Science.gov

Sample records for mouse neural precursor

  1. Nucleotide precursors prevent folic acid-resistant neural tube defects in the mouse.

    PubMed

    Leung, Kit-Yi; De Castro, Sandra C P; Savery, Dawn; Copp, Andrew J; Greene, Nicholas D E

    2013-09-01

    Closure of the neural tube during embryogenesis is a crucial step in development of the central nervous system. Failure of this process results in neural tube defects, including spina bifida and anencephaly, which are among the most common birth defects worldwide. Maternal use of folic acid supplements reduces risk of neural tube defects but a proportion of cases are not preventable. Folic acid is thought to act through folate one-carbon metabolism, which transfers one-carbon units for methylation reactions and nucleotide biosynthesis. Hence suboptimal performance of the intervening reactions could limit the efficacy of folic acid. We hypothesized that direct supplementation with nucleotides, downstream of folate metabolism, has the potential to support neural tube closure. Therefore, in a mouse model that exhibits folic acid-resistant neural tube defects, we tested the effect of specific combinations of pyrimidine and purine nucleotide precursors and observed a significant protective effect. Labelling in whole embryo culture showed that nucleotides are taken up by the neurulating embryo and incorporated into genomic DNA. Furthermore, the mitotic index was elevated in neural folds and hindgut of treated embryos, consistent with a proposed mechanism of neural tube defect prevention through stimulation of cellular proliferation. These findings may provide an impetus for future investigations of supplemental nucleotides as a means to prevent a greater proportion of human neural tube defects than can be achieved by folic acid alone.

  2. Nogo-a regulates neural precursor migration in the embryonic mouse cortex.

    PubMed

    Mathis, Carole; Schröter, Aileen; Thallmair, Michaela; Schwab, Martin E

    2010-10-01

    Although Nogo-A has been intensively studied for its inhibitory effect on axonal regeneration in the adult central nervous system, little is known about its function during brain development. In the embryonic mouse cortex, Nogo-A is expressed by radial precursor/glial cells and by tangentially migrating as well as postmigratory neurons. We studied radially migrating neuroblasts in wild-type and Nogo-A knockout (KO) mouse embryos. In vitro analysis showed that Nogo-A and its receptor components NgR, Lingo-1, TROY, and p75 are expressed in cells emigrating from embryonic forebrain-derived neurospheres. Live imaging revealed an increased cell motility when Nogo-A was knocked out or blocked with antibodies. Antibodies blocking NgR or Lingo-1 showed the same motility-enhancing effect supporting a direct role of surface Nogo-A on migration. Bromodeoxyuridine (BrdU) labeling of embryonic day (E)15.5 embryos demonstrated that Nogo-A influences the radial migration of neuronal precursors. At E17.5, the normal transient accumulation of radially migrating precursors within the subventricular zone was not detectable in the Nogo-A KO mouse cortex. At E19, migration to the upper cortical layers was disturbed. These findings suggest that Nogo-A and its receptor complex play a role in the interplay of adhesive and repulsive cell interactions in radial migration during cortical development.

  3. PPARβ/δ and PPARγ maintain undifferentiated phenotypes of mouse adult neural precursor cells from the subventricular zone.

    PubMed

    Bernal, Carolina; Araya, Claudia; Palma, Verónica; Bronfman, Miguel

    2015-01-01

    The subventricular zone (SVZ) is one of the main niches of neural stem cells in the adult mammalian brain. Stem and precursor cells in this region are the source for neurogenesis and oligodendrogesis, mainly in the olfactory bulb and corpus callosum, respectively. The identification of the molecular components regulating the decision of these cells to differentiate or maintain an undifferentiated state is important in order to understand the modulation of neurogenic processes in physiological and pathological conditions. PPARs are a group of transcription factors, activated by lipid ligands, with important functions in cellular differentiation and proliferation in several tissues. In this work, we demonstrate that mouse adult neural precursor cells (NPCs), in situ and in vitro, express PPARβ/δ and PPARγ. Pharmacological activation of both PPARs isoforms induces proliferation and maintenance of the undifferentiated phenotype. Congruently, inhibition of PPARβ/δ and PPARγ results in a decrease of proliferation and loss of the undifferentiated phenotype. Interestingly, PPARγ regulates the level of EGFR in adult NPCs, concurrent with it is function described in embryonic NPCs. Furthermore, we describe for the first time that PPARβ/δ regulates SOX2 level in adult NPCs, probably through a direct transcriptional regulation, as we identified two putative PPAR response elements in the promoter region of Sox2. EGFR and SOX2 are key players in neural stem/precursor cells self-renewal. Finally, rosiglitazone, a PPARγ ligand, increases PPARβ/δ level, suggesting a possible cooperation between these two PPARs in the control of cell fate behavior. Our work contributes to the understanding of the molecular mechanisms associated to neural cell fate decision and places PPARβ/δ and PPARγ as interesting new targets of modulation of mammalian brain homeostasis.

  4. PPARβ/δ and PPARγ maintain undifferentiated phenotypes of mouse adult neural precursor cells from the subventricular zone

    PubMed Central

    Bernal, Carolina; Araya, Claudia; Palma, Verónica; Bronfman, Miguel

    2015-01-01

    The subventricular zone (SVZ) is one of the main niches of neural stem cells in the adult mammalian brain. Stem and precursor cells in this region are the source for neurogenesis and oligodendrogesis, mainly in the olfactory bulb and corpus callosum, respectively. The identification of the molecular components regulating the decision of these cells to differentiate or maintain an undifferentiated state is important in order to understand the modulation of neurogenic processes in physiological and pathological conditions. PPARs are a group of transcription factors, activated by lipid ligands, with important functions in cellular differentiation and proliferation in several tissues. In this work, we demonstrate that mouse adult neural precursor cells (NPCs), in situ and in vitro, express PPARβ/δ and PPARγ. Pharmacological activation of both PPARs isoforms induces proliferation and maintenance of the undifferentiated phenotype. Congruently, inhibition of PPARβ/δ and PPARγ results in a decrease of proliferation and loss of the undifferentiated phenotype. Interestingly, PPARγ regulates the level of EGFR in adult NPCs, concurrent with it is function described in embryonic NPCs. Furthermore, we describe for the first time that PPARβ/δ regulates SOX2 level in adult NPCs, probably through a direct transcriptional regulation, as we identified two putative PPAR response elements in the promoter region of Sox2. EGFR and SOX2 are key players in neural stem/precursor cells self-renewal. Finally, rosiglitazone, a PPARγ ligand, increases PPARβ/δ level, suggesting a possible cooperation between these two PPARs in the control of cell fate behavior. Our work contributes to the understanding of the molecular mechanisms associated to neural cell fate decision and places PPARβ/δ and PPARγ as interesting new targets of modulation of mammalian brain homeostasis. PMID:25852474

  5. Mechanisms of Mouse Neural Precursor Expansion after Neonatal Hypoxia-Ischemia

    PubMed Central

    Buono, Krista D.; Goodus, Matthew T.; Guardia Clausi, Mariano; Jiang, Yuhui; Loporchio, Dean

    2015-01-01

    Neonatal hypoxia-ischemia (H-I) is the leading cause of brain damage resulting from birth complications. Studies in neonatal rats have shown that H-I acutely expands the numbers of neural precursors (NPs) within the subventricular zone (SVZ). The aim of these studies was to establish which NPs expand after H-I and to determine how leukemia inhibitory factor (LIF) insufficiency affects their response. During recovery from H-I, the number of Ki67+ cells in the medial SVZ of the injured hemisphere increased. Similarly, the number and size of primary neurospheres produced from the injured SVZ increased approximately twofold versus controls, and, upon differentiation, more than twice as many neurospheres from the damaged brain were tripotential, suggesting an increase in neural stem cells (NSCs). However, multimarker flow cytometry for CD133/LeX/NG2/CD140a combined with EdU incorporation revealed that NSC frequency diminished after H-I, whereas that of two multipotential progenitors and three unique glial-restricted precursors expanded, attributable to changes in their proliferation. By quantitative PCR, interleukin-6, LIF, and CNTF mRNA increased but with significantly different time courses, with LIF expression correlating best with NP expansion. Therefore, we evaluated the NP response to H-I in LIF-haplodeficient mice. Flow cytometry revealed that one subset of multipotential and bipotential intermediate progenitors did not increase after H-I, whereas another subset was amplified. Altogether, our studies demonstrate that neonatal H-I alters the composition of the SVZ and that LIF is a key regulator for a subset of intermediate progenitors that expand during acute recovery from neonatal H-I. PMID:26063918

  6. Antagonistic interplay between necdin and Bmi1 controls proliferation of neural precursor cells in the embryonic mouse neocortex.

    PubMed

    Minamide, Ryohei; Fujiwara, Kazushiro; Hasegawa, Koichi; Yoshikawa, Kazuaki

    2014-01-01

    Neural precursor cells (NPCs) in the neocortex exhibit a high proliferation capacity during early embryonic development and give rise to cortical projection neurons after maturation. Necdin, a mammal-specific MAGE (melanoma antigen) family protein that possesses anti-mitotic and pro-survival activities, is expressed abundantly in postmitotic neurons and moderately in tissue-specific stem cells or progenitors. Necdin interacts with E2F transcription factors and suppresses E2F1-dependent transcriptional activation of the cyclin-dependent kinase Cdk1 gene. Here we show that necdin serves as a suppressor of NPC proliferation in the embryonic neocortex. Necdin is moderately expressed in the ventricular zone of mouse embryonic neocortex, in which proliferative cell populations are significantly increased in necdin-null mice. In the neocortex of necdin-null embryos, expression of Cdk1 and Sox2, a stem cell marker, is significantly increased, whereas expression of p16, a cyclin-dependent kinase inhibitor, is markedly diminished. Cdk1 and p16 expression levels are also significantly increased and decreased, respectively, in primary NPCs prepared from necdin-null embryos. Intriguingly, necdin interacts directly with Bmi1, a Polycomb group protein that suppresses p16 expression and promotes NPC proliferation. In HEK293A cells transfected with luciferase reporter constructs, necdin relieves Bmi1-dependent repression of p16 promoter activity, whereas Bmi1 counteracts necdin-mediated repression of E2F1-dependent Cdk1 promoter activity. In lentivirus-infected primary NPCs, necdin overexpression increases p16 expression, suppresses Cdk1 expression, and inhibits NPC proliferation, whereas Bmi1 overexpression suppresses p16 expression, increases Cdk1 expression, and promotes NPC proliferation. Our data suggest that embryonic NPC proliferation in the neocortex is regulated by the antagonistic interplay between necdin and Bmi1.

  7. S100A6 (calcyclin) is a novel marker of neural stem cells and astrocyte precursors in the subgranular zone of the adult mouse hippocampus.

    PubMed

    Yamada, Jun; Jinno, Shozo

    2014-01-01

    S100A6 (calcyclin), an EF-hand calcium binding protein, is considered to play various roles in the brain, for example, cell proliferation and differentiation, calcium homeostasis, and neuronal degeneration. In addition to some limbic nuclei, S100A6 is distributed in the rostral migratory stream, one of the major neurogenic niches of the adult brain. However, the potential involvement of S100A6 in adult neurogenesis remains unclear. In this study, we aimed to elucidate the role of S100A6 in the other major neurogenic niche, the subgranular zone of the dentate gyrus in the adult mouse hippocampus. Immunofluorescent multiple labeling showed that S100A6 was highly expressed in neural stem cells labeled by sex determining region Y-box 2, brain lipid-binding protein protein and glial fibrillary acidic protein. S100A6+ cells often extended a long process typical of radial glial morphology. In addition, S100A6 was found in some S100β+ astrocyte lineage cells. Interestingly, proliferating cell nuclear antigen was detected in a fraction of S100A6+/S100β+ cells. These cells were considered to be lineage-restricted astrocyte precursors maintaining mitotic potential. On the other hand, S100A6 was rarely seen in neural lineage cells labeled by T-box brain protein 2, doublecortin, calretinin and calbindin D28K. Cell fate-tracing experiment using BrdU showed that the majority of newly generated immature astrocytes were immunoreactive for S100A6, while mature astrocytes lacked S100A6 immunoreactivity. Administration of S100 protein inhibitor, trifluoperazine, caused a reduction in production of S100β+ astrocyte lineage cells, but had no impact on neurogenesis. Overall, our data provide the first evidence that S100A6 is a specific marker of neural stem cells and astrocyte precursors, and may be especially important for generation of astrocytes in the adult hippocampus.

  8. Systemic Central Nervous System (CNS)-targeted Delivery of Neuropeptide Y (NPY) Reduces Neurodegeneration and Increases Neural Precursor Cell Proliferation in a Mouse Model of Alzheimer Disease*

    PubMed Central

    Spencer, Brian; Potkar, Rewati; Metcalf, Jeff; Thrin, Ivy; Adame, Anthony; Rockenstein, Edward; Masliah, Eliezer

    2016-01-01

    Neuropeptide Y (NPY) is one of the most abundant protein transmitters in the central nervous system with roles in a variety of biological functions including: food intake, cardiovascular regulation, cognition, seizure activity, circadian rhythms, and neurogenesis. Reduced NPY and NPY receptor expression is associated with numerous neurodegenerative disorders including Alzheimer disease (AD). To determine whether replacement of NPY could ameliorate some of the neurodegenerative and behavioral pathology associated with AD, we generated a lentiviral vector expressing NPY fused to a brain transport peptide (apoB) for widespread CNS delivery in an APP-transgenic (tg) mouse model of AD. The recombinant NPY-apoB effectively reversed neurodegenerative pathology and behavioral deficits although it had no effect on accumulation of Aβ. The subgranular zone of the hippocampus showed a significant increase in proliferation of neural precursor cells without further differentiation into neurons. The neuroprotective and neurogenic effects of NPY-apoB appeared to involve signaling via ERK and Akt through the NPY R1 and NPY R2 receptors. Thus, widespread CNS-targeted delivery of NPY appears to be effective at reversing the neuronal and glial pathology associated with Aβ accumulation while also increasing NPC proliferation. Overall, increased delivery of NPY to the CNS for AD might be an effective therapy especially if combined with an anti-Aβ therapeutic. PMID:26620558

  9. Systemic Central Nervous System (CNS)-targeted Delivery of Neuropeptide Y (NPY) Reduces Neurodegeneration and Increases Neural Precursor Cell Proliferation in a Mouse Model of Alzheimer Disease.

    PubMed

    Spencer, Brian; Potkar, Rewati; Metcalf, Jeff; Thrin, Ivy; Adame, Anthony; Rockenstein, Edward; Masliah, Eliezer

    2016-01-22

    Neuropeptide Y (NPY) is one of the most abundant protein transmitters in the central nervous system with roles in a variety of biological functions including: food intake, cardiovascular regulation, cognition, seizure activity, circadian rhythms, and neurogenesis. Reduced NPY and NPY receptor expression is associated with numerous neurodegenerative disorders including Alzheimer disease (AD). To determine whether replacement of NPY could ameliorate some of the neurodegenerative and behavioral pathology associated with AD, we generated a lentiviral vector expressing NPY fused to a brain transport peptide (apoB) for widespread CNS delivery in an APP-transgenic (tg) mouse model of AD. The recombinant NPY-apoB effectively reversed neurodegenerative pathology and behavioral deficits although it had no effect on accumulation of Aβ. The subgranular zone of the hippocampus showed a significant increase in proliferation of neural precursor cells without further differentiation into neurons. The neuroprotective and neurogenic effects of NPY-apoB appeared to involve signaling via ERK and Akt through the NPY R1 and NPY R2 receptors. Thus, widespread CNS-targeted delivery of NPY appears to be effective at reversing the neuronal and glial pathology associated with Aβ accumulation while also increasing NPC proliferation. Overall, increased delivery of NPY to the CNS for AD might be an effective therapy especially if combined with an anti-Aβ therapeutic.

  10. Doublecortin in Oligodendrocyte Precursor Cells in the Adult Mouse Brain

    PubMed Central

    Boulanger, Jenna J.; Messier, Claude

    2017-01-01

    Key Points Oligodendrocyte precursor cells express doublecortin, a microtubule-associated protein.Oligodendrocyte precursor cells express doublecortin, but at a lower level of expression than in neuronal precursor.Doublecortin is not associated with a potential immature neuronal phenotype in Oligodendrocyte precursor cells. Oligodendrocyte precursor cells (OPC) are glial cells that differentiate into myelinating oligodendrocytes during embryogenesis and early stages of post-natal life. OPCs continue to divide throughout adulthood and some eventually differentiate into oligodendrocytes in response to demyelinating lesions. There is growing evidence that OPCs are also involved in activity-driven de novo myelination of previously unmyelinated axons and myelin remodeling in adulthood. Considering these roles in the adult brain, OPCs are likely mobile cells that can migrate on some distances before they differentiate into myelinating oligodendrocytes. A number of studies have noted that OPCs express doublecortin (DCX), a microtubule-associated protein expressed in neural precursor cells and in migrating immature neurons. Here we describe the distribution of DCX in OPCs. We found that almost all OPCs express DCX, but the level of expression appears to be much lower than what is found in neural precursor. We found that DCX is downregulated when OPCs start expressing mature oligodendrocyte markers and is absent in myelinating oligodendrocytes. DCX does not appear to signal an immature neuronal phenotype in OPCs in the adult mouse brain. Rather, it could be involved either in cell migration, or as a marker of an immature oligodendroglial cell phenotype.

  11. Morphogenetic movements in the neural plate and neural tube: mouse.

    PubMed

    Massarwa, R'ada; Ray, Heather J; Niswander, Lee

    2014-01-01

    The neural tube (NT), the embryonic precursor of the vertebrate brain and spinal cord, is generated by a complex and highly dynamic morphological process. In mammals, the initially flat neural plate bends and lifts bilaterally to generate the neural folds followed by fusion of the folds at the midline during the process of neural tube closure (NTC). Failures in any step of this process can lead to neural tube defects (NTDs), a common class of birth defects that occur in approximately 1 in 1000 live births. These severe birth abnormalities include spina bifida, a failure of closure at the spinal level; craniorachischisis, a failure of NTC along the entire body axis; and exencephaly, a failure of the cranial neural folds to close which leads to degeneration of the exposed brain tissue termed anencephaly. The mouse embryo presents excellent opportunities to explore the genetic basis of NTC in mammals; however, its in utero development has also presented great challenges in generating a deeper understanding of how gene function regulates the cell and tissue behaviors that drive this highly dynamic process. Recent technological advances are now allowing researchers to address these questions through visualization of NTC dynamics in the mouse embryo in real time, thus offering new insights into the morphogenesis of mammalian NTC.

  12. Grafted Neural Precursors Integrate Into Mouse Striatum, Differentiate and Promote Recovery of Function Through Release of Erythropoietin in MPTP-Treated Mice

    PubMed Central

    Giallongo, Toniella; Viaggi, Cristina; Gombalova, Zuzana; Latorre, Elisa; Mazza, Massimiliano; Vaglini, Francesca; Di Giulio, Anna Maria; Gorio, Alfredo

    2016-01-01

    Erythropoietin-releasing neural precursor cells (Er-NPCs) are a subclass of subventricular zone-derived neural progenitors, capable of surviving for 6 hr after death of donor. They present higher neural differentiation. Here, Er-NPCs were studied in animal model of Parkinson’s disease. Dopaminergic degeneration was caused by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine intraperitoneal administration in C57BL/6 mice. The loss of function was evaluated by specific behavioral tests. Er-NPCs (2.5 × 105) expressing the green fluorescent protein were administered by stereotaxic injection unilaterally in the left striatum. At the end of observational research period (2 weeks), most of the transplanted Er-NPCs were located in the striatum, while several had migrated ventrally and caudally from the injection site, up to ipsilateral and contralateral substantia nigra. Most of transplanted cells had differentiated into dopaminergic, cholinergic, or GABAergic neurons. Er-NPCs administration also promoted a rapid functional improvement that was already evident at the third day after cells administration. This was accompanied by enhanced survival of nigral neurons. These effects were likely promoted by Er-NPCs-released erythropoietin (EPO), since the injection of Er-NPCs in association with anti-EPO or anti-EPOR antibodies had completely neutralized the recovery of function. In addition, intrastriatal administration of recombinant EPO mimics the effects of Er-NPCs. We suggest that Er-NPCs, and cells with similar properties, may represent good candidates for cellular therapy in neurodegenerative disorders of this kind. PMID:27789613

  13. Role of neural precursor cells in promoting repair following stroke

    PubMed Central

    Dibajnia, Pooya; Morshead, Cindi M

    2013-01-01

    Stem cell-based therapies for the treatment of stroke have received considerable attention. Two broad approaches to stem cell-based therapies have been taken: the transplantation of exogenous stem cells, and the activation of endogenous neural stem and progenitor cells (together termed neural precursors). Studies examining the transplantation of exogenous cells have demonstrated that neural stem and progenitor cells lead to the most clinically promising results. Endogenous activation of neural precursors has also been explored based on the fact that resident precursor cells have the inherent capacity to proliferate, migrate and differentiate into mature neurons in the uninjured adult brain. Studies have revealed that these neural precursor cell behaviours can be activated following stroke, whereby neural precursors will expand in number, migrate to the infarct site and differentiate into neurons. However, this innate response is insufficient to lead to functional recovery, making it necessary to enhance the activation of endogenous precursors to promote tissue repair and functional recovery. Herein we will discuss the current state of the stem cell-based approaches with a focus on endogenous repair to treat the stroke injured brain. PMID:23064725

  14. Ankfy1 is dispensable for neural stem/precursor cell development.

    PubMed

    Weng, Chao; Ding, Man; Chang, Lian-Sheng; Ren, Ming-Xin; Zhang, Hong-Feng; Lu, Zu-Neng; Fu, Hui

    2016-11-01

    There are few studies on the membrane protein Ankfy1. We have found Ankfy1 is specifically expressed in neural stem/precursor cells during early development in mice (murine). To further explore Ankfy1 function in neural development, we developed a gene knockout mouse with a mixed Balb/C and C57/BL6 genetic background. Using immunofluorescence and in situ hybridization, neural defects were absent in mixed genetic Ankfy1 null mice during development and in adults up to 2 months old. However, Ankfy1 gene knockout mice with a pure genetic background were found to be lethal in the C57/BL6 inbred mice embryos, even after seven generations of backcrossing. Polymerase chain reaction confirmed homozygotes were unattainable as early as embryonic day 11.5. We conclude that Ankfy1 protein is dispensable in neural stem/precursor cells, but could be critical for early embryonic murine development, depending on the genetic background.

  15. Neural stem cell transplantation in mouse brain.

    PubMed

    Lee, Jean-Pyo; McKercher, Scott; Muller, Franz-Josef; Snyder, Evan Y

    2008-01-01

    Neural stem cells (NSCs) are the most primordial, least committed cells of the nervous system, and transplantation of these multipotent cells holds the promise of regenerative therapy for many central nervous system (CNS) diseases. This unit describes methods for NSC transplantation into neonatal mouse pups, embryonic mouse brain, and adult mouse brain. A description of options for detection of labeled donor cells in engrafted mouse brain is provided along with an example protocol for detecting lacZ-expressing cells in situ. Also included is a protocol for preparing NSCs for transplantation.

  16. Role of Jnk1 in development of neural precursors revealed by iPSC modeling

    PubMed Central

    Zhang, Qian; Mao, Jian; Zhang, Xiaoxi; Fu, Haifeng; Xia, Siyuan; Yin, Zhinan; Liu, Lin

    2016-01-01

    Jnk1-deficient mice manifest disrupted anterior commissure formation and loss of axonal and dendritic microtubule integrity. However, the mechanisms and the specific stages underlying the developmental defects remain to be elucidated. Here, we report the generation of Jnk1-deficient (Jnk1 KO) iPSCs from Jnk1 KO mouse tail-tip fibroblasts (TTFs) for modeling the neural disease development. The efficiency in the early induction of iPSCs was higher from Jnk1 KO fibroblasts than that of wild-type (WT) fibroblasts. These Jnk1 KO iPSCs exhibited pluripotent stem cell properties and had the ability of differentiation into general three embryonic germ layers in vitro and in vivo. However, Jnk1 KO iPSCs showed reduced capacity in neural differentiation in the spontaneous differentiation by embryoid body (EB) formation. Notably, by directed lineage differentiation, Jnk1 KO iPSCs specifically exhibited an impaired ability to differentiate into early stage neural precursors. Furthermore, the neuroepitheliums generated from Jnk1 KO iPSCs appeared smaller, indicative of neural stem cell developmental defects, as demonstrated by teratoma tests in vivo. These data suggest that Jnk1 deficiency inhibits the development of neural stem cells/precursors and provide insights to further understanding the complex pathogenic mechanisms of JNK1-related neural diseases. PMID:27556303

  17. Role of Jnk1 in development of neural precursors revealed by iPSC modeling.

    PubMed

    Zhang, Qian; Mao, Jian; Zhang, Xiaoxi; Fu, Haifeng; Xia, Siyuan; Yin, Zhinan; Liu, Lin

    2016-09-20

    Jnk1-deficient mice manifest disrupted anterior commissure formation and loss of axonal and dendritic microtubule integrity. However, the mechanisms and the specific stages underlying the developmental defects remain to be elucidated. Here, we report the generation of Jnk1-deficient (Jnk1 KO) iPSCs from Jnk1 KO mouse tail-tip fibroblasts (TTFs) for modeling the neural disease development. The efficiency in the early induction of iPSCs was higher from Jnk1 KO fibroblasts than that of wild-type (WT) fibroblasts. These Jnk1 KO iPSCs exhibited pluripotent stem cell properties and had the ability of differentiation into general three embryonic germ layers in vitro and in vivo. However, Jnk1 KO iPSCs showed reduced capacity in neural differentiation in the spontaneous differentiation by embryoid body (EB) formation. Notably, by directed lineage differentiation, Jnk1 KO iPSCs specifically exhibited an impaired ability to differentiate into early stage neural precursors. Furthermore, the neuroepitheliums generated from Jnk1 KO iPSCs appeared smaller, indicative of neural stem cell developmental defects, as demonstrated by teratoma tests in vivo. These data suggest that Jnk1 deficiency inhibits the development of neural stem cells/precursors and provide insights to further understanding the complex pathogenic mechanisms of JNK1-related neural diseases.

  18. Mouse models for neural tube closure defects.

    PubMed

    Juriloff, D M; Harris, M J

    2000-04-12

    Neural tube closure defects (NTDs), in particular anencephaly and spina bifida, are common human birth defects (1 in 1000), their genetics is complex and their risk is reduced by periconceptional maternal folic acid supplementation. There are > 60 mouse mutants and strains with NTDs, many reported within the past 2 years. Not only are NTD mutations at loci widely heterogeneous in function, but also most of the mutants demonstrate variable low penetrance and some show complex inheritance patterns (e.g. SELH/Bc, Abl / Arg, Mena / Profilin1 ). In most of these mouse models, the NTDs are exencephaly (equivalent to anencephaly) or spina bifida or both, reflecting failure of neural fold elevation in well defined, mechanistically distinct elevation zones. NTD risk is reduced in various models by different maternal nutrient supplements, including folic acid ( Pax3, Cart1, Cd mutants), inositol ( ct ) and methionine ( Axd ). Lack of de novo methylation in embryos ( Dnmt3b -null) leads to NTD risk, and we suggest a potential link between methylation and the observed female excess among cranial NTDs in several models. Some surprising NTD mutants ( Gadd45a, Terc, Trp53 ) suggest that genes with a basic mitotic function also have a function specific to neural fold elevation. The genes mutated in several mouse NTD models involve actin regulation ( Abl/Arg, Macs, Mena/Profilin1, Mlp, Shrm, Vcl ), support the postulated key role of actin in neural fold elevation, and may be a good candidate pathway to search for human NTD genes.

  19. Differential properties of dentate gyrus and CA1 neural precursors.

    PubMed

    Becq, H; Jorquera, I; Ben-Ari, Y; Weiss, S; Represa, A

    2005-02-05

    In the present article we investigated the properties of CA1 and dentate gyrus cell precursors in adult rodents both in vivo and in vitro. Cell proliferation in situ was investigated by rating the number of cells incorporating BrdU after kainate-induced seizures. CA1 precursors displayed a greater proliferation capacity than dentate gyrus precursors. The majority of BrdU-labeled cells in CA1 expressed Nestin and Mash-1, two markers of neural precursors. BrdU-positive cells in the dentate gyrus expressed Nestin, but only a few expressed Mash-1. In animals pretreated with the antimitotic azacytidine, the capacity of kainate to enhance the proliferation was higher in CA1 than in the dentate gyrus. Differences in intrinsic progenitor cell activity could underlie these different expansion capacities. Thus, we compared the renewal- expansion and multipotency of dentate gyrus and CA1 precursors isolated in vitro. We found that the dissected CA1 region, including the periventricular zone, is enriched in neurosphere-forming cells (presumed stem cells), which respond to either EGF or FGF-2. Dentate gyrus contains fewer neurosphere-forming cells and none that respond to FGF-2 alone. Neurospheres generated from CA1 were multipotent and produced neurons, astrocytes, and oligodendrocytes, while dentate gyrus neurospheres mostly produced glial cells. The analysis of the effects of EGF on organotypic cultures of hippocampal slices depicted similar features: BrdU and Nestin immunoreactivities increased after EGF treatment in CA1 but not in the dentate gyrus. These results suggest that CA1 precursors are more stem-cell-like than granule cell precursors, which may represent a more restricted precursor cell.

  20. Regulation of proliferation and histone acetylation in embryonic neural precursors by CREB/CREM signaling

    PubMed Central

    Parlato, Rosanna; Mandl, Claudia; Hölzl-Wenig, Gabriele; Liss, Birgit; Tucker, Kerry L; Ciccolini, Francesca

    2014-01-01

    The transcription factor CREB (cAMP-response element binding protein) regulates differentiation, migration, survival and activity-dependent gene expression in the developing and mature nervous system. However, its specific role in the proliferation of embryonic neural progenitors is still not completely understood. Here we investigated how CREB regulates proliferation of mouse embryonic neural progenitors by a conditional mutant lacking Creb gene in neural progenitors. In parallel, we explored possible compensatory effects by the genetic ablation of another member of the same gene family, the cAMP-responsive element modulator (Crem). We show that CREB loss differentially impaired the proliferation, clonogenic potential and self-renewal of precursors derived from the ganglionic eminence (GE), in comparison to those derived from the cortex. This phenotype was associated with a specific reduction of histone acetylation in the GE of CREB mutant mice, and this reduction was rescued in vivo by inhibition of histone deacetylation. These observations indicate that the impaired proliferation could be caused by a reduced acetyltransferase activity in Creb conditional knock-out mice. These findings support a crucial role of CREB in controlling embryonic neurogenesis and propose a novel mechanism by which CREB regulates embryonic neural development. PMID:27504469

  1. Restriction of Neural Precursor Ability to Respond to Nurr1 by Early Regional Specification

    PubMed Central

    Soldati, Chiara; Cacci, Emanuele; Biagioni, Stefano; Carucci, Nicoletta; Lupo, Giuseppe; Perrone-Capano, Carla; Saggio, Isabella; Augusti-Tocco, Gabriella

    2012-01-01

    During neural development, spatially regulated expression of specific transcription factors is crucial for central nervous system (CNS) regionalization, generation of neural precursors (NPs) and subsequent differentiation of specific cell types within defined regions. A critical role in dopaminergic differentiation in the midbrain (MB) has been assigned to the transcription factor Nurr1. Nurr1 controls the expression of key genes involved in dopamine (DA) neurotransmission, e.g. tyrosine hydroxylase (TH) and the DA transporter (DAT), and promotes the dopaminergic phenotype in embryonic stem cells. We investigated whether cells derived from different areas of the mouse CNS could be directed to differentiate into dopaminergic neurons in vitro by forced expression of the transcription factor Nurr1. We show that Nurr1 overexpression can promote dopaminergic cell fate specification only in NPs obtained from E13.5 ganglionic eminence (GE) and MB, but not in NPs isolated from E13.5 cortex (CTX) and spinal cord (SC) or from the adult subventricular zone (SVZ). Confirming previous studies, we also show that Nurr1 overexpression can increase the generation of TH-positive neurons in mouse embryonic stem cells. These data show that Nurr1 ability to induce a dopaminergic phenotype becomes restricted during CNS development and is critically dependent on the region of NPs derivation. Our results suggest that the plasticity of NPs and their ability to activate a dopaminergic differentiation program in response to Nurr1 is regulated during early stages of neurogenesis, possibly through mechanisms controlling CNS regionalization. PMID:23240065

  2. Neural localization of addicsin in mouse brain.

    PubMed

    Akiduki, Saori; Ochiishi, Tomoyo; Ikemoto, Mitsushi J

    2007-10-22

    Addicsin is a member of the prenylated Rab acceptor (PRA) 1 domain family and a murine homolog of the rat glutamate-transporter-associated protein 3-18 (GTRAP3-18). This protein is considered to function as a modulator of the neural glutamate transporter excitatory amino acid carrier 1 (EAAC1). However, its molecular functions remain largely unknown. Here, we examined the regional and cellular localization of addicsin in the central nervous system (CNS) by using a newly generated antibody specific for the protein. Distribution analysis by Western blot and immunohistochemistry demonstrated that the protein was widely distributed in various regions of the mature CNS, including the olfactory bulbs, cerebral cortex, amygdala, hippocampus CA1-3 fields, dentate gyrus, and cerebellum. Double immunofluorescence analysis revealed that addicsin was expressed in the somata of principal neurons in the CNS such as the pyramidal cells and gamma-aminobutyric acid (GABA)-ergic interneurons scattered in the hippocampal formation. Furthermore, the protein showed pre-synaptic localization in the stratum lucidum of the CA3 field of the hippocampal formation. Subcellular localization analysis of highly purified synaptic fractions prepared from mouse forebrain supported the cytoplasmic and pre-synaptic distribution of addicsin. These results suggest that addicsin has neural expression and may play crucial roles in the basic physiological functions of the mature CNS.

  3. Telencephalic neural precursor cells show transient competence to interpret the dopaminergic niche of the embryonic midbrain.

    PubMed

    Baizabal, José-Manuel; Valencia, Concepción; Guerrero-Flores, Gilda; Covarrubias, Luis

    2011-01-15

    Neural Precursor Cells (NPCs) generate complex stereotypic arrays of neuronal subtypes in the brain. This process involves the integration of patterning cues that progressively restrict the fate of specific NPCs. Yet the capacity of NPCs to interpret foreign microenvironments during development remains poorly defined. The aim of this work was to test the competence of mouse telencephalic NPCs to respond to the dopaminergic niche of the mesencephalon. Telencephalic NPCs isolated from midgestation mouse embryos (E10.5) and transplanted to age-matched mesencephalic explants efficiently differentiated into neurons but were largely unable to produce midbrain dopaminergic (mDA) neurons. Instead, E10.5 telencephalic NPCs behaved as restricted gabaergic progenitors that maintained ectopic expression of Foxg1 and Pax6. In contrast, E8.5 telencephalic NPCs were able to differentiate into Lmx1a(+)/Foxa2(+)/TH(+) neurons in the dopaminergic niche of the mesencephalic explants. In addition, these early telencephalic NPCs showed region-dependent expression of Nkx6.1, Nkx2.2 and site-specific differentiation into gabaergic neurons within the mesencephalic tissue. Significant dopaminergic differentiation of E8.5 telencephalic NPCs was not observed after transplantation to E12.5 mesencephalic explants, suggesting that inductive signals in the dopaminergic niche rapidly decay after midgestation. Moreover, we employed transplantation of embryonic stem cells-derived precursors to demonstrate that extinction of inductive signals within the telencephalon lags behind the commitment of residing NPCs. Our data indicate that the plasticity to interpret multiple instructive niches is an early and ephemeral feature of the telencephalic neural lineage.

  4. Subretinal transplantation of MACS purified photoreceptor precursor cells into the adult mouse retina.

    PubMed

    Eberle, Dominic; Santos-Ferreira, Tiago; Grahl, Sandra; Ader, Marius

    2014-02-22

    Vision impairment and blindness due to the loss of the light-sensing cells of the retina, i.e. photoreceptors, represents the main reason for disability in industrialized countries. Replacement of degenerated photoreceptors by cell transplantation represents a possible treatment option in future clinical applications. Indeed, recent preclinical studies demonstrated that immature photoreceptors, isolated from the neonatal mouse retina at postnatal day 4, have the potential to integrate into the adult mouse retina following subretinal transplantation. Donor cells generated a mature photoreceptor morphology including inner and outer segments, a round cell body located at the outer nuclear layer, and synaptic terminals in close proximity to endogenous bipolar cells. Indeed, recent reports demonstrated that donor photoreceptors functionally integrate into the neural circuitry of host mice. For a future clinical application of such cell replacement approach, purified suspensions of the cells of choice have to be generated and placed at the correct position for proper integration into the eye. For the enrichment of photoreceptor precursors, sorting should be based on specific cell surface antigens to avoid genetic reporter modification of donor cells. Here we show magnetic-associated cell sorting (MACS) - enrichment of transplantable rod photoreceptor precursors isolated from the neonatal retina of photoreceptor-specific reporter mice based on the cell surface marker CD73. Incubation with anti-CD73 antibodies followed by micro-bead conjugated secondary antibodies allowed the enrichment of rod photoreceptor precursors by MACS to approximately 90%. In comparison to flow cytometry, MACS has the advantage that it can be easier applied to GMP standards and that high amounts of cells can be sorted in relative short time periods. Injection of enriched cell suspensions into the subretinal space of adult wild-type mice resulted in a 3-fold higher integration rate compared to

  5. Perspectives on the role of Pannexin 1 in neural precursor cell biology

    PubMed Central

    Sanchez-Arias, Juan C.; Wicki-Stordeur, Leigh E.; Swayne, Leigh Anne

    2016-01-01

    We recently reported that targeted deletion of Pannexin 1 in neural precursor cells of the ventricular zone impairs the maintenance of these cells in healthy and stroke-injured brain. Here we frame this exciting new finding in the context of our previous studies on Pannexin 1 in neural precursors as well as the close relationship between Pannexin 1 and purinergic receptors established by other groups. Moreover, we identify important gaps in our understanding of Pannexin 1 in neural precursor cell biology in terms of the underlying molecular mechanisms and functional/behavioural outcomes. PMID:27904473

  6. Long-term fate of neural precursor cells following transplantation into developing and adult CNS.

    PubMed

    Lepore, A C; Neuhuber, B; Connors, T M; Han, S S W; Liu, Y; Daniels, M P; Rao, M S; Fischer, I

    2006-05-12

    Successful strategies for transplantation of neural precursor cells for replacement of lost or dysfunctional CNS cells require long-term survival of grafted cells and integration with the host system, potentially for the life of the recipient. It is also important to demonstrate that transplants do not result in adverse outcomes. Few studies have examined the long-term properties of transplanted neural precursor cells in the CNS, particularly in non-neurogenic regions of the adult. The aim of the present study was to extensively characterize the fate of defined populations of neural precursor cells following transplantation into the developing and adult CNS (brain and spinal cord) for up to 15 months, including integration of graft-derived neurons with the host. Specifically, we employed neuronal-restricted precursors and glial-restricted precursors, which represent neural precursor cells with lineage restrictions for neuronal and glial fate, respectively. Transplanted cells were prepared from embryonic day-13.5 fetal spinal cord of transgenic donor rats that express the marker gene human placental alkaline phosphatase to achieve stable and reliable graft tracking. We found that in both developing and adult CNS grafted cells showed long-term survival, morphological maturation, extensive distribution and differentiation into all mature CNS cell types (neurons, astrocytes and oligodendrocytes). Graft-derived neurons also formed synapses, as identified by electron microscopy, suggesting that transplanted neural precursor cells integrated with adult CNS. Furthermore, grafts did not result in any apparent deleterious outcomes. We did not detect tumor formation, cells did not localize to unwanted locations and no pronounced immune response was present at the graft sites. The long-term stability of neuronal-restricted precursors and glial-restricted precursors and the lack of adverse effects suggest that transplantation of lineage-restricted neural precursor cells can

  7. Sox2-mediated regulation of adult neural crest precursors and skin repair.

    PubMed

    Johnston, Adam P W; Naska, Sibel; Jones, Karen; Jinno, Hiroyuki; Kaplan, David R; Miller, Freda D

    2013-01-01

    Nerve-derived neural crest cells are essential for regeneration in certain animals, such as newts. Here, we asked whether they play a similar role during mammalian tissue repair, focusing on Sox2-positive neural crest precursors in skin. In adult skin, Sox2 was expressed in nerve-terminal-associated neural crest precursor cells (NCPCs) around the hair follicle bulge, and following injury was induced in nerve-derived cells, likely dedifferentiated Schwann cell precursors. At later times postinjury, Sox2-positive cells were scattered throughout the regenerating dermis, and lineage tracing showed that these were all neural-crest-derived NCPCs. These Sox2-positive NCPCs were functionally important, since acute deletion of Sox2 prior to injury caused a decrease of NCPCs in the wound and aberrant skin repair. These data demonstrate that Sox2 regulates skin repair, likely by controlling NCPCs, and raise the possibility that nerve-derived NCPCs may play a general role in mammalian tissue repair.

  8. Regulation of mouse embryonic stem cell neural differentiation by retinoic acid

    PubMed Central

    Kim, Mijeong; Habiba, Ayman; Doherty, Jason M.; Mills, Jason C.; Mercer, Robert W.; Huettner, James E.

    2009-01-01

    Pluripotent mouse embryonic stem cells (ESCs) derived from the early blastocyst can differentiate in vitro into a variety of somatic cell types including lineages from all three embryonic germ layers. Protocols for ES cell neural differentiation typically involve induction by retinoic acid (RA), or by exposure to growth factors or medium conditioned by other cell types. A serum-free differentiation (SFD) medium completely lacking exogenous retinoids was devised that allows for efficient conversion of aggregated mouse ESCs into neural precursors and immature neurons. Neural cells produced in this medium express neuronal ion channels, establish polarity, and form functional excitatory and inhibitory synapses. Brief exposure to RA during the period of cell aggregation speeds neuronal maturation and suppresses cell proliferation. Differentiation without RA yields neurons and neural progenitors with apparent telencephalic identity, whereas cells differentiated with exposure to RA express markers of hindbrain and spinal cord. Transcriptional profiling indicates a substantial representation of transit amplifying neuroblasts in SFD cultures not exposed to RA. PMID:19217899

  9. Fat1 interacts with Fat4 to regulate neural tube closure, neural progenitor proliferation and apical constriction during mouse brain development.

    PubMed

    Badouel, Caroline; Zander, Mark A; Liscio, Nicole; Bagherie-Lachidan, Mazdak; Sopko, Richelle; Coyaud, Etienne; Raught, Brian; Miller, Freda D; McNeill, Helen

    2015-08-15

    Mammalian brain development requires coordination between neural precursor proliferation, differentiation and cellular organization to create the intricate neuronal networks of the adult brain. Here, we examined the role of the atypical cadherins Fat1 and Fat4 in this process. We show that mutation of Fat1 in mouse embryos causes defects in cranial neural tube closure, accompanied by an increase in the proliferation of cortical precursors and altered apical junctions, with perturbations in apical constriction and actin accumulation. Similarly, knockdown of Fat1 in cortical precursors by in utero electroporation leads to overproliferation of radial glial precursors. Fat1 interacts genetically with the related cadherin Fat4 to regulate these processes. Proteomic analysis reveals that Fat1 and Fat4 bind different sets of actin-regulating and junctional proteins. In vitro data suggest that Fat1 and Fat4 form cis-heterodimers, providing a mechanism for bringing together their diverse interactors. We propose a model in which Fat1 and Fat4 binding coordinates distinct pathways at apical junctions to regulate neural progenitor proliferation, neural tube closure and apical constriction.

  10. Fat1 interacts with Fat4 to regulate neural tube closure, neural progenitor proliferation and apical constriction during mouse brain development

    PubMed Central

    Badouel, Caroline; Zander, Mark A.; Liscio, Nicole; Bagherie-Lachidan, Mazdak; Sopko, Richelle; Coyaud, Etienne; Raught, Brian; Miller, Freda D.; McNeill, Helen

    2015-01-01

    Mammalian brain development requires coordination between neural precursor proliferation, differentiation and cellular organization to create the intricate neuronal networks of the adult brain. Here, we examined the role of the atypical cadherins Fat1 and Fat4 in this process. We show that mutation of Fat1 in mouse embryos causes defects in cranial neural tube closure, accompanied by an increase in the proliferation of cortical precursors and altered apical junctions, with perturbations in apical constriction and actin accumulation. Similarly, knockdown of Fat1 in cortical precursors by in utero electroporation leads to overproliferation of radial glial precursors. Fat1 interacts genetically with the related cadherin Fat4 to regulate these processes. Proteomic analysis reveals that Fat1 and Fat4 bind different sets of actin-regulating and junctional proteins. In vitro data suggest that Fat1 and Fat4 form cis-heterodimers, providing a mechanism for bringing together their diverse interactors. We propose a model in which Fat1 and Fat4 binding coordinates distinct pathways at apical junctions to regulate neural progenitor proliferation, neural tube closure and apical constriction. PMID:26209645

  11. Neural Growth Factor Stimulates Proliferation of Spinal Cord Derived-Neural Precursor/Stem Cells

    PubMed Central

    Han, Youngmin

    2016-01-01

    Objective Recently, regenerative therapies have been used in clinical trials (heart, cartilage, skeletal). We don't make use of these treatments to spinal cord injury (SCI) patients yet, but regenerative therapies are rising interest in recent study about SCI. Neural precursor/stem cell (NPSC) proliferation is a significant event in functional recovery of the central nervous system (CNS). However, brain NPSCs and spinal cord NPSCs (SC-NPSCs) have many differences including gene expression and proliferation. The purpose of this study was to investigate the influence of neural growth factor (NGF) on the proliferation of SC-NPSCs. Methods NPSCs (2×104) were suspended in 100 µL of neurobasal medium containing NGF-7S (Sigma-Aldrich) and cultured in a 96-well plate for 12 days. NPSC proliferation was analyzed five times for either concentration of NGF (0.02 and 2 ng/mL). Sixteen rats after SCI were randomly allocated into two groups. In group 1 (SCI-vehicle group, n=8), animals received 1.0 mL of the saline vehicle solution. In group 2 (SCI-NGF group, n=8), the animals received single doses of NGF (Sigma-Aldrich). A dose of 0.02 ng/mL of NGF or normal saline as a vehicle control was intra-thecally injected daily at 24 hour intervals for 7 days. For Immunohistochemistry analysis, rats were sacrificed after one week and the spinal cords were obtained. Results The elevation of cell proliferation with 0.02 ng/mL NGF was significant (p<0.05) but was not significant for 2 ng/mL NGF. The optical density was increased in the NGF 0.02 ng/mL group compared to the control group and NGF 2 ng/mL groups. The density of nestin in the SCI-NGF group was significantly increased over the SCI-vehicle group (p<0.05). High power microscopy revealed that the density of nestin in the SCI-NGF group was significantly increased over the SCI-vehicle group. Conclusion SC-NPSC proliferation is an important pathway in the functional recovery of SCI. NGF enhances SC-NPSC proliferation in vitro and in

  12. Glutathione peroxidase 4 prevents necroptosis in mouse erythroid precursors

    PubMed Central

    Canli, Özge; Alankuş, Yasemin B.; Grootjans, Sasker; Vegi, Naidu; Hültner, Lothar; Hoppe, Philipp S.; Schroeder, Timm; Vandenabeele, Peter; Bornkamm, Georg W.

    2016-01-01

    Maintaining cellular redox balance is vital for cell survival and tissue homoeostasis because imbalanced production of reactive oxygen species (ROS) may lead to oxidative stress and cell death. The antioxidant enzyme glutathione peroxidase 4 (Gpx4) is a key regulator of oxidative stress–induced cell death. We show that mice with deletion of Gpx4 in hematopoietic cells develop anemia and that Gpx4 is essential for preventing receptor-interacting protein 3 (RIP3)-dependent necroptosis in erythroid precursor cells. Absence of Gpx4 leads to functional inactivation of caspase 8 by glutathionylation, resulting in necroptosis, which occurs independently of tumor necrosis factor α activation. Although genetic ablation of Rip3 normalizes reticulocyte maturation and prevents anemia, ROS accumulation and lipid peroxidation in Gpx4-deficient cells remain high. Our results demonstrate that ROS and lipid hydroperoxides function as not-yet-recognized unconventional upstream signaling activators of RIP3-dependent necroptosis. PMID:26463424

  13. Neural Mechanisms Contributing to Dysphagia in Mouse Models.

    PubMed

    Hinkel, Cameron J; Sharma, Rishi; Thakkar, Mahesh M; Takahashi, Kazutaka; Hopewell, Bridget L; Lever, Teresa E

    2016-08-01

    Investigative research into curative treatments for dysphagia is hindered by our incomplete understanding of the neural mechanisms of swallowing in health and disease. Development of translational research models is essential to bridge this knowledge gap by fostering innovative methodology. Toward this goal, our laboratory has developed a translational research assessment tool to investigate the neural mechanistic control of swallowing in unrestrained, self-feeding mice. Here we describe our initial development of synchronous brainstem neural recordings with a videofluoroscopic swallow study assay in healthy mice across the life span. Refinement of this combined methodology is currently underway. Ultimately, we envision that this assessment tool will permit systematic analysis of therapeutic interventions for dysphagia in preclinical trials with numerous mouse models of human conditions that cause dysphagia, such as amyotrophic lateral sclerosis, Parkinson's disease, stroke, and advanced aging.

  14. Alcohol-Induced Molecular Dysregulation in Human Embryonic Stem Cell-Derived Neural Precursor Cells.

    PubMed

    Kim, Yi Young; Roubal, Ivan; Lee, Youn Soo; Kim, Jin Seok; Hoang, Michael; Mathiyakom, Nathan; Kim, Yong

    Adverse effect of alcohol on neural function has been well documented. Especially, the teratogenic effect of alcohol on neurodevelopment during embryogenesis has been demonstrated in various models, which could be a pathologic basis for fetal alcohol spectrum disorders (FASDs). While the developmental defects from alcohol abuse during gestation have been described, the specific mechanisms by which alcohol mediates these injuries have yet to be determined. Recent studies have shown that alcohol has significant effect on molecular and cellular regulatory mechanisms in embryonic stem cell (ESC) differentiation including genes involved in neural development. To test our hypothesis that alcohol induces molecular alterations during neural differentiation we have derived neural precursor cells from pluripotent human ESCs in the presence or absence of ethanol treatment. Genome-wide transcriptomic profiling identified molecular alterations induced by ethanol exposure during neural differentiation of hESCs into neural rosettes and neural precursor cell populations. The Database for Annotation, Visualization and Integrated Discovery (DAVID) functional analysis on significantly altered genes showed potential ethanol's effect on JAK-STAT signaling pathway, neuroactive ligand-receptor interaction, Toll-like receptor (TLR) signaling pathway, cytokine-cytokine receptor interaction and regulation of autophagy. We have further quantitatively verified ethanol-induced alterations of selected candidate genes. Among verified genes we further examined the expression of P2RX3, which is associated with nociception, a peripheral pain response. We found ethanol significantly reduced the level of P2RX3 in undifferentiated hESCs, but induced the level of P2RX3 mRNA and protein in hESC-derived NPCs. Our result suggests ethanol-induced dysregulation of P2RX3 along with alterations in molecules involved in neural activity such as neuroactive ligand-receptor interaction may be a molecular event

  15. Alcohol-Induced Molecular Dysregulation in Human Embryonic Stem Cell-Derived Neural Precursor Cells

    PubMed Central

    Kim, Yi Young; Roubal, Ivan; Lee, Youn Soo; Kim, Jin Seok; Hoang, Michael; Mathiyakom, Nathan; Kim, Yong

    2016-01-01

    Adverse effect of alcohol on neural function has been well documented. Especially, the teratogenic effect of alcohol on neurodevelopment during embryogenesis has been demonstrated in various models, which could be a pathologic basis for fetal alcohol spectrum disorders (FASDs). While the developmental defects from alcohol abuse during gestation have been described, the specific mechanisms by which alcohol mediates these injuries have yet to be determined. Recent studies have shown that alcohol has significant effect on molecular and cellular regulatory mechanisms in embryonic stem cell (ESC) differentiation including genes involved in neural development. To test our hypothesis that alcohol induces molecular alterations during neural differentiation we have derived neural precursor cells from pluripotent human ESCs in the presence or absence of ethanol treatment. Genome-wide transcriptomic profiling identified molecular alterations induced by ethanol exposure during neural differentiation of hESCs into neural rosettes and neural precursor cell populations. The Database for Annotation, Visualization and Integrated Discovery (DAVID) functional analysis on significantly altered genes showed potential ethanol’s effect on JAK-STAT signaling pathway, neuroactive ligand-receptor interaction, Toll-like receptor (TLR) signaling pathway, cytokine-cytokine receptor interaction and regulation of autophagy. We have further quantitatively verified ethanol-induced alterations of selected candidate genes. Among verified genes we further examined the expression of P2RX3, which is associated with nociception, a peripheral pain response. We found ethanol significantly reduced the level of P2RX3 in undifferentiated hESCs, but induced the level of P2RX3 mRNA and protein in hESC-derived NPCs. Our result suggests ethanol-induced dysregulation of P2RX3 along with alterations in molecules involved in neural activity such as neuroactive ligand-receptor interaction may be a molecular event

  16. Ibuprofen slows migration and inhibits bowel colonization by enteric nervous system precursors in zebrafish, chick and mouse.

    PubMed

    Schill, Ellen Merrick; Lake, Jonathan I; Tusheva, Olga A; Nagy, Nandor; Bery, Saya K; Foster, Lynne; Avetisyan, Marina; Johnson, Stephen L; Stenson, William F; Goldstein, Allan M; Heuckeroth, Robert O

    2016-01-15

    Hirschsprung Disease (HSCR) is a potentially deadly birth defect characterized by the absence of the enteric nervous system (ENS) in distal bowel. Although HSCR has clear genetic causes, no HSCR-associated mutation is 100% penetrant, suggesting gene-gene and gene-environment interactions determine HSCR occurrence. To test the hypothesis that certain medicines might alter HSCR risk we treated zebrafish with medications commonly used during early human pregnancy and discovered that ibuprofen caused HSCR-like absence of enteric neurons in distal bowel. Using fetal CF-1 mouse gut slice cultures, we found that ibuprofen treated enteric neural crest-derived cells (ENCDC) had reduced migration, fewer lamellipodia and lower levels of active RAC1/CDC42. Additionally, inhibiting ROCK, a RHOA effector and known RAC1 antagonist, reversed ibuprofen effects on migrating mouse ENCDC in culture. Ibuprofen also inhibited colonization of Ret+/- mouse bowel by ENCDC in vivo and dramatically reduced bowel colonization by chick ENCDC in culture. Interestingly, ibuprofen did not affect ENCDC migration until after at least three hours of exposure. Furthermore, mice deficient in Ptgs1 (COX 1) and Ptgs2 (COX 2) had normal bowel colonization by ENCDC and normal ENCDC migration in vitro suggesting COX-independent effects. Consistent with selective and strain specific effects on ENCDC, ibuprofen did not affect migration of gut mesenchymal cells, NIH3T3, or WT C57BL/6 ENCDC, and did not affect dorsal root ganglion cell precursor migration in zebrafish. Thus, ibuprofen inhibits ENCDC migration in vitro and bowel colonization by ENCDC in vivo in zebrafish, mouse and chick, but there are cell type and strain specific responses. These data raise concern that ibuprofen may increase Hirschsprung disease risk in some genetically susceptible children.

  17. Precursors predicted by artificial neural networks for mass balance calculations: Quantifying hydrothermal alteration in volcanic rocks

    NASA Astrophysics Data System (ADS)

    Trépanier, Sylvain; Mathieu, Lucie; Daigneault, Réal; Faure, Stéphane

    2016-04-01

    This study proposes an artificial neural networks-based method for predicting the unaltered (precursor) chemical compositions of hydrothermally altered volcanic rock. The method aims at predicting precursor's major components contents (SiO2, FeOT, MgO, CaO, Na2O, and K2O). The prediction is based on ratios of elements generally immobile during alteration processes; i.e. Zr, TiO2, Al2O3, Y, Nb, Th, and Cr, which are provided as inputs to the neural networks. Multi-layer perceptron neural networks were trained on a large dataset of least-altered volcanic rock samples that document a wide range of volcanic rock types, tectonic settings and ages. The precursors thus predicted are then used to perform mass balance calculations. Various statistics were calculated to validate the predictions of precursors' major components, which indicate that, overall, the predictions are precise and accurate. For example, rank-based correlation coefficients were calculated to compare predicted and analysed values from a least-altered test dataset that had not been used to train the networks. Coefficients over 0.87 were obtained for all components, except for Na2O (0.77), indicating that predictions for alkali might be less performant. Also, predictions are performant for most volcanic rock compositions, except for ultra-K rocks. The proposed method provides an easy and rapid solution to the often difficult task of determining appropriate volcanic precursor compositions to rocks modified by hydrothermal alteration. It is intended for large volcanic rock databases and is most useful, for example, to mineral exploration performed in complex or poorly known volcanic settings. The method is implemented as a simple C++ console program.

  18. CBP regulates the differentiation of interneurons from ventral forebrain neural precursors during murine development.

    PubMed

    Tsui, David; Voronova, Anastassia; Gallagher, Denis; Kaplan, David R; Miller, Freda D; Wang, Jing

    2014-01-15

    The mechanisms that regulate appropriate genesis and differentiation of interneurons in the developing mammalian brain are of significant interest not only because interneurons play key roles in the establishment of neural circuitry, but also because when they are deficient, this can cause epilepsy. In this regard, one genetic syndrome that is associated with deficits in neural development and epilepsy is Rubinstein-Taybi Syndrome (RTS), where the transcriptional activator and histone acetyltransferase CBP is mutated and haploinsufficient. Here, we have asked whether CBP is necessary for the appropriate genesis and differentiation of interneurons in the murine forebrain, since this could provide an explanation for the epilepsy that is associated with RTS. We show that CBP is expressed in neural precursors within the embryonic medial ganglionic eminence (MGE), an area that generates the vast majority of interneurons for the cortex. Using primary cultures of MGE precursors, we show that knockdown of CBP causes deficits in differentiation of these precursors into interneurons and oligodendrocytes, and that overexpression of CBP is by itself sufficient to enhance interneuron genesis. Moreover, we show that levels of the neurotransmitter synthesis enzyme GAD67, which is expressed in inhibitory interneurons, are decreased in the dorsal and ventral forebrain of neonatal CBP(+/-) mice, indicating that CBP plays a role in regulating interneuron development in vivo. Thus, CBP normally acts to ensure the differentiation of appropriate numbers of forebrain interneurons, and when its levels are decreased, this causes deficits in interneuron development, providing a potential explanation for the epilepsy seen in individuals with RTS.

  19. Long-term culture and differentiation of CNS precursors derived from anterior human neural rosettes following exposure to ventralizing factors

    SciTech Connect

    Colleoni, Silvia; Giannelli, Serena G.; Armentero, Marie-Therese; Blandini, Fabio; Broccoli, Vania; Lazzari, Giovanna

    2010-04-15

    In this study we demonstrated that neural rosettes derived from human ES cells can give rise either to neural crest precursors, following expansion in presence of bFGF and EGF, or to dopaminergic precursors after exposure to ventralizing factors Shh and FGF8. Both regionalised precursors are capable of extensive proliferation and differentiation towards the corresponding terminally differentiated cell types. In particular, peripheral neurons, cartilage, bone, smooth muscle cells and also pigmented cells were obtained from neural crest precursors while tyrosine hydroxylase and Nurr1 positive dopaminergic neurons were derived from FGF8 and Shh primed rosette cells. Gene expression and immunocytochemistry analyses confirmed the expression of dorsal and neural crest genes such as Sox10, Slug, p75, FoxD3, Pax7 in neural precursors from bFGF-EGF exposed rosettes. By contrast, priming of rosettes with FGF8 and Shh induced the expression of dopaminergic markers Engrailed1, Pax2, Pitx3, floor plate marker FoxA2 and radial glia markers Blbp and Glast, the latter in agreement with the origin of dopaminergic precursors from floor plate radial glia. Moreover, in vivo transplant of proliferating Shh/FGF8 primed precursors in parkinsonian rats demonstrated engraftment and terminal dopaminergic differentiation. In conclusion, we demonstrated the derivation of long-term self-renewing precursors of selected regional identity as potential cell reservoirs for cell therapy applications, such as CNS degenerative diseases, or for the development of toxicological tests.

  20. Gene expression analysis of embryonic photoreceptor precursor cells using BAC-Crx-EGFP transgenic mouse.

    PubMed

    Muranishi, Yuki; Sato, Shigeru; Inoue, Tatsuya; Ueno, Shinji; Koyasu, Toshiyuki; Kondo, Mineo; Furukawa, Takahisa

    2010-02-12

    Crx is a transcription factor which is predominantly expressed in developing and mature photoreceptor cells in the retina, and plays a crucial role in the terminal differentiation of both rods and cones. Crx is one of the earliest-expressed genes specifically in photoreceptor precursors, allowing us to trace photoreceptor precursor cells from embryonic stages to adult stage by visualizing Crx-expressing cells. In the current study, we generated a transgenic mouse line which expresses enhanced green fluorescence protein (EGFP) in the retina driven by the Crx promoter using bacterial artificial chromosome (BAC) transgenesis. EGFP-positive cells were observed in the presumptive photoreceptor layer in the retina at embryonic day 15.5 (E15.5), and continued to be expressed in developing and mature photoreceptor cells up to adult stage. We sorted EGFP-positive photoreceptor precursors at E17.5 using fluorescence-activated cell sorter (FACS), and subsequently performed microarray analysis of the FACS-sorted cells. We observed various photoreceptor genes, especially cone genes, are enriched in the EGFP-positive cells, indicating that embryonic cone photoreceptor precursors are enriched. In addition, we found that most of the EGFP-positive cells were post-mitotic cells. Thus, the transgenic line we established can serve as a useful tool to study both developing and mature photoreceptor cells, including embryonic cone precursors whose analysis has been difficult.

  1. Activating receptor NKG2D targets RAE-1-expressing allogeneic neural precursor cells in a viral model of multiple sclerosis.

    PubMed

    Weinger, Jason G; Plaisted, Warren C; Maciejewski, Sonia M; Lanier, Lewis L; Walsh, Craig M; Lane, Thomas E

    2014-10-01

    Transplantation of major histocompatibility complex-mismatched mouse neural precursor cells (NPCs) into mice persistently infected with the neurotropic JHM strain of mouse hepatitis virus (JHMV) results in rapid rejection that is mediated, in part, by T cells. However, the contribution of the innate immune response to allograft rejection in a model of viral-induced neurological disease has not been well defined. Herein, we demonstrate that the natural killer (NK) cell-expressing-activating receptor NKG2D participates in transplanted allogeneic NPC rejection in mice persistently infected with JHMV. Cultured NPCs derived from C57BL/6 (H-2(b) ) mice express the NKG2D ligand retinoic acid early precursor transcript (RAE)-1 but expression was dramatically reduced upon differentiation into either glia or neurons. RAE-1(+) NPCs were susceptible to NK cell-mediated killing whereas RAE-1(-) cells were resistant to lysis. Transplantation of C57BL/6-derived NPCs into JHMV-infected BALB/c (H-2(d) ) mice resulted in infiltration of NKG2D(+) CD49b(+) NK cells and treatment with blocking antibody specific for NKG2D increased survival of allogeneic NPCs. Furthermore, transplantation of differentiated RAE-1(-) allogeneic NPCs into JHMV-infected BALB/c mice resulted in enhanced survival, highlighting a role for the NKG2D/RAE-1 signaling axis in allograft rejection. We also demonstrate that transplantation of allogeneic NPCs into JHMV-infected mice resulted in infection of the transplanted cells suggesting that these cells may be targets for infection. Viral infection of cultured cells increased RAE-1 expression, resulting in enhanced NK cell-mediated killing through NKG2D recognition. Collectively, these results show that in a viral-induced demyelination model, NK cells contribute to rejection of allogeneic NPCs through an NKG2D signaling pathway.

  2. Derivation of Neural Precursor Cells from Human Embryonic Stem Cells for DNA Methylomic Analysis.

    PubMed

    Roubal, Ivan; Park, Sun Joo; Kim, Yong

    2016-01-01

    Embryonic stem cells are self-renewing pluripotent cells with competency to differentiate into all three-germ lineages. Many studies have demonstrated the importance of genetic and epigenetic molecular mechanisms in the maintenance of self-renewal and pluripotency. Stem cells are under unique molecular and cellular regulations different from somatic cells. Proper regulation should be ensured to maintain their unique self-renewal and undifferentiated characteristics. Understanding key mechanisms in stem cell biology will be important for the successful application of stem cells for regenerative therapeutic medicine. More importantly practical use of stem cells will require our knowledge on how to properly direct and differentiate stem cells into the necessary type of cells. Embryonic stem cells and adult stem cells have been used as study models to unveil molecular and cellular mechanisms in various signaling pathways. They are especially beneficial to developmental studies where in vivo molecular/cellular study models are not available. We have derived neural stem cells from human embryonic stem cells as a model to study the effect of teratogen in neural development. We have tested commercial neural differentiation system and successfully derived neural precursor cells exhibiting key molecular features of neural stem cells, which will be useful for experimental application.

  3. Decoding Ventromedial Hypothalamic Neural Activity during Male Mouse Aggression

    PubMed Central

    Dollar, Piotr; Perona, Pietro

    2014-01-01

    The ventromedial hypothalamus, ventrolateral area (VMHvl) was identified recently as a critical locus for inter-male aggression. Optogenetic stimulation of VMHvl in male mice evokes attack toward conspecifics and inactivation of the region inhibits natural aggression, yet very little is known about its underlying neural activity. To understand its role in promoting aggression, we recorded and analyzed neural activity in the VMHvl in response to a wide range of social and nonsocial stimuli. Although response profiles of VMHvl neurons are complex and heterogeneous, we identified a subpopulation of neurons that respond maximally during investigation and attack of male conspecific mice and during investigation of a source of male mouse urine. These “male responsive” neurons in the VMHvl are tuned to both the inter-male distance and the animal's velocity during attack. Additionally, VMHvl activity predicts several parameters of future aggressive action, including the latency and duration of the next attack. Linear regression analysis further demonstrates that aggression-specific parameters, such as distance, movement velocity, and attack latency, can model ongoing VMHvl activity fluctuation during inter-male encounters. These results represent the first effort to understand the hypothalamic neural activity during social behaviors using quantitative tools and suggest an important role for the VMHvl in encoding movement, sensory, and motivation-related signals. PMID:24760856

  4. Comparison of melatonin with growth factors in promoting precursor cells proliferation in adult mouse subventricular zone

    PubMed Central

    Sotthibundhu, Areechun; Ekthuwapranee, Kasima; Govitrapong, Piyarat

    2016-01-01

    Melatonin, secreted mainly by the pineal gland, plays roles in various physiological functions including protecting cell death. We showed in previous study that the proliferation and differentiation of precursor cells from the adult mouse subventricular zone (SVZ) can be modulated by melatonin via the MT1 melatonin receptor. Since melatonin and epidermal growth factor receptor (EGFR) share some signaling pathway components, we investigated whether melatonin can promote the proliferation of precursor cells from the adult mouse SVZ via the extracellular signal-regulated protein kinase /mitogen-activated protein kinase (ERK/MAPK) pathways in comparison with epidermal growth factor (EGF). Melatonin-induced ERK/MAPK pathways compared with EGF were measured by using in vitro and vivo models. We used neurosphere proliferation assay, immunocytochemistry, and immuno-blotting to analyze significant differences between melatonin and growth factor treatment. We also used specific antagonist and inhibitors to confirm the exactly signaling pathway including luzindole and U0126. We found that significant increase in proliferation was observed when two growth factors (EGF+bFGF) and melatonin were used simultaneously compared with EGF + bFGF or compared with melatonin alone. In addition, the present result suggested the synergistic effect occurred of melatonin and growth factors on the activating the ERK/MAPK pathway. This study exhibited that melatonin could act as a trophic factor, increasing proliferation in precursor cells mediated through the melatonin receptor coupled to ERK/MAPK signaling pathways. Understanding the mechanism by which melatonin regulates precursor cells may conduct to the development of novel strategies for neurodegenerative disease therapy. PMID:28275319

  5. Inhibition of glycogen synthase kinase-3 enhances the differentiation and reduces the proliferation of adult human olfactory epithelium neural precursors

    SciTech Connect

    Manceur, Aziza P.; Tseng, Michael; Holowacz, Tamara; Witterick, Ian; Weksberg, Rosanna; McCurdy, Richard D.; Warsh, Jerry J.; Audet, Julie

    2011-09-10

    The olfactory epithelium (OE) contains neural precursor cells which can be easily harvested from a minimally invasive nasal biopsy, making them a valuable cell source to study human neural cell lineages in health and disease. Glycogen synthase kinase-3 (GSK-3) has been implicated in the etiology and treatment of neuropsychiatric disorders and also in the regulation of murine neural precursor cell fate in vitro and in vivo. In this study, we examined the impact of decreased GSK-3 activity on the fate of adult human OE neural precursors in vitro. GSK-3 inhibition was achieved using ATP-competitive (6-bromoindirubin-3'-oxime and CHIR99021) or substrate-competitive (TAT-eIF2B) inhibitors to eliminate potential confounding effects on cell fate due to off-target kinase inhibition. GSK-3 inhibitors decreased the number of neural precursor cells in OE cell cultures through a reduction in proliferation. Decreased proliferation was not associated with a reduction in cell survival but was accompanied by a reduction in nestin expression and a substantial increase in the expression of the neuronal differentiation markers MAP1B and neurofilament (NF-M) after 10 days in culture. Taken together, these results suggest that GSK-3 inhibition promotes the early stages of neuronal differentiation in cultures of adult human neural precursors and provide insights into the mechanisms by which alterations in GSK-3 signaling affect adult human neurogenesis, a cellular process strongly suspected to play a role in the etiology of neuropsychiatric disorders.

  6. ETOH inhibits embryonic neural stem/precursor cell proliferation via PLD signaling

    SciTech Connect

    Fujita, Yuko; Hiroyama, Masami; Sanbe, Atsushi Yamauchi, Junji; Murase, Shoko; Tanoue, Akito

    2008-05-23

    While a mother's excessive alcohol consumption during pregnancy is known to have adverse effects on fetal neural development, little is known about the underlying mechanism of these effects. In order to investigate these mechanisms, we investigated the toxic effect of ethanol (ETOH) on neural stem/precursor cell (NSC) proliferation. In cultures of NSCs, phospholipase D (PLD) is activated following stimulation with epidermal growth factor (EGF) and fibroblast growth factor 2 (FGF2). Exposure of NSCs to ETOH suppresses cell proliferation, while it has no effect on cell death. Phosphatidic acid (PA), which is a signaling messenger produced by PLD, reverses ETOH inhibition of NSC proliferation. Blocking the PLD signal by 1-butanol suppresses the proliferation. ETOH-induced suppression of NSC proliferation and the protective effect of PA for ETOH-induced suppression are mediated through extracellular signal-regulated kinase signaling. These results indicate that exposure to ETOH impairs NSC proliferation by altering the PLD signaling pathway.

  7. ETOH inhibits embryonic neural stem/precursor cell proliferation via PLD signaling.

    PubMed

    Fujita, Yuko; Hiroyama, Masami; Sanbe, Atsushi; Yamauchi, Junji; Murase, Shoko; Tanoue, Akito

    2008-05-23

    While a mother's excessive alcohol consumption during pregnancy is known to have adverse effects on fetal neural development, little is known about the underlying mechanism of these effects. In order to investigate these mechanisms, we investigated the toxic effect of ethanol (ETOH) on neural stem/precursor cell (NSC) proliferation. In cultures of NSCs, phospholipase D (PLD) is activated following stimulation with epidermal growth factor (EGF) and fibroblast growth factor 2 (FGF2). Exposure of NSCs to ETOH suppresses cell proliferation, while it has no effect on cell death. Phosphatidic acid (PA), which is a signaling messenger produced by PLD, reverses ETOH inhibition of NSC proliferation. Blocking the PLD signal by 1-butanol suppresses the proliferation. ETOH-induced suppression of NSC proliferation and the protective effect of PA for ETOH-induced suppression are mediated through extracellular signal-regulated kinase signaling. These results indicate that exposure to ETOH impairs NSC proliferation by altering the PLD signaling pathway.

  8. Rejuvenation of MPTP-induced human neural precursor cell senescence by activating autophagy

    SciTech Connect

    Zhu, Liang; Dong, Chuanming; Sun, Chenxi; Ma, Rongjie; Yang, Danjing; Zhu, Hongwen; Xu, Jun

    2015-08-21

    Aging of neural stem cell, which can affect brain homeostasis, may be caused by many cellular mechanisms. Autophagy dysfunction was found in aged and neurodegenerative brains. However, little is known about the relationship between autophagy and human neural stem cell (hNSC) aging. The present study used 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) to treat neural precursor cells (NPCs) derived from human embryonic stem cell (hESC) line H9 and investigate related molecular mechanisms involved in this process. MPTP-treated NPCs were found to undergo premature senescence [determined by increased senescence-associated-β-galactosidase (SA-β-gal) activity, elevated intracellular reactive oxygen species level, and decreased proliferation] and were associated with impaired autophagy. Additionally, the cellular senescence phenotypes were manifested at the molecular level by a significant increase in p21 and p53 expression, a decrease in SOD2 expression, and a decrease in expression of some key autophagy-related genes such as Atg5, Atg7, Atg12, and Beclin 1. Furthermore, we found that the senescence-like phenotype of MPTP-treated hNPCs was rejuvenated through treatment with a well-known autophagy enhancer rapamycin, which was blocked by suppression of essential autophagy gene Beclin 1. Taken together, these findings reveal the critical role of autophagy in the process of hNSC aging, and this process can be reversed by activating autophagy. - Highlights: • We successfully establish hESC-derived neural precursor cells. • MPTP treatment induced senescence-like state in hESC-derived NPCs. • MPTP treatment induced impaired autophagy of hESC-derived NPCs. • MPTP-induced hESC-derived NPC senescence was rejuvenated by activating autophagy.

  9. Coculture with endothelial cells reduces the population of cycling LeX neural precursors but increases that of quiescent cells with a side population phenotype

    SciTech Connect

    Mathieu, Celine . E-mail: marc-andre.mouthon@cea.fr

    2006-04-01

    Neural stem cell proliferation and differentiation are regulated by external cues from their microenvironment. As endothelial cells are closely associated with neural stem cell in brain germinal zones, we investigated whether endothelial cells may interfere with neurogenesis. Neural precursor cells (NPC) from telencephalon of EGFP mouse embryos were cocultured in direct contact with endothelial cells. Endothelial cells did not modify the overall proliferation and apoptosis of neural cells, albeit they transiently delayed spontaneous apoptosis. These effects appeared to be specific to endothelial cells since a decrease in proliferation and a raise in apoptosis were observed in cocultures with fibroblasts. Endothelial cells stimulated the differentiation of NPC into astrocytes and into neurons, whereas they reduced differentiation into oligodendrocytes in comparison to adherent cultures on polyornithine. Determination of NPC clonogenicity and quantification of LeX expression, a marker for NPC, showed that endothelial cells decreased the number of cycling NPC. On the other hand, the presence of endothelial cells increased the number of neural cells having 'side population' phenotype, another marker reported on NPC, which we have shown to contain quiescent cells. Thus, we show that endothelial cells may regulate neurogenesis by acting at different level of NPC differentiation, proliferation and quiescence.

  10. Astrocyte-Secreted Factors Selectively Alter Neural Stem and Progenitor Cell Proliferation in the Fragile X Mouse

    PubMed Central

    Sourial, Mary; Doering, Laurie C.

    2016-01-01

    An increasing body of evidence indicates that astrocytes contribute to the governance and fine tuning of stem and progenitor cell production during brain development. The effect of astrocyte function in cell production in neurodevelopmental disorders is unknown. We used the Neural Colony Forming Cell assay to determine the effect of astrocyte conditioned media (ACM) on the generation of neurospheres originating from either progenitor cells or functional stem cells in the knock out (KO) Fragile X mouse model. ACM from both normal and Fmr1-KO mice generated higher percentages of smaller neurospheres indicative of restricted proliferation of the progenitor cell population in Fmr1-KO brains. Wild type (WT) neurospheres, but not KO neurospheres, showed enhanced responses to ACM from the Fmr1-KO mice. In particular, Fmr1-KO ACM increased the percentage of large neurospheres generated, representative of spheres produced from neural stem cells. We also used 2D DIGE to initiate identification of the astrocyte-secreted proteins with differential expression between Fmr1-KO and WT cortices and hippocampi. The results further support the critical role of astrocytes in governing neural cell production in brain development and point to significant alterations in neural cell proliferation due to astrocyte secreted factors from the Fragile X brain. Highlights: • We studied the proliferation of neural stem and progenitor cells in Fragile X. • We examined the role of astrocyte-secreted factors in neural precursor cell biology. • Astrocyte-secreted factors with differential expression in Fragile X identified. PMID:27242437

  11. Pulsed DC Electric Field–Induced Differentiation of Cortical Neural Precursor Cells

    PubMed Central

    Chang, Hui-Fang; Lee, Ying-Shan; Tang, Tang K.; Cheng, Ji-Yen

    2016-01-01

    We report the differentiation of neural stem and progenitor cells solely induced by direct current (DC) pulses stimulation. Neural stem and progenitor cells in the adult mammalian brain are promising candidates for the development of therapeutic neuroregeneration strategies. The differentiation of neural stem and progenitor cells depends on various in vivo environmental factors, such as nerve growth factor and endogenous EF. In this study, we demonstrated that the morphologic and phenotypic changes of mouse neural stem and progenitor cells (mNPCs) could be induced solely by exposure to square-wave DC pulses (magnitude 300 mV/mm at frequency of 100-Hz). The DC pulse stimulation was conducted for 48 h, and the morphologic changes of mNPCs were monitored continuously. The length of primary processes and the amount of branching significantly increased after stimulation by DC pulses for 48 h. After DC pulse treatment, the mNPCs differentiated into neurons, astrocytes, and oligodendrocytes simultaneously in stem cell maintenance medium. Our results suggest that simple DC pulse treatment could control the fate of NPCs. With further studies, DC pulses may be applied to manipulate NPC differentiation and may be used for the development of therapeutic strategies that employ NPCs to treat nervous system disorders. PMID:27352251

  12. Pulsed DC Electric Field-Induced Differentiation of Cortical Neural Precursor Cells.

    PubMed

    Chang, Hui-Fang; Lee, Ying-Shan; Tang, Tang K; Cheng, Ji-Yen

    2016-01-01

    We report the differentiation of neural stem and progenitor cells solely induced by direct current (DC) pulses stimulation. Neural stem and progenitor cells in the adult mammalian brain are promising candidates for the development of therapeutic neuroregeneration strategies. The differentiation of neural stem and progenitor cells depends on various in vivo environmental factors, such as nerve growth factor and endogenous EF. In this study, we demonstrated that the morphologic and phenotypic changes of mouse neural stem and progenitor cells (mNPCs) could be induced solely by exposure to square-wave DC pulses (magnitude 300 mV/mm at frequency of 100-Hz). The DC pulse stimulation was conducted for 48 h, and the morphologic changes of mNPCs were monitored continuously. The length of primary processes and the amount of branching significantly increased after stimulation by DC pulses for 48 h. After DC pulse treatment, the mNPCs differentiated into neurons, astrocytes, and oligodendrocytes simultaneously in stem cell maintenance medium. Our results suggest that simple DC pulse treatment could control the fate of NPCs. With further studies, DC pulses may be applied to manipulate NPC differentiation and may be used for the development of therapeutic strategies that employ NPCs to treat nervous system disorders.

  13. Ionizing Radiation Perturbs Cell Cycle Progression of Neural Precursors in the Subventricular Zone Without Affecting Their Long-Term Self-Renewal.

    PubMed

    Chen, Hongxin; Goodus, Matthew T; de Toledo, Sonia M; Azzam, Edouard I; Levison, Steven W; Souayah, Nizar

    2015-01-01

    Damage to normal human brain cells from exposure to ionizing radiation may occur during the course of radiotherapy or from accidental exposure. Delayed effects may complicate the immediate effects resulting in neurodegeneration and cognitive decline. We examined cellular and molecular changes associated with exposure of neural stem/progenitor cells (NSPs) to (137)Cs γ-ray doses in the range of 0 to 8 Gy. Subventricular zone NSPs isolated from newborn mouse pups were analyzed for proliferation, self-renewal, and differentiation, shortly after irradiation. Strikingly, there was no apparent increase in the fraction of dying cells after irradiation, and the number of single cells that formed neurospheres showed no significant change from control. Upon differentiation, irradiated neural precursors did not differ in their ability to generate neurons, astrocytes, and oligodendrocytes. By contrast, progression of NSPs through the cell cycle decreased dramatically after exposure to 8 Gy (p < .001). Mice at postnatal day 10 were exposed to 8 Gy of γ rays delivered to the whole body and NSPs of the subventricular zone were analyzed using a four-color flow cytometry panel combined with ethynyl deoxyuridine incorporation. Similar flow cytometric analyses were performed on NSPs cultured as neurospheres. These studies revealed that neither the percentage of neural stem cells nor their proliferation was affected. By contrast, γ-irradiation decreased the proliferation of two classes of multipotent cells and increased the proliferation of a specific glial-restricted precursor. Altogether, these results support the conclusion that primitive neural precursors are radioresistant, but their proliferation is slowed down as a consequence of γ-ray exposure.

  14. Epidermal growth factor precursor in mouse lactating mammary gland alveolar cells

    SciTech Connect

    Brown, C.F.; Teng, C.T.; Pentecost, B.T.; DiAugustine, R.P. )

    1989-07-01

    Previous studies have demonstrated that high levels of epidermal growth factor (EGF) occur in human and rodent milk and that oral administration of this polypeptide stimulates rodent gastrointestinal development. It is not known whether EGF in milk originates from cells of the lactating mammary gland or is sequestered from an extramammary source. In the present study, prepro-EGF mRNA (approximately 4.7 kilobases) was detected in the CD-1 mouse mammary gland throughout the period of lactation; by comparison, negligible levels of this EGF transcript were found in the gland during pregnancy. Low levels of EGF immunoreactivity (4-5 ng/g wet wt tissue) were extracted from lactating (day 18) mammary glands with dilute acetic acid. Immunolocalization was evident with antisera to either EGF or two other regions of the EGF precursor in essentially all alveolar cells of the lactating gland. The most prominent staining with antiserum to EGF was observed along the luminal borders of cells; this pattern of cellular staining required proteolytic pretreatment of tissue sections. Western blot analyses of cell membranes isolated from the day 16 lactating mammary gland revealed an EGF-immunoreactive band at about 145K, which was equivalent in size to the EGF precursor found in mouse kidney cell membranes. Despite these findings, labeling of lactating mammary gland mince with L-(35S)methionine and cysteine for up to 4 h did not reveal any specific bands in immunoprecipitates. These cumulative findings suggest that the precursor form of EGF occurs in alveolar cells of lactating mammary gland and that this protein is translocated to the cell membrane.

  15. Expression of chondrogenic potential of mouse trunk neural crest cells by FGF2 treatment.

    PubMed

    Ido, Atsushi; Ito, Kazuo

    2006-02-01

    There is a significant difference between the developmental patterns of cranial and trunk neural crest cells in the amniote. Thus, whereas cranial neural crest cells generate bone and cartilage, trunk neural crest cells do not contribute to skeletal derivatives. We examined whether mouse trunk neural crest cells can undergo chondrogenesis to analyze how the difference between the developmental patterns of cranial and trunk neural crest cells arises. Our present data demonstrate that mouse trunk neural crest cells have chondrogenic potential and that fibroblast growth factor (FGF) 2 is an inducing factor for their chondrogenesis in vitro. FGF2 altered the expression patterns of Hox9 genes and Id2, a cranial neural crest cell marker. These results suggest that environmental cues may play essential roles in generating the difference between developmental patterns of cranial and trunk neural crest cells.

  16. Isolation of neural precursor cells from skeletal muscle tissues and their differentiation into neuron-like cells.

    PubMed

    Park, Jung Sik; Kim, Soyeon; Han, Dong Keun; Lee, Ji Youl; Ghil, Sung Ho

    2007-08-31

    Skeletal muscle contains several precursor cells that generate muscle, bone, cartilage and blood cells. Although there are reports that skeletal muscle-derived cells can trans-differentiate into neural-lineage cells, methods for isolating precursor cells, and procedures for successful neural induction have not been fully established. Here, we show that the preplate cell isolation method, which separates cells based on their adhesion characteristics, permits separation of cells possessing neural precursor characteristics from other cells of skeletal muscle tissues. We term these isolated cells skeletal muscle-derived neural precursor cells (SMNPs). The isolated SMNPs constitutively expressed neural stem cell markers. In addition, we describe effective neural induction materials permitting the neuron-like cell differentiation of SMNPs. Treatment with retinoic acid or forskolin facilitated morphological changes in SMNPs; they differentiated into neuron-like cells that possessed specific neuronal markers. These results suggest that the preplate isolation method, and treatment with retinoic acid or forskolin, may provide vital assistance in the use of SMNPs in cell-based therapy of neuronal disease.

  17. Neural map formation in the mouse olfactory system.

    PubMed

    Takeuchi, Haruki; Sakano, Hitoshi

    2014-08-01

    In the mouse olfactory system, odorants are detected by ~1,000 different odorant receptors (ORs) produced by olfactory sensory neurons (OSNs). Each OSN expresses only one functional OR species, which is referred to as the "one neuron-one receptor" rule. Furthermore, OSN axons bearing the same OR converge to a specific projection site in the olfactory bulb (OB) forming a glomerular structure, i.e., the "one glomerulus-one receptor" rule. Based on these basic rules, binding signals of odorants detected by OSNs are converted to topographic information of activated glomeruli in the OB. During development, the glomerular map is formed by the combination of two genetically programmed processes: one is OR-independent projection along the dorsal-ventral axis, and the other is OR-dependent projection along the anterior-posterior axis. The map is further refined in an activity-dependent manner during the neonatal period. Here, we summarize recent progress of neural map formation in the mouse olfactory system.

  18. Prolonged cultivation of hippocampal neural precursor cells shifts their differentiation potential and selects for aneuploid cells.

    PubMed

    Nguyen, The Duy; Widera, Darius; Greiner, Johannes; Müller, Janine; Martin, Ina; Slotta, Carsten; Hauser, Stefan; Kaltschmidt, Christian; Kaltschmidt, Barbara

    2013-12-01

    Neural precursor cells (NPCs) are lineage-restricted neural stem cells with limited self-renewal, giving rise to a broad range of neural cell types such as neurons, astrocytes, and oligodendrocytes. Despite this developmental potential, the differentiation capacity of NPCs has been controversially discussed concerning the trespassing lineage boundaries, for instance resulting in hematopoietic competence. Assessing their in vitro plasticity, we isolated nestin+/Sox2+, NPCs from the adult murine hippocampus. In vitro-expanded adult NPCs were able to form neurospheres, self-renew, and differentiate into neuronal, astrocytic, and oligodendrocytic cells. Although NPCs cultivated in early passage efficiently gave rise to neuronal cells in a directed differentiation assay, extensively cultivated NPCs revealed reduced potential for ectodermal differentiation. We further observed successful differentiation of long-term cultured NPCs into osteogenic and adipogenic cell types, suggesting that NPCs underwent a fate switch during culture. NPCs cultivated for more than 12 passages were aneuploid (abnormal chromosome numbers such as 70 chromosomes). Furthermore, they showed growth factor-independent proliferation, a hallmark of tumorigenic transformation. In conclusion, our findings substantiate the lineage restriction of NPCs from adult mammalian hippocampus. Prolonged cultivation results, however, in enhanced differentiation potential, which may be attributed to transformation events leading to aneuploid cells.

  19. Kinin-B1 and B2 receptor activity in proliferation and neural phenotype determination of mouse embryonic stem cells.

    PubMed

    Nascimento, Isis C; Glaser, Talita; Nery, Arthur A; Pillat, Micheli M; Pesquero, João B; Ulrich, Henning

    2015-11-01

    The kinins bradykinin and des-arg(9) -bradykinin cleaved from kininogen precursors by kallikreins exert their biological actions by stimulating kinin-B2 and B1 receptors, respectively. In vitro models of neural differentiation such as P19 embryonal carcinoma cells and neural progenitor cells have suggested the involvement of B2 receptors in neural differentiation and phenotype determination; however, the involvement of B1 receptors in these processes has not been established. Here, we show that B1 and B2 receptors are differentially expressed in mouse embryonic E14Tg2A stem cells undergoing neural differentiation. Proliferation and differentiation assays, performed in the presence of receptor subtype-selective agonists and antagonists, revealed that B1 receptor activity is required for the proliferation of embryonic and differentiating cells as well as for neuronal maturation at later stages of differentiation, while the B2 receptor acts on neural phenotype choice, promoting neurogenesis over gliogenesis. Besides the elucidation of bradykinin functions in an in vitro model reflecting early embryogenesis and neurogenesis, this study contributes to the understanding of B1 receptor functions in this process.

  20. Functional electrical stimulation-facilitated proliferation and regeneration of neural precursor cells in the brains of rats with cerebral infarction

    PubMed Central

    Xiang, Yun; Liu, Huihua; Yan, Tiebin; Zhuang, Zhiqiang; Jin, Dongmei; Peng, Yuan

    2014-01-01

    Previous studies have shown that proliferation of endogenous neural precursor cells cannot alone compensate for the damage to neurons and axons. From the perspective of neural plasticity, we observed the effects of functional electrical stimulation treatment on endogenous neural precursor cell proliferation and expression of basic fibroblast growth factor and epidermal growth factor in the rat brain on the infarct side. Functional electrical stimulation was performed in rat models of acute middle cerebral artery occlusion. Simultaneously, we set up a placebo stimulation group and a sham-operated group. Immunohistochemical staining showed that, at 7 and 14 days, compared with the placebo group, the numbers of nestin (a neural precursor cell marker)-positive cells in the subgranular zone and subventricular zone were increased in the functional electrical stimulation treatment group. Western blot assays and reverse-transcription PCR showed that total protein levels and gene expression of epidermal growth factor and basic fibroblast growth factor were also upregulated on the infarct side. Prehensile traction test results showed that, at 14 days, prehension function of rats in the functional electrical stimulation group was significantly better than in the placebo group. These results suggest that functional electrical stimulation can promote endogenous neural precursor cell proliferation in the brains of acute cerebral infarction rats, enhance expression of basic fibroblast growth factor and epidermal growth factor, and improve the motor function of rats. PMID:25206808

  1. A potential inhibitory function of draxin in regulating mouse trunk neural crest migration.

    PubMed

    Zhang, Sanbing; Su, Yuhong; Gao, Jinbao; Zhang, Chenbing; Tanaka, Hideaki

    2017-01-01

    Draxin is a repulsive axon guidance protein that plays important roles in the formation of three commissures in the central nervous system and dorsal interneuron 3 (dI3) in the chick spinal cord. In the present study, we report the expression pattern of mouse draxin in the embryonic mouse trunk spinal cord. In the presence of draxin, the longest net migration length of a migrating mouse trunk neural crest cell was significantly reduced. In addition, the relative number of apolar neural crest cells increased as the draxin treatment time increased. Draxin caused actin cytoskeleton rearrangement in the migrating trunk neural crest cells. Our data suggest that draxin may regulate mouse trunk neural crest cell migration by the rearrangement of cell actin cytoskeleton and by reducing the polarization activity of these cells subsequently.

  2. Roles of neural precursor cell expressed, developmentally downregulated 9 in tumor-associated cellular processes (Review).

    PubMed

    Zhang, Sisen; Wu, Lihua

    2015-11-01

    Neural precursor cell expressed, developmentally downregulated 9 (NEDD9), a gene exclusively expressed in the brain during embryonic stages but not in brains of adult mice, is an important cytoskeletal protein and regarded as a 'router/hub' in cellular signal transduction processes connecting external stimulation signals with downstream target proteins that can directly promote tumor metastasis. Numerous studies showed that NEDD9 has an essential role in cell proliferation, apoptosis, adhesion, migration and invasion. The roles of NEDD9, including the underlying mechanisms of its regulation of cell migration, its distinctive functions in various tumor stages and its association with other diseases, are required to be elucidated at large. Future studies of NEDD9 may provide a more profound understanding of the development of tumor invasiveness and NEDD9 may serve as a potential novel target for tumor therapy. The present review examined the significant roles of NEDD9 in the abovementioned processes.

  3. Notch signaling acts before cell division to promote asymmetric cleavage and cell fate of neural precursor cells.

    PubMed

    Bhat, Krishna Moorthi

    2014-10-21

    Asymmetric cell divisions in the central nervous system generate neurons of diverse fates. In Drosophila melanogaster, the protein Numb localizes asymmetrically to dividing neural precursor cells such that only one daughter cell inherits Numb. Numb inhibits Notch signaling in this daughter cell, resulting in a different cell fate from the Notch-induced fate in the other-Numb-negative-daughter cell. Precursor cells undergo asymmetric cytokinesis generating daughter cells of different sizes. I found that inactivation of Notch in fly embryonic neural precursor cells disrupted the asymmetric positioning of the cleavage furrow and produced daughter cells of the same size and fate. Moreover, inactivation of Notch at different times altered the degree of asymmetric Numb localization, such that earlier inactivation of Notch caused symmetric distribution of Numb and later inactivation produced incomplete asymmetric localization of Numb. The extent of asymmetrically localized Numb positively correlated with the degree of asymmetric cytokinesis and the size disparity in daughter cells. Loss of Numb or expression of constitutively active Notch led to premature specification of the precursor cells into the fate of one of the daughter cells. Thus, in addition to its role in the specification of daughter cell fate after division, Notch controls Numb localization in the precursor cells to determine the size and fate of daughter cells. Numb also inhibits Notch signaling in precursor cells to prevent Notch-induced differentiation of the precursor cell, forming an autoregulatory loop.

  4. Hippocalcin Is Required for Astrocytic Differentiation through Activation of Stat3 in Hippocampal Neural Precursor Cells

    PubMed Central

    Kang, Min-Jeong; Park, Shin-Young; Han, Joong-Soo

    2016-01-01

    Hippocalcin (Hpca) is a neuronal calcium sensor protein expressed in the mammalian brain. However, its function in neural stem/precursor cells has not yet been studied. Here, we clarify the function of Hpca in astrocytic differentiation in hippocampal neural precursor cells (HNPCs). When we overexpressed Hpca in HNPCs in the presence or absence of bFGF, expression levels of nerve-growth factors such as neurotrophin-3 (NT-3), neurotrophin-4/5 (NT-4/5), and brain-derived neurotrophic factor (BDNF), together with the proneural basic helix loop helix (bHLH) transcription factors NeuroD and neurogenin 1 (Ngn1), increased significantly. In addition, there was an increase in the number of cells expressing glial fibrillary acidic protein (GFAP), an astrocyte marker, and in branch outgrowth, indicating astrocytic differentiation of the HNPCs. Downregulation of Hpca by transfection with Hpca siRNA reduced expression of NT-3, NT-4/5, BDNF, NeuroD, and Ngn1 as well as levels of GFAP protein. Furthermore, overexpression of Hpca increased the phosphorylation of STAT3 (Ser727), and this effect was abolished by treatment with a STAT3 inhibitor (S3I-201), suggesting that STAT3 (Ser727) activation is involved in Hpca-mediated astrocytic differentiation. As expected, treatment with Stat3 siRNA or STAT3 inhibitor caused a complete inhibition of astrogliogenesis induced by Hpca overexpression. Taken together, this is the first report to show that Hpca, acting through Stat3, has an important role in the expression of neurotrophins and proneural bHLH transcription factors, and that it is an essential regulator of astrocytic differentiation and branch outgrowth in HNPCs. PMID:27840601

  5. Establishment of a cell line with features of early dendritic cell precursors from fetal mouse skin.

    PubMed

    Girolomoni, G; Lutz, M B; Pastore, S; Assmann, C U; Cavani, A; Ricciardi-Castagnoli, P

    1995-08-01

    During ontogeny, the skin is progressively populated by major histocompatibility complex class II-negative dendritic cell (DC) precursors that then mature into efficient antigen-presenting cells (APC). To characterize these DC progenitors better, we generated myeloid cell lines from fetal mouse skin by infecting cell suspensions with a retroviral vector carrying an envAKR-mycMH2 fusion gene. These cells, represented by the line FSDC, displayed a dendritic morphology and their proliferation in serum-free medium was promoted by granulocyte/macrophage colony-stimulating factor (GM-CSF), but not macrophage-CSF. FSDC expressed strong surface-membrane ATP/ADPase activity, intracellular staining for 2A1 antigen, and a surface phenotype consistent with a myeloid precursor: H-2d,b+, I-Ad,b+, CD54+, CD11b+, CD11c+, 2.4G2+, F4/80+, CD44+, 2F8+, ER-MP 12-, Sca-1+, Sca-2+, NLDC-145-, B7.2+, B7.1-, J11d-, B220-, Thy-1-, and CD3-. FSDC stimulated poorly allogeneic or syngeneic T cells in the primary mixed-leukocyte reaction, and markedly increased this function after treatment with GM-CSF, GM-CSF and interleukin (IL)-4 or interferon-gamma (IFN-gamma); in contrast, stem cell factor, IL-1 alpha and tumor necrosis factor-alpha had no effect. Preculture with IFN-gamma was required for presentation of haptens to primed T cells in vitro. However, FSDC, even after cytokine activation, were less potent APC than adult epidermal Langerhans cells in both of the above assays. Finally, FSDC derivatized with haptens and injected either intravenously or subcutaneously could efficiently induce contact sensitivity responses in naive syngeneic mice. The results indicate that fetal mouse skin is colonized by myeloid precursors possessing a macrophage/immature DC-like surface phenotype and priming capacity in vivo. These cells need further differentiation and activation signals (e.g. cytokines) to express their antigen presenting potential in vitro.

  6. Learning-induced synaptic potentiation in implanted neural precursor cell-derived neurons

    PubMed Central

    Park, Kyungjoon; Heo, Hwon; Han, Ma Eum; Choi, Kyuhyun; Yi, Jee Hyun; Kang, Shin Jung; Kwon, Yunhee Kim; Shin, Ki Soon

    2015-01-01

    Neuronal loss caused by neurodegenerative diseases, traumatic brain injury and stroke results in cognitive dysfunctioning. Implantation of neural stem/precursor cells (NPCs) can improve the brain function by replacing lost neurons. Proper synaptic integration following neuronal differentiation of implanted cells is believed to be a prerequisite for the functional recovery. In the present study, we characterized the functional properties of immortalized neural progenitor HiB5 cells implanted into the rat hippocampus with chemically induced lesion. The implanted HiB5 cells migrated toward CA1 pyramidal layer and differentiated into vGluT1-positive glutamatergic neurons with morphological and electrophysiological properties of endogenous CA1 pyramidal cells. Functional synaptic integration of HiB5 cell-derived neurons was also evidenced by immunohistochemical and electrophysiological data. Lesion-caused memory deficit was significantly recovered after the implantation when assessed by inhibitory avoidance (IA) learning. Remarkably, IA learning preferentially produced long-term potentiation (LTP) at the synapses onto HiB5 cell-derived neurons, which occluded paring protocol-induced LTP ex vivo. We conclude that the implanted HiB5 cell-derived neurons actively participate in learning process through LTP formation, thereby counteracting lesion-mediated memory impairment. PMID:26634434

  7. Cortical Inhibition Modified by Embryonic Neural Precursors Grafted into the Postnatal Brain

    PubMed Central

    Alvarez-Dolado, Manuel; Calcagnotto, Maria Elisa; Karkar, Kameel M.; Southwell, Derek G.; Jones-Davis, Dorothy M.; Estrada, Rosanne C.; Rubenstein, John L. R.; Alvarez-Buylla, Arturo; Baraban, Scott C.

    2006-01-01

    Embryonic medial ganglionic eminence (MGE) cells transplanted into the adult brain can disperse, migrate, and differentiate to neurons expressing GABA, the primary inhibitory neurotransmitter. It has been hypothesized that grafted MGE precursors could have important therapeutic applications increasing local inhibition, but there is no evidence that MGE cells can modify neural circuits when grafted into the postnatal brain. Here we demonstrate that MGE cells grafted into one location of the neonatal rodent brain migrate widely into cortex. Grafted MGE-derived cells differentiate into mature cortical interneurons; the majority of these new interneurons express GABA. Based on their morphology and expression of somatostatin, neuropeptide Y, parvalbumin, or calretinin, we infer that graft-derived cells integrate into local circuits and function as GABA-producing inhibitory cells. Whole-cell current-clamp recordings obtained from MGE-derived cells indicate firing properties typical of mature interneurons. Moreover, patch-clamp recordings of IPSCs on pyramidal neurons in the host brain, 30 and 60 d after transplantation, indicated a significant increase in GABA-mediated synaptic inhibition in regions containing transplanted MGE cells. In contrast, synaptic excitation is not altered in the host brain. Grafted MGE cells, therefore, can be used to modify neural circuits and selectively increase local inhibition. These findings could have important implications for reparative cell therapies for brain disorders. PMID:16837585

  8. Neuroglobins, Pivotal Proteins Associated with Emerging Neural Systems and Precursors of Metazoan Globin Diversity

    PubMed Central

    Lechauve, Christophe; Jager, Muriel; Laguerre, Laurent; Kiger, Laurent; Correc, Gaëlle; Leroux, Cédric; Vinogradov, Serge; Czjzek, Mirjam; Marden, Michael C.; Bailly, Xavier

    2013-01-01

    Neuroglobins, previously thought to be restricted to vertebrate neurons, were detected in the brain of a photosymbiotic acoel, Symsagittifera roscoffensis, and in neurosensory cells of the jellyfish Clytia hemisphaerica. For the neuroglobin of S. roscoffensis, a member of a lineage that originated either at the base of the bilateria or of the deuterostome clade, we report the ligand binding properties, crystal structure at 2.3 Å, and brain immunocytochemical pattern. We also describe in situ hybridizations of two neuroglobins specifically expressed in differentiating nematocytes (neurosensory cells) and in statocytes (ciliated mechanosensory cells) of C. hemisphaerica, a member of the early branching animal phylum cnidaria. In silico searches using these neuroglobins as queries revealed the presence of previously unidentified neuroglobin-like sequences in most metazoan lineages. Because neural systems are almost ubiquitous in metazoa, the constitutive expression of neuroglobin-like proteins strongly supports the notion of an intimate association of neuroglobins with the evolution of animal neural systems and hints at the preservation of a vitally important function. Neuroglobins were probably recruited in the first protoneurons in early metazoans from globin precursors. Neuroglobins were identified in choanoflagellates, sponges, and placozoans and were conserved during nervous system evolution. Because the origin of neuroglobins predates the other metazoan globins, it is likely that neuroglobin gene duplication followed by co-option and subfunctionalization led to the emergence of globin families in protostomes and deuterostomes (i.e. convergent evolution). PMID:23288852

  9. GDNF facilitates differentiation of the adult dentate gyrus-derived neural precursor cells into astrocytes via STAT3

    SciTech Connect

    Boku, Shuken; Nakagawa, Shin; Takamura, Naoki; Kato, Akiko; Takebayashi, Minoru; Hisaoka-Nakashima, Kazue; Omiya, Yuki; Inoue, Takeshi; Kusumi, Ichiro

    2013-05-17

    Highlights: •GDNF has no effect on ADP proliferation and apoptosis. •GDNF increases ADP differentiation into astrocyte. •A specific inhibitor of STAT3 decreases the astrogliogenic effect of GDNF. •STAT3 knockdown by lentiviral shRNA vector also decreases the astrogliogenic effect of GDNF. •GDNF increases the phosphorylation of STAT3. -- Abstract: While the pro-neurogenic actions of antidepressants in the adult hippocampal dentate gyrus (DG) are thought to be one of the mechanisms through which antidepressants exert their therapeutic actions, antidepressants do not increase proliferation of neural precursor cells derived from the adult DG. Because previous studies showed that antidepressants increase the expression and secretion of glial cell line-derived neurotrophic factor (GDNF) in C6 glioma cells derived from rat astrocytes and GDNF increases neurogenesis in adult DG in vivo, we investigated the effects of GDNF on the proliferation, differentiation and apoptosis of cultured neural precursor cells derived from the adult DG. Data showed that GDNF facilitated the differentiation of neural precursor cells into astrocytes but had no effect on their proliferation or apoptosis. Moreover, GDNF increased the phosphorylation of STAT3, and both a specific inhibitor of STAT3 and lentiviral shRNA for STAT3 decreased their differentiation into astrocytes. Taken together, our findings suggest that GDNF facilitates astrogliogenesis from neural precursor cells in adult DG through activating STAT3 and that this action might indirectly affect neurogenesis.

  10. Tripartite containing motif 32 modulates proliferation of human neural precursor cells in HIV-1 neurodegeneration

    PubMed Central

    Fatima, M; Kumari, R; Schwamborn, J C; Mahadevan, A; Shankar, S K; Raja, R; Seth, P

    2016-01-01

    In addition to glial cells, HIV-1 infection occurs in multipotent human neural precursor cells (hNPCs) and induces quiescence in NPCs. HIV-1 infection of the brain alters hNPC stemness, leading to perturbed endogenous neurorestoration of the CNS following brain damage by HIV-1, compounding the severity of dementia in adult neuroAIDS cases. In pediatric neuroAIDS cases, HIV-1 infection of neural stem cell can lead to delayed developmental milestones and impaired cognition. Using primary cultures of human fetal brain-derived hNPCs, we gained novel insights into the role of a neural stem cell determinant, tripartite containing motif 32 (TRIM32), in HIV-1 Tat-induced quiescence of NPCs. Acute HIV-1 Tat treatment of hNPCs resulted in proliferation arrest but did not induce differentiation. Cellular localization and levels of TRIM32 are critical regulators of stemness of NPCs. HIV-1 Tat exposure increased nuclear localization and levels of TRIM32 in hNPCs. The in vitro findings were validated by studying TRIM32 localization and levels in frontal cortex of HIV-1-seropositive adult patients collected at post mortem as well as by infection of hNPCs by HIV-1. We observed increased percentage of cells with nuclear localization of TRIM32 in the subventricular zone (SVZ) as compared with age-matched controls. Our quest for probing into the mechanisms revealed that TRIM32 is targeted by miR-155 as downregulation of miR-155 by HIV-1 Tat resulted in upregulation of TRIM32 levels. Furthermore, miR-155 or siRNA against TRIM32 rescued HIV-1 Tat-induced quiescence in NPCs. Our findings suggest a novel molecular cascade involving miR-155 and TRIM32 leading to HIV-1 Tat-induced attenuated proliferation of hNPCs. The study also uncovered an unidentified role for miR-155 in modulating human neural stem cell proliferation, helping in better understanding of hNPCs and diseased brain. PMID:26586575

  11. Multiple phenotypes in Huntington disease mouse neural stem cells.

    PubMed

    Ritch, James J; Valencia, Antonio; Alexander, Jonathan; Sapp, Ellen; Gatune, Leah; Sangrey, Gavin R; Sinha, Saurabh; Scherber, Cally M; Zeitlin, Scott; Sadri-Vakili, Ghazaleh; Irimia, Daniel; Difiglia, Marian; Kegel, Kimberly B

    2012-05-01

    Neural stem (NS) cells are a limitless resource, and thus superior to primary neurons for drug discovery provided they exhibit appropriate disease phenotypes. Here we established NS cells for cellular studies of Huntington's disease (HD). HD is a heritable neurodegenerative disease caused by a mutation resulting in an increased number of glutamines (Q) within a polyglutamine tract in Huntingtin (Htt). NS cells were isolated from embryonic wild-type (Htt(7Q/7Q)) and "knock-in" HD (Htt(140Q/140Q)) mice expressing full-length endogenous normal or mutant Htt. NS cells were also developed from mouse embryonic stem cells that were devoid of Htt (Htt(-/-)), or knock-in cells containing human exon1 with an N-terminal FLAG epitope tag and with 7Q or 140Q inserted into one of the mouse alleles (Htt(F7Q/7Q) and Htt(F140Q/7Q)). Compared to Htt(7Q/7Q) NS cells, HD Htt(140Q/140Q) NS cells showed significantly reduced levels of cholesterol, increased levels of reactive oxygen species (ROS), and impaired motility. The heterozygous Htt(F140Q/7Q) NS cells had increased ROS and decreased motility compared to Htt(F7Q/7Q). These phenotypes of HD NS cells replicate those seen in HD patients or in primary cell or in vivo models of HD. Huntingtin "knock-out" NS cells (Htt(-/-)) also had impaired motility, but in contrast to HD cells had increased cholesterol. In addition, Htt(140Q/140Q) NS cells had higher phospho-AKT/AKT ratios than Htt(7Q/7Q) NS cells in resting conditions and after BDNF stimulation, suggesting mutant htt affects AKT dependent growth factor signaling. Upon differentiation, the Htt(7Q/7Q) and Htt(140Q/140Q) generated numerous Beta(III)-Tubulin- and GABA-positive neurons; however, after 15 days the cellular architecture of the differentiated Htt(140Q/140Q) cultures changed compared to Htt(7Q/7Q) cultures and included a marked increase of GFAP-positive cells. Our findings suggest that NS cells expressing endogenous mutant Htt will be useful for study of mechanisms of HD

  12. Differentiation of retinal ganglion cells and photoreceptor precursors from mouse induced pluripotent stem cells carrying an Atoh7/Math5 lineage reporter.

    PubMed

    Xie, Bin-Bin; Zhang, Xiang-Mei; Hashimoto, Takao; Tien, Amy H; Chen, Andrew; Ge, Jian; Yang, Xian-Jie

    2014-01-01

    The neural retina is a critical component of the visual system, which provides the majority of sensory input in humans. Various retinal degenerative diseases can result in the permanent loss of retinal neurons, especially the light-sensing photoreceptors and the centrally projecting retinal ganglion cells (RGCs). The replenishment of lost RGCs and the repair of optic nerve damage are particularly challenging, as both RGC specification and their subsequent axonal growth and projection involve complex and precise regulation. To explore the developmental potential of pluripotent stem cell-derived neural progenitors, we have established mouse iPS cells that allow cell lineage tracing of progenitors that have expressed Atoh7/Math5, a bHLH transcription factor required for RGC production. These Atoh7 lineage reporter iPS cells encode Cre to replace one copy of the endogenous Atoh7 gene and a Cre-dependent YFP reporter in the ROSA locus. In addition, they express pluripotent markers and are capable of generating teratomas in vivo. Under anterior neural induction and neurogenic conditions in vitro, the Atoh7-Cre/ROSA-YFP iPS cells differentiate into neurons that co-express various RGC markers and YFP, indicating that these neurons are derived from Atoh7-expressing progenitors. Consistent with previous in vivo cell lineage studies, the Atoh7-Cre/ROSA-YFP iPS cells also give rise to a subset of Crx-positive photoreceptor precursors. Furthermore, inhibition of Notch signaling in the iPSC cultures results in a significant increase of YFP-positive RGCs and photoreceptor precursors. Together, these results show that Atoh7-Cre/ROSA-YFP iPS cells can be used to monitor the development and survival of RGCs and photoreceptors from pluripotent stem cells.

  13. Connexin43 and connexin47 alterations after neural precursor cells transplantation in experimental autoimmune encephalomyelitis.

    PubMed

    Theotokis, Paschalis; Kleopa, Kleopas A; Touloumi, Olga; Lagoudaki, Roza; Lourbopoulos, Athanasios; Nousiopoulou, Evangelia; Kesidou, Evangelia; Poulatsidou, Kyriaki-Nepheli; Dardiotis, Efthimios; Hadjigeorgiou, Georgios; Karacostas, Dimitris; Cifuentes-Diaz, Carmen; Irinopoulou, Theano; Grigoriadis, Nikolaos

    2015-10-01

    Exogenous transplanted neural precursor cells (NPCs) exhibit miscellaneous immune-modulatory effects in models of autoimmune demyelination. However, the regional interactions of NPCs with the host brain tissue in remissive inflammatory events have not been adequately studied. In this study we used the chronic MOG-induced Experimental Autoimmune Encephalomyelitis (EAE) model in C57BL/six mice. Based on previous data, we focused on neuropathology at Day 50 post-induction (D50) and studied the expression of connexin43 (Cx43) and Cx47, two of the main glial gap junction (GJ) proteins, in relation to the intraventricular transplantation of GFP(+) NPCs and their integration with the host tissue. By D50, NPCs had migrated intraparenchymally and were found in the corpus callosum at the level of the lateral ventricles and hippocampus. The majority of GFP(+) cells differentiated with simple or ramified processes expressing mainly markers of mature GLIA (GFAP and NogoA) and significantly less of precursor glial cells. GFP(+) NPCs expressed connexins and formed GJs around the hippocampus more than lateral ventricles. The presence of NPCs did not alter the increase in Cx43 GJ plaques at D50 EAE, but prevented the reduction of oligodendrocytic Cx47, increased the number of oligodendrocytes, local Cx47 levels and Cx47 GJ plaques per cell. These findings suggest that transplanted NPCs may have multiple effects in demyelinating pathology, including differentiation and direct integration into the panglial syncytium, as well as amelioration of oligodendrocyte GJ loss, increasing the supply of potent myelinating cells to the demyelinated tissue.

  14. Region-Specific Differences in Amyloid Precursor Protein Expression in the Mouse Hippocampus

    PubMed Central

    Del Turco, Domenico; Paul, Mandy H.; Schlaudraff, Jessica; Hick, Meike; Endres, Kristina; Müller, Ulrike C.; Deller, Thomas

    2016-01-01

    The physiological role of amyloid precursor protein (APP) has been extensively investigated in the rodent hippocampus. Evidence suggests that APP plays a role in synaptic plasticity, dendritic and spine morphogenesis, neuroprotection and—at the behavioral level—hippocampus-dependent forms of learning and memory. Intriguingly, however, studies focusing on the role of APP in synaptic plasticity have reported diverging results and considerable differences in effect size between the dentate gyrus (DG) and area CA1 of the mouse hippocampus. We speculated that regional differences in APP expression could underlie these discrepancies and studied the expression of APP in both regions using immunostaining, in situ hybridization (ISH), and laser microdissection (LMD) in combination with quantitative reverse transcription polymerase chain reaction (RT-qPCR) and western blotting. In sum, our results show that APP is approximately 1.7-fold higher expressed in pyramidal cells of Ammon’s horn than in granule cells of the DG. This regional difference in APP expression may explain why loss-of-function approaches using APP-deficient mice revealed a role for APP in Hebbian plasticity in area CA1, whereas this could not be shown in the DG of the same APP mutants. PMID:27965537

  15. c-jun is differentially expressed in embryonic and adult neural precursor cells.

    PubMed

    Kawashima, Fumiaki; Saito, Kengo; Kurata, Hirofumi; Maegaki, Yoshihiro; Mori, Tetsuji

    2017-01-16

    c-jun, a major component of AP-1 transcription factor, has a wide variety of functions. In the embryonic brain, c-jun mRNA is abundantly expressed in germinal layers around the ventricles. Although the subventricular zone (SVZ) of the adult brain is a derivative of embryonic germinal layers and contains neural precursor cells (NPCs), the c-jun expression pattern is not clear. To study the function of c-jun in adult neurogenesis, we analyzed c-jun expression in the adult SVZ by immunohistochemistry and compared it with that of the embryonic brain. We found that almost all proliferating embryonic NPCs expressed c-jun, but the number of c-jun immunopositive cells among proliferating adult NPCs was about half. In addition, c-jun was hardly expressed in post-mitotic migrating neurons in the embryonic brain, but the majority of c-jun immunopositive cells were tangentially migrating neuroblasts heading toward the olfactory bulb in the adult brain. In addition, status epilepticus is known to enhance the transient proliferation of adult NPCs, but the c-jun expression pattern was not significantly affected. These expression patterns suggest that c-jun has a pivotal role in the proliferation of embryonic NPCs, but it has also other roles in adult neurogenesis.

  16. Human Neural Precursor Cells Promote Neurologic Recovery in a Viral Model of Multiple Sclerosis

    PubMed Central

    Chen, Lu; Coleman, Ronald; Leang, Ronika; Tran, Ha; Kopf, Alexandra; Walsh, Craig M.; Sears-Kraxberger, Ilse; Steward, Oswald; Macklin, Wendy B.; Loring, Jeanne F.; Lane, Thomas E.

    2014-01-01

    Summary Using a viral model of the demyelinating disease multiple sclerosis (MS), we show that intraspinal transplantation of human embryonic stem cell-derived neural precursor cells (hNPCs) results in sustained clinical recovery, although hNPCs were not detectable beyond day 8 posttransplantation. Improved motor skills were associated with a reduction in neuroinflammation, decreased demyelination, and enhanced remyelination. Evidence indicates that the reduced neuroinflammation is correlated with an increased number of CD4+CD25+FOXP3+ regulatory T cells (Tregs) within the spinal cords. Coculture of hNPCs with activated T cells resulted in reduced T cell proliferation and increased Treg numbers. The hNPCs acted, in part, through secretion of TGF-β1 and TGF-β2. These findings indicate that the transient presence of hNPCs transplanted in an animal model of MS has powerful immunomodulatory effects and mediates recovery. Further investigation of the restorative effects of hNPC transplantation may aid in the development of clinically relevant MS treatments. PMID:24936469

  17. The endothelin receptor-B is required for the migration of neural crest-derived melanocyte and enteric neuron precursors.

    PubMed

    Lee, Hyung-Ok; Levorse, John M; Shin, Myung K

    2003-07-01

    Mutations in the genes encoding endothelin receptor-B (Ednrb) and its ligand endothelin-3 (Edn3) affect the development of two neural crest-derived cell types, melanocytes and enteric neurons. EDNRB signaling is exclusively required between E10.5 and E12.5 during the migratory phase of melanoblast and enteric neuroblast development. To determine the fate of Ednrb-expressing cells during this critical period, we generated a strain of mice with the bacterial beta-galactosidase (lacZ) gene inserted downstream of the endogenous Ednrb promoter. The expression of the lacZ gene was detected in melanoblasts and precursors of the enteric neuron system (ENS), as well as other neural crest cells and nonneural crest-derived lineages. By comparing Ednrb(lacZ)/+ and Ednrb(lacZ)/Ednrb(lacZ) embryos, we determined that the Ednrb pathway is not required for the initial specification and dispersal of melanoblasts and ENS precursors from the neural crest progenitors. Rather, the EDNRB-mediated signaling is required for the terminal migration of melanoblasts and ENS precursors, and this pathway is not required for the survival of the migratory cells.

  18. Kv3.1 channels stimulate adult neural precursor cell proliferation and neuronal differentiation.

    PubMed

    Yasuda, Takahiro; Cuny, Hartmut; Adams, David J

    2013-05-15

    Adult neural stem/precursor cells (NPCs) play a pivotal role in neuronal plasticity throughout life. Among ion channels identified in adult NPCs, voltage-gated delayed rectifier K(+) (KDR) channels are dominantly expressed. However, the KDR channel subtype and its physiological role are still undefined. We used real-time quantitative RT-PCR and gene knockdown techniques to identify a major functional KDR channel subtype in adult NPCs. Dominant mRNA expression of Kv3.1, a high voltage-gated KDR channel, was quantitatively confirmed. Kv3.1 gene knockdown with specific small interfering RNAs (siRNA) for Kv3.1 significantly inhibited Kv3.1 mRNA expression by 63.9% (P < 0.001) and KDR channel currents by 52.2% (P < 0.001). This indicates that Kv3.1 is the subtype responsible for producing KDR channel outward currents. Resting membrane properties, such as resting membrane potential, of NPCs were not affected by Kv3.1 expression. Kv3.1 knockdown with 300 nm siRNA inhibited NPC growth (increase in cell numbers) by 52.9% (P < 0.01). This inhibition was attributed to decreased cell proliferation, not increased cell apoptosis. We also established a convenient in vitro imaging assay system to evaluate NPC differentiation using NPCs from doublecortin-green fluorescent protein transgenic mice. Kv3.1 knockdown also significantly reduced neuronal differentiation by 31.4% (P < 0.01). We have demonstrated that Kv3.1 is a dominant functional KDR channel subtype expressed in adult NPCs and plays key roles in NPC proliferation and neuronal lineage commitment during differentiation.

  19. Ago2 Immunoprecipitation Identifies Predicted MicroRNAs in Human Embryonic Stem Cells and Neural Precursors

    PubMed Central

    Swerdel, Mavis R.; Moore, Jennifer C.; Cohen, Rick I.; Wu, Hao; Sun, Yi E.; Hart, Ronald P.

    2009-01-01

    Background MicroRNAs are required for maintenance of pluripotency as well as differentiation, but since more microRNAs have been computationally predicted in genome than have been found, there are likely to be undiscovered microRNAs expressed early in stem cell differentiation. Methodology/Principal Findings SOLiD ultra-deep sequencing identified >107 unique small RNAs from human embryonic stem cells (hESC) and neural-restricted precursors that were fit to a model of microRNA biogenesis to computationally predict 818 new microRNA genes. These predicted genomic loci are associated with chromatin patterns of modified histones that are predictive of regulated gene expression. 146 of the predicted microRNAs were enriched in Ago2-containing complexes along with 609 known microRNAs, demonstrating association with a functional RISC complex. This Ago2 IP-selected subset was consistently expressed in four independent hESC lines and exhibited complex patterns of regulation over development similar to previously-known microRNAs, including pluripotency-specific expression in both hESC and iPS cells. More than 30% of the Ago2 IP-enriched predicted microRNAs are new members of existing families since they share seed sequences with known microRNAs. Conclusions/Significance Extending the classic definition of microRNAs, this large number of new microRNA genes, the majority of which are less conserved than their canonical counterparts, likely represent evolutionarily recent regulators of early differentiation. The enrichment in Ago2 containing complexes, the presence of chromatin marks indicative of regulated gene expression, and differential expression over development all support the identification of 146 new microRNAs active during early hESC differentiation. PMID:19784364

  20. Chemokines influence the migration and fate of neural precursor cells from the young adult and middle-aged rat subventricular zone.

    PubMed

    Gordon, R J; Mehrabi, N F; Maucksch, C; Connor, B

    2012-01-01

    We have previously demonstrated a role for the chemokines MCP-1, MIP-1α and GRO-α in directing subventricular zone (SVZ)-derived neural precursor cell migration towards the site of cell death in the adult rodent brain. However the influence of chemokines such as MCP-1, MIP-1α and GRO-α on the differentiation of adult neural precursor cells has not previously been investigated. Further, as the majority of neurological disorders and injuries occur during ageing, it is important to investigate the effect of chemokines on adult neural precursor cell cultures obtained from the ageing brain. This study therefore examined the effect of MCP-1, MIP-1α and GRO-α on SVZ-derived neural precursor cell differentiation in vitro, and assessed whether precursor cells from the middle-aged rat brain (13 months old) follow the same migratory and differential profile as neural precursor cells obtained from the young adult rat brain (2 months old). We observed that each of the chemokines examined generated differing effects in regards to neuronal or glial differentiation. Further, both MIP-1α and GRO-α increased total cell number, suggesting an effect on precursor cell proliferation and/or survival. In agreement with cultures obtained from young adult brains, SVZ-derived neural precursor cells cultured from the middle-aged brain exhibited chemotactic migration in response to a concentration gradient. These results indicate that the chemokines MCP-1, MIP-1α and GRO-α can influence both the migration and fate choice of SVZ-derived neural precursor cells, as well as promoting cell viability. While a response to each of these chemokines is maintained in the middle-aged brain, a distinct age-related alteration in differential fate can be identified.

  1. Reconstitution of a Patterned Neural Tube from Single Mouse Embryonic Stem Cells.

    PubMed

    Ishihara, Keisuke; Ranga, Adrian; Lutolf, Matthias P; Tanaka, Elly M; Meinhardt, Andrea

    2017-01-01

    The recapitulation of tissue development and patterning in three-dimensional (3D) culture is an important dimension of stem cell research. Here, we describe a 3D culture protocol in which single mouse ES cells embedded in Matrigel under neural induction conditions clonally form a lumen containing, oval-shaped epithelial structure within 3 days. By Day 7 an apicobasally polarized neuroepithelium with uniformly dorsal cell identity forms. Treatment with retinoic acid at Day 2 results in posteriorization and self-organization of dorsal-ventral neural tube patterning. Neural tube organoid growth is also supported by pure laminin gels as well as poly(ethylene glycol) (PEG)-based artificial extracellular matrix hydrogels, which can be fine-tuned for key microenvironment characteristics. The rapid generation of a simple, patterned tissue in well-defined culture conditions makes the neural tube organoid a tractable model for studying neural stem cell self-organization.

  2. OXIDATIVE STRESS INDUCES CELL DEATH IN CD-1 MOUSE CRANIAL NEURAL CREST CELLS IN VITRO

    EPA Science Inventory

    OXIDATIVE STRESS INDUCES CELL DEATH IN CD-1 MOUSE CRANIAL NEURAL CREST CELLS IN VITRO. J.B. Smith, K.K. Sulik, E.S. Hunter III. University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.
    The induction of craniofacial defects by ethanol exposure is mediated in part by...

  3. HALOACETIC ACIDS AND KINASE INHIBITORS PERTURB MOUSE NEURAL CREST CELLS IN VITRO

    EPA Science Inventory

    HUNTER, E.S.1, J. SMITH2, J. ANDREWS1. 1 Reproductive Toxicology Division, NHEERL, US EPA, Research Triangle Park and 2 Department of Cell and Developmental Biology, UNC-CH, Chapel Hill, North Carolina. Haloacetic acids and kinase inhibitors perturb mouse neural crest cells in vi...

  4. Embryonic Nkx2.1-expressing neural precursor cells contribute to the regional heterogeneity of adult V-SVZ neural stem cells.

    PubMed

    Delgado, Ryan N; Lim, Daniel A

    2015-11-15

    The adult ventricular-subventricular zone (V-SVZ) of the lateral ventricle produces several subtypes of olfactory bulb (OB) interneurons throughout life. Neural stem cells (NSCs) within this zone are heterogeneous, with NSCs located in different regions of the lateral ventricle wall generating distinct OB interneuron subtypes. The regional expression of specific transcription factors appears to correspond to such geographical differences in the developmental potential of V-SVZ NSCs. However, the transcriptional definition and developmental origin of V-SVZ NSC regional identity are not well understood. In this study, we found that a population of NSCs in the ventral region of the V-SVZ expresses the transcription factor Nkx2.1 and is derived from Nkx2.1-expressing (Nkx2.1+) embryonic precursors. To follow the fate of Nkx2.1+ cells and their progeny in vivo, we used mice with an Nkx2.1-CreER "knock-in" allele. Nkx2.1+ V-SVZ NSCs labeled in adult mice generated interneurons for the deep granule cell layer of the OB. Embryonic brain Nkx2.1+ precursors labeled at embryonic day 12.5 gave rise to Nkx2.1+ NSCs of the ventral V-SVZ in postnatal and adult mice. Thus, embryonic Nkx2.1+ neural precursors give rise to a population of Nkx2.1+ NSCs in the ventral V-SVZ where they contribute to the regional heterogeneity of V-SVZ NSCs.

  5. Neuroprotective Effect of Transplanted Neural Precursors Embedded on PLA/CS Scaffold in an Animal Model of Multiple Sclerosis.

    PubMed

    Hoveizi, Elham; Tavakol, Shima; Ebrahimi-Barough, Somayeh

    2015-01-01

    Multiple sclerosis (MS) is an immune-mediated demyelinating disease of the central nervous system (CNS). Cell transplantation may be an attractive therapeutic approach for MS which may promote remyelination and suppress the inflammatory process. Neural precursor cells are promising in transplantation strategies to treat an injury to the CNS, because of their ability to differentiate into neural cells. Here, we investigated the use of polylactic acid/chitosan (PLA/CS) scaffold as 3D system which increases neural cell differentiation. Nerve growth factor (NGF), basic fibroblast growth factor (bFGF), and conditioned media were employed to induce PC12 cells into neural-like cells (NLCs) on nanofibrous PLA/CS scaffold. Enhanced numbers of neural structures and staining of nestin, microtubule-associated protein (Map2), and class III β-tubulin (β3-tub) were observed with PC12-cell-seeded nanofibrous scaffolds when compared with control medium. The results revealed that PC12 cells attach, grow, and undergo differentiation on the nanofibrous PLA/CS scaffold. Additionally, our study illustrates that transplanted PC12-derived NLCs into the brain lateral ventricles of mice induced with experimental autoimmune encephalomyelitis (EAE), the animal model of MS, significantly reduced the clinical signs of EAE. Histological examination showed attenuation of the inflammatory process in transplanted animals, which was correlated with the reduction of both axonal damage and demyelination.

  6. Vsx1 Transiently Defines an Early Intermediate V2 Interneuron Precursor Compartment in the Mouse Developing Spinal Cord

    PubMed Central

    Francius, Cédric; Hidalgo-Figueroa, María; Debrulle, Stéphanie; Pelosi, Barbara; Rucchin, Vincent; Ronellenfitch, Kara; Panayiotou, Elena; Makrides, Neoklis; Misra, Kamana; Harris, Audrey; Hassani, Hessameh; Schakman, Olivier; Parras, Carlos; Xiang, Mengqing; Malas, Stavros; Chow, Robert L.; Clotman, Frédéric

    2016-01-01

    Spinal ventral interneurons regulate the activity of motor neurons, thereby controlling motor activities. Interneurons arise during embryonic development from distinct progenitor domains distributed orderly along the dorso-ventral axis of the neural tube. A single ventral progenitor population named p2 generates at least five V2 interneuron subsets. Whether the diversification of V2 precursors into multiple subsets occurs within the p2 progenitor domain or involves a later compartment of early-born V2 interneurons remains unsolved. Here, we provide evidence that the p2 domain produces an intermediate V2 precursor compartment characterized by the transient expression of the transcriptional repressor Vsx1. These cells display an original repertoire of cellular markers distinct from that of any V2 interneuron population. They have exited the cell cycle but have not initiated neuronal differentiation. They coexpress Vsx1 and Foxn4, suggesting that they can generate the known V2 interneuron populations as well as possible additional V2 subsets. Unlike V2 interneurons, the generation of Vsx1-positive precursors does not depend on the Notch signaling pathway but expression of Vsx1 in these cells requires Pax6. Hence, the p2 progenitor domain generates an intermediate V2 precursor compartment, characterized by the presence of the transcriptional repressor Vsx1, that contributes to V2 interneuron development. PMID:28082864

  7. Cellular basis of neuroepithelial bending during mouse spinal neural tube closure.

    PubMed

    McShane, Suzanne G; Molè, Matteo A; Savery, Dawn; Greene, Nicholas D E; Tam, Patrick P L; Copp, Andrew J

    2015-08-15

    Bending of the neural plate at paired dorsolateral hinge points (DLHPs) is required for neural tube closure in the spinal region of the mouse embryo. As a step towards understanding the morphogenetic mechanism of DLHP development, we examined variations in neural plate cellular architecture and proliferation during closure. Neuroepithelial cells within the median hinge point (MHP) contain nuclei that are mainly basally located and undergo relatively slow proliferation, with a 7 h cell cycle length. In contrast, cells in the dorsolateral neuroepithelium, including the DLHP, exhibit nuclei distributed throughout the apico-basal axis and undergo rapid proliferation, with a 4 h cell cycle length. As the neural folds elevate, cell numbers increase to a greater extent in the dorsolateral neural plate that contacts the surface ectoderm, compared with the more ventromedial neural plate where cells contact paraxial mesoderm and notochord. This marked increase in dorsolateral cell number cannot be accounted for solely on the basis of enhanced cell proliferation in this region. We hypothesised that neuroepithelial cells may translocate in a ventral-to-dorsal direction as DLHP formation occurs, and this was confirmed by vital cell labelling in cultured embryos. The translocation of cells into the neural fold, together with its more rapid cell proliferation, leads to an increase in cell density dorsolaterally compared with the more ventromedial neural plate. These findings suggest a model in which DLHP formation may proceed through 'buckling' of the neuroepithelium at a dorso-ventral boundary marked by a change in cell-packing density.

  8. A Two-Dimensional Difference Gel Electrophoresis (2D-DIGE) Protocol for Studies of Neural Precursor Cells.

    PubMed

    Guest, Paul C

    2017-01-01

    This chapter describes the basics of two-dimensional difference gel electrophoresis (2D-DIGE) for multiplex analysis of up to distinct proteomes. The example given describes the analysis of undifferentiated and differentiated neural precursor cells labelled with fluorescent Cy3 and Cy5 dyes in comparison to a pooled standard labelled with Cy2. After labelling, the proteomes are mixed together and electrophoresed on the same 2D gels. Scanning the gels at wavelengths specific for each dye allows direct overlay of the two different proteomes and the differences in abundance of specific protein spots can be determined through comparison to the pooled standard.

  9. Neuralization of mouse embryonic stem cells in alginate hydrogels under retinoic acid and SAG treatment.

    PubMed

    Delivopoulos, Evangelos; Shakesheff, Kevin M; Peto, Heather

    2015-08-01

    This paper examines the differentiation of a mouse embryonic stem cell line (CGR8) into neurons, under retinoic acid (RA) and smoothened agonist (SAG) treatment. When stem cells underwent through an embryoid body (EB) formation stage, dissociation and seeding on glass coverslips, immunofluorescent labelling for neuronal markers (Nestin, b-Tubulin III, MAP2) revealed the presence of both immature neural progenitors and mature neurons. Undifferentiated CGR8 were also encapsulated in tubular, alginate-gelatin hydrogels and incubated in differentiation media containing retinoic acid (RA) and smoothened agonist (SAG). Cryo-sections of the hydrogel tubes were positive for Nestin, Pax6 and b-Tubulin III, verifying the presence of neurons and neural progenitors. Provided neural induction can be more precisely directed in the tubular hydrogels, these scaffolds will become a powerful model of neural tube development in embryos and will highlight potential strategies for spinal cord regeneration.

  10. The protocol for the isolation and cryopreservation of osteoclast precursors from mouse bone marrow and spleen.

    PubMed

    Boraschi-Diaz, Iris; Komarova, Svetlana V

    2016-01-01

    Osteoclasts are responsible for physiological bone remodeling as well as pathological bone destruction in osteoporosis, periodontitis and rheumatoid arthritis, and thus represent a pharmacological target for drug development. We aimed to characterize and compare the cytokine-induced osteoclastogenesis of bone marrow and spleen precursors. Established protocols used to generate osteoclasts from bone marrow were modified to examine osteoclastogenesis of the spleen cells of healthy mice. Osteoclast formation was successfully induced from spleen precursors using receptor activator of nuclear factor κB ligand (50 ng/ml) and macrophage colony stimulating factor (50 ng/ml). Compared to bone marrow cultures, differentiation from spleen required a longer cultivation time (9 days for spleen, as compared to 5 days for marrow cultures) and a higher plating density of non-adherent cells (75,000/cm(2) for spleen, as compared to 50,000/cm(2) for bone marrow). Osteoclasts generated from spleen precursors expressed osteoclast marker genes calcitonin receptor, cathepsin K and matrix metalloproteinase 9 and were capable of resorbing hydroxyapatite. The differentiation capacity of spleen and bone marrow precursors was comparable for BALB/c, C57BL/6 and FVB mice. We also developed and tested a cryopreservation protocol for the osteoclast precursors. While 70-80 % of cells were lost during the first week of freezing, during the subsequent 5 weeks the losses were within 2-5 % per week. Osteoclastogenesis from the recovered bone marrow precursors was successful up to 5 weeks after freezing. Spleen precursors retained their osteoclastogenic capacity for 1 week after freezing, but not thereafter. The described protocol is useful for the studies of genetically modified animals as well as for screening new osteoclast-targeting therapeutics.

  11. Behavior of Primary Cilia and Tricellular Tight Junction Proteins during Differentiation in Temperature-Sensitive Mouse Cochlear Precursor Hair Cells.

    PubMed

    Kakuki, Takuya; Kaneko, Yakuto; Takano, Kenichi; Ninomiya, Takafumi; Kohno, Takayuki; Kojima, Takashi; Himi, Tetsuo

    2016-01-01

    In the sensory hair cells of the mammalian cochlea, the primary cilia in the planar cell polarity as well as the tight junctions in the epithelial cell polarity and the barrier are important to maintain normal hearing. Temperature-sensitive mouse cochlear precursor hair cells were used to investigate the behavior of primary cilia and tricellular tight junction proteins during the differentiation of sensory hair cells. In undifferentiated cells (incubated at 33°C), many acetylated tubulin-positive primary cilia were observed, and each was accompanied with an x03B3;-tubulin-positive basal body. The primary cilia had a '9 + 0' architecture with nine outer microtubule doublets but lacking a central pair of microtubules. In differentiated cells (incubated at 39°C), acetylated tubulin-positive primary cilia as well as acetylated tubulin-positive cilia-like structures were partially observed on the cell surface. In differentiated cells, the number of primary cilia was markedly reduced compared with undifferentiated cells, and innumerable cilia-like structures with no ciliary pockets were partially observed on the cell surface. In undifferentiated cells, few tricellulin molecules and lipolysis-stimulated lipoprotein receptors (LSRs) were observed in the cytoplasm. In differentiated cells, many tricellulin molecules and LSRs were observed on the membranes and within the cytoplasm. Conditional immortalized mouse cochlear precursor hair cells may be useful to investigate the roles of primary cilia and tricellular tight junctions during cellular differentiation and degeneration such as apoptosis.

  12. Differentiation of functionally active mouse T lymphocytes from functionally inactive bone marrow precursors II. Limited recovery of T-cell responses from mouse bone marrow in tissue culture.

    PubMed

    Gorczynski, M; MacRae, S

    1977-11-01

    The limited differentiation of mature T cell function from mouse bone marrow in tissue culture is described and compared with similar differentiation occuring in vivo in irradiated bone marrow protected mice. Data are presented to show that a pool of precursors, similar in size to that able to produce early (transient?) regeneration in thymectomized recipients, is responsible for the development of mitogen responsive T cells active in MLC (proliferation) and CML (development of cytotoxic cells) assays. In contrast, a helper cell population which augments antibody formation from T-depleted normal spleen cells derives from a pool of similar precursors yet does not seem to be theta positive. Similarly, larger cells (perhaps typical of those giving rise to suppressor T cells in vivo) give rise to a suppressor cell pool after 4 days of culture, though again only a fraction of this suppressor activity could be attributed to theta positive cells. It is suggested that much of the data for regenration of T lymphocytes in vitro from T-depleted sources needs to be re-interpreted in terms of this evidence for a pool of post-thymic precursors of T cells in such T-deficient cell populations.

  13. Differentiation of functionally active mouse T lymphocytes from functionally inactive bone marrow precursors II. Limited recovery of T-cell responses from mouse bone marrow in tissue culture.

    PubMed Central

    Gorczynski, M; MacRae, S

    1977-01-01

    The limited differentiation of mature T cell function from mouse bone marrow in tissue culture is described and compared with similar differentiation occuring in vivo in irradiated bone marrow protected mice. Data are presented to show that a pool of precursors, similar in size to that able to produce early (transient?) regeneration in thymectomized recipients, is responsible for the development of mitogen responsive T cells active in MLC (proliferation) and CML (development of cytotoxic cells) assays. In contrast, a helper cell population which augments antibody formation from T-depleted normal spleen cells derives from a pool of similar precursors yet does not seem to be theta positive. Similarly, larger cells (perhaps typical of those giving rise to suppressor T cells in vivo) give rise to a suppressor cell pool after 4 days of culture, though again only a fraction of this suppressor activity could be attributed to theta positive cells. It is suggested that much of the data for regenration of T lymphocytes in vitro from T-depleted sources needs to be re-interpreted in terms of this evidence for a pool of post-thymic precursors of T cells in such T-deficient cell populations. PMID:304032

  14. Glycogen synthase kinase 3 (GSK3)-inhibitor SB216763 promotes the conversion of human umbilical cord mesenchymal stem cells into neural precursors in adherent culture.

    PubMed

    Gao, Liyang; Zhao, Mingyan; Li, Peng; Kong, Junchao; Liu, Zhijun; Chen, Yonghua; Huang, Rui; Chu, Jiaqi; Quan, Juanhua; Zeng, Rong

    2017-01-01

    The ability to generate neural progenitor cells from human umbilical cord mesenchymal stem cells (hUC-MSCs) has provided an option to treat neurodegenerative diseases. To establish a method for this purpose, we characterized the early neural markers of hUC-MSCs-derived cells under different conditions. We found that neither the elimination of signals for alternative fate nor N2 supplement was sufficient to differentiate hUC-MSCs into neural precursor cells, but the GSK3 inhibitor SB216763 could promote an efficient neural commitment of hUC-MSCs. The results indicated that Wnt/β-catenin might play an important role during the early neural differentiation of hUC-MSCs. Here, we report a method for hUC-MSCs to commit efficiently into a neural fate within a short period of time. This protocol provides an efficient method for hUC-MSCs-based neural regeneration.

  15. The effect of magnetic nanoparticles on neuronal differentiation of induced pluripotent stem cell-derived neural precursors

    PubMed Central

    Jiráková, Klára; Šeneklová, Monika; Jirák, Daniel; Turnovcová, Karolína; Vosmanská, Magda; Babič, Michal; Horák, Daniel; Veverka, Pavel; Jendelová, Pavla

    2016-01-01

    Introduction Magnetic resonance (MR) imaging is suitable for noninvasive long-term tracking. We labeled human induced pluripotent stem cell-derived neural precursors (iPSC-NPs) with two types of iron-based nanoparticles, silica-coated cobalt zinc ferrite nanoparticles (CZF) and poly-l-lysine-coated iron oxide superparamagnetic nanoparticles (PLL-coated γ-Fe2O3) and studied their effect on proliferation and neuronal differentiation. Materials and methods We investigated the effect of these two contrast agents on neural precursor cell proliferation and differentiation capability. We further defined the intracellular localization and labeling efficiency and analyzed labeled cells by MR. Results Cell proliferation was not affected by PLL-coated γ-Fe2O3 but was slowed down in cells labeled with CZF. Labeling efficiency, iron content and relaxation rates measured by MR were lower in cells labeled with CZF when compared to PLL-coated γ-Fe2O3. Cytoplasmic localization of both types of nanoparticles was confirmed by transmission electron microscopy. Flow cytometry and immunocytochemical analysis of specific markers expressed during neuronal differentiation did not show any significant differences between unlabeled cells or cells labeled with both magnetic nanoparticles. Conclusion Our results show that cells labeled with PLL-coated γ-Fe2O3 are suitable for MR detection, did not affect the differentiation potential of iPSC-NPs and are suitable for in vivo cell therapies in experimental models of central nervous system disorders. PMID:27920532

  16. Sonic Hedgehog Controls the Phenotypic Fate and Therapeutic Efficacy of Grafted Neural Precursor Cells in a Model of Nigrostriatal Neurodegeneration.

    PubMed

    Madhavan, Lalitha; Daley, Brian F; Davidson, Beverly L; Boudreau, Ryan L; Lipton, Jack W; Cole-Strauss, Allyson; Steece-Collier, Kathy; Collier, Timothy J

    2015-01-01

    The expression of soluble growth and survival promoting factors by neural precursor cells (NPCs) is suggested to be a prominent mechanism underlying the protective and regenerative effects of these cells after transplantation. Nevertheless, how and to what extent specific NPC-expressed factors contribute to therapeutic effects is not well understood. Using RNA silencing, the current study investigated the roles of two donor NPC molecules, namely glial cell-line derived neurotrophic factor (GDNF) and sonic hedgehog (SHH), in the protection of substantia nigra dopamine neurons in rats treated with 6-hydroxydopamine (6-OHDA). Analyses indicate that as opposed to the knock-down of GDNF, SHH inhibition caused a profound decline in nigrostriatal neuroprotection. Further, SHH silencing also curbed endogenous neurogenesis and the migration of host brdU+/dcx+ neural precursors into the striatum, which was present in the animals receiving control or GDNF silenced NPCs. A change in graft phenotype, mainly reflected by a reduced proportion of undifferentiated nestin+ cells, as well as a significantly greater host microglial activity, suggested an important role for these processes in the attenuation of neuroprotection and neurogenesis upon SHH silencing. Overall these studies reveal core mechanisms fundamental to grafted NPC-based therapeutic effects, and delineate the particular contributions of two graft-expressed molecules, SHH and GDNF, in mediating midbrain dopamine neuron protection, and host plasticity after NPC transplantation.

  17. Subcutaneous Transplantation of Neural Precursor Cells in Experimental Autoimmune Encephalomyelitis Reduces Chemotactic Signals in the Central Nervous System

    PubMed Central

    Ravanidis, Stylianos; Poulatsidou, Kyriaki Nepheli; Lagoudaki, Roza; Touloumi, Olga; Polyzoidou, Elena; Lourbopoulos, Athanasios; Nousiopoulou, Evangelia; Theotokis, Paschalis; Kesidou, Evangelia; Tsalikakis, Dimitrios; Karacostas, Dimitrios; Grigoriou, Maria; Chlichlia, Katerina

    2015-01-01

    Neural precursor cell (NPC) transplantation has been proposed as a therapy for multiple sclerosis (MS) and other degenerative disorders of the central nervous system (CNS). NPCs are suggested to exert immune modulation when they are transplanted in the animal model of MS, experimental autoimmune encephalomyelitis (EAE). Herein, we explore whether the effect of NPC transplantation on the clinical course and the pathological features of EAE is combined with the modulation of chemokines levels expressed in the inflamed CNS. NPCs were isolated from brains of neonatal C57/Bl6 mice and were subcutaneously administered in female mice with myelin oligodendrocyte glycoprotein (MOG)-induced EAE. Clinical signs of the disease and transcript analysis of the CNS in the acute phase were performed. In addition, the presence of inflammatory components in the spinal cord was evaluated and ex vivo proliferation of lymphocytes was measured. NPC recipients exhibited ameliorated clinical outcome and less pronounced pathological features in their spinal cord. Downregulation of chemokine mRNA levels throughout the CNS was correlated with diminished Mac-3-, CD3-, and CD4-positive cells and reduced expression levels of antigen-presenting molecules in the spinal cord. Moreover, NPC transplantation resulted in lymphocyte-related, although not splenocyte-related, peripheral immunosuppression. We conclude that NPCs ameliorated EAE potentially by modulating the levels of chemokines expressed in the inflamed CNS, thus resulting in the impaired recruitment of immune cells. These findings further contribute to the better understanding of NPCs’ immunomodulatory properties in neuroinflammatory disorders, and may lead to faster translation into potential clinical use. Significance Endogenous neural precursor cells of the central nervous system are able to migrate and differentiate toward mature cells to repair an injury. There is increasing evidence that autologous transplantation of these cells in

  18. An Aberrant Phosphorylation of Amyloid Precursor Protein Tyrosine Regulates Its Trafficking and the Binding to the Clathrin Endocytic Complex in Neural Stem Cells of Alzheimer's Disease Patients

    PubMed Central

    Poulsen, Ebbe T.; Iannuzzi, Filomena; Rasmussen, Helle F.; Maier, Thorsten J.; Enghild, Jan J.; Jørgensen, Arne L.; Matrone, Carmela

    2017-01-01

    Alzheimer's disease (AD) is the most common cause of dementia and is likely caused by defective amyloid precursor protein (APP) trafficking and processing in neurons leading to amyloid plaques containing the amyloid-β (Aβ) APP peptide byproducts. Understanding how APP is targeted to selected destinations inside neurons and identifying the mechanisms responsible for the generation of Aβ are thus the keys for the advancement of new therapies. We previously developed a mouse model with a mutation at tyrosine (Tyr) 682 in the C-terminus of APP. This residue is needed for APP to bind to the coating protein Clathrin and to the Clathrin adaptor protein AP2 as well as for the correct APP trafficking and sorting in neurons. By extending these findings to humans, we found that APP binding to Clathrin is decreased in neural stem cells from AD sufferers. Increased APP Tyr phosphorylation alters APP trafficking in AD neurons and it is associated to Fyn Tyr kinase activation. We show that compounds affecting Tyr kinase activity and counteracting defects in AD neurons can control APP location and compartmentalization. APP Tyr phosphorylation is thus a potential therapeutic target for AD. PMID:28360834

  19. Different Mechanisms Must Be Considered to Explain the Increase in Hippocampal Neural Precursor Cell Proliferation by Physical Activity

    PubMed Central

    Overall, Rupert W.; Walker, Tara L.; Fischer, Tim J.; Brandt, Moritz D.; Kempermann, Gerd

    2016-01-01

    The number of proliferating neural precursor cells in the adult hippocampus is strongly increased by physical activity. The mechanisms through which this behavioral stimulus induces cell proliferation, however, are not yet understood. In fact, even the mode of proliferation of the stem and progenitor cells is not exactly known. Evidence exists for several mechanisms including cell cycle shortening, reduced cell death and stem cell recruitment, but as yet no model can account for all observations. An appreciation of how the cells proliferate, however, is crucial to our ability to model the neurogenic process and predict its behavior in response to pro-neurogenic stimuli. In a recent study, we addressed modulation of the cell cycle length as one possible mode of regulation of precursor cell proliferation in running mice. Our results indicated that the observed increase in number of proliferating cells could not be explained through a shortening of the cell cycle. We must therefore consider other mechanisms by which physical activity leads to enhanced precursor cell proliferation. Here we review the evidence for and against several different hypotheses and discuss the implications for future research in the field. PMID:27536215

  20. A galvanotaxis assay for analysis of neural precursor cell migration kinetics in an externally applied direct current electric field.

    PubMed

    Babona-Pilipos, Robart; Popovic, Milos R; Morshead, Cindi M

    2012-10-13

    The discovery of neural stem and progenitor cells (collectively termed neural precursor cells) (NPCs) in the adult mammalian brain has led to a body of research aimed at utilizing the multipotent and proliferative properties of these cells for the development of neuroregenerative strategies. A critical step for the success of such strategies is the mobilization of NPCs toward a lesion site following exogenous transplantation or to enhance the response of the endogenous precursors that are found in the periventricular region of the CNS. Accordingly, it is essential to understand the mechanisms that promote, guide, and enhance NPC migration. Our work focuses on the utilization of direct current electric fields (dcEFs) to promote and direct NPC migration - a phenomenon known as galvanotaxis. Endogenous physiological electric fields function as critical cues for cell migration during normal development and wound repair. Pharmacological disruption of the trans-neural tube potential in axolotl embryos causes severe developmental malformations(1). In the context of wound healing, the rate of repair of wounded cornea is directly correlated with the magnitude of the epithelial wound potential that arises after injury, as shown by pharmacological enhancement or disruption of this dcEF(2-3). We have demonstrated that adult subependymal NPCs undergo rapid and directed cathodal migration in vitro when exposed to an externally applied dcEF. In this protocol we describe our lab's techniques for creating a simple and effective galvanotaxis assay for high-resolution, long-term observation of directed cell body translocation (migration) on a single-cell level. This assay would be suitable for investigating the mechanisms that regulate dcEF transduction into cellular motility through the use of transgenic or knockout mice, short interfering RNA, or specific receptor agonists/antagonists.

  1. Reversal of developmental restrictions in neural crest lineages: Transition from Schwann cells to glial-melanocytic precursors in vitro

    PubMed Central

    Dupin, Elisabeth; Real, Carla; Glavieux-Pardanaud, Corinne; Vaigot, Pierre; Le Douarin, Nicole M.

    2003-01-01

    In vertebrate embryos, diversification of the lineages arising from the neural crest (NC) is controlled to a large extent by environmental factors. In previous work, we showed that endothelin 3 (ET3) peptide favors the development of glial and melanocytic NC precursors in vitro. This factor is also capable of inducing proliferation of cultured epidermal pigment cells and their conversion to glia. ET3 therefore strongly promotes the emergence of melanocytic and glial phenotypes from precursors and acts on the maintenance of these phenotypes. In the present work, we explored the capacity of ET3 to reprogram glial cells into melanocytes. Schwann cells expressing glial-specific markers [such as the Schwann cell myelin protein (SMP)] were isolated from sciatic nerves of quail embryos and cultured in vitro. We found that ET3 promotes cell growth and sequential expression of melanocyte differentiation markers in cultures of purified SMP-expressing cells, whereas it had no significant effect on SMP-negative cells from the same nerves. Moreover, we provide evidence for the transition of differentiated Schwann cells to melanocytes in clonal cultures. This transition involves the production of a mixed progeny of melanoblasts/melanocytes, glia, and cells bearing differentiation markers of both phenotypes. Therefore, Schwann cells exposed to ET3 transdifferentiate to melanocytes through reversion to the stage of bipotent glial-melanocytic NC precursors. These findings show that NC-derived pigment and glial cells are phenotypically unstable in vitro and may undergo reversal of precursor hierarchy to function as bipotent stem cells. PMID:12702775

  2. Novel Mode of Defective Neural Tube Closure in the Non-Obese Diabetic (NOD) Mouse Strain.

    PubMed

    Salbaum, J Michael; Kruger, Claudia; MacGowan, Jacalyn; Herion, Nils J; Burk, David; Kappen, Claudia

    2015-11-23

    Failure to close the neural tube results in birth defects, with severity ranging from spina bifida to lethal anencephaly. Few genetic risk factors for neural tube defects are known in humans, highlighting the critical role of environmental risk factors, such as maternal diabetes. Yet, it is not well understood how altered maternal metabolism interferes with embryonic development, and with neurulation in particular. We present evidence from two independent mouse models of diabetic pregnancy that identifies impaired migration of nascent mesodermal cells in the primitive streak as the morphogenetic basis underlying the pathogenesis of neural tube defects. We conclude that perturbed gastrulation not only explains the neurulation defects, but also provides a unifying etiology for the broad spectrum of congenital malformations in diabetic pregnancies.

  3. Roles of chromatin remodelers in maintenance mechanisms of multipotency of mouse trunk neural crest cells in the formation of neural crest-derived stem cells.

    PubMed

    Fujita, Kyohei; Ogawa, Ryuhei; Kawawaki, Syunsaku; Ito, Kazuo

    2014-08-01

    We analyzed roles of two chromatin remodelers, Chromodomain Helicase DNA-binding protein 7 (CHD7) and SWItch/Sucrose NonFermentable-B (SWI/SNF-B), and Bone Morphogenetic Protein (BMP)/Wnt signaling in the maintenance of the multipotency of mouse trunk neural crest cells, leading to the formation of mouse neural crest-derived stem cells (mouse NCSCs). CHD7 was expressed in the undifferentiated neural crest cells and in the dorsal root ganglia (DRG) and sciatic nerve, typical tissues containing NCSCs. BMP/Wnt signaling stimulated the expression of CHD7 and participated in maintaining the multipotency of neural crest cells. Furthermore, the promotion of CHD7 expression maintained the multipotency of these cells. The inhibition of CHD7 and SWI/SNF-B expression significantly suppressed the maintenance of the multipotency of these cells. In addition, BMP/Wnt treatment promoted CHD7 expression and caused the increase of the percentage of multipotent cells in DRG. Thus, the present data suggest that the chromatin remodelers as well as BMP/Wnt signaling play essential roles in the maintenance of the multipotency of mouse trunk neural crest cells and in the formation of mouse NCSCs.

  4. Cellular basis of neuroepithelial bending during mouse spinal neural tube closure

    PubMed Central

    McShane, Suzanne G.; Molè, Matteo A.; Savery, Dawn; Greene, Nicholas D. E; Tam, Patrick P.L.; Copp, Andrew J.

    2015-01-01

    Summary Bending of the neural plate at paired dorsolateral hinge points (DLHPs) is required for neural tube closure in the spinal region of the mouse embryo. As a step towards understanding the morphogenetic mechanism of DLHP development, we examined variations in neural plate cellular architecture and proliferation during closure. Neuroepithelial cells within the median hinge point (MHP) contain nuclei that are mainly basally located and undergo relatively slow proliferation, with a 7 h cell cycle length. In contrast, cells in the dorsolateral neuroepithelium, including the DLHP, exhibit nuclei distributed throughout the apico-basal axis and undergo rapid proliferation, with a 4 h cell cycle length. As the neural folds elevate, cell numbers increase to a greater extent in the dorsolateral neural plate that contacts the surface ectoderm, compared with the more ventromedial neural plate where cells contact paraxial mesoderm and notochord. This marked increase in dorsolateral cell number cannot be accounted for solely on the basis of enhanced cell proliferation in this region. We hypothesised that neuroepithelial cells may translocate in a ventral-to-dorsal direction as DLHP formation occurs, and this was confirmed by vital cell labelling in cultured embryos. The translocation of cells into the neural fold, together with its more rapid cell proliferation, leads to an increase in cell density dorsolaterally compared with the more ventromedial neural plate. These findings suggest a model in which DLHP formation may proceed through ‘buckling’ of the neuroepithelium at a dorso-ventral boundary marked by a change in cell-packing density. PMID:26079577

  5. Molecular Analysis of Stromal Cells-Induced Neural Differentiation of Mouse Embryonic Stem Cells

    PubMed Central

    Joshi, Ramila; Buchanan, James Carlton; Paruchuri, Sailaja; Morris, Nathan; Tavana, Hossein

    2016-01-01

    Deriving specific neural cells from embryonic stem cells (ESCs) is a promising approach for cell replacement therapies of neurodegenerative diseases. When co-cultured with certain stromal cells, mouse ESCs (mESCs) differentiate efficiently to neural cells. In this study, a comprehensive gene and protein expression analysis of differentiating mESCs is performed over a two-week culture period to track temporal progression of cells from a pluripotent state to specific terminally-differentiated neural cells such as neurons, astrocytes, and oligodendrocytes. Expression levels of 26 genes consisting of marker genes for pluripotency, neural progenitors, and specific neuronal, astroglial, and oligodendrocytic cells are tracked using real time q-PCR. The time-course gene expression analysis of differentiating mESCs is combined with the hierarchal clustering and functional principal component analysis (FPCA) to elucidate the evolution of specific neural cells from mESCs at a molecular level. These statistical analyses identify three major gene clusters representing distinct phases of transition of stem cells from a pluripotent state to a terminally-differentiated neuronal or glial state. Temporal protein expression studies using immunohistochemistry demonstrate the generation of neural stem/progenitor cells and specific neural lineages and show a close agreement with the gene expression profiles of selected markers. Importantly, parallel gene and protein expression analysis elucidates long-term stability of certain proteins compared to those with a quick turnover. Describing the molecular regulation of neural cells commitment of mESCs due to stromal signaling will help identify major promoters of differentiation into specific cell types for use in cell replacement therapy applications. PMID:27832161

  6. Adult retinal pigment epithelium cells express neural progenitor properties and the neuronal precursor protein doublecortin.

    PubMed

    Engelhardt, Maren; Bogdahn, Ulrich; Aigner, Ludwig

    2005-04-08

    The adult mammalian retina is devoid of any detectable neurogenesis. However, different cell types have been suggested to potentially act as neural progenitors in the adult mammalian retina in vitro, such as ciliary body (CB), Muller glia, and retinal pigment epithelium (RPE) cells. In rodents and humans, strong evidence for neural stem or progenitor properties exists only for CB-derived cells, but not for other retinal cell types. Here, we provide a comparative analysis of adult rat CB- and RPE-derived cells suggesting that the two cell types share certain neural progenitor properties in vitro. CB and RPE cells expressed neural progenitor markers such as Nestin, Flk-1, Hes1, and Musashi. They proliferated under adherent and neurosphere conditions and showed limited self-renewal. Moreover, they differentiated into neuronal and glial cells based on the expression of differentiation markers such as the young neuronal marker beta-III tubulin and the glial and progenitor markers GFAP and NG2. Expression of beta-III tubulin was found in cells with neuronal and non-neuronal morphology. A subpopulation of RPE- and CB-derived progenitor cells expressed the neurogenesis-specific protein doublecortin (DCX). Interestingly, DCX expression defined a beta-III tubulin-positive CB and RPE fraction with a distinct neuronal morphology. In summary, the data suggest that RPE cells share with CB cells the potential to de-differentiate into a cell type with neural progenitor-like identity. In addition, DCX expression might define the neuronal-differentiating RPE- and CB-derived progenitor population.

  7. Dynamic imaging and quantitative analysis of cranial neural tube closure in the mouse embryo using optical coherence tomography

    PubMed Central

    Wang, Shang; Garcia, Monica D.; Lopez, Andrew L.; Overbeek, Paul A.; Larin, Kirill V.; Larina, Irina V.

    2016-01-01

    Neural tube closure is a critical feature of central nervous system morphogenesis during embryonic development. Failure of this process leads to neural tube defects, one of the most common forms of human congenital defects. Although molecular and genetic studies in model organisms have provided insights into the genes and proteins that are required for normal neural tube development, complications associated with live imaging of neural tube closure in mammals limit efficient morphological analyses. Here, we report the use of optical coherence tomography (OCT) for dynamic imaging and quantitative assessment of cranial neural tube closure in live mouse embryos in culture. Through time-lapse imaging, we captured two neural tube closure mechanisms in different cranial regions, zipper-like closure of the hindbrain region and button-like closure of the midbrain region. We also used OCT imaging for phenotypic characterization of a neural tube defect in a mouse mutant. These results suggest that the described approach is a useful tool for live dynamic analysis of normal neural tube closure and neural tube defects in the mouse model. PMID:28101427

  8. Dynamic imaging and quantitative analysis of cranial neural tube closure in the mouse embryo using optical coherence tomography.

    PubMed

    Wang, Shang; Garcia, Monica D; Lopez, Andrew L; Overbeek, Paul A; Larin, Kirill V; Larina, Irina V

    2017-01-01

    Neural tube closure is a critical feature of central nervous system morphogenesis during embryonic development. Failure of this process leads to neural tube defects, one of the most common forms of human congenital defects. Although molecular and genetic studies in model organisms have provided insights into the genes and proteins that are required for normal neural tube development, complications associated with live imaging of neural tube closure in mammals limit efficient morphological analyses. Here, we report the use of optical coherence tomography (OCT) for dynamic imaging and quantitative assessment of cranial neural tube closure in live mouse embryos in culture. Through time-lapse imaging, we captured two neural tube closure mechanisms in different cranial regions, zipper-like closure of the hindbrain region and button-like closure of the midbrain region. We also used OCT imaging for phenotypic characterization of a neural tube defect in a mouse mutant. These results suggest that the described approach is a useful tool for live dynamic analysis of normal neural tube closure and neural tube defects in the mouse model.

  9. Transforming growth factor beta1 regulates melanocyte proliferation and differentiation in mouse neural crest cells via stem cell factor/KIT signaling.

    PubMed

    Kawakami, Tamihiro; Soma, Yoshinao; Kawa, Yoko; Ito, Masaru; Yamasaki, Emiko; Watabe, Hidenori; Hosaka, Eri; Yajima, Kenji; Ohsumi, Kayoko; Mizoguchi, Masako

    2002-03-01

    Stem cell factor is essential to the migration and differentiation of melanocytes during embryogenesis based on the observation that mutations in either the stem cell factor gene, or its ligand, KIT, result in defects in coat pigmentation in mice. Stem cell factor is also required for the survival of melanocyte precursors while they are migrating towards the skin. Transforming growth factor beta1 has been implicated in the regulation of both cellular proliferation and differentiation. NCC-melb4, an immortal cloned cell line, was cloned from a mouse neural crest cell. NCC-melb4 cells provide a model to study the specific stage of differentiation and proliferation of melanocytes. They also express KIT as a melanoblast marker. Using the NCC-melb4 cell line, we investigated the effect of transforming growth factor beta1 on the differentiation and proliferation of immature melanocyte precursors. Immunohistochemically, NCC-melb4 cells showed transforming growth factor beta1 expression. The anti-transforming growth factor beta1 antibody inhibited the cell growth, and downregulated the KIT protein and mRNA expression. To investigate further the activation of autocrine transforming growth factor beta1, NCC-melb4 cells were incubated in nonexogenous transforming growth factor beta1 culture medium. KIT protein decreased with anti-transforming growth factor beta1 antibody concentration in a concentration-dependent manner. We concluded that in NCC-melb4 cells, transforming growth factor beta1 promotes melanocyte precursor proliferation in autocrine and/or paracrine regulation. We further investigated the influence of transforming growth factor beta1 in vitro using a neural crest cell primary culture system from wild-type mice. Anti-transforming growth factor beta1 antibody decreased the number of KIT positive neural crest cell. In addition, the anti-transforming growth factor beta1 antibody supplied within the wild-type neural crest explants abolished the growth of the neural

  10. Wnt signaling induces proliferation of sensory precursors in the postnatal mouse cochlea

    PubMed Central

    Chai, Renjie; Kuo, Bryan; Wang, Tian; Liaw, Eric J.; Xia, Anping; Jan, Taha A.; Liu, Zhiyong; Taketo, Makoto M.; Oghalai, John S.; Nusse, Roeland; Zuo, Jian; Cheng, Alan G.

    2012-01-01

    Inner ear hair cells are specialized sensory cells essential for auditory function. Previous studies have shown that the sensory epithelium is postmitotic, but it harbors cells that can behave as progenitor cells in vitro, including the ability to form new hair cells. Lgr5, a Wnt target gene, marks distinct supporting cell types in the neonatal cochlea. Here, we tested the hypothesis that Lgr5+ cells are Wnt-responsive sensory precursor cells. In contrast to their quiescent in vivo behavior, Lgr5+ cells isolated by flow cytometry from neonatal Lgr5EGFP-CreERT2/+ mice proliferated and formed clonal colonies. After 10 d in culture, new sensory cells formed and displayed specific hair cell markers (myo7a, calretinin, parvalbumin, myo6) and stereocilia-like structures expressing F-actin and espin. In comparison with other supporting cells, Lgr5+ cells were enriched precursors to myo7a+ cells, most of which formed without mitotic division. Treatment with Wnt agonists increased proliferation and colony-formation capacity. Conversely, small-molecule inhibitors of Wnt signaling suppressed proliferation without compromising the myo7a+ cells formed by direct differentiation. In vivo lineage tracing supported the idea that Lgr5+ cells give rise to myo7a+ hair cells in the neonatal Lgr5EGFP-CreERT2/+ cochlea. In addition, overexpression of β-catenin initiated proliferation and led to transient expansion of Lgr5+ cells within the cochlear sensory epithelium. These results suggest that Lgr5 marks sensory precursors and that Wnt signaling can promote their proliferation and provide mechanistic insights into Wnt-responsive progenitor cells during sensory organ development. PMID:22562792

  11. Neural precursor cell cultures from GM2 gangliosidosis animal models recapitulate the biochemical and molecular hallmarks of the brain pathology.

    PubMed

    Martino, Sabata; di Girolamo, Ilaria; Cavazzin, Chiara; Tiribuzi, Roberto; Galli, Rossella; Rivaroli, Anna; Valsecchi, Manuela; Sandhoff, Konrad; Sonnino, Sandro; Vescovi, Angelo; Gritti, Angela; Orlacchio, Aldo

    2009-04-01

    In this work we showed that genotype-related patterns of hexosaminidase activity, isoenzyme composition, gene expression and ganglioside metabolism observed during embryonic and postnatal brain development are recapitulated during the progressive stages of neural precursor cell (NPC) differentiation to mature glia and neurons in vitro. Further, by comparing NPCs and their differentiated progeny established from Tay-Sachs (TS) and Sandhoff (SD) animal models with the wild-type counterparts, we studied the events linking the accumulation of undegraded substrates to hexosaminidase activity. We showed that similarly to what observed in brain tissues in TS NPCs and progeny, the stored GM2 was partially converted by sialidase to GA2, which can be then degraded in the lysosomes to its components. The latter can be used in a salvage pathway for the formation of GM3. Interestingly, results obtained from ganglioside feeding assays and from measurement of lysosomal sialidase activity suggest that a similar pathway might work also in the SD model.

  12. Mitochondrial dysfunction in a transgenic mouse model expressing human amyloid precursor protein (APP) with the Arctic mutation.

    PubMed

    Rönnbäck, Annica; Pavlov, Pavel F; Mansory, Mansorah; Gonze, Prisca; Marlière, Nicolas; Winblad, Bengt; Graff, Caroline; Behbahani, Homira

    2016-02-01

    Accumulation of amyloid β-peptide (Aβ) in the brain is an important event in the pathogenesis of Alzheimer disease. We have used a transgenic mouse model expressing human amyloid precursor protein (APP) with the Arctic mutation to investigate whether Aβ deposition is correlated with mitochondrial functions in these animals. We found evidence of mitochondrial dysfunction (i.e., decreased mitochondrial membrane potential, increased production of reactive oxygen species and oxidative DNA damage) at 6 months of age, when the mice showed very mild Aβ deposition. More pronounced mitochondrial abnormalities were present in 24-month-old TgAPParc mice with more extensive Aβ pathology. This study demonstrates for the first time mitochondrial dysfunction in transgenic mice with a mutation within the Aβ peptide (the Arctic APP mutation), and confirms previous studies suggesting that mitochondrial dysfunction and oxidative stress is an early event in the pathogenesis of Alzheimer disease. This study demonstrates mitochondrial dysfunction in transgenic mice with a mutation within the amyloid beta (Aβ) peptide (the Arctic amyloid precursor protein (APP) mutation). We found evidence of mitochondrial dysfunction (i.e. decreased mitochondrial membrane potential (MMP), increased production of reactive oxygen species (ROS) and oxidative DNA damage) at 6 months of age, when very mild Aβ deposition is present in the mice. Also, the cytochrome c (COX) activity was significantly decreased in mitochondria from transgenic mice at 24 months of age.

  13. Neural stem cell transplantation enhances mitochondrial biogenesis in a transgenic mouse model of Alzheimer's disease-like pathology.

    PubMed

    Zhang, Wei; Gu, Guo-Jun; Shen, Xing; Zhang, Qi; Wang, Gang-Min; Wang, Pei-Jun

    2015-03-01

    Mitochondrial dysfunction, especially a defect in mitochondrial biogenesis, is an early and prominent feature of Alzheimer's disease (AD). Previous studies demonstrated that the number of mitochondria is significantly reduced in susceptible hippocampal neurons from AD patients. Neural stem cell (NSC) transplantation in AD-like mice can compensate for the neuronal loss resulting from amyloid-beta protein deposition. The effects of NSC transplantation on mitochondrial biogenesis and cognitive function in AD-like mice, however, are poorly understood. In this study, we injected NSCs or vehicle into 12-month-old amyloid precursor protein (APP)/PS1 transgenic mice, a mouse model of AD-like pathology. The effects of NSC transplantation on cognitive function, the amount of mitochondrial DNA, the expression of mitochondrial biogenesis factors and mitochondria-related proteins, and mitochondrial morphology were investigated. Our results show that in NSC-injected APP/PS1 (Tg-NSC) mice, the cognitive function, number of mitochondria, and expression of mitochondria-related proteins, specifically the mitochondrial fission factors (dynamin-related protein 1 [Drp1] and fission 1 [Fis1]) and the mitochondrial fusion factor optic atrophy 1 (OPA1), were significantly increased compared with those in age-matched vehicle-injected APP/PS1 (Tg-Veh) mice, whereas the expression of mitochondrial fusion factors mitofusion 1 (Mfn1) and Mfn2 was significantly decreased. These data indicate that NSC transplantation may enhance mitochondria biogenesis and further rescue cognitive deficits in AD-like mice.

  14. Progranulin promotes the retinal precursor cell proliferation and the photoreceptor differentiation in the mouse retina

    PubMed Central

    Kuse, Yoshiki; Tsuruma, Kazuhiro; Sugitani, Sou; Izawa, Hiroshi; Ohno, Yuta; Shimazawa, Masamitsu; Hara, Hideaki

    2016-01-01

    Progranulin (PGRN) is a secreted growth factor associated with embryo development, tissue repair, and inflammation. In a previous study, we showed that adipose-derived stem cell-conditioned medium (ASC-CM) is rich in PGRN. In the present study, we investigated whether PGRN is associated with retinal regeneration in the mammalian retina. We evaluated the effect of ASC-CM using the N-methyl-N-nitrosourea-induced retinal damage model in mice. ASC-CM promoted the differentiation of photoreceptor cells following retinal damage. PGRN increased the number of BrdU+ cells in the outer nuclear layer following retinal damage some of which were Rx (retinal precursor cell marker) positive. PGRN also increased the number of rhodopsin+ photoreceptor cells in primary retinal cell cultures. SU11274, a hepatocyte growth factor (HGF) receptor inhibitor, attenuated the increase. These findings suggest that PGRN may affect the differentiation of retinal precursor cells to photoreceptor cells through the HGF receptor signaling pathway. PMID:27030285

  15. Migration, integration and maturation of photoreceptor precursors following transplantation in the mouse retina.

    PubMed

    Warre-Cornish, Katherine; Barber, Amanda C; Sowden, Jane C; Ali, Robin R; Pearson, Rachael A

    2014-05-01

    Retinal degeneration leading to loss of photoreceptors is a major cause of untreatable blindness. Recent research has yielded definitive evidence for restoration of vision following the transplantation of rod photoreceptors in murine models of blindness, while advances in stem cell biology have enabled the generation of transplantable photoreceptors from embryonic stem cells. Importantly, the amount of visual function restored is dependent upon the number of photoreceptors that migrate correctly into the recipient retina. The developmental stage of the donor cells is important for their ability to migrate; they must be immature photoreceptor precursors. Little is known about how and when donor cell migration, integration, and maturation occurs. Here, we have performed a comprehensive histological analysis of the 6-week period following rod transplantation in mice. Donor cells migrate predominately as single entities during the first week undergoing a stereotyped sequence of morphological changes in their translocation from the site of transplantation, through the interphotoreceptor matrix and into the recipient retina. This includes initial polarization toward the outer nuclear layer (ONL), followed by formation of an apical attachment and rudimentary segment during migration into the ONL. Strikingly, acquisition of a nuclear architecture typical of mature rods was accelerated compared with normal development and a feature of migrating cells. Once within the ONL, precursors formed synaptic-like structures and outer segments in accordance with normal maturation. The restoration of visual function mediated by transplanted photoreceptors correlated with the later expression of rod α-transducin, achieving maximal function by 5 weeks.

  16. Stroke Increases Neural Stem Cells and Angiogenesis in the Neurogenic Niche of the Adult Mouse

    PubMed Central

    Zhang, Rui Lan; Chopp, Michael; Roberts, Cynthia; Liu, Xianshuang; Wei, Min; Nejad-Davarani, Siamak P.; Wang, Xinli; Zhang, Zheng Gang

    2014-01-01

    The unique cellular and vascular architecture of the adult ventricular-subventricular zone (V/SVZ) neurogenic niche plays an important role in regulating neural stem cell function. However, the in vivo identification of neural stem cells and their relationship to blood vessels within this niche in response to stroke remain largely unknown. Using whole-mount preparation of the lateral ventricle wall, we examined the architecture of neural stem cells and blood vessels in the V/SVZ of adult mouse over the course of 3 months after onset of focal cerebral ischemia. Stroke substantially increased the number of glial fibrillary acidic protein (GFAP) positive neural stem cells that are in contact with the cerebrospinal fluid (CSF) via their apical processes at the center of pinwheel structures formed by ependymal cells residing in the lateral ventricle. Long basal processes of these cells extended to blood vessels beneath the ependymal layer. Moreover, stroke increased V/SVZ endothelial cell proliferation from 2% in non-ischemic mice to 12 and 15% at 7 and 14 days after stroke, respectively. Vascular volume in the V/SVZ was augmented from 3% of the total volume prior to stroke to 6% at 90 days after stroke. Stroke-increased angiogenesis was closely associated with neuroblasts that expanded to nearly encompass the entire lateral ventricular wall in the V/SVZ. These data indicate that stroke induces long-term alterations of the neural stem cell and vascular architecture of the adult V/SVZ neurogenic niche. These post-stroke structural changes may provide insight into neural stem cell mediation of stroke-induced neurogenesis through the interaction of neural stem cells with proteins in the CSF and their sub-ependymal neurovascular interaction. PMID:25437857

  17. Melatonin restores hippocampal neural precursor cell proliferation and prevents cognitive deficits induced by jet lag simulation in adult mice.

    PubMed

    Iggena, Deetje; Winter, York; Steiner, Barbara

    2017-05-01

    Frequent flyers and shift workers undergo circadian dysrhythmia with adverse impact on body and mind. The circadian rhythm disorder "jet lag" disturbs hippocampal neurogenesis and spatial cognition, which represent morphological and functional adult brain plasticity. This raises the question if pro-neurogenic stimuli might prevent those consequences. However, suitable measures to mitigate jet lag-induced adverse effects on brain plasticity have been neglected so far. Here, we used adult C57Bl6 mice to investigate the pro-neurogenic stimuli melatonin (8 mg/kg i.p.) as well as environmental enrichment as potential measures. We applied photoperiod alterations to simulate "jet lag" by shortening the dark period every third day by 6 hours for 3 weeks. We found that "jet lag" simulation reduced hippocampal neural precursor cell proliferation by 24% and impaired spatial memory performance in the water maze indicated by a prolonged swim path to the target (~23%). While melatonin prevented both the cellular (~1%) as well as the cognitive deficits (~5%), environmental enrichment only preserved precursor cell proliferation (~12%). Our results indicate that lifestyle interventions are insufficient to completely compensate jet lag-induced consequences. Instead, melatonin is required to prevent cognitive impairment caused by the same environmental factors to which frequent flyers and shift workers are typically exposed to.

  18. Phenotypic Changes, Signaling Pathway, and Functional Correlates of GPR17-expressing Neural Precursor Cells during Oligodendrocyte Differentiation*

    PubMed Central

    Fumagalli, Marta; Daniele, Simona; Lecca, Davide; Lee, Philip R.; Parravicini, Chiara; Fields, R. Douglas; Rosa, Patrizia; Antonucci, Flavia; Verderio, Claudia; Trincavelli, M. Letizia; Bramanti, Placido; Martini, Claudia; Abbracchio, Maria P.

    2011-01-01

    The developing and mature central nervous system contains neural precursor cells expressing the proteoglycan NG2. Some of these cells continuously differentiate to myelin-forming oligodendrocytes; knowledge of the destiny of NG2+ precursors would benefit from the characterization of new key functional players. In this respect, the G protein-coupled membrane receptor GPR17 has recently emerged as a new timer of oligodendrogliogenesis. Here, we used purified oligodendrocyte precursor cells (OPCs) to fully define the immunophenotype of the GPR17-expressing cells during OPC differentiation, unveil its native signaling pathway, and assess the functional consequences of GPR17 activation by its putative endogenous ligands, uracil nucleotides and cysteinyl leukotrienes (cysLTs). GPR17 presence was restricted to very early differentiation stages and completely segregated from that of mature myelin. Specifically, GPR17 decorated two subsets of slowly proliferating NG2+ OPCs: (i) morphologically immature cells expressing other early proteins like Olig2 and PDGF receptor-α, and (ii) ramified preoligodendrocytes already expressing more mature factors, like O4 and O1. Thus, GPR17 is a new marker of these transition stages. In OPCs, GPR17 activation by either uracil nucleotides or cysLTs resulted in potent inhibition of intracellular cAMP formation. This effect was counteracted by GPR17 antagonists and receptor silencing with siRNAs. Finally, uracil nucleotides promoted and GPR17 inhibition, by either antagonists or siRNAs, impaired the normal program of OPC differentiation. These data have implications for the in vivo behavior of NG2+ OPCs and point to uracil nucleotides and cysLTs as main extrinsic local regulators of these cells under physiological conditions and during myelin repair. PMID:21209081

  19. Mouse vision as a gateway for understanding how experience shapes neural circuits

    PubMed Central

    Priebe, Nicholas J.; McGee, Aaron W.

    2014-01-01

    Genetic programs controlling ontogeny drive many of the essential connectivity patterns within the brain. Yet it is activity, derived from the experience of interacting with the world, that sculpts the precise circuitry of the central nervous system. Such experience-dependent plasticity has been observed throughout the brain but has been most extensively studied in the neocortex. A prime example of this refinement of neural circuitry is found in primary visual cortex (V1), where functional connectivity changes have been observed both during development and in adulthood. The mouse visual system has become a predominant model for investigating the principles that underlie experience-dependent plasticity, given the general conservation of visual neural circuitry across mammals as well as the powerful tools and techniques recently developed for use in rodent. The genetic tractability of mice has permitted the identification of signaling pathways that translate experience-driven activity patterns into changes in circuitry. Further, the accessibility of visual cortex has allowed neural activity to be manipulated with optogenetics and observed with genetically-encoded calcium sensors. Consequently, mouse visual cortex has become one of the dominant platforms to study experience-dependent plasticity. PMID:25324730

  20. A Rap GTPase interactor, RADIL, mediates migration of neural crest precursors.

    PubMed

    Smolen, Gromoslaw A; Schott, Benjamin J; Stewart, Rodney A; Diederichs, Sven; Muir, Beth; Provencher, Heather L; Look, A Thomas; Sgroi, Dennis C; Peterson, Randall T; Haber, Daniel A

    2007-09-01

    The neural crest (NC) is a highly motile cell population that gives rise to multiple tissue lineages during vertebrate embryogenesis. Here, we identify a novel effector of the small GTPase Rap, called RADIL, and show that it is required for cell adhesion and migration. Knockdown of radil in the zebrafish model results in multiple defects in NC-derived lineages such as cartilage, pigment cells, and enteric neurons. We specifically show that these defects are primarily due to the diminished migratory capacity of NC cells. The identification of RADIL as a regulator of NC migration defines a role for the Rap pathway in this process.

  1. The many roads to Rome: induction of neural precursor cells from fibroblasts.

    PubMed

    Lujan, Ernesto; Wernig, Marius

    2012-10-01

    The experimental induction of specific cell fates in related or unrelated lineages has fascinated developmental biologists for decades. The evaluation of altered cell fates in response to ectopic expression during embryonic development has been a standard assay for interrogating gene function. However, until recently examples of cell lineage conversions were limited to closely related and primitive cell types. The induction of pluripotency in fibroblasts prominently highlighted that combinations of transcription factors can be extremely powerful and are much more effective than single genes. On the basis of this conclusion we previously identified transcription factor combinations that directly induce functional neuronal cells from mesodermal and endodermal cells. This work has evoked numerous additional studies demonstrating direct lineage conversion into neural and other lineages. Here, we review the generation of neural progenitor cells from fibroblasts, which is the newest addition to the arena of induced cell types. Surprisingly, two fundamentally different approaches have been taken to induce this cell type, one direct approach and another that involves the intermediate generation of a partially reprogrammed pluripotent state.

  2. Neural differentiation of mouse embryonic stem cells studied by FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Tanthanuch, Waraporn; Thumanu, Kanjana; Lorthongpanich, Chanchao; Parnpai, Rangsun; Heraud, Philip

    2010-04-01

    Embryonic Stem-derived Neural Cells (ESNCs) hold potential as a source of neurons for a cell-based therapy for the treatment of brain tumors, and other neurological diseases and disorders in the future. The sorting of neural cell types is envisaged to be one of the most important processed for clinical application of these cells in cell-based therapies of the central nervous system (CNS). In this study, laboratory-based FTIR and Synchrotron-FTIR (SR-FTIR) microspectroscopy were used to identify FTIR marker for distinguishing different neural cell types derived from the differentiation of mouse embryonic stem cells (mESCs). Principal Component Analysis (PCA) and Unsupervised Hierarchical Cluster Analysis (UHCA) were shown to be able to distinguish the developmental stage of mESCs into three cell types: embryoid bodies (EBs), neural progenitor cells (NPCs), and ESNCs. Moreover, PCA provided the mean for identifying potential FTIR "marker bands" that underwent dramatic changes during stem cell differentiation along neural lineages. These appeared to be associated with changes in lipids (bands from CH 2 and CH 3 stretching vibrations at ˜2959, 2923 and 2852 cm -1) and proteins (changes in the amide I band at ˜1659 and 1637 cm -1). The results suggested that lipid content of cells increased significantly over the time of differentiation, suggesting increased expression of glycerophospholipids. Changes in the amide I profile, suggested concomitant increases in α-helix rich proteins as mESCs differentiated towards ESNCs, with a corresponding decrease in β-sheet rich proteins, corresponding with changes in cytoskeleton protein which may have been taking place involved with the establishment of neural structure and function.

  3. Identification of myocardial and vascular precursor cells in human and mouse epicardium.

    PubMed

    Limana, Federica; Zacheo, Antonella; Mocini, David; Mangoni, Antonella; Borsellino, Giovanna; Diamantini, Adamo; De Mori, Roberta; Battistini, Luca; Vigna, Elisa; Santini, Massimo; Loiaconi, Vincenzo; Pompilio, Giulio; Germani, Antonia; Capogrossi, Maurizio C

    2007-12-07

    During cardiac development, the epicardium is the source of multipotent mesenchymal cells, which give rise to endothelial and smooth muscle cells in coronary vessels and also, possibly, to cardiomyocytes. The aim of the present study was to determine whether stem cells are retained in the adult human and murine epicardium and to investigate the regenerative potential of these cells following acute myocardial infarction. We show that c-kit(+) and CD34(+) cells can indeed be detected in human fetal and adult epicardium and that they represent 2 distinct populations. Both subsets of cells were negative for CD45, a cell surface marker that identifies the hematopoietic cell lineage. Immunofluorescence revealed that freshly isolated c-kit(+) and CD34(+) cells expressed early and late cardiac transcription factors and could acquire an endothelial phenotype in vitro. In the murine model of myocardial infarction, there was an increase in the absolute number and proliferation of epicardial c-kit(+) cells 3 days after coronary ligation; at this time point, epicardial c-kit(+) cells were identified in the subepicardial space and expressed GATA4. Furthermore, 1 week after myocardial infarction, cells coexpressing c-kit(+), together with endothelial or smooth muscle cell markers, were identified in the wall of subepicardial blood vessels. In summary, the postnatal epicardium contains a cell population with stem cell characteristics that retains the ability to give rise to myocardial precursors and vascular cells. These cells may play a role in the regenerative response to cardiac damage.

  4. Multiple hemopoietic lineages are found after stimulation of mouse bone marrow precursor cells with interleukin 3.

    PubMed Central

    Prystowsky, M. B.; Otten, G.; Naujokas, M. F.; Vardiman, J.; Ihle, J. N.; Goldwasser, E.; Fitch, F. W.

    1984-01-01

    When the murine T-lymphocyte clone L2 is stimulated with concanavalin A, it secretes at least two distinct factors that affect hemopoietic precursor cells, interleukin 3 (IL3) and granulocyte/macrophage colony-stimulating factor (GM-CSF). IL3 accounts for approximately 10% of the colony-stimulating activity in L2-cell-conditioned medium. The IL3 secreted by L2 cells is similar antigenically to the IL3 secreted by WEHI-3 cells. Like the IL3 from WEHI-3 cells, IL3 secreted by L2 cells does not bind to DEAE Sephacel and can be separated from the L2-cell GM-CSF, which does bind to DEAE. By assessment of the functional, morphologic, surface phenotypic, and cytochemical characteristics of bone marrow cells 6 days after stimulation with IL3 in liquid culture, four hemopoietic lineages were found, including macrophage, neutrophilic granulocyte, megakaryocyte, and basophil/mast cell. In addition, when bone marrow cells were stimulated with IL3 in semisolid medium, several types of colonies were found, including mixed colonies containing macrophage, megakaryocyte, and granulocyte lineages. Images Figure 2 Figure 4 Figure 1 PMID:6437231

  5. Transduction of E13 murine neural precursor cells by non-immunogenic recombinant adeno-associated viruses induces major changes in neuronal phenotype.

    PubMed

    Nash, K R; Cardenas-Aguayo, Mdel C; Berg, M J; Marks, N

    2012-05-17

    Neural precursor cells (NPCs) provide a cellular model to compare transduction efficiency and toxicity for a series of recombinant adeno-associated viruses (rAAVs). Results led to the choice of rAAV9 as a preferred candidate to transduce NPCs for in vivo transplantation. Importantly, transduction promoted a neuronal phenotype characterized by neurofilament M (NFM) with a concomitant decrease in the embryonic marker, nestin, without significant change in glial fibrillary acidic protein (GFAP). In marked contrast to recent studies for induced pluripotent stem cells (iPSCs), exposure to rAAVs is non-immunogenic and these do not result in genetic abnormalities, thus bolstering the earlier use of NPCs such as those isolated from E13 murine cells for clinical applications. Mechanisms of cellular interactions were explored by treatment with genistein, a pan-specific inhibitor of protein receptor tyrosine kinases (PRTKs) that blocked the transduction and differentiation, thus implying a central role for this pathway for inducing infectivity along with observed phenotypic changes and as a method for drug design. Implantation of transduced NPCs into adult mouse hippocampus survived up to 28 days producing a time line for targeting or migration to dentate gyrus and CA3-1 compatible with future clinical applications. Furthermore, a majority showed commitment to highly differentiated neuronal phenotypes. Lack of toxicity and immune response of rAAVs plus ability for expansion of NPCs in vitro auger well for their isolation and suggest potential therapeutic applications in repair or replacement of diseased neurons in neurodegeneration.

  6. Remyelination Is Correlated with Regulatory T Cell Induction Following Human Embryoid Body-Derived Neural Precursor Cell Transplantation in a Viral Model of Multiple Sclerosis

    PubMed Central

    Plaisted, Warren C.; Zavala, Angel; Hingco, Edna; Tran, Ha; Coleman, Ronald; Lane, Thomas E.; Loring, Jeanne F.; Walsh, Craig M.

    2016-01-01

    We have recently described sustained clinical recovery associated with dampened neuroinflammation and remyelination following transplantation of neural precursor cells (NPCs) derived from human embryonic stem cells (hESCs) in a viral model of the human demyelinating disease multiple sclerosis. The hNPCs used in that study were derived by a novel direct differentiation method (direct differentiation, DD-NPCs) that resulted in a unique gene expression pattern when compared to hNPCs derived by conventional methods. Since the therapeutic potential of human NPCs may differ greatly depending on the method of derivation and culture, we wanted to determine whether NPCs differentiated using conventional methods would be similarly effective in improving clinical outcome under neuroinflammatory demyelinating conditions. For the current study, we utilized hNPCs differentiated from a human induced pluripotent cell line via an embryoid body intermediate stage (EB-NPCs). Intraspinal transplantation of EB-NPCs into mice infected with the neurotropic JHM strain of mouse hepatitis virus (JHMV) resulted in decreased accumulation of CD4+ T cells in the central nervous system that was concomitant with reduced demyelination at the site of injection. Dampened neuroinflammation and remyelination was correlated with a transient increase in CD4+FOXP3+ regulatory T cells (Tregs) concentrated within the peripheral lymphatics. However, compared to our earlier study, pathological improvements were modest and did not result in significant clinical recovery. We conclude that the genetic signature of NPCs is critical to their effectiveness in this model of viral-induced neurologic disease. These comparisons will be useful for understanding what factors are critical for the sustained clinical improvement. PMID:27310015

  7. Establishment of a radial glia-like mouse fetal hypothalamic neural stem cell line (AC1) able to differentiate into neuroendocrine cells

    PubMed Central

    Cariboni, Anna; Conti, Luciano; Andrè, Valentina; Aprile, Davide; Zasso, Jacopo; Maggi, Roberto

    2014-01-01

    The present study describes the generation and the characterization of a stable cell line of neural stem cells derived from embryonic mouse hypothalamus. These cells (AC1) grow as an adherent culture in defined serum-free medium and express typical markers of neurogenic radial glia and of hypothalamic precursors. After prolonged expansion, AC1 cells may be efficiently induced to differentiate into neurons and astroglial cells in vitro and start to express some hormonal neuropeptides, like TRH, CRH, and POMC. Based on the capabilities of AC1 cells to be stably expanded and to develop neuroendocrine lineages in vitro, these cells might represent a novel tool to elucidate the mechanisms involved in the development of the hypothalamus and in the specific differentiation of neuroendocrine neurons. PMID:28255570

  8. Mouse neuroblastoma cell based model and the effect of epileptic events on calcium oscillations and neural spikes

    NASA Astrophysics Data System (ADS)

    Kim, Suhwan; Baek, Juyeong; Jung, Unsang; Lee, Sangwon; Jung, Woonggyu; Kim, Jeehyun; Kang, Shinwon

    2013-05-01

    Recently, Mouse neuroblastoma cells are considered as an attractive model for the study of human neurological and prion diseases, and intensively used as a model system in different areas. Among those areas, differentiation of neuro2a (N2A) cells, receptor mediated ion current, and glutamate induced physiological response are actively investigated. The reason for the interest to mouse neuroblastoma N2A cells is that they have a fast growing rate than other cells in neural origin with a few another advantages. This study evaluated the calcium oscillations and neural spikes recording of mouse neuroblastoma N2A cells in an epileptic condition. Based on our observation of neural spikes in mouse N2A cell with our proposed imaging modality, we report that mouse neuroblastoma N2A cells can be an important model related to epileptic activity studies. It is concluded that the mouse neuroblastoma N2A cells produce the epileptic spikes in vitro in the same way as produced by the neurons or the astrocytes. This evidence advocates the increased and strong level of neurotransmitters release by enhancement in free calcium using the 4-aminopyridine which causes the mouse neuroblastoma N2A cells to produce the epileptic spikes and calcium oscillation.

  9. Functional cross-talk between the cellular prion protein and the neural cell adhesion molecule is critical for neuronal differentiation of neural stem/precursor cells.

    PubMed

    Prodromidou, Kanella; Papastefanaki, Florentia; Sklaviadis, Theodoros; Matsas, Rebecca

    2014-06-01

    Cellular prion protein (PrP) is prominently expressed in brain, in differentiated neurons but also in neural stem/precursor cells (NPCs). The misfolding of PrP is a central event in prion diseases, yet the physiological function of PrP is insufficiently understood. Although PrP has been reported to associate with the neural cell adhesion molecule (NCAM), the consequences of concerted PrP-NCAM action in NPC physiology are unknown. Here, we generated NPCs from the subventricular zone (SVZ) of postnatal day 5 wild-type and PrP null (-/-) mice and observed that PrP is essential for proper NPC proliferation and neuronal differentiation. Moreover, we found that PrP is required for the NPC response to NCAM-induced neuronal differentiation. In the absence of PrP, NCAM not only fails to promote neuronal differentiation but also induces an accumulation of doublecortin-positive neuronal progenitors at the proliferation stage. In agreement, we noted an increase in cycling neuronal progenitors in the SVZ of PrP-/- mice compared with PrP+/+ mice, as evidenced by double labeling for the proliferation marker Ki67 and doublecortin as well as by 5-bromo-2'-deoxyuridine incorporation experiments. Additionally, fewer newly born neurons were detected in the rostral migratory stream of PrP-/- mice. Analysis of the migration of SVZ cells in microexplant cultures from wild-type and PrP-/- mice revealed no differences between genotypes or a role for NCAM in this process. Our data demonstrate that PrP plays a critical role in neuronal differentiation of NPCs and suggest that this function is, at least in part, NCAM-dependent.

  10. Glial commitment of mesencephalic neural precursor cells expanded as neurospheres precludes their engagement in niche-dependent dopaminergic neurogenesis.

    PubMed

    Baizabal, José-Manuel; Cano-Martínez, Agustina; Valencia, Concepción; Santa-Olalla, Jesús; Young, Kaylene M; Rietze, Rodney L; Bartlett, Perry F; Covarrubias, Luis

    2012-05-01

    Neural precursor cells (NPCs) with high proliferative potential are commonly expanded in vitro as neurospheres. As a population, neurosphere cells show long-term self-renewal capacity and multipotentiality in vitro. These features have led to the assumption that neurosphere cells represent an expansion of the endogenous NPCs residing within the embryonic and adult brain. If this is the case, in principle, bona-fide expansion of endogenous NPCs should not significantly affect their capacity to respond to their original niche of differentiation. To address this issue, we generated primary neurospheres from the dopaminergic niche of the ventral mesencephalon and then transplanted these cells to their original niche within mesencephalic explant cultures. Primary neurosphere cells showed poor capacity to generate dopaminergic neurons in the mesencephalic niche of dopaminergic neurogenesis. Instead, most primary neurosphere cells showed glial commitment as they differentiated into astrocytes in an exclusively neurogenic niche. Subculture of primary cells demonstrated that the neurosphere assay does not amplify niche-responsive dopaminergic progenitors. Further, neurospheres cells were largely unable to acquire the endogenous positional identity within the Nkx6.1(+), Nkx2.2(+), and Pax7(+) domains of mesencephalic explants. Finally, we demonstrate that our observations are not specific for embryonic mesencephalic cells, as NPCs in the adult subventricular zone also showed an intrinsic fate switch from neuronal to glial potential upon neurosphere amplification. Our data suggest that neurosphere formation does not expand the endogenous neurogenic NPCs but rather promotes amplification of gliogenic precursors that do not respond to niche-derived signals of cellular specification and differentiation.

  11. Rhomboid Enhancer Activity Defines a Subset of Drosophila Neural Precursors Required for Proper Feeding, Growth and Viability.

    PubMed

    Gresser, Amy L; Gutzwiller, Lisa M; Gauck, Mackenzie K; Hartenstein, Volker; Cook, Tiffany A; Gebelein, Brian

    2015-01-01

    Organismal growth regulation requires the interaction of multiple metabolic, hormonal and neuronal pathways. While the molecular basis for many of these are well characterized, less is known about the developmental origins of growth regulatory structures and the mechanisms governing control of feeding and satiety. For these reasons, new tools and approaches are needed to link the specification and maturation of discrete cell populations with their subsequent regulatory roles. In this study, we characterize a rhomboid enhancer element that selectively labels four Drosophila embryonic neural precursors. These precursors give rise to the hypopharyngeal sensory organ of the peripheral nervous system and a subset of neurons in the deutocerebral region of the embryonic central nervous system. Post embryogenesis, the rhomboid enhancer is active in a subset of cells within the larval pharyngeal epithelium. Enhancer-targeted toxin expression alters the morphology of the sense organ and results in impaired larval growth, developmental delay, defective anterior spiracle eversion and lethality. Limiting the duration of toxin expression reveals differences in the critical periods for these effects. Embryonic expression causes developmental defects and partially penetrant pre-pupal lethality. Survivors of embryonic expression, however, ultimately become viable adults. In contrast, post-embryonic toxin expression results in fully penetrant lethality. To better define the larval growth defect, we used a variety of assays to demonstrate that toxin-targeted larvae are capable of locating, ingesting and clearing food and they exhibit normal food search behaviors. Strikingly, however, following food exposure these larvae show a rapid decrease in consumption suggesting a satiety-like phenomenon that correlates with the period of impaired larval growth. Together, these data suggest a critical role for these enhancer-defined lineages in regulating feeding, growth and viability.

  12. Rhomboid Enhancer Activity Defines a Subset of Drosophila Neural Precursors Required for Proper Feeding, Growth and Viability

    PubMed Central

    Gresser, Amy L.; Gutzwiller, Lisa M.; Gauck, Mackenzie K.; Hartenstein, Volker; Cook, Tiffany A.; Gebelein, Brian

    2015-01-01

    Organismal growth regulation requires the interaction of multiple metabolic, hormonal and neuronal pathways. While the molecular basis for many of these are well characterized, less is known about the developmental origins of growth regulatory structures and the mechanisms governing control of feeding and satiety. For these reasons, new tools and approaches are needed to link the specification and maturation of discrete cell populations with their subsequent regulatory roles. In this study, we characterize a rhomboid enhancer element that selectively labels four Drosophila embryonic neural precursors. These precursors give rise to the hypopharyngeal sensory organ of the peripheral nervous system and a subset of neurons in the deutocerebral region of the embryonic central nervous system. Post embryogenesis, the rhomboid enhancer is active in a subset of cells within the larval pharyngeal epithelium. Enhancer-targeted toxin expression alters the morphology of the sense organ and results in impaired larval growth, developmental delay, defective anterior spiracle eversion and lethality. Limiting the duration of toxin expression reveals differences in the critical periods for these effects. Embryonic expression causes developmental defects and partially penetrant pre-pupal lethality. Survivors of embryonic expression, however, ultimately become viable adults. In contrast, post-embryonic toxin expression results in fully penetrant lethality. To better define the larval growth defect, we used a variety of assays to demonstrate that toxin-targeted larvae are capable of locating, ingesting and clearing food and they exhibit normal food search behaviors. Strikingly, however, following food exposure these larvae show a rapid decrease in consumption suggesting a satiety-like phenomenon that correlates with the period of impaired larval growth. Together, these data suggest a critical role for these enhancer-defined lineages in regulating feeding, growth and viability. PMID

  13. Synthesis and properties of an EGF-like domain (residues 361-406) in the extreme N-terminal region of the mouse EGF precursor.

    PubMed

    Diaugustine, R P; Henry, R; Sewall, C H; Suarez-Quian, C A; Walker, M P

    1999-01-01

    Various proteins contain EGF-like domains that are not ligands for the EGF receptor. In the present study a cognate polypeptide for residues 361-406 of the mouse EGF precursor was synthesized by the solid-phase method. The product was renatured under oxidative conditions since it probably has an EGF-like array of three cystine disulfide bonds in its native state. HPLC analysis of the renaturation reaction revealed formation of a peak material with no apparent free-SH groups. Accordingly, the HPLC retention time of this product was readily increased by treatment (reduction of disulfides) with dithiothreitol. The renatured 46-mer (PEGF-1) did not displace 125I-EGF bound to rat liver membranes and 125I-PEGF-1 did not exhibit specific binding to membrane preparations from the mouse liver, mammary gland, or kidney, with or without Ca2+ in the binding medium. Although PEGF-1 contains a putative Ca2+ binding motif, specific binding of this cation by the polypeptide could not be demonstrated by electromobility shiff or incubation with 45Ca2+. Immunoassay of PEGF-1 and EGF in fractions obtained following gel filtration of mouse urine revealed multiple peaks of PEGF-1 immunoreactivity with the major peaks eluting at an Mr > 30 kDa. In contrast, virtually all the EGF immunoreactivity eluted at a volume similar to that of 125I-EGF. These data suggest that selective cleavage of the PEGF-1 domain from the precursor does not occur with the proclivity known for that of EGF. Instead, the PEGF-1 probably functions coordinately with other EGF-like domains while tethered to the precursor backbone. Finally, localization of PEGF-1 immunoreactivity occurred only in cell populations of the mouse previously demonstrated as sites for EGF/EGF precursor, which suggests that PEGF-1 is exclusively a domain of the EGF precursor.

  14. Nanofiber Matrices Promote the Neuronal Differentiation of Human Embryonic Stem Cell-Derived Neural Precursors In Vitro

    PubMed Central

    Lim, Shawn H.; Christopherson, Gregory T.; Xu, Leyan; Nasonkin, Igor; Yu, Christopher; Mao, Hai-Quan; Koliatsos, Vassilis E.

    2011-01-01

    The potential of human embryonic stem (ES) cells as experimental therapies for neuronal replacement has recently received considerable attention. In view of the organization of the mature nervous system into distinct neural circuits, key challenges of such therapies are the directed differentiation of human ES cell-derived neural precursors (NPs) into specific neuronal types and the directional growth of axons along specified trajectories. In the present study, we cultured human NPs derived from the NIH-approved ES line BGO1 on polycaprolactone fiber matrices of different diameter (i.e., nanofibers and microfibers) and orientation (i.e., aligned and random); fibers were coated with poly-L-ornithine/laminin to mimic the extracellular matrix and support the adhesion, viability, and differentiation of NPs. On aligned fibrous meshes, human NPs adopt polarized cell morphology with processes extending along the axis of the fiber, whereas NPs on plain tissue culture surfaces or random fiber substrates form nonpolarized neurite networks. Under differentiation conditions, human NPs cultured on aligned fibrous substrates show a higher rate of neuronal differentiation than other matrices; 62% and 86% of NPs become TUJ1 (+) early neurons on aligned micro- and nanofibers, respectively, whereas only 32% and 27% of NPs acquire the same fate on random micro- and nanofibers. Metabolic cell activity/viability studies reveal that fiber alignment and diameter also have an effect on NP viability, but only in the presence of mitogens. Our findings demonstrate that fibrous substrates serve as an artificial extracellular matrix and provide a microenviroment that influences key aspects of the neuronal differentiation of ES-derived NPs. PMID:20973749

  15. METHYLMERCURY INDUCED TOXICOGENOMIC RESPONSE IN C57 AND SWV MOUSE EMBRYOS UNDERGOING NEURAL TUBE CLOSURE

    PubMed Central

    Robinson, Joshua F.; Griffith, William C.; Yu, Xiaozhong; Hong, Sungwoo; Kim, Euvin; Faustman, Elaine M.

    2010-01-01

    Methylmercury (MeHg) is a developmental neurotoxicant and teratogen and is hypothesized to perturb a wide range of biological processes, like other metals including arsenic (As) and cadmium (Cd). Common inbred mouse strains including C57 (sensitive) and SWV (resistant) display differences in sensitivity to metals such as As and Cd when exposed during neurulation. In this study, we investigated the impact of MeHg on neurulation, assessing for potential differences in sensitivity and associated toxicogenomic response in C57 and SWV mouse embryos. Parallel with morphological assessments of neural tube closure, we evaluated quantitative differences in MeHg-induced alterations in expression between strains at the gene level and within gene-enriched biological processes. Specifically, we observed differing sensitivities to MeHg-induced impacts on neural tube closure between C57 and SWV embryos in a time-dependent manner. These observations correlated with greater impact on the expression of genes associated with development and environmental stress-related pathways in the C57 compared to the SWV. Additional developmental parameters (e.g. mortality, growth effects) evaluated showed mixed significant effects across the two strains and did not support observations of differential sensitivity to MeHg. This study provides potential insights into MeHg-induced mechanisms of developmental toxicity, alterations associated with increased MeHg sensitivity and common biological processes affected by metals in embryos undergoing neurulation. PMID:20493249

  16. Humanized neuronal chimeric mouse brain generated by neonatally engrafted human iPSC-derived primitive neural progenitor cells

    PubMed Central

    Chen, Chen

    2016-01-01

    The creation of a humanized chimeric mouse nervous system permits the study of human neural development and disease pathogenesis using human cells in vivo. Humanized glial chimeric mice with the brain and spinal cord being colonized by human glial cells have been successfully generated. However, generation of humanized chimeric mouse brains repopulated by human neurons to possess a high degree of chimerism have not been well studied. Here we created humanized neuronal chimeric mouse brains by neonatally engrafting the distinct and highly neurogenic human induced pluripotent stem cell (hiPSC)–derived rosette-type primitive neural progenitors. These neural progenitors predominantly differentiate to neurons, which disperse widely throughout the mouse brain with infiltration of the cerebral cortex and hippocampus at 6 and 13 months after transplantation. Building upon the hiPSC technology, we propose that this potentially unique humanized neuronal chimeric mouse model will provide profound opportunities to define the structure, function, and plasticity of neural networks containing human neurons derived from a broad variety of neurological disorders. PMID:27882348

  17. The noradrenaline precursor L-DOPS reduces pathology in a mouse model of Alzheimer’s disease

    PubMed Central

    Kalinin, Sergey; Polak, Paul E.; Lin, Shao Xia; Sakharkar, Amul J.; Pandey, Subhash C.; Feinstein, Douglas L.

    2013-01-01

    Damage to noradrenergic neurons in the locus coeruleus (LC) is a hallmark of Alzheimer’s disease (AD) and may contribute to disease progression. In 5xFAD transgenic mice, which accumulate amyloid burden at early ages, the LC undergoes stress as evidenced by increased astrocyte activation, neuronal hypertrophy, reduced levels of LC-enriched messenger RNAs (mRNAs), and increased inflammatory gene expression. Central nervous system (CNS) noradrenaline (NA) levels in 5-month-old male 5xFAD mice were increased using the NA precursor L-threo-3,4-dihydroxyphenylserine (L-DOPS). After 1 month, L-DOPS treatment improved learning in the Morris water maze test compared with vehicle-treated mice. L-DOPS increased CNS NA levels, and average latency times in the water maze test were inversely correlated to NA levels. L-DOPS reduced astrocyte activation and Thioflavin-S staining; increased mRNA levels of neprilysin and insulin degrading enzyme, and of several neurotrophins; and increased brain-derived neurotrophic factor protein levels. These data demonstrate the presence of LC stress in a robust mouse model of AD, and suggest that raising CNS NA levels could provide benefit in AD. PMID:21705113

  18. Transcranial laser therapy alters amyloid precursor protein processing and improves mitochondrial function in a mouse model of Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    McCarthy, Thomas; Yu, Jin; El-Amouri, Salim; Gattoni-Celli, Sebastiano; Richieri, Steve; De Taboada, Luis; Streeter, Jackson; Kindy, Mark S.

    2011-03-01

    Transcranial laser therapy (TLT) using a near-infrared energy laser system was tested in the 2x Tg amyloid precursor protein (APP) mouse model of Alzheimer's Disease (AD). TLT was administered 3 times/week at escalating doses, starting at 3 months of age, and was compared to a control group which received no laser treatment. Treatment sessions were continued for a total of six months. The brains were examined for amyloid plaque burden, Aβ peptides (Aβ1-40 and Aβ1-42 ), APP cleavage products (sAPPα, CTFβ) and mitochondrial activity. Administration of TLT was associated with a significant, dose-dependent reduction in amyloid load as indicated by the numbers of Aβ plaques. Levels of Aβ1-40 and Aβ1-42 levels were likewise reduced in a dose-dependent fashion. All TLT doses produced an increase in brain sAPPα and a decrease in CTFβ levels consistent with an increase in α-secretase activity and a decrease in β-secretase activity. In addition, TLT increased ATP levels and oxygen utilization in treated animals suggesting improved mitochondrial function. These studies suggest that TLT is a potential candidate for treatment of AD.

  19. Tumour necrosis factor-alpha impairs neuronal differentiation but not proliferation of hippocampal neural precursor cells: Role of Hes1.

    PubMed

    Keohane, Aoife; Ryan, Sinead; Maloney, Eimer; Sullivan, Aideen M; Nolan, Yvonne M

    2010-01-01

    Tumour necrosis factor-alpha (TNFalpha) is a pro-inflammatory cytokine, which influences neuronal survival and function yet there is limited information available on its effects on hippocampal neural precursor cells (NPCs). We show that TNFalpha treatment during proliferation had no effect on the percentage of proliferating cells prepared from embryonic rat hippocampal neurosphere cultures, nor did it affect cell fate towards either an astrocytic or neuronal lineage when cells were then allowed to differentiate. However, when cells were differentiated in the presence of TNFalpha, significantly reduced percentages of newly born and post-mitotic neurons, significantly increased percentages of astrocytes and increased expression of TNFalpha receptors, TNF-R1 and TNF-R2, as well as expression of the anti-neurogenic Hes1 gene, were observed. These data indicate that exposure of hippocampal NPCs to TNFalpha when they are undergoing differentiation but not proliferation has a detrimental effect on their neuronal lineage fate, which may be mediated through increased expression of Hes1.

  20. Functional effects of cannabinoids during dopaminergic specification of human neural precursors derived from induced pluripotent stem cells.

    PubMed

    Stanslowsky, Nancy; Jahn, Kirsten; Venneri, Anna; Naujock, Maximilian; Haase, Alexandra; Martin, Ulrich; Frieling, Helge; Wegner, Florian

    2016-03-30

    Among adolescents cannabis is one of the most widely used illicit drugs. In adolescence brain development continues, characterized by neuronal maturation and synaptic plasticity. The endocannabinoid system plays an important role during brain development by modulating neuronal function and neurogenesis. Changes in endocannabinoid signaling by Δ(9) -tetrahydrocannabinol (THC), the psychoactive component of cannabis, might therefore lead to neurobiological changes influencing brain function and behavior. We investigated the functional maturation and dopaminergic specification of human cord blood-derived induced pluripotent stem cell (hCBiPSC)-derived small molecule neural precursor cells (smNPCs) after cultivation with the endogenous cannabinoid anandamide (AEA) and the exogenous THC, both potent agonists at the cannabinoid 1 receptor (CB1 R). Higher dosages of 10-μM AEA or THC significantly decreased functionality of neurons, indicated by reduced ion currents and synaptic activity. A lower concentration of 1-μM THC had no marked effect on neuronal and dopaminergic maturation, while 1-μM AEA significantly enhanced the frequency of synaptic activity. As there were no significant effects on DNA methylation in promotor regions of genes important for neuronal function, these cannabinoid actions seem to be mediated by another than this epigenetic mechanism. Our data suggest that there are concentration-dependent actions of cannabinoids on neuronal function in vitro indicating neurotoxic, dysfunctional effects of 10-μM AEA and THC during human neurogenesis.

  1. Pro-gliogenic effect of IL-1alpha in the differentiation of embryonic neural precursor cells in vitro.

    PubMed

    Ajmone-Cat, Maria Antonietta; Cacci, Emanuele; Ragazzoni, Ylenia; Minghetti, Luisa; Biagioni, Stefano

    2010-05-01

    Inflammation is regarded as a main obstacle to brain regeneration. Major detrimental effects are attributed to microglial/macrophagic products, such as TNF-alpha and interleukin (IL)-6. The role of cytokines of the IL-1 family, particularly of IL-1alpha, in the modulation of neural precursor cell (NPC) properties is less characterized. IL-1alpha is one of the most abundant cytokines released upon acute stimulation of microglia with lipopolysaccharide and is down-regulated upon chronic stimulation. As we recently demonstrated, acutely activated microglia reduces NPC survival, prevent neuronal differentiation and promote glial differentiation. Chronically activated microglia are instead permissive to NPC survival and neuronal differentiation, and less effective in promoting astrocytic differentiation. We thus investigated whether IL-1alpha could contribute to the effects of acutely activated microglia on NPC. We found that NPC express functional IL-1 receptors and that exposure to recombinant IL-1alpha strongly enhances NPC differentiation into astrocytes, without affecting cell viability and neuronal differentiation. In the same conditions, recombinant IL-1beta has pro-gliogenic effects at concentrations 10-fold higher than those found in activated microglial conditioned media. Interestingly, immunodepletion of IL-1alpha in activated microglial conditioned media fails to revert microglial pro-gliogenic action and slightly enhances neuronal differentiation, revealing that other microglial-derived factors contribute to the modulation of NPC properties.

  2. Neuroprotective effect of buyang huanwu decoction on rat ischemic/reperfusion brain damage by promoting migration of neural precursor cells.

    PubMed

    Kong, Xiangying; Su, Xiaohui; Zhu, Jia; Wang, Jianzhu; Wan, Hongye; Zhong, Micun; Li, Li; Lin, Na

    2014-06-01

    Buyang Huanwu Decoction (BYHWD) is a classic formula widely used for treating stroke-induced disability, the highest morbidity of neurological disorders in China. However, the mechanism of its neuroprotection has not been fully clarified. Previous reports indicated that BYHWD may promote growth and differentiation of neural precursor cells (NPCs). The present study focused on the effects of BYHWD on migration of NPCs in rats with middle cerebral artery occlusion (MCAO). Rats were treated with different doses of BYHWD (12 and 24 grams/kg) from day 1 to day 21 after model building. BYHWD could increase the survival rate and decrease neurological scores and infarct volume as compared with the vehicle-treated MCAO rats. Moreover, BYHWD treatment significantly increased 5-bromo-2-deoxyuridine (BrdU)-positive cells in the subventricular zone (SVZ), subgranular zone (SGZ), and corpus striatum (CS) of the infarct brain. Interestingly, BYHWD could markedly enhance BrdU(+)/doublecortin(+) cells not only in the SVZ and SGZ but also in CS, by up-regulating the protein expression of migration activators, including stromal cell derived factor-1, CXC chemokine receptor 4, vascular endothelial growth factor, Reelin, and brain-derived neurotrophic factor in the ipsilateral infarct area after MCAO. In addition, BYHWD treatment was able to promote the neuronal differentiation, which was closely related to the migratory process of NPCs in MCAO rats. These findings offer evidence for the first time that BYHWD may exert its neuroprotective effects partially by promotion of NPCs migration to ischemic brain areas.

  3. Epac2 contributes to PACAP-induced astrocytic differentiation through calcium ion influx in neural precursor cells

    PubMed Central

    Seo, Hyunhyo; Lee, Kyungmin

    2016-01-01

    Astrocytes play a critical role in normal brain functions and maintaining the brain microenvironment, and defects in astrocytogenesis during neurodevelopment could give rise to severe mental illness and psychiatric disorders. During neuro-embryogenesis, astrocytogenesis involves astrocytic differentiation of neural precursor cells (NPCs) induced by signals from ciliary neurotrophic factor (CNTF) or pituitary adenylate cyclase-activating peptide (PACAP). However, in contrast to the CNTF signaling pathway, the exact mechanism underlying astrocytic differentiation induced by PACAP is unknown. In the present study, we aimed to verify a signaling pathway specific to PACAP-induced astrocytogenesis, using exchange protein directly activated by cAMP2 (Epac2)-knockout mice. We found that PACAP could trigger astrocytic differentiation of NPCs via Epac2 activation and an increase in the intracellular calcium concentration via a calcium ion influx. Taken together, we concluded that astrocytogenesis stimulated by PACAP occurs through a novel signaling pathway independent from CNTF-JAK/STAT signaling, that is the well-known pathway of astrocytogenesis. [BMB Reports 2016; 49(2): 128-133] PMID:26645637

  4. Decreased demand for olfactory periglomerular cells impacts on neural precursor cell viability in the rostral migratory stream

    PubMed Central

    Langenfurth, Anika; Gu, Song; Bautze, Verena; Zhang, Caiyi; Neumann, Julia E.; Schüller, Ulrich; Stock, Kristin; Wolf, Susanne A.; Maier, Anna-Maria; Mastrella, Giorgia; Pak, Andrew; Cheng, Hongwei; Kälin, Roland E.; Holmbeck, Kenn; Strotmann, Jörg; Kettenmann, Helmut; Glass, Rainer

    2016-01-01

    The subventricular zone (SVZ) provides a constant supply of new neurons to the olfactory bulb (OB). Different studies have investigated the role of olfactory sensory input to neural precursor cell (NPC) turnover in the SVZ but it was not addressed if a reduced demand specifically for periglomerular neurons impacts on NPC-traits in the rostral migratory stream (RMS). We here report that membrane type-1 matrix metalloproteinase (MT1-MMP) deficient mice have reduced complexity of the nasal turbinates, decreased sensory innervation of the OB, reduced numbers of olfactory glomeruli and reduced OB-size without alterations in SVZ neurogenesis. Large parts of the RMS were fully preserved in MT1-MMP-deficient mice, but we detected an increase in cell death-levels and a decrease in SVZ-derived neuroblasts in the distal RMS, as compared to controls. BrdU-tracking experiments showed that homing of NPCs specifically to the glomerular layer was reduced in MT1-MMP-deficient mice in contrast to controls while numbers of tracked cells remained equal in other OB-layers throughout all experimental groups. Altogether, our data show the demand for olfactory interneurons in the glomerular layer modulates cell turnover in the RMS, but has no impact on subventricular neurogenesis. PMID:27573347

  5. Gallium nitride induces neuronal differentiation markers in neural stem/precursor cells derived from rat cerebral cortex.

    PubMed

    Chen, Chi-Ruei; Li, Yi-Chen; Young, Tai-Horng

    2009-09-01

    In the present study, gallium nitride (GaN) was used as a substrate to culture neural stem/precursor cells (NSPCs), isolated from embryonic rat cerebral cortex, to examine the effect of GaN on the behavior of NSPCs in the presence of basic fibroblast growth factor (bFGF) in serum-free medium. Morphological studies showed that neurospheres maintained their initial shape and formed many long and thick processes with the fasciculate feature on GaN. Immunocytochemical characterization showed that GaN could induce the differentiation of NSPCs into neurons and astrocytes. Compared to poly-d-lysine (PDL), the most common substrate used for culturing neurons, there was considerable expression of synapsin I for differentiated neurons on GaN, suggesting GaN could induce the differentiation of NSPCs towards the mature differentiated neurons. Western blot analysis showed that the suppression of glycogen synthase kinase-3beta (GSK-3beta) activity was one of the effects of GaN-promoted NSPC differentiation into neurons. Finally, compared to PDL, GaN could significantly improve cell survival to reduce cell death after long-term culture. These results suggest that GaN potentially has a combination of electric characteristics suitable for developing neuron and/or NSPC chip systems.

  6. The effect of interferon-{beta} on mouse neural progenitor cell survival and differentiation

    SciTech Connect

    Hirsch, Marek; Knight, Julia; Tobita, Mari; Soltys, John; Panitch, Hillel; Mao-Draayer, Yang

    2009-10-16

    Interferon-{beta} (IFN-{beta}) is a mainstay therapy for relapse-remitting multiple sclerosis (MS). However, the direct effects of IFN-{beta} on the central nervous system (CNS) are not well understood. To determine whether IFN-{beta} has direct neuroprotective effects on CNS cells, we treated adult mouse neural progenitor cells (NPCs) in vitro with IFN-{beta} and examined the effects on proliferation, apoptosis, and differentiation. We found that mouse NPCs express high levels of IFN{alpha}/{beta} receptor (IFNAR). In response to IFN-{beta} treatment, no effect was observed on differentiation or proliferation. However, IFN-{beta} treated mouse NPCs demonstrated decreased apoptosis upon growth factor withdrawal. Pathway-specific polymerase chain reaction (PCR) arrays demonstrated that IFN-{beta} treatment upregulated the STAT 1 and 2 signaling pathway, as well as GFRA2, NOD1, Caspases 1 and 12, and TNFSF10. These results suggest that IFN-{beta} can directly affect NPC survival, possibly playing a neuroprotective role in the CNS by modulating neurotrophic factors.

  7. Conotruncal anomalies in the trisomy 16 mouse: an immunohistochemical analysis with emphasis on the involvement of the neural crest.

    PubMed

    Waller, B R; McQuinn, T; Phelps, A L; Markwald, R R; Lo, C W; Thompson, R P; Wessels, A

    2000-11-01

    The trisomy 16 (Ts16) mouse is generally considered a model for human Down's syndrome (trisomy 21). However, many of the cardiac defects in the Ts16 mouse do not reflect the heart malformations seen in patients suffering from this chromosomal disorder. In this study we describe the conotruncal malformations in mice with trisomy 16. The development of the outflow tract was immunohistochemically studied in serially sectioned hearts from 34 normal and 26 Ts16 mouse embryos ranging from 8.5 to 14.5 embryonic days. Conotruncal malformations observed in the Ts 16 embryos included double outlet right ventricle, persistent truncus arteriosus, Tetralogy of Fallot, and right-sided aortic arch. This spectrum of malformations is remarkably similar to that seen in humans suffering from DiGeorge syndrome (DGS). As perturbation of neural crest development has been proposed in the pathogenesis of DGS we specifically focussed on the fate of neural crest derived cells during outflow tract development of the Ts16 mouse using an antibody that enabled us to trace these cells during development. Severe perturbation of the neural crest-derived cell population was observed in each trisomic specimen. The abnormalities pertained to: 1) the size of the columns of neural crest-derived cells (or prongs); 2) the spatial orientation of these prongs within the mesenchymal tissues of the outflow tract; and 3) the location in which the neural crest cells interact with the myocardium. The latter abnormality appeared to be responsible for ectopic myocardialization found in trisomic embryos. Our observations strongly suggest that abnormal neural crest cell behavior is involved in the pathogenesis of the conotruncal malformations in the Ts16 mouse.

  8. 2,3,7,8-Tetracholorodibenzo-p-dioxin exposure disrupts granule neuron precursor maturation in the developing mouse cerebellum.

    PubMed

    Collins, Loretta L; Williamson, Mary A; Thompson, Bryan D; Dever, Daniel P; Gasiewicz, Thomas A; Opanashuk, Lisa A

    2008-05-01

    The widespread environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) has been linked to developmental neurotoxicity associated with abnormal cerebellar maturation in both humans and rodents. TCDD mediates toxicity via binding to the aryl hydrocarbon receptor (AhR), a transcription factor that regulates the expression of xenobiotic metabolizing enzymes and growth regulatory molecules. Our previous studies demonstrated that cerebellar granule neuron precursor cells (GNPs) express transcriptionally active AhR during critical developmental periods. TCDD exposure also impaired GNP proliferation and survival in vitro. Therefore, this study tested the hypothesis that TCDD exposure disrupts cerebellar development by interfering with GNP differentiation. In vivo experiments indicated that TCDD exposure on postnatal day (PND) 6 resulted in increased expression of a mitotic marker and increased thickness of the external granule layer (EGL) on PND10. Expression of the early differentiation marker TAG-1 was also more pronounced in postmitotic, premigratory granule neurons of the EGL, and increased apoptosis of GNPs was observed. On PND21, expression of the late GNP differentiation marker GABA(A alpha 6) receptor (GABAR(A alpha 6)) and total estimated cell numbers were both reduced following exposure on PND6. Studies in unexposed adult AhR(-/-) mice revealed lower GABAR(A alpha 6) levels and DNA content. In vitro studies showed elevated expression of the early differentiation marker p27/Kip1 and the GABAR(A alpha 6) in GNPs following TCDD exposure, and the expression patterns of proteins related to granule cell neurite outgrowth, beta III-tubulin and polysialic acid neural cell adhesion molecule, were consistent with enhanced neuroblast differentiation. Together, our data suggest that TCDD disrupts a normal physiological role of AhR, resulting in compromised GNP maturation and neuroblast survival, which impacts final cell number in the cerebellum.

  9. Mouse neuroblastoma cell-based model and the effect of epileptic events on calcium oscillations and neural spikes

    NASA Astrophysics Data System (ADS)

    Kim, Suhwan; Jung, Unsang; Baek, Juyoung; Lee, Sangwon; Jung, Woonggyu; Kim, Jeehyun; Kang, Shinwon

    2013-01-01

    Recently, mouse neuroblastoma cells have been considered as an attractive model for the study of human neurological and prion diseases, and they have been intensively used as a model system in different areas. For example, the differentiation of neuro2a (N2A) cells, receptor-mediated ion current, and glutamate-induced physiological responses have been actively investigated with these cells. These mouse neuroblastoma N2A cells are of interest because they grow faster than other cells of neural origin and have a number of other advantages. The calcium oscillations and neural spikes of mouse neuroblastoma N2A cells in epileptic conditions are evaluated. Based on our observations of neural spikes in these cells with our proposed imaging modality, we reported that they can be an important model in epileptic activity studies. We concluded that mouse neuroblastoma N2A cells produce epileptic spikes in vitro in the same way as those produced by neurons or astrocytes. This evidence suggests that increased levels of neurotransmitter release due to the enhancement of free calcium from 4-aminopyridine causes the mouse neuroblastoma N2A cells to produce epileptic spikes and calcium oscillations.

  10. Comparison of the Transcriptomes of Mouse Skin Derived Precursors (SKPs) and SKP-Derived Fibroblasts (SFBs) by RNA-Seq

    PubMed Central

    Mao, Yujie; Xiong, Lidan; Wang, Siyu; Zhong, Jianqiao; Zhou, Rongying; Li, Li

    2015-01-01

    Skin-derived precursors (SKPs) from dermis possess the capacities of self-renewal and multipotency. In vitro and in vivo studies demonstrated that they can differentiate into fibroblasts. However, little is known about the molecular mechanism of the differentiation of SKPs into fibroblasts. Here we compare the transcriptomes of mouse SKPs and SKP-derived fibroblasts (SFBs) by RNA-Seq analysis, trying to find differences in gene expression between the two kinds of cells and then elucidate the candidate genes that may play important roles in the differentiation of SKPs into fibroblasts. A total of 1971 differentially expressed genes (DEGs) were identified by RNA-Seq, which provided abundant data for further analysis. Gene Ontology enrichment analysis revealed that genes related to cell differentiation, cell proliferation, protein binding, transporter activity and membrane were significantly enriched. The most significantly up-regulated genes Wnt4, Wisp2 and Tsp-1 and down-regulated genes Slitrk1, Klk6, Agtr2, Ivl, Msx1, IL15, Atp6v0d2, Kcne1l and Thbs4 may play important roles in the differentiation of SKPs into fibroblasts. KEGG analysis showed that DEGs were significantly enriched in the TGF-β signaling pathway, Wnt signaling pathway and Notch signaling pathway, which have been previously proven to regulate the differentiation and self-renewal of various stem cells. These identified DEGs and pathways could facilitate further investigations of the detailed molecular mechanisms, making it possible to take advantage of the potential therapeutic applications of SKPs in skin regeneration in the future. PMID:25719759

  11. Induction of neural stem cell-like cells (NSCLCs) from mouse astrocytes by Bmi1

    SciTech Connect

    Moon, Jai-Hee; Yoon, Byung Sun; Kim, Bona; Park, Gyuman; Jung, Hye-Youn; Maeng, Isaac; Jun, Eun Kyoung; Yoo, Seung Jun; Kim, Aeree; Oh, Sejong; Whang, Kwang Youn; Kim, Hyunggee; Kim, Dong-Wook; Kim, Ki Dong; You, Seungkwon

    2008-06-27

    Recently, Bmi1 was shown to control the proliferation and self-renewal of neural stem cells (NSCs). In this study, we demonstrated the induction of NSC-like cells (NSCLCs) from mouse astrocytes by Bmi1 under NSC culture conditions. These NSCLCs exhibited the morphology and growth properties of NSCs, and expressed NSC marker genes, including nestin, CD133, and Sox2. In vitro differentiation of NSCLCs resulted in differentiated cell populations containing astrocytes, neurons, and oligodendrocytes. Following treatment with histone deacetylase inhibitors (trichostatin A and valproic acid), the potential of NSCLCs for proliferation, dedifferentiation, and self-renewal was significantly inhibited. Our data indicate that multipotent NSCLCs can be generated directly from astrocytes by the addition of Bmi1.

  12. Landscape of monoallelic DNA accessibility in mouse embryonic stem cells and neural progenitor cells

    PubMed Central

    Xu, Jin; Carter, Ava C; Gendrel, Anne-Valerie; Attia, Mikael; Loftus, Joshua; Greenleaf, William J; Tibshirani, Robert; Heard, Edith; Chang, Howard Y

    2017-01-01

    We developed an allele-specific assay for transposase-accessible chromatin with high-throughput sequencing (ATAC–seq) to genotype and profile active regulatory DNA across the genome. Using a mouse hybrid F1 system, we found that monoallelic DNA accessibility across autosomes was pervasive, developmentally programmed and composed of several patterns. Genetically determined accessibility was enriched at distal enhancers, but random monoallelically accessible (RAMA) elements were enriched at promoters and may act as gatekeepers of monoallelic mRNA expression. Allelic choice at RAMA elements was stable across cell generations and bookmarked through mitosis. RAMA elements in neural progenitor cells were biallelically accessible in embryonic stem cells but premarked with bivalent histone modifications; one allele was silenced during differentiation. Quantitative analysis indicated that allelic choice at the majority of RAMA elements is consistent with a stochastic process; however, up to 30% of RAMA elements may deviate from the expected pattern, suggesting a regulated or counting mechanism. PMID:28112738

  13. Synergetic Use of Neural Precursor Cells and Self-assembling Peptides in Experimental Cervical Spinal Cord Injury

    PubMed Central

    Zweckberger, Klaus; Liu, Yang; Wang, Jian; Forgione, Nicole; Fehlings, Michael G.

    2015-01-01

    Spinal cord injuries (SCI) cause serious neurological impairment and psychological, economic, and social consequences for patients and their families. Clinically, more than 50% of SCI affect the cervical spine1. As a consequence of the primary injury, a cascade of secondary mechanisms including inflammation, apoptosis, and demyelination occur finally leading to tissue scarring and development of intramedullary cavities2,3. Both represent physical and chemical barriers to cell transplantation, integration, and regeneration. Therefore, shaping the inhibitory environment and bridging cavities to create a supportive milieu for cell transplantation and regeneration is a promising therapeutic target4. Here, a contusion/compression model of cervical SCI using an aneurysm clip is described. This model is more clinically relevant than other experimental models, since complete transection or ruptures of the cord are rare. Also in comparison to the weight drop model, which in particular damage the dorsum columns, circumferential compression of the spinal cord appears advantageous. Clip closing force and duration can be adjusted to achieve different injury severity. A ring spring facilitates precise calibration and constancy of clip force. Under physiological conditions, synthetic self-assembling peptides (SAP) self-assemble into nanofibers and thus, are appealing for application in SCI5. They can be injected directly into the lesion minimizing damage to the cord. SAPs are biocompatible structures erecting scaffolds to bridge intramedullary cavities and thus, equip the damaged cord for regenerative treatments. K2(QL)6K2 (QL6) is a novel SAP introduced by Dong et al.6 In comparison to other peptides, QL6 self-assembles into β-sheets at neutral pH6.14 days after SCI, after the acute stage, SAPs are injected into the center of the lesion and neural precursor cells (NPC) are injected into adjacent dorsal columns. In order to support cell survival, transplantation is combined with

  14. Hedgehog-mediated regulation of PPARγ controls metabolic patterns in neural precursors and shh-driven medulloblastoma.

    PubMed

    Bhatia, Bobby; Potts, Chad R; Guldal, Cemile; Choi, SunPhil; Korshunov, Andrey; Pfister, Stefan; Kenney, Anna M; Nahlé, Zaher A

    2012-04-01

    Sonic hedgehog (Shh) signaling is critical during development and its aberration is common across the spectrum of human malignancies. In the cerebellum, excessive activity of the Shh signaling pathway is associated with the devastating pediatric brain tumor medulloblastoma. We previously demonstrated that exaggerated de novo lipid synthesis is a hallmark of Shh-driven medulloblastoma and that hedgehog signaling inactivates the Rb/E2F tumor suppressor complex to promote lipogenesis. Indeed, such Shh-mediated metabolic reprogramming fuels tumor progression, in an E2F1- and FASN-dependent manner. Here, we show that the nutrient sensor PPARγ is a key component of the Shh metabolic network, particularly its regulation of glycolysis. Our data show that in primary cerebellar granule neural precursors (CGNPs), proposed medulloblastoma cells-of-origin, Shh stimulation elicits a marked induction of PPARγ alongside major glycolytic markers. This is also documented in the actively proliferating Shh-responsive CGNPs in the developing cerebellum, and PPARγ expression is strikingly elevated in Shh-driven medulloblastoma in vivo. Importantly, pharmacological blockade of PPARγ and/or Rb inactivation inhibits CGNP proliferation, drives medulloblastoma cell death and extends survival of medulloblastoma-bearing animals in vivo. This coupling of mitogenic Shh signaling to a major nutrient sensor and metabolic transcriptional regulator define a novel mechanism through which Shh signaling engages the nutrient sensing machinery in brain cancer, controls the cell cycle, and regulates the glycolytic index. This also reveals a dominant role of Shh in the etiology of glucose metabolism in medulloblastoma and underscores the function of the Shh → E2F1 → PPARγ axis in altering substrate utilization patterns in brain cancers in favor of tumor growth. These findings emphasize the value of PPARγ downstream of Shh as a global therapeutic target in hedgehog-dependent and/or Rb

  15. Neural cell adhesion molecule-mediated Fyn activation promotes GABAergic synapse maturation in postnatal mouse cortex.

    PubMed

    Chattopadhyaya, Bidisha; Baho, Elie; Huang, Z Josh; Schachner, Melitta; Di Cristo, Graziella

    2013-04-03

    GABAergic basket interneurons form perisomatic synapses, which are essential for regulating neural networks, and their alterations are linked to various cognitive dysfunction. Maturation of basket synapses in postnatal cortex is activity dependent. In particular, activity-dependent downregulation of polysialiac acid carried by the neural cell adhesion molecule (NCAM) regulates the timing of their maturation. Whether and how NCAM per se affects GABAergic synapse development is unknown. Using single-cell genetics to knock out NCAM in individual basket interneurons in mouse cortical slice cultures, at specific developmental time periods, we found that NCAM loss during perisomatic synapse formation impairs the process of basket cell axonal branching and bouton formation. However, loss of NCAM once the synapses are already formed did not show any effect. We further show that NCAM120 and NCAM140, but not the NCAM180 isoform, rescue the phenotype. Finally, we demonstrate that a dominant-negative form of Fyn kinase mimics, whereas a constitutively active form of Fyn kinase rescues, the effects of NCAM knockdown. Altogether, our data suggest that NCAM120/NCAM140-mediated Fyn activation promotes GABAergic synapse maturation in postnatal cortex.

  16. Effects of heat shock on survival, proliferation and differentiation of mouse neural stem cells.

    PubMed

    Omori, Hiroyuki; Otsu, Masahiro; Suzuki, Asami; Nakayama, Takashi; Akama, Kuniko; Watanabe, Masaru; Inoue, Nobuo

    2014-02-01

    Hyperthermia during pregnancy is a significant cause of reproductive problems ranging from abortion to congenital defects of the central nervous system (CNS), including neural tube defects and microcephaly. Neural stem cells (NSCs) can proliferate and differentiate into neurons and glia, playing a key role in the formation of the CNS. Here, we examined the effects of heat shock on homogeneous proliferating NSCs derived from mouse embryonic stem cells. After heat shock at 42 °C for 20 min, the proliferating NSCs continued to proliferate, although subtle changes were observed in gene expression and cell survival and proliferation. In contrast, heat shock at 43 °C caused a variety of responses: the up-regulation of genes encoding heat shock proteins (HSP), induction of apoptosis, temporal inhibition of cell proliferation and retardation of differentiation. Finally, effects of heat shock at 44 °C were severe, with almost all cells disappearing and the remaining cells losing the capacity to proliferate and differentiate. These temperature-dependent effects of heat shock on NSCs may be valuable in elucidating the mechanisms by which hyperthermia during pregnancy causes various reproductive problems.

  17. Differentiation Induction of Mouse Neural Stem Cells in Hydrogel Tubular Microenvironments with Controlled Tube Dimensions.

    PubMed

    Onoe, Hiroaki; Kato-Negishi, Midori; Itou, Akane; Takeuchi, Shoji

    2016-05-01

    In this paper, a tubular 3D microenvironment created in a calcium alginate hydrogel microtube with respect to the effect of scaffold dimensions on the differentiation of mouse neuronal stem cells (mNSCs) is evaluated. Five types of hydrogel microtubes with different core diameters (≈65-200 μm) and shell thicknesses (≈30-110 μm) are fabricated by using a double coaxial microfluidic device, and differentiation of encapsulated mNSCs is induced by changing the growth medium to the differentiation medium. The influence of the microtube geometries is examined by using quantitative real-time polymerase chain reaction and fluorescent immunocytochemistry. The analyses reveal that differences in microtube thickness within 30-110 μm affected the relative Tuj1 expression but do not affect the morphology of encapsulated mNSCs. The diameters of cores influence both the relative Tuj1 expression and morphology of the differentiated neurons. It is found that the tubular microenvironment with a core diameter of less than ≈100 μm contributes to forming highly viable and aligned neural tissue. The tubular microenvironment can provide an effective method for constructing microfiber-shaped neural tissues with geometrically controlled differentiation induction.

  18. Designer Self-Assembling Peptide Nanofiber Scaffolds for Adult Mouse Neural Stem Cell 3-Dimensional Cultures

    PubMed Central

    Gelain, Fabrizio; Bottai, Daniele; Vescovi, Angleo; Zhang, Shuguang

    2006-01-01

    Biomedical researchers have become increasingly aware of the limitations of conventional 2-dimensional tissue cell culture systems, including coated Petri dishes, multi-well plates and slides, to fully address many critical issues in cell biology, cancer biology and neurobiology, such as the 3-D microenvironment, 3-D gradient diffusion, 3-D cell migration and 3-D cell-cell contact interactions. In order to fully understand how cells behave in the 3-D body, it is important to develop a well-controlled 3-D cell culture system where every single ingredient is known. Here we report the development of a 3-D cell culture system using a designer peptide nanofiber scaffold with mouse adult neural stem cells. We attached several functional motifs, including cell adhesion, differentiation and bone marrow homing motifs, to a self-assembling peptide RADA16 (Ac-RADARADARADARADA-COHN2). These functionalized peptides undergo self-assembly into a nanofiber structure similar to Matrigel. During cell culture, the cells were fully embedded in the 3-D environment of the scaffold. Two of the peptide scaffolds containing bone marrow homing motifs significantly enhanced the neural cell survival without extra soluble growth and neurotrophic factors to the routine cell culture media. In these designer scaffolds, the cell populations with β-Tubulin+, GFAP+ and Nestin+ markers are similar to those found in cell populations cultured on Matrigel. The gene expression profiling array experiments showed selective gene expression, possibly involved in neural stem cell adhesion and differentiation. Because the synthetic peptides are intrinsically pure and a number of desired function cellular motifs are easy to incorporate, these designer peptide nanofiber scaffolds provide a promising controlled 3-D culture system for diverse tissue cells, and are useful as well for general molecular and cell biology. PMID:17205123

  19. Neural precursors (NPCs) from adult L967Q mice display early commitment to "in vitro" neuronal differentiation and hyperexcitability.

    PubMed

    DiFebo, Francesca; Curti, Daniela; Botti, Francesca; Biella, Gerardo; Bigini, Paolo; Mennini, Tiziana; Toselli, Mauro

    2012-08-01

    The pathogenic factors leading to selective degeneration of motoneurons in ALS are not yet understood. However, altered functionality of voltage-dependent Na(+) channels may play a role since cortical hyperexcitability was described in ALS patients and riluzole, the only drug approved to treat ALS, seems to decrease glutamate release via blockade or inactivation of voltage-dependent Na(+) channels. The wobbler mouse, a murine model of motoneuron degeneration, shares some of the clinical features of human ALS. At early stages of the wobbler disease, increased cortical hyperexcitability was observed. Moreover, riluzole reduced motoneuron loss and muscular atrophy in treated wobbler mice. Here, we focussed our attention on specific electrophysiological properties, like voltage-activated Na(+) currents and underlying regenerative electrical activity, as read-outs of the neuronal maturation process of neural stem/progenitor cells (NPCs) isolated from the subventricular zone (SVZ) of adult early symptomatic wobbler mice. In self-renewal conditions, the rate of wobbler NPC proliferation "in vitro" was 30% lower than that of healthy mice. Conversely, the number of wobbler NPCs displaying early neuronal commitment and action potentials was significantly higher. Upon switching from proliferative to differentiative conditions, NPCs underwent significant changes in the key properties of voltage gated Na(+) currents. The most notable finding, in cells with neuronal morphology, was an increase in Na(+) current density that strictly correlated with an increased probability to generate action potentials. This feature was remarkably more pronounced in neurons differentiated from wobbler NPCs that upon sustained stimulation, displayed short trains of pathological facilitation. In agreement with this result, an increase in the number of c-Fos positive cells, a surrogate marker of neuronal network activation, was observed in the mesial cortex of the wobbler mice "in situ". Thus these

  20. Altered behavior and neural activity in conspecific cagemates co-housed with mouse models of brain disorders.

    PubMed

    Yang, Hyunwoo; Jung, Seungmoon; Seo, Jinsoo; Khalid, Arshi; Yoo, Jung-Seok; Park, Jihyun; Kim, Soyun; Moon, Jangsup; Lee, Soon-Tae; Jung, Keun-Hwa; Chu, Kon; Lee, Sang Kun; Jeon, Daejong

    2016-09-01

    The psychosocial environment is one of the major contributors of social stress. Family members or caregivers who consistently communicate with individuals with brain disorders are considered at risk for physical and mental health deterioration, possibly leading to mental disorders. However, the underlying neural mechanisms of this phenomenon remain poorly understood. To address this, we developed a social stress paradigm in which a mouse model of epilepsy or depression was housed long-term (>4weeks) with normal conspecifics. We characterized the behavioral phenotypes and electrophysiologically investigated the neural activity of conspecific cagemate mice. The cagemates exhibited deficits in behavioral tasks assessing anxiety, locomotion, learning/memory, and depression-like behavior. Furthermore, they showed severe social impairment in social behavioral tasks involving social interaction or aggression. Strikingly, behavioral dysfunction remained in the cagemates 4weeks following co-housing cessation with the mouse models. In an electrophysiological study, the cagemates showed an increased number of spikes in medial prefrontal cortex (mPFC) neurons. Our results demonstrate that conspecifics co-housed with mouse models of brain disorders develop chronic behavioral dysfunctions, and suggest a possible association between abnormal mPFC neural activity and their behavioral pathogenesis. These findings contribute to the understanding of the psychosocial and psychiatric symptoms frequently present in families or caregivers of patients with brain disorders.

  1. Effect of mitomycin C on the neural tube defects of the curly-tail mouse.

    PubMed

    Seller, M J; Perkins, K J

    1986-06-01

    Around 60% of the mouse mutants called curly-tail, have tail aberrations in the form of a coil or a kink, with or without lumbosacral spina bifida, and rarely, exencephaly. These neural tube defects (NTD) are the result of an incompletely penetrant recessive gene. A single injection of various doses (1-6 mg/kg) of the DNA inhibitor mitomycin C was given to pregnant curly-tail mice on day 7, 8, or 9 of gestation, and its effect on the NTD of the embryos was noted. No dose used was lethal to the embryo. When given on day 7 or day 8, mitomycin C markedly increased the number of exencephalics, and additionally, on day 8, it reduced the number of posterior abnormalities. However, on day 9, no exencephaly was produced, and there was a drastic reduction in the number of tail and spinal defects, the overall incidence of NTD being as low as 15% with 2 mg/kg. A twofold effect of mitomycin C on the curly-tail embryos was thus observed--according to the time in development it was administered, firstly, a teratogenic effect, and later, a "remedial" or preventive effect.

  2. Systemic Administration of Induced Neural Stem Cells Regulates Complement Activation in Mouse Closed Head Injury Models

    PubMed Central

    Gao, Mou; Dong, Qin; Yao, Hui; Lu, Yingzhou; Ji, Xinchao; Zou, Mingming; Yang, Zhijun; Xu, Minhui; Xu, Ruxiang

    2017-01-01

    Complement activation plays important roles in the pathogenesis of central nervous system (CNS) diseases. Patients face neurological disorders due to the development of complement activation, which contributes to cell apoptosis, brain edema, blood-brain barrier dysfunction and inflammatory infiltration. We previously reported that induced neural stem cells (iNSCs) can promote neurological functional recovery in closed head injury (CHI) animals. Remarkably, we discovered that local iNSC grafts have the potential to modulate CNS inflammation post-CHI. In this study, we aimed to explore the role of systemically delivered iNSCs in complement activation following CNS injury. Our data showed that iNSC grafts decreased the levels of sera C3a and C5a and down-regulated the expression of C3d, C9, active Caspase-3 and Bax in the brain, kidney and lung tissues of CHI mice. Furthermore, iNSC grafts decreased the levels of C3d+/NeuN+, C5b-9+/NeuN+, C3d+/Map2+ and C5b-9+/Map2+ neurons in the injured cortices of CHI mice. Subsequently, we explored the mechanisms underlying these effects. With flow cytometry analysis, we observed a dramatic increase in complement receptor type 1-related protein y (Crry) expression in iNSCs after CHI mouse serum treatment. Moreover, both in vitro and in vivo loss-of-function studies revealed that iNSCs could modulate complement activation via Crry expression. PMID:28383046

  3. Early B-lymphocyte precursor cells in mouse bone marrow: Subosteal localization of B220+ cells during postirradiation regeneration

    SciTech Connect

    Jacobsen, K.; Tepper, J.; Osmond, D.G. )

    1990-05-01

    The localization of early B-lymphocyte precursor cells in the bone marrow of young mice has been studied during recovery from sublethal whole body gamma-irradiation (150 rad). Initial studies by double immunofluorescence labeling of the B-lineage-associated cell surface glycoprotein, B220, and of mu heavy chains in bone marrow cell suspensions, demonstrated a sequential wave of regeneration of early B precursor cells, pre-B cells, and B cells. Early B precursor cells expressing B220 but not mu chains were enriched at 1-3 days following irradiation. After in vivo administration of 125I-labeled monoclonal antibody 14.8 to detect B220+ cells in situ, light and electron microscope radioautography of femoral bone marrow sections revealed concentrations of labeled B220+ cells located peripherally near the cortical bone at 1-3 days following irradiation, increasing in numbers in more central areas by 5-7 days. Proliferative B220+ precursor cells were found within layers of bone-lining cells and in a subosteal area characterized by a prominent electron-dense extracellular matrix, often associated with stromal reticular cells. The results demonstrate that the precursor cells that are active in the bone marrow early in the recovery of B lymphopoiesis after gamma-irradiation are located both within and near the endosteum of the surrounding bone. The distinctive extracellular matrix and stromal cell associations noted in this region may contribute to a supportive local microenvironment for early hemopoietic progenitor cells.

  4. An update to the list of mouse mutants with neural tube closure defects and advances toward a complete genetic perspective of neural tube closure.

    PubMed

    Harris, Muriel J; Juriloff, Diana M

    2010-08-01

    The number of mouse mutants and strains with neural tube defects (NTDs) now exceeds 240, including 205 representing specific genes, 30 for unidentified genes, and 9 multifactorial strains. These mutants identify genes needed for embryonic neural tube closure. Reports of 50 new NTD mutants since our 2007 review (Harris and Juriloff, 2007) were considered in relation to the previously reviewed mutants to obtain new insights into mechanisms of NTD etiology. In addition to null mutations, some are hypomorphs or conditional mutants. Some mutations do not cause NTDs on their own, but do so in digenic, trigenic, and oligogenic combinations, an etiology that likely parallels the nature of genetic etiology of human NTDs. Mutants that have only exencephaly are fourfold more frequent than those that have spina bifida aperta with or without exencephaly. Many diverse cellular functions and biochemical pathways are involved; the NTD mutants draw new attention to chromatin modification (epigenetics), the protease-activated receptor cascade, and the ciliopathies. Few mutants directly involve folate metabolism. Prevention of NTDs by maternal folate supplementation has been tested in 13 mutants and reduces NTD frequency in six diverse mutants. Inositol reduces spina bifida aperta frequency in the curly tail mutant, and three new mutants involve inositol metabolism. The many NTD mutants are the foundation for a future complete genetic understanding of the processes of neural fold elevation and fusion along mechanistically distinct cranial-caudal segments of the neural tube, and they point to several candidate processes for study in human NTD etiology.

  5. Plexin-A3 and plexin-A4 restrict the migration of sympathetic neurons but not their neural crest precursors.

    PubMed

    Waimey, Kathryn E; Huang, Pei-Hsin; Chen, Maggie; Cheng, Hwai-Jong

    2008-03-15

    During development, the semaphorin family of guidance molecules is required for proper formation of the sympathetic nervous system. Plexins are receptors that mediate semaphorin signaling, but how plexins function during sympathetic development is not fully understood. Using phenotypic analyses of mutant mice in vivo, expression pattern studies, and in vitro assays, we show that plexin-A3 and plexin-A4 are essential for normal sympathetic development. This study confirms our previous in vitro findings that the two plexins differentially regulate the guidance of sympathetic axons. In addition, we find that semaphorin signaling through plexin-A3 and plexin-A4 restricts the migration of sympathetic neurons, but these two plexins function redundantly since migration defects are only observed in plexin-A3/-A4 double mutants. Surprisingly, our analysis also indicates that plexin-A3 and plexin-A4 are not required for guiding neural crest precursors prior to reaching the sympathetic anlagen. Immunoprecipitation studies suggest that these two plexins independently mediate secreted semaphorin signaling. Thus, plexin-A3 and plexin-A4 are expressed in newly-differentiated sympathetic neurons, but not their neural crest precursors. They function cooperatively to regulate the migration of sympathetic neurons and then differentially to guide the sympathetic axons.

  6. Thin-film assembly of diethanolamine-based lipidic material as potential gene carrier in mouse embryonic neural stem cells.

    PubMed

    Kusumoto, Ken-Ichi; Yamashita, Satoko; Nagata, Takahiro; Ido, Takeshi; Hamachi, Itaru; Akao, Tetsuyuki

    2009-10-01

    Understanding of lipidic materials used for gene delivery system is essential for the effective design and development of potential applications in basic and therapeutic research. This study aimed to evaluate the biological activity of totally synthesized ditetradecylacetyldiethanolaminetrimethylammonium (TMA-C2-DEA-C14) as gene carriers for neural stem cells. The transfer abilities were estimated by expressing green fluorescent protein (GFP) in mouse embryonic neural stem cells. Here, we demonstrate that lipidic assembly of TMA-C2-DEA-C14, which was self-organized by incubation in water for a month at 25 degrees C, can provide an efficient gene delivery with low cytotoxicity ( approximately 40% of GFP-expressed neural stem cells). However, when dispersed by ultrasonication, TMA-C2-DEA-C14 showed low effect ( approximately 4%). Moreover, electron microscopic analysis showed that TMA-C2-DEA-C14 assembly is characterized by thin-film structures with polygonal shapes ( approximately 2.7 mum), and after association with DNA, their structures dramatically changes to form liposome complexes that can effectively deliver DNA into the cellular cytoplasm of neural stem cells. Thus, TMA-C2-DEA-C14 assembly identified in this study was determined to have an effective activity as gene carriers for primary neural stem cells. Our findings suggest that this approach can serve as a novel model for the development of lipidic materials on nonviral gene delivery system.

  7. Basic fibroblast growth factor (bFGF) acts intracellularly to cause the transdifferentiation of avian neural crest-derived Schwann cell precursors into melanocytes.

    PubMed

    Sherman, L; Stocker, K M; Morrison, R; Ciment, G

    1993-08-01

    We previously found that cultured neural crest-derived cells from embryonic quail peripheral nerves, which consist mostly of Schwann cell precursors, gave rise to melanocytes following treatment with basic fibroblast growth factor (bFGF) or 12-O-tetradecanoyl phorbol-13-acetate (TPA). Here, we show that antisense deoxyoligonucleotides targeted against two regions of the bFGF mRNA transcript blocked this TPA-induced transdifferentiation of Schwann cell precursors. Neither sense nor scrambled antisense control oligonucleotides had any effect in this regard. TPA increased bFGF protein expression in cell lysates but not in conditioned media from these cultures, and this expression was localized to the nucleus and cytoplasm. Furthermore, bFGF-neutralizing antibodies and inositol-hexakisphosphate (InsP6) both inhibited pigmentation caused by exogenous bFGF, but had no affect on TPA-induced melanogenesis, suggesting that bFGF is not released by these cells. These data indicate that bFGF is necessary for the TPA-induced transdifferentiation of Schwann cell precursors into melanocytes and that bFGF acts via an intracrine mechanism.

  8. Locomotion Enhances Neural Encoding of Visual Stimuli in Mouse V1.

    PubMed

    Dadarlat, Maria C; Stryker, Michael P

    2017-04-05

    Neurons in mouse primary visual cortex (V1) are selective for particular properties of visual stimuli. Locomotion causes a change in cortical state that leaves their selectivity unchanged but strengthens their responses. Both locomotion and the change in cortical state are thought to be initiated by projections from the mesencephalic locomotor region, the latter through a disinhibitory circuit in V1. By recording simultaneously from a large number of single neurons in alert mice viewing moving gratings, we investigated the relationship between locomotion and the information contained within the neural population. We found that locomotion improved encoding of visual stimuli in V1 by two mechanisms. First, locomotion-induced increases in firing rates enhanced the mutual information between visual stimuli and single neuron responses over a fixed window of time. Second, stimulus discriminability was improved, even for fixed population firing rates, because of a decrease in noise correlations across the population. These two mechanisms contributed differently to improvements in discriminability across cortical layers, with changes in firing rates most important in the upper layers and changes in noise correlations most important in layer V. Together, these changes resulted in a threefold to fivefold reduction in the time needed to precisely encode grating direction and orientation. These results support the hypothesis that cortical state shifts during locomotion to accommodate an increased load on the visual system when mice are moving.SIGNIFICANCE STATEMENT This paper contains three novel findings about the representation of information in neurons within the primary visual cortex of the mouse. First, we show that locomotion reduces by at least a factor of 3 the time needed for information to accumulate in the visual cortex that allows the distinction of different visual stimuli. Second, we show that the effect of locomotion is to increase information in cells of all

  9. Characterization of calcium responses and electrical activity in differentiating mouse neural progenitor cells in vitro.

    PubMed

    de Groot, Martje W G D M; Dingemans, Milou M L; Rus, Katinka H; de Groot, Aart; Westerink, Remco H S

    2014-02-01

    In vitro methods for developmental neurotoxicity (DNT) testing have the potential to reduce animal use and increase insight into cellular and molecular mechanisms underlying chemical-induced alterations in the development of functional neuronal networks. Mouse neural progenitor cells (mNPCs) differentiate into nervous system-specific cell types and have proven valuable to detect DNT using biochemical and morphological techniques. We therefore investigated a number of functional neuronal parameters in primary mNPCs to explore their applicability for neurophysiological in vitro DNT testing. Immunocytochemistry confirmed that mNPCs express neuronal, glial, and progenitor markers at various differentiation durations (1, 7, 14, and 21 days). Because intracellular calcium ([Ca(2+)]i) plays an essential role in neuronal development and function, we measured stimulus-evoked changes in [Ca(2+)]i at these differentiation durations using the Ca(2+)-responsive dye Fura-2. Increases in [Ca(2+)]i (averages ranging from 65 to 226 nM) were evoked by depolarization, ATP, l-glutamic acid, acetylcholine, and dopamine (up to 87%, 57%, 93%, 28%, and 37% responding cells, respectively) and to a lesser extent by serotonin and gamma-aminobutyric acid (both up to 10% responding cells). Notably, the changes in percentage of responsive cells and their response amplitudes over time indicate changes in the expression and functionality of the respective neurotransmitter receptors and related calcium signaling pathways during in vitro differentiation. The development of functional intercellular signaling pathways was confirmed using multielectrode arrays, demonstrating that mNPCs develop electrical activity within 1-2 weeks of differentiation (55% active wells at 14 days of differentiation; mean spike rate of 1.16 spikes/s/electrode). The combined data demonstrate that mNPCs develop functional neuronal characteristics in vitro, making it a promising model to study chemical-induced effects on the

  10. Neural stem/progenitor cells differentiate into oligodendrocytes, reduce inflammation, and ameliorate learning deficits after transplantation in a mouse model of traumatic brain injury.

    PubMed

    Koutsoudaki, Paraskevi N; Papastefanaki, Florentia; Stamatakis, Antonios; Kouroupi, Georgia; Xingi, Evangelia; Stylianopoulou, Fotini; Matsas, Rebecca

    2016-05-01

    The central nervous system has limited capacity for regeneration after traumatic injury. Transplantation of neural stem/progenitor cells (NPCs) has been proposed as a potential therapeutic approach while insulin-like growth factor I (IGF-I) has neuroprotective properties following various experimental insults to the nervous system. We have previously shown that NPCs transduced with a lentiviral vector for IGF-I overexpression have an enhanced ability to give rise to neurons in vitro but also in vivo, upon transplantation in a mouse model of temporal lobe epilepsy. Here we studied the regenerative potential of NPCs, IGF-I-transduced or not, in a mouse model of hippocampal mechanical injury. NPC transplantation, with or without IGF-I transduction, rescued the injury-induced spatial learning deficits as revealed in the Morris Water Maze. Moreover, it had beneficial effects on the host tissue by reducing astroglial activation and microglial/macrophage accumulation while enhancing generation of endogenous oligodendrocyte precursor cells. One or two months after transplantation the grafted NPCs had migrated towards the lesion site and in the neighboring myelin-rich regions. Transplanted cells differentiated toward the oligodendroglial, but not the neuronal or astrocytic lineages, expressing the early and late oligodendrocyte markers NG2, Olig2, and CNPase. The newly generated oligodendrocytes reached maturity and formed myelin internodes. Our current and previous observations illustrate the high plasticity of transplanted NPCs which can acquire injury-dependent phenotypes within the host CNS, supporting the fact that reciprocal interactions between transplanted cells and the host tissue are an important factor to be considered when designing prospective cell-based therapies for CNS degenerative conditions.

  11. Generation and characterization of a novel neural crest marker allele, Inka1-LacZ, reveals a role for Inka1 in mouse neural tube closure

    PubMed Central

    Reid, Bethany S.; Sargent, Thomas D.; Williams, Trevor

    2010-01-01

    Previous studies identified Inka1 as a gene regulated by AP-2α in the neural crest required for craniofacial morphogenesis in fish and frog. Here, we extend the analysis of Inka1 function and regulation to the mouse by generating a LacZ knock-in allele. Inka1-LacZ allele expression occurs in the cephalic mesenchyme, heart, and paraxial mesoderm prior to E8.5. Subsequently, expression is observed in the migratory neural crest cells and their derivatives. Consistent with expression of Inka1 in tissues of the developing head during neurulation, a low percentage of Inka1−/− mice show exencephaly while the remainder are viable and fertile. Further studies indicate that AP-2α is not required for Inka1 expression in the mouse, and suggest that there is no significant genetic interaction between these two factors during embryogenesis. Together, these data demonstrate that while the expression domain of Inka1 is conserved among vertebrates, its function and regulation are not. PMID:20175189

  12. Uni-directional differentiation of mouse embryonic stem cells into neurons by the neural stem sphere method.

    PubMed

    Otsu, Masahiro; Sai, Tomoaki; Nakayama, Takashi; Murakami, Koji; Inoue, Nobuo

    2011-04-01

    We previously showed that our neural stem sphere (NSS) method promotes the neuronal differentiation of mouse, monkey and human embryonic stem (ES) cells. Here we analyzed changes in expression of marker genes and proteins during neuronal differentiation. When cultured in astrocyte-conditioned medium (ACM) under free-floating conditions, colonies of ES cells formed floating cell spheres, which, within 4 days, gave rise to NSSs. In the spheres, the expression of ES cell marker genes was consistently down-regulated, while expression of an epiblast marker was transiently up-regulated, beginning on day 2, and the expression of neuroectoderm, neural stem cell and neuron markers was up-regulated, beginning on days 3, 4 and 6, respectively. The expression of the marker genes was consistent with that of marker proteins. The time course of expression of these markers in the spheres resembled that of neuronal differentiation from the inner cell mass (ICM) cells of blastula. In contrast, the expression of endoderm, mesoderm, epidermis, astrocyte and oligodendrocyte markers was low and not up-regulated during differentiation. Only a small number of apoptotic cells were present in the spheres. These results suggest that mouse ES cells uni-directionally differentiate into neurons via epiblast cells, neuroectodermal cells and neural stem cells.

  13. Division of labor during trunk neural crest development.

    PubMed

    Gammill, Laura S; Roffers-Agarwal, Julaine

    2010-08-15

    Neural crest cells, the migratory precursors of numerous cell types including the vertebrate peripheral nervous system, arise in the dorsal neural tube and follow prescribed routes into the embryonic periphery. While the timing and location of neural crest migratory pathways has been well documented in the trunk, a comprehensive collection of signals that guides neural crest migration along these paths has only recently been established. In this review, we outline the molecular cascade of events during trunk neural crest development. After describing the sequential routes taken by trunk neural crest cells, we consider the guidance cues that pattern these neural crest trajectories. We pay particular attention to segmental neural crest development and the steps and signals that generate a metameric peripheral nervous system, attempting to reconcile conflicting observations in chick and mouse. Finally, we compare cranial and trunk neural crest development in order to highlight common themes.

  14. Application of Self Adaptive Unsupervised Neural Networks for Processing of VLF-LF signals to detect Seismic-Ionospheric Precursor Phenomena.

    NASA Astrophysics Data System (ADS)

    Skeberis, C.; Xenos, T. D.; Hadjileontiadis, L.; Contadakis, M. E.; Arabelos, D.

    2012-04-01

    This paper investigates the development and application of artificial neural networks (ANN) based on Predictive Modular Neural Networks (PREMONNs) to provide a self adaptive unsupervised method for detecting disturbances that can be attributed to seismic-ionospheric precursor phenomena using VLF radio signals. As such, the neural network is applied to bring forth and adaptively discriminate different characteristics in the received signals, in real time, in order to provide data segments of interest that can be correlated to subsequent seismic phenomena. PREMONNs have been developed for time series prediction and through that for source switching detection in a time series; they are constituted by two modules. The first tier is a module consisting of a dynamic array of neural networks following the data stream in order to predict the next value of a time series whereas the second is a decision one utilizing a Bayes probability equation to decide on source switching. That module is responsible for electing and appropriately training the closest fitting NN or switching to a new NN if a source switch is apparent. For the purpose of this paper, VLF signals transmitted by a number of European VLF transmitters are monitored for over a year in Thessaloniki (40.69N 22.78E) and the data from December 2010 to December 2011 are used. The received signals are sampled and stored for off line processing. The receiver was developed by Elettronika Srl, and is part of the International Network for Frontier Research on Earthquake Precursors (INFREP). Signals received from the 20.27KHz ICV station in Tavolara, Italy (Lat 40.923,Lon. 9.731) were used. The received VLF signal was normalized and then processed using the Empirical Mode Decomposition Method (EMD). The resulting data are used to train the unsupervised ANN and the performance of the developed network is then evaluated. The efficacy of different layouts of the PREMONN is evaluated and the application of a self

  15. Neural induction with neurogenin 1 enhances the therapeutic potential of mesenchymal stem cells in an amyotrophic lateral sclerosis mouse model.

    PubMed

    Chan-Il, Choi; Young-Don, Lee; Heejaung, Kim; Kim, Seung Hyun; Suh-Kim, Haeyoung; Kim, Sung-Soo

    2013-01-01

    Amyotrophic lateral sclerosis (ALS) is characterized by progressive dysfunction and degeneration of motor neurons in the central nervous system (CNS). In the absence of effective drug treatments for ALS, stem cell treatment has emerged as a candidate therapy for this disease. To date, however, there is no consensus protocol that stipulates stem cell types, transplantation timing, or frequency. Using an ALS mouse model carrying a high copy number of a mutant human superoxide dismutase-1 (SOD1)(G93A) transgene, we investigated the effect of neural induction on the innate therapeutic potential of mesenchymal stem cells (MSCs) in relation to preclinical transplantation parameters. In our study, the expression of monocyte chemoattractant protein-1 (MCP-1) was elevated in the ALS mouse spinal cord. Neural induction of MSCs with neurogenin 1 (Ngn1) upregulated the expression level of the MCP-1 receptor, CCR2, and enhanced the migration activity toward MCP-1 in vitro. Ngn1-expressing MSCs (MSCs-Ngn1) showed a corresponding increase in tropism to the CNS after systemic transplantation in ALS mice. Notably, MSCs-Ngn1 delayed disease onset if transplanted during preonset ages,whereas unprocessed MSCs failed to do so. If transplanted near the onset ages, a single treatment with MSCs-Ngn1 was sufficient to enhance motor functions during the symptomatic period (15–17 weeks), whereas unprocessed MSCs required repeated transplantation to achieve similar levels of motor function improvement. Our data indicate that systemically transplanted MSCs-Ngn1 can migrate to the CNS and exert beneficial effects on host neural cells for an extended period of time through paracrine functions, suggesting a potential benefit of neural induction of transplanted MSCs in long-term treatment of ALS.

  16. Human neural crest cells contribute to coat pigmentation in interspecies chimeras after in utero injection into mouse embryos.

    PubMed

    Cohen, Malkiel A; Wert, Katherine J; Goldmann, Johanna; Markoulaki, Styliani; Buganim, Yosef; Fu, Dongdong; Jaenisch, Rudolf

    2016-02-09

    The neural crest (NC) represents multipotent cells that arise at the interphase between ectoderm and prospective epidermis of the neurulating embryo. The NC has major clinical relevance because it is involved in both inherited and acquired developmental abnormalities. The aim of this study was to establish an experimental platform that would allow for the integration of human NC cells (hNCCs) into the gastrulating mouse embryo. NCCs were derived from pluripotent mouse, rat, and human cells and microinjected into embryonic-day-8.5 embryos. To facilitate integration of the NCCs, we used recipient embryos that carried a c-Kit mutation (W(sh)/W(sh)), which leads to a loss of melanoblasts and thus eliminates competition from the endogenous host cells. The donor NCCs migrated along the dorsolateral migration routes in the recipient embryos. Postnatal mice derived from injected embryos displayed pigmented hair, demonstrating differentiation of the NCCs into functional melanocytes. Although the contribution of human cells to pigmentation in the host was lower than that of mouse or rat donor cells, our results indicate that hNCCs, injected in utero, can integrate into the embryo and form mature functional cells in the animal. This mouse-human chimeric platform allows for a new approach to study NC development and diseases.

  17. Bumetanide promotes neural precursor cell regeneration and dendritic development in the hippocampal dentate gyrus in the chronic stage of cerebral ischemia

    PubMed Central

    Xu, Wang-shu; Sun, Xuan; Song, Cheng-guang; Mu, Xiao-peng; Ma, Wen-ping; Zhang, Xing-hu; Zhao, Chuan-sheng

    2016-01-01

    Bumetanide has been shown to lessen cerebral edema and reduce the infarct area in the acute stage of cerebral ischemia. Few studies focus on the effects of bumetanide on neuroprotection and neurogenesis in the chronic stage of cerebral ischemia. We established a rat model of cerebral ischemia by injecting endothelin-1 in the left cortical motor area and left corpus striatum. Seven days later, bumetanide 200 µg/kg/day was injected into the lateral ventricle for 21 consecutive days with a mini-osmotic pump. Results demonstrated that the number of neuroblasts cells and the total length of dendrites increased, escape latency reduced, and the number of platform crossings increased in the rat hippocampal dentate gyrus in the chronic stage of cerebral ischemia. These findings suggest that bumetanide promoted neural precursor cell regeneration, dendritic development and the recovery of cognitive function, and protected brain tissue in the chronic stage of ischemia. PMID:27335557

  18. P2X7 receptors at adult neural progenitor cells of the mouse subventricular zone.

    PubMed

    Messemer, Nanette; Kunert, Christin; Grohmann, Marcus; Sobottka, Helga; Nieber, Karen; Zimmermann, Herbert; Franke, Heike; Nörenberg, Wolfgang; Straub, Isabelle; Schaefer, Michael; Riedel, Thomas; Illes, Peter; Rubini, Patrizia

    2013-10-01

    Neurogenesis requires the balance between the proliferation of newly formed progenitor cells and subsequent death of surplus cells. RT-PCR and immunocytochemistry demonstrated the presence of P2X7 receptor mRNA and immunoreactivity in cultured neural progenitor cells (NPCs) prepared from the adult mouse subventricular zone (SVZ). Whole-cell patch-clamp recordings showed a marked potentiation of the inward current responses both to ATP and the prototypic P2X7 receptor agonist dibenzoyl-ATP (Bz-ATP) at low Ca(2+) and zero Mg(2+) concentrations in the bath medium. The Bz-ATP-induced currents reversed their polarity near 0 mV; in NPCs prepared from P2X7(-/-) mice, Bz-ATP failed to elicit membrane currents. The general P2X/P2Y receptor antagonist PPADS and the P2X7 selective antagonists Brilliant Blue G and A-438079 strongly depressed the effect of Bz-ATP. Long-lasting application of Bz-ATP induced an initial current, which slowly increased to a steady-state response. In combination with the determination of YO-PRO uptake, these experiments suggest the dilation of a receptor-channel and/or the recruitment of a dye-uptake pathway. Ca(2+)-imaging by means of Fura-2 revealed that in a Mg(2+)-deficient bath medium Bz-ATP causes [Ca(2+)](i) transients fully depending on the presence of external Ca(2+). The MTT test indicated a concentration-dependent decrease in cell viability by Bz-ATP treatment. Correspondingly, Bz-ATP led to an increase in active caspase 3 immunoreactivity, indicating a P2X7-controlled apoptosis. In acute SVZ brain slices of transgenic Tg(nestin/EGFP) mice, patch-clamp recordings identified P2X7 receptors at NPCs with pharmacological properties identical to those of their cultured counterparts. We suggest that the apoptotic/necrotic P2X7 receptors at NPCs may be of particular relevance during pathological conditions which lead to increased ATP release and thus could counterbalance the ensuing excessive cell proliferation.

  19. DNA synthesis in mouse epidermis: S phase cells that remain unlabeled after pulse labeling with DNA precursors progress slowly through S

    SciTech Connect

    Clausen, O.P.; Elgjo, K.; Kirkhus, B.; Pedersen, S.; Bolund, L.

    1983-12-01

    Epidermal basal cells from hairless mice were isolated after pulse labeling with tritiated DNA precursors and subjected to DNA flow cytometry combined with cell sorting. Cells were sorted from a window in the middle of the S phase, collected on glass slides, and subjected to autoradiography. Unlabeled cells in the middle of the S phase were found in normal mouse epidermis after optimal pulse labeling with tritiated thymidine ((/sup 3/H)dThd), in accordance with previous results. The proportion of unlabeled S phase cells was considerably increased among basal cells from mice treated with growth-inhibitory epidermal extracts. Reanalysis and re-sorting of cells previously sorted from mid S showed that unlabeled cells could not be accounted for by G1 contamination. Furthermore, labeling with precursors incorporated into DNA by ''de novo'' metabolic pathway ((/sup 3/H)Urd) did not reduce the proportion of unlabeled S phase cells, either when given alone or when given in combination with the precursor for DNA incorporated by the ''salvage'' pathway ((/sup 3/H)dThd). This strongly indicates that the unlabeled S phase cells do not synthesize DNA continuously, or are synthesizing DNA at a rate below the level of detection. A reduced proportion of unlabeled S phase cells was found in regenerating epidermis. This may be explained by a dilution effect caused by the 3-fold increase in the total number of cells within S phase at this condition. The observation that essentially all cells in mid S phase were labeled during 4 days of continuous labeling with (/sup 3/H)dThd, indicates that cells in S phase that remain unlabeled after optimal pulse labeling are cycling, albeit slowly. Two-parameter sorting based on DNA and light scatter indicated that slowly cycling cells are larger than the average. These cells may represent a subpopulation of basal cells going through their last division cycle before differentiation.

  20. RNAi-mediated knockdown of mouse melanocortin-4 receptor in vitro and in vivo, using an siRNA expression construct based on the mir-187 precursor

    PubMed Central

    Kato, Minoru; Huang, Yi-Ying; Matsuo, Mina; Takashina, Yoko; Sasaki, Kazuyo; Horai, Yasushi; Juni, Aya; Kamijo, Shin-Ichi; Saigo, Kaoru; Ui-Tei, Kumiko; Tei, Hajime

    2016-01-01

    RNA interference (RNAi) is a powerful tool for the study of gene function in mammalian systems, including transgenic mice. Here, we report a gene knockdown system based on the human mir-187 precursor. We introduced small interfering RNA (siRNA) sequences against the mouse melanocortin-4 receptor (mMc4r) to alter the targeting of miR-187. The siRNA-expressing cassette was placed under the control of the cytomegalovirus (CMV) early enhancer/chicken β-actin promoter. In vitro, the construct efficiently knocked down the gene expression of a co-transfected mMc4r-expression vector in cultured mammalian cells. Using this construct, we generated a transgenic mouse line which exhibited partial but significant knockdown of mMc4r mRNA in various brain regions. Northern blot analysis detected transgenic expression of mMc4r siRNA in these regions. Furthermore, the transgenic mice fed a normal diet ate 9% more and were 30% heavier than wild-type sibs. They also developed hyperinsulinemia and fatty liver as do mMc4r knockout mice. We determined that this siRNA expression construct based on mir-187 is a practical and useful tool for gene functional studies in vitro as well as in vivo. PMID:27725374

  1. Lead decreases cell survival, proliferation, and neuronal differentiation of primary cultured adult neural precursor cells through activation of the JNK and p38 MAP kinases

    PubMed Central

    Engstrom, Anna; Wang, Hao; Xia, Zhengui

    2015-01-01

    Adult hippocampal neurogenesis is the process whereby adult neural precursor cells (aNPCs) in the subgranular zone (SGZ) of the dentate gyrus (DG) generate adult-born, functional neurons in the hippocampus. This process is modulated by various extracellular and intracellular stimuli, and the adult-born neurons have been implicated in hippocampus-dependent learning and memory. However, studies on how neurotoxic agents affect this process and the underlying mechanisms are limited. The goal of this study was to determine whether lead, a heavy metal, directly impairs critical processes in adult neurogenesis and to characterize the underlying signaling pathways using primary cultured SGZ-aNPCs isolated from adult mice. We report here that lead significantly increases apoptosis and inhibits proliferation in SGZ-aNPCs. In addition, lead significantly impairs spontaneous neuronal differentiation and maturation. Furthermore, we found that activation of the c-Jun NH2-terminal kinase (JNK) and p38 mitogen activated protein (MAP) kinase signaling pathways are important for lead cytotoxicity. Our data suggest that lead can directly act on adult neural stem cells and impair critical processes in adult hippocampal neurogenesis, which may contribute to its neurotoxicity and adverse effects on cognition in adults. PMID:25967738

  2. Modulation of Mouse Embryonic Stem Cell Proliferation and Neural Differentiation by the P2X7 Receptor

    PubMed Central

    Glaser, Talita; de Oliveira, Sophia La Banca; Cheffer, Arquimedes; Beco, Renata; Martins, Patrícia; Fornazari, Maynara; Lameu, Claudiana; Junior, Helio Miranda Costa; Coutinho-Silva, Robson; Ulrich, Henning

    2014-01-01

    Background Novel developmental functions have been attributed to the P2X7 receptor (P2X7R) including proliferation stimulation and neural differentiation. Mouse embryonic stem cells (ESC), induced with retinoic acid to neural differentiation, closely assemble processes occurring during neuroectodermal development of the early embryo. Principal Findings P2X7R expression together with the pluripotency marker Oct-4 was highest in undifferentiated ESC. In undifferentiated cells, the P2X7R agonist Bz-ATP accelerated cell cycle entry, which was blocked by the specific P2X7R inhibitor KN-62. ESC induced to neural differentiation with retinoic acid, reduced Oct-4 and P2X7R expression. P2X7R receptor-promoted intracellular calcium fluxes were obtained at lower Bz-ATP ligand concentrations in undifferentiated and in neural-differentiated cells compared to other studies. The presence of KN-62 led to increased number of cells expressing SSEA-1, Dcx and β3-tubulin, as well as the number of SSEA-1 and β3-tubulin-double-positive cells confirming that onset of neuroectodermal differentiation and neuronal fate determination depends on suppression of P2X7R activity. Moreover, an increase in the number of Ki-67 positive cells in conditions of P2X7R inhibition indicates rescue of progenitors into the cell cycle, augmenting the number of neuroblasts and consequently neurogenesis. Conclusions In embryonic cells, P2X7R expression and activity is upregulated, maintaining proliferation, while upon induction to neural differentiation P2X7 receptor expression and activity needs to be suppressed. PMID:24798220

  3. Tumourigenicity and Immunogenicity of Induced Neural Stem Cell Grafts Versus Induced Pluripotent Stem Cell Grafts in Syngeneic Mouse Brain

    PubMed Central

    Gao, Mou; Yao, Hui; Dong, Qin; Zhang, Hongtian; Yang, Zhijun; Yang, Yang; Zhu, Jianwei; Xu, Minhui; Xu, Ruxiang

    2016-01-01

    Along with the development of stem cell-based therapies for central nervous system (CNS) disease, the safety of stem cell grafts in the CNS, such as induced pluripotent stem cells (iPSCs) and induced neural stem cells (iNSCs), should be of primary concern. To provide scientific basis for evaluating the safety of these stem cells, we determined their tumourigenicity and immunogenicity in syngeneic mouse brain. Both iPSCs and embryonic stem cells (ESCs) were able to form tumours in the mouse brain, leading to tissue destruction along with immune cell infiltration. In contrast, no evidence of tumour formation, brain injury or immune rejection was observed with iNSCs, neural stem cells (NSCs) or mesenchymal stem cells (MSCs). With the help of gene ontology (GO) enrichment analysis, we detected significantly elevated levels of chemokines in the brain tissue and serum of mice that developed tumours after ESC or iPSC transplantation. Moreover, we also investigated the interactions between chemokines and NF-κB signalling and found that NF-κB activation was positively correlated with the constantly rising levels of chemokines, and vice versa. In short, iNSC grafts, which lacked any resulting tumourigenicity or immunogenicity, are safer than iPSC grafts. PMID:27417157

  4. Nop2 is expressed during proliferation of neural stem cells and in adult mouse and human brain.

    PubMed

    Kosi, Nina; Alić, Ivan; Kolačević, Matea; Vrsaljko, Nina; Jovanov Milošević, Nataša; Sobol, Margarita; Philimonenko, Anatoly; Hozák, Pavel; Gajović, Srećko; Pochet, Roland; Mitrečić, Dinko

    2015-02-09

    The nucleolar protein 2 gene encodes a protein specific for the nucleolus. It is assumed that it plays a role in the synthesis of ribosomes and regulation of the cell cycle. Due to its link to cell proliferation, higher expression of Nop2 indicates a worse tumor prognosis. In this work we used Nop2(gt1gaj) gene trap mouse strain. While lethality of homozygous animals suggested a vital role of this gene, heterozygous animals allowed the detection of expression of Nop2 in various tissues, including mouse brain. Histochemistry, immunohistochemistry and immunoelectron microscopy techniques, applied to a mature mouse brain, human brain and on mouse neural stem cells revealed expression of Nop2 in differentiating cells, including astrocytes, as well as in mature neurons. Nop2 was detected in various regions of mouse and human brain, mostly in large pyramidal neurons. In the human, Nop2 was strongly expressed in supragranular and infragranular layers of the somatosensory cortex and in layer III of the cingulate cortex. Also, Nop2 was detected in CA1 and the subiculum of the hippocampus. Subcellular analyses revealed predominant location of Nop2 within the dense fibrillar component of the nucleolus. To test if Nop2 expression correlates to cell proliferation occurring during tissue regeneration, we induced strokes in mice by middle cerebral artery occlusion. Two weeks after stroke, the number of Nop2/nestin double positive cells in the region affected by ischemia and the periventricular zone substantially increased. Our findings suggest a newly discovered role of Nop2 in both mature neurons and in cells possibly involved in the regeneration of nervous tissue.

  5. Genetically modified neural stem cells for a local and sustained delivery of neuroprotective factors to the dystrophic mouse retina.

    PubMed

    Jung, Gila; Sun, Jing; Petrowitz, Bettina; Riecken, Kristoffer; Kruszewski, Katharina; Jankowiak, Wanda; Kunst, Frank; Skevas, Christos; Richard, Gisbert; Fehse, Boris; Bartsch, Udo

    2013-12-01

    A continuous intraocular delivery of neurotrophic factors (NFs) is being explored as a strategy to rescue photoreceptor cells and visual functions in degenerative retinal disorders that are currently untreatable. To establish a cell-based intraocular delivery system for a sustained administration of NFs to the dystrophic mouse retina, we used a polycistronic lentiviral vector to genetically modify adherently cultivated murine neural stem (NS) cells. The vector concurrently encoded a gene of interest, a reporter gene, and a resistance gene and thus facilitated the selection, cloning, and in vivo tracking of the modified cells. To evaluate whether modified NS cells permit delivery of functionally relevant quantities of NFs to the dystrophic mouse retina, we expressed a secretable variant of ciliary neurotrophic factor (CNTF) in NS cells and grafted the cells into the vitreous space of Pde6b(rd1) and Pde6b(rd10) mice, two animal models of retinitis pigmentosa. In both mouse lines, grafted cells attached to the retina and lens, where they differentiated into astrocytes and some neurons. Adverse effects of the transplanted cells on the morphology of host retinas were not observed. Importantly, the CNTF-secreting NS cells significantly attenuated photoreceptor degeneration in both mutant mouse lines. The neuroprotective effect was significantly more pronounced when clonally derived NS cell lines selected for high expression levels of CNTF were grafted into Pde6b(rd1) mice. Intravitreal transplantations of modified NS cells may thus represent a useful method for preclinical studies aimed at evaluating the therapeutic potential of a cell-based intraocular delivery of NFs in mouse models of photoreceptor degeneration.

  6. The iron exporter ferroportin 1 is essential for development of the mouse embryo, forebrain patterning and neural tube closure

    PubMed Central

    Mao, Jinzhe; McKean, David M.; Warrier, Sunita; Corbin, Joshua G.; Niswander, Lee; Zohn, Irene E.

    2010-01-01

    Neural tube defects (NTDs) are some of the most common birth defects observed in humans. The incidence of NTDs can be reduced by peri-conceptional folic acid supplementation alone and reduced even further by supplementation with folic acid plus a multivitamin. Here, we present evidence that iron maybe an important nutrient necessary for normal development of the neural tube. Following implantation of the mouse embryo, ferroportin 1 (Fpn1) is essential for the transport of iron from the mother to the fetus and is expressed in the visceral endoderm, yolk sac and placenta. The flatiron (ffe) mutant mouse line harbors a hypomorphic mutation in Fpn1 and we have created an allelic series of Fpn1 mutations that result in graded developmental defects. A null mutation in the Fpn1 gene is embryonic lethal before gastrulation, hypomorphic Fpn1ffe/ffe mutants exhibit NTDs consisting of exencephaly, spina bifida and forebrain truncations, while Fpn1ffe/KI mutants exhibit even more severe NTDs. We show that Fpn1 is not required in the embryo proper but rather in the extra-embryonic visceral endoderm. Our data indicate that loss of Fpn1 results in abnormal morphogenesis of the anterior visceral endoderm (AVE). Defects in the development of the forebrain in Fpn1 mutants are compounded by defects in multiple signaling centers required for maintenance of the forebrain, including the anterior definitive endoderm (ADE), anterior mesendoderm (AME) and anterior neural ridge (ANR). Finally, we demonstrate that this loss of forebrain maintenance is due in part to the iron deficiency that results from the absence of fully functional Fpn1. PMID:20702562

  7. Insights into prevention of human neural tube defects by folic acid arising from consideration of mouse mutants.

    PubMed

    Harris, Muriel J

    2009-04-01

    Almost 30 years after the initial study by Richard W. Smithells and coworkers, it is still unknown how maternal periconceptional folic acid supplementation prevents human neural tube defects (NTDs). In this article, questions about human NTD prevention are considered in relation to three groups of mouse models: NTD mutants that respond to folate, NTD mutants and strains that do not respond to folate, and mutants involving folate-pathway genes. Of the 200 mouse NTD mutants, only a few have been tested with folate; half respond and half do not. Among responsive mutants, folic acid supplementation reduces exencephaly and/or spina bifida aperta frequency in the Sp(2H), Sp, Cd, Cited2, Cart1, and Gcn5 mutants. Prevention ranges from 35 to 85%. The responsive Sp(2H) (Pax3) mutant has abnormal folate metabolism, but the responsive Cited2 mutant does not. Neither folic nor folinic acid reduces NTD frequency in Axd, Grhl3, Fkbp8, Map3k4, or Nog mutants or in the curly tail or SELH/Bc strains. Spina bifida frequency is reduced in Axd by methionine and in curly tail by inositol. Exencephaly frequency is reduced in SELH/Bc by an alternative commercial ration. Mutations in folate-pathway genes do not cause NTDs, except for 30% exencephaly in folate-treated Folr1. Among folate-pathway mutants, neural tube closure is normal in Cbs, Folr2, Mthfd1, Mthfd2, Mthfr, and Shmt1 mutants. Embryos die by midgestation in Folr1, Mtr, Mtrr, and RFC1 mutants. The mouse models point to genetic heterogeneity in the ability to respond to folic acid and also to heterogeneity in genetic cause of NTDs that can be prevented by folic acid.

  8. Huntingtin Is Required for Neural But Not Cardiac/Pancreatic Progenitor Differentiation of Mouse Embryonic Stem Cells In vitro

    PubMed Central

    Yu, Man Shan; Tanese, Naoko

    2017-01-01

    Mutation in the huntingtin (HTT) gene causes Huntington’s disease (HD). It is an autosomal dominant trinucleotide-repeat expansion disease in which CAG repeat sequence expands to >35. This results in the production of mutant HTT protein with an increased stretch of glutamines near the N-terminus. The wild type HTT gene encodes a 350 kD protein whose function remains elusive. Mutant HTT protein has been implicated in transcription, axonal transport, cytoskeletal structure/function, signal transduction, and autophagy. HD is characterized by the appearance of nuclear inclusions and degeneration of the striatum. Although HTT protein is expressed early in embryos, most patients develop symptoms in mid-life. It is also unclear why the ubiquitously expressed mutant HTT specifically causes striatal atrophy. Wild type Htt is essential for development as Htt knockout mice die at day E7.5. Increasing evidence suggests mutant Htt may alter neurogenesis and development of striatal neurons resulting in neuronal loss. Using a mouse embryonic stem cell model, we examined the role of Htt in neural differentiation. We found cells lacking Htt inefficient in generating neural stem cells. In contrast differentiation into progenitors of mesoderm and endoderm lineages was not affected. The data suggests Htt is essential for neural but not cardiac/pancreatic progenitor differentiation of embryonic stem cells in vitro. PMID:28270748

  9. Induced neural stem cells achieve long-term survival and functional integration in the adult mouse brain.

    PubMed

    Hemmer, Kathrin; Zhang, Mingyue; van Wüllen, Thea; Sakalem, Marna; Tapia, Natalia; Baumuratov, Aidos; Kaltschmidt, Christian; Kaltschmidt, Barbara; Schöler, Hans R; Zhang, Weiqi; Schwamborn, Jens C

    2014-09-09

    Differentiated cells can be converted directly into multipotent neural stem cells (i.e., induced neural stem cells [iNSCs]). iNSCs offer an attractive alternative to induced pluripotent stem cell (iPSC) technology with regard to regenerative therapies. Here, we show an in vivo long-term analysis of transplanted iNSCs in the adult mouse brain. iNSCs showed sound in vivo long-term survival rates without graft overgrowths. The cells displayed a neural multilineage potential with a clear bias toward astrocytes and a permanent downregulation of progenitor and cell-cycle markers, indicating that iNSCs are not predisposed to tumor formation. Furthermore, the formation of synaptic connections as well as neuronal and glial electrophysiological properties demonstrated that differentiated iNSCs migrated, functionally integrated, and interacted with the existing neuronal circuitry. We conclude that iNSC long-term transplantation is a safe procedure; moreover, it might represent an interesting tool for future personalized regenerative applications.

  10. Comparative Analysis Between Flaviviruses Reveals Specific Neural Stem Cell Tropism for Zika Virus in the Mouse Developing Neocortex.

    PubMed

    Brault, Jean-Baptiste; Khou, Cécile; Basset, Justine; Coquand, Laure; Fraisier, Vincent; Frenkiel, Marie-Pascale; Goud, Bruno; Manuguerra, Jean-Claude; Pardigon, Nathalie; Baffet, Alexandre D

    2016-08-01

    The recent Zika outbreak in South America and French Polynesia was associated with an epidemic of microcephaly, a disease characterized by a reduced size of the cerebral cortex. Other members of the Flavivirus genus, including West Nile virus (WNV), can cause encephalitis but were not demonstrated to cause microcephaly. It remains unclear whether Zika virus (ZIKV) and other flaviviruses may infect different cell populations in the developing neocortex and lead to distinct developmental defects. Here, we describe an assay to infect mouse E15 embryonic brain slices with ZIKV, WNV and dengue virus serotype 4 (DENV-4). We show that this tissue is able to support viral replication of ZIKV and WNV, but not DENV-4. Cell fate analysis reveals a remarkable tropism of ZIKV infection for neural stem cells. Closely related WNV displays a very different tropism of infection, with a bias towards neurons. We further show that ZIKV infection, but not WNV infection, impairs cell cycle progression of neural stem cells. Both viruses inhibited apoptosis at early stages of infection. This work establishes a powerful comparative approach to identify ZIKV-specific alterations in the developing neocortex and reveals specific preferential infection of neural stem cells by ZIKV.

  11. Human neural crest cells contribute to coat pigmentation in interspecies chimeras after in utero injection into mouse embryos

    PubMed Central

    Cohen, Malkiel A.; Wert, Katherine J.; Goldmann, Johanna; Markoulaki, Styliani; Buganim, Yosef; Fu, Dongdong; Jaenisch, Rudolf

    2016-01-01

    The neural crest (NC) represents multipotent cells that arise at the interphase between ectoderm and prospective epidermis of the neurulating embryo. The NC has major clinical relevance because it is involved in both inherited and acquired developmental abnormalities. The aim of this study was to establish an experimental platform that would allow for the integration of human NC cells (hNCCs) into the gastrulating mouse embryo. NCCs were derived from pluripotent mouse, rat, and human cells and microinjected into embryonic-day-8.5 embryos. To facilitate integration of the NCCs, we used recipient embryos that carried a c-Kit mutation (Wsh/Wsh), which leads to a loss of melanoblasts and thus eliminates competition from the endogenous host cells. The donor NCCs migrated along the dorsolateral migration routes in the recipient embryos. Postnatal mice derived from injected embryos displayed pigmented hair, demonstrating differentiation of the NCCs into functional melanocytes. Although the contribution of human cells to pigmentation in the host was lower than that of mouse or rat donor cells, our results indicate that hNCCs, injected in utero, can integrate into the embryo and form mature functional cells in the animal. This mouse–human chimeric platform allows for a new approach to study NC development and diseases. PMID:26811475

  12. Single-Cell Expression Profiling Reveals a Dynamic State of Cardiac Precursor Cells in the Early Mouse Embryo.

    PubMed

    Kokkinopoulos, Ioannis; Ishida, Hidekazu; Saba, Rie; Ruchaya, Prashant; Cabrera, Claudia; Struebig, Monika; Barnes, Michael; Terry, Anna; Kaneko, Masahiro; Shintani, Yasunori; Coppen, Steven; Shiratori, Hidetaka; Ameen, Torath; Mein, Charles; Hamada, Hiroshi; Suzuki, Ken; Yashiro, Kenta

    2015-01-01

    In the early vertebrate embryo, cardiac progenitor/precursor cells (CPs) give rise to cardiac structures. Better understanding their biological character is critical to understand the heart development and to apply CPs for the clinical arena. However, our knowledge remains incomplete. With the use of single-cell expression profiling, we have now revealed rapid and dynamic changes in gene expression profiles of the embryonic CPs during the early phase after their segregation from the cardiac mesoderm. Progressively, the nascent mesodermal gene Mesp1 terminated, and Nkx2-5+/Tbx5+ population rapidly replaced the Tbx5low+ population as the expression of the cardiac genes Tbx5 and Nkx2-5 increased. At the Early Headfold stage, Tbx5-expressing CPs gradually showed a unique molecular signature with signs of cardiomyocyte differentiation. Lineage-tracing revealed a developmentally distinct characteristic of this population. They underwent progressive differentiation only towards the cardiomyocyte lineage corresponding to the first heart field rather than being maintained as a progenitor pool. More importantly, Tbx5 likely plays an important role in a transcriptional network to regulate the distinct character of the FHF via a positive feedback loop to activate the robust expression of Tbx5 in CPs. These data expands our knowledge on the behavior of CPs during the early phase of cardiac development, subsequently providing a platform for further study.

  13. Interneuron precursor transplants in adult hippocampus reverse psychosis-relevant features in a mouse model of hippocampal disinhibition.

    PubMed

    Gilani, Ahmed I; Chohan, Muhammad O; Inan, Melis; Schobel, Scott A; Chaudhury, Nashid H; Paskewitz, Samuel; Chuhma, Nao; Glickstein, Sara; Merker, Robert J; Xu, Qing; Small, Scott A; Anderson, Stewart A; Ross, Margaret Elizabeth; Moore, Holly

    2014-05-20

    GABAergic interneuron hypofunction is hypothesized to underlie hippocampal dysfunction in schizophrenia. Here, we use the cyclin D2 knockout (Ccnd2(-/-)) mouse model to test potential links between hippocampal interneuron deficits and psychosis-relevant neurobehavioral phenotypes. Ccnd2(-/-) mice show cortical PV(+) interneuron reductions, prominently in hippocampus, associated with deficits in synaptic inhibition, increased in vivo spike activity of projection neurons, and increased in vivo basal metabolic activity (assessed with fMRI) in hippocampus. Ccnd2(-/-) mice show several neurophysiological and behavioral phenotypes that would be predicted to be produced by hippocampal disinhibition, including increased ventral tegmental area dopamine neuron population activity, behavioral hyperresponsiveness to amphetamine, and impairments in hippocampus-dependent cognition. Remarkably, transplantation of cells from the embryonic medial ganglionic eminence (the major origin of cerebral cortical interneurons) into the adult Ccnd2(-/-) caudoventral hippocampus reverses these psychosis-relevant phenotypes. Surviving neurons from these transplants are 97% GABAergic and widely distributed within the hippocampus. Up to 6 mo after the transplants, in vivo hippocampal metabolic activity is lowered, context-dependent learning and memory is improved, and dopamine neuron activity and the behavioral response to amphetamine are normalized. These findings establish functional links between hippocampal GABA interneuron deficits and psychosis-relevant dopaminergic and cognitive phenotypes, and support a rationale for targeting limbic cortical interneuron function in the prevention and treatment of schizophrenia.

  14. Cocaine-and Amphetamine Regulated Transcript (CART) Peptide Is Expressed in Precursor Cells and Somatotropes of the Mouse Pituitary Gland

    PubMed Central

    Mortensen, Amanda H.

    2016-01-01

    Cocaine-and Amphetamine Regulated Transcript (CART) peptide is expressed in the brain, endocrine and neuroendocrine systems and secreted into the serum. It is thought to play a role in regulation of hypothalamic pituitary functions. Here we report a spatial and temporal analysis of Cart expression in the pituitaries of adult and developing normal and mutant mice with hypopituitarism. We found that Prop1 is not necessary for initiation of Cart expression in the fetal pituitary at e14.5, but it is required indirectly for maintenance of Cart expression in the postnatal anterior pituitary gland. Pou1f1 deficiency has no effect on Cart expression before or after birth. There is no 1:1 correspondence between CART and any particular cell type. In neonates, CART is detected primarily in non-proliferating, POU1F1-positive cells. CART is also found in some cells that express TSH and GH suggesting a correspondence with committed progenitors of the POU1F1 lineage. In summary, we have characterized the normal temporal and cell specific expression of CART in mouse development and demonstrate that postnatal CART expression in the pituitary gland requires PROP1. PMID:27685990

  15. A role for interleukin-1β in determining the lineage fate of embryonic rat hippocampal neural precursor cells.

    PubMed

    Green, Holly F; Treacy, Eimear; Keohane, Aoife K; Sullivan, Aideen M; O'Keeffe, Gerard W; Nolan, Yvonne M

    2012-03-01

    Neurogenesis occurs in the hippocampus of the developing and adult brain due to the presence of multipotent stem cells and restricted precursor cells at different stages of differentiation. It has been proposed that they may be of potential benefit for use in cell transplantation approaches for neurodegenerative disorders and trauma. Prolonged release of interleukin-1β (IL-1β) from activated microglia has a deleterious effect on hippocampal neurons and is implicated in the impaired neurogenesis and cognitive dysfunction associated with aging, Alzheimer's disease and depression. This study assessed the effect of IL-1β on the proliferation and differentiation of embryonic rat hippocampal NPCs in vitro. We show that IL-1R1 is expressed on proliferating NPCs and that IL-1β treatment decreases cell proliferation and neurosphere growth. When NPCs were differentiated in the presence of IL-1β, a significant reduction in the percentages of newly-born neurons and post-mitotic neurons and a significant increase in the percentage of astrocytes was observed in these cultures. These effects were attenuated by IL-1 receptor antagonist. These data reveal that IL-1β exerts an anti-proliferative, anti-neurogenic and pro-gliogenic effect on embryonic hippocampal NPCs, which is mediated by IL-1R1. The present results emphasise the consequences of an inflammatory environment during NPC development, and indicate that strategies to inhibit IL-1β signalling may be necessary to facilitate effective cell transplantation approaches or in conditions where endogenous hippocampal neurogenesis is impaired.

  16. IKAP Deficiency in an FD Mouse Model and in Oligodendrocyte Precursor Cells Results in Downregulation of Genes Involved in Oligodendrocyte Differentiation and Myelin Formation

    PubMed Central

    Cheishvili, David; Dietrich, Paula; Maayan, Channa; Even, Aviel; Weil, Miguel; Dragatsis, Ioannis; Razin, Aharon

    2014-01-01

    The splice site mutation in the IKBKAP gene coding for IKAP protein leads to the tissue-specific skipping of exon 20, with concomitant reduction in IKAP protein production. This causes the neurodevelopmental, autosomal-recessive genetic disorder - Familial Dysautonomia (FD). The molecular hallmark of FD is the severe reduction of IKAP protein in the nervous system that is believed to be the main reason for the devastating symptoms of this disease. Our recent studies showed that in the brain of two FD patients, genes linked to oligodendrocyte differentiation and/or myelin formation are significantly downregulated, implicating IKAP in the process of myelination. However, due to the scarcity of FD patient tissues, these results awaited further validation in other models. Recently, two FD mouse models that faithfully recapitulate FD were generated, with two types of mutations resulting in severely low levels of IKAP expression. Here we demonstrate that IKAP deficiency in these FD mouse models affects a similar set of genes as in FD patients' brains. In addition, we identified two new IKAP target genes involved in oligodendrocyte cells differentiation and myelination, further underscoring the essential role of IKAP in this process. We also provide proof that IKAP expression is needed cell-autonomously for the regulation of expression of genes involved in myelin formation since knockdown of IKAP in the Oli-neu oligodendrocyte precursor cell line results in similar deficiencies. Further analyses of these two experimental models will compensate for the lack of human postmortem tissues and will advance our understanding of the role of IKAP in myelination and the disease pathology. PMID:24760006

  17. Combined extrinsic and intrinsic manipulations exert complementary neuronal enrichment in embryonic rat neural precursor cultures: an in vitro and in vivo analysis.

    PubMed

    Furmanski, Orion; Gajavelli, Shyam; Lee, Jeung Woon; Collado, Maria E; Jergova, Stanislava; Sagen, Jacqueline

    2009-07-01

    Numerous central nervous system (CNS) disorders share a common pathology in dysregulation of gamma-aminobutyric acid (GABA) inhibitory signaling. Transplantation of GABA-releasing cells at the site of disinhibition holds promise for alleviating disease symptoms with fewer side effects than traditional drug therapies. We manipulated fibroblast growth factor (FGF)-2 deprivation and mammalian achaete-scute homolog (MASH)1 transcription factor levels in an attempt to amplify the default GABAergic neuronal fate in cultured rat embryonic neural precursor cells (NPCs) for use in transplantation studies. Naïve and MASH1 lentivirus-transduced NPCs were maintained in FGF-2 or deprived of FGF-2 for varying lengths of time. Immunostaining and quantitative analysis showed that GABA- and beta-III-tubulin-immunoreactive cells generally decreased through successive passages, suggesting a loss of neurogenic potential in rat neurospheres expanded in vitro. However, FGF-2 deprivation resulted in a small, but significantly increased population of GABAergic cells derived from passaged neurospheres. In contrast to naïve and GFP lentivirus-transduced clones, MASH1 transduction resulted in increased bromodeoxyuridine (BrdU) incorporation and clonal colony size. Western blotting showed that MASH1 overexpression and FGF-2 deprivation additively increased beta-III-tubulin and decreased cyclic nucleotide phosphodiesterase (CNPase) expression, whereas FGF-2 deprivation alone attenuated glial fibrillary acidic protein (GFAP) expression. These results suggest that low FGF-2 signaling and MASH1 activity can operate in concert to enrich NPC cultures for a GABA neuronal phenotype. When transplanted into the adult rat spinal cord, this combination also yielded GABAergic neurons. These findings indicate that, even for successful utilization of the default GABAergic neuronal precursor fate, a combination of both extrinsic and intrinsic manipulations will likely be necessary to realize the full

  18. Development of Alzheimer-disease neuroimaging-biomarkers using mouse models with amyloid-precursor protein-transgene expression.

    PubMed

    Teipel, Stefan J; Buchert, Ralph; Thome, Johannes; Hampel, Harald; Pahnke, Jens

    2011-12-01

    There are important recent developments in Alzheimer's disease (AD) translational research, especially with respect to the imaging of amyloid pathology in vivo using MRI and PET technologies. Here we exploit the most widely used transgenic mouse models of amyloid pathology in order to relate the imaging findings to our knowledge about the histopathological phenotype of these models. The development of new diagnostic criteria of AD necessitates the use of biological markers to diagnose AD even in the absence of overt dementia or early symptomatic mild cognitive impairment. The validity of the diagnosis will depend on the availability of an in vivo marker to reflect underlying neurobiological changes of AD. Transgenic models with essential features of AD pathology and mechanisms provide a test setting for the development and evaluation of new biological imaging markers. Among the best established imaging markers of amyloid pathology in transgenic animals are high-field MRI of brain atrophy, proton spectroscopy of neurochemical changes, high-field MRI of amyloid plaque load, and in vivo plaque imaging using radio-labelled ligands with PET. We discuss the implications of the findings as well as the methodological limitations and the specific requirements of these technologies. We furthermore outline future directions of transgene-imaging research. Transgene imaging is an emerging area of translational research that implies strong multi- and interdisciplinary collaborations. It will become ever more valuable with the introduction of new diagnostic standards and novel treatment approaches which will require valid and reliable biological markers to improve the diagnosis and early treatment of AD patients.

  19. BarTeL, a Genetically Versatile, Bioluminescent and Granule Neuron Precursor-Targeted Mouse Model for Medulloblastoma

    PubMed Central

    Mahdi, Min Y.; Gonzalez-Gomez, Ignacio; Asgharzadeh, Shahab; D’Apuzzo, Massimo; Erdreich-Epstein, Anat; Moats, Rex A.

    2016-01-01

    Medulloblastomas are the most common malignant pediatric brain tumor and have been divided into four major molecular subgroups. Animal models that mimic the principal molecular aberrations of these subgroups will be important tools for preclinical studies and allow greater understanding of medulloblastoma biology. We report a new transgenic model of medulloblastoma that possesses a unique combination of desirable characteristics including, among others, the ability to incorporate multiple and variable genes of choice and to produce bioluminescent tumors from a limited number of somatic cells within a normal cellular environment. This model, termed BarTeL, utilizes a Barhl1 homeobox gene promoter to target expression of a bicistronic transgene encoding both the avian retroviral receptor TVA and an eGFP-Luciferase fusion protein to neonatal cerebellar granule neuron precursor (cGNP) cells, which are cells of origin for the sonic hedgehog (SHH) subgroup of human medulloblastomas. The Barhl1 promoter-driven transgene is expressed strongly in mammalian cGNPs and weakly or not at all in mature granule neurons. We efficiently induced bioluminescent medulloblastomas expressing eGFP-luciferase in BarTeL mice by infection of a limited number of somatic cGNPs with avian retroviral vectors encoding the active N-terminal fragment of SHH and a stabilized MYCN mutant. Detection and quantification of the increasing bioluminescence of growing tumors in young BarTeL mice was facilitated by the declining bioluminescence of their uninfected maturing cGNPs. Inclusion of eGFP in the transgene allowed enriched sorting of cGNPs from neonatal cerebella. Use of a single bicistronic avian vector simultaneously expressing both Shh and Mycn oncogenes increased the medulloblastoma incidence and aggressiveness compared to mixed virus infections. Bioluminescent tumors could also be produced by ex vivo transduction of neonatal BarTeL cerebellar cells by avian retroviruses and subsequent

  20. BarTeL, a Genetically Versatile, Bioluminescent and Granule Neuron Precursor-Targeted Mouse Model for Medulloblastoma.

    PubMed

    Shackleford, Gregory M; Shi, Xiang-He; Swanson, Kimberly S; Mahdi, Min Y; Gonzalez-Gomez, Ignacio; Asgharzadeh, Shahab; D'Apuzzo, Massimo; Erdreich-Epstein, Anat; Moats, Rex A

    2016-01-01

    Medulloblastomas are the most common malignant pediatric brain tumor and have been divided into four major molecular subgroups. Animal models that mimic the principal molecular aberrations of these subgroups will be important tools for preclinical studies and allow greater understanding of medulloblastoma biology. We report a new transgenic model of medulloblastoma that possesses a unique combination of desirable characteristics including, among others, the ability to incorporate multiple and variable genes of choice and to produce bioluminescent tumors from a limited number of somatic cells within a normal cellular environment. This model, termed BarTeL, utilizes a Barhl1 homeobox gene promoter to target expression of a bicistronic transgene encoding both the avian retroviral receptor TVA and an eGFP-Luciferase fusion protein to neonatal cerebellar granule neuron precursor (cGNP) cells, which are cells of origin for the sonic hedgehog (SHH) subgroup of human medulloblastomas. The Barhl1 promoter-driven transgene is expressed strongly in mammalian cGNPs and weakly or not at all in mature granule neurons. We efficiently induced bioluminescent medulloblastomas expressing eGFP-luciferase in BarTeL mice by infection of a limited number of somatic cGNPs with avian retroviral vectors encoding the active N-terminal fragment of SHH and a stabilized MYCN mutant. Detection and quantification of the increasing bioluminescence of growing tumors in young BarTeL mice was facilitated by the declining bioluminescence of their uninfected maturing cGNPs. Inclusion of eGFP in the transgene allowed enriched sorting of cGNPs from neonatal cerebella. Use of a single bicistronic avian vector simultaneously expressing both Shh and Mycn oncogenes increased the medulloblastoma incidence and aggressiveness compared to mixed virus infections. Bioluminescent tumors could also be produced by ex vivo transduction of neonatal BarTeL cerebellar cells by avian retroviruses and subsequent

  1. Data on amyloid precursor protein accumulation, spontaneous physical activity, and motor learning after traumatic brain injury in the triple-transgenic mouse model of Alzheimer׳s disease.

    PubMed

    Kishimoto, Yasushi; Shishido, Hajime; Sawanishi, Mayumi; Toyota, Yasunori; Ueno, Masaki; Kubota, Takashi; Kirino, Yutaka; Tamiya, Takashi; Kawai, Nobuyuki

    2016-12-01

    This data article contains supporting information regarding the research article entitled "Traumatic brain injury accelerates amyloid-β deposition and impairs spatial learning in the triple-transgenic mouse model of Alzheimer׳s disease" (H. Shishido, Y. Kishimoto, N. Kawai, Y. Toyota, M. Ueno, T. Kubota, Y. Kirino, T. Tamiya, 2016) [1]. Triple-transgenic (3×Tg)-Alzheimer׳s disease (AD) model mice exhibited significantly poorer spatial learning than sham-treated 3×Tg-AD mice 28 days after traumatic brain injury (TBI). Correspondingly, amyloid-β (Aβ) deposition within the hippocampus was significantly greater in 3×Tg-AD mice 28 days after TBI. However, data regarding the short-term and long-term influences of TBI on amyloid precursor protein (APP) accumulation in AD model mice remain limited. Furthermore, there is little data showing whether physical activity and motor learning are affected by TBI in AD model mice. Here, we provide immunocytochemistry data confirming that TBI induces significant increases in APP accumulation in 3×Tg-AD mice at both 7 days and 28 days after TBI. Furthermore, 3×Tg-AD model mice exhibit a reduced ability to acquire conditioned responses (CRs) during delay eyeblink conditioning compared to sham-treated 3×Tg-AD model mice 28 days after TBI. However, physical activity and motor performance are not significantly changed in TBI-treated 3×Tg-AD model mice.

  2. CXCR7 Participates in CXCL12-mediated Cell Cycle and Proliferation Regulation in Mouse Neural Progenitor Cells

    PubMed Central

    Wang, Y.; Xu, P.; Qiu, L.; Zhang, M.; Huang, Y.; Zheng, J.C.

    2016-01-01

    Background: Cell cycle regulation of neural progenitor cells (NPCs) is an essential process for neurogenesis, neural development, and repair after brain trauma. Stromal cell-derived factor-1 (SDF-1, CXCL12) and its receptors CXCR4 and CXCR7 are well known in regulating the migration and survival of NPCs. The effects of CXCL12 on NPCs proliferation, cell cycle regulation, and their associated signaling pathways remain unclear. Cyclin D1 is a protein required for progression through the G1 phase of the cell cycle and a known downstream target of β-catenin. Therefore, cyclin D1 plays critical roles of cell cycle regulation, proliferation, and survival in NPCs. Methods: Primary mouse NPCs (mNPCs) were derived from brain tissues of wild-type, Cxcr4 knockout, or Cxcr7 knockout mice at mouse embryonic day 13.5 (E13.5). Flow cytometry was used to perform cell cycle analysis by quantitation of DNA content. Real-time PCR and Western blot were used to evaluate mRNA and protein expressions, respectively. Ki67 immunostaining and TUNEL assay were used to assess the proliferation and survival of mNPCs, respectively. Results: CXCL12 pretreatment led to the shortening of G0/G1 phase and lengthening of S phase, suggesting that CXCL12 regulates cell cycle progression in mNPCs. Consistently, CXCL12 treatment increased the expression of CyclinD1 and β-catenin, and promoted proliferation and survival of mNPCs. Cxcr7 knockout of mNPCs blocked CXCL12-mediated mNPCs proliferation, whereas Cxcr4 knockout mNPC did not significantly effect CXCL12- mediated mNPCs proliferation. Conclusion: CXCR7 plays an important role in CXCL12-mediated mNPC cell cycle regulation and proliferation. PMID:27573194

  3. In vitro study of the long-term cortisol treatment effects on the growth rate and proliferation of the neural stem/precursor cells.

    PubMed

    Abdanipour, Alireza; Sagha, Mohsen; Noori-Zadeh, Ali; Pakzad, Iraj; Tiraihi, Taki

    2015-02-01

    Adult neural stem/precursor cells (NSPCs) residing in the subventricular zone of the lateral ventricles and the subgranular zone of the dentate gyrus of the hippocampus are involved in the memory formations and psychological problems. It is believed that basal levels of glucocorticoids are essential for neuronal development, plasticity, and survival, while stress-mediated levels of glucocorticoids produce neuronal loss. Degeneration of NSPCs by the apoptotic and necrotic stimuli have great devastating outcomes on the brain and contributes to the pathophysiology of neurological as well as psychological disorders. Using MTT assay, acridine orange, and TUNEL assay, we have demonstrated that cortisol at high and excessive (more than 5 μM) levels had anti-proliferative effects on the NSPCs derived from subventricular and subgranular zones in a dose- and time-dependent manner through apoptosis as well as necrosis. These outcomes can highlight the role of stress-mediated decline of adult neurogenesis in the aging brain and interconnect stress-mediated cortisol secretion with brain aging diseases.

  4. Accumulated quiescent neural stem cells in adult hippocampus of the mouse model for the MECP2 duplication syndrome

    PubMed Central

    Chen, Zhifang; Li, Xiao; Zhou, Jingjing; Yuan, Bo; Yu, Bin; Tong, Dali; Cheng, Cheng; Shao, Yinqi; Xia, Shengnan; Zhang, Ran; Lyu, Jingwen; Yu, Xiuya; Dong, Chen; Zhou, Wen-Hao; Qiu, Zilong

    2017-01-01

    Duplications of Methyl CpG binding protein 2 (MECP2) -containing segments lead to the MECP2 duplication syndrome, in which severe autistic symptoms were identified. Whether adult neurogenesis may play a role in pathogenesis of autism and the role of MECP2 on state determination of adult neural stem cells (NSCs) remain largely unclear. Using a MECP2 transgenic (TG) mouse model for the MECP2 duplication syndrome, we found that adult hippocampal quiescent NSCs were significantly accumulated in TG mice comparing to wild type (WT) mice, the neural progenitor cells (NPCs) were reduced and the neuroblasts were increased in adult hippocampi of MECP2 TG mice. Interestingly, we found that parvalbumin (PV) positive interneurons were significantly decreased in MECP2 TG mice, which were critical for determining fates of adult hippocampal NSCs between the quiescence and activation. In summary, we found that MeCP2 plays a critical role in regulating fate determination of adult NSCs. These evidences further suggest that abnormal development of NSCs may play a role in the pathogenesis of the MECP2 duplication syndrome. PMID:28139724

  5. Brain transplantation of genetically engineered human neural stem cells globally corrects brain lesions in the mucopolysaccharidosis type VII mouse.

    PubMed

    Meng, Xing-Li; Shen, Jin-Song; Ohashi, Toya; Maeda, Hiroshi; Kim, Seung Up; Eto, Yoshikatsu

    2003-10-15

    In the present study, we investigated the feasibility of using human neural stem cells (NSCs) in the treatment of diffuse central nervous system (CNS) alterations in a murine model of mucopolysaccharidosis VII (MPS VII), a lysosomal storage disease caused by a genetic defect in the beta-glucuronidase gene. An immortalized NSC line derived from human fetal telencephalon was genetically engineered to overexpress beta-glucuronidase and transplanted into the cerebral ventricles of neonatal MPS VII mouse. Transplanted human NSCs were found to integrate and migrate in the host brain and to produce large amount of beta-glucuronidase. Brain contents of the substrates of beta-glucuronidase were reduced to nearly normal levels, and widespread clearing of lysosomal storage was observed in the MPS VII mouse brain at 25 days posttransplantation. The number of engrafted cells decreased markedly after the transplantation, and it appears that the major cause of the cell death was not the immune response of the host but apoptotic cell death of grafted human NSCs. Results showed that human NSCs would serve as a useful gene transfer vehicle for the treatment of diffuse CNS lesions in human lysosomal storage diseases and are potentially applicable in the treatment of patients suffering from neurological disorders.

  6. Magnesium regulates neural stem cell proliferation in the mouse hippocampus by altering mitochondrial function.

    PubMed

    Jia, Shanshan; Mou, Chengzhi; Ma, Yihe; Han, Ruijie; Li, Xue

    2016-04-01

    In the adult brain, neural stem cells from the subgranular zone (SGZ) of the hippocampus and the subventricular zone (SVZ) of the cortex progress through the following five developmental stages: radial glia-like cells, neural progenitor cells, neuroblasts, immature neurons, and mature neurons. These developmental stages are linked to both neuronal microenvironments and energy metabolism. Neurogenesis is restricted and has been demonstrated to arise from tissue microenvironments. We determined that magnesium, a key nutrient in cellular energy metabolism, affects neural stem cell (NSC) proliferation in cells derived from the embryonic hippocampus by influencing mitochondrial function. Densities of proliferating cells and NSCs both showed their highest values at 0.8 mM [Mg(2+) ]o , whereas lower proliferation rates were observed at 0.4 and 1.4 mM [Mg(2+) ]o . The numbers and sizes of the neurospheres reached the maximum at 0.8 mM [Mg(2+) ]o and were weaker under both low (0.4 mM) and high (1.4 mM) concentrations of magnesium. In vitro experimental evidence demonstrates that extracellular magnesium regulates the number of cultured hippocampal NSCs, affecting both magnesium homeostasis and mitochondrial function. Our findings indicate that the effect of [Mg(2+) ]o on NSC proliferation may lie downstream of alterations in mitochondrial function because mitochondrial membrane potential was highest in the NSCs in the moderate [Mg(2+) ]o (0.8 mM) group and lower in both the low (0.4 mM) and high (1.4 mM) [Mg(2+) ]o groups. Overall, these findings demonstrate a new function for magnesium in the brain in the regulation of hippocampal neural stem cells: affecting their cellular energy metabolism.

  7. Understanding the causes and prevention of neural tube defects: Insights from the splotch mouse model.

    PubMed

    Greene, Nicholas D E; Massa, Valentina; Copp, Andrew J

    2009-04-01

    Splotch mutant mice develop neural tube defects (NTDs), comprising exencephaly and/or spina bifida, as well as neural crest-related defects and abnormalities of limb musculature. Defects in splotch mice result from mutations in Pax3, and some human NTDs may also result from mutations in the human PAX3 gene. Pax3 encodes a transcription factor whose function may influence expression of multiple downstream genes associated with a variety of cellular properties (including apoptosis, adhesion, proliferation, and differentiation), that could be important for neural tube closure. The frequency of NTDs varies between mutant alleles and is also influenced by genetic background and environmental factors. Notably, splotch provides a model for folic acid-preventable NTDs, and conversely, dietary folate deficiency exacerbates NTDs. Understanding the molecular and cellular basis of splotch NTDs, as well as the mechanisms by which the frequency of defects is influenced by genetic and environmental factors (such as sub-optimal folate status), may provide insight into the causation of these severe congenital malformations in humans.

  8. Distributed Features of Vimentin-Containing Neural Precursor Cells in Olfactory Bulb of SOD1G93A Transgenic Mice: a Study about Resource of Endogenous Neural Stem Cells

    PubMed Central

    Tang, Chunyan; Zhu, Lei; Gan, Weiming; Liang, Huiting; Li, Jiao; Zhang, Jie; Zhang, Xiong; Lu, Yi; Xu, Renshi

    2016-01-01

    No any effective treatments can prevent from the motor neuron degeneration in amyotrophic lateral sclerosis (ALS) at present. In order to modulating the endogenous neural precursor cells (NPCs) to repairing the degenerative motor neurons in ALS, we studied the alteration of endogenous vimentin-containing NPCs in olfactory bulb (OB) at the different stages of SOD1 wlid-type and G93A transgenic mice. The results showed that the vimentin-containing cells (VCCs) were mainly distributed in the glomerular layer (Gl), the accessory OB (AOB), the OB core, the granular cell layer (GRO) and the mitral cell layer (MI)+the internal plexiform layer (IPL) of the OB of adult mice. Almost all VCCs in Gl, OB core and GRO were the GFAP positive cells. Almost all VCCs in AOB were the Oligo-2 positive cells. Fewer VCCs in MI+IPL were the NeuN positive cells. VCCs significantly increased in the OB core and Gl of adult OB at the pre-onset, onset and progression stages of ALS-like G93A transgenic disease, particularly in OB core. All increased VCCs were the GFAP positive cells. Our data suggested that there extensively existed the endogenous vimentin-containing NPCs in the OB of adult mice, which was a potential resource of neural stem cells, they could differentiate into astrocyte, oligodendrocyte and neuron cells, were a potential astrocyte neuroregenerative response in adult OB in the ALS-like disease, were a potential pathway to repair the degenerated motor neurons. PMID:27994506

  9. Influence of random and oriented electrospun fibrous poly(lactic-co-glycolic acid) scaffolds on neural differentiation of mouse embryonic stem cells.

    PubMed

    Sperling, Laura E; Reis, Karina P; Pozzobon, Laura G; Girardi, Carolina S; Pranke, Patricia

    2017-05-01

    Engineering neural tissue by combining biodegradable materials, cells and growth factors is a promising strategy for the treatment of central and peripheral nervous system injuries. In this study, neural differentiation of mouse embryonic stem cells (mESCs) was investigated in combination with three dimensional (3D) electrospun nanofibers as a substitute for the extracellular matrix (ECM). Nano/microfibrous poly(lactic-co-glycolic acid) (PLGA) 3D scaffolds were fabricated through electrospinning and characterized. The scaffolds consisted of either a randomly oriented or an aligned structure of PLGA fibers. The mESCs were induced to differentiate into neuronal lineage and the effect of the polymer and fiber orientation on cell survival, morphology and differentiation efficiency was studied. The neural progenitors derived from the mESCs could survive and migrate onto the fibrous scaffolds. Aligned fibers provided more contact guidance with the neurites preferentially extending along the long axis of fiber. The mESCs differentiated into neural lineages expressing neural markers as seen by the immunocytochemistry. The nestin and beta3-tubulin expression was enhanced on the PLGA aligned fibers in comparison with the other groups, as seen by the quantitative analysis. Taken together, a combination of electrospun fiber scaffolds and mESC derived neural progenitor cells could provide valuable information about the effects of topology on neural differentiation and axonal regeneration. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1333-1345, 2017.

  10. Transplanted Glial Restricted Precursor Cells Improve Neurobehavioral and Neuropathological Outcomes in a Mouse Model of Neonatal White Matter Injury Despite Limited Cell Survival

    PubMed Central

    Porambo, Michael; Phillips, Andre W.; Marx, Joel; Ternes, Kylie; Arauz, Edwin; Pletnikov, Mikhail; Wilson, Mary Ann; Rothstein, Jeffery D.; Johnston, Michael V.; Fatemi, Ali

    2014-01-01

    Objective Neonatal White Matter Injury (NWMI) is the leading cause of cerebral palsy and other neurocognitive deficits in prematurely-born children, and no restorative therapies exist. Our objective was to determine the fate and effect of glial restricted precursor cell (GRP) transplantation in an ischemic mouse model of NWMI. Methods Neonatal CD-1 mice underwent unilateral carotid artery ligation on postnatal-day 5 (P5). At P22, intracallosal injections of either eGFP+ GRPs or saline were performed in control and ligated mice. Neurobehavioral and postmortem studies were performed at four and eight weeks post-transplantation. Results GRP survival was comparable at one month but significantly lower at two months post-transplantation in NWMI mice compared to unligated controls. Surviving cells showed better migration capability in controls; however, the differentiation capacity of transplanted cells was similar in control and NWMI. Saline-treated NWMI mice showed significantly altered response in startle amplitude and pre-pulse inhibition paradigms compared to unligated controls, while these behavioral tests were completely normal in GRP-transplanted animals. Similarly, there was significant increase in hemispheric myelin basic protein density, along with significant decrease in pathologic axonal staining in cell-treated NWMI mice compared to saline-treated NWMI animals. Interpretation The Reduced long-term survival and migration of transplanted GRPs in an ischemia-induced NWMI model suggests that neonatal ischemia leads to long-lasting detrimental effects on oligodendroglia even months after the initial insult. Despite limited GRP-survival, behavioral and neuropathological outcomes were improved after GRP-transplantation. Our results suggest that exogenous GRPs improve myelination through trophic effects in addition to differentiation into mature oligodendrocytes. PMID:25377280

  11. Early in vivo Effects of the Human Mutant Amyloid-β Protein Precursor (hAβPPSwInd) on the Mouse Olfactory Bulb.

    PubMed

    Rusznák, Zoltán; Kim, Woojin Scott; Hsiao, Jen-Hsiang T; Halliday, Glenda M; Paxinos, George; Fu, YuHong

    2016-01-01

    The amyloid-β protein precursor (AβPP) has long been linked to Alzheimer's disease (AD). Using J20 mice, which express human AβPP with Swedish and Indiana mutations, we studied early pathological changes in the olfactory bulb. The presence of AβPP/amyloid-β (Aβ) was examined in mice aged 3 months (before the onset of hippocampal Aβ deposition) and over 5 months (when hippocampal Aβ deposits are present). The number of neurons, non-neurons, and proliferating cells was assessed using the isotropic fractionator method. Our results demonstrate that although AβPP is overexpressed in some of the mitral cells, widespread Aβ deposition and microglia aggregates are not prevalent in the olfactory bulb. The olfactory bulbs of the younger J20 group harbored significantly fewer neurons than those of the age-matched wild-type mice (5.57±0.13 million versus 6.59±0.36 million neurons; p = 0.011). In contrast, the number of proliferating cells was higher in the young J20 than in the wild-type group (i.e., 6617±425 versus 4455±623 cells; p = 0.011). A significant increase in neurogenic activity was also observed in the younger J20 olfactory bulb. In conclusion, our results indicate that (1) neurons participating in the mouse olfactory function overexpress AβPP; (2) the cellular composition of the young J20 olfactory bulb is different from that of wild-type littermates; (3) these differences may reflect altered neurogenic activity and/or delayed development of the J20 olfactory system; and (4) AβPP/Aβ-associated pathological changes that take place in the J20 hippocampus and olfactory bulb are not identical.

  12. Intra-hippocampal transplantation of neural precursor cells with transgenic over-expression of IL-1 receptor antagonist rescues memory and neurogenesis impairments in an Alzheimer's disease model.

    PubMed

    Ben-Menachem-Zidon, Ofra; Ben Menachem-Zidon, Ofra; Ben-Menahem, Yair; Ben-Hur, Tamir; Yirmiya, Raz

    2014-01-01

    Ample evidence implicates neuroinflammatory processes in the etiology and progression of Alzheimer's disease (AD). To assess the specific role of the pro-inflammatory cytokine interleukin-1 (IL-1) in AD we examined the effects of intra-hippocampal transplantation of neural precursor cells (NPCs) with transgenic over-expression of IL-1 receptor antagonist (IL-1raTG) on memory functioning and neurogenesis in a murine model of AD (Tg2576 mice). WT NPCs- or sham-transplanted Tg2576 mice, as well as naive Tg2576 and WT mice served as controls. To assess the net effect of IL-1 blockade (not in the context of NPCs transplantation), we also examined the effects of chronic (4 weeks) intra-cerebroventricular (i.c.v.) administration of IL-1ra. We report that 12-month-old Tg2576 mice exhibited increased mRNA expression of hippocampal IL-1β, along with severe disturbances in hippocampal-dependent contextual and spatial memory as well as in neurogenesis. Transplantation of IL-1raTG NPCs 1 month before the neurobehavioral testing completely rescued these disturbances and significantly increased the number of endogenous hippocampal cells expressing the plasticity-related molecule BDNF. Similar, but less-robust effects were also produced by transplantation of WT NPCs and by i.c.v. IL-1ra administration. NPCs transplantation produced alterations in hippocampal plaque formation and microglial status, which were not clearly correlated with the cognitive effects of this procedure. The results indicate that elevated levels of hippocampal IL-1 are causally related to some AD-associated memory disturbances, and provide the first example for the potential use of genetically manipulated NPCs with anti-inflammatory properties in the treatment of AD.

  13. Critical role of astrocytic interleukin-17 A in post-stroke survival and neuronal differentiation of neural precursor cells in adult mice

    PubMed Central

    Lin, Y; Zhang, J-C; Yao, C-Y; Wu, Y; Abdelgawad, A F; Yao, S-L; Yuan, S-Y

    2016-01-01

    The brain and the immune system interact in complex ways after ischemic stroke, and the long-term effects of immune response associated with stroke remain controversial. As a linkage between innate and adaptive immunity, interleukin-17 A (IL-17 A) secreted from gamma delta (γδ) T cells has detrimental roles in the pathogenesis of acute ischemic stroke. However, to date, the long-term actions of IL-17 A after stroke have not been investigated. Here, we found that IL-17 A showed two distinct peaks of expression in the ischemic hemisphere: the first occurring within 3 days and the second on day 28 after stroke. Our data also showed that astrocyte was the major cellular source of IL-17 A that maintained and augmented subventricular zone (SVZ) neural precursor cells (NPCs) survival, neuronal differentiation, and subsequent synaptogenesis and functional recovery after stroke. IL-17 A also promoted neuronal differentiation in cultured NPCs from the ischemic SVZ. Furthermore, our in vitro data revealed that in primary astrocyte cultures activated astrocytes released IL-17 A via p38 mitogen-activated protein kinase (MAPK). Culture media from reactive astrocytes increased neuronal differentiation of NSCs in vitro. Blockade of IL-17 A with neutralizing antibody prevented this effect. In addition, after screening for multiple signaling pathways, we revealed that the p38 MAPK/calpain 1 signaling pathway was involved in IL-17 A-mediated neurogenesis in vivo and in vitro. Thus, our results reveal a previously uncharacterized property of astrocytic IL-17 A in the maintenance and augment of survival and neuronal differentiation of NPCs, and subsequent synaptogenesis and spontaneous recovery after ischemic stroke. PMID:27336717

  14. OTX2 exhibits cell-context-dependent effects on cellular and molecular properties of human embryonic neural precursors and medulloblastoma cells.

    PubMed

    Kaur, Ravinder; Aiken, Christopher; Morrison, Ludivine Coudière; Rao, Radhika; Del Bigio, Marc R; Rampalli, Shravanti; Werbowetski-Ogilvie, Tamra

    2015-10-01

    Medulloblastoma (MB) is the most common malignant primary pediatric brain tumor and is currently divided into four subtypes based on different genomic alterations, gene expression profiles and response to treatment: WNT, Sonic Hedgehog (SHH), Group 3 and Group 4. This extensive heterogeneity has made it difficult to assess the functional relevance of genes to malignant progression. For example, expression of the transcription factor Orthodenticle homeobox2 (OTX2) is frequently dysregulated in multiple MB variants; however, its role may be subtype specific. We recently demonstrated that neural precursors derived from transformed human embryonic stem cells (trans-hENs), but not their normal counterparts (hENs), resemble Groups 3 and 4 MB in vitro and in vivo. Here, we tested the utility of this model system as a means of dissecting the role of OTX2 in MB using gain- and loss-of-function studies in hENs and trans-hENs, respectively. Parallel experiments with MB cells revealed that OTX2 exerts inhibitory effects on hEN and SHH MB cells by regulating growth, self-renewal and migration in vitro and tumor growth in vivo. This was accompanied by decreased expression of pluripotent genes, such as SOX2, and was supported by overexpression of SOX2 in OTX2+ SHH MB and hENs that resulted in significant rescue of self-renewal and cell migration. By contrast, OTX2 is oncogenic and promotes self-renewal of trans-hENs and Groups 3 and 4 MB independent of pluripotent gene expression. Our results demonstrate a novel role for OTX2 in self-renewal and migration of hENs and MB cells and reveal a cell-context-dependent link between OTX2 and pluripotent genes. Our study underscores the value of human embryonic stem cell derivatives as alternatives to cell lines and heterogeneous patient samples for investigating the contribution of key developmental regulators to MB progression.

  15. Changes in expression of the long non-coding RNA FMR4 associate with altered gene expression during differentiation of human neural precursor cells

    PubMed Central

    Peschansky, Veronica J.; Pastori, Chiara; Zeier, Zane; Motti, Dario; Wentzel, Katya; Velmeshev, Dmitry; Magistri, Marco; Bixby, John L.; Lemmon, Vance P.; Silva, José P.; Wahlestedt, Claes

    2015-01-01

    CGG repeat expansions in the Fragile X mental retardation 1 (FMR1) gene are responsible for a family of associated disorders characterized by either intellectual disability and autism Fragile X Syndrome (FXS), or adult-onset neurodegeneration Fragile X-associated Tremor/Ataxia Syndrome. However, the FMR1 locus is complex and encodes several long non-coding RNAs, whose expression is altered by repeat expansion mutations. The role of these lncRNAs is thus far unknown; therefore we investigated the functionality of FMR4, which we previously identified. “Full”-length expansions of the FMR1 triplet repeat cause silencing of both FMR1 and FMR4, thus we are interested in potential loss-of-function that may add to phenotypic manifestation of FXS. Since the two transcripts do not exhibit cis-regulation of one another, we examined the potential for FMR4 to regulate target genes at distal genomic loci using gene expression microarrays. We identified FMR4-responsive genes, including the methyl-CpG-binding domain protein 4 (MBD4). Furthermore, we found that in differentiating human neural precursor cells, FMR4 expression is developmentally regulated in opposition to expression of both FMR1 (which is expected to share a bidirectional promoter with FMR4) and MBD4. We therefore propose that FMR4’s function is as a gene-regulatory lncRNA and that this transcript may function in normal development. Closer examination of FMR4 increases our understanding of the role of regulatory lncRNA and the consequences of FMR1 repeat expansions. PMID:26322075

  16. Effects of aging on neural stem/progenitor cells and oligodendrocyte precursor cells after focal cerebral ischemia in spontaneously hypertensive rats

    PubMed Central

    Liang, Anna C.; Mandeville, Emiri T.; Maki, Takakuni; Shindo, Akihiro; Som, Angel T.; Egawa, Naohiro; Itoh, Kanako; Chuang, Tsu Tshen; McNeish, John D.; Holder, Julie C.; Lok, Josephine; Lo, Eng H.; Arai, Ken

    2017-01-01

    Aging and vascular comorbidities such as hypertension comprise critical co-factors that influence how the brain responds to stroke. Ischemic stress induces neurogenesis and oligodendrogenesis in younger brains. However, it remains unclear whether these compensatory mechanisms can be maintained even under pathologic hypertensive and aged states. To clarify the age-related remodeling capacity after stroke under hypertensive conditions, we assessed infarct volume, behavioral outcomes, and surrogate markers of neurogenesis and oligodendrogenesis in acute and sub-acute phases after transient focal cerebral ischemia in 3 month old and 12 month old spontaneously hypertensive rats (SHRs). Hematoxylin and eosin staining showed that 3 and 12 month old SHRs exhibited similar infarction volumes at both 3 and 14 days after focal cerebral ischemia. However, recovery of behavioral deficits (neurological score assessment and adhesive removal test) were significantly less in 12-month-old SHRs compared to 3-month-old SHRs. Concomitantly, numbers of nestin-positive neural stem/progenitor cells (NSPCs) near the infarct border area or subventricular zone in 12-moth-old SHRs were lower than 3-month-old SHRs at day 3. Similarly, numbers of PDGF-R-α-positive oligodendrocyte precursor cells (OPCs) in corpus callosum was lower in 12-month-old SHRs at day 3. Lower levels of NSPC and OPC numbers were accompanied by lower expression levels of CREB phosphorylation. By day 14 post-ischemia, NSPC and OPC numbers in 12-month-old SHRs recovered to similar levels as in 3-month-old SHRs. But the numbers of proliferating NSPCs (Ki67+nestin+ cells) and proliferating OPCs (Ki67+PDGF-R-α+ cells) remained lower in the older brains even at day 14. Taken together, these findings suggest that aging may also decrease post-stroke compensatory responses for neurogenesis and oligodendrogenesis even under hypertensive conditions. PMID:26811151

  17. Effects of Aging on Neural Stem/Progenitor Cells and Oligodendrocyte Precursor Cells After Focal Cerebral Ischemia in Spontaneously Hypertensive Rats.

    PubMed

    Liang, Anna C; Mandeville, Emiri T; Maki, Takakuni; Shindo, Akihiro; Som, Angel T; Egawa, Naohiro; Itoh, Kanako; Chuang, Tsu Tshen; McNeish, John D; Holder, Julie C; Lok, Josephine; Lo, Eng H; Arai, Ken

    2016-01-01

    Aging and vascular comorbidities such as hypertension comprise critical cofactors that influence how the brain responds to stroke. Ischemic stress induces neurogenesis and oligodendrogenesis in younger brains. However, it remains unclear whether these compensatory mechanisms can be maintained even under pathologically hypertensive and aged states. To clarify the age-related remodeling capacity after stroke under hypertensive conditions, we assessed infarct volume, behavioral outcomes, and surrogate markers of neurogenesis and oligodendrogenesis in acute and subacute phases after transient focal cerebral ischemia in 3- and 12-month-old spontaneously hypertensive rats (SHRs). Hematoxylin and eosin staining showed that 3- and 12-month-old SHRs exhibited similar infarction volumes at both 3 and 14 days after focal cerebral ischemia. However, recovery of behavioral deficits (neurological score assessment and adhesive removal test) was significantly less in 12-month-old SHRs compared to 3-month-old SHRs. Concomitantly, numbers of nestin(+) neural stem/progenitor cells (NSPCs) near the infarct border area or subventricular zone in 12-month-old SHRs were lower than 3-month-old SHRs at day 3. Similarly, numbers of PDGFR-α(+) oligodendrocyte precursor cells (OPCs) in the corpus callosum were lower in 12-month-old SHRs at day 3. Lower levels of NSPC and OPC numbers were accompanied by lower expression levels of phosphorylated CREB. By day 14 postischemia, NSPC and OPC numbers in 12-month-old SHRs recovered to similar levels as in 3-month-old SHRs, but the numbers of proliferating NSPCs (Ki-67(+)nestin(+) cells) and proliferating OPCs (Ki-67(+)PDGFR-α(+) cells) remained lower in the older brains even at day 14. Taken together, these findings suggest that aging may also decrease poststroke compensatory responses for neurogenesis and oligodendrogenesis even under hypertensive conditions.

  18. SDF-1/CXCR4 Signaling Maintains Stemness Signature in Mouse Neural Stem/Progenitor Cells

    PubMed Central

    Ling, Thai-Yen; Lin, Hsing-Yu; Liou, Jeffrey Tsai-Jui; Liu, Fei-Chih; Chen, I-Chun; Lee, Sue-Wei; Hsu, Yu

    2017-01-01

    SDF-1 and its primary receptor, CXCR4, are highly expressed in the embryonic central nervous system (CNS) and play a crucial role in brain architecture. Loss of SDF-1/CXCR4 signaling causes abnormal development of neural stem/progenitor cells (NSCs/NPCs) in the cerebellum, hippocampus, and cortex. However, the mechanism of SDF-1/CXCR4 axis in NSCs/NPCs regulation remains unknown. In this study, we found that elimination of SDF-1/CXCR4 transduction caused NSCs/NPCs to lose their stemness characteristics and to encounter neurogenic differentiation. Moreover, Notch and RE1 silencing transcription factor (REST) both play an essential role in NSCs/NPCs maintenance and neuronal differentiation and were dramatically downregulated following SDF-1/CXCR4 cascade inhibition. Finally, we demonstrated that the expression of achaete-scute homolog 1 (Ascl1), a proneural gene, and p27, an antiproliferative gene, were significantly increased after genetic elimination of SDF-1 alleles. Our results support that the loss of functional SDF-1/CXCR4 signaling pathway in NSCs/NPCs induces exit of cell cycle and promotes premature neural differentiation.

  19. Dynamic expression of a glutamate decarboxylase gene in multiple non-neural tissues during mouse development

    PubMed Central

    Maddox, Dennis M; Condie, Brian G

    2001-01-01

    Background Glutamate decarboxylase (GAD) is the biosynthetic enzyme for the neurotransmitter γ-aminobutyric acid (GABA). Mouse embryos lacking the 67-kDa isoform of GAD (encoded by the Gad1 gene) develop a complete cleft of the secondary palate. This phenotype suggests that this gene may be involved in the normal development of tissues outside of the CNS. Although Gad1 expression in adult non-CNS tissues has been noted previously, no systematic analysis of its embryonic expression outside of the nervous system has been performed. The objective of this study was to define additional structures outside of the central nervous system that express Gad1, indicating those structures that may require its function for normal development. Results Our analysis detected the localized expression of Gad1 transcripts in several developing tissues in the mouse embryo from E9.0-E14.5. Tissues expressing Gad1 included the tail bud mesenchyme, the pharyngeal pouches and arches, the ectodermal placodes of the developing vibrissae, and the apical ectodermal ridge (AER), mesenchyme and ectoderm of the limb buds. Conclusions Some of the sites of Gad1 expression are tissues that emit signals required for patterning and differentiation (AER, vibrissal placodes). Other sites correspond to proliferating stem cell populations that give rise to multiple differentiated tissues (tail bud mesenchyme, pharyngeal endoderm and mesenchyme). The dynamic expression of Gad1 in such tissues suggests a wider role for GABA signaling in development than was previously appreciated. PMID:11178105

  20. Synergistic decrease of DNA single-strand break repair rates in mouse neural cells lacking both Tdp1 and aprataxin

    PubMed Central

    El-Khamisy, Sherif F.; Katyal, Sachin; Patel, Poorvi; Ju, Limei; McKinnon, Peter J.; Caldecott, Keith W.

    2009-01-01

    Ataxia oculomotor apraxia-1 (AOA1) is an autosomal recessive neurodegenerative disease that results from mutations of aprataxin (APTX). APTX associates with the DNA single- and double-strand break repair machinery and is able to remove AMP from 5′-termini at DNA strand breaks in vitro. However, attempts to establish a DNA strand break repair defect in APTX-defective cells have proved conflicting and unclear. We reasoned that this may reflect that DNA strand breaks with 5′-AMP represent only a minor subset of breaks induced in cells, and/or the availability of alternative mechanisms for removing AMP from 5′-termini. Here, we have attempted to increase the dependency of chromosomal single- and double-strand break repair on aprataxin activity by slowing the rate of repair of 3′-termini in aprataxin-defective neural cells, thereby increasing the likelihood that the 5′-termini at such breaks become adenylated and/or block alternative repair mechanisms. To do this, we generated a mouse model in which APTX is deleted together with tyrosyl DNA phosphodiesterase (TDP1), an enzyme that repairs 3′-termini at a subset of single-strand breaks (SSBs), including those with 3′-topoisomerase-1 (Top1) peptide. Notably, the global rate of repair of oxidative and alkylation-induced SSBs was significantly slower in Tdp1−/−/Aptx−/− double knockout quiescent mouse astrocytes compared with Tdp1−/− or Aptx−/− single knockouts. In contrast, camptothecin-induced Top1-SSBs accumulated to similar levels in Tdp1−/− and Tdp1−/−/Aptx−/− double knockout astrocytes. Finally, we failed to identify a measurable defect in double-strand break repair in Tdp1−/−, Aptx−/− or Tdp1−/−/Aptx−/− astrocytes. These data provide direct evidence for a requirement for aprataxin during chromosomal single-strand break repair in primary neural cells lacking Tdp1. PMID:19303373

  1. The ciliary proteins Meckelin and Jouberin are required for retinoic acid-dependent neural differentiation of mouse embryonic stem cells.

    PubMed

    Romani, Sveva; Illi, Barbara; De Mori, Roberta; Savino, Mauro; Gleeson, Joseph G; Valente, Enza Maria

    2014-01-01

    The dysfunction of the primary cilium, a complex, evolutionarily conserved, organelle playing an important role in sensing and transducing cell signals, is the unifying pathogenetic mechanism of a growing number of diseases collectively termed "ciliopathies", typically characterized by multiorgan involvement. Developmental defects of the central nervous system (CNS) characterize a subset of ciliopathies showing clinical and genetic overlap, such as Joubert syndrome (JS) and Meckel syndrome (MS). Although several knock-out mice lacking a variety of ciliary proteins have shown the importance of primary cilia in the development of the brain and CNS-derived structures, developmental in vitro studies, extremely useful to unravel the role of primary cilia along the course of neural differentiation, are still missing. Mouse embryonic stem cells (mESCs) have been recently proven to mimic brain development, giving the unique opportunity to dissect the CNS differentiation process along its sequential steps. In the present study we show that mESCs express the ciliary proteins Meckelin and Jouberin in a developmentally-regulated manner, and that these proteins co-localize with acetylated tubulin labeled cilia located at the outer embryonic layer. Further, mESCs differentiating along the neuronal lineage activate the cilia-dependent sonic hedgehog signaling machinery, which is impaired in Meckelin knock-out cells but results unaffected in Jouberin-deficient mESCs. However, both lose the ability to acquire a neuronal phenotype. Altogether, these results demonstrate a pivotal role of Meckelin and Jouberin during embryonic neural specification and indicate mESCs as a suitable tool to investigate the developmental impact of ciliary proteins dysfunction.

  2. Brevetoxin-Induced Neural Insult in the Retrosplenial Cortex of Mouse Brain

    PubMed Central

    Yan, Xiuzhen; Benson, Janet M.; Gomez, Andrea P.; Baden, Daniel G.; Murray, Thomas F.

    2008-01-01

    Brevetoxins (polyether breve toxins; PbTx) are polyether neurotoxins produced by the marine dinoflagellate Karenia brevis, an organism associated with red tide blooms in the Gulf of Mexico and along the Atlantic coast from Florida to North Carolina. Brevetoxin-3 (PbTx-3) is a major component of the array of brevetoxins found in marine aerosols measured along red tide affected beaches. Humans exposed to aerosolized brevetoxins for short periods of time often suffer a variety of adverse health effects. It was consequently of interest to assess the potential for aerosolized brevetoxin to produce a neurotoxic response. Female BALB/c mice were exposed nose-only for 2 consecutive days to PbTx-3 aerosol, with a 2-h exposure on the first day and a 4-h exposure on the second day. The average PbTx-3 exposure concentrations on days 1 and 2 were 312 ± 113 μg brevetoxin 3/m3 and 278± 24μg brevetoxin 3/m3, respectively. The brevetoxin-containing aerosol had a mass median aerodynamic diameter of 0.92μm with a geometric standard deviation of 1.38. Coronal sections of mouse brains were evaluated for neuronal damage using both silver and Fluoro-Jade B staining to identify degenerating neuronal elements. PbTx-3 inhalation exposure produced neuronal degeneration in the posterior cingu-late/retrosplenial cortex of mice as evidenced by silver-positive degenerating neurons in this region. No staining was found in other regions of the PBTx-3-exposed mouse brains or in brains of control, sham-exposed mice. The existence of a neurotoxic insult in PbTx-3-exposed mice was confirmed using Fluoro-Jade B to label degenerating neurons. Fluro-Jade-positive neurons were observed in the retrosplenial cortex of PBTx-3 exposed, but not control, mice. These results suggest that subacute exposure to PbTx-3 for 2 days is sufficient to induce neuronal degeneration in a discrete region of the mouse cerebral cortex. PMID:17043031

  3. Inositol prevents folate-resistant neural tube defects in the mouse.

    PubMed

    Greene, N D; Copp, A J

    1997-01-01

    Clinical trials demonstrate that up to 70% of neural tube defects (NTDs) can be prevented by folic acid supplementation in early pregnancy, whereas the remaining NTDs are resistant to folate. Here, we show that a second vitamin, myo-inositol, is capable of significantly reducing the incidence of spinal NTDs in curly tail mice, a genetic model of folate-resistant NTDs. Inositol increases flux through the inositol/lipid cycle, stimulating protein kinase C activity and upregulating expression of retinoic acid receptor beta, specifically in the caudal portion of the embryonic hindgut. This reduces the delay in closure of the posterior neuropore, the embryonic defect that is known to lead directly to spina bifida in curly tail embryos. Our findings reveal a molecular pathway of NTD prevention and suggest the possible efficacy of combined treatment with folate and inositol in overcoming the majority of human NTDs.

  4. Developmental and oncogenic radiation effects on neural stem cells and their differentiating progeny in mouse cerebellum.

    PubMed

    Tanori, Mirella; Pasquali, Emanuela; Leonardi, Simona; Casciati, Arianna; Giardullo, Paola; De Stefano, Ilaria; Mancuso, Mariateresa; Saran, Anna; Pazzaglia, Simonetta

    2013-11-01

    Neural stem cells are highly susceptible to radiogenic DNA damage, however, little is known about their mechanisms of DNA damage response (DDR) and the long-term consequences of genotoxic exposure. Patched1 heterozygous mice (Ptc1(+/-)) provide a powerful model of medulloblastoma (MB), a frequent pediatric tumor of the cerebellum. Irradiation of newborn Ptc1(+/-) mice dramatically increases the frequency and shortens the latency of MB. In this model, we investigated the mechanisms through which multipotent neural progenitors (NSCs) and fate-restricted progenitor cells (PCs) of the cerebellum respond to DNA damage induced by radiation, and the long-term developmental and oncogenic consequences. These responses were assessed in mice exposed to low (0.25 Gy) or high (3 Gy) radiation doses at embryonic day 13.5 (E13.5), when NSCs giving rise to the cerebellum are specified but the external granule layer (EGL) has not yet formed, or at E16.5, during the expansion of granule PCs to form the EGL. We found crucial differences in DDR and apoptosis between NSCs and fate-restricted PCs, including lack of p21 expression in NSCs. NSCs also appear to be resistant to oncogenesis from low-dose radiation exposure but more vulnerable at higher doses. In addition, the pathway to DNA repair and the pattern of oncogenic alterations were strongly dependent on age at exposure, highlighting a differentiation-stage specificity of DNA repair pathways in NSCs and PCs. These findings shed light on the mechanisms used by NSCs and PCs to maintain genome integrity during neurogenesis and may have important implications for radiation risk assessment and for development of targeted therapies against brain tumors.

  5. Transplantation of enteric neural stem/progenitor cells into the irradiated young mouse hippocampus.

    PubMed

    Osman, Ahmed M; Zhou, Kai; Zhu, Changlian; Blomgren, Klas

    2014-01-01

    Radiotherapy is an effective treatment for brain tumors but often results in cognitive deficits in survivors. Transplantation of embryonic or brain-derived neural stem/progenitor cells (BNSPCs) ameliorated cognitive impairment after irradiation (IR) in animal models. However, such an approach in patients requires a clinically relevant source of cells. We show for the first time the utilization of enteric neural stem/progenitor cells (ENSPCs) from the postnatal intestinal wall as a source of autologous cells for brain repair after injury caused by IR. Cells were isolated from the intestinal wall and propagated in vitro for 1 week. Differentiation assays showed that ENSPCs are multipotent and generated neurons, astrocytes, and myofibroblasts. To investigate whether ENSPCs can be used in vivo, postnatal day 9 mice were subjected to a single moderate irradiation dose (6 or 8 Gy). Twelve days later, mice received an intrahippocampal injection of syngeneic ENSPCs. Four weeks after transplantation, 0.5% and 1% of grafted ENSPCs were detected in the dentate gyrus of sham and irradiated animals, respectively, and only 0.1% was detected after 16 weeks. Grafted ENSPCs remained undifferentiated but failed to restore IR-induced loss of BNSPCs and the subsequent impaired growth of the dentate gyrus. We observed microglia activation, astrogliosis, and loss of granule neurons associated with grafted ENSPC clusters. Transplantation of ENSPCs did not ameliorate IR-induced impaired learning and memory. In summary, while autologous ENSPC grafting to the brain worked technically, even in the absence of immunosuppression, the protocols need to be modified to improve survival and integration.

  6. Structural basis for cholinergic regulation of neural circuits in the mouse olfactory bulb.

    PubMed

    Hamamoto, Masakazu; Kiyokage, Emi; Sohn, Jaerin; Hioki, Hiroyuki; Harada, Tamotsu; Toida, Kazunori

    2017-02-15

    Odor information is regulated by olfactory inputs, bulbar interneurons, and centrifugal inputs in the olfactory bulb (OB). Cholinergic neurons projecting from the nucleus of the horizontal limb of the diagonal band of Broca and the magnocellular preoptic nucleus are one of the primary centrifugal inputs to the OB. In this study, we focused on cholinergic regulation of the OB and analyzed neural morphology with a particular emphasis on the projection pathways of cholinergic neurons. Single-cell imaging of a specific neuron within dense fibers is critical to evaluate the structure and function of the neural circuits. We labeled cholinergic neurons by infection with virus vector and then reconstructed them three-dimensionally. We also examined the ultramicrostructure of synapses by electron microscopy tomography. To further clarify the function of cholinergic neurons, we performed confocal laser scanning microscopy to investigate whether other neurotransmitters are present within cholinergic axons in the OB. Our results showed the first visualization of complete cholinergic neurons, including axons projecting to the OB, and also revealed frequent axonal branching within the OB where it innervated multiple glomeruli in different areas. Furthermore, electron tomography demonstrated that cholinergic axons formed asymmetrical synapses with a morphological variety of thicknesses of the postsynaptic density. Although we have not yet detected the presence of other neurotransmitters, the range of synaptic morphology suggests multiple modes of transmission. The present study elucidates the ways that cholinergic neurons could contribute to the elaborate mechanisms involved in olfactory processing in the OB. J. Comp. Neurol. 525:574-591, 2017. © 2016 Wiley Periodicals, Inc.

  7. Neurobiology of obsessive-compulsive disorder: insights into neural circuitry dysfunction through mouse genetics.

    PubMed

    Ting, Jonathan T; Feng, Guoping

    2011-12-01

    The precise causal factors for obsessive-compulsive disorder (OCD) are not known, although, decades of research have honed in on the cortico-striatal-thalamo-cortical (CSTC) circuitry in the brain as a critical pathway involved in obsessions and the intimately linked compulsive-repetitive behaviors. Recent progress in human and mouse genetics have led to the identification of novel candidate susceptibility genes, which in turn have facilitated a more focused approach to unraveling the nature of circuitry dysfunction in OCD. The ability to perform invasive techniques in genetic animal models of OCD will be crucial for rapid advances in this field, and as such we review the most recent developments and highlight the importance of searching out common circuitry defects underlying compulsive-repetitive behaviors.

  8. 532 nm Low-Power Laser Irradiation Facilitates the Migration of GABAergic Neural Stem/Progenitor Cells in Mouse Neocortex

    PubMed Central

    Fukuzaki, Yumi; Shin, Hyeryun; Kawai, Hideki D.; Yamanoha, Banri; Kogure, Shinichi

    2015-01-01

    Background and Objective Accumulating evidence has shown that low-power laser irradiation (LLI) affects cell proliferation and survival, but little is known about LLI effects on neural stem/progenitor cells (NSPCs). Here we investigate whether transcranial 532 nm LLI affects NSPCs in adult murine neocortex and in neurospheres from embryonic mice. Study Design/Materials and Methods We applied 532 nm LLI (Nd:YVO4, CW, 60 mW) on neocortical surface via cranium in adult mice and on cultured cells from embryonic mouse brains in vitro to investigate the proliferation and migration of NSPCs and Akt expression using immunohistochemical assays and Western blotting techniques. Results In vivo experiments demonstrated that 532 nm LLI significantly facilitated the migration of GABAergic NSPCs that were induced to proliferate in layer 1 by mild ischemia. In vitro experiments using GABAergic NSPCs derived from embryonic day 14 ganglionic eminence demonstrated that 532 nm LLI for 60 min promoted the migration of GAD67-immunopositive NSPCs with a significant increase of Akt expression. Meanwhile, the LLI induced proliferation, but not migration, of NSPCs that give rise to excitatory neurons. Conclusion It is concluded that 532 nm LLI promoted the migration of GABAergic NSPCs into deeper layers of the neocortex in vivo by elevating Akt expression. PMID:25919297

  9. Preservation of positional identity in fetus-derived neural stem (NS) cells from different mouse central nervous system compartments.

    PubMed

    Onorati, Marco; Binetti, Maurizio; Conti, Luciano; Camnasio, Stefano; Calabrese, Giovanna; Albieri, Ilaria; Di Febo, Francesca; Toselli, Mauro; Biella, Gerardo; Martynoga, Ben; Guillemot, Francois; Consalez, G Giacomo; Cattaneo, Elena

    2011-05-01

    Neural stem (NS) cells are a self-renewing population of symmetrically dividing multipotent radial glia-like stem cells, characterized by homogeneous expansion in monolayer. Here we report that fetal NS cells isolated from different regions of the developing mouse nervous system behave in a similar manner with respect to self-renewal and neuropotency, but exhibit distinct positional identities. For example, NS cells from the neocortex maintain the expression of anterior transcription factors, including Otx2 and Foxg1, while Hoxb4 and Hoxb9 are uniquely found in spinal cord-derived NS cells. This molecular signature was stable for over 20 passages and was strictly linked to the developmental stage of the donor, because only NS cells derived from E14.5 cortex, and not those derived from E12.5 cortex, carried a consistent transcription factor profile. We also showed that traits of this positional code are maintained during neuronal differentiation, leading to the generation of electrophysiologically active neurons, even if they do not acquire a complete neurochemical identity.

  10. Effects of Toll-like receptor 3 on herpes simplex virus type-1-infected mouse neural stem cells.

    PubMed

    Sun, Xiuning; Shi, Lihong; Zhang, Haoyun; Li, Ruifang; Liang, Ruiwen; Liu, Zhijun

    2015-03-01

    In this study, we aimed to investigate the effect of herpes simplex virus type-1 (HSV-1) infection on the phosphorylation of interferon regulatory factor 3 (IRF3) and the expression of interferon-β (IFN-β), as well as to clarify the functions of toll-like receptor 3 (TLR3) in mouse neural stem cells (NSCs) infected with HSV-1. In HSV-1-infected cultured NSCs, immunofluorescence, reverse transcription - polymerase chain reaction, Western blot, and ELISA were performed to reveal the expression patterns of TLR3, IRF3, and IFN-β. Then, lentivirus-mediated RNA interference (RNAi) was used to block the expression of TLR3, and its effect on host resistance to HSV-1 infection was investigated. Under uninfected conditions, NSCs expressed TLR3 and phosphorylated IRF3, but after infection, the expression level of TLR3 was upregulated and the phosphorylation level of IRF3 in the nucleus was significantly enhanced, while IFN-β was also expressed. After TLR3 expression was blocked by lentivirus-mediated RNAi, IRF3 phosphorylation and IFN-β expression were downregulated. Therefore, HSV-1 upregulated the expression of TLR3 in NSCs and promoted nuclear translocation after IRF3 was phosphorylated to induce IFN-β expression. TLR3 exhibited an anti-HSV-1 infection capacity via innate immune functions.

  11. Isolation of multipotent neural stem/progenitor cells from both the dentate gyrus and subventricular zone of a single adult mouse

    PubMed Central

    Guo, Weixiang; Patzlaff, Natalie E.; Jobe, Emily M.; Zhao, Xinyu

    2013-01-01

    In adult mammals, the subventricular zone of the lateral ventricles (SVZ) and the subgranular zone of the dentate gyrus (DG) demonstrate ongoing neurogenesis, and multipotent neural stem/progenitor cells (NSCs) in these two regions exhibit different intrinsic properties. However, investigation of the mechanisms underlying such differences has been limited by a lack of efficient methods for isolating NSCs, particularly from the adult DG. Here we describe a protocol that enables us to isolate self-renewing and multipotent NSCs from the SVZ and the DG of the same adult mouse. The protocol involves the microdissection of the SVZ and DG from one adult mouse brain, isolation of NSCs from specific regions, and cultivation of NSCs in vitro. The entire procedure takes 2 to 3 hours. Since only one mouse is needed for each cell isolation procedure, this protocol will be particularly useful for studies with limited availability of mice, such as mice that contain multiple genetic modifications. PMID:23080272

  12. States of developmental commitment of a mouse embryonal carcinoma cell line differentiating along a neural pathway

    PubMed Central

    1989-01-01

    The embryonal carcinoma cell line PCC7-S-AzaR1 (clone 1009) has been shown to differentiate in the presence of all-trans retinoic acid and dibutyryl cAMP into cells of predominantly neural properties (Paulin, D., H. Jakob, F. Jacob, K. Weber, and M. Osborn. 1982. Differentiation. 22:90-99). By analyzing the marker expression of derivatives in further detail, we characterized the two major cell phenotypes as neuron- and fibroblast-like and the two minor ones as astroglia- and endothelial- like. The stability of developmental commitment of clone 1009 was tested by recloning. The isolated subclones exhibited different patterns of chemically induced derivatives, with some of them (denoted N-clones) producing only a single (neuronal) cell type. As shown by long-term cultures in the absence of retinoic acid, the properties of isolated subclones remained essentially stable. In contrast to the clones producing neuron-like and other derivatives upon induced differentiation, the (exclusively neuronal) derivatives of N-clones detached and died within a few days in culture. If maintained in the presence of other neural cell types, however, their survival was dramatically extended indicating a requirement for specific interactions with other cells of the same tissue. The patterns of derivatives obtained from N-clones depended on the chemical nature of the substrate on which they were grown. Thus, when seeded on laminin- coated surfaces before induced differentiation, N-clones developed not only to neuron-like derivatives but rather to the same four derivatives observed with the original cell pool. These and further results suggest a common cell lineage of the identified phenotypes. The isolated subclones of uninduced cells probably represent different states of commitment within the same developmental pathway. Their stability offers the opportunity to analyze the nature of cellular commitment on the cellular, molecular, and genetic levels. This makes the family of clones

  13. A mutation in the tuft mouse disrupts TET1 activity and alters the expression of genes that are crucial for neural tube closure

    PubMed Central

    Khadka, Vedbar S.; Corley, Michael J.; Maunakea, Alika K.; Fogelgren, Ben; Ahmed, Zubair M.; Lozanoff, Scott

    2016-01-01

    ABSTRACT Genetic variations affecting neural tube closure along the head result in malformations of the face and brain. Neural tube defects (NTDs) are among the most common birth defects in humans. We previously reported a mouse mutant called tuft that arose spontaneously in our wild-type 3H1 colony. Adult tuft mice present midline craniofacial malformations with or without an anterior cephalocele. In addition, affected embryos presented neural tube closure defects resulting in insufficient closure of the anterior neuropore or exencephaly. Here, through whole-genome sequencing, we identified a nonsense mutation in the Tet1 gene, which encodes a methylcytosine dioxygenase (TET1), co-segregating with the tuft phenotype. This mutation resulted in premature termination that disrupts the catalytic domain that is involved in the demethylation of cytosine. We detected a significant loss of TET enzyme activity in the heads of tuft embryos that were homozygous for the mutation and had NTDs. RNA-Seq transcriptome analysis indicated that multiple gene pathways associated with neural tube closure were dysregulated in tuft embryo heads. Among them, the expressions of Cecr2, Epha7 and Grhl2 were significantly reduced in some embryos presenting neural tube closure defects, whereas one or more components of the non-canonical WNT signaling pathway mediating planar cell polarity and convergent extension were affected in others. We further show that the recombinant mutant TET1 protein was capable of entering the nucleus and affected the expression of endogenous Grhl2 in IMCD-3 (inner medullary collecting duct) cells. These results indicate that TET1 is an epigenetic determinant for regulating genes that are crucial to closure of the anterior neural tube and its mutation has implications to craniofacial development, as presented by the tuft mouse. PMID:26989192

  14. A mutation in the tuft mouse disrupts TET1 activity and alters the expression of genes that are crucial for neural tube closure.

    PubMed

    Fong, Keith S K; Hufnagel, Robert B; Khadka, Vedbar S; Corley, Michael J; Maunakea, Alika K; Fogelgren, Ben; Ahmed, Zubair M; Lozanoff, Scott

    2016-05-01

    Genetic variations affecting neural tube closure along the head result in malformations of the face and brain. Neural tube defects (NTDs) are among the most common birth defects in humans. We previously reported a mouse mutant called tuft that arose spontaneously in our wild-type 3H1 colony. Adult tuft mice present midline craniofacial malformations with or without an anterior cephalocele. In addition, affected embryos presented neural tube closure defects resulting in insufficient closure of the anterior neuropore or exencephaly. Here, through whole-genome sequencing, we identified a nonsense mutation in the Tet1 gene, which encodes a methylcytosine dioxygenase (TET1), co-segregating with the tuft phenotype. This mutation resulted in premature termination that disrupts the catalytic domain that is involved in the demethylation of cytosine. We detected a significant loss of TET enzyme activity in the heads of tuft embryos that were homozygous for the mutation and had NTDs. RNA-Seq transcriptome analysis indicated that multiple gene pathways associated with neural tube closure were dysregulated in tuft embryo heads. Among them, the expressions of Cecr2, Epha7 and Grhl2 were significantly reduced in some embryos presenting neural tube closure defects, whereas one or more components of the non-canonical WNT signaling pathway mediating planar cell polarity and convergent extension were affected in others. We further show that the recombinant mutant TET1 protein was capable of entering the nucleus and affected the expression of endogenous Grhl2 in IMCD-3 (inner medullary collecting duct) cells. These results indicate that TET1 is an epigenetic determinant for regulating genes that are crucial to closure of the anterior neural tube and its mutation has implications to craniofacial development, as presented by the tuft mouse.

  15. A Neural Circuit That Controls Cortical State, Plasticity, and the Gain of Sensory Responses in Mouse.

    PubMed

    Stryker, Michael P

    2014-01-01

    Neurons in the visual cortex were first found to be exquisitely selective for particular properties of visual stimuli in anesthetized animals, including mice. Studies of alert mice in an apparatus that allowed them to stand or run revealed that locomotion causes a change in cortical state that dramatically increases the magnitude of responses in neurons of the visual cortex without altering selectivity, effectively changing the gain of sensory responses. Locomotion also dramatically enhances adult plasticity in the recovery from long-term visual deprivation. We have studied the elements and operation of the neural circuit responsible for the enhancement of activity and shown that it enhances plasticity even in mice not free to run. The circuit consists of projections ascending from the midbrain locomotor region (MLR) to the basal forebrain, activating cholinergic and perhaps other projections to excite inhibitory interneurons expressing vasoactive intestinal peptide (VIP) in the visual cortex. VIP cells activated by locomotion inhibit interneurons that express somatostatin (SST), thereby disinhibiting the excitatory principal neurons and allowing them to respond more strongly to effective visual stimuli. These findings reveal in alert animals how the ascending reticular activating system described in anesthetized animals 50 years ago operates to control cortical state.

  16. Corticofugal Modulation of Initial Neural Processing of Sound Information from the Ipsilateral Ear in the Mouse

    PubMed Central

    Liu, Xiuping; Yan, Yuchu; Wang, Yalong; Yan, Jun

    2010-01-01

    Background Cortical neurons implement a high frequency-specific modulation of subcortical nuclei that includes the cochlear nucleus. Anatomical studies show that corticofugal fibers terminating in the auditory thalamus and midbrain are mostly ipsilateral. Differently, corticofugal fibers terminating in the cochlear nucleus are bilateral, which fits to the needs of binaural hearing that improves hearing quality. This leads to our hypothesis that corticofugal modulation of initial neural processing of sound information from the contralateral and ipsilateral ears could be equivalent or coordinated at the first sound processing level. Methodology/Principal Findings With the focal electrical stimulation of the auditory cortex and single unit recording, this study examined corticofugal modulation of the ipsilateral cochlear nucleus. The same methods and procedures as described in our previous study of corticofugal modulation of contralateral cochlear nucleus were employed simply for comparison. We found that focal electrical stimulation of cortical neurons induced substantial changes in the response magnitude, response latency and receptive field of ipsilateral cochlear nucleus neurons. Cortical stimulation facilitated auditory response and shortened the response latency of physiologically matched neurons whereas it inhibited auditory response and lengthened the response latency of unmatched neurons. Finally, cortical stimulation shifted the best frequencies of cochlear neurons towards those of stimulated cortical neurons. Conclusion Our data suggest that cortical neurons enable a high frequency-specific remodelling of sound information processing in the ipsilateral cochlear nucleus in the same manner as that in the contralateral cochlear nucleus. PMID:21124980

  17. Gene transfer to pre-hematopoietic and committed hematopoietic precursors in the early mouse Yolk Sac: a comparative study between in situ electroporation and retroviral transduction

    PubMed Central

    Giroux, Sébastien JD; Alves-Leiva, Celmar; Lécluse, Yann; Martin, Patrick; Albagli, Olivier; Godin, Isabelle

    2007-01-01

    Background Hematopoietic development in vertebrate embryos results from the sequential contribution of two pools of precursors independently generated. While intra-embryonic precursors harbour the features of hematopoietic stem cells (HSC), precursors formed earlier in the yolk sac (YS) display limited differentiation and self-renewal potentials. The mechanisms leading to the generation of the precursors in both sites are still largely unknown, as are the molecular basis underlying their different potential. A possible approach to assess the role of candidate genes is to transfer or modulate their expression/activity in both sites. We thus designed and compared transduction protocols to target either native extra-embryonic precursors, or hematopoietic precursors. Results One transduction protocol involves transient modification of gene expression through in situ electroporation of the prospective blood islands, which allows the evolution of transfected mesodermal cells in their "normal" environment, upon organ culture. Following in situ electroporation of a GFP reporter construct into the YS cavity of embryos at post-streak (mesodermal/pre-hematopoietic precursors) or early somite (hematopoietic precursors) stages, high GFP expression levels as well as a good preservation of cell viability is observed in YS explants. Moreover, the erythro-myeloid progeny typical of the YS arises from GFP+ mesodermal cells or hematopoietic precursors, even if the number of targeted precursors is low. The second approach, based on retroviral transduction allows a very efficient transduction of large precursor numbers, but may only be used to target 8 dpc YS hematopoietic precursors. Again, transduced cells generate a progeny quantitatively and qualitatively similar to that of control YS. Conclusion We thus provide two protocols whose combination may allow a thorough study of both early and late events of hematopoietic development in the murine YS. In situ electroporation constitutes

  18. Neuroprotective effect of the endogenous neural peptide apelin in cultured mouse cortical neurons

    SciTech Connect

    Zeng, Xiang Jun; Yu, Shan Ping; Zhang, Like; Wei, Ling

    2010-07-01

    The adipocytokine apelin and its G protein-coupled APJ receptor were initially isolated from a bovine stomach and have been detected in the brain and cardiovascular system. Recent studies suggest that apelin can protect cardiomyocytes from ischemic injury. Here, we investigated the effect of apelin on apoptosis in mouse primary cultures of cortical neurons. Exposure of the cortical cultures to a serum-free medium for 24 h induced nuclear fragmentation and apoptotic death; apelin-13 (1.0-5.0 nM) markedly prevented the neuronal apoptosis. Apelin neuroprotective effects were mediated by multiple mechanisms. Apelin-13 reduced serum deprivation (SD)-induced ROS generation, mitochondria depolarization, cytochrome c release and activation of caspase-3. Apelin-13 prevented SD-induced changes in phosphorylation status of Akt and ERK1/2. In addition, apelin-13 attenuated NMDA-induced intracellular Ca{sup 2+} accumulation. These results indicate that apelin is an endogenous neuroprotective adipocytokine that may block apoptosis and excitotoxic death via cellular and molecular mechanisms. It is suggested that apelins may be further explored as a potential neuroprotective reagent for ischemia-induced brain damage.

  19. RNA sequencing from neural ensembles activated during fear conditioning in the mouse temporal association cortex

    PubMed Central

    Cho, Jin-Hyung; Huang, Ben S.; Gray, Jesse M.

    2016-01-01

    The stable formation of remote fear memories is thought to require neuronal gene induction in cortical ensembles that are activated during learning. However, the set of genes expressed specifically in these activated ensembles is not known; knowledge of such transcriptional profiles may offer insights into the molecular program underlying stable memory formation. Here we use RNA-Seq to identify genes whose expression is enriched in activated cortical ensembles labeled during associative fear learning. We first establish that mouse temporal association cortex (TeA) is required for remote recall of auditory fear memories. We then perform RNA-Seq in TeA neurons that are labeled by the activity reporter Arc-dVenus during learning. We identify 944 genes with enriched expression in Arc-dVenus+ neurons. These genes include markers of L2/3, L5b, and L6 excitatory neurons but not glial or inhibitory markers, confirming Arc-dVenus to be an excitatory neuron-specific but non-layer-specific activity reporter. Cross comparisons to other transcriptional profiles show that 125 of the enriched genes are also activity-regulated in vitro or induced by visual stimulus in the visual cortex, suggesting that they may be induced generally in the cortex in an experience-dependent fashion. Prominent among the enriched genes are those encoding potassium channels that down-regulate neuronal activity, suggesting the possibility that part of the molecular program induced by fear conditioning may initiate homeostatic plasticity. PMID:27557751

  20. Effects of ROCK inhibitor Y27632 and EGFR inhibitor PD168393 on human neural precursors co-cultured with rat auditory brainstem explant.

    PubMed

    Novozhilova, E; Englund-Johansson, U; Kale, A; Jiao, Y; Olivius, P

    2015-02-26

    Hearing function lost by degeneration of inner ear spiral ganglion neurons (SGNs) in the auditory nervous system could potentially be compensated by cellular replacement using suitable donor cells. Donor cell-derived neuronal development with functional synaptic formation with auditory neurons of the cochlear nucleus (CN) in the brainstem is a prerequisite for a successful transplantation. Here a rat auditory brainstem explant culture system was used as a screening platform for donor cells. The explants were co-cultured with human neural precursor cells (HNPCs) to determine HNPCs developmental potential in the presence of environmental cues characteristic for the auditory brainstem region in vitro. We explored effects of pharmacological inhibition of GTPase Rho with its effector Rho-associated kinase (ROCK) and epidermal growth factor receptor (EGFR) signaling on the co-cultures. Pharmacological agents ROCK inhibitor Y27632 and EGFR blocker PD168393 were tested. Effect of the treatment on explant penetration by green fluorescent protein (GFP)-labeled HNPCs was evaluated based on the following criteria: number of GFP-HNPCs located within the explant; distance migrated by the GFP-HNPCs deep into the explant; length of the GFP+/neuronal class III β-tubulin (TUJ1)+ processes developed and phenotypes displayed. In a short 2-week co-culture both inhibitors had growth-promoting effects on HNPCs, prominent in neurite extension elongation. Significant enhancement of migration and in-growth of HNPCs into the brain slice tissue was only observed in Y27632-treated co-cultures. Difference between Y27632- and PD168393-treated HNPCs acquiring neuronal fate was significant, though not different from the fates acquired in control co-culture. Our data suggest the presence of inhibitory mechanisms in the graft-host environment of the auditory brainstem slice co-culture system with neurite growth arresting properties which can be modulated by administration of signaling pathways

  1. Defining a developmental path to neural fate by global expression profiling of mouse embryonic stem cells and adult neural stem/progenitor cells.

    PubMed

    Aiba, Kazuhiro; Sharov, Alexei A; Carter, Mark G; Foroni, Chiara; Vescovi, Angelo L; Ko, Minoru S H

    2006-04-01

    To understand global features of gene expression changes during in vitro neural differentiation, we carried out the microarray analysis of embryonic stem cells (ESCs), embryonal carcinoma cells, and adult neural stem/progenitor (NS) cells. Expression profiling of ESCs during differentiation in monolayer culture revealed three distinct phases: undifferentiated ESCs, primitive ectoderm-like cells, and neural progenitor cells. Principal component (PC) analysis revealed that these cells were aligned on PC1 over the course of 6 days. This PC1 represents approximately 4,000 genes, the expression of which increased with neural commitment/differentiation. Furthermore, NS cells derived from adult brain and their differentiated cells were positioned along this PC axis further away from undifferentiated ESCs than embryonic stem-derived neural progenitors. We suggest that this PC1 defines a path to neural fate, providing a scale for the degree of commitment/differentiation.

  2. ARSENATE-INDUCED MATERNAL GLUCOSE INTOLERANCE AND NEURAL TUBE DEFECTS IN A MOUSE MODEL

    PubMed Central

    Hill, Denise S.; Wlodarczyk, Bogdan J.; Mitchell, Laura E.; Finnell, Richard H.

    2009-01-01

    Background Epidemiological studies have linked environmental arsenic (As) exposure to increased type 2 diabetes risk. Periconceptional hyperglycemia is a significant risk factor for neural tube defects (NTDs), the second most common structural birth defect. A suspected teratogen, arsenic (As) induces NTDs in laboratory animals. Objectives We investigated whether maternal glucose homeostasis disruption was responsible for arsenate-induced NTDs in a well-established dosing regimen used in studies of arsenic’s teratogenicity in early neurodevelopment. Methods We evaluated maternal intraperitoneal (I.P.) exposure to As 9.6 mg/kg (as sodium arsenate) in LM/Bc/Fnn mice for teratogenicity and disruption of maternal plasma glucose and insulin levels. Selected compounds (insulin pellet, sodium selenate (SS), N-acetyl cysteine (NAC), L-methionine (L-Met), N-tert-Butyl-α-phenylnitrone (PBN)) were investigated for their potential to mitigate arsenate’s effects. Results Arsenate caused significant glucose elevation during an I.P. glucose tolerance test (IPGTT). Insulin levels were not different between arsenate and control dams before (arsenate, 0.55 ng/dl; control, 0.48 ng/dl) or after glucose challenge (arsenate, 1.09 ng/dl; control, 0.81 ng/dl). HOMA-IR index was higher for arsenate (3.9) vs control (2.5) dams (p=0.0260). Arsenate caused NTDs (100%, p<0.0001). Insulin pellet and NAC were the most successful rescue agents, reducing NTD rates to 45% and 35%. Conclusions IPGTT, insulin assay, and HOMA-IR results suggest a modest failure of glucose stimulated insulin secretion and insulin resistance characteristic of glucose intolerance. Insulin’s success in preventing arsenate-induced NTDs provides evidence that these arsenate-induced NTDs are secondary to elevated maternal glucose. The NAC rescue, which did not restore maternal glucose or insulin levels, suggests oxidative disruption plays a role. PMID:19446573

  3. Arsenate-induced maternal glucose intolerance and neural tube defects in a mouse model

    SciTech Connect

    Hill, Denise S.; Wlodarczyk, Bogdan J.; Mitchell, Laura E.; Finnell, Richard H.

    2009-08-15

    Background: Epidemiological studies have linked environmental arsenic (As) exposure to increased type 2 diabetes risk. Periconceptional hyperglycemia is a significant risk factor for neural tube defects (NTDs), the second most common structural birth defect. A suspected teratogen, arsenic (As) induces NTDs in laboratory animals. Objectives: We investigated whether maternal glucose homeostasis disruption was responsible for arsenate-induced NTDs in a well-established dosing regimen used in studies of arsenic's teratogenicity in early neurodevelopment. Methods: We evaluated maternal intraperitoneal (IP) exposure to As 9.6 mg/kg (as sodium arsenate) in LM/Bc/Fnn mice for teratogenicity and disruption of maternal plasma glucose and insulin levels. Selected compounds (insulin pellet, sodium selenate (SS), N-acetyl cysteine (NAC), L-methionine (L-Met), N-tert-Butyl-{alpha}-phenylnitrone (PBN)) were investigated for their potential to mitigate arsenate's effects. Results: Arsenate caused significant glucose elevation during an IP glucose tolerance test (IPGTT). Insulin levels were not different between arsenate and control dams before (arsenate, 0.55 ng/dl; control, 0.48 ng/dl) or after glucose challenge (arsenate, 1.09 ng/dl; control, 0.81 ng/dl). HOMA-IR index was higher for arsenate (3.9) vs control (2.5) dams (p = 0.0260). Arsenate caused NTDs (100%, p < 0.0001). Insulin pellet and NAC were the most successful rescue agents, reducing NTD rates to 45% and 35%. Conclusions: IPGTT, insulin assay, and HOMA-IR results suggest a modest failure of glucose stimulated insulin secretion and insulin resistance characteristic of glucose intolerance. Insulin's success in preventing arsenate-induced NTDs provides evidence that these arsenate-induced NTDs are secondary to elevated maternal glucose. The NAC rescue, which did not restore maternal glucose or insulin levels, suggests oxidative disruption plays a role.

  4. Differential Subcellular Localization of the Glucocorticoid Receptor in Distinct Neural Stem and Progenitor Populations of the Mouse Telencephalon In Vivo

    PubMed Central

    Tsiarli, Maria A.; Monaghan, A. Paula; DeFranco, Donald B.

    2013-01-01

    Glucocorticoids are given to pregnant women at risk for premature delivery to promote lung maturation. Despite reports of detrimental effects of glucocorticoids on telencephalic neural stem/progenitor cells (NSPCs), the regional and cellular expression of the glucocorticoid receptor (GR) in various NSPC populations in the intact brain has not been thoroughly assessed. Therefore in this study we performed a detailed analysis of GR protein expression in the developing mouse ventral and dorsal telencephalon in vivo. At embryonic day 11.5 (E11.5), the majority of Pax6-positive radial glial cells (RGCs) and Tbr2-positive intermediate progenitor cells (IPCs) expressed nuclear GR, while a small number of RGCs on the apical ventricular zone (aVZ), expressed cytoplasmic GR. However, on E13.5, the latter population of RGCs increased in size, whereas abventricular NSPCs and especially neurons of the cortical plate, expressed nuclear GR. In IPCs, GR was always nuclear. A similar expression profile was observed throughout the ventral telencephalon, hippocampus and olfactory bulb, with NSPCs of the aVZ primarily expressing cytoplasmic GR, while abventricular NSPCs and mature cells primarily expressed nuclear GR. Close to birth, nuclear GR accumulated within specific cortical areas such as layer V, the subplate and CA1 area of the hippocampus. In summary, our data show that GR protein is present in early NSPCs of the dorsal and ventral telencephalon at E11.5 and primarily occupies the nucleus. Moreover, our study suggests that the subcellular localization of the receptor may be subjected to region and neurodevelopmental stage-specific regulation. PMID:23751362

  5. Potent tumor tropism of induced pluripotent stem cells and induced pluripotent stem cell-derived neural stem cells in the mouse intracerebral glioma model.

    PubMed

    Yamazoe, Tomohiro; Koizumi, Shinichiro; Yamasaki, Tomohiro; Amano, Shinji; Tokuyama, Tsutomu; Namba, Hiroki

    2015-01-01

    Although neural and mesenchymal stem cells have been well-known to have a strong glioma tropism, this activity in induced pluripotent stem cells (iPSCs) has not yet been fully studied. In the present study, we tested tumor tropic activity of mouse iPSCs and neural stem cells derived from the iPSC (iPS-NSCs) using in vitro Matrigel invasion chamber assay and in vivo mouse intracranial tumor model. Both iPSC and iPS-NSC had a similar potent in vitro tropism for glioma conditioned media. The migrated iPSCs to the gliomas kept expressing Nanog-GFP gene, suggesting no neuronal or glial differentiation. iPSCs or iPS-NSCs labeled with 5-bromo-2-deoxyuridine were intracranially implanted in the contralateral hemisphere to the GL261 glioma cell implantation in the allogeneic C57BL/6 mouse. Active migration of both stem cells was observed 7 days after implantation. Again, the iPSCs located in the tumor area expressed Nanog-GFP gene, suggesting that the migrated cells were still iPSCs. These findings demonstrated that both iPSCs and iPS-NSCs had potent glioma tropism and could be candidates as vehicles in stem cell-based glioma therapy.

  6. In vitro enhanced differentiation of neural networks in ES gut-like organ from mouse ES cells by a 5-HT4-receptor activation.

    PubMed

    Takaki, Miyako; Misawa, Hiromi; Matsuyoshi, Hiroko; Kawahara, Isao; Goto, Kei; Zhang, Guo-Xing; Obata, Koji; Kuniyasu, Hiroki

    2011-03-25

    Using an embryoid body (EB) culture system, we developed a functional organ-like cluster, a "gut", from mouse embryonic stem (ES) cells (ES gut). Each ES gut exhibited various types of spontaneous movements. In these spontaneously contracting ES guts, dense distributions of interstitial cells of Cajal (ICC) (c-kit, a transmembrane receptor that has tyrosine kinase activity, positive cells; gut pacemaker cells) and smooth muscle cells were discernibly identified, but enteric neural networks were not identified. In the present study, we succeeded in forming dense enteric neural networks by a 5-HT(4)-receptor (SR4) agonist, mosapride citrate (1-10 μM) added only during EB formation. Addition of an SR4-antagonist, GR113808 (10 μM) abolished the SR4-agonist-induced formation of enteric neural networks. The SR4-agonist (1 μM) up-regulated the expression of mRNA of SR4 and the SR4-antagonist abolished this upregulation. 5-HT per se exerted similar effects to those of SR4-agonist, though less potent. These results suggest SR4-agonist differentiated enteric neural networks, mediated via activation of SR4 in the ES gut.

  7. Physical and transcriptional map of a 3-Mb region of mouse chromosome 1 containing the gene for the neural tube defect mutant loop-tail (Lp).

    PubMed

    Eddleston, J; Murdoch, J N; Copp, A J; Stanier, P

    1999-03-01

    The Lp mouse mutant provides a model for the severe human neural tube defect (NTD), cranio-rachischisis. To identify the Lp gene, a positional cloning approach has been adopted. Previously, linkage analysis in a large intraspecific backcross was used to map the Lp locus to distal mouse chromosome 1. Here we report a detailed physical map of this region. The interval surrounding Lp has been cloned in a yeast artificial chromosome (YAC) contig consisting of 63 clones spanning approximately 3.2 Mb. Fifty sequence tagged sites (STSs) have been used to construct the contig and establish marker order across the interval. Based on the high level of conserved synteny between distal mouse chromosome 1 and human 1q21-q24, many of these STSs were designed from expressed sequences identified by cross-screening human and mouse databases of expressed sequence tags. Added to other known genes in the region, a total of 29 genes were located and ordered within the contig. Seven novel polymorphisms were identified within the region, allowing refinement of the genetic map and a reduction in the size of the physical interval containing the Lp gene. The Lp interval, between D1Mit113 and Tagln2, can be spanned by two nonchimeric overlapping YACs that define a physical distance of approximately 1 Mb. Within this region, 10 potential candidate genes have been mapped. The materials and genes described here will provide a resource for the identification and further study of the mutated Lp gene that causes this severe neural tube defect and will provide candidates for other defects known to map to the homologous region on human chromosome 1q.

  8. Analysis of the mouse mutant Cloth-ears shows a role for the voltage-gated sodium channel Scn8a in peripheral neural hearing loss.

    PubMed

    Mackenzie, F E; Parker, A; Parkinson, N J; Oliver, P L; Brooker, D; Underhill, P; Lukashkina, V A; Lukashkin, A N; Holmes, C; Brown, S D M

    2009-10-01

    Deafness is the most common sensory disorder in humans and the aetiology of genetic deafness is complex. Mouse mutants have been crucial in identifying genes involved in hearing. However, many deafness genes remain unidentified. Using N-ethyl N-nitrosourea (ENU) mutagenesis to generate new mouse models of deafness, we identified a novel semi-dominant mouse mutant, Cloth-ears (Clth). Cloth-ears mice show reduced acoustic startle response and mild hearing loss from approximately 30 days old. Auditory-evoked brainstem response (ABR) and distortion product otoacoustic emission (DPOAE) analyses indicate that the peripheral neural auditory pathway is impaired in Cloth-ears mice, but that cochlear function is normal. In addition, both Clth/Clth and Clth/+ mice display paroxysmal tremor episodes with behavioural arrest. Clth/Clth mice also show a milder continuous tremor during movement and rest. Longitudinal phenotypic analysis showed that Clth/+ and Clth/Clth mice also have complex defects in behaviour, growth, neurological and motor function. Positional cloning of Cloth-ears identified a point mutation in the neuronal voltage-gated sodium channel alpha-subunit gene, Scn8a, causing an aspartic acid to valine (D981V) change six amino acids downstream of the sixth transmembrane segment of the second domain (D2S6). Complementation testing with a known Scn8a mouse mutant confirmed that this mutation is responsible for the Cloth-ears phenotype. Our findings suggest a novel role for Scn8a in peripheral neural hearing loss and paroxysmal motor dysfunction.

  9. Effects of 12-O-tetradecanoylphorbol-13-acetate on the incorporation of labelled precursors into RNA, DNA and protein in epidermis, dermis and subcutis from precancerous mouse skin with reference to enhanced tumorigenesis

    SciTech Connect

    Bhisey, R.A.; Ramchandani, A.G.; Sirsat, S.M.

    1984-02-01

    The effects of a single application of 1.8 nmol 12-O-tetradecanoylphorbol-13-acetate (TPA) on precursor incorporation into RNA, DNA and protein in the epidermis, dermis and subcutis from 3-methylcholanthrene (MCA) injected precancerous mouse skin were studied at various time points between 3 and 96 h. In the precancerous tissues, the rates of incorporation of (/sup 3/H)uridine into RNA did not alter appreciably from those in the control tissues; while the rates of (/sup 3/H)methylthymidine incorporation into DNA were elevated with peaks appearing between 6 and 12 h, at 24 h and at 72 h in epidermis, dermis and subcutis. The rate of incorporation of (/sup 14/C)leucine into protein was markedly elevated in all the three tissues which showed 3-4 sharp peaks. The maximum stimulation ranged between 14 and 20 times that of the control. A single application of TPA to the precancerous mouse skin induced early stimulation of precursor incorporation into all the three macromolecules in epidermis, dermis and subcutis. The increased stimulation was maintained for 36-72 h. The patterns of incorporation of (/sup 3/H)methylthymidine into DNA gave rise to 2-3 peaks of elevated uptake in each tissue up to 36-48 h. A lowered rate of DNA synthesis between 48 and 60 h was followed by a peak at 72 h. In each group, epidermal mitotic activity correlated well with spurts of precursor incorporation into cellular DNA. The observations indicate that TPA recruits more cells into the DNA synthetic phase and accelerates selective growth of preneoplastic cells during tumor progression.

  10. Tangential migration of neuronal precursors of glutamatergic neurons in the adult mammalian brain

    PubMed Central

    Sun, Gerald J.; Zhou, Yi; Stadel, Ryan P.; Moss, Jonathan; Yong, Jing Hui A.; Ito, Shiori; Kawasaki, Nicholas K.; Phan, Alexander T.; Oh, Justin H.; Modak, Nikhil; Reed, Randall R.; Toni, Nicolas; Song, Hongjun; Ming, Guo-li

    2015-01-01

    In a classic model of mammalian brain formation, precursors of principal glutamatergic neurons migrate radially along radial glia fibers whereas GABAergic interneuron precursors migrate tangentially. These migration modes have significant implications for brain function. Here we used clonal lineage tracing of active radial glia-like neural stem cells in the adult mouse dentate gyrus and made the surprising discovery that proliferating neuronal precursors of glutamatergic granule neurons exhibit significant tangential migration along blood vessels, followed by limited radial migration. Genetic birthdating and morphological and molecular analyses pinpointed the neuroblast stage as the main developmental window when tangential migration occurs. We also developed a partial “whole-mount” dentate gyrus preparation and observed a dense plexus of capillaries, with which only neuroblasts, among the entire population of progenitors, are directly associated. Together, these results provide insight into neuronal migration in the adult mammalian nervous system. PMID:26170290

  11. Brain-Derived Neurotrophic Factor Loaded PS80 PBCA Nanocarrier for In Vitro Neural Differentiation of Mouse Induced Pluripotent Stem Cells.

    PubMed

    Chung, Chiu-Yen; Lin, Martin Hsiu-Chu; Lee, I-Neng; Lee, Tsong-Hai; Lee, Ming-Hsueh; Yang, Jen-Tsung

    2017-03-19

    Brain derived neurotrophic factor (BDNF) can induce neural differentiation in stem cells and has the potential for repair of the nervous system. In this study, a polysorbate 80-coated polybutylcyanoacrylate nanocarrier (PS80 PBCA NC) was constructed to deliver plasmid DNAs (pDNAs) containing BDNF gene attached to a hypoxia-responsive element (HRE-cmvBDNF). The hypoxia-sensing mechanism of BDNF expression and inductiveness of the nano-formulation on mouse induced pluripotent stem cells (iPSCs) to differentiate into neurons following hypoxia was tested in vitro with immunofluorescent staining and Western blotting. The HRE-cmvBDNF appeared to adsorb onto the surface of PS80 PBCA NC, with a resultant mean diameter of 92.6 ± 1.0 nm and zeta potential of -14.1 ± 1.1 mV. HIF-1α level in iPSCs was significantly higher in hypoxia, which resulted in a 51% greater BDNF expression when transfected with PS80 PBCA NC/HRE-cmvBDNF than those without hypoxia. TrkB and phospho-Akt were also elevated which correlated with neural differentiation. The findings suggest that PS80 PBCA NC too can be endocytosed to serve as an efficient vector for genes coupled to the HRE in hypoxia-sensitive cells, and activation of the PI3/Akt pathway in iPSCs by BDNF is capable of neural lineage specification.

  12. Brain-Derived Neurotrophic Factor Loaded PS80 PBCA Nanocarrier for In Vitro Neural Differentiation of Mouse Induced Pluripotent Stem Cells

    PubMed Central

    Chung, Chiu-Yen; Lin, Martin Hsiu-Chu; Lee, I-Neng; Lee, Tsong-Hai; Lee, Ming-Hsueh; Yang, Jen-Tsung

    2017-01-01

    Brain derived neurotrophic factor (BDNF) can induce neural differentiation in stem cells and has the potential for repair of the nervous system. In this study, a polysorbate 80-coated polybutylcyanoacrylate nanocarrier (PS80 PBCA NC) was constructed to deliver plasmid DNAs (pDNAs) containing BDNF gene attached to a hypoxia-responsive element (HRE-cmvBDNF). The hypoxia-sensing mechanism of BDNF expression and inductiveness of the nano-formulation on mouse induced pluripotent stem cells (iPSCs) to differentiate into neurons following hypoxia was tested in vitro with immunofluorescent staining and Western blotting. The HRE-cmvBDNF appeared to adsorb onto the surface of PS80 PBCA NC, with a resultant mean diameter of 92.6 ± 1.0 nm and zeta potential of −14.1 ± 1.1 mV. HIF-1α level in iPSCs was significantly higher in hypoxia, which resulted in a 51% greater BDNF expression when transfected with PS80 PBCA NC/HRE-cmvBDNF than those without hypoxia. TrkB and phospho-Akt were also elevated which correlated with neural differentiation. The findings suggest that PS80 PBCA NC too can be endocytosed to serve as an efficient vector for genes coupled to the HRE in hypoxia-sensitive cells, and activation of the PI3/Akt pathway in iPSCs by BDNF is capable of neural lineage specification. PMID:28335495

  13. Neural conversion of ES cells by an inductive activity on human amniotic membrane matrix

    PubMed Central

    Ueno, Morio; Matsumura, Michiru; Watanabe, Kiichi; Nakamura, Takahiro; Osakada, Fumitaka; Takahashi, Masayo; Kawasaki, Hiroshi; Kinoshita, Shigeru; Sasai, Yoshiki

    2006-01-01

    Here we report a human-derived material with potent inductive activity that selectively converts ES cells into neural tissues. Both mouse and human ES cells efficiently differentiate into neural precursors when cultured on the matrix components of the human amniotic membrane in serum-free medium [amniotic membrane matrix-based ES cell differentiation (AMED)]. AMED-induced neural tissues have regional characteristics (brainstem) similar to those induced by coculture with mouse PA6 stromal cells [a common method called stromal cell-derived inducing activity (SDIA) culture]. Like the SDIA culture, the AMED system is applicable to the in vitro generation of various CNS tissues, including dopaminergic neurons, motor neurons, and retinal pigment epithelium. In contrast to the SDIA method, which uses animal cells, the AMED culture uses a noncellular inductive material derived from an easily available human tissue; therefore, AMED should provide a more suitable and versatile system for generating a variety of neural tissues for clinical applications. PMID:16766664

  14. Proneural gene self-stimulation in neural precursors: an essential mechanism for sense organ development that is regulated by Notch signaling.

    PubMed

    Culí, J; Modolell, J

    1998-07-01

    To learn about the acquisition of neural fate by ectodermal cells, we have analyzed a very early sign of neural commitment in Drosophila, namely the specific accumulation of achaete-scute complex (AS-C) proneural proteins in the cell that becomes a sensory organ mother cell (SMC). We have characterized an AS-C enhancer that directs expression specifically in SMCs. This enhancer promotes Scute protein accumulation in these cells, an event essential for sensory organ development in the absence of other AS-C genes. Interspecific sequence comparisons and site-directed mutagenesis show the presence of several conserved motifs necessary for enhancer action, some of them binding sites for proneural proteins. These and other data indicate that the enhancer mediates scute self-stimulation, although only in the presence of additional activating factors, which most likely interact with conserved motifs reminiscent of NF-kappaB-binding sites. Cells neighboring the SMC do not acquire the neural fate because the Notch signaling pathway effectors, the Enhancer of split bHLH proteins, block this proneural gene self-stimulatory loop, possibly by antagonizing the action on the enhancer of the NF-kappaB-like factors or the proneural proteins. These data suggest a mechanism for SMC committment.

  15. Ocular nerve growth factor administration counteracts the impairment of neural precursor cell viability and differentiation in the brain subventricular area of rats with streptozotocin-induced diabetes.

    PubMed

    Tirassa, Paola; Maccarone, Mattia; Carito, Valentina; De Nicolò, Sara; Fiore, Marco

    2015-05-01

    The ocular administration of nerve growth factor (NGF) as eye drops (oNGF) has been shown to exert protective effects in forebrain-injured animal models, including adult diabetes induced by a single injection of streptozotocin (STZ) (60 mg/kg body weight). This type 1 diabetes model was used in this study to investigate whether oNGF might extend its actions on neuronal precursors localised in the subventricular zone (SVZ). NGF or saline was administrated as eye drops twice daily for 2 weeks in rats with STZ-induced diabetes and healthy control rats. The expression of mature and precursor NGF and the NGF receptors, tropomyosin-related kinase A and neurotrophin receptor p75, and the levels of DNA fragmentation were analysed by ELISA and western blotting. Incorporation of bromodeoxyuridine was used to trace newly formed cells. Nestin, polysialylated neuronal cell adhesion molecule (PSA-NCAM), doublecortin (DCX) and glial fibrillary acidic protein antibodies were used to identify the SVZ cells by confocal microscopy. It was found that oNGF counteracts the STZ-induced cell death and the alteration of mature/pro-NGF expression in the SVZ. It also affects the survival and differentiation of SVZ progenitors. In particular, oNGF counteracts the reduction in the number of cells expressing PSA-NCAM/DCX (neuroblast type A cells) and the related reductions in the number and distribution of nestin/DCX-positive cells (C-type cells), or glia-committed cells (type B cells), observed in the SVZ of diabetic rats. These findings show that oNGF treatment counteracts the effect of type 1 diabetes on neuronal precursors in the SVZ, and further support the neuroprotective and reparative role of oNGF in the brain.

  16. Diverse contributions of Tas1r2/Tas2rs within the rat and mouse soft palate to sweet and bitter neural responses.

    PubMed

    Tomonari, Hiroshi; Miura, Hirohito; Ooki, Makoto; Nakayama, Ayumi; Harada, Shuitsu

    2014-05-21

    Neural responses to sweet and bitter stimuli in the rat and mouse are compared to the expression of the molecular taste receptors, Tas1r2/Tas2rs. Integrated taste responses from the greater superficial petrosal nerve (GSP) innervating the soft palate (SP) and the chorda tympani (CT) nerve innervating the fungiform papillae (FF) were recorded in C57BL mice and SD rats. The sum of the phasic and tonic response magnitudes (SRM) was calculated by summating all relative mean responses to a concentration series of QHCl (10(-6)-10(-2)M) or Suc (10(-4)-1.0M). Molecular expression was analyzed by double-colored in situ hybridization for Gα-gustducin with Tas1r2 or Tas2rs in the SP and FF. The vast majority of cells expressing Tas1r2 or Tas2rs were included in Gα-gustducin-expressing cells in the SP of both species. Unexpectedly, a comparison between species revealed that the SRM from the GSP is not positively correlated with receptor expression in the SP. In the rat SP, the percentage of Tas2rs with Gα-gustducin (Tas2rs/gust, 65%) was twice larger than that for Tas1r2/gust (33%), while the SRM to Suc in the rat GSP was 1.5 times (tonic and phasic) larger than that to QHCl. In the mouse SP, the percentage of Tas2rs/gust (46%) was less than that in the rat and similar to that of Tas1r2/gust (40%). However, the SRM to QHCl in the mouse GSP was 2.4 (phasic) and 4.7 (tonic) times larger than to Suc. On the other hand, threshold to Suc in the rat GSP was 10(-3)M, one log unit lower than in mouse, and the threshold to QHCl in the mouse GSP was 10(-6)M, one log unit lower than in rat. These results suggest that the robust GSP response to Suc in rat and to QHCl in mouse likely do not depend upon a large number of taste cells expressing the taste receptors Tas1r2 for Suc or Tas2rs for QHCl, but upon a higher density of Tas1r2/Tas2rs within the respective taste cells of the two species.

  17. Direct visualization of cell movement in the embryonic olfactory bulb using green fluorescent protein transgenic mice: evidence for rapid tangential migration of neural cell precursors.

    PubMed

    Yamamoto, Kazuhiro; Yamaguchi, Masahiro; Okabe, Shigeo

    2005-02-01

    We analyzed motile behavior of neuronal precursor cells in the intact olfactory bulbs (OBs) using transgenic mice expressing GFP under the control of T alpha 1 tubulin promoter. In the olfactory bulbs at the embryonic days 12.5-14.5, a large number of immature neurons expressed GFP in this transgenic line. Embryonic OBs were maintained in an organ culture system and the migratory behavior of GFP-positive cells was analyzed by time-lapse confocal microscopy. We observed rapid tangential movement of GFP-positive cells in the ventral olfactory bulb. In contrast to the typical bipolar morphology of translocating immature neurons within the developing cortex, the motile cells had neither leading nor trailing processes and changed their overall shape frequently. Comparison of the behavior of cells expressing GFP under the control of T alpha 1 tubulin or nestin promoter revealed that rapid motility was specific to cells in the neuronal lineage. The rapid movement was sensitive to an actin perturbing reagent and also dependent on the calcium influx through L-type calcium channels. These results indicate the presence of a specific form of precursor cell migration in the embryonic olfactory bulb.

  18. Long-term expression of beta-glucuronidase by genetically modified human neural progenitor cells grafted into the mouse central nervous system.

    PubMed

    Buchet, Delphine; Serguera, Ché; Zennou, Véronique; Charneau, Pierre; Mallet, Jacques

    2002-03-01

    Mucopolysaccharidosis type VII (MPS VII) is an inherited disease caused by beta-glucuronidase (beta-glu) deficiency. This deficiency results in the lysosomal accumulation of glycosaminoglycans in all tissues and affects a wide range of organs, including the central nervous system (CNS). Gene transfer is a promising approach to therapy for MPS VII because it allows extensive delivery of the enzyme to the affected tissues. We studied neurotransplantation of primary human cells to supply beta-glucuronidase to the CNS. Human neural progenitor cells (HNPC) were amplified and cotransduced with two lentiviral vectors, one encoding the green fluorescent protein and the other the human beta-glu. We show that these cells strongly expressed both transgenes in culture. When grafted into the mouse striatum, HNPC differentiated into neurons and astrocytes and expressed the two transgenes for at least 6 months. This study therefore paves the way for the treatment of MPS VII by long-term delivery of the appropriate enzyme.

  19. Magnesium Elevation Promotes Neuronal Differentiation While Suppressing Glial Differentiation of Primary Cultured Adult Mouse Neural Progenitor Cells through ERK/CREB Activation

    PubMed Central

    Liao, Wang; Jiang, Mujun; Li, Mei; Jin, Congli; Xiao, Songhua; Fan, Shengnuo; Fang, Wenli; Zheng, Yuqiu; Liu, Jun

    2017-01-01

    This study aimed to explore the influence of magnesium elevation on fate determination of adult neural progenitor cells (aNPCs) and the underlying mechanism in vitro. Adult neurogenesis, which is the generation of functional neurons from neural precursors, occurs throughout life in restricted anatomical regions in mammals. Magnesium is the fourth most abundant ion in mammals, and its elevation in the brain has been shown to enhance memory and synaptic plasticity in vivo. However, the effects of magnesium on fate determination of aNPCs, which are vital processes in neurogenesis, remain unknown. NPCs isolated from the dentate gyrus of adult C57/BL6 mice were induced to differentiate in a medium with varying magnesium concentrations (0.6, 0.8, and 1.0 mM) and extracellular signal-regulated kinase (ERK) inhibitor PD0325901. The proportion of cells that differentiated into neurons and glial cells was evaluated using immunofluorescence. Quantitative real-time polymerase chain reaction and Western blot methods were used to determine the expression of β-III tubulin (Tuj1) and glial fibrillary acidic protein (GFAP). The activation of ERK and cAMP response element-binding protein (CREB) was examined by Western blot to reveal the underlying mechanism. Magnesium elevation increased the proportion of Tju1-positive cells and decreased the proportion of GFAP-positive cells. Also, the expression of Tuj1 was upregulated, whereas the expression of GFAP was downregulated. Moreover, magnesium elevation enhanced the activation of both ERK and CREB. Treatment with PD0325901 reversed these effects in a dose-dependent manner. Magnesium elevation promoted neural differentiation while suppressing glial cell differentiation, possibly via ERK-induced CREB activation. PMID:28280456

  20. The role of the mesenchyme in mouse neural fold elevation. II. Patterns of hyaluronate synthesis and distribution in embryos developing in vitro

    SciTech Connect

    Morris-Wiman, J.; Brinkley, L.L. )

    1990-06-01

    Hyaluronate (HA) distribution patterns were examined in the cranial mesenchyme underlying the mesencephalic neural folds of mouse embryos maintained in roller tube culture. Using standard image-processing techniques, the digitized images of Alcian blue-stained or 3H-glucosamine-labeled sections digested with an enzyme specific for HA, were subtracted from adjacent, undigested sections. The resultant difference picture images (DPI) accurately depicted the distribution of stained or labeled HA within the cranial mesenchyme. 3H-glucosamine-labeled HA was distributed uniformly throughout the cranial mesenchyme as 12, 18, and 24 hr of culture. By contrast, the mesenchyme was uniformly stained with Alcian blue at 12 hr, but stain intensity decreased in the central regions of the mesenchyme at 18 and 24 hr. HA distribution patterns were also examined in the cranial mesenchyme of embryos cultured in the presence of diazo-oxo-norleucine (DON), a glutamine analogue that inhibits glycosaminoglycan and glycoprotein synthesis. In DON-treated mesenchyme, Alcian blue staining of HA was decreased from that in controls at 12, 18, and 24 hr. However, incorporation of 3H-glucosamine into HA was increased. The distribution of labeled HA within treated mesenchyme as 12, 18, and 24 hr resembled that in controls at 12 hr. These results indicate that the distribution of HA within the cranial mesenchyme of normal mouse embryos during neural fold elevation and convergence is not determined solely by regional differences in HA synthesis. We propose that HA distribution patterns result from the expansion of the HA-rich extracellular matrix of the central mesenchyme regions. This expansion may play a major role in fold elevation. These results also suggest that DON treatment reversibly inhibits HA synthesis.

  1. A Perturbed MicroRNA Expression Pattern Characterizes Embryonic Neural Stem Cells Derived from a Severe Mouse Model of Spinal Muscular Atrophy (SMA)

    PubMed Central

    Luchetti, Andrea; Ciafrè, Silvia Anna; Murdocca, Michela; Malgieri, Arianna; Masotti, Andrea; Sanchez, Massimo; Farace, Maria Giulia; Novelli, Giuseppe; Sangiuolo, Federica

    2015-01-01

    Spinal muscular atrophy (SMA) is an inherited neuromuscular disorder and the leading genetic cause of death in infants. Despite the disease-causing gene, survival motor neuron (SMN1), encodes a ubiquitous protein, SMN1 deficiency preferentially affects spinal motor neurons (MNs), leaving the basis of this selective cell damage still unexplained. As neural stem cells (NSCs) are multipotent self-renewing cells that can differentiate into neurons, they represent an in vitro model for elucidating the pathogenetic mechanism of neurodegenerative diseases such as SMA. Here we characterize for the first time neural stem cells (NSCs) derived from embryonic spinal cords of a severe SMNΔ7 SMA mouse model. SMNΔ7 NSCs behave as their wild type (WT) counterparts, when we consider neurosphere formation ability and the expression levels of specific regional and self-renewal markers. However, they show a perturbed cell cycle phase distribution and an increased proliferation rate compared to wild type cells. Moreover, SMNΔ7 NSCs are characterized by the differential expression of a limited number of miRNAs, among which miR-335-5p and miR-100-5p, reduced in SMNΔ7 NSCs compared to WT cells. We suggest that such miRNAs may be related to the proliferation differences characterizing SMNΔ7 NSCs, and may be potentially involved in the molecular mechanisms of SMA. PMID:26258776

  2. Mouse Dac, a novel nuclear factor with homology to Drosophila dachshund shows a dynamic expression in the neural crest, the eye, the neocortex, and the limb bud.

    PubMed

    Caubit, X; Thangarajah, R; Theil, T; Wirth, J; Nothwang, H G; Rüther, U; Krauss, S

    1999-01-01

    Dac is a novel nuclear factor in mouse and humans that shares homology with Drosophila dachshund (dac). Alignment with available sequences defines a conserved box of 117 amino acids that shares weak homology with the proto-oncogene Ski and Sno. Dac expression is found in various neuroectodermal and mesenchymal tissues. At early developmental stages Dac is expressed in lateral mesoderm and in neural crest cells. In the neural plate/tube Dac expression is initially seen in the prosencephalon and gets gradually restricted to the presumptive neocortex and the distal portion of the outgrowing optic vesicle. Furthermore, Dac transcripts are detected in the mesenchyme underlying the Apical Ectodermal Ridge (AER) of the extending limb bud, the dorsal root ganglia and chain ganglia, and the mesenchyme of the growing genitalia. Dac expression in the Gli 3 mutant extra toes (Xt/Xt) shows little difference compared to the expression in wild-type limb buds. In contrast, a significant expansion of Dac expression are observed in the anterior mesenchyme of the limb buds of hemimelic extra toes (Hx/+) mice. FISH analysis reveals that human DAC maps to chromosome 13q22.3-23 and further fine-mapping defined a position of the DAC gene at 54cM or 13q21.1, a locus that associates with mental retardation and skeletal abnormalities.

  3. RE1 silencing transcription factor/neuron-restrictive silencing factor regulates expansion of adult mouse subventricular zone-derived neural stem/progenitor cells in vitro.

    PubMed

    Soldati, Chiara; Caramanica, Pasquale; Burney, Matthew J; Toselli, Camilla; Bithell, Angela; Augusti-Tocco, Gabriella; Stanton, Lawrence W; Biagioni, Stefano; Buckley, Noel J; Cacci, Emanuele

    2015-08-01

    Adult neural stem cell (aNSC) activity is tuned by external stimuli through the recruitment of transcription factors. This study examines the RE1 silencing transcription factor (REST) in neural stem/progenitor cells isolated from the subventricular zone of adult mouse brain and provides the first extensive characterization of REST-mediated control of the cellular and molecular properties. This study shows that REST knockdown affects the capacity of progenitor cells to generate neurospheres, reduces cell proliferation, and triggers cell differentiation despite the presence of growth factors. Genome- and transcriptome-wide analyses show that REST binding sites are significantly enriched in genes associated with synaptic transmission and nervous system development and function. Seeking candidate regulators of aNSC function, this study identifies a member of the bone morphogenetic protein (BMP) family, BMP6, the mRNA and protein of which increased after REST knockdown. The results of this study extend previous findings, demonstrating a reciprocal control of REST expression by BMPs. Administration of exogenous BMP6 inhibits aNSC proliferation and induces the expression of the astrocytic marker glial fibrillary acidic protein, highlighting its antimitogenic and prodifferentiative effects. This study suggests that BMP6 produced in a REST-regulated manner together with other signals can contribute to regulation of NSC maintenance and fate.

  4. A Perturbed MicroRNA Expression Pattern Characterizes Embryonic Neural Stem Cells Derived from a Severe Mouse Model of Spinal Muscular Atrophy (SMA).

    PubMed

    Luchetti, Andrea; Ciafrè, Silvia Anna; Murdocca, Michela; Malgieri, Arianna; Masotti, Andrea; Sanchez, Massimo; Farace, Maria Giulia; Novelli, Giuseppe; Sangiuolo, Federica

    2015-08-06

    Spinal muscular atrophy (SMA) is an inherited neuromuscular disorder and the leading genetic cause of death in infants. Despite the disease-causing gene, survival motor neuron (SMN1), encodes a ubiquitous protein, SMN1 deficiency preferentially affects spinal motor neurons (MNs), leaving the basis of this selective cell damage still unexplained. As neural stem cells (NSCs) are multipotent self-renewing cells that can differentiate into neurons, they represent an in vitro model for elucidating the pathogenetic mechanism of neurodegenerative diseases such as SMA. Here we characterize for the first time neural stem cells (NSCs) derived from embryonic spinal cords of a severe SMNΔ7 SMA mouse model. SMNΔ7 NSCs behave as their wild type (WT) counterparts, when we consider neurosphere formation ability and the expression levels of specific regional and self-renewal markers. However, they show a perturbed cell cycle phase distribution and an increased proliferation rate compared to wild type cells. Moreover, SMNΔ7 NSCs are characterized by the differential expression of a limited number of miRNAs, among which miR-335-5p and miR-100-5p, reduced in SMNΔ7 NSCs compared to WT cells. We suggest that such miRNAs may be related to the proliferation differences characterizing SMNΔ7 NSCs, and may be potentially involved in the molecular mechanisms of SMA.

  5. Analyses of copy number variation reveal putative susceptibility loci in MTX-induced mouse neural tube defects.

    PubMed

    Wang, Jianhua; Wang, Xiuwei; Guan, Tao; Xiang, Qian; Wang, Mingsheng; Zhang, Zhi; Guan, Zhen; Wang, Guoliang; Zhu, Zhiqiang; Xie, Qiu; Li, Guannan; Guo, Jin; Wang, Fang; Zhang, Zhengguo; Niu, Bo; Zhang, Ting

    2014-09-01

    Copy number variations (CNVs) are thought to act as an important genetic mechanism underlying phenotypic heterogeneity. Impaired folate metabolism can result in neural tube defects (NTDs). However, the precise nature of the relationship between low folate status and NTDs remains unclear. Using an array-comparative genomic hybridization (aCGH) assay, we investigated whether CNVs could be detected in the NTD embryonic neural tissues of methotrexate (MTX)-induced folate dysmetabolism pregnant C57BL/6 mice and confirmed the findings with quantitative real-time PCR (qPCR). The CNVs were then comprehensively investigated using bioinformatics methods to prioritize candidate genes. We measured dihydrofolate reductase (DHFR) activity and concentrations of folate and relevant metabolites in maternal serum using enzymologic method and liquid chromatography/tandem mass spectrometry (LC/MS/MS). Three high confidence CNVs on XqA1.1, XqA1.1-qA2, and XqE3 were found in the NTD embryonic neural tissues. Twelve putative genes and three microRNAs were identified as potential susceptibility candidates in MTX-induced NTDs and possible roles in NTD pathogenesis. DHFR activity and 5-methyltetrahydrofolate (5-MeTHF), 5-formyltetrahydrofolate (5-FoTHF), and S-adenosylmethionine (SAM) concentrations of maternal serum decreased significantly after MTX injection. These findings suggest that CNVs caused by defects in folate metabolism lead to NTD, and further support the hypothesis that folate dysmetabolism is a direct cause for CNVs in MTX-induced NTDs.

  6. EGF–FGF{sub 2} stimulates the proliferation and improves the neuronal commitment of mouse epidermal neural crest stem cells (EPI-NCSCs)

    SciTech Connect

    Bressan, Raul Bardini; Melo, Fernanda Rosene; Almeida, Patricia Alves; Bittencourt, Denise Avani; Visoni, Silvia; Jeremias, Talita Silva; Costa, Ana Paula; Leal, Rodrigo Bainy; Trentin, Andrea Gonçalves

    2014-09-10

    Epidermal neural crest stem cells (EPI-NCSCs), which reside in the bulge of hair follicles, are attractive candidates for several applications in cell therapy, drug screening and tissue engineering. As suggested remnants of the embryonic neural crest (NC) in an adult location, EPI-NCSCs are able to generate a wide variety of cell types and are readily accessible by a minimally invasive procedure. Since the combination of epidermal growth factor (EGF) and fibroblast growth factor type 2 (FGF{sub 2}) is mitogenic and promotes the neuronal commitment of various stem cell populations, we examined its effects in the proliferation and neuronal potential of mouse EPI-NCSCs. By using a recognized culture protocol of bulge whiskers follicles, we were able to isolate a population of EPI-NCSCs, characterized by the migratory potential, cell morphology and expression of phenotypic markers of NC cells. EPI-NCSCs expressed neuronal, glial and smooth muscle markers and exhibited the NC-like fibroblastic morphology. The treatment with the combination EGF and FGF{sub 2}, however, increased their proliferation rate and promoted the acquisition of a neuronal-like morphology accompanied by reorganization of neural cytoskeletal proteins βIII-tubulin and nestin, as well as upregulation of the pan neuronal marker βIII-tubulin and down regulation of the undifferentiated NC, glial and smooth muscle cell markers. Moreover, the treatment enhanced the response of EPI-NCSCs to neurogenic stimulation, as evidenced by induction of GAP43, and increased expression of Mash-1 in neuron-like cell, both neuronal-specific proteins. Together, the results suggest that the combination of EGF–FGF2 stimulates the proliferation and improves the neuronal potential of EPI-NCSCs similarly to embryonic NC cells, ES cells and neural progenitor/stem cells of the central nervous system and highlights the advantage of using EGF–FGF{sub 2} in neuronal differentiation protocols. - Highlights: • EPI

  7. Heptanoate as a neural fuel: energetic and neurotransmitter precursors in normal and glucose transporter I-deficient (G1D) brain

    PubMed Central

    Marin-Valencia, Isaac; Good, Levi B; Ma, Qian; Malloy, Craig R; Pascual, Juan M

    2013-01-01

    It has been postulated that triheptanoin can ameliorate seizures by supplying the tricarboxylic acid cycle with both acetyl-CoA for energy production and propionyl-CoA to replenish cycle intermediates. These potential effects may also be important in other disorders associated with impaired glucose metabolism because glucose supplies, in addition to acetyl-CoA, pyruvate, which fulfills biosynthetic demands via carboxylation. In patients with glucose transporter type I deficiency (G1D), ketogenic diet fat (a source only of acetyl-CoA) reduces seizures, but other symptoms persist, providing the motivation for studying heptanoate metabolism. In this work, metabolism of infused [5,6,7-13C3]heptanoate was examined in the normal mouse brain and in G1D by 13C-nuclear magnetic resonance spectroscopy, gas chromatography-mass spectrometry (GC-MS), and liquid chromatography-mass spectrometry (LC-MS). In both groups, plasma glucose was enriched in 13C, confirming gluconeogenesis from heptanoate. Acetyl-CoA and glutamine levels became significantly higher in the brain of G1D mice relative to normal mice. In addition, brain glutamine concentration and 13C enrichment were also greater when compared with glutamate in both animal groups, suggesting that heptanoate and/or C5 ketones are primarily metabolized by glia. These results enlighten the mechanism of heptanoate metabolism in the normal and glucose-deficient brain and encourage further studies to elucidate its potential antiepileptic effects in disorders of energy metabolism. PMID:23072752

  8. Restricted spontaneous in vitro differentiation and region-specific migration of long-term expanded fetal human neural precursor cells after transplantation into the adult rat brain.

    PubMed

    Maciaczyk, Jaroslaw; Singec, Ilyas; Maciaczyk, Donata; Klein, Alexander; Nikkhah, Guido

    2009-09-01

    Human fetal neural stem/progenitor cells (hNSCs) are investigated for their potential as a cell source for cell-based therapies in neurodegenerative diseases. However, the limited availability of fetal tissue and insufficient understanding of the lineage-dependent pattern of survival, migration, and differentiation following engraftment are still unresolved issues. In the current study hNSCs derived from different brain regions were long-term expanded in vitro to yield proliferating neurospheres giving rise to neurons, astro-, and oligodendroglial cells and assessed for their potential for migration, differentiation, and anatomical integration following intracerebral grafting into rats. hNSCs isolated from neocortex, striatum, midbrain, and spinal cord (SC) proliferated following in vitro differentiation, and showed a significant decrease of newly formed neurons along the rostrocaudal axis of the developing central nervous system (CNS). Most of the mature neurons were positive for the neurotransmitter GABA. In vivo all cell types survived up to 9 weeks posttransplantation. Intrastriatally grafted hNSCs migrated extensively along white matter tracts reaching both rostral (forceps minor) and caudal (midbrain, cerebral peduncle) brain regions. The majority of migratory cells expressed the stem cell marker, nestin. A fraction of grafted cells acquired a neuronal phenotype expressing doublecortin, beta-III-tubulin, or GABA. These data demonstrate efficient in vitro propagation, region-specific long-term survival, long-distance migration, and neuronal differentiation of hNSCs after transplantation into the adult rat brain. The availability of a large pool of in vitro expanded nestin-positive cells offers the possibility for further ex vivo manipulations and the recruitment of different neuronal phenotypes for cell replacement strategies for CNS disorders.

  9. Myelin repair and functional recovery mediated by neural cell transplantation in a mouse model of multiple sclerosis

    PubMed Central

    Bai, Lianhua; Hecker, Jordan; Kerstetter, Amber; Miller, Robert H.

    2014-01-01

    Cellular therapies are becoming a major focus for the treatment of demyelinating diseases such as multiple sclerosis (MS), therefore it is important to identify the most effective cell types that promote myelin repair. Several components contribute to the relative benefits of specific cell types including the overall efficacy of the cell therapy, the reproducibility of treatment, the mechanisms of action of distinct cell types and the ease of isolation and generation of therapeutic populations. A range of distinct cell populations promote functional recovery in animal models of MS including neural stem cells and mesenchymal stem cells derived from different tissues. Each of these cell populations has advantages and disadvantages and likely works through distinct mechanisms. The relevance of such mechanisms to myelin repair in the adult central nervous system is unclear since the therapeutic cells are generally derived from developing animals. Here we describe the isolation and characterization of a population of neural cells from the adult spinal cord that are characterized by the expression of the cell surface glycoprotein NG2. In functional studies, injection of adult NG2+ cells into mice with ongoing MOG35-55-induced experimental autoimmune encephalomyelitis (EAE) enhanced remyelination in the CNS while the number of CD3+ T cells in areas of spinal cord demyelination was reduced approximately three-fold. In vivo studies indicated that in EAE, NG2+ cells stimulated endogenous repair while in vitro they responded to signals in areas of induced inflammation by differentiating into oligodendrocytes. These results suggested that adult NG2+ cells represent a useful cell population for promoting neural repair in a variety of different conditions including demyelinating diseases such as MS. PMID:23471865

  10. Inhibition of autophagy prevents irradiation-induced neural stem and progenitor cell death in the juvenile mouse brain.

    PubMed

    Wang, Yafeng; Zhou, Kai; Li, Tao; Xu, Yiran; Xie, Cuicui; Sun, Yanyan; Zhang, Yaodong; Rodriguez, Juan; Blomgren, Klas; Zhu, Changlian

    2017-03-23

    Radiotherapy is an effective tool in the treatment of malignant brain tumors. However, damage to brain stem and progenitor cells constitutes a major problem and is associated with long-term side effects. Autophagy has been shown to be involved in cell death, and the purpose of this study was to evaluate the effect of autophagy inhibition on neural stem and progenitor cell death in the juvenile brain. Ten-day-old selective Atg7 knockout (KO) mice and wild-type (WT) littermates were subjected to a single 6Gy dose of whole-brain irradiation. Cell death and proliferation as well as microglia activation and inflammation were evaluated in the dentate gyrus of the hippocampus and in the cerebellum at 6 h after irradiation. We found that cell death was reduced in Atg7 KO compared with WT mice at 6 h after irradiation. The number of activated microglia increased significantly in both the dentate gyrus and the cerebellum of WT mice after irradiation, but the increase was lower in the Atg7 KO mice. The levels of proinflammatory cytokines and chemokines decreased, especially in the cerebellum, in the Atg7 KO group. These results suggest that autophagy might be a potential target for preventing radiotherapy-induced neural stem and progenitor cell death and its associated long-term side effects.

  11. Effects of neural stem cells on synaptic proteins and memory in a mouse model of Alzheimer's disease.

    PubMed

    Zhang, W; Wang, G M; Wang, P J; Zhang, Q; Sha, S H

    2014-02-01

    Transplanting neural stem cells (NSC) to the damaged brain has been regarded as a potential treatment for neurodegenerative diseases such as Alzheimer's disease (AD), a condition characterized by memory loss. We hypothesized that transplantation of NSC into the hippocampal regions of APP + PS1 transgenic (Tg) mice, a well-established model of AD, would enhance the expression of synaptic proteins, which may be helpful for improving cognitive function. Our results showed that NSC transplantation significantly improved spatial learning and memory function in Tg mice. The results obtained by real-time RT-PCR, immunofluorescence, and Western blot analyses demonstrated that the expression of synaptophysin (SYN) and that of growth-associated protein-43 (GAP-43) in Tg-NSC mice, 8 weeks after transplantation, were significantly improved compared with what was observed in Tg-Veh (control) mice. This finding was confirmed by the increase in the number of synapses in Tg-NSC mice as observed via electron microscopy. Our results suggest that NSC-induced changes can recover memory loss in APP + PS1 transgenic mice, possibly by establishing new neural circuits resulting from the engrafted NSC.

  12. Downregulation of miRNA-134 protects neural cells against ischemic injury in N2A cells and mouse brain with ischemic stroke by targeting HSPA12B.

    PubMed

    Chi, W; Meng, F; Li, Y; Wang, Q; Wang, G; Han, S; Wang, P; Li, J

    2014-09-26

    MicroRNAs (miRNAs) have emerged as a major regulator in neurological diseases, and understanding their molecular mechanism in modulating cerebral ischemic injury may provide potential therapeutic targets for ischemic stroke. However, as one of 19 differentially expressed miRNAs in mouse brain with middle cerebral artery occlusion (MCAO), the role of miR-134 in ischemic injury is not well understood. In this study, the miR-134 expression level was manipulated both in oxygen-glucose deprivation (OGD)-treated N2A neuroblastoma cells in vitro and mouse brain with MCAO-induced ischemic stroke in vivo, and its possible targets of heat shock protein A5 (HSPA5) and HSPA12B were determined by bioinformatics analysis and dual luciferase assay. The results showed that overexpression of miR-134 exacerbated cell death and apoptosis both in vitro and in vivo. Conversely, downregulating miR-134 levels reduced cell death and apoptosis. Furthermore, non-expression of miR-134 enhanced HSPA12B protein levels in OGD-treated N2A cells as well as in the ischemic region. It could attenuate brain infarction size and neural cell damage, and improve neurological outcomes in mice with ischemic stroke, whereas upregulation of miR-134 had the opposite effect. In addition, HSPA12B was validated to be a target of miR-134 and its short interfering RNAs (siRNAs) could block miR-134 inhibitor-induced neuroprotection in OGD-treated N2A cells. In conclusion, downregulation of miR-134 could induce neuroprotection against ischemic injury in vitro and in vivo by negatively upregulating HSPA12B protein expression.

  13. In vivo visualization and monitoring of viable neural stem cells using noninvasive bioluminescence imaging in the 6-hydroxydopamine-induced mouse model of Parkinson disease.

    PubMed

    Im, Hyung-Jun; Hwang, Do Won; Lee, Han Kyu; Jang, Jaeho; Lee, Song; Youn, Hyewon; Jin, Yeona; Kim, Seung U; Kim, E Edmund; Kim, Yong Sik; Lee, Dong Soo

    2013-06-01

    Transplantation of neural stem cells (NSCs) has been proposed as a treatment for Parkinson disease (PD). The aim of this study was to monitor the viability of transplanted NSCs expressing the enhanced luciferase gene in a mouse model of PD in vivo. The PD animal model was induced by unilateral injection of 6-hydroxydopamine (6-OHDA). The behavioral test using apomorphine-induced rotation and positron emission tomography with [18F]N-(3-fluoropropyl)-2'-carbomethoxy-3'-(4-iodophenyl)nortropane ([18F]FP-CIT) were conducted. HB1.F3 cells transduced with an enhanced firefly luciferase retroviral vector (F3-effLuc cells) were transplanted into the right striatum. In vivo bioluminescence imaging was repeated for 2 weeks. Four weeks after transplantation, [18F]FP-CIT PET and the rotation test were repeated. All 6-OHDA-injected mice showed markedly decreased [18F]FP-CIT uptake in the right striatum. Transplanted F3-effLuc cells were visualized on the right side of the brain in all mice by bioluminescence imaging. The bioluminescence intensity of the transplanted F3-effLuc cells gradually decreased until it was undetectable by 10 days. The behavioral test showed that stem cell transplantation attenuated the motor symptoms of PD. No significant change was found in [18F]FP-CIT imaging after cell transplantation. We successfully established an in vivo bioluminescence imaging system for the detection of transplanted NSCs in a mouse model of PD. NSC transplantation induced behavioral improvement in PD model mice.

  14. Enhanced expression of FNDC5 in human embryonic stem cell-derived neural cells along with relevant embryonic neural tissues.

    PubMed

    Ghahrizjani, Fatemeh Ahmadi; Ghaedi, Kamran; Salamian, Ahmad; Tanhaei, Somayeh; Nejati, Alireza Shoaraye; Salehi, Hossein; Nabiuni, Mohammad; Baharvand, Hossein; Nasr-Esfahani, Mohammad Hossein

    2015-02-25

    Availability of human embryonic stem cells (hESCs) has enhanced the capability of basic and clinical research in the context of human neural differentiation. Derivation of neural progenitor (NP) cells from hESCs facilitates the process of human embryonic development through the generation of neuronal subtypes. We have recently indicated that fibronectin type III domain containing 5 protein (FNDC5) expression is required for appropriate neural differentiation of mouse embryonic stem cells (mESCs). Bioinformatics analyses have shown the presence of three isoforms for human FNDC5 mRNA. To differentiate which isoform of FNDC5 is involved in the process of human neural differentiation, we have used hESCs as an in vitro model for neural differentiation by retinoic acid (RA) induction. The hESC line, Royan H5, was differentiated into a neural lineage in defined adherent culture treated by RA and basic fibroblast growth factor (bFGF). We collected all cell types that included hESCs, rosette structures, and neural cells in an attempt to assess the expression of FNDC5 isoforms. There was a contiguous increase in all three FNDC5 isoforms during the neural differentiation process. Furthermore, the highest level of expression of the isoforms was significantly observed in neural cells compared to hESCs and the rosette structures known as neural precursor cells (NPCs). High expression levels of FNDC5 in human fetal brain and spinal cord tissues have suggested the involvement of this gene in neural tube development. Additional research is necessary to determine the major function of FDNC5 in this process.

  15. Sonic Hedgehog modulates EGFR dependent proliferation of neural stem cells during late mouse embryogenesis through EGFR transactivation

    PubMed Central

    Reinchisi, Gisela; Parada, Margarita; Lois, Pablo; Oyanadel, Claudia; Shaughnessy, Ronan; Gonzalez, Alfonso; Palma, Verónica

    2013-01-01

    Sonic Hedgehog (Shh/GLI) and EGFR signaling pathways modulate Neural Stem Cell (NSC) proliferation. How these signals cooperate is therefore critical for understanding normal brain development and function. Here we report a novel acute effect of Shh signaling on EGFR function. We show that during late neocortex development, Shh mediates the activation of the ERK1/2 signaling pathway in Radial Glial cells (RGC) through EGFR transactivation. This process is dependent on metalloprotease activity and accounts for almost 50% of the EGFR-dependent mitogenic response of late NSCs. Furthermore, in HeLa cancer cells, a well-known model for studying the EGFR receptor function, Shh also induces cell proliferation involving EGFR activation, as reflected by EGFR internalization and ERK1/2 phosphorylation. These findings may have important implications for understanding the mechanisms that regulate NSC proliferation during neurogenesis and may lead to novel approaches to the treatment of tumors. PMID:24133411

  16. Sonic Hedgehog modulates EGFR dependent proliferation of neural stem cells during late mouse embryogenesis through EGFR transactivation.

    PubMed

    Reinchisi, Gisela; Parada, Margarita; Lois, Pablo; Oyanadel, Claudia; Shaughnessy, Ronan; Gonzalez, Alfonso; Palma, Verónica

    2013-01-01

    Sonic Hedgehog (Shh/GLI) and EGFR signaling pathways modulate Neural Stem Cell (NSC) proliferation. How these signals cooperate is therefore critical for understanding normal brain development and function. Here we report a novel acute effect of Shh signaling on EGFR function. We show that during late neocortex development, Shh mediates the activation of the ERK1/2 signaling pathway in Radial Glial cells (RGC) through EGFR transactivation. This process is dependent on metalloprotease activity and accounts for almost 50% of the EGFR-dependent mitogenic response of late NSCs. Furthermore, in HeLa cancer cells, a well-known model for studying the EGFR receptor function, Shh also induces cell proliferation involving EGFR activation, as reflected by EGFR internalization and ERK1/2 phosphorylation. These findings may have important implications for understanding the mechanisms that regulate NSC proliferation during neurogenesis and may lead to novel approaches to the treatment of tumors.

  17. Neural stem cell gene therapy ameliorates pathology and function in a mouse model of globoid cell leukodystrophy.

    PubMed

    Neri, Margherita; Ricca, Alessandra; di Girolamo, Ilaria; Alcala'-Franco, Beatriz; Cavazzin, Chiara; Orlacchio, Aldo; Martino, Sabata; Naldini, Luigi; Gritti, Angela

    2011-10-01

    Murine neural stem cells (mNSCs), either naive or genetically modified to express supranormal levels of β-galactocerebrosidase (GALC), were transplanted into the brain of Twitcher mice, a murine model of globoid cell leukodystrophy, a severe sphingolipidosis. Cells engrafted long-term into the host cytoarchitecture, producing functional GALC. Levels of enzyme activity in brain and spinal cord tissues were enhanced when GALC-overexpressing NSC were used. Enzymatic correction correlated with reduced tissue storage, decreased activation of astroglia and microglia, delayed onset of symptoms, and longer lifespan. Mechanisms underlying the therapeutic effect of mNSC included widespread enzyme distribution, cross-correction of host cells, anti-inflammatory activity, and neuroprotection. Similar cell engraftment and metabolic correction were reproduced using human NSC. Thus, NSC gene therapy rapidly reconstitutes sustained and long-lasting enzyme activity in central nervous system tissues. Combining this approach with treatments targeting the systemic disease associated with leukodystrophies may provide significant therapeutic benefit.

  18. Polysaccharides from Ganoderma lucidum Promote Cognitive Function and Neural Progenitor Proliferation in Mouse Model of Alzheimer's Disease.

    PubMed

    Huang, Shichao; Mao, Jianxin; Ding, Kan; Zhou, Yue; Zeng, Xianglu; Yang, Wenjuan; Wang, Peipei; Zhao, Cun; Yao, Jian; Xia, Peng; Pei, Gang

    2017-01-10

    Promoting neurogenesis is a promising strategy for the treatment of cognition impairment associated with Alzheimer's disease (AD). Ganoderma lucidum is a revered medicinal mushroom for health-promoting benefits in the Orient. Here, we found that oral administration of the polysaccharides and water extract from G. lucidum promoted neural progenitor cell (NPC) proliferation to enhance neurogenesis and alleviated cognitive deficits in transgenic AD mice. G. lucidum polysaccharides (GLP) also promoted self-renewal of NPC in cell culture. Further mechanistic study revealed that GLP potentiated activation of fibroblast growth factor receptor 1 (FGFR1) and downstream extracellular signal-regulated kinase (ERK) and AKT cascades. Consistently, inhibition of FGFR1 effectively blocked the GLP-promoted NPC proliferation and activation of the downstream cascades. Our findings suggest that GLP could serve as a regenerative therapeutic agent for the treatment of cognitive decline associated with neurodegenerative diseases.

  19. Dynamic Re-wiring of Neural Circuits in the Motor Cortex in Mouse Models of Parkinson's Disease

    PubMed Central

    Lalchandani, Rupa R.; Cui, Yuting; Shu, Yu; Xu, Tonghui; Ding, Jun B.

    2015-01-01

    SUMMARY Dynamic adaptations in synaptic plasticity are critical for learning new motor skills and maintaining memory throughout life, which rapidly decline with Parkinson's disease (PD). Plasticity in the motor cortex is important for acquisition and maintenance of novel motor skills, but how the loss of dopamine in PD leads to disrupted structural and functional plasticity in the motor cortex is not well understood. Here, we utilized mouse models of PD and 2-photon imaging to show that dopamine depletion resulted in structural changes in the motor cortex. We further discovered that dopamine D1 and D2 receptor signaling were linked to selectively and distinctly regulating these aberrant changes in structural and functional plasticity. Our findings suggest that both D1 and D2 receptor signaling regulate motor cortex plasticity, and loss of dopamine results in atypical synaptic adaptations that may contribute to the impairment of motor performance and motor memory observed in PD. PMID:26237365

  20. Human neural stem cells genetically modified to overexpress brain-derived neurotrophic factor promote functional recovery and neuroprotection in a mouse stroke model.

    PubMed

    Lee, Hong J; Lim, In J; Lee, Min C; Kim, Seung U

    2010-11-15

    Intracerebral hemorrhage (ICH) is a lethal stroke type; mortality approaches 50%, and current medical therapy against ICH shows only limited effectiveness, so an alternative approach is required, such as stem cell-based cell therapy. Previously we have shown that intravenously transplanted human neural stem cells (NSCs) selectively migrate to the brain and promote functional recovery in rat ICH model, and others have shown that intracerebral infusion of brain-derived neurotrophic factor (BDNF) results in improved structural and functional outcome from cerebral ischemia. We postulated that human NSCs overexpressing BDNF transplanted into cerebral cortex overlying ICH lesion could provide improved survival of grafted NSCs and increased angiogenesis and behavioral recovery in mouse ICH model. ICH was induced in adult mice by injection of bacterial collagenase into striatum. The HB1.F3.BDNF (F3.BDNF) human NSC line produces sixfold higher amounts of BDNFF over the parental F3 cell line in vitro, induces behavioral improvement, and produces a threefold increase in cell survival at 2 weeks and 8 weeks posttransplantation. Brain transplantation of human NSCs overexpressing BDNF provided differentiation and survival of grafted human NSCs and renewed angiogenesis of host brain and functional recovery of ICH animals. These results indicate that the F3.BDNF human NSCs should be of great value as a cellular source for experimental studies involving cellular therapy for human neurological disorders, including ICH.

  1. Foxg1-Cre Mediated Lrp2 Inactivation in the Developing Mouse Neural Retina, Ciliary and Retinal Pigment Epithelia Models Congenital High Myopia

    PubMed Central

    Obry, Antoine; Santin, Mathieu D.; Ben-Yacoub, Sirine; Pâques, Michel; Amsellem-Levera, Sabine; Bribian, Ana; Simonutti, Manuel; Augustin, Sébastien; Debeir, Thomas; Sahel, José Alain; Christ, Annabel; de Castro, Fernando; Lehéricy, Stéphane; Cosette, Pascal; Kozyraki, Renata

    2015-01-01

    Myopia is a common ocular disorder generally due to increased axial length of the eye-globe. Its extreme form high myopia (HM) is a multifactorial disease leading to retinal and scleral damage, visual impairment or loss and is an important health issue. Mutations in the endocytic receptor LRP2 gene result in Donnai-Barrow (DBS) and Stickler syndromes, both characterized by HM. To clearly establish the link between Lrp2 and congenital HM we inactivated Lrp2 in the mouse forebrain including the neural retina and the retinal and ciliary pigment epithelia. High resolution in vivo MRI imaging and ophthalmological analyses showed that the adult Lrp2-deficient eyes were 40% longer than the control ones mainly due to an excessive elongation of the vitreal chamber. They had an apparently normal intraocular pressure and developed chorioretinal atrophy and posterior scleral staphyloma features reminiscent of human myopic retinopathy. Immunomorphological and ultrastructural analyses showed that increased eye lengthening was first observed by post-natal day 5 (P5) and that it was accompanied by a rapid decrease of the bipolar, photoreceptor and retinal ganglion cells, and eventually the optic nerve axons. It was followed by scleral thinning and collagen fiber disorganization, essentially in the posterior pole. We conclude that the function of LRP2 in the ocular tissues is necessary for normal eye growth and that the Lrp2-deficient eyes provide a unique tool to further study human HM. PMID:26107939

  2. Scutellarin may alleviate cognitive deficits in a mouse model of hypoxia by promoting proliferation and neuronal differentiation of neural stem cells

    PubMed Central

    Wang, Wei-Wei; Han, Jian-Hong; Wang, Lin; Bao, Tian-Hao

    2017-01-01

    Objective(s): Scutellarin, a flavonoid extracted from the medicinal herb Erigeron breviscapus Hand-Mazz, protects neurons from damage and inhibits glial activation. Here we examined whether scutellarin may also protect neurons from hypoxia-induced damage. Materials and Methods: Mice were exposed to hypoxia for 7 days and then administered scutellarin (50 mg/kg/d) or vehicle for 30 days Cognitive impairment in the two groups was assessed using the Morris water maze test, cell proliferation in the hippocampus was compared using 5-bromo-2-deoxyuridine (BrdU) immunohistochemistry, and hippocampal levels of nestin and neuronal class III β-tubulin (Tuj-1) were measured using Western blotting. These results were validated in vitro by treating cultured neural stem cells (NSCs) with scutellarin (30 μM). Results: Treating mice with scutellarin shortened escape times and increased the number of platform crossings, it increased the number of BrdU-positive proliferating cells in the hippocampus, and it up-regulated expression of nestin and Tuj-1. Treating NSC cultures with scutellarin increased the number of proliferating cells and the proportion of cells differentiating into neurons instead of astrocytes. The increase in NSC proliferation was associated with phosphorylation of extracellular signal-regulated kinase (ERK) 1/2, while neuronal differentiation was associated with altered expression of differentiation-related genes. Conclusion: Scutellarin may alleviate cognitive impairment in a mouse model of hypoxia by promo-ting proliferation and neuronal differentiation of NSCs. PMID:28392899

  3. Sam68 promotes self-renewal and glycolytic metabolism in mouse neural progenitor cells by modulating Aldh1a3 pre-mRNA 3'-end processing

    PubMed Central

    La Rosa, Piergiorgio; Bielli, Pamela; Compagnucci, Claudia; Cesari, Eleonora; Volpe, Elisabetta; Farioli Vecchioli, Stefano; Sette, Claudio

    2016-01-01

    The balance between self-renewal and differentiation of neural progenitor cells (NPCs) dictates neurogenesis and proper brain development. We found that the RNA- binding protein Sam68 (Khdrbs1) is strongly expressed in neurogenic areas of the neocortex and supports the self-renewing potential of mouse NPCs. Knockout of Khdrbs1 constricted the pool of proliferating NPCs by accelerating their cell cycle exit and differentiation into post-mitotic neurons. Sam68 function was linked to regulation of Aldh1a3 pre-mRNA 3'-end processing. Binding of Sam68 to an intronic polyadenylation site prevents its recognition and premature transcript termination, favoring expression of a functional enzyme. The lower ALDH1A3 expression and activity in Khdrbs1-/- NPCs results in reduced glycolysis and clonogenicity, thus depleting the embryonic NPC pool and limiting cortical expansion. Our study identifies Sam68 as a key regulator of NPC self-renewal and establishes a novel link between modulation of ALDH1A3 expression and maintenance of high glycolytic metabolism in the developing cortex. DOI: http://dx.doi.org/10.7554/eLife.20750.001 PMID:27845622

  4. Polysialic acid enters the cell nucleus attached to a fragment of the neural cell adhesion molecule NCAM to regulate the circadian rhythm in mouse brain.

    PubMed

    Westphal, Nina; Kleene, Ralf; Lutz, David; Theis, Thomas; Schachner, Melitta

    2016-07-01

    In the mammalian nervous system, the neural cell adhesion molecule NCAM is the major carrier of the glycan polymer polysialic acid (PSA) which confers important functions to NCAM's protein backbone. PSA attached to NCAM contributes not only to cell migration, neuritogenesis, synaptic plasticity, and behavior, but also to regulation of the circadian rhythm by yet unknown molecular mechanisms. Here, we show that a PSA-carrying transmembrane NCAM fragment enters the nucleus after stimulation of cultured neurons with surrogate NCAM ligands, a phenomenon that depends on the circadian rhythm. Enhanced nuclear import of the PSA-carrying NCAM fragment is associated with altered expression of clock-related genes, as shown by analysis of cultured neuronal cells deprived of PSA by specific enzymatic removal. In vivo, levels of nuclear PSA in different mouse brain regions depend on the circadian rhythm and clock-related gene expression in suprachiasmatic nucleus and cerebellum is affected by the presence of PSA-carrying NCAM in the cell nucleus. Our conceptually novel observations reveal that PSA attached to a transmembrane proteolytic NCAM fragment containing part of the extracellular domain enters the cell nucleus, where PSA-carrying NCAM contributes to the regulation of clock-related gene expression and of the circadian rhythm.

  5. Noise-induced precursors of state transitions in the stochastic Wilson-cowan model.

    PubMed

    Negahbani, Ehsan; Steyn-Ross, D Alistair; Steyn-Ross, Moira L; Wilson, Marcus T; Sleigh, Jamie W

    2015-01-01

    The Wilson-Cowan neural field equations describe the dynamical behavior of a 1-D continuum of excitatory and inhibitory cortical neural aggregates, using a pair of coupled integro-differential equations. Here we use bifurcation theory and small-noise linear stochastics to study the range of a phase transitions-sudden qualitative changes in the state of a dynamical system emerging from a bifurcation-accessible to the Wilson-Cowan network. Specifically, we examine saddle-node, Hopf, Turing, and Turing-Hopf instabilities. We introduce stochasticity by adding small-amplitude spatio-temporal white noise, and analyze the resulting subthreshold fluctuations using an Ornstein-Uhlenbeck linearization. This analysis predicts divergent changes in correlation and spectral characteristics of neural activity during close approach to bifurcation from below. We validate these theoretical predictions using numerical simulations. The results demonstrate the role of noise in the emergence of critically slowed precursors in both space and time, and suggest that these early-warning signals are a universal feature of a neural system close to bifurcation. In particular, these precursor signals are likely to have neurobiological significance as early warnings of impending state change in the cortex. We support this claim with an analysis of the in vitro local field potentials recorded from slices of mouse-brain tissue. We show that in the period leading up to emergence of spontaneous seizure-like events, the mouse field potentials show a characteristic spectral focusing toward lower frequencies concomitant with a growth in fluctuation variance, consistent with critical slowing near a bifurcation point. This observation of biological criticality has clear implications regarding the feasibility of seizure prediction.

  6. Neural Stem Cell Gene Therapy Ameliorates Pathology and Function in a Mouse Model of Globoid Cell Leukodystrophy

    PubMed Central

    Neri, Margherita; Ricca, Alessandra; di Girolamo, Ilaria; Alcala'-Franco, Beatriz; Cavazzin, Chiara; Orlacchio, Aldo; Martino, Sabata; Naldini, Luigi; Gritti, Angela

    2011-01-01

    Murine neural stem cells (mNSCs), either naive or genetically modified to express supranormal levels of β-galactocerebrosidase (GALC), were transplanted into the brain of Twitcher mice, a murine model of globoid cell leukodystrophy, a severe sphingolipidosis. Cells engrafted long-term into the host cytoarchitecture, producing functional GALC. Levels of enzyme activity in brain and spinal cord tissues were enhanced when GALC-overexpressing NSC were used. Enzymatic correction correlated with reduced tissue storage, decreased activation of astroglia and microglia, delayed onset of symptoms, and longer lifespan. Mechanisms underlying the therapeutic effect of mNSC included widespread enzyme distribution, cross-correction of host cells, anti-inflammatory activity, and neuroprotection. Similar cell engraftment and metabolic correction were reproduced using human NSC. Thus, NSC gene therapy rapidly reconstitutes sustained and long-lasting enzyme activity in central nervous system tissues. Combining this approach with treatments targeting the systemic disease associated with leukodystrophies may provide significant therapeutic benefit. Stem Cells 2011;29:1559–1571 PMID:21809420

  7. Neural cell adhesion molecule, NCAM, regulates thalamocortical axon pathfinding and the organization of the cortical somatosensory representation in mouse

    PubMed Central

    Enriquez-Barreto, Lilian; Palazzetti, Cecilia; Brennaman, Leann H.; Maness, Patricia F.; Fairén, Alfonso

    2012-01-01

    To study the potential role of neural cell adhesion molecule (NCAM) in the development of thalamocortical (TC) axon topography, wild type, and NCAM null mutant mice were analyzed for NCAM expression, projection, and targeting of TC afferents within the somatosensory area of the neocortex. Here we report that NCAM and its α-2,8-linked polysialic acid (PSA) are expressed in developing TC axons during projection to the neocortex. Pathfinding of TC axons in wild type and null mutant mice was mapped using anterograde DiI labeling. At embryonic day E16.5, null mutant mice displayed misguided TC axons in the dorsal telencephalon, but not in the ventral telencephalon, an intermediate target that initially sorts TC axons toward correct neocortical areas. During the early postnatal period, rostrolateral TC axons within the internal capsule along the ventral telencephalon adopted distorted trajectories in the ventral telencephalon and failed to reach the neocortex in NCAM null mutant animals. NCAM null mutants showed abnormal segregation of layer IV barrels in a restricted portion of the somatosensory cortex. As shown by Nissl and cytochrome oxidase staining, barrels of the anterolateral barrel subfield (ALBSF) and the most distal barrels of the posteromedial barrel subfield (PMBSF) did not segregate properly in null mutant mice. These results indicate a novel role for NCAM in axonal pathfinding and topographic sorting of TC axons, which may be important for the function of specific territories of sensory representation in the somatosensory cortex. PMID:22723769

  8. Neural stem cell transplantation at critical period improves learning and memory through restoring synaptic impairment in Alzheimer's disease mouse model.

    PubMed

    Kim, J A; Ha, S; Shin, K Y; Kim, S; Lee, K J; Chong, Y H; Chang, K-A; Suh, Y-H

    2015-06-18

    Alzheimer's disease (AD) is characterized by neuronal loss in several regions of the brain. Recent studies have suggested that stem cell transplantation could serve as a potential therapeutic strategy to halt or ameliorate the inexorable disease progression. However, the optimal stage of the disease for stem cell transplantation to have a therapeutic effect has yet to be determined. Here, we demonstrated that transplantation of neural stem cells into 12-month-old Tg2576 brains markedly improved both cognitive impairments and neuropathological features by reducing β-amyloid processing and upregulating clearance of β-amyloid, secretion of anti-inflammatory cytokines, endogenous neurogenesis, as well as synapse formation. In contrast, the stem cell transplantation did not recover cognitive dysfunction and β-amyloid neuropathology in Tg2576 mice aged 15 months when the memory loss is manifest. Overall, this study underscores that stem cell therapy at optimal time frame is crucial to obtain maximal therapeutic effects that can restore functional deficits or stop the progression of AD.

  9. Prophase I arrest of mouse oocytes mediated by natriuretic peptide precursor C requires GJA1 (connexin-43) and GJA4 (connexin-37) gap junctions in the antral follicle and cumulus-oocyte complex.

    PubMed

    Richard, Samantha; Baltz, Jay M

    2014-06-01

    Fully grown germinal vesicle stage mouse oocytes remain arrested in meiotic prophase I until ovulation. This arrest is maintained by cGMP produced in cumulus granulosa cells surrounding the oocyte. Recently, it was found that cGMP production in cumulus cells depends on NPR2 guanylate cyclase activated by its ligand natriuretic peptide precursor C (NPPC). It is assumed that cGMP reaches the oocyte through gap junctions that couple cumulus granulosa cells to each other and to the oocyte. Previous work identified two main types of gap junctions in the follicle, connexin-43 gap junctions (GJA1 protein) between granulosa cells and connexin-37 gap junctions (GJA4) between cumulus cells and the oocyte. However, it had not been established that both types are required for meiotic arrest mediated by NPPC/NPR2 signaling. To investigate this, we used connexin mimetic peptides (CMPs) that specifically disrupt gap junction isoforms within cumulus-oocyte complexes (COCs) and isolated antral follicles in culture. We furthermore developed a punctured antral follicle preparation to permit CMP access to the antral cavity in an otherwise intact follicle. CMP directed against connexin-43 (Cx43 CMP) overcame NPPC-mediated meiotic arrest in both isolated COCs and antral follicles. Cx37 CMP, in contrast, had no effect when present in the medium, but released oocyte arrest in the presence of NPPC when microinjected into the perivitelline space near the oocyte surface in COCs. This is consistent with both connexin isoforms being required for meiotic arrest and with the reported localization of connexin-43 throughout the cumulus cells and connexin-37 at the oocyte surface.

  10. Novel migrating mouse neural crest cell assay system utilizing P0-Cre/EGFP fluorescent time-lapse imaging

    PubMed Central

    2011-01-01

    Background Neural crest cells (NCCs) are embryonic, multipotent stem cells. Their long-range and precision-guided migration is one of their most striking characteristics. We previously reported that P0-Cre/CAG-CAT-lacZ double-transgenic mice showed significant lacZ expression in tissues derived from NCCs. Results In this study, by embedding a P0-Cre/CAG-CAT-EGFP embryo at E9.5 in collagen gel inside a culture glass slide, we were able to keep the embryo developing ex vivo for more than 24 hours; this development was with enough NCC fluorescent signal intensity to enable single-cell resolution analysis, with the accompanying NCC migration potential intact and with the appropriate NCC response to the extracellular signal maintained. By implantation of beads with absorbed platelet-derived growth factor-AA (PDGF-AA), we demonstrated that PDGF-AA acts as an NCC-attractant in embryos. We also performed assays with NCCs isolated from P0-Cre/CAG-CAT-EGFP embryos on culture plates. The neuromediator 5-hydroxytryptamine (5-HT) has been known to regulate NCC migration. We newly demonstrated that dopamine, in addition to 5-HT, stimulated NCC migration in vitro. Two NCC populations, with different axial levels of origins, showed unique distribution patterns regarding migration velocity and different dose-response patterns to both 5-HT and dopamine. Conclusions Although avian species predominated over the other species in the NCC study, our novel system should enable us to use mice to assay many different aspects of NCCs in embryos or on culture plates, such as migration, division, differentiation, and apoptosis. PMID:22070366

  11. Assessing Cell Cycle Progression of Neural Stem and Progenitor Cells in the Mouse Developing Brain after Genotoxic Stress

    PubMed Central

    Etienne, Olivier; Bery, Amandine; Roque, Telma; Desmaze, Chantal; Boussin, François D.

    2014-01-01

    Neurons of the cerebral cortex are generated during brain development from different types of neural stem and progenitor cells (NSPC), which form a pseudostratified epithelium lining the lateral ventricles of the embryonic brain. Genotoxic stresses, such as ionizing radiation, have highly deleterious effects on the developing brain related to the high sensitivity of NSPC. Elucidation of the cellular and molecular mechanisms involved depends on the characterization of the DNA damage response of these particular types of cells, which requires an accurate method to determine NSPC progression through the cell cycle in the damaged tissue. Here is shown a method based on successive intraperitoneal injections of EdU and BrdU in pregnant mice and further detection of these two thymidine analogues in coronal sections of the embryonic brain. EdU and BrdU are both incorporated in DNA of replicating cells during S phase and are detected by two different techniques (azide or a specific antibody, respectively), which facilitate their simultaneous detection. EdU and BrdU staining are then determined for each NSPC nucleus in function of its distance from the ventricular margin in a standard region of the dorsal telencephalon. Thus this dual labeling technique allows distinguishing cells that progressed through the cell cycle from those that have activated a cell cycle checkpoint leading to cell cycle arrest in response to DNA damage. An example of experiment is presented, in which EdU was injected before irradiation and BrdU immediately after and analyzes performed within the 4 hr following irradiation. This protocol provides an accurate analysis of the acute DNA damage response of NSPC in function of the phase of the cell cycle at which they have been irradiated. This method is easily transposable to many other systems in order to determine the impact of a particular treatment on cell cycle progression in living tissues. PMID:24837791

  12. Assessing cell cycle progression of neural stem and progenitor cells in the mouse developing brain after genotoxic stress.

    PubMed

    Etienne, Olivier; Bery, Amandine; Roque, Telma; Desmaze, Chantal; Boussin, François D

    2014-05-07

    Neurons of the cerebral cortex are generated during brain development from different types of neural stem and progenitor cells (NSPC), which form a pseudostratified epithelium lining the lateral ventricles of the embryonic brain. Genotoxic stresses, such as ionizing radiation, have highly deleterious effects on the developing brain related to the high sensitivity of NSPC. Elucidation of the cellular and molecular mechanisms involved depends on the characterization of the DNA damage response of these particular types of cells, which requires an accurate method to determine NSPC progression through the cell cycle in the damaged tissue. Here is shown a method based on successive intraperitoneal injections of EdU and BrdU in pregnant mice and further detection of these two thymidine analogues in coronal sections of the embryonic brain. EdU and BrdU are both incorporated in DNA of replicating cells during S phase and are detected by two different techniques (azide or a specific antibody, respectively), which facilitate their simultaneous detection. EdU and BrdU staining are then determined for each NSPC nucleus in function of its distance from the ventricular margin in a standard region of the dorsal telencephalon. Thus this dual labeling technique allows distinguishing cells that progressed through the cell cycle from those that have activated a cell cycle checkpoint leading to cell cycle arrest in response to DNA damage. An example of experiment is presented, in which EdU was injected before irradiation and BrdU immediately after and analyzes performed within the 4 hr following irradiation. This protocol provides an accurate analysis of the acute DNA damage response of NSPC in function of the phase of the cell cycle at which they have been irradiated. This method is easily transposable to many other systems in order to determine the impact of a particular treatment on cell cycle progression in living tissues.

  13. In vivo injection of fibroblast growth factor-2 into the cisterna magna induces glypican-6 expression in mouse brain tissue.

    PubMed

    Salehi, Zivar

    2009-05-01

    The proteoglycans (PGs) are multifunctional macromolecules composed of a core polypeptide and a variable number of glycosaminoglycan chains. In the nervous system, PGs regulate the structural organization of the extracellular matrix (ECM) and modulate growth factor activities and cell proliferation and migration. Most cortical neurons are generated from neural precursor cells that reside in the ventricular zone of the embryonic brain. The proliferation and differentiation of neural precursor cells are regulated by various growth and neurotrophic factors. Fibroblast growth factor-2 (FGF-2) is an important mitogen for cortical neural precursor cells, and glypicans regulate the action of FGF-2 on neural precursor cells. Glypican-6 is one of the most abundant ECM molecules in the brain. In this study the effects of FGF-2 on glypican-6 expression in brain tissue have been investigated. FGF-2 was injected into the cerebrospinal fluid (CSF) through the cisterna magna of mouse pups. Using Western blotting, it was shown that the expression of glypican-6 is increased in response to infusion of FGF-2 into the CSF. The injection of anti-FGF-2 antibody into the cisterna magna decreased glypican-6 expression in brain tissue. The results from this study suggest that glypican-6 is important in regulating FGF-2 activity during cerebral cortical development.

  14. Elevated Nuclear and Cytoplasmic FTY720-Phosphate in Mouse Embryonic Fibroblasts Suggests the Potential for Multiple Mechanisms in FTY720-Induced Neural Tube Defects.

    PubMed

    Gardner, Nicole M; Riley, Ronald T; Showker, Jency L; Voss, Kenneth A; Sachs, Andrew J; Maddox, Joyce R; Gelineau-van Waes, Janee B

    2016-03-01

    FTY720 (fingolimod) is a U.S. Food and Drug Administration-approved drug to treat relapsing remitting multiple sclerosis. FTY720 treatment in pregnant inbred LM/Bc mice results in approximately 60% of embryos having a neural tube defect (NTD). Sphingosine kinases (Sphk1, Sphk2) phosphorylate FTY720 in vivo to form the bioactive metabolite FTY720-1-phosphate (FTY720-P). Cytoplasmic FTY720-P is an agonist for 4 of the 5 sphingosine-1-phosphate (S1P) receptors (S1P1, 3-5) and can also act as a functional antagonist of S1P1, whereas FTY720-P generated in the nucleus inhibits histone deacetylases (HDACs), leading to increased histone acetylation. This study demonstrates that treatment of LM/Bc mouse embryonic fibroblasts (MEFs) with FTY720 results in a significant accumulation of FTY720-P in both the cytoplasmic and nuclear compartments. Elevated nuclear FTY720-P is associated with decreased HDAC activity and increased histone acetylation at H3K18 and H3K23 in LM/Bc MEFs. Treatment of LM/Bc MEFs with FTY720 and a selective Sphk2 inhibitor, ABC294640, significantly reduces the amount of FTY720-P that accumulates in the nucleus. The data provide insight into the relative amounts of FTY720-P generated in the nuclear versus cytoplasmic subcellular compartments after FTY720 treatment and the specific Sphk isoforms involved. The results of this study suggest that FTY720-induced NTDs may involve multiple mechanisms, including: (1) sustained and/or altered S1P receptor activation and signaling by FTY720-P produced in the cytoplasm and (2) HDAC inhibition and histone hyperacetylation by FTY720-P generated in the nucleus that could lead to epigenetic changes in gene regulation.

  15. A 3.7 kb Fragment of the Mouse Scn10a Gene Promoter Directs Neural Crest But Not Placodal Lineage EGFP Expression in a Transgenic Animal

    PubMed Central

    Lu, Van B.; Ikeda, Stephen R.

    2015-01-01

    Under physiological conditions, the voltage-gated sodium channel Nav1.8 is expressed almost exclusively in primary sensory neurons. The mechanism restricting Nav1.8 expression is not entirely clear, but we have previously described a 3.7 kb fragment of the Scn10a promoter capable of recapitulating the tissue-specific expression of Nav1.8 in transfected neurons and cell lines (Puhl and Ikeda, 2008). To validate these studies in vivo, a transgenic mouse encoding EGFP under the control of this putative sensory neuron specific promoter was generated and characterized in this study. Approximately 45% of dorsal root ganglion neurons of transgenic mice were EGFP-positive (mean diameter = 26.5 μm). The majority of EGFP-positive neurons bound isolectin B4, although a small percentage (∼10%) colabeled with markers of A-fiber neurons. EGFP expression correlated well with the presence of Nav1.8 transcript (95%), Nav1.8-immunoreactivity (70%), and TTX-R INa (100%), although not all Nav1.8-expressing neurons expressed EGFP. Several cranial sensory ganglia originating from neurogenic placodes, such as the nodose ganglion, failed to express EGFP, suggesting that additional regulatory elements dictate Scn10a expression in placodal-derived sensory neurons. EGFP was also detected in discrete brain regions of transgenic mice. Quantitative PCR and Nav1.8-immunoreactivity confirmed Nav1.8 expression in the amygdala, brainstem, globus pallidus, lateral and paraventricular hypothalamus, and olfactory tubercle. TTX-R INa recorded from EGFP-positive hypothalamic neurons demonstrate the usefulness of this transgenic line to study novel roles of Nav1.8 beyond sensory neurons. Overall, Scn10a-EGFP transgenic mice recapitulate the majority of the Nav1.8 expression pattern in neural crest-derived sensory neurons. PMID:25995484

  16. Genetic backgrounds and modifier genes of NTD mouse models: An opportunity for greater understanding of the multifactorial etiology of neural tube defects.

    PubMed

    Leduc, Renee Y M; Singh, Parmveer; McDermid, Heather E

    2016-10-21

    Neurulation, the early embryonic process of forming the presumptive brain and spinal cord, is highly complex and involves hundreds of genes in multiple genetic pathways. Mice have long served as a genetic model for studying human neurulation, and the resulting neural tube defects (NTDs) that arise when neurulation is disrupted. Because mice appear to show mostly single gene inheritance for NTDs and humans show multifactorial inheritance, mice sometimes have been characterized as a simpler model for the identification and study of NTD genes. But are they a simple model? When viewed on different genetic backgrounds, many genes show significant variation in the penetrance and expressivity of NTD phenotypes, suggesting the presence of modifier loci that interact with the target gene to affect the phenotypic expression. Looking at mutations on different genetic backgrounds provides us with an opportunity to explore these complex genetic interactions, which are likely to better emulate similar processes in human neurulation. Here, we review NTD genes known to show strain-specific phenotypic variation. We focus particularly on the gene Cecr2, which is studied using both a hypomorphic and a presumptive null mutation on two different backgrounds: one susceptible (BALB/c) and one resistant (FVB/N) to NTDs. This strain difference has led to a search for genetic modifiers within a region on murine chromosome 19. Understanding how genetic variants alter the phenotypic outcome in NTD mouse models will help to direct future studies in humans, particularly now that more genome wide sequencing approaches are being used. Birth Defects Research (Part A), 2016. © 2016 Wiley Periodicals, Inc.

  17. Formate supplementation enhances folate-dependent nucleotide biosynthesis and prevents spina bifida in a mouse model of folic acid-resistant neural tube defects.

    PubMed

    Sudiwala, Sonia; De Castro, Sandra C P; Leung, Kit-Yi; Brosnan, John T; Brosnan, Margaret E; Mills, Kevin; Copp, Andrew J; Greene, Nicholas D E

    2016-07-01

    The curly tail mouse provides a model for neural tube defects (spina bifida and exencephaly) that are resistant to prevention by folic acid. The major ct gene, responsible for spina bifida, corresponds to a hypomorphic allele of grainyhead-like 3 (Grhl3) but the frequency of NTDs is strongly influenced by modifiers in the genetic background. Moreover, exencephaly in the curly tail strain is not prevented by reinstatement of Grhl3 expression. In the current study we found that expression of Mthfd1L, encoding a key component of mitochondrial folate one-carbon metabolism (FOCM), is significantly reduced in ct/ct embryos compared to a partially congenic wild-type strain. This expression change is not attributable to regulation by Grhl3 or the genetic background at the Mthfd1L locus. Mitochondrial FOCM provides one-carbon units as formate for FOCM reactions in the cytosol. We found that maternal supplementation with formate prevented NTDs in curly tail embryos and also resulted in increased litter size. Analysis of the folate profile of neurulation-stage embryos showed that formate supplementation resulted in an increased proportion of formyl-THF and THF but a reduction in proportion of 5-methyl THF. In contrast, THF decreased and 5-methyl THF was relatively more abundant in the liver of supplemented dams than in controls. In embryos cultured through the period of spinal neurulation, incorporation of labelled thymidine and adenine into genomic DNA was suppressed by supplemental formate, suggesting that de novo folate-dependent biosynthesis of nucleotides (thymidylate and purines) was enhanced. We hypothesise that reduced Mthfd1L expression may contribute to susceptibility to NTDs in the curly tail strain and that formate acts as a one-carbon donor to prevent NTDs.

  18. A 3.7 kb fragment of the mouse Scn10a gene promoter directs neural crest but not placodal lineage EGFP expression in a transgenic animal.

    PubMed

    Lu, Van B; Ikeda, Stephen R; Puhl, Henry L

    2015-05-20

    Under physiological conditions, the voltage-gated sodium channel Nav1.8 is expressed almost exclusively in primary sensory neurons. The mechanism restricting Nav1.8 expression is not entirely clear, but we have previously described a 3.7 kb fragment of the Scn10a promoter capable of recapitulating the tissue-specific expression of Nav1.8 in transfected neurons and cell lines (Puhl and Ikeda, 2008). To validate these studies in vivo, a transgenic mouse encoding EGFP under the control of this putative sensory neuron specific promoter was generated and characterized in this study. Approximately 45% of dorsal root ganglion neurons of transgenic mice were EGFP-positive (mean diameter = 26.5 μm). The majority of EGFP-positive neurons bound isolectin B4, although a small percentage (∼10%) colabeled with markers of A-fiber neurons. EGFP expression correlated well with the presence of Nav1.8 transcript (95%), Nav1.8-immunoreactivity (70%), and TTX-R INa (100%), although not all Nav1.8-expressing neurons expressed EGFP. Several cranial sensory ganglia originating from neurogenic placodes, such as the nodose ganglion, failed to express EGFP, suggesting that additional regulatory elements dictate Scn10a expression in placodal-derived sensory neurons. EGFP was also detected in discrete brain regions of transgenic mice. Quantitative PCR and Nav1.8-immunoreactivity confirmed Nav1.8 expression in the amygdala, brainstem, globus pallidus, lateral and paraventricular hypothalamus, and olfactory tubercle. TTX-R INa recorded from EGFP-positive hypothalamic neurons demonstrate the usefulness of this transgenic line to study novel roles of Nav1.8 beyond sensory neurons. Overall, Scn10a-EGFP transgenic mice recapitulate the majority of the Nav1.8 expression pattern in neural crest-derived sensory neurons.

  19. Molecular Clock Regulates Daily α1–2-Fucosylation of the Neural Cell Adhesion Molecule (NCAM) within Mouse Secondary Olfactory Neurons*

    PubMed Central

    Kondoh, Daisuke; Tateno, Hiroaki; Hirabayashi, Jun; Yasumoto, Yuki; Nakao, Reiko; Oishi, Katsutaka

    2014-01-01

    The circadian clock regulates various behavioral and physiological rhythms in mammals. Circadian changes in olfactory functions such as neuronal firing in the olfactory bulb (OB) and olfactory sensitivity have recently been identified, although the underlying molecular mechanisms remain unknown. We analyzed the temporal profiles of glycan structures in the mouse OB using a high-density microarray that includes 96 lectins, because glycoconjugates play important roles in the nervous system such as neurite outgrowth and synaptogenesis. Sixteen lectin signals significantly fluctuated in the OB, and the intensity of all three that had high affinity for α1–2-fucose (α1–2Fuc) glycan in the microarray was higher during the nighttime. Histochemical analysis revealed that α1–2Fuc glycan is located in a diurnal manner in the lateral olfactory tract that comprises axon bundles of secondary olfactory neurons. The amount of α1–2Fuc glycan associated with the major target glycoprotein neural cell adhesion molecule (NCAM) varied in a diurnal fashion, although the mRNA and protein expression of Ncam1 did not. The mRNA and protein expression of Fut1, a α1–2-specific fucosyltransferase gene, was diurnal in the OB. Daily fluctuation of the α1–2Fuc glycan was obviously damped in homozygous Clock mutant mice with disrupted diurnal Fut1 expression, suggesting that the molecular clock governs rhythmic α1–2-fucosylation in secondary olfactory neurons. These findings suggest the possibility that the molecular clock is involved in the diurnal regulation of olfaction via α1–2-fucosylation in the olfactory system. PMID:25384980

  20. Confetti clarifies controversy: neural crest stem cells are multipotent.

    PubMed

    Bronner, Marianne

    2015-03-05

    Neural crest precursors generate diverse cell lineages during development, which have been proposed to arise either from multipotent precursor cells or pools of heterogeneous, restricted progenitors. Now in Cell Stem Cell, Baggiolini et al. (2015) perform rigorous in vivo lineage tracing to show that individual neural crest precursors are multipotent.

  1. Generation of GABAergic and dopaminergic interneurons from endogenous embryonic olfactory bulb precursor cells.

    PubMed

    Vergaño-Vera, Eva; Yusta-Boyo, María J; de Castro, Fernando; Bernad, Antonio; de Pablo, Flora; Vicario-Abejón, Carlos

    2006-11-01

    During the embryonic period, many olfactory bulb (OB) interneurons arise in the lateral ganglionic eminence (LGE) from precursor cells expressing Dlx2, Gsh2 and Er81 transcription factors. Whether GABAergic and dopaminergic interneurons are also generated within the embryonic OB has not been studied thoroughly. In contrast to abundant Dlx2 and Gsh2 expression in ganglionic eminences (GE), Dlx2 and Gsh2 proteins are not expressed in the E12.5-13.5 mouse OB, whereas the telencephalic pallial domain marker Pax6 is abundant. We found GABAergic and dopaminergic neurons originating from dividing precursor cells in E13.5 OB and in short-term dissociated cultures prepared from the rostral half of E13.5 OB. In OB cultures, 22% of neurons were GAD+, of which 53% were Dlx2+, whereas none expressed Gsh2. By contrast, 70% of GAD+ cells in GE cultures were Dlx2+ and 16% expressed Gsh2. In E13.5 OB slices transplanted with EGFP-labeled E13.5 OB precursor cells, 31.7% of EGFP+ cells differentiated to GABAergic neurons. OB and LGE precursors transplanted into early postnatal OB migrated and differentiated in distinct patterns. Transplanted OB precursors gave rise to interneurons with dendritic spines in close proximity to synaptophysin-positive boutons. Interneurons were also abundant in differentiating OB neural stem cell cultures; the neurons responded to the neurotrophin Bdnf and expressed presynaptic proteins. In vivo, the Bdnf receptor TrkB colocalized with synaptic proteins at the glomeruli. These findings suggest that, in addition to receiving interneurons from the LGE, the embryonic OB contains molecularly distinct local precursor cells that generate mature GABAergic and dopaminergic neurons.

  2. Differential distribution of competence for panplacodal and neural crest induction to non-neural and neural ectoderm.

    PubMed

    Pieper, Mareike; Ahrens, Katja; Rink, Elke; Peter, Annette; Schlosser, Gerhard

    2012-03-01

    It is still controversial whether cranial placodes and neural crest cells arise from a common precursor at the neural plate border or whether placodes arise from non-neural ectoderm and neural crest from neural ectoderm. Using tissue grafting in embryos of Xenopus laevis, we show here that the competence for induction of neural plate, neural plate border and neural crest markers is confined to neural ectoderm, whereas competence for induction of panplacodal markers is confined to non-neural ectoderm. This differential distribution of competence is established during gastrulation paralleling the dorsal restriction of neural competence. We further show that Dlx3 and GATA2 are required cell-autonomously for panplacodal and epidermal marker expression in the non-neural ectoderm, while ectopic expression of Dlx3 or GATA2 in the neural plate suppresses neural plate, border and crest markers. Overexpression of Dlx3 (but not GATA2) in the neural plate is sufficient to induce different non-neural markers in a signaling-dependent manner, with epidermal markers being induced in the presence, and panplacodal markers in the absence, of BMP signaling. Taken together, these findings demonstrate a non-neural versus neural origin of placodes and neural crest, respectively, strongly implicate Dlx3 in the regulation of non-neural competence, and show that GATA2 contributes to non-neural competence but is not sufficient to promote it ectopically.

  3. Dopamine depletion impairs precursor cell proliferation in Parkinson disease.

    PubMed

    Höglinger, Günter U; Rizk, Pamela; Muriel, Marie P; Duyckaerts, Charles; Oertel, Wolfgang H; Caille, Isabelle; Hirsch, Etienne C

    2004-07-01

    Cerebral dopamine depletion is the hallmark of Parkinson disease. Because dopamine modulates ontogenetic neurogenesis, depletion of dopamine might affect neural precursors in the subependymal zone and subgranular zone of the adult brain. Here we provide ultrastructural evidence showing that highly proliferative precursors in the adult subependymal zone express dopamine receptors and receive dopaminergic afferents. Experimental depletion of dopamine in rodents decreases precursor cell proliferation in both the subependymal zone and the subgranular zone. Proliferation is restored completely by a selective agonist of D2-like (D2L) receptors. Experiments with neural precursors from the adult subependymal zone grown as neurosphere cultures confirm that activation of D2L receptors directly increases the proliferation of these precursors. Consistently, the numbers of proliferating cells in the subependymal zone and neural precursor cells in the subgranular zone and olfactory bulb are reduced in postmortem brains of individuals with Parkinson disease. These observations suggest that the generation of neural precursor cells is impaired in Parkinson disease as a consequence of dopaminergic denervation.

  4. Synthetic carbon precursor materials

    SciTech Connect

    Frame, B.J.

    1986-03-01

    Synthetic carbon precursor systems offer advantages over natural petroleum and coal-tar pitch precursors in that they can reproducibly provide a material with a known and uniform composition. They also permit controlled modifications of the derived carbon's properties through variations in the precursor's properties and processing conditions. Extensive research efforts at Oak Ridge have been directed toward the production and characterization of synthetic carbon precursors and the correlations that exist between carbon precursor properties and the properties of the ultimate carbon. This report describes how synthetic carbon precursors can be used to tailor and develop reproducible carbon structures for advanced materials applications. The potential and capability for performing carbon material development at Oak Ridge is also described.

  5. Ionizing Radiation Induces Altered Neuronal Differentiation by mGluR1 through PI3K-STAT3 Signaling in C17.2 Mouse Neural Stem-Like Cells.

    PubMed

    Eom, Hyeon Soo; Park, Hae Ran; Jo, Sung Kee; Kim, Young Sang; Moon, Changjong; Kim, Sung-Ho; Jung, Uhee

    2016-01-01

    Most studies of IR effects on neural cells and tissues in the brain are still focused on loss of neural stem cells. On the other hand, the effects of IR on neuronal differentiation and its implication in IR-induced brain damage are not well defined. To investigate the effects of IR on C17.2 mouse neural stem-like cells and mouse primary neural stem cells, neurite outgrowth and expression of neuronal markers and neuronal function-related genes were examined. To understand this process, the signaling pathways including PI3K, STAT3, metabotrophic glutamate receptor 1 (mGluR1) and p53 were investigated. In C17.2 cells, irradiation significantly increased the neurite outgrowth, a morphological hallmark of neuronal differentiation, in a dose-dependent manner. Also, the expression levels of neuronal marker proteins, β-III tubulin were increased by IR. To investigate whether IR-induced differentiation is normal, the expression of neuronal function-related genes including synaptophysin, a synaptic vesicle forming proteins, synaptotagmin1, a calcium ion sensor, γ-aminobutyric acid (GABA) receptors, inhibitory neurotransmitter receptors and glutamate receptors, excitatory neurotransmitter receptors was examined and compared to that of neurotrophin-stimulated differentiation. IR increased the expression of synaptophysin, synaptotagmin1 and GABA receptors mRNA similarly to normal differentiation by stimulation of neurotrophin. Interestingly, the overall expression of glutamate receptors was significantly higher in irradiated group than normal differentiation group, suggesting that the IR-induced neuronal differentiation may cause altered neuronal function in C17.2 cells. Next, the molecular mechanism of the altered neuronal differentiation induced by IR was studied by investigating signaling pathways including p53, mGluR1, STAT3 and PI3K. Increases of neurite outgrowth, neuronal marker and neuronal function-related gene expressions by IR were abolished by inhibition of p53, m

  6. Ionizing Radiation Induces Altered Neuronal Differentiation by mGluR1 through PI3K-STAT3 Signaling in C17.2 Mouse Neural Stem-Like Cells

    PubMed Central

    Eom, Hyeon Soo; Park, Hae Ran; Jo, Sung Kee; Kim, Young Sang; Moon, Changjong; Kim, Sung-Ho; Jung, Uhee

    2016-01-01

    Most studies of IR effects on neural cells and tissues in the brain are still focused on loss of neural stem cells. On the other hand, the effects of IR on neuronal differentiation and its implication in IR-induced brain damage are not well defined. To investigate the effects of IR on C17.2 mouse neural stem-like cells and mouse primary neural stem cells, neurite outgrowth and expression of neuronal markers and neuronal function-related genes were examined. To understand this process, the signaling pathways including PI3K, STAT3, metabotrophic glutamate receptor 1 (mGluR1) and p53 were investigated. In C17.2 cells, irradiation significantly increased the neurite outgrowth, a morphological hallmark of neuronal differentiation, in a dose-dependent manner. Also, the expression levels of neuronal marker proteins, β-III tubulin were increased by IR. To investigate whether IR-induced differentiation is normal, the expression of neuronal function-related genes including synaptophysin, a synaptic vesicle forming proteins, synaptotagmin1, a calcium ion sensor, γ-aminobutyric acid (GABA) receptors, inhibitory neurotransmitter receptors and glutamate receptors, excitatory neurotransmitter receptors was examined and compared to that of neurotrophin-stimulated differentiation. IR increased the expression of synaptophysin, synaptotagmin1 and GABA receptors mRNA similarly to normal differentiation by stimulation of neurotrophin. Interestingly, the overall expression of glutamate receptors was significantly higher in irradiated group than normal differentiation group, suggesting that the IR-induced neuronal differentiation may cause altered neuronal function in C17.2 cells. Next, the molecular mechanism of the altered neuronal differentiation induced by IR was studied by investigating signaling pathways including p53, mGluR1, STAT3 and PI3K. Increases of neurite outgrowth, neuronal marker and neuronal function-related gene expressions by IR were abolished by inhibition of p53, m

  7. Esophageal cancer-related gene 4 is a secreted inducer of cell senescence expressed by aged CNS precursor cells.

    PubMed

    Kujuro, Yuki; Suzuki, Norihiro; Kondo, Toru

    2010-05-04

    Mammalian aging is thought to be partially caused by the diminished capacity of stem/precursor cells to undergo self-renewing divisions. Although many cell-cycle regulators are involved in this process, it is unknown to what extent cell senescence, first identified as irreversible growth arrest in vitro, contributes to the aging process. Here, using a serum-induced mouse oligodendrocyte precursor cell (mOPC) senescence model, we identified esophageal cancer-related gene 4 (Ecrg4) as a senescence inducer with implications for the senescence-like state of postmitotic cells in the aging brain. Although mOPCs could proliferate indefinitely when cultured using the appropriate medium (OPC medium), they became senescent in the presence of serum and maintained their senescent phenotype even when the serum was subsequently replaced by OPC medium. We show that Ecrg4 was up-regulated in the senescent OPCs, its overexpression in OPCs induced senescence by accelerating the proteasome-dependent degradation of cyclins D1 and D3, and that its knockdown by a specific short hairpin RNA prevented these phenotypes. We also show that senescent OPCs secreted Ecrg4 and that recombinant Ecrg4 induced OPC senescence in culture. Moreover, increased Ecrg4 expression was observed in the OPCs and neural precursor cells in the aged mouse brain; this was accompanied by the expression of senescence-associated beta-galactosidase activity, indicating the cells' entrance into senescence. These results suggest that Ecrg4 is a factor linking neural-cell senescence and aging.

  8. Polyimide Precursor Solid Residuum

    NASA Technical Reports Server (NTRS)

    Weiser, Erik S. (Inventor); St.Clair, Terry L. (Inventor); Echigo, Yoshiaki (Inventor); Kaneshiro, Hisayasu (Inventor)

    2001-01-01

    A polyimide precursor solid residuum is an admixture of an aromatic dianhydride or derivative thereof and an aromatic diamine or derivative thereof plus a complexing agent, which is complexed with the admixture by hydrogen bonding. The polyimide precursor solid residuum is effectively employed in the preparation of polyimide foam and the fabrication of polyimide foam structures.

  9. Constitutively active Notch1 converts cranial neural crest-derived frontonasal mesenchyme to perivascular cells in vivo

    PubMed Central

    Miller, Sophie R.; Perera, Surangi N.; Baker, Clare V. H.

    2017-01-01

    ABSTRACT Perivascular/mural cells originate from either the mesoderm or the cranial neural crest. Regardless of their origin, Notch signalling is necessary for their formation. Furthermore, in both chicken and mouse, constitutive Notch1 activation (via expression of the Notch1 intracellular domain) is sufficient in vivo to convert trunk mesoderm-derived somite cells to perivascular cells, at the expense of skeletal muscle. In experiments originally designed to investigate the effect of premature Notch1 activation on the development of neural crest-derived olfactory ensheathing glial cells (OECs), we used in ovo electroporation to insert a tetracycline-inducible NotchΔE construct (encoding a constitutively active mutant of mouse Notch1) into the genome of chicken cranial neural crest cell precursors, and activated NotchΔE expression by doxycycline injection at embryonic day 4. NotchΔE-targeted cells formed perivascular cells within the frontonasal mesenchyme, and expressed a perivascular marker on the olfactory nerve. Hence, constitutively activating Notch1 is sufficient in vivo to drive not only somite cells, but also neural crest-derived frontonasal mesenchyme and perhaps developing OECs, to a perivascular cell fate. These results also highlight the plasticity of neural crest-derived mesenchyme and glia. PMID:28183698

  10. Elevated nuclear and cytoplasmic FTY720-phosphate in mouse embryonic fibroblasts suggests the potential for multiple mechanisms in FTY720-induced neural tube defects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    FTY720 (fingolimod) is an FDA-approved drug to treat relapsing remitting multiple sclerosis. FTY720 treatment in pregnant inbred LM/Bc mice results in approximately 60% of embryos having a neural tube defect (NTD). Sphingosine kinases (Sphk1, Sphk2) phosphorylate FTY720 in vivo to form the bioactive...

  11. Human leukemia inhibitory factor produced by the ExpressTec method from rice (Oryza sativa L.) is active in human neural stem cells and mouse induced pluripotent stem cells

    PubMed Central

    Alfano, Randall; Youngblood, Bradford A; Zhang, Deshui; Huang, Ning; MacDonald, Clinton C

    2014-01-01

    Stem cell-based therapy has the potential to treat an array of human diseases. However, to study the therapeutic potential and safety of these cells, a scalable cell culture medium is needed that is free of human or bovine-derived serum proteins. Thus, cost-effective recombinant serum proteins and cytokines are needed to produce such mediums. One such cytokine, leukemia inhibitory factor (LIF), has been shown to be a critical paracrine factor that maintains stem cell pluripotency in murine embryonic stem cells and human naïve stem cells while simultaneously inhibiting differentiation. We recently produced recombinant human LIF (rhLIF) in a rice-based protein expression system known as ExpressTec.12 We described expression of rice-derived rhLIF and demonstrated its biological equivalency to E. coli-derived rhLIF in traditional and embryonic mouse stem cell systems. Here we describe the expression yield of rice-derived rhLIF and the scale up production capacity. We provide further evidence of the efficacy of rice-derived rhLIF in additional stem cell systems including human neural stem cells and mouse induced pluripotent stem (iPS) cells. The expression level, biological activity, and potential for production at commercial scale of rice-derived rhLIF provides a proof-of-principal for ExpressTec-derived proteins to produce regulatory-friendly, high performance, and dependable stem cell media. PMID:24776984

  12. Trans-Activation between EphA and FGFR Regulates Self-Renewal and Differentiation of Mouse Embryonic Neural Stem/Progenitor Cells via Differential Activation of FRS2α.

    PubMed

    Sawada, Takahiro; Arai, Daiki; Jing, Xuefeng; Furushima, Kenryo; Chen, Qingfa; Kawakami, Kazuki; Yokote, Hideyuki; Miyajima, Masayasu; Sakaguchi, Kazushige

    2015-01-01

    Ephs and FGFRs belong to a superfamily of receptor tyrosine kinases, playing important roles in stem cell biology. We previously reported that EphA4 and FGFR form a heterodimer following stimulation with ligands, trans-activating each other and signaling through a docking protein, FRS2α, that binds to both receptors. Here, we investigated whether the interaction between EphA4 and FGFRs can be generalized to other Ephs and FGFRs, and, in addition, examined the downstream signal mediating their function in embryonic neural stem/progenitor cells. We revealed that various Ephs and FGFRs interact with each other through similar molecular domains. When neural stem/progenitor cells were stimulated with FGF2 and ephrin-A1, the signal transduced from the EphA4/FGFR/FRS2α complex enhanced self-renewal, while stimulation with ephrin-A1 alone induced neuronal differentiation. The downstream signal required for neuronal differentiation appears to be MAP kinase mainly linked to the Ras family of G proteins. MAP kinase activation was delayed and sustained, distinct from the transient activation induced by FGF2. Interestingly, this effect on neuronal differentiation required the presence of FGFRs. Specific FGFR inhibitor almost completely abolished the function of ephrin-A1 stimulation. These findings suggest that the ternary complex of EphA, FGFR and FRS2α formed by ligand stimulation regulates self-renewal and differentiation of mouse embryonic neural stem/progenitor cells by ligand-specific fine tuning of the downstream signal via FRS2α.

  13. Pretreatment of Mouse Neural Stem Cells with Carbon Monoxide-Releasing Molecule-2 Interferes with NF-κB p65 Signaling and Suppresses Iron Overload-Induced Apoptosis.

    PubMed

    Xie, Zhengxing; Han, Ping; Cui, Zhenwen; Wang, Baofeng; Zhong, Zhihong; Sun, Yuhao; Yang, Guoyuan; Sun, Qingfang; Bian, Liuguan

    2016-11-01

    Neural stem cell (NSC) transplantation is a promising approach to repair the damaged brain after hemorrhagic stroke; however, it is largely limited by the poor survival of donor cells. Breakdown products of the hematoma and subsequent iron overload contribute to the impairment of survival of neural cells. There is little information regarding the mechanism involved in the death of grafted cells. Furthermore, therapeutic research targeted to improving the survival of grafted neural stem cells (NSCs) is strikingly lacking. Here, we showed that iron overload induced apoptosis of C17.2 cells, a cell line originally cloned from mouse NSCs and immortalized by v-myc. Pretreatment with carbon monoxide-releasing molecule-2 (CORM-2) markedly protected C17.2 cells against iron overload in a dose-dependent manner. Moreover, CORM-2 interfered with NF-κB signaling, including inhibition of nuclear translocation and down-regulation of NF-κB p65. TUNEL staining showed that preconditioning C17.2 cells with CORM-2 enhanced their resistance to apoptosis induced by iron overload, which was concomitant with down-regulation of the pro-apoptotic proteins (Bax and cleaved caspase-3) and up-regulation of the anti-apoptotic protein Bcl2. The protective effect of CORM-2 could be simulated by BAY11-7082, a special inhibitor of NF-κB p65. These results provide a novel and effective strategy to enhance the survival of NSCs after transplantation and, therefore, their efficacy in repairing brain injury due to hemorrhagic stroke.

  14. Precursors to Lymphoproliferative Malignancies

    PubMed Central

    Goldin, Lynn R.; McMaster, Mary L.; Caporaso, Neil E.

    2013-01-01

    We review monoclonal B-cell lymphocytosis (MBL) as a precursor to chronic lymphocytic leukemia and monoclonal gammopathy of undetermined significance (MGUS) as a precursor to plasma cell disorders. These conditions are present in the general population and increase with age. These precursors aggregate with lymphoproliferative malignancies in families suggesting shared inheritance. MBL and MGUS may share some of the same risk factors as their related malignancies but data are limited. While these conditions are characterized by enhanced risk for the associated malignancy, the majority of individuals with these conditions do not progress to malignancy. A key focus for current work is to identify markers that predict progression to malignancy. PMID:23549397

  15. Earthquakes: hydrogeochemical precursors

    USGS Publications Warehouse

    Ingebritsen, Steven E.; Manga, Michael

    2014-01-01

    Earthquake prediction is a long-sought goal. Changes in groundwater chemistry before earthquakes in Iceland highlight a potential hydrogeochemical precursor, but such signals must be evaluated in the context of long-term, multiparametric data sets.

  16. Single-cell RNA sequencing identifies distinct mouse medial ganglionic eminence cell types

    PubMed Central

    Chen, Ying-Jiun J.; Friedman, Brad A.; Ha, Connie; Durinck, Steffen; Liu, Jinfeng; Rubenstein, John L.; Seshagiri, Somasekar; Modrusan, Zora

    2017-01-01

    Many subtypes of cortical interneurons (CINs) are found in adult mouse cortices, but the mechanism generating their diversity remains elusive. We performed single-cell RNA sequencing on the mouse embryonic medial ganglionic eminence (MGE), the major birthplace for CINs, and on MGE-like cells differentiated from embryonic stem cells. Two distinct cell types were identified as proliferating neural progenitors and immature neurons, both of which comprised sub-populations. Although lineage development of MGE progenitors was reconstructed and immature neurons were characterized as GABAergic, cells that might correspond to precursors of different CINs were not identified. A few non-neuronal cell types were detected, including microglia. In vitro MGE-like cells resembled bona fide MGE cells but expressed lower levels of Foxg1 and Epha4. Together, our data provide detailed understanding of the embryonic MGE developmental program and suggest how CINs are specified. PMID:28361918

  17. Neurotoxic effects of ochratoxin A on the subventricular zone of adult mouse brain.

    PubMed

    Paradells, Sara; Rocamonde, Brenda; Llinares, Cristina; Herranz-Pérez, Vicente; Jimenez, Misericordia; Garcia-Verdugo, Jose Manuel; Zipancic, Ivan; Soria, Jose Miguel; Garcia-Esparza, Ma Angeles

    2015-07-01

    Ochratoxin A (OTA), a mycotoxin that was discovered as a secondary metabolite of the fungal species Aspergillus and Penicillium, is a common contaminant in food and animal feed. This mycotoxin has been described as teratogenic, carcinogenic, genotoxic, immunotoxic and has been proven a potent neurotoxin. Other authors have previously reported the effects of OTA in different structures of the central nervous system as well as in some neurogenic regions. However, the impact of OTA exposure in the subventricular zone (SVZ) has not been assessed yet. To elucidate whether OTA affects neural precursors of the mouse SVZ we investigated, in vitro and in vivo, the effects of OTA exposure on the SVZ and on the neural precursors obtained from this neurogenic niche. In this work, we prove the cumulative effect of OTA exposure on proliferation, differentiation and depletion of neural stem cells cultured from the SVZ. In addition, we corroborated these results in vivo by immunohistochemistry and electron microscopy. As a result, we found a significant alteration in the proliferation process, which was evidenced by a decrease in the number of 5-bromo-2-deoxyuridine-positive cells and glial cells, as well as, a significant decrease in the number of neuroblasts in the SVZ. To summarize, in this study we demonstrate how OTA could be a threat to the developing and the adult SVZ through its impact in cell viability, proliferation and differentiation in a dose-dependent manner.

  18. Mutations in PTF1A are not a common cause for human VATER/VACTERL association or neural tube defects mirroring Danforth's short tail mouse.

    PubMed

    Gurung, Nirmala; Grosse, Greta; Draaken, Markus; Hilger, Alina C; Nauman, Nuzhat; Müller, Andreas; Gembruch, Ulrich; Merz, Waltraut M; Reutter, Heiko; Ludwig, Michael

    2015-07-01

    Danforth's short tail (Sd) mutant mice exhibit defects of the neural tube and other abnormalities, which are similar to the human vertebral anomalies, anal atresia, cardiac defects, tracheosophageal fistula and/or esophageal atresia, renal and radial abnormalities, and limb defects (VATER/VACTERL) association, including defects of the hindgut. Sd has been shown to underlie ectopic gene expression of murine Ptf1a, which encodes pancreas-specific transcription factor 1A, due to the insertion of a retrotansposon in its 5' regulatory domain. In order to investigate the possible involvement of this gene in human VATER/VACTERL association and human neural tube defects (NTDs), a sequence analysis was performed. DNA samples from 103 patients with VATER/VACTERL and VATER/VACTERL‑like association, all presenting with anorectal malformations, and 72 fetuses with NTDs, where termination of pregnancy had been performed, were included in the current study. The complete PTF1A coding region, splice sites and 1.5 kb of the 5' flanking promotor region was sequenced. However, no pathogenic alterations were detected. The results of the present study do not support the hypothesis that high penetrant mutations in these regions of PTF1A are involved in the development of human VATER/VACTERL association or NTDs, although rare mutations may be detectable in larger patient samples.

  19. MicroRNA cluster miR-17-92 regulates neural stem cell expansion and transition to intermediate progenitors in the developing mouse neocortex.

    PubMed

    Bian, Shan; Hong, Janet; Li, Qingsong; Schebelle, Laura; Pollock, Andrew; Knauss, Jennifer L; Garg, Vidur; Sun, Tao

    2013-05-30

    During development of the embryonic neocortex, tightly regulated expansion of neural stem cells (NSCs) and their transition to intermediate progenitors (IPs) are critical for normal cortical formation and function. Molecular mechanisms that regulate NSC expansion and transition remain unclear. Here, we demonstrate that the microRNA (miRNA) miR-17-92 cluster is required for maintaining proper populations of cortical radial glial cells (RGCs) and IPs through repression of Pten and Tbr2 protein. Knockout of miR-17-92 and its paralogs specifically in the developing neocortex restricts NSC proliferation, suppresses RGC expansion, and promotes transition of RGCs to IPs. Moreover, Pten and Tbr2 protectors specifically block silencing activities of endogenous miR-17-92 and control proper numbers of RGCs and IPs in vivo. Our results demonstrate a critical role for miRNAs in promoting NSC proliferation and modulating the cell-fate decision of generating distinct neural progenitors in the developing neocortex.

  20. Nitric Oxide Signaling and Neural Stem Cell Differentiation in Peripheral Nerve Regeneration

    PubMed Central

    Tao Li, Jessica; Somasundaram, Chandra; Bian, Ka; Xiong, Weijun; Mahmooduddin, Faiz; Nath, Rahul K.; Murad, Ferid

    2010-01-01

    Objective: The objective was to examine whether nitric oxide signaling plays a role in human embryonic stem cell differentiation into neural cells. This article reviews current literature on nitric oxide signaling and neural stem cell differentiation for potential therapeutic application to peripheral nerve regeneration. Methods: Human embryonic H9-stem cells were grown, maintained on mitomycin C–treated mouse embryonic fibroblast feeder layer, cultured on Matrigel to be feeder-free, and used for all the experiments. Fluorescent dual-immunolabeling and confocal image analysis were used to detect the presence of the neural precursor cell markers nestin and nitric oxide synthase-1. Fluorescence-activated cell sorting analysis was used to determine the percentage of expression. Results: We have shown the confocal image of stage 1 human embryonic stem cells coexpressing nestin and nitric oxide synthase-1. Fluorescence-activated cell sorting analysis indicated 24.3% positive labeling of nitric oxide synthase-1. Adding retinoic acid (10−6 M) to the culture medium increased the percent of nitric oxide synthase-1 positive cells to 33.9%. Combining retinoic acid (10−6 M) with 8-brom cyclic guanosine monophosphate (10−5 M), the fluorescence-activated cell sorting analysis demonstrated a further increase of nitric oxide synthase-1 positive cells to 45.4%. Our current results demonstrate a prodifferentiation potency of nitric oxide synthase-1, stimulated by retinoic acid with and without cyclic guanosine monophosphate. Conclusion: We demonstrated for the first time how nitric oxide/cyclic guanosine monophosphate signaling contributes to the development of neural precursors derived from human embryonic stem cells and enhances the differentiation of precursors toward functional neurons for peripheral nerve regeneration. PMID:20563304

  1. Dual-energy precursor and nuclear erythroid-related factor 2 activator treatment additively improve redox glutathione levels and neuron survival in aging and Alzheimer mouse neurons upstream of reactive oxygen species.

    PubMed

    Ghosh, Debolina; LeVault, Kelsey R; Brewer, Gregory J

    2014-01-01

    To determine whether glutathione (GSH) loss or increased reactive oxygen species (ROS) are more important to neuron loss, aging, and Alzheimer's disease (AD), we stressed or boosted GSH levels in neurons isolated from aging 3xTg-AD neurons compared with those from age-matched nontransgenic (non-Tg) neurons. Here, using titrating with buthionine sulfoximine, an inhibitor of γ-glutamyl cysteine synthetase (GCL), we observed that GSH depletion increased neuronal death of 3xTg-AD cultured neurons at increasing rates across the age span, whereas non-Tg neurons were resistant to GSH depletion until old age. Remarkably, the rate of neuron loss with ROS did not increase in old age and was the same for both genotypes, which indicates that cognitive deficits in the AD model were not caused by ROS. Therefore, we targeted for neuroprotection activation of the redox sensitive transcription factor, nuclear erythroid-related factor 2 (Nrf2) by 18 alpha glycyrrhetinic acid to stimulate GSH synthesis through GCL. This balanced stimulation of a number of redox enzymes restored the lower levels of Nrf2 and GCL seen in 3xTg-AD neurons compared with those of non-Tg neurons and promoted translocation of Nrf2 to the nucleus. By combining the Nrf2 activator together with the NADH precursor, nicotinamide, we increased neuron survival against amyloid beta stress in an additive manner. These stress tests and neuroprotective treatments suggest that the redox environment is more important for neuron survival than ROS. The dual neuroprotective treatment with nicotinamide and an Nrf2 inducer indicates that these age-related and AD-related changes are reversible.

  2. The miR-17/92 polycistron is up-regulated in sonic hedgehog-driven medulloblastomas and induced by N-myc in sonic hedgehog-treated cerebellar neural precursors.

    PubMed

    Northcott, Paul A; Fernandez-L, Africa; Hagan, John P; Ellison, David W; Grajkowska, Wesia; Gillespie, Yancey; Grundy, Richard; Van Meter, Timothy; Rutka, James T; Croce, Carlo M; Kenney, Anna Marie; Taylor, Michael D

    2009-04-15

    Medulloblastoma is the most common malignant pediatric brain tumor, and mechanisms underlying its development are poorly understood. We identified recurrent amplification of the miR-17/92 polycistron proto-oncogene in 6% of pediatric medulloblastomas by high-resolution single-nucleotide polymorphism genotyping arrays and subsequent interphase fluorescence in situ hybridization on a human medulloblastoma tissue microarray. Profiling the expression of 427 mature microRNAs (miRNA) in a series of 90 primary human medulloblastomas revealed that components of the miR-17/92 polycistron are the most highly up-regulated miRNAs in medulloblastoma. Expression of miR-17/92 was highest in the subgroup of medulloblastomas associated with activation of the sonic hedgehog (Shh) signaling pathway compared with other subgroups of medulloblastoma. Medulloblastomas in which miR-17/92 was up-regulated also had elevated levels of MYC/MYCN expression. Consistent with its regulation by Shh, we observed that Shh treatment of primary cerebellar granule neuron precursors (CGNP), proposed cells of origin for the Shh-associated medulloblastomas, resulted in increased miR-17/92 expression. In CGNPs, the Shh effector N-myc, but not Gli1, induced miR-17/92 expression. Ectopic miR-17/92 expression in CGNPs synergized with exogenous Shh to increase proliferation and also enabled them to proliferate in the absence of Shh. We conclude that miR-17/92 is a positive effector of Shh-mediated proliferation and that aberrant expression/amplification of this miR confers a growth advantage to medulloblastomas.

  3. The EM Earthquake Precursor

    NASA Astrophysics Data System (ADS)

    Jones, K. B., II; Saxton, P. T.

    2013-12-01

    Many attempts have been made to determine a sound forecasting method regarding earthquakes and warn the public in turn. Presently, the animal kingdom leads the precursor list alluding to a transmission related source. By applying the animal-based model to an electromagnetic (EM) wave model, various hypotheses were formed, but the most interesting one required the use of a magnetometer with a differing design and geometry. To date, numerous, high-end magnetometers have been in use in close proximity to fault zones for potential earthquake forecasting; however, something is still amiss. The problem still resides with what exactly is forecastable and the investigating direction of EM. After the 1989 Loma Prieta Earthquake, American earthquake investigators predetermined magnetometer use and a minimum earthquake magnitude necessary for EM detection. This action was set in motion, due to the extensive damage incurred and public outrage concerning earthquake forecasting; however, the magnetometers employed, grounded or buried, are completely subject to static and electric fields and have yet to correlate to an identifiable precursor. Secondly, there is neither a networked array for finding any epicentral locations, nor have there been any attempts to find even one. This methodology needs dismissal, because it is overly complicated, subject to continuous change, and provides no response time. As for the minimum magnitude threshold, which was set at M5, this is simply higher than what modern technological advances have gained. Detection can now be achieved at approximately M1, which greatly improves forecasting chances. A propagating precursor has now been detected in both the field and laboratory. Field antenna testing conducted outside the NE Texas town of Timpson in February, 2013, detected three strong EM sources along with numerous weaker signals. The antenna had mobility, and observations were noted for recurrence, duration, and frequency response. Next, two

  4. Amyloid β-peptide 1-42 modulates the proliferation of mouse neural stem cells: upregulation of fucosyltransferase IX and notch signaling.

    PubMed

    Itokazu, Yutaka; Yu, Robert K

    2014-08-01

    Amyloid β-peptides (Aβs) aggregate to form amyloid plaques, also known as senile plaques, which are a major pathological hallmark of Alzheimer's disease (AD). Aβs are reported to possess proliferation effects on neural stem cells (NSCs); however, this effect remains controversial. Thus, clarification of their physiological function is an important topic. We have systematically evaluated the effects of several putative bioactive Aβs (Aβ1-40, Aβ1-42, and Aβ25-35) on NSC proliferation. Treatment of NSCs with Aβ1-42 significantly increased the number of those cells (149 ± 10 %). This was not observed with Aβ1-40 which did not have any effects on the proliferative property of NSC. Aβ25-35, on the other hand, exhibited inhibitory effects on cellular proliferation. Since cell surface glycoconjugates, such as glycolipids, glycoproteins, and proteoglycans, are known to be important for maintaining cell fate determination, including cellular proliferation, in NSCs and they undergo dramatic changes during differentiation, we examined the effect of Aβs on a number of key glycoconjugate metabolizing enzymes. Significantly, we found for the first time that Aβ1-42 altered the expression of several key glycosyltransferases and glycosidases, including fucosyltransferase IX (FUT9), sialyltransferase III (ST-III), glucosylceramide ceramidase (GLCC), and mitochondrial sialidase (Neu4). FUT9 is a key enzyme for the synthesis of the Lewis X carbohydrate epitope, which is known to be expressed in stem cells. Aβ1-42 also stimulated the Notch1 intracellular domain (NICD) by upregulation of the expression of Musashi-1 and the paired box protein, Pax6. Thus, Aβ1-42 upregulates NSC proliferation by modulating the expression of several glycogenes involved in Notch signaling.

  5. Application of a Fuzzy Neural Network Model in Predicting Polycyclic Aromatic Hydrocarbon- Mediated Perturbations of the Cyp1b1 Transcriptional Regulatory Network in Mouse Skin

    PubMed Central

    Larkin, Andrew; Siddens, Lisbeth K.; Krueger, Sharon K.; Tilton, Susan C.; Waters, Katrina M.; Williams, David E.; Baird, William M.

    2013-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are present in the environment as complex mixtures with components that have diverse carcinogenic potencies and mostly unknown interactive effects. Non-additive PAH interactions have been observed in regulation of cytochrome P450 (CYP) gene expression in the CYP1 family. To better understand and predict biological effects of complex mixtures, such as environmental PAHs, an 11 gene input-1 gene output fuzzy neural network (FNN) was developed for predicting PAH-mediated perturbations of dermal Cyp1b1 transcription in mice. Input values were generalized using fuzzy logic into low, medium, and high fuzzy subsets, and sorted using k-means clustering to create Mamdani logic functions for predicting Cyp1b1 mRNA expression. Model testing was performed with data from microarray analysis of skin samples from FVB/N mice treated with toluene (vehicle control), dibenzo[def,p]chrysene (DBC), benzo[a]pyrene (BaP), or 1 of 3 combinations of diesel particulate extract (DPE), coal tar extract (CTE) and cigarette smoke condensate (CSC) using leave one out cross-validation. Predictions were within 1 log2 fold change unit of microarray data, with the exception of the DBC treatment group, where the unexpected down-regulation of Cyp1b1 expression was predicted but did not reach statistical significance on the microarrays. Adding CTE to DPE was predicted to increase Cyp1b1 expression, whereas adding CSC to CTE and DPE was predicted to have no effect, in agreement with microarray results. The aryl hydrocarbon receptor repressor (Ahrr) was determined to be the most significant input variable for model predictions using back-propagation and normalization of FNN weights. PMID:23274566

  6. Conditional deletion of AP-2β in mouse cranial neural crest results in anterior segment dysgenesis and early-onset glaucoma

    PubMed Central

    Martino, Vanessa B.; Sabljic, Thomas; Deschamps, Paula; Green, Rebecca M.; Akula, Monica; Peacock, Erica; Ball, Alexander

    2016-01-01

    ABSTRACT Anterior segment dysgenesis (ASD) encompasses a group of developmental disorders in which a closed angle phenotype in the anterior chamber of the eye can occur and 50% of patients develop glaucoma. Many ASDs are thought to involve an inappropriate patterning and migration of the periocular mesenchyme (POM), which is derived from cranial neural crest cells (NCCs) and mesoderm. Although, the mechanism of this disruption is not well understood, a number of transcriptional regulatory molecules have previously been implicated in ASDs. Here, we investigate the function of the transcription factor AP-2β, encoded by Tfap2b, which is expressed in NCCs and their derivatives. Wnt1-Cre-mediated conditional deletion of Tfap2b in NCCs resulted in post-natal ocular defects typified by opacity. Histological data revealed that the conditional AP-2β NCC knockout (KO) mutants exhibited dysgenesis of multiple structures in the anterior segment of the eye including defects in the corneal endothelium, corneal stroma, ciliary body and disruption in the iridocorneal angle with adherence of the iris to the cornea. We further show that this phenotype leads to a significant increase in intraocular pressure and a subsequent loss of retinal ganglion cells and optic nerve degeneration, features indicative of glaucoma. Overall, our findings demonstrate that AP-2β is required in the POM for normal development of the anterior segment of the eye and that the AP-2β NCC KO mice might serve as a new and exciting model of ASD and glaucoma that is fully penetrant and with early post-natal onset. PMID:27483349

  7. The mouse F3/contactin glycoprotein

    PubMed Central

    Bizzoca, Antonella; Corsi, Patrizia

    2009-01-01

    F3/Contactin is an immunoglobulin superfamily component expressed in the nervous tissue of several species. Here we focus on the structural and functional properties of its mouse relative, on the mechanisms driving its regulated expression and on its developmental role. F3/Contactin is differentially expressed in distinct populations of central and peripheral neurons and in some non-neuronal cells. Accordingly, the regulatory region of the underlying gene includes promoter elements undergoing differential activation, associated with an intricate splicing profile, indicating that transcriptional and posttranscriptional mechanisms contribute to its expression. Transgenic models allowed to follow F3/Contactin promoter activation in vivo and to modify F3/Contactin gene expression under a heterologous promoter, which resulted in morphological and functional phenotypes. Besides axonal growth and pathfinding, these concerned earlier events, including precursor proliferation and commitment. This wide role in neural ontogenesis is consistent with the recognized interaction of F3/Contactin with developmental control genes belonging to the Notch pathway. PMID:19372728

  8. Application of a fuzzy neural network model in predicting polycyclic aromatic hydrocarbon-mediated perturbations of the Cyp1b1 transcriptional regulatory network in mouse skin

    SciTech Connect

    Larkin, Andrew; Siddens, Lisbeth K.; Krueger, Sharon K.; Tilton, Susan C.; Waters, Katrina M.; Williams, David E.; Baird, William M.

    2013-03-01

    Polycyclic aromatic hydrocarbons (PAHs) are present in the environment as complex mixtures with components that have diverse carcinogenic potencies and mostly unknown interactive effects. Non-additive PAH interactions have been observed in regulation of cytochrome P450 (CYP) gene expression in the CYP1 family. To better understand and predict biological effects of complex mixtures, such as environmental PAHs, an 11 gene input-1 gene output fuzzy neural network (FNN) was developed for predicting PAH-mediated perturbations of dermal Cyp1b1 transcription in mice. Input values were generalized using fuzzy logic into low, medium, and high fuzzy subsets, and sorted using k-means clustering to create Mamdani logic functions for predicting Cyp1b1 mRNA expression. Model testing was performed with data from microarray analysis of skin samples from FVB/N mice treated with toluene (vehicle control), dibenzo[def,p]chrysene (DBC), benzo[a]pyrene (BaP), or 1 of 3 combinations of diesel particulate extract (DPE), coal tar extract (CTE) and cigarette smoke condensate (CSC) using leave-one-out cross-validation. Predictions were within 1 log{sub 2} fold change unit of microarray data, with the exception of the DBC treatment group, where the unexpected down-regulation of Cyp1b1 expression was predicted but did not reach statistical significance on the microarrays. Adding CTE to DPE was predicted to increase Cyp1b1 expression, whereas adding CSC to CTE and DPE was predicted to have no effect, in agreement with microarray results. The aryl hydrocarbon receptor repressor (Ahrr) was determined to be the most significant input variable for model predictions using back-propagation and normalization of FNN weights. - Highlights: ► Tested a model to predict PAH mixture-mediated changes in Cyp1b1 expression ► Quantitative predictions in agreement with microarrays for Cyp1b1 induction ► Unexpected difference in expression between DBC and other treatments predicted ► Model predictions

  9. Specific domains of FoxD4/5 activate and repress neural transcription factor genes to control the progression of immature neural ectoderm to differentiating neural plate.

    PubMed

    Neilson, Karen M; Klein, Steven L; Mhaske, Pallavi; Mood, Kathy; Daar, Ira O; Moody, Sally A

    2012-05-15

    FoxD4/5, a forkhead transcription factor, plays a critical role in establishing and maintaining the embryonic neural ectoderm. It both up-regulates genes that maintain a proliferative, immature neural ectoderm and down-regulates genes that promote the transition to a differentiating neural plate. We constructed deletion and mutant versions of FoxD4/5 to determine which domains are functionally responsible for these opposite activities, which regulate the critical developmental transition of neural precursors to neural progenitors to differentiating neural plate cells. Our results show that up-regulation of genes that maintain immature neural precursors (gem, zic2) requires the Acidic blob (AB) region in the N-terminal portion of the protein, indicating that the AB is the transactivating domain. Additionally, down-regulation of those genes that promote the transition to neural progenitors (sox) and those that lead to neural differentiation (zic, irx) involves: 1) an interaction with the Groucho co-repressor at the Eh-1 motif in the C-terminus; and 2) sequence downstream of this motif. Finally, the ability of FoxD4/5 to induce the ectopic expression of neural precursor genes in the ventral ectoderm also involves both the AB region and the Eh-1 motif; FoxD4/5 accomplishes ectopic neural induction by both activating neural precursor genes and repressing BMP signaling and epidermal genes. This study identifies the specific, conserved domains of the FoxD4/5 protein that allow this single transcription factor to regulate a network of genes that controls the transition of a proliferative neural ectodermal population to a committed neural plate population poised to begin differentiation.

  10. Identified EM Earthquake Precursors

    NASA Astrophysics Data System (ADS)

    Jones, Kenneth, II; Saxton, Patrick

    2014-05-01

    Many attempts have been made to determine a sound forecasting method regarding earthquakes and warn the public in turn. Presently, the animal kingdom leads the precursor list alluding to a transmission related source. By applying the animal-based model to an electromagnetic (EM) wave model, various hypotheses were formed, but the most interesting one required the use of a magnetometer with a differing design and geometry. To date, numerous, high-end magnetometers have been in use in close proximity to fault zones for potential earthquake forecasting; however, something is still amiss. The problem still resides with what exactly is forecastable and the investigating direction of EM. After a number of custom rock experiments, two hypotheses were formed which could answer the EM wave model. The first hypothesis concerned a sufficient and continuous electron movement either by surface or penetrative flow, and the second regarded a novel approach to radio transmission. Electron flow along fracture surfaces was determined to be inadequate in creating strong EM fields, because rock has a very high electrical resistance making it a high quality insulator. Penetrative flow could not be corroborated as well, because it was discovered that rock was absorbing and confining electrons to a very thin skin depth. Radio wave transmission and detection worked with every single test administered. This hypothesis was reviewed for propagating, long-wave generation with sufficient amplitude, and the capability of penetrating solid rock. Additionally, fracture spaces, either air or ion-filled, can facilitate this concept from great depths and allow for surficial detection. A few propagating precursor signals have been detected in the field occurring with associated phases using custom-built loop antennae. Field testing was conducted in Southern California from 2006-2011, and outside the NE Texas town of Timpson in February, 2013. The antennae have mobility and observations were noted for

  11. An interstellar precursor mission

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.; Ivie, C.; Lewis, J. C.; Lipes, R. G.; Norton, H. N.; Stearns, J. W.; Stimpson, L.; Weissman, P.

    1977-01-01

    A mission out of the planetary system, with launch about the year 2000, could provide valuable scientific data as well as test some of the technology for a later mission to another star. Primary scientific objectives for the precursor mission concern characteristics of the heliopause, the interstellar medium, stellar distances (by parallax measurements), low energy cosmic rays, interplanetary gas distribution, and mass of the solar system. Secondary objectives include investigation of Pluto. Candidate science instruments are suggested. Individual spacecraft systems for the mission were considered, technology requirements and problem areas noted, and a number of recommendations made for technology study and advanced development. The most critical technology needs include attainment of 50-yr spacecraft lifetime and development of a long-life NEP system.

  12. Accounting for nonmonotonic precursor duration effects with gain reduction in the temporal window modela

    PubMed Central

    Roverud, Elin; Strickland, Elizabeth A.

    2014-01-01

    The mechanisms of forward masking are not clearly understood. The temporal window model (TWM) proposes that masking occurs via a neural mechanism that integrates within a temporal window. The medial olivocochlear reflex (MOCR), a sound-evoked reflex that reduces cochlear amplifier gain, may also contribute to forward masking if the preceding sound reduces gain for the signal. Psychophysical evidence of gain reduction can be observed using a growth of masking (GOM) paradigm with an off-frequency forward masker and a precursor. The basilar membrane input/output (I/O) function is estimated from the GOM function, and the I/O function gain is reduced by the precursor. In this study, the effect of precursor duration on this gain reduction effect was examined for on- and off-frequency precursors. With on-frequency precursors, thresholds increased with increasing precursor duration, then decreased (rolled over) for longer durations. Thresholds with off-frequency precursors continued to increase with increasing precursor duration. These results are not consistent with solely neural masking, but may reflect gain reduction that selectively affects on-frequency stimuli. The TWM was modified to include history-dependent gain reduction to simulate the MOCR, called the temporal window model-gain reduction (TWM-GR). The TWM-GR predicted rollover and the differences with on- and off-frequency precursors whereas the TWM did not. PMID:24606271

  13. Generation of Nonlinear Vortex Precursors

    NASA Astrophysics Data System (ADS)

    Chen, Yue-Yue; Feng, Xun-Li; Liu, Chengpu

    2016-07-01

    We numerically study the propagation of a few-cycle pulse carrying orbital angular momentum (OAM) through a dense atomic system. Nonlinear precursors consisting of high-order vortex harmonics are generated in the transmitted field due to carrier effects associated with ultrafast Bloch oscillation. The nonlinear precursors survive to propagation effects and are well separated with the main pulse, which provides a straightforward way to measure precursors. By virtue of carrying high-order OAM, the obtained vortex precursors as information carriers have potential applications in optical information and communication fields where controllable loss, large information-carrying capacity, and high speed communication are required.

  14. NEDD4-2 (neural precursor cell expressed, developmentally down-regulated 4-2) negatively regulates TGF-β (transforming growth factor-β) signalling by inducing ubiquitin-mediated degradation of Smad2 and TGF-β type I receptor

    PubMed Central

    2004-01-01

    Inhibitory Smad, Smad7, is a potent inhibitor of TGF-β (transforming growth factor-β) superfamily signalling. By binding to activated type I receptors, it prevents the activation of R-Smads (receptor-regulated Smads). To identify new components of the Smad pathway, we performed yeast two-hybrid screening using Smad7 as bait, and identified NEDD4-2 (neural precursor cell expressed, developmentally down-regulated 4-2) as a direct binding partner of Smad7. NEDD4-2 is structurally similar to Smurfs (Smad ubiquitin regulatory factors) 1 and 2, which were identified previously as E3 ubiquitin ligases for R-Smads and TGF-β superfamily receptors. NEDD4-2 functions like Smurfs 1 and 2 in that it associates with TGF-β type I receptor via Smad7, and induces its ubiquitin-dependent degradation. Moreover, NEDD4-2 bound to TGF-β-specific R-Smads, Smads 2 and 3, in a ligand-dependent manner, and induced degradation of Smad2, but not Smad3. However, in contrast with Smurf2, NEDD4-2 failed to induce ubiquitination of SnoN (Ski-related novel protein N), although NEDD4-2 bound to SnoN via Smad2 more strongly than Smurf2. We showed further that overexpressed NEDD4-2 prevents transcriptional activity induced by TGF-β and BMP, whereas silencing of the NEDD4-2 gene by siRNA (small interfering RNA) resulted in enhancement of the responsiveness to TGF-β superfamily cytokines. These data suggest that NEDD4-2 is a member of the Smurf-like C2-WW-HECT (WW is Trp-Trp and HECT is homologous to the E6-accessory protein) type E3 ubiquitin ligases, which negatively regulate TGF-β superfamily signalling through similar, but not identical, mechanisms to those used by Smurfs. PMID:15496141

  15. Genetic Dissection of Neural Circuits

    PubMed Central

    Luo, Liqun; Callaway, Edward M.; Svoboda, Karel

    2009-01-01

    Understanding the principles of information processing in neural circuits requires systematic characterization of the participating cell types and their connections, and the ability to measure and perturb their activity. Genetic approaches promise to bring experimental access to complex neural systems, including genetic stalwarts such as the fly and mouse, but also to nongenetic systems such as primates. Together with anatomical and physiological methods, cell-type-specific expression of protein markers and sensors and transducers will be critical to construct circuit diagrams and to measure the activity of genetically defined neurons. Inactivation and activation of genetically defined cell types will establish causal relationships between activity in specific groups of neurons, circuit function, and animal behavior. Genetic analysis thus promises to reveal the logic of the neural circuits in complex brains that guide behaviors. Here we review progress in the genetic analysis of neural circuits and discuss directions for future research and development. PMID:18341986

  16. Distinct Wnt-driven primitive streak-like populations reflect in vivo lineage precursors

    PubMed Central

    Tsakiridis, Anestis; Huang, Yali; Blin, Guillaume; Skylaki, Stavroula; Wymeersch, Filip; Osorno, Rodrigo; Economou, Costas; Karagianni, Eleni; Zhao, Suling; Lowell, Sally; Wilson, Valerie

    2014-01-01

    During gastrulation, epiblast cells are pluripotent and their fate is thought to be constrained principally by their position. Cell fate is progressively restricted by localised signalling cues from areas including the primitive streak. However, it is unknown whether this restriction accompanies, at the individual cell level, a reduction in potency. Investigation of these early transition events in vitro is possible via the use of epiblast stem cells (EpiSCs), self-renewing pluripotent cell lines equivalent to the postimplantation epiblast. Strikingly, mouse EpiSCs express gastrulation stage regional markers in self-renewing conditions. Here, we examined the differentiation potential of cells expressing such lineage markers. We show that undifferentiated EpiSC cultures contain a major subfraction of cells with reversible early primitive streak characteristics, which is mutually exclusive to a neural-like fraction. Using in vitro differentiation assays and embryo grafting we demonstrate that primitive streak-like EpiSCs are biased towards mesoderm and endoderm fates while retaining pluripotency. The acquisition of primitive streak characteristics by self-renewing EpiSCs is mediated by endogenous Wnt signalling. Elevation of Wnt activity promotes restriction towards primitive streak-associated lineages with mesendodermal and neuromesodermal characteristics. Collectively, our data suggest that EpiSC pluripotency encompasses a range of reversible lineage-biased states reflecting the birth of pioneer lineage precursors from a pool of uncommitted EpiSCs similar to the earliest cell fate restriction events taking place in the gastrula stage epiblast. PMID:24595287

  17. Dystroglycan protein distribution coincides with basement membranes and muscle differentiation during mouse embryogenesis.

    PubMed

    Anderson, Claire; Winder, Steven J; Borycki, Anne-Gaëlle

    2007-09-01

    Using immunohistochemistry, we have examined beta-Dystroglycan protein distribution in the mouse embryo at embryonic stages E9.5 to E11.5. Our data show that Dystroglycan expression correlates with basement membranes in many tissues, such as the notochord, neural tube, promesonephros, and myotome. In the myotome, we describe the timing of Dystroglycan protein re-distribution at the surface of myogenic precursor cells as basement membrane assembles into a continuous sheet. We also report on non-basement-membrane-associated Dystroglycan expression in the floor plate and the myocardium. This distribution often corresponds to sites of expression previously reported in adults, suggesting that Dystroglycan is continuously produced during development.

  18. Neural Networks

    DTIC Science & Technology

    1990-01-01

    FUNDING NUMBERS PROGRAM PROJECT TASK WORK UNIT ELEMENT NO. NO. NO. ACCESSION NO 11 TITLE (Include Security Classification) NEURAL NETWORKS 12. PERSONAL...SUB-GROUP Neural Networks Optical Architectures Nonlinear Optics Adaptation 19. ABSTRACT (Continue on reverse if necessary and identify by block number...341i Y C-odes , lo iii/(iv blank) 1. INTRODUCTION Neural networks are a type of distributed processing system [1

  19. Cross-species Transcriptomic Comparison of In Vitro and In Vivo Mammalian Neural Cells

    PubMed Central

    LoVerso, Peter R.; Wachter, Christopher M.; Cui, Feng

    2015-01-01

    The mammalian brain is characterized by distinct classes of cells that differ in morphology, structure, signaling, and function. Dysregulation of gene expression in these cell populations leads to various neurological disorders. Neural cells often need to be acutely purified from animal brains for research, which requires complicated procedure and specific expertise. Primary culture of these cells in vitro is a viable alternative, but the differences in gene expression of cells grown in vitro and in vivo remain unclear. Here, we cultured three major neural cell classes of rat brain (ie, neurons, astrocytes, and oligodendrocyte precursor cells [OPCs]) obtained from commercial sources. We measured transcript abundance of these cell types by RNA sequencing (RNA-seq) and compared with their counterparts acutely purified from mouse brains. Cross-species RNA-seq data analysis revealed hundreds of genes that are differentially expressed between the cultured and acutely purified cells. Astrocytes have more such genes compared to neurons and OPCs, indicating that signaling pathways are greatly perturbed in cultured astrocytes. This dataset provides a powerful resource to demonstrate the similarities and differences of biological processes in mammalian neural cells grown in vitro and in vivo at the molecular level. PMID:26640375

  20. Insulin-like Growth Factor-II (IGF-II) and IGF-II Analogs with Enhanced Insulin Receptor-a Binding Affinity Promote Neural Stem Cell Expansion*

    PubMed Central

    Ziegler, Amber N.; Chidambaram, Shravanthi; Forbes, Briony E.; Wood, Teresa L.; Levison, Steven W.

    2014-01-01

    The objective of this study was to employ genetically engineered IGF-II analogs to establish which receptor(s) mediate the stemness promoting actions of IGF-II on mouse subventricular zone neural precursors. Neural precursors from the subventricular zone were propagated in vitro in culture medium supplemented with IGF-II analogs. Cell growth and identity were analyzed using sphere generation and further analyzed by flow cytometry. F19A, an analog of IGF-II that does not bind the IGF-2R, stimulated an increase in the proportion of neural stem cells (NSCs) while decreasing the proportion of the later stage progenitors at a lower concentration than IGF-II. V43M, which binds to the IGF-2R with high affinity but which has low binding affinity to the IGF-1R and to the A isoform of the insulin receptor (IR-A) failed to promote NSC growth. The positive effects of F19A on NSC growth were unaltered by the addition of a functional blocking antibody to the IGF-1R. Altogether, these data lead to the conclusion that IGF-II promotes stemness of NSCs via the IR-A and not through activation of either the IGF-1R or the IGF-2R. PMID:24398690

  1. Expression Profiles of the Nuclear Receptors and Their Transcriptional Coregulators During Differentiation of Neural Stem Cells

    PubMed Central

    Androutsellis-Theotokis, A.; Chrousos, G. P.; McKay, R. D.; DeCherney, A. H.; Kino, T.

    2013-01-01

    Neural stem cells (NSCs) are pluripotent precursors with the ability to proliferate and differentiate into 3 neural cell lineages, neurons, astrocytes and oligodendrocytes. Elucidation of the mechanisms underlying these biologic processes is essential for understanding both physiologic and pathologic neural development and regeneration after injury. Nuclear hormone receptors (NRs) and their transcriptional coregulators also play crucial roles in neural development, functions and fate. To identify key NRs and their transcriptional regulators in NSC differentiation, we examined mRNA expression of 49 NRs and many of their coregulators during differentiation (0–5 days) of mouse embryonic NSCs induced by withdrawal of fibroblast growth factor-2 (FGF2). 37 out of 49 NRs were expressed in NSCs before induction of differentiation, while receptors known to play major roles in neural development, such as THRα, RXRs, RORs, TRs, and COUPTFs, were highly expressed. CAR, which plays important roles in xenobiotic metabolism, was also highly expressed. FGF2 withdrawal induced mRNA expression of RORγ, RXRγ, and MR by over 20-fold. Most of the transcriptional coregulators examined were expressed basally and throughout differentiation without major changes, while FGF2 withdrawal strongly induced mRNA expression of several histone deacetylases (HDACs), including HDAC11. Dexamethasone and aldosterone, respectively a synthetic glucocorticoid and natural mineralocorticoid, increased NSC numbers and induced differentiation into neurons and astrocytes. These results indicate that the NRs and their coregulators are present and/or change their expression during NSC differentiation, suggesting that they may influence development of the central nervous system in the absence or presence of their ligands. PMID:22990992

  2. Cryopreservation of GABAergic Neuronal Precursors for Cell-Based Therapy

    PubMed Central

    2017-01-01

    Cryopreservation protocols are essential for stem cells storage in order to apply them in the clinic. Here we describe a new standardized cryopreservation protocol for GABAergic neural precursors derived from the medial glanglionic eminence (MGE), a promising source of GABAergic neuronal progenitors for cell therapy against interneuron-related pathologies. We used 10% Me2SO as cryoprotectant and assessed the effects of cell culture amplification and cellular organization, as in toto explants, neurospheres, or individualized cells, on post-thaw cell viability and retrieval. We confirmed that in toto cryopreservation of MGE explants is an optimal preservation system to keep intact the interneuron precursor properties for cell transplantation, together with a high cell viability (>80%) and yield (>70%). Post-thaw proliferation and self-renewal of the cryopreserved precursors were tested in vitro. In addition, their migration capacity, acquisition of mature neuronal morphology, and potency to differentiate into multiple interneuron subtypes were also confirmed in vivo after transplantation. The results show that the cryopreserved precursor features remained intact and were similar to those immediately transplanted after their dissection from the MGE. We hope this protocol will facilitate the generation of biobanks to obtain a permanent and reliable source of GABAergic precursors for clinical application in cell-based therapies against interneuronopathies. PMID:28122047

  3. Generalized Potential of Adult Neural Stem Cells

    NASA Astrophysics Data System (ADS)

    Clarke, Diana L.; Johansson, Clas B.; Wilbertz, Johannes; Veress, Biborka; Nilsson, Erik; Karlström, Helena; Lendahl, Urban; Frisén, Jonas

    2000-06-01

    The differentiation potential of stem cells in tissues of the adult has been thought to be limited to cell lineages present in the organ from which they were derived, but there is evidence that some stem cells may have a broader differentiation repertoire. We show here that neural stem cells from the adult mouse brain can contribute to the formation of chimeric chick and mouse embryos and give rise to cells of all germ layers. This demonstrates that an adult neural stem cell has a very broad developmental capacity and may potentially be used to generate a variety of cell types for transplantation in different diseases.

  4. Preparation of superconductor precursor powders

    DOEpatents

    Bhattacharya, Raghunath

    1998-01-01

    A process for the preparation of a precursor metallic powder composition for use in the subsequent formation of a superconductor. The process comprises the steps of providing an electrodeposition bath comprising an electrolyte medium and a cathode substrate electrode, and providing to the bath one or more soluble salts of one or more respective metals which are capable of exhibiting superconductor properties upon subsequent appropriate treatment. The bath is continually energized to cause the metallic and/or reduced particles formed at the electrode to drop as a powder from the electrode into the bath, and this powder, which is a precursor powder for superconductor production, is recovered from the bath for subsequent treatment. The process permits direct inclusion of all metals in the preparation of the precursor powder, and yields an amorphous product mixed on an atomic scale to thereby impart inherent high reactivity. Superconductors which can be formed from the precursor powder include pellet and powder-in-tube products.

  5. Contribution of Underlying Connective Tissue Cells to Taste Buds in Mouse Tongue and Soft Palate.

    PubMed

    Boggs, Kristin; Venkatesan, Nandakumar; Mederacke, Ingmar; Komatsu, Yoshihiro; Stice, Steve; Schwabe, Robert F; Mistretta, Charlotte M; Mishina, Yuji; Liu, Hong-Xiang

    2016-01-01

    Taste buds, the sensory organs for taste, have been described as arising solely from the surrounding epithelium, which is in distinction from other sensory receptors that are known to originate from neural precursors, i.e., neural ectoderm that includes neural crest (NC). Our previous study suggested a potential contribution of NC derived cells to early immature fungiform taste buds in late embryonic (E18.5) and young postnatal (P1-10) mice. In the present study we demonstrated the contribution of the underlying connective tissue (CT) to mature taste buds in mouse tongue and soft palate. Three independent mouse models were used for fate mapping of NC and NC derived connective tissue cells: (1) P0-Cre/R26-tdTomato (RFP) to label NC, NC derived Schwann cells and derivatives; (2) Dermo1-Cre/RFP to label mesenchymal cells and derivatives; and (3) Vimentin-CreER/mGFP to label Vimentin-expressing CT cells and derivatives upon tamoxifen treatment. Both P0-Cre/RFP and Dermo1-Cre/RFP labeled cells were abundant in mature taste buds in lingual taste papillae and soft palate, but not in the surrounding epithelial cells. Concurrently, labeled cells were extensively distributed in the underlying CT. RFP signals were seen in the majority of taste buds and all three types (I, II, III) of differentiated taste bud cells, with the neuronal-like type III cells labeled at a greater proportion. Further, Vimentin-CreER labeled cells were found in the taste buds of 3-month-old mice whereas Vimentin immunoreactivity was only seen in the CT. Taken together, our data demonstrate a previously unrecognized origin of taste bud cells from the underlying CT, a conceptually new finding in our knowledge of taste bud cell derivation, i.e., from both the surrounding epithelium and the underlying CT that is primarily derived from NC.

  6. Contribution of Underlying Connective Tissue Cells to Taste Buds in Mouse Tongue and Soft Palate

    PubMed Central

    Mederacke, Ingmar; Komatsu, Yoshihiro; Stice, Steve; Schwabe, Robert F.; Mistretta, Charlotte M.; Mishina, Yuji; Liu, Hong-Xiang

    2016-01-01

    Taste buds, the sensory organs for taste, have been described as arising solely from the surrounding epithelium, which is in distinction from other sensory receptors that are known to originate from neural precursors, i.e., neural ectoderm that includes neural crest (NC). Our previous study suggested a potential contribution of NC derived cells to early immature fungiform taste buds in late embryonic (E18.5) and young postnatal (P1-10) mice. In the present study we demonstrated the contribution of the underlying connective tissue (CT) to mature taste buds in mouse tongue and soft palate. Three independent mouse models were used for fate mapping of NC and NC derived connective tissue cells: (1) P0-Cre/R26-tdTomato (RFP) to label NC, NC derived Schwann cells and derivatives; (2) Dermo1-Cre/RFP to label mesenchymal cells and derivatives; and (3) Vimentin-CreER/mGFP to label Vimentin-expressing CT cells and derivatives upon tamoxifen treatment. Both P0-Cre/RFP and Dermo1-Cre/RFP labeled cells were abundant in mature taste buds in lingual taste papillae and soft palate, but not in the surrounding epithelial cells. Concurrently, labeled cells were extensively distributed in the underlying CT. RFP signals were seen in the majority of taste buds and all three types (I, II, III) of differentiated taste bud cells, with the neuronal-like type III cells labeled at a greater proportion. Further, Vimentin-CreER labeled cells were found in the taste buds of 3-month-old mice whereas Vimentin immunoreactivity was only seen in the CT. Taken together, our data demonstrate a previously unrecognized origin of taste bud cells from the underlying CT, a conceptually new finding in our knowledge of taste bud cell derivation, i.e., from both the surrounding epithelium and the underlying CT that is primarily derived from NC. PMID:26741369

  7. Polysialic acid modification of the synaptic cell adhesion molecule SynCAM 1 in human embryonic stem cell-derived oligodendrocyte precursor cells.

    PubMed

    Werneburg, Sebastian; Buettner, Falk F R; Mühlenhoff, Martina; Hildebrandt, Herbert

    2015-05-01

    Oligodendrocyte precursor cells (OPCs) are the progenitors of myelinating oligodendrocytes in brain development and repair. Successful myelination depends on the control of adhesiveness during OPC migration and axon contact formation. The decoration of cell surface proteins with the glycan polysialic acid (polySia) is a key regulatory element of OPC interactions during development and under pathological conditions. By far the major protein carrier of polySia is the neural cell adhesion molecule NCAM, but recently, polysialylation of the synaptic cell adhesion molecule SynCAM 1 has been detected in the developing mouse brain. In mice, polySia-SynCAM 1 is associated with cells expressing NG2, a marker of a heterogeneous precursor cell population, which is the primary source for oligodendrocytes in development and myelin repair but can also give rise to astrocytes and possibly neurons. It is not yet clear if polySia-SynCAM 1 is expressed by OPCs and its occurrence in humans is elusive. By generating uniform human embryonic stem cell-derived OPC cultures, we demonstrate that polySia is present on human OPCs but down-regulated during differentiation into myelin basic protein-positive oligodendrocytes. PolySia on NCAM resides on the isoforms NCAM-180 and NCAM-140, and SynCAM 1 is identified as a novel polySia acceptor in human OPCs.

  8. Evolvable synthetic neural system

    NASA Technical Reports Server (NTRS)

    Curtis, Steven A. (Inventor)

    2009-01-01

    An evolvable synthetic neural system includes an evolvable neural interface operably coupled to at least one neural basis function. Each neural basis function includes an evolvable neural interface operably coupled to a heuristic neural system to perform high-level functions and an autonomic neural system to perform low-level functions. In some embodiments, the evolvable synthetic neural system is operably coupled to one or more evolvable synthetic neural systems in a hierarchy.

  9. Neural Networks

    SciTech Connect

    Smith, Patrick I.

    2003-09-23

    Physicists use large detectors to measure particles created in high-energy collisions at particle accelerators. These detectors typically produce signals indicating either where ionization occurs along the path of the particle, or where energy is deposited by the particle. The data produced by these signals is fed into pattern recognition programs to try to identify what particles were produced, and to measure the energy and direction of these particles. Ideally, there are many techniques used in this pattern recognition software. One technique, neural networks, is particularly suitable for identifying what type of particle caused by a set of energy deposits. Neural networks can derive meaning from complicated or imprecise data, extract patterns, and detect trends that are too complex to be noticed by either humans or other computer related processes. To assist in the advancement of this technology, Physicists use a tool kit to experiment with several neural network techniques. The goal of this research is interface a neural network tool kit into Java Analysis Studio (JAS3), an application that allows data to be analyzed from any experiment. As the final result, a physicist will have the ability to train, test, and implement a neural network with the desired output while using JAS3 to analyze the results or output. Before an implementation of a neural network can take place, a firm understanding of what a neural network is and how it works is beneficial. A neural network is an artificial representation of the human brain that tries to simulate the learning process [5]. It is also important to think of the word artificial in that definition as computer programs that use calculations during the learning process. In short, a neural network learns by representative examples. Perhaps the easiest way to describe the way neural networks learn is to explain how the human brain functions. The human brain contains billions of neural cells that are responsible for processing

  10. Precursor decay in several aluminas

    NASA Astrophysics Data System (ADS)

    Murray, N. H.; Bourne, N. K.; Rosenberg, Z.

    1996-05-01

    Plate impact experiments were performed on three ceramics with alumina content varying from 88 to 99.9% using a 50 mm single stage gas gun. Tiles of ceramic with thicknesses varying from 2 to 12 mm were impacted above their Hugoniot Elastic Limits (HELs) and the rate dependent strength was investigated by monitoring the variation in amplitude of the elastic precursor with propagation distance. Stress levels in the target were recorded using manganin stress transducers and a 1 GS s-1 storage oscilloscope. All grades of alumina were found to exhibit some elastic precursor decay indicating strain rate sensitivity.

  11. Deletion of OTX2 in neural ectoderm delays anterior pituitary development.

    PubMed

    Mortensen, Amanda H; Schade, Vanessa; Lamonerie, Thomas; Camper, Sally A

    2015-02-15

    OTX2 is a homeodomain transcription factor that is necessary for normal head development in mouse and man. Heterozygosity for loss-of-function alleles causes an incompletely penetrant, haploinsufficiency disorder. Affected individuals exhibit a spectrum of features that range from developmental defects in eye and/or pituitary development to acephaly. To investigate the mechanism underlying the pituitary defects, we used different cre lines to inactivate Otx2 in early head development and in the prospective anterior and posterior lobes. Mice homozygous for Otx2 deficiency in early head development and pituitary oral ectoderm exhibit craniofacial defects and pituitary gland dysmorphology, but normal pituitary cell specification. The morphological defects mimic those observed in humans and mice with OTX2 heterozygous mutations. Mice homozygous for Otx2 deficiency in the pituitary neural ectoderm exhibited altered patterning of gene expression and ablation of FGF signaling. The posterior pituitary lobe and stalk, which normally arise from neural ectoderm, were extremely hypoplastic. Otx2 expression was intact in Rathke's pouch, the precursor to the anterior lobe, but the anterior lobe was hypoplastic. The lack of FGF signaling from the neural ectoderm was sufficient to impair anterior lobe growth, but not the differentiation of hormone-producing cells. This study demonstrates that Otx2 expression in the neural ectoderm is important intrinsically for the development of the posterior lobe and pituitary stalk, and it has significant extrinsic effects on anterior pituitary growth. Otx2 expression early in head development is important for establishing normal craniofacial features including development of the brain, eyes and pituitary gland.

  12. Transplanted miR-219-overexpressing oligodendrocyte precursor cells promoted remyelination and improved functional recovery in a chronic demyelinated model.

    PubMed

    Fan, Hong-Bin; Chen, Li-Xia; Qu, Xue-Bin; Ren, Chuan-Lu; Wu, Xiu-Xiang; Dong, Fu-Xing; Zhang, Bao-Le; Gao, Dian-Shuai; Yao, Rui-Qin

    2017-02-01

    Oligodendrocyte precursor cells (OPCs) have the ability to repair demyelinated lesions by maturing into myelin-producing oligodendrocytes. Recent evidence suggests that miR-219 helps regulate the differentiation of OPCs into oligodendrocytes. We performed oligodendrocyte differentiation studies using miR-219-overexpressing mouse embryonic stem cells (miR219-mESCs). The self-renewal and multiple differentiation properties of miR219-mESCs were analyzed by the expression of the stage-specific cell markers Nanog, Oct4, nestin, musashi1, GFAP, Tuj1 and O4. MiR-219 accelerated the differentiation of mESC-derived neural precursor cells (NPCs) into OPCs. We further transplanted OPCs derived from miR219-mESCs (miR219-OPCs) into cuprizone-induced chronically demyelinated mice to observe remyelination, which resulted in well-contained oligodendrocyte grafts that migrated along the corpus callosum and matured to express myelin basic protein (MBP). Ultrastructural studies further confirmed the presence of new myelin sheaths. Improved cognitive function in these mice was confirmed by behavioral tests. Importantly, the transplanted miR219-OPCs induced the proliferation of endogenous NPCs. In conclusion, these data demonstrate that miR-219 rapidly transforms mESCs into oligodendrocyte lineage cells and that the transplantation of miR219-OPCs not only promotes remyelination and improves cognitive function but also enhances the proliferation of host endogenous NPCs following chronic demyelination. These results support the potential of a therapeutic role for miR-219 in demyelinating diseases.

  13. Transplanted miR-219-overexpressing oligodendrocyte precursor cells promoted remyelination and improved functional recovery in a chronic demyelinated model

    PubMed Central

    Fan, Hong-Bin; Chen, Li-Xia; Qu, Xue-Bin; Ren, Chuan-Lu; Wu, Xiu-Xiang; Dong, Fu-Xing; Zhang, Bao-Le; Gao, Dian-Shuai; Yao, Rui-Qin

    2017-01-01

    Oligodendrocyte precursor cells (OPCs) have the ability to repair demyelinated lesions by maturing into myelin-producing oligodendrocytes. Recent evidence suggests that miR-219 helps regulate the differentiation of OPCs into oligodendrocytes. We performed oligodendrocyte differentiation studies using miR-219-overexpressing mouse embryonic stem cells (miR219-mESCs). The self-renewal and multiple differentiation properties of miR219-mESCs were analyzed by the expression of the stage-specific cell markers Nanog, Oct4, nestin, musashi1, GFAP, Tuj1 and O4. MiR-219 accelerated the differentiation of mESC-derived neural precursor cells (NPCs) into OPCs. We further transplanted OPCs derived from miR219-mESCs (miR219-OPCs) into cuprizone-induced chronically demyelinated mice to observe remyelination, which resulted in well-contained oligodendrocyte grafts that migrated along the corpus callosum and matured to express myelin basic protein (MBP). Ultrastructural studies further confirmed the presence of new myelin sheaths. Improved cognitive function in these mice was confirmed by behavioral tests. Importantly, the transplanted miR219-OPCs induced the proliferation of endogenous NPCs. In conclusion, these data demonstrate that miR-219 rapidly transforms mESCs into oligodendrocyte lineage cells and that the transplantation of miR219-OPCs not only promotes remyelination and improves cognitive function but also enhances the proliferation of host endogenous NPCs following chronic demyelination. These results support the potential of a therapeutic role for miR-219 in demyelinating diseases. PMID:28145507

  14. In vivo optical modulation of neural signals using monolithically integrated two-dimensional neural probe arrays

    NASA Astrophysics Data System (ADS)

    Son, Yoojin; Jenny Lee, Hyunjoo; Kim, Jeongyeon; Shin, Hyogeun; Choi, Nakwon; Justin Lee, C.; Yoon, Eui-Sung; Yoon, Euisik; Wise, Kensall D.; Geun Kim, Tae; Cho, Il-Joo

    2015-10-01

    Integration of stimulation modalities (e.g. electrical, optical, and chemical) on a large array of neural probes can enable an investigation of important underlying mechanisms of brain disorders that is not possible through neural recordings alone. Furthermore, it is important to achieve this integration of multiple functionalities in a compact structure to utilize a large number of the mouse models. Here we present a successful optical modulation of in vivo neural signals of a transgenic mouse through our compact 2D MEMS neural array (optrodes). Using a novel fabrication method that embeds a lower cladding layer in a silicon substrate, we achieved a thin silicon 2D optrode array that is capable of delivering light to multiple sites using SU-8 as a waveguide core. Without additional modification to the microelectrodes, the measured impedance of the multiple microelectrodes was below 1 MΩ at 1 kHz. In addition, with a low background noise level (±25 μV), neural spikes from different individual neurons were recorded on each microelectrode. Lastly, we successfully used our optrodes to modulate the neural activity of a transgenic mouse through optical stimulation. These results demonstrate the functionality of the 2D optrode array and its potential as a next-generation tool for optogenetic applications.

  15. In vivo optical modulation of neural signals using monolithically integrated two-dimensional neural probe arrays

    PubMed Central

    Son, Yoojin; Jenny Lee, Hyunjoo; Kim, Jeongyeon; Shin, Hyogeun; Choi, Nakwon; Justin Lee, C.; Yoon, Eui-Sung; Yoon, Euisik; Wise, Kensall D.; Geun Kim, Tae; Cho, Il-Joo

    2015-01-01

    Integration of stimulation modalities (e.g. electrical, optical, and chemical) on a large array of neural probes can enable an investigation of important underlying mechanisms of brain disorders that is not possible through neural recordings alone. Furthermore, it is important to achieve this integration of multiple functionalities in a compact structure to utilize a large number of the mouse models. Here we present a successful optical modulation of in vivo neural signals of a transgenic mouse through our compact 2D MEMS neural array (optrodes). Using a novel fabrication method that embeds a lower cladding layer in a silicon substrate, we achieved a thin silicon 2D optrode array that is capable of delivering light to multiple sites using SU-8 as a waveguide core. Without additional modification to the microelectrodes, the measured impedance of the multiple microelectrodes was below 1 MΩ at 1 kHz. In addition, with a low background noise level (±25 μV), neural spikes from different individual neurons were recorded on each microelectrode. Lastly, we successfully used our optrodes to modulate the neural activity of a transgenic mouse through optical stimulation. These results demonstrate the functionality of the 2D optrode array and its potential as a next-generation tool for optogenetic applications. PMID:26494437

  16. Dynamic transcriptional signature and cell fate analysis reveals plasticity of individual neural plate border cells.

    PubMed

    Roellig, Daniela; Tan-Cabugao, Johanna; Esaian, Sevan; Bronner, Marianne E

    2017-03-29

    The 'neural plate border' of vertebrate embryos contains precursors of neural crest and placode cells, both defining vertebrate characteristics. How these lineages segregate from neural and epidermal fates has been a matter of debate. We address this by performing a fine-scale quantitative temporal analysis of transcription factor expression in the neural plate border of chick embryos. The results reveal significant overlap of transcription factors characteristic of multiple lineages in individual border cells from gastrula through neurula stages. Cell fate analysis using a Sox2 (neural) enhancer reveals that cells that are initially Sox2+ cells can contribute not only to neural tube but also to neural crest and epidermis. Moreover, modulating levels of Sox2 or Pax7 alters the apportionment of neural tube versus neural crest fates. Our results resolve a long-standing question and suggest that many individual border cells maintain ability to contribute to multiple ectodermal lineages until or beyond neural tube closure.

  17. Age and gene overexpression interact to abolish nesting behavior in Tg2576 amyloid precursor protein (APP) mice.

    PubMed

    Wesson, Daniel W; Wilson, Donald A

    2011-01-01

    Elucidating the modulators of social behavioral is important in understanding the neural basis of behavior and in developing methods to enhance behavior in cases of disorder. The work here stems from the observation that the Alzheimer's disease mouse model Tg2576, overexpressing human mutations of the amyloid-β precursor protein (APP), fails to construct nests when supplied paper towels in their home cages. Experiments using commercially available cotton nesting material found similar results. Additional experiments revealed that the genotype effect is progressively modulated by age in APP mice but not their WT counterparts. There was no effect of sex on nesting behavior in any group. Finally, this effect was independent of ambient temperature - even when subjected to a cold environment, APP mice fail to build nests whereas WT mice do. These results suggest that the APP gene plays a role in affiliative behaviors and are discussed in relation to disorders characteristic of mutations in the APP gene and in affective dysfunction, including Alzheimer's disease.

  18. Preparation of superconductor precursor powders

    DOEpatents

    Bhattacharya, R.

    1998-08-04

    A process for the preparation of a precursor metallic powder composition for use in the subsequent formation of a superconductor. The process comprises the steps of providing an electrodeposition bath comprising an electrolyte medium and a cathode substrate electrode, and providing to the bath one or more soluble salts of one or more respective metals which are capable of exhibiting superconductor properties upon subsequent appropriate treatment. The bath is continually energized to cause the metallic and/or reduced particles formed at the electrode to drop as a powder from the electrode into the bath, and this powder, which is a precursor powder for superconductor production, is recovered from the bath for subsequent treatment. The process permits direct inclusion of all metals in the preparation of the precursor powder, and yields an amorphous product mixed on an atomic scale to thereby impart inherent high reactivity. Superconductors which can be formed from the precursor powder include pellet and powder-in-tube products. 7 figs.

  19. Preparation of superconductor precursor powders

    DOEpatents

    Bhattacharya, Raghunath; Blaugher, Richard D.

    1995-01-01

    A process for the preparation of a precursor metallic powder composition for use in the subsequent formation of a superconductor. The process comprises the steps of providing an electrodeposition bath comprising an electrolyte medium and a cathode substrate electrode, and providing to the bath one or more soluble salts of one or more respective metals, such as nitrate salts of thallium, barium, calcium, and copper, which are capable of exhibiting superconductor properties upon subsequent appropriate treatment. The bath is continually energized to cause the metallic particles formed at the electrode to drop as a powder from the electrode into the bath, and this powder, which is a precursor powder for superconductor production, is recovered from the bath for subsequent treatment. The process permits direct inclusion of thallium in the preparation of the precursor powder, and yields an amorphous product mixed on an atomic scale to thereby impart inherent high reactivity. Superconductors which can be formed from the precursor powder include pellet and powder-in-tube products.

  20. PAGOSA Sample Problem. Elastic Precursor

    SciTech Connect

    Weseloh, Wayne N.; Clancy, Sean Patrick

    2016-02-03

    A PAGOSA simulation of a flyer plate impact which produces an elastic precursor wave is examined. The simulation is compared to an analytic theory for the Mie-Grüneisen equation of state and an elastic-perfectly-plastic strength model.

  1. Neurogenesis in mouse models of Alzheimer's disease.

    PubMed

    Chuang, Tsu Tshen

    2010-10-01

    The brains of the adult mouse and human possess neural stem cells (NSCs) that retain the capacity to generate new neurons through the process of neurogenesis. They share the same anatomical locations of stem cell niches in the brain, as well as the prominent feature of rostral migratory stream formed by neuroblasts migrating from the lateral ventricles towards the olfactory bulb. Therefore the mouse possesses some fundamental features that may qualify it as a relevant model for adult human neurogenesis. Adult born young hippocampal neurons in the mouse display the unique property of enhanced plasticity, and can integrate physically and functionally into existing neural circuits in the brain. Such crucial properties of neurogenesis may at least partially underlie the improved learning and memory functions observed in the mouse when hippocampal neurogenesis is augmented, leading to the suggestion that neurogenesis induction may be a novel therapeutic approach for diseases with cognitive impairments such as Alzheimer's disease (AD). Research towards this goal has benefited significantly from the use of AD mouse models to facilitate the understanding in the impact of AD pathology on neurogenesis. The present article reviews the growing body of controversial data on altered neurogenesis in mouse models of AD and attempts to assess their relative relevance to humans.

  2. Neural differentiation and synaptogenesis in retinal development

    PubMed Central

    Fan, Wen-juan; Li, Xue; Yao, Huan-ling; Deng, Jie-xin; Liu, Hong-liang; Cui, Zhan-jun; Wang, Qiang; Wu, Ping; Deng, Jin-bo

    2016-01-01

    To investigate the pattern of neural differentiation and synaptogenesis in the mouse retina, immunolabeling, BrdU assay and transmission electron microscopy were used. We show that the neuroblastic cell layer is the germinal zone for neural differentiation and retinal lamination. Ganglion cells differentiated initially at embryonic day 13 (E13), and at E18 horizontal cells appeared in the neuroblastic cell layer. Neural stem cells in the outer neuroblastic cell layer differentiated into photoreceptor cells as early as postnatal day 0 (P0), and neural stem cells in the inner neuroblastic cell layer differentiated into bipolar cells at P7. Synapses in the retina were mainly located in the outer and inner plexiform layers. At P7, synaptophysin immunostaining appeared in presynaptic terminals in the outer and inner plexiform layers with button-like structures. After P14, presynaptic buttons were concentrated in outer and inner plexiform layers with strong staining. These data indicate that neural differentiation and synaptogenesis in the retina play important roles in the formation of retinal neural circuitry. Our study showed that the period before P14, especially between P0 and P14, represents a critical period during retinal development. Mouse eye opening occurs during that period, suggesting that cell differentiation and synaptic formation lead to the attainment of visual function. PMID:27073386

  3. Neural differentiation and synaptogenesis in retinal development.

    PubMed

    Fan, Wen-Juan; Li, Xue; Yao, Huan-Ling; Deng, Jie-Xin; Liu, Hong-Liang; Cui, Zhan-Jun; Wang, Qiang; Wu, Ping; Deng, Jin-Bo

    2016-02-01

    To investigate the pattern of neural differentiation and synaptogenesis in the mouse retina, immunolabeling, BrdU assay and transmission electron microscopy were used. We show that the neuroblastic cell layer is the germinal zone for neural differentiation and retinal lamination. Ganglion cells differentiated initially at embryonic day 13 (E13), and at E18 horizontal cells appeared in the neuroblastic cell layer. Neural stem cells in the outer neuroblastic cell layer differentiated into photoreceptor cells as early as postnatal day 0 (P0), and neural stem cells in the inner neuroblastic cell layer differentiated into bipolar cells at P7. Synapses in the retina were mainly located in the outer and inner plexiform layers. At P7, synaptophysin immunostaining appeared in presynaptic terminals in the outer and inner plexiform layers with button-like structures. After P14, presynaptic buttons were concentrated in outer and inner plexiform layers with strong staining. These data indicate that neural differentiation and synaptogenesis in the retina play important roles in the formation of retinal neural circuitry. Our study showed that the period before P14, especially between P0 and P14, represents a critical period during retinal development. Mouse eye opening occurs during that period, suggesting that cell differentiation and synaptic formation lead to the attainment of visual function.

  4. Characterization of the Murine Myeloid Precursor Cell Line MuMac-E8

    PubMed Central

    Fricke, Stephan; Riemschneider, Sina; Kohlschmidt, Janine; Hilger, Nadja; Fueldner, Christiane; Knauer, Jens; Sack, Ulrich; Emmrich, Frank; Lehmann, Jörg

    2014-01-01

    Starting point for the present work was the assumption that the cell line MuMac-E8 represents a murine cell population with stem cell properties. Preliminary studies already pointed to the expression of stem-cell associated markers and a self-regenerative potential of the cells. The cell line MuMac-E8 should be examined for their differential stage within stem cell hierarchy. MuMac-E8 cells were derived from a chimeric mouse model of arthritis. It could be shown that MuMac-E8 cells express mRNA of some genes associated with pluripotent stem cells (Nanog, Nucleostemin), of genes for hematopoietic markers (EPCR, Sca-1, CD11b, CD45), for the mesenchymal marker CD105 and of genes for the neural markers Pax-6 and Ezrin. In methylcellulose and May-Grünwald-Giemsa staining, hematopoietic colonies were obtained but the hematopoietic system of lethally irradiated mice could not be rescued. Osteogenic differentiation was not detectable. Thus, it became evident that MuMac-E8 represents not a stem cell line. However, MuMac-E8 cells expressed several myeloid surface markers (i.e. CD11b, F4/80, CD14, CD64), showed phagocytosis and is capable of producing nitric oxide. Thus, this cell line seems to be arrested an advanced stage of myeloid differentiation. Adherence data measured by impedance-based real-time cell analysis together with cell morphology data suggested that MuMac-E8 represents a new macrophage precursor cell line exhibiting weak adherence. This cell line is suitable as an in-vitro model for testing of macrophage functions. Moreover, it might be also useful for differentiation or reprogramming studies. PMID:25546418

  5. Inducible expression of noggin selectively expands neural progenitors in the adult SVZ.

    PubMed

    Morell, M; Tsan, Yao-chang; O'Shea, K Sue

    2015-01-01

    Multipotent, self-renewing stem cells are present throughout the developing nervous system remaining in discrete regions of the adult brain. In the subventricular zone (SVZ) signaling molecules, including the bone morphogenetic proteins and their secreted inhibitor, noggin appear to play a critical role in controlling neural stem cell (NSC) behavior. To examine the function of this signaling pathway in the intact nervous system, we developed a transgenic mouse model in which noggin expression can be induced specifically in NSC via a nestin-driven reverse tetracycline-controlled transactivator (rtTA). In adult animals, the induction of noggin expression promotes the proliferation of neural progenitors in the SVZ, and shifts the differentiation of B cells (NSC) from mature astrocytes to transit amplifying C cells and oligodendrocyte precursor cells without depleting the NSC population. Noggin expression significantly increases neuronal and oligodendrocyte differentiation both in vivo and in vitro when NSCs are grown as neurospheres. These results demonstrate that noggin/BMP interactions tightly control cell fate in the SVZ.

  6. The Survival of Engrafted Neural Stem Cells Within Hyaluronic Acid Hydrogels

    PubMed Central

    Liang, Yajie; Walczak, Piotr; Bulte, Jeff W.M.

    2013-01-01

    Successful cell-based therapy of neurological disorders is highly dependent on the survival of transplanted stem cells, with the overall graft survival of naked, unprotected cells in general remaining poor. We investigated the use of an injectable hyaluronic acid (HA) hydrogel for enhancement of survival of transplanted mouse C17.2 cells, human neural progenitor cells (ReNcells), and human glial-restricted precursors (GRPs). The gelation properties of the HA hydrogel were first characterized and optimized for intracerebral injection, resulting in a 25 min delayed-injection after mixing of the hydrogel components. Using bioluminescence imaging (BLI) as a non-invasive readout of cell survival, we found that the hydrogel can protect xenografted cells as evidenced by the prolonged survival of C17.2 cells implanted in immunocompetent rats (p<0.01 at day 12). The survival of human ReNcells and human GRPs implanted in the brain of immunocompetent or immunodeficient mice was also significantly improved after hydrogel scaffolding (ReNcells, p<0.05 at day 5; GRPs, p<0.05 at day 7). However, an inflammatory response could be noted two weeks after injection of hydrogel into immunocompetent mice brains. We conclude that hydrogel scaffolding increases the survival of engrafted neural stem cells, justifying further optimization of hydrogel compositions. PMID:23623429

  7. Polarized signaling endosomes coordinate BDNF-induced chemotaxis of cerebellar precursors.

    PubMed

    Zhou, Pengcheng; Porcionatto, Marimelia; Pilapil, Mariecel; Chen, Yicheng; Choi, Yoojin; Tolias, Kimberley F; Bikoff, Jay B; Hong, Elizabeth J; Greenberg, Michael E; Segal, Rosalind A

    2007-07-05

    During development, neural precursors migrate in response to positional cues such as growth factor gradients. However, the mechanisms that enable precursors to sense and respond to such gradients are poorly understood. Here we show that cerebellar granule cell precursors (GCPs) migrate along a gradient of brain-derived neurotrophic factor (BDNF), and we demonstrate that vesicle trafficking is critical for this chemotactic process. Activation of TrkB, the BDNF receptor, stimulates GCPs to secrete BDNF, thereby amplifying the ambient gradient. The BDNF gradient stimulates endocytosis of TrkB and associated signaling molecules, causing asymmetric accumulation of signaling endosomes at the subcellular location where BDNF concentration is maximal. Thus, regulated BDNF exocytosis and TrkB endocytosis enable precursors to polarize and migrate in a directed fashion along a shallow BDNF gradient.

  8. Polarized signaling endosomes coordinate BDNF-induced chemotaxis of cerebellar precursors

    PubMed Central

    Zhou, Pengcheng; Porcionatto, Marimelia; Pilapil, Mariecel; Chen, Yicheng; Choi, Yoojin; Tolias, Kimberley F.; Bikoff, Jay B.; Hong, Elizabeth J.; Greenberg, Michael E.; Segal, Rosalind A.

    2007-01-01

    Summary During development, neural precursors migrate in response to positional cues such as growth factor gradients. However, the mechanisms that enable precursors to sense and respond to such gradients are poorly understood. Here we show that cerebellar granule cell precursors (GCPs) migrate along a gradient of brain-derived neurotrophic factor (BDNF), and we demonstrate that vesicle trafficking is critical for this chemotactic process. Activation of TrkB, the BDNF receptor, stimulates GCPs to secrete BDNF, thereby amplifying the ambient gradient. The BDNF gradient stimulates endocytosis of TrkB and associated signaling molecules, causing asymmetric accumulation of signaling endosomes at the subcellular location where BDNF concentration is maximal. Thus regulated BDNF exocytosis and TrkB endocytosis enable precursors to polarize and migrate in a directed fashion along a shallow BDNF gradient. PMID:17610817

  9. Precursor polymer compositions comprising polybenzimidazole

    SciTech Connect

    Klaehn, John R.; Peterson, Eric S.; Orme, Christopher J.

    2015-07-14

    Stable, high performance polymer compositions including polybenzimidazole (PBI) and a melamine-formaldehyde polymer, such as methylated, poly(melamine-co-formaldehyde), for forming structures such as films, fibers and bulky structures. The polymer compositions may be formed by combining polybenzimidazole with the melamine-formaldehyde polymer to form a precursor. The polybenzimidazole may be reacted and/or intertwined with the melamine-formaldehyde polymer to form the polymer composition. For example, a stable, free-standing film having a thickness of, for example, between about 5 .mu.m and about 30 .mu.m may be formed from the polymer composition. Such films may be used as gas separation membranes and may be submerged into water for extended periods without crazing and cracking. The polymer composition may also be used as a coating on substrates, such as metal and ceramics, or may be used for spinning fibers. Precursors for forming such polymer compositions are also disclosed.

  10. Soluble Precursor Route to Polyanilines

    DTIC Science & Technology

    1993-01-01

    condensation were not successful, but further work produced polymer under the following conditions: Synthesis Diketone I (2.40 g, 10.0 mmol) in 10 mL...goal of producing a processible form of the conducting polymer polyaniline (PANI), the Phase I program concentrated on development of the synthesis of...extension of the original research to a Phase II effort. Diketone - Diamine Polycondensation Towards a Soluble PAni Precursor To achieve the

  11. Nucleation precursors in protein crystallization

    PubMed Central

    Vekilov, Peter G.; Vorontsova, Maria A.

    2014-01-01

    Protein crystal nucleation is a central problem in biological crystallography and other areas of science, technology and medicine. Recent studies have demonstrated that protein crystal nuclei form within crucial precursors. Here, methods of detection and characterization of the precursors are reviewed: dynamic light scattering, atomic force microscopy and Brownian microscopy. Data for several proteins provided by these methods have demonstrated that the nucleation precursors are clusters consisting of protein-dense liquid, which are metastable with respect to the host protein solution. The clusters are several hundred nanometres in size, the cluster population occupies from 10−7 to 10−3 of the solution volume, and their properties in solutions supersaturated with respect to crystals are similar to those in homogeneous, i.e. undersaturated, solutions. The clusters exist owing to the conformation flexibility of the protein molecules, leading to exposure of hydrophobic surfaces and enhanced intermolecular binding. These results indicate that protein conformational flexibility might be the mechanism behind the metastable mesoscopic clusters and crystal nucleation. Investigations of the cluster properties are still in their infancy. Results on direct imaging of cluster behaviors and characterization of cluster mechanisms with a variety of proteins will soon lead to major breakthroughs in protein biophysics. PMID:24598910

  12. Dynamic behaviors of the non-neural ectoderm during mammalian cranial neural tube closure.

    PubMed

    Ray, Heather J; Niswander, Lee A

    2016-08-15

    The embryonic brain and spinal cord initially form through the process of neural tube closure (NTC). NTC is thought to be highly similar between rodents and humans, and studies of mouse genetic mutants have greatly increased our understanding of the molecular basis of NTC with relevance for human neural tube defects. In addition, studies using amphibian and chick embryos have shed light into the cellular and tissue dynamics underlying NTC. However, the dynamics of mammalian NTC has been difficult to study due to in utero development until recently when advances in mouse embryo ex vivo culture techniques along with confocal microscopy have allowed for imaging of mouse NTC in real time. Here, we have performed live imaging of mouse embryos with a particular focus on the non-neural ectoderm (NNE). Previous studies in multiple model systems have found that the NNE is important for proper NTC, but little is known about the behavior of these cells during mammalian NTC. Here we utilized a NNE-specific genetic labeling system to assess NNE dynamics during murine NTC and identified different NNE cell behaviors as the cranial region undergoes NTC. These results bring valuable new insight into regional differences in cellular behavior during NTC that may be driven by different molecular regulators and which may underlie the various positional disruptions of NTC observed in humans with neural tube defects.

  13. Neural Network Function Classifier

    DTIC Science & Technology

    2003-02-07

    neural network sets. Each of the neural networks in a particular set is trained to recognize a particular data set type. The best function representation of the data set is determined from the neural network output. The system comprises sets of trained neural networks having neural networks trained to identify different types of data. The number of neural networks within each neural network set will depend on the number of function types that are represented. The system further comprises

  14. Disruption of neural progenitors along the ventricular and subventricular zones in periventricular heterotopia

    PubMed Central

    Ferland, Russell J.; Batiz, Luis Federico; Neal, Jason; Lian, Gewei; Bundock, Elizabeth; Lu, Jie; Hsiao, Yi-Chun; Diamond, Rachel; Mei, Davide; Banham, Alison H.; Brown, Philip J.; Vanderburg, Charles R.; Joseph, Jeffrey; Hecht, Jonathan L.; Folkerth, Rebecca; Guerrini, Renzo; Walsh, Christopher A.; Rodriguez, Esteban M.; Sheen, Volney L.

    2009-01-01

    Periventricular heterotopia (PH) is a disorder characterized by neuronal nodules, ectopically positioned along the lateral ventricles of the cerebral cortex. Mutations in either of two human genes, Filamin A (FLNA) or ADP-ribosylation factor guanine exchange factor 2 (ARFGEF2), cause PH (Fox et al. in ‘Mutations in filamin 1 prevent migration of cerebral cortical neurons in human periventricular heterotopia'. Neuron, 21, 1315–1325, 1998; Sheen et al. in ‘Mutations in ARFGEF2 implicate vesicle trafficking in neural progenitor proliferation and migration in the human cerebral cortex'. Nat. Genet., 36, 69–76, 2004). Recent studies have shown that mutations in mitogen-activated protein kinase kinase kinase-4 (Mekk4), an indirect interactor with FlnA, also lead to periventricular nodule formation in mice (Sarkisian et al. in ‘MEKK4 signaling regulates filamin expression and neuronal migration'. Neuron, 52, 789–801, 2006). Here we show that neurons in post-mortem human PH brains migrated appropriately into the cortex, that periventricular nodules were primarily composed of later-born neurons, and that the neuroependyma was disrupted in all PH cases. As studied in the mouse, loss of FlnA or Big2 function in neural precursors impaired neuronal migration from the germinal zone, disrupted cell adhesion and compromised neuroepithelial integrity. Finally, the hydrocephalus with hop gait (hyh) mouse, which harbors a mutation in Napa [encoding N-ethylmaleimide-sensitive factor attachment protein alpha (α-SNAP)], also develops a progressive denudation of the neuroepithelium, leading to periventicular nodule formation. Previous studies have shown that Arfgef2 and Napa direct vesicle trafficking and fusion, whereas FlnA associates dynamically with the Golgi membranes during budding and trafficking of transport vesicles. Our current findings suggest that PH formation arises from a final common pathway involving disruption of vesicle trafficking, leading to impaired cell

  15. Neural Networks

    NASA Astrophysics Data System (ADS)

    Schwindling, Jerome

    2010-04-01

    This course presents an overview of the concepts of the neural networks and their aplication in the framework of High energy physics analyses. After a brief introduction on the concept of neural networks, the concept is explained in the frame of neuro-biology, introducing the concept of multi-layer perceptron, learning and their use as data classifer. The concept is then presented in a second part using in more details the mathematical approach focussing on typical use cases faced in particle physics. Finally, the last part presents the best way to use such statistical tools in view of event classifers, putting the emphasis on the setup of the multi-layer perceptron. The full article (15 p.) corresponding to this lecture is written in french and is provided in the proceedings of the book SOS 2008.

  16. Neural Engineering

    NASA Astrophysics Data System (ADS)

    He, Bin

    About the Series: Bioelectric Engineering presents state-of-the-art discussions on modern biomedical engineering with respect to applications of electrical engineering and information technology in biomedicine. This focus affirms Springer's commitment to publishing important reviews of the broadest interest to biomedical engineers, bioengineers, and their colleagues in affiliated disciplines. Recent volumes have covered modeling and imaging of bioelectric activity, neural engineering, biosignal processing, bionanotechnology, among other topics.

  17. Spinal Cord Neuronal Precursors Generate Multiple Neuronal Phenotypes in Culture

    PubMed Central

    Kalyani, Anjali J.; Piper, David; Mujtaba, Tahmina; Lucero, Mary T.; Rao, Mahendra S.

    2010-01-01

    Neuronal restricted precursors (NRPs) (Mayer-Proschel et al., 1997) can generate multiple neurotransmitter phenotypes during maturation in culture. Undifferentiated E-NCAM+ (embryonic neural cell adhesion molecule) immunoreactive NRPs are mitotically active and electrically immature, and they express only a subset of neuronal markers. Fully mature cells are postmitotic, process-bearing cells that are neurofilament-M and synaptophysin immunoreactive, and they synthesize and respond to different subsets of neurotransmitter molecules. Mature neurons that synthesize and respond to glycine, glutamate, GABA, dopamine, and acetylcholine can be identified by immunocytochemistry, RT-PCR, and calcium imaging in mass cultures. Individual NRPs also generate heterogeneous progeny as assessed by neurotransmitter response and synthesis, demonstrating the multipotent nature of the precursor cells. Differentiation can be modulated by sonic hedgehog (Shh) and bone morphogenetic protein (BMP)-2/4 molecules. Shh acts as a mitogen and inhibits differentiation (including cholinergic differentiation). BMP-2 and BMP-4, in contrast, inhibit cell division and promote differentiation (including cholinergic differentiation). Thus, a single neuronal precursor cell can differentiate into multiple classes of neurons, and this differentiation can be modulated by environmental signals. PMID:9742154

  18. Expression patterns of neural genes in Euperipatoides kanangrensis suggest divergent evolution of onychophoran and euarthropod neurogenesis.

    PubMed

    Eriksson, Bo Joakim; Stollewerk, Angelika

    2010-12-28

    One of the controversial debates on euarthropod relationships centers on the question as to whether insects, crustaceans, and myriapods (Mandibulata) share a common ancestor or whether myriapods group with the chelicerates (Myriochelata). The debate was stimulated recently by studies in chelicerates and myriapods that show that neural precursor groups (NPGs) segregate from the neuroectoderm generating the nervous system, whereas in insects and crustaceans the nervous tissue is produced by stem cells. Do the shared neural characters of myriapods and chelicerates represent derived characters that support the Myriochelata grouping? Or do they rather reflect the ancestral pattern? Analyses of neurogenesis in a group closely related to euarthropods, the onychophorans, show that, similar to insects and crustaceans, single neural precursors are formed in the neuroectoderm, potentially supporting the Myriochelata hypothesis. Here we show that the nature and the selection of onychophoran neural precursors are distinct from euarthropods. The onychophoran nervous system is generated by the massive irregular segregation of single neural precursors, contrasting with the limited number and stereotyped arrangement of NPGs/stem cells in euarthropods. Furthermore, neural genes do not show the spatiotemporal pattern that sets up the precise position of neural precursors as in euarthropods. We conclude that neurogenesis in onychophorans largely does not reflect the ancestral pattern of euarthropod neurogenesis, but shows a mixture of derived characters and ancestral characters that have been modified in the euarthropod lineage. Based on these data and additional evidence, we suggest an evolutionary sequence of arthropod neurogenesis that is in line with the Mandibulata hypothesis.

  19. Precursor lesions in pancreatic cancer: morphological and molecular pathology.

    PubMed

    Scarlett, Christopher J; Salisbury, Elizabeth L; Biankin, Andrew V; Kench, James

    2011-04-01

    Pancreatic cancer has a dismal prognosis and is the fourth most common cause of cancer related death in Western societies. In large part this is due to its typically late presentation, usually as locally advanced or metastatic disease. Identification of the non-invasive precursor lesions to pancreatic cancer raises the possibility of surgical treatment or chemoprevention at an early stage in the evolution of this disease, when more amenable to therapeutic interventions. Precursor lesions to pancreatic ductal adenocarcinoma, in particular pancreatic intraepithelial neoplasia (PanIN), have been recognised under a variety of synonyms for over 50 years. Over the past decade our understanding of the morphology, biological significance and molecular aberrations of these lesions has grown rapidly and there is now a widely accepted progression model integrating the accumulated morphological and molecular observations. Further progress is likely to be accelerated by improved mouse models of pancreatic cancer and by insight into the cancer genome gained by the International Cancer Genome Consortium (ICGC), in which an Australian consortium is leading the pancreatic cancer initiative. This review also outlines the morphological and molecular features of the other two precursors of pancreatic ductal adenocarcinoma, i.e., intraductal papillary mucinous neoplasms and mucinous cystic neoplasms.

  20. New Worlds Observer Precursor Mission

    NASA Astrophysics Data System (ADS)

    Lillie, C. F.; Lo, A. S.; Dailey, D.; Glassman, T. M.

    2007-06-01

    The New Worlds Observer architecture uses an external occulter to extinguish the on-axis light from a star and a separate telescope to collect the light from objects around that star, such as planets and debris disks. The separation of the starlight suppression capability from the photon collection capability makes the New Worlds Observer architecture very flexible. This paper describes NWO concepts ranging from low-cost precursor missions to Terrestrial Planet Finding (TPF) missions, and provides a path that extends beyond TPF to Planet-Imager and LifeFinder. Low cost precursor missions could be launched on a Minotaur using a small(~10 meter) occulter to work with a small(~0.5 m), telescope. Intermediate precursor missions could be accomplished by launching a larger occulter as a secondary payload to work with existing telescopes such as SOFIA or JWST. The former may allow direct detection of known giant planets, while the latter has the potential to discover Exo-Earths. A full TPF mission would consists of a large occulter working with a dedicated telescope; this can potentially find many terrestrial planets, as well as perform a host of ancillary astronomy investigations such as imaging debris disks and characterizing atmospheres of Jovian planets, as well as making general astrophysics observations. By utilizing the in space servicing capabilities that may be developed for the Exploration program, the lifetime of these occulters may be greatly extended by refueling and repair. In the future, larger occulters (>100 m) could be assembled on orbit. Thus, when coupled with a large telescope, the NWO architecture provides a path towards Lifefinder. NWO is a flexible architecture that allows scalability on all levels to suit the budget available for Exo-Planet Missions.

  1. Precursors of Short Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Troja, E.; Rosswog, S.; Gehrels, N.

    2010-01-01

    We carried out a systematic search of precursors on the sample of short GRBs observed by Swift. We found that approx. 8-10% of short GRBs display such early episode of emission. One burst (GRB 090510) shows two precursor events, the former approx.13 s and the latter approx. 0.5 s before the GRB. We did not find any substantial difference between the precursor and the main GRB emission, and between short GRBs with and without precursors. We discuss possible mechanisms to reproduce the observed precursor emission within the scenario of compact object mergers. The implications of our results on quantum gravity constraints are also discussed.

  2. Folate receptors and neural tube closure.

    PubMed

    Saitsu, Hirotomo

    2017-02-28

    Neural tube defects (NTD) are among the most common human congenital malformations, affecting 0.5-8/1000 of live births. Human clinical trials have shown that periconceptional folate supplementation significantly decreases the occurrence of NTD in offspring. However, the mechanism by which folate acts on NTD remains largely unknown. Folate receptor (Folr) is one of the three membrane proteins that mediate cellular uptake of folates. Recent studies suggest that mouse Folr1 (formerly referred to as Fbp1) is essential for neural tube closure. Therefore, we examined spatial and temporal expression patterns of Folr1 in developing mouse embryos, showing a close association between Folr1 and anterior neural tube closure. Transient transgenic analysis was performed using lacZ as a reporter; we identified a 1.1-kb enhancer that directs lacZ expression in the neural tube and optic vesicle in a manner that is similar to endogenous Folr1. The 1.1-kb enhancer sequences were highly conserved between humans and mice, suggesting that human FOLR1 is associated with anterior neural tube closure in humans. Several experimental studies in mice and human epidemiological and genetics studies have suggested that folate receptor abnormalities are involved in a portion of human NTDs, although the solo defect of FOLR1 did not cause NTD.

  3. The Expression and Function of the Achaete-Scute Genes in Tribolium castaneum Reveals Conservation and Variation in Neural Pattern Formation and Cell Fate Specification

    NASA Technical Reports Server (NTRS)

    Wheeler, Scott R.; Carrico, Michelle L.; Wilson, Beth A.; Brown, Susan J.; Skeath, James B.

    2003-01-01

    SUMMARY The study of achaete-scute (ac/sc) genes has recently become a paradigm to understand the evolution and development of the arthropod nervous system. We describe the identification and characterization of the ache genes in the coleopteran insect species Tribolium castaneum. We have identified two Tribolium ache genes - achaete-scute homolog (Tc-ASH) a proneural gene and asense (Tc-ase) a neural precursor gene that reside in a gene complex. Focusing on the embryonic central nervous system we fmd that Tc-ASH is expressed in all neural precursors and the proneural clusters from which they segregate. Through RNAi and misexpression studies we show that Tc-ASH is necessary for neural precursor formation in Triboliurn and sufficient for neural precursor formation in Drosophila. Comparison of the function of the Drosophila and Triboliurn proneural ac/sc genes suggests that in the Drosophila lineage these genes have maintained their ancestral function in neural precursor formation and have acquired a new role in the fate specification of individual neural precursors. Furthermore, we find that Tc-use is expressed in all neural precursors suggesting an important and conserved role for asense genes in insect nervous system development. Our analysis of the Triboliurn ache genes indicates significant plasticity in gene number, expression and function, and implicates these modifications in the evolution of arthropod neural development.

  4. The expression and function of the achaete-scute genes in Tribolium castaneum reveals conservation and variation in neural pattern formation and cell fate specification

    NASA Technical Reports Server (NTRS)

    Wheeler, Scott R.; Carrico, Michelle L.; Wilson, Beth A.; Brown, Susan J.; Skeath, James B.

    2003-01-01

    The study of achaete-scute (ac/sc) genes has recently become a paradigm to understand the evolution and development of the arthropod nervous system. We describe the identification and characterization of the ac/sc genes in the coleopteran insect species Tribolium castaneum. We have identified two Tribolium ac/sc genes - achaete-scute homolog (Tc-ASH) a proneural gene and asense (Tc-ase) a neural precursor gene that reside in a gene complex. Focusing on the embryonic central nervous system we find that Tc-ASH is expressed in all neural precursors and the proneural clusters from which they segregate. Through RNAi and misexpression studies we show that Tc-ASH is necessary for neural precursor formation in Tribolium and sufficient for neural precursor formation in Drosophila. Comparison of the function of the Drosophila and Tribolium proneural ac/sc genes suggests that in the Drosophila lineage these genes have maintained their ancestral function in neural precursor formation and have acquired a new role in the fate specification of individual neural precursors. Furthermore, we find that Tc-ase is expressed in all neural precursors suggesting an important and conserved role for asense genes in insect nervous system development. Our analysis of the Tribolium ac/sc genes indicates significant plasticity in gene number, expression and function, and implicates these modifications in the evolution of arthropod neural development.

  5. Neural crest specification and migration independently require NSD3-related lysine methyltransferase activity

    PubMed Central

    Jacques-Fricke, Bridget T.; Gammill, Laura S.

    2014-01-01

    Neural crest precursors express genes that cause them to become migratory, multipotent cells, distinguishing them from adjacent stationary neural progenitors in the neurepithelium. Histone methylation spatiotemporally regulates neural crest gene expression; however, the protein methyltransferases active in neural crest precursors are unknown. Moreover, the regulation of methylation during the dynamic process of neural crest migration is unclear. Here we show that the lysine methyltransferase NSD3 is abundantly and specifically expressed in premigratory and migratory neural crest cells. NSD3 expression commences before up-regulation of neural crest genes, and NSD3 is necessary for expression of the neural plate border gene Msx1, as well as the key neural crest transcription factors Sox10, Snail2, Sox9, and FoxD3, but not gene expression generally. Nevertheless, only Sox10 histone H3 lysine 36 dimethylation requires NSD3, revealing unexpected complexity in NSD3-dependent neural crest gene regulation. In addition, by temporally limiting expression of a dominant negative to migratory stages, we identify a novel, direct requirement for NSD3-related methyltransferase activity in neural crest migration. These results identify NSD3 as the first protein methyltransferase essential for neural crest gene expression during specification and show that NSD3-related methyltransferase activity independently regulates migration. PMID:25318671

  6. Annealing of aromatic polyimide precursors

    NASA Technical Reports Server (NTRS)

    Wakelyn, N. T.

    1975-01-01

    A study has been made of the thermal behavior of polyimide precursors: an isomeric pair of crystals of the complex formed by p-phenylenediamine with the separated isomers of the di-isopropyl ester of pyromellitic acid. Specimens of this material were isothermally annealed in the temperature range 120 C to 170 C for periods of time up to 1 week. Although this temperature range is well below that customarily used for imidizations, the working hypothesis was that it would be more likely that a polymer embodying at least part of the precursor structure could be formed if the molecular motion was minimized to that actually required for the formation of the imide linkage. The progress of the annealing was followed by: infrared spectroscopy, differential thermal analysis, powder X-ray diffraction, and thermal gravimetric analysis. Single crystal X-ray analysis of the meta monomer yields a structure of chains of alternating acid and base and suggests that this monomer is amenable to polymerization with a minimum of geometrical disruption.

  7. Cardiovascular Development and the Colonizing Cardiac Neural Crest Lineage

    PubMed Central

    Snider, Paige; Olaopa, Michael; Firulli, Anthony B.

    2008-01-01

    Although it is well established that transgenic manipulation of mammalian neural crest-related gene expression and microsurgical removal of premigratory chicken and Xenopus embryonic cardiac neural crest progenitors results in a wide spectrum of both structural and functional congenital heart defects, the actual functional mechanism of the cardiac neural crest cells within the heart is poorly understood. Neural crest cell migration and appropriate colonization of the pharyngeal arches and outflow tract septum is thought to be highly dependent on genes that regulate cell-autonomous polarized movement (i.e., gap junctions, cadherins, and noncanonical Wnt1 pathway regulators). Once the migratory cardiac neural crest subpopulation finally reaches the heart, they have traditionally been thought to participate in septation of the common outflow tract into separate aortic and pulmonary arteries. However, several studies have suggested these colonizing neural crest cells may also play additional unexpected roles during cardiovascular development and may even contribute to a crest-derived stem cell population. Studies in both mice and chick suggest they can also enter the heart from the venous inflow as well as the usual arterial outflow region, and may contribute to the adult semilunar and atrioventricular valves as well as part of the cardiac conduction system. Furthermore, although they are not usually thought to give rise to the cardiomyocyte lineage, neural crest cells in the zebrafish (Danio rerio) can contribute to the myocardium and may have different functions in a species-dependent context. Intriguingly, both ablation of chick and Xenopus premigratory neural crest cells, and a transgenic deletion of mouse neural crest cell migration or disruption of the normal mammalian neural crest gene expression profiles, disrupts ventral myocardial function and/or cardiomyocyte proliferation. Combined, this suggests that either the cardiac neural crest secrete factor/s that

  8. Wittgenstein running: neural mechanisms of collective intentionality and we-mode.

    PubMed

    Becchio, Cristina; Bertone, Cesare

    2004-03-01

    In this paper we discuss the problem of the neural conditions of shared attitudes and intentions: which neural mechanisms underlie "we-mode" processes or serve as precursors to such processes? Neurophysiological and neuropsychological evidence suggests that in different areas of the brain neural representations are shared by several individuals. This situation, on the one hand, creates a potential problem for correct attribution. On the other hand, it may provide the conditions for shared attitudes and intentions.

  9. Modeling neural differentiation on micropatterned substrates coated with neural matrix components

    PubMed Central

    García-Parra, Patricia; Cavaliere, Fabio; Maroto, Marcos; Bilbao, Leire; Obieta, Isabel; López de Munain, Adolfo; Álava, José Iñaki; Izeta, Ander

    2012-01-01

    Topographical and biochemical characteristics of the substrate are critical for neuronal differentiation including axonal outgrowth and regeneration of neural circuits in vivo. Contact stimuli and signaling molecules allow neurons to develop and stabilize synaptic contacts. Here we present the development, characterization and functional validation of a new polymeric support able to induce neuronal differentiation in both PC12 cell line and adult primary skin-derived precursor cells (SKPs) in vitro. By combining a photolithographic technique with use of neural extracellular matrix (ECM) as a substrate, a biocompatible and efficient microenvironment for neuronal differentiation was developed. PMID:22435050

  10. Identification and characterization of secondary neural tube-derived embryonic neural stem cells in vitro.

    PubMed

    Shaker, Mohammed R; Kim, Joo Yeon; Kim, Hyun; Sun, Woong

    2015-05-15

    Secondary neurulation is an embryonic progress that gives rise to the secondary neural tube, the precursor of the lower spinal cord region. The secondary neural tube is derived from aggregated Sox2-expressing neural cells at the dorsal region of the tail bud, which eventually forms rosette or tube-like structures to give rise to neural tissues in the tail bud. We addressed whether the embryonic tail contains neural stem cells (NSCs), namely secondary NSCs (sNSCs), with the potential for self-renewal in vitro. Using in vitro neurosphere assays, neurospheres readily formed at the rosette and neural-tube levels, but less frequently at the tail bud tip level. Furthermore, we identified that sNSC-generated neurospheres were significantly smaller in size compared with cortical neurospheres. Interestingly, various cell cycle analyses revealed that this difference was not due to a reduction in the proliferation rate of NSCs, but rather the neuronal commitment of sNSCs, as sNSC-derived neurospheres contain more committed neuronal progenitor cells, even in the presence of epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF). These results suggest that the higher tendency for sNSCs to spontaneously differentiate into progenitor cells may explain the limited expansion of the secondary neural tube during embryonic development.

  11. Molecular and polymeric ceramic precursors

    SciTech Connect

    Sneddon, L.G.

    1991-08-01

    The development of new methods for the production of complex materials is one of the most important problems in modern solid state chemistry and materials science. This project is attempting to apply the synthetic principles which have evolved inorganic and organometallic chemistry to the production of technologically important non-oxide ceramics, such as boron nitride, boron carbide and metal borides. Our recent work has now resulted in the production of new polymer systems, including poly(B-vinylborazine), polyvinylpentaborane and polyborazylene, that have proven to be high yield precursors to boron-based ceramic materials. Current work is now directed toward the synthesis of new types of molecular and polymeric boron-containing species and on exploration of the solid state properties of the ceramics that have been produced in these studies.

  12. Crucial Role of Rapgef2 and Rapgef6, a Family of Guanine Nucleotide Exchange Factors for Rap1 Small GTPase, in Formation of Apical Surface Adherens Junctions and Neural Progenitor Development in the Mouse Cerebral Cortex123

    PubMed Central

    Maeta, Kazuhiro; Edamatsu, Hironori; Nishihara, Kaori; Ikutomo, Junji; Bilasy, Shymaa E.

    2016-01-01

    Abstract Cerebral neocortex development in mammals requires highly orchestrated events involving proliferation, differentiation, and migration of neural progenitors and neurons. Rapgef2 and Rapgef6 constitute a unique family of guanine nucleotide exchange factors for Rap1 small GTPase, which is known to play crucial roles in migration of postmitotic neurons. We previously reported that conditional knockout of Rapgef2 in dorsal telencephalon (Rapgef2-cKO) resulted in the formation of an ectopic cortical mass (ECM) resembling that of subcortical band heterotopia. Here we show that double knockout of Rapgef6 in Rapgef2-cKO mice (Rapgef2/6-dKO) results in marked enlargement of the ECM. While Rapgef2-cKO affects late-born neurons only, Rapgef2/6-dKO affects both early-born and late-born neurons. The Rapgef2-cKO cortex at embryonic day (E) 15.5, and the Rapgef2/6-dKO cortex at E13.5 and E15.5 show disruption of the adherens junctions (AJs) on the apical surface, detachment of radial glial cells (RGCs) from the apical surface and disorganization of the radial glial fiber system, which are accompanied by aberrant distribution of RGCs and intermediate progenitors, normally located in the ventricular zone and the subventricular zone, respectively, over the entire cerebral cortex. Moreover, intrauterine transduction of Cre recombinase into the Rapgef2flox/flox brains also results in the apical surface AJ disruption and the RGC detachment from the apical surface, both of which are effectively suppressed by cotransduction of the constitutively active Rap1 mutant Rap1G12V. These results demonstrate a cell-autonomous role of the Rapgef2/6-Rap1 pathway in maintaining the apical surface AJ structures, which is necessary for the proper development of neural progenitor cells. PMID:27390776

  13. Prospective isolation of late development multipotent precursors whose migration is promoted by EGFR.

    PubMed

    Ciccolini, Francesca; Mandl, Claudia; Hölzl-Wenig, Gabriele; Kehlenbach, Angelika; Hellwig, Andrea

    2005-08-01

    A simple procedure to isolate neural stem cells would greatly facilitate direct studies of their properties. Here, we exploited the increase in EGF receptor (EGFR) levels, that occurs in late development stem cells or in younger precursors upon exposure to FGF-2, to isolate cells expressing high levels of EGFR (EGFR(high)) from the developing and the adult brain. Independently of age and region of isolation, EGFR(high) cells were highly enriched in multipotent precursors and displayed similar antigenic characteristics, with the exception of GFAP and Lex/SSEA-1 that were mainly expressed in adult EGFR(high) cells. EGFR levels did not correlate with neurogenic potential, indicating that the increase in EGFR expression does not directly affect differentiation. Instead, in the brain, many EGFR(high) precursors showed tangential orientation and, whether isolated from the cortex or striatum, EGFR(high) precursors displayed characteristics of cells originating from the ventral GZ such as expression Dlx and Mash-1 and the ability to generate GABAergic neurons and oligodendrocytes. Moreover, migration of EGFR(high) cells on telencephalic slices required EGFR activity. Thus, the developmentally regulated increase in EGFR levels may affect tangential migration of multipotent precursors. In addition, it can be used as a marker to effectively isolate telencephalic multipotent precursors from embryonic and adult tissue.

  14. Three-dimensional bioprinting of rat embryonic neural cells.

    PubMed

    Lee, Wonhye; Pinckney, Jason; Lee, Vivian; Lee, Jong-Hwan; Fischer, Krisztina; Polio, Samuel; Park, Je-Kyun; Yoo, Seung-Schik

    2009-05-27

    We present a direct cell printing technique to pattern neural cells in a three-dimensional (3D) multilayered collagen gel. A layer of collagen precursor was printed to provide a scaffold for the cells, and the rat embryonic neurons and astrocytes were subsequently printed on the layer. A solution of sodium bicarbonate was applied to the cell containing collagen layer as nebulized aerosols, which allowed the gelation of the collagen. This process was repeated layer-by-layer to construct the 3D cell-hydrogel composites. Upon characterizing the relationship between printing resolutions and the growth of printed neural cells, single/multiple layers of neural cell-hydrogel composites were constructed and cultured. The on-demand capability to print neural cells in a multilayered hydrogel scaffold offers flexibility in generating artificial 3D neural tissue composites.

  15. Neurogenesis and precursor cell differences in the dorsal and ventral adult canine hippocampus.

    PubMed

    Lowe, Aileen; Dalton, Marshall; Sidhu, Kuldip; Sachdev, Perminder; Reynolds, Brent; Valenzuela, Michael

    2015-04-23

    During evolution a unique anterior-posterior flexure posited the canine dentate gyrus in two distinct dorsal and ventral positions. We therefore sought to explore neurogenesis and neurogenic cell-related difference along the canine hippocampal dorsal-ventral axis. Post mortem histological analysis revealed 49.1% greater doublecortin (DCX)-positive cells and a 158.5% greater percentage of double labeled DCX-positive/neuronal nuclei (NeuN) positive cells in the dorsal subgranular zone compared to the ventral. We then show neural precursor cells isolated from fresh hippocampal tissue are capable of proliferating long term, and after differentiation, express neuronal and glial markers. Dorsal hippocampal isolates produced a 120.0% higher frequency of sphere-forming neural precursor cells compared to ventral hippocampal tissue. Histological DCX and neurosphere assay results were highly correlated. Overall, we provide the first evidence that the dorsal canine hippocampus has a markedly higher rate of adult neurogenesis than the ventral hippocampus, possibly related to a greater frequency of contributory neural precursor cells.

  16. FoxA4 Favours Notochord Formation by Inhibiting Contiguous Mesodermal Fates and Restricts Anterior Neural Development in Xenopus Embryos

    PubMed Central

    Murgan, Sabrina; Castro Colabianchi, Aitana Manuela; Monti, Renato José; Boyadjián López, Laura Elena; Aguirre, Cecilia E.; Stivala, Ernesto González; López, Silvia L.

    2014-01-01

    In vertebrates, the embryonic dorsal midline is a crucial signalling centre that patterns the surrounding tissues during development. Members of the FoxA subfamily of transcription factors are expressed in the structures that compose this centre. Foxa2 is essential for dorsal midline development in mammals, since knock-out mouse embryos lack a definitive node, notochord and floor plate. The related gene foxA4 is only present in amphibians. Expression begins in the blastula –chordin and –noggin expressing centre (BCNE) and is later restricted to the dorsal midline derivatives of the Spemann's organiser. It was suggested that the early functions of mammalian foxa2 are carried out by foxA4 in frogs, but functional experiments were needed to test this hypothesis. Here, we show that some important dorsal midline functions of mammalian foxa2 are exerted by foxA4 in Xenopus. We provide new evidence that the latter prevents the respecification of dorsal midline precursors towards contiguous fates, inhibiting prechordal and paraxial mesoderm development in favour of the notochord. In addition, we show that foxA4 is required for the correct regionalisation and maintenance of the central nervous system. FoxA4 participates in constraining the prospective rostral forebrain territory during neural specification and is necessary for the correct segregation of the most anterior ectodermal derivatives, such as the cement gland and the pituitary anlagen. Moreover, the early expression of foxA4 in the BCNE (which contains precursors of the whole forebrain and most of the midbrain and hindbrain) is directly required to restrict anterior neural development. PMID:25343614

  17. Neural Network Studies

    DTIC Science & Technology

    1993-07-01

    basic useful theorems and general rules which apply to neural networks (in ’Overview of Neural Network Theory’), studies of training time as the...The Neural Network , Bayes- Gaussian, and k-Nearest Neighbor Classifiers’), an analysis of fuzzy logic and its relationship to neural network (in ’Fuzzy

  18. Independent Optical Excitation of Distinct Neural Populations

    PubMed Central

    Klapoetke, Nathan C; Murata, Yasunobu; Kim, Sung Soo; Pulver, Stefan R.; Birdsey-Benson, Amanda; Cho, Yong Ku; Morimoto, Tania K; Chuong, Amy S; Carpenter, Eric J; Tian, Zhijian; Wang, Jun; Xie, Yinlong; Yan, Zhixiang; Zhang, Yong; Chow, Brian Y; Surek, Barbara; Melkonian, Michael; Jayaraman, Vivek; Constantine-Paton, Martha; Wong, Gane Ka-Shu; Boyden, Edward S

    2014-01-01

    Optogenetic tools enable the causal examination of how specific cell types contribute to brain circuit functions. A long-standing question is whether it is possible to independently activate two distinct neural populations in mammalian brain tissue. Such a capability would enable the examination of how different synapses or pathways interact to support computation. Here we report two new channelrhodopsins, Chronos and Chrimson, obtained through the de novo sequencing and physiological characterization of opsins from over 100 species of algae. Chrimson is 45 nm red-shifted relative to any previous channelrhodopsin, important for scenarios where red light would be preferred; we show minimal visual system mediated behavioral artifact in optogenetically stimulated Drosophila. Chronos has faster kinetics than any previous channelrhodopsin, yet is effectively more light-sensitive. Together, these two reagents enable crosstalk-free two-color activation of neural spiking and downstream synaptic transmission in independent neural populations in mouse brain slice. PMID:24509633

  19. Oligodendrocyte precursors migrate along vasculature in the developing nervous system.

    PubMed

    Tsai, Hui-Hsin; Niu, Jianqin; Munji, Roeben; Davalos, Dimitrios; Chang, Junlei; Zhang, Haijing; Tien, An-Chi; Kuo, Calvin J; Chan, Jonah R; Daneman, Richard; Fancy, Stephen P J

    2016-01-22

    Oligodendrocytes myelinate axons in the central nervous system and develop from oligodendrocyte precursor cells (OPCs) that must first migrate extensively during brain and spinal cord development. We show that OPCs require the vasculature as a physical substrate for migration. We observed that OPCs of the embryonic mouse brain and spinal cord, as well as the human cortex, emerge from progenitor domains and associate with the abluminal endothelial surface of nearby blood vessels. Migrating OPCs crawl along and jump between vessels. OPC migration in vivo was disrupted in mice with defective vascular architecture but was normal in mice lacking pericytes. Thus, physical interactions with the vascular endothelium are required for OPC migration. We identify Wnt-Cxcr4 (chemokine receptor 4) signaling in regulation of OPC-endothelial interactions and propose that this signaling coordinates OPC migration with differentiation.

  20. Loss of T cell precursors after spaceflight and exposure to vector-averaged gravity

    NASA Technical Reports Server (NTRS)

    Woods, Chris C.; Banks, Krista E.; Gruener, Raphael; DeLuca, Dominick

    2003-01-01

    Using fetal thymus organ culture (FTOC), we examined the effects of spaceflight and vector-averaged gravity on T cell development. Under both conditions, the development of T cells was significantly attenuated. Exposure to spaceflight for 16 days resulted in a loss of precursors for CD4+, CD8+, and CD4+CD8+ T cells in a rat/mouse xenogeneic co-culture. A significant decrease in the same precursor cells, as well as a decrease in CD4-CD8- T cell precursors, was also observed in a murine C57BL/6 FTOC after rotation in a clinostat to produce a vector-averaged microgravity-like environment. The block in T cell development appeared to occur between the pre-T cell and CD4+CD8+ T cell stage. These data indicate that gravity plays a decisive role in the development of T cells.

  1. Radio HF precursors of Earthquakes

    NASA Astrophysics Data System (ADS)

    Ruzhin, Yu.; Nomicos, C.; Vallianatos, F.; Shpakovsky, V.

    The high frequency (HF) earthquake electromagnetic precursors (40-55MHz band) were recorded by the four electromagnetic stations a few days (hours) prior the event associated with earthquakes with magnitude more than 5.0 at Crete Island. These experiments were performed continuously during 1998-2002 and specific peculiarities are found. This is underhorizon epicenter position for main part of events under question. Another unusual result is that such HF preseismic radio noise-like signals are responsible for seaquakes too. We made conclusion about developing of some thunderstorm-like charged clouds activity in atmosphere before the seismic event. As result of our analysis and interpretation of the available data of continuous observations on a network of Crete island we should state here, that in an atmosphere above the sea on the eve of earthquake at heights of 0.1-10 km the spatially distributed spots of sporadic charged clouds are occurred and the conditions for the electrical discharges in an atmosphere are created which can serve a source of HF radio-emission registered by Crete network. The atmosphere theory relations are used to model a corresponding to an anomalous event emissions generation observed on the Crete. The supposed mechanism of preseismic electricity generation is the model of convection carrier started in an atmosphere. It is governed by the horizontal gradient of air temperature. The occurrence of electrical charges in a surface of the sea and transportation them further on heights up to 10 km in our model occurs due to sporadic energy injections that allocated within bottom of the sea as gases and heat. The dimensions of width and height govern the size of atmosphere convection cells in the earthquake preparation area. These dimensions of the sporadic spots are close to 3 km each as it is derived from shadow geometry and spectral fluctuations of HF signal. Based on experience of Crete HF precursors observation the method for satellite mapping

  2. Leading time domain seismic precursors

    NASA Astrophysics Data System (ADS)

    Boucouvalas, A. C.; Gkasios, M.; Keskebes, A.; Tselikas, N. T.

    2014-08-01

    The problem of predicting the occurrence of earthquakes is threefold. On one hand it is necessary to predict the date and magnitude of an earthquake, and on the other hand the location of the epicenter. In this work after a brief review of the state of earthquake prediction research, we report on a new leading time precursor for determining time onset of earthquake occurrence. We report the linking between earthquakes of the past with those which happen in the future via Fibonacci, Dual and Lucas numbers (FDL) numbers. We demonstrate it here with two example seed earthquakes at least 100 years old. Using this leading indicator method we can predict significant earthquake events >6.5R, with good accuracy approximately +- 1 day somewhere in the world. From a single seed we produce at least 100 trials simultaneously of which 50% are correct to +- 1day. The indicator is based on Fibonacci, Dual and Lucas numbers (FDL). This result hints that the log periodic FDL numbers are at the root of the understanding of the earthquake mechanism. The theory is based on the assumption that each occurred earthquake discontinuity can be thought of as a generating source of FDL time series. (The mechanism could well be linked to planetary orbits). When future dates are derived from clustering and convergence from previous strong earthquake dates at an FDL time distance, then we have a high probability for an earthquake to occur on that date. We set up a real time system which generates FDL time series from each previous significant earthquake (>7R) and we produce a year to year calendar of high probability earthquake dates. We have tested this over a number of years with considerable success. We have applied this technique for strong (>7R) earthquakes across the globe as well as on a restricted region such as the Greek geographic region where the magnitude is small (>4R-6.5R). In both cases the success of the method is impressive. It is our belief that supplementing this method with

  3. Electronic Neural Networks

    NASA Technical Reports Server (NTRS)

    Thakoor, Anil

    1990-01-01

    Viewgraphs on electronic neural networks for space station are presented. Topics covered include: electronic neural networks; electronic implementations; VLSI/thin film hybrid hardware for neurocomputing; computations with analog parallel processing; features of neuroprocessors; applications of neuroprocessors; neural network hardware for terrain trafficability determination; a dedicated processor for path planning; neural network system interface; neural network for robotic control; error backpropagation algorithm for learning; resource allocation matrix; global optimization neuroprocessor; and electrically programmable read only thin-film synaptic array.

  4. The Interrelationships of Mathematical Precursors in Kindergarten

    ERIC Educational Resources Information Center

    Cirino, Paul T.

    2011-01-01

    This study evaluated the interrelations among cognitive precursors across quantitative, linguistic, and spatial attention domains that have been implicated for math achievement in young children. The dimensionality of the quantity precursors was evaluated in 286 kindergarteners via latent variable techniques, and the contribution of precursors…

  5. Method of texturing a superconductive oxide precursor

    DOEpatents

    DeMoranville, Kenneth L.; Li, Qi; Antaya, Peter D.; Christopherson, Craig J.; Riley, Jr., Gilbert N.; Seuntjens, Jeffrey M.

    1999-01-01

    A method of forming a textured superconductor wire includes constraining an elongated superconductor precursor between two constraining elongated members placed in contact therewith on opposite sides of the superconductor precursor, and passing the superconductor precursor with the two constraining members through flat rolls to form the textured superconductor wire. The method includes selecting desired cross-sectional shape and size constraining members to control the width of the formed superconductor wire. A textured superconductor wire formed by the method of the invention has regular-shaped, curved sides and is free of flashing. A rolling assembly for single-pass rolling of the elongated precursor superconductor includes two rolls, two constraining members, and a fixture for feeding the precursor superconductor and the constraining members between the rolls. In alternate embodiments of the invention, the rolls can have machined regions which will contact only the elongated constraining members and affect the lateral deformation and movement of those members during the rolling process.

  6. The interrelationships of mathematical precursors in kindergarten.

    PubMed

    Cirino, Paul T

    2011-04-01

    This study evaluated the interrelations among cognitive precursors across quantitative, linguistic, and spatial attention domains that have been implicated for math achievement in young children. The dimensionality of the quantity precursors was evaluated in 286 kindergarteners via latent variable techniques, and the contribution of precursors from each domain was established for small sums addition. Results showed a five-factor structure for the quantity precursors, with the major distinction being between nonsymbolic and symbolic tasks. The overall model demonstrated good fit and strong predictive power (R(2)=55%) for addition number combinations. Linguistic and spatial attention domains showed indirect relationships with outcomes, with their effects mediated by symbolic quantity measures. These results have implications for the measurement of mathematical precursors and yield promise for predicting future math performance.

  7. Inhibition of neurosphere formation in neural stem/progenitor cells by acrylamide.

    PubMed

    Chen, Jong-Hang; Lee, Don-Ching; Chen, Mei-Shu; Ko, Ying-Chin; Chiu, Ing-Ming

    2015-01-01

    Previous studies showed that transplantation of cultured neural stem/progenitor cells (NSPCs) could improve functional recovery for various neurological diseases. This study aims to develop a stem cell-based model for predictive toxicology of development in the neurological system after acrylamide exposure. Treatment of mouse (KT98/F1B-GFP) and human (U-1240 MG/F1B-GFP) NSPCs with 0.5 mM acrylamide resulted in the inhibition of neurosphere formation (definition of self-renewal ability in NSPCs), but not inhibition of cell proliferation. Apoptosis and differentiation of KT98 (a precursor of KT98/F1B-GFP) and KT98/F1B-GFP are not observed in acrylamide-treated neurospheres. Analysis of secondary neurosphere formation and differentiation of neurons and glia illustrated that acrylamide-treated KT98 and KT98/F1B-GFP neurospheres retain the NSPC properties, such as self-renewal and differentiation capacity. Correlation of acrylamide-inhibited neurosphere formation with cell-cell adhesion was observed in mouse NSPCs by live cell image analysis and the presence of acrylamide. Protein expression levels of cell adhesion molecules [neural cell adhesion molecule (NCAM) and N-cadherin] and extracellular signal-regulated kinases (ERK) in acrylamide-treated KT98/F1B-GFP and U-1240 MG/F1B-GFP neurospheres demonstrated that NCAM decreased and phospho-ERK (pERK) increased, whereas expression of N-cadherin remained unchanged. Analysis of AKT (protein kinase B, PKB)/β-catenin pathway showed decrease in phospho-AKT (p-AKT) and cyclin D1 expression in acrylamide-treated neurospheres of KT98/F1B-GFP. Furthermore, PD98059, an ERK phosphorylation inhibitor, attenuated acrylamide-induced ERK phosphorylation, indicating that pERK contributed to the cell proliferation, but not in neurosphere formation in mouse NSPCs. Coimmunoprecipitation results of KT98/F1B-GFP cell lysates showed that the complex of NCAM and fibroblast growth factor receptor 1 (FGFR1) is present in the neurosphere, and the

  8. β-Amyloid precursor protein: function in stem cell development and Alzheimer's disease brain.

    PubMed

    Small, David H; Hu, Yanling; Bolós, Marta; Dawkins, Edgar; Foa, Lisa; Young, Kaylene M

    2014-01-01

    Stem cell therapy may be a suitable approach for the treatment of many neurodegenerative diseases. However, one major impediment to the development of successful cell-based therapies is our limited understanding of the mechanisms that instruct neural stem cell behaviour, such as proliferation and cell fate specification. The β-amyloid precursor protein (APP) of Alzheimer's disease (AD) may play an important role in neural stem cell proliferation and differentiation. Our recent work shows that in vitro, APP stimulates neural stem or progenitor cell proliferation and neuronal differentiation. The effect on proliferation is mediated by an autocrine factor that we have identified as cystatin C. As cystatin C expression is also reported to inhibit the development of amyloid pathology in APP transgenic mice, our finding has implications for the possible use of cystatin C for the therapy of AD.

  9. Electrophysiological precursors of social conformity.

    PubMed

    Shestakova, Anna; Rieskamp, Jörg; Tugin, Sergey; Ossadtchi, Alexey; Krutitskaya, Janina; Klucharev, Vasily

    2013-10-01

    Humans often change their beliefs or behavior due to the behavior or opinions of others. This study explored, with the use of human event-related potentials (ERPs), whether social conformity is based on a general performance-monitoring mechanism. We tested the hypothesis that conflicts with a normative group opinion evoke a feedback-related negativity (FRN) often associated with performance monitoring and subsequent adjustment of behavior. The experimental results show that individual judgments of facial attractiveness were adjusted in line with a normative group opinion. A mismatch between individual and group opinions triggered a frontocentral negative deflection with the maximum at 200 ms, similar to FRN. Overall, a conflict with a normative group opinion triggered a cascade of neuronal responses: from an earlier FRN response reflecting a conflict with the normative opinion to a later ERP component (peaking at 380 ms) reflecting a conforming behavioral adjustment. These results add to the growing literature on neuronal mechanisms of social influence by disentangling the conflict-monitoring signal in response to the perceived violation of social norms and the neural signal of a conforming behavioral adjustment.

  10. A non-transgenic mouse model (icv-STZ mouse) of Alzheimer's disease: similarities to and differences from the transgenic model (3xTg-AD mouse).

    PubMed

    Chen, Yanxing; Liang, Zhihou; Blanchard, Julie; Dai, Chun-Ling; Sun, Shenggang; Lee, Moon H; Grundke-Iqbal, Inge; Iqbal, Khalid; Liu, Fei; Gong, Cheng-Xin

    2013-04-01

    Alzheimer's disease (AD) can be divided into sporadic AD (SAD) and familial AD (FAD). Most AD cases are sporadic and result from multiple etiologic factors, including environmental, genetic, and metabolic factors, whereas FAD is caused by mutations in the presenilins or amyloid-β (Aβ) precursor protein (APP) genes. A commonly used animal model for AD is the 3xTg-AD transgenic mouse model, which harbors mutated presenilin 1, APP, and tau genes and thus represents a model of FAD. There is an unmet need in the field to characterize animal models representing different AD mechanisms, so that potential drugs for SAD can be evaluated preclinically in these animal models. A mouse model generated by intracerebroventricular (icv) administration of streptozocin (STZ), the icv-STZ mouse, shows many aspects of SAD. In this study, we compared the non-cognitive and cognitive behaviors as well as biochemical and immunohistochemical alterations between the icv-STZ mouse and the 3xTg-AD mouse. We found that both mouse models showed increased exploratory activity as well as impaired learning and spatial memory. Both models also demonstrated neuroinflammation, altered synaptic proteins and insulin/IGF-1 (insulin-like growth factor-1) signaling, and increased hyperphosphorylated tau in the brain. The most prominent brain abnormality in the icv-STZ mouse was neuroinflammation, and in the 3xTg-AD mouse it was elevation of hyperphosphorylated tau. These observations demonstrate the behavioral and neuropathological similarities and differences between the icv-STZ mouse and the 3xTg-AD mouse models and will help guide future studies using these two mouse models for the development of AD drugs.

  11. Hippocampal neurogenesis in the APP/PS1/nestin-GFP triple transgenic mouse model of Alzheimer's disease.

    PubMed

    Zeng, Q; Zheng, M; Zhang, T; He, G

    2016-02-09

    Alzheimer's disease (AD) is one of the most common causes of dementia. Although the exact mechanisms of AD are not entirely clear, the impairment in adult hippocampal neurogenesis has been reported to play a role in AD. To assess the relationship between AD and neurogenesis, we studied APP/PS1/nestin-green fluorescent protein (GFP) triple transgenic mice, a well-characterized mouse model of AD, which express GFP under the control of the nestin promoter. Different ages of AD mice and their wild-type littermates (WT) were used in our study. Immunofluorescent staining showed that neurogenesis occurred mainly in the subgranular zone (SGZ) of the dentate gyrus (DG) and subventricular zone (SVZ) of the lateral ventricles (LVs). The expression of neural stem cells (NSCs) (nestin) and neural precursors such as doublecortin (DCX) and GFAP in AD mice were decreased with age, as well as there being a reduction in 5-bromo-2-deoxyuridine (BrdU)-positive cells, when compared to WT. However, the number of maturate neurons (NeuN) was not significantly different between AD mice and wild-type controls, and NeuN changed only slightly with age. By Golgi-Cox staining, the morphologies of dendrites were observed, and significant differences existed between AD mice and wild-type controls. These results suggest that AD has a far-reaching influence on the regulation of adult hippocampal neurogenesis, leading to a gradual decrease in the generation of neural progenitors (NPCs), and inhibition of the differentiation and maturation of neurons.

  12. MicroCT and microMRI imaging of a prenatal mouse model of increased brain size

    NASA Astrophysics Data System (ADS)

    López, Elisabeth K. N.; Stock, Stuart R.; Taketo, Makoto M.; Chenn, Anjen; Ravosa, Matthew J.

    2008-08-01

    There are surprisingly few experimental models of neural growth and cranial integration. This and the dearth of information regarding fetal brain development detract from a mechanistic understanding of cranial integration and its relevance to the patterning of skull form, specifically the role of encephalization on basicranial flexion. To address this shortcoming, our research uses transgenic mice expressing a stabilized form of β-catenin to isolate the effects of relative brain size on craniofacial development. These mice develop highly enlarged brains due to an increase in neural precursors, and differences between transgenic and wild-type mice are predicted to result solely from variation in brain size. Comparisons of wild-type and transgenic mice at several prenatal ages were performed using microCT (Scanco Medical MicroCT 40) and microMRI (Avance 600 WB MR spectrometer). Statistical analyses show that the larger brain of the transgenic mice is associated with a larger neurocranium and an altered basicranial morphology. However, body size and postcranial ossification do not seem to be affected by the transgene. Comparisons of the rate of postcranial and cranial ossification using microCT also point to an unexpected effect of neural growth on skull development: increased fetal encephalization may result in a compensatory decrease in the level of cranial ossification. Therefore, if other life history factors are held constant, the ontogeny of a metabolically costly structure such as a brain may occur at the expense of other cranial structures. These analyses indicate the benefits of a multifactorial approach to cranial integration using a mouse model.

  13. Transplants of mouse trisomy 16 hippocampus provide a model of Alzheimer's disease neuropathology.

    PubMed Central

    Richards, S J; Waters, J J; Beyreuther, K; Masters, C L; Wischik, C M; Sparkman, D R; White, C L; Abraham, C R; Dunnett, S B

    1991-01-01

    Alzheimer's disease, which is characterized by amyloid plaques and neurofibrillary tangles, may be attributed to the abnormal expression of gene(s) located on human chromosome 21. Genetic linkage studies have narrowed the region of candidate genes to 21q11.2-21q22 of the long arm of this chromosome. Several single copy sequences within this region, including the amyloid precursor protein (APP), have been mapped to mouse chromosome 16. Reliable strategies exist for breeding Trisomy 16 mice. However, the consequences of developmental overexpression of genes on chromosome 16 have not been previously investigated, because of the lethal effects of this aneuploidy during gestation. In the present report, we employ neural transplantation to study long-term survival and pathogenesis in Trisomy 16 central nervous system tissues. Immunocytochemical staining with antiserum raised against the synthetic APP, beta-A4 and alpha 1-antichymotrypsin revealed numerous densely stained cells within hippocampal grafts of Trisomy 16 mice. Similarly, a population of grafted cells were positively stained following incubation with an antiserum raised against components of the pathological neurofibrillary tangle and with the monoclonal antibodies Tau 6.423 and ubiquitin. Images PMID:1899372

  14. Deletion of lysophosphatidic acid receptor LPA1 reduces neurogenesis in the mouse dentate gyrus

    PubMed Central

    Matas-Rico, Elisa; García-Diaz, Beatriz; Llebrez-Zayas, Pedro; López-Barroso, Diana; Santín, Luis; Pedraza, Carmen; Smith-Fernández, Anibal; Fernández-Llebrez, Pedro; Tellez, Teresa; Redondo; Chun, Jerold; De Fonseca, Fernando Rodríguez; Estivill-Torrús, Guillermo

    2013-01-01

    Neurogenesis persists in certain regions of the adult brain including the subgranular zone of the hippocampal dentate gyrus wherein its regulation is essential, particularly in relation to learning, stress and modulation of mood. Lysophosphatidic acid (LPA) is an extracellular signaling phospholipid with important neural regulatory properties mediated by specific G protein-coupled receptors, LPA1-5. LPA1 is highly expressed in the developing neurogenic ventricular zone wherein it is required for normal embryonic neurogenesis, and, by extension may play a role in adult neurogenesis as well. By means of the analyses of a variant of the original LPA1-null mutant mouse, termed the Malaga variant or “maLPA1-null,” which has recently been reported to have defective neurogenesis within the embryonic cerebral cortex, we report here a role for LPA1 in adult hippocampal neurogenesis. Proliferation, differentiation and survival of newly formed neurons are defective in the absence of LPA1 under normal conditions and following exposure to enriched environment and voluntary exercise. Furthermore, analysis of trophic factors in maLPA1-null mice demonstrated alterations in brain-derived neurotrophic factor and insulin growth factor 1 levels after enrichment and exercise. Morphological analyses of doublecortin positive cells revealed the anomalous prevalence of bipolar cells in the subgranular zone, supporting the operation of LPA1 signaling pathways in normal proliferation, maturation and differentiation of neuronal precursors. PMID:18708146

  15. Multi-omics profile of the mouse dentate gyrus after kainic acid-induced status epilepticus

    PubMed Central

    Schouten, Marijn; Bielefeld, Pascal; Fratantoni, Silvina A.; Hubens, Chantal J.; Piersma, Sander R.; Pham, Thang V.; Voskuyl, Rob A.; Lucassen, Paul J.; Jimenez, Connie R.; Fitzsimons, Carlos P.

    2016-01-01

    Temporal lobe epilepsy (TLE) can develop from alterations in hippocampal structure and circuit characteristics, and can be modeled in mice by administration of kainic acid (KA). Adult neurogenesis in the dentate gyrus (DG) contributes to hippocampal functions and has been reported to contribute to the development of TLE. Some of the phenotypical changes include neural stem and precursor cells (NPSC) apoptosis, shortly after their birth, before they produce hippocampal neurons. Here we explored these early phenotypical changes in the DG 3 days after a systemic injection of KA inducing status epilepticus (KA-SE), in mice. We performed a multi-omics experimental setup and analyzed DG tissue samples using proteomics, transcriptomics and microRNA profiling techniques, detecting the expression of 2327 proteins, 13401 mRNAs and 311 microRNAs. We here present a description of how these data were obtained and make them available for further analysis and validation. Our data may help to further identify and characterize molecular mechanisms involved in the alterations induced shortly after KA-SE in the mouse DG. PMID:27529540

  16. LETTER: Toroidally asymmetric ELM precursors in TCV

    NASA Astrophysics Data System (ADS)

    Reimerdes, H.; Pochelon, A.; Suttrop, W.

    1998-03-01

    Coherent magnetic oscillations precede edge localized modes (ELMs) in TCV. The precursor has been detected prior to ELMs considered to be of type III and others previously referred to as TCV large ELMs. This permits the identification of both as type III ELMs according to the usual classification scheme. The strong localization of these precursors on the bad curvature side of the plasma and their medium toroidal mode numbers indicate their ballooning character. Unlike conventional MHD modes, these modes start toroidally localized and grow in amplitude and toroidal extent. When the precursor encompasses the whole toroidal circumference, the increased transport phase, as indicated by the characteristic Dα spike, begins.

  17. Synthesis and structures of metal chalcogenide precursors

    NASA Technical Reports Server (NTRS)

    Hepp, Aloysius F.; Duraj, Stan A.; Eckles, William E.; Andras, Maria T.

    1990-01-01

    The reactivity of early transition metal sandwich complexes with sulfur-rich molecules such as dithiocarboxylic acids was studied. Researchers recently initiated work on precursors to CuInSe2 and related chalcopyrite semiconductors. Th every high radiation tolerance and the high absorption coefficient of CuInSe2 makes this material extremely attractive for lightweight space solar cells. Their general approach in early transition metal chemistry, the reaction of low-valent metal complexes or metal powders with sulfur and selenium rich compounds, was extended to the synthesis of chalcopyrite precursors. Here, the researchers describe synthesis, structures, and and routes to single molecule precursors to metal chalcogenides.

  18. Mouse Curve Biometrics

    SciTech Connect

    Schulz, Douglas A.

    2007-10-08

    A biometric system suitable for validating user identity using only mouse movements and no specialized equipment is presented. Mouse curves (mouse movements with little or no pause between them) are individually classied and used to develop classication histograms, which are representative of an individual's typical mouse use. These classication histograms can then be compared to validate identity. This classication approach is suitable for providing continuous identity validation during an entire user session.

  19. Neural crest induction at the neural plate border in vertebrates.

    PubMed

    Milet, Cécile; Monsoro-Burq, Anne H

    2012-06-01

    The neural crest is a transient and multipotent cell population arising at the edge of the neural plate in vertebrates. Recent findings highlight that neural crest patterning is initiated during gastrulation, i.e. earlier than classically described, in a progenitor domain named the neural border. This chapter reviews the dynamic and complex molecular interactions underlying neural border formation and neural crest emergence.

  20. L-Dopa reverses behavioral deficits in the Pitx3 mouse fetus

    PubMed Central

    Kleven, Gale A.; Booth, Heather M.; Voogd, Marco; Ronca, April E.

    2014-01-01

    Studies of fetal rodents have provided evidence that early emerging behaviors, such as the suckling response, are dependent on the developing dopaminergic system. Although connections have been made between manipulations of dopamine and altered behavioral responses, the specific neural pathways involved have yet to be discovered. In this study we examined the neurobehavioral output of the nigrostriatal pathway, using the Pitx3ak/2J mouse model (Pitx3). Used extensively in the study of Parkinson's disease, the Pitx3 mouse has very specific prenatal loss of dopaminergic neurons solely in the nigrostriatal pathway. Due to this specificity, we hypothesized that behavioral deficits specific to the nigrostriatal pathway would be reversed with administration of the dopamine precursor 3,4-dihydroxyphenylalanine (L-Dopa). To test this hypothesis, homozygous mutant and heterozygous control fetal subjects were administered one of four doses (0, 25, 50, or 75 mg/kg) of L-Dopa on the day before birth. Quantification of fetal behavior was scored from video recordings of behavioral observations. The behavioral measures used were: (a) spontaneous movement activity, (b) state organization, from quantifications of high and low amplitude movements, (c) Interlimb Movement Synchrony, a measure of limb coordination, and (d) Oral Grasp, similar to a newborn infant suckling response. Specific behavioral deficits observed in the Pitx3 mutants were reversed by L-Dopa administration in a dose-dependent manner. However, different deficits required dissimilar doses for reversal, suggesting that some early emerging behaviors may be more sensitive to the administration of L-Dopa. Taken together, this study provides valuable information about prenatal behaviors dependent on the nigrostriatal pathway. PMID:25150543

  1. A Novel Form of Compensation in the Tg2576 Amyloid Mouse Model of Alzheimer's Disease.

    PubMed

    Somogyi, Attila; Katonai, Zoltán; Alpár, Alán; Wolf, Ervin

    2016-01-01

    One century after its first description, pathology of Alzheimer's disease (AD) is still poorly understood. Amyloid-related dendritic atrophy and membrane alterations of susceptible brain neurons in AD, and in animal models of AD are widely recognized. However, little effort has been made to study the potential effects of combined morphological and membrane alterations on signal transfer and synaptic integration in neurons that build up affected neural networks in AD. In this study spatial reconstructions and electrophysiological measurements of layer II/III pyramidal neurons of the somatosensory cortex from wild-type (WT) and transgenic (TG) human amyloid precursor protein (hAPP) overexpressing Tg2576 mice were used to build faithful segmental cable models of these neurons. Local synaptic activities were simulated in various points of the dendritic arbors and properties of subthreshold dendritic impulse propagation and predictors of synaptic input pattern recognition ability were quantified and compared in modeled WT and TG neurons. Despite the widespread dendritic degeneration and membrane alterations in mutant mouse neurons, surprisingly little, or no change was detected in steady-state and 50 Hz sinusoidal voltage transfers, current transfers, and local and propagation delays of PSPs traveling along dendrites of TG neurons. Synaptic input pattern recognition ability was also predicted to be unaltered in TG neurons in two different soma-dendritic membrane models investigated. Our simulations predict the way how subthreshold dendritic signaling and pattern recognition are preserved in TG neurons: amyloid-related membrane alterations compensate for the pathological effects that dendritic atrophy has on subthreshold dendritic signal transfer and integration in layer II/III somatosensory neurons of this hAPP mouse model for AD. Since neither propagation of single PSPs nor integration of multiple PSPs (pattern recognition) changes in TG neurons, we conclude that AD

  2. Acetylcholine stimulates cortical precursor cell proliferation in vitro via muscarinic receptor activation and MAP kinase phosphorylation.

    PubMed

    Ma, W; Maric, D; Li, B S; Hu, Q; Andreadis, J D; Grant, G M; Liu, Q Y; Shaffer, K M; Chang, Y H; Zhang, L; Pancrazio, J J; Pant, H C; Stenger, D A; Barker, J L

    2000-04-01

    Increasing evidence has shown that some neurotransmitters act as growth-regulatory signals during brain development. Here we report a role for the classical neurotransmitter acetylcholine (ACh) to stimulate proliferation of neural stem cells and stem cell-derived progenitor cells during neural cell lineage progression in vitro. Neuroepithelial cells in the ventricular zone of the embryonic rat cortex were found to express the m2 subtype of the muscarinic receptor. Neural precursor cells dissociated from the embryonic rat cortical neuroepithelium were expanded in culture with basic fibroblast growth factor (bFGF). reverse transcriptase-polymerase chain reaction (RT-PCR) revealed the presence of m2, m3 and m4 muscarinic receptor subtype transcripts, while immunocytochemistry demonstrated m2 protein. ACh and carbachol induced an increase in cytosolic Ca2+ and membrane currents in proliferating (BrdU+) cells, both of which were abolished by atropine. Exposure of bFGF-deprived precursor cells to muscarinic agonists not only increased both cell number and DNA synthesis, but also enhanced differentiation of neurons. These effects were blocked by atropine, indicating the involvement of muscarinic ACh receptors. The growth-stimulating effects were also antagonized by a panel of inhibitors of second messengers, including 1,2-bis-(O-aminophenoxy)-ethane-N,N,N', N'-tetraacetic acid (BAPTA-AM) to chelate cytosolic Ca2+, EGTA to complex extracellular Ca2+, pertussis toxin, which uncouples certain G-proteins, the protein kinase C inhibitor H7 and the mitogen-activated protein kinase (MAPK) inhibitor PD98059. Muscarinic agonists activated MAPK, which was significantly inhibited by atropine and the same panel of inhibitors. Thus, muscarinic receptors expressed by neural precursors transduce a growth-regulatory signal during neurogenesis via pathways involving pertussis toxin-sensitive G-proteins, Ca2+ signalling, protein kinase C activation, MAPK phosphorylation and DNA synthesis.

  3. Building a Brainier Mouse.

    ERIC Educational Resources Information Center

    Tsien, Joe Z.

    2000-01-01

    Describes a genetic engineering project to build an intelligent mouse. Cites understanding the molecular basis of learning and memory as a very important step. Concludes that while science will never create a genius mouse that plays the stock market, it can turn a mouse into a quick learner with a better memory. (YDS)

  4. Neural Tube Defects

    MedlinePlus

    Neural tube defects are birth defects of the brain, spine, or spinal cord. They happen in the first month ... she is pregnant. The two most common neural tube defects are spina bifida and anencephaly. In spina ...

  5. Isolation and culture of neural crest stem cells from human hair follicles.

    PubMed

    Yang, Ruifeng; Xu, Xiaowei

    2013-04-06

    Hair follicles undergo lifelong growth and hair cycle is a well-controlled process involving stem cell proliferation and quiescence. Hair bulge is a well-characterized niche for adult stem cells. This segment of the outer root sheath contains a number of different types of stem cells, including epithelial stem cells, melanocyte stem cells and neural crest like stem cells. Hair follicles represent an accessible and rich source for different types of human stem cells. We and others have isolated neural crest stem cells (NCSCs) from human fetal and adult hair follicles. These human stem cells are label-retaining cells and are capable of self-renewal through asymmetric cell division in vitro. They express immature neural crest cell markers but not differentiation markers. Our expression profiling study showed that they share a similar gene expression pattern with murine skin immature neural crest cells. They exhibit clonal multipotency that can give rise to myogenic, melanocytic, and neuronal cell lineages after in vitro clonal single cell culture. Differentiated cells not only acquire lineage-specific markers but also demonstrate appropriate functions in ex vivo conditions. In addition, these NCSCs show differentiation potential toward mesenchymal lineages. Differentiated neuronal cells can persist in mouse brain and retain neuronal differentiation markers. It has been shown that hair follicle derived NCSCs can help nerve regrowth, and they improve motor function in mice transplanted with these stem cells following transecting spinal cord injury. Furthermore, peripheral nerves have been repaired with stem cell grafts, and implantation of skin-derived precursor cells adjacent to crushed sciatic nerves has resulted in remyelination. Therefore, the hair follicle/skin derived NCSCs have already shown promising results for regenerative therapy in preclinical models. Somatic cell reprogramming to induced pluripotent stem (iPS) cells has shown enormous potential for

  6. Progress in molecular precursors for electronic materials

    SciTech Connect

    Buhro, W.E.

    1996-09-01

    Molecular-precursor chemistry provides an essential underpinning to all electronic-materials technologies, including photovoltaics and related areas of direct interest to the DOE. Materials synthesis and processing is a rapidly developing field in which advances in molecular precursors are playing a major role. This article surveys selected recent research examples that define the exciting current directions in molecular-precursor science. These directions include growth of increasingly complex structures and stoichiometries, surface-selective growth, kinetic growth of metastable materials, growth of size-controlled quantum dots and quantum-dot arrays, and growth at progressively lower temperatures. Continued progress in molecular-precursor chemistry will afford precise control over the crystal structures, nanostructures, and microstructures of electronic materials.

  7. Biochemical Removal of HAP Precursors From Coal

    SciTech Connect

    Olson, G.; Tucker, L.; Richards, J.

    1997-07-01

    This project addresses DOE`s interest in advanced concepts for controlling emissions of air toxics from coal-fired utility boilers. We are determining the feasibility of developing a biochemical process for the precombustion removal of substantial percentages of 13 inorganic hazardous air pollutant (HAP) precursors from coal. These HAP precursors are Sb, As, Be, Cd, Cr, Cl, Co, F, Pb, Hg, Mn, Ni, and Se. Although rapid physical coal cleaning is done routinely in preparation plants, biochemical processes for removal of HAP precursors from coal potentially offer advantages of deeper cleaning, more specificity, and less coal loss. Compared to chemical processes for coal cleaning, biochemical processes potentially offer lower costs and milder process conditions. Pyrite oxidizing bacteria, most notably Thiobacillusferrooxidans, are being evaluated in this project for their ability to remove HAP precursors from U.S. coals.

  8. Explorations Precursor Robotic Missions (xPRM)

    NASA Video Gallery

    Jay Jenkins delivers a presentation from the Exploration Precursor Robotic Missions (xPRM) study team on May 25, 2010, at the NASA Exploration Enterprise Workshop held in Galveston, TX. The purpose...

  9. Nonlinear Neural Network Oscillator.

    DTIC Science & Technology

    A nonlinear oscillator (10) includes a neural network (12) having at least one output (12a) for outputting a one dimensional vector. The neural ... neural network and the input of the input layer for modifying a magnitude and/or a polarity of the one dimensional output vector prior to the sample of...first or a second direction. Connection weights of the neural network are trained on a deterministic sequence of data from a chaotic source or may be a

  10. Optical Neural Interfaces

    PubMed Central

    Warden, Melissa R.; Cardin, Jessica A.; Deisseroth, Karl

    2014-01-01

    Genetically encoded optical actuators and indicators have changed the landscape of neuroscience, enabling targetable control and readout of specific components of intact neural circuits in behaving animals. Here, we review the development of optical neural interfaces, focusing on hardware designed for optical control of neural activity, integrated optical control and electrical readout, and optical readout of population and single-cell neural activity in freely moving mammals. PMID:25014785

  11. Hydridosiloxanes as precursors to ceramic products

    DOEpatents

    Blum, Y.D.; Johnson, S.M.; Gusman, M.I.

    1997-06-03

    A method is provided for preparing ceramic precursors from hydridosiloxane starting materials and then pyrolyzing these precursors to give rise to silicious ceramic materials. Si-H bonds present in the hydridosiloxane starting materials are catalytically activated, and the activated hydrogen atoms may then be replaced with nonhydrogen substituents. These preceramic materials are pyrolyzed in a selected atmosphere to give the desired ceramic product. Ceramic products which may be prepared by this technique include silica, silicon oxynitride, silicon carbide, metal silicates, and mullite.

  12. Grhl2 is required in non-neural tissues for neural progenitor survival and forebrain development

    PubMed Central

    Menke, Chelsea; Cionni, Megan; Siggers, Trevor; Bulyk, Martha L.; Beier, David R.; Stottmann, Rolf W.

    2015-01-01

    Grainyhead-like genes are part of a highly conserved gene family that play a number of roles in ectoderm development and maintenance in mammals. Here we identify a novel allele of Grhl2, cleft-face 3 (clft3), in a mouse line recovered from an ENU mutagenesis screen for organogenesis defects. Homozygous clft3 mutants have a number of phenotypes in common with other alleles of Grhl2. We note a significant effect of genetic background on the clft3 phenotype. One of these is a reduction in size of the telencephalon where we find abnormal patterns of neural progenitor mitosis and apoptosis in mutant brains. Interestingly, Grhl2 is not expressed in the developing forebrain, suggesting this is a survival factor for neural progenitors exerting a paracrine effect on the neural tissue from the overlying ectoderm where Grhl2 is highly expressed. PMID:26177923

  13. Generalized classifier neural network.

    PubMed

    Ozyildirim, Buse Melis; Avci, Mutlu

    2013-03-01

    In this work a new radial basis function based classification neural network named as generalized classifier neural network, is proposed. The proposed generalized classifier neural network has five layers, unlike other radial basis function based neural networks such as generalized regression neural network and probabilistic neural network. They are input, pattern, summation, normalization and output layers. In addition to topological difference, the proposed neural network has gradient descent based optimization of smoothing parameter approach and diverge effect term added calculation improvements. Diverge effect term is an improvement on summation layer calculation to supply additional separation ability and flexibility. Performance of generalized classifier neural network is compared with that of the probabilistic neural network, multilayer perceptron algorithm and radial basis function neural network on 9 different data sets and with that of generalized regression neural network on 3 different data sets include only two classes in MATLAB environment. Better classification performance up to %89 is observed. Improved classification performances proved the effectivity of the proposed neural network.

  14. Neuronal Representation of Ultraviolet Visual Stimuli in Mouse Primary Visual Cortex

    PubMed Central

    Tan, Zhongchao; Sun, Wenzhi; Chen, Tsai-Wen; Kim, Douglas; Ji, Na

    2015-01-01

    The mouse has become an important model for understanding the neural basis of visual perception. Although it has long been known that mouse lens transmits ultraviolet (UV) light and mouse opsins have absorption in the UV band, little is known about how UV visual information is processed in the mouse brain. Using a custom UV stimulation system and in vivo calcium imaging, we characterized the feature selectivity of layer 2/3 neurons in mouse primary visual cortex (V1). In adult mice, a comparable percentage of the neuronal population responds to UV and visible stimuli, with similar pattern selectivity and receptive field properties. In young mice, the orientation selectivity for UV stimuli increased steadily during development, but not direction selectivity. Our results suggest that, by expanding the spectral window through which the mouse can acquire visual information, UV sensitivity provides an important component for mouse vision. PMID:26219604

  15. Neural stem cell transplants improve cognitive function without altering amyloid pathology in an APP/PS1 double transgenic model of Alzheimer's disease.

    PubMed

    Zhang, Wei; Wang, Pei-Jun; Sha, Hong-ying; Ni, Jiong; Li, Ming-hua; Gu, Guo-jun

    2014-10-01

    Neural stem cells (NSCs) are capable of self-renewal and are multipotent. Transplantation of NSCs may represent a promising approach for treating neurodegenerative disorders associated with cognitive decline, such as Alzheimer disease (AD) characterized by extensive loss of neurons. In this study, we investigated the effect of NSC transplantation on cognitive function in the amyloid precursor protein/presenilin-1 (APP/PS1) transgenic mouse, an AD mouse model with age-dependent cognitive deficits. We found that NSCs bilaterally transplanted into hippocampal regions improved spatial learning and memory function in these mice, but did not alter Aβ pathology. Immunohistochemical analyses determined that NSCs proliferated, migrated, and differentiated into three neuronal cell types. The improvement in cognitive function was correlated with enhanced long-term potentiation (LTP) and an increase in the neuron expression of proteins related to cognitive function: N-methyl-D-aspartate (NMDA) 2B unit, synaptophysin (SYP), protein kinase C ζ subtypes (PKCζ), tyrosine receptor kinase B (TrkB), and brain-derived neurotrophic factor (BDNF). Taken together, our data indicated that injected NSCs can rescue cognitive deficits in APP/PS1 transgenic mice by replacing neuronal cell types expressing multiple cognition-related proteins that enhance LTP.

  16. Neurovascular coupling develops alongside neural circuits in the postnatal brain.

    PubMed

    Kozberg, Mariel G; Hillman, Elizabeth M C

    2016-01-01

    In the adult brain, increases in local neural activity are accompanied by increases in regional blood flow. This relationship between neural activity and hemodynamics is termed neurovascular coupling and provides the blood flow-dependent contrast detected in functional magnetic resonance imaging (fMRI). Neurovascular coupling is commonly assumed to be consistent and reliable from birth; however, numerous studies have demonstrated markedly different hemodynamics in the early postnatal brain. Our recent study in J. Neuroscience examined whether different hemodynamics in the immature brain are driven by differences in the underlying spatiotemporal properties of neural activity during this period of robust neural circuit expansion. Using a novel wide-field optical imaging technique to visualize both neural activity and hemodynamics in the mouse brain, we observed longer duration and increasingly complex patterns of neural responses to stimulus as cortical connectivity developed over time. However, imaging of brain blood flow, oxygenation, and metabolism in the same mice demonstrated an absence of coupled blood flow responses in the newborn brain. This lack of blood flow coupling was shown to lead to oxygen depletions following neural activations - depletions that may affect the duration of sustained neural responses and could be important to the vascular patterning of the rapidly developing brain. These results are a step toward understanding the unique neurovascular and neurometabolic environment of the newborn brain, and provide new insights for interpretation of fMRI BOLD studies of early brain development.

  17. Insights into the physiological function of the β-amyloid precursor protein: beyond Alzheimer's disease.

    PubMed

    Dawkins, Edgar; Small, David H

    2014-06-01

    The β-amyloid precursor protein (APP) has been extensively studied for its role as the precursor of the β-amyloid protein (Aβ) of Alzheimer's disease. However, the normal function of APP remains largely unknown. This article reviews studies on the structure, expression and post-translational processing of APP, as well as studies on the effects of APP in vitro and in vivo. We conclude that the published data provide strong evidence that APP has a trophic function. APP is likely to be involved in neural stem cell development, neuronal survival, neurite outgrowth and neurorepair. However, the mechanisms by which APP exerts its actions remain to be elucidated. The available evidence suggests that APP interacts both intracellularly and extracellularly to regulate various signal transduction mechanisms. This article reviews studies on the structure, expression and post-translational processing of β-amyloid precursor protein (APP), as well as studies on the effects of APP in vitro and in vivo. We conclude that the published data provide strong evidence that APP has a trophic function. APP is likely to be involved in neural stem cell development, neuronal survival, neurite outgrowth and neurorepair. However, the mechanisms by which APP exerts its actions remain to be elucidated. The available evidence suggests that APP interacts both intracellularly and extracellularly to regulate various signal transduction mechanisms.

  18. Neuroanatomical localization and quantification of amyloid precursor protein mRNA by in situ hybridization in the brains of normal, aneuploid, and lesioned mice

    SciTech Connect

    Bendotti, C.; Forloni, G.L.; Morgan, R.A.; O'Hara, B.F.; Oster-Granite, M.L.; Reeves, R.H.; Gearhart, J.D.; Coyle, J.T. )

    1988-05-01

    Amyloid precursor protein mRNA was localized in frozen sections from normal and experimentally lesioned adult mouse brain and from normal and aneuploid fetal mouse brain by in situ hybridization with a {sup 35}S-labeled mouse cDNA probe. The highest levels of hybridization in adult brain were associated with neurons, primarily in telencephalic structures. The dense labeling associated with hippocampal pyramidal cells was reduced significantly when the cells were eliminated by injection of the neurotoxin ibotenic acid but was not affected when electrolytic lesions were placed in the medial septum. Since the gene encoding amyloid precursor protein has been localized to mouse chromosome 16, the authors also examined the expression of this gene in the brains of mouse embryos with trisomy 16 and trisomy 19 at 15 days of gestation. RNA gel blot