucella, none of the B. ovis mutants showed attenuation in the virulence, either in the mouse model or in cellular models of professional and non-professional phagocytes. Additionally, and in contrast to the observations reported with smooth Brucella strains, several properties related to the outer membrane remained almost unaltered. These results evidence new distinctive traits between naturally rough B. ovis and smooth brucellae. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Aberrant muscle antigen exposure in mice is sufficient to cause myositis in a Treg cell-deficient milieu.

    PubMed

    Young, Nicholas A; Sharma, Rahul; Friedman, Alexandra K; Kaffenberger, Benjamin H; Bolon, Brad; Jarjour, Wael N

    2013-12-01

    Myositis is associated with muscle-targeted inflammation and is observed in some Treg cell-deficient mouse models. Because an autoimmune pathogenesis has been strongly implicated, the aim of this study was to investigate the hypothesis that abnormal exposure to muscle antigens, as observed in muscle injury, can induce autoimmune-mediated myositis in susceptible hosts. FoxP3 mutant (scurfy) mice were mated to synaptotagmin VII (Syt VII) mutant mice, which resulted in a new mouse strain that combines impaired membrane resealing with Treg cell deficiency. Lymphocyte preparations from double-mutant mice were adoptively transferred intraperitoneally, with or without purified Treg cells, into recombination-activating gene 1 (RAG-1)-null recipients. Lymph node cells from mice with the FoxP3 mutation were transferred into RAG-1-null mice either 1) intraperitoneally in conjunction with muscle homogenate or purified myosin protein or 2) intramuscularly with or without cotransfer of purified Treg cells. FoxP3-deficient mouse lymph node cells transferred in conjunction with myosin protein or muscle homogenate induced robust skeletal muscle inflammation. The infiltrates consisted predominantly of CD4+ and CD8+ T cells, a limited number of macrophages, and no B cells. Significant inflammation was also seen in similar experiments using lymph node cells from FoxP3/Syt VII double-mutant mice but was absent in experiments using adoptive transfer of FoxP3 mutant mouse cells alone. The cotransfer of Treg cells completely suppressed myositis. These data, derived from a new, reproducible model, demonstrate the critical roles of Treg cell deficiency and aberrant muscle antigen exposure in the priming of autoreactive cells to induce myositis. This mouse system has multifaceted potential for examining the interplay in vivo between tissue injury and autoimmunity. © 2013 The Authors. Arthritis & Rheumatism is published by Wiley Periodicals, Inc. on behalf of the American College of Rheumatology.

  16. Data and animal management software for large-scale phenotype screening.

    PubMed

    Ching, Keith A; Cooke, Michael P; Tarantino, Lisa M; Lapp, Hilmar

    2006-04-01

    The mouse N-ethyl-N-nitrosourea (ENU) mutagenesis program at the Genomics Institute of the Novartis Research Foundation (GNF) uses MouseTRACS to analyze phenotype screens and manage animal husbandry. MouseTRACS is a Web-based laboratory informatics system that electronically records and organizes mouse colony operations, prints cage cards, tracks inventory, manages requests, and reports Institutional Animal Care and Use Committee (IACUC) protocol usage. For efficient phenotype screening, MouseTRACS identifies mutants, visualizes data, and maps mutations. It displays and integrates phenotype and genotype data using likelihood odds ratio (LOD) plots of genetic linkage between genotype and phenotype. More detailed mapping intervals show individual single nucleotide polymorphism (SNP) markers in the context of phenotype. In addition, dynamically generated pedigree diagrams and inventory reports linked to screening results summarize the inheritance pattern and the degree of penetrance. MouseTRACS displays screening data in tables and uses standard charts such as box plots, histograms, scatter plots, and customized charts looking at clustered mice or cross pedigree comparisons. In summary, MouseTRACS enables the efficient screening, analysis, and management of thousands of animals to find mutant mice and identify novel gene functions. MouseTRACS is available under an open source license at http://www.mousetracs.sourceforge.net.

  17. A live attenuated strain of Yersinia pestis ΔyscB provides protection against bubonic and pneumonic plagues in mouse model.

    PubMed

    Zhang, Xuecan; Qi, Zhizhen; Du, Zongmin; Bi, Yujing; Zhang, Qingwen; Tan, Yafang; Yang, Huiying; Xin, Youquan; Yang, Ruifu; Wang, Xiaoyi

    2013-05-24

    To develop a safe and effective live plague vaccine, the ΔyscB mutant was constructed based on Yersinia pestis biovar Microtus strain 201 that is avirulent to humans, but virulent to mice. The virulence, immunogenicity and protective efficacy of the ΔyscB mutant were evaluated in this study. The results showed that the ΔyscB mutant was severely attenuated, elicited a higher F1-specific antibody titer and provided protective efficacy against bubonic and pneumonic plague in mouse model. The ΔyscB mutant could induce the secretion of both Th1-associated cytokines (IFN-γ, IL-2 and TNF-α) and Th2-associated cytokines (IL-4 and IL-10). Taken together, the ΔyscB mutant represented a potential vaccine candidate based on its ability to generate strong humoral and cell-mediated immune responses and to provide good protection against both subcutaneous and intranasal Y. pestis challenge. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Generation and characterisation of a parkin-Pacrg knockout mouse line and a Pacrg knockout mouse line.

    PubMed

    Stephenson, Sarah E M; Aumann, Timothy D; Taylor, Juliet M; Riseley, Jessica R; Li, Ruili; Mann, Jeffrey R; Tomas, Doris; Lockhart, Paul J

    2018-05-14

    Mutations in PARK2 (parkin) can result in Parkinson's disease (PD). Parkin shares a bidirectional promoter with parkin coregulated gene (PACRG) and the transcriptional start sites are separated by only ~200 bp. Bidirectionally regulated genes have been shown to function in common biological pathways. Mice lacking parkin have largely failed to recapitulate the dopaminergic neuronal loss and movement impairments seen in individuals with parkin-mediated PD. We aimed to investigate the function of PACRG and test the hypothesis that parkin and PACRG function in a common pathway by generating and characterizing two novel knockout mouse lines harbouring loss of both parkin and Pacrg or Pacrg alone. Successful modification of the targeted allele was confirmed at the genomic, transcriptional and steady state protein levels for both genes. At 18-20 months of age, there were no significant differences in the behaviour of parental and mutant lines when assessed by openfield, rotarod and balance beam. Subsequent neuropathological examination suggested there was no gross abnormality of the dopaminergic system in the substantia nigra and no significant difference in the number of dopaminergic neurons in either knockout model compared to wildtype mice.

  19. Distal Potassium Handling Based On Flow Modulation of Maxi-K Channel Activity

    PubMed Central

    Rodan, Aylin R.; Huang, Chou-Long

    2011-01-01

    Purpose of review Studies on the mechanisms of distal K+ secretion have highlighted the importance of the renal outer-medullary K+ (ROMK) and maxi-K channels. This review considers several human disorders characterized by hypo- and hyperkalemia, as well as mouse models of these disorders, and the mechanisms by which ROMK and maxi-K may be dysregulated. Recent findings Analysis of knockout mice lacking ROMK, a model for type II Bartter’s syndrome, has shown a role for maxi-K in distal K+ secretion. Knockout mice lacking either the α or β1 subunits of maxi-K also show deficits in flow-dependent K+ secretion. Analysis of transgenic and knock-in mouse models of pseudohypoaldsoteronism type II (PHA2), in which mutant forms of with-no-lysine kinase 4 (WNK4) are expressed, suggests ways in which ROMK and maxi-K may be dysregulated to result in hyperkalemia. Modeling studies also provide insights into the role of Na+ delivery versus flow in K+ secretion. Summary The importance of both ROMK and maxi-K to distal K+ secretion is now well-established, but the relative role each of these two channels plays in normal and diseased states has not been definitively established. Analysis of human and animal model data can generate hypotheses for future experiments. PMID:19448535

  20. Coiled-coil domain containing 42 (Ccdc42) is necessary for proper sperm development and male fertility in the mouse.

    PubMed

    Pasek, Raymond C; Malarkey, Erik; Berbari, Nicolas F; Sharma, Neeraj; Kesterson, Robert A; Tres, Laura L; Kierszenbaum, Abraham L; Yoder, Bradley K

    2016-04-15

    Spermiogenesis is the differentiation of spermatids into motile sperm consisting of a head and a tail. The head harbors a condensed elongated nucleus partially covered by the acrosome-acroplaxome complex. Defects in the acrosome-acroplaxome complex are associated with abnormalities in sperm head shaping. The head-tail coupling apparatus (HTCA), a complex structure consisting of two cylindrical microtubule-based centrioles and associated components, connects the tail or flagellum to the sperm head. Defects in the development of the HTCA cause sperm decapitation and disrupt sperm motility, two major contributors to male infertility. Here, we provide data indicating that mutations in the gene Coiled-coil domain containing 42 (Ccdc42) is associated with malformation of the mouse sperm flagella. In contrast to many other flagella and motile cilia genes, Ccdc42 expression is only observed in the brain and developing sperm. Male mice homozygous for a loss-of-function Ccdc42 allele (Ccdc42(KO)) display defects in the number and location of the HTCA, lack flagellated sperm, and are sterile. The testes enriched expression of Ccdc42 and lack of other phenotypes in mutant mice make it an ideal candidate for screening cases of azoospermia in humans. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Nuclear Condensation during Mouse Erythropoiesis Requires Caspase-3-Mediated Nuclear Opening.

    PubMed

    Zhao, Baobing; Mei, Yang; Schipma, Matthew J; Roth, Eric Wayne; Bleher, Reiner; Rappoport, Joshua Z; Wickrema, Amittha; Yang, Jing; Ji, Peng

    2016-03-07

    Mammalian erythropoiesis involves chromatin condensation that is initiated in the early stage of terminal differentiation. The mechanisms of chromatin condensation during erythropoiesis are unclear. Here, we show that the mouse erythroblast forms large, transient, and recurrent nuclear openings that coincide with the condensation process. The opening lacks nuclear lamina, nuclear pore complexes, and nuclear membrane, but it is distinct from nuclear envelope changes that occur during apoptosis and mitosis. A fraction of the major histones are released from the nuclear opening and degraded in the cytoplasm. We demonstrate that caspase-3 is required for the nuclear opening formation throughout terminal erythropoiesis. Loss of caspase-3 or ectopic expression of a caspase-3 non-cleavable lamin B mutant blocks nuclear opening formation, histone release, chromatin condensation, and terminal erythroid differentiation. We conclude that caspase-3-mediated nuclear opening formation accompanied by histone release from the opening is a critical step toward chromatin condensation during erythropoiesis in mice. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Nuclear condensation during mouse erythropoiesis requires caspase-3-mediated nuclear opening

    PubMed Central

    Zhao, Baobing; Mei, Yang; Schipma, Matthew J; Roth, Eric Wayne; Bleher, Reiner; Rappoport, Joshua Z.; Wickrema, Amittha; Yang, Jing; Ji, Peng

    2016-01-01

    SUMMARY Mammalian erythropoiesis involves chromatin condensation that is initiated in the early stage of terminal differentiation. The mechanisms of chromatin condensation during erythropoiesis are unclear. Here, we show that the mouse erythroblast forms large, transient, and recurrent nuclear openings that coincide with the condensation process. The opening lacks nuclear lamina, nuclear pore complexes, and nuclear membrane, but it is distinct from nuclear envelope changes that occur during apoptosis and mitosis. A fraction of the major histones are released from the nuclear opening and degraded in the cytoplasm. We demonstrate that caspase-3 is required for the nuclear opening formation throughout terminal erythropoiesis. Loss of caspase-3 or ectopic expression of a caspase-3 non-cleavable lamin B mutant blocks nuclear opening formation, histone release, chromatin condensation, and terminal erythroid differentiation. We conclude that caspase-3-mediated nuclear opening formation accompanied by histone release from the opening is a critical step towards chromatin condensation during erythropoiesis in mice. PMID:26954545

  3. Endocochlear potential generation is associated with intercellular communication in the stria vascularis: structural analysis in the viable dominant spotting mouse mutant.

    PubMed

    Carlisle, L; Steel, K; Forge, A

    1990-11-01

    Deafness in the viable dominant spotting mouse mutant is due to a primary defect of the stria vascularis which results in absence of the positive endocochlear potential in scala media. Endocochlear potentials were measured and the structure of stria vascularis of mutants with potentials close to zero was compared with that in normal littermate controls by use of morphometric methods. The stria vascularis was significantly thinner in mutants. Marginal cells were not significantly different from controls in terms of volume density or intramembrane particle density but the network density of tight junctions was significantly reduced in the mutants. A virtual absence of gap junctions between basal cells and marginal or intermediate cells was observed, but intramembrane particle density and junctional complexes between adjacent basal cells were not different from controls. The volume density of basal cells was significantly greater in mutants. Intermediate cells accounted for a significantly smaller volume density of the stria vascularis in mutants and had a lower density of intramembrane particles than controls. Melanocytes were not identified in the stria vascularis of mutants. These results suggest that communication between marginal, intermediate and basal cells might be important to the normal function of the stria vascularis.

  4. Characterization of neuronal cell death in the spiral ganglia of a mouse model of endolymphatic hydrops.

    PubMed

    Semaan, Maroun T; Zheng, Qing Y; Han, Fengchan; Zheng, Yuxi; Yu, Heping; Heaphy, John C; Megerian, Cliff A

    2013-04-01

    Spiral ganglion neurons (SGN) in the Phex male mouse, a murine model of postnatal endolymphatic hydrops (ELH) undergo progressive deterioration reminiscent of human and other animal models of ELH with features suggesting apoptosis as an important mechanism. Histologic analysis of the mutant's cochlea demonstrates ELH by postnatal Day (P) 21 and SGN loss by P90. The SGN loss seems to occur in a consistent topographic pattern beginning at the cochlear apex. SGN were counted at P60, P90, and P120. Semiquantitative reverse transcriptase-polymerase chain reaction (RT-PCR), quantitative PCR, and immunohistochemical analyses of activated caspase-3, caspase-8, and caspase-9 were performed on cochlear sections obtained from mutants and controls. Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling assay (TUNEL) was carried out on 2 mutants and 2 controls. Corrected SGN counts in control mice were greater in the apical turn of the cochleae at P90 and P120, respectively (p < 0.01). Increased expression of activated caspase-3, caspase-8, and caspase-9 was seen in the mutant. At later time points, activated caspase expression gradually declined in the apical turns and increased in basal turns of the cochlea. Quantitative and semiquantitative PCR analysis confirmed increased expression of caspase-3, caspase-8, and caspase-9 at P21 and P40. TUNEL staining demonstrated apoptosis at P90 in the apical and basal turns of the mutant cochleae. SGN degeneration in the Phex /Y mouse seems to mimic patterns observed in other animals with ELH. Apoptosis plays an important role in the degeneration of the SGN in the Phex male mouse.

  5. The mouse lymphoma assay detects recombination, deletion, and aneuploidy.

    PubMed

    Wang, Jianyong; Sawyer, Jeffrey R; Chen, Ling; Chen, Tao; Honma, Masamitsu; Mei, Nan; Moore, Martha M

    2009-05-01

    The mouse lymphoma assay (MLA) uses the thymidine kinase (Tk) gene of the L5178Y/Tk(+/-)-3.7.2C mouse lymphoma cell line as a reporter gene to evaluate the mutagenicity of chemical and physical agents. The MLA is recommended by both the United States Food and Drug Administration and the United States Environmental Protection Agency as the preferred in vitro mammalian cell mutation assay for genetic toxicology screening because it detects a wide range of genetic alterations, including both point mutations and chromosomal mutations. However, the specific types of chromosomal mutations that can be detected by the MLA need further clarification. For this purpose, three chemicals, including two clastogens and an aneugen (3'-azido-3'-deoxythymidine, mitomycin C, and taxol), were used to induce Tk mutants. Loss of heterozygosity (LOH) analysis was used to select mutants that could be informative as to whether they resulted from deletion, mitotic recombination, or aneuploidy. A combination of additional methods, G-banding analysis, chromosome painting, and a real-time PCR method to detect the copy number (CN) of the Tk gene was then used to provide a detailed analysis. LOH involving at least 25% of chromosome 11, a normal karyotype, and a Tk CN of 2 would indicate that the mutant resulted from recombination, whereas LOH combined with a karyotypically visible deletion of chromosome 11 and a Tk CN of 1 would indicate a deletion. Aneuploidy was confirmed using G-banding combined with chromosome painting analysis for mutants showing LOH at every microsatellite marker on chromosome 11. From this analysis, it is clear that mouse lymphoma Tk mutants can result from recombination, deletion, and aneuploidy.

  6. The Role of Zic Genes in Inner Ear Development in the Mouse: Exploring Mutant Mouse Phenotypes

    PubMed Central

    Chervenak, Andrew P.; Bank, Lisa M.; Thomsen, Nicole; Glanville-Jones, Hannah C; Skibo, Jonathan; Millen, Kathleen J.; Arkell, Ruth M.; Barald, Kate F.

    2014-01-01

    Background Murine Zic genes (Zic1-5) are expressed in the dorsal hindbrain and in periotic mesenchyme (POM) adjacent to the developing inner ear. Zic genes are involved in developmental signaling pathways in many organ systems, including the ear, although their exact roles haven't been fully elucidated. This report examines the role of Zic1, Zic2, and Zic4 during inner ear development in mouse mutants in which these Zic genes are affected Results Zic1/Zic4 double mutants don't exhibit any apparent defects in inner ear morphology. By contrast, inner ears from Zic2kd/kd and Zic2Ku/Ku mutants have severe but variable morphological defects in endolymphatic duct/sac and semicircular canal formation and in cochlear extension in the inner ear. Analysis of otocyst patterning in the Zic2Ku/Ku mutants by in situ hybridization showed changes in the expression patterns of Gbx2 and Pax2. Conclusions The experiments provide the first genetic evidence that the Zic genes are required for morphogenesis of the inner ear. Zic2 loss-of-function doesn't prevent initial otocyst patterning but leads to molecular abnormalities concomitant with morphogenesis of the endolymphatic duct. Functional hearing deficits often accompany inner ear dysmorphologies, making Zic2 a novel candidate gene for ongoing efforts to identify the genetic basis of human hearing loss. PMID:25178196

  7. Overexpression of mutant ataxin-3 in mouse cerebellum induces ataxia and cerebellar neuropathology.

    PubMed

    Nóbrega, Clévio; Nascimento-Ferreira, Isabel; Onofre, Isabel; Albuquerque, David; Conceição, Mariana; Déglon, Nicole; de Almeida, Luís Pereira

    2013-08-01

    Machado-Joseph disease (MJD), also known as spinocerebellar ataxia type 3 (SCA3), is a fatal, dominant neurodegenerative disorder caused by the polyglutamine-expanded protein ataxin-3. Clinical manifestations include cerebellar ataxia and pyramidal signs culminating in severe neuronal degeneration. Currently, there is no therapy able to modify disease progression. In the present study, we aimed at investigating one of the most severely affected brain regions in the disorder--the cerebellum--and the behavioral defects associated with the neuropathology in this region. For this purpose, we injected lentiviral vectors encoding full-length human mutant ataxin-3 in the mouse cerebellum of 3-week-old C57/BL6 mice. We show that circumscribed expression of human mutant ataxin-3 in the cerebellum mediates within a short time frame--6 weeks, the development of a behavioral phenotype including reduced motor coordination, wide-based ataxic gait, and hyperactivity. Furthermore, the expression of mutant ataxin-3 resulted in the accumulation of intranuclear inclusions, neuropathological abnormalities, and neuronal death. These data show that lentiviral-based expression of mutant ataxin-3 in the mouse cerebellum induces localized neuropathology, which is sufficient to generate a behavioral ataxic phenotype. Moreover, this approach provides a physiologically relevant, cost-effective and time-effective animal model to gain further insights into the pathogenesis of MJD and for the evaluation of experimental therapeutics of MJD.

  8. An Escherichia coli Nissle 1917 Missense Mutant Colonizes the Streptomycin-Treated Mouse Intestine Better than the Wild Type but Is Not a Better Probiotic

    PubMed Central

    Adediran, Jimmy; Leatham-Jensen, Mary P.; Mokszycki, Matthew E.; Frimodt-Møller, Jakob; Krogfelt, Karen A.; Kazmierczak, Krystyna; Kenney, Linda J.; Conway, Tyrrell

    2014-01-01

    Previously we reported that the streptomycin-treated mouse intestine selected for two different Escherichia coli MG1655 mutants with improved colonizing ability: nonmotile E. coli MG1655 flhDC deletion mutants that grew 15% faster in vitro in mouse cecal mucus and motile E. coli MG1655 envZ missense mutants that grew slower in vitro in mouse cecal mucus yet were able to cocolonize with the faster-growing flhDC mutants. The E. coli MG1655 envZ gene encodes a histidine kinase that is a member of the envZ-ompR two-component signal transduction system, which regulates outer membrane protein profiles. In the present investigation, the envZP41L gene was transferred from the intestinally selected E. coli MG1655 mutant to E. coli Nissle 1917, a human probiotic strain used to treat gastrointestinal infections. Both the E. coli MG1655 and E. coli Nissle 1917 strains containing envZP41L produced more phosphorylated OmpR than their parents. The E. coli Nissle 1917 strain containing envZP41L also became more resistant to bile salts and colicin V and grew 50% slower in vitro in mucus and 15% to 30% slower on several sugars present in mucus, yet it was a 10-fold better colonizer than E. coli Nissle 1917. However, E. coli Nissle 1917 envZP41L was not better at preventing colonization by enterohemorrhagic E. coli EDL933. The data can be explained according to our “restaurant” hypothesis for commensal E. coli strains, i.e., that they colonize the intestine as sessile members of mixed biofilms, obtaining the sugars they need for growth locally, but compete for sugars with invading E. coli pathogens planktonically. PMID:24478082

  9. Mutant mouse models and their contribution to our knowledge of corpus luteum development, function and regression.

    PubMed

    Henkes, Luiz E; Davis, John S; Rueda, Bo R

    2003-11-10

    The corpus luteum is a unique organ, which is transitory in nature. The development, maintenance and regression of the corpus luteum are regulated by endocrine, paracrine and autocrine signaling events. Defining the specific mediators of luteal development, maintenance and regression has been difficult and often perplexing due to the complexity that stems from the variety of cell types that make up the luteal tissue. Moreover, some regulators may serve dual functions as a luteotropic and luteolytic agent depending on the temporal and spatial environment in which they are expressed. As a result, some confusion is present in the interpretation of in vitro and in vivo studies. More recently investigators have utilized mutant mouse models to define the functional significance of specific gene products. The goal of this mini-review is to identify and discuss mutant mouse models that have luteal anomalies, which may provide some clues as to the significance of specific regulators of corpus luteum function.

  10. Systems Biology-Based Identification of Mycobacterium tuberculosis Persistence Genes in Mouse Lungs

    PubMed Central

    Dutta, Noton K.; Bandyopadhyay, Nirmalya; Veeramani, Balaji; Lamichhane, Gyanu; Karakousis, Petros C.; Bader, Joel S.

    2014-01-01

    ABSTRACT Identifying Mycobacterium tuberculosis persistence genes is important for developing novel drugs to shorten the duration of tuberculosis (TB) treatment. We developed computational algorithms that predict M. tuberculosis genes required for long-term survival in mouse lungs. As the input, we used high-throughput M. tuberculosis mutant library screen data, mycobacterial global transcriptional profiles in mice and macrophages, and functional interaction networks. We selected 57 unique, genetically defined mutants (18 previously tested and 39 untested) to assess the predictive power of this approach in the murine model of TB infection. We observed a 6-fold enrichment in the predicted set of M. tuberculosis genes required for persistence in mouse lungs relative to randomly selected mutant pools. Our results also allowed us to reclassify several genes as required for M. tuberculosis persistence in vivo. Finally, the new results implicated additional high-priority candidate genes for testing. Experimental validation of computational predictions demonstrates the power of this systems biology approach for elucidating M. tuberculosis persistence genes. PMID:24549847

  11. Direct production of mouse disease models by embryo microinjection of TALENs and oligodeoxynucleotides

    PubMed Central

    Wefers, Benedikt; Meyer, Melanie; Ortiz, Oskar; Hrabé de Angelis, Martin; Hansen, Jens; Wurst, Wolfgang; Kühn, Ralf

    2013-01-01

    The study of genetic disease mechanisms relies mostly on targeted mouse mutants that are derived from engineered embryonic stem (ES) cells. Nevertheless, the establishment of mutant ES cells is laborious and time-consuming, restricting the study of the increasing number of human disease mutations discovered by high-throughput genomic analysis. Here, we present an advanced approach for the production of mouse disease models by microinjection of transcription activator-like effector nucleases (TALENs) and synthetic oligodeoxynucleotides into one-cell embryos. Within 2 d of embryo injection, we created and corrected chocolate missense mutations in the small GTPase RAB38; a regulator of intracellular vesicle trafficking and phenotypic model of Hermansky-Pudlak syndrome. Because ES cell cultures and targeting vectors are not required, this technology enables instant germline modifications, making heterozygous mutants available within 18 wk. The key features of direct mutagenesis by TALENs and oligodeoxynucleotides, minimal effort and high speed, catalyze the generation of future in vivo models for the study of human disease mechanisms and interventions. PMID:23426636

  12. l-tyrosine induces melanocyte differentiation in novel pink-eyed dilution castaneus mouse mutant showing age-related pigmentation.

    PubMed

    Hirobe, Tomohisa; Ishikawa, Akira

    2015-12-01

    The mouse pink-eyed dilution (oculocutaneous albinism II; p/Oca2(p)) locus is known to control tyrosinase activity, melanin content, and melanosome development in melanocytes. Pink-eyed dilution castaneus (p(cas)/Oca2(p-cas)) is a novel mutant allele on mouse chromosome 7 that arose spontaneously in Indonesian wild mice, Mus musculus castaneus. Mice homozygous for Oca2(p-cas) usually exhibit pink eyes and beige-colored coat on nonagouti C57BL/6 (B6) background. Recently, a novel spontaneous mutation occurred in the progeny between this mutant and B6 mice. The eyes of this novel mutant progressively become black from pink and the coat becomes dark gray from beige with aging. The aim of this study is to clarify whatever differences exist in melanocyte proliferation and differentiation between the ordinary (pink-eyed) and novel (black-eyed) mutant using serum-free primary culture system. The characteristics of melanocyte proliferation and differentiation were investigated by serum-free primary culture system using melanocyte-proliferation medium (MDMD). The proliferation of melanoblasts in MDMD did not differ between the two mice. However, when the epidermal cell suspensions were cultured with MDMD supplemented with l-tyrosine (Tyr), the differentiation of black-eyed melanocytes was greatly induced in a concentration-dependent manner compared with pink-eyed melanocytes. Immunocytochemistry demonstrated that the expression of tyrosinase and tyrosinase-related protein-1 (Tyrp1) was greatly induced or stimulated both in pink-eyed and black-eyed melanocytes, whereas the expression of microphthalmia-associated transcription factor (Mitf) was stimulated only in black-eyed melanocytes. These results suggest that the age-related coat darkening in black-eyed mutant may be caused by the increased ability of melanocyte differentiation dependent on l-Tyr through the upregulation of tyrosinase, Tyrp1, and Mitf. This mutant mouse may be useful for animal model to clarify the mechanisms of age-related pigmentation in human skin, such as melasma and solar lentigines. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Decreased Anxiety-Like Behavior and Gαq/11-Dependent Responses in the Amygdala of Mice Lacking TRPC4 Channels

    PubMed Central

    Riccio, Antonio; Li, Yan; Tsvetkov, Evgeny; Gapon, Svetlana; Yao, Gui Lan; Smith, Kiersten S.; Engin, Elif; Rudolph, Uwe; Bolshakov, Vadim Y.

    2014-01-01

    Transient receptor potential (TRP) channels are abundant in the brain where they regulate transmission of sensory signals. The expression patterns of different TRPC subunits (TRPC1, 4, and 5) are consistent with their potential role in fear-related behaviors. Accordingly, we found recently that mutant mice lacking a specific TRP channel subunit, TRPC5, exhibited decreased innate fear responses. Both TRPC5 and another member of the same subfamily, TRPC4, form heteromeric complexes with the TRPC1 subunit (TRPC1/5 and TRPC1/4, respectively). As TRP channels with specific subunit compositions may have different functional properties, we hypothesized that fear-related behaviors could be differentially controlled by TRPCs with distinct subunit arrangements. In this study, we focused on the analysis of mutant mice lacking the TRPC4 subunit, which, as we confirmed in experiments on control mice, is expressed in brain areas implicated in the control of fear and anxiety. In behavioral experiments, we found that constitutive ablation of TRPC4 was associated with diminished anxiety levels (innate fear). Furthermore, knockdown of TRPC4 protein in the lateral amygdala via lentiviral-mediated gene delivery of RNAi mimicked the behavioral phenotype of constitutive TRPC4-null (TRPC4−/−) mouse. Recordings in brain slices demonstrated that these behavioral modifications could stem from the lack of TRPC4 potentiation in neurons in the lateral nucleus of the amygdala through two Gαq/11 protein-coupled signaling pathways, activated via Group I metabotropic glutamate receptors and cholecystokinin 2 receptors, respectively. Thus, TRPC4 and the structurally and functionally related subunit, TRPC5, may both contribute to the mechanisms underlying regulation of innate fear responses. PMID:24599464

  14. Designing Mouse Behavioral Tasks Relevant to Autistic-Like Behaviors

    ERIC Educational Resources Information Center

    Crawley, Jacqueline N.

    2004-01-01

    The importance of genetic factors in autism has prompted the development of mutant mouse models to advance our understanding of biological mechanisms underlying autistic behaviors. Mouse models of human neuropsychiatric diseases are designed to optimize (1) face validity, i.e., resemblance to the human symptoms; (2) construct validity, i.e.,…

  15. In Vivo-Selected Pyrazinoic Acid-Resistant Mycobacterium tuberculosis Strains Harbor Missense Mutations in the Aspartate Decarboxylase PanD and the Unfoldase ClpC1.

    PubMed

    Gopal, Pooja; Tasneen, Rokeya; Yee, Michelle; Lanoix, Jean-Philippe; Sarathy, Jansy; Rasic, George; Li, Liping; Dartois, Véronique; Nuermberger, Eric; Dick, Thomas

    2017-07-14

    Through mutant selection on agar containing pyrazinoic acid (POA), the bioactive form of the prodrug pyrazinamide (PZA), we recently showed that missense mutations in the aspartate decarboxylase PanD and the unfoldase ClpC1, and loss-of-function mutation of polyketide synthases Mas and PpsA-E involved in phthiocerol dimycocerosate synthesis, cause resistance to POA and PZA in Mycobacterium tuberculosis. Here we first asked whether these in vitro-selected POA/PZA-resistant mutants are attenuated in vivo, to potentially explain the lack of evidence of these mutations among PZA-resistant clinical isolates. Infection of mice with panD, clpC1, and mas/ppsA-E mutants showed that whereas growth of clpC1 and mas/ppsA-E mutants was attenuated, the panD mutant grew as well as the wild-type. To determine whether these resistance mechanisms can emerge within the host, mice infected with wild-type M. tuberculosis were treated with POA, and POA-resistant colonies were confirmed for PZA and POA resistance. Genome sequencing revealed that 82 and 18% of the strains contained missense mutations in panD and clpC1, respectively. Consistent with their lower fitness and POA resistance level, independent mas/ppsA-E mutants were not found. In conclusion, we show that the POA/PZA resistance mechanisms due to panD and clpC1 missense mutations are recapitulated in vivo. Whereas the representative clpC1 mutant was attenuated for growth in the mouse infection model, providing a possible explanation for their absence among clinical isolates, the growth kinetics of the representative panD mutant was unaffected. Why POA/PZA resistance-conferring panD mutations are observed in POA-treated mice but not yet among clinical strains isolated from PZA-treated patients remains to be determined.

  16. An Azole-Tolerant Endosomal Trafficking Mutant of Candida albicans Is Susceptible to Azole Treatment in a Mouse Model of Vaginal Candidiasis

    PubMed Central

    Peters, Brian M.; Luna-Tapia, Arturo; Tournu, Hélène; Rybak, Jeffrey M.; Rogers, P. David

    2017-01-01

    ABSTRACT We recently reported that a Candida albicans endosomal trafficking mutant continues to grow after treatment with the azole antifungals. Herein, we report that the vps21Δ/Δ mutant does not have a survival advantage over wild-type isolates after fluconazole treatment in a mouse model of vaginal candidiasis. Furthermore, loss of VPS21 does not synergize with established mechanisms of azole resistance, such as overexpression of efflux pumps or of Erg11p, the target enzyme of the azoles. In summary, although loss of VPS21 function enhances C. albicans survival after azole treatment in vitro, it does not seem to affect azole susceptibility in vivo. PMID:28348159

  17. An Azole-Tolerant Endosomal Trafficking Mutant of Candida albicans Is Susceptible to Azole Treatment in a Mouse Model of Vaginal Candidiasis.

    PubMed

    Peters, Brian M; Luna-Tapia, Arturo; Tournu, Hélène; Rybak, Jeffrey M; Rogers, P David; Palmer, Glen E

    2017-06-01

    We recently reported that a Candida albicans endosomal trafficking mutant continues to grow after treatment with the azole antifungals. Herein, we report that the vps21 Δ/Δ mutant does not have a survival advantage over wild-type isolates after fluconazole treatment in a mouse model of vaginal candidiasis. Furthermore, loss of VPS21 does not synergize with established mechanisms of azole resistance, such as overexpression of efflux pumps or of Erg11p, the target enzyme of the azoles. In summary, although loss of VPS21 function enhances C. albicans survival after azole treatment in vitro , it does not seem to affect azole susceptibility in vivo . Copyright © 2017 American Society for Microbiology.

  18. Contralateral migration of oculomotor neurons is regulated by Slit/Robo signaling.

    PubMed

    Bjorke, Brielle; Shoja-Taheri, Farnaz; Kim, Minkyung; Robinson, G Eric; Fontelonga, Tatiana; Kim, Kyung-Tai; Song, Mi-Ryoung; Mastick, Grant S

    2016-10-22

    Oculomotor neurons develop initially like typical motor neurons, projecting axons out of the ventral midbrain to their ipsilateral targets, the extraocular muscles. However, in all vertebrates, after the oculomotor nerve (nIII) has reached the extraocular muscle primordia, the cell bodies that innervate the superior rectus migrate to join the contralateral nucleus. This motor neuron migration represents a unique strategy to form a contralateral motor projection. Whether migration is guided by diffusible cues remains unknown. We examined the role of Slit chemorepellent signals in contralateral oculomotor migration by analyzing mutant mouse embryos. We found that the ventral midbrain expresses high levels of both Slit1 and 2, and that oculomotor neurons express the repellent Slit receptors Robo1 and Robo2. Therefore, Slit signals are in a position to influence the migration of oculomotor neurons. In Slit 1/2 or Robo1/2 double mutant embryos, motor neuron cell bodies migrated into the ventral midbrain on E10.5, three days prior to normal migration. These early migrating neurons had leading projections into and across the floor plate. In contrast to the double mutants, embryos which were mutant for single Slit or Robo genes did not have premature migration or outgrowth on E10.5, demonstrating a cooperative requirement of Slit1 and 2, as well as Robo1 and 2. To test how Slit/Robo midline repulsion is modulated, we found that the normal migration did not require the receptors Robo3 and CXCR4, or the chemoattractant, Netrin 1. The signal to initiate contralateral migration is likely autonomous to the midbrain because oculomotor neurons migrate in embryos that lack either nerve outgrowth or extraocular muscles, or in cultured midbrains that lacked peripheral tissue. Overall, our results demonstrate that a migratory subset of motor neurons respond to floor plate-derived Slit repulsion to properly control the timing of contralateral migration.

  19. Genetic disruption of the sh3pxd2a gene reveals an essential role in mouse development and the existence of a novel isoform of tks5.

    PubMed

    Cejudo-Martin, Pilar; Yuen, Angela; Vlahovich, Nicole; Lock, Peter; Courtneidge, Sara A; Díaz, Begoña

    2014-01-01

    Tks5 is a scaffold protein and Src substrate involved in cell migration and matrix degradation through its essential role in invadosome formation and function. We have previously described that Tks5 is fundamental for zebrafish neural crest cell migration in vivo. In the present study, we sought to investigate the function of Tks5 in mammalian development by analyzing mice mutant for sh3pxd2a, the gene encoding Tks5. Homozygous disruption of the sh3pxd2a gene by gene-trapping in mouse resulted in neonatal death and the presence of a complete cleft of the secondary palate. Interestingly, embryonic fibroblasts from homozygous gene-trap sh3pxd2a mice lacked only the highest molecular weight band of the characteristic Tks5 triplet observed in protein extracts, leaving the lower molecular weight bands unaffected. This finding, together with the existence of two human Expressed Sequence Tags lacking the first 5 exons of SH3PXD2A, made us hypothesize about the presence of a second alternative transcription start site located in intron V. We performed 5'RACE on mouse fibroblasts and isolated a new transcript of the sh3pxd2a gene encoding a novel Tks5 isoform, that we named Tks5β. This novel isoform diverges from the long form of Tks5 in that it lacks the PX-domain, which confers affinity for phosphatidylinositol-3,4-bisphosphate. Instead, Tks5β has a short unique amino terminal sequence encoded by the newly discovered exon 6β; this exon includes a start codon located 29 bp from the 5'-end of exon 6. Tks5β mRNA is expressed in MEFs and all mouse adult tissues analyzed. Tks5β is a substrate for the Src tyrosine kinase and its expression is regulated through the proteasome degradation pathway. Together, these findings indicate the essentiality of the larger Tks5 isoform for correct mammalian development and the transcriptional complexity of the sh3pxd2a gene.

  20. Genetic Disruption of the Sh3pxd2a Gene Reveals an Essential Role in Mouse Development and the Existence of a Novel Isoform of Tks5

    PubMed Central

    Cejudo-Martin, Pilar; Yuen, Angela; Vlahovich, Nicole; Lock, Peter; Courtneidge, Sara A.; Díaz, Begoña

    2014-01-01

    Tks5 is a scaffold protein and Src substrate involved in cell migration and matrix degradation through its essential role in invadosome formation and function. We have previously described that Tks5 is fundamental for zebrafish neural crest cell migration in vivo. In the present study, we sought to investigate the function of Tks5 in mammalian development by analyzing mice mutant for sh3pxd2a, the gene encoding Tks5. Homozygous disruption of the sh3pxd2a gene by gene-trapping in mouse resulted in neonatal death and the presence of a complete cleft of the secondary palate. Interestingly, embryonic fibroblasts from homozygous gene-trap sh3pxd2a mice lacked only the highest molecular weight band of the characteristic Tks5 triplet observed in protein extracts, leaving the lower molecular weight bands unaffected. This finding, together with the existence of two human Expressed Sequence Tags lacking the first 5 exons of SH3PXD2A, made us hypothesize about the presence of a second alternative transcription start site located in intron V. We performed 5′RACE on mouse fibroblasts and isolated a new transcript of the sh3pxd2a gene encoding a novel Tks5 isoform, that we named Tks5β. This novel isoform diverges from the long form of Tks5 in that it lacks the PX-domain, which confers affinity for phosphatidylinositol-3,4-bisphosphate. Instead, Tks5β has a short unique amino terminal sequence encoded by the newly discovered exon 6β; this exon includes a start codon located 29 bp from the 5'-end of exon 6. Tks5β mRNA is expressed in MEFs and all mouse adult tissues analyzed. Tks5β is a substrate for the Src tyrosine kinase and its expression is regulated through the proteasome degradation pathway. Together, these findings indicate the essentiality of the larger Tks5 isoform for correct mammalian development and the transcriptional complexity of the sh3pxd2a gene. PMID:25259869

  1. Mutant Huntingtin Causes a Selective Decrease in the Expression of Synaptic Vesicle Protein 2C.

    PubMed

    Peng, Chaohua; Zhu, Gaochun; Liu, Xiangqian; Li, He

    2018-04-30

    Huntington's disease (HD) is a neurodegenerative disease caused by a polyglutamine expansion in the huntingtin (Htt) protein. Mutant Htt causes synaptic transmission dysfunctions by interfering in the expression of synaptic proteins, leading to early HD symptoms. Synaptic vesicle proteins 2 (SV2s), a family of synaptic vesicle proteins including 3 members, SV2A, SV2B, and SV2C, plays important roles in synaptic physiology. Here, we investigated whether the expression of SV2s is affected by mutant Htt in the brains of HD transgenic (TG) mice and Neuro2a mouse neuroblastoma cells (N2a cells) expressing mutant Htt. Western blot analysis showed that the protein levels of SV2A and SV2B were not significantly changed in the brains of HD TG mice expressing mutant Htt with 82 glutamine repeats. However, in the TG mouse brain there was a dramatic decrease in the protein level of SV2C, which has a restricted distribution pattern in regions particularly vulnerable in HD. Immunostaining revealed that the immunoreactivity of SV2C was progressively weakened in the basal ganglia and hippocampus of TG mice. RT-PCR demonstrated that the mRNA level of SV2C progressively declined in the TG mouse brain without detectable changes in the mRNA levels of SV2A and SV2B, indicating that mutant Htt selectively inhibits the transcriptional expression of SV2C. Furthermore, we found that only SV2C expression was progressively inhibited in N2a cells expressing a mutant Htt containing 120 glutamine repeats. These findings suggest that the synaptic dysfunction in HD results from the mutant Htt-mediated inhibition of SV2C transcriptional expression. These data also imply that the restricted distribution and decreased expression of SV2C contribute to the brain region-selective pathology of HD.

  2. Discovery of a Siderophore Export System Essential for Virulence of Mycobacterium tuberculosis

    PubMed Central

    Wells, Ryan M.; Jones, Christopher M.; Xi, Zhaoyong; Speer, Alexander; Danilchanka, Olga; Doornbos, Kathryn S.; Sun, Peibei; Wu, Fangming; Tian, Changlin; Niederweis, Michael

    2013-01-01

    Iron is an essential nutrient for most bacterial pathogens, but is restricted by the host immune system. Mycobacterium tuberculosis (Mtb) utilizes two classes of small molecules, mycobactins and carboxymycobactins, to capture iron from the human host. Here, we show that an Mtb mutant lacking the mmpS4 and mmpS5 genes did not grow under low iron conditions. A cytoplasmic iron reporter indicated that the double mutant experienced iron starvation even under high-iron conditions. Loss of mmpS4 and mmpS5 did not change uptake of carboxymycobactin by Mtb. Thin layer chromatography showed that the ΔmmpS4/S5 mutant was strongly impaired in biosynthesis and secretion of siderophores. Pull-down experiments with purified proteins demonstrated that MmpS4 binds to a periplasmic loop of the associated transporter protein MmpL4. This interaction was corroborated by genetic experiments. While MmpS5 interacted only with MmpL5, MmpS4 interacted with both MmpL4 and MmpL5. These results identified MmpS4/MmpL4 and MmpS5/MmpL5 as siderophore export systems in Mtb and revealed that the MmpL proteins transport small molecules other than lipids. MmpS4 and MmpS5 resemble periplasmic adapter proteins of tripartite efflux pumps of Gram-negative bacteria, however, they are not only required for export but also for efficient siderophore synthesis. Membrane association of MbtG suggests a link between siderophore synthesis and transport. The structure of the soluble domain of MmpS4 (residues 52–140) was solved by NMR and indicates that mycobacterial MmpS proteins constitute a novel class of transport accessory proteins. The bacterial burden of the mmpS4/S5 deletion mutant in mouse lungs was lower by 10,000-fold and none of the infected mice died within 180 days compared to wild-type Mtb. This is the strongest attenuation observed so far for Mtb mutants lacking genes involved in iron utilization. In conclusion, this study identified the first components of novel siderophore export systems which are essential for virulence of Mtb. PMID:23431276

  3. Enhanced recognition memory following glycine transporter 1 deletion in forebrain neurons.

    PubMed

    Singer, Philipp; Boison, Detlev; Möhler, Hanns; Feldon, Joram; Yee, Benjamin K

    2007-10-01

    Selective deletion of glycine transporter 1 (GlyT1) in forebrain neurons enhances N-methyl-D-aspartate receptor (NMDAR)-dependent neurotransmission and facilitates associative learning. These effects are attributable to increases in extracellular glycine availability in forebrain neurons due to reduced glycine re-uptake. Using a forebrain- and neuron-specific GlyT1-knockout mouse line (CamKIIalphaCre; GlyT1tm1.2fl/fI), the authors investigated whether this molecular intervention can affect recognition memory. In a spontaneous object recognition memory test, enhanced preference for a novel object was demonstrated in mutant mice relative to littermate control subjects at a retention interval of 2 hr, but not at 2 min. Furthermore, mutants were responsive to a switch in the relative spatial positions of objects, whereas control subjects were not. These potential procognitive effects were demonstrated against a lack of difference in contextual novelty detection: Mutant and control subjects showed equivalent preference for a novel over a familiar context. Results therefore extend the possible range of potential promnesic effects of specific forebrain neuronal GlyT1 deletion from associative learning to recognition memory and further support the possibility that mnemonic functions can be enhanced by reducing GlyT1 function. (PsycINFO Database Record (c) 2007 APA, all rights reserved).

  4. aroA-Deficient Salmonella enterica Serovar Typhimurium Is More Than a Metabolically Attenuated Mutant

    PubMed Central

    Frahm, Michael; Kocijancic, Dino; Rohde, Manfred; Eckweiler, Denitsa; Bielecka, Agata; Bueno, Emilio; Cava, Felipe; Abraham, Wolf-Rainer; Curtiss, Roy; Häussler, Susanne; Erhardt, Marc; Weiss, Siegfried

    2016-01-01

    ABSTRACT Recombinant attenuated Salmonella enterica serovar Typhimurium strains are believed to act as powerful live vaccine carriers that are able to elicit protection against various pathogens. Auxotrophic mutations, such as a deletion of aroA, are commonly introduced into such bacteria for attenuation without incapacitating immunostimulation. In this study, we describe the surprising finding that deletion of aroA dramatically increased the virulence of attenuated Salmonella in mouse models. Mutant bacteria lacking aroA elicited increased levels of the proinflammatory cytokine tumor necrosis factor alpha (TNF-α) after systemic application. A detailed genetic and phenotypic characterization in combination with transcriptomic and metabolic profiling demonstrated that ΔaroA mutants display pleiotropic alterations in cellular physiology and lipid and amino acid metabolism, as well as increased sensitivity to penicillin, complement, and phagocytic uptake. In concert with other immunomodulating mutations, deletion of aroA affected flagellin phase variation and gene expression of the virulence-associated genes arnT and ansB. Finally, ΔaroA strains displayed significantly improved tumor therapeutic activity. These results highlight the importance of a functional shikimate pathway to control homeostatic bacterial physiology. They further highlight the great potential of ΔaroA-attenuated Salmonella for the development of vaccines and cancer therapies with important implications for host-pathogen interactions and translational medicine. PMID:27601574

  5. Defects of Vps15 in skeletal muscles lead to autophagic vacuolar myopathy and lysosomal disease

    PubMed Central

    Nemazanyy, Ivan; Blaauw, Bert; Paolini, Cecilia; Caillaud, Catherine; Protasi, Feliciano; Mueller, Amelie; Proikas-Cezanne, Tassula; Russell, Ryan C; Guan, Kun-Liang; Nishino, Ichizo; Sandri, Marco; Pende, Mario; Panasyuk, Ganna

    2013-01-01

    The complex of Vacuolar Protein Sorting 34 and 15 (Vps34 and Vps15) has Class III phosphatidylinositol 3-kinase activity and putative roles in nutrient sensing, mammalian Target Of Rapamycin (mTOR) activation by amino acids, cell growth, vesicular trafficking and autophagy. Contrary to expectations, here we show that Vps15-deficient mouse tissues are competent for LC3-positive autophagosome formation and maintain mTOR activation. However, an impaired lysosomal function in mutant cells is traced by accumulation of adaptor protein p62, LC3 and Lamp2 positive vesicles, which can be reverted to normal levels after ectopic overexpression of Vps15. Mice lacking Vps15 in skeletal muscles, develop a severe myopathy. Distinct from the autophagy deficient Atg7−/− mutants, pathognomonic morphological hallmarks of autophagic vacuolar myopathy (AVM) are observed in Vps15−/− mutants, including elevated creatine kinase plasma levels, accumulation of autophagosomes, glycogen and sarcolemmal features within the fibres. Importantly, Vps34/Vps15 overexpression in myoblasts of Danon AVM disease patients alleviates the glycogen accumulation. Thus, the activity of the Vps34/Vps15 complex is critical in disease conditions such as AVMs, and possibly a variety of other lysosomal storage diseases. PMID:23630012

  6. Mutational analysis of polyomavirus small-T-antigen functions in productive infection and in transformation.

    PubMed Central

    Martens, I; Nilsson, S A; Linder, S; Magnusson, G

    1989-01-01

    The function of polyomavirus small T antigen in productive infection and in transformation was studied. Transfection of permissive mouse cells with mixtures of mutants that express only one type of T antigen showed that small T antigen increased large-T-antigen-dependent viral DNA synthesis approximately 10-fold. Under the same conditions, small T antigen was also essential for the formation of infectious virus particles. To analyze these activities of small T antigen, mutants producing protein with single amino acid replacements were constructed. Two mutants, bc1073 and bc1075, were characterized. Although both mutations led to the substitution of amino acid residues of more than one T antigen, the phenotype of both mutants was associated with alterations of the small T antigen. Both mutant proteins had lost their activity in the maturation of infectious virus particles. The bc1075 but not the bc1073 small T antigen had also lost its ability to stimulate viral DNA synthesis in mouse 3T6 cells. Finally, both mutants retained a third activity of small T antigen: to confer on rat cells also expressing middle T antigen the ability to grow efficiently in semisolid medium. The phenotypes of the mutants in these three assays suggest that small T antigen has at least three separate functions. Images PMID:2704075

  7. Mutational analysis of polyomavirus small-T-antigen functions in productive infection and in transformation.

    PubMed

    Martens, I; Nilsson, S A; Linder, S; Magnusson, G

    1989-05-01

    The function of polyomavirus small T antigen in productive infection and in transformation was studied. Transfection of permissive mouse cells with mixtures of mutants that express only one type of T antigen showed that small T antigen increased large-T-antigen-dependent viral DNA synthesis approximately 10-fold. Under the same conditions, small T antigen was also essential for the formation of infectious virus particles. To analyze these activities of small T antigen, mutants producing protein with single amino acid replacements were constructed. Two mutants, bc1073 and bc1075, were characterized. Although both mutations led to the substitution of amino acid residues of more than one T antigen, the phenotype of both mutants was associated with alterations of the small T antigen. Both mutant proteins had lost their activity in the maturation of infectious virus particles. The bc1075 but not the bc1073 small T antigen had also lost its ability to stimulate viral DNA synthesis in mouse 3T6 cells. Finally, both mutants retained a third activity of small T antigen: to confer on rat cells also expressing middle T antigen the ability to grow efficiently in semisolid medium. The phenotypes of the mutants in these three assays suggest that small T antigen has at least three separate functions.

  8. Transduction of NeuroD2 protein induced neural cell differentiation.

    PubMed

    Noda, Tomohide; Kawamura, Ryuzo; Funabashi, Hisakage; Mie, Masayasu; Kobatake, Eiry

    2006-11-01

    NeuroD2, one of the neurospecific basic helix-loop-helix transcription factors, has the ability to induce neural differentiation in undifferentiated cells. In this paper, we show that transduction of NeuroD2 protein induced mouse neuroblastoma cell line N1E-115 into neural differentiation. NeuroD2 has two basic-rich domains, one is nuclear localization signal (NLS) and the other is basic region of basic helix-loop-helix (basic). We constructed some mutants of NeuroD2, ND2(Delta100-115) (lack of NLS), ND2(Delta123-134) (lack of basic) and ND2(Delta100-134) (lack of both NLS and basic) for transduction experiments. Using these proteins, we have shown that NLS region of NeuroD2 plays a role of protein transduction. Continuous addition of NeuroD2 protein resulted in N1E-115 cells adopting neural morphology after 4 days and Tau mRNA expression was increased. These results suggest that neural differentiation can be induced by direct addition of NeuroD2 protein.

  9. NMDA Receptors on Dopaminoceptive Neurons Are Essential for Drug-Induced Conditioned Place Preference123

    PubMed Central

    Tokarski, Krzysztof; Bobula, Bartosz; Zygmunt, Magdalena; Smutek, Magdalena; Kamińska, Katarzyna; Gołembiowska, Krystyna; Hess, Grzegorz; Przewlocki, Ryszard

    2016-01-01

    Abstract Plasticity of the brain’s dopamine system plays a crucial role in adaptive behavior by regulating appetitive motivation and the control of reinforcement learning. In this study, we investigated drug- and natural-reward conditioned behaviors in a mouse model in which the NMDA receptor-dependent plasticity of dopaminoceptive neurons was disrupted. We generated a transgenic mouse line with inducible selective inactivation of the NR1 subunit in neurons expressing dopamine D1 receptors (the NR1D1CreERT2 mice). Whole-cell recordings of spontaneous EPSCs on neurons in the nucleus accumbens confirmed that a population of neurons lacked the NMDA receptor-dependent component of the current. This effect was accompanied by impaired long-term potentiation in the nucleus accumbens and in the CA1 area of the ventral, but not the dorsal, hippocampus. Mutant mice did not differ from control animals when tested for pavlovian or instrumental conditioning. However, NR1D1CreERT2 mice acquired no preference for a context associated with administration of drugs of abuse. In the conditioned place preference paradigm, mutant mice did not spend more time in the context paired with cocaine, morphine, or ethanol, although these mice acquired a preference for sucrose jelly and an aversion to naloxone injections, as normal. Thus, we observed that the selective inducible ablation of the NMDA receptors specifically blocks drug-associated context memory with no effect on positive reinforcement in general. PMID:27294197

  10. NMDA Receptors on Dopaminoceptive Neurons Are Essential for Drug-Induced Conditioned Place Preference.

    PubMed

    Sikora, Magdalena; Tokarski, Krzysztof; Bobula, Bartosz; Zajdel, Joanna; Jastrzębska, Kamila; Cieślak, Przemysław Eligiusz; Zygmunt, Magdalena; Sowa, Joanna; Smutek, Magdalena; Kamińska, Katarzyna; Gołembiowska, Krystyna; Engblom, David; Hess, Grzegorz; Przewlocki, Ryszard; Rodriguez Parkitna, Jan

    2016-01-01

    Plasticity of the brain's dopamine system plays a crucial role in adaptive behavior by regulating appetitive motivation and the control of reinforcement learning. In this study, we investigated drug- and natural-reward conditioned behaviors in a mouse model in which the NMDA receptor-dependent plasticity of dopaminoceptive neurons was disrupted. We generated a transgenic mouse line with inducible selective inactivation of the NR1 subunit in neurons expressing dopamine D1 receptors (the NR1(D1CreERT2) mice). Whole-cell recordings of spontaneous EPSCs on neurons in the nucleus accumbens confirmed that a population of neurons lacked the NMDA receptor-dependent component of the current. This effect was accompanied by impaired long-term potentiation in the nucleus accumbens and in the CA1 area of the ventral, but not the dorsal, hippocampus. Mutant mice did not differ from control animals when tested for pavlovian or instrumental conditioning. However, NR1(D1CreERT2) mice acquired no preference for a context associated with administration of drugs of abuse. In the conditioned place preference paradigm, mutant mice did not spend more time in the context paired with cocaine, morphine, or ethanol, although these mice acquired a preference for sucrose jelly and an aversion to naloxone injections, as normal. Thus, we observed that the selective inducible ablation of the NMDA receptors specifically blocks drug-associated context memory with no effect on positive reinforcement in general.

  11. Combinatorial Wnt control of zebrafish midbrain-hindbrain boundary formation.

    PubMed

    Buckles, Gerri R; Thorpe, Christopher J; Ramel, Marie-Christine; Lekven, Arne C

    2004-05-01

    Wnt signaling is known to be required for the normal development of the vertebrate midbrain and hindbrain, but genetic loss of function analyses in the mouse and zebrafish yield differing results regarding the relative importance of specific Wnt loci. In the zebrafish, Wnt1 and Wnt10b functionally overlap in their control of gene expression in the ventral midbrain-hindbrain boundary (MHB), but they are not required for the formation of the MHB constriction. Whether other wnt loci are involved in zebrafish MHB development is unclear, although the expression of at least two wnts, wnt3a and wnt8b, is maintained in wnt1/wnt10b mutants. In order to address the role of wnt3a in zebrafish, we have isolated a full length cDNA and examined its expression and function via knockdown by morpholino antisense oligonucleotide (MO)-mediated knockdown. The expression pattern of wnt3a appears to be evolutionarily conserved between zebrafish and mouse, and MO knockdown shows that Wnt3a, while not uniquely required for MHB development, is required in the absence of Wnt1 and Wnt10b for the formation of the MHB constriction. In zebrafish embryos lacking Wnt3a, Wnt1 and Wnt10b, the expression of engrailed orthologs, pax2a and fgf8 is not maintained after mid-somitogenesis. In contrast to acerebellar and no isthmus mutants, in which midbrain and hindbrain cells acquire new fates but cell number is not significantly affected until late in embryogenesis, zebrafish embryos lacking Wnt3a, Wnt1 and Wnt10b undergo extensive apoptosis in the midbrain and cerebellum anlagen beginning in mid-somitogenesis, which results in the absence of a significant portion of the midbrain and cerebellum. Thus, the requirement for Wnt signaling in forming the MHB constriction is evolutionarily conserved in vertebrates and it is possible in zebrafish to dissect the relative impact of multiple Wnt loci in midbrain and hindbrain development.

  12. Plasma adiponectin complexes have distinct biochemical characteristics.

    PubMed

    Schraw, Todd; Wang, Zhao V; Halberg, Nils; Hawkins, Meredith; Scherer, Philipp E

    2008-05-01

    Adipocytes release the secretory protein adiponectin in a number of different higher-order complexes. Once synthesized and assembled in the secretory pathway of the adipocyte, these complexes circulate as biochemically distinct and stable entities with little evidence of interchange between the different forms that include a high-molecular-weight (HMW) species, a hexamer (low-molecular-weight form), and a trimeric form of the complexes. Here, we validate a high-resolution gel filtration method that reproducibly separates the three complexes in recombinant adiponectin and adiponectin from human and murine samples. We demonstrate that the HMW form is prominently reduced in male vs. female subjects and in obese, insulin-resistant vs. lean, insulin-sensitive individuals. A direct comparison of human and mouse adiponectin demonstrates that the trimer is generally more abundant in human serum. Furthermore, when the production of adiponectin is reduced, either by obesity or in mice carrying only a single functional allele of the adiponectin locus, then the amount of the HMW form is selectively reduced in circulation. The complex distribution of adiponectin can be regulated in several ways. Both mouse and human HMW adiponectin are very stable under basic conditions but are exquisitely labile under acidic conditions below pH 7. Murine and human adiponectin HMW forms also display differential susceptibility to the presence of calcium in the buffer. A mutant form of adiponectin unable to bind calcium is less susceptible to changes in calcium concentrations. However, the lack of calcium binding results in a destabilization of the structure. Disulfide bond formation (at position C39) is also important for complex formation. A mutant form of adiponectin lacking C39 prominently forms HMW and trimer but not the low-molecular-weight form. Injection of adiponectin with a fluorescent label reveals that over time, the various complexes do not interconvert in vivo. The stability of adiponectin complexes highlights that the production and secretion of these forms from fat cells has a major influence on the circulating levels of each complex.

  13. Headbobber: A Combined Morphogenetic and Cochleosaccular Mouse Model to Study 10qter Deletions in Human Deafness

    PubMed Central

    Buniello, Annalisa; Hardisty-Hughes, Rachel E.; Pass, Johanna C.; Bober, Eva; Smith, Richard J.; Steel, Karen P.

    2013-01-01

    The recessive mouse mutant headbobber (hb) displays the characteristic behavioural traits associated with vestibular defects including headbobbing, circling and deafness. This mutation was caused by the insertion of a transgene into distal chromosome 7 affecting expression of native genes. We show that the inner ear of hb/hb mutants lacks semicircular canals and cristae, and the saccule and utricle are fused together in a single utriculosaccular sac. Moreover, we detect severe abnormalities of the cochlear sensory hair cells, the stria vascularis looks severely disorganised, Reissner's membrane is collapsed and no endocochlear potential is detected. Myo7a and Kcnj10 expression analysis show a lack of the melanocyte-like intermediate cells in hb/hb stria vascularis, which can explain the absence of endocochlear potential. We use Trp2 as a marker of melanoblasts migrating from the neural crest at E12.5 and show that they do not interdigitate into the developing strial epithelium, associated with abnormal persistence of the basal lamina in the hb/hb cochlea. We perform array CGH, deep sequencing as well as an extensive expression analysis of candidate genes in the headbobber region of hb/hb and littermate controls, and conclude that the headbobber phenotype is caused by: 1) effect of a 648 kb deletion on distal Chr7, resulting in the loss of three protein coding genes (Gpr26, Cpmx2 and Chst15) with expression in the inner ear but unknown function; and 2) indirect, long range effect of the deletion on the expression of neighboring genes on Chr7, associated with downregulation of Hmx3, Hmx2 and Nkx1.2 homeobox transcription factors. Interestingly, deletions of the orthologous region in humans, affecting the same genes, have been reported in nineteen patients with common features including sensorineural hearing loss and vestibular problems. Therefore, we propose that headbobber is a useful model to gain insight into the mechanisms underlying deafness in human 10qter deletion syndrome. PMID:23457544

  14. Mutant calreticulin knockin mice develop thrombocytosis and myelofibrosis without a stem cell self-renewal advantage.

    PubMed

    Li, Juan; Prins, Daniel; Park, Hyun Jung; Grinfeld, Jacob; Gonzalez-Arias, Carlos; Loughran, Stephen; Dovey, Oliver M; Klampfl, Thorsten; Bennett, Cavan; Hamilton, Tina L; Pask, Dean C; Sneade, Rachel; Williams, Matthew; Aungier, Juliet; Ghevaert, Cedric; Vassiliou, George S; Kent, David G; Green, Anthony R

    2018-02-08

    Somatic mutations in the endoplasmic reticulum chaperone calreticulin (CALR) are detected in approximately 40% of patients with essential thrombocythemia (ET) and primary myelofibrosis (PMF). Multiple different mutations have been reported, but all result in a +1-bp frameshift and generate a novel protein C terminus. In this study, we generated a conditional mouse knockin model of the most common CALR mutation, a 52-bp deletion. The mutant novel human C-terminal sequence is integrated into the otherwise intact mouse CALR gene and results in mutant CALR expression under the control of the endogenous mouse locus. CALR del/+ mice develop a transplantable ET-like disease with marked thrombocytosis, which is associated with increased and morphologically abnormal megakaryocytes and increased numbers of phenotypically defined hematopoietic stem cells (HSCs). Homozygous CALR del/del mice developed extreme thrombocytosis accompanied by features of MF, including leukocytosis, reduced hematocrit, splenomegaly, and increased bone marrow reticulin. CALR del/+ HSCs were more proliferative in vitro, but neither CALR del/+ nor CALR del/del displayed a competitive transplantation advantage in primary or secondary recipient mice. These results demonstrate the consequences of heterozygous and homozygous CALR mutations and provide a powerful model for dissecting the pathogenesis of CALR-mutant ET and PMF. © 2018 by The American Society of Hematology.

  15. A selective EP4 PGE2 receptor agonist alleviates disease in a new mouse model of X-linked nephrogenic diabetes insipidus

    PubMed Central

    Li, Jian Hua; Chou, Chung-Lin; Li, Bo; Gavrilova, Oksana; Eisner, Christoph; Schnermann, Jürgen; Anderson, Stasia A.; Deng, Chu-Xia; Knepper, Mark A.; Wess, Jürgen

    2009-01-01

    X-linked nephrogenic diabetes insipidus (XNDI) is a severe kidney disease caused by inactivating mutations in the V2 vasopressin receptor (V2R) gene that result in the loss of renal urine-concentrating ability. At present, no specific pharmacological therapy has been developed for XNDI, primarily due to the lack of suitable animal models. To develop what we believe to be the first viable animal model of XNDI, we generated mice in which the V2R gene could be conditionally deleted during adulthood by administration of 4-OH-tamoxifen. Radioligand-binding studies confirmed the lack of V2R-binding sites in kidneys following 4-OH-tamoxifen treatment, and further analysis indicated that upon V2R deletion, adult mice displayed all characteristic symptoms of XNDI, including polyuria, polydipsia, and resistance to the antidiuretic actions of vasopressin. Gene expression analysis suggested that activation of renal EP4 PGE2 receptors might compensate for the lack of renal V2R activity in XNDI mice. Strikingly, both acute and chronic treatment of the mutant mice with a selective EP4 receptor agonist greatly reduced all major manifestations of XNDI, including changes in renal morphology. These physiological improvements were most likely due to a direct action on EP4 receptors expressed on collecting duct cells. These findings illustrate the usefulness of the newly generated V2R mutant mice for elucidating and testing new strategies for the potential treatment of humans with XNDI. PMID:19729836

  16. Silencing neuronal mutant androgen receptor in a mouse model of spinal and bulbar muscular atrophy.

    PubMed

    Sahashi, Kentaro; Katsuno, Masahisa; Hung, Gene; Adachi, Hiroaki; Kondo, Naohide; Nakatsuji, Hideaki; Tohnai, Genki; Iida, Madoka; Bennett, C Frank; Sobue, Gen

    2015-11-01

    Spinal and bulbar muscular atrophy (SBMA), an adult-onset neurodegenerative disease that affects males, results from a CAG triplet repeat/polyglutamine expansions in the androgen receptor (AR) gene. Patients develop progressive muscular weakness and atrophy, and no effective therapy is currently available. The tissue-specific pathogenesis, especially relative pathological contributions between degenerative motor neurons and muscles, remains inconclusive. Though peripheral pathology in skeletal muscle caused by toxic AR protein has been recently reported to play a pivotal role in the pathogenesis of SBMA using mouse models, the role of motor neuron degeneration in SBMA has not been rigorously investigated. Here, we exploited synthetic antisense oligonucleotides to inhibit the RNA levels of mutant AR in the central nervous system (CNS) and explore its therapeutic effects in our SBMA mouse model that harbors a mutant AR gene with 97 CAG expansions and characteristic SBMA-like neurogenic phenotypes. A single intracerebroventricular administration of the antisense oligonucleotides in the presymptomatic phase efficiently suppressed the mutant gene expression in the CNS, and delayed the onset and progression of motor dysfunction, improved body weight gain and survival with the amelioration of neuronal histopathology in motor units such as spinal motor neurons, neuromuscular junctions and skeletal muscle. These findings highlight the importance of the neurotoxicity of mutant AR protein in motor neurons as a therapeutic target. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Mutant Huntingtin Gene-Dose Impacts on Aggregate Deposition, DARPP32 Expression and Neuroinflammation in HdhQ150 Mice

    PubMed Central

    Young, Douglas; Mayer, Franziska; Vidotto, Nella; Schweizer, Tatjana; Berth, Ramon; Abramowski, Dorothee; Shimshek, Derya R.; van der Putten, P. Herman; Schmid, Peter

    2013-01-01

    Huntington's disease (HD) is an autosomal dominant, progressive and fatal neurological disorder caused by an expansion of CAG repeats in exon-1 of the huntingtin gene. The encoded poly-glutamine stretch renders mutant huntingtin prone to aggregation. HdhQ150 mice genocopy a pathogenic repeat (∼150 CAGs) in the endogenous mouse huntingtin gene and model predominantly pre-manifest HD. Treating early is likely important to prevent or delay HD, and HdhQ150 mice may be useful to assess therapeutic strategies targeting pre-manifest HD. This requires appropriate markers and here we demonstrate, that pre-symptomatic HdhQ150 mice show several dramatic mutant huntingtin gene-dose dependent pathological changes including: (i) an increase of neuronal intra-nuclear inclusions (NIIs) in brain, (ii) an increase of extra-nuclear aggregates in dentate gyrus, (iii) a decrease of DARPP32 protein and (iv) an increase in glial markers of neuroinflammation, which curiously did not correlate with local neuronal mutant huntingtin inclusion-burden. HdhQ150 mice developed NIIs also in all retinal neuron cell-types, demonstrating that retinal NIIs are not specific to human exon-1 R6 HD mouse models. Taken together, the striking and robust mutant huntingtin gene-dose related changes in aggregate-load, DARPP32 levels and glial activation markers should greatly facilitate future testing of therapeutic strategies in the HdhQ150 HD mouse model. PMID:24086450

  18. Increased Levels of Rictor Prevent Mutant Huntingtin-Induced Neuronal Degeneration.

    PubMed

    Creus-Muncunill, Jordi; Rué, Laura; Alcalá-Vida, Rafael; Badillos-Rodríguez, Raquel; Romaní-Aumedes, Joan; Marco, Sonia; Alberch, Jordi; Perez-Otaño, Isabel; Malagelada, Cristina; Pérez-Navarro, Esther

    2018-02-19

    Rictor associates with mTOR to form the mTORC2 complex, which activity regulates neuronal function and survival. Neurodegenerative diseases are characterized by the presence of neuronal dysfunction and cell death in specific brain regions such as for example Huntington's disease (HD), which is characterized by the loss of striatal projection neurons leading to motor dysfunction. Although HD is caused by the expression of mutant huntingtin, cell death occurs gradually suggesting that neurons have the capability to activate compensatory mechanisms to deal with neuronal dysfunction and later cell death. Here, we analyzed whether mTORC2 activity could be altered by the presence of mutant huntingtin. We observed that Rictor levels are specifically increased in the striatum of HD mouse models and in the putamen of HD patients. Rictor-mTOR interaction and the phosphorylation levels of Akt, one of the targets of the mTORC2 complex, were increased in the striatum of the R6/1 mouse model of HD suggesting increased mTORC2 signaling. Interestingly, acute downregulation of Rictor in striatal cells in vitro reduced mTORC2 activity, as shown by reduced levels of phospho-Akt, and increased mutant huntingtin-induced cell death. Accordingly, overexpression of Rictor increased mTORC2 activity counteracting cell death. Furthermore, normalization of endogenous Rictor levels in the striatum of R6/1 mouse worsened motor symptoms suggesting an induction of neuronal dysfunction. In conclusion, our results suggest that increased Rictor striatal levels could counteract neuronal dysfunction induced by mutant huntingtin.

  19. Contribution of NMDA receptor hypofunction in prefrontal and cortical excitatory neurons to schizophrenia-like phenotypes.

    PubMed

    Rompala, Gregory R; Zsiros, Veronika; Zhang, Shuqin; Kolata, Stefan M; Nakazawa, Kazu

    2013-01-01

    Pharmacological and genetic studies support a role for NMDA receptor (NMDAR) hypofunction in the etiology of schizophrenia. We have previously demonstrated that NMDAR obligatory subunit 1 (GluN1) deletion in corticolimbic interneurons during early postnatal development is sufficient to confer schizophrenia-like phenotypes in mice. However, the consequence of NMDAR hypofunction in cortical excitatory neurons is not well delineated. Here, we characterize a conditional knockout mouse strain (CtxGluN1 KO mice), in which postnatal GluN1 deletion is largely confined to the excitatory neurons in layer II/III of the medial prefrontal cortex and sensory cortices, as evidenced by the lack of GluN1 mRNA expression in in situ hybridization immunocytochemistry as well as the lack of NMDA currents with in vitro recordings. Mutants were impaired in prepulse inhibition of the auditory startle reflex as well as object-based short-term memory. However, they did not exhibit impairments in additional hallmarks of schizophrenia-like phenotypes (e.g. spatial working memory, social behavior, saccharine preference, novelty and amphetamine-induced hyperlocomotion, and anxiety-related behavior). Furthermore, upon administration of the NMDA receptor antagonist, MK-801, there were no differences in locomotor activity versus controls. The mutant mice also showed negligible levels of reactive oxygen species production following chronic social isolation, and recording of miniature-EPSC/IPSCs from layer II/III excitatory neurons in medial prefrontal cortex suggested no alteration in GABAergic activity. All together, the mutant mice displayed cognitive deficits in the absence of additional behavioral or cellular phenotypes reflecting schizophrenia pathophysiology. Thus, NMDAR hypofunction in prefrontal and cortical excitatory neurons may recapitulate only a cognitive aspect of human schizophrenia symptoms.

  20. Diphthamide Modification of EEF2 Requires a J-domain Protein and is Essential for Normal Development

    PubMed Central

    Webb, Tom R; Cross, Sally H.; McKie, Lisa; Edgar, Ruth; Vizor, Lucie; Harrison, Jackie; Peters, Jo; Jackson, Ian J.

    2008-01-01

    Summary The intracellular target of diphtheria toxin is a modified histidine residue, diphthamide, in the translation elongation factor, eEF2. This enigmatic modification occurs in all eukaryotes, and is produced in yeast by the action of five gene products, DPH1 to DPH5. Sequence homologues of these genes are present in all sequenced eukaryotic genomes and in higher eukaryotes there is functional evidence for DPH1, 2, 3, and 5 acting in diphthamide biosynthesis. We have identified a mouse mutant in the remaining gene, Dph4. Cells derived from homozygous mutant embryos lack the diphthamide modification of EF2 and are resistant to killing by diphtheria toxin. Reporter-tagged DPH4 protein localizes to the cytoskeleton, in contrast to the localization of DPH1, and consistent with evidence that DPH4 is not part of a proposed complex containing DPH1, 2 and 3. Mice homozygous for the mutation are retarded in growth and development and almost always die before birth. Those that survive long enough have preaxial polydactyly, a duplication of digit 1 of the hind foot. This same defect is seen in embryos homozygous for mutation of DPH1, suggesting that lack of diphthamide on eEF2 could result in translational failure of specific proteins, rather than a generalized translation downregulation. PMID:18765564

  1. β-Arrestin2 mediates progression of murine primary myelofibrosis.

    PubMed

    Rein, Lindsay Am; Wisler, James W; Kim, Jihee; Theriot, Barbara; Huang, LiYin; Price, Trevor; Yang, Haeyoon; Chen, Minyong; Chen, Wei; Sipkins, Dorothy; Fedoriw, Yuri; Walker, Julia Kl; Premont, Richard T; Lefkowitz, Robert J

    2017-12-21

    Primary myelofibrosis is a myeloproliferative neoplasm associated with significant morbidity and mortality, for which effective therapies are lacking. β-Arrestins are multifunctional adaptor proteins involved in developmental signaling pathways. One isoform, β-arrestin2 (βarr2), has been implicated in initiation and progression of chronic myeloid leukemia, another myeloproliferative neoplasm closely related to primary myelofibrosis. Accordingly, we investigated the relationship between βarr2 and primary myelofibrosis. In a murine model of MPLW515L-mutant primary myelofibrosis, mice transplanted with donor βarr2-knockout (βarr2-/-) hematopoietic stem cells infected with MPL-mutant retrovirus did not develop myelofibrosis, whereas controls uniformly succumbed to disease. Although transplanted βarr2-/- cells homed properly to marrow, they did not repopulate long-term due to increased apoptosis and decreased self-renewal of βarr2-/- cells. In order to assess the effect of acute loss of βarr2 in established primary myelofibrosis in vivo, we utilized a tamoxifen-induced Cre-conditional βarr2-knockout mouse. Mice that received Cre (+) donor cells and developed myelofibrosis had significantly improved survival compared with controls. These data indicate that lack of antiapoptotic βarr2 mediates marrow failure of murine hematopoietic stem cells overexpressing MPLW515L. They also indicate that βarr2 is necessary for progression of primary myelofibrosis, suggesting that it may serve as a novel therapeutic target in this disease.

  2. Creb1 regulates late stage mammalian lung development via respiratory epithelial and mesenchymal-independent mechanisms

    PubMed Central

    Antony, N.; McDougall, A. R.; Mantamadiotis, T.; Cole, T. J.; Bird, A. D.

    2016-01-01

    During mammalian lung development, the morphological transition from respiratory tree branching morphogenesis to a predominantly saccular architecture, capable of air-breathing at birth, is dependent on physical forces as well as molecular signaling by a range of transcription factors including the cAMP response element binding protein 1 (Creb1). Creb1−/− mutant mice exhibit complete neonatal lethality consistent with a lack of lung maturation beyond the branching phase. To further define its role in the developing mouse lung, we deleted Creb1 separately in the respiratory epithelium and mesenchyme. Surprisingly, we found no evidence of a morphological lung defect nor compromised neonatal survival in either conditional Creb1 mutant. Interestingly however, loss of mesenchymal Creb1 on a genetic background lacking the related Crem protein showed normal lung development but poor neonatal survival. To investigate the underlying requirement for Creb1 for normal lung development, Creb1−/− mice were re-examined for defects in both respiratory muscles and glucocorticoid hormone signaling, which are also required for late stage lung maturation. However, these systems appeared normal in Creb1−/− mice. Together our results suggest that the requirement of Creb1 for normal mammalian lung morphogenesis is not dependent upon its expression in lung epithelium or mesenchyme, nor its role in musculoskeletal development. PMID:27150575

  3. Importance of Conserved Cysteine Residues in the Coronavirus Envelope Protein▿

    PubMed Central

    Lopez, Lisa A.; Riffle, Ambere J.; Pike, Steven L.; Gardner, Douglas; Hogue, Brenda G.

    2008-01-01

    Coronavirus envelope (E) proteins play an important, not fully understood role(s) in the virus life cycle. All E proteins have conserved cysteine residues located on the carboxy side of the long hydrophobic domain, suggesting functional significance. In this study, we confirmed that mouse hepatitis coronavirus A59 E protein is palmitoylated. To understand the role of the conserved residues and the necessity of palmitoylation, three cysteines at positions 40, 44, and 47 were changed singly and in various combinations to alanine. Double- and triple-mutant E proteins resulted in decreased virus-like particle output when coexpressed with the membrane (M) protein. Mutant E proteins were also studied in the context of a full-length infectious clone. Single-substitution viruses exhibited growth characteristics virtually identical to those of the wild-type virus, while the double-substitution mutations gave rise to viruses with less robust growth phenotypes indicated by smaller plaques and decreased virus yields. In contrast, replacement of all three cysteines resulted in crippled virus with significantly reduced yields. Triple-mutant viruses did not exhibit impairment in entry. Mutant E proteins localized properly in infected cells. A comparison of intracellular and extracellular virus yields suggested that release is only slightly impaired. E protein lacking all three cysteines exhibited an increased rate of degradation compared to that of the wild-type protein, suggesting that palmitoylation is important for the stability of the protein. Altogether, the results indicate that the conserved cysteines and presumably palmitoylation are functionally important for virus production. PMID:18184703

  4. An efficient method for generation of bi-allelic null mutant mouse embryonic stem cells and its application for investigating epigenetic modifiers

    PubMed Central

    Cho, Lily Ting-yin; Andrews, Robert; Carroll, Thomas; Iyer, Vivek; Tate, Peri; Rosen, Barry; Stunnenberg, Hendrik G.; Fisher, Amanda G.; Skarnes, William C.

    2017-01-01

    Abstract Mouse embryonic stem (ES) cells are a popular model system to study biological processes, though uncovering recessive phenotypes requires inactivating both alleles. Building upon resources from the International Knockout Mouse Consortium (IKMC), we developed a targeting vector for second allele inactivation in conditional-ready IKMC ‘knockout-first’ ES cell lines. We applied our technology to several epigenetic regulators, recovering bi-allelic targeted clones with a high efficiency of 60% and used Flp recombinase to restore expression in two null cell lines to demonstrate how our system confirms causality through mutant phenotype reversion. We designed our strategy to select against re-targeting the ‘knockout-first’ allele and identify essential genes in ES cells, including the histone methyltransferase Setdb1. For confirmation, we exploited the flexibility of our system, enabling tamoxifen inducible conditional gene ablation while controlling for genetic background and tamoxifen effects. Setdb1 ablated ES cells exhibit severe growth inhibition, which is not rescued by exogenous Nanog expression or culturing in naive pluripotency ‘2i’ media, suggesting that the self-renewal defect is mediated through pluripotency network independent pathways. Our strategy to generate null mutant mouse ES cells is applicable to thousands of genes and repurposes existing IKMC Intermediate Vectors. PMID:28981838

  5. A missense mutation in Grm6 reduces but does not eliminate mGluR6 expression or rod depolarizing bipolar cell function.

    PubMed

    Peachey, Neal S; Hasan, Nazarul; FitzMaurice, Bernard; Burrill, Samantha; Pangeni, Gobinda; Karst, Son Yong; Reinholdt, Laura; Berry, Melissa L; Strobel, Marge; Gregg, Ronald G; McCall, Maureen A; Chang, Bo

    2017-08-01

    GRM6 encodes the metabotropic glutamate receptor 6 (mGluR6) used by retinal depolarizing bipolar cells (DBCs). Mutations in GRM6 lead to DBC dysfunction and underlie the human condition autosomal recessive complete congenital stationary night blindness. Mouse mutants for Grm6 are important models for this condition. Here we report a new Grm6 mutant, identified in an electroretinogram (ERG) screen of mice maintained at The Jackson Laboratory. The Grm6 nob8 mouse has a reduced-amplitude b-wave component of the ERG, which reflects light-evoked DBC activity. Sequencing identified a missense mutation that converts a highly conserved methionine within the ligand binding domain to leucine (p.Met66Leu). Consistent with prior studies of Grm6 mutant mice, the laminar size and structure in the Grm6 nob8 retina were comparable to control. The Grm6 nob8 phenotype is distinguished from other Grm6 mutants that carry a null allele by a reduced but not absent ERG b-wave, decreased but present expression of mGluR6 at DBC dendritic tips, and mislocalization of mGluR6 to DBC somas. Consistent with a reduced but not absent b-wave, there were a subset of retinal ganglion cells whose responses to light onset have times to peak within the range of those in control retinas. These data indicate that the p.Met66Leu mutant mGluR6 is trafficked less than control. However, the mGluR6 that is localized to the DBC dendritic tips is able to initiate DBC signal transduction. The Grm6 nob8 mouse extends the Grm6 allelic series and will be useful for elucidating the role of mGluR6 in DBC signal transduction and in human disease. NEW & NOTEWORTHY This article describes a mouse model of the human disease complete congenital stationary night blindness in which the mutation reduces but does not eliminate GRM6 expression and bipolar cell function, a distinct phenotype from that seen in other Grm6 mouse models.

  6. Reversal of a full-length mutant huntingtin neuronal cell phenotype by chemical inhibitors of polyglutamine-mediated aggregation

    PubMed Central

    Wang, Jin; Gines, Silvia; MacDonald, Marcy E; Gusella, James F

    2005-01-01

    Background Huntington's disease (HD) is an inherited neurodegenerative disorder triggered by an expanded polyglutamine tract in huntingtin that is thought to confer a new conformational property on this large protein. The propensity of small amino-terminal fragments with mutant, but not wild-type, glutamine tracts to self-aggregate is consistent with an altered conformation but such fragments occur relatively late in the disease process in human patients and mouse models expressing full-length mutant protein. This suggests that the altered conformational property may act within the full-length mutant huntingtin to initially trigger pathogenesis. Indeed, genotype-phenotype studies in HD have defined genetic criteria for the disease initiating mechanism, and these are all fulfilled by phenotypes associated with expression of full-length mutant huntingtin, but not amino-terminal fragment, in mouse models. As the in vitro aggregation of amino-terminal mutant huntingtin fragment offers a ready assay to identify small compounds that interfere with the conformation of the polyglutamine tract, we have identified a number of aggregation inhibitors, and tested whether these are also capable of reversing a phenotype caused by endogenous expression of mutant huntingtin in a striatal cell line from the HdhQ111/Q111 knock-in mouse. Results We screened the NINDS Custom Collection of 1,040 FDA approved drugs and bioactive compounds for their ability to prevent in vitro aggregation of Q58-htn 1–171 amino terminal fragment. Ten compounds were identified that inhibited aggregation with IC50 < 15 μM, including gossypol, gambogic acid, juglone, celastrol, sanguinarine and anthralin. Of these, both juglone and celastrol were effective in reversing the abnormal cellular localization of full-length mutant huntingtin observed in mutant HdhQ111/Q111 striatal cells. Conclusions At least some compounds identified as aggregation inhibitors also prevent a neuronal cellular phenotype caused by full-length mutant huntingtin, suggesting that in vitro fragment aggregation can act as a proxy for monitoring the disease-producing conformational property in HD. Thus, identification and testing of compounds that alter in vitro aggregation is a viable approach for defining potential therapeutic compounds that may act on the deleterious conformational property of full-length mutant huntingtin. PMID:15649316

  7. Analysis of the presence of cell proliferation-related molecules in the Tgf-β3 null mutant mouse palate reveals misexpression of EGF and Msx-1.

    PubMed

    del Río, A; Barrio, M C; Murillo, J; Maldonado, E; López-Gordillo, Y; Martínez-Sanz, E; Martínez, M L; Martínez-Álvarez, C

    2011-01-01

    The Tgf-β(3) null mutant mouse palate presents several cellular anomalies that lead to the appearance of cleft palate. One of them concerns the cell proliferation of both the palatal medial edge epithelium and mesenchyme. In this work, our aim was to determine whether there was any variation in the presence/distribution of several cell proliferation-related molecules that could be responsible for the cell proliferation defects observed in these palates. Our results showed no difference in the presence of EGF-R, PDGF-A, TGF-β(2), Bmp-2, and Bmp-4, and differences were minimal for FGF-10 and Shh. However, the expression of EGF and Msx-1 changed substantially. The shift of the EGF protein expression was the one that most correlated with that of cell proliferation. This molecule is regulated by TGF-β(3), and experiments blocking its activity in culture suggest that EGF misexpression in the Tgf-β(3) null mutant mouse palate plays a role in the cell proliferation defect observed. Copyright © 2010 S. Karger AG, Basel.

  8. Functional Genomic Screen Identifies Klebsiella pneumoniae Factors Implicated in Blocking Nuclear Factor κB (NF-κB) Signaling*

    PubMed Central

    Tomás, Anna; Lery, Leticia; Regueiro, Verónica; Pérez-Gutiérrez, Camino; Martínez, Verónica; Moranta, David; Llobet, Enrique; González-Nicolau, Mar; Insua, Jose L.; Tomas, Juan M.; Sansonetti, Philippe J.; Tournebize, Régis; Bengoechea, José A.

    2015-01-01

    Klebsiella pneumoniae is an etiologic agent of community-acquired and nosocomial pneumonia. It has been shown that K. pneumoniae infections are characterized by reduced early inflammatory response. Recently our group has shown that K. pneumoniae dampens the activation of inflammatory responses by antagonizing the activation of the NF-κB canonical pathway. Our results revealed that K. pneumoniae capsule polysaccharide (CPS) was necessary but not sufficient to attenuate inflammation. To identify additional Klebsiella factors required to dampen inflammation, we standardized and applied a high-throughput gain-of-function screen to examine a Klebsiella transposon mutant library. We identified 114 mutants that triggered the activation of NF-κB. Two gene ontology categories accounted for half of the loci identified in the screening: metabolism and transport genes (32% of the mutants) and envelope-related genes (17%). Characterization of the mutants revealed that the lack of the enterobactin siderophore was linked to a reduced CPS expression, which in turn underlined the NF-κB activation induced by the mutant. The lipopolysaccharide (LPS) O-polysaccharide and the pullulanase (PulA) type 2 secretion system (T2SS) are required for full effectiveness of the immune evasion. Importantly, these factors do not play a redundant role. The fact that LPS O-polysaccharide and T2SS mutant-induced responses were dependent on TLR2-TLR4-MyD88 activation suggested that LPS O-polysaccharide and PulA perturbed Toll-like receptor (TLR)-dependent recognition of K. pneumoniae. Finally, we demonstrate that LPS O-polysaccharide and pulA mutants are attenuated in the pneumonia mouse model. We propose that LPS O-polysaccharide and PulA T2SS could be new targets for the design of new antimicrobials. Increasing TLR-governed defense responses might provide also selective alternatives for the management of K. pneumoniae pneumonia. PMID:25971969

  9. The tumor suppressor PTEN and the PDK1 kinase regulate formation of the columnar neural epithelium

    PubMed Central

    Grego-Bessa, Joaquim; Bloomekatz, Joshua; Castel, Pau; Omelchenko, Tatiana; Baselga, José; Anderson, Kathryn V

    2016-01-01

    Epithelial morphogenesis and stability are essential for normal development and organ homeostasis. The mouse neural plate is a cuboidal epithelium that remodels into a columnar pseudostratified epithelium over the course of 24 hr. Here we show that the transition to a columnar epithelium fails in mutant embryos that lack the tumor suppressor PTEN, although proliferation, patterning and apical-basal polarity markers are normal in the mutants. The Pten phenotype is mimicked by constitutive activation of PI3 kinase and is rescued by the removal of PDK1 (PDPK1), but does not depend on the downstream kinases AKT and mTORC1. High resolution imaging shows that PTEN is required for stabilization of planar cell packing in the neural plate and for the formation of stable apical-basal microtubule arrays. The data suggest that appropriate levels of membrane-associated PDPK1 are required for stabilization of apical junctions, which promotes cell elongation, during epithelial morphogenesis. DOI: http://dx.doi.org/10.7554/eLife.12034.001 PMID:26809587

  10. TGFbeta type II receptor signaling controls Schwann cell death and proliferation in developing nerves.

    PubMed

    D'Antonio, Maurizio; Droggiti, Anna; Feltri, M Laura; Roes, Jürgen; Wrabetz, Lawrence; Mirsky, Rhona; Jessen, Kristján R

    2006-08-16

    During development, Schwann cell numbers are precisely adjusted to match the number of axons. It is essentially unknown which growth factors or receptors carry out this important control in vivo. Here, we tested whether the type II transforming growth factor (TGF) beta receptor has a role in this process. We generated a conditional knock-out mouse in which the type II TGFbeta receptor is specifically ablated only in Schwann cells. Inactivation of the receptor, evident at least from embryonic day 18, resulted in suppressed Schwann cell death in normally developing and injured nerves. Notably, the mutants also showed a strong reduction in Schwann cell proliferation. Consequently, Schwann cell numbers in wild-type and mutant nerves remained similar. Lack of TGFbeta signaling did not appear to affect other processes in which TGFbeta had been implicated previously, including myelination and response of adult nerves to injury. This is the first in vivo evidence for a growth factor receptor involved in promoting Schwann cell division during development and the first genetic evidence for a receptor that controls normal developmental Schwann cell death.

  11. Profilin2 contributes to synaptic vesicle exocytosis, neuronal excitability, and novelty-seeking behavior

    PubMed Central

    Pilo Boyl, Pietro; Di Nardo, Alessia; Mulle, Christophe; Sassoè-Pognetto, Marco; Panzanelli, Patrizia; Mele, Andrea; Kneussel, Matthias; Costantini, Vivian; Perlas, Emerald; Massimi, Marzia; Vara, Hugo; Giustetto, Maurizio; Witke, Walter

    2007-01-01

    Profilins are actin binding proteins essential for regulating cytoskeletal dynamics, however, their function in the mammalian nervous system is unknown. Here, we provide evidence that in mouse brain profilin1 and profilin2 have distinct roles in regulating synaptic actin polymerization with profilin2 preferring a WAVE-complex-mediated pathway. Mice lacking profilin2 show a block in synaptic actin polymerization in response to depolarization, which is accompanied by increased synaptic excitability of glutamatergic neurons due to higher vesicle exocytosis. These alterations in neurotransmitter release correlate with a hyperactivation of the striatum and enhanced novelty-seeking behavior in profilin2 mutant mice. Our results highlight a novel, profilin2-dependent pathway, regulating synaptic physiology, neuronal excitability, and complex behavior. PMID:17541406

  12. Cyclic loading increases friction and changes cartilage surface integrity in lubricin-mutant mouse knees

    PubMed Central

    Drewniak, Elizabeth I; Jay, Gregory D; Fleming, Braden C; Zhang, Ling; Warman, Matthew L; Crisco, Joseph J

    2012-01-01

    Objective To investigate the effects of lubricin gene dosage and cyclic loading on whole joint coefficient of friction and articular cartilage surface integrity in mouse knee joints. Methods Joints from mice with 2 (Prg4+/+), 1 (Prg4+/−), or no (Prg4−/−) functioning lubricin alleles were subjected to 26 hours of cyclic loading using a custom-built pendulum. Coefficient of friction values were measured at multiple time points. Contralateral control joints were left unloaded. Following testing, joints were examined for histologic evidence of damage and cell viability. Results At baseline, the coefficient of friction values in Prg4−/− mice were significantly higher than those in Prg4+/+ and Prg4+/− mice (P < 0.001). Cyclic loading continuously increased the coefficient of friction in Prg4−/− mouse joints. In contrast, Prg4+/− and Prg4+/+ mouse joints had no coefficient of friction increases during the first 4 hours of loading. After 26 hours of loading, joints from all genotypes had increased coefficient of friction values compared to baseline and unloaded controls. Significantly greater increases occurred in Prg4−/− and Prg4+/− mouse joints compared to Prg4+/+ mouse joints. The coefficient of friction values were not significantly associated with histologic evidence of damage or loss of cell viability. Conclusion Our findings indicate that mice lacking lubricin have increased baseline coefficient of friction values and are not protected against further increases caused by loading. Prg4+/− mice are indistinguishable from Prg4+/+ mice at baseline, but have significantly greater coefficient of friction values following 26 hours of loading. Lubricin dosage affects joint properties during loading, and may have clinical implications in patients for whom injury or illness alters lubricin abundance. PMID:21905020

  13. Loss of p300 and CBP disrupts histone acetylation at the mouse Sry promoter and causes XY gonadal sex reversal

    PubMed Central

    Carré, Gwenn-Aël; Siggers, Pam; Xipolita, Marilena; Brindle, Paul; Lutz, Beat; Wells, Sara; Greenfield, Andy

    2018-01-01

    Abstract CREB-binding protein (CBP, CREBBP, KAT3A) and its closely related paralogue p300 (EP300, KAT3B), together termed p300/CBP, are histone/lysine acetyl-transferases that control gene expression by modifying chromatin-associated proteins. Here, we report roles for both of these chromatin-modifying enzymes in mouse sex determination, the process by which the embryonic gonad develops into a testis or an ovary. By targeting gene ablation to embryonic gonadal somatic cells using an inducible Cre line, we show that gonads lacking either gene exhibit major abnormalities of XY gonad development at 14.5 dpc, including partial sex reversal. Embryos lacking three out of four functional copies of p300/Cbp exhibit complete XY gonadal sex reversal and have greatly reduced expression of the key testis-determining genes Sry and Sox9. An analysis of histone acetylation at the Sry promoter in mutant gonads at 11.5 dpc shows a reduction in levels of the positive histone mark H3K27Ac. Our data suggest a role for CBP/p300 in testis determination mediated by control of histone acetylation at the Sry locus and reveal a novel element in the epigenetic control of Sry and mammalian sex determination. They also suggest possible novel causes of human disorders of sex development (DSD). PMID:29145650

  14. Omcg1 is critically required for mitosis in rapidly dividing mouse intestinal progenitors and embryonic stem cells.

    PubMed

    Léguillier, Teddy; Vandormael-Pournin, Sandrine; Artus, Jérôme; Houlard, Martin; Picard, Christel; Bernex, Florence; Robine, Sylvie; Cohen-Tannoudji, Michel

    2012-07-15

    Recent studies have shown that factors involved in transcription-coupled mRNA processing are important for the maintenance of genome integrity. How these processes are linked and regulated in vivo remains largely unknown. In this study, we addressed in the mouse model the function of Omcg1, which has been shown to participate in co-transcriptional processes, including splicing and transcription-coupled repair. Using inducible mouse models, we found that Omcg1 is most critically required in intestinal progenitors. In absence of OMCG1, proliferating intestinal epithelial cells underwent abnormal mitosis followed by apoptotic cell death. As a consequence, the crypt proliferative compartment of the small intestine was quickly and totally abrogated leading to the rapid death of the mice. Lack of OMCG1 in embryonic stem cells led to a similar cellular phenotype, with multiple mitotic defects and rapid cell death. We showed that mutant intestinal progenitors and embryonic stem cells exhibited a reduced cell cycle arrest following irradiation, suggesting that mitotic defects may be consecutive to M phase entry with unrepaired DNA damages. These findings unravel a crucial role for pre-mRNA processing in the homeostasis of the small intestine and point to a major role of OMCG1 in the maintenance of genome integrity.

  15. Maintenance of basal levels of autophagy in Huntington's disease mouse models displaying metabolic dysfunction.

    PubMed

    Baldo, Barbara; Soylu, Rana; Petersén, Asa

    2013-01-01

    Huntington's disease (HD) is a fatal neurodegenerative disorder caused by an expanded polyglutamine repeat in the huntingtin protein. Neuropathology in the basal ganglia and in the cerebral cortex has been linked to the motor and cognitive symptoms whereas recent work has suggested that the hypothalamus might be involved in the metabolic dysfunction. Several mouse models of HD that display metabolic dysfunction have hypothalamic pathology, and expression of mutant huntingtin in the hypothalamus has been causally linked to the development of metabolic dysfunction in mice. Although the pathogenic mechanisms by which mutant huntingtin exerts its toxic functions in the HD brain are not fully known, several studies have implicated a role for the lysososomal degradation pathway of autophagy. Interestingly, changes in autophagy in the hypothalamus have been associated with the development of metabolic dysfunction in wild-type mice. We hypothesized that expression of mutant huntingtin might lead to changes in the autophagy pathway in the hypothalamus in mice with metabolic dysfunction. We therefore investigated whether there were changes in basal levels of autophagy in a mouse model expressing a fragment of 853 amino acids of mutant huntingtin selectively in the hypothalamus using a recombinant adeno-associate viral vector approach as well as in the transgenic BACHD mice. We performed qRT-PCR and Western blot to investigate the mRNA and protein expression levels of selected autophagy markers. Our results show that basal levels of autophagy are maintained in the hypothalamus despite the presence of metabolic dysfunction in both mouse models. Furthermore, although there were no major changes in autophagy in the striatum and cortex of BACHD mice, we detected modest, but significant differences in levels of some markers in mice at 12 months of age. Taken together, our results indicate that overexpression of mutant huntingtin in mice do not significantly perturb basal levels of autophagy.

  16. Choline catabolism to glycine betaine contributes to Pseudomonas aeruginosa survival during murine lung infection.

    PubMed

    Wargo, Matthew J

    2013-01-01

    Pseudomonas aeruginosa can acquire and metabolize a variety of molecules including choline, an abundant host-derived molecule. In P. aeruginosa, choline is oxidized to glycine betaine which can be used as an osmoprotectant, a sole source of carbon and nitrogen, and as an inducer of the virulence factor, hemolytic phospholipase C (PlcH) via the transcriptional regulator GbdR. The primary objective was to determine the contribution of choline conversion to glycine betaine to P. aeruginosa survival during mouse lung infection. A secondary objective was to gain insight into the relative contributions of the different roles of glycine betaine to P. aeruginosa survival during infection. Using a model of acute murine pneumonia, we determined that deletion of the choline oxidase system (encoded by betBA) decreased P. aeruginosa survival in the mouse lung. Deletion of the glycine betaine demethylase genes (gbcA-B), required for glycine betaine catabolism, did not impact P. aeruginosa survival in the lung. Thus, the defect of the betBA mutant was not due to a requirement for glycine betaine catabolism or dependence on a downstream metabolite. Deletion of betBA decreased the abundance of plcH transcript during infection, which suggested a role for PlcH in the betBA survival defect. To test the contribution of plcH to the betBA mutant phenotype a betBAplcHR double deletion mutant was generated. The betBA and betBAplcHR double mutant had a small but significant survival defect compared to the plcHR single mutant, suggesting that regulation of plcH expression is not the only role for glycine betaine during infection. The conclusion was that choline acquisition and its oxidation to glycine betaine contribute to P. aeruginosa survival in the mouse lung. While defective plcH induction can explain a portion of the betBA mutant phenotype, the exact mechanisms driving the betBA mutant survival defect remain unknown.

  17. Choline Catabolism to Glycine Betaine Contributes to Pseudomonas aeruginosa Survival during Murine Lung Infection

    PubMed Central

    Wargo, Matthew J.

    2013-01-01

    Pseudomonas aeruginosa can acquire and metabolize a variety of molecules including choline, an abundant host-derived molecule. In P. aeruginosa, choline is oxidized to glycine betaine which can be used as an osmoprotectant, a sole source of carbon and nitrogen, and as an inducer of the virulence factor, hemolytic phospholipase C (PlcH) via the transcriptional regulator GbdR. The primary objective was to determine the contribution of choline conversion to glycine betaine to P. aeruginosa survival during mouse lung infection. A secondary objective was to gain insight into the relative contributions of the different roles of glycine betaine to P. aeruginosa survival during infection. Using a model of acute murine pneumonia, we determined that deletion of the choline oxidase system (encoded by betBA) decreased P. aeruginosa survival in the mouse lung. Deletion of the glycine betaine demethylase genes (gbcA-B), required for glycine betaine catabolism, did not impact P. aeruginosa survival in the lung. Thus, the defect of the betBA mutant was not due to a requirement for glycine betaine catabolism or dependence on a downstream metabolite. Deletion of betBA decreased the abundance of plcH transcript during infection, which suggested a role for PlcH in the betBA survival defect. To test the contribution of plcH to the betBA mutant phenotype a betBAplcHR double deletion mutant was generated. The betBA and betBAplcHR double mutant had a small but significant survival defect compared to the plcHR single mutant, suggesting that regulation of plcH expression is not the only role for glycine betaine during infection. The conclusion was that choline acquisition and its oxidation to glycine betaine contribute to P. aeruginosa survival in the mouse lung. While defective plcH induction can explain a portion of the betBA mutant phenotype, the exact mechanisms driving the betBA mutant survival defect remain unknown. PMID:23457628

  18. The Small GTP-Binding Protein Rhes Influences Nigrostriatal-Dependent Motor Behavior During Aging.

    PubMed

    Pinna, Annalisa; Napolitano, Francesco; Pelosi, Barbara; Di Maio, Anna; Wardas, Jadwiga; Casu, Maria Antonietta; Costa, Giulia; Migliarini, Sara; Calabresi, Paolo; Pasqualetti, Massimo; Morelli, Micaela; Usiello, Alessandro

    2016-04-01

    Here we aimed to evaluate: (1) Rhes mRNA expression in mouse midbrain, (2) the effect of Rhes deletion on the number of dopamine neurons, (3) nigrostriatal-sensitive behavior during aging in knockout mice. Radioactive in situ hybridization was assessed in adult mice. The beam-walking test was executed in 3-, 6- and 12-month-old mice. Immunohistochemistry of midbrain tyrosine hydroxylase (TH)-positive neurons was performed in 6- and 12-month-old mice. Rhes mRNA is expressed in TH-positive neurons of SNpc and the ventral tegmental area. Moreover, lack of Rhes leads to roughly a 20% loss of nigral TH-positive neurons in both 6- and 12-month-old mutants, when compared with their age-matched controls. Finally, lack of Rhes triggers subtle alterations in motor performance and coordination during aging. Our findings indicate a fine-tuning role of Rhes in regulating the number of TH-positive neurons of the substantia nigra and nigrostriatal-sensitive motor behavior during aging. © 2016 International Parkinson and Movement Disorder Society.

  19. Reduced expression of the NMDA receptor-interacting protein SynGAP causes behavioral abnormalities that model symptoms of Schizophrenia.

    PubMed

    Guo, Xiaochuan; Hamilton, Peter J; Reish, Nicholas J; Sweatt, J David; Miller, Courtney A; Rumbaugh, Gavin

    2009-06-01

    Abnormal function of NMDA receptors is believed to be a contributing factor to the pathophysiology of schizophrenia. NMDAR subunits and postsynaptic-interacting proteins of these channels are abnormally expressed in some patients with this illness. In mice, reduced NMDAR expression leads to behaviors analogous to symptoms of schizophrenia, but reports of animals with mutations in core postsynaptic density proteins having similar a phenotype have yet to be reported. Here we show that reduced expression of the neuronal RasGAP and NMDAR-associated protein, SynGAP, results in abnormal behaviors strikingly similar to that reported in mice with reduced NMDAR function. SynGAP mutant mice exhibited nonhabituating and persistent hyperactivity that was ameliorated by the antipsychotic clozapine. An NMDAR antagonist, MK-801, induced hyperactivity in normal mice but SynGAP mutants were less responsive, suggesting that NMDAR hypofunction contributes to this behavioral abnormality. SynGAP mutants exhibited enhanced startle reactivity and impaired sensory-motor gating. These mice also displayed a complete lack of social memory and a propensity toward social isolation. Finally, SynGAP mutants had deficits in cued fear conditioning and working memory, indicating abnormal function of circuits that control emotion and choice. Our results demonstrate that SynGAP mutant mice have gross neurological deficits similar to other mouse models of schizophrenia. Because SynGAP interacts with NMDARs, and the signaling activity of this protein is regulated by these channels, our data in dicate that SynGAP lies downstream of NMDARs and is a required intermediate for normal neural circuit function and behavior. Taken together, these data support the idea that schizophrenia may arise from abnormal signaling pathways that are mediated by NMDA receptors.

  20. Grating acuity at different luminances in wild-type mice and in mice lacking rod or cone function.

    PubMed

    Schmucker, Christine; Seeliger, Mathias; Humphries, Pete; Biel, Martin; Schaeffel, Frank

    2005-01-01

    The mouse eye has become an important model in vision research. However, it is not known how visual acuity changes with luminance. Therefore, grating acuity of mice was measured at different luminances in an automated optomotor paradigm. Furthermore, mutant mice lacking either rods (RHO-/- and CNGB1-/-) or cones (CNGA3-/-), or both, were studied to determine the rod and cone contribution to visual acuity. Freely ranging individual mice were automatically tracked at a 25-Hz sampling rate with a self-programmed video system in a large rotating optomotor drum. The drum had a square-wave grating inside with adjustable spatial frequency. The angular speed of the mice with respect to the center of the drum and the angular orientation of the snout-tail body axis were analyzed. In addition, the motor activity of the wild-type mice was recorded at different luminances. The optomotor drum provided reliable data on visual input to the mouse's behavior and was convenient to use, since the experimenter's had only to place the mice individually in a Perspex cylinder. Optomotor grating acuity of the wild-type mice was limited to 0.3 to 0.4 cyc/deg. Maximum optomotor responses were obtained at 0.1 to 0.2 cyc/deg. The importance of visual input declined monotonically with decreasing luminance (30 cd/m2, 100%; 0.1 cd/m2, 76.4%; 0.005 cd/m2, 45.9%; and darkness, -9%). Mice lacking functional rods were able to resolve gratings up to 0.1 cyc/deg at 30 cd/m2. Surprisingly, mice lacking functional cones had an optomotor acuity that was similar to the wild-type. Double-knockout mice without rods and cones had no detectable grating acuity. Because the visual system of the mouse is more responsive at bright luminances, experiments in which visual input is important should be performed in photopic conditions (30 cd/m2 or even more). Apparently, spatial vision is governed by the rod system, which is not saturated in the mesopic or low photopic range. Mice lacking both rods and cones have no detectable grating acuity, indicating that the retinal melanopsin system does not contribute to spatial vision.

  1. Mouse models for human hair loss disorders

    PubMed Central

    Porter, Rebecca M

    2003-01-01

    The outer surface of the hand, limb and body is covered by the epidermis, which is elaborated into a number of specialized appendages, evolved not only to protect and reinforce the skin but also for social signalling. The most prominent of these appendages is the hair follicle. Hair follicles are remarkable because of their prolific growth characteristics and their complexity of differentiation. After initial embryonic morphogenesis, the hair follicle undergoes repeated cycles of regression and regeneration throughout the lifetime of the organism. Studies of mouse mutants with hair loss phenotypes have suggested that the mechanisms controlling the hair cycle probably involve many of the major signalling molecules used elsewhere in development, although the complete pathway of hair follicle growth control is not yet understood. Mouse studies have also led to the discovery of genes underlying several human disorders. Future studies of mouse hair-loss mutants are likely to benefit the understanding of human hair loss as well as increasing our knowledge of mechanisms controlling morphogenesis and tumorigenesis. PMID:12587927

  2. A novel p53 mutational hotspot in skin tumors from UV-irradiated Xpc mutant mice alters transactivation functions.

    PubMed

    Inga, Alberto; Nahari, Dorit; Velasco-Miguel, Susana; Friedberg, Errol C; Resnick, Michael A

    2002-08-22

    A mutation in codon 122 of the mouse p53 gene resulting in a T to L amino acid substitution (T122-->L) is frequently associated with skin cancer in UV-irradiated mice that are both homozygous mutant for the nucleotide excision repair (NER) gene Xpc (Xpc(-/-)) and hemizygous mutant for the p53 gene. We investigated the functional consequences of the mouse T122-->L mutation when expressed either in mammalian cells or in the yeast Saccharomyces cerevisiae. Similar to a non-functional allele, high expression of the T122-->L allele in p53(-/-) mouse embryo fibroblasts and human Saos-2 cells failed to suppress growth. However, the T122-->L mutant p53 showed wild-type transactivation levels with Bax and MDM2 promoters when expressed in either cell type and retained transactivation of the p21 and the c-Fos promoters in one cell line. Using a recently developed rheostatable p53 induction system in yeast we assessed the T122-->L transactivation capacity at low levels of protein expression using 12 different p53 response elements (REs). Compared to wild-type p53 the T122-->L protein manifested an unusual transactivation pattern comprising reduced and enhanced activity with specific REs. The high incidence of the T122-->L mutant allele in the Xpc(-/-) background suggests that both genetic and epigenetic conditions may facilitate the emergence of particular functional p53 mutations. Furthermore, the approach that we have taken also provides for the dissection of functions that may be retained in many p53 tumor alleles.

  3. Local gene therapy durably restores vestibular function in a mouse model of Usher syndrome type 1G.

    PubMed

    Emptoz, Alice; Michel, Vincent; Lelli, Andrea; Akil, Omar; Boutet de Monvel, Jacques; Lahlou, Ghizlene; Meyer, Anaïs; Dupont, Typhaine; Nouaille, Sylvie; Ey, Elody; Franca de Barros, Filipa; Beraneck, Mathieu; Dulon, Didier; Hardelin, Jean-Pierre; Lustig, Lawrence; Avan, Paul; Petit, Christine; Safieddine, Saaid

    2017-09-05

    Our understanding of the mechanisms underlying inherited forms of inner ear deficits has considerably improved during the past 20 y, but we are still far from curative treatments. We investigated gene replacement as a strategy for restoring inner ear functions in a mouse model of Usher syndrome type 1G, characterized by congenital profound deafness and balance disorders. These mice lack the scaffold protein sans, which is involved both in the morphogenesis of the stereociliary bundle, the sensory antenna of inner ear hair cells, and in the mechanoelectrical transduction process. We show that a single delivery of the sans cDNA by the adenoassociated virus 8 to the inner ear of newborn mutant mice reestablishes the expression and targeting of the protein to the tips of stereocilia. The therapeutic gene restores the architecture and mechanosensitivity of stereociliary bundles, improves hearing thresholds, and durably rescues these mice from the balance defects. Our results open up new perspectives for efficient gene therapy of cochlear and vestibular disorders by showing that even severe dysmorphogenesis of stereociliary bundles can be corrected.

  4. Evidence for Phex haploinsufficiency in murine X-linked hypophosphatemia.

    PubMed

    Wang, L; Du, L; Ecarot, B

    1999-04-01

    Mutations in the PHEX gene (phosphate-regulating gene with homology to endopeptidases on the X-chromosome) are responsible for X-linked hypophosphatemia (HYP). We previously reported the full-length coding sequence of murine Phex cDNA and provided evidence of Phex expression in bone and tooth. Here, we report the cloning of the entire 3.5-kb 3'UTR of the Phex gene, yielding a total of 6248 bp for the Phex transcript. Southern blot and RT-PCR analyses revealed that the 3' end of the coding sequence and the 3'UTR of the Phex gene, spanning exons 16 to 22, are deleted in Hyp, the mouse model for HYP. Northern blot analysis of bone revealed lack of expression of stable Phex mRNA from the mutant allele and expression of Phex transcripts from the wild-type allele in Hyp heterozygous females. Expression of the Phex protein in heterozygotes was confirmed by Western analysis with antibodies raised against a COOH-terminal peptide of the mouse Phex protein. Taken together, these results indicate that the dominant pattern of Hyp inheritance in mice is due to Phex haploinsufficiency.

  5. Inositol- and folate-resistant neural tube defects in mice lacking the epithelial-specific factor Grhl-3.

    PubMed

    Ting, Stephen B; Wilanowski, Tomasz; Auden, Alana; Hall, Mark; Voss, Anne K; Thomas, Tim; Parekh, Vishwas; Cunningham, John M; Jane, Stephen M

    2003-12-01

    The neural tube defects (NTDs) spina bifida and anencephaly are widely prevalent severe birth defects. The mouse mutant curly tail (ct/ct) has served as a model of NTDs for 50 years, even though the responsible genetic defect remained unrecognized. Here we show by gene targeting, mapping and genetic complementation studies that a mouse homolog of the Drosophila grainyhead (grh) gene, grainyhead-like-3 (Grhl3), is a compelling candidate for the gene underlying the curly tail phenotype. The NTDs in Grhl3-null mice are more severe than those in the curly tail strain, as the Grhl3 alleles in ct/ct mice are hypomorphic. Spina bifida in ct/ct mice is folate resistant, but its incidence can be markedly reduced by maternal inositol supplementation periconceptually. The NTDs in Grhl3-/- embryos are also folate resistant, but unlike those in ct/ct mice, they are resistant to inositol. These findings suggest that residual Grhl3 expression in ct/ct mice may be required for inositol rescue of folate-resistant NTDs.

  6. Behavioral Abnormalities and Circuit Defects in the Basal Ganglia of a Mouse Model of 16p11.2 Deletion Syndrome

    PubMed Central

    Portmann, Thomas; Ellegood, Jacob; Dolen, Gul; Bader, Patrick L.; Grueter, Brad A.; Goold, Carleton; Fisher, Elaine; Clifford, Katherine; Rengarajan, Pavitra; Kalikhman, David; Loureiro, Darren; Saw, Nay L.; Zhengqui, Zhou; Miller, Michael A.; Lerch, Jason P.; Henkelman, Mark; Shamloo, Mehrdad; Malenka, Robert C.; Crawley, Jacqueline N.; Dolmetsch, Ricardo E.

    2014-01-01

    Summary A deletion on human chromosome 16p11.2 is associated with autism spectrum disorders. We deleted the syntenic region on mouse chromosome 7F3. MRI and high-throughput single-cell transcriptomics revealed anatomical and cellular abnormalities, particularly in cortex and striatum of juvenile mutant mice (16p11+/−). We found elevated numbers of striatal medium spiny neurons (MSNs) expressing the dopamine D2 receptor (Drd2+) and fewer dopamine-sensitive (Drd1+) neurons in deep layers of cortex. Electrophysiological recordings of Drd2+ MSN revealed synaptic defects, suggesting abnormal basal ganglia circuitry function in 16p11+/− mice. This is further supported by behavioral experiments showing hyperactivity, circling, and deficits in movement control. Strikingly, 16p11+/− mice showed a complete lack of habituation reminiscent of what is observed in some autistic individuals. Our findings unveil a fundamental role of genes affected by the 16p11.2 deletion in establishing the basal ganglia circuitry and provide insights in the pathophysiology of autism. PMID:24794428

  7. Highly Efficient Targeted Mutagenesis in Mice Using TALENs

    PubMed Central

    Panda, Sudeepta Kumar; Wefers, Benedikt; Ortiz, Oskar; Floss, Thomas; Schmid, Bettina; Haass, Christian; Wurst, Wolfgang; Kühn, Ralf

    2013-01-01

    Targeted mouse mutants are instrumental for the analysis of gene function in health and disease. We recently provided proof-of-principle for the fast-track mutagenesis of the mouse genome, using transcription activator-like effector nucleases (TALENs) in one-cell embryos. Here we report a routine procedure for the efficient production of disease-related knockin and knockout mutants, using improved TALEN mRNAs that include a plasmid-coded poly(A) tail (TALEN-95A), circumventing the problematic in vitro polyadenylation step. To knock out the C9orf72 gene as a model of frontotemporal lobar degeneration, TALEN-95A mutagenesis induced sequence deletions in 41% of pups derived from microinjected embryos. Using TALENs together with mutagenic oligodeoxynucleotides, we introduced amyotrophic lateral sclerosis patient-derived missense mutations in the fused in sarcoma (Fus) gene at a rate of 6.8%. For the simple identification of TALEN-induced mutants and their progeny we validate high-resolution melt analysis (HRMA) of PCR products as a sensitive and universal genotyping tool. Furthermore, HRMA of off-target sites in mutant founder mice revealed no evidence for undesired TALEN-mediated processing of related genomic sequences. The combination of TALEN-95A mRNAs for enhanced mutagenesis and of HRMA for simplified genotyping enables the accelerated, routine production of new mouse models for the study of genetic disease mechanisms. PMID:23979585

  8. Regional Fluctuation in the Functional Consequence of LINE-1 Insertion in the Mitf Gene: The Black Spotting Phenotype Arisen from the Mitfmi-bw Mouse Lacking Melanocytes.

    PubMed

    Takeda, Kazuhisa; Hozumi, Hiroki; Ohba, Koji; Yamamoto, Hiroaki; Shibahara, Shigeki

    2016-01-01

    Microphthalmia-associated transcription factor (Mitf) is a key regulator for differentiation of melanoblasts, precursors to melanocytes. The mouse homozygous for the black-eyed white (Mitfmi-bw) allele is characterized by the white-coat color and deafness with black eyes due to the lack of melanocytes. The Mitfmi-bw allele carries LINE-1, a retrotransposable element, which results in the Mitf deficiency. Here, we have established the black spotting mouse that was spontaneously arisen from the homozygous Mitfmi-bw mouse lacking melanocytes. The black spotting mouse shows multiple black patches on the white coat, with age-related graying. Importantly, each black patch also contains hair follicles lacking melanocytes, whereas the white-coat area completely lacks melanocytes. RT-PCR analyses of the pigmented patches confirmed that the LINE-1 insertion is retained in the Mitf gene of the black spotting mouse, thereby excluding the possibility of the somatic reversion of the Mitfmi-bw allele. The immunohistochemical analysis revealed that the staining intensity for beta-catenin was noticeably lower in hair follicles lacking melanocytes of the homozygous Mitfmi-bw mouse and the black spotting mouse, compared to the control mouse. In contrast, the staining intensity for beta-catenin and cyclin D1 was higher in keratinocytes of the black spotting mouse, compared to keratinocytes of the control mouse and the Mitfmi-bw mouse. Moreover, the keratinocyte layer appears thicker in the Mitfmi-bw mouse, with the overexpression of Ki-67, a marker for cell proliferation. We also show that the presumptive black spots are formed by embryonic day 15.5. Thus, the black spotting mouse provides the unique model to explore the molecular basis for the survival and death of developing melanoblasts and melanocyte stem cells in the epidermis. These results indicate that follicular melanocytes are responsible for maintaining the epidermal homeostasis; namely, the present study has provided evidence for the link between melanocyte development and the epidermal microenvironment.

  9. A mutation that eliminates bundle sheath extensions reduces leaf hydraulic conductance, stomatal conductance and assimilation rates in tomato (Solanum lycopersicum).

    PubMed

    Zsögön, Agustin; Negrini, Ana Clarissa Alves; Peres, Lázaro Eustáquio Pereira; Nguyen, Hoa Thi; Ball, Marilyn C

    2015-01-01

    Bundle sheath extensions (BSEs) are key features of leaf structure whose distribution differs among species and ecosystems. The genetic control of BSE development is unknown, so BSE physiological function has not yet been studied through mutant analysis. We screened a population of ethyl methanesulfonate (EMS)-induced mutants in the genetic background of the tomato (Solanum lycopersicum) model Micro-Tom and found a mutant lacking BSEs. The leaf phenotype of the mutant strongly resembled the tomato mutant obscuravenosa (obv). We confirmed that obv lacks BSEs and that it is not allelic to our induced mutant, which we named obv-2. Leaves lacking BSEs had lower leaf hydraulic conductance and operated with lower stomatal conductance and correspondingly lower assimilation rates than wild-type leaves. This lower level of function occurred despite similarities in vein density, midvein vessel diameter and number, stomatal density, and leaf area between wild-type and mutant leaves, the implication being that the lack of BSEs hindered water dispersal within mutant leaves. Our results comparing near-isogenic lines within a single species confirm the hypothesised role of BSEs in leaf hydraulic function. They further pave the way for a genetic model-based analysis of a common leaf structure with deep ecological consequences. © 2014 The Authors New Phytologist © 2014 New Phytologist Trust.

  10. An efficient method for generation of bi-allelic null mutant mouse embryonic stem cells and its application for investigating epigenetic modifiers.

    PubMed

    Fisher, Cynthia L; Marks, Hendrik; Cho, Lily Ting-Yin; Andrews, Robert; Wormald, Sam; Carroll, Thomas; Iyer, Vivek; Tate, Peri; Rosen, Barry; Stunnenberg, Hendrik G; Fisher, Amanda G; Skarnes, William C

    2017-12-01

    Mouse embryonic stem (ES) cells are a popular model system to study biological processes, though uncovering recessive phenotypes requires inactivating both alleles. Building upon resources from the International Knockout Mouse Consortium (IKMC), we developed a targeting vector for second allele inactivation in conditional-ready IKMC 'knockout-first' ES cell lines. We applied our technology to several epigenetic regulators, recovering bi-allelic targeted clones with a high efficiency of 60% and used Flp recombinase to restore expression in two null cell lines to demonstrate how our system confirms causality through mutant phenotype reversion. We designed our strategy to select against re-targeting the 'knockout-first' allele and identify essential genes in ES cells, including the histone methyltransferase Setdb1. For confirmation, we exploited the flexibility of our system, enabling tamoxifen inducible conditional gene ablation while controlling for genetic background and tamoxifen effects. Setdb1 ablated ES cells exhibit severe growth inhibition, which is not rescued by exogenous Nanog expression or culturing in naive pluripotency '2i' media, suggesting that the self-renewal defect is mediated through pluripotency network independent pathways. Our strategy to generate null mutant mouse ES cells is applicable to thousands of genes and repurposes existing IKMC Intermediate Vectors. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Active site mutant transgene confers tolerance to human β-glucuronidase without affecting the phenotype of MPS VII mice

    PubMed Central

    Sly, William S.; Vogler, Carole; Grubb, Jeffrey H.; Zhou, Mi; Jiang, Jinxing; Zhou, Xiao Yan; Tomatsu, Shunji; Bi, Yanhua; Snella, Elizabeth M.

    2001-01-01

    Mucopolysaccharidosis type VII (MPS VII; Sly syndrome) is an autosomal recessive lysosomal storage disorder due to an inherited deficiency of β-glucuronidase. A naturally occurring mouse model for this disease was discovered at The Jackson Laboratory and shown to be due to homozygosity for a 1-bp deletion in exon 10 of the gus gene. The murine model MPS VII (gusmps/mps) has been very well characterized and used extensively to evaluate experimental strategies for lysosomal storage diseases, including bone marrow transplantation, enzyme replacement therapy, and gene therapy. To enhance the value of this model for enzyme and gene therapy, we produced a transgenic mouse expressing the human β-glucuronidase cDNA with an amino acid substitution at the active site nucleophile (E540A) and bred it onto the MPS VII (gusmps/mps) background. We demonstrate here that the mutant mice bearing the active site mutant human transgene retain the clinical, morphological, biochemical, and histopathological characteristics of the original MPS VII (gusmps/mps) mouse. However, they are now tolerant to immune challenge with human β-glucuronidase. This “tolerant MPS VII mouse model” should be useful for preclinical trials evaluating the effectiveness of enzyme and/or gene therapy with the human gene products likely to be administered to human patients with MPS VII. PMID:11226217

  12. Determination of the promoter region of mouse ribosomal RNA gene by an in vitro transcription system.

    PubMed Central

    Yamamoto, O; Takakusa, N; Mishima, Y; Kominami, R; Muramatsu, M

    1984-01-01

    Sequences required for a faithful and efficient transcription of a cloned mouse ribosomal RNA gene (rDNA) are determined by testing a series of deletion mutants in an in vitro transcription system utilizing two kinds of mouse cellular extract. Deletion of sequences upstream of -40 or downstream of +52 causes only slight reduction in promoter activity as compared with the "wild-type" template. For upstream deletion mutants, the removal of a sequence between -40 and -35 causes a significant decrease in the capacity to direct efficient initiation. This decrease becomes more pronounced when the deletion reaches -32 and the sequence A-T-C-T-T-T, conserved among mouse, rat, and human rDNAs, is lost. Residual template activity is further reduced as more upstream sequence is deleted and finally becomes undetectable when the deletion is extended from -22 down to -17, corresponding to the loss of the conserved sequence T-A-T-T-G. As for downstream deletion mutants, the removal of the sequence downstream of +23 causes some (and further deletions up to +11 cause a more) serious decrease in template activity in vitro. These deletions involve other conserved sequences downstream of the transcription start site. However, the removal of the original transcription start site does not abolish the transcription initiation completely, provided that the whole upstream sequence is intact. Images PMID:6320178

  13. A Competitive Infection Model of Hematogenously Disseminated Candidiasis in Mice Redefines the Role of Candida albicans IRS4 in Pathogenesis

    PubMed Central

    Raman, Suresh B.; Nguyen, M. Hong; Cheng, Shaoji; Badrane, Hassan; Iczkowski, Kenneth A.; Wegener, Marilyn; Gaffen, Sarah L.; Mitchell, Aaron P.

    2013-01-01

    Candida albicans IRS4 encodes a protein that regulates phosphatidylinositol-(4,5)-bisphosphate, which was shown to contribute to hematogenously disseminated candidiasis (DC) after several days in the standard mouse model. Our objective was to more accurately define the temporal contributions of IRS4 to pathogenesis. During competition assays in vitro, an irs4-null (Δirs4) mutant exhibited wild-type fitness. In DC experiments, mice were infected intravenously with the Δirs4 mutant, strain CAI-12 (1 × 105 CFU), or a mixture of the strains (0.5 × 105 CFU each). In single-strain infections, quantitative PCR revealed reduced Δirs4 mutant burdens within kidneys at days 1, 4, and 7 but not 6 h. In competitive infections, the Δirs4 mutant was outcompeted by CAI-12 in each mouse at ≥6 h (competitive indices, P ≤ 0.0001). At 4 and 7 days, the Δirs4 mutant burdens during competitive infections were significantly lower than those during single-strain infections (P = 0.01 and P < 0.001, respectively), suggesting increased susceptibility to inflammatory responses. Phagocytic infiltration of kidneys in response to CAI-12 or competitive infections was significantly greater than that in response to Δirs4 mutant infection at days 1 and 4 (P < 0.001), and the Δirs4 mutant was more susceptible to phagocytosis and killing by human polymorphonuclear cells (P = 0.01 and P = 0.006, respectively) and mouse macrophages in vitro (P = 0.04 and P = 0.01, respectively). Therefore, IRS4 contributes to tissue invasion at early stages of DC and mediates resistance to phagocytosis as DC progresses. Microarray analysis revealed remarkably similar gene expression by the Δirs4 mutant and reference strain CAI-12 within blood, suggesting that IRS4 is not significantly involved in the hematogenous stage of disease. A competitive DC model detects attenuated virulence that is not evident with the standard model. PMID:23429534

  14. Effect of Lactobacillus salivarius bacteriocin Abp118 on the mouse and pig intestinal microbiota.

    PubMed

    Riboulet-Bisson, Eliette; Sturme, Mark H J; Jeffery, Ian B; O'Donnell, Michelle M; Neville, B Anne; Forde, Brian M; Claesson, Marcus J; Harris, Hugh; Gardiner, Gillian E; Casey, Patrick G; Lawlor, Peadar G; O'Toole, Paul W; Ross, R Paul

    2012-01-01

    Lactobacilli are gram-positive bacteria that are a subdominant element in the human gastrointestinal microbiota, and which are commonly used in the food industry. Some lactobacilli are considered probiotic, and have been associated with health benefits. However, there is very little culture-independent information on how consumed probiotic microorganisms might affect the entire intestinal microbiota. We therefore studied the impact of the administration of Lactobacillus salivarius UCC118, a microorganism well characterized for its probiotic properties, on the composition of the intestinal microbiota in two model animals. UCC118 has anti-infective activity due to production of the bacteriocin Abp118, a broad-spectrum class IIb bacteriocin, which we hypothesized could impact the microbiota. Mice and pigs were administered wild-type (WT) L. salivarius UCC118 cells, or a mutant lacking bacteriocin production. The microbiota composition was determined by pyrosequencing of 16S rRNA gene amplicons from faeces. The data show that L. salivarius UCC118 administration had no significant effect on proportions of major phyla comprising the mouse microbiota, whether the strain was producing bacteriocin or not. However, L. salivarius UCC118 WT administration led to a significant decrease in Spirochaetes levels, the third major phylum in the untreated pig microbiota. In both pigs and mice, L. salivarius UCC118 administration had an effect on Firmicutes genus members. This effect was not observed when the mutant strain was administered, and was thus associated with bacteriocin production. Surprisingly, in both models, L. salivarius UCC118 administration and production of Abp118 had an effect on gram-negative microorganisms, even though Abp118 is normally not active in vitro against this group of microorganisms. Thus L. salivarius UCC118 administration has a significant but subtle impact on mouse and pig microbiota, by a mechanism that seems at least partially bacteriocin-dependent.

  15. Effect of Lactobacillus salivarius Bacteriocin Abp118 on the Mouse and Pig Intestinal Microbiota

    PubMed Central

    Riboulet-Bisson, Eliette; Sturme, Mark H. J.; Jeffery, Ian B.; O'Donnell, Michelle M.; Neville, B. Anne; Forde, Brian M.; Claesson, Marcus J.; Harris, Hugh; Gardiner, Gillian E.; Casey, Patrick G.; Lawlor, Peadar G.; O'Toole, Paul W.; Ross, R. Paul

    2012-01-01

    Lactobacilli are Gram-positive bacteria that are a subdominant element in the human gastrointestinal microbiota, and which are commonly used in the food industry. Some lactobacilli are considered probiotic, and have been associated with health benefits. However, there is very little culture-independent information on how consumed probiotic microorganisms might affect the entire intestinal microbiota. We therefore studied the impact of the administration of Lactobacillus salivarius UCC118, a microorganism well characterized for its probiotic properties, on the composition of the intestinal microbiota in two model animals. UCC118 has anti-infective activity due to production of the bacteriocin Abp118, a broad-spectrum class IIb bacteriocin, which we hypothesized could impact the microbiota. Mice and pigs were administered wild-type (WT) L. salivarius UCC118 cells, or a mutant lacking bacteriocin production. The microbiota composition was determined by pyrosequencing of 16S rRNA gene amplicons from faeces. The data show that L. salivarius UCC118 administration had no significant effect on proportions of major phyla comprising the mouse microbiota, whether the strain was producing bacteriocin or not. However, L. salivarius UCC118 WT administration led to a significant decrease in Spirochaetes levels, the third major phylum in the untreated pig microbiota. In both pigs and mice, L. salivarius UCC118 administration had an effect on Firmicutes genus members. This effect was not observed when the mutant strain was administered, and was thus associated with bacteriocin production. Surprisingly, in both models, L. salivarius UCC118 administration and production of Abp118 had an effect on Gram-negative microorganisms, even though Abp118 is normally not active in vitro against this group of microorganisms. Thus L. salivarius UCC118 administration has a significant but subtle impact on mouse and pig microbiota, by a mechanism that seems at least partially bacteriocin-dependent. PMID:22363561

  16. Sequence, molecular properties, and chromosomal mapping of mouse lumican

    NASA Technical Reports Server (NTRS)

    Funderburgh, J. L.; Funderburgh, M. L.; Hevelone, N. D.; Stech, M. E.; Justice, M. J.; Liu, C. Y.; Kao, W. W.; Conrad, G. W.; Spooner, B. S. (Principal Investigator)

    1995-01-01

    PURPOSE. Lumican is a major proteoglycan of vertebrate cornea. This study characterizes mouse lumican, its molecular form, cDNA sequence, and chromosomal localization. METHODS. Lumican sequence was determined from cDNA clones selected from a mouse corneal cDNA expression library using a bovine lumican cDNA probe. Tissue expression and size of lumican mRNA were determined using Northern hybridization. Glycosidase digestion followed by Western blot analysis provided characterization of molecular properties of purified mouse corneal lumican. Chromosomal mapping of the lumican gene (Lcn) used Southern hybridization of a panel of genomic DNAs from an interspecific murine backcross. RESULTS. Mouse lumican is a 338-amino acid protein with high-sequence identity to bovine and chicken lumican proteins. The N-terminus of the lumican protein contains consensus sequences for tyrosine sulfation. A 1.9-kb lumican mRNA is present in cornea and several other tissues. Antibody against bovine lumican reacted with recombinant mouse lumican expressed in Escherichia coli and also detected high molecular weight proteoglycans in extracts of mouse cornea. Keratanase digestion of corneal proteoglycans released lumican protein, demonstrating the presence of sulfated keratan sulfate chains on mouse corneal lumican in vivo. The lumican gene (Lcn) was mapped to the distal region of mouse chromosome 10. The Lcn map site is in the region of a previously identified developmental mutant, eye blebs, affecting corneal morphology. CONCLUSIONS. This study demonstrates sulfated keratan sulfate proteoglycan in mouse cornea and describes the tools (antibodies and cDNA) necessary to investigate the functional role of this important corneal molecule using naturally occurring and induced mutants of the murine lumican gene.

  17. Phenotype analysis of male transgenic mice overexpressing mutant IGFBP-2 lacking the Cardin-Weintraub sequence motif: Reduced expression of synaptic markers and myelin basic protein in the brain and a lower degree of anxiety-like behaviour.

    PubMed

    Schindler, N; Mayer, J; Saenger, S; Gimsa, U; Walz, C; Brenmoehl, J; Ohde, D; Wirthgen, E; Tuchscherer, A; Russo, V C; Frank, M; Kirschstein, T; Metzger, F; Hoeflich, A

    2017-04-01

    Brain growth and function are regulated by insulin-like growth factors I and II (IGF-I and IGF-II) but also by IGF-binding proteins (IGFBPs), including IGFBP-2. In addition to modulating IGF activities, IGFBP-2 interacts with a number of components of the extracellular matrix and cell membrane via a Cardin-Weintraub sequence or heparin binding domain (HBD1). The nature and the signalling elicited by these interactions are not fully understood. Here, we examined transgenic mice (H1d-hBP2) overexpressing a mutant human IGFBP-2 that lacks a specific heparin binding domain (HBD1) known as the Cardin-Weintraub sequence. H1d-hBP2 transgenic mice have the genetic background of FVB mice and are characterized by severe deficits in brain growth throughout their lifetime (p<0.05). In tissue lysates from brain hemispheres of 12-21day old male mice, protein levels of the GTPase dynamin-I were significantly reduced (p<0.01). Weight reductions were also found in distinct brain regions in two different age groups (12 and 80weeks). In the younger group, impaired weights were observed in the hippocampus (-34%; p<0.001), cerebellum (-25%; p<0.0001), olfactory bulb (-31%; p<0.05) and prefrontal cortex (-29%; p<0.05). At an age of 12weeks expression of myelin basic protein was reduced (p<0.01) in H1d-BP-2 mice in the cerebellum but not in the hippocampus. At 80weeks of age, weight reductions were similarly present in the cerebellum (-28%; p<0.001) and hippocampus (-31; p<0.05). When mice were challenged in the elevated plus maze, aged but not younger H1d-hBP2 mice displayed significantly less anxiety-like behaviour, which was also observed in a second transgenic mouse model overexpressing mouse IGFBP-2 lacking HBD1 (H1d-mBP2). These in vivo studies provide, for the first time, evidence for a specific role of IGFBP-2 in brain functions associated with anxiety and risk behaviour. These activities of IGFBP-2 could be mediated by the Cardin-Weintraub/HBD1 sequence and are altered in mice expressing IGFBP-2 lacking the HBD1. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Mechanisms and Clinical Activity of an EGFR and HER2 Exon 20-selective Kinase Inhibitor in Non-small Cell Lung Cancer

    PubMed Central

    Robichaux, Jacqulyne P.; Elamin, Yasir Y.; Tan, Zhi; Carter, Brett W.; Zhang, Shuxing; Liu, Shengwu; Li, Shuai; Chen, Ting; Poteete, Alissa; Estrada-Bernal, Adriana; Le, Anh T.; Truini, Anna; Nilsson, Monique B.; Sun, Huiying; Roarty, Emily; Goldberg, Sarah B.; Brahmer, Julie R.; Altan, Mehmet; Lu, Charles; Papadimitrakopoulou, Vassiliki; Politi6, Katerina; Doebele, Robert C.; Wong, Kwok-Kin; Heymach, John V.

    2018-01-01

    Although most activating mutations of epidermal growth factor receptor (EGFR)-mutant non–small cell lung cancers (NSCLCs) are sensitive to available EGFR tyrosine kinase inhibitors (TKIs), a subset with alterations in exon 20 of EGFR and HER2 are intrinsically resistant and lack an effective therapy. We used in silico, in vitro, and in vivo testing to model structural alterations induced by exon 20 mutations and to identify effective inhibitors. 3D modeling indicated alterations restricted the size of the drug-binding pocket, limiting the binding of large, rigid inhibitors. We found that poziotinib, owing to its small size and flexibility, can circumvent these steric changes and is a potent inhibitor of the most common EGFR and HER2 exon 20 mutants. Poziotinib demonstrated greater activity than approved EGFR TKIs in vitro and in patient-derived xenograft models of EGFR or HER2 exon 20 mutant NSCLC and in genetically engineered mouse models of NSCLC. In a phase 2 trial, the first 11 patients with NSCLC with EGFR exon 20 mutations receiving poziotinib had a confirmed objective response rate of 64%. These data identify poziotinib as a potent, clinically active inhibitor of EGFR and HER2 exon 20 mutations and illuminate the molecular features of TKIs that may circumvent steric changes induced by these mutations. PMID:29686424

  19. Role of the gut endoderm in relaying left-right patterning in mice.

    PubMed

    Viotti, Manuel; Niu, Lei; Shi, Song-Hai; Hadjantonakis, Anna-Katerina

    2012-01-01

    Establishment of left-right (LR) asymmetry occurs after gastrulation commences and utilizes a conserved cascade of events. In the mouse, LR symmetry is broken at a midline structure, the node, and involves signal relay to the lateral plate, where it results in asymmetric organ morphogenesis. How information transmits from the node to the distantly situated lateral plate remains unclear. Noting that embryos lacking Sox17 exhibit defects in both gut endoderm formation and LR patterning, we investigated a potential connection between these two processes. We observed an endoderm-specific absence of the critical gap junction component, Connexin43 (Cx43), in Sox17 mutants. Iontophoretic dye injection experiments revealed planar gap junction coupling across the gut endoderm in wild-type but not Sox17 mutant embryos. They also revealed uncoupling of left and right sides of the gut endoderm in an isolated domain of gap junction intercellular communication at the midline, which in principle could function as a barrier to communication between the left and right sides of the embryo. The role for gap junction communication in LR patterning was confirmed by pharmacological inhibition, which molecularly recapitulated the mutant phenotype. Collectively, our data demonstrate that Cx43-mediated communication across gap junctions within the gut endoderm serves as a mechanism for information relay between node and lateral plate in a process that is critical for the establishment of LR asymmetry in mice.

  20. Vitamin C restores healthy aging in a mouse model for Werner syndrome

    PubMed Central

    Massip, Laurent; Garand, Chantal; Paquet, Eric R.; Cogger, Victoria C.; O’Reilly, Jennifer N.; Tworek, Leslee; Hatherell, Avril; Taylor, Carla G.; Thorin, Eric; Zahradka, Peter; Le Couteur, David G.; Lebel, Michel

    2013-01-01

    Werner syndrome (WS) is a premature aging disorder caused by mutations in a RecQ-like DNA helicase. Mice lacking the helicase domain of the WRN homologue exhibit many phenotypic features of WS, including a prooxidant status and a shorter mean life span compared to wild-type animals. Here, we show that Wrn mutant mice also develop premature liver sinusoidal endothelial defenestration along with inflammation and metabolic syndrome. Vitamin C supplementation rescued the shorter mean life span of Wrn mutant mice and reversed several age-related abnormalities in adipose tissues and liver endothelial defenestration, genomic integrity, and inflammatory status. At the molecular level, phosphorylation of age-related stress markers like Akt kinase-specific substrates and the transcription factor NF-κB, as well as protein kinase Cδ and Hif-1α transcription factor levels, which are increased in the liver of Wrn mutants, were normalized by vitamin C. Vitamin C also increased the transcriptional regulator of lipid metabolism PPARα. Finally, microarray and gene set enrichment analyses on liver tissues revealed that vitamin C decreased genes normally up-regulated in human WS fibroblasts and cancers, and it increased genes involved in tissue injury response and adipocyte dedifferentiation in obese mice. Vitamin C did not have such effect on wild-type mice. These results indicate that vitamin C supplementation could be beneficial for patients with WS. PMID:19741171

  1. Synergistic Action of FOXP3 and TSC1 Pathways During Tumor Progression

    DTIC Science & Technology

    2015-10-01

    invasive carcinoma and, ultimately, metastatic disease [1-3]. Mouse models of PIN (mPIN) generated by a single- mutant gene in prostate do not progress...downstream target) is sufficient to significantly reduce the initiation of prostate cancer in the Pten conditional knockout mouse model [19-21...the possibility that these two genetic hits cooperate to promote tumor progression, and mouse models show that this cooperation accelerates

  2. Behavioral phenotypes of genetic mouse models of autism

    PubMed Central

    Kazdoba, T. M.; Leach, P. T.; Crawley, J. N.

    2016-01-01

    More than a hundred de novo single gene mutations and copy-number variants have been implicated in autism, each occurring in a small subset of cases. Mutant mouse models with syntenic mutations offer research tools to gain an understanding of the role of each gene in modulating biological and behavioral phenotypes relevant to autism. Knockout, knockin and transgenic mice incorporating risk gene mutations detected in autism spectrum disorder and comorbid neurodevelopmental disorders are now widely available. At present, autism spectrum disorder is diagnosed solely by behavioral criteria. We developed a constellation of mouse behavioral assays designed to maximize face validity to the types of social deficits and repetitive behaviors that are central to an autism diagnosis. Mouse behavioral assays for associated symptoms of autism, which include cognitive inflexibility, anxiety, hyperactivity, and unusual reactivity to sensory stimuli, are frequently included in the phenotypic analyses. Over the past 10 years, we and many other laboratories around the world have employed these and additional behavioral tests to phenotype a large number of mutant mouse models of autism. In this review, we highlight mouse models with mutations in genes that have been identified as risk genes for autism, which work through synaptic mechanisms and through the mTOR signaling pathway. Robust, replicated autism-relevant behavioral outcomes in a genetic mouse model lend credence to a causal role for specific gene contributions and downstream biological mechanisms in the etiology of autism. PMID:26403076

  3. Publisher Correction: Mutations in Vps15 perturb neuronal migration in mice and are associated with neurodevelopmental disease in humans.

    PubMed

    Gstrein, Thomas; Edwards, Andrew; Přistoupilová, Anna; Leca, Ines; Breuss, Martin; Pilat-Carotta, Sandra; Hansen, Andi H; Tripathy, Ratna; Traunbauer, Anna K; Hochstoeger, Tobias; Rosoklija, Gavril; Repic, Marco; Landler, Lukas; Stránecký, Viktor; Dürnberger, Gerhard; Keane, Thomas M; Zuber, Johannes; Adams, David J; Flint, Jonathan; Honzik, Tomas; Gut, Marta; Beltran, Sergi; Mechtler, Karl; Sherr, Elliott; Kmoch, Stanislav; Gut, Ivo; Keays, David A

    2018-06-06

    In the supplementary information PDF originally posted, there were discrepancies from the integrated supplementary information that appeared in the HTML; the former has been corrected as follows. In the legend to Supplementary Fig. 2c, "major organs of the mouse" has been changed to "major organs of the adult mouse." In the legend to Supplementary Fig. 6d,h, "At E14.5 Mbe/Mbe mutants have a smaller percentage of Brdu positive cells in bin 3" has been changed to "At E14.5 Mbe/Mbe mutants have a higher percentage of Brdu positive cells in bin 3."

  4. Early-onset lymphoma and extensive embryonic apoptosis in two domain-specific Fen1 mice mutants.

    PubMed

    Larsen, Elisabeth; Kleppa, Liv; Meza, Trine J; Meza-Zepeda, Leonardo A; Rada, Christina; Castellanos, Cesilie G; Lien, Guro F; Nesse, Gaute J; Neuberger, Michael S; Laerdahl, Jon K; William Doughty, Richard; Klungland, Arne

    2008-06-15

    Flap endonuclease 1 (FEN1) processes Okazaki fragments in lagging strand DNA synthesis, and FEN1 is involved in several DNA repair pathways. The interaction of FEN1 with the proliferating cell nuclear antigen (PCNA) processivity factor is central to the function of FEN1 in both DNA replication and repair. Here we present two gene-targeted mice with mutations in FEN1. The first mutant mouse carries a single amino acid point mutation in the active site of the nuclease domain of FEN1 (Fen1(E160D/E160D)), and the second mutant mouse contains two amino acid substitutions in the highly conserved PCNA interaction domain of FEN1 (Fen1(DeltaPCNA/DeltaPCNA)). Fen1(E160D/E160D) mice develop a considerably elevated incidence of B-cell lymphomas beginning at 6 months of age, particularly in females. By 16 months of age, more than 90% of the Fen1(E160D/E160D) females have tumors, primarily lymphomas. By contrast, Fen1(DeltaPCNA/DeltaPCNA) mouse embryos show extensive apoptosis in the forebrain and vertebrae area and die around stage E9.5 to E11.5.

  5. Impaired eye-blink conditioning in waggler, a mutant mouse with cerebellar BDNF deficiency.

    PubMed

    Bao, S; Chen, L; Qiao, X; Knusel, B; Thompson, R F

    1998-01-01

    In addition to their trophic functions, neurotrophins are also implicated in synaptic modulation and learning and memory. Although gene knockout techniques have been used widely in studying the roles of neurotrophins at molecular and cellular levels, behavioral studies using neurotrophin knockouts are limited by the early-onset lethality and various sensory deficits associated with the gene knockout mice. In the present study, we found that in a spontaneous mutant mouse, waggler, the expression of brain-derived neurotrophic factor (BDNF) was selectively absent in the cerebellar granule cells. The cytoarchitecture of the waggler cerebellum appeared to be normal at the light microscope level. The mutant mice exhibited no sensory deficits to auditory stimuli or heat-induced pain. However, they were massively impaired in classic eye-blink conditioning. These results suggest that BDNF may have a role in normal cerebellar neuronal function, which, in turn, is essential for classic eye-blink conditioning.

  6. Attenuated and Replication-Competent Vaccinia Virus Strains M65 and M101 with Distinct Biology and Immunogenicity as Potential Vaccine Candidates against Pathogens

    PubMed Central

    Sánchez-Sampedro, Lucas; Gómez, Carmen Elena; Mejías-Pérez, Ernesto; Pérez-Jiménez, Eva; Oliveros, Juan Carlos

    2013-01-01

    Replication-competent poxvirus vectors with an attenuation phenotype and with a high immunogenic capacity of the foreign expressed antigen are being pursued as novel vaccine vectors against different pathogens. In this investigation, we have examined the replication and immunogenic characteristics of two vaccinia virus (VACV) mutants, M65 and M101. These mutants were generated after 65 and 101 serial passages of persistently infected Friend erythroleukemia (FEL) cells. In cultured cells of different origins, the mutants are replication competent and have growth kinetics similar to or slightly reduced in comparison with those of the parental Western Reserve (WR) virus strain. In normal and immune-suppressed infected mice, the mutants showed different levels of attenuation and pathogenicity in comparison with WR and modified vaccinia Ankara (MVA) strains. Wide genome analysis after deep sequencing revealed selected genomic deletions and mutations in a number of viral open reading frames (ORFs). Mice immunized in a DNA prime/mutant boost regimen with viral vectors expressing the LACK (Leishmania homologue for receptors of activated C kinase) antigen of Leishmania infantum showed protection or a delay in the onset of cutaneous leishmaniasis. Protection was similar to that triggered by MVA-LACK. In immunized mice, both polyfunctional CD4+ and CD8+ T cells with an effector memory phenotype were activated by the two mutants, but the DNA-LACK/M65-LACK protocol preferentially induced CD4+ whereas DNA-LACK/M101-LACK preferentially induced CD8+ T cell responses. Altogether, our findings showed the adaptive changes of the WR genome during long-term virus-host cell interaction and how the replication competency of M65 and M101 mutants confers distinct biological properties and immunogenicity in mice compared to those of the MVA strain. These mutants could have applicability for understanding VACV biology and as potential vaccine vectors against pathogens and tumors. PMID:23596295

  7. Pofut1 point-mutations that disrupt O-fucosyltransferase activity destabilize the protein and abolish Notch1 signaling during mouse somitogenesis

    PubMed Central

    Suzuki, Emiko; Saga, Yumiko

    2017-01-01

    The segmental pattern of the vertebrate body is established via the periodic formation of somites from the presomitic mesoderm (PSM). This periodical process is controlled by the cyclic and synchronized activation of Notch signaling in the PSM. Protein O-fucosyltransferase1 (Pofut1), which transfers O-fucose to the EGF domains of the Notch1 receptor, is indispensable for Notch signaling activation. The Drosophila homologue Ofut1 was reported to control Notch localization via two different mechanisms, working as a chaperone for Notch or as a regulator of Notch endocytosis. However, these were found to be independent of O-fucosyltransferase activity because the phenotypes were rescued by Ofut1 mutants lacking O-fucosyltransferase activity. Pofut1 may also be involved in the Notch receptor localization in mice. However, the contribution of enzymatic activity of Pofut1 to the Notch receptor dynamics remains to be elucidated. In order to clarify the importance of the O-fucosyltransferase activity of Pofut1 for Notch signaling activation and the protein localization in the PSM, we established mice carrying point mutations at the 245th a.a. or 370-372th a.a., highly conserved amino-acid sequences whose mutations disrupt the O-fucosyltransferase activity of both Drosophila Ofut1 and mammalian Pofut1, with the CRISPR/Cas9 mediated genome-engineering technique. Both mutants displayed the same severely perturbed somite formation and Notch1 subcellular localization defects as the Pofut1 null mutants. In the mutants, Pofut1 protein, but not RNA, became undetectable by E9.5. Furthermore, both wild-type and mutant Pofut1 proteins were degraded through lysosome dependent machinery. Pofut1 protein loss in the point mutant embryos caused the same phenotypes as those observed in Pofut1 null embryos. PMID:29095923

  8. A Dominant Loss-of-Function GJA1 (Cx43) Mutant Impairs Parturition in the Mouse1

    PubMed Central

    Tong, Dan; Lu, Xuerong; Wang, Hong-Xing; Plante, Isabelle; Lui, Ed; Laird, Dale W.; Bai, Donglin; Kidder, Gerald M.

    2009-01-01

    Expression of GJA1 (commonly known as connexin43 or Cx43), a major myometrial gap junction protein, is upregulated before the onset of delivery, suggesting an essential role for Cx43-mediated gap junctional intercellular communication (GJIC) in normal uterine contraction during parturition. To determine how a disease-linked Cx43 mutation affects myometrial function, we studied a mutant mouse model carrying an autosomal dominant mutation (Gja1Jrt) in the gene encoding Cx43 that displays features of the human genetic disease oculodentodigital dysplasia. We found that Cx43 level, specifically the phosphorylated species of the protein, is significantly reduced in the myometrium of the mutant mice (Gja1Jrt/+), as revealed by Western blotting and immunostaining. Patch-clamp electrophysiological measurements demonstrated that coupling between myometrial smooth muscle cells is reduced to <15% of wild-type, indicating that the mutant protein acts dominantly on its wild-type counterpart. The phosphorylated species of Cx43 in the mutant myometrium failed to increase prior to parturition as well as in response to exogenous estrogen. Correspondingly, in vitro experiments with uterine strips revealed weaker contraction of the mutant myometrium and reduced responsiveness to oxytocin, providing an explanation for the prolonged gestation and presence of suffocated fetuses in the uteri that were observed in some of the mutant mice. We conclude that the Gja1Jrt mutation has a dominant-negative effect on Cx43 function in the myometrium, severely reducing GJIC, leading to impaired parturition. PMID:19176884

  9. β-Arrestin2 mediates progression of murine primary myelofibrosis

    PubMed Central

    Rein, Lindsay A.M.; Wisler, James W.; Kim, Jihee; Theriot, Barbara; Huang, LiYin; Price, Trevor; Yang, Haeyoon; Chen, Wei; Sipkins, Dorothy; Fedoriw, Yuri; Walker, Julia K.L.; Premont, Richard T.; Lefkowitz, Robert J.

    2017-01-01

    Primary myelofibrosis is a myeloproliferative neoplasm associated with significant morbidity and mortality, for which effective therapies are lacking. β-Arrestins are multifunctional adaptor proteins involved in developmental signaling pathways. One isoform, β-arrestin2 (βarr2), has been implicated in initiation and progression of chronic myeloid leukemia, another myeloproliferative neoplasm closely related to primary myelofibrosis. Accordingly, we investigated the relationship between βarr2 and primary myelofibrosis. In a murine model of MPLW515L-mutant primary myelofibrosis, mice transplanted with donor βarr2-knockout (βarr2–/–) hematopoietic stem cells infected with MPL-mutant retrovirus did not develop myelofibrosis, whereas controls uniformly succumbed to disease. Although transplanted βarr2–/– cells homed properly to marrow, they did not repopulate long-term due to increased apoptosis and decreased self-renewal of βarr2–/– cells. In order to assess the effect of acute loss of βarr2 in established primary myelofibrosis in vivo, we utilized a tamoxifen-induced Cre-conditional βarr2-knockout mouse. Mice that received Cre (+) donor cells and developed myelofibrosis had significantly improved survival compared with controls. These data indicate that lack of antiapoptotic βarr2 mediates marrow failure of murine hematopoietic stem cells overexpressing MPLW515L. They also indicate that βarr2 is necessary for progression of primary myelofibrosis, suggesting that it may serve as a novel therapeutic target in this disease. PMID:29263312

  10. Newborn mouse lens proteome and its alteration by lysine 6 mutant ubiquitin

    USDA-ARS?s Scientific Manuscript database

    Ubiquitin is a tag that often initiates degradation of proteins by the proteasome in the ubiquitin proteasome system. Targeted expression of K6W mutant ubiquitin (K6W-Ub) in the lens results in defects in lens development and cataract formation, suggesting critical functions for ubiquitin in lens. T...

  11. Development of new mouse lung tumor models expressing EGFR T790M mutants associated with clinical resistance to kinase inhibitors.

    PubMed

    Regales, Lucia; Balak, Marissa N; Gong, Yixuan; Politi, Katerina; Sawai, Ayana; Le, Carl; Koutcher, Jason A; Solit, David B; Rosen, Neal; Zakowski, Maureen F; Pao, William

    2007-08-29

    The EGFR T790M mutation confers acquired resistance to kinase inhibitors in human EGFR mutant lung adenocarcinoma, is occasionally detected before treatment, and may confer genetic susceptibility to lung cancer. To study further its role in lung tumorigenesis, we developed mice with inducible expression in type II pneumocytes of EGFR(T790M) alone or together with a drug-sensitive L858R mutation. Both transgenic lines develop lung adenocarcinomas that require mutant EGFR for tumor maintenance but are resistant to an EGFR kinase inhibitor. EGFR(L858R+T790M)-driven tumors are transiently targeted by hsp90 inhibition. Notably, EGFR(T790M)-expressing animals develop tumors with longer latency than EGFR(L858R+T790M)-bearing mice and in the absence of additional kinase domain mutations. These new mouse models of mutant EGFR-dependent lung adenocarcinomas provide insight into clinical observations. The models should also be useful for developing improved therapies for patients with lung cancers harboring EGFR(T790M) alone or in conjunction with drug-sensitive EGFR kinase domain mutations.

  12. Multiple ABC transporters are involved in the acquisition of petrobactin in Bacillus anthracis

    PubMed Central

    Dixon, Shandee D.; Janes, Brian K.; Bourgis, Alexandra; Carlson, Paul E.; Hanna, Philip C.

    2012-01-01

    Summary In Bacillus anthracis the siderophore petrobactin is vital for iron acquisition and virulence. The petrobactin-binding receptor FpuA is required for these processes. Here additional components of petrobactin reacquisition are described. To identify these proteins, mutants of candidate permease and ATPase genes were generated allowing for characterization of multiple petrobactin ATP-binding cassette (ABC)-import systems. Either of two distinct permeases, FpuB or FatCD, are required for iron acquisition and play redundant roles in petrobactin transport. A mutant strain lacking both permeases, ΔfpuBΔfatCD, was incapable of using petrobactin as an iron source and exhibited attenuated virulence in a murine model of inhalational anthrax infection. ATPase mutants were generated in either of the permease mutant backgrounds to identify the ATPase(s) interacting with each individual permease channel. Mutants lacking the FpuB permease and FatE ATPase (ΔfpuBΔfatE) and a mutant lacking the distinct ATPases FpuC and FpuD generated in the ΔfatCD background (ΔfatCDΔfpuCΔfpuD) displayed phenotypic characteristics of a mutant deficient in petrobactin import. A mutant lacking all three of the identified ATPases (ΔfatEΔfpuCΔfpuD) exhibited the same growth defect in iron-depleted conditions. Taken together, these results provide the first description of the permease and ATPase proteins required for the import of petrobactin in B. anthracis. PMID:22429808

  13. Analysis of Msx1 and Msx2 transactivation function in the context of the heat shock 70 (Hspa1b) gene promoter.

    PubMed

    Zhuang, Fengfeng; Nguyen, Manuel P; Shuler, Charles; Liu, Yi-Hsin

    2009-04-03

    Previous studies have shown that Msx proteins control gene transcription predominantly through repression mechanisms. However, gene expression studies using either the gain-of-function or the loss-of-function mutants revealed many gene targets whose expression require functional Msx proteins. To date, investigations into the mechanisms of Msx-dependent transactivation have been hindered by the lack of a responsive promoter. Here, we demonstrated the usefulness of the mouse Hspa1b promoter in probing Msx-dependent mechanisms of gene activation. We showed that Msx protein activates Hspa1b promoter via its C-terminal domain. The activation absolutely depends on the HSEs and physical interactions between Msx proteins and heat shock factors may play a contributing role.

  14. Anyalysis of Msx1 and Msx2 Transactivation Function in the Context of the Heat Shock 70 (Hspa1b) Gene Promoter

    PubMed Central

    Zhuang, Fengfeng; Nguyen, Manuel P.; Shuler, Charles; Liu, Yi-Hsin

    2009-01-01

    Previous studies have shown that Msx proteins control gene transcription predominantly through repression mechanisms. However, gene expression studies using either the gain-of-function or the loss-of-function mutants revealed many gene targets whose expression require functional Msx proteins. To date, investigations into the mechanisms of Msx-dependent trans-activation have been hindered by the lack of a responsive promoter. Here, we demonstrated the usefulness of the mouse Hspa1b promoter in probing Msx-dependent mechanisms of gene activation. We showed that Msx protein activates Hspa1b promoter via its C-terminal domain. The activation absolutely depends on the HSEs and physical interactions between Msx proteins and Heat shock factors may play a contributing role. PMID:19338779

  15. Defining New Treatment Approaches for KRAS-Mutant Lung Cancer

    DTIC Science & Technology

    2014-10-01

    mutant NSCLC , a challenge we must meet to make progress in this clinically challenging NSCLC subset. Mutant KRAS, like ALK or EGFR, is a bone fide NSCLC ...required for KRAS G12D-driven NSCLC . Specific Aim 1. To identify gene products specifically essential for KRAS-driven NSCLC , we will perform a shRNA...screen of thousands of mouse genes, looking for essentiality in multiple independent cell lines derived from two NSCLC GEMMs: one RAF- dependent and

  16. The Novel Mouse Mutation Oblivion Inactivates the PMCA2 Pump and Causes Progressive Hearing Loss

    PubMed Central

    de Angelis, Martin Hrabé; Fuchs, Helmut; Lim, Dmitry; Ortolano, Saida; Ingham, Neil J.; Brini, Marisa; Carafoli, Ernesto; Mammano, Fabio; Steel, Karen P.

    2008-01-01

    Progressive hearing loss is common in the human population, but we have few clues to the molecular basis. Mouse mutants with progressive hearing loss offer valuable insights, and ENU (N-ethyl-N-nitrosourea) mutagenesis is a useful way of generating models. We have characterised a new ENU-induced mouse mutant, Oblivion (allele symbol Obl), showing semi-dominant inheritance of hearing impairment. Obl/+ mutants showed increasing hearing impairment from post-natal day (P)20 to P90, and loss of auditory function was followed by a corresponding base to apex progression of hair cell degeneration. Obl/Obl mutants were small, showed severe vestibular dysfunction by 2 weeks of age, and were completely deaf from birth; sensory hair cells were completely degenerate in the basal turn of the cochlea, although hair cells appeared normal in the apex. We mapped the mutation to Chromosome 6. Mutation analysis of Atp2b2 showed a missense mutation (2630C→T) in exon 15, causing a serine to phenylalanine substitution (S877F) in transmembrane domain 6 of the PMCA2 pump, the resident Ca2+ pump of hair cell stereocilia. Transmembrane domain mutations in these pumps generally are believed to be incompatible with normal targeting of the protein to the plasma membrane. However, analyses of hair cells in cultured utricular maculae of Obl/Obl mice and of the mutant Obl pump in model cells showed that the protein was correctly targeted to the plasma membrane. Biochemical and biophysical characterisation showed that the pump had lost a significant portion of its non-stimulated Ca2+ exporting ability. These findings can explain the progressive loss of auditory function, and indicate the limits in our ability to predict mechanism from sequence alone. PMID:18974863

  17. Generation and characterization of Dyt1 DeltaGAG knock-in mouse as a model for early-onset dystonia.

    PubMed

    Dang, Mai T; Yokoi, Fumiaki; McNaught, Kevin St P; Jengelley, Toni-Ann; Jackson, Tehone; Li, Jianyong; Li, Yuqing

    2005-12-01

    A trinucleotide deletion of GAG in the DYT1 gene that encodes torsinA protein is implicated in the neurological movement disorder of Oppenheim's early-onset dystonia. The mutation removes a glutamic acid in the carboxy region of torsinA, a member of the Clp protease/heat shock protein family. The function of torsinA and the role of the mutation in causing dystonia are largely unknown. To gain insight into these unknowns, we made a gene-targeted mouse model of Dyt1 DeltaGAG to mimic the mutation found in DYT1 dystonic patients. The mutated heterozygous mice had deficient performance on the beam-walking test, a measure of fine motor coordination and balance. In addition, they exhibited hyperactivity in the open-field test. Mutant mice also showed a gait abnormality of increased overlap. Mice at 3 months of age did not display deficits in beam-walking and gait, while 6-month mutant mice did, indicating an age factor in phenotypic expression as well. While striatal dopamine and 4-dihydroxyphenylacetic acid (DOPAC) levels in Dyt1 DeltaGAG mice were similar to that of wild-type mice, a 27% decrease in 4-hydroxy, 3-methoxyphenacetic acid (homovanillic acid) was detected in mutant mice. Dyt1 DeltaGAG tissues also have ubiquitin- and torsinA-containing aggregates in neurons of the pontine nuclei. A sex difference was noticed in the mutant mice with female mutant mice exhibiting fewer alterations in behavioral, neurochemical, and cellular changes. Our results show that knocking in a Dyt1 DeltaGAG allele in mouse alters their motor behavior and recapitulates the production of protein aggregates that are seen in dystonic patients. Our data further support alterations in the dopaminergic system as a part of dystonia's neuropathology.

  18. Structure-based discovery of NANOG variant with enhanced properties to promote self-renewal and reprogramming of pluripotent stem cells

    PubMed Central

    Hayashi, Yohei; Caboni, Laura; Das, Debanu; Yumoto, Fumiaki; Clayton, Thomas; Deller, Marc C.; Nguyen, Phuong; Farr, Carol L.; Chiu, Hsiu-Ju; Miller, Mitchell D.; Elsliger, Marc-André; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Tomoda, Kiichiro; Conklin, Bruce R.; Wilson, Ian A.; Yamanaka, Shinya; Fletterick, Robert J.

    2015-01-01

    NANOG (from Irish mythology Tír na nÓg) transcription factor plays a central role in maintaining pluripotency, cooperating with OCT4 (also known as POU5F1 or OCT3/4), SOX2, and other pluripotency factors. Although the physiological roles of the NANOG protein have been extensively explored, biochemical and biophysical properties in relation to its structural analysis are poorly understood. Here we determined the crystal structure of the human NANOG homeodomain (hNANOG HD) bound to an OCT4 promoter DNA, which revealed amino acid residues involved in DNA recognition that are likely to be functionally important. We generated a series of hNANOG HD alanine substitution mutants based on the protein–DNA interaction and evolutionary conservation and determined their biological activities. Some mutant proteins were less stable, resulting in loss or decreased affinity for DNA binding. Overexpression of the orthologous mouse NANOG (mNANOG) mutants failed to maintain self-renewal of mouse embryonic stem cells without leukemia inhibitory factor. These results suggest that these residues are critical for NANOG transcriptional activity. Interestingly, one mutant, hNANOG L122A, conversely enhanced protein stability and DNA-binding affinity. The mNANOG L122A, when overexpressed in mouse embryonic stem cells, maintained their expression of self-renewal markers even when retinoic acid was added to forcibly drive differentiation. When overexpressed in epiblast stem cells or human induced pluripotent stem cells, the L122A mutants enhanced reprogramming into ground-state pluripotency. These findings demonstrate that structural and biophysical information on key transcriptional factors provides insights into the manipulation of stem cell behaviors and a framework for rational protein engineering. PMID:25825768

  19. Immunogenicity of a meningococcal native outer membrane vesicle vaccine with attenuated endotoxin and over-expressed factor H binding protein in infant rhesus monkeys

    PubMed Central

    Koeberling, Oliver; Seubert, Anja; Santos, George; Colaprico, Annalisa; Ugozzoli, Mildred; Donnelly, John; Granoff, Dan M.

    2011-01-01

    We previously investigated immunogenicity of meningococcal native outer membrane vesicle (NOMV) vaccines prepared from recombinant strains with attenuated endotoxin (ΔLpxL1) and over-expressed factor H binding protein (fHbp) in a mouse model. The vaccines elicited broad serum bactericidal antibody responses. While human toll-like receptor 4 (TLR-4) is mainly stimulated by wildtype meningococcal endotoxin, mouse TLR-4 is stimulated by both the wildtype and mutant endotoxin. An adjuvant effect in mice of the mutant endotoxin would be expected to be much less in humans, and may have contributed to the broad mouse bactericidal responses. Here we show that as previously reported for humans, rhesus primate peripheral blood mononuclear cells incubated with a NOMV vaccine from ΔLpxL1 recombinant strains had lower proinflammatory cytokine responses than with a control wildtype NOMV vaccine. The cytokine responses to the mutant vaccine were similar to those elicited by a detergent-treated, wildtype outer membrane vesicle vaccine that had been safely administered to humans. Monkeys (N=4) were immunized beginning at ages 2 to 3 months with three doses of a NOMV vaccine prepared from ΔLpxL1 recombinant strains with over-expressed fHbp in the variant 1 and 2 groups. The mutant NOMV vaccine elicited serum bactericidal titers ≥1:4 against all 10 genetically diverse strains tested, including 9 with heterologous PorA to those in the vaccine. Negative-control animals had serum bactericidal titers <1:4. Thus, the mutant NOMV vaccine elicited broadly protective serum antibodies in a non-human infant primate model that is more relevant for predicting human antibody responses than mice. PMID:21571025

  20. Histochemical and cellular changes accompanying the appearance of lung fibrosis in an experimental mouse model for Hermansky Pudlak syndrome

    PubMed Central

    Lyerla, Timothy

    2010-01-01

    Hermansky Pudlak syndrome (HPS) is a heterogeneous recessive genetic disease with a tendency to develop lung fibrosis with aging. A mouse strain with two mutant HPS genes affecting separate vesicle trafficking pathways, C57BL/6-Hps1ep-Ap3b1pe, exhibits severe lung abnormalities at young ages, including enlarged alveolar type II (ATII) cells with giant lamellar bodies and foamy alveolar macrophages (AMs), which are readily identified histologically. In this study, the appearance of lung fibrosis in older animals was studied using classical histological and biochemical methods. The HPS double mutant mice, but not Chediak Higashi syndrome (C57BL/6-Lystbg-J-J, CHS) or C57BL/6J black control (WT) mice, were found to develop lung fibrosis at about 17 months of age using Masson trichrome staining, which was confirmed by hydroxyproline analysis. TGF β1 levels were elevated in bronchial alveolar lavage samples at all ages tested in the double mutant, but not WT or CHS mice, indicative of a prefibrotic condition in this experimental strain; and AMs were highly positive for this cytokine using immunohistochemistry staining. Prosurfactant protein C staining for ATII cells showed redistribution and dysmorphism of these cells with aging, but there was no evidence for epithelial-mesenchymal transition of ATII cells by dual staining for prosurfactant C protein and α-smooth muscle actin. This investigation showed that the HPS double mutant mouse strain develops interstitial pneumonia (HPSIP) past 1 year of age, which may be initiated by abnormal ATII cells and exacerbated by AM activation. With prominent prefibrotic abnormalities, this double mutant may serve as a model for interventive therapy in HPS. PMID:20603711

  1. Tlx and Pax6 co-operate genetically to establish the pallio-subpallial boundary in the embryonic mouse telencephalon.

    PubMed

    Stenman, Jan; Yu, Ruth T; Evans, Ronald M; Campbell, Kenneth

    2003-03-01

    We have examined the role of Tlx, an orphan nuclear receptor, in dorsal-ventral patterning of the mouse telencephalon. Tlx is expressed broadly in the ventricular zone, with the exception of the dorsomedial and ventromedial regions. The expression spans the pallio-subpallial boundary, which separates the dorsal (i.e. pallium) and ventral (i.e. subpallium) telencephalon. Despite being expressed on both sides of the pallio-subpallial boundary, Tlx homozygous mutants display alterations in the development of this boundary. These alterations include a dorsal shift in the expression limits of certain genes that abut at the pallio-subpallial boundary as well as the abnormal formation of the radial glial palisade that normally marks this boundary. The Tlx mutant phenotype is similar to, but less severe than, that seen in Small eye (i.e. Pax6) mutants. Interestingly, removal of one allele of Pax6 on the homozygous Tlx mutant background significantly worsens the phenotype. Thus Tlx and Pax6 cooperate genetically to regulate the establishment of the pallio-subpallial boundary. The patterning defects in the Tlx mutant telencephalon result in a loss of region-specific gene expression in the ventral-most pallial region. This correlates well with the malformation of the lateral and basolateral amygdala in Tlx mutants, both of which have been suggested to derive from ventral portions of the pallium.

  2. Enhanced mucosal delivery of antigen with cell wall mutants of lactic acid bacteria.

    PubMed

    Grangette, Corinne; Müller-Alouf, Heide; Hols, Pascal; Goudercourt, Denise; Delcour, Jean; Turneer, Mireille; Mercenier, Annick

    2004-05-01

    The potential of recombinant lactic acid bacteria (LAB) to deliver heterologous antigens to the immune system and to induce protective immunity has been best demonstrated by using the C subunit of tetanus toxin (TTFC) as a model antigen. Two types of LAB carriers have mainly been used, Lactobacillus plantarum and Lactococcus lactis, which differ substantially in their abilities to resist passage through the stomach and to persist in the mouse gastrointestinal tract. Here we analyzed the effect of a deficiency in alanine racemase, an enzyme that participates in cell wall synthesis, in each of these bacterial carriers. Recombinant wild-type and mutant strains of L. plantarum NCIMB8826 and L. lactis MG1363 producing TTFC intracellularly were constructed and used in mouse immunization experiments. Remarkably, we observed that the two cell wall mutant strains were far more immunogenic than their wild-type counterparts when the intragastric route was used. However, intestinal TTFC-specific immunoglobulin A was induced only after immunization with the recombinant L. plantarum mutant strain. Moreover, the alanine racemase mutant of either LAB strain allowed induction of a much stronger serum TTFC-specific immune response after immunization via the vagina, which is a quite different ecosystem than the gastrointestinal tract. The design and use of these mutants thus resulted in a major improvement in the mucosal delivery of antigens exhibiting vaccine properties.

  3. Distinct Rayleigh scattering from hot spot mutant p53 proteins reveals cancer cells.

    PubMed

    Jun, Ho Joon; Nguyen, Anh H; Kim, Yeul Hong; Park, Kyong Hwa; Kim, Doyoun; Kim, Kyeong Kyu; Sim, Sang Jun

    2014-07-23

    The scattering of light redirects and resonances when an electromagnetic wave interacts with electrons orbits in the hot spot core protein and oscillated electron of the gold nanoparticles (AuNP). This report demonstrates convincingly that resonant Rayleigh scattering generated from hot spot mutant p53 proteins is correspondence to cancer cells. Hot spot mutants have unique local electron density changes that affect specificity of DNA binding affinity compared with wild types. Rayleigh scattering changes introduced by hot-spot mutations were monitored by localized surface plasmon resonance (LSPR) shift changes. The LSPR λmax shift for hot-spot mutants ranged from 1.7 to 4.2 nm for mouse samples and from 0.64 nm to 2.66 nm for human samples, compared to 9.6 nm and 15 nm for wild type and mouse and human proteins, respectively with a detection sensitivity of p53 concentration at 17.9 nM. It is interesting that hot-spot mutants, which affect only interaction with DNA, launches affinitive changes as considerable as wild types. These changes propose that hot-spot mutants p53 proteins can be easily detected by local electron density alterations that disturbs the specificity of DNA binding of p53 core domain on the surface of the DNA probed-nanoplasmonic sensor. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Analysis of mammalian gene function through broad based phenotypic screens across a consortium of mouse clinics

    PubMed Central

    Adams, David J; Adams, Niels C; Adler, Thure; Aguilar-Pimentel, Antonio; Ali-Hadji, Dalila; Amann, Gregory; André, Philippe; Atkins, Sarah; Auburtin, Aurelie; Ayadi, Abdel; Becker, Julien; Becker, Lore; Bedu, Elodie; Bekeredjian, Raffi; Birling, Marie-Christine; Blake, Andrew; Bottomley, Joanna; Bowl, Mike; Brault, Véronique; Busch, Dirk H; Bussell, James N; Calzada-Wack, Julia; Cater, Heather; Champy, Marie-France; Charles, Philippe; Chevalier, Claire; Chiani, Francesco; Codner, Gemma F; Combe, Roy; Cox, Roger; Dalloneau, Emilie; Dierich, André; Di Fenza, Armida; Doe, Brendan; Duchon, Arnaud; Eickelberg, Oliver; Esapa, Chris T; El Fertak, Lahcen; Feigel, Tanja; Emelyanova, Irina; Estabel, Jeanne; Favor, Jack; Flenniken, Ann; Gambadoro, Alessia; Garrett, Lilian; Gates, Hilary; Gerdin, Anna-Karin; Gkoutos, George; Greenaway, Simon; Glasl, Lisa; Goetz, Patrice; Da Cruz, Isabelle Goncalves; Götz, Alexander; Graw, Jochen; Guimond, Alain; Hans, Wolfgang; Hicks, Geoff; Hölter, Sabine M; Höfler, Heinz; Hancock, John M; Hoehndorf, Robert; Hough, Tertius; Houghton, Richard; Hurt, Anja; Ivandic, Boris; Jacobs, Hughes; Jacquot, Sylvie; Jones, Nora; Karp, Natasha A; Katus, Hugo A; Kitchen, Sharon; Klein-Rodewald, Tanja; Klingenspor, Martin; Klopstock, Thomas; Lalanne, Valerie; Leblanc, Sophie; Lengger, Christoph; le Marchand, Elise; Ludwig, Tonia; Lux, Aline; McKerlie, Colin; Maier, Holger; Mandel, Jean-Louis; Marschall, Susan; Mark, Manuel; Melvin, David G; Meziane, Hamid; Micklich, Kateryna; Mittelhauser, Christophe; Monassier, Laurent; Moulaert, David; Muller, Stéphanie; Naton, Beatrix; Neff, Frauke; Nolan, Patrick M; Nutter, Lauryl MJ; Ollert, Markus; Pavlovic, Guillaume; Pellegata, Natalia S; Peter, Emilie; Petit-Demoulière, Benoit; Pickard, Amanda; Podrini, Christine; Potter, Paul; Pouilly, Laurent; Puk, Oliver; Richardson, David; Rousseau, Stephane; Quintanilla-Fend, Leticia; Quwailid, Mohamed M; Racz, Ildiko; Rathkolb, Birgit; Riet, Fabrice; Rossant, Janet; Roux, Michel; Rozman, Jan; Ryder, Ed; Salisbury, Jennifer; Santos, Luis; Schäble, Karl-Heinz; Schiller, Evelyn; Schrewe, Anja; Schulz, Holger; Steinkamp, Ralf; Simon, Michelle; Stewart, Michelle; Stöger, Claudia; Stöger, Tobias; Sun, Minxuan; Sunter, David; Teboul, Lydia; Tilly, Isabelle; Tocchini-Valentini, Glauco P; Tost, Monica; Treise, Irina; Vasseur, Laurent; Velot, Emilie; Vogt-Weisenhorn, Daniela; Wagner, Christelle; Walling, Alison; Weber, Bruno; Wendling, Olivia; Westerberg, Henrik; Willershäuser, Monja; Wolf, Eckhard; Wolter, Anne; Wood, Joe; Wurst, Wolfgang; Yildirim, Ali Önder; Zeh, Ramona; Zimmer, Andreas; Zimprich, Annemarie

    2015-01-01

    The function of the majority of genes in the mouse and human genomes remains unknown. The mouse ES cell knockout resource provides a basis for characterisation of relationships between gene and phenotype. The EUMODIC consortium developed and validated robust methodologies for broad-based phenotyping of knockouts through a pipeline comprising 20 disease-orientated platforms. We developed novel statistical methods for pipeline design and data analysis aimed at detecting reproducible phenotypes with high power. We acquired phenotype data from 449 mutant alleles, representing 320 unique genes, of which half had no prior functional annotation. We captured data from over 27,000 mice finding that 83% of the mutant lines are phenodeviant, with 65% demonstrating pleiotropy. Surprisingly, we found significant differences in phenotype annotation according to zygosity. Novel phenotypes were uncovered for many genes with unknown function providing a powerful basis for hypothesis generation and further investigation in diverse systems. PMID:26214591

  5. Regional Fluctuation in the Functional Consequence of LINE-1 Insertion in the Mitf Gene: The Black Spotting Phenotype Arisen from the Mitfmi-bw Mouse Lacking Melanocytes

    PubMed Central

    Yamamoto, Hiroaki; Shibahara, Shigeki

    2016-01-01

    Microphthalmia-associated transcription factor (Mitf) is a key regulator for differentiation of melanoblasts, precursors to melanocytes. The mouse homozygous for the black-eyed white (Mitfmi-bw) allele is characterized by the white-coat color and deafness with black eyes due to the lack of melanocytes. The Mitfmi-bw allele carries LINE-1, a retrotransposable element, which results in the Mitf deficiency. Here, we have established the black spotting mouse that was spontaneously arisen from the homozygous Mitfmi-bw mouse lacking melanocytes. The black spotting mouse shows multiple black patches on the white coat, with age-related graying. Importantly, each black patch also contains hair follicles lacking melanocytes, whereas the white-coat area completely lacks melanocytes. RT-PCR analyses of the pigmented patches confirmed that the LINE-1 insertion is retained in the Mitf gene of the black spotting mouse, thereby excluding the possibility of the somatic reversion of the Mitfmi-bw allele. The immunohistochemical analysis revealed that the staining intensity for beta-catenin was noticeably lower in hair follicles lacking melanocytes of the homozygous Mitfmi-bw mouse and the black spotting mouse, compared to the control mouse. In contrast, the staining intensity for beta-catenin and cyclin D1 was higher in keratinocytes of the black spotting mouse, compared to keratinocytes of the control mouse and the Mitfmi-bw mouse. Moreover, the keratinocyte layer appears thicker in the Mitfmi-bw mouse, with the overexpression of Ki-67, a marker for cell proliferation. We also show that the presumptive black spots are formed by embryonic day 15.5. Thus, the black spotting mouse provides the unique model to explore the molecular basis for the survival and death of developing melanoblasts and melanocyte stem cells in the epidermis. These results indicate that follicular melanocytes are responsible for maintaining the epidermal homeostasis; namely, the present study has provided evidence for the link between melanocyte development and the epidermal microenvironment. PMID:26930598

  6. Autophagy and UPR in alpha-crystallin mutant knock-in mouse models of hereditary cataracts.

    PubMed

    Andley, Usha P; Goldman, Joshua W

    2016-01-01

    Knock-in mice provide useful models of congenital and age-related cataracts caused by α-crystallin mutations. R49C αA-crystallin and R120G αB-crystallin mutations are linked with hereditary cataracts. Knock-in αA-R49C+/- heterozygotes develop cataracts by 1-2months, whereas homozygote mice have cataracts at birth. The R49C mutation drastically reduces lens protein water solubility and causes cell death in knock-in mouse lenses. Mutant crystallin cannot function as a chaperone, which leads to protein aggregation and lens opacity. Protein aggregation disrupts the lens fiber cell structure and normal development and causes cell death in epithelial and fiber cells. We determined what aspects of the wild-type phenotype are age-dependently altered in the mutant lens. Wild-type, heterozygote (αA-R49C+/-), and homozygote (αA-R49C+/+) mouse lenses were assessed pre- and postnatally for lens morphology (electron microscopy, immunohistochemistry), and autophagy or unfolded protein response markers (immunoblotting). Morphology was altered by embryonic day 17 in R49C+/+ lenses; R49C+/- lens morphology was unaffected at this stage. Active autophagy in the lens epithelium of mutant lenses was indicated by the presence of autophagosomes using electron microscopy. Protein p62 levels, which are degraded specifically by autophagy, increased in αA-R49C mutant versus wild-type lenses, suggesting autophagy inhibition in the mutant lenses. The unfolded protein response marker XBP-1 was upregulated in adult lenses of αB-R120G+/+ mice, suggesting its role in lens opacification. Mutated crystallins alter lens morphology, autophagy, and stress responses. Therapeutic modulation of autophagic pathways may improve protein degradation in cataractous lenses and reduce lens opacity. This article is part of a Special Issue entitled Crystallin Biochemistry in Health and Disease. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Defining the Role of Essential Genes in Human Disease

    PubMed Central

    Robertson, David L.; Hentges, Kathryn E.

    2011-01-01

    A greater understanding of the causes of human disease can come from identifying characteristics that are specific to disease genes. However, a full understanding of the contribution of essential genes to human disease is lacking, due to the premise that these genes tend to cause developmental abnormalities rather than adult disease. We tested the hypothesis that human orthologs of mouse essential genes are associated with a variety of human diseases, rather than only those related to miscarriage and birth defects. We segregated human disease genes according to whether the knockout phenotype of their mouse ortholog was lethal or viable, defining those with orthologs producing lethal knockouts as essential disease genes. We show that the human orthologs of mouse essential genes are associated with a wide spectrum of diseases affecting diverse physiological systems. Notably, human disease genes with essential mouse orthologs are over-represented among disease genes associated with cancer, suggesting links between adult cellular abnormalities and developmental functions. The proteins encoded by essential genes are highly connected in protein-protein interaction networks, which we find correlates with an over-representation of nuclear proteins amongst essential disease genes. Disease genes associated with essential orthologs also are more likely than those with non-essential orthologs to contribute to disease through an autosomal dominant inheritance pattern, suggesting that these diseases may actually result from semi-dominant mutant alleles. Overall, we have described attributes found in disease genes according to the essentiality status of their mouse orthologs. These findings demonstrate that disease genes do occupy highly connected positions in protein-protein interaction networks, and that due to the complexity of disease-associated alleles, essential genes cannot be ignored as candidates for causing diverse human diseases. PMID:22096564

  8. Sequencing analysis of mutations induced by N-ethyl-N-nitrosourea at different sampling times in mouse bone marrow.

    PubMed

    Wang, Jianyong; Chen, Tao

    2010-03-01

    In our previous study (Wang et al., 2004, Toxicol. Sci. 82: 124-128), we observed that the cII gene mutant frequency (MF) in the bone marrow of Big Blue mice showed significant increase as early as day 1, reached the maximum at day 3 and then decreased to a plateau by day 15 after a single dose of carcinogen N-ethyl-N-nitrosourea (ENU) treatment, which is different from the longer mutation manifestation time and the constancy of MFs after reaching their maximum in some other tissues. To determine the mechanism underlying the quick increase in MF and the peak formation in the mutant manifestation, we examined the mutation frequencies and spectra of the ENU-induced mutants collected from different sampling times in this study. The cII mutants from days 1, 3 and 120 after ENU treatment were randomly selected from different animals. The mutation frequencies were 33, 217, 305 and 144 x 10(-6) for control, days 1, 3, and 120, respectively. The mutation spectra at days 1 and 3 were significantly different from that at day 120. Considering that stem cells are responsible for the ultimate MF plateau (day 120) and transit cells are accountable for the earlier MF induction (days 1 or 3) in mouse bone marrow, we conclude that transit cells are much more sensitive to mutation induction than stem cells in mouse bone marrow, which resulted in the specific mutation manifestation induced by ENU.

  9. Roles of steroid receptor coactivator (SRC)-1 and transcriptional intermediary factor (TIF) 2 in androgen receptor activity in mice

    PubMed Central

    Ye, Xiangcang; Han, Sang Jun; Tsai, Sophia Y.; DeMayo, Francesco J.; Xu, Jianming; Tsai, Ming-Jer; O'Malley, Bert W.

    2005-01-01

    Genetic disruption of the steroid receptor coactivator (SRC)-1 and transcriptional intermediary factor (TIF)2/SRC-2 in mouse resulted in distinctive mutant phenotypes. To quantify their roles in the function of androgen receptor (AR) transcriptional activity in vivo, we generated a unique transgenic AR-reporter mouse and analyzed the cell-specific contributions of SRC-1 and TIF2 to the activity of AR in mouse testis. Transgenic AR-luciferase and transgenic AR-lacZ mice harbor a recombinant mouse AR gene, ARGAL4DBD, which is functionally coupled with a upstream activation sequence-mediated reporter gene (AR activity indicator). After characterization of these mice in terms of AR function, we further derived bigenic mice by crossing AR activity indicator mice with the SRC-1-/- or TIF2+/- mutant mice. Analyses of the resultant bigenic mice by in vivo imaging and luciferase assays showed that testicular AR activity was decreased significantly in those with the TIF2+/- mutation but not in the SRC-1+/- background, suggesting that TIF2 serves as the preferential coactivator for AR in testis. Immunohistological analysis confirmed that AR and TIF2 coexist in mouse testicular Sertoli cell nuclei under normal conditions. Although SRC-1 concentrates in Sertoli cell nuclei in the absence of TIF2, nuclear SRC-1 is not able to rescue AR activity in the TIF2 mutant background. Interestingly, SRC-1 appears to negatively influence AR activity, thereby counterbalancing the TIF2-stimulated AR activity. Our results provide unique in vivo insights to the multidimensional cell-type-specific interactions between AR and coregulators. PMID:15983373

  10. Roles of steroid receptor coactivator (SRC)-1 and transcriptional intermediary factor (TIF) 2 in androgen receptor activity in mice.

    PubMed

    Ye, Xiangcang; Han, Sang Jun; Tsai, Sophia Y; DeMayo, Francesco J; Xu, Jianming; Tsai, Ming-Jer; O'Malley, Bert W

    2005-07-05

    Genetic disruption of the steroid receptor coactivator (SRC)-1 and transcriptional intermediary factor (TIF)2/SRC-2 in mouse resulted in distinctive mutant phenotypes. To quantify their roles in the function of androgen receptor (AR) transcriptional activity in vivo, we generated a unique transgenic AR-reporter mouse and analyzed the cell-specific contributions of SRC-1 and TIF2 to the activity of AR in mouse testis. Transgenic AR-luciferase and transgenic AR-lacZ mice harbor a recombinant mouse AR gene, AR(GAL4DBD), which is functionally coupled with a upstream activation sequence-mediated reporter gene (AR activity indicator). After characterization of these mice in terms of AR function, we further derived bigenic mice by crossing AR activity indicator mice with the SRC-1-/- or TIF2+/- mutant mice. Analyses of the resultant bigenic mice by in vivo imaging and luciferase assays showed that testicular AR activity was decreased significantly in those with the TIF2+/- mutation but not in the SRC-1+/- background, suggesting that TIF2 serves as the preferential coactivator for AR in testis. Immunohistological analysis confirmed that AR and TIF2 coexist in mouse testicular Sertoli cell nuclei under normal conditions. Although SRC-1 concentrates in Sertoli cell nuclei in the absence of TIF2, nuclear SRC-1 is not able to rescue AR activity in the TIF2 mutant background. Interestingly, SRC-1 appears to negatively influence AR activity, thereby counterbalancing the TIF2-stimulated AR activity. Our results provide unique in vivo insights to the multidimensional cell-type-specific interactions between AR and coregulators.

  11. Autosomal dominant frontonasal dysplasia (atypical Greig syndrome): Lessons from the Xt mutant mouse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cunningham, M.L.; Nunes, M.E.

    1994-09-01

    Greig syndrome is the autosomal dominant association of mild hypertelorism, variable polysyndactyly, and normal intelligence. Several families have been found to have translocations or deletions of 7p13 interrupting the normal expression of GLI3 (a zinc finger, DNA binding, transcription repressor). Recently, a mutation in the mouse homologue of GLI3 was found in the extra-toes mutant mouse (Xt). The phenotypic features of this mouse model include mild hypertelorism, postaxial polydactyly of the forelimbs, preaxial polydactyly of the hindlimbs, and variable tibial hemimelia. The homozygous mutant Xt/Xt have severe frontonasal dysplasia (FND), polysyndactyly of fore-and hindlimbs and invariable tibial hemimelia. We havemore » recently evaluated a child with severe (type D) frontonasal dysplasia, fifth finger camptodactyly, preaxial polydactyly of one foot, and ispilateral tibial hemimelia. His father was born with a bifid nose, broad columnella, broad feet, and a two centimeter leg length discrepancy. The paternal grandmother of the proband is phenotypically normal; however, her fraternal twin died at birth with severe facial anomalies. The paternal great-grandmother of the proband is phenotypically normal however her niece was born with moderate ocular hypertelorism. This pedigree is suggestive of an autosomal dominant form of frontonasal dysplasia with variable expressivity. The phenotypic features of our case more closely resemble the Xt mouse than the previously defined features of Greig syndrome in humans. This suggests that a mutation in GLI3 may be responsible for FND in this family. We are currently using polymorphic dinucleotide repeat markers flanking GLI3 in a attempt to demonstrate linkage in this pedigree. Demonstration of a GLI3 mutation in this family would broaden our view of the spectrum of phenotypes possible in Greig syndrome and could provide insight into genotype/phenotype correlation in FND.« less

  12. An improved Red/ET recombineering system and mouse ES cells culture conditions for the generation of targeted mutant mice.

    PubMed

    Kumagai, Katsuyoshi; Takanashi, Masakatsu; Ohno, Shin-Ichiro; Kuroda, Masahiko; Sudo, Katsuko

    2017-05-03

    Targeted mutant mice generated on a C57BL/6 background are powerful tools for analysis of the biological functions of genes, and gene targeting technologies using mouse embryonic stem (ES) cells have been used to generate such mice. Recently, a bacterial artificial chromosome (BAC) recombineering system was established for the construction of targeting vectors. However, gene retrieval from BACs for the generation of gene targeting vectors using this system remains difficult. Even when construction of a gene targeting vector is successful, the efficiency of production of targeted mutant mice from ES cells derived from C57BL/6 mice are poor. Therefore, in this study, we first improved the strategy for the retrieval of genes from BACs and their transfer into a DT-A plasmid, for the generation of gene targeting vectors using the BAC recombineering system. Then, we attempted to generate targeted mutant mice from ES cell lines derived from C57BL/6 mice, by culturing in serum-free medium. In conclusion, we established an improved strategy for the efficient generation of targeted mutant mice on a C57BL/6 background, which are useful for the in vivo analysis of gene functions and regulation.

  13. Mouse H6 Homeobox 1 (Hmx1) mutations cause cranial abnormalities and reduced body mass

    PubMed Central

    Munroe, Robert J; Prabhu, Vinay; Acland, Greg M; Johnson, Kenneth R; Harris, Belinda S; O'Brien, Tim P; Welsh, Ian C; Noden, Drew M; Schimenti, John C

    2009-01-01

    Background The H6 homeobox genes Hmx1, Hmx2, and Hmx3 (also known as Nkx5-3; Nkx5-2 and Nkx5-1, respectively), compose a family within the NKL subclass of the ANTP class of homeobox genes. Hmx gene family expression is mostly limited to sensory organs, branchial (pharyngeal) arches, and the rostral part of the central nervous system. Targeted mutation of either Hmx2 or Hmx3 in mice disrupts the vestibular system. These tandemly duplicated genes have functional overlap as indicated by the loss of the entire vestibular system in double mutants. Mutants have not been described for Hmx1, the most divergent of the family. Results Dumbo (dmbo) is a semi-lethal mouse mutation that was recovered in a forward genetic mutagenesis screen. Mutants exhibit enlarged ear pinnae with a distinctive ventrolateral shift. Here, we report on the basis of this phenotype and other abnormalities in the mutant, and identify the causative mutation as being an allele of Hmx1. Examination of dumbo skulls revealed only subtle changes in cranial bone morphology, namely hyperplasia of the gonial bone and irregularities along the caudal border of the squamous temporal bone. Other nearby otic structures were unaffected. The semilethality of dmbo/dmbo mice was found to be ~40%, occured perinatally, and was associated with exencephaly. Surviving mutants of both sexes exhibited reduced body mass from ~3 days postpartum onwards. Most dumbo adults were microphthalmic. Recombinant animals and specific deletion-bearing mice were used to map the dumbo mutation to a 1.8 Mb region on Chromosome 5. DNA sequencing of genes in this region revealed a nonsense mutation in the first exon of H6 Homeobox 1 (Hmx1; also Nkx5-3). An independent spontaneous allele called misplaced ears (mpe) was also identified, confirming Hmx1 as the responsible mutant gene. Conclusion The divergence of Hmx1 from its paralogs is reflected by different and diverse developmental roles exclusive of vestibular involvement. Additionally, these mutant Hmx1 alleles represent the first mouse models of a recently-discovered Oculo-Auricular syndrome caused by mutation of the orthologous human gene. PMID:19379485

  14. BCL11B Regulates Epithelial Proliferation and Asymmetric Development of the Mouse Mandibular Incisor

    PubMed Central

    Kyrylkova, Kateryna; Kyryachenko, Sergiy; Biehs, Brian; Klein, Ophir; Kioussi, Chrissa; Leid, Mark

    2012-01-01

    Mouse incisors grow continuously throughout life with enamel deposition uniquely on the outer, or labial, side of the tooth. Asymmetric enamel deposition is due to the presence of enamel-secreting ameloblasts exclusively within the labial epithelium of the incisor. We have previously shown that mice lacking the transcription factor BCL11B/CTIP2 (BCL11B hereafter) exhibit severely disrupted ameloblast formation in the developing incisor. We now report that BCL11B is a key factor controlling epithelial proliferation and overall developmental asymmetry of the mouse incisor: BCL11B is necessary for proliferation of the labial epithelium and development of the epithelial stem cell niche, which gives rise to ameloblasts; conversely, BCL11B suppresses epithelial proliferation, and development of stem cells and ameloblasts on the inner, or lingual, side of the incisor. This bidirectional action of BCL11B in the incisor epithelia appears responsible for the asymmetry of ameloblast localization in developing incisor. Underlying these spatio-specific functions of BCL11B in incisor development is the regulation of a large gene network comprised of genes encoding several members of the FGF and TGFβ superfamilies, Sprouty proteins, and Sonic hedgehog. Our data integrate BCL11B into these pathways during incisor development and reveal the molecular mechanisms that underlie phenotypes of both Bcl11b−/− and Sprouty mutant mice. PMID:22629441

  15. Photosynthetic Electron Transport Chain of Chlamydomonas reinhardi VI. Electron Transport in Mutant Strains Lacking Either Cytochrome 553 or Plastocyanin 1

    PubMed Central

    Gorman, Donald S.; Levine, R. P.

    1966-01-01

    A mutant strain of Chlamydomonas reinhardi, ac-206, lacks cytochrome 553, at least in an active and detectable form. Chloroplast fragments of this mutant strain are inactive in the photoreduction of NADP when the source of electrons is water, but they are active when the electron source is 2,6-dichlorophenolindophenol and ascorbate. The addition of either cytochrome 553 or plastocyanin, obtained from the wild-type strain, has no effect upon the photosynthetic activities of the mutant strain. Cells of the mutant strain lack both the soluble and insoluble forms of cytochrome 553, but they possess the mitochondrial type cytochrome c. Thus, the loss of cytochrome 553 appears to be specific. Another mutant strain, ac-208, lacks plastocyanin, or possesses it in an inactive and undetectable form. Chloroplast fragments of ac-208 are inactive in the photoreduction of NADP with either water or 2,6-dichlorophenolindophenol and ascorbate as electron donors. However, these reactions are restored upon the addition of plastocyanin. The addition of cytochrome 553 has no effect. The measurement of light-induced absorbance changes with ac-208 reveal that, in the absence of plastocyanin, light fails to sensitize the oxidation of cytochrome 553, but it will sensitize its reduction. However, the addition of plastocyanin restores the light-induced cytochrome oxidation. A third mutant strain, ac-208 (sup.) carries a suppressor mutation that partially restores the wild phenotype. This mutant strain appears to possess a plastocyanin that is less stable than that of the wild-type strain. The observations with the mutant strains are discussed in terms of the sequence of electron transport System II → cytochrome 553 → plastocyanin → System I. PMID:16656453

  16. Mammalian Cardiovascular Patterning as Determined by Hemodynamic Forces and Blood Vessel Genetics

    NASA Astrophysics Data System (ADS)

    Anderson, Gregory Arthur

    Cardiovascular development is a process that involves the timing of multiple molecular events, and numerous subtle three-dimensional conformational changes. Traditional developmental biology techniques have provided large quantities of information as to how these complex organ systems develop. However, the major drawback of the majority of current developmental biological imaging is that they are two-dimensional in nature. It is now well recognized that circulation of blood is required for normal patterning and remodeling of blood vessels. Normal blood vessel formation is dependent upon a complex network of signaling pathways, and genetic mutations in these pathways leads to impaired vascular development, heart failure, and lethality. As such, it is not surprising that mutant mice with aberrant cardiovascular patterning are so common, since normal development requires proper coordination between three systems: the heart, the blood, and the vasculature. This thesis describes the implementation of a three-dimensional imaging technique, optical projection tomography (OPT), in conjunction with a computer-based registration algorithm to statistically analyze developmental differences in groups of wild-type mouse embryos. Embryos that differ by only a few hours' gestational time are shown to have developmental differences in blood vessel formation and heart development progression that can be discerned. This thesis describes how we analyzed mouse models of cardiovascular perturbation by OPT to detect morphological differences in embryonic development in both qualitative and quantitative ways. Both a blood vessel specific mutation and a cardiac specific mutation were analyzed, providing evidence that developmental defects of these types can be quantified. Finally, we describe the implementation of OPT imaging to identify statistically significant phenotypes from three different mouse models of cardiovascular perturbation across a range of developmental time points. Image registration methods, combined with intensity- and deformation-based analyses are described and utilized to fully characterize myosin light chain 2a (Mlc2a), delta-like ligand 4 (Dll4), and Endoglin (Eng) mutant mouse embryos. We show that Eng mutant embryos are statistically similar to the Mlc2a phenotype, confirming that these mouse mutants suffer from a primary cardiac developmental defect. Thus, a loss of hemodynamic force caused by defective pumping of the heart is the primary developmental defect affecting these mice.

  17. A robust and reliable non-invasive test for stress responsivity in mice.

    PubMed

    Zimprich, Annemarie; Garrett, Lillian; Deussing, Jan M; Wotjak, Carsten T; Fuchs, Helmut; Gailus-Durner, Valerie; de Angelis, Martin Hrabě; Wurst, Wolfgang; Hölter, Sabine M

    2014-01-01

    Stress and an altered stress response have been associated with many multifactorial diseases, such as psychiatric disorders or neurodegenerative diseases. As currently mouse mutants for each single gene are generated and phenotyped in a large-scale manner, it seems advisable also to test these mutants for alterations in their stress responses. Here we present the determinants of a robust and reliable non-invasive test for stress-responsivity in mice. Stress is applied through restraining the mice in tubes and recording behavior in the Open Field 20 min after cessation of the stress. Two hours, but not 15 or 50 min of restraint lead to a robust and reproducible increase in distance traveled and number of rearings during the first 5 min in the Open Field in C57BL/6 mice. This behavioral response is blocked by the corticosterone synthesis inhibitor metyrapone, but not by RU486 treatment, indicating that it depends on corticosteroid secretion, but is not mediated via the glucocorticoid receptor type II. We assumed that with a stress duration of 15 min one could detect hyper-responsivity, and with a stress duration of 2 h hypo-responsivity in mutant mouse lines. This was validated with two mutant lines known to show opposing effects on corticosterone secretion after stress exposure, corticotropin-releasing hormone (CRH) over-expressing mice and CRH receptor 1 knockout (KO) mice. Both lines showed the expected phenotype, i.e., increased stress responsivity in the CRH over-expressing mouse line (after 15 min restraint stress) and decreased stress responsivity in the CRHR1-KO mouse line (after 2 h of restraint stress). It is possible to repeat the acute stress test several times without the stressed animal adapting to it, and the behavioral response can be robustly evoked at different ages, in both sexes and in different mouse strains. Thus, locomotor and rearing behavior in the Open Field after an acute stress challenge can be used as reliable, non-invasive indicators of stress responsivity and corticosterone secretion in mice.

  18. A robust and reliable non-invasive test for stress responsivity in mice

    PubMed Central

    Zimprich, Annemarie; Garrett, Lillian; Deussing, Jan M.; Wotjak, Carsten T.; Fuchs, Helmut; Gailus-Durner, Valerie; de Angelis, Martin Hrabě; Wurst, Wolfgang; Hölter, Sabine M.

    2014-01-01

    Stress and an altered stress response have been associated with many multifactorial diseases, such as psychiatric disorders or neurodegenerative diseases. As currently mouse mutants for each single gene are generated and phenotyped in a large-scale manner, it seems advisable also to test these mutants for alterations in their stress responses. Here we present the determinants of a robust and reliable non-invasive test for stress-responsivity in mice. Stress is applied through restraining the mice in tubes and recording behavior in the Open Field 20 min after cessation of the stress. Two hours, but not 15 or 50 min of restraint lead to a robust and reproducible increase in distance traveled and number of rearings during the first 5 min in the Open Field in C57BL/6 mice. This behavioral response is blocked by the corticosterone synthesis inhibitor metyrapone, but not by RU486 treatment, indicating that it depends on corticosteroid secretion, but is not mediated via the glucocorticoid receptor type II. We assumed that with a stress duration of 15 min one could detect hyper-responsivity, and with a stress duration of 2 h hypo-responsivity in mutant mouse lines. This was validated with two mutant lines known to show opposing effects on corticosterone secretion after stress exposure, corticotropin-releasing hormone (CRH) over-expressing mice and CRH receptor 1 knockout (KO) mice. Both lines showed the expected phenotype, i.e., increased stress responsivity in the CRH over-expressing mouse line (after 15 min restraint stress) and decreased stress responsivity in the CRHR1-KO mouse line (after 2 h of restraint stress). It is possible to repeat the acute stress test several times without the stressed animal adapting to it, and the behavioral response can be robustly evoked at different ages, in both sexes and in different mouse strains. Thus, locomotor and rearing behavior in the Open Field after an acute stress challenge can be used as reliable, non-invasive indicators of stress responsivity and corticosterone secretion in mice. PMID:24782732

  19. Role of Sterylglucosidase 1 (Sgl1) on the pathogenicity of Cryptococcus neoformans: potential applications for vaccine development

    PubMed Central

    Rella, Antonella; Mor, Visesato; Farnoud, Amir M.; Singh, Ashutosh; Shamseddine, Achraf A.; Ivanova, Elitza; Carpino, Nicholas; Montagna, Maria T.; Luberto, Chiara; Del Poeta, Maurizio

    2015-01-01

    Cryptococcosis caused by Cryptococcus neoformans and Cryptococcus gattii affects a large population and is a cause of significant morbidity and mortality. Despite its public health burden, there are currently no vaccines against cryptococcosis and new strategies against such infections are needed. In this study, we demonstrate that C. neoformans has the biochemical ability to metabolize sterylglucosides (SGs), a class of immunomodulatory glycolipids. Genetic manipulations that eliminate cryptococccal sterylglucosidase lead to the accumulation of SGs and generate a mutant strain (Δsgl1) that is non-pathogenic in the mouse models of cryptococcosis. Interestingly, this mutant strain acts as a vaccine strain and protects mice against cryptococcosis following infection with C. neoformans or C. gattii. The immunity induced by the Δsgl1 strain is not CD4+ T-cells dependent. Immunocompromised mice, which lack CD4+ T-cells, are able to control the infection by Δsgl1 and acquire immunity against the challenge by wild-type C. neoformans following vaccination with the Δsgl1 strain. These findings are particularly important in the context of HIV/AIDS immune deficiency and suggest that the Δsgl1 strain might provide a potential vaccination strategy against cryptococcosis. PMID:26322039

  20. Role of Sterylglucosidase 1 (Sgl1) on the pathogenicity of Cryptococcus neoformans: potential applications for vaccine development.

    PubMed

    Rella, Antonella; Mor, Visesato; Farnoud, Amir M; Singh, Ashutosh; Shamseddine, Achraf A; Ivanova, Elitza; Carpino, Nicholas; Montagna, Maria T; Luberto, Chiara; Del Poeta, Maurizio

    2015-01-01

    Cryptococcosis caused by Cryptococcus neoformans and Cryptococcus gattii affects a large population and is a cause of significant morbidity and mortality. Despite its public health burden, there are currently no vaccines against cryptococcosis and new strategies against such infections are needed. In this study, we demonstrate that C. neoformans has the biochemical ability to metabolize sterylglucosides (SGs), a class of immunomodulatory glycolipids. Genetic manipulations that eliminate cryptococccal sterylglucosidase lead to the accumulation of SGs and generate a mutant strain (Δsgl1) that is non-pathogenic in the mouse models of cryptococcosis. Interestingly, this mutant strain acts as a vaccine strain and protects mice against cryptococcosis following infection with C. neoformans or C. gattii. The immunity induced by the Δsgl1 strain is not CD4(+) T-cells dependent. Immunocompromised mice, which lack CD4(+) T-cells, are able to control the infection by Δsgl1 and acquire immunity against the challenge by wild-type C. neoformans following vaccination with the Δsgl1 strain. These findings are particularly important in the context of HIV/AIDS immune deficiency and suggest that the Δsgl1 strain might provide a potential vaccination strategy against cryptococcosis.

  1. Comparison of the Gene Expression Profiles from Normal and Fgfrl1 Deficient Mouse Kidneys Reveals Downstream Targets of Fgfrl1 Signaling

    PubMed Central

    Gerber, Simon D.; Amann, Ruth; Wyder, Stefan; Trueb, Beat

    2012-01-01

    Fgfrl1 (fibroblast growth factor receptor-like 1) is a transmembrane receptor that is essential for the development of the metanephric kidney. It is expressed in all nascent nephrogenic structures and in the ureteric bud. Fgfrl1 null mice fail to develop the metanephric kidneys. Mutant kidney rudiments show a dramatic reduction of ureteric branching and a lack of mesenchymal-to-epithelial transition. Here, we compared the expression profiles of wildtype and Fgfrl1 mutant kidneys to identify genes that act downstream of Fgfrl1 signaling during the early steps of nephron formation. We detected 56 differentially expressed transcripts with 2-fold or greater reduction, among them many genes involved in Fgf, Wnt, Bmp, Notch, and Six/Eya/Dach signaling. We validated the microarray data by qPCR and whole-mount in situ hybridization and showed the expression pattern of candidate genes in normal kidneys. Some of these genes might play an important role during early nephron formation. Our study should help to define the minimal set of genes that is required to form a functional nephron. PMID:22432025

  2. Systems analysis of multiple regulator perturbations allows discovery of virulence factors in Salmonella

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Hyunjin; Ansong, Charles; McDermott, Jason E.

    Background: Systemic bacterial infections are highly regulated and complex processes that are orchestrated by numerous virulence factors. Genes that are coordinately controlled by the set of regulators required for systemic infection are potentially required for pathogenicity. Results: In this study we present a systems biology approach in which sample-matched multi-omic measurements of fourteen virulence-essential regulator mutants were coupled with computational network analysis to efficiently identify Salmonella virulence factors. Immunoblot experiments verified network-predicted virulence factors and a subset was determined to be secreted into the host cytoplasm, suggesting that they are virulence factors directly interacting with host cellular components. Two ofmore » these, SrfN and PagK2, were required for full mouse virulence and were shown to be translocated independent of either of the type III secretion systems in Salmonella or the type III injectisome-related flagellar mechanism. Conclusions: Integrating multi-omic datasets from Salmonella mutants lacking virulence regulators not only identified novel virulence factors but also defined a new class of translocated effectors involved in pathogenesis. The success of this strategy at discovery of known and novel virulence factors suggests that the approach may have applicability for other bacterial pathogens.« less

  3. Relative axial myopia in Egr-1 (ZENK) knockout mice.

    PubMed

    Schippert, Ruth; Burkhardt, Eva; Feldkaemper, Marita; Schaeffel, Frank

    2007-01-01

    Experiments in chickens have implicated the transcription factor ZENK (also known as Egr-1, NGFI-A, zif268, tis8, cef5, and Krox24) in the feedback mechanisms for visual control of axial eye growth and myopia development. ZENK is upregulated in retinal glucagon amacrine cells when axial eye growth is inhibited by positive spectacle lens wear and is downregulated when it is enhanced by negative spectacle lens wear, suggesting that ZENK may be linked to an inhibitory signal for axial eye growth. This study was undertaken to determine whether a Egr-1(-/-) knockout mouse mutant, lacking ZENK completely, has longer eyes and more myopic refraction, than do Egr-1(+/)(-) heterozygous and Egr-1(+/+) wild-type mice with near-identical genetic backgrounds. Eye growth and refractive development were tracked from day P28 to P98. Corneal radius of curvature was measured with infrared photokeratometry, refractive state with infrared photoretinoscopy, and ocular dimensions with low-coherence interferometry. As a functional vision test, grating acuity was determined in an automated optomotor task. The abundance of ZENK protein in the retina was quantified by immunohistochemistry. Egr-1 knockout mice had longer eyes and a relative myopic shift in refraction, with additional minor effects on anterior chamber depth and corneal radius of curvature. Paraxial schematic eye modeling suggested changes in the optics of the crystalline lens as well. With increasing age, the differences between mutant and wild-type mice declined, although the differences in refraction persisted over the observation period. Grating acuity was not affected by the lack of the Egr-1 protein during development. Although it has been shown that different mouse strains may have differently large eyes, the present study shows that a specific gene knockout can produce relative myopia, compared with the wild-type with near-identical genetic background. Further experiments are needed to determine whether the observed effects of Egr-1 deletion are due to changes in function within the retina or other ocular tissues or to changes of function in other systems that may affect ocular growth from outside the eye.

  4. KISS1R signals independently of Gαq/11 and triggers LH secretion via the β-arrestin pathway in the male mouse.

    PubMed

    Ahow, Maryse; Min, Le; Pampillo, Macarena; Nash, Connor; Wen, Junping; Soltis, Kathleen; Carroll, Rona S; Glidewell-Kenney, Christine A; Mellon, Pamela L; Bhattacharya, Moshmi; Tobet, Stuart A; Kaiser, Ursula B; Babwah, Andy V

    2014-11-01

    Hypothalamic GnRH is the master regulator of the neuroendocrine reproductive axis, and its secretion is regulated by many factors. Among these is kisspeptin (Kp), a potent trigger of GnRH secretion. Kp signals via the Kp receptor (KISS1R), a Gαq/11-coupled 7-transmembrane-spanning receptor. Until this study, it was understood that KISS1R mediates GnRH secretion via the Gαq/11-coupled pathway in an ERK1/2-dependent manner. We recently demonstrated that KISS1R also signals independently of Gαq/11 via β-arrestin and that this pathway also mediates ERK1/2 activation. Because GnRH secretion is ERK1/2-dependent, we hypothesized that KISS1R regulates GnRH secretion via both the Gαq/11- and β-arrestin-coupled pathways. To test this hypothesis, we measured LH secretion, a surrogate marker of GnRH secretion, in mice lacking either β-arrestin-1 or β-arrestin-2. Results revealed that Kp-dependent LH secretion was significantly diminished relative to wild-type mice (P < .001), thus supporting that β-arrestin mediates Kp-induced GnRH secretion. Based on this, we hypothesized that Gαq/11-uncoupled KISS1R mutants, like L148S, will display Gαq/11-independent signaling. To test this hypothesis, L148S was expressed in HEK 293 cells. and results confirmed that, although strongly uncoupled from Gαq/11, L148S retained the ability to trigger significant Kp-dependent ERK1/2 phosphorylation (P < .05). Furthermore, using mouse embryonic fibroblasts lacking β-arrestin-1 and -2, we demonstrated that L148S-mediated ERK1/2 phosphorylation is β-arrestin-dependent. Overall, we conclude that KISS1R signals via Gαq/11 and β-arrestin to regulate GnRH secretion. This novel and important finding could explain why patients bearing some types of Gαq/11-uncoupled KISS1R mutants display partial gonadotropic deficiency and even a reversal of the condition, idiopathic hypogonadotropic hypogonadism.

  5. Behavioral phenotypes of genetic mouse models of autism.

    PubMed

    Kazdoba, T M; Leach, P T; Crawley, J N

    2016-01-01

    More than a hundred de novo single gene mutations and copy-number variants have been implicated in autism, each occurring in a small subset of cases. Mutant mouse models with syntenic mutations offer research tools to gain an understanding of the role of each gene in modulating biological and behavioral phenotypes relevant to autism. Knockout, knockin and transgenic mice incorporating risk gene mutations detected in autism spectrum disorder and comorbid neurodevelopmental disorders are now widely available. At present, autism spectrum disorder is diagnosed solely by behavioral criteria. We developed a constellation of mouse behavioral assays designed to maximize face validity to the types of social deficits and repetitive behaviors that are central to an autism diagnosis. Mouse behavioral assays for associated symptoms of autism, which include cognitive inflexibility, anxiety, hyperactivity, and unusual reactivity to sensory stimuli, are frequently included in the phenotypic analyses. Over the past 10 years, we and many other laboratories around the world have employed these and additional behavioral tests to phenotype a large number of mutant mouse models of autism. In this review, we highlight mouse models with mutations in genes that have been identified as risk genes for autism, which work through synaptic mechanisms and through the mTOR signaling pathway. Robust, replicated autism-relevant behavioral outcomes in a genetic mouse model lend credence to a causal role for specific gene contributions and downstream biological mechanisms in the etiology of autism. © 2015 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  6. Neural circuit architecture defects in a Drosophila model of Fragile X syndrome are alleviated by minocycline treatment and genetic removal of matrix metalloproteinase

    PubMed Central

    Siller, Saul S.; Broadie, Kendal

    2011-01-01

    SUMMARY Fragile X syndrome (FXS), caused by loss of the fragile X mental retardation 1 (FMR1) product (FMRP), is the most common cause of inherited intellectual disability and autism spectrum disorders. FXS patients suffer multiple behavioral symptoms, including hyperactivity, disrupted circadian cycles, and learning and memory deficits. Recently, a study in the mouse FXS model showed that the tetracycline derivative minocycline effectively remediates the disease state via a proposed matrix metalloproteinase (MMP) inhibition mechanism. Here, we use the well-characterized Drosophila FXS model to assess the effects of minocycline treatment on multiple neural circuit morphological defects and to investigate the MMP hypothesis. We first treat Drosophila Fmr1 (dfmr1) null animals with minocycline to assay the effects on mutant synaptic architecture in three disparate locations: the neuromuscular junction (NMJ), clock neurons in the circadian activity circuit and Kenyon cells in the mushroom body learning and memory center. We find that minocycline effectively restores normal synaptic structure in all three circuits, promising therapeutic potential for FXS treatment. We next tested the MMP hypothesis by assaying the effects of overexpressing the sole Drosophila tissue inhibitor of MMP (TIMP) in dfmr1 null mutants. We find that TIMP overexpression effectively prevents defects in the NMJ synaptic architecture in dfmr1 mutants. Moreover, co-removal of dfmr1 similarly rescues TIMP overexpression phenotypes, including cellular tracheal defects and lethality. To further test the MMP hypothesis, we generated dfmr1;mmp1 double null mutants. Null mmp1 mutants are 100% lethal and display cellular tracheal defects, but co-removal of dfmr1 allows adult viability and prevents tracheal defects. Conversely, co-removal of mmp1 ameliorates the NMJ synaptic architecture defects in dfmr1 null mutants, despite the lack of detectable difference in MMP1 expression or gelatinase activity between the single dfmr1 mutants and controls. These results support minocycline as a promising potential FXS treatment and suggest that it might act via MMP inhibition. We conclude that FMRP and TIMP pathways interact in a reciprocal, bidirectional manner. PMID:21669931

  7. Deletion of the Braun Lipoprotein-Encoding Gene and Altering the Function of Lipopolysaccharide Attenuate the Plague Bacterium

    PubMed Central

    Sha, Jian; Kirtley, Michelle L.; van Lier, Christina J.; Wang, Shaofei; Erova, Tatiana E.; Kozlova, Elena V.; Cao, Anthony; Cong, Yingzi; Fitts, Eric C.; Rosenzweig, Jason A.

    2013-01-01

    Braun (murein) lipoprotein (Lpp) and lipopolysaccharide (LPS) are major components of the outer membranes of Enterobacteriaceae family members that are capable of triggering inflammatory immune responses by activating Toll-like receptors 2 and 4, respectively. Expanding on earlier studies that demonstrated a role played by Lpp in Yersinia pestis virulence in mouse models of bubonic and pneumonic plague, we characterized an msbB in-frame deletion mutant incapable of producing an acyltransferase that is responsible for the addition of lauric acid to the lipid A moiety of LPS, as well as a Δlpp ΔmsbB double mutant of the highly virulent Y. pestis CO92 strain. Although the ΔmsbB single mutant was minimally attenuated, the Δlpp single mutant and the Δlpp ΔmsbB double mutant were significantly more attenuated than the isogenic wild-type (WT) bacterium in bubonic and pneumonic animal models (mouse and rat) of plague. These data correlated with greatly reduced survivability of the aforementioned mutants in murine macrophages. Furthermore, the Δlpp ΔmsbB double mutant was grossly compromised in its ability to disseminate to distal organs in mice and in evoking cytokines/chemokines in infected animal tissues. Importantly, mice that survived challenge with the Δlpp ΔmsbB double mutant, but not the Δlpp or ΔmsbB single mutant, in a pneumonic plague model were significantly protected against a subsequent lethal WT CO92 rechallenge. These data were substantiated by the fact that the Δlpp ΔmsbB double mutant maintained an immunogenicity comparable to that of the WT strain and induced long-lasting T-cell responses against heat-killed WT CO92 antigens. Taken together, the data indicate that deletion of the msbB gene augmented the attenuation of the Δlpp mutant by crippling the spread of the double mutant to the peripheral organs of animals and by inducing cytokine/chemokine responses. Thus, the Δlpp ΔmsbB double mutant could provide a new live-attenuated background vaccine candidate strain, and this should be explored in the future. PMID:23275092

  8. Localization of efferent neurotransmitters in the inner ear of the homozygous Bronx waltzer mutant mouse.

    PubMed

    Kong, W J; Scholtz, A W; Hussl, B; Kammen-Jolly, K; Schrott-Fischer, A

    2002-05-01

    Naturally occurring mutant mice provide an excellent model for the study of genetic malformations of the inner ear. Mice homozygous for the Bronx waltzer (bv/bv) mutation are severely hearing impaired or deaf and exhibit a 'waltzing' gait. Functional aspects of cochlear and vestibular efferents in the bv/bv mutant mouse are not well known. The present study was designed to evaluate several candidates of efferent neurotransmitters or neuromodulators including choline acetyltransferase (ChAT), gamma-aminobutyric acid (GABA), and calcitonin gene-related peptide (CGRP) in the inner ear of the bv/bv mutant mouse. Ultrastructural investigations at both light and electron microscopic level were performed. Ultrastructural morphologic evaluations of the cochlea and the vestibular end-organs were also undertaken. It is demonstrated that ChAT, GABA and CGRP immunoreactivities are present in the cochlea and in vestibular end-organs of bv/bv mutant mice. In the organ of Corti, immunoreactivity of ChAT, GABA and CGRP is confined to the inner spiral fibers, tunnel-crossing fibers, and the vesiculated nerve endings synapsing with outer hair cells. Interestingly, immunoreactivity was detectable even where inner hair cells appeared missing. Results also revealed malformations of the outer hair cells with synaptic contacts to efferent nerve endings consistently intact. In the neurosensory epithelia of the vestibular end-organs, the presence of ChAT, GABA, and CGRP immunoreactivity was localized at the vestibular efferents, with the exception of the macula of saccule. In one 8-month-old macula of utricle where the depletion of hair cells appeared highest, ChAT immunostaining was still discernible. Ultrastructural investigation demonstrated that vesiculated efferent nerve endings make synaptic contact with the outer hair cells in the organ of Corti and with type II hair cells in the vestibular end-organs. The present study provides further support that the efferent system in the bv/bv mutant inner ear is morphologically as well as functionally mature. These findings also demonstrate that if and when the onset of efferent degeneration in the bv/bv mutant inner ear occurs, it transpires subsequent to pathological conditions in the hair cells. The present findings give further indication that the efferent systems of the bv/bv mutant inner ear are independent of the afferent systems in many aspects including development, maturation as well as degeneration.

  9. The MCK mouse heart model of Friedreich's ataxia: Alterations in iron-regulated proteins and cardiac hypertrophy are limited by iron chelation

    PubMed Central

    Whitnall, Megan; Rahmanto, Yohan Suryo; Sutak, Robert; Xu, Xiangcong; Becker, Erika M.; Mikhael, Marc R.; Ponka, Prem; Richardson, Des R.

    2008-01-01

    There is no effective treatment for the cardiomyopathy of the most common autosomal recessive ataxia, Friedreich's ataxia (FA). The identification of potentially toxic mitochondrial (MIT) iron (Fe) deposits in FA suggests that Fe plays a role in its pathogenesis. This study used the muscle creatine kinase conditional frataxin (Fxn) knockout (mutant) mouse model that reproduces the classical traits associated with cardiomyopathy in FA. We examined the mechanisms responsible for the increased cardiac MIT Fe loading in mutants. Moreover, we explored the effect of Fe chelation on the pathogenesis of the cardiomyopathy. Our investigation showed that increased MIT Fe in the myocardium of mutants was due to marked transferrin Fe uptake, which was the result of enhanced transferrin receptor 1 expression. In contrast to the mitochondrion, cytosolic ferritin expression and the proportion of cytosolic Fe were decreased in mutant mice, indicating cytosolic Fe deprivation and markedly increased MIT Fe targeting. These studies demonstrated that loss of Fxn alters cardiac Fe metabolism due to pronounced changes in Fe trafficking away from the cytosol to the mitochondrion. Further work showed that combining the MIT-permeable ligand pyridoxal isonicotinoyl hydrazone with the hydrophilic chelator desferrioxamine prevented cardiac Fe loading and limited cardiac hypertrophy in mutants but did not lead to overt cardiac Fe depletion or toxicity. Fe chelation did not prevent decreased succinate dehydrogenase expression in the mutants or loss of cardiac function. In summary, we show that loss of Fxn markedly alters cellular Fe trafficking and that Fe chelation limits myocardial hypertrophy in the mutant. PMID:18621680

  10. Shiver me titin! Elucidating titin's role in shivering thermogenesis.

    PubMed

    Taylor-Burt, Kari R; Monroy, Jenna; Pace, Cinnamon; Lindstedt, Stan; Nishikawa, Kiisa C

    2015-03-01

    Shivering frequency scales predictably with body mass and is 10 times higher in a mouse than a moose. The link between shivering frequency and body mass may lie in the tuning of muscle elastic properties. Titin functions as a muscle 'spring', so shivering frequency may be linked to titin's structure. The muscular dystrophy with myositis (mdm) mouse is characterized by a deletion in titin's N2A region. Mice that are homozygous for the mdm mutation have a lower body mass, stiffer gait and reduced lifespan compared with their wild-type and heterozygous siblings. We characterized thermoregulation in these mice by measuring metabolic rate and tremor frequency during shivering. Mutants were heterothermic at ambient temperatures of 20-37°C while wild-type and heterozygous mice were homeothermic. Metabolic rate increased at smaller temperature differentials (i.e. the difference between body and ambient temperatures) in mutants than in non-mutants. The difference between observed tremor frequencies and shivering frequencies predicted by body mass was significantly larger for mutant mice than for wild-type or heterozygous mice, even after accounting for differences in body temperature. Together, the heterothermy in mutants, the increase in metabolic rate at low temperature differentials and the decreased tremor frequency demonstrate the thermoregulatory challenges faced by mice with the mdm mutation. Oscillatory frequency is proportional to the square root of stiffness, and we observed that mutants had lower active muscle stiffness in vitro. The lower tremor frequencies in mutants are consistent with reduced active muscle stiffness and suggest that titin affects the tuning of shivering frequency. © 2015. Published by The Company of Biologists Ltd.

  11. Genetic Characterization of Escherichia coli Type 1 Pilus Adhesin Mutants and Identification of a Novel Binding Phenotype

    PubMed Central

    Hamrick, Terri S.; Harris, Sandra L.; Spears, Patricia A.; Havell, Edward A.; Horton, John R.; Russell, Perry W.; Orndorff, Paul E.

    2000-01-01

    Five Escherichia coli type 1 pilus mutants that had point mutations in fimH, the gene encoding the type 1 pilus adhesin FimH, were characterized. FimH is a minor component of type 1 pili that is required for the pili to bind and agglutinate guinea pig erythrocytes in a mannose-inhibitable manner. Point mutations were located by DNA sequencing and deletion mapping. All mutations mapped within the signal sequence or in the first 28% of the predicted mature protein. All mutations were missense mutations except for one, a frameshift lesion that was predicted to cause the loss of approximately 60% of the mature FimH protein. Bacterial agglutination tests with polyclonal antiserum raised to a LacZ-FimH fusion protein failed to confirm that parental amounts of FimH cross-reacting material were expressed in four of the five mutants. The remaining mutant, a temperature-sensitive (ts) fimH mutant that agglutinated guinea pig erythrocytes after growth at 31°C but not at 42°C, reacted with antiserum at both temperatures in a manner similar to the parent. Consequently, this mutant was chosen for further study. Temperature shift experiments revealed that new FimH biosynthesis was required for the phenotypic change. Guinea pig erythrocyte and mouse macrophage binding experiments using the ts mutant grown at the restrictive and permissive temperatures revealed that whereas erythrocyte binding was reduced to a level comparable to that of a fimH insertion mutant at the restrictive temperature, mouse peritoneal macrophages were bound with parental efficiency at both the permissive and restrictive temperatures. Also, macrophage binding by the ts mutant was insensitive to mannose inhibition after growth at 42°C but sensitive after growth at 31°C. The ts mutant thus binds macrophages with one receptor specificity at 31°C and another at 42°C. PMID:10869080

  12. Characterization of metabolic health in mouse models of fibrillin-1 perturbation

    PubMed Central

    Walji, Tezin A.; Turecamo, Sarah E.; DeMarsilis, Antea J.; Sakai, Lynn Y.; Mecham, Robert P.; Craft, Clarissa S.

    2016-01-01

    Mutations in the microfibrillar protein fibrillin-1 or the absence of its binding partner microfibril-associated glycoprotein (MAGP1) lead to increased TGFβ signaling due to an inability to sequester latent or active forms of TGFβ, respectively. Mouse models of excess TGFβ signaling display increased adiposity and predisposition to type-2 diabetes. It is therefore interesting that individuals with Marfan syndrome, a disease in which fibrillin-1 mutation leads to aberrant TGFβ signaling, typically present with extreme fat hypoplasia. The goal of this project was to characterize multiple fibrillin-1 mutant mouse strains to understand how fibrillin-1 contributes to metabolic health. The results of this study demonstrate that fibrillin-1 contributes little to lipid storage and metabolic homeostasis, which is in contrast to the obesity and metabolic changes associated with MAGP1 deficiency. MAGP1 but not fibrillin-1 mutant mice had elevated TGFβ signaling in their adipose tissue, which is consistent with the difference in obesity phenotypes. However, fibrillin-1 mutant strains and MAGP1-deficient mice all exhibit increased bone length and reduced bone mineralization which are characteristic of Marfan syndrome. Our findings suggest Marfan-associated adipocyte hypoplasia is likely not due to microfibril-associated changes in adipose tissue, and provide evidence that MAGP1 may function independently of fibrillin in some tissues. PMID:26902431

  13. New mouse models for metabolic bone diseases generated by genome-wide ENU mutagenesis.

    PubMed

    Sabrautzki, Sibylle; Rubio-Aliaga, Isabel; Hans, Wolfgang; Fuchs, Helmut; Rathkolb, Birgit; Calzada-Wack, Julia; Cohrs, Christian M; Klaften, Matthias; Seedorf, Hartwig; Eck, Sebastian; Benet-Pagès, Ana; Favor, Jack; Esposito, Irene; Strom, Tim M; Wolf, Eckhard; Lorenz-Depiereux, Bettina; Hrabě de Angelis, Martin

    2012-08-01

    Metabolic bone disorders arise as primary diseases or may be secondary due to a multitude of organ malfunctions. Animal models are required to understand the molecular mechanisms responsible for the imbalances of bone metabolism in disturbed bone mineralization diseases. Here we present the isolation of mutant mouse models for metabolic bone diseases by phenotyping blood parameters that target bone turnover within the large-scale genome-wide Munich ENU Mutagenesis Project. A screening panel of three clinical parameters, also commonly used as biochemical markers in patients with metabolic bone diseases, was chosen. Total alkaline phosphatase activity and total calcium and inorganic phosphate levels in plasma samples of F1 offspring produced from ENU-mutagenized C3HeB/FeJ male mice were measured. Screening of 9,540 mice led to the identification of 257 phenodeviants of which 190 were tested by genetic confirmation crosses. Seventy-one new dominant mutant lines showing alterations of at least one of the biochemical parameters of interest were confirmed. Fifteen mutations among three genes (Phex, Casr, and Alpl) have been identified by positional-candidate gene approaches and one mutation of the Asgr1 gene, which was identified by next-generation sequencing. All new mutant mouse lines are offered as a resource for the scientific community.

  14. MUTANT FREQUENCY AND MUTATIONAL SPECTRA IN THETK AND HPRT GENES OF N-ETHYL-N-NITROSOUREA TREATED MOUSE LYMPHOMA CELLS

    EPA Science Inventory

    Abstract

    The mouse lymphoma assay (MLA) utilizing the Tk locus is widely used to identify chemical mutagens. The autosomal location of the Tk locus allows for the detection of a wide range of mutational events, from point mutations to chromosome alterations. However, the ...

  15. Myostatin gene mutated mice induced with tale nucleases.

    PubMed

    Zhou, Fangfang; Sun, Ruilin; Chen, Hongyan; Fei, Jian; Lu, Daru

    2015-01-01

    Myostain gene (MSTN) is expressed primarily in skeletal muscle, and negatively regulates skeletal muscle mass; it has been suggested that mice with MSTN inhibition have reduced adiposity and improved insulin sensitivity. Therefore, it is important to establish a fast and effective gene editing method. In this report, we established the myostatin mutated-mouse model by microinjection of Transcription Activator-Like Effector Nucleases (TALENs) mRNA within the mouse fertilized oocytes and achieved high rates of mutagenesis of the mouse MSTN in C57BL/6J. Six of 45 born mice carried target mutations and we appointed one as the parental mating with wild mouse to produce the F1 and backcross to produce the F2 generation. All the mutations of the mice were examined quickly and efficiently by high-resolution melting curve analysis (HRMA) and then verified by direct sequencing. We obtained the homozygous of the F2 generation which transmitted the mutant alleles to the progeny with 100% efficiency. Mutant mice exhibited increases in muscle mass comparable to those observed in wild-type mice. Therefore, combining TALEN-mediated gene targeting with HRMA technology is a superior method of constructing genetically modified mice through microinjection in the mouse fertilized oocytes with high efficiency and short time of selection.

  16. The Tennessee Mouse Genome Consortium: Identification of ocular mutants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jablonski, Monica M.; Wang, Xiaofei; Lu, Lu

    2005-06-01

    The Tennessee Mouse Genome Consortium (TMGC) is in its fifth year of a ethylnitrosourea (ENU)-based mutagenesis screen to detect recessive mutations that affect the eye and brain. Each pedigree is tested by various phenotyping domains including the eye, neurohistology, behavior, aging, ethanol, drug, social behavior, auditory, and epilepsy domains. The utilization of a highly efficient breeding protocol and coordination of various universities across Tennessee makes it possible for mice with ENU-induced mutations to be evaluated by nine distinct phenotyping domains within this large-scale project known as the TMGC. Our goal is to create mutant lines that model human diseases andmore » disease syndromes and to make the mutant mice available to the scientific research community. Within the eye domain, mice are screened for anterior and posterior segment abnormalities using slit-lamp biomicroscopy, indirect ophthalmoscopy, fundus photography, eye weight, histology, and immunohistochemistry. As of January 2005, we have screened 958 pedigrees and 4800 mice, excluding those used in mapping studies. We have thus far identified seven pedigrees with primary ocular abnormalities. Six of the mutant pedigrees have retinal or subretinal aberrations, while the remaining pedigree presents with an abnormal eye size. Continued characterization of these mutant mice should in most cases lead to the identification of the mutated gene, as well as provide insight into the function of each gene. Mice from each of these pedigrees of mutant mice are available for distribution to researchers for independent study.« less

  17. Localization of Usher 1 proteins to the photoreceptor calyceal processes, which are absent from mice.

    PubMed

    Sahly, Iman; Dufour, Eric; Schietroma, Cataldo; Michel, Vincent; Bahloul, Amel; Perfettini, Isabelle; Pepermans, Elise; Estivalet, Amrit; Carette, Diane; Aghaie, Asadollah; Ebermann, Inga; Lelli, Andrea; Iribarne, Maria; Hardelin, Jean-Pierre; Weil, Dominique; Sahel, José-Alain; El-Amraoui, Aziz; Petit, Christine

    2012-10-15

    The mechanisms underlying retinal dystrophy in Usher syndrome type I (USH1) remain unknown because mutant mice lacking any of the USH1 proteins-myosin VIIa, harmonin, cadherin-23, protocadherin-15, sans-do not display retinal degeneration. We found here that, in macaque photoreceptor cells, all USH1 proteins colocalized at membrane interfaces (i) between the inner and outer segments in rods and (ii) between the microvillus-like calyceal processes and the outer segment basolateral region in rods and cones. This pattern, conserved in humans and frogs, was mediated by the formation of an USH1 protein network, which was associated with the calyceal processes from the early embryonic stages of outer segment growth onwards. By contrast, mouse photoreceptors lacked calyceal processes and had no USH1 proteins at the inner-outer segment interface. We suggest that USH1 proteins form an adhesion belt around the basolateral region of the photoreceptor outer segment in humans, and that defects in this structure cause the retinal degeneration in USH1 patients.

  18. Localization of Usher 1 proteins to the photoreceptor calyceal processes, which are absent from mice

    PubMed Central

    Sahly, Iman; Dufour, Eric; Schietroma, Cataldo; Michel, Vincent; Bahloul, Amel; Perfettini, Isabelle; Pepermans, Elise; Estivalet, Amrit; Carette, Diane; Aghaie, Asadollah; Ebermann, Inga; Lelli, Andrea; Iribarne, Maria; Hardelin, Jean-Pierre; Weil, Dominique; Sahel, José-Alain

    2012-01-01

    The mechanisms underlying retinal dystrophy in Usher syndrome type I (USH1) remain unknown because mutant mice lacking any of the USH1 proteins—myosin VIIa, harmonin, cadherin-23, protocadherin-15, sans—do not display retinal degeneration. We found here that, in macaque photoreceptor cells, all USH1 proteins colocalized at membrane interfaces (i) between the inner and outer segments in rods and (ii) between the microvillus-like calyceal processes and the outer segment basolateral region in rods and cones. This pattern, conserved in humans and frogs, was mediated by the formation of an USH1 protein network, which was associated with the calyceal processes from the early embryonic stages of outer segment growth onwards. By contrast, mouse photoreceptors lacked calyceal processes and had no USH1 proteins at the inner–outer segment interface. We suggest that USH1 proteins form an adhesion belt around the basolateral region of the photoreceptor outer segment in humans, and that defects in this structure cause the retinal degeneration in USH1 patients. PMID:23045546

  19. Interactions of phosphatidylinositol kinase, GTPase-activating protein (GAP), and GAP-associated proteins with the colony-stimulating factor 1 receptor.

    PubMed Central

    Reedijk, M; Liu, X Q; Pawson, T

    1990-01-01

    The interactions of the macrophage colony-stimulating factor 1 (CSF-1) receptor with potential targets were investigated after ligand stimulation either of mouse macrophages or of fibroblasts that ectopically express mouse CSF-1 receptors. In Rat-2 cells expressing the mouse CSF-1 receptor, full activation of the receptor and cellular transformation require exogenous CSF-1, whereas NIH 3T3 cells expressing mouse c-fms are transformed by autocrine stimulation. Activated CSF-1 receptors physically associate with a phosphatidylinositol (PI) 3'-kinase. A mutant CSF-1 receptor with a deletion of the kinase insert region was deficient in its ability to bind functional PI 3'-kinase and to induce PI 3'-kinase activity precipitable with antiphosphotyrosine antibodies. In fibroblasts, CSF-1 stimulation also induced the phosphorylation of the GTPase-activating protein (GAP)-associated protein p62 on tyrosine, although GAP itself was a relatively poor substrate. In contrast to PI 3'-kinase association, phosphorylation of p62 and GAP was not markedly affected by deletion of the kinase insert region. These results indicate that the kinase insert region selectively enhances the CSF-1-dependent association of the CSF-1 receptor with active PI 3'-kinase. The insert deletion mutant retains considerable transforming activity in NIH 3T3 cells (G. Taylor, M. Reedijk, V. Rothwell, L. Rohrschneider, and T. Pawson, EMBO J. 8:2029-2037, 1989). This mutant was more seriously impaired in Rat-2 cell transformation, although mutant-expressing Rat-2 cells still formed small colonies in soft agar in the presence of CSF-1. Therefore, phosphorylation of GAP and p62 through activation of the CSF-1 receptor does not result in full fibroblast transformation. The interaction between the CSF-1 receptor and PI 3'-kinase may contribute to c-fms fibroblast transformation and play a role in CSF-1-stimulated macrophages. Images PMID:2172781

  20. K-ras p21 expression and activity in lung and lung tumors.

    PubMed

    Ramakrishna, G; Sithanandam, G; Cheng, R Y; Fornwald, L W; Smith, G T; Diwan, B A; Anderson, L M

    2000-12-01

    Although K-ras is mutated in many human and mouse lung adenocarcinomas, the function of K-ras p21 in lung is not known. We sought evidence for the prevalent hypothesis that K-ras p21 activates raf, which in turn passes the signal through the extracellular signal regulated kinases (Erks) to stimulate cell division, and that this pathway is upregulated when K-ras is mutated. Results from both mouse lung tumors and immortalized cultured E10 and C10 lung type II cells failed to substantiate this hypothesis. Lung tumors did not have more total K-ras p21 or K-ras p21 GTP than normal lung tissue, nor were high levels of these proteins found in tumors with mutant K-ras. Activated K-ras p21-GTP levels did not correlate with proliferating cell nuclear antigen. Special features of tumors with mutant K-ras included small size of carcinomas compared with carcinomas lacking this mutation, and correlation of proliferating cell nuclear antigen with raf-1. In nontransformed type II cells in culture, both total and activated K-ras p21 increased markedly at confluence but not after serum stimulation, whereas both Erk1/2 and the protein kinase Akt were rapidly activated by the serum treatment. Reverse transcriptase-polymerase chain reaction (RT-PCR) assays of K-ras mRNA indicated an increase in confluent and especially in postconfluent cells. Together the findings indicate that normal K-ras p21 activity is associated with growth arrest of lung type II cells, and that the exact contribution of mutated K-ras p21 to tumor development remains to be discovered.

  1. Aberrant cognitive phenotypes and altered hippocampal BDNF expression related to epigenetic modifications in mice lacking the post-synaptic scaffolding protein SHANK1: Implications for autism spectrum disorder.

    PubMed

    Sungur, A Özge; Jochner, Magdalena C E; Harb, Hani; Kılıç, Ayşe; Garn, Holger; Schwarting, Rainer K W; Wöhr, Markus

    2017-08-01

    Autism spectrum disorder (ASD) is a class of neurodevelopmental disorders characterized by persistent deficits in social communication/interaction, together with restricted/repetitive patterns of behavior. ASD is among the most heritable neuropsychiatric conditions, and while available evidence points to a complex set of genetic factors, the SHANK gene family has emerged as one of the most promising candidates. Here, we assessed ASD-related phenotypes with particular emphasis on social behavior and cognition in Shank1 mouse mutants in comparison to heterozygous and wildtype littermate controls across development in both sexes. While social approach behavior was evident in all experimental conditions and social recognition was only mildly affected by genotype, Shank1 -/- null mutant mice were severely impaired in object recognition memory. This effect was particularly prominent in juveniles, not due to impairments in object discrimination, and replicated in independent mouse cohorts. At the neurobiological level, object recognition deficits were paralleled by increased brain-derived neurotrophic factor (BDNF) protein expression in the hippocampus of Shank1 -/- mice; yet BDNF levels did not differ under baseline conditions. We therefore investigated changes in the epigenetic regulation of hippocampal BDNF expression and detected an enrichment of histone H3 acetylation at the Bdnf promoter1 in Shank1 -/- mice, consistent with increased learning-associated BDNF. Together, our findings indicate that Shank1 deletions lead to an aberrant cognitive phenotype characterized by severe impairments in object recognition memory and increased hippocampal BDNF levels, possibly due to epigenetic modifications. This result supports the link between ASD and intellectual disability, and suggests epigenetic regulation as a potential therapeutic target. © 2017 Wiley Periodicals, Inc.

  2. Isoflurane modulates excitability in the mouse thalamus via GABA-dependent and GABA-independent mechanisms

    PubMed Central

    Ying, Shui-Wang; Werner, David F.; Homanics, Gregg E.; Harrison, Neil L.; Goldstein, Peter A.

    2009-01-01

    Summary GABAergic neurons in the reticular thalamic nucleus (RTN) synapse onto thalamocortical neurons in the ventrobasal (VB) thalamus, and this reticulo-thalamocortical pathway is considered an anatomic target for general anesthetic-induced unconsciousness. A mutant mouse was engineered to harbor two amino acid substitutions (S270H, L277A) in the GABAA receptor (GABAA-R) α1 subunit; this mutation abolished sensitivity to the volatile anesthetic isoflurane in recombinant GABAA-Rs, and reduced in vivo sensitivity to isoflurane in the loss-of-righting-reflex assay. We examined the effects of the double mutation on GABAA-R-mediated synaptic currents and isoflurane sensitivity by recording from thalamic neurons in brain slices. The double mutation accelerated the decay, and decreased the ½ width of, evoked inhibitory postsynaptic currents (eIPSCs) in VB neurons and attenuated isoflurane-induced prolongation of the eIPSC. The hypnotic zolpidem, a selective modulator of GABAA-Rs containing the α1 subunit, prolonged eIPSC duration regardless of genotype, indicating that mutant mice incorporate α1-subunit containing GABAA-Rs into synapses. In RTN neurons, which lack the α1 subunit, eIPSC duration was longer than in VB, regardless of genotype. Isoflurane reduced the efficacy of GABAergic transmission from RTN to VB, independent of genotype, suggesting a presynaptic action in RTN neurons. Consistent with this observation, isoflurane inhibited both tonic action potential and rebound burst firing in the presence of GABAA-R blockade. The suppressed excitability in RTN neurons is likely mediated by isoflurane-enhanced Ba2+-sensitive, but 4-aminopyridine-insenstive, potassium conductances. We conclude that isoflurane enhances inhibition of thalamic neurons in VB via GABAA-R-dependent, but in RTN via GABAA-R-independent, mechanisms. PMID:18948126

  3. Klebsiella pneumoniae Outer Membrane Protein A Is Required to Prevent the Activation of Airway Epithelial Cells*

    PubMed Central

    March, Catalina; Moranta, David; Regueiro, Verónica; Llobet, Enrique; Tomás, Anna; Garmendia, Junkal; Bengoechea, José A.

    2011-01-01

    Outer membrane protein A (OmpA) is a class of proteins highly conserved among the Enterobacteriaceae family and throughout evolution. Klebsiella pneumoniae is a capsulated Gram-negative pathogen. It is an important cause of community-acquired and nosocomial pneumonia. Evidence indicates that K. pneumoniae infections are characterized by a lack of an early inflammatory response. Data from our laboratory indicate that K. pneumoniae CPS helps to suppress the host inflammatory response. However, it is unknown whether K. pneumoniae employs additional factors to modulate host inflammatory responses. Here, we report that K. pneumoniae OmpA is important for immune evasion in vitro and in vivo. Infection of A549 and normal human bronchial cells with 52OmpA2, an ompA mutant, increased the levels of IL-8. 52145-ΔwcaK2ompA, which does not express CPS and ompA, induced the highest levels of IL-8. Both mutants could be complemented. In vivo, 52OmpA2 induced higher levels of tnfα, kc, and il6 than the wild type. ompA mutants activated NF-κB, and the phosphorylation of p38, p44/42, and JNK MAPKs and IL-8 induction was via NF-κB-dependent and p38- and p44/42-dependent pathways. 52OmpA2 engaged TLR2 and -4 to activate NF-κB, whereas 52145-ΔwcaK2ompA activated not only TLR2 and TLR4 but also NOD1. Finally, we demonstrate that the ompA mutant is attenuated in the pneumonia mouse model. The results of this study indicate that K. pneumoniae OmpA contributes to attenuate airway cell responses. This may facilitate pathogen survival in the hostile environment of the lung. PMID:21278256

  4. Wee-1 Kinase Inhibition Overcomes Cisplatin Resistance Associated with High-Risk TP53 Mutations in Head and Neck Cancer through Mitotic Arrest Followed by Senescence

    PubMed Central

    Osman, Abdullah A.; Monroe, Marcus M.; Ortega Alves, Marcus V.; Patel, Ameeta A.; Katsonis, Panagiotis; Fitzgerald, Alison L.; Neskey, David M.; Frederick, Mitchell J.; Woo, Sang Hyeok; Caulin, Carlos; Hsu, Teng-Kuei; McDonald, Thomas O.; Kimmel, Marek; Meyn, Raymond E.; Lichtarge, Olivier; Myers, Jeffrey N.

    2015-01-01

    Although cisplatin has played a role in “standard-of-care” multimodality therapy for patients with advanced squamous cell carcinoma of the head and neck (HNSCC), the rate of treatment failure remains particularly high for patients receiving cisplatin whose tumors have mutations in the TP53 gene. We found that cisplatin treatment of HNSCC cells with mutant TP53 leads to arrest of cells in the G2 phase of the cell cycle, leading us to hypothesize that the wee-1 kinase inhibitor MK-1775 would abrogate the cisplatin-induced G2 block and thereby sensitize isogenic HNSCC cells with mutant TP53 or lacking p53 expression to cisplatin. We tested this hypothesis using clonogenic survival assays, flow cytometry, and in vivo tumor growth delay experiments with an orthotopic nude mouse model of oral tongue cancer. We also used a novel TP53 mutation classification scheme to identify which TP53 mutations are associated with limited tumor responses to cisplatin treatment. Clonogenic survival analyses indicate that nanomolar concentration of MK-1775 sensitizes HNSCC cells with high-risk mutant p53 to cisplatin. Consistent with its ability to chemosensitize, MK-1775 abrogated the cisplatin-induced G2 block in p53-defective cells leading to mitotic arrest associated with a senescence-like phenotype. Furthermore, MK-1775 enhanced the efficacy of cisplatin in vivo in tumors harboring TP53 mutations. These results indicate that HNSCC cells expressing high-risk p53 mutations are significantly sensitized to cisplatin therapy by the selective wee-1 kinase inhibitor, supporting the clinical evaluation of MK-1775 in combination with cisplatin for the treatment of patients with TP53 mutant HNSCC. PMID:25504633

  5. Mismatch repair proteins and AID deaminase activity are required for the dominant negative function of C terminally-deleted AID in class switching

    PubMed Central

    Ucher, Anna J.; Ranjit, Sanjay; Kadungure, Tatenda; Linehan, Erin K.; Khair, Lyne; Xie, Elaine; Limauro, Jennifer; Rauch, Katherina S.; Schrader, Carol E.; Stavnezer, Janet

    2014-01-01

    Activation-induced cytidine deaminase (AID) is essential for class switch recombination (CSR) and somatic hypermutation (SHM) of Ig genes. The AID C terminus is required for CSR but not for S region DNA DSBs during CSR, and it is not required for SHM. AID lacking the C terminus (ΔAID) is a dominant negative (DN) mutant, as human patients heterozygous for this mutant fail to undergo CSR. In agreement, we show that ΔAID is a DN mutant when expressed in AID-sufficient mouse splenic B cells. In order to have DN function,ΔAID must have deaminase activity, suggesting that its ability to induce DSBs is important for the DN function. Supporting this hypothesis, Msh2-Msh6 have previously been shown to contribute to DSB formation in S regions, and here we find that Msh2 is required for the DN activity, as ΔAID is not a DN mutant in msh2−/− cells. Our results suggest that the DNA DSBs induced by ΔAID are unable to participate in CSR, and might interfere with the ability of full-length AID to participate in CSR. We propose thatΔAID is impaired in its ability to recruit non-homologous end joining (NHEJ) repair factors, resulting in accumulation of DSBs that undergo aberrant resection. Supporting this hypothesis, we find that the S-S junctions induced by ΔAID have longer microhomologies than those induced by full-length AID. In addition, our data suggest that AID binds Sµ regions in vivo as a monomer. PMID:24973444

  6. A mouse model for the human pathogen Salmonella Typhi

    PubMed Central

    Song, Jeongmin; Willinger, Tim; Rongvaux, Anthony; Eynon, Elizabeth E.; Stevens, Sean; Manz, Markus G.; Flavell, Richard A.; Galán, Jorge E.

    2010-01-01

    SUMMARY Salmonella enterica serovar Typhi (S. Typhi) is the cause of typhoid fever, a life-threatening disease of humans. The lack of an animal model due to S. typhi's strict human host specificity has been a significant obstacle in the understanding of its pathogenesis and the development of a safe and effective vaccine against typhoid fever. We report here the development of a mouse model for S. Typhi infection. We showed that immunodeficient Rag2 -/- γc -/- mice engrafted with human fetal liver hematopoietic stem and progenitor cells were able to support S. Typhi replication and persistent infection. A S. Typhi strain carrying a mutation in a gene required for its virulence in humans was not able to replicate in these humanized mice. In contrast, another mutant strain unable to produce the recently identified typhoid toxin, exhibited increased replication suggesting a potential role for this toxin in the establishment of persistent infection. Furthermore, infected animals mounted a human innate and adaptive immune response to S. Typhi resulting in the production of cytokines and pathogen-specific antibodies. These results therefore indicate that this animal model can be used to study S. Typhi pathogenesis and to evaluate potential vaccine candidates against typhoid fever. PMID:20951970

  7. Calmodulin binds to inv protein: implication for the regulation of inv function.

    PubMed

    Yasuhiko, Y; Imai, F; Ookubo, K; Takakuwa, Y; Shiokawa, K; Yokoyama, T

    2001-12-01

    Establishment of the left-right asymmetry of internal organs is essential for the normal development of vertebrates. The inv mutant in mice shows a constant reversal of left-right asymmetry and although the inv gene has been cloned, its biochemical and cell biological functions have not been defined. Here, we show that calmodulin binds to mouse inv protein at two sites (IQ1 and IQ2). The binding of calmodulin to the IQ2 site occurs in the absence of Ca(2+) and is not observed in the presence of Ca(2+). Injection of mouse inv mRNA into the right blastomere of Xenopus embryos at the two-cell stage randomized the left-right asymmetry of the embryo and altered the patterns of Xnr-1 and Pitx2 expression. Importantly, inv mRNA that lacked the region encoding the IQ2 site was unable to randomize left-right asymmetry in Xenopus embryos, implying that the IQ2 site is essential for inv to randomize left-right asymmetry in Xenopus. These results suggest that calmodulin binding may regulate inv function. Based on our findings, we propose a model for the regulation of inv function by calcium-calmodulin and discuss its implications.

  8. A mutation in Ccdc39 causes neonatal hydrocephalus with abnormal motile cilia development in mice.

    PubMed

    Abdelhamed, Zakia; Vuong, Shawn M; Hill, Lauren; Shula, Crystal; Timms, Andrew; Beier, David; Campbell, Kenneth; Mangano, Francesco T; Stottmann, Rolf W; Goto, June

    2018-01-09

    Pediatric hydrocephalus is characterized by an abnormal accumulation of cerebrospinal fluid (CSF) and is one of the most common congenital brain abnormalities. However, little is known about the molecular and cellular mechanisms regulating CSF flow in the developing brain. Through whole-genome sequencing analysis, we report that a homozygous splice site mutation in coiled-coil domain containing 39 ( Ccdc39 ) is responsible for early postnatal hydrocephalus in the progressive hydrocephal us ( prh ) mouse mutant. Ccdc39 is selectively expressed in embryonic choroid plexus and ependymal cells on the medial wall of the forebrain ventricle, and the protein is localized to the axoneme of motile cilia. The Ccdc39 prh/prh ependymal cells develop shorter cilia with disorganized microtubules lacking the axonemal inner arm dynein. Using high-speed video microscopy, we show that an orchestrated ependymal ciliary beating pattern controls unidirectional CSF flow on the ventricular surface, which generates bulk CSF flow in the developing brain. Collectively, our data provide the first evidence for involvement of Ccdc39 in hydrocephalus and suggest that the proper development of medial wall ependymal cilia is crucial for normal mouse brain development. © 2018. Published by The Company of Biologists Ltd.

  9. Diminished but Not Abolished Effect of Two His351 Mutants of Anthrax Edema Factor in a Murine Model

    PubMed Central

    Zhao, Taoran; Zhao, Xinghui; Liu, Ju; Meng, Yingying; Feng, Yingying; Fang, Ting; Zhang, Jinlong; Yang, Xiuxu; Li, Jianmin; Xu, Junjie; Chen, Wei

    2016-01-01

    Edema toxin (ET), which is composed of a potent adenylate cyclase (AC), edema factor (EF), and protective antigen (PA), is one of the major toxicity factors of Bacillus anthracis. In this study, we introduced mutations in full-length EF to generate alanine EF(H351A) and arginine EF(H351R) variants. In vitro activity analysis displayed that the adenylyl cyclase activity of both the mutants was significantly diminished compared with the wild-type EF. When the native and mutant toxins were administered subcutaneously in a mouse footpad edema model, severe acute swelling was evoked by wild-type ET, while the symptoms induced by mutant toxins were very minor. Systemic administration of these EF variants caused non-lethal hepatotoxicity. In addition, EF(H351R) exhibited slightly higher activity in causing more severe edema than EF(H351A). Our findings demonstrate that the toxicity of ET is not abolished by substitution of EF residue His351 by alanine or arginine. These results also indicate the potential of the mouse footpad edema model as a sensitive method for evaluating both ET toxicity and the efficacy of candidate therapeutic agents. PMID:26848687

  10. Deficiency of Suppressor Enhancer Lin12 1 Like (SEL1L) in Mice Leads to Systemic Endoplasmic Reticulum Stress and Embryonic Lethality*

    PubMed Central

    Francisco, Adam B.; Singh, Rajni; Li, Shuai; Vani, Anish K.; Yang, Liu; Munroe, Robert J.; Diaferia, Giuseppe; Cardano, Marina; Biunno, Ida; Qi, Ling; Schimenti, John C.; Long, Qiaoming

    2010-01-01

    Stress in the endoplasmic reticulum (ER) plays an important causal role in the pathogenesis of several chronic diseases such as Alzheimer, Parkinson, and diabetes mellitus. Insight into the genetic determinants responsible for ER homeostasis will greatly facilitate the development of therapeutic strategies for the treatment of these debilitating diseases. Suppressor enhancer Lin12 1 like (SEL1L) is an ER membrane protein and was thought to be involved in the quality control of secreted proteins. Here we show that the mice homozygous mutant for SEL1L were embryonic lethal. Electron microscopy studies revealed a severely dilated ER in the fetal liver of mutant embryos, indicative of alteration in ER homeostasis. Consistent with this, several ER stress responsive genes were significantly up-regulated in the mutant embryos. Mouse embryonic fibroblast cells deficient in SEL1L exhibited activated unfolded protein response at the basal state, impaired ER-associated protein degradation, and reduced protein secretion. Furthermore, markedly increased apoptosis was observed in the forebrain and dorsal root ganglions of mutant embryos. Taken together, our results demonstrate an essential role for SEL1L in protein quality control during mouse embryonic development. PMID:20197277

  11. Deficiency of suppressor enhancer Lin12 1 like (SEL1L) in mice leads to systemic endoplasmic reticulum stress and embryonic lethality.

    PubMed

    Francisco, Adam B; Singh, Rajni; Li, Shuai; Vani, Anish K; Yang, Liu; Munroe, Robert J; Diaferia, Giuseppe; Cardano, Marina; Biunno, Ida; Qi, Ling; Schimenti, John C; Long, Qiaoming

    2010-04-30

    Stress in the endoplasmic reticulum (ER) plays an important causal role in the pathogenesis of several chronic diseases such as Alzheimer, Parkinson, and diabetes mellitus. Insight into the genetic determinants responsible for ER homeostasis will greatly facilitate the development of therapeutic strategies for the treatment of these debilitating diseases. Suppressor enhancer Lin12 1 like (SEL1L) is an ER membrane protein and was thought to be involved in the quality control of secreted proteins. Here we show that the mice homozygous mutant for SEL1L were embryonic lethal. Electron microscopy studies revealed a severely dilated ER in the fetal liver of mutant embryos, indicative of alteration in ER homeostasis. Consistent with this, several ER stress responsive genes were significantly up-regulated in the mutant embryos. Mouse embryonic fibroblast cells deficient in SEL1L exhibited activated unfolded protein response at the basal state, impaired ER-associated protein degradation, and reduced protein secretion. Furthermore, markedly increased apoptosis was observed in the forebrain and dorsal root ganglions of mutant embryos. Taken together, our results demonstrate an essential role for SEL1L in protein quality control during mouse embryonic development.

  12. Development of New Mouse Lung Tumor Models Expressing EGFR T790M Mutants Associated with Clinical Resistance to Kinase Inhibitors

    PubMed Central

    Regales, Lucia; Balak, Marissa N.; Gong, Yixuan; Politi, Katerina; Sawai, Ayana; Le, Carl; Koutcher, Jason A.; Solit, David B.; Rosen, Neal; Zakowski, Maureen F.; Pao, William

    2007-01-01

    Background The EGFR T790M mutation confers acquired resistance to kinase inhibitors in human EGFR mutant lung adenocarcinoma, is occasionally detected before treatment, and may confer genetic susceptibility to lung cancer. Methodology/Principal Findings To study further its role in lung tumorigenesis, we developed mice with inducible expression in type II pneumocytes of EGFRT790M alone or together with a drug-sensitive L858R mutation. Both transgenic lines develop lung adenocarcinomas that require mutant EGFR for tumor maintenance but are resistant to an EGFR kinase inhibitor. EGFRL858R+T790M-driven tumors are transiently targeted by hsp90 inhibition. Notably, EGFRT790M-expressing animals develop tumors with longer latency than EGFRL858R+T790M-bearing mice and in the absence of additional kinase domain mutations. Conclusions/Significance These new mouse models of mutant EGFR-dependent lung adenocarcinomas provide insight into clinical observations. The models should also be useful for developing improved therapies for patients with lung cancers harboring EGFRT790M alone or in conjunction with drug-sensitive EGFR kinase domain mutations. PMID:17726540

  13. A 76-bp deletion in the Mip gene causes autosomal dominant cataract in Hfi mice.

    PubMed

    Sidjanin, D J; Parker-Wilson, D M; Neuhäuser-Klaus, A; Pretsch, W; Favor, J; Deen, P M; Ohtaka-Maruyama, C; Lu, Y; Bragin, A; Skach, W R; Chepelinsky, A B; Grimes, P A; Stambolian, D E

    2001-06-15

    Hfi is a dominant cataract mutation where heterozygotes show hydropic lens fibers and homozygotes show total lens opacity. The Hfi locus was mapped to the distal part of mouse chromosome 10 close to the major intrinsic protein (Mip), which is expressed only in cell membranes of lens fibers. Molecular analysis of Mip revealed a 76-bp deletion that resulted in exon 2 skipping in Mip mRNA. In Hfi/Hfi this deletion resulted in a complete absence of the wildtype Mip. In contrast, Hfi/+ animals had the same amount of wildtype Mip as +/+. Results from pulse-chase expression studies excluded hetero-oligomerization of wildtype and mutant Mip as a possible mechanism for cataract formation in the Hfi/+. We propose that the cataract phenotype in the Hfi heterozygote mutant is due to a detrimental gain of function by the mutant Mip resulting in either cytotoxicity or disruption in processing of other proteins important for the lens. Cataract formation in the Hfi/Hfi mouse is probably a combined result of both the complete loss of wildtype Mip and a gain of function of the mutant Mip. Copyright 2001 Academic Press.

  14. Inhibition of Excessive Monoamine Oxidase A/B Activity Protects Against Stress-induced Neuronal Death in Huntington Disease.

    PubMed

    Ooi, Jolene; Hayden, Michael R; Pouladi, Mahmoud A

    2015-12-01

    Monoamine oxidases (MAO) are important components of the homeostatic machinery that maintains the levels of monoamine neurotransmitters, including dopamine, in balance. Given the imbalance in dopamine levels observed in Huntington disease (HD), the aim of this study was to examine MAO activity in a mouse striatal cell model of HD and in human neural cells differentiated from control and HD patient-derived induced pluripotent stem cell (hiPSC) lines. We show that mouse striatal neural cells expressing mutant huntingtin (HTT) exhibit increased MAO expression and activity. We demonstrate using luciferase promoter assays that the increased MAO expression reflects enhanced epigenetic activation in striatal neural cells expressing mutant HTT. Using cellular stress paradigms, we further demonstrate that the increase in MAO activity in mutant striatal neural cells is accompanied by enhanced susceptibility to oxidative stress and impaired viability. Treatment of mutant striatal neural cells with MAO inhibitors ameliorated oxidative stress and improved cellular viability. Finally, we demonstrate that human HD neural cells exhibit increased MAO-A and MAO-B expression and activity. Altogether, this study demonstrates abnormal MAO expression and activity and suggests a potential use for MAO inhibitors in HD.

  15. Congenital hypothyroidism, dwarfism, and hearing impairment caused by a missense mutation in the mouse dual oxidase 2 gene, Duox2.

    PubMed

    Johnson, Kenneth R; Marden, Coleen C; Ward-Bailey, Patricia; Gagnon, Leona H; Bronson, Roderick T; Donahue, Leah Rae

    2007-07-01

    Dual oxidases generate the hydrogen peroxide needed by thyroid peroxidase for the incorporation of iodine into thyroglobulin, an essential step in thyroid hormone synthesis. Mutations in the human dual oxidase 2 gene, DUOX2, have been shown to underlie several cases of congenital hypothyroidism. We report here the first mouse Duox2 mutation, which provides a new genetic model for studying the specific function of DUOX2 in the thyroid gland and in other organ systems where it is hypothesized to play a role. We mapped the new spontaneous mouse mutation to chromosome 2 and identified it as a T>G base pair change in exon 16 of Duox2. The mutation changes a highly conserved valine to glycine at amino acid position 674 (V674G) and was named "thyroid dyshormonogenesis" (symbol thyd) to signify a defect in thyroid hormone synthesis. Thyroid glands of mutant mice are goitrous and contain few normal follicles, and anterior pituitaries are dysplastic. Serum T(4) in homozygotes is about one-tenth the level of controls and is accompanied by a more than 100-fold increase in TSH. The weight of adult mutant mice is approximately half that of littermate controls, and serum IGF-I is reduced. The cochleae of mutant mice exhibit abnormalities characteristic of hypothyroidism, including a delayed formation of the inner sulcus and tunnel of Corti and an abnormally thickened tectorial membrane. Hearing thresholds of adult mutant mice are on average 50-60 decibels (dB) above those of controls.

  16. Electroacupuncture remediates glial dysfunction and ameliorates neurodegeneration in the astrocytic α-synuclein mutant mouse model.

    PubMed

    Deng, Jiahui; Lv, E; Yang, Jian; Gong, Xiaoli; Zhang, Wenzhong; Liang, Xibin; Wang, Jiazeng; Jia, Jun; Wang, Xiaomin

    2015-05-28

    The acupuncture or electroacupuncture (EA) shows the therapeutic effect on various neurodegenerative diseases. This effect was thought to be partially achieved by its ability to alleviate existing neuroinflammation and glial dysfunction. In this study, we systematically investigated the effect of EA on abnormal neurochemical changes and motor symptoms in a mouse neurodegenerative disease model. The transgenic mouse which expresses a mutant α-synuclein (α-syn) protein, A53T α-syn, in brain astrocytic cells was used. These mice exhibit extensive neuroinflammatory and motor phenotypes of neurodegenerative disorders. In this study, the effects of EA on these phenotypic changes were examined in these mice. EA improved the movement detected in multiple motor tests in A53T mutant mice. At the cellular level, EA significantly reduced the activation of microglia and prevented the loss of dopaminergic neurons in the midbrain and motor neurons in the spinal cord. At the molecular level, EA suppressed the abnormal elevation of proinflammatory factors (tumor necrosis factor-α and interleukin-1β) in the striatum and midbrain of A53T mice. In contrast, EA increased striatal and midbrain expression of a transcription factor, nuclear factor E2-related factor 2, and its downstream antioxidants (heme oxygenase-1 and glutamate-cysteine ligase modifier subunits). These results suggest that EA possesses the ability to ameliorate mutant α-syn-induced motor abnormalities. This ability may be due to that EA enhances both anti-inflammatory and antioxidant activities and suppresses aberrant glial activation in the diseased sites of brains.

  17. Inactivation of thyA in Staphylococcus aureus Attenuates Virulence and Has a Strong Impact on Metabolism and Virulence Gene Expression

    PubMed Central

    Kriegeskorte, Andre; Block, Desiree; Drescher, Mike; Windmüller, Nadine; Mellmann, Alexander; Baum, Cathrin; Neumann, Claudia; Lorè, Nicola Ivan; Bragonzi, Alessandra; Liebau, Eva; Hertel, Patrick; Seggewiss, Jochen; Becker, Karsten; Proctor, Richard A.; Peters, Georg

    2014-01-01

    ABSTRACT Staphylococcus aureus thymidine-dependent small-colony variants (TD-SCVs) are frequently isolated from patients with chronic S. aureus infections after long-term treatment with trimethoprim-sulfamethoxazole (TMP-SMX). While it has been shown that TD-SCVs were associated with mutations in thymidylate synthase (TS; thyA), the impact of such mutations on protein function is lacking. In this study, we showed that mutations in thyA were leading to inactivity of TS proteins, and TS inactivity led to tremendous impact on S. aureus physiology and virulence. Whole DNA microarray analysis of the constructed ΔthyA mutant identified severe alterations compared to the wild type. Important virulence regulators (agr, arlRS, sarA) and major virulence determinants (hla, hlb, sspAB, and geh) were downregulated, while genes important for colonization (fnbA, fnbB, spa, clfB, sdrC, and sdrD) were upregulated. The expression of genes involved in pyrimidine and purine metabolism and nucleotide interconversion changed significantly. NupC was identified as a major nucleoside transporter, which supported growth of the mutant during TMP-SMX exposure by uptake of extracellular thymidine. The ΔthyA mutant was strongly attenuated in virulence models, including a Caenorhabditis elegans killing model and an acute pneumonia mouse model. This study identified inactivation of TS as the molecular basis of clinical TD-SCV and showed that thyA activity has a major role for S. aureus virulence and physiology. PMID:25073642

  18. Mutations of the LIM protein AJUBA mediate sensitivity of head and neck squamous cell carcinoma to treatment with cell-cycle inhibitors.

    PubMed

    Zhang, Ming; Singh, Ratnakar; Peng, Shaohua; Mazumdar, Tuhina; Sambandam, Vaishnavi; Shen, Li; Tong, Pan; Li, Lerong; Kalu, Nene N; Pickering, Curtis R; Frederick, Mitchell; Myers, Jeffrey N; Wang, Jing; Johnson, Faye M

    2017-04-28

    The genomic alterations identified in head and neck squamous cell carcinoma (HNSCC) tumors have not resulted in any changes in clinical care, making the development of biomarker-driven targeted therapy for HNSCC a major translational gap in knowledge. To fill this gap, we used 59 molecularly characterized HNSCC cell lines and found that mutations of AJUBA, SMAD4 and RAS predicted sensitivity and resistance to treatment with inhibitors of polo-like kinase 1 (PLK1), checkpoint kinases 1 and 2, and WEE1. Inhibition or knockdown of PLK1 led to cell-cycle arrest at the G 2 /M transition and apoptosis in sensitive cell lines and decreased tumor growth in an orthotopic AJUBA-mutant HNSCC mouse model. AJUBA protein expression was undetectable in most AJUBA-mutant HNSCC cell lines, and total PLK1 and Bora protein expression were decreased. Exogenous expression of wild-type AJUBA in an AJUBA-mutant cell line partially rescued the phenotype of PLK1 inhibitor-induced apoptosis and decreased PLK1 substrate inhibition, suggesting a threshold effect in which higher drug doses are required to affect PLK1 substrate inhibition. PLK1 inhibition was an effective therapy for HNSCC in vitro and in vivo. However, biomarkers to guide such therapy are lacking. We identified AJUBA, SMAD4 and RAS mutations as potential candidate biomarkers of response of HNSCC to treatment with these mitotic inhibitors. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. β-Myosin heavy chain variant Val606Met causes very mild hypertrophic cardiomyopathy in mice, but exacerbates HCM phenotypes in mice carrying other HCM mutations.

    PubMed

    Blankenburg, Robert; Hackert, Katarzyna; Wurster, Sebastian; Deenen, René; Seidman, J G; Seidman, Christine E; Lohse, Martin J; Schmitt, Joachim P

    2014-07-07

    Approximately 40% of hypertrophic cardiomyopathy (HCM) is caused by heterozygous missense mutations in β-cardiac myosin heavy chain (β-MHC). Associating disease phenotype with mutation is confounded by extensive background genetic and lifestyle/environmental differences between subjects even from the same family. To characterize disease caused by β-cardiac myosin heavy chain Val606Met substitution (VM) that has been identified in several HCM families with wide variation of clinical outcomes, in mice. Unlike 2 mouse lines bearing the malignant myosin mutations Arg453Cys (RC/+) or Arg719Trp (RW/+), VM/+ mice with an identical inbred genetic background lacked hallmarks of HCM such as left ventricular hypertrophy, disarray of myofibers, and interstitial fibrosis. Even homozygous VM/VM mice were indistinguishable from wild-type animals, whereas RC/RC- and RW/RW-mutant mice died within 9 days after birth. However, hypertrophic effects of the VM mutation were observed both in mice treated with cyclosporine, a known stimulator of the HCM response, and compound VM/RC heterozygous mice, which developed a severe HCM phenotype. In contrast to all heterozygous mutants, both systolic and diastolic function of VM/RC hearts was severely impaired already before the onset of cardiac remodeling. The VM mutation per se causes mild HCM-related phenotypes; however, in combination with other HCM activators it exacerbates the HCM phenotype. Double-mutant mice are suitable for assessing the severity of benign mutations. © 2014 American Heart Association, Inc.

  20. Genome Editing in Mice Using TALE Nucleases.

    PubMed

    Wefers, Benedikt; Brandl, Christina; Ortiz, Oskar; Wurst, Wolfgang; Kühn, Ralf

    2016-01-01

    Gene engineering for generating targeted mouse mutants is a key technology for biomedical research. Using TALENs as sequence-specific nucleases to induce targeted double-strand breaks, the mouse genome can be directly modified in zygotes in a single step without the need for embryonic stem cells. By embryo microinjection of TALEN mRNAs and targeting vectors, knockout and knock-in alleles can be generated fast and efficiently. In this chapter we provide protocols for the application of TALENs in mouse zygotes.

  1. R-spondin3 is required for mouse placental development.

    PubMed

    Aoki, Motoko; Mieda, Michihiro; Ikeda, Toshio; Hamada, Yoshio; Nakamura, Harukazu; Okamoto, Hitoshi

    2007-01-01

    Mouse R-spondin3 (Rspo3) is a member of the R-spondin protein family, which is characterized by furin-like cysteine-rich domains and a thrombospondin type 1 repeat. Rspo3 has been proposed to function as a secretory molecule that promotes the Wnt/beta-catenin signaling pathway. We generated mice bearing a mutant Rspo3 allele in which a lacZ-coding region replaced the coding region of the first exon. The homozygous mutant mice died at about embryonic day 10, due to impaired formation of the labyrinthine layer of the placenta. Rspo3 was expressed in the allantoic component of the labyrinth. In the homozygous mutant placentas, fetal blood vessels did not penetrate into the chorion, and expression of Gcm1, encoding the transcription factor glial cells missing-1 (Gcm1), was dramatically reduced in the chorionic trophoblast cells. These findings suggest a critical role for Rspo3 in the interaction between chorion and allantois in labyrinthine development.

  2. Alanine–glyoxylate aminotransferase-deficient mice, a model for primary hyperoxaluria that responds to adenoviral gene transfer

    PubMed Central

    Salido, Eduardo C.; Li, Xiao M.; Lu, Yang; Wang, Xia; Santana, Alfredo; Roy-Chowdhury, Namita; Torres, Armando; Shapiro, Larry J.; Roy-Chowdhury, Jayanta

    2006-01-01

    Mutations in the alanine–glyoxylate amino transferase gene (AGXT) are responsible for primary hyperoxaluria type I, a rare disease characterized by excessive hepatic oxalate production that leads to renal failure. We generated a null mutant mouse by targeted mutagenesis of the homologous gene, Agxt, in embryonic stem cells. Mutant mice developed normally, and they exhibited hyperoxaluria and crystalluria. Approximately half of the male mice in mixed genetic background developed calcium oxalate urinary stones. Severe nephrocalcinosis and renal failure developed after enhancement of oxalate production by ethylene glycol administration. Hepatic expression of human AGT1, the protein encoded by AGXT, by adenoviral vector-mediated gene transfer in Agxt−/− mice normalized urinary oxalate excretion and prevented oxalate crystalluria. Subcellular fractionation and immunofluorescence studies revealed that, as in the human liver, the expressed wild-type human AGT1 was predominantly localized in mouse hepatocellular peroxisomes, whereas the most common mutant form of AGT1 (G170R) was localized predominantly in the mitochondria. PMID:17110443

  3. Novel gene function revealed by mouse mutagenesis screens for models of age-related disease.

    PubMed

    Potter, Paul K; Bowl, Michael R; Jeyarajan, Prashanthini; Wisby, Laura; Blease, Andrew; Goldsworthy, Michelle E; Simon, Michelle M; Greenaway, Simon; Michel, Vincent; Barnard, Alun; Aguilar, Carlos; Agnew, Thomas; Banks, Gareth; Blake, Andrew; Chessum, Lauren; Dorning, Joanne; Falcone, Sara; Goosey, Laurence; Harris, Shelley; Haynes, Andy; Heise, Ines; Hillier, Rosie; Hough, Tertius; Hoslin, Angela; Hutchison, Marie; King, Ruairidh; Kumar, Saumya; Lad, Heena V; Law, Gemma; MacLaren, Robert E; Morse, Susan; Nicol, Thomas; Parker, Andrew; Pickford, Karen; Sethi, Siddharth; Starbuck, Becky; Stelma, Femke; Cheeseman, Michael; Cross, Sally H; Foster, Russell G; Jackson, Ian J; Peirson, Stuart N; Thakker, Rajesh V; Vincent, Tonia; Scudamore, Cheryl; Wells, Sara; El-Amraoui, Aziz; Petit, Christine; Acevedo-Arozena, Abraham; Nolan, Patrick M; Cox, Roger; Mallon, Anne-Marie; Brown, Steve D M

    2016-08-18

    Determining the genetic bases of age-related disease remains a major challenge requiring a spectrum of approaches from human and clinical genetics to the utilization of model organism studies. Here we report a large-scale genetic screen in mice employing a phenotype-driven discovery platform to identify mutations resulting in age-related disease, both late-onset and progressive. We have utilized N-ethyl-N-nitrosourea mutagenesis to generate pedigrees of mutagenized mice that were subject to recurrent screens for mutant phenotypes as the mice aged. In total, we identify 105 distinct mutant lines from 157 pedigrees analysed, out of which 27 are late-onset phenotypes across a range of physiological systems. Using whole-genome sequencing we uncover the underlying genes for 44 of these mutant phenotypes, including 12 late-onset phenotypes. These genes reveal a number of novel pathways involved with age-related disease. We illustrate our findings by the recovery and characterization of a novel mouse model of age-related hearing loss.

  4. Novel gene function revealed by mouse mutagenesis screens for models of age-related disease

    PubMed Central

    Potter, Paul K.; Bowl, Michael R.; Jeyarajan, Prashanthini; Wisby, Laura; Blease, Andrew; Goldsworthy, Michelle E.; Simon, Michelle M.; Greenaway, Simon; Michel, Vincent; Barnard, Alun; Aguilar, Carlos; Agnew, Thomas; Banks, Gareth; Blake, Andrew; Chessum, Lauren; Dorning, Joanne; Falcone, Sara; Goosey, Laurence; Harris, Shelley; Haynes, Andy; Heise, Ines; Hillier, Rosie; Hough, Tertius; Hoslin, Angela; Hutchison, Marie; King, Ruairidh; Kumar, Saumya; Lad, Heena V.; Law, Gemma; MacLaren, Robert E.; Morse, Susan; Nicol, Thomas; Parker, Andrew; Pickford, Karen; Sethi, Siddharth; Starbuck, Becky; Stelma, Femke; Cheeseman, Michael; Cross, Sally H.; Foster, Russell G.; Jackson, Ian J.; Peirson, Stuart N.; Thakker, Rajesh V.; Vincent, Tonia; Scudamore, Cheryl; Wells, Sara; El-Amraoui, Aziz; Petit, Christine; Acevedo-Arozena, Abraham; Nolan, Patrick M.; Cox, Roger; Mallon, Anne-Marie; Brown, Steve D. M.

    2016-01-01

    Determining the genetic bases of age-related disease remains a major challenge requiring a spectrum of approaches from human and clinical genetics to the utilization of model organism studies. Here we report a large-scale genetic screen in mice employing a phenotype-driven discovery platform to identify mutations resulting in age-related disease, both late-onset and progressive. We have utilized N-ethyl-N-nitrosourea mutagenesis to generate pedigrees of mutagenized mice that were subject to recurrent screens for mutant phenotypes as the mice aged. In total, we identify 105 distinct mutant lines from 157 pedigrees analysed, out of which 27 are late-onset phenotypes across a range of physiological systems. Using whole-genome sequencing we uncover the underlying genes for 44 of these mutant phenotypes, including 12 late-onset phenotypes. These genes reveal a number of novel pathways involved with age-related disease. We illustrate our findings by the recovery and characterization of a novel mouse model of age-related hearing loss. PMID:27534441

  5. The let-7 microRNA target gene, Mlin41/Trim71 is required for mouse embryonic survival and neural tube closure

    PubMed Central

    Schulman, Betsy R. Maller; Liang, Xianping; Stahlhut, Carlos; DelConte, Casey; Stefani, Giovanni; Slack, Frank J.

    2010-01-01

    In the nematode Caenorhabditis elegans, the let-7 microRNA (miRNA) controls the timing of key developmental events and terminal differentiation in part by directly regulating lin-41. C. elegans lin-41 mutants display precocious cell cycle exit and terminal differentiation of epidermal skin cells. lin-41 orthologues are found in more complex organisms including both mice and humans, but their roles are not known. We generated Mlin41 mouse mutants to ascertain a functional role for Mlin41. Strong loss of function Mlin41 gene-trap mutants demonstrated a striking neural tube closure defect during development, and embryonic lethality. Like C. elegans lin-41, Mlin41 also appears to be regulated by the let-7 and mir-125 miRNAs. Since Mlin41 is required for neural tube closure and survival it points to human lin-41 (HLIN41/TRIM71) as a potential human development and disease gene. PMID:19098426

  6. One amino acid in mouse activated factor VII defines its endothelial protein C receptor (EPCR) binding and modulates its EPCR-dependent hemostatic activity in vivo.

    PubMed

    Pavani, G; Zintner, S M; Ivanciu, L; Small, J C; Stafford, K A; Szeto, J H; Margaritis, P

    2017-03-01

    Essentials The lack of factor (F) VIIa-endothelial protein C receptor (EPCR) binding in mice is unresolved. A single substitution of Leu4 to Phe in mouse FVIIa (mFVIIa) enables its interaction with EPCR. mFVIIa with a Phe4 shows EPCR binding-dependent enhanced hemostatic function in vivo vs. mFVIIa. Defining the FVIIa-EPCR interaction in mice allows for further investigating its biology in vivo. Background Human activated factor VII (hFVIIa), which is used in hemophilia treatment, binds to the endothelial protein C (PC) receptor (EPCR) with unclear hemostatic consequences. Interestingly, mice lack the activated FVII (FVIIa)-EPCR interaction. Therefore, to investigate the hemostatic consequences of this interaction in hemophilia, we previously engineered a mouse FVIIa (mFVIIa) molecule that bound mouse EPCR (mEPCR) by using three substitutions from mouse PC (mPC), i.e. Leu4→Phe, Leu8→Met, and Trp9→Arg. The resulting molecule, mFVIIa-FMR, modeled the EPCR-binding properties of hFVIIa and showed enhanced hemostatic capacity in hemophilic mice versus mFVIIa. These data implied a role of EPCR in the action of hFVIIa in hemophilia treatment. However, the substitutions in mFVIIa-FMR only broadly defined the sequence determinants for its mEPCR interaction and enhanced function in vivo. Objectives To determine the individual contributions of mPC Phe4, Met8 and Arg9 to the in vitro/in vivo properties of mFVIIa-FMR. Methods The mEPCR-binding properties of single amino acid variants of mFVIIa or mPC at position 4, 8 or 9 were investigated. Results and conclusions Phe4 in mFVIIa or mPC was solely critical for interaction with mEPCR. In hemophilic mice, administration of mFVIIa harboring a Phe4 resulted in a 1.9-2.5-fold increased hemostatic capacity versus mFVIIa that was EPCR binding-dependent. This recapitulated previous observations made with triple-mutant mFVIIa-FMR. As Leu8 is crucial for hFVIIa-EPCR binding, we describe the sequence divergence of this interaction in mice, now allowing its further characterization in vivo. We also illustrate that modulation of the EPCR-FVIIa interaction may lead to improved FVIIa therapeutics. © 2016 International Society on Thrombosis and Haemostasis.

  7. Studies of teratomas in mice: possibilities for the future production of animal models.

    PubMed Central

    Lehman, J. M.

    1980-01-01

    The murine teratoma-teratocarcinoma has become an interesting model for the study of neoplastic transformation, developmental biology, and possibly a useful system for genetic studies. These tumors arise spontaneously in 129 strain mice and can be induced in other strains by transplanting early embryos or portions of embryos into extrauterine sites. The majority of these tumors are benign, but some are capable of transplantation due to the presence of the stem cell, embryonal carcinoma, which is a multipotential cell able to proliferate and also differentiate into tissues and cell types representative of all the embryonic germ layers. It has been elegantly shown by transplantation of embryonal carcinoma cells into blastocysts which are then placed into a pseudopregnant mouse that a normal mouse is obtained composed of cells from the host blastocyst and also cells from the malignant embryonal carcinoma. Therefore, under this set of circumstances, embryonal carcinoma cells are induced to functionally differentiate into multiple cell and tissue types which are benign and able to contribute to the development of a mouse. The adaptation of the embryonal carcinoma cell to tissue culture has allowed the manipulation of these cells with subsequent selection of mutant cells which can be further transplanted into blastocysts to obtain a mouse which contains these mutant cells. If the mutant cells have populated the germ line, it may be possible to obtain a stock of mice with the lesion present in all cells. This system may be exploitable for studies in neoplasia, developmental biology, and with proper selection procedures, allow the development of new genetic strains of mice. PMID:7457573

  8. Hair and skin sterols in normal mice and those with deficient dehydrosterol reductase (DHCR7), the enzyme associated with Smith-Lemli-Opitz syndrome.

    PubMed

    Serra, Montserrat; Matabosch, Xavier; Ying, Lee; Watson, Gordon; Shackleton, Cedric

    2010-11-01

    Our recent studies have focused on cholesterol synthesis in mouse models for 7-dehydrosterolreductase (DHCR7) deficiency, also known as Smith-Lemli-Opitz syndrome. Investigations of such mutants have relied on tissue and blood levels of the cholesterol precursor 7-dehydrocholesterol (7DHC) and its 8-dehydro isomer. In this investigation by gas chromatography/mass spectrometry (GC/MS) we have identified and quantified cholesterol and its precursors (7DHC, desmosterol, lathosterol, lanosterol and cholest-7,24-dien-3β-ol) in mouse hair. The components were characterized and their concentrations were compared to those found in mouse skin and serum. Hair appeared unique in that desmosterol was a major sterol component, almost matching in concentration cholesterol itself. In DHCR7 deficient mice, dehydrodesmosterol (DHD) was the dominant hair Δ(7) sterol. Mutant mouse hair had much higher concentrations of 7-dehydrosterols relative to cholesterol than did serum or tissue at all ages studied. The 7DHC/C ratio in hair was typically about sevenfold the value in serum or skin and the DHD/D ratio was 100× that of the serum 7DHC/C ratio. Mutant mice compensate for their DHCR7 deficiency with maturity, and the tissue and blood 7DHC/C become close to normal. That hair retains high relative concentrations of the dehydro precursors suggests that the apparent up-regulation of Dhcr7 seen in liver is slower to develop at the site of hair cholesterol synthesis. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. The HOG pathway is critical for the colonization of the mouse gastrointestinal tract by Candida albicans.

    PubMed

    Prieto, Daniel; Román, Elvira; Correia, Inês; Pla, Jesus

    2014-01-01

    The opportunistic pathogen Candida albicans is a frequent inhabitant of the human gastrointestinal tract where it usually behaves as a harmless commensal. In this particular niche, it needs to adapt to the different micro environments that challenge its survival within the host. In order to determine those factors involved in gut adaptation, we have used a gastrointestinal model of colonization in mouse to trace the behaviour of fungal cells. We have developed a genetic labelling system based on the complementary spectral properties of the fluorescent proteins GFP and a new C. albicans codon-adapted RFP (dTOM2) that allow a precise quantification of the fungal population in the gut via standard in vitro cultures or flow cytometry. This methodology has allowed us to determine the role of the three MAP kinase pathways of C. albicans (mediated by the MAPK Mkc1, Cek1 or Hog1) in mouse gut colonization via competitive assays with MAPK pathway mutants and their isogenic wild type strain. This approach reveals the signalling through HOG pathway as a critical factor influencing the establishment of C. albicans in the mouse gut. Less pronounced effects for mkc1 or cek1 mutants were found, only evident after 2-3 weeks of colonization. We have also seen that hog1 mutants is defective in adhesion to the gut mucosa and sensitive to bile salts. Finally, we have developed a genetic strategy for the in vivo excision (tetracycline-dependent) of any specific gene during the course of colonization in this particular niche, allowing the analysis of its role during gut colonization.

  10. Generation and characterization of a human-mouse chimeric antibody against the extracellular domain of claudin-1 for cancer therapy using a mouse model.

    PubMed

    Hashimoto, Yosuke; Tada, Minoru; Iida, Manami; Nagase, Shotaro; Hata, Tomoyuki; Watari, Akihiro; Okada, Yoshiaki; Doi, Takefumi; Fukasawa, Masayoshi; Yagi, Kiyohito; Kondoh, Masuo

    2016-08-12

    Claudin-1 (CLDN-1), an integral transmembrane protein, is an attractive target for drug absorption, prevention of infection, and cancer therapy. Previously, we generated mouse anti-CLDN-1 monoclonal antibodies (mAbs) and found that they enhanced epidermal absorption of a drug and prevented hepatitis C virus infection in human hepatocytes. Here, we investigated anti-tumor activity of a human-mouse chimeric IgG1, xi-3A2, from one of the anti-CLDN-1 mAbs, clone 3A2. Xi-3A2 accumulated in the tumor tissues in mice bearing with human CLDN-1-expressing tumor cells. Xi-3A2 activated Fcγ receptor IIIa-expressing reporter cells in the presence of human CLDN-1-expressing cells, suggesting xi-3A2 has a potential to exhibit antibody-dependent cellular cytotoxicity against CLDN-1 expressing tumor cells. We also constructed a mutant xi-3A2 antibody with Gly, Ser, and Ile substituted with Ala, Asp, and Arg at positions 236, 239, and 332 of the Fc domain. This mutant antibody showed greater activation of Fcγ receptor IIIa and in vivo anti-tumor activity in mice bearing human CLDN-1-expressing tumors than xi-3A2 did. These findings indicate that the G236A/S239D/I332E mutant of xi-3A2 might be a promising lead for tumor therapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. The Molecular Basis of Muscular Dystrophy in the mdx Mouse: A Point Mutation

    NASA Astrophysics Data System (ADS)

    Sicinski, Piotr; Geng, Yan; Ryder-Cook, Allan S.; Barnard, Eric A.; Darlison, Mark G.; Barnard, Pene J.

    1989-06-01

    The mdx mouse is an X-linked myopathic mutant, an animal model for human Duchenne muscular dystrophy. In both mouse and man the mutations lie within the dystrophin gene, but the phenotypic differences of the disease in the two species confer much interest on the molecular basis of the mdx mutation. The complementary DNA for mouse dystrophin has been cloned, and the sequence has been used in the polymerase chain reaction to amplify normal and mdx dystrophin transcripts in the area of the mdx mutation. Sequence analysis of the amplification products showed that the mdx mouse has a single base substitution within an exon, which causes premature termination of the polypeptide chain.

  12. Campylobacter jejuni CsrA Regulates Metabolic and Virulence Associated Proteins and Is Necessary for Mouse Colonization.

    PubMed

    Fields, Joshua A; Li, Jiaqi; Gulbronson, Connor J; Hendrixson, David R; Thompson, Stuart A

    2016-01-01

    Campylobacter jejuni infection is a leading bacterial cause of gastroenteritis and a common antecedent leading to Gullian-Barré syndrome. Our previous data suggested that the RNA-binding protein CsrA plays an important role in regulating several important phenotypes including motility, biofilm formation, and oxidative stress resistance. In this study, we compared the proteomes of wild type, csrA mutant, and complemented csrA mutant C. jejuni strains in an effort to elucidate the mechanisms by which CsrA affects virulence phenotypes. The putative CsrA regulon was more pronounced at stationary phase (111 regulated proteins) than at mid-log phase (25 regulated proteins). Proteins displaying altered expression in the csrA mutant included diverse metabolic functions, with roles in amino acid metabolism, TCA cycle, acetate metabolism, and various other cell processes, as well as pathogenesis-associated characteristics such as motility, chemotaxis, oxidative stress resistance, and fibronectin binding. The csrA mutant strain also showed altered autoagglutination kinetics when compared to the wild type. CsrA specifically bound the 5' end of flaA mRNA, and we demonstrated that CsrA is a growth-phase dependent repressor of FlaA expression. Finally, the csrA mutant exhibited reduced ability to colonize in a mouse model when in competition with the wild type, further underscoring the role of CsrA in C. jejuni colonization and pathogenesis.

  13. Campylobacter jejuni CsrA Regulates Metabolic and Virulence Associated Proteins and Is Necessary for Mouse Colonization

    PubMed Central

    Fields, Joshua A.; Li, Jiaqi; Gulbronson, Connor J.; Hendrixson, David R.

    2016-01-01

    Campylobacter jejuni infection is a leading bacterial cause of gastroenteritis and a common antecedent leading to Gullian-Barré syndrome. Our previous data suggested that the RNA-binding protein CsrA plays an important role in regulating several important phenotypes including motility, biofilm formation, and oxidative stress resistance. In this study, we compared the proteomes of wild type, csrA mutant, and complemented csrA mutant C. jejuni strains in an effort to elucidate the mechanisms by which CsrA affects virulence phenotypes. The putative CsrA regulon was more pronounced at stationary phase (111 regulated proteins) than at mid-log phase (25 regulated proteins). Proteins displaying altered expression in the csrA mutant included diverse metabolic functions, with roles in amino acid metabolism, TCA cycle, acetate metabolism, and various other cell processes, as well as pathogenesis-associated characteristics such as motility, chemotaxis, oxidative stress resistance, and fibronectin binding. The csrA mutant strain also showed altered autoagglutination kinetics when compared to the wild type. CsrA specifically bound the 5’ end of flaA mRNA, and we demonstrated that CsrA is a growth-phase dependent repressor of FlaA expression. Finally, the csrA mutant exhibited reduced ability to colonize in a mouse model when in competition with the wild type, further underscoring the role of CsrA in C. jejuni colonization and pathogenesis. PMID:27257952

  14. Disruption of a long-range cis-acting regulator for Shh causes preaxial polydactyly

    PubMed Central

    Lettice, Laura A.; Horikoshi, Taizo; Heaney, Simon J. H.; van Baren, Marijke J.; van der Linde, Herma C.; Breedveld, Guido J.; Joosse, Marijke; Akarsu, Nurten; Oostra, Ben A.; Endo, Naoto; Shibata, Minoru; Suzuki, Mikio; Takahashi, Eiichi; Shinka, Toshikatsu; Nakahori, Yutaka; Ayusawa, Dai; Nakabayashi, Kazuhiko; Scherer, Stephen W.; Heutink, Peter; Hill, Robert E.; Noji, Sumihare

    2002-01-01

    Preaxial polydactyly (PPD) is a common limb malformation in human. A number of polydactylous mouse mutants indicate that misexpression of Shh is a common requirement for generating extra digits. Here we identify a translocation breakpoint in a PPD patient and a transgenic insertion site in the polydactylous mouse mutant sasquatch (Ssq). The genetic lesions in both lie within the same respective intron of the LMBR1/Lmbr1 gene, which resides ≈1 Mb away from Shh. Genetic analysis of Ssq reveals that the Lmbr1 gene is incidental to the phenotype and that the mutation directly interrupts a cis-acting regulator of Shh. This regulator is most likely the target for generating PPD mutations in human. PMID:12032320

  15. Wt1 dictates the fate of fetal and adult Leydig cells during development in the mouse testis.

    PubMed

    Wen, Qing; Zheng, Qiao-Song; Li, Xi-Xia; Hu, Zhao-Yuan; Gao, Fei; Cheng, C Yan; Liu, Yi-Xun

    2014-12-15

    Wilms' tumor 1 (Wt1) is a tumor suppressor gene encoding ∼24 zinc finger transcription factors. In the mammalian testis, Wt1 is expressed mostly by Sertoli cells (SCs) involved in testis development, spermatogenesis, and adult Leydig cell (ALC) steroidogenesis. Global knockout (KO) of Wt1 is lethal in mice due to defects in embryogenesis. Herein, we showed that Wt1 is involved in regulating fetal Leydig cell (FLC) degeneration and ALC differentiation during testicular development. Using Wt1(-/flox);Amh-Cre mice that specifically deleted Wt1 in the SC vs. age-matched wild-type (WT) controls, FLC-like-clusters were found in Wt1-deficient testes that remained mitotically active from postnatal day 1 (P1) to P56, and no ALC was detected at these ages. Leydig cells in mutant adult testes displayed morphological features of FLC. Also, FLC-like cells in adult mutant testes had reduced expression in ALC-associated genes Ptgds, Sult1e1, Vcam1, Hsd11b1, Hsd3b6, and Hsd17b3 but high expression of FLC-associated genes Thbs2 and Hsd3b1. Whereas serum LH and testosterone level in mutant mice were not different from controls, intratesticular testosterone level was significantly reduced. Deletion of Wt1 gene also perturbed the expression of steroidogenic enzymes Star, P450c17, Hsd3b6, Hsd3b1, Hsd17b1, and Hsd17b3. FLCs in adult mutant testes failed to convert androstenedione to testosterone due to a lack of Hsd17b3, and this defect was rescued by coculturing with fetal SCs. In summary, FLC-like cells in mutant testes are putative FLCs that remain mitotically active in adult mice, illustrating that Wt1 dictates the fate of FLC and ALC during postnatal testis development. Copyright © 2014 the American Physiological Society.

  16. Analysis of mammalian gene function through broad-based phenotypic screens across a consortium of mouse clinics.

    PubMed

    de Angelis, Martin Hrabě; Nicholson, George; Selloum, Mohammed; White, Jacqui; Morgan, Hugh; Ramirez-Solis, Ramiro; Sorg, Tania; Wells, Sara; Fuchs, Helmut; Fray, Martin; Adams, David J; Adams, Niels C; Adler, Thure; Aguilar-Pimentel, Antonio; Ali-Hadji, Dalila; Amann, Gregory; André, Philippe; Atkins, Sarah; Auburtin, Aurelie; Ayadi, Abdel; Becker, Julien; Becker, Lore; Bedu, Elodie; Bekeredjian, Raffi; Birling, Marie-Christine; Blake, Andrew; Bottomley, Joanna; Bowl, Mike; Brault, Véronique; Busch, Dirk H; Bussell, James N; Calzada-Wack, Julia; Cater, Heather; Champy, Marie-France; Charles, Philippe; Chevalier, Claire; Chiani, Francesco; Codner, Gemma F; Combe, Roy; Cox, Roger; Dalloneau, Emilie; Dierich, André; Di Fenza, Armida; Doe, Brendan; Duchon, Arnaud; Eickelberg, Oliver; Esapa, Chris T; El Fertak, Lahcen; Feigel, Tanja; Emelyanova, Irina; Estabel, Jeanne; Favor, Jack; Flenniken, Ann; Gambadoro, Alessia; Garrett, Lilian; Gates, Hilary; Gerdin, Anna-Karin; Gkoutos, George; Greenaway, Simon; Glasl, Lisa; Goetz, Patrice; Da Cruz, Isabelle Goncalves; Götz, Alexander; Graw, Jochen; Guimond, Alain; Hans, Wolfgang; Hicks, Geoff; Hölter, Sabine M; Höfler, Heinz; Hancock, John M; Hoehndorf, Robert; Hough, Tertius; Houghton, Richard; Hurt, Anja; Ivandic, Boris; Jacobs, Hughes; Jacquot, Sylvie; Jones, Nora; Karp, Natasha A; Katus, Hugo A; Kitchen, Sharon; Klein-Rodewald, Tanja; Klingenspor, Martin; Klopstock, Thomas; Lalanne, Valerie; Leblanc, Sophie; Lengger, Christoph; le Marchand, Elise; Ludwig, Tonia; Lux, Aline; McKerlie, Colin; Maier, Holger; Mandel, Jean-Louis; Marschall, Susan; Mark, Manuel; Melvin, David G; Meziane, Hamid; Micklich, Kateryna; Mittelhauser, Christophe; Monassier, Laurent; Moulaert, David; Muller, Stéphanie; Naton, Beatrix; Neff, Frauke; Nolan, Patrick M; Nutter, Lauryl Mj; Ollert, Markus; Pavlovic, Guillaume; Pellegata, Natalia S; Peter, Emilie; Petit-Demoulière, Benoit; Pickard, Amanda; Podrini, Christine; Potter, Paul; Pouilly, Laurent; Puk, Oliver; Richardson, David; Rousseau, Stephane; Quintanilla-Fend, Leticia; Quwailid, Mohamed M; Racz, Ildiko; Rathkolb, Birgit; Riet, Fabrice; Rossant, Janet; Roux, Michel; Rozman, Jan; Ryder, Ed; Salisbury, Jennifer; Santos, Luis; Schäble, Karl-Heinz; Schiller, Evelyn; Schrewe, Anja; Schulz, Holger; Steinkamp, Ralf; Simon, Michelle; Stewart, Michelle; Stöger, Claudia; Stöger, Tobias; Sun, Minxuan; Sunter, David; Teboul, Lydia; Tilly, Isabelle; Tocchini-Valentini, Glauco P; Tost, Monica; Treise, Irina; Vasseur, Laurent; Velot, Emilie; Vogt-Weisenhorn, Daniela; Wagner, Christelle; Walling, Alison; Weber, Bruno; Wendling, Olivia; Westerberg, Henrik; Willershäuser, Monja; Wolf, Eckhard; Wolter, Anne; Wood, Joe; Wurst, Wolfgang; Yildirim, Ali Önder; Zeh, Ramona; Zimmer, Andreas; Zimprich, Annemarie; Holmes, Chris; Steel, Karen P; Herault, Yann; Gailus-Durner, Valérie; Mallon, Ann-Marie; Brown, Steve Dm

    2015-09-01

    The function of the majority of genes in the mouse and human genomes remains unknown. The mouse embryonic stem cell knockout resource provides a basis for the characterization of relationships between genes and phenotypes. The EUMODIC consortium developed and validated robust methodologies for the broad-based phenotyping of knockouts through a pipeline comprising 20 disease-oriented platforms. We developed new statistical methods for pipeline design and data analysis aimed at detecting reproducible phenotypes with high power. We acquired phenotype data from 449 mutant alleles, representing 320 unique genes, of which half had no previous functional annotation. We captured data from over 27,000 mice, finding that 83% of the mutant lines are phenodeviant, with 65% demonstrating pleiotropy. Surprisingly, we found significant differences in phenotype annotation according to zygosity. New phenotypes were uncovered for many genes with previously unknown function, providing a powerful basis for hypothesis generation and further investigation in diverse systems.

  17. Assessment of K-Ras mutant frequency and micronucleus incidence in the mouse duodenum following 90-days of exposure to Cr(VI) in drinking water.

    PubMed

    O'Brien, Travis J; Ding, Hao; Suh, Mina; Thompson, Chad M; Parsons, Barbara L; Harris, Mark A; Winkelman, William A; Wolf, Jeffrey C; Hixon, J Gregory; Schwartz, Arnold M; Myers, Meagan B; Haws, Laurie C; Proctor, Deborah M

    2013-06-14

    Chronic exposure to high concentrations of hexavalent chromium [Cr(VI)] as sodium dichromate dihydrate (SDD) in drinking water induces duodenal tumors in mice, but the mode of action (MOA) for these tumors has been a subject of scientific debate. To evaluate the tumor-site-specific genotoxicity and cytotoxicity of SDD in the mouse small intestine, tissue pathology and cytogenetic damage were evaluated in duodenal crypt and villus enterocytes from B6C3F1 mice exposed to 0.3-520mg/L SDD in drinking water for 7 and 90 days. Allele-competitive blocker PCR (ACB-PCR) was used to investigate the induction of a sensitive, tumor-relevant mutation, specifically in vivo K-Ras codon 12 GAT mutation, in scraped duodenal epithelium following 90 days of drinking water exposure. Cytotoxicity was evident in the villus as disruption of cellular arrangement, desquamation, nuclear atypia and blunting. Following 90 days of treatment, aberrant nuclei, occurring primarily at villi tips, were significantly increased at ≥60mg/L SDD. However, in the crypt compartment, there were no dose-related effects on mitotic and apoptotic indices or the formation of aberrant nuclei indicating that Cr(VI)-induced cytotoxicity was limited to the villi. Cr(VI) caused a dose-dependent proliferative response in the duodenal crypt as evidenced by an increase in crypt area and increased number of crypt enterocytes. Spontaneous K-Ras codon 12 GAT mutations in untreated mice were higher than expected, in the range of 10(-2) to 10(-3); however no treatment-related trend in the K-Ras codon 12 GAT mutation was observed. The high spontaneous background K-Ras mutant frequency and Cr(VI) dose-related increases in crypt enterocyte proliferation, without dose-related increase in K-Ras mutant frequency, micronuclei formation, or change in mitotic or apoptotic indices, are consistent with a lack of genotoxicity in the crypt compartment, and a MOA involving accumulation of mutations late in carcinogenesis as a consequence of sustained regenerative proliferation. Published by Elsevier B.V.

  18. Isolation and characterization of an Escherichia coli mutant lacking cytochrome d terminal oxidase.

    PubMed Central

    Green, G N; Gennis, R B

    1983-01-01

    A screening procedure was devised which permitted the isolation of a cytochrome d-deficient mutant by its failure to oxidize the artificial electron donor N,N,N',N'-tetramethyl-p-phenylenediamine. Cytochrome a1 and probably cytochrome b558 were also missing in the mutant. Growth and oxygen uptake rates were similar for both parent and mutant strains. However, the strain lacking cytochrome d had an increased sensitivity to cyanide, indicating that cytochrome d confers some resistance to this respiratory inhibitor. The gene responsible for these phenotypes has been named cyd and maps between tolA and sucB. PMID:6304009

  19. Mutant E. coli strain with increased succinic acid production

    DOEpatents

    Donnelly, Mark; Millard, Cynthia S.; Stols, Lucy

    1998-01-01

    A method for isolating succinic acid producing bacteria is provided comprising increasing the biomass of an organism which lacks the ability to catabolize pyruvate, and then subjecting the biomass to glucose-rich medium in an anaerobic environment to enable pyruvate-catabolizing mutants to grow. The invention also provides for a mutant that produces high amounts of succinic acid, which as been derived from a parent which lacked the genes for pyruvate formate lyase and lactate dehydrogenase, and which belongs to the E.coli Group of Bacteria.

  20. Mutant E. coli strain with increased succinic acid production

    DOEpatents

    Donnelly, Mark; Millard, Cynthia S.; Stols, Lucy

    2001-09-25

    A method for isolating succinic acid producing bacteria is provided comprising increasing the biomass of an organism which lacks the ability to catabolize pyruvate, and then subjecting the biomass to glucose-rich medium in an anaerobic environment to enable pyruvate-catabolizing mutants to grow. The invention also provides for a mutant that produces high amounts of succinic acid, which has been derived from a parent which lacked the genes for pyruvate formate lyase and lactate dehydrogenase, and which belongs to the E.coli Group of Bacteria.

  1. Mutant E. coli strain with increased succinic acid production

    DOEpatents

    Donnelly, Mark; Millard, Cynthia S.; Stols, Lucy

    2002-01-01

    A method for isolating succinic acid producing bacteria is provided comprising increasing the biomass of an organism which lacks the ability to catabolize pyruvate, and then subjecting the biomass to glucose-rich medium in an anaerobic environment to enable pyruvate-catabolizing mutants to grow. The invention also provides for a mutant that produces high amounts of succinic acid, which has been derived from a parent which lacked the genes for pyruvate formate lyase and lactate dehydrogenase, and which belongs to the E.coli Group of Bacteria.

  2. Analysis of the Borrelia burgdorferi Cyclic-di-GMP-Binding Protein PlzA Reveals a Role in Motility and Virulence ▿

    PubMed Central

    Pitzer, Joshua E.; Sultan, Syed Z.; Hayakawa, Yoshihiro; Hobbs, Gerry; Miller, Michael R.; Motaleb, Md A.

    2011-01-01

    The cyclic-dimeric-GMP (c-di-GMP)-binding protein PilZ has been implicated in bacterial motility and pathogenesis. Although BB0733 (PlzA), the only PilZ domain-containing protein in Borrelia burgdorferi, was reported to bind c-di-GMP, neither its role in motility or virulence nor it's affinity for c-di-GMP has been reported. We determined that PlzA specifically binds c-di-GMP with high affinity (dissociation constant [Kd], 1.25 μM), consistent with Kd values reported for c-di-GMP-binding proteins from other bacteria. Inactivation of the monocistronically transcribed plzA resulted in an opaque/solid colony morphology, whereas the wild-type colonies were translucent. While the swimming pattern of mutant cells appeared normal, on swarm plates, mutant cells exhibited a significantly reduced swarm diameter, demonstrating a role of plzA in motility. Furthermore, the plzA mutant cells were significantly less infectious in experimental mice (as determined by 50% infectious dose [ID50]) relative to wild-type spirochetes. The mutant also had survival rates in fed ticks lower than those of the wild type. Consequently, plzA mutant cells failed to complete the mouse-tick-mouse infection cycle, indicating plzA is essential for the enzootic life cycle of B. burgdorferi. All of these defects were corrected when the mutant was complemented in cis. We propose that failure of plzA mutant cells to infect mice was due to altered motility; however, the possibility that an unidentified factor(s) contributed to interruption of the B. burgdorferi enzootic life cycle cannot yet be excluded. PMID:21357718

  3. Native Mutant Huntingtin in Human Brain

    PubMed Central

    Sapp, Ellen; Valencia, Antonio; Li, Xueyi; Aronin, Neil; Kegel, Kimberly B.; Vonsattel, Jean-Paul; Young, Anne B.; Wexler, Nancy; DiFiglia, Marian

    2012-01-01

    Huntington disease (HD) is caused by polyglutamine expansion in the N terminus of huntingtin (htt). Analysis of human postmortem brain lysates by SDS-PAGE and Western blot reveals htt as full-length and fragmented. Here we used Blue Native PAGE (BNP) and Western blots to study native htt in human postmortem brain. Antisera against htt detected a single band broadly migrating at 575–850 kDa in control brain and at 650–885 kDa in heterozygous and Venezuelan homozygous HD brains. Anti-polyglutamine antisera detected full-length mutant htt in HD brain. There was little htt cleavage even if lysates were pretreated with trypsin, indicating a property of native htt to resist protease cleavage. A soluble mutant htt fragment of about 180 kDa was detected with anti-htt antibody Ab1 (htt-(1–17)) and increased when lysates were treated with denaturants (SDS, 8 m urea, DTT, or trypsin) before BNP. Wild-type htt was more resistant to denaturants. Based on migration of in vitro translated htt fragments, the 180-kDa segment terminated ≈htt 670–880 amino acids. If second dimension SDS-PAGE followed BNP, the 180-kDa mutant htt was absent, and 43–50 kDa htt fragments appeared. Brain lysates from two HD mouse models expressed native full-length htt; a mutant fragment formed if lysates were pretreated with 8 m urea + DTT. Native full-length mutant htt in embryonic HD140Q/140Q mouse primary neurons was intact during cell death and when cell lysates were exposed to denaturants before BNP. Thus, native mutant htt occurs in brain and primary neurons as a soluble full-length monomer. PMID:22375012

  4. Activity of Gemifloxacin against Quinolone-Resistant Streptococcus pneumoniae Strains In Vitro and in a Mouse Pneumonia Model

    PubMed Central

    Azoulay-Dupuis, E.; Bédos, J. P.; Mohler, J.; Moine, P.; Cherbuliez, C.; Peytavin, G.; Fantin, B.; Köhler, T.

    2005-01-01

    Gemifloxacin is a novel fluoronaphthyridone quinolone with enhanced in vitro activity against Streptococcus pneumoniae. We investigated the activities of gemifloxacin and trovafloxacin, their abilities to select for resistance in vitro and in vivo, and their efficacies in a mouse model of acute pneumonia. Immunocompetent Swiss mice were infected with 105 CFU of a virulent, encapsulated S. pneumoniae strain, P-4241, or its isogenic parC, gyrA, parC gyrA, and efflux mutant derivatives (serotype 3); and leukopenic mice were infected with 107 CFU of two poorly virulent clinical strains (serotype 11A) carrying either a parE mutation or a parC, gyrA, and parE triple mutation. The drugs were administered six times every 12 h, starting at either 3 or 18 h postinfection. In vitro, gemifloxacin was the most potent agent against strains with and without acquired resistance to fluoroquinolones. While control mice died within 6 days, gemifloxacin at doses of 25 and 50 mg/kg of body weight was highly effective (survival rates, 90 to 100%) against the wild-type strain and against mutants harboring a single mutation, corresponding to area under the time-versus-serum concentration curve at 24 h (AUC24)/MIC ratios of 56.5 to 113, and provided a 40% survival rate against a mutant with a double mutation (parC and gyrA). A total AUC24/MIC ratio of 28.5 was associated with poor efficacy and the emergence of resistant mutants. Trovafloxacin was as effective as gemifloxacin against mutants with single mutations but did not provide any protection against the mutant with double mutations, despite treatment with a high dose of 200 mg/kg. Gemifloxacin preferentially selected for parC mutants both in vitro and in vivo. PMID:15728901

  5. Role of Iron Uptake Systems in Pseudomonas aeruginosa Virulence and Airway Infection

    PubMed Central

    Minandri, Fabrizia; Imperi, Francesco; Frangipani, Emanuela; Bonchi, Carlo; Visaggio, Daniela; Facchini, Marcella; Pasquali, Paolo; Bragonzi, Alessandra

    2016-01-01

    Pseudomonas aeruginosa is a leading cause of hospital-acquired pneumonia and chronic lung infections in cystic fibrosis patients. Iron is essential for bacterial growth, and P. aeruginosa expresses multiple iron uptake systems, whose role in lung infection deserves further investigation. P. aeruginosa Fe3+ uptake systems include the pyoverdine and pyochelin siderophores and two systems for heme uptake, all of which are dependent on the TonB energy transducer. P. aeruginosa also has the FeoB transporter for Fe2+ acquisition. To assess the roles of individual iron uptake systems in P. aeruginosa lung infection, single and double deletion mutants were generated in P. aeruginosa PAO1 and characterized in vitro, using iron-poor media and human serum, and in vivo, using a mouse model of lung infection. The iron uptake-null mutant (tonB1 feoB) and the Fe3+ transport mutant (tonB1) did not grow aerobically under low-iron conditions and were avirulent in the mouse model. Conversely, the wild type and the feoB, hasR phuR (heme uptake), and pchD (pyochelin) mutants grew in vitro and caused 60 to 90% mortality in mice. The pyoverdine mutant (pvdA) and the siderophore-null mutant (pvdA pchD) grew aerobically in iron-poor media but not in human serum, and they caused low mortality in mice (10 to 20%). To differentiate the roles of pyoverdine in iron uptake and virulence regulation, a pvdA fpvR double mutant defective in pyoverdine production but expressing wild-type levels of pyoverdine-regulated virulence factors was generated. Deletion of fpvR in the pvdA background partially restored the lethal phenotype, indicating that pyoverdine contributes to the pathogenesis of P. aeruginosa lung infection by combining iron transport and virulence-inducing capabilities. PMID:27271740

  6. Amyloid precursor protein-induced axonopathies are independent of amyloid-beta peptides.

    PubMed

    Stokin, Gorazd B; Almenar-Queralt, Angels; Gunawardena, Shermali; Rodrigues, Elizabeth M; Falzone, Tomás; Kim, Jungsu; Lillo, Concepción; Mount, Stephanie L; Roberts, Elizabeth A; McGowan, Eileen; Williams, David S; Goldstein, Lawrence S B

    2008-11-15

    Overexpression of amyloid precursor protein (APP), as well as mutations in the APP and presenilin genes, causes rare forms of Alzheimer's disease (AD). These genetic changes have been proposed to cause AD by elevating levels of amyloid-beta peptides (Abeta), which are thought to be neurotoxic. Since overexpression of APP also causes defects in axonal transport, we tested whether defects in axonal transport were the result of Abeta poisoning of the axonal transport machinery. Because directly varying APP levels also alters APP domains in addition to Abeta, we perturbed Abeta generation selectively by combining APP transgenes in Drosophila and mice with presenilin-1 (PS1) transgenes harboring mutations that cause familial AD (FAD). We found that combining FAD mutant PS1 with FAD mutant APP increased Abeta42/Abeta40 ratios and enhanced amyloid deposition as previously reported. Surprisingly, however, this combination suppressed rather than increased APP-induced axonal transport defects in both Drosophila and mice. In addition, neuronal apoptosis induced by expression of FAD mutant human APP in Drosophila was suppressed by co-expressing FAD mutant PS1. We also observed that directly elevating Abeta with fusions to the Familial British and Danish Dementia-related BRI protein did not enhance axonal transport phenotypes in APP transgenic mice. Finally, we observed that perturbing Abeta ratios in the mouse by combining FAD mutant PS1 with FAD mutant APP did not enhance APP-induced behavioral defects. A potential mechanism to explain these findings was suggested by direct analysis of axonal transport in the mouse, which revealed that axonal transport or entry of APP into axons is reduced by FAD mutant PS1. Thus, we suggest that APP-induced axonal defects are not caused by Abeta.

  7. Six post-implantation lethal knockouts of genes for lipophilic MAPK pathway proteins are expressed in preimplantation mouse embryos and trophoblast stem cells.

    PubMed

    Xie, Yufen; Wang, Yingchun; Sun, Tong; Wang, Fangfei; Trostinskaia, Anna; Puscheck, Elizabeth; Rappolee, Daniel A

    2005-05-01

    Mitogen-activated protein kinase (MAPK) signaling pathways play an important role in controlling embryonic proliferation and differentiation. It has been demonstrated that sequential lipophilic signal transduction mediators that participate in the MAPK pathway are null post-implantation lethal. It is not clear why the lethality of these null mutants arises after implantation and not before. One hypothesis is that the gene product of these post-implantation lethal null mutants are not present before implantation in normal embryos and do not have function until after implantation. To test this hypothesis, we selected a set of lipophilic genes mediating MAPK signal transduction pathways whose null mutants result in early peri-implantation or placental lethality. These included FRS2alpha, GAB1, GRB2, SOS1, Raf-B, and Raf1. Products of these selected genes were detected and their locations and functions indicated by indirect immunocytochemistry and Western blotting for proteins and RT-polymerase chain reaction (PCR) for mRNA transcription. We report here that all six signal mediators are detected at the protein level in preimplantation mouse embryo, placental trophoblasts, and in cultured trophoblast stem cells (TSC). Proteins are all detected in E3.5 embryos at a time when the first known mitogenic intercellular communication has been documented. mRNA transcripts of two post-implantation null mutant genes are expressed in mouse preimplantation embryos and unfertilized eggs. These mRNA transcripts were detected as maternal mRNA in unfertilized eggs that could delay the lethality of null mutants. All of the proteins were detected in the cytoplasm or in the cell membrane. This study of spatial and temporal expression revealed that all of these six null mutants post-implantation genes in MAPK pathway are expressed and, where tested, phosphorylated/activated proteins are detected in the blastocyst. Studies on RNA expression using RT-PCR suggest that maternal RNA could play an important role in delaying the presence of the lethal phenotype of null mutations. Copyright (c) 2005 Wiley-Liss, Inc.

  8. Genetic separation of phototropism from blue light inhibition of hypocotyl elongation on Arabidopsis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liscum, E.; Young, J.C.; Hangarter, R.P.

    1991-05-01

    Phototropism and inhibition of stem elongation occur in response to blue light-induced inhibition of cell elongation. However, phototropism is a low fluence response and inhibition of hypocotyl elongation is a high irradiance response. The authors have isolated several mutant lines of Arabidopsis which lack blue light-induced inhibition of hypocotyl elongation but retain normal phototropic functions. In addition, a mutant line which completely lacks the phototropic response retains normal blue light-induced inhibition of hypocotyl elongation. F1 progeny of crosses between these two mutant classes exhibited wild-type phototropism and inhibition of hypocotyl elongation in response to blue light stimuli. In the F2more » generation, one in sixteen seedlings were double mutants lacking both phototropism and blue light-induced hypocotyl growth inhibition. These studies conclusively show that blue light-induced phototropism and hypocotyl growth inhibition function through genetically distinct signal transduction or response systems.« less

  9. Alcohol dehydrogenase AdhA plays a role in ethanol tolerance in model cyanobacterium Synechocystis sp. PCC 6803.

    PubMed

    Vidal, Rebeca

    2017-04-01

    The protein AdhA from the cyanobacterium Synechocystis sp. PCC 6803 (hereafter Synechocystis) has been previously reported to show alcohol dehydrogenase activity towards ethanol and both NAD and NADP. This protein is currently being used in genetically modified strains of Synechocystis capable of synthesizing ethanol showing the highest ethanol productivities. In the present work, mutant strains of Synechocystis lacking AdhA have been constructed and tested for tolerance to ethanol. The lack of AdhA in the wild-type strain reduces survival to externally added ethanol at lethal concentration of 4% (v/v). On the other hand, the lack of AdhA in an ethanologenic strain diminishes tolerance of cells to internally produced ethanol. It is also shown that light-activated heterotrophic growth (LAHG) of the wild-type strain is impaired in the mutant strain lacking AdhA (∆adhA strain). Photoautotrophic, mixotrophic, and photoheterotrophic growth are not affected in the mutant strain. Based on phenotypic characterization of ∆adhA mutants, the possible physiological function of AdhA in Synechocystis is discussed.

  10. Protective Role of the Capsule and Impact of Serotype 4 Switching on Streptococcus mitis

    PubMed Central

    Rukke, Håkon V.; Kalluru, Raja Sab; Repnik, Urska; Gerlini, Alice; José, Ricardo J.; Periselneris, Jimstan; Marshall, Helina; Griffiths, Gareth; Oggioni, Marco Rinaldo; Brown, Jeremy S.

    2014-01-01

    The polysaccharide capsule surrounding Streptococcus pneumoniae is essential for virulence. Recently, Streptococcus mitis, a human commensal and a close relative of S. pneumoniae, was also shown to have a capsule. In this study, the S. mitis type strain switched capsule by acquisition of the serotype 4 capsule locus of S. pneumoniae TIGR4, following induction of competence for natural transformation. Comparison of the wild type with the capsule-switching mutant and with a capsule deletion mutant showed that the capsule protected S. mitis against phagocytosis by RAW 264.7 macrophages. This effect was enhanced in the S. mitis strain expressing the S. pneumoniae capsule, which showed, in addition, increased resistance against early clearance in a mouse model of lung infection. Expression of both capsules also favored survival in human blood, and the effect was again more pronounced for the capsule-switching mutant. S. mitis survival in horse blood or in a mouse model of bacteremia was not significantly different between the wild type and the mutant strains. In all models, S. pneumoniae TIGR4 showed higher rates of survival than the S. mitis type strain or the capsule-switching mutant, except in the lung model, in which significant differences between S. pneumoniae TIGR4 and the capsule-switching mutant were not observed. Thus, we identified conditions that showed a protective function for the capsule in S. mitis. Under such conditions, S. mitis resistance to clearance could be enhanced by capsule switching to serotype 4, but it was enhanced to levels lower than those for the virulent strain S. pneumoniae TIGR4. PMID:24958712

  11. Defective phagosome motility and degradation in cell nonautonomous RPE pathogenesis of a dominant macular degeneration.

    PubMed

    Esteve-Rudd, Julian; Hazim, Roni A; Diemer, Tanja; Paniagua, Antonio E; Volland, Stefanie; Umapathy, Ankita; Williams, David S

    2018-05-22

    Stargardt macular dystrophy 3 (STGD3) is caused by dominant mutations in the ELOVL4 gene. Like other macular degenerations, pathogenesis within the retinal pigment epithelium (RPE) appears to contribute to the loss of photoreceptors from the central retina. However, the RPE does not express ELOVL4 , suggesting photoreceptor cell loss in STGD3 occurs through two cell nonautonomous events: mutant photoreceptors first affect RPE cell pathogenesis, and then, second, RPE dysfunction leads to photoreceptor cell death. Here, we have investigated how the RPE pathology occurs, using a STGD3 mouse model in which mutant human ELOVL4 is expressed in the photoreceptors. We found that the mutant protein was aberrantly localized to the photoreceptor outer segment (POS), and that resulting POS phagosomes were degraded more slowly in the RPE. In cell culture, the mutant POSs are ingested by primary RPE cells normally, but the phagosomes are processed inefficiently, even by wild-type RPE. The mutant phagosomes excessively sequester RAB7A and dynein, and have impaired motility. We propose that the abnormal presence of ELOVL4 protein in POSs results in phagosomes that are defective in recruiting appropriate motor protein linkers, thus contributing to slower degradation because their altered motility results in slower basal migration and fewer productive encounters with endolysosomes. In the transgenic mouse retinas, the RPE accumulated abnormal-looking phagosomes and oxidative stress adducts; these pathological changes were followed by pathology in the neural retina. Our results indicate inefficient phagosome degradation as a key component of the first cell nonautonomous event underlying retinal degeneration due to mutant ELOVL4.

  12. Characterization of metabolic health in mouse models of fibrillin-1 perturbation.

    PubMed

    Walji, Tezin A; Turecamo, Sarah E; DeMarsilis, Antea J; Sakai, Lynn Y; Mecham, Robert P; Craft, Clarissa S

    2016-09-01

    Mutations in the microfibrillar protein fibrillin-1 or the absence of its binding partner microfibril-associated glycoprotein (MAGP1) lead to increased TGFβ signaling due to an inability to sequester latent or active forms of TGFβ, respectively. Mouse models of excess TGFβ signaling display increased adiposity and predisposition to type-2 diabetes. It is therefore interesting that individuals with Marfan syndrome, a disease in which fibrillin-1 mutation leads to aberrant TGFβ signaling, typically present with extreme fat hypoplasia. The goal of this project was to characterize multiple fibrillin-1 mutant mouse strains to understand how fibrillin-1 contributes to metabolic health. The results of this study demonstrate that fibrillin-1 contributes little to lipid storage and metabolic homeostasis, which is in contrast to the obesity and metabolic changes associated with MAGP1 deficiency. MAGP1 but not fibrillin-1 mutant mice had elevated TGFβ signaling in their adipose tissue, which is consistent with the difference in obesity phenotypes. However, fibrillin-1 mutant strains and MAGP1-deficient mice all exhibit increased bone length and reduced bone mineralization which are characteristic of Marfan syndrome. Our findings suggest that Marfan-associated adipocyte hypoplasia is likely not due to microfibril-associated changes in adipose tissue, and provide evidence that MAGP1 may function independently of fibrillin in some tissues. Copyright © 2016 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.

  13. Exogenous and evoked oxytocin restores social behavior in the Cntnap2 mouse model of autism

    PubMed Central

    Peñagarikano, Olga; Lázaro, María T.; Lu, Xiao-Hong; Gordon, Aaron; Dong, Hongmei; Lam, Hoa A.; Peles, Elior; Maidment, Nigel T.; Murphy, Niall P.; Yang, X. William; Golshani, Peyman; Geschwind, Daniel H.

    2015-01-01

    Mouse models of neuropsychiatric diseases provide a platform for mechanistic understanding and development of new therapies. We previously demonstrated that knockout of the mouse homologue of CNTNAP2, in which mutant forms cause Cortical Dysplasia and Focal Epilepsy syndrome (CDFE), displays many features parallel to the human disorder. Since CDFE has high penetrance for autism spectrum disorder (ASD) we performed an in vivo screen for drugs that treat abnormal social behavior in Cntnap2 mutant mice and found that acute administration of the neuropeptide oxytocin improved social deficits. We found a decrease in the number of oxytocin immunoreactive neurons in the paraventricular nucleus (PVN) of the hypothalamus in mutant mice and an overall decrease in brain oxytocin levels. Administration of a selective melanocortin receptor 4 agonist, which causes endogenous oxytocin release, also acutely rescued the social deficits, an effect blocked by an oxytocin antagonist. We confirmed that oxytocin neurons mediated the behavioral improvement by activating endogenous oxytocin neurons in the paraventricular hypothalamus with Designer Receptors Exclusively Activated by Designer Drugs (DREADD). Last, we showed that chronic early postnatal treatment with oxytocin led to more lasting behavioral recovery and restored oxytocin immunoreactivity in the PVN. These data demonstrate dysregulation of the oxytocin system in Cntnap2 knockout mice and suggest that there may be critical developmental windows for optimal treatment. PMID:25609168

  14. Overexpression of survival motor neuron improves neuromuscular function and motor neuron survival in mutant SOD1 mice.

    PubMed

    Turner, Bradley J; Alfazema, Neza; Sheean, Rebecca K; Sleigh, James N; Davies, Kay E; Horne, Malcolm K; Talbot, Kevin

    2014-04-01

    Spinal muscular atrophy results from diminished levels of survival motor neuron (SMN) protein in spinal motor neurons. Low levels of SMN also occur in models of amyotrophic lateral sclerosis (ALS) caused by mutant superoxide dismutase 1 (SOD1) and genetic reduction of SMN levels exacerbates the phenotype of transgenic SOD1(G93A) mice. Here, we demonstrate that SMN protein is significantly reduced in the spinal cords of patients with sporadic ALS. To test the potential of SMN as a modifier of ALS, we overexpressed SMN in 2 different strains of SOD1(G93A) mice. Neuronal overexpression of SMN significantly preserved locomotor function, rescued motor neurons, and attenuated astrogliosis in spinal cords of SOD1(G93A) mice. Despite this, survival was not prolonged, most likely resulting from SMN mislocalization and depletion of gems in motor neurons of symptomatic mice. Our results reveal that SMN upregulation slows locomotor deficit onset and motor neuron loss in this mouse model of ALS. However, disruption of SMN nuclear complexes by high levels of mutant SOD1, even in the presence of SMN overexpression, might limit its survival promoting effects in this specific mouse model. Studies in emerging mouse models of ALS are therefore warranted to further explore the potential of SMN as a modifier of ALS. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Identification of Bacillus subtilis men mutants which lack O-succinylbenzoyl-coenzyme A synthetase and dihydroxynaphthoate synthase.

    PubMed Central

    Meganathan, R; Bentley, R; Taber, H

    1981-01-01

    Menaquinone (vitamin K2)-deficient mutants of Bacillus subtilis, whose growth requirement is satisfied by 1,4-dihydroxy-2-naphthoic acid but not by o-succinylbenzoic acid (OSB), have been analyzed for enzymatic defects. Complementation analysis of cell-free extracts of the mutants revealed that there are two groups, as already indicated by genetic analysis. The missing enzyme in each group was identified by complementation of the cell-free extracts with o-succinylbenzoyl-coenzyme A (CoA) synthetase and dihydroxynaphthoate synthase extracted from Mycobacterium phlei. Mutants found to lack dihydroxynaphthoate synthase, and which therefore complement with dihydroxynaphthoate synthase of M. phlei, were designated as menB; those lacking o-succinylbenzoyl-CoA synthetase, and therefore complementing with o-succinylbenzoyl-CoA synthetase, were designated as menE. The menB mutants RB413 (men-325) and RB415 (men-329), when incubated with [2,3-14C2]OSB, produced only the spirodilactone form of OSB in a reaction that was CoA and adenosine 5'-triphosphate dependent. PMID:6780515

  16. Inhibition of cell division in hupA hupB mutant bacteria lacking HU protein.

    PubMed Central

    Dri, A M; Rouviere-Yaniv, J; Moreau, P L

    1991-01-01

    Escherichia coli hupA hypB double mutants that lack HU protein have severe cellular defects in cell division, DNA folding, and DNA partitioning. Here we show that the sfiA11 mutation, which alters the SfiA cell division inhibitor, reduces filamentation and production of anucleate cells in AB1157 hupA hupB strains. However, lexA3(Ind-) and sfiB(ftsZ)114 mutations, which normally counteract the effect of the SfiA inhibitor, could not restore a normal morphology to hupA hupB mutant bacteria. The LexA repressor, which controls the expression of the sfiA gene, was present in hupA hupB mutant bacteria in concentrations half of those of the parent bacteria, but this decrease was independent of the specific cleavage of the LexA repressor by activated RecA protein. One possibility to account for the filamentous morphology of hupA hupB mutant bacteria is that the lack of HU protein alters the expression of specific genes, such as lexA and fts cell division genes. Images PMID:2019558

  17. Reduced starch granule number per chloroplast in the dpe2/phs1 mutant is dependent on initiation of starch degradation

    PubMed Central

    Malinova, Irina

    2017-01-01

    An Arabidopsis double knock-out mutant lacking cytosolic disproportionating enzyme 2 (DPE2) and the plastidial phosphorylase (PHS1) revealed a dwarf-growth phenotype, reduced starch content, an uneven distribution of starch within the plant rosette, and a reduced number of starch granules per chloroplast under standard growth conditions. In contrast, the wild type contained 5–7 starch granules per chloroplast. Mature and old leaves of the double mutant were essentially starch free and showed plastidial disintegration. Several analyses revealed that the number of starch granules per chloroplast was affected by the dark phase. So far, it was unclear if it was the dark phase per se or starch degradation in the dark that was connected to the observed decrease in the number of starch granules per chloroplast. Therefore, in the background of the double mutant dpe2/phs1, a triple mutant was generated lacking the initial starch degrading enzyme glucan, water dikinase (GWD). The triple mutant showed improved plant growth, a starch-excess phenotype, and a homogeneous starch distribution. Furthermore, the number of starch granules per chloroplast was increased and was similar to wild type. However, starch granule morphology was only slightly affected by the lack of GWD as in the triple mutant and, like in dpe2/phs1, more spherical starch granules were observed. The characterized triple mutant was discussed in the context of the generation of starch granules and the formation of starch granule morphology. PMID:29155859

  18. Reduced starch granule number per chloroplast in the dpe2/phs1 mutant is dependent on initiation of starch degradation.

    PubMed

    Malinova, Irina; Fettke, Joerg

    2017-01-01

    An Arabidopsis double knock-out mutant lacking cytosolic disproportionating enzyme 2 (DPE2) and the plastidial phosphorylase (PHS1) revealed a dwarf-growth phenotype, reduced starch content, an uneven distribution of starch within the plant rosette, and a reduced number of starch granules per chloroplast under standard growth conditions. In contrast, the wild type contained 5-7 starch granules per chloroplast. Mature and old leaves of the double mutant were essentially starch free and showed plastidial disintegration. Several analyses revealed that the number of starch granules per chloroplast was affected by the dark phase. So far, it was unclear if it was the dark phase per se or starch degradation in the dark that was connected to the observed decrease in the number of starch granules per chloroplast. Therefore, in the background of the double mutant dpe2/phs1, a triple mutant was generated lacking the initial starch degrading enzyme glucan, water dikinase (GWD). The triple mutant showed improved plant growth, a starch-excess phenotype, and a homogeneous starch distribution. Furthermore, the number of starch granules per chloroplast was increased and was similar to wild type. However, starch granule morphology was only slightly affected by the lack of GWD as in the triple mutant and, like in dpe2/phs1, more spherical starch granules were observed. The characterized triple mutant was discussed in the context of the generation of starch granules and the formation of starch granule morphology.

  19. Function of MYO7A in the Human RPE and the Validity of Shaker1 Mice as a Model for Usher Syndrome 1B

    PubMed Central

    Gibbs, Daniel; Diemer, Tanja; Khanobdee, Kornnika; Hu, Jane; Bok, Dean

    2010-01-01

    Purpose. To investigate the function of MYO7A in human RPE cells and to test the validity of using shaker1 RPE in preclinical studies on therapies for Usher syndrome 1B by comparing human and mouse cells. Methods. MYO7A was localized by immunofluorescence. Primary cultures of human and mouse RPE cells were used to measure melanosome motility and rod outer segment (ROS) phagocytosis and digestion. MYO7A was knocked down in the human RPE cells by RNAi to test for a mutant phenotype in melanosome motility. Results. The distribution of MYO7A in the RPE of human and mouse was found to be comparable, both in vivo and in primary cultures. Primary cultures of human RPE cells phagocytosed and digested ROSs with kinetics comparable to that of primary cultures of mouse RPE cells. Melanosome motility was also comparable, and, after RNAi knockdown, consisted of longer-range fast movements characteristic of melanosomes in shaker1 RPE. Conclusions. The localization and function of MYO7A in human RPE cells is comparable to that in mouse RPE cells. Although shaker1 retinas do not undergo degeneration, correction of mutant phenotypes in the shaker1 RPE represents a valid preclinical test for potential therapeutic treatments. PMID:19643958

  20. Histopathology reveals correlative and unique phenotypes in a high-throughput mouse phenotyping screen

    PubMed Central

    Adissu, Hibret A.; Estabel, Jeanne; Sunter, David; Tuck, Elizabeth; Hooks, Yvette; Carragher, Damian M.; Clarke, Kay; Karp, Natasha A.; Project, Sanger Mouse Genetics; Newbigging, Susan; Jones, Nora; Morikawa, Lily; White, Jacqueline K.; McKerlie, Colin

    2014-01-01

    The Mouse Genetics Project (MGP) at the Wellcome Trust Sanger Institute aims to generate and phenotype over 800 genetically modified mouse lines over the next 5 years to gain a better understanding of mammalian gene function and provide an invaluable resource to the scientific community for follow-up studies. Phenotyping includes the generation of a standardized biobank of paraffin-embedded tissues for each mouse line, but histopathology is not routinely performed. In collaboration with the Pathology Core of the Centre for Modeling Human Disease (CMHD) we report the utility of histopathology in a high-throughput primary phenotyping screen. Histopathology was assessed in an unbiased selection of 50 mouse lines with (n=30) or without (n=20) clinical phenotypes detected by the standard MGP primary phenotyping screen. Our findings revealed that histopathology added correlating morphological data in 19 of 30 lines (63.3%) in which the primary screen detected a phenotype. In addition, seven of the 50 lines (14%) presented significant histopathology findings that were not associated with or predicted by the standard primary screen. Three of these seven lines had no clinical phenotype detected by the standard primary screen. Incidental and strain-associated background lesions were present in all mutant lines with good concordance to wild-type controls. These findings demonstrate the complementary and unique contribution of histopathology to high-throughput primary phenotyping of mutant mice. PMID:24652767

  1. Production of MPS VII mouse (Gustm(hE540A·mE536A)Sly) doubly tolerant to human and mouse β-glucuronidase

    PubMed Central

    Tomatsu, Shunji; Orii, Koji O.; Vogler, Carole; Grubb, Jeffrey H.; Snella, Elizabeth M.; Gutierrez, Monica; Dieter, Tatiana; Holden, Christopher C.; Sukegawa, Kazuko; Orii, Tadao; Kondo, Naomi; Sly, William S.

    2006-01-01

    Mucopolysaccharidosis VII (MPS VII, Sly syndrome) is an autosomal recessive lysosomal storage disease caused by β-glucuronidase (GUS) deficiency. A naturally occurring mouse model of that disease has been very useful for studying experimental approaches to therapy. However, immune responses can complicate evaluation of the long-term benefits of enzyme replacement or gene therapy delivered to adult MPS VII mice. To make this model useful for studying the long-term effectiveness and side effects of experimental therapies delivered to adult mice, we developed a new MPS VII mouse model, which is tolerant to both human and murine GUS. To achieve this, we used homologous recombination to introduce simultaneously a human cDNA transgene expressing inactive human GUS into intron 9 of the murine Gus gene and a targeted active site mutation (E536A) into the adjacent exon 10. When the heterozygote products of germline transmission were bred to homozygosity, the homozygous mice expressed no GUS enzyme activity but expressed inactive human GUS protein highly and were tolerant to immune challenge with human enzyme. Expression of the mutant murine Gus gene was reduced to about 10% of normal levels, but the inactive murine GUS enzyme also conferred tolerance to murine GUS. This MPS VII mouse model should be useful to evaluate therapeutic responses in adult mice receiving repetitive doses of enzyme or mice receiving gene therapy as adults. Heterozygotes expressed only 9.5–26% of wild-type levels of murine GUS instead of the expected 50%, indicating a dominant-negative effect of the mutant enzyme monomers on the activity of GUS tetramers in different tissues. Corrective gene therapy in this model should provide high enough levels of expression of normal GUS monomers to overcome the dominant negative effect of mutant monomers on newly synthesized GUS tetramers in most tissues. PMID:12700165

  2. Outgrowth of Rice Tillers Requires Availability of Glutamine in the Basal Portions of Shoots.

    PubMed

    Ohashi, Miwa; Ishiyama, Keiki; Kojima, Soichi; Konishi, Noriyuki; Sasaki, Kazuhiro; Miyao, Mitsue; Hayakawa, Toshihiko; Yamaya, Tomoyuki

    2018-05-09

    Our previous studies concluded that metabolic disorder in the basal portions of rice shoots caused by a lack of cytosolic glutamine synthetase1;2 (GS1;2) resulted in a severe reduction in the outgrowth of tillers. Rice mutants lacking GS1;2 (gs1;2 mutants) showed a remarkable reduction in the contents of both glutamine and asparagine in the basal portions of shoots. In the current study, we attempted to reveal the mechanisms for this decrease in asparagine content using rice mutants lacking either GS1;2 or asparagine synthetase 1 (AS1). The contributions of the availability of glutamine and asparagine to the outgrowth of rice tillers were investigated. Rice has two AS genes, and the enzymes catalyse asparagine synthesis from glutamine. In the basal portions of rice shoots, expression of OsAS1, the major species in this tissue, was reduced in gs1;2 mutants, whereas OsAS2 expression was relatively constant. OsAS1 was expressed in phloem companion cells of the nodal vascular anastomoses connected to the axillary bud vasculatures in the basal portions of wild-type shoots, whereas cell-specific expression was markedly reduced in gs1;2 mutants. OsAS1 was up-regulated significantly by NH 4 + supply in the wild type but not in gs1;2 mutants. When GS reactions were inhibited by methionine sulfoximine, OsAS1 was up-regulated by glutamine but not by NH 4 + . The rice mutants lacking AS1 (as1 mutants) showed a decrease in asparagine content in the basal portions of shoots. However, glutamine content and tiller number were less affected by the lack of AS1. These results indicate that in phloem companion cells of the nodal vascular anastomoses, asparagine synthesis is largely dependent on glutamine or its related metabolite-responsive AS1. Thus, the decrease in glutamine content caused by a lack of GS1;2 is suggested to result in low expression of OsAS1, decreasing asparagine content. However, the availability of asparagine generated from AS1 reactions is apparently less effective for the outgrowth of tillers. With respect to the tiller number and the contents of glutamine and asparagine in gs1;2 and as1 mutants, the availability of glutamine rather than asparagine in basal portions of rice shoots may be required for the outgrowth of rice tillers.

  3. Mouse-adapted MERS coronavirus causes lethal lung disease in human DPP4 knockin mice.

    PubMed

    Li, Kun; Wohlford-Lenane, Christine L; Channappanavar, Rudragouda; Park, Jung-Eun; Earnest, James T; Bair, Thomas B; Bates, Amber M; Brogden, Kim A; Flaherty, Heather A; Gallagher, Tom; Meyerholz, David K; Perlman, Stanley; McCray, Paul B

    2017-04-11

    The Middle East respiratory syndrome (MERS) emerged in Saudi Arabia in 2012, caused by a zoonotically transmitted coronavirus (CoV). Over 1,900 cases have been reported to date, with ∼36% fatality rate. Lack of autopsies from MERS cases has hindered understanding of MERS-CoV pathogenesis. A small animal model that develops progressive pulmonary manifestations when infected with MERS-CoV would advance the field. As mice are restricted to infection at the level of DPP4, the MERS-CoV receptor, we generated mice with humanized exons 10-12 of the mouse Dpp4 locus. Upon inoculation with MERS-CoV, human DPP4 knockin (KI) mice supported virus replication in the lungs, but developed no illness. After 30 serial passages through the lungs of KI mice, a mouse-adapted virus emerged (MERS MA ) that grew in lungs to over 100 times higher titers than the starting virus. A plaque-purified MERS MA clone caused weight loss and fatal infection. Virus antigen was observed in airway epithelia, pneumocytes, and macrophages. Pathologic findings included diffuse alveolar damage with pulmonary edema and hyaline membrane formation associated with accumulation of activated inflammatory monocyte-macrophages and neutrophils in the lungs. Relative to the parental MERS-CoV, MERS MA viruses contained 13-22 mutations, including several within the spike (S) glycoprotein gene. S-protein mutations sensitized viruses to entry-activating serine proteases and conferred more rapid entry kinetics. Recombinant MERS MA bearing mutant S proteins were more virulent than the parental virus in hDPP4 KI mice. The hDPP4 KI mouse and the MERS MA provide tools to investigate disease causes and develop new therapies.

  4. Identification of formaldehyde as the metabolite responsible for the mutagenicity of methyl tertiary-butyl ether in the activated mouse lymphoma assay.

    PubMed

    Mackerer, C R; Angelosanto, F A; Blackburn, G R; Schreiner, C A

    1996-09-01

    Methyl tertiary-butyl ether (MTBE), which is added to gasoline as an octane enhancer and to reduce automotive emissions, has been evaluated in numerous toxicological tests, including those for genotoxicity. MTBE did not show any mutagenic potential in the Ames bacterial assay or any clastogenicity in cytogenetic tests. However, it has been shown to be mutagenic in an in vitro gene mutation assay using mouse lymphoma cells when tested in the presence, but not in the absence, of a rat liver-derived metabolic activation system (S-9). In the present study, MTBE was tested to determine if formaldehyde, in the presence of the S-9, was responsible for the observed mutagenicity. A modification of the mouse lymphoma assay was employed which permits determination of whether a suspect material is mutagenic because it contains or is metabolized to formaldehyde. In the modified assay, the enzyme formaldehyde dehydrogenase (FDH) and its co-factor, NAD+ are added in large excess during the exposure period so that any formaldehyde produced in the system is rapidly converted to formic acid which is not genotoxic. An MTBE dose-responsive increase in the frequency of mutants and in cytotoxicity occurred without FDH present, and this effect was greatly reduced in the presence of FDH NAD+. The findings clearly demonstrate that formaldehyde derived from MTBE is responsible for mutagenicity of MTBE in the activated mouse lymphoma assay. Furthermore, the results suggest that the lack of mutagenicity/clastogenicity seen with MTBE in other in vitro assays might have resulted from inadequacies in the test systems employed for those assays.

  5. Deletion of the forebrain mineralocorticoid receptor impairs social discrimination and decision-making in male, but not in female mice.

    PubMed

    Ter Horst, Judith P; van der Mark, Maaike; Kentrop, Jiska; Arp, Marit; van der Veen, Rixt; de Kloet, E Ronald; Oitzl, Melly S

    2014-01-01

    Social interaction with unknown individuals requires fast processing of information to decide whether it is friend or foe. This process of discrimination and decision-making is stressful and triggers secretion of corticosterone activating mineralocorticoid receptor (MR) and glucocorticoid receptor (GR). The MR is involved in appraisal of novel experiences and risk assessment. Recently, we have demonstrated in a dual-solution memory task that MR plays a role in the early stage of information processing and decision-making. Here we examined social approach and social discrimination in male and female mice lacking MR from hippocampal-amygdala-prefrontal circuitry and controls. The social approach task allows the assessment of time spent with an unfamiliar mouse and the ability to discriminate between familiar and unfamiliar conspecifics. The male and female test mice were both more interested in the social than the non-social experience and deletion of their limbic MR increased the time spent with an unfamiliar mouse. Unlike controls, the male MR(CaMKCre) mice were not able to discriminate between an unfamiliar and the familiar mouse. However, the female MR mutant had retained the discriminative ability between unfamiliar and familiar mice. Administration of the MR antagonist RU28318 to male mice supported the role of the MR in the discrimination between an unfamiliar mouse and a non-social stimulus. No effect was found with a GR antagonist. Our findings suggest that MR is involved in sociability and social discrimination in a sex-specific manner through inhibitory control exerted putatively via limbic-hippocampal efferents. The ability to discriminate between familiar and unfamiliar conspecifics is of uttermost importance for territorial defense and depends on a role of MR in decision-making.

  6. Structure-based discovery of NANOG variant with enhanced properties to promote self-renewal and reprogramming of pluripotent stem cells

    DOE PAGES

    Hayashi, Yohei; Caboni, Laura; Das, Debanu; ...

    2015-03-30

    NANOG (from Irish mythology Tír na nÓg) transcription factor plays a central role in maintaining pluripotency, cooperating with OCT4 (also known as POU5F1 or OCT3/4), SOX2, and other pluripotency factors. Although the physiological roles of the NANOG protein have been extensively explored, biochemical and biophysical properties in relation to its structural analysis are poorly understood. Here we determined the crystal structure of the human NANOG homeodomain (hNANOG HD) bound to an OCT4 promoter DNA, which revealed amino acid residues involved in DNA recognition that are likely to be functionally important. We generated a series of hNANOG HD alanine substitution mutantsmore » based on the protein–DNA interaction and evolutionary conservation and determined their biological activities. Some mutant proteins were less stable, resulting in loss or decreased affinity for DNA binding. Overexpression of the orthologous mouse NANOG (mNANOG) mutants failed to maintain self-renewal of mouse embryonic stem cells without leukemia inhibitory factor. These results suggest that these residues are critical for NANOG transcriptional activity. Interestingly, one mutant, hNANOG L122A, conversely enhanced protein stability and DNA-binding affinity. The mNANOG L122A, when overexpressed in mouse embryonic stem cells, maintained their expression of self-renewal markers even when retinoic acid was added to forcibly drive differentiation. When overexpressed in epiblast stem cells or human induced pluripotent stem cells, the L122A mutants enhanced reprogramming into ground-state pluripotency. These findings indicate that structural and biophysical information on key transcriptional factors provides insights into the manipulation of stem cell behaviors and a framework for rational protein engineering.« less

  7. Mice mutant for glucokinase regulatory protein exhibit decreased liver glucokinase: A sequestration mechanism in metabolic regulation

    PubMed Central

    Farrelly, Dennis; Brown, Karen S.; Tieman, Aaron; Ren, Jianming; Lira, Sergio A.; Hagan, Deborah; Gregg, Richard; Mookhtiar, Kasim A.; Hariharan, Narayanan

    1999-01-01

    The importance of glucokinase (GK; EC 2.7.1.12) in glucose homeostasis has been demonstrated by the association of GK mutations with diabetes mellitus in humans and by alterations in glucose metabolism in transgenic and gene knockout mice. Liver GK activity in humans and rodents is allosterically inhibited by GK regulatory protein (GKRP). To further understand the role of GKRP in GK regulation, the mouse GKRP gene was inactivated. With the knockout of the GKRP gene, there was a parallel loss of GK protein and activity in mutant mouse liver. The loss was primarily because of posttranscriptional regulation of GK, indicating a positive regulatory role for GKRP in maintaining GK levels and activity. As in rat hepatocytes, both GK and GKRP were localized in the nuclei of mouse hepatocytes cultured in low-glucose-containing medium. In the presence of fructose or high concentrations of glucose, conditions known to relieve GK inhibition by GKRP in vitro, only GK was translocated into the cytoplasm. In the GKRP-mutant hepatocytes, GK was not found in the nucleus under any tested conditions. We propose that GKRP functions as an anchor to sequester and inhibit GK in the hepatocyte nucleus, where it is protected from degradation. This ensures that glucose phosphorylation is minimal when the liver is in the fasting, glucose-producing phase. This also enables the hepatocytes to rapidly mobilize GK into the cytoplasm to phosphorylate and store or metabolize glucose after the ingestion of dietary glucose. In GKRP-mutant mice, the disruption of this regulation and the subsequent decrease in GK activity leads to altered glucose metabolism and impaired glycemic control. PMID:10588736

  8. Structure-based discovery of NANOG variant with enhanced properties to promote self-renewal and reprogramming of pluripotent stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayashi, Yohei; Caboni, Laura; Das, Debanu

    NANOG (from Irish mythology Tír na nÓg) transcription factor plays a central role in maintaining pluripotency, cooperating with OCT4 (also known as POU5F1 or OCT3/4), SOX2, and other pluripotency factors. Although the physiological roles of the NANOG protein have been extensively explored, biochemical and biophysical properties in relation to its structural analysis are poorly understood. Here we determined the crystal structure of the human NANOG homeodomain (hNANOG HD) bound to an OCT4 promoter DNA, which revealed amino acid residues involved in DNA recognition that are likely to be functionally important. We generated a series of hNANOG HD alanine substitution mutantsmore » based on the protein–DNA interaction and evolutionary conservation and determined their biological activities. Some mutant proteins were less stable, resulting in loss or decreased affinity for DNA binding. Overexpression of the orthologous mouse NANOG (mNANOG) mutants failed to maintain self-renewal of mouse embryonic stem cells without leukemia inhibitory factor. These results suggest that these residues are critical for NANOG transcriptional activity. Interestingly, one mutant, hNANOG L122A, conversely enhanced protein stability and DNA-binding affinity. The mNANOG L122A, when overexpressed in mouse embryonic stem cells, maintained their expression of self-renewal markers even when retinoic acid was added to forcibly drive differentiation. When overexpressed in epiblast stem cells or human induced pluripotent stem cells, the L122A mutants enhanced reprogramming into ground-state pluripotency. These findings indicate that structural and biophysical information on key transcriptional factors provides insights into the manipulation of stem cell behaviors and a framework for rational protein engineering.« less

  9. Smad3 mutant mice develop colon cancer with overexpression of COX-2

    PubMed Central

    Zhu, Yu-Ping; Liu, Zhuo; Fu, Zhi-Xuan; Li, De-Chuan

    2017-01-01

    Colon cancer is the second most common cause of cancer-associated mortality in human populations. The aim of the present study was to identify the role of cyclooxygenase-2 (COX-2) in Smad3 mutant mice, which are known to develop colon cancer. Homozygous Smad3 (−/−) mutant mice were generated from inbred and hybrid Smad3 mouse strains by intercrossing the appropriate heterozygotes. Immunohistochemistry with COX-2 antibody was performed throughout this experiment and the data was validated and cross-checked with reverse transcription-polymerase chain reaction (RT-PCR). Homozygous mutant Smad3 mice were generated and the overexpression pattern of COX-2 was identified by immunohistochemistry and validated with RT-PCR. The results of the present study demonstrated a link between the Smad3 mutant mice, colon cancer and COX-2. In addition, the overexpression pattern of COX-2 in Smad3 mutant mice that develop colon cancer was identified. PMID:28454287

  10. K-Ras mutant fraction in A/J mouse lung increases as a function of benzo[a]pyrene dose

    EPA Science Inventory

    K-Ras mutant fraction (MF) was measured to examine the default assumption of low dose linearity in the benzo[a]pyrene (B[a]P) mutational response. Groups of ten male A/J mice (7-9 weeks-old) received a single i.p. injection of 0, 0.05, 0.5, 5, or 50 mg/kg B[a]P, and were sacrifi...

  11. Partial agonist/antagonist mouse interleukin-2 proteins indicate that a third component of the receptor complex functions in signal transduction.

    PubMed Central

    Zurawski, S M; Imler, J L; Zurawski, G

    1990-01-01

    Some mouse interleukin-2 (mIL-2) proteins with substitutions at residue Gln141 are unable to trigger a maximal biological response. The Asp141 protein induces the lowest maximal response. The Asp141 protein can weakly antagonize the biological activity of mIL-2 and strongly antagonizes the biological activity of active mIL-2 mutant proteins that have defects in interactions with the high affinity receptor. Residue 141 mutant proteins bind with reduced affinity to T cells expressing the high affinity IL-2 receptor, yet bind normally to transfected fibroblasts expressing only the alpha and beta chains of the receptor. These results suggest that a third receptor component is important for both binding and signal transduction. PMID:2249656

  12. Highly variable penetrance of abnormal phenotypes in embryonic lethal knockout mice

    PubMed Central

    Wilson, Robert; Geyer, Stefan H.; Reissig, Lukas; Rose, Julia; Szumska, Dorota; Hardman, Emily; Prin, Fabrice; McGuire, Christina; Ramirez-Solis, Ramiro; White, Jacqui; Galli, Antonella; Tudor, Catherine; Tuck, Elizabeth; Mazzeo, Cecilia Icoresi; Smith, James C.; Robertson, Elizabeth; Adams, David J.; Mohun, Timothy; Weninger, Wolfgang J.

    2017-01-01

    Background: Identifying genes that are essential for mouse embryonic development and survival through term is a powerful and unbiased way to discover possible genetic determinants of human developmental disorders. Characterising the changes in mouse embryos that result from ablation of lethal genes is a necessary first step towards uncovering their role in normal embryonic development and establishing any correlates amongst human congenital abnormalities. Methods: Here we present results gathered to date in the Deciphering the Mechanisms of Developmental Disorders (DMDD) programme, cataloguing the morphological defects identified from comprehensive imaging of 220 homozygous mutant and 114 wild type embryos from 42 lethal and subviable lines, analysed at E14.5. Results: Virtually all mutant embryos show multiple abnormal phenotypes and amongst the 42 lines these affect most organ systems. Within each mutant line, the phenotypes of individual embryos form distinct but overlapping sets. Subcutaneous edema, malformations of the heart or great vessels, abnormalities in forebrain morphology and the musculature of the eyes are all prevalent phenotypes, as is loss or abnormal size of the hypoglossal nerve. Conclusions: Overall, the most striking finding is that no matter how profound the malformation, each phenotype shows highly variable penetrance within a mutant line. These findings have challenging implications for efforts to identify human disease correlates. PMID:27996060

  13. Virulence of Burkholderia mallei Quorum-Sensing Mutants

    PubMed Central

    Majerczyk, Charlotte; Kinman, Loren; Han, Tony; Bunt, Richard

    2013-01-01

    Many Proteobacteria use acyl-homoserine lactone-mediated quorum-sensing (QS) to activate specific sets of genes as a function of cell density. QS often controls the virulence of pathogenic species, and in fact a previous study indicated that QS was important for Burkholderia mallei mouse lung infections. To gain in-depth information on the role of QS in B. mallei virulence, we constructed and characterized a mutant of B. mallei strain GB8 that was unable to make acyl-homoserine lactones. The QS mutant showed virulence equal to that of its wild-type parent in an aerosol mouse infection model, and growth in macrophages was indistinguishable from that of the parent strain. Furthermore, we assessed the role of QS in B. mallei ATCC 23344 by constructing and characterizing a mutant strain producing AiiA, a lactonase enzyme that degrades acyl-homoserine lactones. Although acyl-homoserine lactone levels in cultures of this strain are very low, it showed full virulence. Contrary to the previous report, we conclude that QS is not required for acute B. mallei infections of mice. QS may be involved in some stage of chronic infections in the natural host of horses, or the QS genes may be remnants of the QS network in B. pseudomallei from which this host-adapted pathogen evolved. PMID:23429539

  14. Fork stalling and template switching as a mechanism for polyalanine tract expansion affecting the DYC mutant of HOXD13, a new murine model of synpolydactyly.

    PubMed

    Cocquempot, Olivier; Brault, Véronique; Babinet, Charles; Herault, Yann

    2009-09-01

    Polyalanine expansion diseases are proposed to result from unequal crossover of sister chromatids that increases the number of repeats. In this report we suggest an alternative mechanism we put forward while we investigated a new spontaneous mutant that we named "Dyc" for "Digit in Y and Carpe" phenotype. Phenotypic analysis revealed an abnormal limb patterning similar to that of the human inherited congenital disease synpolydactyly (SPD) and to the mouse mutant model Spdh. Both human SPD and mouse Spdh mutations affect the Hoxd13 gene within a 15-residue polyalanine-encoding repeat in the first exon of the gene, leading to a dominant negative HOXD13. Genetic analysis of the Dyc mutant revealed a trinucleotide expansion in the polyalanine-encoding region of the Hoxd13 gene resulting in a 7-alanine expansion. However, unlike the Spdh mutation, this expansion cannot result from a simple duplication of a short segment. Instead, we propose the fork stalling and template switching (FosTeS) described for generation of nonrecurrent genomic rearrangements as a possible mechanism for the Dyc polyalanine extension, as well as for other polyalanine expansions described in the literature and that could not be explained by unequal crossing over.

  15. Fork Stalling and Template Switching As a Mechanism for Polyalanine Tract Expansion Affecting the DYC Mutant of HOXD13, a New Murine Model of Synpolydactyly

    PubMed Central

    Cocquempot, Olivier; Brault, Véronique; Babinet, Charles; Herault, Yann

    2009-01-01

    Polyalanine expansion diseases are proposed to result from unequal crossover of sister chromatids that increases the number of repeats. In this report we suggest an alternative mechanism we put forward while we investigated a new spontaneous mutant that we named “Dyc” for “Digit in Y and Carpe” phenotype. Phenotypic analysis revealed an abnormal limb patterning similar to that of the human inherited congenital disease synpolydactyly (SPD) and to the mouse mutant model Spdh. Both human SPD and mouse Spdh mutations affect the Hoxd13 gene within a 15-residue polyalanine-encoding repeat in the first exon of the gene, leading to a dominant negative HOXD13. Genetic analysis of the Dyc mutant revealed a trinucleotide expansion in the polyalanine-encoding region of the Hoxd13 gene resulting in a 7-alanine expansion. However, unlike the Spdh mutation, this expansion cannot result from a simple duplication of a short segment. Instead, we propose the fork stalling and template switching (FosTeS) described for generation of nonrecurrent genomic rearrangements as a possible mechanism for the Dyc polyalanine extension, as well as for other polyalanine expansions described in the literature and that could not be explained by unequal crossing over. PMID:19546318

  16. Mutagenesis of a bacteriophage lytic enzyme PlyGBS significantly increases its antibacterial activity against group B streptococci.

    PubMed

    Cheng, Qi; Fischetti, Vincent A

    2007-04-01

    Group B streptococci (GBS) are the leading cause of neonatal meningitis and sepsis worldwide. Intrapartum antibiotic prophylaxis (IAP) is the current prevention strategy given to pregnant women with confirmed vaginal GBS colonization. Due to antibiotic resistance identified in GBS, we previously developed another strategy using a bacteriophage lytic enzyme, PlyGBS, to reduce vaginal GBS colonization. In this study, various DNA mutagenesis methods were explored to produce PlyGBS mutants with increased lytic activity against GBS. Several hyperactive mutants were identified that contain only the endopeptidase domain found in the N-terminal region of PlyGBS and represent only about one-third of the wild-type PlyGBS in length. Significantly, these mutants not only have 18-28-fold increases in specific activities compared to PlyGBS, but they also have a similar activity spectrum against several streptococcal species. One of the hyperactive mutants, PlyGBS90-1, reduced the GBS colonization from >5 logs of growth per mouse to <50 colony-forming units (cfu) 4 h post treatment ( approximately 4-log reduction) using a single dose in a mouse vaginal model. A reduction in GBS colonization before delivery should significantly reduce neonatal GBS infection providing a safe alternative to IAP.

  17. CDC14A phosphatase is essential for hearing and male fertility in mouse and human.

    PubMed

    Imtiaz, Ayesha; Belyantseva, Inna A; Beirl, Alisha J; Fenollar-Ferrer, Cristina; Bashir, Rasheeda; Bukhari, Ihtisham; Bouzid, Amal; Shaukat, Uzma; Azaiez, Hela; Booth, Kevin T; Kahrizi, Kimia; Najmabadi, Hossein; Maqsood, Azra; Wilson, Elizabeth A; Fitzgerald, Tracy S; Tlili, Abdelaziz; Olszewski, Rafal; Lund, Merete; Chaudhry, Taimur; Rehman, Atteeq U; Starost, Matthew F; Waryah, Ali M; Hoa, Michael; Dong, Lijin; Morell, Robert J; Smith, Richard J H; Riazuddin, Sheikh; Masmoudi, Saber; Kindt, Katie S; Naz, Sadaf; Friedman, Thomas B

    2018-03-01

    The Cell Division-Cycle-14 gene encodes a dual-specificity phosphatase necessary in yeast for exit from mitosis. Numerous disparate roles of vertebrate Cell Division-Cycle-14 (CDC14A) have been proposed largely based on studies of cultured cancer cells in vitro. The in vivo functions of vertebrate CDC14A are largely unknown. We generated and analyzed mutations of zebrafish and mouse CDC14A, developed a computational structural model of human CDC14A protein and report four novel truncating and three missense alleles of CDC14A in human families segregating progressive, moderate-to-profound deafness. In five of these families segregating pathogenic variants of CDC14A, deaf males are infertile, while deaf females are fertile. Several recessive mutations of mouse Cdc14a, including a CRISPR/Cas9-edited phosphatase-dead p.C278S substitution, result in substantial perinatal lethality, but survivors recapitulate the human phenotype of deafness and male infertility. CDC14A protein localizes to inner ear hair cell kinocilia, basal bodies and sound-transducing stereocilia. Auditory hair cells of postnatal Cdc14a mutants develop normally, but subsequently degenerate causing deafness. Kinocilia of germ-line mutants of mouse and zebrafish have normal lengths, which does not recapitulate the published cdc14aa knockdown morphant phenotype of short kinocilia. In mutant male mice, degeneration of seminiferous tubules and spermiation defects result in low sperm count, and abnormal sperm motility and morphology. These findings for the first time define a new monogenic syndrome of deafness and male infertility revealing an absolute requirement in vivo of vertebrate CDC14A phosphatase activity for hearing and male fertility.

  18. Reorganization of circuits underlying cerebellar modulation of prefrontal cortical dopamine in mouse models of autism spectrum disorder

    PubMed Central

    Rogers, Tiffany D.; Dickson, Price E.; McKimm, Eric; Heck, Detlef H.; Goldowitz, Dan; Blaha, Charles D.; Mittleman, Guy

    2013-01-01

    Imaging, clinical and pre-clinical studies have provided ample evidence for a cerebellar involvement in cognitive brain function including cognitive brain disorders, such as autism and schizophrenia. We previously reported that cerebellar activity modulates dopamine release in the mouse medial prefrontal cortex (mPFC) via two distinct pathways: (1) cerebellum to mPFC via dopaminergic projections from the ventral tegmental area [VTA] and (2) cerebellum to mPFC via glutamatergic projections from the mediodorsal and ventrolateral thalamus (ThN md and vl). The present study compared functional adaptations of cerebello-cortical circuitry following developmental cerebellar pathology in a mouse model of developmental loss of Purkinje cells (Lurcher) and a mouse model of fragile X syndrome (Fmr1 KO mice). Fixed potential amperometry was used to measure mPFC dopamine release in response to cerebellar electrical stimulation. Mutant mice of both strains showed an attenuation in cerebellar-evoked mPFC dopamine release compared to respective wildtype mice. This was accompanied by a functional reorganization of the VTA and thalamic pathways mediating cerebellar modulation of mPFC dopamine release. Inactivation of the VTA pathway by intra-VTA lidocaine or kynurenate infusions decreased dopamine release by 50% in wildtype and 20-30% in mutant mice of both strains. Intra-ThN vl infusions of either drug decreased dopamine release by 15% in wildtype and 40% in mutant mice of both strains, while dopamine release remained relatively unchanged following intra-ThN md drug infusions. These results indicate a shift in strength towards the thalamic vl projection, away from the VTA. Thus, cerebellar neuropathologies associated with autism spectrum disorders may cause a reduction in cerebellar modulation of mPFC dopamine release that is related to a reorganization of the mediating neuronal pathways. PMID:23436049

  19. Reorganization of circuits underlying cerebellar modulation of prefrontal cortical dopamine in mouse models of autism spectrum disorder.

    PubMed

    Rogers, Tiffany D; Dickson, Price E; McKimm, Eric; Heck, Detlef H; Goldowitz, Dan; Blaha, Charles D; Mittleman, Guy

    2013-08-01

    Imaging, clinical, and pre-clinical studies have provided ample evidence for a cerebellar involvement in cognitive brain function including cognitive brain disorders, such as autism and schizophrenia. We previously reported that cerebellar activity modulates dopamine release in the mouse medial prefrontal cortex (mPFC) via two distinct pathways: (1) cerebellum to mPFC via dopaminergic projections from the ventral tegmental area (VTA) and (2) cerebellum to mPFC via glutamatergic projections from the mediodorsal and ventrolateral thalamus (ThN md and vl). The present study compared functional adaptations of cerebello-cortical circuitry following developmental cerebellar pathology in a mouse model of developmental loss of Purkinje cells (Lurcher) and a mouse model of fragile X syndrome (Fmr1 KO mice). Fixed potential amperometry was used to measure mPFC dopamine release in response to cerebellar electrical stimulation. Mutant mice of both strains showed an attenuation in cerebellar-evoked mPFC dopamine release compared to respective wildtype mice. This was accompanied by a functional reorganization of the VTA and thalamic pathways mediating cerebellar modulation of mPFC dopamine release. Inactivation of the VTA pathway by intra-VTA lidocaine or kynurenate infusions decreased dopamine release by 50 % in wildtype and 20-30 % in mutant mice of both strains. Intra-ThN vl infusions of either drug decreased dopamine release by 15 % in wildtype and 40 % in mutant mice of both strains, while dopamine release remained relatively unchanged following intra-ThN md drug infusions. These results indicate a shift in strength towards the thalamic vl projection, away from the VTA. Thus, cerebellar neuropathologies associated with autism spectrum disorders may cause a reduction in cerebellar modulation of mPFC dopamine release that is related to a reorganization of the mediating neuronal pathways.

  20. The HOG Pathway Is Critical for the Colonization of the Mouse Gastrointestinal Tract by Candida albicans

    PubMed Central

    Prieto, Daniel; Román, Elvira; Correia, Inês; Pla, Jesus

    2014-01-01

    The opportunistic pathogen Candida albicans is a frequent inhabitant of the human gastrointestinal tract where it usually behaves as a harmless commensal. In this particular niche, it needs to adapt to the different micro environments that challenge its survival within the host. In order to determine those factors involved in gut adaptation, we have used a gastrointestinal model of colonization in mouse to trace the behaviour of fungal cells. We have developed a genetic labelling system based on the complementary spectral properties of the fluorescent proteins GFP and a new C. albicans codon-adapted RFP (dTOM2) that allow a precise quantification of the fungal population in the gut via standard in vitro cultures or flow cytometry. This methodology has allowed us to determine the role of the three MAP kinase pathways of C. albicans (mediated by the MAPK Mkc1, Cek1 or Hog1) in mouse gut colonization via competitive assays with MAPK pathway mutants and their isogenic wild type strain. This approach reveals the signalling through HOG pathway as a critical factor influencing the establishment of C. albicans in the mouse gut. Less pronounced effects for mkc1 or cek1 mutants were found, only evident after 2–3 weeks of colonization. We have also seen that hog1 mutants is defective in adhesion to the gut mucosa and sensitive to bile salts. Finally, we have developed a genetic strategy for the in vivo excision (tetracycline-dependent) of any specific gene during the course of colonization in this particular niche, allowing the analysis of its role during gut colonization. PMID:24475243

  1. Mutant E. coli strain with increased succinic acid production

    DOEpatents

    Donnelly, M.; Millard, C.S.; Stols, L.

    1998-06-23

    A method for isolating succinic acid producing bacteria is provided comprising increasing the biomass of an organism which lacks the ability to catabolize pyruvate, and then subjecting the biomass to glucose-rich medium in an anaerobic environment to enable pyruvate-catabolizing mutants to grow. The invention also provides for a mutant that produces high amounts of succinic acid, which as been derived from a parent which lacked the genes for pyruvate formate lyase and lactate dehydrogenase, and which belongs to the E.coli Group of Bacteria. 2 figs.

  2. Ectopic Mineralization and Conductive Hearing Loss in Enpp1asj Mutant Mice, a New Model for Otitis Media and Tympanosclerosis.

    PubMed

    Tian, Cong; Harris, Belinda S; Johnson, Kenneth R

    2016-01-01

    Otitis media (OM), inflammation of the middle ear, is a common cause of hearing loss in children and in patients with many different syndromic diseases. Studies of the human population and mouse models have revealed that OM is a multifactorial disease with many environmental and genetic contributing factors. Here, we report on otitis media-related hearing loss in asj (ages with stiffened joints) mutant mice, which bear a point mutation in the Enpp1 gene. Auditory-evoked brainstem response (ABR) measurements revealed that around 90% of the mutant mice (Enpp1asj/asj) tested had moderate to severe hearing impairment in at least one ear. The ABR thresholds were variable and generally elevated with age. We found otitis media with effusion (OME) in all of the hearing-impaired Enpp1asj/asj mice by anatomic and histological examinations. The volume and inflammatory cell content of the effusion varied among the asj mutant mice, but all mutants exhibited a thickened middle ear epithelium with fibrous polyps and more mucin-secreting goblet cells than controls. Other abnormalities observed in the Enpp1 mutant mice include over-ossification at the round window ridge, thickened and over-calcified stapedial artery, fusion of malleus and incus, and white patches on the inside of tympanic membrane, some of which are typical symptoms of tympanosclerosis. An excessive yellow discharge was detected in the outer ear canal of older asj mutant mice, with 100% penetrance by 5 months of age, and contributes to the progressive nature of the hearing loss. This is the first report of hearing loss and ear pathology associated with an Enpp1 mutation in mice. The Enpp1asj mutant mouse provides a new animal model for studying tympanosclerotic otitis and otitis media with effusion, and also provides a specific model for the hearing loss recently reported to be associated with human ENPP1 mutations causing generalized arterial calcification of infancy and hypophosphatemic rickets.

  3. Ectopic Mineralization and Conductive Hearing Loss in Enpp1asj Mutant Mice, a New Model for Otitis Media and Tympanosclerosis

    PubMed Central

    Tian, Cong; Harris, Belinda S.; Johnson, Kenneth R.

    2016-01-01

    Otitis media (OM), inflammation of the middle ear, is a common cause of hearing loss in children and in patients with many different syndromic diseases. Studies of the human population and mouse models have revealed that OM is a multifactorial disease with many environmental and genetic contributing factors. Here, we report on otitis media-related hearing loss in asj (ages with stiffened joints) mutant mice, which bear a point mutation in the Enpp1 gene. Auditory-evoked brainstem response (ABR) measurements revealed that around 90% of the mutant mice (Enpp1asj/asj) tested had moderate to severe hearing impairment in at least one ear. The ABR thresholds were variable and generally elevated with age. We found otitis media with effusion (OME) in all of the hearing-impaired Enpp1asj/asj mice by anatomic and histological examinations. The volume and inflammatory cell content of the effusion varied among the asj mutant mice, but all mutants exhibited a thickened middle ear epithelium with fibrous polyps and more mucin-secreting goblet cells than controls. Other abnormalities observed in the Enpp1 mutant mice include over-ossification at the round window ridge, thickened and over-calcified stapedial artery, fusion of malleus and incus, and white patches on the inside of tympanic membrane, some of which are typical symptoms of tympanosclerosis. An excessive yellow discharge was detected in the outer ear canal of older asj mutant mice, with 100% penetrance by 5 months of age, and contributes to the progressive nature of the hearing loss. This is the first report of hearing loss and ear pathology associated with an Enpp1 mutation in mice. The Enpp1asj mutant mouse provides a new animal model for studying tympanosclerotic otitis and otitis media with effusion, and also provides a specific model for the hearing loss recently reported to be associated with human ENPP1 mutations causing generalized arterial calcification of infancy and hypophosphatemic rickets. PMID:27959908

  4. Insulin and IGF1 Receptors Are Essential for XX and XY Gonadal Differentiation and Adrenal Development in Mice

    PubMed Central

    Romero, Yannick; Conne, Béatrice; Truong, Vy; Papaioannou, Marilena D.; Schaad, Olivier; Docquier, Mylène; Herrera, Pedro Luis; Wilhelm, Dagmar; Nef, Serge

    2013-01-01

    Mouse sex determination provides an attractive model to study how regulatory genetic networks and signaling pathways control cell specification and cell fate decisions. This study characterizes in detail the essential role played by the insulin receptor (INSR) and the IGF type I receptor (IGF1R) in adrenogenital development and primary sex determination. Constitutive ablation of insulin/IGF signaling pathway led to reduced proliferation rate of somatic progenitor cells in both XX and XY gonads prior to sex determination together with the downregulation of hundreds of genes associated with the adrenal, testicular, and ovarian genetic programs. These findings indicate that prior to sex determination somatic progenitors in Insr;Igf1r mutant gonads are not lineage primed and thus incapable of upregulating/repressing the male and female genetic programs required for cell fate restriction. In consequence, embryos lacking functional insulin/IGF signaling exhibit (i) complete agenesis of the adrenal cortex, (ii) embryonic XY gonadal sex reversal, with a delay of Sry upregulation and the subsequent failure of the testicular genetic program, and (iii) a delay in ovarian differentiation so that Insr;Igf1r mutant gonads, irrespective of genetic sex, remained in an extended undifferentiated state, before the ovarian differentiation program ultimately is initiated at around E16.5. PMID:23300479

  5. Molecular Signatures of Membrane Protein Complexes Underlying Muscular Dystrophy*

    PubMed Central

    Turk, Rolf; Hsiao, Jordy J.; Smits, Melinda M.; Ng, Brandon H.; Pospisil, Tyler C.; Jones, Kayla S.; Campbell, Kevin P.; Wright, Michael E.

    2016-01-01

    Mutations in genes encoding components of the sarcolemmal dystrophin-glycoprotein complex (DGC) are responsible for a large number of muscular dystrophies. As such, molecular dissection of the DGC is expected to both reveal pathological mechanisms, and provides a biological framework for validating new DGC components. Establishment of the molecular composition of plasma-membrane protein complexes has been hampered by a lack of suitable biochemical approaches. Here we present an analytical workflow based upon the principles of protein correlation profiling that has enabled us to model the molecular composition of the DGC in mouse skeletal muscle. We also report our analysis of protein complexes in mice harboring mutations in DGC components. Bioinformatic analyses suggested that cell-adhesion pathways were under the transcriptional control of NFκB in DGC mutant mice, which is a finding that is supported by previous studies that showed NFκB-regulated pathways underlie the pathophysiology of DGC-related muscular dystrophies. Moreover, the bioinformatic analyses suggested that inflammatory and compensatory mechanisms were activated in skeletal muscle of DGC mutant mice. Additionally, this proteomic study provides a molecular framework to refine our understanding of the DGC, identification of protein biomarkers of neuromuscular disease, and pharmacological interrogation of the DGC in adult skeletal muscle https://www.mda.org/disease/congenital-muscular-dystrophy/research. PMID:27099343

  6. Characterization of a Salmonella sugar kinase essential for the utilization of fructose-asparagine.

    PubMed

    Biswas, Pradip K; Behrman, Edward J; Gopalan, Venkat

    2017-04-01

    Salmonella can utilize fructose-asparagine (F-Asn), a naturally occurring Amadori product, as its sole carbon and nitrogen source. Conversion of F-Asn to the common intermediates glucose-6-phosphate, aspartate, and ammonia was predicted to involve the sequential action of an asparaginase, a kinase, and a deglycase. Mutants lacking the deglycase are highly attenuated in mouse models of intestinal inflammation owing to the toxic build-up of the deglycase substrate. The limited distribution of this metabolic pathway in the animal gut microbiome raises the prospects for antibacterial discovery. We report the biochemical characterization of the kinase that was expected to transform fructose-aspartate to 6-phosphofructose-aspartate during F-Asn utilization. In addition to confirming its anticipated function, we determined through studies of fructose-aspartate analogues that this kinase exhibits a substrate-specificity with greater tolerance to changes to the amino acid (including the d-isomer of aspartate) than to the sugar.

  7. Survival of adult neurons lacking cholesterol synthesis in vivo.

    PubMed

    Fünfschilling, Ursula; Saher, Gesine; Xiao, Le; Möbius, Wiebke; Nave, Klaus-Armin

    2007-01-02

    Cholesterol, an essential component of all mammalian plasma membranes, is highly enriched in the brain. Both during development and in the adult, brain cholesterol is derived from local cholesterol synthesis and not taken up from the circulation. However, the contribution of neurons and glial cells to total brain cholesterol metabolism is unknown. Using conditional gene inactivation in the mouse, we disrupted the squalene synthase gene (fdft1), which is critical for cholesterol synthesis, in cerebellar granule cells and some precerebellar nuclei. Mutant mice showed no histological signs of neuronal degeneration, displayed ultrastructurally normal synapses, and exhibited normal motor coordination. This revealed that these adult neurons do not require cell-autonomous cholesterol synthesis for survival or function. We conclude that at least some adult neurons no longer require endogenous cholesterol synthesis and can fully meet their cholesterol needs by uptake from their surrounding. Glia are a likely source of cholesterol in the central nervous system.

  8. The Gne M712T mouse as a model for human glomerulopathy.

    PubMed

    Kakani, Sravan; Yardeni, Tal; Poling, Justin; Ciccone, Carla; Niethamer, Terren; Klootwijk, Enriko D; Manoli, Irini; Darvish, Daniel; Hoogstraten-Miller, Shelley; Zerfas, Patricia; Tian, E; Ten Hagen, Kelly G; Kopp, Jeffrey B; Gahl, William A; Huizing, Marjan

    2012-04-01

    Pathological glomerular hyposialylation has been implicated in certain unexplained glomerulopathies, including minimal change nephrosis, membranous glomerulonephritis, and IgA nephropathy. We studied our previously established mouse model carrying a homozygous mutation in the key enzyme of sialic acid biosynthesis, N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase. Mutant mice died before postnatal day 3 (P3) from severe glomerulopathy with podocyte effacement and segmental glomerular basement membrane splitting due to hyposialylation. Administration of the sialic acid precursor N-acetylmannosamine (ManNAc) led to improved sialylation and survival of mutant pups beyond P3. We determined the onset of the glomerulopathy in the embryonic stage. A lectin panel, distinguishing normally sialylated from hyposialylated glycans, used WGA, SNA, PNA, Jacalin, HPA, and VVA, indicating glomerular hyposialylation of predominantly O-linked glycoproteins in mutant mice. The glomerular glycoproteins nephrin and podocalyxin were hyposialylated in this unique murine model. ManNAc treatment appeared to ameliorate the hyposialylation status of mutant mice, indicated by a lectin histochemistry pattern similar to that of wild-type mice, with improved sialylation of both nephrin and podocalyxin, as well as reduced albuminuria compared with untreated mutant mice. These findings suggest application of our lectin panel for categorizing human kidney specimens based on glomerular sialylation status. Moreover, the partial restoration of glomerular architecture in ManNAc-treated mice highlights ManNAc as a potential treatment for humans affected with disorders of glomerular hyposialylation. Copyright © 2012 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  9. Proteostasis and ageing: insights from long-lived mutant mice.

    PubMed

    Sands, William A; Page, Melissa M; Selman, Colin

    2017-10-15

    The global increase in life expectancy is creating significant medical, social and economic challenges to current and future generations. Consequently, there is a need to identify the fundamental mechanisms underlying the ageing process. This knowledge should help develop realistic interventions capable of combatting age-related disease, and thus improving late-life health and vitality. While several mechanisms have been proposed as conserved lifespan determinants, the loss of proteostasis - where proteostasis is defined here as the maintenance of the proteome - appears highly relevant to both ageing and disease. Several studies have shown that multiple proteostatic mechanisms, including the endoplasmic reticulum (ER)-induced unfolded protein response (UPR), the ubiquitin-proteasome system (UPS) and autophagy, appear indispensable for longevity in many long-lived invertebrate mutants. Similarly, interspecific comparisons suggest that proteostasis may be an important lifespan determinant in vertebrates. Over the last 20 years a number of long-lived mouse mutants have been described, many of which carry single-gene mutations within the growth-hormone, insulin/IGF-1 or mTOR signalling pathways. However, we still do not know how these mutations act mechanistically to increase lifespan and healthspan, and accordingly whether mechanistic commonality occurs between different mutants. Recent evidence supports the premise that the successful maintenance of the proteome during ageing may be linked to the increased lifespan and healthspan of long-lived mouse mutants. © 2017 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.

  10. A KRAS GTPase K104Q Mutant Retains Downstream Signaling by Offsetting Defects in Regulation*

    PubMed Central

    Kistler, Samantha; George, Samuel D.; Kuhlmann, Nora; Garvey, Leslie; Huynh, Minh; Bagni, Rachel K.; Lammers, Michael; Der, Channing J.; Campbell, Sharon L.

    2017-01-01

    The KRAS GTPase plays a critical role in the control of cellular growth. The activity of KRAS is regulated by guanine nucleotide exchange factors (GEFs), GTPase-activating proteins (GAPs), and also post-translational modification. Lysine 104 in KRAS can be modified by ubiquitylation and acetylation, but the role of this residue in intrinsic KRAS function has not been well characterized. We find that lysine 104 is important for GEF recognition, because mutations at this position impaired GEF-mediated nucleotide exchange. Because the KRAS K104Q mutant has recently been employed as an acetylation mimetic, we conducted a series of studies to evaluate its in vitro and cell-based properties. Herein, we found that KRAS K104Q exhibited defects in both GEF-mediated exchange and GAP-mediated GTP hydrolysis, consistent with NMR-detected structural perturbations in localized regions of KRAS important for recognition of these regulatory proteins. Despite the partial defect in both GEF and GAP regulation, KRAS K104Q did not alter steady-state GTP-bound levels or the ability of the oncogenic KRAS G12V mutant to cause morphologic transformation of NIH 3T3 mouse fibroblasts and of WT KRAS to rescue the growth defect of mouse embryonic fibroblasts deficient in all Ras genes. We conclude that the KRAS K104Q mutant retains both WT and mutant KRAS function, probably due to offsetting defects in recognition of factors that up-regulate (GEF) and down-regulate (GAP) RAS activity. PMID:28154176

  11. Hoxb3 negatively regulates Hoxb1 expression in mouse hindbrain patterning.

    PubMed

    Wong, Elaine Y M; Wang, Xing An; Mak, Siu Shan; Sae-Pang, Jearn Jang; Ling, Kam Wing; Fritzsch, Bernd; Sham, Mai Har

    2011-04-15

    The spatial regulation of combinatorial expression of Hox genes is critical for determining hindbrain rhombomere (r) identities. To address the cross-regulatory relationship between Hox genes in hindbrain neuronal specification, we have generated a gain-of-function transgenic mouse mutant Hoxb3(Tg) using the Hoxb2 r4-specific enhancer element. Interestingly, in r4 of the Hoxb3(Tg) mutant where Hoxb3 was ectopically expressed, the expression of Hoxb1 was specifically abolished. The hindbrain neuronal defects of the Hoxb3(Tg) mutant mice were similar to those of Hoxb1(-/-) mutants. Therefore, we hypothesized that Hoxb3 could directly suppress Hoxb1 expression. We first identified a novel Hoxb3 binding site S3 on the Hoxb1 locus and confirmed protein binding to this site by EMSA, and by in vivo ChIP analysis using P19 cells and hindbrain tissues from the Hoxb3(Tg) mutant. We further showed that Hoxb3 could suppress Hoxb1 transcriptional activity by chick in ovo luciferase reporter assay. Moreover, in E10.5 wildtype caudal hindbrain, where Hoxb1 is not expressed, we showed by in vivo ChIP that Hoxb3 was consistently bound to the S3 site on the Hoxb1 gene. This study reveals a novel negative regulatory mechanism by which Hoxb3 as a posterior gene serves to restrict Hoxb1 expression in r4 by direct transcriptional repression to maintain the rhombomere identity. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Nonredundant Roles of Iron Acquisition Systems in Vibrio cholerae

    PubMed Central

    Peng, Eric D.; Wyckoff, Elizabeth E.; Mey, Alexandra R.; Fisher, Carolyn R.

    2015-01-01

    Vibrio cholerae, the causative agent of the severe diarrheal disease cholera, thrives in both marine environments and the human host. To do so, it must encode the tools necessary to acquire essential nutrients, including iron, under these vastly different conditions. A number of V. cholerae iron acquisition systems have been identified; however, the precise role of each system is not fully understood. To test the roles of individual systems, we generated a series of mutants in which only one of the four systems that support iron acquisition on unsupplemented LB agar, Feo, Fbp, Vct, and Vib, remains functional. Analysis of these mutants under different growth conditions showed that these systems are not redundant. The strain carrying only the ferrous iron transporter Feo grew well at acidic, but not alkaline, pH, whereas the ferric iron transporter Fbp promoted better growth at alkaline than at acidic pH. A strain defective in all four systems (null mutant) had a severe growth defect under aerobic conditions but accumulated iron and grew as well as the wild type in the absence of oxygen, suggesting the presence of an additional, unidentified iron transporter in V. cholerae. In support of this, the null mutant was only moderately attenuated in an infant mouse model of infection. While the null mutant used heme as an iron source in vitro, we demonstrate that heme is not available to V. cholerae in the infant mouse intestine. PMID:26644383

  13. Mouse Genome Database: From sequence to phenotypes and disease models

    PubMed Central

    Richardson, Joel E.; Kadin, James A.; Smith, Cynthia L.; Blake, Judith A.; Bult, Carol J.

    2015-01-01

    Summary The Mouse Genome Database (MGD, www.informatics.jax.org) is the international scientific database for genetic, genomic, and biological data on the laboratory mouse to support the research requirements of the biomedical community. To accomplish this goal, MGD provides broad data coverage, serves as the authoritative standard for mouse nomenclature for genes, mutants, and strains, and curates and integrates many types of data from literature and electronic sources. Among the key data sets MGD supports are: the complete catalog of mouse genes and genome features, comparative homology data for mouse and vertebrate genes, the authoritative set of Gene Ontology (GO) annotations for mouse gene functions, a comprehensive catalog of mouse mutations and their phenotypes, and a curated compendium of mouse models of human diseases. Here, we describe the data acquisition process, specifics about MGD's key data areas, methods to access and query MGD data, and outreach and user help facilities. genesis 53:458–473, 2015. © 2015 The Authors. Genesis Published by Wiley Periodicals, Inc. PMID:26150326

  14. A homolog of the variola virus B22 membrane protein contributes to ectromelia virus pathogenicity in the mouse footpad model.

    PubMed

    Reynolds, Sara E; Earl, Patricia L; Minai, Mahnaz; Moore, Ian; Moss, Bernard

    2017-01-15

    Most poxviruses encode a homolog of a ~200,000-kDa membrane protein originally identified in variola virus. We investigated the importance of the ectromelia virus (ECTV) homolog C15 in a natural infection model. In cultured mouse cells, the replication of a mutant virus with stop codons near the N-terminus (ECTV-C15Stop) was indistinguishable from a control virus (ECTV-C15Rev). However, for a range of doses injected into the footpads of BALB/c mice there was less mortality with the mutant. Similar virus loads were present at the site of infection with mutant or control virus whereas there was less ECTV-C15Stop in popliteal and inguinal lymph nodes, spleen and liver indicating decreased virus spread and replication. The latter results were supported by immunohistochemical analyses. Decreased spread was evidently due to immune modulatory activity of C15, rather than to an intrinsic viral function, as the survival of infected mice depended on CD4+ and CD8+ T cells. Published by Elsevier Inc.

  15. Tritium suicide selection of mammalian cell mutants defective in the transport of neutral amino acids. [Mouse lymphocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finkelstein, M.C.; Slayman, C.W.; Adelberg, E.A.

    Mouse lymphocytic cells of the established line GF-14 were allowed to accumulate intracellular /sup 3/H-labeled aminoisobutyric acid (AIB), frozen and stored over liquid N/sub 2/. After internal radiation had reduced survival to 1 in 10/sup 4/, survivors were plated and tested for their ability to transport AIB. Out of 200 clones tested, two (designated GF-17 and GF-18) were found to have reductions to 13 to 35% of the parent in the rate of transport of AIB, L-alanine, L-proline, and L-serine; GF-18 also showed significant reductions in the rate of transport of L-glutamate and DL-cysteine. Little or no change was observedmore » for 10 other amino acids or for thymidine. Kinetic analyses revealed that the mutants were not altered in K/sub m/ for AIB uptake, but had V/sub max/ values approximately 20% the value of the parent strain, GF-14, suggesting that either the number of AIB transport sites or the turnover rate of the sites has been reduced in the two mutants.« less

  16. Rewiring of Glutamine Metabolism Is a Bioenergetic Adaptation of Human Cells with Mitochondrial DNA Mutations.

    PubMed

    Chen, Qiuying; Kirk, Kathryne; Shurubor, Yevgeniya I; Zhao, Dazhi; Arreguin, Andrea J; Shahi, Ifrah; Valsecchi, Federica; Primiano, Guido; Calder, Elizabeth L; Carelli, Valerio; Denton, Travis T; Beal, M Flint; Gross, Steven S; Manfredi, Giovanni; D'Aurelio, Marilena

    2018-05-01

    Using molecular, biochemical, and untargeted stable isotope tracing approaches, we identify a previously unappreciated glutamine-derived α-ketoglutarate (αKG) energy-generating anaplerotic flux to be critical in mitochondrial DNA (mtDNA) mutant cells that harbor human disease-associated oxidative phosphorylation defects. Stimulating this flux with αKG supplementation enables the survival of diverse mtDNA mutant cells under otherwise lethal obligatory oxidative conditions. Strikingly, we demonstrate that when residual mitochondrial respiration in mtDNA mutant cells exceeds 45% of control levels, αKG oxidative flux prevails over reductive carboxylation. Furthermore, in a mouse model of mitochondrial myopathy, we show that increased oxidative αKG flux in muscle arises from enhanced alanine synthesis and release into blood, concomitant with accelerated amino acid catabolism from protein breakdown. Importantly, in this mouse model of mitochondriopathy, muscle amino acid imbalance is normalized by αKG supplementation. Taken together, our findings provide a rationale for αKG supplementation as a therapeutic strategy for mitochondrial myopathies. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Detection of quantitative trait loci causing abnormal spermatogenesis and reduced testis weight in the small testis (Smt) mutant mouse.

    PubMed

    Bolor, Hasbaira; Wakasugi, Noboru; Zhao, Wei Dong; Ishikawa, Akira

    2006-04-01

    The small testis (Smt) mutant mouse is characterized by a small testis of one third to one half the size of a normal testis, and its spermatogenesis is mostly arrested at early stages of meiosis, although a small number of spermatocytes at the late prophase of meiosis and a few spermatids can sometimes be seen. We performed quantitative trait locus (QTL) analysis of these spermatogenic traits and testis weight using 221 F2 males obtained from a cross between Smt and MOM (Mus musculus molossinus) mice. At the genome-wide 5% level, we detected two QTLs affecting meiosis on chromosomes 4 and 13, and two QTLs for paired testis weight as a percentage of body weight on chromosomes 4 and X. In addition, we found several QTLs for degenerated germ cells and multinuclear giant cells on chromosomes 4, 7 and 13. Interestingly, for cell degeneration, the QTL on chromosome 13 interacted epistatically with the QTL on chromosome 4. These results reveal polygenic participation in the abnormal spermatogenesis and small testis size in the Smt mutant.

  18. Dominant negative DISC1 mutant mice display specific social behaviour deficits and aberration in BDNF and cannabinoid receptor expression.

    PubMed

    Kaminitz, Ayelet; Barzilay, Ran; Segal, Hadar; Taler, Michal; Offen, Daniel; Gil-Ad, Irit; Mechoulam, Raphael; Weizman, Abraham

    2014-01-01

    OBJECTIVES. Disrupted in schizophrenia 1 (DISC1) is considered the most prominent candidate gene for schizophrenia. In this study, we aimed to characterize behavioural and brain biochemical traits in a mouse expressing a dominant negative DISC1mutant (DN-DISC1). DN-DISC1 mice underwent behavioural tests to evaluate object recognition, social preference and social novelty seeking. ELISA was conducted on brain tissue to evaluate BDNF levels. Western blot was employed to measure BDNF receptor (TrkB) and cannabinoid receptor CB1. The mutant DISC1 mice displayed deficits in preference to social novelty while both social preference and object recognition were intact. Biochemical analysis of prefrontal cortex and hippocampus revealed a modest reduction in cortical TrkB protein levels of male mice while no differences in BDNF levels were observed. We found sex dependent differences in the expression of cannabinoid-1 receptors. We describe novel behavioural and biochemical abnormalities in the DN-DISC1 mouse model of schizophrenia. The data shows for the first time a possible link between DISC1 mutation and the cannabinoid system.

  19. Mouse Tmem135 mutation reveals a mechanism involving mitochondrial dynamics that leads to age-dependent retinal pathologies

    PubMed Central

    Lee, Wei-Hua; Higuchi, Hitoshi; Ikeda, Sakae; Macke, Erica L; Takimoto, Tetsuya; Pattnaik, Bikash R; Liu, Che; Chu, Li-Fang; Siepka, Sandra M; Krentz, Kathleen J; Rubinstein, C Dustin; Kalejta, Robert F; Thomson, James A; Mullins, Robert F; Takahashi, Joseph S; Pinto, Lawrence H; Ikeda, Akihiro

    2016-01-01

    While the aging process is central to the pathogenesis of age-dependent diseases, it is poorly understood at the molecular level. We identified a mouse mutant with accelerated aging in the retina as well as pathologies observed in age-dependent retinal diseases, suggesting that the responsible gene regulates retinal aging, and its impairment results in age-dependent disease. We determined that a mutation in the transmembrane 135 (Tmem135) is responsible for these phenotypes. We observed localization of TMEM135 on mitochondria, and imbalance of mitochondrial fission and fusion in mutant Tmem135 as well as Tmem135 overexpressing cells, indicating that TMEM135 is involved in the regulation of mitochondrial dynamics. Additionally, mutant retina showed higher sensitivity to oxidative stress. These results suggest that the regulation of mitochondrial dynamics through TMEM135 is critical for protection from environmental stress and controlling the progression of retinal aging. Our study identified TMEM135 as a critical link between aging and age-dependent diseases. DOI: http://dx.doi.org/10.7554/eLife.19264.001 PMID:27863209

  20. Mouse Polyomavirus Enters Early Endosomes, Requires Their Acidic pH for Productive Infection, and Meets Transferrin Cargo in Rab11-Positive Endosomes

    PubMed Central

    Liebl, David; Difato, Francesco; Horníková, Lenka; Mannová, Petra; Štokrová, Jitka; Forstová, Jitka

    2006-01-01

    Mouse polyomavirus (PyV) virions enter cells by internalization into smooth monopinocytic vesicles, which fuse under the cell membrane with larger endosomes. Caveolin-1 was detected on monopinocytic vesicles carrying PyV particles in mouse fibroblasts and epithelial cells (33). Here, we show that PyV can be efficiently internalized by Jurkat cells, which do not express caveolin-1 and lack caveolae, and that overexpression of a caveolin-1 dominant-negative mutant in mouse epithelial cells does not prevent their productive infection. Strong colocalization of VP1 with early endosome antigen 1 (EEA1) and of EEA1 with caveolin-1 in mouse fibroblasts and epithelial cells suggests that the monopinocytic vesicles carrying the virus (and vesicles containing caveolin-1) fuse with EEA1-positive early endosomes. In contrast to SV40, PyV infection is dependent on the acidic pH of endosomes. Bafilomycin A1 abolished PyV infection, and an increase in endosomal pH by NH4Cl markedly reduced its efficiency when drugs were applied during virion transport towards the cell nucleus. The block of acidification resulted in the retention of a fraction of virions in early endosomes. To monitor further trafficking of PyV, we used fluorescent resonance energy transfer (FRET) to determine mutual localization of PyV VP1 with transferrin and Rab11 GTPase at a 2- to 10-nm resolution. Positive FRET between PyV VP1 and transferrin cargo and between PyV VP1 and Rab11 suggests that during later times postinfection (1.5 to 3 h), the virus meets up with transferrin in the Rab11-positive recycling endosome. These results point to a convergence of the virus and the cargo internalized by different pathways in common transitional compartments. PMID:16611921

  1. Combination PI3K/MEK inhibition promotes tumor apoptosis and regression in PIK3CA wild-type, KRAS mutant colorectal cancer

    PubMed Central

    Roper, Jatin; Sinnamon, Mark J.; Coffee, Erin M.; Belmont, Peter; Keung, Lily; Georgeon-Richard, Larissa; Wang, Wei Vivian; Faber, Anthony C.; Yun, Jihye; Yilmaz, Omer H.; Bronson, Roderick T.; Martin, Eric S.; Tsichlis, Philip N.; Hung, Kenneth E.

    2014-01-01

    PI3K inhibition in combination with other agents has not been studied in the context of PIK3CA wild-type, KRAS mutant cancer. In a screen of phospho-kinases, PI3K inhibition of KRAS mutant colorectal cancer cells activated the MAPK pathway. Combination PI3K/MEK inhibition with NVP-BKM120 and PD-0325901 induced tumor regression in a mouse model of PIK3CA wild-type, KRAS mutant colorectal cancer, which was mediated by inhibition of mTORC1, inhibition of MCL-1, and activation of BIM. These findings implicate mitochondrial-dependent apoptotic mechanisms as determinants for the efficacy of PI3K/MEK inhibition in the treatment of PIK3CA wild-type, KRAS mutant cancer. PMID:24576621

  2. Incremental Contributions of FbaA and Other Impetigo-Associated Surface Proteins to Fitness and Virulence of a Classical Group A Streptococcal Skin Strain.

    PubMed

    Rouchon, Candace N; Ly, Anhphan T; Noto, John P; Luo, Feng; Lizano, Sergio; Bessen, Debra E

    2017-11-01

    Group A streptococci (GAS) are highly prevalent human pathogens whose primary ecological niche is the superficial epithelial layers of the throat and/or skin. Many GAS strains with a strong tendency to cause pharyngitis are distinct from strains that tend to cause impetigo; thus, genetic differences between them may confer host tissue-specific virulence. In this study, the FbaA surface protein gene was found to be present in most skin specialist strains but largely absent from a genetically related subset of pharyngitis isolates. In an Δ fbaA mutant constructed in the impetigo strain Alab49, loss of FbaA resulted in a slight but significant decrease in GAS fitness in a humanized mouse model of impetigo; the Δ fbaA mutant also exhibited decreased survival in whole human blood due to phagocytosis. In assays with highly sensitive outcome measures, Alab49ΔfbaA was compared to other isogenic mutants lacking virulence genes known to be disproportionately associated with classical skin strains. FbaA and PAM (i.e., the M53 protein) had additive effects in promoting GAS survival in whole blood. The pilus adhesin tip protein Cpa promoted Alab49 survival in whole blood and appears to fully account for the antiphagocytic effect attributable to pili. The finding that numerous skin strain-associated virulence factors make slight but significant contributions to virulence underscores the incremental contributions to fitness of individual surface protein genes and the multifactorial nature of GAS-host interactions. Copyright © 2017 American Society for Microbiology.

  3. Efficient gene-driven germ-line point mutagenesis of C57BL/6J mice

    PubMed Central

    Michaud, Edward J; Culiat, Cymbeline T; Klebig, Mitchell L; Barker, Paul E; Cain, KT; Carpenter, Debra J; Easter, Lori L; Foster, Carmen M; Gardner, Alysyn W; Guo, ZY; Houser, Kay J; Hughes, Lori A; Kerley, Marilyn K; Liu, Zhaowei; Olszewski, Robert E; Pinn, Irina; Shaw, Ginger D; Shinpock, Sarah G; Wymore, Ann M; Rinchik, Eugene M; Johnson, Dabney K

    2005-01-01

    Background Analysis of an allelic series of point mutations in a gene, generated by N-ethyl-N-nitrosourea (ENU) mutagenesis, is a valuable method for discovering the full scope of its biological function. Here we present an efficient gene-driven approach for identifying ENU-induced point mutations in any gene in C57BL/6J mice. The advantage of such an approach is that it allows one to select any gene of interest in the mouse genome and to go directly from DNA sequence to mutant mice. Results We produced the Cryopreserved Mutant Mouse Bank (CMMB), which is an archive of DNA, cDNA, tissues, and sperm from 4,000 G1 male offspring of ENU-treated C57BL/6J males mated to untreated C57BL/6J females. Each mouse in the CMMB carries a large number of random heterozygous point mutations throughout the genome. High-throughput Temperature Gradient Capillary Electrophoresis (TGCE) was employed to perform a 32-Mbp sequence-driven screen for mutations in 38 PCR amplicons from 11 genes in DNA and/or cDNA from the CMMB mice. DNA sequence analysis of heteroduplex-forming amplicons identified by TGCE revealed 22 mutations in 10 genes for an overall mutation frequency of 1 in 1.45 Mbp. All 22 mutations are single base pair substitutions, and nine of them (41%) result in nonconservative amino acid substitutions. Intracytoplasmic sperm injection (ICSI) of cryopreserved spermatozoa into B6D2F1 or C57BL/6J ova was used to recover mutant mice for nine of the mutations to date. Conclusions The inbred C57BL/6J CMMB, together with TGCE mutation screening and ICSI for the recovery of mutant mice, represents a valuable gene-driven approach for the functional annotation of the mammalian genome and for the generation of mouse models of human genetic diseases. The ability of ENU to induce mutations that cause various types of changes in proteins will provide additional insights into the functions of mammalian proteins that may not be detectable by knockout mutations. PMID:16300676

  4. Deletion of the Snord116/SNORD116 Alters Sleep in Mice and Patients with Prader-Willi Syndrome.

    PubMed

    Lassi, Glenda; Priano, Lorenzo; Maggi, Silvia; Garcia-Garcia, Celina; Balzani, Edoardo; El-Assawy, Nadia; Pagani, Marco; Tinarelli, Federico; Giardino, Daniela; Mauro, Alessandro; Peters, Jo; Gozzi, Alessandro; Grugni, Graziano; Tucci, Valter

    2016-03-01

    Sleep-wake disturbances are often reported in Prader-Willi syndrome (PWS), a rare neurodevelopmental syndrome that is associated with paternally-expressed genomic imprinting defects within the human chromosome region 15q11-13. One of the candidate genes, prevalently expressed in the brain, is the small nucleolar ribonucleic acid-116 (SNORD116). Here we conducted a translational study into the sleep abnormalities of PWS, testing the hypothesis that SNORD116 is responsible for sleep defects that characterize the syndrome. We studied sleep in mutant mice that carry a deletion of Snord116 at the orthologous locus (mouse chromosome 7) of the human PWS critical region (PWScr). In particular, we assessed EEG and temperature profiles, across 24-h, in PWScr (m+/p-) heterozygous mutants compared to wild-type littermates. High-resolution magnetic resonance imaging (MRI) was performed to explore morphoanatomical differences according to the genotype. Moreover, we complemented the mouse work by presenting two patients with a diagnosis of PWS and characterized by atypical small deletions of SNORD116. We compared the individual EEG parameters of patients with healthy subjects and with a cohort of obese subjects. By studying the mouse mutant line PWScr(m+/p-), we observed specific rapid eye movement (REM) sleep alterations including abnormal electroencephalograph (EEG) theta waves. Remarkably, we observed identical sleep/EEG defects in the two PWS cases. We report brain morphological abnormalities that are associated with the EEG alterations. In particular, mouse mutants have a bilateral reduction of the gray matter volume in the ventral hippocampus and in the septum areas, which are pivotal structures for maintaining theta rhythms throughout the brain. In PWScr(m+/p-) mice we also observed increased body temperature that is coherent with REM sleep alterations in mice and human patients. Our study indicates that paternally expressed Snord116 is involved in the 24-h regulation of sleep physiological measures, suggesting that it is a candidate gene for the sleep disturbances that most individuals with PWS experience. © 2016 Associated Professional Sleep Societies, LLC.

  5. Insulin-like growth factor (IGF) signaling through type 1 IGF receptor plays an important role in remyelination.

    PubMed

    Mason, Jeffrey L; Xuan, Shouhong; Dragatsis, Ioannis; Efstratiadis, Argiris; Goldman, James E

    2003-08-20

    We examined the role of IGF signaling in the remyelination process by disrupting the gene encoding the type 1 IGF receptor (IGF1R) specifically in the mouse brain by Cre-mediated recombination and then exposing these mutants and normal siblings to cuprizone. This neurotoxicant induces a demyelinating lesion in the corpus callosum that is reversible on termination of the insult. Acute demyelination and oligodendrocyte depletion were the same in mutants and controls, but the mutants did not remyelinate adequately. We observed that oligodendrocyte progenitors did not accumulate, proliferate, or survive within the mutant mice, compared with wild type, indicating that signaling through the IGF1R plays a critical role in remyelination via effects on oligodendrocyte progenitors.

  6. The genetics and biology of KRAS in lung cancer

    PubMed Central

    Westcott, Peter M. K.; To, Minh D.

    2013-01-01

    Mutational activation of KRAS is a common oncogenic event in lung cancer and other epithelial cancer types. Efforts to develop therapies that counteract the oncogenic effects of mutant KRAS have been largely unsuccessful, and cancers driven by mutant KRAS remain among the most refractory to available treatments. Studies undertaken over the past decades have produced a wealth of information regarding the clinical relevance of KRAS mutations in lung cancer. Mutant Kras-driven mouse models of cancer, together with cellular and molecular studies, have provided a deeper appreciation for the complex functions of KRAS in tumorigenesis. However, a much more thorough understanding of these complexities is needed before clinically effective therapies targeting mutant KRAS-driven cancers can be achieved. PMID:22776234

  7. Cellular Plasticity and Heterogeneity of EGFR Mutant Lung Cancer

    DTIC Science & Technology

    2016-11-01

    available to the research community. Similarly, any cell lines generated in our studies will also be shared. The EGFR transgenic mouse models used in...Lines and Transgenic Mice Active Completed – May 31, 2015 NIH/NCI R01CA121210 Overcoming Acquired Resistance to EGFR Inhibitors in Lung Cancer...Active Active Labrecque Foundation Not Applicable A Translational Pilot Study on Serum Biomarkers of Lung Cancer Using Transgenic Mouse Models of

  8. FlaA proteins in Leptospira interrogans are essential for motility and virulence but are not required for formation of the flagellum sheath.

    PubMed

    Lambert, Ambroise; Picardeau, Mathieu; Haake, David A; Sermswan, Rasana W; Srikram, Amporn; Adler, Ben; Murray, Gerald A

    2012-06-01

    Spirochetes have periplasmic flagella composed of a core surrounded by a sheath. The pathogen Leptospira interrogans has four flaB (proposed core subunit) and two flaA (proposed sheath subunit) genes. The flaA genes are organized in a locus with flaA2 immediately upstream of flaA1. In this study, flaA1 and flaA2 mutants were constructed by transposon mutagenesis. Both mutants still produced periplasmic flagella. The flaA1 mutant did not produce FlaA1 but continued to produce FlaA2 and retained normal morphology and virulence in a hamster model of infection but had reduced motility. The flaA2 mutant did not produce either the FlaA1 or the FlaA2 protein. Cells of the flaA2 mutant lacked the distinctive hook-shaped ends associated with L. interrogans and lacked translational motility in liquid and semisolid media. These observations were confirmed with a second, independent flaA2 mutant. The flaA2 mutant failed to cause disease in animal models of acute infection. Despite lacking FlaA proteins, the flagella of the flaA2 mutant were of the same thickness as wild-type flagella, as measured by electron microscopy, and exhibited a normal flagellum sheath, indicating that FlaA proteins are not essential for the synthesis of the flagellum sheath, as observed for other spirochetes. This study shows that FlaA subunits contribute to leptospiral translational motility, cellular shape, and virulence.

  9. Genetically engineered mutant of the cyanobacterium Synechocystis 6803 lacks the photosystem II chlorophyll-binding protein CP-47

    PubMed Central

    Vermaas, Wim F. J.; Williams, John G. K.; Rutherford, A. William; Mathis, Paul; Arntzen, Charles J.

    1986-01-01

    CP-47 is absent in a genetically engineered mutant of cyanobacterium Synechocystis 6803, in which the psbB gene [encoding the chlorophyll-binding photosystem II (PSII) protein CP-47] was interrupted. Another chlorophyll-binding PSII protein, CP-43, is present in the mutant, and functionally inactive PSII-enriched particles can be isolated from mutant thylakoids. We interpret these data as indicating that the PSII core complex of the mutant still assembles in the absence of CP-47. The mutant lacks a 77 K fluorescence emission maximum at 695 nm, suggesting that the PSII reaction center is not functional. The absence of primary photochemistry was indicated by EPR and optical measurements: no chlorophyll triplet originating from charge recombination between P680+ and Pheo- was observed in the mutant, and there were no flash-induced absorption changes at 820 nm attributable to chlorophyll P680 oxidation. These observations lead us to conclude that CP-47 plays an essential role in the activity of the PSII reaction center. Images PMID:16593788

  10. Kbus/Idr, a mutant mouse strain with skeletal abnormalities and hypophosphatemia: identification as an allele of 'Hyp'.

    PubMed

    Moriyama, Kenji; Hanai, Atsuko; Mekada, Kazuyuki; Yoshiki, Atsushi; Ogiwara, Katsueki; Kimura, Atsushi; Takahashi, Takayuki

    2011-08-20

    The endopeptidase encoded by Phex (phosphate-regulating gene with homologies to endopeptidases linked to the X chromosome) is critical for regulation of bone matrix mineralization and phosphate homeostasis. PHEX has been identified from analyses of human X-linked hypophosphatemic rickets and Hyp mutant mouse models. We here demonstrated a newly established dwarfism-like Kbus/Idr mouse line to be a novel Hyp model. Histopathological and X-ray examination with cross experiments were performed to characterize Kbus/Idr. RT-PCR-based and exon-directed PCR screening performed to identify the presence of genetic alteration. Biochemical assays were also performed to evaluate activity of alkaline phosphatase. Kbus/Idr, characterized by bone mineralization defects, was found to be inherited in an X chromosome-linked dominant manner. RT-PCR experiments showed that a novel mutation spanning exon 16 and 18 causing hypophosphatemic rickets. Alkaline phosphatase activity, as an osteoblast marker, demonstrated raised levels in the bone marrow of Kbus/Idr independent of the age. Kbus mice should serve as a useful research tool exploring molecular mechanisms underlying aberrant Phex-associated pathophysiological phenomena.

  11. Behavior of a cloned murine interferon alpha/beta receptor expressed in homospecific or heterospecific background.

    PubMed

    Uzé, G; Lutfalla, G; Bandu, M T; Proudhon, D; Mogensen, K E

    1992-05-15

    A murine interferon (IFN) alpha/beta receptor was cloned from the IFN-sensitive L1210 cell line on the basis of its homology with the human receptor. A combination of methods that includes the screening of random-primed and oligo(dT)-primed cDNA libraries and polymerase chain reactions with a single-side specificity was used. At the amino acid level, the murine IFN-alpha/beta shows 46% identity with its human counterpart. Both human WISH cells presenting a low sensitivity to mouse IFN and a murine L1210 mutant subline that does not express the receptor have been stably transfected with the murine IFN-alpha/beta receptor. Whereas transfected human cells became sensitive to a limited number of mouse IFN-alpha/beta subtypes, the transfected murine L1210 mutant was found to be fully complemented and became sensitive to all mouse IFN-alpha/beta subtypes tested, including those that were not active on transfected human cells. These results strongly suggest that the receptor described here is implicated in the mediation of the activities of all murine IFN-alpha/beta subtypes.

  12. Genetic separation of phototropism and blue light inhibition of stem elongation

    NASA Technical Reports Server (NTRS)

    Liscum, E.; Young, J. C.; Poff, K. L.; Hangarter, R. P.

    1992-01-01

    Blue light-induced regulation of cell elongation is a component of the signal response pathway for both phototropic curvature and inhibition of stem elongation in higher plants. To determine if blue light regulates cell elongation in these responses through shared or discrete pathways, phototropism and hypocotyl elongation were investigated in several blue light response mutants in Arabidopsis thaliana. Specifically, the blu mutants that lack blue light-dependent inhibition of hypocotyl elongation were found to exhibit a normal phototropic response. In contrast, a phototropic null mutant (JK218) and a mutant that has a 20- to 30-fold shift in the fluence dependence for first positive phototropism (JK224) showed normal inhibition of hypocotyl elongation in blue light. F1 progeny of crosses between the blu mutants and JK218 showed normal phototropism and inhibition of hypocotyl elongation, and approximately 1 in 16 F2 progeny were double mutants lacking both responses. Thus, blue light-dependent inhibition of hypocotyl elongation and phototropism operate through at least some genetically distinct components.

  13. Selective Chemosensitization of Rb Mutant Cells

    DTIC Science & Technology

    2000-07-01

    Cambridge, MA). pLPC-12S coexpresses an E1A 12S cDNA with puromycin phosphotransferase (puro) and pWZL-12S coexpresses E1A with hygromycin phospho...retinoblastoma; CR1, -2, -3, conserved regions 1, 2, and 3; MEF, mouse embryonic fibroblast; puro, puromycin; hygro, hygromycin . To whom reprint requests...ml hygromycin B (Boehringer Mannheim) to elim- inate uninfected cells. When two separate E1A mutants were coexpressed, they were introduced

  14. The Tomato (Solanum Lycopersicum cv. Micro-Tom) Natural Genetic Variation Rg1 and the DELLA Mutant Procera Control the Competence Necessary to Form Adventitious Roots and Shoots

    PubMed Central

    Peres, Lázaro Eustáquio Pereira

    2012-01-01

    Despite the wide use of plant regeneration for biotechnological purposes, the signals that allow cells to become competent to assume different fates remain largely unknown. Here, it is demonstrated that the Regeneration1 (Rg1) allele, a natural genetic variation from the tomato wild relative Solanum peruvianum, increases the capacity to form both roots and shoots in vitro; and that the gibberellin constitutive mutant procera (pro) presented the opposite phenotype, reducing organogenesis on either root-inducing medium (RIM) or shoot-inducing medium (SIM). Mutants showing alterations in the formation of specific organs in vitro were the auxin low-sensitivity diageotropica (dgt), the lateral suppresser (ls), and the KNOX-overexpressing Mouse ears (Me). dgt failed to form roots on RIM, Me increased shoot formation on SIM, and the high capacity for in vitro shoot formation of ls contrasted with its recalcitrance to form axillary meristems. Interestingly, Rg1 rescued the in vitro organ formation capacity in proRg1 and dgtRg1 double mutants and the ex vitro low lateral shoot formation in pro and ls. Such epistatic interactions were also confirmed in gene expression and histological analyses conducted in the single and double mutants. Although Me phenocopied the high shoot formation of Rg1 on SIM, it failed to increase rooting on RIM and to rescue the non-branching phenotype of ls. Taken together, these results suggest REGENERATION1 and the DELLA mutant PROCERA as controlling a common competence to assume distinct cell fates, rather than the specific induction of adventitious roots or shoots, which is controlled by DIAGEOTROPICA and MOUSE EARS, respectively. PMID:22915742

  15. The tomato (Solanum lycopersicum cv. Micro-Tom) natural genetic variation Rg1 and the DELLA mutant procera control the competence necessary to form adventitious roots and shoots.

    PubMed

    Lombardi-Crestana, Simone; da Silva Azevedo, Mariana; e Silva, Geraldo Felipe Ferreira; Pino, Lílian Ellen; Appezzato-da-Glória, Beatriz; Figueira, Antonio; Nogueira, Fabio Tebaldi Silveira; Peres, Lázaro Eustáquio Pereira

    2012-09-01

    Despite the wide use of plant regeneration for biotechnological purposes, the signals that allow cells to become competent to assume different fates remain largely unknown. Here, it is demonstrated that the Regeneration1 (Rg1) allele, a natural genetic variation from the tomato wild relative Solanum peruvianum, increases the capacity to form both roots and shoots in vitro; and that the gibberellin constitutive mutant procera (pro) presented the opposite phenotype, reducing organogenesis on either root-inducing medium (RIM) or shoot-inducing medium (SIM). Mutants showing alterations in the formation of specific organs in vitro were the auxin low-sensitivity diageotropica (dgt), the lateral suppresser (ls), and the KNOX-overexpressing Mouse ears (Me). dgt failed to form roots on RIM, Me increased shoot formation on SIM, and the high capacity for in vitro shoot formation of ls contrasted with its recalcitrance to form axillary meristems. Interestingly, Rg1 rescued the in vitro organ formation capacity in proRg1 and dgtRg1 double mutants and the ex vitro low lateral shoot formation in pro and ls. Such epistatic interactions were also confirmed in gene expression and histological analyses conducted in the single and double mutants. Although Me phenocopied the high shoot formation of Rg1 on SIM, it failed to increase rooting on RIM and to rescue the non-branching phenotype of ls. Taken together, these results suggest REGENERATION1 and the DELLA mutant PROCERA as controlling a common competence to assume distinct cell fates, rather than the specific induction of adventitious roots or shoots, which is controlled by DIAGEOTROPICA and MOUSE EARS, respectively.

  16. Mutational spectra of the lacI transgene isolated from Big Blue{reg_sign} mice exposed to three carcinogenic aromatic amines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Staedtler, F.; Locher, F.; Sreenan, G.

    1997-10-01

    In order to evaluate the in vivo genotoxic potential of three putative genotoxic mouse liver carcinogens, high doses of 4-chloro-o-phenylenediamine, 2-nitro-p-phenylenediamine and 2, 4-diaminotoluene were tested short term in the Big Blue{reg_sign} transgenic mouse mutation assay. Small statistically significant increases in the lacI mutant frequencies in the liver by factors 1.7 to 2.0 were found. A representative number of 347 lacI mutants isolated from liver tissue of male and female animals were analyses by DNA sequencing. The mutational spectra were examined with the Adams-Skopek algorithm. The spontaneous mutational spectra from untreated male and female animals were similar and consistent withmore » spectral Big Blue{reg_sign} control data stored in the lacI database. Most of the background mutations were located in the 5{prime} portion of the coding region of the lacI gene. Single base substitutions were most prominent. G:C to A:T transitions and G:C to T:A transversions occurred predominatly and were preferentially located at CpG sites. Despite the increases observed in the mutant frequencies of the treated animals, the corresponding mutational spectra did not differ from the controls. However, it is possible that certain classes of point mutations were substantially increased but not detected due to the limited number of sequenced mutants. In two animals treated with 2, 4- diaminotoluene unusually high mutant frequencies and the multiple occurrence of certain mutations in the liver was observed. From one of these animals six lacI mutants isolated from colon tissue were all different. Since 2, 4-diaminotoluene was shown to induce liver cell proliferation these results may reflect clonal expansion of single mutated liver cells.« less

  17. O-Fucosylation of Thrombospondin Type 1 Repeats Restricts Epithelial to Mesenchymal Transition (EMT) and Maintains Epiblast Pluripotency During Mouse Gastrulation

    PubMed Central

    Du, Jianguang; Takeuchi, Hideyuki; Leonhard-Melief, Christina; Shroyer, Kenneth R.; Dlugosz, Malgosia; Haltiwanger, Robert S.; Holdener, Bernadette C.

    2010-01-01

    Thrombospondin type 1 repeat (TSR) superfamily members regulate diverse biological activities ranging from cell motility to inhibition of angiogenesis. In this study, we verified that mouse protein O-fucosyltransferase-2 (POFUT2) specifically adds O-fucose to TSRs. Using two Pofut2 gene trap lines, we demonstrated that O-fucosylation of TSRs was essential for restricting epithelial to mesenchymal transition in the primitive streak, correct patterning of mesoderm, and localization of the definitive endoderm. Although Pofut2 mutant embryos established anterior/posterior polarity, they underwent extensive mesoderm differentiation at the expense of maintaining epiblast pluripotency. Moreover, mesoderm differentiation was biased towards the vascular endothelial cell lineage. Localization of Foxa2 and Cer1 expressing cells within the interior of Pofut2 mutant embryos suggested that POFUT2 activity was also required for the displacement of the primitive endoderm by definitive endoderm. Notably, Nodal, BMP4, Fgf8, and Wnt3 expression were markedly elevated and expanded in Pofut2 mutants, providing evidence that O-fucose modification of TSRs was essential for modulation of growth factor signaling during gastrulation. The ability of Pofut2 mutant embryos to form teratomas comprised of tissues from all three germ layer origins suggested that defects in Pofut2 mutant embryos resulted from abnormalities in the extracellular environment. This prediction is consistent with the observation that POFUT2 targets are constitutive components of the extracellular matrix (ECM) or associate with the ECM. For this reason, the Pofut2 mutants represent a valuable tool for studying the role of O-fucosylation in ECM synthesis and remodeling, and will be a valuable model to study how post-translational modification of ECM components regulates the formation of tissue boundaries, cell movements, and signaling. PMID:20637190

  18. Role of isolated and clustered DNA damage and the post-irradiating repair process in the effects of heavy ion beam irradiation.

    PubMed

    Tokuyama, Yuka; Furusawa, Yoshiya; Ide, Hiroshi; Yasui, Akira; Terato, Hiroaki

    2015-05-01

    Clustered DNA damage is a specific type of DNA damage induced by ionizing radiation. Any type of ionizing radiation traverses the target DNA molecule as a beam, inducing damage along its track. Our previous study showed that clustered DNA damage yields decreased with increased linear energy transfer (LET), leading us to investigate the importance of clustered DNA damage in the biological effects of heavy ion beam radiation. In this study, we analyzed the yield of clustered base damage (comprising multiple base lesions) in cultured cells irradiated with various heavy ion beams, and investigated isolated base damage and the repair process in post-irradiation cultured cells. Chinese hamster ovary (CHO) cells were irradiated by carbon, silicon, argon and iron ion beams with LETs of 13, 55, 90 and 200 keV µm(-1), respectively. Agarose gel electrophoresis of the cells with enzymatic treatments indicated that clustered base damage yields decreased as the LET increased. The aldehyde reactive probe procedure showed that isolated base damage yields in the irradiated cells followed the same pattern. To analyze the cellular base damage process, clustered DNA damage repair was investigated using DNA repair mutant cells. DNA double-strand breaks accumulated in CHO mutant cells lacking Xrcc1 after irradiation, and the cell viability decreased. On the other hand, mouse embryonic fibroblast (Mef) cells lacking both Nth1 and Ogg1 became more resistant than the wild type Mef. Thus, clustered base damage seems to be involved in the expression of heavy ion beam biological effects via the repair process. © The Author 2015. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  19. Genetic mapping of secretion and functional determinants of the Vibrio cholerae TcpF colonization factor.

    PubMed

    Krebs, Shelly J; Kirn, Thomas J; Taylor, Ronald K

    2009-06-01

    Colonization of the human small intestine by Vibrio cholerae requires the type IV toxin-coregulated pilus (TCP). TcpF, which is encoded within the tcp operon, is secreted from the bacterial cell by the TCP apparatus and is also essential for colonization. Bacteria lacking tcpF are deficient in colonization, and anti-TcpF antibodies are protective in the infant mouse cholera model. In order to elucidate the regions of the protein that are required for secretion through the TCP apparatus and for its function in colonization, random mutagenesis of tcpF was performed. Analysis of these mutants suggests that multiple regions throughout the protein influence extracellular secretion and that determinants near the C terminus are important for the function of TcpF in colonization. The TcpF proteins of certain environmental V. cholerae isolates with 31% to 66% identity to pathogenic V. cholerae TcpF showed higher similarity in regions identified as secretion determinants but diverged in regions found to be important for colonization. These environmental TcpF proteins are secreted from the pathogenic strain; however, they do not mediate colonization in the infant mouse model. Here we provide genetic evidence pointing toward regions of TcpF that influence secretion, as well as regions that play an important role in in vivo colonization.

  20. Induction of a Mitosis Delay and Cell Lysis by High-Level Secretion of Mouse α-Amylase from Saccharomyces cerevisiae

    PubMed Central

    Wang, Bi-Dar; Kuo, Tsong-Teh

    2001-01-01

    Some foreign proteins are produced in yeast in a cell cycle-dependent manner, but the cause of the cell cycle dependency is unknown. In this study, we found that Saccharomyces cerevisiae cells secreting high levels of mouse α-amylase have elongated buds and are delayed in cell cycle completion in mitosis. The delayed cell mitosis suggests that critical events during exit from mitosis might be disturbed. We found that the activities of PP2A (protein phosphatase 2A) and MPF (maturation-promoting factor) were reduced in α-amylase-oversecreting cells and that these cells showed a reduced level of assembly checkpoint protein Cdc55, compared to the accumulation in wild-type cells. MPF inactivation is due to inhibitory phosphorylation on Cdc28, as a cdc28 mutant which lacks an inhibitory phosphorylation site on Cdc28 prevents MPF inactivation and prevents the defective bud morphology induced by overproduction of α-amylase. Our data also suggest that high levels of α-amylase may downregulate PPH22, leading to cell lysis. In conclusion, overproduction of heterologous α-amylase in S. cerevisiae results in a negative regulation of PP2A, which causes mitotic delay and leads to cell lysis. PMID:11472949

  1. Crumbs 2 prevents cortical abnormalities in mouse dorsal telencephalon.

    PubMed

    Dudok, Jacobus J; Murtaza, Mariyam; Henrique Alves, C; Rashbass, Pen; Wijnholds, Jan

    2016-07-01

    The formation of a functionally integrated nervous system is dependent on a highly organized sequence of events that includes timely division and differentiation of progenitors. Several apical polarity proteins have been shown to play crucial roles during neurogenesis, however, the role of Crumbs 2 (CRB2) in cortical development has not previously been reported. Here, we show that conditional ablation of Crb2 in the murine dorsal telencephalon leads to defects in the maintenance of the apical complex. Furthermore, within the mutant dorsal telencephalon there is premature expression of differentiation proteins. We examined the physiological function of Crb2 on wild type genetic background as well as on background lacking Crb1. Telencephalon lacking CRB2 resulted in reduced levels of PALS1 and CRB3 from the apical complex, an increased number of mitotic cells and expanded neuronal domain. These defects are transient and therefore only result in rather mild cortical abnormalities. We show that CRB2 is required for maintenance of the apical polarity complex during development of the cortex and regulation of cell division, and that loss of CRB2 results in cortical abnormalities. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  2. Impaired mitotic progression and preimplantation lethality in mice lacking OMCG1, a new evolutionarily conserved nuclear protein.

    PubMed

    Artus, Jérôme; Vandormael-Pournin, Sandrine; Frödin, Morten; Nacerddine, Karim; Babinet, Charles; Cohen-Tannoudji, Michel

    2005-07-01

    While highly conserved through evolution, the cell cycle has been extensively modified to adapt to new developmental programs. Recently, analyses of mouse mutants revealed that several important cell cycle regulators are either dispensable for development or have a tissue- or cell-type-specific function, indicating that many aspects of cell cycle regulation during mammalian embryo development remain to be elucidated. Here, we report on the characterization of a new gene, Omcg1, which codes for a nuclear zinc finger protein. Embryos lacking Omcg1 die by the end of preimplantation development. In vitro cultured Omcg1-null blastocysts exhibit a dramatic reduction in the total cell number, a high mitotic index, and the presence of abnormal mitotic figures. Importantly, we found that Omcg1 disruption results in the lengthening of M phase rather than in a mitotic block. We show that the mitotic delay in Omcg1-/- embryos is associated with neither a dysfunction of the spindle checkpoint nor abnormal global histone modifications. Taken together, these results suggest that Omcg1 is an important regulator of the cell cycle in the preimplantation embryo.

  3. Impaired Mitotic Progression and Preimplantation Lethality in Mice Lacking OMCG1, a New Evolutionarily Conserved Nuclear Protein†

    PubMed Central

    Artus, Jérôme; Vandormael-Pournin, Sandrine; Frödin, Morten; Nacerddine, Karim; Babinet, Charles; Cohen-Tannoudji, Michel

    2005-01-01

    While highly conserved through evolution, the cell cycle has been extensively modified to adapt to new developmental programs. Recently, analyses of mouse mutants revealed that several important cell cycle regulators are either dispensable for development or have a tissue- or cell-type-specific function, indicating that many aspects of cell cycle regulation during mammalian embryo development remain to be elucidated. Here, we report on the characterization of a new gene, Omcg1, which codes for a nuclear zinc finger protein. Embryos lacking Omcg1 die by the end of preimplantation development. In vitro cultured Omcg1-null blastocysts exhibit a dramatic reduction in the total cell number, a high mitotic index, and the presence of abnormal mitotic figures. Importantly, we found that Omcg1 disruption results in the lengthening of M phase rather than in a mitotic block. We show that the mitotic delay in Omcg1−/− embryos is associated with neither a dysfunction of the spindle checkpoint nor abnormal global histone modifications. Taken together, these results suggest that Omcg1 is an important regulator of the cell cycle in the preimplantation embryo. PMID:15988037

  4. Involvement of Two Plasmids in the Degradation of Carbaryl by Arthrobacter sp. Strain RC100

    PubMed Central

    Hayatsu, Masahito; Hirano, Motoko; Nagata, Tadahiro

    1999-01-01

    A bacterium capable of utilizing carbaryl (1-naphthyl N-methylcarbamate) as the sole carbon source was isolated from carbaryl-treated soil. This bacterium was characterized taxonomically as Arthrobacter and was designated strain RC100. RC100 hydrolyzes the N-methylcarbamate linkage to 1-naphthol, which was further metabolized via salicylate and gentisate. Strain RC100 harbored three plasmids (designated pRC1, pRC2, and pRC3). Mutants unable to degrade carbaryl arose at a high frequency after treating the culture with mitomycin C. All carbaryl-hydrolysis-deficient mutants (Cah−) lacked pRC1, and all 1-naphthol-utilization-deficient mutants (Nat−) lacked pRC2. The plasmid-free strain RC107 grew on gentisate as a carbon source. These two plasmids could be transferred to Cah− mutants or Nat− mutants by conjugation, resulting in the restoration of the Cah and Nah phenotypes. PMID:10049857

  5. Rod- and cone-driven responses in mice expressing human L-cone pigment

    PubMed Central

    Atorf, Jenny; Neitz, Maureen; Neitz, Jay

    2015-01-01

    The mouse is commonly used for studying retinal processing, primarily because it is amenable to genetic manipulation. To accurately study photoreceptor driven signals in the healthy and diseased retina, it is of great importance to isolate the responses of single photoreceptor types. This is not easily achieved in mice because of the strong overlap of rod and M-cone absorption spectra (i.e., maxima at 498 and 508 nm, respectively). With a newly developed mouse model (Opn1lwLIAIS) expressing a variant of the human L-cone pigment (561 nm) instead of the mouse M-opsin, the absorption spectra are substantially separated, allowing retinal physiology to be studied using silent substitution stimuli. Unlike conventional chromatic isolation methods, this spectral compensation approach can isolate single photoreceptor subtypes without changing the retinal adaptation. We measured flicker electroretinograms in these mutants under ketamine-xylazine sedation with double silent substitution (silent S-cone and either rod or M/L-cones) and obtained robust responses for both rods and (L-)cones. Small signals were yielded in wild-type mice, whereas heterozygotes exhibited responses that were generally intermediate to both. Fundamental response amplitudes and phase behaviors (as a function of temporal frequency) in all genotypes were largely similar. Surprisingly, isolated (L-)cone and rod response properties in the mutant strain were alike. Thus the LIAIS mouse warrants a more comprehensive in vivo assessment of photoreceptor subtype-specific physiology, because it overcomes the hindrance of overlapping spectral sensitivities present in the normal mouse. PMID:26245314

  6. Early white matter abnormalities, progressive brain pathology and motor deficits in a novel knock-in mouse model of Huntington's disease

    PubMed Central

    Jin, Jing; Peng, Qi; Hou, Zhipeng; Jiang, Mali; Wang, Xin; Langseth, Abraham J.; Tao, Michael; Barker, Peter B.; Mori, Susumu; Bergles, Dwight E.; Ross, Christopher A.; Detloff, Peter J.; Zhang, Jiangyang; Duan, Wenzhen

    2015-01-01

    White matter abnormalities have been reported in premanifest Huntington's disease (HD) subjects before overt striatal neuronal loss, but whether the white matter changes represent a necessary step towards further pathology and the underlying mechanism of these changes remains unknown. Here, we characterized a novel knock-in mouse model that expresses mouse HD gene homolog (Hdh) with extended CAG repeat- HdhQ250, which was derived from the selective breeding of HdhQ150 mice. HdhQ250 mice manifest an accelerated and robust phenotype compared with its parent line. HdhQ250 mice exhibit progressive motor deficits, reduction in striatal and cortical volume, accumulation of mutant huntingtin aggregation, decreased levels of DARPP32 and BDNF and altered striatal metabolites. The abnormalities detected in this mouse model are reminiscent of several aspects of human HD. In addition, disturbed myelination was evident in postnatal Day 14 HdhQ250 mouse brain, including reduced levels of myelin regulatory factor and myelin basic protein, and decreased numbers of myelinated axons in the corpus callosum. Thinner myelin sheaths, indicated by increased G-ratio of myelin, were also detected in the corpus callosum of adult HdhQ250 mice. Moreover, proliferation of oligodendrocyte precursor cells is altered by mutant huntingtin both in vitro and in vivo. Our data indicate that this model is suitable for understanding comprehensive pathogenesis of HD in white matter and gray matter as well as developing therapeutics for HD. PMID:25609071

  7. Overexpression of mutant HSP27 causes axonal neuropathy in mice.

    PubMed

    Lee, Jinho; Jung, Sung-Chul; Joo, Jaesoon; Choi, Yu-Ri; Moon, Hyo Won; Kwak, Geon; Yeo, Ha Kyung; Lee, Ji-Su; Ahn, Hye-Jee; Jung, Namhee; Hwang, Sunhee; Rheey, Jingeun; Woo, So-Youn; Kim, Ji Yon; Hong, Young Bin; Choi, Byung-Ok

    2015-06-19

    Mutations in heat shock 27 kDa protein 1 (HSP27 or HSPB1) cause distal hereditary motor neuropathy (dHMN) or Charcot-Marie-Tooth disease type 2 F (CMT2F) according to unknown factors. Mutant HSP27 proteins affect axonal transport by reducing acetylated tubulin. We generated a transgenic mouse model overexpressing HSP27-S135F mutant protein driven by Cytomegalovirus (CMV) immediate early promoter. The mouse phenotype was similar to dHMN patients in that they exhibit motor neuropathy. To determine the phenotypic aberration of transgenic mice, behavior test, magnetic resonance imaging (MRI), electrophysiological study, and pathology were performed. Rotarod test showed that founder mice exhibited lowered motor performance. MRI also revealed marked fatty infiltration in the anterior and posterior compartments at calf level. Electrophysiologically, compound muscle action potential (CMAP) but not motor nerve conduction velocity (MNCV) was reduced in the transgenic mice. Toluidine staining with semi-thin section of sciatic nerve showed the ratio of large myelinated axon fiber was reduced, which might cause reduced locomotion in the transgenic mice. Electron microscopy also revealed abundant aberrant myelination. Immunohistochemically, neuronal dysfunctions included elevated level of phosphorylated neurofilament and reduced level of acetylated tubulin in the sural nerve of transgenic mice. There was no additional phenotype besides motor neuronal defects. Overexpression of HSP27-S135F protein causes peripheral neuropathy. The mouse model can be applied to future development of therapeutic strategies for dHMN or CMT2F.

  8. Sonic hedgehog: restricted expression and limb dysmorphologies

    PubMed Central

    Hill, Robert E; Heaney, Simon JH; Lettice, Laura A

    2003-01-01

    Sonic hedgehog, SHH, is required for patterning the limb. The array of skeletal elements that compose the hands and feet, and the ordered arrangement of these bones to form the pattern of fingers and toes are dependent on SHH. The mechanism of action of SHH in the limb is not fully understood; however, an aspect that appears to be important is the localized, asymmetric expression of Shh. Shh is expressed in the posterior margin of the limb bud in a region defined as the zone of polarizing activity (ZPA). Analysis of mouse mutants which have polydactyly (extra toes) shows that asymmetric expression of Shh is lost due to the appearance of an ectopic domain of expression in the anterior limb margin. One such polydactylous mouse mutant, sasquatch (Ssq), maps to the corresponding chromosomal region of the human condition pre-axial polydactyly (PPD) and thus represents a model for this condition. The mutation responsible for Ssq is located 1 Mb away from the Shh gene; however, the mutation disrupts a long-range cis-acting regulator of Shh expression. By inference, human pre-axial polydactyly results from a similar disruption of Shh expression. Other human congenital abnormalities also map near the pre-axial polydactyly locus, suggesting a major chromosomal region for limb dysmorphologies. The distinct phenotypes range from loss of all bones of the hands and feet to syndactyly of the soft tissue and fusion of the digits. We discuss the role played by Shh expression in mouse mutant phenotypes and the human limb dysmorphologies. PMID:12587915

  9. The vitamin D receptor functions as a transcription regulator in the absence of 1,25-dihydroxyvitamin D3.

    PubMed

    Lee, Seong Min; Pike, J Wesley

    2016-11-01

    The vitamin D receptor (VDR) is a critical mediator of the biological actions of 1,25-dihydroxyvitamin D 3 (1,25(OH) 2 D 3 ). As a nuclear receptor, ligand activation of the VDR leads to the protein's binding to specific sites on the genome that results in the modulation of target gene expression. The VDR is also known to play a role in the hair cycle, an action that appears to be 1,25(OH) 2 D 3 -independent. Indeed, in the absence of the VDR as in hereditary 1,25-dihydroxyvitamin D resistant rickets (HVDRR) both skin defects and alopecia emerge. Recently, we generated a mouse model of HVDRR without alopecia wherein a mutant human VDR lacking 1,25(OH) 2 D 3 -binding activity was expressed in the absence of endogenous mouse VDR. While 1,25(OH) 2 D 3 failed to induce gene expression in these mice, resulting in an extensive skeletal phenotype, the receptor was capable of restoring normal hair cycling. We also noted a level of secondary hyperparathyroidism that was much higher than that seen in the VDR null mouse and was associated with an exaggerated bone phenotype as well. This suggested that the VDR might play a role in parathyroid hormone (PTH) regulation independent of 1,25(OH) 2 D 3 . To evaluate this hypothesis further, we contrasted PTH levels in the HVDRR mouse model with those seen in Cyp27b1 null mice where the VDR was present but the hormone was absent. The data revealed that PTH was indeed higher in Cyp27b1 null mice compared to VDR null mice. To evaluate the mechanism of action underlying such a hypothesis, we measured the expression levels of a number of VDR target genes in the duodena of wildtype mice and in transgenic mice expressing either normal or hormone-binding deficient mutant VDRs. We also compared expression levels of these genes between VDR null mice and Cyp27b1 null mice. In a subset of cases, the expression of VDR target genes was lower in mice containing the VDR as opposed to mice that did not. We suggest that the VDR may function as a selective suppressor/de-repressor of gene expression in the absence of 1,25(OH) 2 D 3 . Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Mouse Models for Down Syndrome-Associated Developmental Cognitive Disabilities

    PubMed Central

    Liu, Chunhong; Belichenko, Pavel V.; Zhang, Li; Fu, Dawei; Kleschevnikov, Alexander M.; Baldini, Antonio; Antonarakis, Stylianos E.; Mobley, William C.; Yu, Y. Eugene

    2011-01-01

    Down syndrome (DS) is mainly caused by the presence of an extra copy of human chromosome 21 (Hsa21) and is a leading genetic cause for developmental cognitive disabilities in humans. The mouse is a premier model organism for DS because the regions on Hsa21 are syntenically conserved with three regions in the mouse genome, which are located on mouse chromosome 10 (Mmu10), Mmu16 and Mmu17. With the advance of chromosomal manipulation technologies, new mouse mutants have been generated to mimic DS at both the genotypic and phenotypic levels. Further mouse-based molecular genetic studies in the future may lead to the unraveling of the mechanisms underlying DS-associated developmental cognitive disabilities, which would lay the groundwork for developing effective treatments for this phenotypic manifestation. In this review, we will discuss recent progress and future challenges in modeling DS-associated developmental cognitive disability in mice with an emphasis on hippocampus-related phenotypes. PMID:21865664

  11. Mouse Genome Informatics (MGI) Is the International Resource for Information on the Laboratory Mouse.

    PubMed

    Law, MeiYee; Shaw, David R

    2018-01-01

    Mouse Genome Informatics (MGI, http://www.informatics.jax.org/ ) web resources provide free access to meticulously curated information about the laboratory mouse. MGI's primary goal is to help researchers investigate the genetic foundations of human diseases by translating information from mouse phenotypes and disease models studies to human systems. MGI provides comprehensive phenotypes for over 50,000 mutant alleles in mice and provides experimental model descriptions for over 1500 human diseases. Curated data from scientific publications are integrated with those from high-throughput phenotyping and gene expression centers. Data are standardized using defined, hierarchical vocabularies such as the Mammalian Phenotype (MP) Ontology, Mouse Developmental Anatomy and the Gene Ontologies (GO). This chapter introduces you to Gene and Allele Detail pages and provides step-by-step instructions for simple searches and those that take advantage of the breadth of MGI data integration.

  12. Granulosa cell and oocyte mitochondrial abnormalities in a mouse model of fragile X primary ovarian insufficiency.

    PubMed

    Conca Dioguardi, Carola; Uslu, Bahar; Haynes, Monique; Kurus, Meltem; Gul, Mehmet; Miao, De-Qiang; De Santis, Lucia; Ferrari, Maurizio; Bellone, Stefania; Santin, Alessandro; Giulivi, Cecilia; Hoffman, Gloria; Usdin, Karen; Johnson, Joshua

    2016-06-01

    We hypothesized that the mitochondria of granulosa cells (GC) and/or oocytes might be abnormal in a mouse model of fragile X premutation (FXPM). Mice heterozygous and homozygous for the FXPM have increased death (atresia) of large ovarian follicles, fewer corpora lutea with a gene dosage effect manifesting in decreased litter size(s). Furthermore, granulosa cells (GC) and oocytes of FXPM mice have decreased mitochondrial content, structurally abnormal mitochondria, and reduced expression of critical mitochondrial genes. Because this mouse allele produces the mutant Fragile X mental retardation 1 (Fmr1) transcript and reduced levels of wild-type (WT) Fmr1 protein (FMRP), but does not produce a Repeat Associated Non-ATG Translation (RAN)-translation product, our data lend support to the idea that Fmr1 mRNA with large numbers of CGG-repeats is intrinsically deleterious in the ovary. Mitochondrial dysfunction has been detected in somatic cells of human and mouse FX PM carriers and mitochondria are essential for oogenesis and ovarian follicle development, FX-associated primary ovarian insufficiency (FXPOI) is seen in women with FXPM alleles. These alleles have 55-200 CGG repeats in the 5' UTR of an X-linked gene known as FMR1. The molecular basis of the pathology seen in this disorder is unclear but is thought to involve either some deleterious consequence of overexpression of RNA with long CGG-repeat tracts or of the generation of a repeat-associated non-AUG translation (RAN translation) product that is toxic. Analysis of ovarian function in a knock-in FXPM mouse model carrying 130 CGG repeats was performed as follows on WT, PM/+, and PM/PM genotypes. Histomorphometric assessment of follicle and corpora lutea numbers in ovaries from 8-month-old mice was executed, along with litter size analysis. Mitochondrial DNA copy number was quantified in oocytes and GC using quantitative PCR, and cumulus granulosa mitochondrial content was measured by flow cytometric analysis after staining of cells with Mitotracker dye. Transmission electron micrographs were prepared of GC within small growing follicles and mitochondrial architecture was compared. Quantitative RT-PCR analysis of key genes involved in mitochondrial structure and recycling was performed. A defect was found in follicle survival at the large antral stage in PM/+ and PM/PM mice. Litter size was significantly decreased in PM/PM mice, and corpora lutea were significantly reduced in mice of both mutant genotypes. Mitochondrial DNA copy number was significantly decreased in GC and metaphase II eggs in mutants. Flow cytometric analysis revealed that PM/+ and PM/PM animals lack the cumulus GC that harbor the greatest mitochondrial content as found in wild-type animals. Electron microscopic evaluation of GC of small growing follicles revealed mitochondrial structural abnormalities, including disorganized and vacuolar cristae. Finally, aberrant mitochondrial gene expression was detected. Mitofusin 2 (Mfn2) and Optic atrophy 1 (Opa1), genes involved in mitochondrial fusion and structure, respectively, were significantly decreased in whole ovaries of both mutant genotypes. Mitochondrial fission factor 1 (Mff1) was significantly decreased in PM/+ and PM/PM GC and eggs compared with wild-type controls. Data from the mouse model used for these studies should be viewed with some caution when considering parallels to the human FXPOI condition. Our data lend support to the idea that Fmr1 mRNA with large numbers of CGG-repeats is intrinsically deleterious in the ovary. FXPM disease states, including FXPOI, may share mitochondrial dysfunction as a common underlying mechanism. Not applicable. Studies were supported by NIH R21 071873 (J.J./G.H), The Albert McKern Fund for Perinatal Research (J.J.), NIH Intramural Funds (K.U.), and a TUBITAK Research Fellowship Award (B.U.). No conflict(s) of interest or competing interest(s) are noted. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. A Heart-Hand Syndrome Gene: Tfap2b Plays a Critical Role in the Development and Remodeling of Mouse Ductus Arteriosus and Limb Patterning

    PubMed Central

    Zhao, Feng; Bosserhoff, Anja-Katrin; Buettner, Reinhard; Moser, Markus

    2011-01-01

    Background Patent ductus arteriosus (PDA) is one of the most common forms of congenital heart disease. Mutations in transcription factor TFAP2B cause Char syndrome, a human disorder characterized by PDA, facial dysmorphysm and hand anomalies. Animal research data are needed to understand the mechanisms. The aim of our study was to elucidate the pathogenesis of Char syndrome at the molecular level. Methodology/Principal Findings Gene expression of Tfap2b during mouse development was studied, and newborns of Tfap2b-deficient mice were examined to identify phenotypes. Gel shift assays had been carried out to search for Tfap2 downstream genes. Promoters of candidate genes were cloned into a reporter construct and used to demonstrate their regulation by Tfap2b in cell transfection. In situ hybridizations showed that the murine transcription factor Tfap2b was expressed during the entire development of mouse ductus arteriosus. Histological examination of ductus arteriosus from Tfap2b knockout mice 6 hours after birth revealed that they were not closed. Consequently, the lungs of Tfap2b −/− mice demonstrated progressive congestion of the pulmonary capillaries, which was postulated to result secondarily from PDA. In addition, Tfap2b was expressed in the limb buds, particularly in the posterior limb field during development. Lack of Tfap2b resulted in bilateral postaxial accessory digits. Further study indicated that expressions of bone morphogenetic protein (Bmp) genes, which are reported to be involved in the limb patterning and ductal development, were altered in limb buds of Tfap2b-deficient embryos, due to direct control of Bmp2 and Bmp4 promoter activity by Tfap2b. Conclusions/Significance Tfap2b plays important roles in the development of mouse ductus arteriosus and limb patterning. Loss of Tfap2b results in altered Bmp expression that may cause the heart-limb defects observed in Tfap2b mouse mutants and Char syndrome patients. The Tfap2b knockout mouse may add to the very limited available animal models of PDA. PMID:21829553

  14. ALS-associated mutant FUS induces selective motor neuron degeneration through toxic gain of function

    PubMed Central

    Sharma, Aarti; Lyashchenko, Alexander K.; Lu, Lei; Nasrabady, Sara Ebrahimi; Elmaleh, Margot; Mendelsohn, Monica; Nemes, Adriana; Tapia, Juan Carlos; Mentis, George Z.; Shneider, Neil A.

    2016-01-01

    Mutations in FUS cause amyotrophic lateral sclerosis (ALS), including some of the most aggressive, juvenile-onset forms of the disease. FUS loss-of-function and toxic gain-of-function mechanisms have been proposed to explain how mutant FUS leads to motor neuron degeneration, but neither has been firmly established in the pathogenesis of ALS. Here we characterize a series of transgenic FUS mouse lines that manifest progressive, mutant-dependent motor neuron degeneration preceded by early, structural and functional abnormalities at the neuromuscular junction. A novel, conditional FUS knockout mutant reveals that postnatal elimination of FUS has no effect on motor neuron survival or function. Moreover, endogenous FUS does not contribute to the onset of the ALS phenotype induced by mutant FUS. These findings demonstrate that FUS-dependent motor degeneration is not due to loss of FUS function, but to the gain of toxic properties conferred by ALS mutations. PMID:26842965

  15. Forebrain-Specific Loss of BMPRII in Mice Reduces Anxiety and Increases Object Exploration.

    PubMed

    McBrayer, Zofeyah L; Dimova, Jiva; Pisansky, Marc T; Sun, Mu; Beppu, Hideyuki; Gewirtz, Jonathan C; O'Connor, Michael B

    2015-01-01

    To investigate the role of Bone Morphogenic Protein Receptor Type II (BMPRII) in learning, memory, and exploratory behavior in mice, a tissue-specific knockout of BMPRII in the post-natal hippocampus and forebrain was generated. We found that BMPRII mutant mice had normal spatial learning and memory in the Morris water maze, but showed significantly reduced swimming speeds with increased floating behavior. Further analysis using the Porsolt Swim Test to investigate behavioral despair did not reveal any differences in immobility between mutants and controls. In the Elevated Plus Maze, BMPRII mutants and Smad4 mutants showed reduced anxiety, while in exploratory tests, BMPRII mutants showed more interest in object exploration. These results suggest that loss of BMPRII in the mouse hippocampus and forebrain does not disrupt spatial learning and memory encoding, but instead impacts exploratory and anxiety-related behaviors.

  16. Forebrain-Specific Loss of BMPRII in Mice Reduces Anxiety and Increases Object Exploration

    PubMed Central

    McBrayer, Zofeyah L.; Dimova, Jiva; Pisansky, Marc T.; Sun, Mu; Beppu, Hideyuki; Gewirtz, Jonathan C.; O’Connor, Michael B.

    2015-01-01

    To investigate the role of Bone Morphogenic Protein Receptor Type II (BMPRII) in learning, memory, and exploratory behavior in mice, a tissue-specific knockout of BMPRII in the post-natal hippocampus and forebrain was generated. We found that BMPRII mutant mice had normal spatial learning and memory in the Morris water maze, but showed significantly reduced swimming speeds with increased floating behavior. Further analysis using the Porsolt Swim Test to investigate behavioral despair did not reveal any differences in immobility between mutants and controls. In the Elevated Plus Maze, BMPRII mutants and Smad4 mutants showed reduced anxiety, while in exploratory tests, BMPRII mutants showed more interest in object exploration. These results suggest that loss of BMPRII in the mouse hippocampus and forebrain does not disrupt spatial learning and memory encoding, but instead impacts exploratory and anxiety-related behaviors. PMID:26444546

  17. Working-for-Food Behaviors: A Preclinical Study in Prader-Willi Mutant Mice.

    PubMed

    Lassi, Glenda; Maggi, Silvia; Balzani, Edoardo; Cosentini, Ilaria; Garcia-Garcia, Celina; Tucci, Valter

    2016-11-01

    Abnormal feeding behavior is one of the main symptoms of Prader-Willi syndrome (PWS). By studying a PWS mouse mutant line, which carries a paternally inherited deletion of the small nucleolar RNA 116 (Snord116), we observed significant changes in working-for-food behavioral responses at various timescales. In particular, we report that PWS mutant mice show a significant delay compared to wild-type littermate controls in responding to both hour-scale and seconds-to-minutes-scale time intervals. This timing shift in mutant mice is associated with better performance in the working-for-food task, and results in better decision making in these mutant mice. The results of our study reveal a novel aspect of the organization of feeding behavior, and advance the understanding of the interplay between the metabolic functions and cognitive mechanisms of PWS. Copyright © 2016 by the Genetics Society of America.

  18. ALS-associated mutant FUS induces selective motor neuron degeneration through toxic gain of function.

    PubMed

    Sharma, Aarti; Lyashchenko, Alexander K; Lu, Lei; Nasrabady, Sara Ebrahimi; Elmaleh, Margot; Mendelsohn, Monica; Nemes, Adriana; Tapia, Juan Carlos; Mentis, George Z; Shneider, Neil A

    2016-02-04

    Mutations in FUS cause amyotrophic lateral sclerosis (ALS), including some of the most aggressive, juvenile-onset forms of the disease. FUS loss-of-function and toxic gain-of-function mechanisms have been proposed to explain how mutant FUS leads to motor neuron degeneration, but neither has been firmly established in the pathogenesis of ALS. Here we characterize a series of transgenic FUS mouse lines that manifest progressive, mutant-dependent motor neuron degeneration preceded by early, structural and functional abnormalities at the neuromuscular junction. A novel, conditional FUS knockout mutant reveals that postnatal elimination of FUS has no effect on motor neuron survival or function. Moreover, endogenous FUS does not contribute to the onset of the ALS phenotype induced by mutant FUS. These findings demonstrate that FUS-dependent motor degeneration is not due to loss of FUS function, but to the gain of toxic properties conferred by ALS mutations.

  19. Deletion of Braun lipoprotein and plasminogen-activating protease-encoding genes attenuates Yersinia pestis in mouse models of bubonic and pneumonic plague.

    PubMed

    van Lier, Christina J; Sha, Jian; Kirtley, Michelle L; Cao, Anthony; Tiner, Bethany L; Erova, Tatiana E; Cong, Yingzi; Kozlova, Elena V; Popov, Vsevolod L; Baze, Wallace B; Chopra, Ashok K

    2014-06-01

    Currently, there is no FDA-approved vaccine against Yersinia pestis, the causative agent of bubonic and pneumonic plague. Since both humoral immunity and cell-mediated immunity are essential in providing the host with protection against plague, we developed a live-attenuated vaccine strain by deleting the Braun lipoprotein (lpp) and plasminogen-activating protease (pla) genes from Y. pestis CO92. The Δlpp Δpla double isogenic mutant was highly attenuated in evoking both bubonic and pneumonic plague in a mouse model. Further, animals immunized with the mutant by either the intranasal or the subcutaneous route were significantly protected from developing subsequent pneumonic plague. In mice, the mutant poorly disseminated to peripheral organs and the production of proinflammatory cytokines concurrently decreased. Histopathologically, reduced damage to the lungs and livers of mice infected with the Δlpp Δpla double mutant compared to the level of damage in wild-type (WT) CO92-challenged animals was observed. The Δlpp Δpla mutant-immunized mice elicited a humoral immune response to the WT bacterium, as well as to CO92-specific antigens. Moreover, T cells from mutant-immunized animals exhibited significantly higher proliferative responses, when stimulated ex vivo with heat-killed WT CO92 antigens, than mice immunized with the same sublethal dose of WT CO92. Likewise, T cells from the mutant-immunized mice produced more gamma interferon (IFN-γ) and interleukin-4. These animals had an increasing number of tumor necrosis factor alpha (TNF-α)-producing CD4(+) and CD8(+) T cells than WT CO92-infected mice. These data emphasize the role of TNF-α and IFN-γ in protecting mice against pneumonic plague. Overall, our studies provide evidence that deletion of the lpp and pla genes acts synergistically in protecting animals against pneumonic plague, and we have demonstrated an immunological basis for this protection.

  20. Deletion of Braun Lipoprotein and Plasminogen-Activating Protease-Encoding Genes Attenuates Yersinia pestis in Mouse Models of Bubonic and Pneumonic Plague

    PubMed Central

    van Lier, Christina J.; Sha, Jian; Kirtley, Michelle L.; Cao, Anthony; Tiner, Bethany L.; Erova, Tatiana E.; Cong, Yingzi; Kozlova, Elena V.; Popov, Vsevolod L.; Baze, Wallace B.

    2014-01-01

    Currently, there is no FDA-approved vaccine against Yersinia pestis, the causative agent of bubonic and pneumonic plague. Since both humoral immunity and cell-mediated immunity are essential in providing the host with protection against plague, we developed a live-attenuated vaccine strain by deleting the Braun lipoprotein (lpp) and plasminogen-activating protease (pla) genes from Y. pestis CO92. The Δlpp Δpla double isogenic mutant was highly attenuated in evoking both bubonic and pneumonic plague in a mouse model. Further, animals immunized with the mutant by either the intranasal or the subcutaneous route were significantly protected from developing subsequent pneumonic plague. In mice, the mutant poorly disseminated to peripheral organs and the production of proinflammatory cytokines concurrently decreased. Histopathologically, reduced damage to the lungs and livers of mice infected with the Δlpp Δpla double mutant compared to the level of damage in wild-type (WT) CO92-challenged animals was observed. The Δlpp Δpla mutant-immunized mice elicited a humoral immune response to the WT bacterium, as well as to CO92-specific antigens. Moreover, T cells from mutant-immunized animals exhibited significantly higher proliferative responses, when stimulated ex vivo with heat-killed WT CO92 antigens, than mice immunized with the same sublethal dose of WT CO92. Likewise, T cells from the mutant-immunized mice produced more gamma interferon (IFN-γ) and interleukin-4. These animals had an increasing number of tumor necrosis factor alpha (TNF-α)-producing CD4+ and CD8+ T cells than WT CO92-infected mice. These data emphasize the role of TNF-α and IFN-γ in protecting mice against pneumonic plague. Overall, our studies provide evidence that deletion of the lpp and pla genes acts synergistically in protecting animals against pneumonic plague, and we have demonstrated an immunological basis for this protection. PMID:24686064

  1. Site-directed mutagenesis of mouse glutathione transferase P1-1 unlocks masked cooperativity, introduces a novel mechanism for 'ping pong' kinetic behaviour, and provides further structural evidence for participation of a water molecule in proton abstraction from glutathione.

    PubMed

    McManus, Gavin; Costa, Marta; Canals, Albert; Coll, Miquel; Mantle, Timothy J

    2011-01-01

    Mouse liver glutathione transferase P1-1 has three cysteine residues at positions 14, 47 and 169. We have constructed the single, double and triple cysteine to alanine mutants to define the behaviour of all three thiols. We confirm that C47 is the 'fast' thiol (pK 7.4), and define C169 as the alkaline reactive residue with a pK(a) of 8.6. Only a small proportion of C14 is reactive with 5,5'-dithiobis-(2-nitrobenoic acid) (DTNB) at pH 9 in the C47A/C169A double mutant. The native enzyme and the C169A mutant exhibited Michaelis-Menten kinetics, but all other thiol to alanine mutants exhibited sigmoidal kinetics to varying degrees. The C169A mutant exhibited 'ping pong' kinetics, consistent with a mechanism whereby liberation of a proton from a reduced enzyme-glutathione (GSH) complex to form an enzyme-GS(-) (unprotonated) complex is essentially irreversible. Intriguingly, similar behaviour has recently been reported for a mutant of the yeast prion Ure2p. This cooperative behaviour is 'mirrored' in the crystal structure of the C47A mutant, which binds the p-nitrobenzyl moiety of p-nitrobenzyglutathione in distinct orientations in the two crystallographic subunits. The asymmetry seen in this structure for product binding is associated with absence of a water molecule W0 in the standard wild-type conformation of product binding that is clearly identifiable in the new structure, which may represent a structural model for binding of incoming GSH prior to displacement of W0. Elimination of W0 as a hydroxonium ion may be the mechanism for the initial proton extrusion from the active site. © 2010 The Authors Journal compilation © 2010 FEBS.

  2. RAS signaling and anti-RAS therapy: lessons learned from genetically engineered mouse models, human cancer cells, and patient-related studies.

    PubMed

    Fang, Bingliang

    2016-01-01

    Activating mutations of oncogenic RAS genes are frequently detected in human cancers. The studies in genetically engineered mouse models (GEMMs) reveal that Kras-activating mutations predispose mice to early onset tumors in the lung, pancreas, and gastrointestinal tract. Nevertheless, most of these tumors do not have metastatic phenotypes. Metastasis occurs when tumors acquire additional genetic changes in other cancer driver genes. Studies on clinical specimens also demonstrated that KRAS mutations are present in premalignant tissues and that most of KRAS mutant human cancers have co-mutations in other cancer driver genes, including TP53, STK11, CDKN2A, and KMT2C in lung cancer; APC, TP53, and PIK3CA in colon cancer; and TP53, CDKN2A, SMAD4, and MED12 in pancreatic cancer. Extensive efforts have been devoted to develop therapeutic agents that target enzymes involved in RAS posttranslational modifications, that inhibit downstream effectors of RAS signaling pathways, and that kill RAS mutant cancer cells through synthetic lethality. Recent clinical studies have revealed that sorafenib, a pan-RAF and VEGFR inhibitor, has impressive benefits for KRAS mutant lung cancer patients. Combination therapy of MEK inhibitors with either docetaxel, AKT inhibitors, or PI3K inhibitors also led to improved clinical responses in some KRAS mutant cancer patients. This review discusses knowledge gained from GEMMs, human cancer cells, and patient-related studies on RAS-mediated tumorigenesis and anti-RAS therapy. Emerging evidence demonstrates that RAS mutant cancers are heterogeneous because of the presence of different mutant alleles and/or co-mutations in other cancer driver genes. Effective subclassifications of RAS mutant cancers may be necessary to improve patients' outcomes through personalized precision medicine. © The Author 2015. Published by ABBS Editorial Office in association with Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences.

  3. Individual Substitution Mutations in the AID C Terminus That Ablate IgH Class Switch Recombination

    PubMed Central

    Kadungure, Tatenda; Ucher, Anna J.; Linehan, Erin K.; Schrader, Carol E.; Stavnezer, Janet

    2015-01-01

    Activation-induced cytidine deaminase (AID) is essential for class switch recombination (CSR) and somatic hypermutation (SHM) of Ig genes. The C terminus of AID is required for CSR but not for SHM, but the reason for this is not entirely clear. By retroviral transduction of mutant AID proteins into aid -/- mouse splenic B cells, we show that 4 amino acids within the C terminus of mouse AID, when individually mutated to specific amino acids (R190K, A192K, L196S, F198S), reduce CSR about as much or more than deletion of the entire C terminal 10 amino acids. Similar to ΔAID, the substitutions reduce binding of UNG to Ig Sμ regions and some reduce binding of Msh2, both of which are important for introducing S region DNA breaks. Junctions between the IgH donor switch (S)μ and acceptor Sα regions from cells expressing ΔAID or the L196S mutant show increased microhomology compared to junctions in cells expressing wild-type AID, consistent with problems during CSR and the use of alternative end-joining, rather than non-homologous end-joining (NHEJ). Unlike deletion of the AID C terminus, 3 of the substitution mutants reduce DNA double-strand breaks (DSBs) detected within the Sμ region in splenic B cells undergoing CSR. Cells expressing these 3 substitution mutants also have greatly reduced mutations within unrearranged Sμ regions, and they decrease with time after activation. These results might be explained by increased error-free repair, but as the C terminus has been shown to be important for recruitment of NHEJ proteins, this appears unlikely. We hypothesize that Sμ DNA breaks in cells expressing these C terminus substitution mutants are poorly repaired, resulting in destruction of Sμ segments that are deaminated by these mutants. This could explain why these mutants cannot undergo CSR. PMID:26267846

  4. Effect of pituitary hollow fiber units and thyroid supplementation on growth in the little mouse (41949)

    NASA Technical Reports Server (NTRS)

    Harkness, John E.; Hymer, W. C.; Rosenberger, James L.; Grindeland, Richard E.

    1984-01-01

    It is shown that the implantation of encapsulated pituitary cells into heterozygous lit/+ mice inhibited the average percentage change in weight gain as compared to controls. However, homozygous lit/lit mice receiving cell-filled capsules consistently had higher percentage weight gains than their control counterparts. It was also found that thyroid-supplemented mutant mice with pituitary cell implants had significantly higher organ and carcass weights than other mutant groups.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, W.F.; Martinell, J.; Whitney, J.B. III

    The group of diseases called the thalassemias is the largest single-gene health problem in the world according the World Health Organization. The thalassemias are lethal hereditary anemias in which the infants cannot make their own blood. Three mouse mutants are shown to be models of the human disease ..cap alpha..-thalassemia. However, since an additional gene is affected, these mutants represent a particularly severe condition in which death occurs in the homozygous embryo even before globin genes are activated. Phenotypic and genotypic characteristics are described. (ACR)

  6. C2cd3 is required for cilia formation and Hedgehog signaling in mouse

    PubMed Central

    Hoover, Amber N.; Wynkoop, Aaron; Zeng, Huiqing; Jia, Jinping; Niswander, Lee A.; Liu, Aimin

    2011-01-01

    Cilia are essential for mammalian embryonic development as well as for the physiological activity of various adult organ systems. Despite the multiple crucial roles that cilia play, the mechanisms underlying ciliogenesis in mammals remain poorly understood. Taking a forward genetic approach, we have identified Hearty (Hty), a recessive lethal mouse mutant with multiple defects, including neural tube defects, abnormal dorsal-ventral patterning of the spinal cord, a defect in left-right axis determination and severe polydactyly (extra digits). By genetic mapping, sequence analysis of candidate genes and characterization of a second mutant allele, we identify Hty as C2cd3, a novel gene encoding a vertebrate-specific C2 domain-containing protein. Target gene expression and double-mutant analyses suggest that C2cd3 is an essential regulator of intracellular transduction of the Hedgehog signal. Furthering a link between Hedgehog signaling and cilia function, we find that cilia formation and proteolytic processing of Gli3 are disrupted in C2cd3 mutants. Finally, we observe C2cd3 protein at the basal body, consistent with its essential function in ciliogenesis. Interestingly, the human ortholog for this gene lies in proximity to the critical regions of Meckel-Gruber syndrome 2 (MKS2) and Joubert syndrome 2 (JBTS2), making it a potential candidate for these two human genetic disorders. PMID:19004860

  7. Temporal dissection of K-ras(G12D) mutant in vitro and in vivo using a regulatable K-ras(G12D) mouse allele.

    PubMed

    Wang, Zuoyun; Feng, Yan; Bardeesy, Nabeel; Bardessy, Nabeel; Wong, Kwok-Kin; Liu, Xin-Yuan; Ji, Hongbin

    2012-01-01

    Animal models which allow the temporal regulation of gene activities are valuable for dissecting gene function in tumorigenesis. Here we have constructed a conditional inducible estrogen receptor-K-ras(G12D) (ER-K-ras(G12D)) knock-in mice allele that allows us to temporally switch on or off the activity of K-ras oncogenic mutant through tamoxifen administration. In vitro studies using mice embryonic fibroblast (MEF) showed that a dose of tamoxifen at 0.05 µM works optimally for activation of ER-K-ras(G12D) independent of the gender status. Furthermore, tamoxifen-inducible activation of K-ras(G12D) promotes cell proliferation, anchor-independent growth, transformation as well as invasion, potentially via activation of downstream MAPK pathway and cell cycle progression. Continuous activation of K-ras(G12D) in vivo by tamoxifen treatment is sufficient to drive the neoplastic transformation of normal lung epithelial cells in mice. Tamoxifen withdrawal after the tumor formation results in apoptosis and tumor regression in mouse lungs. Taken together, these data have convincingly demonstrated that K-ras mutant is essential for neoplastic transformation and this animal model may provide an ideal platform for further detailed characterization of the role of K-ras oncogenic mutant during different stages of lung tumorigenesis.

  8. Altered Actions of Memantine and NMDA-Induced Currents in a New Grid2-Deleted Mouse Line

    PubMed Central

    Kumagai, Ayako; Fujita, Akira; Yokoyama, Tomoki; Nonobe, Yuki; Hasaba, Yasuhiro; Sasaki, Tsutomu; Itoh, Yumi; Koura, Minako; Suzuki, Osamu; Adachi, Shigeki; Ryo, Haruko; Kohara, Arihiro; Tripathi, Lokesh P.; Sanosaka, Masato; Fukushima, Toshiki; Takahashi, Hiroyuki; Kitagawa, Kazuo; Nagaoka, Yasuo; Kawahara, Hidehisa; Mizuguchi, Kenji; Nomura, Taisei; Matsuda, Junichiro; Tabata, Toshihide; Takemori, Hiroshi

    2014-01-01

    Memantine is a non-competitive antagonist of the N-methyl-d-aspartate (NMDA) receptor, and is an approved drug for the treatment of moderate-to-severe Alzheimer’s disease. We identified a mouse strain with a naturally occurring mutation and an ataxic phenotype that presents with severe leg cramps. To investigate the phenotypes of these mutant mice, we screened several phenotype-modulating drugs and found that memantine (10 mg/kg) disrupted the sense of balance in the mutants. Moreover, the mutant mice showed an attenuated optokinetic response (OKR) and impaired OKR learning, which was also observed in wild-type mice treated with memantine. Microsatellite analyses indicated that the Grid2 gene-deletion is responsible for these phenotypes. Patch-clamp analysis showed a relatively small change in NMDA-dependent current in cultured granule cells from Grid2 gene-deleted mice, suggesting that GRID2 is important for correct NMDA receptor function. In general, NMDA receptors are activated after the activation of non-NMDA receptors, such as AMPA receptors, and AMPA receptor dysregulation also occurs in Grid2 mutant mice. Indeed, the AMPA treatment enhanced memantine susceptibility in wild-type mice, which was indicated by balance sense and OKR impairments. The present study explores a new role for GRID2 and highlights the adverse effects of memantine in different genetic backgrounds. PMID:25513882

  9. Striatopallidal dysfunction underlies repetitive behavior in Shank3-deficient model of autism

    PubMed Central

    Wang, Wenting; Li, Chenchen; Chen, Qian; Hawrot, James; Yao, Annie Y.; Gao, Xian; Lu, Congyi; Zang, Ying; Lyman, Katherine; Wang, Dongqing; Guo, Baolin; Wu, Shengxi; Gerfen, Charles R.; Fu, Zhanyan

    2017-01-01

    The postsynaptic scaffolding protein SH3 and multiple ankyrin repeat domains 3 (SHANK3) is critical for the development and function of glutamatergic synapses. Disruption of the SHANK3-encoding gene has been strongly implicated as a monogenic cause of autism, and Shank3 mutant mice show repetitive grooming and social interaction deficits. Although basal ganglia dysfunction has been proposed to underlie repetitive behaviors, few studies have provided direct evidence to support this notion and the exact cellular mechanisms remain largely unknown. Here, we utilized the Shank3B mutant mouse model of autism to investigate how Shank3 mutation may differentially affect striatonigral (direct pathway) and striatopallidal (indirect pathway) medium spiny neurons (MSNs) and its relevance to repetitive grooming behavior in Shank3B mutant mice. We found that Shank3 deletion preferentially affects synapses onto striatopallidal MSNs. Striatopallidal MSNs showed profound defects, including alterations in synaptic transmission, synaptic plasticity, and spine density. Importantly, the repetitive grooming behavior was rescued by selectively enhancing the striatopallidal MSN activity via a Gq-coupled human M3 muscarinic receptor (hM3Dq), a type of designer receptors exclusively activated by designer drugs (DREADD). Our findings directly demonstrate the existence of distinct changes between 2 striatal pathways in a mouse model of autism and indicate that the indirect striatal pathway disruption might play a causative role in repetitive behavior of Shank3B mutant mice. PMID:28414301

  10. Oncogene cooperation in tumor maintenance and tumor recurrence in mouse mammary tumors induced by Myc and mutant Kras.

    PubMed

    Podsypanina, Katrina; Politi, Katerina; Beverly, Levi J; Varmus, Harold E

    2008-04-01

    Most, if not all, cancers are composed of cells in which more than one gene has a cancer-promoting mutation. Although recent evidence has shown the benefits of therapies targeting a single mutant protein, little attention has been given to situations in which experimental tumors are induced by multiple cooperating oncogenes. Using combinations of doxycycline-inducible and constitutive Myc and mutant Kras transgenes expressed in mouse mammary glands, we show that tumors induced by the cooperative actions of two oncogenes remain dependent on the activity of a single oncogene. Deinduction of either oncogene individually, or both oncogenes simultaneously, led to partial or complete tumor regression. Prolonged remission followed deinduction of Kras(G12D) in the context of continued Myc expression, deinduction of a MYC transgene with continued expression of mutant Kras produced modest effects on life extension, whereas simultaneous deinduction of both MYC and Kras(G12D) transgenes further improved survival. Disease relapse after deinduction of both oncogenes was associated with reactivation of both oncogenic transgenes in all recurrent tumors, often in conjunction with secondary somatic mutations in the tetracycline transactivator transgene, MMTV-rtTA, rendering gene expression doxycycline-independent. These results demonstrate that tumor viability is maintained by each gene in a combination of oncogenes and that targeted approaches will also benefit from combination therapies.

  11. The mouse homeobox gene Noto regulates node morphogenesis, notochordal ciliogenesis, and left–right patterning

    PubMed Central

    Beckers, Anja; Alten, Leonie; Viebahn, Christoph; Andre, Philipp; Gossler, Achim

    2007-01-01

    The mouse homeobox gene Noto represents the homologue of zebrafish floating head (flh) and is expressed in the organizer node and in the nascent notochord. Previous analyses suggested that Noto is required exclusively for the formation of the caudal part of the notochord. Here, we show that Noto is also essential for node morphogenesis, controlling ciliogenesis in the posterior notochord, and the establishment of laterality, whereas organizer functions in anterior–posterior patterning are apparently not compromised. In mutant embryos, left–right asymmetry of internal organs and expression of laterality markers was randomized. Mutant posterior notochord regions were variable in size and shape, cilia were shortened with highly irregular axonemal microtubuli, and basal bodies were, in part, located abnormally deep in the cytoplasm. The transcription factor Foxj1, which regulates the dynein gene Dnahc11 and is required for the correct anchoring of basal bodies in lung epithelial cells, was down-regulated in mutant nodes. Likewise, the transcription factor Rfx3, which regulates cilia growth, was not expressed in Noto mutants, and various other genes important for cilia function or assembly such as Dnahc5 and Nphp3 were down-regulated. Our results establish Noto as an essential regulator of node morphogenesis and ciliogenesis in the posterior notochord, and suggest Noto acts upstream of Foxj1 and Rfx3. PMID:17884984

  12. Treadmill performance of mice with cerebellar lesions: 1. Purkinje cell degeneration mutant mice.

    PubMed

    Le Marec, N; Lalonde, R

    1998-02-01

    The purpose of this study was to evaluate the sensorimotor skills of a spontaneous mouse mutant, Purkinje cell degeneration (PCD), marked by selective cerebellar cortical atrophy on a treadmill activated at 1 of 2 speeds and at 1 of 3 slopes, requiring forward movements to avoid footshocks. There was no difference in latencies before falling from the belt between PCD mutants and controls during acquisition. However, PCD mutants were impaired on the fast treadmill during retention, implicating the cerebellum in the memory of a motor skill. During acquisition of the slow treadmill task at the 2 lowest slopes of inclination, PCD mutants spent more time walking than controls, an indication of a decreased ability of coordinating whole body movements. The same pattern of higher walking time on the slow treadmill in PCD mutants was evident during retention. These results indicate that the cerebellar cortex is involved in the acquisition and the retention of a task requiring equilibrium.

  13. Life without complex I: proteome analyses of an Arabidopsis mutant lacking the mitochondrial NADH dehydrogenase complex

    PubMed Central

    Fromm, Steffanie; Senkler, Jennifer; Eubel, Holger; Peterhänsel, Christoph; Braun, Hans-Peter

    2016-01-01

    The mitochondrial NADH dehydrogenase complex (complex I) is of particular importance for the respiratory chain in mitochondria. It is the major electron entry site for the mitochondrial electron transport chain (mETC) and therefore of great significance for mitochondrial ATP generation. We recently described an Arabidopsis thaliana double-mutant lacking the genes encoding the carbonic anhydrases CA1 and CA2, which both form part of a plant-specific ‘carbonic anhydrase domain’ of mitochondrial complex I. The mutant lacks complex I completely. Here we report extended analyses for systematically characterizing the proteome of the ca1ca2 mutant. Using various proteomic tools, we show that lack of complex I causes reorganization of the cellular respiration system. Reduced electron entry into the respiratory chain at the first segment of the mETC leads to induction of complexes II and IV as well as alternative oxidase. Increased electron entry at later segments of the mETC requires an increase in oxidation of organic substrates. This is reflected by higher abundance of proteins involved in glycolysis, the tricarboxylic acid cycle and branched-chain amino acid catabolism. Proteins involved in the light reaction of photosynthesis, the Calvin cycle, tetrapyrrole biosynthesis, and photorespiration are clearly reduced, contributing to the significant delay in growth and development of the double-mutant. Finally, enzymes involved in defense against reactive oxygen species and stress symptoms are much induced. These together with previously reported insights into the function of plant complex I, which were obtained by analysing other complex I mutants, are integrated in order to comprehensively describe ‘life without complex I’. PMID:27122571

  14. Dysregulation of Ca(v)1.4 channels disrupts the maturation of photoreceptor synaptic ribbons in congenital stationary night blindness type 2.

    PubMed

    Liu, Xiaoni; Kerov, Vasily; Haeseleer, Françoise; Majumder, Anurima; Artemyev, Nikolai; Baker, Sheila A; Lee, Amy

    2013-01-01

    Mutations in the gene encoding Cav 1.4, CACNA1F, are associated with visual disorders including X-linked incomplete congenital stationary night blindness type 2 (CSNB2). In mice lacking Cav 1.4 channels, there are defects in the development of "ribbon" synapses formed between photoreceptors (PRs) and second-order neurons. However, many CSNB2 mutations disrupt the function rather than expression of Cav 1.4 channels. Whether defects in PR synapse development due to altered Cav 1.4 function are common features contributing to the pathogenesis of CSNB2 is unknown. To resolve this issue, we profiled changes in the subcellular distribution of Cav 1.4 channels and synapse morphology during development in wild-type (WT) mice and mouse models of CSNB2. Using Cav 1.4-selective antibodies, we found that Cav 1.4 channels associate with ribbon precursors early in development and are concentrated at both rod and cone PR synapses in the mature retina. In mouse models of CSNB2 in which the voltage-dependence of Cav 1.4 activation is either enhanced (Cav 1.4I756T) or inhibited (CaBP4 KO), the initial stages of PR synaptic ribbon formation are largely unaffected. However, after postnatal day 13, many PR ribbons retain the immature morphology. This synaptic abnormality corresponds in severity to the defect in synaptic transmission in the adult mutant mice, suggesting that lack of sufficient mature synapses contributes to vision impairment in Cav 1.4I756T and CaBP4 KO mice. Our results demonstrate the importance of proper Cav 1.4 function for efficient PR synapse maturation, and that dysregulation of Cav 1.4 channels in CSNB2 may have synaptopathic consequences.

  15. A KRAS GTPase K104Q Mutant Retains Downstream Signaling by Offsetting Defects in Regulation.

    PubMed

    Yin, Guowei; Kistler, Samantha; George, Samuel D; Kuhlmann, Nora; Garvey, Leslie; Huynh, Minh; Bagni, Rachel K; Lammers, Michael; Der, Channing J; Campbell, Sharon L

    2017-03-17

    The KRAS GTPase plays a critical role in the control of cellular growth. The activity of KRAS is regulated by guanine nucleotide exchange factors (GEFs), GTPase-activating proteins (GAPs), and also post-translational modification. Lysine 104 in KRAS can be modified by ubiquitylation and acetylation, but the role of this residue in intrinsic KRAS function has not been well characterized. We find that lysine 104 is important for GEF recognition, because mutations at this position impaired GEF-mediated nucleotide exchange. Because the KRAS K104Q mutant has recently been employed as an acetylation mimetic, we conducted a series of studies to evaluate its in vitro and cell-based properties. Herein, we found that KRAS K104Q exhibited defects in both GEF-mediated exchange and GAP-mediated GTP hydrolysis, consistent with NMR-detected structural perturbations in localized regions of KRAS important for recognition of these regulatory proteins. Despite the partial defect in both GEF and GAP regulation, KRAS K104Q did not alter steady-state GTP-bound levels or the ability of the oncogenic KRAS G12V mutant to cause morphologic transformation of NIH 3T3 mouse fibroblasts and of WT KRAS to rescue the growth defect of mouse embryonic fibroblasts deficient in all Ras genes. We conclude that the KRAS K104Q mutant retains both WT and mutant KRAS function, probably due to offsetting defects in recognition of factors that up-regulate (GEF) and down-regulate (GAP) RAS activity. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Novel phenotype of mouse spermatozoa following deletion of nine β-defensin genes

    PubMed Central

    Dorin, Julia R

    2015-01-01

    β-defensin peptides are a large family of antimicrobial peptides. Although they kill microbes in vitro and interact with immune cells, the precise role of these genes in vivo remains uncertain. Despite their inducible presence at mucosal surfaces, their main site of expression is the epididymis. Recent evidence suggests that a major function of these peptides is in sperm maturation. In addition to previous work suggesting this, work at the MRC Human Genetics Unit, Edinburgh, has shown that homozygous deletion of a cluster of nine β-defensin genes in the mouse results in profound male sterility. The spermatozoa derived from the mutants had reduced motility and increased fragility. Epididymal spermatozoa isolated from the cauda region of the homozygous mutants demonstrated precocious capacitation and increased spontaneous acrosome reactions compared with those from wild-types. Despite this, these mutant spermatozoa had reduced ability to bind to the zona pellucida of oocytes. Ultrastructural examination revealed a disintegration of the microtubule structure of mutant-derived spermatozoa isolated from the epididymal cauda region, but not from the caput. Consistent with premature acrosome reaction and hyperactivation, spermatozoa from mutant animals had significantly increased intracellular calcium content. This work demonstrates that in vivo β-defensins are essential for successful sperm maturation, and that their disruption alters intracellular calcium levels, which most likely leads to premature activation and spontaneous acrosome reactions that result in hyperactivation and loss of microtubule structure of the axoneme. Determining which of the nine genes are responsible for the phenotype and the relevance to human sperm function is important for future work on male infertility. PMID:26262774

  17. Novel phenotype of mouse spermatozoa following deletion of nine β-defensin genes.

    PubMed

    Dorin, Julia R

    2015-01-01

    β-defensin peptides are a large family of antimicrobial peptides. Although they kill microbes in vitro and interact with immune cells, the precise role of these genes in vivo remains uncertain. Despite their inducible presence at mucosal surfaces, their main site of expression is the epididymis. Recent evidence suggests that a major function of these peptides is in sperm maturation. In addition to previous work suggesting this, work at the MRC Human Genetics Unit, Edinburgh, has shown that homozygous deletion of a cluster of nine β-defensin genes in the mouse results in profound male sterility. The spermatozoa derived from the mutants had reduced motility and increased fragility. Epididymal spermatozoa isolated from the cauda region of the homozygous mutants demonstrated precocious capacitation and increased spontaneous acrosome reactions compared with those from wild-types. Despite this, these mutant spermatozoa had reduced ability to bind to the zona pellucida of oocytes. Ultrastructural examination revealed a disintegration of the microtubule structure of mutant-derived spermatozoa isolated from the epididymal cauda region, but not from the caput. Consistent with premature acrosome reaction and hyperactivation, spermatozoa from mutant animals had significantly increased intracellular calcium content. This work demonstrates that in vivo β-defensins are essential for successful sperm maturation, and that their disruption alters intracellular calcium levels, which most likely leads to premature activation and spontaneous acrosome reactions that result in hyperactivation and loss of microtubule structure of the axoneme. Determining which of the nine genes are responsible for the phenotype and the relevance to human sperm function is important for future work on male infertility.

  18. Umami Responses in Mouse Taste Cells Indicate More than One Receptor

    PubMed Central

    Maruyama, Yutaka; Pereira, Elizabeth; Margolskee, Robert F.; Chaudhari, Nirupa; Roper, Stephen D.

    2013-01-01

    A number of gustatory receptors have been proposed to underlie umami, the taste of L-glutamate, and certain other amino acids and nucleotides. However, the response profiles of these cloned receptors have not been validated against responses recorded from taste receptor cells that are the native detectors of umami taste. We investigated umami taste responses in mouse circumvallate taste buds in an intact slice preparation, using confocal calcium imaging. Approximately 5% of taste cells selectively responded to L-glutamate when it was focally applied to the apical chemosensitive tips of receptor cells. The concentration–response range for L-glutamate fell approximately within the physiologically relevant range for taste behavior in mice, namely 10 mM and above. Inosine monophosphate enhanced taste cell responses to L-glutamate, a characteristic feature of umami taste. Using pharmacological agents, ion substitution, and immunostaining, we showed that intracellular pathways downstream of receptor activation involve phospholipase C β2. Each of the above features matches those predicted by studies of cloned and expressed receptors. However, the ligand specificity of each of the proposed umami receptors [taste metabotropic glutamate receptor 4, truncated metabotropic glutamate receptor 1, or taste receptor 1 (T1R1) and T1R3 dimers], taken alone, did not appear to explain the taste responses observed in mouse taste cells. Furthermore, umami responses were still observed in mutant mice lacking T1R3. A full explanation of umami taste transduction may involve novel combinations of the proposed receptors and/or as-yet-undiscovered taste receptors. PMID:16495449

  19. Microhemorrhage-associated tissue iron enhances the risk for Aspergillus fumigatus invasion in a mouse model of airway transplantation

    PubMed Central

    Hsu, Joe L.; Manouvakhova, Olga V.; Clemons, Karl V.; Inayathullah, Mohammed; Tu, Allen B.; Sobel, Raymond A.; Tian, Amy; Nazik, Hasan; Pothineni, Venkata R.; Pasupneti, Shravani; Jiang, Xinguo; Dhillon, Gundeep S.; Bedi, Harmeet; Rajadas, Jayakumar; Haas, Hubertus; Aurelian, Laure; Stevens, David A.; Nicolls, Mark R.

    2018-01-01

    Invasive pulmonary disease due to the mold Aspergillus fumigatus can be life-threatening in lung transplant recipients, but the risk factors remain poorly understood. To study this process, we used a tracheal allograft mouse model that recapitulates large airway changes observed in patients undergoing lung transplantation. We report that microhemorrhage-related iron content may be a major determinant of A. fumigatus invasion and, consequently, its virulence. Invasive growth was increased during progressive alloimmune-mediated graft rejection associated with high concentrations of ferric iron in the graft. The role of iron in A. fumigatus invasive growth was further confirmed by showing that this invasive phenotype was increased in tracheal transplants from donor mice lacking the hemochromatosis gene (Hfe−/−). The invasive phenotype was also increased in mouse syngrafts treated with topical iron solution and in allograft recipients receiving deferoxamine, a chelator that increases iron bioavailability to the mold. The invasive growth of the iron-intolerant A. fumigatus double-knockout mutant (ΔsreA/ΔcccA) was lower than that of the wild-type mold. Alloimmune-mediated microvascular damage and iron overload did not appear to impair the host’s immune response. In human lung transplant recipients, positive staining for iron in lung transplant tissue was more commonly seen in endobronchial biopsy sections from transplanted airways than in biopsies from the patients’ own airways. Collectively, these data identify iron as a major determinant of A. fumigatus invasive growth and a potential target to treat or prevent A. fumigatus infections in lung transplant patients. PMID:29467298

  20. The proinflammatory cytokines IL-1beta and TNF-alpha induce the expression of Synoviolin, an E3 ubiquitin ligase, in mouse synovial fibroblasts via the Erk1/2-ETS1 pathway.

    PubMed

    Gao, Beixue; Calhoun, Karen; Fang, Deyu

    2006-01-01

    The overgrowth of synovial tissues is critical in the pathogenesis of rheumatoid arthritis (RA). The expression of Synoviolin (SYN), an E3 ubiquitin ligase, is upregulated in arthritic synovial fibroblasts and is involved in the overgrowth of synovial cells during RA. However, the molecular mechanisms involved in the elevated SYN expression are not known. Here, we found that SYN expression is elevated in the synovial fibroblasts from mice with collagen-induced arthritis (CIA). The proinflammatory cytokines interleukin (IL)-1beta and tumor necrosis factor-alpha (TNF-alpha) induce SYN expression in mouse synovial fibroblasts. Cultivation of mouse synovial fibroblasts with IL-1beta activates mitogen-activated protein kinases, including extra-cellular signal-regulated kinase (Erk), JNK (c-Jun N-terminal kinase), and p38, while only Erk-specific inhibitor blocks IL-1beta-induced SYN expression. Expression of transcription factor ETS1 further enhances IL-1beta-induced SYN expression. The dominant negative ETS1 mutant lacking the transcription activation domain inhibits SYN expression in a dose-dependent manner. The activation of both Erk1/2 and ETS1 is increased in the CIA synovial fibroblasts. Inhibition of Erk activation reduces ETS1 phosphorylation and SYN expression. Our data indicate that the proinflammatory cytokines IL-1beta and TNF-alpha induce the overgrowth of synovial cells by upregulating SYN expression via the Erk1/-ETS1 pathway. These molecules or pathways could therefore be potential targets for the treatment of RA.

  1. The proinflammatory cytokines IL-1β and TNF-α induce the expression of Synoviolin, an E3 ubiquitin ligase, in mouse synovial fibroblasts via the Erk1/2-ETS1 pathway

    PubMed Central

    Gao, Beixue; Calhoun, Karen; Fang, Deyu

    2006-01-01

    The overgrowth of synovial tissues is critical in the pathogenesis of rheumatoid arthritis (RA). The expression of Synoviolin (SYN), an E3 ubiquitin ligase, is upregulated in arthritic synovial fibroblasts and is involved in the overgrowth of synovial cells during RA. However, the molecular mechanisms involved in the elevated SYN expression are not known. Here, we found that SYN expression is elevated in the synovial fibroblasts from mice with collagen-induced arthritis (CIA). The proinflammatory cytokines interleukin (IL)-1β and tumor necrosis factor-α (TNF-α) induce SYN expression in mouse synovial fibroblasts. Cultivation of mouse synovial fibroblasts with IL-1β activates mitogen-activated protein kinases, including extra-cellular signal-regulated kinase (Erk), JNK (c-Jun N-terminal kinase), and p38, while only Erk-specific inhibitor blocks IL-1β-induced SYN expression. Expression of transcription factor ETS1 further enhances IL-1β-induced SYN expression. The dominant negative ETS1 mutant lacking the transcription activation domain inhibits SYN expression in a dose-dependent manner. The activation of both Erk1/2 and ETS1 is increased in the CIA synovial fibroblasts. Inhibition of Erk activation reduces ETS1 phosphorylation and SYN expression. Our data indicate that the proinflammatory cytokines IL-1β and TNF-α induce the overgrowth of synovial cells by upregulating SYN expression via the Erk1/-ETS1 pathway. These molecules or pathways could therefore be potential targets for the treatment of RA. PMID:17105652

  2. Inactivation of Cellobiose Dehydrogenases Modifies the Cellulose Degradation Mechanism of Podospora anserina.

    PubMed

    Tangthirasunun, Narumon; Navarro, David; Garajova, Sona; Chevret, Didier; Tong, Laetitia Chan Ho; Gautier, Valérie; Hyde, Kevin D; Silar, Philippe; Berrin, Jean-Guy

    2017-01-15

    Conversion of biomass into high-value products, including biofuels, is of great interest to developing sustainable biorefineries. Fungi are an inexhaustible source of enzymes to degrade plant biomass. Cellobiose dehydrogenases (CDHs) play an important role in the breakdown through synergistic action with fungal lytic polysaccharide monooxygenases (LPMOs). The three CDH genes of the model fungus Podospora anserina were inactivated, resulting in single and multiple CDH mutants. We detected almost no difference in growth and fertility of the mutants on various lignocellulose sources, except on crystalline cellulose, on which a 2-fold decrease in fertility of the mutants lacking P. anserina CDH1 (PaCDH1) and PaCDH2 was observed. A striking difference between wild-type and mutant secretomes was observed. The secretome of the mutant lacking all CDHs contained five beta-glucosidases, whereas the wild type had only one. P. anserina seems to compensate for the lack of CDH with secretion of beta-glucosidases. The addition of P. anserina LPMO to either the wild-type or mutant secretome resulted in improvement of cellulose degradation in both cases, suggesting that other redox partners present in the mutant secretome provided electrons to LPMOs. Overall, the data showed that oxidative degradation of cellulosic biomass relies on different types of mechanisms in fungi. Plant biomass degradation by fungi is a complex process involving dozens of enzymes. The roles of each enzyme or enzyme class are not fully understood, and utilization of a model amenable to genetic analysis should increase the comprehension of how fungi cope with highly recalcitrant biomass. Here, we report that the cellobiose dehydrogenases of the model fungus Podospora anserina enable it to consume crystalline cellulose yet seem to play a minor role on actual substrates, such as wood shavings or miscanthus. Analysis of secreted proteins suggests that Podospora anserina compensates for the lack of cellobiose dehydrogenase by increasing beta-glucosidase expression and using an alternate electron donor for LPMO. Copyright © 2016 American Society for Microbiology.

  3. Inactivation of Cellobiose Dehydrogenases Modifies the Cellulose Degradation Mechanism of Podospora anserina

    PubMed Central

    Tangthirasunun, Narumon; Navarro, David; Garajova, Sona; Chevret, Didier; Tong, Laetitia Chan Ho; Gautier, Valérie; Hyde, Kevin D.

    2016-01-01

    ABSTRACT Conversion of biomass into high-value products, including biofuels, is of great interest to developing sustainable biorefineries. Fungi are an inexhaustible source of enzymes to degrade plant biomass. Cellobiose dehydrogenases (CDHs) play an important role in the breakdown through synergistic action with fungal lytic polysaccharide monooxygenases (LPMOs). The three CDH genes of the model fungus Podospora anserina were inactivated, resulting in single and multiple CDH mutants. We detected almost no difference in growth and fertility of the mutants on various lignocellulose sources, except on crystalline cellulose, on which a 2-fold decrease in fertility of the mutants lacking P. anserina CDH1 (PaCDH1) and PaCDH2 was observed. A striking difference between wild-type and mutant secretomes was observed. The secretome of the mutant lacking all CDHs contained five beta-glucosidases, whereas the wild type had only one. P. anserina seems to compensate for the lack of CDH with secretion of beta-glucosidases. The addition of P. anserina LPMO to either the wild-type or mutant secretome resulted in improvement of cellulose degradation in both cases, suggesting that other redox partners present in the mutant secretome provided electrons to LPMOs. Overall, the data showed that oxidative degradation of cellulosic biomass relies on different types of mechanisms in fungi. IMPORTANCE Plant biomass degradation by fungi is a complex process involving dozens of enzymes. The roles of each enzyme or enzyme class are not fully understood, and utilization of a model amenable to genetic analysis should increase the comprehension of how fungi cope with highly recalcitrant biomass. Here, we report that the cellobiose dehydrogenases of the model fungus Podospora anserina enable it to consume crystalline cellulose yet seem to play a minor role on actual substrates, such as wood shavings or miscanthus. Analysis of secreted proteins suggests that Podospora anserina compensates for the lack of cellobiose dehydrogenase by increasing beta-glucosidase expression and using an alternate electron donor for LPMO. PMID:27836848

  4. The chromosomal mapping of four genes encoding winged helix proteins expressed early in mouse development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Labosky, P.A.; Sakaki, Hiroshi; Hogan, B.L.M.

    1996-06-01

    Members of the winged helix family of transcription factors are required for the normal embryonic development of the mouse. Using the interspecific backcross panel from The Jackson Laboratory, we have determined the chromosomal locations of four genes that encode winged helix containing proteins. Mf1 was assigned to mouse Chromosome 8, Mf2 to Chromosome 4, Mf3 to Chromosome 9, and Mf4 to Chromosome 13. Since Mf3 is located in a region of Chromosome 9 containing many well-characterized mouse mutations such as short ear (se), ashen (ash), and dilute (d), we have analyzed deletion mutants to determine the location of Mf3 moremore » precisely. 14 refs., 3 figs.« less

  5. Targeted Disruption of Mouse Yin Yang 1 Transcription Factor Results in Peri-Implantation Lethality

    PubMed Central

    Donohoe, Mary E.; Zhang, Xiaolin; McGinnis, Lynda; Biggers, John; Li, En; Shi, Yang

    1999-01-01

    Yin Yang 1 (YY1) is a zinc finger-containing transcription factor and a target of viral oncoproteins. To determine the biological role of YY1 in mammalian development, we generated mice deficient for YY1 by gene targeting. Homozygosity for the mutated YY1 allele results in embryonic lethality in the mouse. YY1 mutants undergo implantation and induce uterine decidualization but rapidly degenerate around the time of implantation. A subset of YY1 heterozygote embryos are developmentally retarded and exhibit neurulation defects, suggesting that YY1 may have additional roles during later stages of mouse embryogenesis. Our studies demonstrate an essential function for YY1 in the development of the mouse embryo. PMID:10490658

  6. Development of mice without Cip/Kip CDK inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tateishi, Yuki; Matsumoto, Akinobu; Kanie, Tomoharu

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer Mice lacking Cip/Kip CKIs (p21, p27, and p57) survive until embryonic day 13.5. Black-Right-Pointing-Pointer Proliferation of MEFs lacking all three Cip/Kip CKIs appears unexpectedly normal. Black-Right-Pointing-Pointer CDK2 kinase activity of the triple mutant MEFs is increased in G0 phase. -- Abstract: Timely exit of cells from the cell cycle is essential for proper cell differentiation during embryogenesis. Cyclin-dependent kinase (CDK) inhibitors (CKIs) of the Cip/Kip family (p21, p27, and p57) are negative regulators of cell cycle progression and are thought to be essential for development. However, the extent of functional redundancy among Cip/Kip family members has remained largelymore » unknown. We have now generated mice that lack all three Cip/Kip CKIs (TKO mice) and compared them with those lacking each possible pair of these proteins (DKO mice). We found that the TKO embryos develop normally until midgestation but die around embryonic day (E) 13.5, slightly earlier than p27/p57 DKO embryos. The TKO embryos manifested morphological abnormalities as well as increased rates of cell proliferation and apoptosis in the placenta and lens that were essentially indistinguishable from those of p27/p57 DKO mice. Unexpectedly, the proliferation rate and cell cycle profile of mouse embryonic fibroblasts (MEFs) lacking all three Cip/Kip CKIs did not differ substantially from those of control MEFs. The abundance and kinase activity of CDK2 were markedly increased, whereas CDK4 activity and cyclin D1 abundance were decreased, in both p27/p57 DKO and TKO MEFs during progression from G{sub 0} to S phase compared with those in control MEFs. The extents of the increase in CDK2 activity and the decrease in CDK4 activity and cyclin D1 abundance were greater in TKO MEFs than in p27/p57 DKO MEFs. These results suggest that p27 and p57 play an essential role in mouse development after midgestation, and that p21 plays only an auxiliary role in normal development (although it is thought to be a key player in the response to DNA damage).« less

  7. Spontaneous and engineered deletions in the 3' noncoding region of tick-borne encephalitis virus: construction of highly attenuated mutants of a flavivirus.

    PubMed

    Mandl, C W; Holzmann, H; Meixner, T; Rauscher, S; Stadler, P F; Allison, S L; Heinz, F X

    1998-03-01

    The flavivirus genome is a positive-strand RNA molecule containing a single long open reading frame flanked by noncoding regions (NCR) that mediate crucial processes of the viral life cycle. The 3' NCR of tick-borne encephalitis (TBE) virus can be divided into a variable region that is highly heterogeneous in length among strains of TBE virus and in certain cases includes an internal poly(A) tract and a 3'-terminal conserved core element that is believed to fold as a whole into a well-defined secondary structure. We have now investigated the genetic stability of the TBE virus 3' NCR and its influence on viral growth properties and virulence. We observed spontaneous deletions in the variable region during growth of TBE virus in cell culture and in mice. These deletions varied in size and location but always included the internal poly(A) element of the TBE virus 3' NCR and never extended into the conserved 3'-terminal core element. Subsequently, we constructed specific deletion mutants by using infectious cDNA clones with the entire variable region and increasing segments of the core element removed. A virus mutant lacking the entire variable region was indistinguishable from wild-type virus with respect to cell culture growth properties and virulence in the mouse model. In contrast, even small extensions of the deletion into the core element led to significant biological effects. Deletions extending to nucleotides 10826, 10847, and 10870 caused distinct attenuation in mice without measurable reduction of cell culture growth properties, which, however, were significantly restricted when the deletion was extended to nucleotide 10919. An even larger deletion (to nucleotide 10994) abolished viral viability. In spite of their high degree of attenuation, these mutants efficiently induced protective immune responses even at low inoculation doses. Thus, 3'-NCR deletions represent a useful technique for achieving stable attenuation of flaviviruses that can be included in the rational design of novel flavivirus live vaccines.

  8. Distinct CCR2(+) Gr1(+) cells control growth of the Yersinia pestis ΔyopM mutant in liver and spleen during systemic plague.

    PubMed

    Ye, Zhan; Uittenbogaard, Annette M; Cohen, Donald A; Kaplan, Alan M; Ambati, Jayakrishna; Straley, Susan C

    2011-02-01

    We are using a systemic plague model to identify the cells and pathways that are undermined by the virulence protein YopM of the plague bacterium Yersinia pestis. In this study, we pursued previous findings that Gr1(+) cells are required to selectively limit growth of ΔyopM Y. pestis and that CD11b(+) cells other than polymorphonuclear leukocytes (PMNs) are selectively lost in spleens infected with parent Y. pestis. When PMNs were ablated from mice, ΔyopM Y. pestis grew as well as the parent strain in liver but not in spleen, showing that these cells are critical for controlling growth of the mutant in liver but not spleen. In mice lacking expression of the chemokine receptor CCR2, wild-type growth was restored to ΔyopM Y. pestis in both organs. In spleen, the Gr1(+) cells differentially recruited by parent and ΔyopM Y. pestis infections were CCR2(+) Gr1(+) CD11b(+) CD11c(Lo-Int) MAC3(+) iNOS(+) (inducible nitric oxide synthase-positive) inflammatory dendritic cells (iDCs), and their recruitment to spleen from blood was blocked when YopM was present in the infecting strain. Consistent with influx of iDCs being affected by YopM in spleen, the growth defect of the ΔyopM mutant was relieved by the parent Y. pestis strain in a coinfection assay in which the parent strain could affect the fate of the mutant in trans. In a mouse model of bubonic plague, CCR2 also was shown to be required for ΔyopM Y. pestis to show wild-type growth in skin. The data imply that YopM's pathogenic effect indirectly undermines signaling through CCR2. We propose a model for how YopM exerts its different effects in liver and spleen.

  9. Rat astrocytes are more supportive for mouse OPC self-renewal than mouse astrocytes in culture.

    PubMed

    Cheng, Xuejun; Xie, Binghua; Qi, Jiajun; Zhao, Xiaofeng; Zhang, Zunyi; Qiu, Mengsheng; Yang, Junlin

    2017-09-01

    Mouse primary oligodendrocyte precursor cells (OPCs) are increasingly used to study the molecular mechanisms underlying the phenotype changes in oligodendrocyte differentiation and axonal myelination observed in transgenic or mutant mouse models. However, mouse OPCs are much more difficult to be isolated by the simple dissociation culture of brain tissues than their rat counterparts. To date, the mechanisms underlying the species difference in OPC preparation remain obscure. In this study, we showed that astrocytes from rats have a stronger effect than those from mouse in promoting OPC proliferation and survival in vitro. Mouse astrocytes displayed significantly weaker viability in culture and reduced potential in maintaining OPC self-renewal, as confirmed by culturing OPCs with conditioned media from rat or mouse astrocytes. These results explained the reason for why stratified cultures of OPCs and astrocytes are difficult to be achieved in mouse CNS tissues. Based on these findings, we adopted inactivated rat astrocytes as feeder cells to support the self-renewal of mouse cortical OPCs and preparation of high-purity mouse OPCs. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 907-916, 2017. © 2016 Wiley Periodicals, Inc.

  10. Developing bones are differentially affected by compromised skeletal muscle formation

    PubMed Central

    Nowlan, Niamh C.; Bourdon, Céline; Dumas, Gérard; Tajbakhsh, Shahragim; Prendergast, Patrick J.; Murphy, Paula

    2010-01-01

    Mechanical forces are essential for normal adult bone function and repair, but the impact of prenatal muscle contractions on bone development remains to be explored in depth in mammalian model systems. In this study, we analyze skeletogenesis in two ‘muscleless’ mouse mutant models in which the formation of skeletal muscle development is disrupted; Myf5nlacZ/nlacZ:MyoD−/− and Pax3Sp/Sp (Splotch). Ossification centers were found to be differentially affected in the muscleless limbs, with significant decreases in bone formation in the scapula, humerus, ulna and femur, but not in the tibia. In the scapula and humerus, the morphologies of ossification centers were abnormal in muscleless limbs. Histology of the humerus revealed a decreased extent of the hypertrophic zone in mutant limbs but no change in the shape of this region. The elbow joint was also found to be clearly affected with a dramatic reduction in the joint line, while no abnormalities were evident in the knee. The humeral deltoid tuberosity was significantly reduced in size in the Myf5nlacZ/nlacZ:MyoD−/− mutants while a change in shape but not in size was found in the humeral tuberosities of the Pax3Sp/Sp mutants. We also examined skeletal development in a ‘reduced muscle’ model, the Myf5nlacZ/+:MyoD−/− mutant, in which skeletal muscle forms but with reduced muscle mass. The reduced muscle phenotype appeared to have an intermediate effect on skeletal development, with reduced bone formation in the scapula and humerus compared to controls, but not in other rudiments. In summary, we have demonstrated that skeletal development is differentially affected by the lack of skeletal muscle, with certain rudiments and joints being more severely affected than others. These findings indicate that the response of skeletal progenitor cells to biophysical stimuli may depend upon their location in the embryonic limb, implying a complex interaction between mechanical forces and location-specific regulatory factors affecting bone and joint development. PMID:19948261

  11. Endosomal/Lysosomal Processing of Gangliosides Affects Neuronal Cholesterol Sequestration in Niemann-Pick Disease Type C

    PubMed Central

    Zhou, Sharon; Davidson, Cristin; McGlynn, Robert; Stephney, Gloria; Dobrenis, Kostantin; Vanier, Marie T.; Walkley, Steven U.

    2011-01-01

    Niemann-Pick disease type C (NPC) is a severe neurovisceral lysosomal storage disorder caused by defects in NPC1 or NPC2 proteins. Although numerous studies support the primacy of cholesterol storage, neurons of double-mutant mice lacking both NPC1 and an enzyme required for synthesis of all complex gangliosides (β1,4GalNAc transferase) have been reported to exhibit dramatically reduced cholesterol sequestration. Here we show that NPC2-deficient mice lacking this enzyme also exhibit reduced cholesterol, but that genetically restricting synthesis to only a-series gangliosides fully restores neuronal cholesterol storage to typical disease levels. Examining the subcellular locations of sequestered compounds in neurons lacking NPC1 or NPC2 by confocal microscopy revealed that cholesterol and the two principal storage gangliosides (GM2 and GM3) were not consistently co-localized within the same intracellular vesicles. To determine whether the lack of GM2 and GM3 co-localization was due to differences in synthetic versus degradative pathway expression, we generated mice lacking both NPC1 and lysosomal β-galactosidase, and therefore unable to generate GM2 and GM3 in lysosomes. Double mutants lacked both gangliosides, indicating that each is the product of endosomal/lysosomal processing. Unexpectedly, GM1 accumulation in double mutants increased compared to single mutants consistent with a direct role for NPC1 in ganglioside salvage. These studies provide further evidence that NPC1 and NPC2 proteins participate in endosomal/lysosomal processing of both sphingolipids and cholesterol. PMID:21708114

  12. Multidrug ATP-binding cassette transporters are essential for hepatic development of Plasmodium sporozoites.

    PubMed

    Rijpma, Sanna R; van der Velden, Maarten; González-Pons, Maria; Annoura, Takeshi; van Schaijk, Ben C L; van Gemert, Geert-Jan; van den Heuvel, Jeroen J M W; Ramesar, Jai; Chevalley-Maurel, Severine; Ploemen, Ivo H; Khan, Shahid M; Franetich, Jean-Francois; Mazier, Dominique; de Wilt, Johannes H W; Serrano, Adelfa E; Russel, Frans G M; Janse, Chris J; Sauerwein, Robert W; Koenderink, Jan B; Franke-Fayard, Blandine M

    2016-03-01

    Multidrug resistance-associated proteins (MRPs) belong to the C-family of ATP-binding cassette (ABC) transport proteins and are known to transport a variety of physiologically important compounds and to be involved in the extrusion of pharmaceuticals. Rodent malaria parasites encode a single ABC transporter subfamily C protein, whereas human parasites encode two: MRP1 and MRP2. Although associated with drug resistance, their biological function and substrates remain unknown. To elucidate the role of MRP throughout the parasite life cycle, Plasmodium berghei and Plasmodium falciparum mutants lacking MRP expression were generated. P. berghei mutants lacking expression of the single MRP as well as P. falciparum mutants lacking MRP1, MRP2 or both proteins have similar blood stage growth kinetics and drug-sensitivity profiles as wild type parasites. We show that MRP1-deficient parasites readily invade primary human hepatocytes and develop into mature liver stages. In contrast, both P. falciparum MRP2-deficient parasites and P. berghei mutants lacking MRP protein expression abort in mid to late liver stage development, failing to produce mature liver stages. The combined P. berghei and P. falciparum data are the first demonstration of a critical role of an ABC transporter during Plasmodium liver stage development. © 2015 John Wiley & Sons Ltd.

  13. Antisense oligonucleotide-mediated correction of transcriptional dysregulation is correlated with behavioral benefits in the YAC128 mouse model of Huntington's disease.

    PubMed

    Stanek, Lisa M; Yang, Wendy; Angus, Stuart; Sardi, Pablo S; Hayden, Michael R; Hung, Gene H; Bennett, C Frank; Cheng, Seng H; Shihabuddin, Lamya S

    2013-01-01

    Huntington's disease (HD) is a neurological disorder caused by mutations in the huntingtin (HTT) gene, the product of which leads to selective and progressive neuronal cell death in the striatum and cortex. Transcriptional dysregulation has emerged as a core pathologic feature in the CNS of human and animal models of HD. It is still unclear whether perturbations in gene expression are a consequence of the disease or importantly, contribute to the pathogenesis of HD. To examine if transcriptional dysregulation can be ameliorated with antisense oligonucleotides that reduce levels of mutant Htt and provide therapeutic benefit in the YAC128 mouse model of HD. Quantitative real-time PCR analysis was used to evaluate dysregulation of a subset of striatal genes in the YAC128 mouse model. Transcripts were then evaluated following ICV delivery of antisense oligonucleotides (ASO). Rota rod and Porsolt swim tests were used to evaluate phenotypic deficits in these mice following ASO treatment. Transcriptional dysregulation was detected in the YAC128 mouse model and appears to progress with age. ICV delivery of ASOs directed against mutant Htt resulted in reduction in mutant Htt levels and amelioration in behavioral deficits in the YAC128 mouse model. These improvements were correlated with improvements in the levels of several dysregulated striatal transcripts. The role of transcriptional dysregulation in the pathogenesis of Huntington's disease is not well understood, however, a wealth of evidence now strongly suggests that changes in transcriptional signatures are a prominent feature in the brains of both HD patients and animal models of the disease. Our study is the first to show that a therapeutic agent capable of improving an HD disease phenotype is concomitantly correlated with normalization of a subset of dysregulated striatal transcripts. Our data suggests that correction of these disease-altered transcripts may underlie, at least in part, the therapeutic efficacy shown associated with ASO-mediated correction of HD phenotypes and may provide a novel set of early biomarkers for evaluating future therapeutic concepts for HD.

  14. Prominent dominant negative effect of a mutant Fas molecule lacking death domain on cell-mediated induction of apoptosis.

    PubMed

    Yokota, Aya; Takeuchi, Emiko; Iizuka, Misao; Ikegami, Yuko; Takayama, Hajime; Shinohara, Nobukata

    2005-01-01

    Using a panel of transfectant B lymphoma cells expressing varying amounts of the mutant Fas together with the endogenous wild type Fas, semi-quantitative studies on the dominant negative effect of a murine mutant Fas molecule lacking death domain were carried out. In anti-Fas antibody-mediated induction of apoptosis, the mutant molecules exerted significant dominant-negative effect only when their expression level was comparable to or higher than that of wild type molecules, or when exposed to low amounts of the antibody. The inhibitory effect was accompanied by the failure in DISC formation in spite of Fas aggregation. When they were subjected to T cell-mediated Fas-based induction of apoptosis, however, the dominant negative effect was prominent such that the expression of even a small amount of the mutant molecules resulted in significant inhibition. Such a strong inhibitory effect explains the dominant phenotype of this type of mutant Fas molecules in ALPS heterozygous patients and also implies that the physiological effectors for Fas in vivo are cells, i.e., FasL-expressing activated T cells.

  15. Phosphoribosyl diphosphate synthetase-independent NAD de novo synthesis in Escherichia coli: a new phenotype of phosphate regulon mutants.

    PubMed Central

    Hove-Jensen, B

    1996-01-01

    Phosphoribosyl diphosphate-lacking (delta prs) mutant strains of Escherichia coli require NAD, guanosine, uridine, histidine, and tryptophan for growth. NAD is required by phosphoribosyl diphosphate-lacking mutants because of lack of one of the substrates for the quinolinate phosphoribosyltransferase reaction, an enzyme of the NAD de novo pathway. Several NAD-independent mutants of a host from which prs had been deleted were isolated; all of them were shown to have lesions in the pstSCAB-phoU operon, in which mutations lead to derepression of the Pho regulon. In addition NAD-independent growth was dependent on a functional quinolinate phosphoribosyltransferase. The prs suppressor mutations led to the synthesis of a new phosphoryl compound that may act as a precursor for a new NAD biosynthetic pathway. This compound may be synthesized by the product of an unknown phosphate starvation-inducible gene of the Pho regulon because the ability of pst or phoU mutations to suppress the NAD requirement requires PhoB, the transcriptional activator of the Pho regulon. PMID:8550505

  16. Vital and dispensable roles of Plasmodium multidrug resistance transporters during blood- and mosquito-stage development.

    PubMed

    Rijpma, Sanna R; van der Velden, Maarten; Annoura, Takeshi; Matz, Joachim M; Kenthirapalan, Sanketha; Kooij, Taco W A; Matuschewski, Kai; van Gemert, Geert-Jan; van de Vegte-Bolmer, Marga; Siebelink-Stoter, Rianne; Graumans, Wouter; Ramesar, Jai; Klop, Onny; Russel, Frans G M; Sauerwein, Robert W; Janse, Chris J; Franke-Fayard, Blandine M; Koenderink, Jan B

    2016-07-01

    Multidrug resistance (MDR) proteins belong to the B subfamily of the ATP Binding Cassette (ABC) transporters, which export a wide range of compounds including pharmaceuticals. In this study, we used reverse genetics to study the role of all seven Plasmodium MDR proteins during the life cycle of malaria parasites. Four P. berghei genes (encoding MDR1, 4, 6 and 7) were refractory to deletion, indicating a vital role during blood stage multiplication and validating them as potential targets for antimalarial drugs. Mutants lacking expression of MDR2, MDR3 and MDR5 were generated in both P. berghei and P. falciparum, indicating a dispensable role for blood stage development. Whereas P. berghei mutants lacking MDR3 and MDR5 had a reduced blood stage multiplication in vivo, blood stage growth of P. falciparum mutants in vitro was not significantly different. Oocyst maturation and sporozoite formation in Plasmodium mutants lacking MDR2 or MDR5 was reduced. Sporozoites of these P. berghei mutants were capable of infecting mice and life cycle completion, indicating the absence of vital roles during liver stage development. Our results demonstrate vital and dispensable roles of MDR proteins during blood stages and an important function in sporogony for MDR2 and MDR5 in both Plasmodium species. © 2016 John Wiley & Sons Ltd.

  17. Analysis of a Mouse α-Globin Gene Mutation Induced by Ethylnitrosourea

    PubMed Central

    Popp, R. A.; Bailiff, E. G.; Skow, L. C.; Johnson, F. M.; Lewis, Susan E.

    1983-01-01

    A DBA/2 mouse treated with ethylnitrosourea sired an offspring whose hemoglobin showed an extra band following starch gel electrophoresis. The variant hemoglobin migrated to a more cathodal position in starch gel. Isoelectric focusing indicated that chain 5 of the mutant hemoglobin migrated to a more cathodal position than the normal chain 5 from DBA/2 mice and that the other α-globin, chain 1, was not affected. On focusing gels the phenotype of the mutant allele, Hbay9, was expressed without dominance to normal chain 5, and Hbay9/Hbay9 homozygotes were fully viable in the laboratory. The molecular basis for the germinal mutation was investigated by analyzing the amino acid sequence of chain 5y9, the mutant form of α-chain 5. A single amino acid substitution (His → Leu) at position 89 was found in chain 5y9. We propose that ethylnitrosourea induced an A → T transversion in the histidine codon at position 89 (CAC → CTC). This mutation has apparently not been observed previously in humans, mice or other mammals, and its novel occurrence may be indicative of other unusual mutational events that do not ordinarily occur in the absence of specific mutagen exposure. PMID:6618166

  18. LINE-1 Mediated Insertion into Poc1a (Protein of Centriole 1 A) Causes Growth Insufficiency and Male Infertility in Mice

    PubMed Central

    Geister, Krista A.; Brinkmeier, Michelle L.; Cheung, Leonard Y.; Wendt, Jennifer; Oatley, Melissa J.; Burgess, Daniel L.; Kozloff, Kenneth M.; Cavalcoli, James D.; Oatley, Jon M.; Camper, Sally A.

    2015-01-01

    Skeletal dysplasias are a common, genetically heterogeneous cause of short stature that can result from disruptions in many cellular processes. We report the identification of the lesion responsible for skeletal dysplasia and male infertility in the spontaneous, recessive mouse mutant chagun. We determined that Poc1a, encoding protein of the centriole 1a, is disrupted by the insertion of a processed Cenpw cDNA, which is flanked by target site duplications, suggestive of a LINE-1 retrotransposon-mediated event. Mutant fibroblasts have impaired cilia formation and multipolar spindles. Male infertility is caused by defective spermatogenesis early in meiosis and progressive germ cell loss. Spermatogonial stem cell transplantation studies revealed that Poc1a is essential for normal function of both Sertoli cells and germ cells. The proliferative zone of the growth plate is small and disorganized because chondrocytes fail to re-align after cell division and undergo increased apoptosis. Poc1a and several other genes associated with centrosome function can affect the skeleton and lead to skeletal dysplasias and primordial dwarfisms. This mouse mutant reveals how centrosome dysfunction contributes to defects in skeletal growth and male infertility. PMID:26496357

  19. Phenotype detection in morphological mutant mice using deformation features.

    PubMed

    Roy, Sharmili; Liang, Xi; Kitamoto, Asanobu; Tamura, Masaru; Shiroishi, Toshihiko; Brown, Michael S

    2013-01-01

    Large-scale global efforts are underway to knockout each of the approximately 25,000 mouse genes and interpret their roles in shaping the mammalian embryo. Given the tremendous amount of data generated by imaging mutated prenatal mice, high-throughput image analysis systems are inevitable to characterize mammalian development and diseases. Current state-of-the-art computational systems offer only differential volumetric analysis of pre-defined anatomical structures between various gene-knockout mice strains. For subtle anatomical phenotypes, embryo phenotyping still relies on the laborious histological techniques that are clearly unsuitable in such big data environment. This paper presents a system that automatically detects known phenotypes and assists in discovering novel phenotypes in muCT images of mutant mice. Deformation features obtained from non-linear registration of mutant embryo to a normal consensus average image are extracted and analyzed to compute phenotypic and candidate phenotypic areas. The presented system is evaluated using C57BL/10 embryo images. All cases of ventricular septum defect and polydactyly, well-known to be present in this strain, are successfully detected. The system predicts potential phenotypic areas in the liver that are under active histological evaluation for possible phenotype of this mouse line.

  20. SLITRK6 mutations cause myopia and deafness in humans and mice

    PubMed Central

    Tekin, Mustafa; Chioza, Barry A.; Matsumoto, Yoshifumi; Diaz-Horta, Oscar; Cross, Harold E.; Duman, Duygu; Kokotas, Haris; Moore-Barton, Heather L.; Sakoori, Kazuto; Ota, Maya; Odaka, Yuri S.; Foster, Joseph; Cengiz, F. Basak; Tokgoz-Yilmaz, Suna; Tekeli, Oya; Grigoriadou, Maria; Petersen, Michael B.; Sreekantan-Nair, Ajith; Gurtz, Kay; Xia, Xia-Juan; Pandya, Arti; Patton, Michael A.; Young, Juan I.; Aruga, Jun; Crosby, Andrew H.

    2013-01-01

    Myopia is by far the most common human eye disorder that is known to have a clear, albeit poorly defined, heritable component. In this study, we describe an autosomal-recessive syndrome characterized by high myopia and sensorineural deafness. Our molecular investigation in 3 families led to the identification of 3 homozygous nonsense mutations (p.R181X, p.S297X, and p.Q414X) in SLIT and NTRK-like family, member 6 (SLITRK6), a leucine-rich repeat domain transmembrane protein. All 3 mutant SLITRK6 proteins displayed defective cell surface localization. High-resolution MRI of WT and Slitrk6-deficient mouse eyes revealed axial length increase in the mutant (the endophenotype of myopia). Additionally, mutant mice exhibited auditory function deficits that mirrored the human phenotype. Histological investigation of WT and Slitrk6-deficient mouse retinas in postnatal development indicated a delay in synaptogenesis in Slitrk6-deficient animals. Taken together, our results showed that SLITRK6 plays a crucial role in the development of normal hearing as well as vision in humans and in mice and that its disruption leads to a syndrome characterized by severe myopia and deafness. PMID:23543054

Top