Sample records for mouse ocular model

  1. Mechanics of mouse ocular motor plant quantified by optogenetic techniques.

    PubMed

    Stahl, John S; Thumser, Zachary C; May, Paul J; Andrade, Francisco H; Anderson, Sean R; Dean, Paul

    2015-09-01

    Rigorous descriptions of ocular motor mechanics are often needed for models of ocular motor circuits. The mouse has become an important tool for ocular motor studies, yet most mechanical data come from larger species. Recordings of mouse abducens neurons indicate the mouse mechanics share basic viscoelastic properties with larger species but have considerably longer time constants. Time constants can also be extracted from the rate at which the eye re-centers when released from an eccentric position. The displacement can be accomplished by electrically stimulating ocular motor nuclei, but electrical stimulation may also activate nearby ocular motor circuitry. We achieved specific activation of abducens motoneurons through photostimulation in transgenic mice expressing channelrhodopsin in cholinergic neurons. Histology confirmed strong channelrhodopsin expression in the abducens nucleus with relatively little expression in nearby ocular motor structures. Stimulation was delivered as 20- to 1,000-ms pulses and 40-Hz trains. Relaxations were modeled best by a two-element viscoelastic system. Time constants were sensitive to stimulus duration. Analysis of isometric relaxation of isolated mouse extraocular muscles suggest the dependence is attributable to noninstantaneous decay of active forces in non-twitch fibers following stimulus offset. Time constants were several times longer than those obtained in primates, confirming that the mouse ocular motor mechanics are relatively sluggish. Finally, we explored the effects of 0.1- to 20-Hz sinusoidal photostimuli and demonstrated their potential usefulness in characterizing ocular motor mechanics, although this application will require further data on the temporal relationship between photostimulation and neuronal firing in extraocular motoneurons.

  2. Clusterin Seals the Ocular Surface Barrier in Mouse Dry Eye

    PubMed Central

    Bauskar, Aditi; Mack, Wendy J.; Mauris, Jerome; Argüeso, Pablo; Heur, Martin; Nagel, Barbara A.; Kolar, Grant R.; Gleave, Martin E.; Nakamura, Takahiro; Kinoshita, Shigeru; Moradian-Oldak, Janet; Panjwani, Noorjahan; Pflugfelder, Stephen C.; Wilson, Mark R.; Fini, M. Elizabeth; Jeong, Shinwu

    2015-01-01

    Dry eye is a common disorder caused by inadequate hydration of the ocular surface that results in disruption of barrier function. The homeostatic protein clusterin (CLU) is prominent at fluid-tissue interfaces throughout the body. CLU levels are reduced at the ocular surface in human inflammatory disorders that manifest as severe dry eye, as well as in a preclinical mouse model for desiccating stress that mimics dry eye. Using this mouse model, we show here that CLU prevents and ameliorates ocular surface barrier disruption by a remarkable sealing mechanism dependent on attainment of a critical all-or-none concentration. When the CLU level drops below the critical all-or-none threshold, the barrier becomes vulnerable to desiccating stress. CLU binds selectively to the ocular surface subjected to desiccating stress in vivo, and in vitro to the galectin LGALS3, a key barrier component. Positioned in this way, CLU not only physically seals the ocular surface barrier, but it also protects the barrier cells and prevents further damage to barrier structure. These findings define a fundamentally new mechanism for ocular surface protection and suggest CLU as a biotherapeutic for dry eye. PMID:26402857

  3. Clusterin Seals the Ocular Surface Barrier in Mouse Dry Eye.

    PubMed

    Bauskar, Aditi; Mack, Wendy J; Mauris, Jerome; Argüeso, Pablo; Heur, Martin; Nagel, Barbara A; Kolar, Grant R; Gleave, Martin E; Nakamura, Takahiro; Kinoshita, Shigeru; Moradian-Oldak, Janet; Panjwani, Noorjahan; Pflugfelder, Stephen C; Wilson, Mark R; Fini, M Elizabeth; Jeong, Shinwu

    2015-01-01

    Dry eye is a common disorder caused by inadequate hydration of the ocular surface that results in disruption of barrier function. The homeostatic protein clusterin (CLU) is prominent at fluid-tissue interfaces throughout the body. CLU levels are reduced at the ocular surface in human inflammatory disorders that manifest as severe dry eye, as well as in a preclinical mouse model for desiccating stress that mimics dry eye. Using this mouse model, we show here that CLU prevents and ameliorates ocular surface barrier disruption by a remarkable sealing mechanism dependent on attainment of a critical all-or-none concentration. When the CLU level drops below the critical all-or-none threshold, the barrier becomes vulnerable to desiccating stress. CLU binds selectively to the ocular surface subjected to desiccating stress in vivo, and in vitro to the galectin LGALS3, a key barrier component. Positioned in this way, CLU not only physically seals the ocular surface barrier, but it also protects the barrier cells and prevents further damage to barrier structure. These findings define a fundamentally new mechanism for ocular surface protection and suggest CLU as a biotherapeutic for dry eye.

  4. Müller glia-derived PRSS56 is required to sustain ocular axial growth and prevent refractive error.

    PubMed

    Paylakhi, Seyyedhassan; Labelle-Dumais, Cassandre; Tolman, Nicholas G; Sellarole, Michael A; Seymens, Yusef; Saunders, Joseph; Lakosha, Hesham; deVries, Wilhelmine N; Orr, Andrew C; Topilko, Piotr; John, Simon Wm; Nair, K Saidas

    2018-03-01

    A mismatch between optical power and ocular axial length results in refractive errors. Uncorrected refractive errors constitute the most common cause of vision loss and second leading cause of blindness worldwide. Although the retina is known to play a critical role in regulating ocular growth and refractive development, the precise factors and mechanisms involved are poorly defined. We have previously identified a role for the secreted serine protease PRSS56 in ocular size determination and PRSS56 variants have been implicated in the etiology of both hyperopia and myopia, highlighting its importance in refractive development. Here, we use a combination of genetic mouse models to demonstrate that Prss56 mutations leading to reduced ocular size and hyperopia act via a loss of function mechanism. Using a conditional gene targeting strategy, we show that PRSS56 derived from Müller glia contributes to ocular growth, implicating a new retinal cell type in ocular size determination. Importantly, we demonstrate that persistent activity of PRSS56 is required during distinct developmental stages spanning the pre- and post-eye opening periods to ensure optimal ocular growth. Thus, our mouse data provide evidence for the existence of a molecule contributing to both the prenatal and postnatal stages of human ocular growth. Finally, we demonstrate that genetic inactivation of Prss56 rescues axial elongation in a mouse model of myopia caused by a null mutation in Egr1. Overall, our findings identify PRSS56 as a potential therapeutic target for modulating ocular growth aimed at preventing or slowing down myopia, which is reaching epidemic proportions.

  5. Müller glia-derived PRSS56 is required to sustain ocular axial growth and prevent refractive error

    PubMed Central

    Tolman, Nicholas G; Sellarole, Michael A.; Saunders, Joseph; Lakosha, Hesham; Topilko, Piotr; John, Simon WM.

    2018-01-01

    A mismatch between optical power and ocular axial length results in refractive errors. Uncorrected refractive errors constitute the most common cause of vision loss and second leading cause of blindness worldwide. Although the retina is known to play a critical role in regulating ocular growth and refractive development, the precise factors and mechanisms involved are poorly defined. We have previously identified a role for the secreted serine protease PRSS56 in ocular size determination and PRSS56 variants have been implicated in the etiology of both hyperopia and myopia, highlighting its importance in refractive development. Here, we use a combination of genetic mouse models to demonstrate that Prss56 mutations leading to reduced ocular size and hyperopia act via a loss of function mechanism. Using a conditional gene targeting strategy, we show that PRSS56 derived from Müller glia contributes to ocular growth, implicating a new retinal cell type in ocular size determination. Importantly, we demonstrate that persistent activity of PRSS56 is required during distinct developmental stages spanning the pre- and post-eye opening periods to ensure optimal ocular growth. Thus, our mouse data provide evidence for the existence of a molecule contributing to both the prenatal and postnatal stages of human ocular growth. Finally, we demonstrate that genetic inactivation of Prss56 rescues axial elongation in a mouse model of myopia caused by a null mutation in Egr1. Overall, our findings identify PRSS56 as a potential therapeutic target for modulating ocular growth aimed at preventing or slowing down myopia, which is reaching epidemic proportions. PMID:29529029

  6. Rabbit and Mouse Models of HSV-1 Latency, Reactivation, and Recurrent Eye Diseases

    PubMed Central

    Webre, Jody M.; Hill, James M.; Nolan, Nicole M.; Clement, Christian; McFerrin, Harris E.; Bhattacharjee, Partha S.; Hsia, Victor; Neumann, Donna M.; Foster, Timothy P.; Lukiw, Walter J.; Thompson, Hilary W.

    2012-01-01

    The exact mechanisms of HSV-1 establishment, maintenance, latency, reactivation, and also the courses of recurrent ocular infections remain a mystery. Comprehensive understanding of the HSV-1 disease process could lead to prevention of HSV-1 acute infection, reactivation, and more effective treatments of recurrent ocular disease. Animal models have been used for over sixty years to investigate our concepts and hypotheses of HSV-1 diseases. In this paper we present descriptions and examples of rabbit and mouse eye models of HSV-1 latency, reactivation, and recurrent diseases. We summarize studies in animal models of spontaneous and induced HSV-1 reactivation and recurrent disease. Numerous stimuli that induce reactivation in mice and rabbits are described, as well as factors that inhibit viral reactivation from latency. The key features, advantages, and disadvantages of the mouse and rabbit models in relation to the study of ocular HSV-1 are discussed. This paper is pertinent but not intended to be all inclusive. We will give examples of key papers that have reported novel discoveries related to the review topics. PMID:23091352

  7. Pathogenic role and therapeutic potential of pleiotrophin in mouse models of ocular vascular disease.

    PubMed

    Wang, Weiwen; LeBlanc, Michelle E; Chen, Xiuping; Chen, Ping; Ji, Yanli; Brewer, Megan; Tian, Hong; Spring, Samantha R; Webster, Keith A; Li, Wei

    2017-11-01

    Angiogenic factors play an important role in the pathogenesis of diabetic retinopathy (DR), neovascular age-related macular degeneration (nAMD) and retinopathy of prematurity (ROP). Pleiotrophin, a well-known angiogenic factor, was recently reported to be upregulated in the vitreous fluid of patients with proliferative DR (PDR). However, its pathogenic role and therapeutic potential in ocular vascular diseases have not been defined in vivo. Here using corneal pocket assays, we demonstrated that pleiotrophin induced angiogenesis in vivo. To investigate the pathological role of pleiotrophin we used neutralizing antibody to block its function in multiple in vivo models of ocular vascular diseases. In a mouse model of DR, intravitreal injection of pleiotrophin-neutralizing antibody alleviated diabetic retinal vascular leakage. In a mouse model of oxygen-induced retinopathy (OIR), which is a surrogate model of ROP and PDR, we demonstrated that intravitreal injection of anti-pleiotrophin antibody prevented OIR-induced pathological retinal neovascularization and aberrant vessel tufts. Finally, pleiotrophin-neutralizing antibody ameliorated laser-induced choroidal neovascularization, a mouse model of nAMD, suggesting that pleiotrophin is involved in choroidal vascular disease. These findings suggest that pleiotrophin plays an important role in the pathogenesis of DR with retinal vascular leakage, ROP with retinal neovascularization and nAMD with choroidal neovascularization. The results also support pleiotrophin as a promising target for anti-angiogenic therapy.

  8. Effect of chitosan-N-acetylcysteine conjugate in a mouse model of botulinum toxin B-induced dry eye.

    PubMed

    Hongyok, Teeravee; Chae, Jemin J; Shin, Young Joo; Na, Daero; Li, Li; Chuck, Roy S

    2009-04-01

    To evaluate the effect of a thiolated polymer lubricant, chitosan-N-acetylcysteine conjugate (C-NAC), in a mouse model of dry eye. Eye drops containing 0.5% C-NAC, 0.3% C-NAC, a vehicle (control group), artificial tears, or fluorometholone were applied in a masked fashion in a mouse model of induced dry eye from 3 days to 4 weeks after botulinum toxin B injection. Corneal fluorescein staining was periodically recorded. Real-time reverse transcriptase-polymerase chain reaction and immunofluorescence staining were performed at the end of the study to evaluate inflammatory cytokine expressions. Mice treated with C-NAC, 0.5%, and fluorometholone showed a downward trend that was not statistically significant in corneal staining compared with the other groups. Chitosan-NAC formulations, fluorometholone, and artificial tears significantly decreased IL-1beta (interleukin 1beta), IL-10, IL-12alpha, and tumor necrosis factor alpha expression in ocular surface tissues. The botulinum toxin B-induced dry eye mouse model is potentially useful in evaluating new dry eye treatment. Evaluation of important molecular biomarkers suggests that C-NAC may impart some protective ocular surface properties. However, clinical data did not indicate statistically significant improvement of tear production and corneal staining in any of the groups tested. Topically applied C-NAC might protect the ocular surface in dry eye syndrome, as evidenced by decreased inflammatory cytokine expression.

  9. Modeling of mouse eye and errors in ocular parameters affecting refractive state

    NASA Astrophysics Data System (ADS)

    Bawa, Gurinder

    Rodents eye are particularly used to study refractive error state of an eye and development of refractive eye. Genetic organization of rodents is similar to that of humans, which makes them interesting candidates to be researched upon. From rodents family mice models are encouraged over rats because of availability of genetically engineered models. Despite of extensive work that has been performed on mice and rat models, still no one is able to quantify an optical model, due to variability in the reported ocular parameters. In this Dissertation, we have extracted ocular parameters and generated schematics of eye from the raw data from School of Medicine, Detroit. In order to see how the rays would travel through an eye and the defects associated with an eye; ray tracing has been performed using ocular parameters. Finally we have systematically evaluated the contribution of various ocular parameters, such as radii of curvature of ocular surfaces, thicknesses of ocular components, and refractive indices of ocular refractive media, using variational analysis and a computational model of the rodent eye. Variational analysis revealed that variation in all the ocular parameters does affect the refractive status of the eye, but depending upon the magnitude of the impact those parameters are listed as critical or non critical. Variation in the depth of the vitreous chamber, thickness of the lens, radius of the anterior surface of the cornea, radius of the anterior surface of the lens, as well as refractive indices for the lens and vitreous, appears to have the largest impact on the refractive error and thus are categorized as critical ocular parameters. The radii of the posterior surfaces of the cornea and lens have much smaller contributions to the refractive state, while the radii of the anterior and posterior surfaces of the retina have no effect on the refractive error. These data provide the framework for further refinement of the optical models of the rat and mouse eye and suggest that extra efforts should be directed towards increasing the linear resolution of the rodent eye biometry and obtaining more accurate data for the refractive indices of the lens and vitreous.

  10. Lasting retinal injury in a mouse model of blast-induced trauma

    USDA-ARS?s Scientific Manuscript database

    Traumatic brain injury (TBI) due to blast exposure is currently the most prevalent of war injuries. While secondary ocular blast injuries due to flying debris are more common, primary ocular blast exposure has been reported among survivors of explosions, but with limited understanding of the resulti...

  11. Murine neonatal infection provides an efficient model for congenital ocular toxoplasmosis.

    PubMed

    Lahmar, Ibtissem; Guinard, Marie; Sauer, Arnaud; Marcellin, Luc; Abdelrahman, Tamer; Roux, Michel; Mousli, Marc; Moussa, Adnan; Babba, Hamouda; Pfaff, Alexander W; Candolfi, Ermanno

    2010-02-01

    Congenital infection is one of the most serious settings of infection with the apicomplexan parasite Toxoplasma gondii. Ocular diseases, such as retinochoroiditis, are the most common sequels of such infection in utero. However, while numerous studies have investigated the physiopathology of acquired toxoplasmosis, congenital infection has been largely neglected so far. Here, we establish a mouse model of congenital ocular toxoplasmosis. Parasite load and ocular pathology have been followed for the first 4 weeks of life. Ocular infection developed slowly compared to cerebral infection. Even after 4 weeks, not all eyes were infected and ocular parasite load was low. Therefore, we evaluated a scheme of neonatal infection to overcome problems associated with congenital infection. Development of infection and physiopathology was similar, but at a higher, more reliable rate. In summary, we have established a valuable model of neonatal ocular toxoplasmosis, which facilitates the research of the underlying physiopathological mechanisms and new diagnostic approaches of this pathology. Copyright 2009 Elsevier Inc. All rights reserved.

  12. Animal models of ocular angiogenesis: from development to pathologies.

    PubMed

    Liu, Chi-Hsiu; Wang, Zhongxiao; Sun, Ye; Chen, Jing

    2017-11-01

    Pathological angiogenesis in the eye is an important feature in the pathophysiology of many vision-threatening diseases, including retinopathy of prematurity, diabetic retinopathy, and age-related macular degeneration, as well as corneal diseases with abnormal angiogenesis. Development of reproducible and reliable animal models of ocular angiogenesis has advanced our understanding of both the normal development and the pathobiology of ocular neovascularization. These models have also proven to be valuable experimental tools with which to easily evaluate potential antiangiogenic therapies beyond eye research. This review summarizes the current available animal models of ocular angiogenesis. Models of retinal and choroidal angiogenesis, including oxygen-induced retinopathy, laser-induced choroidal neovascularization, and transgenic mouse models with deficient or spontaneous retinal/choroidal neovascularization, as well as models with induced corneal angiogenesis, are widely used to investigate the molecular and cellular basis of angiogenic mechanisms. Theoretical concepts and experimental protocols of these models are outlined, as well as their advantages and potential limitations, which may help researchers choose the most suitable models for their investigative work.-Liu, C.-H., Wang, Z., Sun, Y., Chen, J. Animal models of ocular angiogenesis: from development to pathologies. © FASEB.

  13. Association of Body Length with Ocular Parameters in Mice

    PubMed Central

    Chakraborty, Ranjay; Park, Han na; Tan, Christopher C.; Weiss, Paul; Prunt, Megan C.; Pardue, Machelle T.

    2017-01-01

    Purpose To determine the association between changes in body length with ocular refraction, corneal radii, axial length, and lens thickness in two different mouse strains. Methods Body length, ocular refraction, corneal radii, axial length, and lens thickness were measured for two inbred mouse strains: 129S1/SvJ (n=7) and C57BL/6J (n=10) from 4 to 12 weeks of age. Body length, from tip of nose to base of tail was obtained using a digital camera. Biometric parameters, corneal radii and refractions were measured using spectral-domain optical coherence tomography, automated keratometry and infrared photorefraction, respectively. A mixed model ANOVA was performed to examine the changes in ocular parameters as a function of body length and strain in mice controlling for age, gender and weight over time. Results C57BL/6J mice had significantly longer body length (average body length at 10 weeks, 8.60 ± 0.06 cm) compared 129S1/SvJ mice (8.31 ± 0.05 cm) during development (p<0.001). C57BL/6J mice had significantly hyperopic refractions compared to 129S1/SvJ mice across age (mean refraction at 10 weeks, 129S1/SvJ: +0.99 ± 0.44 D versus C57BL/6J: +6.24 ± 0.38 D, p<0.001). Corneal radius of curvature, axial length and lens thickness (except 10 weeks lens thickness) were similar between the two strains throughout the measurement. In the mixed model ANOVA, changes in body length showed an independent and significant association with the changes in refraction (p=0.002) and corneal radii (p=0.016) for each mouse strain. No significant association was found between the changes in axial length (p=0.925) or lens thickness (p=0.973) as a function of body length and strain. Conclusions Changes in body length are significantly associated with the changes in ocular refraction and corneal radii in different mouse strains. Future studies are needed to determine if the association between body length and ocular refraction are related to changes in corneal curvature in mice. PMID:28005683

  14. Single-shot dimension measurements of the mouse eye using SD-OCT.

    PubMed

    Jiang, Minshan; Wu, Pei-Chang; Fini, M Elizabeth; Tsai, Chia-Ling; Itakura, Tatsuo; Zhang, Xiangyang; Jiao, Shuliang

    2012-01-01

    The authors demonstrate the feasibility and advantage of spectral-domain optical coherence tomography (SD-OCT) for single-shot ocular biometric measurement during the development of the mouse eye. A high-resolution SD-OCT system was built for single-shot imaging of the whole mouse eye in vivo. The axial resolution and imaging depth of the system are 4.5 μm (in tissue) and 5.2 mm, respectively. The system is capable of acquiring a cross-sectional OCT image consisting of 2,048 depth scans in 85 ms. The imaging capability of the SD-OCT system was validated by imaging the normal ocular growth and experimental myopia model using C57BL/6J mice. The biometric dimensions of the mouse eye can be calculated directly from one snapshot of the SD-OCT image. The biometric parameters of the mouse eye including axial length, corneal thickness, anterior chamber depth, lens thickness, vitreous chamber depth, and retinal thickness were successfully measured by the SD-OCT. In the normal ocular growth group, the axial length increased significantly from 28 to 82 days of age (P < .001). The lens thickness increased and the vitreous chamber depth decreased significantly during this period (P < .001 and P = .001, respectively). In the experimental myopia group, there were significant increases in vitreous chamber depth and axial length in comparison to the control eyes (P = .040 and P < .001, respectively). SD-OCT is capable of providing single-shot direct, fast, and high-resolution measurements of the dimensions of young and adult mouse eyes. As a result, SD-OCT is a potentially powerful tool that can be easily applied to research in eye development and myopia using small animal models. Copyright 2012, SLACK Incorporated.

  15. A mouse model of ocular blast injury that induces closed globe anterior and posterior pole damage

    PubMed Central

    Hines-Beard, Jessica; Marchetta, Jeffrey; Gordon, Sarah; Chaum, Edward; Geisert, Eldon E.; Rex, Tonia S.

    2012-01-01

    We developed and characterized a mouse model of primary ocular blast injury. The device consists of: a pressurized air tank attached to a regulated paintball gun with a machined barrel; a chamber that protects the mouse from direct injury and recoil, while exposing the eye; and a secure platform that enables fine, controlled movement of the chamber in relation to the barrel. Expected pressures were calculated and the optimal pressure transducer, based on the predicted pressures, was positioned to measure output pressures at the location where the mouse eye would be placed. Mice were exposed to one of three blast pressures (23.6, 26.4, or 30.4psi). Gross pathology, intraocular pressure, optical coherence tomography, and visual acuity were assessed 0, 3, 7, 14, and 28 days after exposure. Contralateral eyes and non-blast exposed mice were used as controls. We detected increased damage with increased pressures and a shift in the damage profile over time. Gross pathology included corneal edema, corneal abrasions, and optic nerve avulsion. Retinal damage was detected by optical coherence tomography and a deficit in visual acuity was detected by optokinetics. Our findings are comparable to those identified in Veterans of the recent wars with closed eye injuries as a result of blast exposure. In summary, this is a relatively simple system that creates injuries with features similar to those seen in patients with ocular blast trauma. This is an important new model for testing the short-term and long-term spectrum of closed globe blast injuries and potential therapeutic interventions. PMID:22504073

  16. A mouse dry eye model induced by topical administration of benzalkonium chloride.

    PubMed

    Lin, Zhirong; Liu, Xiaochen; Zhou, Tong; Wang, Yihui; Bai, Li; He, Hui; Liu, Zuguo

    2011-01-25

    To develop a dry eye model of mouse induced by topical administration of benzalkonium chloride (BAC) and investigate the possible mechanisms. BAC at concentration of 0.2% was applied to the mouse ocular surface for 7 days. Phenol red thread tear test, tear break-up time (BUT) test, corneal inflammatory index scoring, fluorescein and rose bengal test were performed to evaluate the toxic effects of BAC on the ocular surface. Global specimens were collected on day (D) 7 and labeled with a series of antibodies including cytokeratin 10 (K10) and mucin 5AC (MUC5AC). Apoptosis of ocular surface epithelium was evaluated by in situ terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Histologic analysis and transmission electron microscopy (TEM) were performed on D7. BAC at a concentration of 0.2% successfully induced a dry eye condition with decreased tear volume and BUTs, increased corneal fluorescein and rose bengal scores. The Inflammatory index was increased in accompaniment with higher tumor necrosis factor-α (TNF-α) expression and more inflammatory infiltration in the cornea. Immunolabeling revealed positive K10 expression in BAC-treated corneal epithelium and fewer MUC5AC-positive cells in the BAC-treated conjunctival fornix. TUNEL assay showed more apoptotic cells in the corneal basal epithelium. TEM showed that the size and intervals of the microvillis were both reduced in the corneal epithelium. Topical administration of 0.2% BAC in mouse induces changes resembling that of dry eye syndrome in humans, and thus, represents a novel model of dry eye.

  17. A mouse dry eye model induced by topical administration of benzalkonium chloride

    PubMed Central

    Lin, Zhirong; Liu, Xiaochen; Zhou, Tong; Wang, Yihui; Bai, Li; He, Hui

    2011-01-01

    Purpose To develop a dry eye model of mouse induced by topical administration of benzalkonium chloride (BAC) and investigate the possible mechanisms. Methods BAC at concentration of 0.2% was applied to the mouse ocular surface for 7 days. Phenol red thread tear test, tear break-up time (BUT) test, corneal inflammatory index scoring, fluorescein and rose bengal test were performed to evaluate the toxic effects of BAC on the ocular surface. Global specimens were collected on day (D) 7 and labeled with a series of antibodies including cytokeratin 10 (K10) and mucin 5AC (MUC5AC). Apoptosis of ocular surface epithelium was evaluated by in situ terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Histologic analysis and transmission electron microscopy (TEM) were performed on D7. Results BAC at a concentration of 0.2% successfully induced a dry eye condition with decreased tear volume and BUTs, increased corneal fluorescein and rose bengal scores. The Inflammatory index was increased in accompanyment with higher tumor necrosis factor-α (TNF-α) expression and more inflammatory infiltration in the cornea. Immunolabeling revealed positive K10 expression in BAC-treated corneal epithelium and fewer MUC5AC-positive cells in the BAC-treated conjunctival fornix. TUNEL assay showed more apoptotic cells in the corneal basal epithelium. TEM showed that the size and intervals of the microvillis were both reduced in the corneal epithelium. Conclusions Topical administration of 0.2% BAC in mouse induces changes resembling that of dry eye syndrome in humans, and thus, represents a novel model of dry eye. PMID:21283525

  18. Microbead-induced ocular hypertensive mouse model for screening and testing of aqueous production suppressants for glaucoma.

    PubMed

    Yang, Qiang; Cho, Kin-Sang; Chen, Huihui; Yu, Dekuang; Wang, Wan-Heng; Luo, Gang; Pang, Iok-Hou; Guo, Wenyi; Chen, Dong Feng

    2012-06-20

    To characterize the microbead-induced ocular hypertension (OHT) mouse model and investigate its potential use for preclinical screening and evaluation of ocular hypotensive agents, we tested the model's responses to major antiglaucoma drugs. Adult C57BL/6J mice were induced to develop OHT unilaterally by intracameral injection of microbeads. The effects of the most commonly used ocular hypotensive drugs, including timolol, brimonidine, brinzolamide, pilocarpine, and latanoprost, on IOP and glaucomatous neural damage were evaluated. Degeneration of retinal ganglion cells (RGCs) and optic nerve axons were quantitatively assessed using immunofluorescence labeling and histochemistry. Thickness of the ganglion cell complex (GCC) was also assessed with spectral-domain optical coherence tomography (SD-OCT). A microbead-induced OHT model promptly responded to drugs, such as timolol, brimonidine, and brinzolamide, that lower IOP through suppressing aqueous humor production and showed improved RGC and axon survival as compared to vehicle controls. Accordingly, SD-OCT detected significantly less reduction of GCC thickness in mice treated with all three aqueous production suppressants as compared to the vehicle contol-treated group. In contrast, drugs that increase aqueous outflow, such as pilocarpine and latanoprost, failed to decrease IOP in the microbead-induced OHT mice. Microbead-induced OHT mice carry dysfunctional aqueous outflow facility and therefore offer a unique model that allows selective screening of aqueous production suppressant antiglaucoma drugs or for studying the mechanisms regulating aqueous humor production. Our data set the stage for using GCC thickness assessed by SD-OCT as an imaging biomarker for noninvasive tracking of neuronal benefits of glaucoma therapy in this model.

  19. JBP485 promotes tear and mucin secretion in ocular surface epithelia

    PubMed Central

    Nakamura, Takahiro; Hata, Yuiko; Nagata, Maho; Yokoi, Norihiko; Yamaguchi, Shumpei; Kaku, Taiichi; Kinoshita, Shigeru

    2015-01-01

    Dry eye syndrome (DES), a multifactorial disease of the tears and ocular surface, is one of the most common ocular disorders. Tear film contains ocular mucins and is essential for maintaining the homeostasis of the wet ocular surface. Since there are a limited number of clinical options for the treatment of DES, additional novel treatments are needed to improve the clinical results. In this study, we found that placental extract-derived dipeptide (JBP485) clearly promoted the expression and secretion of gel-forming mucin 5ac (Muc5ac) in rabbit conjunctival epithelium. JBP485 also elevated the expression level of cell surface-associated mucins (Muc1/4/16) in rabbit corneal epithelium. The Schirmer tear test results indicated that JBP485 induced tear secretion in the rabbit model. Moreover, JBP485 clinically improved corneal epithelial damage in a mouse dry eye model. Thus, our data indicate that JBP485 efficiently promoted mucin and aqueous tear secretion in rabbit ocular surface epithelium and has the potential to be used as a novel treatment for DES. PMID:25996902

  20. JBP485 promotes tear and mucin secretion in ocular surface epithelia.

    PubMed

    Nakamura, Takahiro; Hata, Yuiko; Nagata, Maho; Yokoi, Norihiko; Yamaguchi, Shumpei; Kaku, Taiichi; Kinoshita, Shigeru

    2015-05-21

    Dry eye syndrome (DES), a multifactorial disease of the tears and ocular surface, is one of the most common ocular disorders. Tear film contains ocular mucins and is essential for maintaining the homeostasis of the wet ocular surface. Since there are a limited number of clinical options for the treatment of DES, additional novel treatments are needed to improve the clinical results. In this study, we found that placental extract-derived dipeptide (JBP485) clearly promoted the expression and secretion of gel-forming mucin 5ac (Muc5ac) in rabbit conjunctival epithelium. JBP485 also elevated the expression level of cell surface-associated mucins (Muc1/4/16) in rabbit corneal epithelium. The Schirmer tear test results indicated that JBP485 induced tear secretion in the rabbit model. Moreover, JBP485 clinically improved corneal epithelial damage in a mouse dry eye model. Thus, our data indicate that JBP485 efficiently promoted mucin and aqueous tear secretion in rabbit ocular surface epithelium and has the potential to be used as a novel treatment for DES.

  1. Aldehyde dehydrogenase inhibition blocks mucosal fibrosis in human and mouse ocular scarring

    PubMed Central

    Ahadome, Sarah D.; Abraham, David J.; Rayapureddi, Suryanarayana; Saw, Valerie P.; Saban, Daniel R.; Calder, Virginia L.; Norman, Jill T.; Ponticos, Markella; Daniels, Julie T.; Dart, John K.

    2016-01-01

    Mucous membrane pemphigoid (MMP) is a systemic mucosal scarring disease, commonly causing blindness, for which there is no antifibrotic therapy. Aldehyde dehydrogenase family 1 (ALDH1) is upregulated in both ocular MMP (OMMP) conjunctiva and cultured fibroblasts. Application of the ALDH metabolite, retinoic acid (RA), to normal human conjunctival fibroblasts in vitro induced a diseased phenotype. Conversely, application of ALDH inhibitors, including disulfiram, to OMMP fibroblasts in vitro restored their functionality to that of normal controls. ALDH1 is also upregulated in the mucosa of the mouse model of scarring allergic eye disease (AED), used here as a surrogate for OMMP, in which topical application of disulfiram decreased fibrosis in vivo. These data suggest that progressive scarring in OMMP results from ALDH/RA fibroblast autoregulation, that the ALDH1 subfamily has a central role in immune-mediated ocular mucosal scarring, and that ALDH inhibition with disulfiram is a potential and readily translatable antifibrotic therapy. PMID:27699226

  2. A novel small molecule ameliorates ocular neovascularisation and synergises with anti-VEGF therapy.

    PubMed

    Sulaiman, Rania S; Merrigan, Stephanie; Quigley, Judith; Qi, Xiaoping; Lee, Bit; Boulton, Michael E; Kennedy, Breandán; Seo, Seung-Yong; Corson, Timothy W

    2016-05-05

    Ocular neovascularisation underlies blinding eye diseases such as retinopathy of prematurity, proliferative diabetic retinopathy, and wet age-related macular degeneration. These diseases cause irreversible vision loss, and provide a significant health and economic burden. Biologics targeting vascular endothelial growth factor (VEGF) are the major approach for treatment. However, up to 30% of patients are non-responsive to these drugs and they are associated with ocular and systemic side effects. Therefore, there is a need for small molecule ocular angiogenesis inhibitors to complement existing therapies. We examined the safety and therapeutic potential of SH-11037, a synthetic derivative of the antiangiogenic homoisoflavonoid cremastranone, in models of ocular neovascularisation. SH-11037 dose-dependently suppressed angiogenesis in the choroidal sprouting assay ex vivo and inhibited ocular developmental angiogenesis in zebrafish larvae. Additionally, intravitreal SH-11037 (1 μM) significantly reduced choroidal neovascularisation (CNV) lesion volume in the laser-induced CNV mouse model, comparable to an anti-VEGF antibody. Moreover, SH-11037 synergised with anti-VEGF treatments in vitro and in vivo. Up to 100 μM SH-11037 was not associated with signs of ocular toxicity and did not interfere with retinal function or pre-existing retinal vasculature. SH-11037 is thus a safe and effective treatment for murine ocular neovascularisation, worthy of further mechanistic and pharmacokinetic evaluation.

  3. Methods for non-surgical cancer nano-theranostics of ocular tumors in the mouse eye (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Goswami, Mayank; Wang, Xinlei; Zhang, Pengfei; Xiao, Wenwu; Lam, Kit S.; Pugh, Edward N.; Zawadzki, Robert J.

    2017-02-01

    We will present our results of evaluating the feasibility of using the mouse eye as a window for non-invasive, long-term, optical investigation of xenograft models, using multimodal, cellular-resolution ocular imaging. As an "approachable part of the brain", the retina allows examination of such issues as drug delivery across the blood retinal barrier (BRB) and blood brain barrier (BBB). Our custom-built wide-field SLO/OCT provided repeatable in vivo imaging over many weeks, allowing quantitative tracking of tumor growth, the delivery of theranostic nanoparticles, and the measurement of tumor microenvironment responses. Additionally, we were able to specifically control the spatial extent of light activated photodynamic therapy (PDT) and photothermal therapy (PTT) via efficient free radical and heat generation at the tumor site, respectively.

  4. The Rodent Eye as a Non-Invasive Window for Understanding Cancer Nanotherapeutics

    Cancer.gov

    This project uses the mouse eye as a non-surgical window for highly efficient, optical investigation of all aspects of syngeneic or xenograft models, using a state-of-the-art ocular imaging facility, the "EyePod."

  5. Mucin deficiency causes functional and structural changes of the ocular surface.

    PubMed

    Floyd, Anne M; Zhou, Xu; Evans, Christopher; Rompala, Olivia J; Zhu, Lingxiang; Wang, Mingwu; Chen, Yin

    2012-01-01

    MUC5AC is the most abundant gel-forming mucin in the ocular system. However, the specific function is unknown. In the present study, a Muc5ac knockout (KO) mouse model was subject to various physiological measurements as compared to its wide-type (WT) control. Interestingly, when KO mice were compared to WT mice, the mean tear break up time (TBUT) values were significantly lower and corneal fluorescein staining scores were significantly higher. But the tear volume was not changed. Despite the lack of Muc5ac expression in the conjunctiva of KO mice, Muc5b expression was significantly increased in these mice. Corneal opacification, varying in location and severity, was found in a few KO mice but not in WT mice. The present results suggest a significant difference in the quality, but not the quantity, of tear fluid in the KO mice compared to WT mice. Dry eye disease is multifactorial and therefore further evaluation of the varying components of the tear film, lacrimal unit and corneal structure of these KO mice may help elucidate the role of mucins in dry eye disease. Because Muc5ac knockout mice have clinical features of dry eye, this mouse model will be extremely useful for further studies regarding the pathophysiology of the ocular surface in dry eye in humans.

  6. Interleukin-6-driven inflammatory response induces retinal pathology in a model of ocular toxoplasmosis reactivation.

    PubMed

    Rochet, Élise; Brunet, Julie; Sabou, Marcela; Marcellin, Luc; Bourcier, Tristan; Candolfi, Ermanno; Pfaff, Alexander W

    2015-05-01

    Ocular inflammation is one of the consequences of infection with the protozoan parasite Toxoplasma gondii. Even if lesions are self-healing in immunocompetent persons, they pose a lifetime risk of reactivation and are a serious threat to vision. As there are virtually no immunological data on reactivating ocular toxoplasmosis, we established a model of direct intravitreal injection of parasites in previously infected mice with a homologous type II strain. Two different mouse strains with variable ability to control retinal infection were studied in order to describe protective and deleterious reaction patterns. In Swiss-Webster mice, which are already relatively resistant to primary infection, no peak of parasite load was observed upon reinfection. In contrast, the susceptible inbred strain C57BL/6 showed high parasite loads after 7 days, as well as marked deterioration of retinal architecture. Both parameters were back to normal on day 21. C57BL/6 mice also reacted with a strong local production of inflammatory and Th1-type cytokines, like interleukin-6 (IL-6), IL-17A, and gamma interferon (IFN-γ), while Swiss-Webster mice showed only moderate expression of the Th2 cytokine IL-31. Interestingly, rapid intraocular production of anti-Toxoplasma antibodies was observed in Swiss-Webster but not in C57BL/6 mice. We then localized the cellular source of different immune mediators within the retina by immunofluorescence. Finally, neutralization experiments of IFN-γ or IL-6 demonstrated the respective protective and deleterious roles of these cytokines for parasite control and retinal integrity during reinfection. In conclusion, we developed and immunologically characterized a promising mouse model of reactivating ocular toxoplasmosis. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  7. Restoration of Corneal Transparency by Mesenchymal Stem Cells.

    PubMed

    Mittal, Sharad K; Omoto, Masahiro; Amouzegar, Afsaneh; Sahu, Anuradha; Rezazadeh, Alexandra; Katikireddy, Kishore R; Shah, Dhvanit I; Sahu, Srikant K; Chauhan, Sunil K

    2016-10-11

    Transparency of the cornea is indispensable for optimal vision. Ocular trauma is a leading cause of corneal opacity, leading to 25 million cases of blindness annually. Recently, mesenchymal stem cells (MSCs) have gained prominence due to their inflammation-suppressing and tissue repair functions. Here, we investigate the potential of MSCs to restore corneal transparency following ocular injury. Using an in vivo mouse model of ocular injury, we report that MSCs have the capacity to restore corneal transparency by secreting high levels of hepatocyte growth factor (HGF). Interestingly, our data also show that HGF alone can restore corneal transparency, an observation that has translational implications for the development of HGF-based therapy. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Persistent hyperplastic tunica vasculosa lentis and persistent hyperplastic primary vitreous in transgenic line TgN3261Rpw.

    PubMed

    Colitz, C M; Malarkey, D E; Woychik, R P; Wilkinson, J E

    2000-09-01

    Persistent hyperplastic tunica vasculosa lentis and persistent hyperplastic primary vitreous are congenital ocular anomalies that can lead to cataract formation. A line of insertional mutant mice, TgN3261Rpw, generated at the Oak Ridge National Laboratory in a large-scale insertional mutagenesis program was found to have a low incidence (8/243; 3.29%) of multiple developmental ocular abnormalities. The ocular abnormalities include persistent hyperplastic primary vitreous, persistent hyperplastic tunica vasculosa lentis, failure of cleavage of the anterior segment, retrolental fibrovascular membrane, posterior polar cataract, and detached retina. This transgenic mouse line provides an ontogenetic model because of the high degree of similarity of this entity in humans, dogs, and mice.

  9. Therapeutic potential of trichostatin A to control inflammatory and fibrogenic disorders of the ocular surface.

    PubMed

    Kitano, Ai; Okada, Yuka; Yamanka, Osamu; Shirai, Kumi; Mohan, Rajiv R; Saika, Shizuya

    2010-12-31

    To examine the effects of a histone deacetylase inhibitor, Trichostatin A (TSA), on the behavior of macrophages and subconjunctival fibroblasts in vitro and on ocular surface inflammation and scarring in vivo using an alkali burn wound healing model. Effects of TSA on expression of inflammation-related growth factors or collagen I were examined by real-time RT-PCR or immunoassay in mouse macrophages or human subconjunctival fibroblasts. Effects of TSA on trans forming growth factor β (TGFβ)/Smad signaling were evaluated with western blotting and/or immunocytochemistry. Alkali-burn injuries on the eyes of mice were performed with three µl of 0.5 N NaOH under general and topical anesthesia. TSA (600 µg/Kg daily) or vehicle was administered to animals via intraperitoneal (i.p.) injection. Histology and real-time RT-PCR investigations evaluated the effects of TSA on the healing process of the cornea. TSA inhibited TGFβ 1 and vascular endothelial growth factor (VEGF) expression in macrophages, and TGFβ1 and collagen I in ocular fibroblasts. It elevated the expression of 5'-TG-3'-interacting factor (TGIF) and Smad7 in fibroblasts and blocked nuclear translocation of phospho-Smad2. Real-time PCR and immunocytochemistry studies showed that systemic administration of TSA suppressed the inflammation and fibrotic response in the stroma and accelerated epithelial healing in the alkali-burned mouse cornea. Systemic administration of TSA reduces inflammatory and fibrotic responses in the alkali-burned mouse ocular surface in vivo. The mechanisms of action involve attenuation of Smad signal in mesenchymal cells and reduction in the activation and recruitment of macrophages. TSA has the potential to treat corneal scarring in vivo.

  10. Mucin Deficiency Causes Functional and Structural Changes of the Ocular Surface

    PubMed Central

    Evans, Christopher; Rompala, Olivia J.; Zhu, Lingxiang; Wang, Mingwu; Chen, Yin

    2012-01-01

    MUC5AC is the most abundant gel-forming mucin in the ocular system. However, the specific function is unknown. In the present study, a Muc5ac knockout (KO) mouse model was subject to various physiological measurements as compared to its wide-type (WT) control. Interestingly, when KO mice were compared to WT mice, the mean tear break up time (TBUT) values were significantly lower and corneal fluorescein staining scores were significantly higher. But the tear volume was not changed. Despite the lack of Muc5ac expression in the conjunctiva of KO mice, Muc5b expression was significantly increased in these mice. Corneal opacification, varying in location and severity, was found in a few KO mice but not in WT mice. The present results suggest a significant difference in the quality, but not the quantity, of tear fluid in the KO mice compared to WT mice. Dry eye disease is multifactorial and therefore further evaluation of the varying components of the tear film, lacrimal unit and corneal structure of these KO mice may help elucidate the role of mucins in dry eye disease. Because Muc5ac knockout mice have clinical features of dry eye, this mouse model will be extremely useful for further studies regarding the pathophysiology of the ocular surface in dry eye in humans. PMID:23272068

  11. Postnatal ocular expression of tyrosinase and related proteins: disruption by the pink-eyed unstable (p(un)) mutation.

    PubMed

    Chiu, E; Lamoreux, M L; Orlow, S J

    1993-09-01

    Ocular pigmentation in the mouse occurs primarily postnatally as a result of the melanization of neural crest-derived melanocytes. Using immunologic and biochemical techniques, we demonstrate that in normal mice the expression of tyrosinase and the related proteins TRP-1 and TRP-2, rises during the first week of life, remains elevated for a week, and then steadily declines to low levels by adulthood. Sucrose gradient density centrifugation demonstrates that tyrosinase, TRP-1 and TRP-2 are present in high molecular weight forms in the eyes of wild-type mice. The normal time course is disrupted in mice carrying the pink-eyed unstable (p(un)) mutation at the P-locus, a model for tyrosinase-positive albinism in man. Tyrosinase and TRP-2 are present at wild-type levels in the eyes of p(un)/p(un) mice at birth, but, rather than rising, their levels rapidly decline over the first week of life. TRP-1 is almost undetectable, even at birth. High molecular weight complexes could not be detected in eyes of p(un)/p(un) mice. Our results suggest that postnatal ocular melanogenesis in the mouse presents an attractive model for the study of the orderly expression and action of the proteins involved in eumelanin synthesis, and that the p(un) mutation disrupts this temporally controlled process.

  12. New clinical and experimental insights into Old World and neotropical ocular toxoplasmosis.

    PubMed

    Pfaff, Alexander W; de-la-Torre, Alejandra; Rochet, Elise; Brunet, Julie; Sabou, Marcela; Sauer, Arnaud; Bourcier, Tristan; Gomez-Marin, Jorge E; Candolfi, Ermanno

    2014-02-01

    Retinal lesions or other ocular manifestations are serious consequences of infection with the protozoan parasite Toxoplasma gondii. Whilst classically considered a consequence of congenital transmission, recent screening studies estimated that 2% of T. gondii seropositive persons in Europe and North America have retinal lesions, most of them persisting unnoticed. The situation is more dramatic in South America, probably due to the predominance of virulent strains. Some of these strains seem to exhibit ocular or neuronal tropism and are responsible for severe ocular lesions. Despite the medical importance, the physiopathological mechanisms have only recently begun to be elucidated. The particular immune-privileged situation in the eye has to be considered. Studies on French patients showed low or undetectable ocular parasite loads, but a clear Th1/Th17 type immune reaction. Suitable mouse models have appeared in the last few years. Using such a model, IL-17A proved to impair parasite control and induce pathology. In contrast, in South American patients, the parasite seems to be much less efficiently controlled through a Th2 type or suppressive immune response that favors parasite replication. Finally, several host genetic markers controlling immune response factors have been associated with ocular involvement of T. gondii infection, mainly in South America. Copyright © 2013 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  13. Vision Integrating Strategies in Ophthalmology and Neurochemistry (VISION)

    DTIC Science & Technology

    2011-02-01

    in the above figure. We have already tested this virus in P23H Rhodopsin rat model of retinitis pigmentosa and found that it has a therapeutic...We have established three different mouse models of ocular injury with different injury-initiating mechanisms (i.e. optic nerve crush, retinal ...functionally and structurally rescue photoreceptor cells in rodent models of retinal degeneration. She brings expertise in gene therapy and in cellular

  14. Corneal Expression of SLURP-1 by Age, Sex, Genetic Strain, and Ocular Surface Health

    PubMed Central

    Swamynathan, Sudha; Delp, Emili E.; Harvey, Stephen A. K.; Loughner, Chelsea L.; Raju, Leela; Swamynathan, Shivalingappa K.

    2015-01-01

    Purpose Although secreted Ly6/urokinase-type plasminogen activator receptor–related protein-1 (Slurp1) transcript is highly abundant in the mouse cornea, corresponding protein expression remains uncharacterized. Also, SLURP1 was undetected in previous tear proteomics studies, resulting in ambiguity about its baseline levels. Here, we examine mouse corneal Slurp1 expression in different sexes, age groups, strains, and health conditions, and quantify SLURP1 in human tears from healthy or inflamed ocular surfaces. Methods Expression of Slurp1 in embryonic day-13 (E13), E16, postnatal day-1 (PN1), PN10, PN20, and PN70 Balb/C, FVBN, C57Bl/6, and DBA/2J mouse corneas, Klf4Δ/ΔCE corneas with corneal epithelial–specific ablation of Klf4, migrating cells in wild-type corneal epithelial wound edge, and in corneas exposed to pathogen-associated molecular patterns (PAMPs) poly(I:C), zymosan-A, or Pam3Csk4 was examined by QPCR, immunoblots, and immunofluorescent staining. Human SLURP1 levels were quantified by ELISA in tears from 34 men and women aged 18 to 80 years. Results Expression of Slurp1, comparable in different strains and sexes, was low in E13, E16, PN1, and PN10 mouse corneas, and increased rapidly after eyelid opening in a Klf4-dependent manner. We found Slurp1 was downregulated in corneas exposed to PAMPs, and in migrating cells at the wound edge. Human SLURP1 expression, comparable in different sexes and age groups, was significantly decreased in tears from inflamed ocular surfaces (0.34%) than those from healthy individuals (0.77%). Conclusions These data describe the influence of age, sex, genetic background, and ocular surface health on mouse corneal expression of Slurp1, establish the baseline for human tear SLURP1 expression, and identify SLURP1 as a useful diagnostic and/or therapeutic target for inflammatory ocular surface disorders. PMID:26670825

  15. Slit2 signaling through Robo1 and Robo2 is required for retinal neovascularization

    PubMed Central

    Rama, Nicolas; Dubrac, Alexandre; Mathivet, Thomas; Chárthaigh, Róisín-Ana Ní; Genet, Gael; Cristofaro, Brunella; Pibouin-Fragner, Laurence; Ma, Le; Eichmann, Anne; Chédotal, Alain

    2016-01-01

    Ocular neovascular diseases are a leading cause of blindness. Vascular endothelial growth factor (VEGF) blockade improves vision, but not all individuals respond to anti-VEGF treatment, making additional means to prevent neovascularization necessary. Slit-family proteins (Slits) are ligands of Roundabout (Robo) receptors that repel developing axons in the nervous system. Robo1 expression is altered in ocular neovascular diseases, and previous in vitro studies have reported both pro- and anti-angiogenic effects of Slits. However, genetic evidence supporting a role for Slits in ocular neovascularization is lacking. Here we generated conditional knockout mice deficient in various Slit and Robo proteins and found that Slit2 potently and selectively promoted angiogenesis via Robo1 and Robo2 in mouse postnatal retina and in a model of ocular neovascular disease. Mechanistically, Slit2 acting through Robo1 and Robo2 promoted the migration of endothelial cells. These receptors are required for both Slit2- and VEGF-induced Rac1 activation and lamellipodia formation. Thus, Slit2 blockade could potentially be used therapeutically to inhibit angiogenesis in individuals with ocular neovascular disease. PMID:25894826

  16. A Magnetic Microbead Occlusion Model to Induce Ocular Hypertension-Dependent Glaucoma in Mice

    PubMed Central

    Cueva Vargas, Jorge L.; Di Polo, Adriana

    2016-01-01

    The use of rodent models of glaucoma has been essential to understand the molecular mechanisms that underlie the pathophysiology of this multifactorial neurodegenerative disease. With the advent of numerous transgenic mouse lines, there is increasing interest in inducible murine models of ocular hypertension. Here, we present an occlusion model of glaucoma based on the injection of magnetic microbeads into the anterior chamber of the eye using a modified microneedle with a facetted bevel. The magnetic microbeads are attracted to the iridocorneal angle using a handheld magnet to block the drainage of aqueous humour from the anterior chamber. This disruption in aqueous dynamics results in a steady elevation of intraocular pressure, which subsequently leads to the loss of retinal ganglion cells, as observed in human glaucoma patients. The microbead occlusion model presented in this manuscript is simple compared to other inducible models of glaucoma and also highly effective and reproducible. Importantly, the modifications presented here minimize common issues that often arise in occlusion models. First, the use of a bevelled glass microneedle prevents backflow of microbeads and ensures that minimal damage occurs to the cornea during the injection, thus reducing injury-related effects. Second, the use of magnetic microbeads ensures the ability to attract most beads to the iridocorneal angle, effectively reducing the number of beads floating in the anterior chamber avoiding contact with other structures (e.g., iris, lens). Lastly, the use of a handheld magnet allows flexibility when handling the small mouse eye to efficiently direct the magnetic microbeads and ensure that there is little reflux of the microbeads from the eye when the microneedle is withdrawn. In summary, the microbead occlusion mouse model presented here is a powerful investigative tool to study neurodegenerative changes that occur during the onset and progression of glaucoma. PMID:27077732

  17. Spectral reflectance of the ocular fundus as a diagnostic marker for cerebral malaria

    NASA Astrophysics Data System (ADS)

    Liu, Xun; Rice, David A.; Khoobehi, Bahram

    2012-03-01

    The challenge of correctly identifying malaria infection continues to impede our efforts to control this disease. Recent studies report highly specific retinal changes in severe malaria patients; these retinal changes may represent a very useful diagnostic indicator for this disease. To further explore the ocular manifestations of malaria, we used hyperspectral imaging to study retinal changes caused by Plasmodium berghei ANKA parasitization in a mouse model. We collected the spectral reflectance of the ocular fundus from hyperspectral images of the mouse eye. The blood oxygen sensitive spectral region was normalized for variances in illumination, and used to calculate relative values that correspond to oxygenated hemoglobin levels. Oxygen hemoglobin levels are markedly lower in parasitized mice, indicating that hemoglobin digestion by P. berghei may be detected using spectral reflectance. Furthermore, the ocular reflectance of parasitized mice was abnormally elevated between 660nm and 750nm, suggesting fluorescence in this region. While the source of this fluorescence is not yet clear, its presence correlates strongly with P. Berghei parasitization, and may indicate the presence of hemozoin deposits in the retinal vasculature. The pathology of severe malaria still presents many questions for clinicians and scientists, and our understanding of cerebral malaria has been generally confined to clinical observation and postmortem examination. As the retina represents a portion of the central nervous system that can be easily examined noninvasively, our technique may provide the basis for an automated tool to detect and examine severe malaria via retinal changes.

  18. Excretory-secretory antigens: a suitable candidate for immunization against ocular toxoplasmosis in a murine model.

    PubMed

    Norouzpour Deilami, Kiumars; Daryani, Ahmad; Ahmadpour, Ehsan; Sharif, Mehdi; Dadimoghaddam, Yousef; Sarvi, Shahabeddin; Alizadeh, Ahad

    2014-12-01

    Toxoplasmosis, responsible for ocular impairment, is caused by Toxoplasma gondii. We investigated the effect of Toxoplasma excretory-secretory antigens (ESA) on parasite load and distribution in the eye tissue of a murine model. Case and control groups were immunized with ESA and PBS, respectively. Two weeks after the second immunization, the mice were challenged intraperitoneally with virulent RH strain of Toxoplasma; eye tissue samples of both groups were collected daily (days 1, 2, 3, and the last day before death). Parasite load was determined using real-time quantitative PCR targeted at the B1 gene. Compared to the control group, infected mice that received ESA vaccine presented a considerable decrease in parasite load in the eye tissue, demonstrating the effect of ESA on parasite load and distribution. Diminution of parasite load in mouse eye tissue indicated that ESA might help control disease-related complications and could be a valuable immunization candidate against ocular toxoplasmosis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Of Mice and not Humans: How Reliable are Animal Models for Evaluation of Herpes CD8+-T cell-Epitopes-Based Immunotherapeutic Vaccine Candidates?

    PubMed Central

    Dasgupta, Gargi; BenMohamed, Lbachir

    2011-01-01

    Herpes simplex virus type 1 and type 2 (HSV-1 and HSV-2) -specific CD8+ T cells that reside in sensory ganglia, appears to control recurrent herpetic disease by aborting or reducing spontaneous and sporadic reactivations of latent virus. A reliable animal model is the ultimate key factor to test the efficacy of therapeutic vaccines that boost the level and the quality of sensory ganglia-resident CD8+ T cells against spontaneous herpes reactivation from sensory neurons, yet its relevance has been often overlooked. Herpes vaccinologists are hesitant about using mouse as a model in pre-clinical development of therapeutic vaccines because they do not adequately mimic spontaneous viral shedding or recurrent symptomatic diseases, as occurs in human. Alternatives to mouse models are rabbits and guinea pigs in which reactivation arise spontaneously with clinical features relevant to human disease. However, while rabbits and guinea pigs develop spontaneous HSV reactivation and recurrent ocular and genital disease none of them can mount CD8+ T cell responses specific to Human Leukocyte Antigen- (HLA-) restricted epitopes. In this review, we discuss the advantages and limitations of these animal models and describe a novel “humanized” HLA transgenic rabbit, which shows spontaneous HSV-1 reactivation, recurrent ocular disease and mounts CD8+ T cell responses to HLA-restricted epitopes. Adequate investments are needed to develop reliable preclinical animal models, such as HLA class I and class II double transgenic rabbits and guinea pigs to balance the ethical and financial concerns associated with the rising number of unsuccessful clinical trials for therapeutic vaccine formulations tested in unreliable mouse models. PMID:21718746

  20. Weight Loss and Reduced Body Temperature Determine Humane Endpoints in a Mouse Model of Ocular Herpesvirus Infection

    PubMed Central

    Hankenson, F Claire; Ruskoski, Nicholas; van Saun, Marjorie; Ying, Gui-Shuang; Oh, Jaewook; Fraser, Nigel W

    2013-01-01

    Herpes simplex virus (HSV) has been studied in well-established mouse models to generate latently infected animals for investigations into viral pathogenesis, latency mechanisms, and reactivation. Mice exhibit clinical signs of debilitating infection, during which time they may become severely ill before recovery or die spontaneously. Because the cohort of mice that does survive provides valuable data on latency, there is keen interest in developing methodologies for earlier detection and treatment of severe disease to ultimately increase survival rates. Here, BALB/c mice were inoculated ocularly with either a wildtype (LAT+) or mutant (LAT–) strain of HSV1. Mice were monitored daily through day 30 after infection; trigeminal ganglia were harvested at day 60 to assess viral DNA load. Cages were provided with nesting material, and fluid supplementation was administered to mice with body temperatures of 35 °C or lower, as measured by subcutaneous microchip thermometry. The results showed that infected mice with temperatures less than 34.5 °C did not recover to normothermia and were euthanized or spontaneously died, regardless of infective viral strain. By using a combination of criteria including body temperature (less than 34.5 °C) and weight loss (more than 0.05 g daily) for removal of animals from the study, approximately 98% of mice that died spontaneously could have been euthanized prior to death, without concern of potential recovery to the experimental endpoint (100% specificity). Frequent monitoring of alterations to general wellbeing, body temperature, and weight was crucial for establishing humane endpoints in this ocular HSV model. PMID:23849410

  1. Weight loss and reduced body temperature determine humane endpoints in a mouse model of ocular herpesvirus infection.

    PubMed

    Hankenson, F Claire; Ruskoski, Nicholas; van Saun, Marjorie; Ying, Gui-Shuang; Oh, Jaewook; Fraser, Nigel W

    2013-01-01

    Herpes simplex virus (HSV) has been studied in well-established mouse models to generate latently infected animals for investigations into viral pathogenesis, latency mechanisms, and reactivation. Mice exhibit clinical signs of debilitating infection, during which time they may become severely ill before recovery or die spontaneously. Because the cohort of mice that does survive provides valuable data on latency, there is keen interest in developing methodologies for earlier detection and treatment of severe disease to ultimately increase survival rates. Here, BALB/c mice were inoculated ocularly with either a wildtype (LAT(+)) or mutant (LAT(-)) strain of HSV1. Mice were monitored daily through day 30 after infection; trigeminal ganglia were harvested at day 60 to assess viral DNA load. Cages were provided with nesting material, and fluid supplementation was administered to mice with body temperatures of 35 °C or lower, as measured by subcutaneous microchip thermometry. The results showed that infected mice with temperatures less than 34.5 °C did not recover to normothermia and were euthanized or spontaneously died, regardless of infective viral strain. By using a combination of criteria including body temperature (less than 34.5 °C) and weight loss (more than 0.05 g daily) for removal of animals from the study, approximately 98% of mice that died spontaneously could have been euthanized prior to death, without concern of potential recovery to the experimental endpoint (100% specificity). Frequent monitoring of alterations to general wellbeing, body temperature, and weight was crucial for establishing humane endpoints in this ocular HSV model.

  2. Application of Hydrogel Template Strategy in Ocular Drug Delivery.

    PubMed

    Shin, Crystal S; Marcano, Daniela C; Park, Kinam; Acharya, Ghanashyam

    2017-01-01

    The hydrogel template strategy was previously developed to fabricate homogeneous polymeric microparticles. Here, we demonstrate the versatility of the hydrogel template strategy for the development of nanowafer-based ocular drug delivery systems. We describe the fabrication of dexamethasone-loaded nanowafers using polyvinyl alcohol and the instillation of a nanowafer on a mouse eye. The nanowafer, a small circular disk, is placed on the ocular surface, and it releases a drug as it slowly dissolves over time, thus increasing ocular bioavailability and enhancing efficiency to treat eye injuries.

  3. What We Have Learned from Animal Models of Dry Eye

    PubMed Central

    Stern, Michael E.; Pflugfelder, Stephen C.

    2017-01-01

    Animal models have proved valuable to investigate the pathogenesis of dry eye disease, identify therapeutic targets and the efficacy of candidate therapeutics for dry eye. Pharmacological inhibition of the lacrimal functional unit and exposure of the mouse eye to desiccating stress was found to activate innate immune pathways, promote dendritic cell maturation and initiate an adaptive T cell response to ocular surface antigens. Disease relevant mediators and pathways have been identified through use of genetically altered mice, specific inhibitors and adoptive transfer of desiccating stress primed CD4+ T cells to naïve recipients. Findings from mouse models have elucidated the mechanism of action of cyclosporine A and the rationale for developing lifitegrast, the two currently approved therapeutics in the US. PMID:28282318

  4. Test systems for measuring ocular parameters and visual function in mice.

    PubMed

    Schaeffel, Frank

    2008-05-01

    New techniques are described to measure refractive state, pupil responses, corneal curvature, ocular dimensions and spatial vision in mice. These variables are important for studies on myopia development in mice, but they are also valuable for phenotyping mouse mutants and for pharmacological studies.

  5. Clusterin in the eye: An old dog with new tricks at the ocular surface.

    PubMed

    Fini, M Elizabeth; Bauskar, Aditi; Jeong, Shinwu; Wilson, Mark R

    2016-06-01

    The multifunctional protein clusterin (CLU) was first described in 1983 as a secreted glycoprotein present in ram rete testis fluid that enhanced aggregation ('clustering') of a variety of cells in vitro. It was also independently discovered in a number of other systems. By the early 1990s, CLU was known under many names and its expression had been demonstrated throughout the body, including in the eye. Its homeostatic activities in proteostasis, cytoprotection, and anti-inflammation have been well documented, however its roles in health and disease are still not well understood. CLU is prominent at fluid-tissue interfaces, and in 1996 it was demonstrated to be the most highly expressed transcript in the human cornea, the protein product being localized to the apical layers of the mucosal epithelia of the cornea and conjunctiva. CLU protein is also present in human tears. Using a preclinical mouse model for desiccating stress that mimics human dry eye disease, the authors recently demonstrated that CLU prevents and ameliorates ocular surface barrier disruption by a remarkable sealing mechanism dependent on attainment of a critical all-or-none concentration in the tears. When the CLU level drops below the critical all-or-none threshold, the barrier becomes vulnerable to desiccating stress. CLU binds selectively to the ocular surface subjected to desiccating stress in vivo, and in vitro to LGALS3 (galectin-3), a key barrier component. Positioned in this way, CLU not only physically seals the ocular surface barrier, but it also protects the barrier cells and prevents further damage to barrier structure. CLU depletion from the ocular surface epithelia is seen in a variety of inflammatory conditions in humans and mice that lead to squamous metaplasia and a keratinized epithelium. This suggests that CLU might have a specific role in maintaining mucosal epithelial differentiation, an idea that can now be tested using the mouse model for desiccating stress. Most excitingly, the new findings suggest that CLU could serve as a novel biotherapeutic for dry eye disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. A kind of rd1 mouse in C57BL/6J mice from crossing with a mutated Kunming mouse.

    PubMed

    Yan, Weiming; Yao, Lu; Liu, Wei; Sun, Kai; Zhang, ZuoMing; Zhang, Lei

    2017-04-05

    We occasionally discovered a mouse with spontaneous retinitis pigmentosa (RP) from Kunming (KM) mouse breeding colony, with no obvious waveforms in ERG recordings. The aim of this study is to cross the spontaneously hereditary retinal degeneration mice (temporarily designated as KM/rd mice) derived from KM mice with C57BL/6J mice to establish a congenic inbred strain (temporarily designated as the B6/rd mice), and study the ocular phenotype and genotype of the mice. Fundus photography, tissue morphology, electroretinography (ERG), qRT-PCR, western blot and DNA sequence analysis were performed to observe the ocular phenotype and genotype of KM/rd and B6/rd mice. The fundus photography showed progressive retinal vascular degeneration and depigmentation in KM/rd and B6/rd mice. Compared to wild-type mice, the histological analysis revealed that the outer nuclear layer of the mutated mice was significantly reduced at 14days post born (P14), and almost disappeared by P21. No obvious waveforms were detected at P14 and P21 in the ERG from KM/rd and B6/rd mice. qRT-PCR results showed that the expression quantities of mRNA of pde6b gene in KM/rd and B6/rd mice were significantly lower compared with those of wild-type controls at P21. Western blot results confirmed an abnormal protein expression of pde6b gene in KM/rd and B6/rd mice with no protein products, while there was an obvious protein expression in wild-type mice. The nonsense mutation in exon 7 (a mutation that changes the codon 347 from TAC to TAA) in the pde6b gene of KM/rd and B6/rd mice was identified by genomic DNA sequence analysis. All these findings revealed that the ocular phenotype and genotype of KM/rd and B6/rd mice were similar to those of rd1 mice, which indicates that KM/rd and B6/rd mice can be used as an RP mouse model. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. A Pseudomonas aeruginosa strain isolated from a contact lens-induced acute red eye (CLARE) is protease-deficient.

    PubMed

    Estrellas, P S; Alionte, L G; Hobden, J A

    2000-03-01

    Pseudomonas aeruginosa proteases are thought to be important virulence factors in the pathogenesis of corneal disease. This study examined protease production from two strains of P. aeruginosa responsible for two very distinct clinical diseases: strain Paer1, isolated from a Contact Lens-induced Acute Red Eye (CLARE), and strain KEI 1025, isolated from a corneal ulcer. Strains were compared to a laboratory strain (ATCC 19660) known to produce severe keratitis in experimentally infected mice for protease production and for ocular virulence. Protease production was examined with colorimetric assays, gelatin zymography and western blots. Elastase A activity was quantitated with a staphylolytic assay. Ocular virulence was examined using a mouse scratch model of keratitis. In contrast to strains KEI 1025 or ATCC 19660, Paer1 was unable to produce enzymatically active elastase A, elastase, and protease IV. All three strains produced active alkaline protease. Strains KEI 1025 and ATCC 19660 produced a fulminant keratitis in mice whereas Paer1 produced a mild transient infection. Restoration of elastase activity in Paer1 via genetic complementation did not result in a virulent phenotype. Co-infection of mouse eyes with strains Paer1 and ATCC 19660 resulted in the eventual loss of Paer1 from corneal tissue. These studies suggest that P. aeruginosa elastase A and/or protease IV, but not alkaline protease or elastase, contribute to the ocular virulence of this organism.

  8. Topical ocular sodium 4-phenylbutyrate rescues glaucoma in a myocilin mouse model of primary open-angle glaucoma.

    PubMed

    Zode, Gulab S; Bugge, Kevin E; Mohan, Kabhilan; Grozdanic, Sinisa D; Peters, Joseph C; Koehn, Demelza R; Anderson, Michael G; Kardon, Randy H; Stone, Edwin M; Sheffield, Val C

    2012-03-01

    Mutations in the myocilin gene (MYOC) are the most common known genetic cause of primary open-angle glaucoma (POAG). The purpose of this study was to determine whether topical ocular sodium 4-phenylbutyrate (PBA) treatment rescues glaucoma phenotypes in a mouse model of myocilin-associated glaucoma (Tg-MYOC(Y437H) mice). Tg-MYOC(Y437H) mice were treated with PBA eye drops (n = 10) or sterile PBS (n = 8) twice daily for 5 months. Long-term safety and effectiveness of topical PBA (0.2%) on glaucoma phenotypes were examined by measuring intraocular pressure (IOP) and pattern ERG (PERG), performing slit lamp evaluation of the anterior chamber, analyzing histologic sections of the anterior segment, and comparing myocilin levels in the aqueous humor and trabecular meshwork of Tg-MYOC(Y437H) mice. Tg-MYOC(Y437H) mice developed elevated IOP at 3 months of age when compared with wild-type (WT) littermates (n = 24; P < 0.0001). Topical PBA did not alter IOP in WT mice. However, it significantly reduced elevated IOP in Tg-MYOC(Y437H) mice to the level of WT mice. Topical PBA-treated Tg-MYOC(Y437H) mice also preserved PERG amplitudes compared with vehicle-treated Tg-MYOC(Y437H) mice. No structural abnormalities were observed in the anterior chamber of PBA-treated WT and Tg-MYOC(Y437H) mice. Analysis of the myocilin in the aqueous humor and TM revealed that PBA significantly improved the secretion of myocilin and reduced myocilin accumulation as well as endoplasmic reticulum (ER) stress in the TM of Tg-MYOC(Y437H) mice. Furthermore, topical PBA reduced IOP elevated by induction of ER stress via tunicamycin injections in WT mice. Topical ocular PBA reduces glaucomatous phenotypes in Tg-MYOC(Y437H) mice, most likely by reducing myocilin accumulation and ER stress in the TM. Topical ocular PBA could become a novel treatment for POAG patients with myocilin mutations.

  9. In vivo retinal and choroidal hypoxia imaging using a novel activatable hypoxia-selective near-infrared fluorescent probe.

    PubMed

    Fukuda, Shinichi; Okuda, Kensuke; Kishino, Genichiro; Hoshi, Sujin; Kawano, Itsuki; Fukuda, Masahiro; Yamashita, Toshiharu; Beheregaray, Simone; Nagano, Masumi; Ohneda, Osamu; Nagasawa, Hideko; Oshika, Tetsuro

    2016-12-01

    Retinal hypoxia plays a crucial role in ocular neovascular diseases, such as diabetic retinopathy, retinopathy of prematurity, and retinal vascular occlusion. Fluorescein angiography is useful for identifying the hypoxia extent by detecting non-perfusion areas or neovascularization, but its ability to detect early stages of hypoxia is limited. Recently, in vivo fluorescent probes for detecting hypoxia have been developed; however, these have not been extensively applied in ophthalmology. We evaluated whether a novel donor-excited photo-induced electron transfer (d-PeT) system based on an activatable hypoxia-selective near-infrared fluorescent (NIRF) probe (GPU-327) responds to both mild and severe hypoxia in various ocular ischemic diseases animal models. The ocular fundus examination offers unique opportunities for direct observation of the retina through the transparent cornea and lens. After injection of GPU-327 in various ocular hypoxic diseases of mouse and rabbit models, NIRF imaging in the ocular fundus can be performed noninvasively and easily by using commercially available fundus cameras. To investigate the safety of GPU-327, electroretinograms were also recorded after GPU-327 and PBS injection. Fluorescence of GPU-327 increased under mild hypoxic conditions in vitro. GPU-327 also yielded excellent signal-to-noise ratio without washing out in vivo experiments. By using near-infrared region, GPU-327 enables imaging of deeper ischemia, such as choroidal circulation. Additionally, from an electroretinogram, GPU-327 did not cause neurotoxicity. GPU-327 identified hypoxic area both in vivo and in vitro.

  10. Using Genetic Mouse Models to Gain Insight into Glaucoma: Past Results and Future Possibilities

    PubMed Central

    Fernandes, Kimberly A.; Harder, Jeffrey M.; Williams, Pete A.; Rausch, Rebecca L.; Kiernan, Amy E.; Nair, K. Saidas; Anderson, Michael G.; John, Simon W.; Howell, Gareth R.; Libby, Richard T.

    2015-01-01

    While all forms of glaucoma are characterized by a specific pattern of retinal ganglion cell death, they are clinically divided into several distinct subclasses, including normal tension glaucoma, primary open angle glaucoma, congenital glaucoma, and secondary glaucoma. For each type of glaucoma there are likely numerous molecular pathways that control susceptibility to the disease. Given this complexity, a single animal model will never precisely model all aspects of all the different types of human glaucoma. Therefore, multiple animal models have been utilized to study glaucoma but more are needed. Because of the powerful genetic tools available to use in the laboratory mouse, it has proven to be a highly useful mammalian system for studying the pathophysiology of human disease. The similarity between human and mouse eyes coupled with the ability to use a combination of advanced cell biological and genetic tools in mice have led to a large increase in the number of studies using mice to model specific glaucoma phenotypes. Over the last decade, numerous new mouse models and genetic tools have emerged, providing important insight into the cell biology and genetics of glaucoma. In this review, we describe available mouse genetic models that can be used to study glaucoma-relevant disease/pathobiology. Furthermore, we discuss how these models have been used to gain insights into ocular hypertension (a major risk factor for glaucoma) and glaucomatous retinal ganglion cell death. Finally, the potential for developing new mouse models and using advanced genetic tools and resources for studying glaucoma are discussed. PMID:26116903

  11. [Neoretinal antigen expression: a comparison of anatomical and clinical features of a murine uveoretinitis model].

    PubMed

    Terrada, C; Pâques, M; Fisson, S; De Kozak, Y; Klatzmann, D; Salomon, B; LeHoang, P; Bodaghi, B

    2008-02-01

    Uveitis is an inflammation involving the retina. The antigens targeted by the experimental models are located in the pigmentary epithelium-photoreceptor complex. To gain insights into the variations in topographic expression of the antigen in the retina, we studied a new mouse model. and methods: Stable retinal expression of the influenza virus hemagglutinin (HA) was obtained after intravitreal or subretinal injection of recombinant adeno-associated virus carrying HA (AAV-HA). One month later, we transferred HA-specific T cells, followed by a subcutaneous immunization of the cognate antigen emulsified in CFA. The animals were clinically examined with a slit lamp biomicroscope. Infiltration of donor cells was detected by immunostaining on retina flatmounts with anti-Thy-1.1 antibody, and infiltrating cells were studied using FACS analysis. Whatever the location of the HA expression, intraocular inflammation was clinically and histologically detected in all animals, between 10 and 15 days after immunization with HA. Lesions were identified with histopathological analysis. The ocular infiltrate was mostly composed of macrophages and HA-specific T cells in different proportions. The topographic variations of targeted ocular antigens do not seem to modify the development of inflammatory reactions in our model. By targeting different antigen-presenting cells, ocular infiltrating cells are different.

  12. Classical dendritic cells mediate fibrosis directly via the retinoic acid pathway in severe eye allergy

    PubMed Central

    Ahadome, Sarah D.; Mathew, Rose; Reyes, Nancy J.; Mettu, Priyatham S.; Cousins, Scott W.; Calder, Virginia L.; Saban, Daniel R.

    2016-01-01

    Fibrosis is a shared end-stage pathway to lung, liver, and heart failure. In the ocular mucosa (conjunctiva), fibrosis leads to blindness in trachoma, pemphigoid, and allergy. The indirect fibrogenic role of DCs via T cell activation and inflammatory cell recruitment is well documented. However, here we demonstrate that DCs can directly induce fibrosis. In the mouse model of allergic eye disease (AED), classical CD11b+ DCs in the ocular mucosa showed increased activity of aldehyde dehydrogenase (ALDH), the enzyme required for retinoic acid synthesis. In vitro, CD11b+ DC–derived ALDH was associated with 9-cis-retinoic acid ligation to retinoid x receptor (RXR), which induced conjunctival fibroblast activation. In vivo, stimulating RXR led to rapid onset of ocular mucosal fibrosis, whereas inhibiting ALDH activity in DCs or selectively depleting DCs markedly reduced fibrosis. Collectively, these data reveal a profibrotic ALDH-dependent pathway by DCs and uncover a role for DC retinoid metabolism. PMID:27595139

  13. Effects of Exposure to Ozone on the Ocular Surface in an Experimental Model of Allergic Conjunctivitis

    PubMed Central

    Lee, Hun; Kim, Eung Kweon; Kim, Hee Young; Kim, Tae-im

    2017-01-01

    Based on previous findings that ozone can induce an inflammatory response in the ocular surface of an animal model and in cultured human conjunctival epithelial cells, we investigated whether exposure to ozone exacerbates symptoms of allergic conjunctivitis. We evaluated the effects of exposure to ozone on conjunctival chemosis, conjunctival injection, corneal and conjunctival fluorescein staining scores, production of inflammatory cytokines in tears, and aqueous tear production in a mouse model of allergic conjunctivitis. To validate our in vivo results, we used interleukin (IL)-1α-pretreated conjunctival epithelial cells as an in vitro substitute for the mouse model. We evaluated whether exposure to ozone increased the inflammatory response and altered oxidative status and mitochondrial function in IL-1α-pretreated conjunctival epithelial cells. In the in vivo study, ozone induced increases in conjunctival chemosis, conjunctival injection, corneal and conjunctival fluorescein staining scores, and production of inflammatory cytokines, accompanied by a decrease in tear volume. In the in vitro study, exposure to ozone led to additional increases in IL-6 and tumor necrosis factor-α mRNA levels, which were already induced by treatment with IL-1α. Ozone did not induce any changes in cell viability. Pretreatment with IL-1α increased the expression of manganese superoxide dismutase, and exposure to ozone led to additional increments in the expression of this antioxidant enzyme. Ozone did not induce any changes in mitochondrial activity or expression of mitochondrial enzymes and proteins related to mitochondrial function, with the exception of phosphor-mammalian target of rapamycin. Treatment with butylated hydroxyanisole, a free radical scavenger, attenuated the ozone-induced increases in IL-6 expression in IL-1α-pretreated conjunctival epithelial cells. Therefore, we conclude that exposure to ozone exacerbates the detrimental effects on the integrity of the ocular surface caused by conjunctival allergic reactions, and further increases the inflammatory response in IL-1α-pretreated conjunctival epithelial cells. PMID:28046113

  14. Viral infection of the lungs through the eye.

    PubMed

    Bitko, Vira; Musiyenko, Alla; Barik, Sailen

    2007-01-01

    Respiratory syncytial virus (RSV) is the foremost respiratory pathogen in newborns and claims millions of lives annually. However, there has been no methodical study of the pathway(s) of entry of RSV or its interaction with nonrespiratory tissues. We and others have recently established a significant association between allergic conjunctivitis and the presence of RSV in the eye. Here we adopt a BALB/c mouse model and demonstrate that when instilled in the live murine eye, RSV not only replicated robustly in the eye but also migrated to the lung and produced a respiratory disease that is indistinguishable from the standard, nasally acquired RSV disease. Ocularly applied synthetic anti-RSV small interfering RNA prevented infection of the eye as well as the lung. RSV infection of the eye activated a plethora of ocular cytokines and chemokines with profound relevance to inflammation of the eye. Anticytokine treatments in the eye reduced ocular inflammation but had no effect on viral growth in both eye and lung, demonstrating a role of the cytokine response in ocular pathology. These results establish the eye as a major gateway of respiratory infection and a respiratory virus as a bona fide eye pathogen, thus offering novel intervention and treatment options.

  15. Characterization of ROP18 alleles in human toxoplasmosis.

    PubMed

    Sánchez, Víctor; de-la-Torre, Alejandra; Gómez-Marín, Jorge Enrique

    2014-04-01

    The role of the virulent gene ROP18 polymorphisms is not known in human toxoplasmosis. A total of 320 clinical samples were analyzed. In samples positive for ROP18 gene, we determined by an allele specific PCR, if patients got the upstream insertion positive ROP18 sequence Toxoplasma strain (mouse avirulent strain) or the upstream insertion negative ROP18 sequence Toxoplasma strain (mouse virulent strain). We designed an ELISA assay for antibodies against ROP18 derived peptides from the three major clonal lineages of Toxoplasma. 20 clinical samples were of quality for ROP18 allele analysis. In patients with ocular toxoplasmosis, a higher inflammatory reaction on eye was associated to a PCR negative result for the upstream region of ROP18. 23.3%, 33% and 16.6% of serums from individuals with ocular toxoplasmosis were positive for type I, type II and type III ROP18 derived peptides, respectively but this assay was affected by cross reaction. The absence of Toxoplasma ROP18 promoter insertion sequence in ocular toxoplasmosis was correlated with severe ocular inflammatory response. Determination of antibodies against ROP18 protein was not useful for serotyping in human toxoplasmosis. © 2013.

  16. Pathogenesis, Transmissibility, and Ocular Tropism of a Highly Pathogenic Avian Influenza A (H7N3) Virus Associated with Human Conjunctivitis

    PubMed Central

    Belser, Jessica A.; Davis, C. Todd; Balish, Amanda; Edwards, Lindsay E.; Zeng, Hui; Maines, Taronna R.; Gustin, Kortney M.; Martínez, Irma López; Fasce, Rodrigo; Cox, Nancy J.; Katz, Jacqueline M.

    2013-01-01

    H7 subtype influenza A viruses, responsible for numerous outbreaks in land-based poultry in Europe and the Americas, have caused over 100 cases of confirmed or presumed human infection over the last decade. The emergence of a highly pathogenic avian influenza H7N3 virus in poultry throughout the state of Jalisco, Mexico, resulting in two cases of human infection, prompted us to examine the virulence of this virus (A/Mexico/InDRE7218/2012 [MX/7218]) and related avian H7 subtype viruses in mouse and ferret models. Several high- and low-pathogenicity H7N3 and H7N9 viruses replicated efficiently in the respiratory tract of mice without prior adaptation following intranasal inoculation, but only MX/7218 virus caused lethal disease in this species. H7N3 and H7N9 viruses were also detected in the mouse eye following ocular inoculation. Virus from both H7N3 and H7N9 subtypes replicated efficiently in the upper and lower respiratory tracts of ferrets; however, only MX/7218 virus infection caused clinical signs and symptoms and was capable of transmission to naive ferrets in a direct-contact model. Similar to other highly pathogenic H7 viruses, MX/7218 replicated to high titers in human bronchial epithelial cells, yet it downregulated numerous genes related to NF-κB-mediated signaling transduction. These findings indicate that the recently isolated North American lineage H7 subtype virus associated with human conjunctivitis is capable of causing severe disease in mice and spreading to naive-contact ferrets, while concurrently retaining the ability to replicate within ocular tissue and allowing the eye to serve as a portal of entry. PMID:23487452

  17. Age-Dependent Ocular Dominance Plasticity in Adult Mice

    PubMed Central

    Lehmann, Konrad; Löwel, Siegrid

    2008-01-01

    Background Short monocular deprivation (4 days) induces a shift in the ocular dominance of binocular neurons in the juvenile mouse visual cortex but is ineffective in adults. Recently, it has been shown that an ocular dominance shift can still be elicited in young adults (around 90 days of age) by longer periods of deprivation (7 days). Whether the same is true also for fully mature animals is not yet known. Methodology/Principal Findings We therefore studied the effects of different periods of monocular deprivation (4, 7, 14 days) on ocular dominance in C57Bl/6 mice of different ages (25 days, 90–100 days, 109–158 days, 208–230 days) using optical imaging of intrinsic signals. In addition, we used a virtual optomotor system to monitor visual acuity of the open eye in the same animals during deprivation. We observed that ocular dominance plasticity after 7 days of monocular deprivation was pronounced in young adult mice (90–100 days) but significantly weaker already in the next age group (109–158 days). In animals older than 208 days, ocular dominance plasticity was absent even after 14 days of monocular deprivation. Visual acuity of the open eye increased in all age groups, but this interocular plasticity also declined with age, although to a much lesser degree than the optically detected ocular dominance shift. Conclusions/Significance These data indicate that there is an age-dependence of both ocular dominance plasticity and the enhancement of vision after monocular deprivation in mice: ocular dominance plasticity in binocular visual cortex is most pronounced in young animals, reduced but present in adolescence and absent in fully mature animals older than 110 days of age. Mice are thus not basically different in ocular dominance plasticity from cats and monkeys which is an absolutely essential prerequisite for their use as valid model systems of human visual disorders. PMID:18769674

  18. Altered Mucin and Glycoprotein Expression in Dry Eye Disease.

    PubMed

    Stephens, Denise N; McNamara, Nancy A

    2015-09-01

    Mucins are among the many important constituents of a healthy tear film. Mucins secreted and/or associated with conjunctival goblet cells, ocular mucosal epithelial cells, and the lacrimal gland must work together to create a stable tear film. Although many studies have explored the mechanism(s) whereby mucins maintain and protect the ocular surface, the effects of dry eye on the structure and function of ocular mucins are unclear. Here, we summarize current findings regarding ocular mucins and how they are altered in dry eye. We performed a literature review of studies exploring the expression of mucins produced and/or associated with tissues that comprise the lacrimal functional unit and how they are altered in dry eye. We also summarize new insights on the immune-mediated effects of aqueous tear deficiency on ocular surface mucins that we discovered using a mouse model of dry eye. Although consistent decreases in MUC5AC and altered expression of membrane-bound mucins have been noted in both Sjögren and non-Sjögren dry eye, many reports of altered mucins in dry eye are contradictory. Mechanistic studies, including our own, suggest that changes in the glycosylation of mucins rather than the proteins themselves may occur as the direct result of local inflammation induced by proinflammatory mediators, such as interleukin-1. Altered expression of ocular mucins in dry eye varies considerably from study to study, likely attributed to inherent difficulties in analyzing small-volume tear samples, as well as differences in tear collection methods and disease severity in dry eye cohorts. To better define the functional role of ocular mucin glycosylation in the pathogenesis of dry eye disease, we propose genomic and proteomic studies along with biological pathway analysis to reveal novel avenues for exploration.

  19. Increased IL-27/IL-27R expression in association with the immunopathology of murine ocular toxoplasmosis.

    PubMed

    Tong, Xinxin; Chen, Shengjie; Zheng, Huanqin; Huang, Shiguang; Lu, Fangli

    2018-05-19

    Interleukin 27 (IL-27) is a member of the IL-6/IL-12 family, and IL-27 receptor (IL-27R) consists of WSX-1 (the IL-27Rα subunit) and the signal-transducing subunit gp130. Human and mouse mast cells (MCs) express the IL-27R. To explore the expressions of IL-27/IL-27R subunits (WSX-1 and gp130) during acute ocular toxoplasmosis (OT), we established mouse model by intraocular injection of 500 Toxoplasma gondii RH strain tachyzoites. Histopathological changes were analyzed, MCs were counted by toluidine blue staining, and tryptase + /IL-27 + MCs were examined by immunofluorescence double-staining in the eyes and cervical lymph nodes (CLNs) of T. gondii-infected mice. The mRNA expressions of IL-27p28, WSX-1, gp130, and tachyzoite specific surface antigen 1 (SAG1) in the eyes and CLNs of T. gondii-infected mice, and the expressions of WSX-1 and gp130 in the murine mastocytoma cell line P815 infected with T. gondii tachyzoites in vitro were examined by using quantitative real-time reverse transcription-polymerase chain reaction. Our results showed that, after T. gondii infection, severe histopathological changes, increased numbers of total MCs and degranulated MCs, elevated expressions of IL-27p28, WSX-1, and gp130 were found in the eyes and CLNs, and significant correlations between the levels of IL-27 and SAG1 existed in the eyes and CLNs of T. gondii-infected mice. In addition, increased levels of WSX-1 and gp130 were examined in T. gondii-infected P815 cells. Our data suggested that IL-27/IL-27R expression induced by T. gondii infection may regulate MC-mediated immune response during acute OT in mouse model.

  20. Dynamic characteristics of otolith ocular response during counter rotation about dual yaw axes in mice

    PubMed Central

    Shimizu, Naoki; Wood, Scott; Kushiro, Keisuke; Yanai, Shuichi; Perachio, Adrian; Makishima, Tomoko

    2014-01-01

    The central vestibular system plays an important role in higher neural functions such as self-motion perception and spatial orientation. Its ability to store head angular velocity is called velocity storage mechanism (VSM), which has been thoroughly investigated across a wide range of species. However, little is known about the mouse VSM, because the mouse lacks typical ocular responses such as optokinetic after nystagmus or a dominant time constant of vestibulo-ocular reflex for which the VSM is critical. Experiments were conducted to examine the otolith-driven eye movements related to the VSM and verify its characteristics in mice. We used a novel approach to generate a similar rotating vector as a traditional off-vertical axis rotation (OVAR) but with a larger resultant gravito-inertial force (>1 g) by using counter rotation centrifugation. Similar to results previously described in other animals during OVAR, two components of eye movements were induced, i.e. a sinusoidal modulatory eye movement (modulation component) on which a unidirectional nystagmaus (bias component) was superimposed. Each response is considered to derive from different mechanisms; modulations arise predominantly through linear vestibulo-ocular reflex, whereas for the bias, the VSM is responsible. Data indicate that the mouse also has a well-developed vestibular system through otoliths inputs, showing its highly conserved nature across mammalian species. On the other hand, to reach a plateau state of bias, a higher frequency rotation or a larger gravito-inertial force was considered to be necessary than other larger animals. Compared with modulation, the bias had a more variable profile, suggesting an inherent complexity of higher-order neural processes in the brain. Our data provides the basis for further study of the central vestibular system in mice, however, the underlying individual variability should be taken into consideration. PMID:25446357

  1. Fluorescent scanning laser ophthalmoscopy for cellular resolution in vivo mouse retinal imaging: benefits and drawbacks of implementing adaptive optics (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zhang, Pengfei; Goswami, Mayank; Pugh, Edward N.; Zawadzki, Robert J.

    2016-03-01

    Scanning Laser Ophthalmoscopy (SLO) is a very important imaging tool in ophthalmology research. By combing with Adaptive Optics (AO) technique, AO-SLO can correct for ocular aberrations resulting in cellular level resolution, allowing longitudinal studies of single cells morphology in the living eyes. The numerical aperture (NA) sets the optical resolution that can be achieve in the "classical" imaging systems. Mouse eye has more than twice NA of the human eye, thus offering theoretically higher resolution. However, in most SLO based imaging systems the imaging beam size at mouse pupil sets the NA of that instrument, while most of the AO-SLO systems use almost the full NA of the mouse eye. In this report, we first simulated the theoretical resolution that can be achieved in vivo for different imaging beam sizes (different NA), assumingtwo cases: no aberrations and aberrations based on published mouse ocular wavefront data. Then we imaged mouse retinas with our custom build SLO system using different beam sizes to compare these results with theory. Further experiments include comparison of the SLO and AO-SLO systems for imaging different type of fluorescently labeled cells (microglia, ganglion, photoreceptors, etc.). By comparing those results and taking into account systems complexity and ease of use, the benefits and drawbacks of two imaging systems will be discussed.

  2. Effect of a contact lens on mouse retinal in vivo imaging: Effective focal length changes and monochromatic aberrations.

    PubMed

    Zhang, Pengfei; Mocci, Jacopo; Wahl, Daniel J; Meleppat, Ratheesh Kumar; Manna, Suman K; Quintavalla, Martino; Muradore, Riccardo; Sarunic, Marinko V; Bonora, Stefano; Pugh, Edward N; Zawadzki, Robert J

    2018-03-28

    For in vivo mouse retinal imaging, especially with Adaptive Optics instruments, application of a contact lens is desirable, as it allows maintenance of cornea hydration and helps to prevent cataract formation during lengthy imaging sessions. However, since the refractive elements of the eye (cornea and lens) serve as the objective for most in vivo retinal imaging systems, the use of a contact lens, even with 0 Dpt. refractive power, can alter the system's optical properties. In this investigation we examined the effective focal length change and the aberrations that arise from use of a contact lens. First, focal length changes were simulated with a Zemax mouse eye model. Then ocular aberrations with and without a 0 Dpt. contact lens were measured with a Shack-Hartmann wavefront sensor (SHWS) in a customized AO-SLO system. Total RMS wavefront errors were measured for two groups of mice (14-month, and 2.5-month-old), decomposed into 66 Zernike aberration terms, and compared. These data revealed that vertical coma and spherical aberrations were increased with use of a contact lens in our system. Based on the ocular wavefront data we evaluated the effect of the contact lens on the imaging system performance as a function of the pupil size. Both RMS error and Strehl ratios were quantified for the two groups of mice, with and without contact lenses, and for different input beam sizes. These results provide information for determining optimum pupil size for retinal imaging without adaptive optics, and raise critical issues for design of mouse optical imaging systems that incorporate contact lenses. Copyright © 2018. Published by Elsevier Ltd.

  3. Functional lacrimal gland regeneration by transplantation of a bioengineered organ germ

    PubMed Central

    Hirayama, Masatoshi; Ogawa, Miho; Oshima, Masamitsu; Sekine, Yurie; Ishida, Kentaro; Yamashita, Kentaro; Ikeda, Kazutaka; Shimmura, Shigeto; Kawakita, Tetsuya; Tsubota, Kazuo; Tsuji, Takashi

    2013-01-01

    The lacrimal gland has a multifaceted role in maintaining a homeostatic microenvironment for a healthy ocular surface via tear secretion. Dry-eye disease, which is caused by lacrimal gland dysfunction, is one of the most prevalent eye diseases that cause corneal epithelial damage and results in significant loss of vision and a reduction in the quality of life. Here we demonstrate orthotopic transplantation of bioengineered lacrimal gland germs into adult mice with an extra-orbital lacrimal gland defect, a mouse model that mimics the corneal epithelial damage caused by lacrimal gland dysfunction. The bioengineered lacrimal gland germs and harderian gland germs both develop in vivo and achieve sufficient physiological functionality, including tear production in response to nervous stimulation and ocular surface protection. This study demonstrates the potential for bioengineered organ replacement to functionally restore the lacrimal gland. PMID:24084941

  4. Endothelial TWIST1 Promotes Pathological Ocular Angiogenesis

    PubMed Central

    Li, Jie; Liu, Chi-Hsiu; Sun, Ye; Gong, Yan; Fu, Zhongjie; Evans, Lucy P.; Tian, Katherine T.; Juan, Aimee M.; Hurst, Christian G.; Mammoto, Akiko; Chen, Jing

    2014-01-01

    Purpose. Pathological neovessel formation impacts many blinding vascular eye diseases. Identification of molecular signatures distinguishing pathological neovascularization from normal quiescent vessels is critical for developing new interventions. Twist-related protein 1 (TWIST1) is a transcription factor important in tumor and pulmonary angiogenesis. This study investigated the potential role of TWIST1 in modulating pathological ocular angiogenesis in mice. Methods. Twist1 expression and localization were analyzed in a mouse model of oxygen-induced retinopathy (OIR). Pathological ocular angiogenesis in Tie2-driven conditional Twist1 knockout mice were evaluated in both OIR and laser-induced choroidal neovascularization models. In addition, the effects of TWIST1 on angiogenesis and endothelial cell function were analyzed in sprouting assays of aortic rings and choroidal explants isolated from Twist1 knockout mice, and in human retinal microvascular endothelial cells treated with TWIST1 small interfering RNA (siRNA). Results. TWIST1 is highly enriched in pathological neovessels in OIR retinas. Conditional Tie2-driven depletion of Twist1 significantly suppressed pathological neovessels in OIR without impacting developmental retinal angiogenesis. In a laser-induced choroidal neovascularization model, Twist1 deficiency also resulted in significantly smaller lesions with decreased vascular leakage. In addition, loss of Twist1 significantly decreased vascular sprouting in both aortic ring and choroid explants. Knockdown of TWIST1 in endothelial cells led to dampened expression of vascular endothelial growth factor receptor 2 (VEGFR2) and decreased endothelial cell proliferation. Conclusions. Our study suggests that TWIST1 is a novel regulator of pathologic ocular angiogenesis and may represent a new molecular target for developing potential therapeutic treatments to suppress pathological neovascularization in vascular eye diseases. PMID:25414194

  5. Intra-vitreal αB crystallin fused to elastin-like polypeptide provides neuroprotection in a mouse model of age-related macular degeneration.

    PubMed

    Sreekumar, Parameswaran G; Li, Zhe; Wang, Wan; Spee, Christine; Hinton, David R; Kannan, Ram; MacKay, J Andrew

    2018-05-18

    Age-related macular degeneration (AMD) is the leading cause of severe and irreversible central vision loss, and the primary site of AMD pathology is the retinal pigment epithelium (RPE). Geographic atrophy (GA) is an advanced form of AMD characterized by extensive RPE cell loss, subsequent degeneration of photoreceptors, and thinning of retina. This report describes the protective potential of a peptide derived from the αB crystallin protein using a sodium iodate (NaIO 3 ) induced mouse model of GA. Systemic NaIO 3 challenge causes degeneration of the RPE and neighboring photoreceptors, which have similarities to retinas of GA patients. αB crystallin is an abundant ocular protein that maintains ocular clarity and retinal homeostasis, and a small peptide from this protein (mini cry) displays neuroprotective properties. To retain this peptide for longer in the vitreous, mini cry was fused to an elastin-like polypeptide (ELP). A single intra-vitreal treatment by this crySI fusion significantly inhibits retinal degeneration in comparison to free mini cry. While mini cry is cleared from the eye with a mean residence time of 0.4 days, crySI is retained with a mean residence time of 3.0 days; furthermore, fundus photography reveals evidence of retention at two weeks. Unlike the free mini cry, crySI protects the RPE against NaIO 3 challenge for at least two weeks after administration. CrySI also inhibits RPE apoptosis and caspase-3 activation and protects the retina from cell death up to 1-month post NaIO 3 challenge. These results show that intra-ocular ELP-linked peptides such as crySI hold promise as protective agents to prevent RPE atrophy and progressive retinal degeneration in AMD. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Multisegment coloboma in a case of Marfan syndrome: another possible effect of increased TGFβ signaling.

    PubMed

    LeBlanc, Shannon K; Taranath, Deepa; Morris, Scott; Barnett, Christopher P

    2014-02-01

    Colobomata are etiologically heterogeneous and may occur as an isolated defect or as a feature of a variety of single-gene disorders, chromosomal syndromes, or malformation syndromes. Although not classically associated with Marfan syndrome, colobomata have been described in several reports of Marfan syndrome, typically involving the lens and rarely involving other ocular structures. While colobomata of the lens have been described in Marfan syndrome, there are very few reports of coloboma involving other ocular structures. We report a newborn boy presenting with coloboma of the iris, lens, retina, and optic disk who was subsequently diagnosed with Marfan syndrome. Marfan syndrome is a disorder of increased TGFβ signaling, and recent work in the mouse model suggests a role for TGFβ signaling in eye development and coloboma formation, suggesting a causal association between Marfan syndrome and coloboma. Crown Copyright © 2014. Published by Mosby, Inc. All rights reserved.

  7. Dexamethasone nanowafer as an effective therapy for dry eye disease.

    PubMed

    Coursey, Terry G; Henriksson, Johanna Tukler; Marcano, Daniela C; Shin, Crystal S; Isenhart, Lucas C; Ahmed, Faheem; De Paiva, Cintia S; Pflugfelder, Stephen C; Acharya, Ghanashyam

    2015-09-10

    Dry eye disease is a major public health problem that affects millions of people worldwide. It is presently treated with artificial tear and anti-inflammatory eye drops that are generally administered several times a day and may have limited therapeutic efficacy. To improve convenience and efficacy, a dexamethasone (Dex) loaded nanowafer (Dex-NW) has been developed that can release the drug on the ocular surface for a longer duration of time than drops, during which it slowly dissolves. The Dex-NW was fabricated using carboxymethyl cellulose polymer and contains arrays of 500 nm square drug reservoirs filled with Dex. The in vivo efficacy of the Dex-NW was evaluated using an experimental mouse dry eye model. These studies demonstrated that once a day Dex-NW treatment on alternate days during a five-day treatment period was able to restore a healthy ocular surface and corneal barrier function with comparable efficacy to twice a day topically applied dexamethasone eye drop treatment. The Dex-NW was also very effective in down regulating expression of inflammatory cytokines (TNF-α, and IFN-γ), chemokines (CXCL-10 and CCL-5), and MMP-3, that are stimulated by dry eye. Despite less frequent dosing, the Dex-NW has comparable therapeutic efficacy to topically applied Dex eye drops in experimental mouse dry eye model, and these results provide a strong rationale for translation to human clinical trials for dry eye. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. A simple method for in vivo labelling of infiltrating leukocytes in the mouse retina using indocyanine green dye.

    PubMed

    Sim, Dawn A; Chu, Colin J; Selvam, Senthil; Powner, Michael B; Liyanage, Sidath; Copland, David A; Keane, Pearse A; Tufail, Adnan; Egan, Catherine A; Bainbridge, James W B; Lee, Richard W; Dick, Andrew D; Fruttiger, Marcus

    2015-11-01

    We have developed a method to label and image myeloid cells infiltrating the mouse retina and choroid in vivo, using a single depot injection of indocyanine green dye (ICG). This was demonstrated using the following ocular models of inflammation and angiogenesis: endotoxin-induced uveitis, experimental autoimmune uveoretinitis and laser-induced choroidal neovascularization model. A near-infrared scanning ophthalmoscope was used for in vivo imaging of the eye, and flow cytometry was used on blood and spleen to assess the number and phenotype of labelled cells. ICG was administered 72 h before the induction of inflammation to ensure clearance from the systemic circulation. We found that in vivo intravenous administration failed to label any leukocytes, whereas depot injection, either intraperitoneal or subcutaneous, was successful in labelling leukocytes infiltrating into the retina. Progression of inflammation in the retina could be traced over a period of 14 days following a single depot injection of ICG. Additionally, bright-field microscopy, spectrophotometry and flow cytometric analysis suggest that the predominant population of cells stained by ICG are circulating myeloid cells. The translation of this approach into clinical practice would enable visualization of immune cells in situ. This will not only provide a greater understanding of pathogenesis, monitoring and assessment of therapy in many human ocular diseases but might also open the ability to image immunity live for neurodegenerative disorders, cardiovascular disease and systemic immune-mediated disorders. © 2015. Published by The Company of Biologists Ltd.

  9. Complement factor H: spatial and temporal expression and localization in the eye.

    PubMed

    Mandal, Md Nawajes A; Ayyagari, Radha

    2006-09-01

    Complement factor H (CFH) is a component of the mammalian complement system, which regulates the alternative pathway of complement activation and protects the host cell from inappropriate complement activation. CFH is a key regulator of innate immunity, and CFH deficiency leads to membranoproliferative glomerulonephritis type II. A variation in human CFH, Y402H, has been shown to be associated with an increased risk for age-related macular degeneration. The authors describe studies on the spatial and temporal expression of the CFH gene and localization of this protein in ocular tissues to gain insight into its role in the eye. CFH expression in human and mouse tissues was studied by quantitative RT-PCR and Western blot analysis, and localization of CFH was studied by immunohistochemical analysis followed by fluorescence microscopy. In human and mouse, CFH expression was found to be similar to the highest level of expression in the liver. In ocular tissue, CFH was detected in the distalmost optic nerve (3 mm) cut from the scleral surface of the eyeball, sclera, RPE-choroid, retina, lens, and ciliary body. In mouse, Cfh expression was observed from early embryonic stages, and in the eye its expression increased with age. A significant level of CFH expression is maintained in different ocular tissues during development and aging. Sustained high levels of CFH expression in eye tissues suggest that this protein may play a role in protecting these tissues from indiscriminate complement activation and inflammatory insult.

  10. The pathology of dry eye: the interaction between the ocular surface and lacrimal glands.

    PubMed

    Stern, M E; Beuerman, R W; Fox, R I; Gao, J; Mircheff, A K; Pflugfelder, S C

    1998-11-01

    Most dry-eye symptoms result from an abnormal, nonlubricative ocular surface that increases shear forces under the eyelids and diminishes the ability of the ocular surface to respond to environmental challenges. This ocular-surface dysfunction may result from immunocompromise due to systemic autoimmune disease or may occur locally from a decrease in systemic androgen support to the lacrimal gland as seen in aging, most frequently in the menopausal female. Components of the ocular surface (cornea, conjunctiva, accessory lacrimal glands, and meibomian glands), the main lacrimal gland, and interconnecting innervation act as a functional unit. When one portion is compromised, normal lacrimal support of the ocular surface is impaired. Resulting immune-based inflammation can lead to lacrimal gland and neural dysfunction. This progression yields the OS symptoms associated with dry eye. Restoration of lacrimal function involves resolution of lymphocytic activation and inflammation. This has been demonstrated in the MRL/lpr mouse using systemic androgens or cyclosporine and in the dry-eye dog using topical cyclosporine. The efficacy of cyclosporine may be due to its immunomodulatory and antiinflammatory (phosphatase inhibitory capability) functions on the ocular surface, resulting in a normalization of nerve traffic. Although the etiologies of dry eye are varied, common to all ocular-surface disease is an underlying cytokine/receptor-mediated inflammatory process. By treating this process, it may be possible to normalize the ocular surface/lacrimal neural reflex and facilitate ocular surface healing.

  11. Spaceflight and the Mouse Eye: Results from Experiments on Shuttle Missions STS-133 and STS-135

    NASA Technical Reports Server (NTRS)

    Zanello, Susana B.; Theriot, Corey A.; Ponce, Claudia Prospero; Chevez-Barrios, Patricia

    2013-01-01

    Vision alterations associated with globe flattening, chorodial folds and papilledema, shown in some crew members returning from long duration missions. Hypothesis: Ocular neuroanatomical changes observed in the VIIP syndrome are accompanied by retinal changes at the molecular and cellular level that may affect retinal health and physiology. Objective: Investigate evidence of ocular (retinal) changes associated with spaceflight: (1) histological markers of cellular death and damage (2) molecular markers of oxidative stress (3) gene expression markers of stress

  12. In vivo 3D measurement of moxifloxacin and gatifloxacin distributions in the mouse cornea using multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Lee, Seunghun; Lee, Jun Ho; Park, Jin Hyoung; Yoon, Yeoreum; Chung, Wan Kyun; Tchah, Hungwon; Kim, Myoung Joon; Kim, Ki Hean

    2016-05-01

    Moxifloxacin and gatifloxacin are fourth-generation fluoroquinolone antibiotics used in the clinic to prevent or treat ocular infections. Their pharmacokinetics in the cornea is usually measured from extracted ocular fluids or tissues, and in vivo direct measurement is difficult. In this study multiphoton microscopy (MPM), which is a 3D optical microscopic technique based on multiphoton fluorescence, was applied to the measurement of moxifloxacin and gatifloxacin distribution in the cornea. Intrinsic multiphoton fluorescence properties of moxifloxacin and gatifloxacin were characterized, and their distributions in mouse cornea in vivo were measured by 3D MPM imaging. Both moxifloxacin and gatifloxacin had similar multiphoton spectra, while moxifloxacin had stronger fluorescence than gatifloxacin. MPM imaging of mouse cornea in vivo showed (1) moxifloxacin had good penetration through the superficial corneal epithelium, while gatifloxacin had relatively poor penetration, (2) both ophthalmic solutions had high intracellular distribution. In vivo MPM results were consistent with previous studies. This study demonstrates the feasibility of MPM as a method for in vivo direct measurement of moxifloxacin and gatifloxacin in the cornea.

  13. In vivo 3D measurement of moxifloxacin and gatifloxacin distributions in the mouse cornea using multiphoton microscopy

    PubMed Central

    Lee, Seunghun; Lee, Jun Ho; Park, Jin Hyoung; Yoon, Yeoreum; Chung, Wan Kyun; Tchah, Hungwon; Kim, Myoung Joon; Kim, Ki Hean

    2016-01-01

    Moxifloxacin and gatifloxacin are fourth-generation fluoroquinolone antibiotics used in the clinic to prevent or treat ocular infections. Their pharmacokinetics in the cornea is usually measured from extracted ocular fluids or tissues, and in vivo direct measurement is difficult. In this study multiphoton microscopy (MPM), which is a 3D optical microscopic technique based on multiphoton fluorescence, was applied to the measurement of moxifloxacin and gatifloxacin distribution in the cornea. Intrinsic multiphoton fluorescence properties of moxifloxacin and gatifloxacin were characterized, and their distributions in mouse cornea in vivo were measured by 3D MPM imaging. Both moxifloxacin and gatifloxacin had similar multiphoton spectra, while moxifloxacin had stronger fluorescence than gatifloxacin. MPM imaging of mouse cornea in vivo showed (1) moxifloxacin had good penetration through the superficial corneal epithelium, while gatifloxacin had relatively poor penetration, (2) both ophthalmic solutions had high intracellular distribution. In vivo MPM results were consistent with previous studies. This study demonstrates the feasibility of MPM as a method for in vivo direct measurement of moxifloxacin and gatifloxacin in the cornea. PMID:27138688

  14. The contribution of the sclera and lamina cribrosa to the pathogenesis of glaucoma: Diagnostic and treatment implications.

    PubMed

    Quigley, Harry A

    2015-01-01

    Glaucoma, the second most common cause of world blindness, results from loss of retinal ganglion cells (RGC). RGC die as a consequence of injury to their axons, as they pass through the transition between the environment within the eye and that of the retrobulbar optic nerve, as they course to central visual centers. At the optic nerve head (ONH), axonal transport becomes abnormal, at least in part due to the effect of strain induced by intraocular pressure (IOP) on the sclera and ONH. Animal glaucoma models provide the ability to study how alterations in ocular connective tissues affect this pathological process. New therapeutic interventions are being investigated to mitigate glaucoma blindness by modifying the remodeling of ocular tissues in glaucoma. Some genetically altered mice are resistant to glaucoma damage, while treatment of the sclera with cross-linking agents makes experimental mouse glaucoma damage worse. Inhibition of transforming growth factor β activity is strikingly protective. Treatments that alter the response of ocular connective tissues to IOP may be effective in protecting those with glaucoma from vision loss. © 2015 Elsevier B.V. All rights reserved.

  15. A Novel Single-Strand RNAi Therapeutic Agent Targeting the (Pro)renin Receptor Suppresses Ocular Inflammation.

    PubMed

    Kanda, Atsuhiro; Ishizuka, Erdal Tan; Shibata, Atsushi; Matsumoto, Takahiro; Toyofuku, Hidekazu; Noda, Kousuke; Namba, Kenichi; Ishida, Susumu

    2017-06-16

    The receptor-associated prorenin system (RAPS) refers to the pathogenic mechanism whereby prorenin binding to the (pro)renin receptor [(P)RR] dually activates the tissue renin-angiotensin system (RAS) and RAS-independent intracellular signaling. Here we revealed significant upregulation of prorenin and soluble (P)RR levels in the vitreous fluid of patients with uveitis compared to non-inflammatory controls, together with a positive correlation between these RAPS components and monocyte chemotactic protein-1 among several upregulated cytokines. Moreover, we developed a novel single-strand RNAi agent, proline-modified short hairpin RNA directed against human and mouse (P)RR [(P)RR-PshRNA], and we determined its safety and efficacy in vitro and in vivo. Application of (P)RR-PshRNA in mice caused significant amelioration of acute (uveitic) and chronic (diabetic) models of ocular inflammation with no apparent adverse effects. Our findings demonstrate the significant implication of RAPS in the pathogenesis of human uveitis and the potential usefulness of (P)RR-PshRNA as a therapeutic agent to reduce ocular inflammation. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Sjögren's syndrome associated dry eye in a mouse model is ameliorated by topical application of integrin α4 antagonist GW559090.

    PubMed

    Contreras-Ruiz, Laura; Mir, Fayaz A; Turpie, Bruce; Krauss, Achim H; Masli, Sharmila

    2016-02-01

    Sjögren's syndrome is an autoimmune disease associated with inflammation of exocrine glands with clinical manifestations of dry eye and dry mouth. Dry eye in this disease involves inflammation of the ocular surface tissues - cornea and conjunctiva. While systemic blockade of adhesion molecules has been used to treat autoimmune diseases, the purpose of this study was to determine the therapeutic efficacy of topical application of an integrin α4 adhesion molecule antagonist in a mouse model of dry eye associated with Sjögren's syndrome. To assess this spontaneously developed ocular surface inflammation related to Sjögren's syndrome in TSP-1null mice (12 wks) was evaluated. Mice were treated with topical formulations containing 0.1% dexamethasone or 30 mg/ml GW559090 or vehicle control. Corneal fluorescein staining and conjunctival goblet cell density were assessed. Real-time PCR analysis was performed to assess expression of the inflammatory marker IL-1β in the cornea and Tbet and RORγt in the draining lymph nodes. Ocular surface inflammation was detectable in TSP-1null mice (≥12 wk old), which resulted in increased corneal fluorescein staining indicative of corneal barrier disruption and reduced conjunctival goblet cell density. These changes were accompanied by increased corneal expression of IL-1β as compared to WT controls and an altered balance of Th1 (Tbet) and Th17 (RORγt) markers in the draining lymph nodes. Topically applied dexamethasone and GW559090 significantly reduced corneal fluorescein staining compared to vehicle treatment (p = 0.023 and p < 0.001, respectively). This improved corneal barrier integrity upon adhesion molecule blockade was consistent with significantly reduced corneal expression of pro-inflammatory IL-1β compared to vehicle treated groups (p < 0.05 for both treatments). Significant improvement in goblet cell density was also noted in mice treated with 0.1% dexamethasone and GW559090 (p < 0.05 for both). We conclude that similar to topical dexamethasone, topically administered GW559090 successfully improved corneal barrier integrity and inflammation in an established ocular surface disease associated with Sjögren's syndrome. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Lactoferrin Expression in Human and Murine Ocular Tissue.

    PubMed

    Rageh, Abrar A; Ferrington, Deborah A; Roehrich, Heidi; Yuan, Ching; Terluk, Marcia R; Nelson, Elizabeth F; Montezuma, Sandra R

    2016-07-01

    Lactoferrin (LF) is a multifunctional protein known to provide innate defense due to its antimicrobial and anti-inflammatory properties. In the eye, LF has been identified in the tears and vitreous humor. Its presence in other ocular tissues has not been determined. Our aim is to assess the presence of LF in the cornea, iris, retina and retinal pigment epithelium (RPE) of humans and mice. To test for the endogenous production of LF, reverse transcription polymerase chain reaction was performed in cultured human cells from the cornea and RPE and in murine tissues. To confirm LF localization in specific ocular tissue, immunohistochemistry was performed on flat mounts of cornea, retina and RPE in human donor eyes. The presence of LF was assessed by western blotting in human and mouse ocular tissue and human culture cells (cornea and RPE). To verify antibody specificity, purified human LF and transferrin (TF) were used on 1D and 2D western blots. LF gene expression was confirmed in the cornea and RPE cell cultures from humans, suggesting that LF is an endogenously produced protein. PCR results from mouse ocular tissue showed LF expression in cornea, iris, RPE, but not in retina. These results were also consistent with immunohistochemical localization of LF in human donor tissue. Antibody reaction for human LF was specific and western blotting showed its presence in the cornea, iris and RPE tissues. A faint reaction for the retina was observed but was likely due to contamination from other ocular tissues. Multiple commercially available antibodies for murine LF cross-reacted with TF, so no reliable results were obtained for murine western blot. LF is expressed in multiple eye tissues of humans and mice. This widespread expression and multifunctional activity of LF suggests that it may play an important role in protecting eye tissues from inflammation-associated diseases.

  18. Effects of WIN 55,212-2 (a synthetic cannabinoid CB1 and CB2 receptor agonist) on the anticonvulsant activity of various novel antiepileptic drugs against 6 Hz-induced psychomotor seizures in mice.

    PubMed

    Florek-Luszczki, Magdalena; Wlaz, Aleksandra; Zagaja, Mirosław; Andres-Mach, Marta; Kondrat-Wrobel, Maria W; Luszczki, Jarogniew J

    2015-03-01

    The purpose of this study was to determine the influence of WIN 55,212-2 mesylate (WIN-a non-selective cannabinoid CB1 and CB2 receptor agonist) on the anticonvulsant activity of various second- and third-generation antiepileptic drugs (i.e., gabapentin, lacosamide, levetiracetam, oxcarbazepine, pregabalin and tiagabine) in the mouse 6 Hz-induced psychomotor seizure model. Psychomotor seizures were evoked in albino Swiss mice by a current (32 mA, 6 Hz, 3s stimulus duration) delivered via ocular electrodes. Additionally, total brain antiepileptic drug concentrations were measured. Results indicate that WIN (5 mg/kg, administered i.p.) significantly potentiated the anticonvulsant action of gabapentin (P < 0.05) and levetiracetam (P < 0.01), but not that of lacosamide, oxcarbazepine, pregabalin or tiagabine in the mouse psychomotor seizure model. Moreover, WIN (2.5 mg/kg) had no significant effect on the anticonvulsant activity of all tested antiepileptic drugs in the 6 Hz test in mice. Measurement of total brain antiepileptic drug concentrations revealed that WIN (5 mg/kg) had no impact on gabapentin or levetiracetam total brain concentrations, indicating the pharmacodynamic nature of interaction between these antiepileptic drugs in the mouse 6Hz model. In conclusion, WIN in combination with gabapentin and levetiracetam exerts beneficial anticonvulsant pharmacodynamic interactions in the mouse psychomotor seizure model. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Gene Profiling in Experimental Models of Eye Growth: Clues to Myopia Pathogenesis

    PubMed Central

    Stone, Richard A.; Khurana, Tejvir S.

    2010-01-01

    To understand the complex regulatory pathways that underlie the development of refractive errors, expression profiling has evaluated gene expression in ocular tissues of well-characterized experimental models that alter postnatal eye growth and induce refractive errors. Derived from a variety of platforms (e.g. differential display, spotted microarrays or Affymetrix GeneChips), gene expression patterns are now being identified in species that include chicken, mouse and primate. Reconciling available results is hindered by varied experimental designs and analytical/statistical features. Continued application of these methods offers promise to provide the much-needed mechanistic framework to develop therapies to normalize refractive development in children. PMID:20363242

  20. In vivo biometry in the mouse eye with low coherence interferometry.

    PubMed

    Schmucker, Christine; Schaeffel, Frank

    2004-01-01

    A major drawback of the mouse model of myopia is that the ocular dimensions cannot be measured in vivo, and that histological techniques post-mortem suffer from limited resolution. We have tested the potential of a newly developed technique, optical low coherence interferometry (OLCI), adapted for short measurement distances by Meditec, Carl Zeiss, Jena, Germany (the "ACMaster"). Using this technique, ocular biometry was performed in mice with normal vision and after deprivation of form vision. Axial eye length, corneal thickness and anterior chamber depth were measured in 23 mice, aged 25-53 days, and standard deviations from repeated measurements in the same eyes, as well as intra-individual and inter-individual variability were determined in different age groups. The data were compared to those from a preceding study in which biometrical data were obtained from frozen sections [Vision Res. 44 (2004) 1857]. Refractions were measured by automated infrared photorefraction. Mice had either normal visual exposure or were monocularly deprived of form vision for 14 days. Using OLCI, axial length could be determined with an average standard deviation of 8.0 +/- 2.9 microm, corneal thickness with 3.5 +/- 2.1 microm, and anterior chamber depth with 10.6 +/- 12.3 microm. Neither axial length, nor corneal thickness, nor anterior chamber depth were significantly different in left and right eyes of individual mice that had normal visual experience (mean absolute difference between axial lengths: 17 +/- 18 microm, between corneal thickness 5.1 +/- 4.8 microm, and between anterior chamber depths 16.7 +/- 14.8 microm). Compared to the variability that was previously found in frozen sections, the variability of axial length measurements with OLCI was 2.7 times less. After two weeks of form deprivation, OLCI revealed a significant axial elongation in the occluded eyes, compared to the contralateral fellow eyes (+38 +/- 36 microm or 1.16%, p = 0.045, n = 7, paired t-test). In this sample, no accompanying myopic shift was observed in the occluded eyes but this observation is not unexpected given the inherently variable responses of mouse eye growth to visual deprivation. OLCI had sufficient resolution in living mice to detect axial length changes in vivo that were equivalent to a dioptric change of 2 D. Using this technique, it was confirmed that mouse eyes respond to form deprivation by axial elongation, similar to the eyes of other animal models. The lack of a myopic shift in this sample, despite the axial elongation, demonstrates that biometric data are particularly important when the mouse eye is used as a model to study myopia.

  1. An animal model for Norrie disease (ND): gene targeting of the mouse ND gene.

    PubMed

    Berger, W; van de Pol, D; Bächner, D; Oerlemans, F; Winkens, H; Hameister, H; Wieringa, B; Hendriks, W; Ropers, H H

    1996-01-01

    In order to elucidate the cellular and molecular processes which are involved in Norrie disease (ND), we have used gene targeting technology to generate ND mutant mice. The murine homologue of the ND gene was cloned and shown to encode a polypeptide that shares 94% of the amino acid sequence with its human counterpart. RNA in situ hybridization revealed expression in retina, brain and the olfactory bulb and epithelium of 2 week old mice. Hemizygous mice carrying a replacement mutation in exon 2 of the ND gene developed retrolental structures in the vitreous body and showed an overall disorganization of the retinal ganglion cell layer. The outer plexiform layer disappears occasionally, resulting in a juxtaposed inner and outer nuclear layer. At the same regions, the outer segments of the photoreceptor cell layer are no longer present. These ocular findings are consistent with observations in ND patients and the generated mouse line provides a faithful model for study of early pathogenic events in this severe X-linked recessive neurological disorder.

  2. Analysis of mouse models carrying the I26T and R160C substitutions in the transcriptional repressor HESX1 as models for septo-optic dysplasia and hypopituitarism

    PubMed Central

    Sajedi, Ezat; Gaston-Massuet, Carles; Signore, Massimo; Andoniadou, Cynthia L.; Kelberman, Daniel; Castro, Sandra; Etchevers, Heather C.; Gerrelli, Dianne; Dattani, Mehul T.; Martinez-Barbera, Juan Pedro

    2008-01-01

    SUMMARY A homozygous substitution of the highly conserved isoleucine at position 26 by threonine (I26T) in the transcriptional repressor HESX1 has been associated with anterior pituitary hypoplasia in a human patient, with no forebrain or eye defects. Two individuals carrying a homozygous substitution of the conserved arginine at position 160 by cysteine (R160C) manifest septo-optic dysplasia (SOD), a condition characterised by pituitary abnormalities associated with midline telencephalic structure defects and optic nerve hypoplasia. We have generated two knock-in mouse models containing either the I26T or R160C substitution in the genomic locus. Hesx1I26T/I26T embryos show pituitary defects comparable with Hesx1−/− mouse mutants, with frequent occurrence of ocular abnormalities, although the telencephalon develops normally. Hesx1R160C/R160C mutants display forebrain and pituitary defects that are identical to those observed in Hesx1−/− null mice. We also show that the expression pattern of HESX1 during early human development is very similar to that described in the mouse, suggesting that the function of HESX1 is conserved between the two species. Together, these results suggest that the I26T mutation yields a hypomorphic allele, whereas R160C produces a null allele and, consequently, a more severe phenotype in both mice and humans. PMID:19093031

  3. Effect of human milk as a treatment for dry eye syndrome in a mouse model

    PubMed Central

    Diego, Jose L.; Bidikov, Luke; Pedler, Michelle G.; Kennedy, Jeffrey B.; Quiroz-Mercado, Hugo; Gregory, Darren G.; Petrash, J. Mark

    2016-01-01

    Purpose Dry eye syndrome (DES) affects millions of people worldwide. Homeopathic remedies to treat a wide variety of ocular diseases have previously been documented in the literature, but little systematic work has been performed to validate the remedies’ efficacy using accepted laboratory models of disease. The purpose of this study was to evaluate the efficacy of human milk and nopal cactus (prickly pear), two widely used homeopathic remedies, as agents to reduce pathological markers of DES. Methods The previously described benzalkonium chloride (BAK) dry eye mouse model was used to study the efficacy of human milk and nopal cactus (prickly pear). BAK (0.2%) was applied to the mouse ocular surface twice daily to induce dry eye pathology. Fluorescein staining was used to verify that the animals had characteristic signs of DES. After induction of DES, the animals were treated with human milk (whole and fat-reduced), nopal, nopal extract derivatives, or cyclosporine four times daily for 7 days. Punctate staining and preservation of corneal epithelial thickness, measured histologically at the end of treatment, were used as indices of therapeutic efficacy. Results Treatment with BAK reduced the mean corneal epithelial thickness from 36.77±0.64 μm in the control mice to 21.29±3.2 μm. Reduction in corneal epithelial thickness was largely prevented by administration of whole milk (33.2±2.5 μm) or fat-reduced milk (36.1±1.58 μm), outcomes that were similar to treatment with cyclosporine (38.52±2.47 μm), a standard in current dry eye therapy. In contrast, crude or filtered nopal extracts were ineffective at preventing BAK-induced loss of corneal epithelial thickness (24.76±1.78 μm and 27.99±2.75 μm, respectively), as were solvents used in the extraction of nopal materials (26.53±1.46 μm for ethyl acetate, 21.59±5.87 μm for methanol). Epithelial damage, as reflected in the punctate scores, decreased over 4 days of treatment with whole and fat-reduced milk but continued to increase in eyes treated with nopal-derived materials. Conclusions Whole and fat-reduced human milk showed promising effects in the prevention of BAK-induced loss of corneal epithelial thickness and epithelial damage in this mouse model. Further studies are required to determine whether human milk may be safely used to treat dry eye in patients. PMID:27667918

  4. Effect of human milk as a treatment for dry eye syndrome in a mouse model.

    PubMed

    Diego, Jose L; Bidikov, Luke; Pedler, Michelle G; Kennedy, Jeffrey B; Quiroz-Mercado, Hugo; Gregory, Darren G; Petrash, J Mark; McCourt, Emily A

    Dry eye syndrome (DES) affects millions of people worldwide. Homeopathic remedies to treat a wide variety of ocular diseases have previously been documented in the literature, but little systematic work has been performed to validate the remedies' efficacy using accepted laboratory models of disease. The purpose of this study was to evaluate the efficacy of human milk and nopal cactus (prickly pear), two widely used homeopathic remedies, as agents to reduce pathological markers of DES. The previously described benzalkonium chloride (BAK) dry eye mouse model was used to study the efficacy of human milk and nopal cactus (prickly pear). BAK (0.2%) was applied to the mouse ocular surface twice daily to induce dry eye pathology. Fluorescein staining was used to verify that the animals had characteristic signs of DES. After induction of DES, the animals were treated with human milk (whole and fat-reduced), nopal, nopal extract derivatives, or cyclosporine four times daily for 7 days. Punctate staining and preservation of corneal epithelial thickness, measured histologically at the end of treatment, were used as indices of therapeutic efficacy. Treatment with BAK reduced the mean corneal epithelial thickness from 36.77±0.64 μm in the control mice to 21.29±3.2 μm. Reduction in corneal epithelial thickness was largely prevented by administration of whole milk (33.2±2.5 μm) or fat-reduced milk (36.1±1.58 μm), outcomes that were similar to treatment with cyclosporine (38.52±2.47 μm), a standard in current dry eye therapy. In contrast, crude or filtered nopal extracts were ineffective at preventing BAK-induced loss of corneal epithelial thickness (24.76±1.78 μm and 27.99±2.75 μm, respectively), as were solvents used in the extraction of nopal materials (26.53±1.46 μm for ethyl acetate, 21.59±5.87 μm for methanol). Epithelial damage, as reflected in the punctate scores, decreased over 4 days of treatment with whole and fat-reduced milk but continued to increase in eyes treated with nopal-derived materials. Whole and fat-reduced human milk showed promising effects in the prevention of BAK-induced loss of corneal epithelial thickness and epithelial damage in this mouse model. Further studies are required to determine whether human milk may be safely used to treat dry eye in patients.

  5. Direct comparison of administration routes for AAV8-mediated ocular gene therapy.

    PubMed

    Igarashi, Tsutomu; Miyake, Koichi; Asakawa, Nagisa; Miyake, Noriko; Shimada, Takashi; Takahashi, Hiroshi

    2013-05-01

    We recently demonstrated that direct subretinal (SR) injection of adeno-associated virus (AAV) type 8 (AAV8) into photoreceptor cells and retinal pigment epithelium (RPE) is a highly efficient model of gene delivery. The current study compared transduction efficiency and expression patterns associated with various routes of vector administration. The efficacy of intravitreal (VT), SR and subconjunctival (SC) injections for delivery of AAV8-derived vectors, i.e. those expressing luciferase (Luc) and enhanced green fluorescent protein (GFP) - AAV8/Luc and AAV8/GFP, respectively - were compared in an animal (mouse) model (n = 8 mice/group). Transduction efficiency and expression patterns were examined at post-injection weeks 1 and 2, and months 1, 3, 6 and 12 via in vivo imaging. One year after AAV injection, AAV8/Luc-treated mice exhibited stable and sustained high expression of vector in the VT and SR groups, but not in the SC group (VT:SR:SC = 3,218:2,923:115; 1 × 10(5 )photons/s). Histological analysis showed that GFP expression was observed in the inner retina of VT group mice, and in photoreceptor cells and RPE of SR group mice, whereas no GFP expression was noted in the SC group. Electroretinography (ERG) revealed adverse effects following SR delivery. Results suggest that both SR and VT injections of AAV8 vectors are useful routes for administering ocular gene therapy, and stress the importance of selecting an appropriate administration route, i.e. one that targets specific cells, for treating ocular disorders.

  6. Ocular hemodynamics and glaucoma: the role of mathematical modeling.

    PubMed

    Harris, Alon; Guidoboni, Giovanna; Arciero, Julia C; Amireskandari, Annahita; Tobe, Leslie A; Siesky, Brent A

    2013-01-01

    To discuss the role of mathematical modeling in studying ocular hemodynamics, with a focus on glaucoma. We reviewed recent literature on glaucoma, ocular blood flow, autoregulation, the optic nerve head, and the use of mathematical modeling in ocular circulation. Many studies suggest that alterations in ocular hemodynamics play a significant role in the development, progression, and incidence of glaucoma. Although there is currently a limited number of studies involving mathematical modeling of ocular blood flow, regulation, and diseases (such as glaucoma), preliminary modeling work shows the potential of mathematical models to elucidate the mechanisms that contribute most significantly to glaucoma progression. Mathematical modeling is a useful tool when used synergistically with clinical and laboratory data in the study of ocular blood flow and glaucoma. The development of models to investigate the relationship between ocular hemodynamic alterations and glaucoma progression will provide a unique and useful method for studying the pathophysiology of glaucoma.

  7. Lymphotoxin-beta receptor blockade reduces CXCL13 in lacrimal glands and improves corneal integrity in the NOD model of Sjögren's syndrome

    PubMed Central

    2011-01-01

    Introduction In Sjögren's syndrome, keratoconjunctivitis sicca (dry eye) is associated with infiltration of lacrimal glands by leukocytes and consequent losses of tear-fluid production and the integrity of the ocular surface. We investigated the effect of blockade of the lymphotoxin-beta receptor (LTBR) pathway on lacrimal-gland pathology in the NOD mouse model of Sjögren's syndrome. Methods Male NOD mice were treated for up to ten weeks with an antagonist, LTBR-Ig, or control mouse antibody MOPC-21. Extra-orbital lacrimal glands were analyzed by immunohistochemistry for high endothelial venules (HEV), by Affymetrix gene-array analysis and real-time PCR for differential gene expression, and by ELISA for CXCL13 protein. Leukocytes from lacrimal glands were analyzed by flow-cytometry. Tear-fluid secretion-rates were measured and the integrity of the ocular surface was scored using slit-lamp microscopy and fluorescein isothiocyanate (FITC) staining. The chemokine CXCL13 was measured by ELISA in sera from Sjögren's syndrome patients (n = 27) and healthy controls (n = 30). Statistical analysis was by the two-tailed, unpaired T-test, or the Mann-Whitney-test for ocular integrity scores. Results LTBR blockade for eight weeks reduced B-cell accumulation (approximately 5-fold), eliminated HEV in lacrimal glands, and reduced the entry rate of lymphocytes into lacrimal glands. Affymetrix-chip analysis revealed numerous changes in mRNA expression due to LTBR blockade, including reduction of homeostatic chemokine expression. The reduction of CXCL13, CCL21, CCL19 mRNA and the HEV-associated gene GLYCAM-1 was confirmed by PCR analysis. CXCL13 protein increased with disease progression in lacrimal-gland homogenates, but after LTBR blockade for 8 weeks, CXCL13 was reduced approximately 6-fold to 8.4 pg/mg (+/- 2.7) from 51 pg/mg (+/-5.3) in lacrimal glands of 16 week old control mice. Mice given LTBR blockade exhibited an approximately two-fold greater tear-fluid secretion than control mice (P = 0.001), and had a significantly improved ocular surface integrity score (P = 0.005). The mean CXCL13 concentration in sera from Sjögren's patients (n = 27) was 170 pg/ml, compared to 92.0 pg/ml for sera from (n = 30) healthy controls (P = 0.01). Conclusions Blockade of LTBR pathways may have therapeutic potential for treatment of Sjögren's syndrome. PMID:22044682

  8. Complementary Gli activity mediates early patterning of the mouse visual system.

    PubMed

    Furimsky, Marosh; Wallace, Valerie A

    2006-03-01

    The Sonic hedgehog (Shh) signaling pathway plays a key role in the development of the vertebrate central nervous system, including the eye. This pathway is mediated by the Gli transcription factors (Gli1, Gli2, and Gli3) that differentially activate and repress the expression of specific downstream target genes. In this study, we investigated the roles of the three vertebrate Glis in mediating midline Shh signaling in early ocular development. We examined the ocular phenotypes of Shh and Gli combination mutant mouse embryos and monitored proximodistal and dorsoventral patterning by the expression of specific eye development regulatory genes using in situ hybridization. We show that midline Shh signaling relieves the repressor activity of Gli3 adjacent to the midline and then promotes eye pattern formation through the nonredundant activities of all three Gli proteins. Gli3, in particular, is required to specify the dorsal optic stalk and to define the boundary between the optic stalk and the optic cup.

  9. Are linear AChR epitopes the real culprit in ocular myasthenia gravis?

    PubMed

    Wu, Xiaorong; Tüzün, Erdem

    2017-02-01

    Extraocular muscle weakness occurs in most of the myasthenia gravis (MG) patients and it is often the initial complaint. Approximately 10-20% of MG patients with extraocular muscle weakness display only ocular symptoms and rest of the patients subsequently develop generalized muscle weakness. It is not entirely clear why some MG patients develop only ocular symptoms and why extraocular muscle weakness almost always precedes generalized muscle weakness. These facts are often explained by increased susceptibility of extraocular muscles due to their reduced endplate safety factor and lower complement inhibitor expression. Findings of a recently developed animal model of ocular MG suggest that additional factors might be in play. While immunization of HLA transgenic and wild-type (WT) mice with the native acetylcholine receptor (AChR) pentamer carrying conformational epitopes generates severe generalized muscle weakness, immunization of the same mouse strains with recombinant unfolded AChR subunits containing linear epitopes induces ptosis with or without mild generalized muscle weakness. Notably, immunization of mice with deficient T helper cell-mediated antigen presentation with recombinant AChR subunits or whole native AChR pentamer also induces ocular symptoms, AChR-reactive B cells and AChR antibodies. Based on these findings, we hypothesize that ocular symptoms observed in the earlier stages of MG might be triggered by linear and non-conformational AChR epitopes expressed by thymic cells or invading microorganisms. This initial AChR autoimmunity might be managed by T cell-independent and B cell mediated mechanisms yielding low affinity AChR antibodies. These antibodies are putatively capable of inducing muscle weakness only in extraocular muscles which have increased vulnerability due to their inherent biological properties. After this initial attack, as AChR bearing immune complexes form and the immune system gains access to the native AChR expressed by muscle and thymic myoid cells, a more robust anti-AChR autoimmunity develops giving way to high affinity AChR antibodies, thymic germinal center formation and severe generalized muscle weakness. Accurate characterization of chain if events leading to ocular and generalized symptoms in MG might enable development of novel therapeutics that might prevent the transition from mild ocular symptoms to severe generalized weakness in earlier stages of the disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Experimental Models of Ocular Infection with Toxoplasma Gondii

    PubMed Central

    Dukaczewska, Agata; Tedesco, Roberto; Liesenfeld, Oliver

    2015-01-01

    Ocular toxoplasmosis is a vision-threatening disease and the major cause of posterior uveitis worldwide. In spite of the continuing global burden of ocular toxoplasmosis, many critical aspects of disease including the therapeutic approach to ocular toxoplasmosis are still under debate. To assist in addressing many aspects of the disease, numerous experimental models of ocular toxoplasmosis have been established. In this article, we present an overview on in vitro, ex vivo, and in vivo models of ocular toxoplasmosis available to date. Experimental studies on ocular toxoplasmosis have recently focused on mice. However, the majority of murine models established so far are based on intraperitoneal and intraocular infection with Toxoplasma gondii. We therefore also present results obtained in an in vivo model using peroral infection of C57BL/6 and NMRI mice that reflects the natural route of infection and mimics the disease course in humans. While advances have been made in ex vivo model systems or larger animals to investigate specific aspects of ocular toxoplasmosis, laboratory mice continue to be the experimental model of choice for the investigation of ocular toxoplasmosis. PMID:26716018

  11. Comprehensive analysis of mouse retinal mononuclear phagocytes.

    PubMed

    Lückoff, Anika; Scholz, Rebecca; Sennlaub, Florian; Xu, Heping; Langmann, Thomas

    2017-06-01

    The innate immune system is activated in a number of degenerative and inflammatory retinal disorders such as age-related macular degeneration (AMD). Retinal microglia, choroidal macrophages, and recruited monocytes, collectively termed 'retinal mononuclear phagocytes', are critical determinants of ocular disease outcome. Many publications have described the presence of these cells in mouse models for retinal disease; however, only limited aspects of their behavior have been uncovered, and these have only been uncovered using a single detection method. The workflow presented here describes a comprehensive analysis strategy that allows characterization of retinal mononuclear phagocytes in vivo and in situ. We present standardized working steps for scanning laser ophthalmoscopy of microglia from MacGreen reporter mice (mice expressing the macrophage colony-stimulating factor receptor GFP transgene throughout the mononuclear phagocyte system), quantitative analysis of Iba1-stained retinal sections and flat mounts, CD11b-based retinal flow cytometry, and qRT-PCR analysis of key microglia markers. The protocol can be completed within 3 d, and we present data from retinas treated with laser-induced choroidal neovascularization (CNV), bright white-light exposure, and Fam161a-associated inherited retinal degeneration. The assays can be applied to any of the existing mouse models for retinal disorders and may be valuable for documenting immune responses in studies for immunomodulatory therapies.

  12. The Tennessee Mouse Genome Consortium: Identification of ocular mutants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jablonski, Monica M.; Wang, Xiaofei; Lu, Lu

    2005-06-01

    The Tennessee Mouse Genome Consortium (TMGC) is in its fifth year of a ethylnitrosourea (ENU)-based mutagenesis screen to detect recessive mutations that affect the eye and brain. Each pedigree is tested by various phenotyping domains including the eye, neurohistology, behavior, aging, ethanol, drug, social behavior, auditory, and epilepsy domains. The utilization of a highly efficient breeding protocol and coordination of various universities across Tennessee makes it possible for mice with ENU-induced mutations to be evaluated by nine distinct phenotyping domains within this large-scale project known as the TMGC. Our goal is to create mutant lines that model human diseases andmore » disease syndromes and to make the mutant mice available to the scientific research community. Within the eye domain, mice are screened for anterior and posterior segment abnormalities using slit-lamp biomicroscopy, indirect ophthalmoscopy, fundus photography, eye weight, histology, and immunohistochemistry. As of January 2005, we have screened 958 pedigrees and 4800 mice, excluding those used in mapping studies. We have thus far identified seven pedigrees with primary ocular abnormalities. Six of the mutant pedigrees have retinal or subretinal aberrations, while the remaining pedigree presents with an abnormal eye size. Continued characterization of these mutant mice should in most cases lead to the identification of the mutated gene, as well as provide insight into the function of each gene. Mice from each of these pedigrees of mutant mice are available for distribution to researchers for independent study.« less

  13. Proteomic interactions in the mouse vitreous-retina complex.

    PubMed

    Skeie, Jessica M; Mahajan, Vinit B

    2013-01-01

    Human vitreoretinal diseases are due to presumed abnormal mechanical interactions between the vitreous and retina, and translational models are limited. This study determined whether nonstructural proteins and potential retinal biomarkers were expressed by the normal mouse vitreous and retina. Vitreous and retina samples from mice were collected by evisceration and analyzed by liquid chromatography-tandem mass spectrometry. Identified proteins were further analyzed for differential expression and functional interactions using bioinformatic software. We identified 1,680 unique proteins in the retina and 675 unique proteins in the vitreous. Unbiased clustering identified protein pathways that distinguish retina from vitreous including oxidative phosphorylation and neurofilament cytoskeletal remodeling, whereas the vitreous expressed oxidative stress and innate immunology pathways. Some intracellular protein pathways were found in both retina and vitreous, such as glycolysis and gluconeogenesis and neuronal signaling, suggesting proteins might be shuttled between the retina and vitreous. We also identified human disease biomarkers represented in the mouse vitreous and retina, including carbonic anhydrase-2 and 3, crystallins, macrophage inhibitory factor, glutathione peroxidase, peroxiredoxins, S100 precursors, and von Willebrand factor. Our analysis suggests the vitreous expresses nonstructural proteins that functionally interact with the retina to manage oxidative stress, immune reactions, and intracellular proteins may be exchanged between the retina and vitreous. This novel proteomic dataset can be used for investigating human vitreoretinopathies in mouse models. Validation of vitreoretinal biomarkers for human ocular diseases will provide a critical tool for diagnostics and an avenue for therapeutics.

  14. Inflammation, neurodegeneration and protein aggregation in the retina as ocular biomarkers for Alzheimer's disease in the 3xTg-AD mouse model.

    PubMed

    Grimaldi, Alfonso; Brighi, Carlo; Peruzzi, Giovanna; Ragozzino, Davide; Bonanni, Valentina; Limatola, Cristina; Ruocco, Giancarlo; Di Angelantonio, Silvia

    2018-06-07

    Alzheimer's disease (AD) is the most common cause of dementia in the elderly. In the pathogenesis of AD a pivotal role is played by two neurotoxic proteins that aggregate and accumulate in the central nervous system: amyloid beta and hyper-phosphorylated tau. Accumulation of extracellular amyloid beta plaques and intracellular hyper-phosphorylated tau tangles, and consequent neuronal loss begins 10-15 years before any cognitive impairment. In addition to cognitive and behavioral deficits, sensorial abnormalities have been described in AD patients and in some AD transgenic mouse models. Retina can be considered a simple model of the brain, as some pathological changes and therapeutic strategies from the brain may be observed or applicable to the retina. Here we propose new retinal biomarkers that could anticipate the AD diagnosis and help the beginning and the follow-up of possible future treatments. We analyzed retinal tissue of triple-transgenic AD mouse model (3xTg-AD) for the presence of pathological hallmarks during disease progression. We found the presence of amyloid beta plaques, tau tangles, neurodegeneration, and astrogliosis in the retinal ganglion cell layer of 3xTg-AD mice, already at pre-symptomatic stage. Moreover, retinal microglia in pre-symptomatic mice showed a ramified, anti-inflammatory phenotype which, during disease progression, switches to a pro-inflammatory, less ramified one, becoming neurotoxic. We hypothesize retina as a window through which monitor AD-related neurodegeneration process.

  15. A partial structural and functional rescue of a retinitis pigmentosa model with compacted DNA nanoparticles.

    PubMed

    Cai, Xue; Nash, Zack; Conley, Shannon M; Fliesler, Steven J; Cooper, Mark J; Naash, Muna I

    2009-01-01

    Previously we have shown that compacted DNA nanoparticles can drive high levels of transgene expression after subretinal injection in the mouse eye. Here we delivered compacted DNA nanoparticles containing a therapeutic gene to the retinas of a mouse model of retinitis pigmentosa. Nanoparticles containing the wild-type retinal degeneration slow (Rds) gene were injected into the subretinal space of rds(+/-) mice on postnatal day 5. Gene expression was sustained for up to four months at levels up to four times higher than in controls injected with saline or naked DNA. The nanoparticles were taken up into virtually all photoreceptors and mediated significant structural and biochemical rescue of the disease without histological or functional evidence of toxicity. Electroretinogram recordings showed that nanoparticle-mediated gene transfer restored cone function to a near-normal level in contrast to transfer of naked plasmid DNA. Rod function was also improved. These findings demonstrate that compacted DNA nanoparticles represent a viable option for development of gene-based interventions for ocular diseases and obviate major barriers commonly encountered with non-viral based therapies.

  16. Investigation of tissue cysts in the retina in a mouse model of ocular toxoplasmosis: distribution and interaction with glial cells.

    PubMed

    Song, Hyun Beom; Jung, Bong-Kwang; Kim, Jin Hyoung; Lee, Young-Ha; Choi, Min-Ho; Kim, Jeong Hun

    2018-06-02

    The conversion of tachyzoites into bradyzoites is a way for Toxoplasma gondii to establish a chronic and asymptomatic infection and achieve lifelong persistence in the host. The bradyzoites form tissue cysts in the retina, but not much is known about the horizontal distribution of the cysts or their interactions with glial cells in the retina. A chronic ocular toxoplasmosis model was induced by per oral administration of T. gondii Me49 strain cysts to BALB/c mice. Two months after the infection, retinas were flat-mounted and immunostained to detect cysts, ganglion cells, Müller cells, astrocytes, and microglial cells, followed by observation under fluorescence and confocal microscope. The horizontal distribution showed a rather clustered pattern, but the clusters were not restricted to certain location of the retina. Axial distribution was confined to the inner retina, mostly in ganglion cell layer or the inner plexiform layer. Both ganglion cells, a type of retinal neurons, and Müller cells, predominant retinal glial cells, could harbor cysts. The cysts were spatially separated from astrocytes, the most abundant glial cells in the ganglion cell layer, while close spatial distribution of microglial cells was observed in two thirds of retinal cysts. In this study, we demonstrated that the retinal cysts were not evenly distributed horizontally and were confined to the inner retina axially. Both neurons and one type of glial cells could harbor cysts, and topographic analysis of other glial cells suggests role of microglial cells in chronic ocular toxoplasmosis.

  17. Epidemiology, pathophysiology, and the future of ocular toxoplasmosis.

    PubMed

    Kijlstra, Aize; Petersen, Eskild

    2014-04-01

    Despite large advances in the field of ocular toxoplasmosis, large gaps still exist in our knowledge concerning the epidemiology and pathophysiology of this potentially blinding infectious disease. Although ocular toxoplasmosis is considered to have a high health burden, still little is known about its exact prevalence and how it affects the quality of life. The epidemiology of toxoplasmosis depends on local habits throughout the globe, and changes are likely in view of increased meat consumption in developing countries and demands for higher animal welfare in the Western world. Water is increasingly seen as an important risk factor and more studies are needed to quantitate and control the role of water exposure (drinking, swimming). Tools are now becoming available to study both the human host as well as parasite genetic factors in the development of ocular toxoplasmosis. Further research on the role of Toxoplasma strains as well as basic studies on parasite virulence is needed to explain why Toxoplasma associated eye disease is so severe in some countries, such as Brazil. Although genetic analysis of the parasite represents the gold standard, further developments in serotyping using peptide arrays may offer practical solutions to study the role of parasite strains in the pathogenesis of Toxoplasma retinochoroiditis. More research is needed concerning the pathways whereby the parasite can infect the retina. Once in the retina further tissue damage may be due to parasite virulence factors or could be caused by an aberrant host immune response. Local intraocular immune responses are nowadays used for diagnostic procedures. Future developments may include the use of Raman technology or the direct visualization of a Toxoplasma cyst by optical coherence tomography (OCT). With the availability of ocular fluid specimens obtained for diagnostic purposes and the development of advanced proteomic techniques, a biomarker fingerprint that is unique for an eye with toxoplasmosis may become available. It is hoped that such a biomarker analysis may also be able to distinguish between acquired versus congenital disease. Recently developed mouse models of congenital ocular toxoplasmosis are extremely promising with regard to disease pathogenesis, diagnosis, and treatment.

  18. Comparison of tight junction protein expression in the ciliary epithelia of mouse, rabbit, cat and human eyes.

    PubMed

    Karim, M J; Biswas, S; Bhattacherjee, P; Paterson, C A

    2011-06-01

    Tight junctions in the nonpigmented epithelium (NPE) of the ciliary processes and the iris vascular endothelium form the ocular blood aqueous barrier that prevents leakage of proteins, immune cells and non-immune cells of blood into the anterior chamber. We attempted to determine whether ultrastructural differences in tight junctions reported in earlier studies are reflected in the expression pattern of tight junction proteins (TJP) and whether the TJP in mice, rabbits and cats resemble those of humans. For immunohistochemistry, 10 μm thick cryosections were rehydrated in PBS and fixed in 50 mM ammonium chloride at room temperature. After rinses in PBS, the sections were incubated twice in 0.1% Triton X-100, 10% goat serum, specific primary antibody or in PBS. After rinses in PBS, the sections were incubated in FITC-conjugated secondary antibody. After rinses in PBS, the sections were mounted with Vectashield mounting medium with propidium iodide, examined and photographed using a confocal microscope. The expression patterns of TJP in ocular ciliary epithelium of human, rabbit, cat and mouse were similar. Occludin immunoreactivity was observed as a sharp line along the junction between pigmented epithelium (PE) and NPE, and along the apico-lateral surfaces of NPE. Very light staining of the ciliary stroma was observed in cat and mouse. Claudin-1 was expressed along the entire boundaries of NPE and was more distinct between PE and NPE in rabbit. The ciliary stroma showed faint staining in cat and mouse. ZO-1 showed staining between PE and NPE, and at the adjacent membrane. Moderate staining was seen in PE in cat and mouse, which suggests that claudin-1, occludin and ZO-1 are expressed along the junction between PE and NPE, and the apico-lateral border of NPE. Lack of major difference in the expression patterns among the different species is important for validating the use of rabbit, mouse and cat in studies of intraocular inflammation in humans.

  19. Targeting CD6 for the treatment of experimental autoimmune uveitis.

    PubMed

    Zhang, Lingjun; Li, Yan; Qiu, Wen; Bell, Brent A; Dvorina, Nina; Baldwin, William M; Singer, Nora; Kern, Timothy; Caspi, Rachel R; Fox, David A; Lin, Feng

    2018-06-01

    CD6 is emerging as a new target for treating many pathological conditions in which T cells are integrally involved, but even the latest data from studies of CD6 gene engineered mice were still contradictory. To address this issue, we studied experimental autoimmune uveitis (EAU), a model of autoimmune uveitis, in wild-type (WT) and CD6 knockout (KO) mice. After EAU induction in WT and CD6 KO mice, we evaluated ocular inflammation and compared retinal antigen-specific T-cell responses using scanning laser ophthalmoscopy, spectral-domain optical coherence tomography, histopathology, and T cell recall assays. Uveitogenic T cells from WT and CD6 KO mice were adoptively transferred into WT naïve mice to confirm the impact of CD6 on T cells. In addition, we immunized CD6 KO mice with recombinant CD6 protein to develop mouse anti-mouse CD6 monoclonal antibodies (mAbs) in which functional antibodies exhibiting cross-reactivity with human CD6 were screened and identified for treatment studies. In CD6 KO mice with EAU, we found significantly decreased retinal inflammation and reduced autoreactive T-cell responses, and confirmed the impaired uveitogenic capacity of T cells from these mice in an adoptive transfer experiment. Notably, one of these cross-reactive mAbs significantly ameliorated retinal inflammation in EAU induced by the adoptive transfer of uveitogenic T cells. Together, these data strongly suggest that CD6 plays a previously unknown, but pivotal role in autoimmune uveitis, and may be a promising new treatment target for this blinding disease. In addition, the newly developed mouse anti-mouse/human CD6 mAbs could be valuable tools for testing CD6-targeted therapies in other mouse models of human diseases. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Ocular surgical models for immune and angiogenic responses

    PubMed Central

    Inomata, Takenori; Mashaghi, Alireza; Di Zazzo, Antonio; Dana, Reza

    2015-01-01

    Corneal transplantation serves as a reproducible and simple surgical model to study mechanisms regulating immunity and angiogenesis. The simplicity of the model allows for systematic analysis of different mechanisms involved in immune and angiogenic privilege and their failures. This protocol describes how to induce neovessels and inflammation in an actively regulated avascular and immune-privileged site. This involves placing intra-stromal corneal sutures for two weeks, disrupting the privileges, and performing corneal transplantation subsequently. Privileged and non-privileged recipient responses to donor cornea can be compared to identify key immunological mechanisms that underlie angiogenesis and graft rejection. This protocol can also be adapted to the growing repertoire of genetic models available in the mouse, and is a valuable tool to elucidate molecular mechanisms mediating acceptance or failure of corneal graft. The model could be used to assess the potential of therapeutic molecules to enhance graft survival in vivo. PMID:26550579

  1. Mucin gene expression is not regulated by estrogen and/or progesterone in the ocular surface epithelia of mice.

    PubMed

    Lange, Christine; Fernandez, Jolene; Shim, David; Spurr-Michaud, Sandra; Tisdale, Ann; Gipson, Ilene K

    2003-07-01

    Dry eye syndrome is prevalent in post-menopausal women, and post-menopausal women secrete less mucus in their reproductive tracts. Using a mouse model, the purpose of this study was to determine if estrogen and/or progesterone regulates Muc4 and Muc5AC gene expression in the ocular surface epithelia, as the hormones do in reproductive tract epithelia. Adult C57BL/6 mice were ovariectomized, and 19 days later, pellets containing estrogen, progesterone, or a combination were inserted subcutaneously. Ocular surface and reproductive tract tissues were harvested following seven days of hormone treatment. A control group consisted of ovariectomized mice that received no hormone treatment. Real-time reverse transcription-polymerase chain reaction was used to determine the tissue expression levels of mucin mRNA of each treatment group relative to the control. Muc4 mRNA expression levels were determined for the reproductive tract, and both Muc4 and Muc5AC expression levels were determined for the ocular surface epithelia. Muc4 and Muc5AC gene expression in ocular surface and Muc4 in reproductive tract epithelia was demonstrated by In Situ hybridization, and Muc4 and Muc5AC protein was demonstrated in the epithelia of animals in the experimental groups. The mRNA expression levels of Muc4 and Muc5AC and the immunofluorescence localization pattern in the ocular surface epithelia were not significantly different in any hormone treatment group when compared to the control ovariectomized group. By comparison, mice that were administered estrogen had a significant increase of Muc4 mRNA in the reproductive tract epithelia, progesterone given in combination with estrogen antagonized the upregulatory effects of estrogen in the reproductive tract, and the amount of Muc4 mRNA in the reproductive tract of progesterone-treated animals was not different from ovariectomized controls. Immunofluorescence localization of Muc4 in the reproductive tract epithelia of the experimental groups correlated to message levels, with lack of Muc4 protein detected in the control and progesterone groups. In comparison to reproductive tract epithelia, Muc4 and Muc5AC are not hormonally regulated by estrogen or progesterone in the ocular surface epithelia of mice. These data demonstrate that regulation of epithelial mucin genes is tissue specific.

  2. Light responses and morphology of bNOS-immunoreactive neurons in the mouse retina

    PubMed Central

    Pang, Ji-Jie; Gao, Fan; Wu, Samuel M.

    2010-01-01

    Nitric oxide (NO), produced by NO synthase (NOS), modulates the function of all retinal neurons and ocular blood vessels and participates in the pathogenesis of ocular diseases. To further understand the regulation of ocular NO release, we systematically studied the morphology, topography and light responses of NOS-containing amacrine cells (NOACs) in dark-adapted mouse retina. Immunohistological staining for neuronal NOS (bNOS), combined with retrograde labeling of ganglion cells (GCs) with Neurobiotin (NB, a gap junction permeable dye) and Lucifer yellow (LY, a less permeable dye), was used to identify NOACs. The light responses of ACs were recorded under whole-cell voltage clamp conditions and cell morphology was examined with a confocal microscope. We found that in dark-adapted conditions bNOS-immunoreactivity (IR) was present primarily in the inner nuclear layer and the ganglion cell layer. bNOS-IR somas were negative for LY, thus they were identified as ACs; nearly 6 % of the cells were labeled by NB but not by LY, indicating that they were dye-coupled with GCs. Three morphological subtypes of NOACs (NI, NII and displaced) were identified. The cell density, inter-cellular distance and the distribution of NOACs were studied in whole retinas. Light evoked depolarizing highly sensitive ON-OFF responses in NI cells and less sensitive OFF responses in NII cells. Frequent (1 to 2 Hz) or abrupt change of light-intensity evoked larger peak responses. The possibility for light to modify NO release from NOACs is discussed. PMID:20503422

  3. Protein Disulfide Levels and Lens Elasticity Modulation: Applications for Presbyopia

    PubMed Central

    Garner, William H.; Garner, Margaret H.

    2016-01-01

    Purpose The purpose of the experiments described here was to determine the effects of lipoic acid (LA)-dependent disulfide reduction on mouse lens elasticity, to synthesize the choline ester of LA (LACE), and to characterize the effects of topical ocular doses of LACE on mouse lens elasticity. Methods Eight-month-old mouse lenses (C57BL/6J) were incubated for 12 hours in medium supplemented with selected levels (0–500 μM) of LA. Lens elasticity was measured using the coverslip method. After the elasticity measurements, P-SH and PSSP levels were determined in homogenates by differential alkylation before and after alkylation. Choline ester of LA was synthesized and characterized by mass spectrometry and HPLC. Eight-month-old C57BL/6J mice were treated with 2.5 μL of a formulation of 5% LACE three times per day at 8-hour intervals in the right eye (OD) for 5 weeks. After the final treatment, lenses were removed and placed in a cuvette containing buffer. Elasticity was determined with a computer-controlled instrument that provided Z-stage upward movements in 1-μm increments with concomitant force measurements with a Harvard Apparatus F10 isometric force transducer. The elasticity of lenses from 8-week-old C57BL/6J mice was determined for comparison. Results Lipoic acid treatment led to a concentration-dependent decrease in lens protein disulfides concurrent with an increase in lens elasticity. The structure and purity of newly synthesized LACE was confirmed. Aqueous humor concentrations of LA were higher in eyes of mice following topical ocular treatment with LACE than in mice following topical ocular treatment with LA. The lenses of the treated eyes of the old mice were more elastic than the lenses of untreated eyes (i.e., the relative force required for similar Z displacements was higher in the lenses of untreated eyes). In most instances, the lenses of the treated eyes were even more elastic than the lenses of the 8-week-old mice. Conclusions As the elasticity of the human lens decreases with age, humans lose the ability to accommodate. The results, briefly described in this abstract, suggest a topical ocular treatment to increase lens elasticity through reduction of disulfides to restore accommodative amplitude. PMID:27233034

  4. Prion protein modulates glucose homeostasis by altering intracellular iron.

    PubMed

    Ashok, Ajay; Singh, Neena

    2018-04-26

    The prion protein (PrP C ), a mainly neuronal protein, is known to modulate glucose homeostasis in mouse models. We explored the underlying mechanism in mouse models and the human pancreatic β-cell line 1.1B4. We report expression of PrP C on mouse pancreatic β-cells, where it promoted uptake of iron through divalent-metal-transporters. Accordingly, pancreatic iron stores in PrP knockout mice (PrP -/- ) were significantly lower than wild type (PrP +/+ ) controls. Silencing of PrP C in 1.1B4 cells resulted in significant depletion of intracellular (IC) iron, and remarkably, upregulation of glucose transporter GLUT2 and insulin. Iron overloading, on the other hand, resulted in downregulation of GLUT2 and insulin in a PrP C -dependent manner. Similar observations were noted in the brain, liver, and neuroretina of iron overloaded PrP +/+ but not PrP -/- mice, indicating PrP C -mediated modulation of insulin and glucose homeostasis through iron. Peripheral challenge with glucose and insulin revealed blunting of the response in iron-overloaded PrP +/+ relative to PrP -/- mice, suggesting that PrP C -mediated modulation of IC iron influences both secretion and sensitivity of peripheral organs to insulin. These observations have implications for Alzheimer's disease and diabetic retinopathy, known complications of type-2-diabetes associated with brain and ocular iron-dyshomeostasis.

  5. Prodrugs of herpes simplex thymidine kinase inhibitors.

    PubMed

    Yanachkova, Milka; Xu, Wei-Chu; Dvoskin, Sofya; Dix, Edward J; Yanachkov, Ivan B; Focher, Federico; Savi, Lida; Sanchez, M Dulfary; Foster, Timothy P; Wright, George E

    2015-04-01

    Because guanine-based herpes simplex virus thymidine kinase inhibitors are not orally available, we synthesized various 6-deoxy prodrugs of these compounds and evaluated them with regard to solubility in water, oral bioavailability, and efficacy to prevent herpes simplex virus-1 reactivation from latency in a mouse model. Organic synthesis was used to prepare compounds, High Performance Liquid Chromatography (HPLC) to analyze hydrolytic conversion, Mass Spectrometry (MS) to measure oral bioavailability, and mouse latent infection and induced reactivation to evaluate the efficacy of a specific prodrug. Aqueous solubilities of prodrugs were improved, oxidation of prodrugs by animal cytosols occurred in vitro, and oral absorption of the optimal prodrug sacrovir™ (6-deoxy-mCF3PG) in the presence of the aqueous adjuvant Soluplus® and conversion to active compound N(2)-[3-(trifluoromethyl)pheny])guanine (mCF3PG) were accomplished in mice. Treatment of herpes simplex virus-1 latent mice with sacrovir™ in 1% Soluplus in drinking water significantly suppressed herpes simplex virus-1 reactivation and viral genomic replication. Ad libitum oral delivery of sacrovir™ was effective in suppressing herpes simplex virus-1 reactivation in ocularly infected latent mice as measured by the numbers of mice shedding infectious virus at the ocular surface, numbers of trigeminal ganglia positive for infectious virus, number of corneas that had detectable infectious virus, and herpes simplex virus-1 genome copy numbers in trigeminal ganglia following reactivation. These results demonstrate the statistically significant effect of the prodrug on suppressing herpes simplex virus-1 reactivation in vivo. © The Author(s) 2015.

  6. A COMPREHENSIVE INSIGHT ON OCULAR PHARMACOKINETICS

    PubMed Central

    Agrahari, Vibhuti; Mandal, Abhirup; Agrahari, Vivek; Trinh, Hoang My; Joseph, Mary; Ray, Animikh; Hadji, Hicheme; Mitra, Ranjana; Pal, Dhananjay; Mitra, Ashim K.

    2017-01-01

    Eye is a distinctive organ with protective anatomy and physiology. Several pharmacokinetics compartment model of ocular drug delivery has been developed for describing the absorption, distribution and elimination of ocular drugs in the eye. Determining pharmacokinetics parameters in ocular tissues is a major challenge because of the complex anatomy and dynamic physiological barrier of the eye. In this review, pharmacokinetics of these compartments exploring different drugs, delivery systems and routes of administration are discussed including factors affecting intraocular bioavailability. Factors such as pre-corneal fluid drainage, drug binding to tear proteins, systemic drug absorption, corneal factors, melanin binding, drug metabolism renders ocular delivery challenging and elaborated in this manuscript. Several compartment models are discussed those are developed in ocular drug delivery to study the pharmacokinetics parameters. There are several transporters present in both anterior and posterior segments of the eye which play a significant role in ocular pharmacokinetics and summarized briefly. Moreover, several ocular pharmacokinetics animal models and relevant studies are reviewed and discussed in addition to the pharmacokinetics of various ocular formulations. PMID:27798766

  7. New Paradigms for the Study of Ocular Alphaherpesvirus Infections: Insights into the Use of Non-Traditional Host Model Systems

    PubMed Central

    Ledbetter, Eric C.; Van de Walle, Gerlinde R.

    2017-01-01

    Ocular herpesviruses, most notably human alphaherpesvirus 1 (HSV-1), canid alphaherpesvirus 1 (CHV-1) and felid alphaherpesvirus 1 (FHV-1), infect and cause severe disease that may lead to blindness. CHV-1 and FHV-1 have a pathogenesis and induce clinical disease in their hosts that is similar to HSV-1 ocular infections in humans, suggesting that infection of dogs and cats with CHV-1 and FHV-1, respectively, can be used as a comparative natural host model of herpesvirus-induced ocular disease. In this review, we discuss both strengths and limitations of the various available model systems to study ocular herpesvirus infection, with a focus on the use of these non-traditional virus-natural host models. Recent work has demonstrated the robustness and reproducibility of experimental ocular herpesvirus infections in dogs and cats, and, therefore, these non-traditional models can provide additional insights into the pathogenesis of ocular herpesvirus infections. PMID:29156583

  8. Rap1 GTPase is required for mouse lens epithelial maintenance and morphogenesis

    PubMed Central

    Maddala, Rupalatha; Nagendran, Tharkika; Lang, Richard A.; Morozov, Alexei; Rao, Ponugoti V.

    2015-01-01

    Rap1, a Ras-like small GTPase, plays a crucial role in cell-matrix adhesive interactions, cell-cell junction formation, cell polarity and migration. The role of Rap1 in vertebrate organ development and tissue architecture, however, remains elusive. We addressed this question in a mouse lens model system using a conditional gene targeting approach. While individual germline deficiency of either Rap1a or Rap1b did not cause overt defects in mouse lens, conditional double deficiency (Rap1 cKO) prior to lens placode formation led to an ocular phenotype including microphthalmia and lens opacification in embryonic mice. The embryonic Rap1 cKO mouse lens exhibited striking defects including loss of E-cadherin- and ZO-1-based cell-cell junctions, disruption of paxillin and β1-integrin-based cell adhesive interactions along with abnormalities in cell shape and apical-basal polarity of epithelium. These epithelial changes were accompanied by increased levels of α-smooth muscle actin, vimentin and N-cadherin, and expression of transcriptional suppressors of E-cadherin (Snai1, Slug and Zeb2), and a mesenchymal metabolic protein (Dihydropyrimidine dehydrogenase). Additionally, while lens differentiation was not overtly affected, increased apoptosis and dysregulated cell cycle progression were noted in epithelium and fibers in Rap1 cKO mice. Collectively these observations uncover a requirement for Rap1 in maintenance of lens epithelial phenotype and morphogenesis. PMID:26212757

  9. The RNA-binding protein Musashi-1 is produced in the developing and adult mouse eye.

    PubMed

    Raji, B; Dansault, A; Leemput, J; de la Houssaye, G; Vieira, V; Kobetz, A; Arbogast, L; Masson, C; Menasche, M; Abitbol, M

    2007-08-10

    Musashi-1 (Msi1) is an RNA-binding protein produced in various types of stem cells including neural stem/progenitor cells and astroglial progenitor cells in the vertebrate central nervous system. Other RNA-binding proteins such as Pumilio-1, Pumilio-2, Staufen-1, and Staufen-2 have been characterized as potential markers of several types of stem or progenitor cells. We investigated the involvement of Msi1 in mouse eye development and adult mouse eye functions by analyzing the profile of Msi1 production in all ocular structures during development and adulthood. We studied Msi1 production by in situ hybridization and immunohistochemistry of ocular tissue sections and by semi-quantitative RT-PCR and western blot analysis from the embryonic stage of 12.5 days post coitum (E12.5 dpc) when the first retinal ganglion cells (RGCs) begin to appear to the adult stage when all retinal cell types are present. Msi1 mRNA was present at all studied stages of eye development. Msi1 protein was detected in the primitive neuroblastic layer (NbL), the ganglion cell layer (GCL), and in all major differentiated neurons of postnatal developing and adult retinae. During postnatal developing stages, faint diffuse Msi1 protein staining is converted to a more specific distribution once mouse retina is fully differentiated. The most striking result of our study concerns the large amounts of Msi1 protein and mRNA in several unexpected sites of adult mouse eyes including the corneal epithelium and endothelium, stromal keratocytes, progenitor cells of the limbus, equatorial lens stem cells, differentiated lens epithelial cells, and differentiating lens fibers. Msi1 was also found in the pigmented and nonpigmented cells of the ciliary processes, the melanocytes of the ciliary body, the retinal pigment epithelium, differentiated retinal neurons, and most probably in the retinal glial cells such as Müller glial cells, astrocytes, and the oligodendocytes surrounding the axons of the optic nerve. Msi1 expression was detected in the outer plexiform layer, the inner plexiform layer, and the nerve fiber layer of fully differentiated adult retina. We provide here the first demonstration that the RNA-binding protein, Msi1, is produced in mouse eyes from embryonic stages until adulthood. The relationship between the presence of Msi1 in developing ocular compartments and the possible stem/progenitor cell characteristics of these compartments remains unclear. Finally, the expression of Msi1 in several different cell types in the adult eye is extremely intriguing and should lead to further attempts to unravel the role of Msi1 in cellular and subcellular RNA metabolism and in the control of translational processes in adult eye cells particularly in adult neuronal dendrites, axons, and synapses.

  10. UV-blocking spectacle lens protects against UV-induced decline of visual performance.

    PubMed

    Liou, Jyh-Cheng; Teng, Mei-Ching; Tsai, Yun-Shan; Lin, En-Chieh; Chen, Bo-Yie

    2015-01-01

    Excessive exposure to sunlight may be a risk factor for ocular diseases and reduced visual performance. This study was designed to examine the ability of an ultraviolet (UV)-blocking spectacle lens to prevent visual acuity decline and ocular surface disorders in a mouse model of UVB-induced photokeratitis. Mice were divided into 4 groups (10 mice per group): (1) a blank control group (no exposure to UV radiation), (2) a UVB/no lens group (mice exposed to UVB rays, but without lens protection), (3) a UVB/UV400 group (mice exposed to UVB rays and protected using the CR-39™ spectacle lens [UV400 coating]), and (4) a UVB/photochromic group (mice exposed to UVB rays and protected using the CR-39™ spectacle lens [photochromic coating]). We investigated UVB-induced changes in visual acuity and in corneal smoothness, opacity, and lissamine green staining. We also evaluated the correlation between visual acuity decline and changes to the corneal surface parameters. Tissue sections were prepared and stained immunohistochemically to evaluate the structural integrity of the cornea and conjunctiva. In blank controls, the cornea remained undamaged, whereas in UVB-exposed mice, the corneal surface was disrupted; this disruption significantly correlated with a concomitant decline in visual acuity. Both the UVB/UV400 and UVB/photochromic groups had sharper visual acuity and a healthier corneal surface than the UVB/no lens group. Eyes in both protected groups also showed better corneal and conjunctival structural integrity than unprotected eyes. Furthermore, there were fewer apoptotic cells and less polymorphonuclear leukocyte infiltration in corneas protected by the spectacle lenses. The model established herein reliably determines the protective effect of UV-blocking ophthalmic biomaterials, because the in vivo protection against UV-induced ocular damage and visual acuity decline was easily defined.

  11. Prior Corneal Scarification and Injection of Immune Serum are Not Required Before Ocular HSV-1 Infection for UV-B-Induced Virus Reactivation and Recurrent Herpetic Corneal Disease in Latently Infected Mice

    PubMed Central

    BenMohamed, Lbachir; Osorio, Nelson; Khan, Arif A.; Srivastava, Ruchi; Huang, Lei; Krochmal, John J.; Garcia, Jairo M.; Simpson, Jennifer L.; Wechsler, Steven L.

    2017-01-01

    Purpose Blinding ocular herpetic disease in humans is due to spontaneous reactivation of herpes simplex virus type 1 (HSV-1) from latency, rather than to primary acute infection. Mice latently infected with HSV-1 undergo little or no in vivo spontaneous reactivation with accompanying virus shedding in tears. HSV-1 reactivation can be induced in latently infected mice by several in vivo procedures, with UV-B-induced reactivation being one commonly used method. In the UV-B model, corneas are scarified (lightly scratched) just prior to ocular infection to increase efficiency of the primary infection and immune serum containing HSV-1 neutralizing antibodies is injected intraperitoneally (i.p.) to increase survival and decrease acute corneal damage. Since scarification can significantly alter host gene transcription in the cornea and in the trigeminal ganglia (TG; the site of HSV-1 latency) and since injection of immune serum likely modulates innate and adaptive herpes immunity, we investigated eliminating both treatments. Material and Methods Mice were infected with HSV-1 with or without corneal scarification and immune serum. HSV-1 reactivation and recurrent disease were induced by UV-B irradiation. Results When corneal scarification and immune serum were both eliminated, UV-B irradiation still induced both HSV-1 reactivation, as measured by shedding of reactivated virus in tears and herpetic eye disease, albeit at reduced levels compared to the original procedure. Conclusion Despite the reduced reactivation and disease, avoidance of both corneal scarification and immune serum should improve the clinical relevance of the UV-B mouse model. PMID:26398722

  12. Early Alcohol Exposure Disrupts Visual Cortex Plasticity in Mice

    PubMed Central

    Lantz, Crystal L.; Wang, Weili; Medina, Alexandre E.

    2012-01-01

    There is growing evidence that deficits in neuronal plasticity underlie the cognitive problems seen in fetal alcohol spectrum disorders (FASD). However, the mechanisms behind these deficits are not clear. Here we test the effects of early alcohol exposure on ocular dominance plasticity (ODP) in mice and the reversibility of these effects by phosphodiesterase (PDE) inhibitors. Mouse pups were exposed to 5 g/kg of 25% ethanol i.p. on postnatal days (P) 5, 7 and 9. This type of alcohol exposure mimics binge drinking during the third trimester equivalent of human gestation. To assess ocular dominance plasticity animals were monocularly deprived at P21 for 10 days, and tested using optical imaging of intrinsic signals. During the period of monocular deprivation animals were treated with vinpocetine (20mg/kg; PDE1 inhibitor), rolipram (1.25 mg/Kg; PDE4 inhibitor), vardenafil (3 mg/Kg; PDE5 inhibitor) or vehicle solution. Monocular deprivation resulted in the expected shift in ocular dominance of the binocular zone in saline controls but not in the ethanol group. While vinpocetine successfully restored ODP in the ethanol group, rolipram and vardenafil did not. However, when rolipram and vardenafil were given simultaneously ODP was restored. PDE4 and PDE5 are specific to cAMP and cGMP respectively, while PDE1 acts on both of these nucleotides. Our findings suggest that the combined activation of the cAMP and cGMP cascades may be a good approach to improve neuronal plasticity in FASD models. PMID:22617459

  13. Relative axial myopia in Egr-1 (ZENK) knockout mice.

    PubMed

    Schippert, Ruth; Burkhardt, Eva; Feldkaemper, Marita; Schaeffel, Frank

    2007-01-01

    Experiments in chickens have implicated the transcription factor ZENK (also known as Egr-1, NGFI-A, zif268, tis8, cef5, and Krox24) in the feedback mechanisms for visual control of axial eye growth and myopia development. ZENK is upregulated in retinal glucagon amacrine cells when axial eye growth is inhibited by positive spectacle lens wear and is downregulated when it is enhanced by negative spectacle lens wear, suggesting that ZENK may be linked to an inhibitory signal for axial eye growth. This study was undertaken to determine whether a Egr-1(-/-) knockout mouse mutant, lacking ZENK completely, has longer eyes and more myopic refraction, than do Egr-1(+/)(-) heterozygous and Egr-1(+/+) wild-type mice with near-identical genetic backgrounds. Eye growth and refractive development were tracked from day P28 to P98. Corneal radius of curvature was measured with infrared photokeratometry, refractive state with infrared photoretinoscopy, and ocular dimensions with low-coherence interferometry. As a functional vision test, grating acuity was determined in an automated optomotor task. The abundance of ZENK protein in the retina was quantified by immunohistochemistry. Egr-1 knockout mice had longer eyes and a relative myopic shift in refraction, with additional minor effects on anterior chamber depth and corneal radius of curvature. Paraxial schematic eye modeling suggested changes in the optics of the crystalline lens as well. With increasing age, the differences between mutant and wild-type mice declined, although the differences in refraction persisted over the observation period. Grating acuity was not affected by the lack of the Egr-1 protein during development. Although it has been shown that different mouse strains may have differently large eyes, the present study shows that a specific gene knockout can produce relative myopia, compared with the wild-type with near-identical genetic background. Further experiments are needed to determine whether the observed effects of Egr-1 deletion are due to changes in function within the retina or other ocular tissues or to changes of function in other systems that may affect ocular growth from outside the eye.

  14. Development of an Anatomically Accurate Finite Element Human Ocular Globe Model for Blast-Related Fluid-Structure Interaction Studies

    DTIC Science & Technology

    2017-02-01

    ARL-TR-7945 ● FEB 2017 US Army Research Laboratory Development of an Anatomically Accurate Finite Element Human Ocular Globe...ARL-TR-7945 ● FEB 2017 US Army Research Laboratory Development of an Anatomically Accurate Finite Element Human Ocular Globe Model... Finite Element Human Ocular Globe Model for Blast-Related Fluid-Structure Interaction Studies 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM

  15. Honokiol inhibits pathological retinal neovascularization in oxygen-induced retinopathy mouse model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vavilala, Divya Teja; O’Bryhim, Bliss E.; Ponnaluri, V.K. Chaithanya

    2013-09-06

    Highlights: •Aberrant activation of HIF pathway is the underlying cause of ischemic neovascularization. •Honokiol has better therapeutic index as a HIF inhibitor than digoxin and doxorubicin. •Daily IP injection of honokiol in OIR mouse model reduced retinal neovascularization. •Honokiol also prevents vaso-obliteration, the characteristic feature of the OIR model. •Honokiol enhanced physiological revascularization of the retinal vascular plexuses. -- Abstract: Aberrant activation of the hypoxia inducible factor (HIF) pathway is the underlying cause of retinal neovascularization, one of the most common causes of blindness worldwide. The HIF pathway also plays critical roles during tumor angiogenesis and cancer stem cell transformation.more » We have recently shown that honokiol is a potent inhibitor of the HIF pathway in a number of cancer and retinal pigment epithelial cell lines. Here we evaluate the safety and efficacy of honokiol, digoxin, and doxorubicin, three recently identified HIF inhibitors from natural sources. Our studies show that honokiol has a better safety to efficacy profile as a HIF inhibitor than digoxin and doxorubicin. Further, we show for the first time that daily intraperitoneal injection of honokiol starting at postnatal day (P) 12 in an oxygen-induced retinopathy (OIR) mouse model significantly reduced retinal neovascularization at P17. Administration of honokiol also prevents the oxygen-induced central retinal vaso-obliteration, characteristic feature of the OIR model. Additionally, honokiol enhanced physiological revascularization of the retinal vascular plexuses. Since honokiol suppresses multiple pathways activated by HIF, in addition to the VEGF signaling, it may provide advantages over current treatments utilizing specific VEGF antagonists for ocular neovascular diseases and cancers.« less

  16. Ocular Chromatic Aberrations and Their Effects on Polychromatic Retinal Image Quality

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoxiao

    Previous studies of ocular chromatic aberrations have concentrated on chromatic difference of focus (CDF). Less is known about the chromatic difference of image position (CDP) in the peripheral retina and no experimental attempt has been made to measure the ocular chromatic difference of magnification (CDM). Consequently, theoretical modelling of human eyes is incomplete. The insufficient knowledge of ocular chromatic aberrations is partially responsible for two unsolved applied vision problems: (1) how to improve vision by correcting ocular chromatic aberration? (2) what is the impact of ocular chromatic aberration on the use of isoluminance gratings as a tool in spatial-color vision?. Using optical ray tracing methods, MTF analysis methods of image quality, and psychophysical methods, I have developed a more complete model of ocular chromatic aberrations and their effects on vision. The ocular CDM was determined psychophysically by measuring the tilt in the apparent frontal parallel plane (AFPP) induced by interocular difference in image wavelength. This experimental result was then used to verify a theoretical relationship between the ocular CDM, the ocular CDF and the entrance pupil of the eye. In the retinal image after correcting the ocular CDF with existing achromatizing methods, two forms of chromatic aberration (CDM and chromatic parallax) were examined. The CDM was predicted by theoretical ray tracing and measured with the same method used to determine ocular CDM. The chromatic parallax was predicted with a nodal ray model and measured with the two-color vernier alignment method. The influence of these two aberrations on polychromatic MTF were calculated. Using this improved model of ocular chromatic aberration, luminance artifacts in the images of isoluminance gratings were calculated. The predicted luminance artifacts were then compared with experimental data from previous investigators. The results show that: (1) A simple relationship exists between two major chromatic aberrations and the location of the pupil; (2) The ocular CDM is measurable and varies among individuals; (3) All existing methods to correct ocular chromatic aberration face another aberration, chromatic parallax, which is inherent in the methodology; (4) Ocular chromatic aberrations have the potential to contaminate psychophysical experimental results on human spatial-color vision.

  17. Radiation treatment inhibits monocyte entry into the optic nerve head and prevents neuronal damage in a mouse model of glaucoma.

    PubMed

    Howell, Gareth R; Soto, Ileana; Zhu, Xianjun; Ryan, Margaret; Macalinao, Danilo G; Sousa, Gregory L; Caddle, Lura B; MacNicoll, Katharine H; Barbay, Jessica M; Porciatti, Vittorio; Anderson, Michael G; Smith, Richard S; Clark, Abbot F; Libby, Richard T; John, Simon W M

    2012-04-01

    Glaucoma is a common ocular disorder that is a leading cause of blindness worldwide. It is characterized by the dysfunction and loss of retinal ganglion cells (RGCs). Although many studies have implicated various molecules in glaucoma, no mechanism has been shown to be responsible for the earliest detectable damage to RGCs and their axons in the optic nerve. Here, we show that the leukocyte transendothelial migration pathway is activated in the optic nerve head at the earliest stages of disease in an inherited mouse model of glaucoma. This resulted in proinflammatory monocytes entering the optic nerve prior to detectable neuronal damage. A 1-time x-ray treatment prevented monocyte entry and subsequent glaucomatous damage. A single x-ray treatment of an individual eye in young mice provided that eye with long-term protection from glaucoma but had no effect on the contralateral eye. Localized radiation treatment prevented detectable neuronal damage and dysfunction in treated eyes, despite the continued presence of other glaucomatous stresses and signaling pathways. Injection of endothelin-2, a damaging mediator produced by the monocytes, into irradiated eyes, combined with the other glaucomatous stresses, restored neural damage with a topography characteristic of glaucoma. Together, these data support a model of glaucomatous damage involving monocyte entry into the optic nerve.

  18. Oxidative Stress Induced Inflammation Initiates Functional Decline of Tear Production

    PubMed Central

    Uchino, Yuichi; Kawakita, Tetsuya; Miyazawa, Masaki; Ishii, Takamasa; Onouchi, Hiromi; Yasuda, Kayo; Ogawa, Yoko; Shimmura, Shigeto; Ishii, Naoaki; Tsubota, Kazuo

    2012-01-01

    Oxidative damage and inflammation are proposed to be involved in an age-related functional decline of exocrine glands. However, the molecular mechanism of how oxidative stress affects the secretory function of exocrine glands is unclear. We developed a novel mev-1 conditional transgenic mouse model (Tet-mev-1) using a modified tetracycline system (Tet-On/Off system). This mouse model demonstrated decreased tear production with morphological changes including leukocytic infiltration and fibrosis. We found that the mev-1 gene encodes Cyt-1, which is the cytochrome b560 large subunit of succinate-ubiquinone oxidoreductase in complex II of mitochondria (homologous to succinate dehydrogenase C subunit (SDHC) in humans). The mev-1 gene induced excessive oxidative stress associated with ocular surface epithelial damage and a decrease in protein and aqueous secretory function. This new model provides evidence that mitochondrial oxidative damage in the lacrimal gland induces lacrimal dysfunction resulting in dry eye disease. Tear volume in Tet-mev-1 mice was lower than in wild type mice and histopathological analyses showed the hallmarks of lacrimal gland inflammation by intense mononuclear leukocytic infiltration and fibrosis in the lacrimal gland of Tet-mev-1 mice. These findings strongly suggest that oxidative stress can be a causative factor for the development of dry eye disease. PMID:23071526

  19. Contributions of Interleukin‐33 and TSLP in a papain‐soaked contact lens‐induced mouse conjunctival inflammation model

    PubMed Central

    Sugita, Jobu; Asada, Yosuke; Ishida, Waka; Iwamoto, Satoshi; Sudo, Katsuko; Suto, Hajime; Matsunaga, Toru; Fukuda, Ken; Fukushima, Atsuki; Yokoi, Norihiko; Ohno, Tatsukuni; Azuma, Miyuki; Ebihara, Nobuyuki; Saito, Hirohisa; Kubo, Masato; Nakae, Susumu

    2017-01-01

    Abstract Introduction Pathological changes of severe chronic allergic conjunctivitis are driven not only via acquired immunity but also via innate immunity. Type 2 immune response‐initiating cytokines may play some roles as innate immunity‐dependent components of the ocular surface inflammation. To investigate the involvement of type 2 immune response‐initiating cytokines in innate immunity‐dependent, papain‐induced conjunctival inflammation model using IL‐25‐, IL‐33‐, and TSLP receptor (TSLPR)‐knockout (KO) mice with reference to basophils and ILC2. Methods Papain‐soaked contact lenses (papain‐CLs) were installed in the conjunctival sacs of C57BL/6‐IL‐25 KO, IL‐33 KO, TSLPR KO, Rag2 KO, Bas‐TRECK, and wild‐type mice and their eyes were sampled at day 5. The eosinophil and basophil infiltration in papain‐CL model was evaluated histologically and cytokine expression was examined. To clarify the roles of basophils and ILC2, basophil/ILC2‐depletion experiments were carried out. Results Papain‐induced conjunctival inflammation exhibited eosinophil infiltration and upregulation of Th2 cytokine expression. Reduction of eosinophil and basophil infiltration and attenuated Th2 cytokine expression were observed in the papain‐CL model using IL‐33 KO and TSLPR KO mice. Depletion of basophils or ILC2s in the conjunctivae of the papain‐CL model reduced eosinophil infiltration. Conclusions Innate immunity‐driven type 2 immune responses of the ocular surface are dependent on IL‐33, TSLP, basophils, and ILC2. These components may be possible therapeutic targets for refractory allergic keratoconjunctivitis. PMID:28730605

  20. Fluoxetine increases plasticity and modulates the proteomic profile in the adult mouse visual cortex

    PubMed Central

    Ruiz-Perera, L.; Muniz, M.; Vierci, G.; Bornia, N.; Baroncelli, L.; Sale, A.; Rossi, F.M.

    2015-01-01

    The scarce functional recovery of the adult CNS following injuries or diseases is largely due to its reduced potential for plasticity, the ability to reorganize neural connections as a function of experience. Recently, some new strategies restoring high levels of plasticity in the adult brain have been identified, especially in the paradigmatic model of the visual system. A chronic treatment with the anti-depressant fluoxetine reinstates plasticity in the adult rat primary visual cortex, inducing recovery of vision in amblyopic animals. The molecular mechanisms underlying this effect remain largely unknown. Here, we explored fluoxetine effects on mouse visual cortical plasticity, and exploited a proteomic approach to identify possible candidates mediating the outcome of the antidepressant treatment on adult cortical plasticity. We showed that fluoxetine restores ocular dominance plasticity in the adult mouse visual cortex, and identified 31 differentially expressed protein spots in fluoxetine-treated animals vs. controls. MALDITOF/TOF mass spectrometry identification followed by bioinformatics analysis revealed that these proteins are involved in the control of cytoskeleton organization, endocytosis, molecular transport, intracellular signaling, redox cellular state, metabolism and protein degradation. Altogether, these results indicate a complex effect of fluoxetine on neuronal signaling mechanisms potentially involved in restoring plasticity in the adult brain. PMID:26205348

  1. Axonal/Glial Upregulation of EphB/ephrin-B Signaling in Mouse Experimental Ocular Hypertension

    PubMed Central

    Tran, Tony; Sretavan, David

    2010-01-01

    Purpose. To use a laser-induced ocular hypertension (LIOH) mouse model to examine the optic nerve head (ONH) expression of EphB/ephrin-B, previously shown to be upregulated in glaucomatous DBA/2J mice. To relate ephrin-B reverse signaling with states of axonal response to disease. Methods. LIOH was induced unilaterally in CD-1 mice by laser photocoagulation of limbal and episcleral veins. Intraocular pressure (IOP) was measured with a tonometer. EphB/ephrin-B mRNA expression was assessed by in situ hybridization on eyecup cryosections and real-time PCR. Cell specific markers were used to identify the cellular origin of EphB/ephrin-B expression. Activation of ephrin-B signaling was investigated with a phosphospecific antibody on cryosections and retinal whole-mounts. Results. Upregulation of EphB/ephrin-B expression occurred early within a day of IOP elevation. A transient increase of phosphorylation-dependent ephrin-B (pEB) reverse signaling was observed in ONH axons, microglia, and some astrocytes. Morphologically unaffected retinal ganglion cell (RGC) axons differed from axons with reactive aberrant trajectories by exhibiting increased pEB activation, whereas pEB levels in morphologically affected axons were comparable to those of controls. Conclusions. An Eph-ephrin signaling network is activated at the ONH after LIOH in CD-1 mice, either before or coincident with the initial morphologic signs of RGC axon damage reported previously. Of note, ephrin-B reverse signaling was transiently upregulated in RGC axons at the ONH early in their response to IOP elevation but was downregulated in axons that had been damaged by glaucomatous injury and exhibited aberrant trajectories. Ephrin-B reverse signaling may mark RGC axons for damage or confer a protective advantage against injury. PMID:19815726

  2. The role of PGE2 receptor EP4 in pathologic ocular angiogenesis.

    PubMed

    Yanni, Susan E; Barnett, Joshua M; Clark, Monika L; Penn, John S

    2009-11-01

    PGE(2) binds to PGE(2) receptors (EP(1-4)). The purpose of the present study was to investigate the role of the EP(4) receptor in angiogenic cell behaviors of retinal Müller cells and retinal microvascular endothelial cells (RMECs) and to assess the efficacy of an EP(4) antagonist in rat models of oxygen-induced retinopathy (OIR) and laser-induced choroidal neovascularization (LCNV). Müller cells derived from COX-2-null mice were treated with increasing concentrations of the EP(4) agonist PGE(1)-OH, and wild-type Müller cells were treated with increasing concentrations of the EP(4) antagonist L-161982; VEGF production was assessed. Human RMECs (HRMECs) were treated with increasing concentrations of L-161982, and cell proliferation and tube formation were assessed. Rats subjected to OIR or LCNV were administered L-161982, and the neovascular area was measured. COX-2-null mouse Müller cells treated with increasing concentrations of PGE(1)-OH demonstrated a significant increase in VEGF production (P < or = 0.0165). Wild-type mouse Müller cells treated with increasing concentrations of L-161982 demonstrated a significant decrease in VEGF production (P < or = 0.0291). HRMECs treated with increasing concentrations of L-161982 demonstrated a significant reduction in VEGF-induced cell proliferation (P < or = 0.0033) and tube formation (P < 0.0344). L-161982 treatment significantly reduced pathologic neovascularization in OIR (P < 0.0069) and LCNV (P < or = 0.0329). Preliminary investigation has demonstrated that EP(4) activation or inhibition influences the behaviors of two retinal cell types known to play roles in pathologic ocular angiogenesis. These findings suggest that the EP(4) receptor may be a valuable therapeutic target in neovascular eye disease.

  3. A novel mouse model of anterior segment dysgenesis (ASD): conditional deletion of Tsc1 disrupts ciliary body and iris development

    PubMed Central

    Hägglund, Anna-Carin; Jones, Iwan

    2017-01-01

    ABSTRACT Development of the cornea, lens, ciliary body and iris within the anterior segment of the eye involves coordinated interaction between cells originating from the ciliary margin of the optic cup, the overlying periocular mesenchyme and the lens epithelium. Anterior segment dysgenesis (ASD) encompasses a spectrum of developmental syndromes that affect these anterior segment tissues. ASD conditions arise as a result of dominantly inherited genetic mutations and result in both ocular-specific and systemic forms of dysgenesis that are best exemplified by aniridia and Axenfeld–Rieger syndrome, respectively. Extensive clinical overlap in disease presentation amongst ASD syndromes creates challenges for correct diagnosis and classification. The use of animal models has therefore proved to be a robust approach for unravelling this complex genotypic and phenotypic heterogeneity. However, despite these successes, it is clear that additional genes that underlie several ASD syndromes remain unidentified. Here, we report the characterisation of a novel mouse model of ASD. Conditional deletion of Tsc1 during eye development leads to a premature upregulation of mTORC1 activity within the ciliary margin, periocular mesenchyme and lens epithelium. This aberrant mTORC1 signalling within the ciliary margin in particular leads to a reduction in the number of cells that express Pax6, Bmp4 and Msx1. Sustained mTORC1 signalling also induces a decrease in ciliary margin progenitor cell proliferation and a consequent failure of ciliary body and iris development in postnatal animals. Our study therefore identifies Tsc1 as a novel candidate ASD gene. Furthermore, the Tsc1-ablated mouse model also provides a valuable resource for future studies concerning the molecular mechanisms underlying ASD and acts as a platform for evaluating therapeutic approaches for the treatment of visual disorders. PMID:28250050

  4. Acute vitreoretinal trauma and inflammation after traumatic brain injury in mice.

    PubMed

    Evans, Lucy P; Newell, Elizabeth A; Mahajan, MaryAnn; Tsang, Stephen H; Ferguson, Polly J; Mahoney, Jolonda; Hue, Christopher D; Vogel, Edward W; Morrison, Barclay; Arancio, Ottavio; Nichols, Russell; Bassuk, Alexander G; Mahajan, Vinit B

    2018-03-01

    Limited attention has been given to ocular injuries associated with traumatic brain injury (TBI). The retina is an extension of the central nervous system and evaluation of ocular damage may offer a less-invasive approach to gauge TBI severity and response to treatment. We aim to characterize acute changes in the mouse eye after exposure to two different models of TBI to assess the utility of eye damage as a surrogate to brain injury. A model of blast TBI (bTBI) using a shock tube was compared to a lateral fluid percussion injury model (LFPI) using fluid pressure applied directly to the brain. Whole eyes were collected from mice 3 days post LFPI and 24 days post bTBI and were evaluated histologically using a hematoxylin and eosin stain. bTBI mice showed evidence of vitreous detachment in the posterior chamber in addition to vitreous hemorrhage with inflammatory cells. Subretinal hemorrhage, photoreceptor degeneration, and decreased cellularity in the retinal ganglion cell layer was also seen in bTBI mice. In contrast, eyes of LFPI mice showed evidence of anterior uveitis and subcapsular cataracts. We demonstrated that variations in the type of TBI can result in drastically different phenotypic changes within the eye. As such, molecular and phenotypic changes in the eye following TBI may provide valuable information regarding the mechanism, severity, and ongoing pathophysiology of brain injury. Because vitreous samples are easily obtained, molecular changes within the eye could be utilized as biomarkers of TBI in human patients.

  5. The zebrafish eye—a paradigm for investigating human ocular genetics

    PubMed Central

    Richardson, R; Tracey-White, D; Webster, A; Moosajee, M

    2017-01-01

    Although human epidemiological and genetic studies are essential to elucidate the aetiology of normal and aberrant ocular development, animal models have provided us with an understanding of the pathogenesis of multiple developmental ocular malformations. Zebrafish eye development displays in depth molecular complexity and stringent spatiotemporal regulation that incorporates developmental contributions of the surface ectoderm, neuroectoderm and head mesenchyme, similar to that seen in humans. For this reason, and due to its genetic tractability, external fertilisation, and early optical clarity, the zebrafish has become an invaluable vertebrate system to investigate human ocular development and disease. Recently, zebrafish have been at the leading edge of preclinical therapy development, with their amenability to genetic manipulation facilitating the generation of robust ocular disease models required for large-scale genetic and drug screening programmes. This review presents an overview of human and zebrafish ocular development, genetic methodologies employed for zebrafish mutagenesis, relevant models of ocular disease, and finally therapeutic approaches, which may have translational leads in the future. PMID:27612182

  6. Eye model for the ground squirrel

    NASA Astrophysics Data System (ADS)

    Sussman, Dafna; Chou, B. Ralph; Lakshminarayanan, Vasudevan

    2011-11-01

    This paper presents an anatomically-correct eye model for the ground squirrel, a diurnal, highly-developed mammal with high visual acuity. This model can assist in understanding the relationship between ocular structural development and its corresponding function. The eye model is constructed based on anatomical measurements of thicknesses and indices of refraction of the various ocular media. The model then derives the gradient index distribution of the crystalline lens using a ray tracing method with a Monte Carlo optimization. Results indicate a diffraction-limited ocular behaviour, implying the visual acuity of the ground squirrel is more likely to be limited by photoreceptor density and diffraction effects, than by ocular geometry.

  7. Effective melanin depigmentation of human and murine ocular tissues: an improved method for paraffin and frozen sections.

    PubMed

    Manicam, Caroline; Pitz, Susanne; Brochhausen, Christoph; Grus, Franz H; Pfeiffer, Norbert; Gericke, Adrian

    2014-01-01

    The removal of excessive melanin pigments that obscure ocular tissue morphology is important to address scientific questions and for differential diagnosis of ocular tumours based on histology. Thus, the goal of the present study was to establish an effective and fast melanin bleaching method for paraffin and frozen mouse and human ocular tissues. Paraffin-embedded and frozen ocular specimens from mice and human donors were subjected to bleaching employing two methods. The first employed potassium permanganate (KMnO4) with oxalic acid, and the second 10% hydrogen peroxide (H2O2). To determine optimal bleaching conditions, depigmentation was carried out at various incubation times. The effect of diluents used for 10% H2O2 was assessed using phosphate-buffered saline (PBS), and deionized water. Three different slide types and two fixatives, which were ice-cold acetone with 80% methanol, and 4% paraformaldehyde (PFA) were used to determine the optimal conditions for better tissue adherence during bleaching. All tissues were stained in hematoxylin and eosin for histological evaluation. Optimal bleaching was achieved using warm 10% H2O2 diluted in PBS at 65°C for 120 minutes. Chromium-gelatin-coated slides prevented tissue detachment. Adherence of cryosections was also improved with post-fixation using 4% PFA and overnight air-drying at RT after cryosectioning. Tissue morphology was preserved under these conditions. Conversely, tissues bleached in KMnO4/oxalic acid demonstrated poor depigmentation with extensive tissue damage. Warm dilute H2O2 at 65°C for 120 minutes rapidly and effectively bleached both cryo- and paraffin sections of murine and human ocular tissues.

  8. Limited Versus Total Epithelial Debridement Ocular Surface Injury: Live Fluorescence Imaging of Hemangiogenesis and Lymphangiogenesis in Prox1-GFP/Flk1::myr-mCherry Mice

    PubMed Central

    Chang, Jin-Hong; Putra, Ilham; Huang, Yu-hui; Chang, Michael; Han, Kyuyeon; Zhong, Wei; Gao, Xinbo; Wang, Shuangyong; Dugas-Ford, Jennifer; Nguyen, Tara; Hong, Young-Kwon; Azar, Dimitri T.

    2016-01-01

    Background Immunohistochemical staining experiments have shown that both hemangiogenesis and lymphangiogenesis occur following severe corneal and conjunctival injury and that the neovascularization of the cornea often has severe visual consequences. To better understand how hemangiogenesis and lymphangiogenesis are induced by different degrees of ocular injury, we investigated patterns of injury-induced corneal neovascularization in live Prox1-GFP/Flk1::myr-mCherry mice, in which blood and lymphatic vessels can be imaged simultaneously in vivo. Methods The eyes of Prox1-GFP/Flk1::myr-mCherry mice were injured according to four models based on epithelial debridement of the: A) central cornea (a 1.5-mm-diameter circle of tissue over the corneal apex), B) total cornea, C) bulbar conjunctiva, and D) cornea+bulbar conjunctiva. Corneal blood and lymphatic vessels were imaged on days 0, 3, 7, and 10 post-injury, and the percentages of the cornea containing blood and lymphatic vessels were calculated. Results Neither central corneal nor bulbar conjunctival debridement resulted in significant vessel growth in the mouse cornea, whereas total corneal and corneal+bulbar conjunctival debridement did. On day 10 in the central cornea, total cornea, bulbar conjunctiva, and corneal+bulbar conjunctival epithelial debridement models, the percentage of the corneal surface that was occupied by blood vessels (hemangiogenesis) was 1.9±0.8%, 7.14±2.4%, 2.29±1%, and 15.05±2.14%, respectively, and the percentage of the corneal surface that was occupied by lymphatic vessels (lymphangiogenesis) was 2.45±1.51%, 4.85±0.95%, 2.95±1.27%, and 4.15±3.85%, respectively. Conclusions Substantial corneal debridement was required to induce corneal neovascularization in the mouse cornea, and the corneal epithelium may therefore be partially responsible for maintaining corneal avascularity. General significance Our study demonstrates that GFP/Flk1::myr-mCherry mice are a useful model for studying coordinated hemangiogenic and lymphangiogenic responses. PMID:27233452

  9. In utero eyeball development study by magnetic resonance imaging.

    PubMed

    Brémond-Gignac, D S; Benali, K; Deplus, S; Cussenot, O; Ferkdadji, L; Elmaleh, M; Lassau, J P

    1997-01-01

    The aim of this study was to measure fetal ocular development and to determine a growth curve by means of measurements in utero. Fetal ocular development was recorded by analysis of the results of magnetic resonance imaging (MRI). An anatomic study allowed definition of the best contrasted MRI sequences for calculation of the ocular surface. Biometric analysis of the values of the ocular surface in the neuro-ocular plane in 35 fetuses allowed establishment of a linear model of ocular growth curve in utero. Evaluation of ocular development may allow the detection and confirmation of malformational ocular anomalies such as microphthalmia.

  10. EXPOSURE-DISEASE CONTINUUM FOR 2-CHLORO-2'-DEOXYADENOSINE (2-CDA), A PROTOTYPE TERATOGEN: INDUCTION OF LUMBAR HERNIA IN THE RAT AND SPECIES COMPARISON FOR THE TERATOGENIC RESPONSES

    EPA Science Inventory

    Abstract

    The purine analog 2-chloro-2'-deoxyadenosine (2-CdA, cladribine), an anti-leukemic and immunosuppressive agent, has been found to be teratogenic in the mouse and rabbit, causing ocular and limb defects. The current study examined the teratogenic potential of th...

  11. Beyond Epilepsy and Autism: Disruption of GABRB3 Causes Ocular Hypopigmentation.

    PubMed

    Delahanty, Ryan J; Zhang, Yanfeng; Bichell, Terry Jo; Shen, Wangzhen; Verdier, Kelienne; Macdonald, Robert L; Xu, Lili; Boyd, Kelli; Williams, Janice; Kang, Jing-Qiong

    2016-12-20

    Reduced ocular pigmentation is common in Angelman syndrome (AS) and Prader-Willi syndrome (PWS) and is long thought to be caused by OCA2 deletion. GABRB3 is located in the 15q11-13 region flanked by UBE3A, GABRA5, GABRG3, and OCA2. Mutations in GABRB3 have frequently been associated with epilepsy and autism, consistent with its role in neurodevelopment. We report here a robust phenotype in the mouse in which deletion of Gabrb3 alone causes nearly complete loss of retinal pigmentation due to atrophied melanosomes, as evidenced by electron microscopy. Using exome and RNA sequencing, we confirmed that only the Gabrb3 gene was disrupted while the Oca2 gene was intact. However, mRNA abundance of Oca2 and other genes adjacent to Gabrb3 is substantially reduced in Gabrb3 -/- mice, suggesting complex transcriptional regulation in this region. These results suggest that impairment in GABRB3 downregulates OCA2 and indirectly causes ocular hypopigmentation and visual defects in AS and PWS. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  12. A mouse dry eye model induced by topical administration of the air pollutant particulate matter 10.

    PubMed

    Li, Juan; Tan, Gang; Ding, Xiaoyan; Wang, Yahong; Wu, Anhua; Yang, Qichen; Ye, Lei; Shao, Yi

    2017-12-01

    To introduce a novel dry eye mouse model induced by topical administration of the air pollutant particulate matter 10 (PM 10 ). A total of 60 male BALB/c mice were used in this study and divided into two groups: group A (PBS eye drops, n=30) and group B (PM 10 eye drop group, n=30). Each treatment was dosed four times a day, every time 50ul with the concentration of 5mg/ml PM10, for 14 consecutive days in the right eye. The clinical manifestations of dry eye were measured before therapy and 4, 7 and 14days post-treatment respectively, which included the tear volume, tear break-up (BUT) time, corneal fluorescein staining, rose bengal staining, Lissamine Green staining and inflammatory index. Eye samples were collected on D14 and examined by histologic light microscopy, transmission electron microscopy (TEM) and scanning electron microscopy (SEM), corneal cytokeration 10 (K10) immunnostaining, and tumor necrosis factor-α (TNF-α), NF-κB-p65 and NF-κB Western Blot analysis. At 0d, 7d and 14d, there were no statistical changes in tear volume, BUT after treatment (P>0.05) with PBS in group A. In group B, all items showed statistical differences at each time point (P<0.05). At 14d after therapy, the fluorescein staining score of group B was higher than group A (P<0.05). The score of rose bengal staining and Lissamine Green staining in group B was also higher than that in group A (P<0.05). The number of mean layers of corneal epithelial cells in the group A was significantly lower than that in the group B (P<0.05). TEM and SEM revealed that the number of corneal epithelial microvilli were drastically reduced in group B. The number of corneal chondriosome/desmosomes was also reduced in group B by TEM. PM 10 induced apoptosis in the superficial and basal corneal epithelium, and leaded to abnormal differentiation and proliferation of the ocular surface with higher expression levels of K10 and reduced number of goblet cells in the conjunctival fornix in group B. PM 10 significantly increased the levels of TNF-α, NF-κB-p65 and NF-κB in the cornea. PM 10 can damage the tear film function and cause the destruction of the structural organization of ocular surface in mice. Topical administration of PM 10 in mice induces ocular surface changes that are similar to those of dry eye in humans, representing a novel model of DES. Copyright © 2017. Published by Elsevier Masson SAS.

  13. Topical steroid and non-steroidal anti-inflammatory drugs inhibit inflammatory cytokine expression on the ocular surface in the botulinum toxin B-induced murine dry eye model.

    PubMed

    Zhu, Lei; Zhang, Cheng; Chuck, Roy S

    2012-01-01

    To evaluate the effect of the topical steroid, fluorometholone, and the non-steroidal anti-inflammatory drugs (NSAIDs), nepafenac and ketorolac, on inflammatory cytokine expression of the ocular surface in the botulium toxin B-induced murine dry eye model. Topical artificial tears (0.5% carboxymethylcellulose sodium), 0.1% fluorometholone, 0.1% nepafenac, and 0.4% ketorolac were applied 3 times per day in a dry eye mouse model 1 week after intralacrimal botulium toxin B (BTX-B) or saline (sham) injection. Tear production and corneal fluorescein staining were evaluated in all groups before injection at baseline and at 3 time points up to 4 weeks after injection. The pro-inflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) were evaluated by immunohistochemistry. BTX-B-injected mice showed significantly decreased aqueous tear production and increased corneal fluorescein staining at the 1 and 2 week time points compared with normal control and saline-injected mice. In the BTX-B-injected mice, immunofluorescent staining for TNF-α and IL-1β in corneal and conjunctival epithelial cells increased significantly at the 2 and 4 week time points compared to that of normal and saline-injected mice, and returned to normal levels at the 4 week time point. Topical fluorometholone significantly improved corneal surface staining in the BTX-B-injected mice after 1 week of treatment, and increased the tear production within 2 weeks, but without statistical significant difference. Topical fluorometholone significantly decreased the staining of TNF-α and IL-1β in corneal and conjunctival epithelia after 1-week treatment. Topical artificial tears, 0.1% nepafenac, and 0.4% ketorolac did not show obvious effects on tear production, corneal surface staining, and levels of IL-1β and TNF-α expression in normal, and BTX-B-injected dry eye mice. Topical fluorometholone caused suppression of inflammatory cytokine expression on the ocular surface in the Botulium toxin B-induced murine dry eye model, while topical NSAIDs demonstrated no clearly beneficial effects.

  14. Development of the EpiOcular(TM) eye irritation test for hazard identification and labelling of eye irritating chemicals in response to the requirements of the EU cosmetics directive and REACH legislation.

    PubMed

    Kaluzhny, Yulia; Kandárová, Helena; Hayden, Patrick; Kubilus, Joseph; d'Argembeau-Thornton, Laurence; Klausner, Mitchell

    2011-09-01

    The recently implemented 7th Amendment to the EU Cosmetics Directive and the EU REACH legislation have heightened the need for in vitro ocular test methods. To address this need, the EpiOcular(TM) eye irritation test (EpiOcular-EIT), which utilises the normal (non-transformed) human cell-based EpiOcular tissue model, has been developed. The EpiOcular-EIT prediction model is based on an initial training set of 39 liquid and 21 solid test substances and uses a single exposure period and a single cut-off in tissue viability, as determined by the MTT assay. A chemical is classified as an irritant (GHS Category 1 or 2), if the tissue viability is ≤ 60%, and as a non-irritant (GHS unclassified), if the viability is > 60%. EpiOcular-EIT results for the training set, along with results for an additional 52 substances, which included a range of alcohols, hydrocarbons, amines, esters, and ketones, discriminated between ocular irritants and non-irritants with 98.1% sensitivity, 72.9% specificity, and 84.8% accuracy. To ensure the long-term commercial viability of the assay, EpiOcular tissues produced by using three alternative cell culture inserts were evaluated in the EpiOcular-EIT with 94 chemicals. The assay results obtained with the initial insert and the three alternative inserts were very similar, as judged by correlation coefficients (r²) that ranged from 0.82 to 0.96. The EpiOcular-EIT was pre-validated in 2007/2008, and is currently involved in a formal, multi-laboratory validation study sponsored by the European Cosmetics Association (COLIPA) under the auspices of the European Centre for the Validation of Alternative Methods (ECVAM). The EpiOcular-EIT, together with EpiOcular's long history of reproducibility and proven utility for ultra-mildness testing, make EpiOcular a useful model for addressing current legislation related to animal use in the testing of potential ocular irritants. 2011 FRAME.

  15. Autosomal dominant frontonasal dysplasia (atypical Greig syndrome): Lessons from the Xt mutant mouse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cunningham, M.L.; Nunes, M.E.

    1994-09-01

    Greig syndrome is the autosomal dominant association of mild hypertelorism, variable polysyndactyly, and normal intelligence. Several families have been found to have translocations or deletions of 7p13 interrupting the normal expression of GLI3 (a zinc finger, DNA binding, transcription repressor). Recently, a mutation in the mouse homologue of GLI3 was found in the extra-toes mutant mouse (Xt). The phenotypic features of this mouse model include mild hypertelorism, postaxial polydactyly of the forelimbs, preaxial polydactyly of the hindlimbs, and variable tibial hemimelia. The homozygous mutant Xt/Xt have severe frontonasal dysplasia (FND), polysyndactyly of fore-and hindlimbs and invariable tibial hemimelia. We havemore » recently evaluated a child with severe (type D) frontonasal dysplasia, fifth finger camptodactyly, preaxial polydactyly of one foot, and ispilateral tibial hemimelia. His father was born with a bifid nose, broad columnella, broad feet, and a two centimeter leg length discrepancy. The paternal grandmother of the proband is phenotypically normal; however, her fraternal twin died at birth with severe facial anomalies. The paternal great-grandmother of the proband is phenotypically normal however her niece was born with moderate ocular hypertelorism. This pedigree is suggestive of an autosomal dominant form of frontonasal dysplasia with variable expressivity. The phenotypic features of our case more closely resemble the Xt mouse than the previously defined features of Greig syndrome in humans. This suggests that a mutation in GLI3 may be responsible for FND in this family. We are currently using polymorphic dinucleotide repeat markers flanking GLI3 in a attempt to demonstrate linkage in this pedigree. Demonstration of a GLI3 mutation in this family would broaden our view of the spectrum of phenotypes possible in Greig syndrome and could provide insight into genotype/phenotype correlation in FND.« less

  16. The effect of maternal diabetes on the Wnt-PCP pathway during embryogenesis as reflected in the developing mouse eye

    PubMed Central

    López-Escobar, Beatriz; Cano, David A.; Rojas, Anabel; de Felipe, Beatriz; Palma, Francisco; Sánchez-Alcázar, José A.; Henderson, Deborah; Ybot-González, Patricia

    2015-01-01

    Embryopathies that develop as a consequence of maternal diabetes have been studied intensely in both experimental and clinical scenarios. Accordingly, hyperglycaemia has been shown to downregulate the expression of elements in the non-canonical Wnt-PCP pathway, such as the Dishevelled-associated activator of morphogenesis 1 (Daam1) and Vangl2. Daam1 is a formin that is essential for actin polymerization and for cytoskeletal reorganization, and it is expressed strongly in certain organs during mouse development, including the eye, neural tube and heart. Daam1gt/gt and Daam1gt/+ embryos develop ocular defects (anophthalmia or microphthalmia) that are similar to those detected as a result of hyperglycaemia. Indeed, studying the effects of maternal diabetes on the Wnt-PCP pathway demonstrated that there was strong association with the Daam1 genotype, whereby the embryopathy observed in Daam1gt/+ mutant embryos of diabetic dams was more severe. There was evidence that embryonic exposure to glucose in vitro diminishes the expression of genes in the Wnt-PCP pathway, leading to altered cytoskeletal organization, cell shape and cell polarity in the optic vesicle. Hence, the Wnt-PCP pathway appears to influence cell morphology and cell polarity, events that drive the cellular movements required for optic vesicle formation and that, in turn, are required to maintain the fate determination. Here, we demonstrate that the Wnt-PCP pathway is involved in the early stages of mouse eye development and that it is altered by diabetes, provoking the ocular phenotype observed in the affected embryos. PMID:25540130

  17. Longitudinal Analysis of Mouse SDOCT Volumes

    PubMed Central

    Antony, Bhavna J.; Carass, Aaron; Lang, Andrew; Kim, Byung-Jin; Zack, Donald J.; Prince, Jerry L.

    2017-01-01

    Spectral-domain optical coherence tomography (SDOCT), in addition to its routine clinical use in the diagnosis of ocular diseases, has begun to find increasing use in animal studies. Animal models are frequently used to study disease mechanisms as well as to test drug efficacy. In particular, SDOCT provides the ability to study animals longitudinally and non-invasively over long periods of time. However, the lack of anatomical landmarks makes the longitudinal scan acquisition prone to inconsistencies in orientation. Here, we propose a method for the automated registration of mouse SDOCT volumes. The method begins by accurately segmenting the blood vessels and the optic nerve head region in the scans using a pixel classification approach. The segmented vessel maps from follow-up scans were registered using an iterative closest point (ICP) algorithm to the baseline scan to allow for the accurate longitudinal tracking of thickness changes. Eighteen SDOCT volumes from a light damage model study were used to train a random forest utilized in the pixel classification step. The area under the curve (AUC) in a leave-one-out study for the retinal blood vessels and the optic nerve head (ONH) was found to be 0.93 and 0.98, respectively. The complete proposed framework, the retinal vasculature segmentation and the ICP registration, was applied to a secondary set of scans obtained from a light damage model. A qualitative assessment of the registration showed no registration failures. PMID:29138527

  18. Therapeutic Efficacy of Topically Applied Antioxidant Medicinal Plant Extracts in a Mouse Model of Experimental Dry Eye

    PubMed Central

    Lee, Jee Bum; Li, Ying; Choi, Ji Suk; Lee, Hyo Seok

    2016-01-01

    Purpose. To investigate the therapeutic effects of topical administration of antioxidant medicinal plant extracts in a mouse model of experimental dry eye (EDE). Methods. Eye drops containing balanced salt solution (BSS) or 0.001%, 0.01%, and 0.1% extracts were applied for the treatment of EDE. Tear volume, tear film break-up time (BUT), and corneal fluorescein staining scores were measured 10 days after desiccating stress. In addition, we evaluated the levels of interleukin- (IL-) 1β, tumor necrosis factor- (TNF-) α, IL-6, interferon- (IFN-) γ, and IFN-γ associated chemokines, percentage of CD4+C-X-C chemokine receptor type 3 positive (CXCR3+) T cells, goblet cell density, number of 4-hydroxy-2-nonenal (4-HNE) positive cells, and extracellular reactive oxygen species (ROS) production. Results. Compared to the EDE and BSS control groups, the mice treated with topical application of the 0.1% extract showed significant improvements in all clinical parameters, IL-1β, IL-6, TNF-α, and IFN-γ levels, percentage of CD4+CXCR3+ T cells, goblet cell density, number of 4-HNE-positive cells, and extracellular ROS production (P < 0.05). Conclusions. Topical application of 0.1% medicinal plant extracts improved clinical signs, decreased inflammation, and ameliorated oxidative stress marker and ROS production on the ocular surface of the EDE model mice. PMID:27313829

  19. Radiation treatment inhibits monocyte entry into the optic nerve head and prevents neuronal damage in a mouse model of glaucoma

    PubMed Central

    Howell, Gareth R.; Soto, Ileana; Zhu, Xianjun; Ryan, Margaret; Macalinao, Danilo G.; Sousa, Gregory L.; Caddle, Lura B.; MacNicoll, Katharine H.; Barbay, Jessica M.; Porciatti, Vittorio; Anderson, Michael G.; Smith, Richard S.; Clark, Abbot F.; Libby, Richard T.; John, Simon W.M.

    2012-01-01

    Glaucoma is a common ocular disorder that is a leading cause of blindness worldwide. It is characterized by the dysfunction and loss of retinal ganglion cells (RGCs). Although many studies have implicated various molecules in glaucoma, no mechanism has been shown to be responsible for the earliest detectable damage to RGCs and their axons in the optic nerve. Here, we show that the leukocyte transendothelial migration pathway is activated in the optic nerve head at the earliest stages of disease in an inherited mouse model of glaucoma. This resulted in proinflammatory monocytes entering the optic nerve prior to detectable neuronal damage. A 1-time x-ray treatment prevented monocyte entry and subsequent glaucomatous damage. A single x-ray treatment of an individual eye in young mice provided that eye with long-term protection from glaucoma but had no effect on the contralateral eye. Localized radiation treatment prevented detectable neuronal damage and dysfunction in treated eyes, despite the continued presence of other glaucomatous stresses and signaling pathways. Injection of endothelin-2, a damaging mediator produced by the monocytes, into irradiated eyes, combined with the other glaucomatous stresses, restored neural damage with a topography characteristic of glaucoma. Together, these data support a model of glaucomatous damage involving monocyte entry into the optic nerve. PMID:22426214

  20. Longitudinal analysis of mouse SDOCT volumes

    NASA Astrophysics Data System (ADS)

    Antony, Bhavna J.; Carass, Aaron; Lang, Andrew; Kim, Byung-Jin; Zack, Donald J.; Prince, Jerry L.

    2017-03-01

    Spectral-domain optical coherence tomography (SDOCT), in addition to its routine clinical use in the diagnosis of ocular diseases, has begun to fund increasing use in animal studies. Animal models are frequently used to study disease mechanisms as well as to test drug efficacy. In particular, SDOCT provides the ability to study animals longitudinally and non-invasively over long periods of time. However, the lack of anatomical landmarks makes the longitudinal scan acquisition prone to inconsistencies in orientation. Here, we propose a method for the automated registration of mouse SDOCT volumes. The method begins by accurately segmenting the blood vessels and the optic nerve head region in the scans using a pixel classification approach. The segmented vessel maps from follow-up scans were registered using an iterative closest point (ICP) algorithm to the baseline scan to allow for the accurate longitudinal tracking of thickness changes. Eighteen SDOCT volumes from a light damage model study were used to train a random forest utilized in the pixel classification step. The area under the curve (AUC) in a leave-one-out study for the retinal blood vessels and the optic nerve head (ONH) was found to be 0.93 and 0.98, respectively. The complete proposed framework, the retinal vasculature segmentation and the ICP registration, was applied to a secondary set of scans obtained from a light damage model. A qualitative assessment of the registration showed no registration failures.

  1. Therapeutic effects of topical doxycycline in a benzalkonium chloride-induced mouse dry eye model.

    PubMed

    Zhang, Zhen; Yang, Wen-Zhao; Zhu, Zhen-Zhen; Hu, Qian-Qian; Chen, Yan-Feng; He, Hui; Chen, Yong-Xiong; Liu, Zu-Guo

    2014-05-06

    We investigated the therapeutic effects and underlying mechanisms of topical doxycycline in a benzalkonium chloride (BAC)-induced mouse dry eye model. Eye drops containing 0.025%, 0.1% doxycycline or solvent were administered to a BAC-induced dry eye model four times daily. The clinical evaluations, including tear break-up time (BUT), fluorescein staining, inflammatory index, and tear volume, were performed on days 0, 1, 4, 7, and 10. Global specimens were collected on day 10 and processed for immunofluorescent staining, TUNEL, and periodic acid-Schiff assay. The levels of inflammatory mediators in the corneas were determined by real-time PCR. The total and phosphorylated nuclear factor-κB (NF-κB) were detected by Western blot. Both 0.025% and 0.1% doxycycline treatments resulted in increased BUT, lower fluorescein staining scores, and inflammatory index on days 4, 7, and 10, while no significant change in tear volume was observed. The 0.1% doxycycline-treated group showed more improvements in decreasing fluorescein staining scores, increasing Ki-67-positive cells, and decreasing TUNEL- and keratin-10-positive cells than other groups. The mucin-filled goblet cells in conjunctivas were increased, and the expression of CD11b and levels of matrix metalloproteinase-9, IL-1β, IL-6, TNF-α, macrophage inflammatory protein-2, and cytokine-induced neutrophil chemoattractant in corneas were decreased in both doxycycline-treated groups. In addition, doxycycline significantly reduced the phosphorylation of NF-κB activated in the BAC-treated corneas. Topical doxycycline showed clinical improvements and alleviated ocular surface inflammation on BAC-induced mouse dry eye, suggesting a potential as an anti-inflammatory agent in the clinical treatment of dry eye.

  2. Predictive models for ocular chronic graft-versus-host disease diagnosis and disease activity in transplant clinical practice.

    PubMed

    Curtis, Lauren M; Datiles, Manuel B; Steinberg, Seth M; Mitchell, Sandra A; Bishop, Rachel J; Cowen, Edward W; Mays, Jacqueline; McCarty, John M; Kuzmina, Zoya; Pirsl, Filip; Fowler, Daniel H; Gress, Ronald E; Pavletic, Steven Z

    2015-09-01

    Ocular chronic graft-versus-host disease is one of the most bothersome common complications following allogeneic hematopoietic stem cell transplantation. The National Institutes of Health Chronic Graft-versus-Host Disease Consensus Project provided expert recommendations for diagnosis and organ severity scoring. However, ocular chronic graft-versus-host disease can be diagnosed only after examination by an ophthalmologist. There are no currently accepted definitions of ocular chronic graft-versus-host disease activity. The goal of this study was to identify predictive models of diagnosis and activity for use in clinical transplant practice. A total of 210 patients with moderate or severe chronic graft-versus-host disease were enrolled in a prospective, cross-sectional, observational study (clinicaltrials.gov identifier: 00092235). Experienced ophthalmologists determined presence of ocular chronic graft-versus-host disease, diagnosis and activity. Measures gathered by the transplant clinician included Schirmer's tear test and National Institutes of Health 0-3 Eye Score. Patient-reported outcome measures were the ocular subscale of the Lee Chronic Graft-versus-Host Disease Symptom Scale and Chief Eye Symptom Intensity Score. Altogether, 157 (75%) patients were diagnosed with ocular chronic graft-versus-host disease; 133 of 157 patients (85%) had active disease. In a multivariable model, the National Institutes of Health Eye Score (P<0.0001) and Schirmer's tear test (P<0.0001) were independent predictors of ocular chronic graft-versus-host disease (sensitivity 93.0%, specificity 92.2%). The Lee ocular subscale was the strongest predictor of active ocular chronic graft-versus-host disease (P<0.0001) (sensitivity 68.5%, specificity 82.6%). Ophthalmology specialist measures that were most strongly predictive of diagnosis in a multivariate model were Oxford grand total staining (P<0.0001) and meibomian score (P=0.027). These results support the use of selected transplant clinician- and patient-reported outcome measures for ocular chronic graft-versus-host disease screening when providing care to allogeneic hematopoietic stem cell transplantation survivors with moderate to severe chronic graft-versus-host disease. Prospective studies are needed to determine if the Lee ocular subscale demonstrates adequate responsiveness as a disease activity outcome measure. Copyright© Ferrata Storti Foundation.

  3. Predictive models for ocular chronic graft-versus-host disease diagnosis and disease activity in transplant clinical practice

    PubMed Central

    Curtis, Lauren M.; Datiles, Manuel B.; Steinberg, Seth M.; Mitchell, Sandra A.; Bishop, Rachel J.; Cowen, Edward W.; Mays, Jacqueline; McCarty, John M.; Kuzmina, Zoya; Pirsl, Filip; Fowler, Daniel H.; Gress, Ronald E.; Pavletic, Steven Z.

    2015-01-01

    Ocular chronic graft-versus-host disease is one of the most bothersome common complications following allogeneic hematopoietic stem cell transplantation. The National Institutes of Health Chronic Graft-versus-Host Disease Consensus Project provided expert recommendations for diagnosis and organ severity scoring. However, ocular chronic graft-versus-host disease can be diagnosed only after examination by an ophthalmologist. There are no currently accepted definitions of ocular chronic graft-versus-host disease activity. The goal of this study was to identify predictive models of diagnosis and activity for use in clinical transplant practice. A total of 210 patients with moderate or severe chronic graft-versus-host disease were enrolled in a prospective, cross-sectional, observational study (clinicaltrials.gov identifier: 00092235). Experienced ophthalmologists determined presence of ocular chronic graft-versus-host disease, diagnosis and activity. Measures gathered by the transplant clinician included Schirmer’s tear test and National Institutes of Health 0–3 Eye Score. Patient-reported outcome measures were the ocular subscale of the Lee Chronic Graft-versus-Host Disease Symptom Scale and Chief Eye Symptom Intensity Score. Altogether, 157 (75%) patients were diagnosed with ocular chronic graft-versus-host disease; 133 of 157 patients (85%) had active disease. In a multivariable model, the National Institutes of Health Eye Score (P<0.0001) and Schirmer’s tear test (P<0.0001) were independent predictors of ocular chronic graft-versus-host disease (sensitivity 93.0%, specificity 92.2%). The Lee ocular subscale was the strongest predictor of active ocular chronic graft-versus-host disease (P<0.0001) (sensitivity 68.5%, specificity 82.6%). Ophthalmology specialist measures that were most strongly predictive of diagnosis in a multivariate model were Oxford grand total staining (P<0.0001) and meibomian score (P=0.027). These results support the use of selected transplant clinician- and patient-reported outcome measures for ocular chronic graft-versus-host disease screening when providing care to allogeneic hematopoietic stem cell transplantation survivors with moderate to severe chronic graft-versus-host disease. Prospective studies are needed to determine if the Lee ocular subscale demonstrates adequate responsiveness as a disease activity outcome measure. PMID:26088932

  4. Loss of TRPV4 Function Suppresses Inflammatory Fibrosis Induced by Alkali-Burning Mouse Corneas

    PubMed Central

    Okada, Yuka; Shirai, Kumi; Miyajima, Masayasu; Reinach, Peter S.; Yamanaka, Osamu; Sumioka, Takayoshi; Kokado, Masahide; Tomoyose, Katsuo; Saika, Shizuya

    2016-01-01

    In humans suffering from pulmonary disease and a mouse model, transient receptor potential vanilloid 4 (TRPV4) channel activation contributes to fibrosis. As a corneal alkali burn induces the same response, we determined if such an effect is also attributable to TRPV4 activation in mice. Accordingly, we determined if the alkali burn wound healing responses in wild-type (WT) mice are different than those in their TRPV4-null (KO) counterpart. Stromal opacification due to fibrosis in KO (n = 128) mice was markedly reduced after 20 days relative to that in WT (n = 157) mice. Immunohistochemistry revealed that increases in polymorphonuclear leukocytes and macrophage infiltration declined in KO mice. Semi-quantitative real time RT-PCR of ocular KO fibroblast cultures identified increases in proinflammatory and monocyte chemoattractant protein-1 chemoattractant gene expression after injury. Biomarker gene expression of fibrosis, collagen1a1 and α-smooth muscle actin were attenuated along with macrophage release of interleukin-6 whereas transforming growth factor β, release was unchanged. Tail vein reciprocal bone marrow transplantation between WT and KO chimera mouse models mice showed that reduced scarring and inflammation in KO mice are due to loss of TRPV4 expression on both corneal resident immune cells, fibroblasts and infiltrating polymorphonuclear leukocytes and macrophages. Intraperitoneal TRPV4 receptor antagonist injection of HC-067047 (10 mg/kg, daily) into WT mice reproduced the KO-phenotype. Taken together, alkali-induced TRPV4 activation contributes to inducing fibrosis and inflammation since corneal transparency recovery was markedly improved in KO mice. PMID:28030558

  5. Engineered mutations in fibrillin-1 leading to Marfan syndrome act at the protein, cellular and organismal levels.

    PubMed

    Zeyer, Karina A; Reinhardt, Dieter P

    2015-01-01

    Fibrillins are the major components of microfibrils in the extracellular matrix of elastic and non-elastic tissues. They are multi-domain proteins, containing primarily calcium binding epidermal growth factor-like (cbEGF) domains and 8-cysteine/transforming growth factor-beta binding protein-like (TB) domains. Mutations in the fibrillin-1 gene give rise to Marfan syndrome, a connective tissue disorder with clinical complications in the cardiovascular, skeletal, ocular and other organ systems. Here, we review the consequences of engineered Marfan syndrome mutations in fibrillin-1 at the protein, cellular and organismal levels. Representative point mutations associated with Marfan syndrome in affected individuals have been introduced and analyzed in recombinant fibrillin-1 fragments. Those mutations affect fibrillin-1 on a structural and functional level. Mutations which impair folding of cbEGF domains can affect protein trafficking. Protein folding disrupted by some mutations can lead to defective secretion in mutant fibrillin-1 fragments, whereas fragments with other Marfan mutations are secreted normally. Many Marfan mutations render fibrillin-1 more susceptible to proteolysis. There is also evidence that some mutations affect heparin binding. Few mutations have been further analyzed in mouse models. An extensively studied mouse model of Marfan syndrome expresses mouse fibrillin-1 with a missense mutation (p.C1039G). The mice display similar characteristics to human patients with Marfan syndrome. Overall, the analyses of engineered mutations leading to Marfan syndrome provide important insights into the pathogenic molecular mechanisms exerted by mutated fibrillin-1. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Systems analysis of the vestibulo-ocular system. [mathematical model of vestibularly driven head and eye movements

    NASA Technical Reports Server (NTRS)

    Schmid, R. M.

    1973-01-01

    The vestibulo-ocular system is examined from the standpoint of system theory. The evolution of a mathematical model of the vestibulo-ocular system in an attempt to match more and more experimental data is followed step by step. The final model explains many characteristics of the eye movement in vestibularly induced nystagmus. The analysis of the dynamic behavior of the model at the different stages of its development is illustrated in time domain, mainly in a qualitative way.

  7. Modeled changes of cerebellar activity in mutant mice are predictive of their learning impairments

    NASA Astrophysics Data System (ADS)

    Badura, Aleksandra; Clopath, Claudia; Schonewille, Martijn; de Zeeuw, Chris I.

    2016-11-01

    Translating neuronal activity to measurable behavioral changes has been a long-standing goal of systems neuroscience. Recently, we have developed a model of phase-reversal learning of the vestibulo-ocular reflex, a well-established, cerebellar-dependent task. The model, comprising both the cerebellar cortex and vestibular nuclei, reproduces behavioral data and accounts for the changes in neural activity during learning in wild type mice. Here, we used our model to predict Purkinje cell spiking as well as behavior before and after learning of five different lines of mutant mice with distinct cell-specific alterations of the cerebellar cortical circuitry. We tested these predictions by obtaining electrophysiological data depicting changes in neuronal spiking. We show that our data is largely consistent with the model predictions for simple spike modulation of Purkinje cells and concomitant behavioral learning in four of the mutants. In addition, our model accurately predicts a shift in simple spike activity in a mutant mouse with a brainstem specific mutation. This combination of electrophysiological and computational techniques opens a possibility of predicting behavioral impairments from neural activity.

  8. Modeled changes of cerebellar activity in mutant mice are predictive of their learning impairments

    PubMed Central

    Badura, Aleksandra; Clopath, Claudia; Schonewille, Martijn; De Zeeuw, Chris I.

    2016-01-01

    Translating neuronal activity to measurable behavioral changes has been a long-standing goal of systems neuroscience. Recently, we have developed a model of phase-reversal learning of the vestibulo-ocular reflex, a well-established, cerebellar-dependent task. The model, comprising both the cerebellar cortex and vestibular nuclei, reproduces behavioral data and accounts for the changes in neural activity during learning in wild type mice. Here, we used our model to predict Purkinje cell spiking as well as behavior before and after learning of five different lines of mutant mice with distinct cell-specific alterations of the cerebellar cortical circuitry. We tested these predictions by obtaining electrophysiological data depicting changes in neuronal spiking. We show that our data is largely consistent with the model predictions for simple spike modulation of Purkinje cells and concomitant behavioral learning in four of the mutants. In addition, our model accurately predicts a shift in simple spike activity in a mutant mouse with a brainstem specific mutation. This combination of electrophysiological and computational techniques opens a possibility of predicting behavioral impairments from neural activity. PMID:27805050

  9. Retinal angiogenesis suppression through small molecule activation of p53

    PubMed Central

    Chavala, Sai H.; Kim, Younghee; Tudisco, Laura; Cicatiello, Valeria; Milde, Till; Kerur, Nagaraj; Claros, Nidia; Yanni, Susan; Guaiquil, Victor H.; Hauswirth, William W.; Penn, John S.; Rafii, Shahin; De Falco, Sandro; Lee, Thomas C.; Ambati, Jayakrishna

    2013-01-01

    Neovascular age-related macular degeneration is a leading cause of irreversible vision loss in the Western world. Cytokine-targeted therapies (such as anti-vascular endothelial growth factor) are effective in treating pathologic ocular angiogenesis, but have not led to a durable effect and often require indefinite treatment. Here, we show that Nutlin-3, a small molecule antagonist of the E3 ubiquitin protein ligase MDM2, inhibited angiogenesis in several model systems. We found that a functional p53 pathway was essential for Nutlin-3–mediated retinal antiangiogenesis and disruption of the p53 transcriptional network abolished the antiangiogenic activity of Nutlin-3. Nutlin-3 did not inhibit established, mature blood vessels in the adult mouse retina, suggesting that only proliferating retinal vessels are sensitive to Nutlin-3. Furthermore, Nutlin-3 inhibited angiogenesis in nonretinal models such as the hind limb ischemia model. Our work demonstrates that Nutlin-3 functions through an antiproliferative pathway with conceivable advantages over existing cytokine-targeted antiangiogenesis therapies. PMID:24018558

  10. Pharmacologic Activation of Wnt Signaling by Lithium Normalizes Retinal Vasculature in a Murine Model of Familial Exudative Vitreoretinopathy.

    PubMed

    Wang, Zhongxiao; Liu, Chi-Hsiu; Sun, Ye; Gong, Yan; Favazza, Tara L; Morss, Peyton C; Saba, Nicholas J; Fredrick, Thomas W; He, Xi; Akula, James D; Chen, Jing

    2016-10-01

    Familial exudative vitreoretinopathy (FEVR) is characterized by delayed retinal vascular development, which promotes hypoxia-induced pathologic vessels. In severe cases FEVR may lead to retinal detachment and visual impairment. Genetic studies linked FEVR with mutations in Wnt signaling ligand or receptors, including low-density lipoprotein receptor-related protein 5 (LRP5) gene. Here, we investigated ocular pathologies in a Lrp5 knockout (Lrp5(-/-)) mouse model of FEVR and explored whether treatment with a pharmacologic Wnt activator lithium could bypass the genetic defects, thereby protecting against eye pathologies. Lrp5(-/-) mice displayed significantly delayed retinal vascular development, absence of deep layer retinal vessels, leading to increased levels of vascular endothelial growth factor and subsequent pathologic glomeruloid vessels, as well as decreased inner retinal visual function. Lithium treatment in Lrp5(-/-) mice significantly restored the delayed development of retinal vasculature and the intralaminar capillary networks, suppressed formation of pathologic glomeruloid structures, and promoted hyaloid vessel regression. Moreover, lithium treatment partially rescued inner-retinal visual function and increased retinal thickness. These protective effects of lithium were largely mediated through restoration of canonical Wnt signaling in Lrp5(-/-) retina. Lithium treatment also substantially increased vascular tubular formation in LRP5-deficient endothelial cells. These findings suggest that pharmacologic activation of Wnt signaling may help treat ocular pathologies in FEVR and potentially other defective Wnt signaling-related diseases. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  11. Optical properties of the mouse eye

    PubMed Central

    Geng, Ying; Schery, Lee Anne; Sharma, Robin; Dubra, Alfredo; Ahmad, Kamran; Libby, Richard T.; Williams, David R.

    2011-01-01

    The Shack-Hartmann wavefront sensor (SHWS) spots upon which ocular aberration measurements depend have poor quality in mice due to light reflected from multiple retinal layers. We have designed and implemented a SHWS that can favor light from a specific retinal layer and measured monochromatic aberrations in 20 eyes from 10 anesthetized C57BL/6J mice. Using this instrument, we show that mice are myopic, not hyperopic as is frequently reported. We have also measured longitudinal chromatic aberration (LCA) of the mouse eye and found that it follows predictions of the water-filled schematic mouse eye. Results indicate that the optical quality of the mouse eye assessed by measurement of its aberrations is remarkably good, better for retinal imaging than the human eye. The dilated mouse eye has a much larger numerical aperture (NA) than that of the dilated human eye (0.5 NA vs. 0.2 NA), but it has a similar amount of root mean square (RMS) higher order aberrations compared to the dilated human eye. These measurements predict that adaptive optics based on this method of wavefront sensing will provide improvements in retinal image quality and potentially two times higher lateral resolution than that in the human eye. PMID:21483598

  12. Short-term increases in transient receptor potential vanilloid-1 mediate stress-induced enhancement of neuronal excitation.

    PubMed

    Weitlauf, Carl; Ward, Nicholas J; Lambert, Wendi S; Sidorova, Tatiana N; Ho, Karen W; Sappington, Rebecca M; Calkins, David J

    2014-11-12

    Progression of neurodegeneration in disease and injury is influenced by the response of individual neurons to stressful stimuli and whether this response includes mechanisms to counter declining function. Transient receptor potential (TRP) cation channels transduce a variety of disease-relevant stimuli and can mediate diverse stress-dependent changes in physiology, both presynaptic and postsynaptic. Recently, we demonstrated that knock-out or pharmacological inhibition of the TRP vanilloid-1 (TRPV1) capsaicin-sensitive subunit accelerates degeneration of retinal ganglion cell neurons and their axons with elevated ocular pressure, the critical stressor in the most common optic neuropathy, glaucoma. Here we probed the mechanism of the influence of TRPV1 on ganglion cell survival in mouse models of glaucoma. We found that induced elevations of ocular pressure increased TRPV1 in ganglion cells and its colocalization at excitatory synapses to their dendrites, whereas chronic elevation progressively increased ganglion cell Trpv1 mRNA. Enhanced TRPV1 expression in ganglion cells was transient and supported a reversal of the effect of TRPV1 on ganglion cells from hyperpolarizing to depolarizing, which was also transient. Short-term enhancement of TRPV1-mediated activity led to a delayed increase in axonal spontaneous excitation that was absent in ganglion cells from Trpv1(-/-) retina. In isolated ganglion cells, pharmacologically activated TRPV1 mobilized to discrete nodes along ganglion cell dendrites that corresponded to sites of elevated Ca(2+). These results suggest that TRPV1 may promote retinal ganglion cell survival through transient enhancement of local excitation and axonal activity in response to ocular stress. Copyright © 2014 the authors 0270-6474/14/3415369-13$15.00/0.

  13. Deletion of the von Hippel-Lindau Gene in Hemangioblasts Causes Hemangioblastoma-like Lesions in Murine Retina.

    PubMed

    Wang, Herui; Shepard, Matthew J; Zhang, Chao; Dong, Lijin; Walker, Dyvon; Guedez, Liliana; Park, Stanley; Wang, Yujuan; Chen, Shida; Pang, Ying; Zhang, Qi; Gao, Chun; Wong, Wai T; Wiley, Henry; Pacak, Karel; Chew, Emily Y; Zhuang, Zhengping; Chan, Chi-Chao

    2018-03-01

    von Hippel-Lindau (VHL) disease is an autosomal-dominant tumor predisposition syndrome characterized by the development of highly vascularized tumors and cysts. LOH of the VHL gene results in aberrant upregulation of hypoxia-inducible factors (HIF) and has been associated with tumor formation. Hemangioblastomas of the central nervous system and retina represent the most prevalent VHL-associated tumors, but no VHL animal model has reproduced retinal capillary hemangioblastomas (RCH), the hallmark lesion of ocular VHL. Here we report our work in developing a murine model of VHL-associated RCH by conditionally inactivating Vhl in a hemangioblast population using a Scl -Cre-ERT2 transgenic mouse line. In transgenic mice carrying the conditional allele and the Scl -Cre-ERT2 allele, 64% exhibited various retinal vascular anomalies following tamoxifen induction. Affected Vhl -mutant mice demonstrated retinal vascular lesions associated with prominent vasculature, anomalous capillary networks, hemorrhage, exudates, and localized fibrosis. Histologic analyses showed RCH-like lesions characterized by tortuous, dilated vasculature surrounded by "tumorlet" cell cluster and isolated foamy stromal cells, which are typically associated with RCH. Fluorescein angiography suggested increased vascular permeability of the irregular retinal vasculature and hemangioblastoma-like lesions. Vhl deletion was detected in "tumorlet" cells via microdissection. Our findings provide a phenotypic recapitulation of VHL-associated RCH in a murine model that may be useful to study RCH pathogenesis and therapeutics aimed at treating ocular VHL. Significance: This study describes a model that phenotypically recapitulates a form of retinal pathogenesis that is driven by genetic loss of the VHL tumor suppressor, providing a useful tool for its study and therapeutic intervention. Cancer Res; 78(5); 1266-74. ©2018 AACR . ©2018 American Association for Cancer Research.

  14. Comparison of in vivo efficacy of different ocular lubricants in dry eye animal models.

    PubMed

    Zheng, Xiaodong; Goto, Tomoko; Ohashi, Yuichi

    2014-04-29

    To compare the efficacy of three types of ocular lubricants in protecting corneal epithelial cells in dry eye animal models. Ocular lubricants containing 0.1% or 0.3% sodium hyaluronate (SH), carboxymethylcellulose (CMC), or hydroxypropyl methylcellulose (HPMC) were tested. First, ocular lubricant containing 0.002% fluorescein was dropped onto the rabbit corneas. The fluorescein intensity as an index of retention was measured. Second, a rabbit dry eye model was made by holding the eye open with a speculum, and 50 μL of each ocular lubricant was dropped onto the cornea. After 3 hours, the corneas were stained with 1% methylene blue (MB), and the absorbance of MB was measured. Third, a rat dry eye model was treated with the ocular lubricants for 4 weeks, and the corneal fluorescein staining was scored. Eyes treated with physiological saline were used as controls. Finally, immunohistochemistry was used to analyze occludin, an epithelial barrier protein, in cultured human corneal epithelial cells pretreated with ocular lubricants and desiccated for 20 or 60 minutes. Our results showed that 0.3% SH had a significantly longer retention time than the other lubricants (all P < 0.01). The absorbance of MB was significantly lower in the 0.3% SH group. The corneas of rats exposed to 0.3% SH had significantly lower fluorescein staining scores. A significantly higher number of occludin-positive cells were found after exposure to 0.3% SH than other lubricants. Ocular lubricant containing 0.3% SH would be preferable to treat patients with dry eye syndrome. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  15. A Low Concentration of Tacrolimus/Semifluorinated Alkane (SFA) Eyedrop Suppresses Intraocular Inflammation in Experimental Models of Uveitis.

    PubMed

    De Majumdar, S; Subinya, M; Korward, J; Pettigrew, A; Scherer, D; Xu, H

    2017-01-01

    Corticosteroids remain the mainstay therapy for uveitis, a major cause of blindness in the working age population. However, a substantial number of patients cannot benefit from the therapy due to steroids resistance or intolerance. Tacrolimus has been used to treat refractory uveitis through systemic administration. The aim of this study was to evaluate the therapeutic potential of 0.03% tacrolimus eyedrop in mouse models of uveitis. 0.03% tacrolimus in perfluorobutylpentane (F4H5) (0.03% Tacrolimus/SFA) was formulated using a previously published protocol. Tacrolimus suspended in PBS (0.03% Tacrolimus/PBS) was used as a control. In addition, 0.1% dexamethasone (0.1% DXM) was used as a standard therapy control. Endotoxin-induced uveitis (EIU) and experimental autoimmune uveoretinitis (EAU) were induced in adult C57BL/6 mice using protocols described previously. Mice were treated with eyedrops three times/day immediately after EIU induction for 48 h or from day 14 to day 25 post-immunization (for EAU). Clinical and histological examinations were conducted at the end of the experiment. Pharmacokinetics study was conducted in mice with and without EIU. At different times after eyedrop treatment, ocular tissues were collected for tacrolimus measurement. The 0.03% Tacrolimus/SFA eyedrop treatment reduced the clinical scores and histological scores of intraocular inflammation in both EIU and EAU to the levels similar to 0.1% DXM eyedrop treatment. The 0.03% Tacrolimus/PBS did not show any suppressive effect in EIU and EAU. Pharmacokinetic studies showed that 15 min after topical administration of 0.03% Tacrolimus/SFA, low levels of tacrolimus were detected in the retina (48 ng/g tissue) and vitreous (2.5 ng/ml) in normal mouse eyes, and the levels were significantly higher in EIU eyes (102 ng/g tissue in the retina and 24 ng/ml in the vitreous). Tacrolimus remained detectable in intraocular tissues of EIU eyes 6 h after topical administration (68 ng/g retinal tissue, 10 ng/ml vitreous). Only background levels of tacrolimus were detected in the retina (2-8 ng/g tissue) after 0.03% Tacrolimus/PBS eyedrop administration. 0.03% Tacrolimus/SFA eyedrop can penetrate ocular barrier and reach intraocular tissue at therapeutic levels in mouse eyes, particularly under inflammatory conditions. 0.03% Tacrolimus/SFA eyedrop may have therapeutic potentials for inflammatory eye diseases including uveitis. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. In vivo label-free photoacoustic microscopy of the anterior segment of the mouse eye

    NASA Astrophysics Data System (ADS)

    Rao, Bin; Hu, Song; Li, Li; Maslov, Konstantin; Wang, Lihong V.

    2010-02-01

    Both iris fluorescein angiography (IFA) and indocyanine green angiography (ICGA) provide ophthalmologists imaging tools in studying the microvasculature structure and hemodynamics of the anterior segment of the eye in normal and diseased status. However, a non-invasive, endogenous imaging modality is preferable for the monitoring of hemodynamics of the iris microvasculature. We investigated the in vivo, label-free ocular anterior segment imaging with photo-acoustic microscopy (PAM) in mouse eyes. We demonstrated the unique advantage of endogenous contrast that is not available in both IFA and ICGA. The laser radiation was maintained within the ANSI laser safety limit. The in vivo, label-free nature of our imaging technology has the potential for ophthalmic applications.

  17. Republished review: Gene therapy for ocular diseases.

    PubMed

    Liu, Melissa M; Tuo, Jingsheng; Chan, Chi-Chao

    2011-07-01

    The eye is an easily accessible, highly compartmentalised and immune-privileged organ that offers unique advantages as a gene therapy target. Significant advancements have been made in understanding the genetic pathogenesis of ocular diseases, and gene replacement and gene silencing have been implicated as potentially efficacious therapies. Recent improvements have been made in the safety and specificity of vector-based ocular gene transfer methods. Proof-of-concept for vector-based gene therapies has also been established in several experimental models of human ocular diseases. After nearly two decades of ocular gene therapy research, preliminary successes are now being reported in phase 1 clinical trials for the treatment of Leber congenital amaurosis. This review describes current developments and future prospects for ocular gene therapy. Novel methods are being developed to enhance the performance and regulation of recombinant adeno-associated virus- and lentivirus-mediated ocular gene transfer. Gene therapy prospects have advanced for a variety of retinal disorders, including retinitis pigmentosa, retinoschisis, Stargardt disease and age-related macular degeneration. Advances have also been made using experimental models for non-retinal diseases, such as uveitis and glaucoma. These methodological advancements are critical for the implementation of additional gene-based therapies for human ocular diseases in the near future.

  18. Gene therapy for ocular diseases.

    PubMed

    Liu, Melissa M; Tuo, Jingsheng; Chan, Chi-Chao

    2011-05-01

    The eye is an easily accessible, highly compartmentalised and immune-privileged organ that offers unique advantages as a gene therapy target. Significant advancements have been made in understanding the genetic pathogenesis of ocular diseases, and gene replacement and gene silencing have been implicated as potentially efficacious therapies. Recent improvements have been made in the safety and specificity of vector-based ocular gene transfer methods. Proof-of-concept for vector-based gene therapies has also been established in several experimental models of human ocular diseases. After nearly two decades of ocular gene therapy research, preliminary successes are now being reported in phase 1 clinical trials for the treatment of Leber congenital amaurosis. This review describes current developments and future prospects for ocular gene therapy. Novel methods are being developed to enhance the performance and regulation of recombinant adeno-associated virus- and lentivirus-mediated ocular gene transfer. Gene therapy prospects have advanced for a variety of retinal disorders, including retinitis pigmentosa, retinoschisis, Stargardt disease and age-related macular degeneration. Advances have also been made using experimental models for non-retinal diseases, such as uveitis and glaucoma. These methodological advancements are critical for the implementation of additional gene-based therapies for human ocular diseases in the near future.

  19. Nine Loci for Ocular Axial Length Identified through Genome-wide Association Studies, Including Shared Loci with Refractive Error

    PubMed Central

    Cheng, Ching-Yu; Schache, Maria; Ikram, M. Kamran; Young, Terri L.; Guggenheim, Jeremy A.; Vitart, Veronique; MacGregor, Stuart; Verhoeven, Virginie J.M.; Barathi, Veluchamy A.; Liao, Jiemin; Hysi, Pirro G.; Bailey-Wilson, Joan E.; St. Pourcain, Beate; Kemp, John P.; McMahon, George; Timpson, Nicholas J.; Evans, David M.; Montgomery, Grant W.; Mishra, Aniket; Wang, Ya Xing; Wang, Jie Jin; Rochtchina, Elena; Polasek, Ozren; Wright, Alan F.; Amin, Najaf; van Leeuwen, Elisabeth M.; Wilson, James F.; Pennell, Craig E.; van Duijn, Cornelia M.; de Jong, Paulus T.V.M.; Vingerling, Johannes R.; Zhou, Xin; Chen, Peng; Li, Ruoying; Tay, Wan-Ting; Zheng, Yingfeng; Chew, Merwyn; Rahi, Jugnoo S.; Hysi, Pirro G.; Yoshimura, Nagahisa; Yamashiro, Kenji; Miyake, Masahiro; Delcourt, Cécile; Maubaret, Cecilia; Williams, Cathy; Guggenheim, Jeremy A.; Northstone, Kate; Ring, Susan M.; Davey-Smith, George; Craig, Jamie E.; Burdon, Kathryn P.; Fogarty, Rhys D.; Iyengar, Sudha K.; Igo, Robert P.; Chew, Emily; Janmahasathian, Sarayut; Iyengar, Sudha K.; Igo, Robert P.; Chew, Emily; Janmahasathian, Sarayut; Stambolian, Dwight; Wilson, Joan E. Bailey; MacGregor, Stuart; Lu, Yi; Jonas, Jost B.; Xu, Liang; Saw, Seang-Mei; Baird, Paul N.; Rochtchina, Elena; Mitchell, Paul; Wang, Jie Jin; Jonas, Jost B.; Nangia, Vinay; Hayward, Caroline; Wright, Alan F.; Vitart, Veronique; Polasek, Ozren; Campbell, Harry; Vitart, Veronique; Rudan, Igor; Vatavuk, Zoran; Vitart, Veronique; Paterson, Andrew D.; Hosseini, S. Mohsen; Iyengar, Sudha K.; Igo, Robert P.; Fondran, Jeremy R.; Young, Terri L.; Feng, Sheng; Verhoeven, Virginie J.M.; Klaver, Caroline C.; van Duijn, Cornelia M.; Metspalu, Andres; Haller, Toomas; Mihailov, Evelin; Pärssinen, Olavi; Wedenoja, Juho; Wilson, Joan E. Bailey; Wojciechowski, Robert; Baird, Paul N.; Schache, Maria; Pfeiffer, Norbert; Höhn, René; Pang, Chi Pui; Chen, Peng; Meitinger, Thomas; Oexle, Konrad; Wegner, Aharon; Yoshimura, Nagahisa; Yamashiro, Kenji; Miyake, Masahiro; Pärssinen, Olavi; Yip, Shea Ping; Ho, Daniel W.H.; Pirastu, Mario; Murgia, Federico; Portas, Laura; Biino, Genevra; Wilson, James F.; Fleck, Brian; Vitart, Veronique; Stambolian, Dwight; Wilson, Joan E. Bailey; Hewitt, Alex W.; Ang, Wei; Verhoeven, Virginie J.M.; Klaver, Caroline C.; van Duijn, Cornelia M.; Saw, Seang-Mei; Wong, Tien-Yin; Teo, Yik-Ying; Fan, Qiao; Cheng, Ching-Yu; Zhou, Xin; Ikram, M. Kamran; Saw, Seang-Mei; Teo, Yik-Ying; Fan, Qiao; Cheng, Ching-Yu; Zhou, Xin; Ikram, M. Kamran; Saw, Seang-Mei; Wong, Tien-Yin; Teo, Yik-Ying; Fan, Qiao; Cheng, Ching-Yu; Zhou, Xin; Ikram, M. Kamran; Saw, Seang-Mei; Wong, Tien-Yin; Teo, Yik-Ying; Fan, Qiao; Cheng, Ching-Yu; Zhou, Xin; Ikram, M. Kamran; Saw, Seang-Mei; Tai, E-Shyong; Teo, Yik-Ying; Fan, Qiao; Cheng, Ching-Yu; Zhou, Xin; Ikram, M. Kamran; Saw, Seang-Mei; Teo, Yik-Ying; Fan, Qiao; Cheng, Ching-Yu; Zhou, Xin; Ikram, M. Kamran; Mackey, David A.; MacGregor, Stuart; Hammond, Christopher J.; Hysi, Pirro G.; Deangelis, Margaret M.; Morrison, Margaux; Zhou, Xiangtian; Chen, Wei; Paterson, Andrew D.; Hosseini, S. Mohsen; Mizuki, Nobuhisa; Meguro, Akira; Lehtimäki, Terho; Mäkelä, Kari-Matti; Raitakari, Olli; Kähönen, Mika; Burdon, Kathryn P.; Craig, Jamie E.; Iyengar, Sudha K.; Igo, Robert P.; Lass, Jonathan H.; Reinhart, William; Belin, Michael W.; Schultze, Robert L.; Morason, Todd; Sugar, Alan; Mian, Shahzad; Soong, Hunson Kaz; Colby, Kathryn; Jurkunas, Ula; Yee, Richard; Vital, Mark; Alfonso, Eduardo; Karp, Carol; Lee, Yunhee; Yoo, Sonia; Hammersmith, Kristin; Cohen, Elisabeth; Laibson, Peter; Rapuano, Christopher; Ayres, Brandon; Croasdale, Christopher; Caudill, James; Patel, Sanjay; Baratz, Keith; Bourne, William; Maguire, Leo; Sugar, Joel; Tu, Elmer; Djalilian, Ali; Mootha, Vinod; McCulley, James; Bowman, Wayne; Cavanaugh, H. Dwight; Verity, Steven; Verdier, David; Renucci, Ann; Oliva, Matt; Rotkis, Walter; Hardten, David R.; Fahmy, Ahmad; Brown, Marlene; Reeves, Sherman; Davis, Elizabeth A.; Lindstrom, Richard; Hauswirth, Scott; Hamilton, Stephen; Lee, W. Barry; Price, Francis; Price, Marianne; Kelly, Kathleen; Peters, Faye; Shaughnessy, Michael; Steinemann, Thomas; Dupps, B.J.; Meisler, David M.; Mifflin, Mark; Olson, Randal; Aldave, Anthony; Holland, Gary; Mondino, Bartly J.; Rosenwasser, George; Gorovoy, Mark; Dunn, Steven P.; Heidemann, David G.; Terry, Mark; Shamie, Neda; Rosenfeld, Steven I.; Suedekum, Brandon; Hwang, David; Stone, Donald; Chodosh, James; Galentine, Paul G.; Bardenstein, David; Goddard, Katrina; Chin, Hemin; Mannis, Mark; Varma, Rohit; Borecki, Ingrid; Chew, Emily Y.; Haller, Toomas; Mihailov, Evelin; Metspalu, Andres; Wedenoja, Juho; Simpson, Claire L.; Wojciechowski, Robert; Höhn, René; Mirshahi, Alireza; Zeller, Tanja; Pfeiffer, Norbert; Lackner, Karl J.; Donnelly, Peter; Barroso, Ines; Blackwell, Jenefer M.; Bramon, Elvira; Brown, Matthew A.; Casas, Juan P.; Corvin, Aiden; Deloukas, Panos; Duncanson, Audrey; Jankowski, Janusz; Markus, Hugh S.; Mathew, Christopher G.; Palmer, Colin N.A.; Plomin, Robert; Rautanen, Anna; Sawcer, Stephen J.; Trembath, Richard C.; Viswanathan, Ananth C.; Wood, Nicholas W.; Spencer, Chris C.A.; Band, Gavin; Bellenguez, Céline; Freeman, Colin; Hellenthal, Garrett; Giannoulatou, Eleni; Pirinen, Matti; Pearson, Richard; Strange, Amy; Su, Zhan; Vukcevic, Damjan; Donnelly, Peter; Langford, Cordelia; Hunt, Sarah E.; Edkins, Sarah; Gwilliam, Rhian; Blackburn, Hannah; Bumpstead, Suzannah J.; Dronov, Serge; Gillman, Matthew; Gray, Emma; Hammond, Naomi; Jayakumar, Alagurevathi; McCann, Owen T.; Liddle, Jennifer; Potter, Simon C.; Ravindrarajah, Radhi; Ricketts, Michelle; Waller, Matthew; Weston, Paul; Widaa, Sara; Whittaker, Pamela; Barroso, Ines; Deloukas, Panos; Mathew, Christopher G.; Blackwell, Jenefer M.; Brown, Matthew A.; Corvin, Aiden; Spencer, Chris C.A.; Bettecken, Thomas; Meitinger, Thomas; Oexle, Konrad; Pirastu, Mario; Portas, Laura; Nag, Abhishek; Williams, Katie M.; Yonova-Doing, Ekaterina; Klein, Ronald; Klein, Barbara E.; Hosseini, S. Mohsen; Paterson, Andrew D.; Genuth, S.; Nathan, D.M.; Zinman, B.; Crofford, O.; Crandall, J.; Reid, M.; Brown-Friday, J.; Engel, S.; Sheindlin, J.; Martinez, H.; Shamoon, H.; Engel, H.; Phillips, M.; Gubitosi-Klug, R.; Mayer, L.; Pendegast, S.; Zegarra, H.; Miller, D.; Singerman, L.; Smith-Brewer, S.; Novak, M.; Quin, J.; Dahms, W.; Genuth, Saul; Palmert, M.; Brillon, D.; Lackaye, M.E.; Kiss, S.; Chan, R.; Reppucci, V.; Lee, T.; Heinemann, M.; Whitehouse, F.; Kruger, D.; Jones, J.K.; McLellan, M.; Carey, J.D.; Angus, E.; Thomas, A.; Galprin, A.; Bergenstal, R.; Johnson, M.; Spencer, M.; Morgan, K.; Etzwiler, D.; Kendall, D.; Aiello, Lloyd Paul; Golden, E.; Jacobson, A.; Beaser, R.; Ganda, O.; Hamdy, O.; Wolpert, H.; Sharuk, G.; Arrigg, P.; Schlossman, D.; Rosenzwieg, J.; Rand, L.; Nathan, D.M.; Larkin, M.; Ong, M.; Godine, J.; Cagliero, E.; Lou, P.; Folino, K.; Fritz, S.; Crowell, S.; Hansen, K.; Gauthier-Kelly, C.; Service, J.; Ziegler, G.; Luttrell, L.; Caulder, S.; Lopes-Virella, M.; Colwell, J.; Soule, J.; Fernandes, J.; Hermayer, K.; Kwon, S.; Brabham, M.; Blevins, A.; Parker, J.; Lee, D.; Patel, N.; Pittman, C.; Lindsey, P.; Bracey, M.; Lee, K.; Nutaitis, M.; Farr, A.; Elsing, S.; Thompson, T.; Selby, J.; Lyons, T.; Yacoub-Wasef, S.; Szpiech, M.; Wood, D.; Mayfield, R.; Molitch, M.; Schaefer, B.; Jampol, L.; Lyon, A.; Gill, M.; Strugula, Z.; Kaminski, L.; Mirza, R.; Simjanoski, E.; Ryan, D.; Kolterman, O.; Lorenzi, G.; Goldbaum, M.; Sivitz, W.; Bayless, M.; Counts, D.; Johnsonbaugh, S.; Hebdon, M.; Salemi, P.; Liss, R.; Donner, T.; Gordon, J.; Hemady, R.; Kowarski, A.; Ostrowski, D.; Steidl, S.; Jones, B.; Herman, W.H.; Martin, C.L.; Pop-Busui, R.; Sarma, A.; Albers, J.; Feldman, E.; Kim, K.; Elner, S.; Comer, G.; Gardner, T.; Hackel, R.; Prusak, R.; Goings, L.; Smith, A.; Gothrup, J.; Titus, P.; Lee, J.; Brandle, M.; Prosser, L.; Greene, D.A.; Stevens, M.J.; Vine, A.K.; Bantle, J.; Wimmergren, N.; Cochrane, A.; Olsen, T.; Steuer, E.; Rath, P.; Rogness, B.; Hainsworth, D.; Goldstein, D.; Hitt, S.; Giangiacomo, J.; Schade, D.S.; Canady, J.L.; Chapin, J.E.; Ketai, L.H.; Braunstein, C.S.; Bourne, P.A.; Schwartz, S.; Brucker, A.; Maschak-Carey, B.J.; Baker, L.; Orchard, T.; Silvers, N.; Ryan, C.; Songer, T.; Doft, B.; Olson, S.; Bergren, R.L.; Lobes, L.; Rath, P. Paczan; Becker, D.; Rubinstein, D.; Conrad, P.W.; Yalamanchi, S.; Drash, A.; Morrison, A.; Bernal, M.L.; Vaccaro-Kish, J.; Malone, J.; Pavan, P.R.; Grove, N.; Iyer, M.N.; Burrows, A.F.; Tanaka, E.A.; Gstalder, R.; Dagogo-Jack, S.; Wigley, C.; Ricks, H.; Kitabchi, A.; Murphy, M.B.; Moser, S.; Meyer, D.; Iannacone, A.; Chaum, E.; Yoser, S.; Bryer-Ash, M.; Schussler, S.; Lambeth, H.; Raskin, P.; Strowig, S.; Zinman, B.; Barnie, A.; Devenyi, R.; Mandelcorn, M.; Brent, M.; Rogers, S.; Gordon, A.; Palmer, J.; Catton, S.; Brunzell, J.; Wessells, H.; de Boer, I.H.; Hokanson, J.; Purnell, J.; Ginsberg, J.; Kinyoun, J.; Deeb, S.; Weiss, M.; Meekins, G.; Distad, J.; Van Ottingham, L.; Dupre, J.; Harth, J.; Nicolle, D.; Driscoll, M.; Mahon, J.; Canny, C.; May, M.; Lipps, J.; Agarwal, A.; Adkins, T.; Survant, L.; Pate, R.L.; Munn, G.E.; Lorenz, R.; Feman, S.; White, N.; Levandoski, L.; Boniuk, I.; Grand, G.; Thomas, M.; Joseph, D.D.; Blinder, K.; Shah, G.; Boniuk; Burgess; Santiago, J.; Tamborlane, W.; Gatcomb, P.; Stoessel, K.; Taylor, K.; Goldstein, J.; Novella, S.; Mojibian, H.; Cornfeld, D.; Lima, J.; Bluemke, D.; Turkbey, E.; van der Geest, R.J.; Liu, C.; Malayeri, A.; Jain, A.; Miao, C.; Chahal, H.; Jarboe, R.; Maynard, J.; Gubitosi-Klug, R.; Quin, J.; Gaston, P.; Palmert, M.; Trail, R.; Dahms, W.; Lachin, J.; Cleary, P.; Backlund, J.; Sun, W.; Braffett, B.; Klumpp, K.; Chan, K.; Diminick, L.; Rosenberg, D.; Petty, B.; Determan, A.; Kenny, D.; Rutledge, B.; Younes, Naji; Dews, L.; Hawkins, M.; Cowie, C.; Fradkin, J.; Siebert, C.; Eastman, R.; Danis, R.; Gangaputra, S.; Neill, S.; Davis, M.; Hubbard, L.; Wabers, H.; Burger, M.; Dingledine, J.; Gama, V.; Sussman, R.; Steffes, M.; Bucksa, J.; Nowicki, M.; Chavers, B.; O’Leary, D.; Polak, J.; Harrington, A.; Funk, L.; Crow, R.; Gloeb, B.; Thomas, S.; O’Donnell, C.; Soliman, E.; Zhang, Z.M.; Prineas, R.; Campbell, C.; Ryan, C.; Sandstrom, D.; Williams, T.; Geckle, M.; Cupelli, E.; Thoma, F.; Burzuk, B.; Woodfill, T.; Low, P.; Sommer, C.; Nickander, K.; Budoff, M.; Detrano, R.; Wong, N.; Fox, M.; Kim, L.; Oudiz, R.; Weir, G.; Espeland, M.; Manolio, T.; Rand, L.; Singer, D.; Stern, M.; Boulton, A.E.; Clark, C.; D’Agostino, R.; Lopes-Virella, M.; Garvey, W.T.; Lyons, T.J.; Jenkins, A.; Virella, G.; Jaffa, A.; Carter, Rickey; Lackland, D.; Brabham, M.; McGee, D.; Zheng, D.; Mayfield, R.K.; Boright, A.; Bull, S.; Sun, L.; Scherer, S.; Zinman, B.; Natarajan, R.; Miao, F.; Zhang, L.; Chen;, Z.; Nathan, D.M.; Makela, Kari-Matti; Lehtimaki, Terho; Kahonen, Mika; Raitakari, Olli; Yoshimura, Nagahisa; Matsuda, Fumihiko; Chen, Li Jia; Pang, Chi Pui; Yip, Shea Ping; Yap, Maurice K.H.; Meguro, Akira; Mizuki, Nobuhisa; Inoko, Hidetoshi; Foster, Paul J.; Zhao, Jing Hua; Vithana, Eranga; Tai, E-Shyong; Fan, Qiao; Xu, Liang; Campbell, Harry; Fleck, Brian; Rudan, Igor; Aung, Tin; Hofman, Albert; Uitterlinden, André G.; Bencic, Goran; Khor, Chiea-Chuen; Forward, Hannah; Pärssinen, Olavi; Mitchell, Paul; Rivadeneira, Fernando; Hewitt, Alex W.; Williams, Cathy; Oostra, Ben A.; Teo, Yik-Ying; Hammond, Christopher J.; Stambolian, Dwight; Mackey, David A.; Klaver, Caroline C.W.; Wong, Tien-Yin; Saw, Seang-Mei; Baird, Paul N.

    2013-01-01

    Refractive errors are common eye disorders of public health importance worldwide. Ocular axial length (AL) is the major determinant of refraction and thus of myopia and hyperopia. We conducted a meta-analysis of genome-wide association studies for AL, combining 12,531 Europeans and 8,216 Asians. We identified eight genome-wide significant loci for AL (RSPO1, C3orf26, LAMA2, GJD2, ZNRF3, CD55, MIP, and ALPPL2) and confirmed one previously reported AL locus (ZC3H11B). Of the nine loci, five (LAMA2, GJD2, CD55, ALPPL2, and ZC3H11B) were associated with refraction in 18 independent cohorts (n = 23,591). Differential gene expression was observed for these loci in minus-lens-induced myopia mouse experiments and human ocular tissues. Two of the AL genes, RSPO1 and ZNRF3, are involved in Wnt signaling, a pathway playing a major role in the regulation of eyeball size. This study provides evidence of shared genes between AL and refraction, but importantly also suggests that these traits may have unique pathways. PMID:24144296

  20. Ocular-specific ER stress reduction rescues glaucoma in murine glucocorticoid-induced glaucoma

    PubMed Central

    Zode, Gulab S.; Sharma, Arti B.; Lin, Xiaolei; Searby, Charles C.; Bugge, Kevin; Kim, Gun Hee; Clark, Abbot F.; Sheffield, Val C.

    2014-01-01

    Administration of glucocorticoids induces ocular hypertension in some patients. If untreated, these patients can develop a secondary glaucoma that resembles primary open-angle glaucoma (POAG). The underlying pathology of glucocorticoid-induced glaucoma is not fully understood, due in part to lack of an appropriate animal model. Here, we developed a murine model of glucocorticoid-induced glaucoma that exhibits glaucoma features that are observed in patients. Treatment of WT mice with topical ocular 0.1% dexamethasone led to elevation of intraocular pressure (IOP), functional and structural loss of retinal ganglion cells, and axonal degeneration, resembling glucocorticoid-induced glaucoma in human patients. Furthermore, dexamethasone-induced ocular hypertension was associated with chronic ER stress of the trabecular meshwork (TM). Similar to patients, withdrawal of dexamethasone treatment reduced elevated IOP and ER stress in this animal model. Dexamethasone induced the transcriptional factor CHOP, a marker for chronic ER stress, in the anterior segment tissues, and Chop deletion reduced ER stress in these tissues and prevented dexamethasone-induced ocular hypertension. Furthermore, reduction of ER stress in the TM with sodium 4-phenylbutyrate prevented dexamethasone-induced ocular hypertension in WT mice. Our data indicate that ER stress contributes to glucocorticoid-induced ocular hypertension and suggest that reducing ER stress has potential as a therapeutic strategy for treating glucocorticoid-induced glaucoma. PMID:24691439

  1. The Long Noncoding RNA Landscape of the Mouse Eye.

    PubMed

    Chen, Weiwei; Yang, Shuai; Zhou, Zhonglou; Zhao, Xiaoting; Zhong, Jiayun; Reinach, Peter S; Yan, Dongsheng

    2017-12-01

    Long noncoding RNAs (lncRNAs) are important regulators of diverse biological functions. However, an extensive in-depth analysis of their expression profile and function in mammalian eyes is still lacking. Here we describe comprehensive landscapes of stage-dependent and tissue-specific lncRNA expression in the mouse eye. Affymetrix transcriptome array profiled lncRNA signatures from six different ocular tissue subsets (i.e., cornea, lens, retina, RPE, choroid, and sclera) in newborn and 8-week-old mice. Quantitative RT-PCR analysis validated array findings. Cis analyses and Gene Ontology (GO) annotation of protein-coding genes adjacent to signature lncRNA loci clarified potential lncRNA roles in maintaining tissue identity and regulating eye maturation during the aforementioned phase. In newborn and 8-week-old mice, we identified 47,332 protein-coding and noncoding gene transcripts. LncRNAs comprise 19,313 of these transcripts annotated in public data banks. During this maturation phase of these six different tissue subsets, more than 1000 lncRNAs expression levels underwent ≥2-fold changes. qRT-PCR analysis confirmed part of the gene microarray analysis results. K-means clustering identified 910 lncRNAs in the P0 groups and 686 lncRNAs in the postnatal 8-week-old groups, suggesting distinct tissue-specific lncRNA clusters. GO analysis of protein-coding genes proximal to lncRNA signatures resolved close correlations with their tissue-specific functional maturation between P0 and 8 weeks of age in the 6 tissue subsets. Characterizating maturational changes in lncRNA expression patterns as well as tissue-specific lncRNA signatures in six ocular tissues suggest important contributions made by lncRNA to the control of developmental processes in the mouse eye.

  2. The effect of maternal diabetes on the Wnt-PCP pathway during embryogenesis as reflected in the developing mouse eye.

    PubMed

    López-Escobar, Beatriz; Cano, David A; Rojas, Anabel; de Felipe, Beatriz; Palma, Francisco; Sánchez-Alcázar, José A; Henderson, Deborah; Ybot-González, Patricia

    2015-02-01

    Embryopathies that develop as a consequence of maternal diabetes have been studied intensely in both experimental and clinical scenarios. Accordingly, hyperglycaemia has been shown to downregulate the expression of elements in the non-canonical Wnt-PCP pathway, such as the Dishevelled-associated activator of morphogenesis 1 (Daam1) and Vangl2. Daam1 is a formin that is essential for actin polymerization and for cytoskeletal reorganization, and it is expressed strongly in certain organs during mouse development, including the eye, neural tube and heart. Daam1(gt/gt) and Daam1(gt/+) embryos develop ocular defects (anophthalmia or microphthalmia) that are similar to those detected as a result of hyperglycaemia. Indeed, studying the effects of maternal diabetes on the Wnt-PCP pathway demonstrated that there was strong association with the Daam1 genotype, whereby the embryopathy observed in Daam1(gt/+) mutant embryos of diabetic dams was more severe. There was evidence that embryonic exposure to glucose in vitro diminishes the expression of genes in the Wnt-PCP pathway, leading to altered cytoskeletal organization, cell shape and cell polarity in the optic vesicle. Hence, the Wnt-PCP pathway appears to influence cell morphology and cell polarity, events that drive the cellular movements required for optic vesicle formation and that, in turn, are required to maintain the fate determination. Here, we demonstrate that the Wnt-PCP pathway is involved in the early stages of mouse eye development and that it is altered by diabetes, provoking the ocular phenotype observed in the affected embryos. © 2015. Published by The Company of Biologists Ltd.

  3. The impact of ocular hemodynamics and intracranial pressure on intraocular pressure during acute gravitational changes.

    PubMed

    Nelson, Emily S; Mulugeta, Lealem; Feola, Andrew; Raykin, Julia; Myers, Jerry G; Samuels, Brian C; Ethier, C Ross

    2017-08-01

    Exposure to microgravity causes a bulk fluid shift toward the head, with concomitant changes in blood volume/pressure, and intraocular pressure (IOP). These and other factors, such as intracranial pressure (ICP) changes, are suspected to be involved in the degradation of visual function and ocular anatomical changes exhibited by some astronauts. This is a significant health concern. Here, we describe a lumped-parameter numerical model to simulate volume/pressure alterations in the eye during gravitational changes. The model includes the effects of blood and aqueous humor dynamics, ICP, and IOP-dependent ocular compliance. It is formulated as a series of coupled differential equations and was validated against four existing data sets on parabolic flight, body inversion, and head-down tilt (HDT). The model accurately predicted acute IOP changes in parabolic flight and HDT, and was satisfactory for the more extreme case of inversion. The short-term response to the changing gravitational field was dominated by ocular blood pressures and compliance, while longer-term responses were more dependent on aqueous humor dynamics. ICP had a negligible effect on acute IOP changes. This relatively simple numerical model shows promising predictive capability. To extend the model to more chronic conditions, additional data on longer-term autoregulation of blood and aqueous humor dynamics are needed. NEW & NOTEWORTHY A significant percentage of astronauts present anatomical changes in the posterior eye tissues after spaceflight. Hypothesized increases in ocular blood volume and intracranial pressure (ICP) in space have been considered to be likely factors. In this work, we provide a novel numerical model of the eye that incorporates ocular hemodynamics, gravitational forces, and ICP changes. We find that changes in ocular hemodynamics govern the response of intraocular pressure during acute gravitational change. Copyright © 2017 the American Physiological Society.

  4. A novel mouse model of anterior segment dysgenesis (ASD): conditional deletion of Tsc1 disrupts ciliary body and iris development.

    PubMed

    Hägglund, Anna-Carin; Jones, Iwan; Carlsson, Leif

    2017-03-01

    Development of the cornea, lens, ciliary body and iris within the anterior segment of the eye involves coordinated interaction between cells originating from the ciliary margin of the optic cup, the overlying periocular mesenchyme and the lens epithelium. Anterior segment dysgenesis (ASD) encompasses a spectrum of developmental syndromes that affect these anterior segment tissues. ASD conditions arise as a result of dominantly inherited genetic mutations and result in both ocular-specific and systemic forms of dysgenesis that are best exemplified by aniridia and Axenfeld-Rieger syndrome, respectively. Extensive clinical overlap in disease presentation amongst ASD syndromes creates challenges for correct diagnosis and classification. The use of animal models has therefore proved to be a robust approach for unravelling this complex genotypic and phenotypic heterogeneity. However, despite these successes, it is clear that additional genes that underlie several ASD syndromes remain unidentified. Here, we report the characterisation of a novel mouse model of ASD. Conditional deletion of Tsc1 during eye development leads to a premature upregulation of mTORC1 activity within the ciliary margin, periocular mesenchyme and lens epithelium. This aberrant mTORC1 signalling within the ciliary margin in particular leads to a reduction in the number of cells that express Pax6, Bmp4 and Msx1 Sustained mTORC1 signalling also induces a decrease in ciliary margin progenitor cell proliferation and a consequent failure of ciliary body and iris development in postnatal animals. Our study therefore identifies Tsc1 as a novel candidate ASD gene. Furthermore, the Tsc1 -ablated mouse model also provides a valuable resource for future studies concerning the molecular mechanisms underlying ASD and acts as a platform for evaluating therapeutic approaches for the treatment of visual disorders. © 2017. Published by The Company of Biologists Ltd.

  5. Transcription, Translation, and Function of Lubricin, a Boundary Lubricant, at the Ocular Surface

    PubMed Central

    Schmidt, Tannin A.; Sullivan, David A.; Knop, Erich; Richards, Stephen M.; Knop, Nadja; Liu, Shaohui; Sahin, Afsun; Darabad, Raheleh Rahimi; Morrison, Sheila; Kam, Wendy R.; Sullivan, Benjamin D.

    2013-01-01

    Importance Lubricin may be an important barrier to the development of corneal and conjunctival epitheliopathies that may occur in dry eye disease and contact lens wear. Objective To test the hypotheses that lubricin (ie, proteoglycan 4 [PRG4]), a boundary lubricant, is produced by ocular surface epithelia and acts to protect the cornea and conjunctiva against significant shear forces generated during an eyelid blink and that lubricin deficiency increases shear stress on the ocular surface and promotes corneal damage. Design, Setting, and Participants Human, porcine, and mouse tissues and cells were processed for molecular biological, immunohistochemical, and tribological studies, and wild-type and PRG4 knockout mice were evaluated for corneal damage. Results Our findings demonstrate that lubricin is transcribed and translated by corneal and conjunctival epithelial cells. Lubricin messenger RNA is also present in lacrimal and meibomian glands, as well as in a number of other tissues. Absence of lubricin in PRG4 knockout mice is associated with a significant increase in corneal fluorescein staining. Our studies also show that lubricin functions as an effective friction-lowering boundary lubricant at the human cornea-eyelid interface. This effect is specific and cannot be duplicated by the use of hyaluronate or bovine serum albumin solutions. Conclusions and Relevance Our results show that lubricin is transcribed, translated, and expressed by ocular surface epithelia. Moreover, our findings demonstrate that lubricin presence significantly reduces friction between the cornea and conjunctiva and that lubricin deficiency may play a role in promoting corneal damage. PMID:23599181

  6. Transcription, translation, and function of lubricin, a boundary lubricant, at the ocular surface.

    PubMed

    Schmidt, Tannin A; Sullivan, David A; Knop, Erich; Richards, Stephen M; Knop, Nadja; Liu, Shaohui; Sahin, Afsun; Darabad, Raheleh Rahimi; Morrison, Sheila; Kam, Wendy R; Sullivan, Benjamin D

    2013-06-01

    Lubricin may be an important barrier to the development of corneal and conjunctival epitheliopathies that may occur in dry eye disease and contact lens wear. To test the hypotheses that lubricin (ie, proteoglycan 4 [PRG4 ]), a boundary lubricant, is produced by ocular surface epithelia and acts to protect the cornea and conjunctiva against significant shear forces generated during an eyelid blink and that lubricin deficiency increases shear stress on the ocular surface and promotes corneal damage. Human, porcine, and mouse tissues and cells were processed for molecular biological, immunohistochemical, and tribological studies, and wild-type and PRG4 knockout mice were evaluated for corneal damage. Our findings demonstrate that lubricin is transcribed and translated by corneal and conjunctival epithelial cells. Lubricin messenger RNA is also present in lacrimal and meibomian glands, as well as in a number of other tissues. Absence of lubricin in PRG4 knockout mice is associated with a significant increase in corneal fluorescein staining. Our studies also show that lubricin functions as an effective friction-lowering boundary lubricant at the human cornea-eyelid interface. This effect is specific and cannot be duplicated by the use of hyaluronate or bovine serum albumin solutions. Our results show that lubricin is transcribed, translated, and expressed by ocular surface epithelia. Moreover, our findings demonstrate that lubricin presence significantly reduces friction between the cornea and conjunctiva and that lubricin deficiency may play a role in promoting corneal damage.

  7. A novel rare sugar inhibitor of murine herpes simplex keratitis

    PubMed Central

    Muniruzzaman, Syed; McIntosh, Megan; Hossain, Ahamed; Izumori, Ken; Bhattacharjee, Partha S.

    2017-01-01

    Purpose To determine the therapeutic efficacy of a novel rare sugar, L-psicose, for the treatment of HSV-1 induced herpetic stromal keratitis (HSK) in a mouse eye model. Methods One rare sugar L-psicose was assayed for HSV-1 inhibition of in vitro virus adsorption. The IC50 and IC90 values of L-psicose were determined using plaque reduction assay (PRA) in CV-1 cell. Female Balb/c mice were corneally infected with HSV-1, strain KOS-GFP; A topical eye drop treatment of L-psicose was started 24 h after infection and continued four times daily for ten consecutive days. The severity of HSK was monitored by slit lamp examination in a masked fashion and Infectious HSV-1 shedding was determined by PRA. Results L-psicose was found to have anti-viral activity in vitro at an IC50 dose of 99.5 mM and an IC90 dose of 160 mM. Topical eye drop treatment with 200 mM L-psicose in PBS solution significantly reduced the severity of HSK compared to the mock treatment group. The in vivo mouse ocular model results of L-psicose therapy correlated with accelerated clearance of virus from eye swabs. Conclusion The results suggest that topical treatment with rare sugar L-psicose has efficacy against HSK through inhibition of HSV-1. PMID:27262904

  8. Ultraviolet radiation exposure triggers neurokinin-1 receptor upregulation in ocular tissues in vivo.

    PubMed

    Gross, Janine; Wegener, Alfred R; Kronschlaeger, Martin; Holz, Frank G; Schönfeld, Carl-Ludwig; Meyer, Linda M

    2018-04-26

    The purpose of this study was to investigate the neurokinin receptor-1 (NKR-1) protein expression in ocular tissues before and after supra-cataract threshold ultraviolet radiation (UVR-B peak at 312 nm) exposure in vivo in a mouse model. Six-week-old C57Bl/6 mice were unilaterally exposed to a single (2.9 kJ/m 2 ) and an above 3-fold UVR-B cataract threshold dose (9.4 kJ/m 2 ) of UVR. UVR-exposure (λpeak = 312 nm) was performed in mydriasis using a Bio-Spectra exposure system. After latency periods of 3 and 7 days, eyes were fixed in 4% paraformaldehyde, embedded in paraffin, sectioned and stained with fluorescence coupled antibody for NKR-1 and DAPI for cell nuclei staining. Control animals received only anesthesia but no UVR-exposure. Cataract development was documented with a Leica dark-field microscope and quantified as integrated optical density (IOD). NKR-1 is ubiquitously present in ocular tissues. An above 3-fold cataract threshold dose of UV-radiation induced NKR-1 upregulation after days 3 and 7 in the epithelium and endothelium of the cornea, the endothelial cells of the iris vessels, the pigmented epithelium/stroma of the ciliary body, the lens epithelium, pronounced in the nuclear bow region and the inner plexiform layer of the retina. A significant upregulation of NKR-1 could not be provoked with a single cataract threshold dose (2.9 kJ/m 2 UVR-B) ultraviolet irradiation. All exposed eyes developed anterior subcapsular cataracts. Neurokinin-1 receptor is present ubiquitously in ocular tissues including the lens epithelium and the nuclear bow region of the lens. UV-radiation exposure to an above 3-fold UVR-B cataract threshold dose triggers NKR-1 upregulation in the eye in vivo. The involvement of inflammation in ultraviolet radiation induced cataract and the role of neuroinflammatory peptides such as substance P and its receptor, NKR-1, might have been underestimated to date. Copyright © 2018. Published by Elsevier Ltd.

  9. Distribution of Nidogen in the Murine Eye and Ocular Phenotype of the Nidogen-1 Knockout Mouse

    PubMed Central

    May, Christian Albrecht

    2012-01-01

    Distribution and lack of nidogen-1, part of numerous basement membranes, were studied in the mouse eye. For that purpose, eyes of C57BL/6 and nidogen-1 knockout mice were stained immunohistochemically for nidogen-1, and intraocular pressure measurements and light- and electron microscopy were used to study the nidogen-1 knockout animals. In normal mice, nidogen-1 was present in many basement membranes, but showed irregularities underneath the corneal epithelium, in Bruch's membrane and in the iris. Homozygous knockout of nidogen-1 in the mouse showed only mild pathological changes. In the anterior eye segment, small interruptions were noted in the nonpigmented ciliary epithelium without further consequences. In the posterior eye segment, interruptions of the inner limiting membrane led to small retinal ectopias and subsequent changes in the optic nerve. In summary, the knockout of nidogen-1 showed mild but significant morphological changes pointing to the importance of this protein which can in part, but not completely; be replaced by nidogen-2. PMID:24555126

  10. Effects of DA-6034 on aqueous tear fluid secretion and conjunctival goblet cell proliferation.

    PubMed

    Choi, Seul Min; Lee, Yeong Geon; Seo, Mi Jung; Kang, Kyung Koo; Ahn, Byoung Ok; Yoo, Moohi

    2009-06-01

    This study was conducted to evaluate the effect of DA-6034, a potent secretagogue, on aqueous tear fluid secretion and its quality in normal rabbit. We also evaluated, in animal models of experimentally induced dry eye disease, its effectiveness over time to stimulate aqueous tear production by ocular ferning test and goblet cell proliferation. Aqueous tear production, total protein levels, and glycoprotein levels in normal rabbits were evaluated after topical application of DA-6034 (0.3, 1, and 3%). Moreover, time course aqueous tear volume measurement and ocular ferning test in tear fluid were performed in dry eyes of rabbits that had been given 1% atropine sulfate, topically. Altogether, tear fluid production and conjunctival goblet cell numbers were measured in dry eyes of mice that had been given topical scopolamine. Topical application of DA-6034 (0.3, 1, and 3%) significantly increased (P < 0.05) aqueous tear production in a concentration-dependent manner in normal rabbits. There was no change in total protein levels while glycoprotein levels were significantly increased (P < 0.05) at 3% DA-6034. The increase in aqueous tear fluid was significant (P < 0.05) and lasted for 2 h post-instillation in dry eyes of rabbits that had been given 1% atropine sulfate; 10-day repeated instillation of the drug in this model resulted in large and homogeneous fern-like tear patterns. In a mouse model, DA-6034 given as a 3% eyedrop solution significantly increased (P < 0.05) tear fluid production and conjunctival goblet cell number. These results suggest that DA-6034 accelerates not only tear secretion but also mucin production and may be a potential therapeutic agent for the treatment of dry eye disease.

  11. Defining a mechanistic link between pigment epithelium-derived factor, docosahexaenoic acid, and corneal nerve regeneration.

    PubMed

    Pham, Thang Luong; He, Jiucheng; Kakazu, Azucena H; Jun, Bokkyoo; Bazan, Nicolas G; Bazan, Haydee E P

    2017-11-10

    The cornea is densely innervated to sustain the integrity of the ocular surface. Corneal nerve damage produced by aging, diabetes, refractive surgeries, and viral or bacterial infections impairs tear production, the blinking reflex, and epithelial wound healing, resulting in loss of transparency and vision. A combination of the known neuroprotective molecule, pigment epithelium-derived factor (PEDF) plus docosahexaenoic acid (DHA), has been shown to stimulate corneal nerve regeneration, but the mechanisms involved are unclear. Here, we sought to define the molecular events of this effect in an in vivo mouse injury model. We first confirmed that PEDF + DHA increased nerve regeneration in the mouse cornea. Treatment with PEDF activates the phospholipase A 2 activity of the PEDF-receptor (PEDF-R) leading to the release of DHA; this free DHA led to enhanced docosanoid synthesis and induction of bdnf, ngf , and the axon growth promoter semaphorin 7a ( sema7a ), and as a consequence, their products appeared in the mouse tears. Surprisingly, corneal injury and treatment with PEDF + DHA induced transcription of neuropeptide y ( npy ), small proline-rich protein 1a ( sprr1a ), and vasoactive intestinal peptide ( vip ) in the trigeminal ganglia (TG). The PEDF-R inhibitor, atglistatin, blocked all of these changes in the cornea and TG. In conclusion, we uncovered here an active cornea-TG axis, driven by PEDF-R activation, that fosters axon outgrowth in the cornea. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Influence of Light Emitting Diode-Derived Blue Light Overexposure on Mouse Ocular Surface.

    PubMed

    Lee, Hyo Seok; Cui, Lian; Li, Ying; Choi, Ji Suk; Choi, Joo-Hee; Li, Zhengri; Kim, Ga Eon; Choi, Won; Yoon, Kyung Chul

    2016-01-01

    To investigate the influence of overexposure to light emitting diode (LED)-derived light with various wavelengths on mouse ocular surface. LEDs with various wavelengths were used to irradiate C57BL/6 mice at an energy dose of 50 J/cm2, twice a day, for 10 consecutive days. The red, green, and blue groups represented wavelengths of 630 nm, 525 nm, and 410 nm, respectively. The untouched group (UT) was not exposed to LED light and served as the untreated control. Tear volume, tear film break-up time (TBUT), and corneal fluorescein staining scores were measured on days 1, 3, 5, 7, and 10. Levels of interferon (IFN)-γ, interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α were measured in the cornea and conjunctiva using a multiplex immunobead assay at day 10. Levels of malondialdehyde (MDA) were measured with an enzyme-linked immunosorbent assay. Flow cytometry, 2'7'-dichlorofluorescein diacetate (DCF-DA) assay, histologic analysis, immunohistochemistry with 4-hydroxynonenal, and terminal deoxynucleotidyl transferase-mediated dUTP-nick end labeling (TUNEL) staining were also performed. TBUT of the blue group showed significant decreases at days 7 and 10, compared with the UT and red groups. Corneal fluorescein staining scores significantly increased in the blue group when compared with UT, red, and green groups at days 5, 7, and 10. A significant increase in the corneal levels of IL-1β and IL-6 was observed in the blue group, compared with the other groups. The blue group showed significantly increased reactive oxygen species production in the DCF-DA assay and increased inflammatory T cells in the flow cytometry. A significantly increased TUNEL positive cells was identified in the blue group. Overexposure to blue light with short wavelengths can induce oxidative damage and apoptosis to the cornea, which may manifest as increased ocular surface inflammation and resultant dry eye.

  13. Diabetes-associated dry eye syndrome in a new humanized transgenic model of type 1 diabetes.

    PubMed

    Imam, Shahnawaz; Elagin, Raya B; Jaume, Juan Carlos

    2013-01-01

    Patients with Type 1 Diabetes (T1D) are at high risk of developing lacrimal gland dysfunction. We have developed a new model of human T1D using double-transgenic mice carrying HLA-DQ8 diabetes-susceptibility haplotype instead of mouse MHC-class II and expressing the human beta cell autoantigen Glutamic Acid Decarboxylase in pancreatic beta cells. We report here the development of dry eye syndrome (DES) after diabetes induction in our humanized transgenic model. Double-transgenic mice were immunized with DNA encoding human GAD65, either naked or in adenoviral vectors, to induce T1D. Mice monitored for development of diabetes developed lacrimal gland dysfunction. Animals developed lacrimal gland disease (classically associated with diabetes in Non Obese Diabetic [NOD] mice and with T1D in humans) as they developed glucose intolerance and diabetes. Animals manifested obvious clinical signs of dry eye syndrome (DES), from corneal erosions to severe keratitis. Histological studies of peri-bulbar areas revealed lymphocytic infiltration of glandular structures. Indeed, infiltrative lesions were observed in lacrimal/Harderian glands within weeks following development of glucose intolerance. Lesions ranged from focal lymphocytic infiltration to complete acinar destruction. We observed a correlation between the severity of the pancreatic infiltration and the severity of the ocular disease. Our results demonstrate development of DES in association with antigen-specific insulitis and diabetes following immunization with clinically relevant human autoantigen concomitantly expressed in pancreatic beta cells of diabetes-susceptible mice. As in the NOD mouse model and as in human T1D, our animals developed diabetes-associated DES. This specific finding stresses the relevance of our model for studying these human diseases. We believe our model will facilitate studies to prevent/treat diabetes-associated DES as well as human diabetes.

  14. Human TUBB3 mutations perturb microtubule dynamics, kinesin interactions, and axon guidance

    PubMed Central

    Tischfield, Max A.; Baris, Hagit N.; Wu, Chen; Rudolph, Guenther; Van Maldergem, Lionel; He, Wei; Chan, Wai-Man; Andrews, Caroline; Demer, Joseph L.; Robertson, Richard L.; Mackey, David A.; Ruddle, Jonathan B.; Bird, Thomas D.; Gottlob, Irene; Pieh, Christina; Traboulsi, Elias I.; Pomeroy, Scott L.; Hunter, David G.; Soul, Janet S.; Newlin, Anna; Sabol, Louise J.; Doherty, Edward J.; de Uzcátegui, Clara E.; de Uzcátegui, Nicolas; Collins, Mary Louise Z.; Sener, Emin C.; Wabbels, Bettina; Hellebrand, Heide; Meitinger, Thomas; de Berardinis, Teresa; Magli, Adriano; Schiavi, Costantino; Pastore-Trossello, Marco; Koc, Feray; Wong, Agnes M.; Levin, Alex V.; Geraghty, Michael T.; Descartes, Maria; Flaherty, Maree; Jamieson, Robyn V.; Møller, H. U.; Meuthen, Ingo; Callen, David F.; Kerwin, Janet; Lindsay, Susan; Meindl, Alfons; Gupta, Mohan L.; Pellman, David; Engle, Elizabeth C.

    2011-01-01

    We report that eight heterozygous missense mutations in TUBB3, encoding the neuron-specific β-tubulin isotype III, result in a spectrum of human nervous system disorders we now call the TUBB3 syndromes. Each mutation causes the ocular motility disorder CFEOM3, whereas some also result in intellectual and behavioral impairments, facial paralysis, and/or later-onset axonal sensorimotor polyneuropathy. Neuroimaging reveals a spectrum of abnormalities including hypoplasia of oculomotor nerves, and dysgenesis of the corpus callosum, anterior commissure, and corticospinal tracts. A knock-in disease mouse model reveals axon guidance defects without evidence of cortical cell migration abnormalities. We show the disease-associated mutations can impair tubulin heterodimer formation in vitro, although folded mutant heterodimers can still polymerize into microtubules. Modeling each mutation in yeast tubulin demonstrates that all alter dynamic instability whereas a subset disrupts the interaction of microtubules with kinesin motors. These findings demonstrate normal TUBB3 is required for axon guidance and maintenance in mammals. PMID:20074521

  15. Zika Virus Infection in Mice Causes Panuveitis with Shedding of Virus in Tears.

    PubMed

    Miner, Jonathan J; Sene, Abdoulaye; Richner, Justin M; Smith, Amber M; Santeford, Andrea; Ban, Norimitsu; Weger-Lucarelli, James; Manzella, Francesca; Rückert, Claudia; Govero, Jennifer; Noguchi, Kevin K; Ebel, Gregory D; Diamond, Michael S; Apte, Rajendra S

    2016-09-20

    Zika virus (ZIKV) is an emerging flavivirus that causes congenital abnormalities and Guillain-Barré syndrome. ZIKV infection also results in severe eye disease characterized by optic neuritis, chorioretinal atrophy, and blindness in newborns and conjunctivitis and uveitis in adults. We evaluated ZIKV infection of the eye by using recently developed mouse models of pathogenesis. ZIKV-inoculated mice developed conjunctivitis, panuveitis, and infection of the cornea, iris, optic nerve, and ganglion and bipolar cells in the retina. This phenotype was independent of the entry receptors Axl or Mertk, given that Axl(-/-), Mertk(-/-), and Axl(-/-)Mertk(-/-) double knockout mice sustained levels of infection similar to those of control animals. We also detected abundant viral RNA in tears, suggesting that virus might be secreted from lacrimal glands or shed from the cornea. This model provides a foundation for studying ZIKV-induced ocular disease, defining mechanisms of viral persistence, and developing therapeutic approaches for viral infections of the eye. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  16. Rebamipide suppresses PolyI:C-stimulated cytokine production in human conjunctival epithelial cells.

    PubMed

    Ueta, Mayumi; Sotozono, Chie; Yokoi, Norihiko; Kinoshita, Shigeru

    2013-09-01

    We previously documented that ocular surface epithelial cells could regulate ocular surface inflammation and suggested that, while Toll-like receptor 3 upregulates, EP3, one of the prostaglandin E2 receptors, downregulates ocular surface inflammation. Others reported that rebamipide, a gastroprotective drug, could not only increase the gastric mucus production, but also suppressed gastric mucosal inflammation and that it was dominantly distributed in mucosal tissues. The eyedrop form of rebamipide, approved in Japan for use in the treatment of dry eye diseases, upregulates mucin secretion and production, thereby suppressing superficial punctate keratopathy on the ocular surface of patients with this disease. In the current study, we investigated whether rebamipide has anti- inflammatory effects on the ocular surface. To examine the effects of rebamipide on polyI:C-induced cytokine expression by primary human conjunctival epithelial cells, we used enzyme-linked immunosorbent assay and quantitative reverse transcription-polymerase chain reaction assay. We studied the effects of rebamipide on ocular surface inflammation in our murine experimental allergic conjunctivitis (EAC) model. Rebamipide could suppress polyI:C-induced cytokine production and the expression of mRNAs for CXCL10, CXCL11, RANTES, MCP-1, and IL-6 in human conjunctival epithelial cells. In our EAC model, the topical administration of rebamipide suppressed conjunctival allergic eosinophil infiltration. The topical application of rebamipide on the ocular surface might suppress ocular surface inflammation by suppressing the production of cytokines by ocular surface epithelial cells.

  17. Cytochrome P450-generated metabolites derived from ω-3 fatty acids attenuate neovascularization

    PubMed Central

    Yanai, Ryoji; Mulki, Lama; Hasegawa, Eiichi; Takeuchi, Kimio; Sweigard, Harry; Suzuki, Jun; Gaissert, Philipp; Vavvas, Demetrios G.; Sonoda, Koh-Hei; Rothe, Michael; Schunck, Wolf-Hagen; Miller, Joan W.; Connor, Kip M.

    2014-01-01

    Ocular neovascularization, including age-related macular degeneration (AMD), is a primary cause of blindness in individuals of industrialized countries. With a projected increase in the prevalence of these blinding neovascular diseases, there is an urgent need for new pharmacological interventions for their treatment or prevention. Increasing evidence has implicated eicosanoid-like metabolites of long-chain polyunsaturated fatty acids (LCPUFAs) in the regulation of neovascular disease. In particular, metabolites generated by the cytochrome P450 (CYP)–epoxygenase pathway have been shown to be potent modulators of angiogenesis, making this pathway a reasonable previously unidentified target for intervention in neovascular ocular disease. Here we show that dietary supplementation with ω-3 LCPUFAs promotes regression of choroidal neovessels in a well-characterized mouse model of neovascular AMD. Leukocyte recruitment and adhesion molecule expression in choroidal neovascular lesions were down-regulated in mice fed ω-3 LCPUFAs. The serum of these mice showed increased levels of anti-inflammatory eicosanoids derived from eicosapentaenoic acid and docosahexaenoic acid. 17,18-epoxyeicosatetraenoic acid and 19,20-epoxydocosapentaenoic acid, the major CYP-generated metabolites of these primary ω-3 LCPUFAs, were identified as key lipid mediators of disease resolution. We conclude that CYP-derived bioactive lipid metabolites from ω-3 LCPUFAs are potent inhibitors of intraocular neovascular disease and show promising therapeutic potential for resolution of neovascular AMD. PMID:24979774

  18. Lasting Retinal Injury in a Mouse Model of Blast-Induced Trauma.

    PubMed

    Mammadova, Najiba; Ghaisas, Shivani; Zenitsky, Gary; Sakaguchi, Donald S; Kanthasamy, Anumantha G; Greenlee, Justin J; West Greenlee, M Heather

    2017-07-01

    Traumatic brain injury due to blast exposure is currently the most prevalent of war injuries. Although secondary ocular blast injuries due to flying debris are more common, primary ocular blast exposure resulting from blast wave pressure has been reported among survivors of explosions, but with limited understanding of the resulting retinal pathologies. Using a compressed air-driven shock tube system, adult male and female C57BL/6 mice were exposed to blast wave pressure of 300 kPa (43.5 psi) per day for 3 successive days, and euthanized 30 days after injury. We assessed retinal tissues using immunofluorescence for glial fibrillary acidic protein, microglia-specific proteins Iba1 and CD68, and phosphorylated tau (AT-270 pThr181 and AT-180 pThr231). Primary blast wave pressure resulted in activation of Müller glia, loss of photoreceptor cells, and an increase in phosphorylated tau in retinal neurons and glia. We found that 300-kPa blasts yielded no detectable cognitive or motor deficits, and no neurochemical or biochemical evidence of injury in the striatum or prefrontal cortex, respectively. These changes were detected 30 days after blast exposure, suggesting the possibility of long-lasting retinal injury and neuronal inflammation after primary blast exposure. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  19. Topical Delivery of Anti-VEGF Drugs to the Ocular Posterior Segment Using Cell-Penetrating Peptides.

    PubMed

    de Cogan, Felicity; Hill, Lisa J; Lynch, Aisling; Morgan-Warren, Peter J; Lechner, Judith; Berwick, Matthew R; Peacock, Anna F A; Chen, Mei; Scott, Robert A H; Xu, Heping; Logan, Ann

    2017-05-01

    To evaluate the efficacy of anti-VEGF agents for treating choroidal neovascularization (CNV) when delivered topically using novel cell-penetrating peptides (CPPs) compared with delivery by intravitreal (ivit) injection. CPP toxicity was investigated in cell cultures. Ivit concentrations of ranibizumab and bevacizumab after topical administration were measured using ELISA. The biological efficacy of topical anti-VEGF + CPP complexes was compared with ivit anti-VEGF injections using an established model of CNV. CPPs were nontoxic in vitro. In vivo, after topical eye drop delivery, CPPs were present in the rat anterior chamber within 6 minutes. A single application of CPP + bevacizumab eye drop delivered clinically relevant concentrations of bevacizumab to the posterior chamber of the rat eye in vivo. Similarly, clinically relevant levels of CPP + ranibizumab and CPP + bevacizumab were detected in the porcine vitreous and retina ex vivo. In an established model of CNV, mice treated with either a single ivit injection of anti-VEGF, twice daily CPP + anti-VEGF eye drops or daily dexamethasone gavage for 10 days all had significantly reduced areas of CNV when compared with lasered eyes without treatment. CPPs are nontoxic to ocular cells and can be used to deliver therapeutically relevant doses of ranibizumab and bevacizumab by eye drop to the posterior segment of mouse, rat, and pig eyes. The CPP + anti-VEGF drug complexes were cleared from the retina within 24 hours, suggesting a daily eye drop dosing regimen. Daily, topically delivered anti-VEGF with CPP was as efficacious as a single ivit injection of anti-VEGF in reducing areas of CNV in vivo.

  20. Knockdown of Zebrafish Lumican Gene (zlum) Causes Scleral Thinning and Increased Size of Scleral Coats*

    PubMed Central

    Yeh, Lung-Kun; Liu, Chia-Yang; Kao, Winston W.-Y.; Huang, Chang-Jen; Hu, Fung-Rong; Chien, Chung-Liang; Wang, I-Jong

    2010-01-01

    The lumican gene (lum), which encodes one of the major keratan sulfate proteoglycans (KSPGs) in the vertebrate cornea and sclera, has been linked to axial myopia in humans. In this study, we chose zebrafish (Danio rerio) as an animal model to elucidate the role of lumican in the development of axial myopia. The zebrafish lumican gene (zlum) spans ∼4.6 kb of the zebrafish genome. Like human (hLUM) and mouse (mlum), zlum consists of three exons, two introns, and a TATA box-less promoter at the 5′-flanking region of the transcription initiation site. Sequence analysis of the cDNA predicts that zLum encodes 344 amino acids. zLum shares 51% amino acid sequence identity with human lumican. Similar to hLUM and mlum, zlum mRNA is expressed in the eye and many other tissues, such as brain, muscle, and liver as well. Transgenic zebrafish harboring an enhanced GFP reporter gene construct downstream of a 1.7-kb zlum 5′-flanking region displayed enhanced GFP expression in the cornea and sclera, as well as throughout the body. Down-regulation of zlum expression by antisense zlum morpholinos manifested ocular enlargement resembling axial myopia due to disruption of the collagen fibril arrangement in the sclera and resulted in scleral thinning. Administration of muscarinic receptor antagonists, e.g. atropine and pirenzepine, effectively subdued the ocular enlargement caused by morpholinos in in vivo zebrafish larvae assays. The observation suggests that zebrafish can be used as an in vivo model for screening compounds in treating myopia. PMID:20551313

  1. Ocular Tropism of Respiratory Viruses

    PubMed Central

    Rota, Paul A.; Tumpey, Terrence M.

    2013-01-01

    SUMMARY Respiratory viruses (including adenovirus, influenza virus, respiratory syncytial virus, coronavirus, and rhinovirus) cause a broad spectrum of disease in humans, ranging from mild influenza-like symptoms to acute respiratory failure. While species D adenoviruses and subtype H7 influenza viruses are known to possess an ocular tropism, documented human ocular disease has been reported following infection with all principal respiratory viruses. In this review, we describe the anatomical proximity and cellular receptor distribution between ocular and respiratory tissues. All major respiratory viruses and their association with human ocular disease are discussed. Research utilizing in vitro and in vivo models to study the ability of respiratory viruses to use the eye as a portal of entry as well as a primary site of virus replication is highlighted. Identification of shared receptor-binding preferences, host responses, and laboratory modeling protocols among these viruses provides a needed bridge between clinical and laboratory studies of virus tropism. PMID:23471620

  2. L-baclofen-sensitive GABAB binding sites in the medial vestibular nucleus localized by immunocytochemistry

    NASA Technical Reports Server (NTRS)

    Holstein, G. R.; Martinelli, G. P.; Cohen, B.

    1992-01-01

    L-Baclofen-sensitive GABAB binding sites in the medial vestibular nucleus (MVN) were identified immunocytochemically and visualized ultrastructurally in L-baclofen-preinjected rats and monkeys, using a mouse monoclonal antibody with specificity for the p-chlorophenyl moiety of baclofen. Saline-preinjected animals showed no immunostain. In drug-injected animals, there was evidence for both pre- and postsynaptic GABAergic inhibition in MVN mediated by GABAB receptors. These neural elements could be utilized in control of velocity storage in the vestibulo-ocular reflex.

  3. Nine loci for ocular axial length identified through genome-wide association studies, including shared loci with refractive error.

    PubMed

    Cheng, Ching-Yu; Schache, Maria; Ikram, M Kamran; Young, Terri L; Guggenheim, Jeremy A; Vitart, Veronique; MacGregor, Stuart; Verhoeven, Virginie J M; Barathi, Veluchamy A; Liao, Jiemin; Hysi, Pirro G; Bailey-Wilson, Joan E; St Pourcain, Beate; Kemp, John P; McMahon, George; Timpson, Nicholas J; Evans, David M; Montgomery, Grant W; Mishra, Aniket; Wang, Ya Xing; Wang, Jie Jin; Rochtchina, Elena; Polasek, Ozren; Wright, Alan F; Amin, Najaf; van Leeuwen, Elisabeth M; Wilson, James F; Pennell, Craig E; van Duijn, Cornelia M; de Jong, Paulus T V M; Vingerling, Johannes R; Zhou, Xin; Chen, Peng; Li, Ruoying; Tay, Wan-Ting; Zheng, Yingfeng; Chew, Merwyn; Burdon, Kathryn P; Craig, Jamie E; Iyengar, Sudha K; Igo, Robert P; Lass, Jonathan H; Chew, Emily Y; Haller, Toomas; Mihailov, Evelin; Metspalu, Andres; Wedenoja, Juho; Simpson, Claire L; Wojciechowski, Robert; Höhn, René; Mirshahi, Alireza; Zeller, Tanja; Pfeiffer, Norbert; Lackner, Karl J; Bettecken, Thomas; Meitinger, Thomas; Oexle, Konrad; Pirastu, Mario; Portas, Laura; Nag, Abhishek; Williams, Katie M; Yonova-Doing, Ekaterina; Klein, Ronald; Klein, Barbara E; Hosseini, S Mohsen; Paterson, Andrew D; Makela, Kari-Matti; Lehtimaki, Terho; Kahonen, Mika; Raitakari, Olli; Yoshimura, Nagahisa; Matsuda, Fumihiko; Chen, Li Jia; Pang, Chi Pui; Yip, Shea Ping; Yap, Maurice K H; Meguro, Akira; Mizuki, Nobuhisa; Inoko, Hidetoshi; Foster, Paul J; Zhao, Jing Hua; Vithana, Eranga; Tai, E-Shyong; Fan, Qiao; Xu, Liang; Campbell, Harry; Fleck, Brian; Rudan, Igor; Aung, Tin; Hofman, Albert; Uitterlinden, André G; Bencic, Goran; Khor, Chiea-Chuen; Forward, Hannah; Pärssinen, Olavi; Mitchell, Paul; Rivadeneira, Fernando; Hewitt, Alex W; Williams, Cathy; Oostra, Ben A; Teo, Yik-Ying; Hammond, Christopher J; Stambolian, Dwight; Mackey, David A; Klaver, Caroline C W; Wong, Tien-Yin; Saw, Seang-Mei; Baird, Paul N

    2013-08-08

    Refractive errors are common eye disorders of public health importance worldwide. Ocular axial length (AL) is the major determinant of refraction and thus of myopia and hyperopia. We conducted a meta-analysis of genome-wide association studies for AL, combining 12,531 Europeans and 8,216 Asians. We identified eight genome-wide significant loci for AL (RSPO1, C3orf26, LAMA2, GJD2, ZNRF3, CD55, MIP, and ALPPL2) and confirmed one previously reported AL locus (ZC3H11B). Of the nine loci, five (LAMA2, GJD2, CD55, ALPPL2, and ZC3H11B) were associated with refraction in 18 independent cohorts (n = 23,591). Differential gene expression was observed for these loci in minus-lens-induced myopia mouse experiments and human ocular tissues. Two of the AL genes, RSPO1 and ZNRF3, are involved in Wnt signaling, a pathway playing a major role in the regulation of eyeball size. This study provides evidence of shared genes between AL and refraction, but importantly also suggests that these traits may have unique pathways. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  4. Crystalline lens paradoxes revisited: significance of age-related restructuring of the GRIN.

    PubMed

    Sheil, Conor J; Goncharov, Alexander V

    2017-09-01

    The accommodating volume-constant age-dependent optical (AVOCADO) model of the crystalline lens is used to explore the age-related changes in ocular power and spherical aberration. The additional parameter m in the GRIN lens model allows decoupling of the axial and radial GRIN profiles, and is used to stabilise the age-related change in ocular power. Data for age-related changes in ocular geometry and lens parameter P in the axial GRIN profile were taken from published experimental data. In our age-dependent eye model, the ocular refractive power shows behaviour similar to the previously unexplained "lens paradox". Furthermore, ocular spherical aberration agrees with the data average, in contrast to the proposed "spherical aberration paradox". The additional flexibility afforded by parameter m , which controls the ratio of the axial and radial GRIN profile exponents, has allowed us to study the restructuring of the lens GRIN medium with age, resulting in a new interpretation of the origin of the power and spherical aberration paradoxes. Our findings also contradict the conceptual idea that the ageing eye is similar to the accommodating eye.

  5. Neuroretinal hypoxic signaling in a new preclinical murine model for proliferative diabetic retinopathy

    PubMed Central

    Wert, Katherine J; Mahajan, Vinit B; Zhang, Lijuan; Yan, Yuanqing; Li, Yao; Tosi, Joaquin; Wei Hsu, Chun; Nagasaki, Takayuki; Janisch, Kerstin M; Grant, Maria B; Mahajan, MaryAnn; Bassuk, Alexander G; Tsang, Stephen H

    2016-01-01

    Diabetic retinopathy (DR) affects approximately one-third of diabetic patients and, if left untreated, progresses to proliferative DR (PDR) with associated vitreous hemorrhage, retinal detachment, iris neovascularization, glaucoma and irreversible blindness. In vitreous samples of human patients with PDR, we found elevated levels of hypoxia inducible factor 1 alpha (HIF1α). HIFs are transcription factors that promote hypoxia adaptation and have important functional roles in a wide range of ischemic and inflammatory diseases. To recreate the human PDR phenotype for a preclinical animal model, we generated a mouse with neuroretinal-specific loss of the von Hippel Lindau tumor suppressor protein, a protein that targets HIF1α for ubiquitination. We found that the neuroretinal cells in these mice overexpressed HIF1α and developed severe, irreversible ischemic retinopathy that has features of human PDR. Rapid progression of retinopathy in these mutant mice should facilitate the evaluation of therapeutic agents for ischemic and inflammatory blinding disorders. In addition, this model system can be used to manipulate the modulation of the hypoxia signaling pathways, for the treatment of non-ocular ischemic and inflammatory disorders. PMID:27195131

  6. Establishment of a Bluetongue Virus Infection Model in Mice that Are Deficient in the Alpha/Beta Interferon Receptor

    PubMed Central

    Calvo-Pinilla, Eva; Rodríguez-Calvo, Teresa; Anguita, Juan; Sevilla, Noemí; Ortego, Javier

    2009-01-01

    Bluetongue (BT) is a noncontagious, insect-transmitted disease of ruminants caused by the bluetongue virus (BTV). A laboratory animal model would greatly facilitate the studies of pathogenesis, immune response and vaccination against BTV. Herein, we show that adult mice deficient in type I IFN receptor (IFNAR(−/−)) are highly susceptible to BTV-4 and BTV-8 infection when the virus is administered intravenously. Disease was characterized by ocular discharges and apathy, starting at 48 hours post-infection and quickly leading to animal death within 60 hours of inoculation. Infectious virus was recovered from the spleen, lung, thymus, and lymph nodes indicating a systemic infection. In addition, a lymphoid depletion in spleen, and severe pneumonia were observed in the infected mice. Furthermore, IFNAR(−/−) adult mice immunized with a BTV-4 inactivated vaccine showed the induction of neutralizing antibodies against BTV-4 and complete protection against challenge with a lethal dose of this virus. The data indicate that this mouse model may facilitate the study of BTV pathogenesis, and the development of new effective vaccines for BTV. PMID:19357779

  7. Establishment and Characterization of an Air-Liquid Canine Corneal Organ Culture Model To Study Acute Herpes Keratitis

    PubMed Central

    Harman, Rebecca M.; Bussche, Leen; Ledbetter, Eric C.

    2014-01-01

    ABSTRACT Despite the clinical importance of herpes simplex virus (HSV)-induced ocular disease, the underlying pathophysiology of the disease remains poorly understood, in part due to the lack of adequate virus–natural-host models in which to study the cellular and viral factors involved in acute corneal infection. We developed an air-liquid canine corneal organ culture model and evaluated its susceptibility to canine herpesvirus type 1 (CHV-1) in order to study ocular herpes in a physiologically relevant natural host model. Canine corneas were maintained in culture at an air-liquid interface for up to 25 days, and no degenerative changes were observed in the corneal epithelium during cultivation using histology for morphometric analyses, terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) assays, and transmission electron microscopy (TEM). Next, canine corneas were inoculated with CHV-1 for 48 h, and at that time point postinfection, viral plaques could be visualized in the corneal epithelium and viral DNA copies were detected in both the infected corneas and culture supernatants. In addition, we found that canine corneas produced proinflammatory cytokines in response to CHV-1 infection similarly to what has been described for HSV-1. This emphasizes the value of our model as a virus–natural-host model to study ocular herpesvirus infections. IMPORTANCE This study is the first to describe the establishment of an air-liquid canine corneal organ culture model as a useful model to study ocular herpesvirus infections. The advantages of this physiologically relevant model include the fact that (i) it provides a system in which ocular herpes can be studied in a virus–natural-host setting and (ii) it reduces the number of experimental animals needed. In addition, this long-term explant culture model may also facilitate research in other fields where noninfectious and infectious ocular diseases of dogs and humans are being studied. PMID:25231295

  8. Identification of different macrophage subpopulations with distinct activities in a mouse model of oxygen-induced retinopathy

    PubMed Central

    Zhu, Yanji; Zhang, Ling; Lu, Qing; Gao, Yushuo; Cai, Yujuan; Sui, Ailing; Su, Ting; Shen, Xi; Xie, Bing

    2017-01-01

    The aim of the present study was to characterize the phenotypic shift, quantity and role changes in different subgroups of retinal macrophages in a mouse model of oxygen-induced retinopathy (OIR). The mRNA expression levels of macrophage M1 and M2 subgroup marker genes and polarization-associated genes were analyzed by RT-qPCR. The number of M1 and M2 macrophages in our mouse model of OIR was analyzed by flow cytometry at different time points during the progression of OIR. Immunofluorescence whole mount staining of the retinas of mice with OIR was performed at different time points to examine the influx of macrophages, as well as the morphological characteristics and roles of M1 and M2 macrophages. An increased number of macrophages was recruited during the progression of angiogenesis in the retinas of mice with OIR due to the pro-inflammatory microenvironment containing high levels of cell adhesion and leukocyte transendothelial migration molecules. RT-qPCR and flow cytometric analysis at different time points revealed a decline in the number of M1 cells from a significantly high level at post-natal day (P)13 to a relatively normal level at P21, as well as an increase in the number of M2 cells from P13 to P21 in the mice with OIR, implicating a shift of macrophage polarization towards the M2 subtype. Immunofluorescence staining suggested that the M1 cells interacted with endothelial tip cells at the vascular front, while M2 cells embraced the emerging vessels and bridged the neighboring vessel sprouts. Thus, our data indicate that macrophages play an active role in OIR by contributing to the different steps of neovascularization. Our findings indicate that tissue macrophages may be considered as a potential target for the anti-angiogenic therapy of ocular neovascularization disease. PMID:28627621

  9. Herpes Simplex Virus 1 Infection of Tree Shrews Differs from That of Mice in the Severity of Acute Infection and Viral Transcription in the Peripheral Nervous System

    PubMed Central

    Li, Lihong; Li, Zhuoran; Wang, Erlin; Yang, Rui; Xiao, Yu; Han, Hongbo; Lang, Fengchao; Li, Xin; Xia, Yujie; Gao, Feng; Li, Qihan; Fraser, Nigel W.

    2015-01-01

    ABSTRACT Studies of herpes simplex virus (HSV) infections of humans are limited by the use of rodent models such as mice, rabbits, and guinea pigs. Tree shrews (Tupaia belangeri chinensis) are small mammals indigenous to southwest Asia. At behavioral, anatomical, genomic, and evolutionary levels, tree shrews are much closer to primates than rodents are, and tree shrews are susceptible to HSV infection. Thus, we have studied herpes simplex virus 1 (HSV-1) infection in the tree shrew trigeminal ganglion (TG) following ocular inoculation. In situ hybridization, PCR, and quantitative reverse transcription-PCR (qRT-PCR) analyses confirm that HSV-1 latently infects neurons of the TG. When explant cocultivation of trigeminal ganglia was performed, the virus was recovered after 5 days of cocultivation with high efficiency. Swabbing the corneas of latently infected tree shrews revealed that tree shrews shed virus spontaneously at low frequencies. However, tree shrews differ significantly from mice in the expression of key HSV-1 genes, including ICP0, ICP4, and latency-associated transcript (LAT). In acutely infected tree shrew TGs, no level of ICP4 was observed, suggesting the absence of infection or a very weak, acute infection compared to that of the mouse. Immunofluorescence staining with ICP4 monoclonal antibody, and immunohistochemistry detection by HSV-1 polyclonal antibodies, showed a lack of viral proteins in tree shrew TGs during both acute and latent phases of infection. Cultivation of supernatant from homogenized, acutely infected TGs with RS1 cells also exhibited an absence of infectious HSV-1 from tree shrew TGs. We conclude that the tree shrew has an undetectable, or a much weaker, acute infection in the TGs. Interestingly, compared to mice, tree shrew TGs express high levels of ICP0 transcript in addition to LAT during latency. However, the ICP0 transcript remained nuclear, and no ICP0 protein could be seen during the course of mouse and tree shrew TG infections. Taken together, these observations suggest that the tree shrew TG infection differs significantly from the existing rodent models. IMPORTANCE Herpes simplex viruses (HSVs) establish lifelong infection in more than 80% of the human population, and their reactivation leads to oral and genital herpes. Currently, rodent models are the preferred models for latency studies. Rodents are distant from primates and may not fully represent human latency. The tree shrew is a small mammal, a prosimian primate, indigenous to southwest Asia. In an attempt to further develop the tree shrew as a useful model to study herpesvirus infection, we studied the establishment of latency and reactivation of HSV-1 in tree shrews following ocular inoculation. We found that the latent virus, which resides in the sensory neurons of the trigeminal ganglion, could be stress reactivated to produce infectious virus, following explant cocultivation and that spontaneous reactivation could be detected by cell culture of tears. Interestingly, the tree shrew model is quite different from the mouse model of HSV infection, in that the virus exhibited only a mild acute infection following inoculation with no detectable infectious virus from the sensory neurons. The mild infection may be more similar to human infection in that the sensory neurons continue to function after herpes reactivation and the affected skin tissue does not lose sensation. Our findings suggest that the tree shrew is a viable model to study HSV latency. PMID:26512084

  10. Mutation of SALL2 causes recessive ocular coloboma in humans and mice

    PubMed Central

    Kelberman, Daniel; Islam, Lily; Lakowski, Jörn; Bacchelli, Chiara; Chanudet, Estelle; Lescai, Francesco; Patel, Aara; Stupka, Elia; Buck, Anja; Wolf, Stephan; Beales, Philip L.; Jacques, Thomas S.; Bitner-Glindzicz, Maria; Liasis, Alki; Lehmann, Ordan J.; Kohlhase, Jürgen; Nischal, Ken K.; Sowden, Jane C.

    2014-01-01

    Ocular coloboma is a congenital defect resulting from failure of normal closure of the optic fissure during embryonic eye development. This birth defect causes childhood blindness worldwide, yet the genetic etiology is poorly understood. Here, we identified a novel homozygous mutation in the SALL2 gene in members of a consanguineous family affected with non-syndromic ocular coloboma variably affecting the iris and retina. This mutation, c.85G>T, introduces a premature termination codon (p.Glu29*) predicted to truncate the SALL2 protein so that it lacks three clusters of zinc-finger motifs that are essential for DNA-binding activity. This discovery identifies SALL2 as the third member of the Drosophila homeotic Spalt-like family of developmental transcription factor genes implicated in human disease. SALL2 is expressed in the developing human retina at the time of, and subsequent to, optic fissure closure. Analysis of Sall2-deficient mouse embryos revealed delayed apposition of the optic fissure margins and the persistence of an anterior retinal coloboma phenotype after birth. Sall2-deficient embryos displayed correct posterior closure toward the optic nerve head, and upon contact of the fissure margins, dissolution of the basal lamina occurred and PAX2, known to be critical for this process, was expressed normally. Anterior closure was disrupted with the fissure margins failing to meet, or in some cases misaligning leading to a retinal lesion. These observations demonstrate, for the first time, a role for SALL2 in eye morphogenesis and that loss of function of the gene causes ocular coloboma in humans and mice. PMID:24412933

  11. Ocular Phenotype of Fbn2-Null Mice

    PubMed Central

    Shi, Yanrong; Tu, Yidong; Mecham, Robert P.; Bassnett, Steven

    2013-01-01

    Purpose. Fibrillin-2 (Fbn2) is the dominant fibrillin isoform expressed during development of the mouse eye. To test its role in morphogenesis, we examined the ocular phenotype of Fbn2−/− mice. Methods. Ocular morphology was assessed by confocal microscopy using antibodies against microfibril components. Results. Fbn2−/− mice had a high incidence of anterior segment dysgenesis. The iris was the most commonly affected tissue. Complete iridal coloboma was present in 37% of eyes. Dyscoria, corectopia and pseudopolycoria were also common (43% combined incidence). In wild-type (WT) mice, fibrillin-2-rich microfibrils are prominent in the pupillary membrane (PM) during development. In Fbn2-null mice, the absence of Fbn2 was partially compensated for by increased expression of fibrillin-1, although the resulting PM microfibrils were disorganized, compared with WTs. In colobomatous adult Fbn2−/− eyes, the PM failed to regress normally, especially beneath the notched region of the iris. Segments of the ciliary body were hypoplastic, and zonular fibers, although relatively plentiful, were unevenly distributed around the lens equator. In regions where the zonular fibers were particularly disturbed, the synchronous differentiation of the underlying lens fiber cells was affected. Conclusions. Fbn2 has an indispensable role in ocular morphogenesis in mice. The high incidence of iris coloboma in Fbn2-null animals implies a previously unsuspected role in optic fissure closure. The observation that fiber cell differentiation was disturbed in Fbn2−/− mice raises the possibility that the attachment of zonular fibers to the lens surface may help specify the equatorial margin of the lens epithelium. PMID:24130178

  12. Binocular misalignments elicited by altered gravity provide evidence for nonlinear central compensation

    PubMed Central

    Beaton, Kara H.; Huffman, W. Cary; Schubert, Michael C.

    2015-01-01

    Increased ocular positioning misalignments upon exposure to altered gravity levels (g-levels) have been strongly correlated with space motion sickness (SMS) severity, possibly due to underlying otolith asymmetries uncompensated in novel gravitational environments. We investigated vertical and torsional ocular positioning misalignments elicited by the 0 and 1.8 g g-levels of parabolic flight and used these data to develop a computational model to describe how such misalignments might arise. Ocular misalignments were inferred through two perceptual nulling tasks: Vertical Alignment Nulling (VAN) and Torsional Alignment Nulling (TAN). All test subjects exhibited significant differences in ocular misalignments in the novel g-levels, which we postulate to be the result of healthy individuals with 1 g-tuned central compensatory mechanisms unadapted to the parabolic flight environment. Furthermore, the magnitude and direction of ocular misalignments in hypo-g and hyper-g, in comparison to 1 g, were nonlinear and nonmonotonic. Previous linear models of central compensation do not predict this. Here we show that a single model of the form a + bgε, where a, b, and ε are the model parameters and g is the current g-level, accounts for both the vertical and torsional ocular misalignment data observed inflight. Furthering our understanding of oculomotor control is critical for the development of interventions that promote adaptation in spaceflight (e.g., countermeasures for novel g-level exposure) and terrestrial (e.g., rehabilitation protocols for vestibular pathology) environments. PMID:26082691

  13. Fluorocoxib A enables targeted detection of cyclooxygenase-2 in laser-induced choroidal neovascularization

    NASA Astrophysics Data System (ADS)

    Uddin, Md. Jashim; Moore, Chauca E.; Crews, Brenda C.; Daniel, Cristina K.; Ghebreselasie, Kebreab; McIntyre, J. Oliver; Marnett, Lawrence J.; Jayagopal, Ashwath

    2016-09-01

    Ocular angiogenesis is a blinding complication of age-related macular degeneration and other retinal vascular diseases. Clinical imaging approaches to detect inflammation prior to the onset of neovascularization in these diseases may enable early detection and timely therapeutic intervention. We demonstrate the feasibility of a previously developed cyclooxygenase-2 (COX-2) targeted molecular imaging probe, fluorocoxib A, for imaging retinal inflammation in a mouse model of laser-induced choroidal neovascularization. This imaging probe exhibited focal accumulation within laser-induced neovascular lesions, with minimal detection in proximal healthy tissue. The selectivity of the probe for COX-2 was validated in vitro and by in vivo retinal imaging with nontargeted 5-carboxy-X-rhodamine dye, and by blockade of the COX-2 active site with nonfluorescent celecoxib prior to injection of fluorocoxib A. Fluorocoxib A can be utilized for imaging COX-2 expression in vivo for further validation as an imaging biomarker in retinal diseases.

  14. The ataxic mouse as a model for studying downbeat nystagmus.

    PubMed

    Stahl, John S; Thumser, Zachary C; Oommen, Brian S

    2012-01-01

    Downbeat nystagmus (DBN) is a common eye movement complication of cerebellar disease. Use of mice to study pathophysiology of vestibulocerebellar disease is increasing, but it is unclear if mice can be used to study DBN; it has not been reported in this species. We determined whether DBN occurs in the ataxic mutant tottering, which carries a mutation in the Cacna1a gene for P/Q calcium channels. Spontaneous DBN occurred only rarely, and its magnitude did not exhibit the relationship to head tilt seen in human patients. DBN during yaw rotation was more common and shares some properties with the tilt-independent, gaze-independent component of human DBN, but differs in its dependence on vision. Hyperactivity of otolith circuits responding to pitch tilts is hypothesized to contribute to the gaze-independent component of human DBN. Mutants exhibited hyperactivity of the tilt maculo-ocular reflex (tiltMOR) in pitch. The hyperactivity may serve as a surrogate for DBN in mouse studies. TiltMOR hyperactivity correlates with hyperdeviation of the eyes and upward deviation of the head during ambulation; these may be alternative surrogates. Muscimol inactivation of the cerebellar flocculus suggests a floccular role in the tiltMOR hyperactivity and provides insight into the rarity of frank DBN in ataxic mice.

  15. The ataxic mouse as a model for studying downbeat nystagmus

    PubMed Central

    Stahl, John S.; Thumser, Zachary C.; Oommen, Brian S.

    2016-01-01

    Downbeat nystagmus (DBN) is a common eye movement complication of cerebellar disease. Use of mice to study pathophysiology of vestibulocerebellar disease is increasing, but it is unclear if mice can be used to study DBN; it has not been reported in this species. We determined whether DBN occurs in the ataxic mutant tottering, which carries a mutation in the Cacna1a gene for P/Q calcium channels. Spontaneous DBN occurred only rarely, and its magnitude did not exhibit the relationship to head tilt seen in human patients. DBN during yaw rotation was more common and shares some properties with the tilt-independent, gaze-independent component of human DBN, but differs in its dependence on vision. Hyperactivity of otolith circuits responding to pitch tilts is hypothesized to contribute to the gaze-independent component of human DBN. Mutants exhibited hyperactivity of the tilt maculo-ocular reflex (tiltMOR) in pitch. The hyperactivity may serve as a surrogate for DBN in mouse studies. TiltMOR hyperactivity correlates with hyperdeviation of the eyes and upward deviation of the head during ambulation; these may be alternative surrogates. Muscimol inactivation of the cerebellar flocculus suggests a floccular role in the tiltMOR hyperactivity and provides insight into the rarity of frank DBN in ataxic mice. PMID:23302704

  16. Neuro-ophthalmic manifestations of cerebrovascular accidents.

    PubMed

    Ghannam, Alaa S Bou; Subramanian, Prem S

    2017-11-01

    Ocular functions can be affected in almost any type of cerebrovascular accident (CVA) creating a burden on the patient and family and limiting functionality. The present review summarizes the different ocular outcomes after stroke, divided into three categories: vision, ocular motility, and visual perception. We also discuss interventions that have been proposed to help restore vision and perception after CVA. Interventions that might help expand or compensate for visual field loss and visuospatial neglect include explorative saccade training, prisms, visual restoration therapy (VRT), and transcranial direct current stimulation (tDCS). VRT makes use of neuroplasticity, which has shown efficacy in animal models but remains controversial in human studies. CVAs can lead to decreased visual acuity, visual field loss, ocular motility abnormalities, and visuospatial perception deficits. Although ocular motility problems can be corrected with surgery, vision, and perception deficits are more difficult to overcome. Interventions to restore or compensate for visual field deficits are controversial despite theoretical underpinnings, animal model evidence, and case reports of their efficacies.

  17. A novel rare sugar inhibitor of murine herpes simplex keratitis.

    PubMed

    Muniruzzaman, Syed; McIntosh, Megan; Hossain, Ahamed; Izumori, Ken; Bhattacharjee, Partha S

    2016-06-01

    To determine the therapeutic efficacy of a novel rare sugar, l-psicose, for the treatment of HSV-1 induced herpetic stromal keratitis (HSK) in a mouse eye model. One rare sugar l-psicose was assayed for HSV-1 inhibition of in vitro virus adsorption. The IC50 and IC90 values of l-psicose were determined using plaque reduction assay (PRA) in CV-1 cell. Female Balb/c mice were corneally infected with HSV-1, strain KOS-GFP; A topical eye drop treatment of l-psicose was started 24 h after infection and continued four times daily for ten consecutive days. The severity of HSK was monitored by slit lamp examination in a masked fashion and Infectious HSV-1 shedding was determined by PRA. l-psicose was found to have anti-viral activity in vitro at an IC50 dose of 99.5 mM and an IC90 dose of 160 mM. Topical eye drop treatment with 200 mM l-psicose in PBS solution significantly reduced the severity of HSK compared to the mock treatment group. The in vivo mouse ocular model results of l-psicose therapy correlated with accelerated clearance of virus from eye swabs. The results suggest that topical treatment with rare sugar l-psicose has efficacy against HSK through inhibition of HSV-1. Copyright © 2016 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  18. Vision-guided ocular growth in a mutant chicken model with diminished visual acuity

    PubMed Central

    Ritchey, Eric R.; Zelinka, Christopher; Tang, Junhua; Liu, Jun; Code, Kimberly A.; Petersen-Jones, Simon; Fischer, Andy J.

    2012-01-01

    Visual experience is known to guide ocular growth. We tested the hypothesis that vision-guided ocular growth is disrupted in a model system with diminished visual acuity. We examine whether ocular elongation is influenced by form-deprivation (FD) and lens-imposed defocus in the Retinopathy, Globe Enlarged (RGE) chicken. Young RGE chicks have poor visual acuity, without significant retinal pathology, resulting from a mutation in guanine nucleotide-binding protein β3 (GNB3), also known as transducin β3 or Gβ3. The mutation in GNB3 destabilizes the protein and causes a loss of Gβ3 from photoreceptors and ON-bipolar cells. (Ritchey et al. 2010)FD increased ocular elongation in RGE eyes in a manner similar to that seen in wild-type (WT) eyes. By comparison, the excessive ocular elongation that results from hyperopic defocus was increased, whereas myopic defocus failed to significantly decrease ocular elongation in RGE eyes. Brief daily periods of unrestricted vision interrupting FD prevented ocular elongation in RGE chicks in a manner similar to that seen in WT chicks. Glucagonergic amacrine cells differentially expressed the immediate early gene Egr1 in response to growth-guiding stimuli in RGE retinas, but the defocus-dependent up-regulation of Egr1 was lesser in RGE retinas compared to that of WT retinas. We conclude that high visual acuity, and the retinal signaling mediated by Gβ3, is not required for emmetropization and the excessive ocular elongation caused by FD and hyperopic defocus. However, the loss of acuity and Gβ3 from RGE retinas causes enhanced responses to hyperopic defocus and diminished responses to myopic defocus. PMID:22824538

  19. Corneal toxicity induced by vesicating agents and effective treatment options

    PubMed Central

    Goswami, Dinesh G.; Tewari-Singh, Neera; Agarwal, Rajesh

    2016-01-01

    The vesicating agents sulfur mustard (SM) and lewisite (LEW) are potent chemical warfare agents that primarily cause damage to the ocular, skin, and respiratory systems. However, ocular tissue is the most sensitive organ, and vesicant exposure results in a biphasic injury response, including photophobia, corneal lesions, corneal edema, ulceration, and neovascularization, and may cause loss of vision. There are several reports on ocular injury from exposure to SM, which has been frequently used in warfare. However, there are very few reports on ocular injury by LEW, which indicate that injury symptoms appear instantly after exposure and faster than SM. In spite of extensive research efforts, effective therapies for vesicant-induced ocular injuries, mainly to the most affected corneal tissue, are not available. Hence, we have established primary human corneal epithelial (HCE) cells and rabbit corneal organ culture models with the SM analog nitrogen mustard (NM), which have helped to test the efficacy of potential therapeutic agents. These agents will then be further evaluated against in vivo SM- and LEW-induced corneal injury models, which will assist in the development of potential broad-spectrum therapies against vesicant-induced ocular injuries. PMID:27327041

  20. Melimine-Coated Antimicrobial Contact Lenses Reduce Microbial Keratitis in an Animal Model.

    PubMed

    Dutta, Debarun; Vijay, Ajay K; Kumar, Naresh; Willcox, Mark D P

    2016-10-01

    To determine the ability of antimicrobial peptide melimine-coated contact lenses to reduce the incidence of microbial keratitis (MK) in a rabbit model of contact lens wear. In vitro antimicrobial activity of melimine-coated contact lenses was determined against Pseudomonas aeruginosa by viable count and a radiolabeled assay. The amount of lipopolysaccharide (LPS) associated with bacteria bound to melimine-coated and control lenses was determined. Ocular swabs from rabbit eyes were collected for assessment of ocular microflora. A rabbit model for MK was developed that used overnight wear of contact lenses colonized by P. aeruginosa in the absence of a corneal scratch. During lens wear, detailed ocular examinations were performed, and the incidence of MK was investigated. Bacteria associated with worn lenses and infected corneas were determined by viable plate count. Inhibition in viable and total P. aeruginosa adhesion by melimine-coated contact lenses was 3.1 log10 and 0.4 log10, respectively. After colonization, the amount of LPS on lenses was approximately the same with or without melimine. Gram-positive bacteria were found in all the ocular swabs followed by fungus (42%). Melimine-coated lens wear was protective and significantly (odds ratio 10.12; P = 0.012) reduced the incidence of P. aeruginosa-driven MK in the rabbit model. The antimicrobial lenses were associated with significantly (P < 0.001) lower ocular scores, indicating improved ocular signs compared with controls. This study showed that contaminated contact lenses can produce MK without corneal epithelial defect in an animal model. Melimine-coated contact lenses reduced the incidence of MK associated with P. aeruginosa in vivo. Development of MK requires viable bacteria adherent to contact lenses, and bacterial debris adherent at the lens surface did not cause keratitis.

  1. The effects of 3% diquafosol sodium application on the tear functions and ocular surface of the Cu,Zn-superoxide dismutase-1 (Sod1)-knockout mice.

    PubMed

    Kojima, Takashi; Dogru, Murat; Ibrahim, Osama M; Nagata, Taeko; Higa, Kazunari; Shimizu, Takahiko; Shirasawa, Takuji; Satake, Yoshiyuki; Shimazaki, Seika; Shimazaki, Jun; Tsubota, Kazuo

    2014-01-01

    To investigate the role of a water and mucin secretagogue (3% diquafosol sodium eye drops) on the tear function and conjunctival ocular surface changes in Sod1(-/-) in comparison to the wild-type (WT) mice. Fourteen eyes of 7 Sod1(-/-) male mice with C57BL/background and 14 eyes of 7 C57BL6 strain wild-type male mice were examined at 40 weeks in this study. All mice had application of 3% diquafosol ophthalmic solution six times a day for 2 weeks. Tear film stability and corneal epithelial damage was evaluated by fluorescein and Rose Bengal stainings. Anterior segment photography was performed before and after eye drop instillations. Aqueous tear quantity was measured with phenol red-impregnated cotton threads without anesthesia. Animals were sacrificed at 42 weeks after diquafosol treatment and the whole globe specimens were subjected to periodic acid Schiff staining. Goblet cell density was quantified by J Image software. Quantitative real-time PCR for conjunctival muc 5AC messenger RNA expression was also performed. Sod1(-/-) mice had significantly higher fluorescein staining scores compared to the WT mice before eye drop instillation. The mean tear film breakup time, Rose Bengal staining scores, and muc5 messenger RNA expression improved significantly with diquafosol treatment in both the WT and the knockout mice. The mean fluorescein staining score and aqueous tear quantity significantly improved in the Sod1(-/-) mice with treatment. A notable and consistent increase in goblet cells and decrease in inflammatory cell infiltrates could be confirmed in all specimens after 2 weeks of diquafosol eye drop application. Three percent diquafosol ophthalmic solution appears to be effective in the treatment of ocular surface disease in this age-related dry eye disease mouse model.

  2. Multiple etiologies of equine recurrent uveitis--A natural model for human autoimmune uveitis: A brief review.

    PubMed

    Witkowski, Lucjan; Cywinska, Anna; Paschalis-Trela, Katarzyna; Crisman, Mark; Kita, Jerzy

    2016-02-01

    Equine recurrent uveitis (ERU) has various etiologies, with Leptospira infection and genetic predisposition being the leading risk factors. Regardless of etiology, expression of ocular proteins associated with maintenance of the blood-ocular barrier is impaired in ERU. The recurring-remitting cycle of ERU repeatedly disrupts the blood-ocular barrier, allowing the previously immune-privileged ocular environment to become the site of a progressive local autoimmune pathology that ultimately results in tissue destruction and vision loss. The immune-mediated process involves humoral and cellular mechanisms. Intraocular antibodies either produced in the eye or that leak through the blood-ocular barrier, are often present at higher levels than in serum and react with antigens in ocular tissue of horses with ERU. Ocular infiltration of auto-aggressive lymphocytes occurs with each uveitis episode and is the most crucial contributor to inflammation and eye damage. Recurring uveitis episodes may be initiated when epitopes of an ocular antigen become visible to the immune system (intramolecular spreading) or another autoantigen (intermolecular spreading), resulting in a new inflammatory reaction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Suppression of IL-12p70 formation by IL-2 or following macrophage depletion causes T-cell autoreactivity leading to CNS demyelination in HSV-1-infected mice.

    PubMed

    Lee, Dhong Hyun; Zandian, Mandana; Kuo, Jane; Mott, Kevin R; Chen, Shuang; Arditi, Moshe; Ghiasi, Homayon

    2017-05-01

    We have established two mouse models of central nervous system (CNS) demyelination that differ from most other available models of multiple sclerosis (MS) in that they represent a mixture of viral and immune triggers. In the first model, ocular infection of different strains of mice with a recombinant HSV-1 that expresses murine IL-2 constitutively (HSV-IL-2) causes CNS demyelination. In the second model, depletion of macrophages causes CNS demyelination in mice that are ocularly infected with wild-type (WT) HSV-1. In the present study, we found that the demyelination in macrophage-intact mice infected with HSV-IL-2 was blocked by depletion of FoxP3-expressing cells, while concurrent depletion of macrophages restored demyelination. In contrast, demyelination was blocked in the macrophage-depleted mice infected with wild-type HSV-1 following depletion of FoxP3-expressing cells. In macrophage-depleted HSV-IL-2-infected mice, demyelination was associated with the activity of both CD4+ and CD8+ T cells, whereas in macrophage-depleted mice infected with WT HSV-1, demyelination was associated with CD4+ T cells. Macrophage depletion or infection with HSV-IL-2 caused an imbalance of T cells and TH1 responses as well as alterations in IL-12p35 and IL-12p40 but not other members of the IL-12 family or their receptors. Demyelination was blocked by adoptive transfer of macrophages that were infected with HSV-IL-12p70 or HSV-IL-12p40 but not by HSV-IL-12p35. These results indicate that suppression of IL-12p70 formation by IL-2 or following macrophage depletion causes T-cell autoreactivity leading to CNS demyelination in HSV-1-infected mice.

  4. Suppression of IL-12p70 formation by IL-2 or following macrophage depletion causes T-cell autoreactivity leading to CNS demyelination in HSV-1-infected mice

    PubMed Central

    Lee, Dhong Hyun; Zandian, Mandana; Mott, Kevin R.; Chen, Shuang

    2017-01-01

    We have established two mouse models of central nervous system (CNS) demyelination that differ from most other available models of multiple sclerosis (MS) in that they represent a mixture of viral and immune triggers. In the first model, ocular infection of different strains of mice with a recombinant HSV-1 that expresses murine IL-2 constitutively (HSV-IL-2) causes CNS demyelination. In the second model, depletion of macrophages causes CNS demyelination in mice that are ocularly infected with wild-type (WT) HSV-1. In the present study, we found that the demyelination in macrophage-intact mice infected with HSV-IL-2 was blocked by depletion of FoxP3-expressing cells, while concurrent depletion of macrophages restored demyelination. In contrast, demyelination was blocked in the macrophage-depleted mice infected with wild-type HSV-1 following depletion of FoxP3-expressing cells. In macrophage-depleted HSV-IL-2-infected mice, demyelination was associated with the activity of both CD4+ and CD8+ T cells, whereas in macrophage-depleted mice infected with WT HSV-1, demyelination was associated with CD4+ T cells. Macrophage depletion or infection with HSV-IL-2 caused an imbalance of T cells and TH1 responses as well as alterations in IL-12p35 and IL-12p40 but not other members of the IL-12 family or their receptors. Demyelination was blocked by adoptive transfer of macrophages that were infected with HSV-IL-12p70 or HSV-IL-12p40 but not by HSV-IL-12p35. These results indicate that suppression of IL-12p70 formation by IL-2 or following macrophage depletion causes T-cell autoreactivity leading to CNS demyelination in HSV-1-infected mice. PMID:28542613

  5. Iris phenotypes and pigment dispersion caused by genes influencing pigmentation

    PubMed Central

    Hawes, Norman L.; Trantow, Colleen M.; Chang, Bo; John, Simon W.M.

    2010-01-01

    Summary Spontaneous mutations altering mouse coat colors have been a classic resource for discovery of numerous molecular pathways. Although often overlooked, the mouse iris is also densely pigmented and easily observed, thus representing a similarly powerful opportunity for studying pigment cell biology. Here, we present an analysis of iris phenotypes among sixteen mouse strains with mutations influencing melanosomes. Many of these strains exhibit biologically and medically relevant phenotypes, including pigment dispersion, a common feature of several human ocular diseases. Pigment dispersion was identified in several strains with mutant alleles known to influence melanosomes, including beige, light, and vitiligo. Pigment dispersion was also detected in the recently arising spontaneous coat color variant, nm2798. We have identified the nm2798 mutation as a missense mutation in the Dct gene, an identical re-occurrence of the slaty light mutation. These results suggest that dysregulated events of melanosomes can be potent contributors to the pigment dispersion phenotype. Combined, these findings illustrate the utility of studying iris phenotypes as a means of discovering new pathways, and re-linking old ones, to processes of pigmented cells in health and disease. PMID:18715234

  6. Iris phenotypes and pigment dispersion caused by genes influencing pigmentation.

    PubMed

    Anderson, Michael G; Hawes, Norman L; Trantow, Colleen M; Chang, Bo; John, Simon W M

    2008-10-01

    Spontaneous mutations altering mouse coat colors have been a classic resource for discovery of numerous molecular pathways. Although often overlooked, the mouse iris is also densely pigmented and easily observed, thus representing a similarly powerful opportunity for studying pigment cell biology. Here, we present an analysis of iris phenotypes among 16 mouse strains with mutations influencing melanosomes. Many of these strains exhibit biologically and medically relevant phenotypes, including pigment dispersion, a common feature of several human ocular diseases. Pigment dispersion was identified in several strains with mutant alleles known to influence melanosomes, including beige, light, and vitiligo. Pigment dispersion was also detected in the recently arising spontaneous coat color variant, nm2798. We have identified the nm2798 mutation as a missense mutation in the Dct gene, an identical re-occurrence of the slaty light mutation. These results suggest that dysregulated events of melanosomes can be potent contributors to the pigment dispersion phenotype. Combined, these findings illustrate the utility of studying iris phenotypes as a means of discovering new pathways, and re-linking old ones, to processes of pigmented cells in health and disease.

  7. Assessment of ocular discomfort caused by 5 shampoos using the Slug Mucosal Irritation test.

    PubMed

    Petit, Jean-Yanique; Doré, Vanessa; Marignac, Geneviève; Perrot, Sébastien

    2017-04-01

    Assessment of ocular discomfort caused by veterinary care products is less legitimately regulated than that caused by human care products. The Slug Mucosal Irritation (SMI) assay was adapted to evaluate canine hygiene shampoos to predict ocular discomfort. Experiments were performed using four commercial canine shampoos, a baby care product, and two controls (ArtTear® and BAC1%). Groups of 3 slugs were tested with 5% dilution of the 7 test substances. The negative control (ArtTear®) was the best tolerated. The baby care product Mixa bébé as well as Douxo Entretien Démêlant and Phlox Shampooing Entretien were classified to cause mild ocular discomfort. Together with the positive control (BAC 1%), Shampooing Physiologique Virbac and Physiovet Shampooing were considered to cause severe ocular discomfort. Different intensities of ocular discomfort were measured for veterinary care products. The SMI model was considered as a reproducible and adaptable evaluation method for screening veterinary care products causing ocular discomfort. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Loss of Function of P2X7 Receptor Scavenger Activity in Aging Mice: A Novel Model for Investigating the Early Pathogenesis of Age-Related Macular Degeneration.

    PubMed

    Vessey, Kirstan A; Gu, Ben J; Jobling, Andrew I; Phipps, Joanna A; Greferath, Ursula; Tran, Mai X; Dixon, Michael A; Baird, Paul N; Guymer, Robyn H; Wiley, James S; Fletcher, Erica L

    2017-08-01

    Age-related macular degeneration (AMD) is a leading cause of irreversible, severe vision loss in Western countries. Recently, we identified a novel pathway involving P2X7 receptor scavenger function expressed on ocular immune cells as a risk factor for advanced AMD. In this study, we investigate the effect of loss of P2X7 receptor function on retinal structure and function during aging. P2X7-null and wild-type C57bl6J mice were investigated at 4, 12, and 18 months of age for macrophage phagocytosis activity, ocular histological changes, and retinal function. Phagocytosis activity of blood-borne macrophages decreased with age at 18 months in the wild-type mouse. Lack of P2X7 receptor function reduced phagocytosis at all ages compared to wild-type mice. At 12 months of age, P2X7-null mice had thickening of Bruchs membrane and retinal pigment epithelium dysfunction. By 18 months of age, P2X7-null mice displayed phenotypic characteristics consistent with early AMD, including Bruchs membrane thickening, retinal pigment epithelium cell loss, retinal functional deficits, and signs of subretinal inflammation. Our present study shows that loss of function of the P2X7 receptor in mice induces retinal changes representing characteristics of early AMD, providing a valuable model for investigating the role of scavenger receptor function and the immune system in the development of this age-related disease. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  9. The controlled-environment chamber: a new mouse model of dry eye.

    PubMed

    Barabino, Stefano; Shen, Linling; Chen, Lu; Rashid, Saadia; Rolando, Maurizio; Dana, M Reza

    2005-08-01

    To develop a controlled-environment chamber (CEC) for mice and verify the effects of a low-humidity setting on ocular surface signs in normal mice. Eight- to 12-week-old BALB/c mice were used in a controlled-environment chamber (CEC) where relative humidity (RH), temperature (T), and airflow (AF) are regulated and monitored. Mice were placed into the CEC and exposed to specific environmentally controlled conditions (RH = 18.5% +/- 5.1%, AF = 15 L/min, T = 21-23 degrees C) for 3, 7, 14, and 28 days. Control mice were kept in a normal environment (RH = 50%-80%, no AF, T = 21-23 degrees C) for the same duration. Aqueous tear production by means of the cotton thread test, corneal fluorescein staining (score, 0-15), and goblet cell density in the superior and inferior conjunctiva were measured by a masked observer. No statistically significant differences between the groups were found at baseline. Decreased tear secretion and increased corneal fluorescein staining were significantly present on day 3, 7, 14, and 28 in animals kept in the CEC. Goblet cell density was significantly decreased in the superior conjunctiva on day 7, and on day 3, 7, and 14 in the inferior conjunctiva in the CEC-kept mice compared with control animals. This study indicates that exposure of normal mice to a low-humidity environment in a CEC can lead to significant alterations in tear secretion, goblet cell density, and acquisition of dry eye-related ocular surface signs.

  10. TAM receptor knockout mice are susceptible to retinal autoimmune induction.

    PubMed

    Ye, Fei; Li, Qiutang; Ke, Yan; Lu, Qingjun; Han, Lixia; Kaplan, Henry J; Shao, Hui; Lu, Qingxian

    2011-06-16

    TAM receptors are expressed mainly by dendritic cells and macrophages in the immune system, and mice lacking TAM receptors develop systemic autoimmune diseases because of inefficient negative control of the cytokine signaling in those cells. This study aims to test the susceptibility of the TAM triple knockout (tko) mice to the retina-specific autoantigen to develop experimental autoimmune uveoretinitis (EAU). TAM tko mice that were or were not immunized with interphotoreceptor retinoid-binding protein (IRBP) peptides were evaluated for retinal infiltration of the macrophages and CD3(+) T cells by immunohistochemistry, spontaneous activation of CD4(+) T cells, and memory T cells by flow cytometry and proliferation of IRBP-specific CD4(+) T cells by [(3)H]thymidine incorporation assay. Ocular inflammation induced by IRBP peptide immunization and specific T cell transfer were observed clinically by funduscopy and confirmed by histology. Tko mice were found to have less naive, but more activated, memory T cells, among which were exhibited high sensitivity to ocular IRBP autoantigens. Immunization with a low dose of IRBP and adoptive transfer of small numbers of IRBP-specific T cells from immunized tko mice caused the infiltration of lymphocytes, including CD3(+) T cells, into the tko retina. Mice without TAM receptor spontaneously develop IRBP-specific CD4(+) T cells and are more susceptible to retinal autoantigen immunization. This TAM knockout mouse line provides an animal model with which to study the role of antigen-presenting cells in the development of T cell-mediated uveitis.

  11. Treatment of Inherited Eye Defects by Systemic Hematopoietic Stem Cell Transplantation.

    PubMed

    Rocca, Celine J; Kreymerman, Alexander; Ur, Sarah N; Frizzi, Katie E; Naphade, Swati; Lau, Athena; Tran, Tammy; Calcutt, Nigel A; Goldberg, Jeffrey L; Cherqui, Stephanie

    2015-11-01

    Cystinosis is caused by a deficiency in the lysosomal cystine transporter, cystinosin (CTNS gene), resulting in cystine crystal accumulation in tissues. In eyes, crystals accumulate in the cornea causing photophobia and eventually blindness. Hematopoietic stem progenitor cells (HSPCs) rescue the kidney in a mouse model of cystinosis. We investigated the potential for HSPC transplantation to treat corneal defects in cystinosis. We isolated HSPCs from transgenic DsRed mice and systemically transplanted irradiated Ctns-/- mice. A year posttransplantation, we investigated the fate and function of HSPCs by in vivo confocal and fluorescence microscopy (IVCM), quantitative RT-PCR (RT-qPCR), mass spectrometry, histology, and by measuring the IOP. To determine the mechanism by which HSPCs may rescue disease cells, we transplanted Ctns-/- mice with Ctns-/- DsRed HSPCs virally transduced to express functional CTNS-eGFP fusion protein. We found that a single systemic transplantation of wild-type HSPCs prevented ocular pathology in the Ctns-/- mice. Engraftment-derived HSPCs were detected within the cornea, and also in the sclera, ciliary body, retina, choroid, and lens. Transplantation of HSPC led to substantial decreases in corneal cystine crystals, restoration of normal corneal thickness, and lowered IOP in mice with high levels of donor-derived cell engraftment. Finally, we found that HSPC-derived progeny differentiated into macrophages, which displayed tunneling nanotubes capable of transferring cystinosin-bearing lysosomes to diseased cells. To our knowledge, this is the first demonstration that HSPCs can rescue hereditary corneal defects, and supports a new potential therapeutic strategy for treating ocular pathologies.

  12. Ontogeny of mouse vestibulo-ocular reflex following genetic or environmental alteration of gravity sensing.

    PubMed

    Beraneck, Mathieu; Bojados, Mickael; Le Séac'h, Anne; Jamon, Marc; Vidal, Pierre-Paul

    2012-01-01

    The vestibular organs consist of complementary sensors: the semicircular canals detect rotations while the otoliths detect linear accelerations, including the constant pull of gravity. Several fundamental questions remain on how the vestibular system would develop and/or adapt to prolonged changes in gravity such as during long-term space journey. How do vestibular reflexes develop if the appropriate assembly of otoliths and semi-circular canals is perturbed? The aim of present work was to evaluate the role of gravity sensing during ontogeny of the vestibular system. In otoconia-deficient mice (ied), gravity cannot be sensed and therefore maculo-ocular reflexes (MOR) were absent. While canals-related reflexes were present, the ied deficit also led to the abnormal spatial tuning of the horizontal angular canal-related VOR. To identify putative otolith-related critical periods, normal C57Bl/6J mice were subjected to 2G hypergravity by chronic centrifugation during different periods of development or adulthood (Adult-HG) and compared to non-centrifuged (control) C57Bl/6J mice. Mice exposed to hypergravity during development had completely normal vestibulo-ocular reflexes 6 months after end of centrifugation. Adult-HG mice all displayed major abnormalities in maculo-ocular reflexe one month after return to normal gravity. During the next 5 months, adaptation to normal gravity occurred in half of the individuals. In summary, genetic suppression of gravity sensing indicated that otolith-related signals might be necessary to ensure proper functioning of canal-related vestibular reflexes. On the other hand, exposure to hypergravity during development was not sufficient to modify durably motor behaviour. Hence, 2G centrifugation during development revealed no otolith-specific critical period.

  13. Ontogeny of Mouse Vestibulo-Ocular Reflex Following Genetic or Environmental Alteration of Gravity Sensing

    PubMed Central

    Beraneck, Mathieu; Bojados, Mickael; Le Séac’h, Anne; Jamon, Marc; Vidal, Pierre-Paul

    2012-01-01

    The vestibular organs consist of complementary sensors: the semicircular canals detect rotations while the otoliths detect linear accelerations, including the constant pull of gravity. Several fundamental questions remain on how the vestibular system would develop and/or adapt to prolonged changes in gravity such as during long-term space journey. How do vestibular reflexes develop if the appropriate assembly of otoliths and semi-circular canals is perturbed? The aim of present work was to evaluate the role of gravity sensing during ontogeny of the vestibular system. In otoconia-deficient mice (ied), gravity cannot be sensed and therefore maculo-ocular reflexes (MOR) were absent. While canals-related reflexes were present, the ied deficit also led to the abnormal spatial tuning of the horizontal angular canal-related VOR. To identify putative otolith-related critical periods, normal C57Bl/6J mice were subjected to 2G hypergravity by chronic centrifugation during different periods of development or adulthood (Adult-HG) and compared to non-centrifuged (control) C57Bl/6J mice. Mice exposed to hypergravity during development had completely normal vestibulo-ocular reflexes 6 months after end of centrifugation. Adult-HG mice all displayed major abnormalities in maculo-ocular reflexe one month after return to normal gravity. During the next 5 months, adaptation to normal gravity occurred in half of the individuals. In summary, genetic suppression of gravity sensing indicated that otolith-related signals might be necessary to ensure proper functioning of canal-related vestibular reflexes. On the other hand, exposure to hypergravity during development was not sufficient to modify durably motor behaviour. Hence, 2G centrifugation during development revealed no otolith-specific critical period. PMID:22808156

  14. Influenza Virus Respiratory Infection and Transmission Following Ocular Inoculation in Ferrets

    PubMed Central

    Belser, Jessica A.; Gustin, Kortney M.; Maines, Taronna R.; Pantin-Jackwood, Mary J.; Katz, Jacqueline M.; Tumpey, Terrence M.

    2012-01-01

    While influenza viruses are a common respiratory pathogen, sporadic reports of conjunctivitis following human infection demonstrates the ability of this virus to cause disease outside of the respiratory tract. The ocular surface represents both a potential site of virus replication and a portal of entry for establishment of a respiratory infection. However, the properties which govern ocular tropism of influenza viruses, the mechanisms of virus spread from ocular to respiratory tissue, and the potential differences in respiratory disease initiated from different exposure routes are poorly understood. Here, we established a ferret model of ocular inoculation to explore the development of virus pathogenicity and transmissibility following influenza virus exposure by the ocular route. We found that multiple subtypes of human and avian influenza viruses mounted a productive virus infection in the upper respiratory tract of ferrets following ocular inoculation, and were additionally detected in ocular tissue during the acute phase of infection. H5N1 viruses maintained their ability for systemic spread and lethal infection following inoculation by the ocular route. Replication-independent deposition of virus inoculum from ocular to respiratory tissue was limited to the nares and upper trachea, unlike traditional intranasal inoculation which results in virus deposition in both upper and lower respiratory tract tissues. Despite high titers of replicating transmissible seasonal viruses in the upper respiratory tract of ferrets inoculated by the ocular route, virus transmissibility to naïve contacts by respiratory droplets was reduced following ocular inoculation. These data improve our understanding of the mechanisms of virus spread following ocular exposure and highlight differences in the establishment of respiratory disease and virus transmissibility following use of different inoculation volumes and routes. PMID:22396651

  15. Understanding the Function of Genes Involved in Inherited Retinal Degeneration-Insights into the Pathogenesis and Function of C8ORF37

    NASA Astrophysics Data System (ADS)

    Sharif, Ali Sakawa

    Inherited retinal degenerative diseases (IRD) are a group of disorders that lead to progressive deterioration of mainly the photoreceptors. Retinitis pigmentosa (RP) and cone-rod dystrophy (CRD) are two forms of IRDs. RP is the most common form of IRD and is due to rod photoreceptor degeneration followed by cone photoreceptor loss. CRD, on the other hand, is characterized by the loss of cones or the concurrent degeneration of both cones and rods. Both RP and CRD are presently incurable. More than 200 genes have been identified to cause IRDs and the functions of many of these genes remain unclear. Mutations in a novel gene, C8ORF37, were identified to cause recessive, severe, and early-onset RP and CRD. I, therefore, pioneered in characterizing the role of C8ORF37 in the retina. This dissertation is comprised of four chapters that is organized as follows: (1) summary of an ocular disorder (2) a genetic model of a retinal disorder (3) biochemical/proteomic analysis of C8ORF37 (4) potential clinical applications. A summary of ocular disorders is discussed in Chapter 1, with an emphasis on CRD. Chapter 2 focuses on the generation and characterization of C8orf37 mutant mouse models that recapitulate the retinal pathologies observed in human patients. In C8orf37 knockout retinas, the outer segment (OS) was nonuniform, swollen, and wider in width when compared to the controls. Moreover, many OS membrane proteins were reduced in the retina of C8orf37 knockout, including CNGB1 and RDS, proteins essential for OS disc morphogenesis and alignment. Our findings shed new light on the pathogenesis underlying retinal dysfunction and degeneration in C8ORF37-deficient patients. To determine the function of a novel protein, a powerful approach is by identifying its binding partners. In Chapter 3, I discuss GST pull-down using bovine retinal lysates, yeast-two-hybrid, and immunoprecipitation with mouse retinal lysate in order to identify C8ORF37-interacting proteins. Our pull-downs identified KTN1, RAB28, UCHL1, and PSMD14 suggesting that C8ORF37 may have a role in protein homeostasis. Chapter 4 concludes and discusses the impact of generating and characterizing C8orf37 animal models for future studies in understanding photoreceptor function and in the development of therapeutics against retinal degeneration.

  16. Topical administration of interleukin-1 receptor antagonist as a therapy for aqueous-deficient dry eye in autoimmune disease.

    PubMed

    Vijmasi, Trinka; Chen, Feeling Y T; Chen, Ying Ting; Gallup, Marianne; McNamara, Nancy

    2013-01-01

    Dry eye is commonly associated with autoimmune diseases such as Sjögren's syndrome (SS), in which exocrinopathy of the lacrimal gland leads to aqueous tear deficiency and keratoconjunctivitis sicca (KCS). KCS is among the most common and debilitating clinical manifestations of SS that is often recalcitrant to therapy. We established mice deficient in the autoimmune regulator (Aire) gene as a model for autoimmune-mediated aqueous-deficient dry eye. In Aire-deficient mice, CD4+ T cells represent the main effector cells and local signaling via the interleukin-1 (IL-1/IL-1R1) pathway provides an essential link between autoreactive CD4+ T cells and ocular surface disease. In the current study, we evaluated the efficacy of topical administration of IL-1R1 antagonist (IL-1RA) anakinra in alleviating ocular surface damage resulting from aqueous-deficient dry eye in the setting of autoimmune disease. We compared the effect of commercially available IL-1R1 antagonist, anakinra (50 μg/mL concentration) to that of carboxymethylcellulose (CMC) vehicle control as a treatment for dry eye. Age-matched, Aire-deficient mice were treated three times daily with anakinra or CMC vehicle for 14 days using side-by-side (n = 4 mice/group) and paired-eye (n = 5) comparisons. We assessed (1) ocular surface damage with lissamine green staining; (2) tear secretion with wetting of phenol-red threads; (3) goblet cell (GC) mucin glycosylation with lectin histochemistry; (4) immune cell infiltration using anti-F4/80, CD11c, and CD4 T cell antibodies; and (5) gene expression of cornified envelope protein, Small Proline-Rich Protein-1B (SPRR1B) with real-time quantitative polymerase chain reaction. Aire-deficient mice treated with anakinra experienced significant improvements in ocular surface integrity and tear secretion. After 7 days of treatment, lissamine green staining decreased in eyes treated with anakinra compared to an equivalent increase in staining following treatment with CMC vehicle alone. By day 14, lissamine green staining in anakinra-treated eyes remained stable while eyes treated with CMC vehicle continued to worsen. Accordingly, there was a progressive decline in tear secretion in eyes treated with the CMC vehicle compared to a progressive increase in the anakinra-treated eyes over the 2-week treatment period. Aberrant acidification of GC mucins and pathological keratinization of the ocular surface were significantly reduced in anakinra-treated eyes. Significantly fewer Maackia amurensis leukoagglutinin positive goblet cells were noted in the conjunctiva of anakinra-treated eyes with a corresponding decrease in the expression of the pathological keratinization marker, SPRR1B. Finally, there was a downward trend in the infiltration of each immune cell type following anakinra treatment, but the cell counts compared to eyes treated with the vehicle alone were not significantly different. IL-1R antagonist, anakinra, demonstrates therapeutic benefits as a topical treatment for aqueous-deficient dry eye in a spontaneous mouse model of autoimmune KCS that mimics the clinical characteristics of SS. Targeting the IL-1/IL-1R1 signaling pathway through topical administration of IL-1RA may provide a novel option to improve ocular surface integrity, increase tear secretion, and restore the normal glycosylation pattern of GC mucins in patients with SS.

  17. Topical administration of interleukin-1 receptor antagonist as a therapy for aqueous-deficient dry eye in autoimmune disease

    PubMed Central

    Vijmasi, Trinka; Chen, Feeling YT; Chen, Ying Ting; Gallup, Marianne

    2013-01-01

    Purpose Dry eye is commonly associated with autoimmune diseases such as Sjögren’s syndrome (SS), in which exocrinopathy of the lacrimal gland leads to aqueous tear deficiency and keratoconjunctivitis sicca (KCS). KCS is among the most common and debilitating clinical manifestations of SS that is often recalcitrant to therapy. We established mice deficient in the autoimmune regulator (Aire) gene as a model for autoimmune-mediated aqueous-deficient dry eye. In Aire-deficient mice, CD4+ T cells represent the main effector cells and local signaling via the interleukin-1 (IL-1/IL-1R1) pathway provides an essential link between autoreactive CD4+ T cells and ocular surface disease. In the current study, we evaluated the efficacy of topical administration of IL-1R1 antagonist (IL-1RA) anakinra in alleviating ocular surface damage resulting from aqueous-deficient dry eye in the setting of autoimmune disease. Methods We compared the effect of commercially available IL-1R1 antagonist, anakinra (50 μg/mL concentration) to that of carboxymethylcellulose (CMC) vehicle control as a treatment for dry eye. Age-matched, Aire-deficient mice were treated three times daily with anakinra or CMC vehicle for 14 days using side-by-side (n=4 mice/group) and paired-eye (n=5) comparisons. We assessed (1) ocular surface damage with lissamine green staining; (2) tear secretion with wetting of phenol-red threads; (3) goblet cell (GC) mucin glycosylation with lectin histochemistry; (4) immune cell infiltration using anti-F4/80, CD11c, and CD4 T cell antibodies; and (5) gene expression of cornified envelope protein, Small Proline-Rich Protein-1B (SPRR1B) with real-time quantitative polymerase chain reaction. Results Aire-deficient mice treated with anakinra experienced significant improvements in ocular surface integrity and tear secretion. After 7 days of treatment, lissamine green staining decreased in eyes treated with anakinra compared to an equivalent increase in staining following treatment with CMC vehicle alone. By day 14, lissamine green staining in anakinra-treated eyes remained stable while eyes treated with CMC vehicle continued to worsen. Accordingly, there was a progressive decline in tear secretion in eyes treated with the CMC vehicle compared to a progressive increase in the anakinra-treated eyes over the 2-week treatment period. Aberrant acidification of GC mucins and pathological keratinization of the ocular surface were significantly reduced in anakinra-treated eyes. Significantly fewer Maackia amurensis leukoagglutinin positive goblet cells were noted in the conjunctiva of anakinra-treated eyes with a corresponding decrease in the expression of the pathological keratinization marker, SPRR1B. Finally, there was a downward trend in the infiltration of each immune cell type following anakinra treatment, but the cell counts compared to eyes treated with the vehicle alone were not significantly different. Conclusions IL-1R antagonist, anakinra, demonstrates therapeutic benefits as a topical treatment for aqueous-deficient dry eye in a spontaneous mouse model of autoimmune KCS that mimics the clinical characteristics of SS. Targeting the IL-1/IL-1R1 signaling pathway through topical administration of IL-1RA may provide a novel option to improve ocular surface integrity, increase tear secretion, and restore the normal glycosylation pattern of GC mucins in patients with SS. PMID:24068863

  18. The mucosal surfaces of both eyes are immunologically linked by a neurogenic inflammatory reflex involving TRPV1 and substance P.

    PubMed

    Guzmán, Mauricio; Miglio, Maximiliano S; Zgajnar, Nadia R; Colado, Ana; Almejún, María B; Keitelman, Irene A; Sabbione, Florencia; Fuentes, Federico; Trevani, Analía S; Giordano, Mirta N; Galletti, Jeremías G

    2018-06-04

    Immunological interdependence between the two eyes has been reported for the cornea and the retina but not for the ocular mucosal surface. Intriguingly, patients frequently report ocular surface-related symptoms in the other eye after unilateral ocular surgery. Here we show how unilateral eye injuries in mice affect the mucosal immune response of the opposite ocular surface. We report that, despite the lack of lymphatic cross-drainage, a neurogenic inflammatory reflex in the contralateral conjunctiva is sufficient to increase, first, epithelial nuclear factor kappa B signaling, then, dendritic cell maturation, and finally, expansion of effector, instead of regulatory, T cells in the draining lymph node, leading to disrupted ocular mucosal tolerance. We also show that damage to ocular surface nerves is required. Using pharmacological inhibitors and agonists, we identified transient receptor potential vanilloid 1 (TRPV1) channel as the receptor sensing tissue damage in the injured eye and substance P released in the opposite ocular surface as the effector of the sympathetic response. Finally, blocking either step prevented subsequent ocular allergic reactions in the opposite eye in a unilateral corneal alkali burn model. This study demonstrates that both ocular surfaces are immunologically linked and suggests potential therapeutic targets for intervention.

  19. Characterization of Demodex musculi Infestation, Associated Comorbidities, and Topographic Distribution in a Mouse Strain with Defective Adaptive Immunity

    PubMed Central

    Nashat, Melissa A; Luchins, Kerith R; Lepherd, Michelle L; Riedel, Elyn R; Izdebska, Joanna N; Lipman, Neil S

    2017-01-01

    A colony of B6.Cg-Rag1tm1Mom Tyrp1B-w Tg(Tcra,Tcrb)9Rest (TRP1/TCR) mice presented with ocular lesions and ulcerative dermatitis. Histopathology, skin scrapes, and fur plucks confirmed the presence of Demodex spp. in all clinically affected and subclinical TRP1/TCR mice examined (n = 48). Pasteurella pneumotropica and Corynebacterium bovis, both opportunistic pathogens, were cultured from the ocular lesions and skin, respectively, and bacteria were observed microscopically in abscesses at various anatomic locations (including retroorbital sites, tympanic bullae, lymph nodes, and reproductive organs) as well as the affected epidermis. The mites were identified as Demodex musculi using the skin fragment digestion technique. Topographic analysis of the skin revealed mites in almost all areas of densely haired skin, indicating a generalized demodecosis. The percentage of infested follicles in 8- to 10-wk-old mice ranged from 0% to 21%, and the number of mites per millimeter of skin ranged from 0 to 3.7. The head, interscapular region, and middorsum had the highest proportions of infested follicles, ranging from 2.3% to 21.1% (median, 4.9%), 2.0% to 16.6% (8.1%), and 0% to 17% (7.6%), respectively. The pinnae and tail skin had few or no mites, with the proportion of follicles infested ranging from 0% to 3.3% (0%) and 0% to 1.4% (0%), respectively. The number of mites per millimeter was strongly correlated with the percentage of infested follicles. After administration of amoxicillin-impregnated feed (0.12%), suppurative infections were eliminated, and the incidence of ulcerative dermatitis was dramatically reduced. We hypothesize that the Rag1-null component of the genotype makes TRP1/TCR mice susceptible to various opportunistic infestations and infections, including Demodex mites, P. pneumotropica, and C. bovis. Therefore, Rag1-null mice may serve as a useful model to study human and canine demodecosis. D. musculi should be ruled out as a contributing factor in immunocompromised mouse strains with dermatologic manifestations. PMID:28830578

  20. Comparing the Effects of Particulate Matter on the Ocular Surfaces of Normal Eyes and a Dry Eye Rat Model.

    PubMed

    Han, Ji Yun; Kang, Boram; Eom, Youngsub; Kim, Hyo Myung; Song, Jong Suk

    2017-05-01

    To compare the effect of exposure to particulate matter on the ocular surface of normal and experimental dry eye (EDE) rat models. Titanium dioxide (TiO2) nanoparticles were used as the particulate matter. Rats were divided into 4 groups: normal control group, TiO2 challenge group of the normal model, EDE control group, and TiO2 challenge group of the EDE model. After 24 hours, corneal clarity was compared and tear samples were collected for quantification of lactate dehydrogenase, MUC5AC, and tumor necrosis factor-α concentrations. The periorbital tissues were used to evaluate the inflammatory cell infiltration and detect apoptotic cells. The corneal clarity score was greater in the EDE model than in the normal model. The score increased after TiO2 challenge in each group compared with each control group (normal control vs. TiO2 challenge group, 0.0 ± 0.0 vs. 0.8 ± 0.6, P = 0.024; EDE control vs. TiO2 challenge group, 2.2 ± 0.6 vs. 3.8 ± 0.4, P = 0.026). The tear lactate dehydrogenase level and inflammatory cell infiltration on the ocular surface were higher in the EDE model than in the normal model. These measurements increased significantly in both normal and EDE models after TiO2 challenge. The tumor necrosis factor-α levels and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling-positive cells were also higher in the EDE model than in the normal model. TiO2 nanoparticle exposure on the ocular surface had a more prominent effect in the EDE model than it did in the normal model. The ocular surface of dry eyes seems to be more vulnerable to fine dust of air pollution than that of normal eyes.

  1. A Herpes Simplex Virus Type 1 Human Asymptomatic CD8+ T-Cell Epitopes-Based Vaccine Protects Against Ocular Herpes in a “Humanized” HLA Transgenic Rabbit Model

    PubMed Central

    Srivastava, Ruchi; Khan, Arif A.; Huang, Jiawei; Nesburn, Anthony B.; Wechsler, Steven L.; BenMohamed, Lbachir

    2015-01-01

    Purpose. A clinical vaccine that protects from ocular herpes simplex virus type 1 (HSV-1) infection and disease still is lacking. In the present study, preclinical vaccine trials of nine asymptomatic (ASYMP) peptides, selected from HSV-1 glycoproteins B (gB), and tegument proteins VP11/12 and VP13/14, were performed in the “humanized” HLA–transgenic rabbit (HLA-Tg rabbit) model of ocular herpes. We recently reported that these peptides are highly recognized by CD8+ T cells from “naturally” protected HSV-1–seropositive healthy ASYMP individuals (who have never had clinical herpes disease). Methods. Mixtures of three ASYMP CD8+ T-cell peptides derived from either HSV-1 gB, VP11/12, or VP13/14 were delivered subcutaneously to different groups of HLA-Tg rabbits (n = 10) in incomplete Freund's adjuvant, twice at 15-day intervals. The frequency and function of HSV-1 epitope-specific CD8+ T cells induced by these peptides and their protective efficacy, in terms of survival, virus replication in the eye, and ocular herpetic disease were assessed after an ocular challenge with HSV-1 (strain McKrae). Results. All mixtures elicited strong and polyfunctional IFN-γ– and TNF-α–producing CD107+CD8+ cytotoxic T cells, associated with a significant reduction in death, ocular herpes infection, and disease (P < 0.015). Conclusions. The results of this preclinical trial support the screening strategy used to select the HSV-1 ASYMP CD8+ T-cell epitopes, emphasize their valuable immunogenic and protective efficacy against ocular herpes, and provide a prototype vaccine formulation that may be highly efficacious for preventing ocular herpes in humans. PMID:26098469

  2. Comparisons of modeled height predictions to ocular height estimates

    Treesearch

    W.A. Bechtold; S.J. Zarnoch; W.G. Burkman

    1998-01-01

    Equations used by USDA Forest Service Forest Inventory and Analysis projects to predict individual tree heights on the basis of species and d.b.h. were improved by the addition of mean overstory height. However, ocular estimates of total height by field crews were more accurate than the statistically improved models, especially for hardwood species. Height predictions...

  3. Ocular Effects of Exposure to 40, 75, and 95 GHz Millimeter Waves

    NASA Astrophysics Data System (ADS)

    Kojima, Masami; Suzuki, Yukihisa; Sasaki, Kensuke; Taki, Masao; Wake, Kanako; Watanabe, Soichi; Mizuno, Maya; Tasaki, Takafumi; Sasaki, Hiroshi

    2018-05-01

    The objective of this study was to develop a model of ocular damage induced by 40, 75, and 95 GHz continuous millimeter waves (MMW), thereby allowing assessment of the clinical course of ocular damage resulting from exposure to thermal damage-inducing MMW. This study also examined the dependence of ocular damage on incident power density. Pigmented rabbit eyes were exposed to 40, 75, and 95 GHz MMW from a spot-focus-type lens antenna. Slight ocular damage was observed 10 min after MMW exposure, including reduced cornea thickness and reduced transparency. Diffuse fluorescein staining around the pupillary area indicated corneal epithelial injury. Slit-lamp examination 1 day after MMW exposure revealed a round area of opacity, accompanied by fluorescence staining, in the central pupillary zone. Corneal edema, indicative of corneal stromal damage, peaked 1 day after MMW exposure, with thickness gradually subsiding to normal. Three days after exposure, ocular conditions had almost normalized, though corneal thickness was slightly greater than that before exposure. The 50% probability of ocular damage (DD50) was in the order 40 > 95 ≈ 75 GHz at the same incident power densities.

  4. Non-invasive measurement of choroidal volume change and ocular rigidity through automated segmentation of high-speed OCT imaging

    PubMed Central

    Beaton, L.; Mazzaferri, J.; Lalonde, F.; Hidalgo-Aguirre, M.; Descovich, D.; Lesk, M. R.; Costantino, S.

    2015-01-01

    We have developed a novel optical approach to determine pulsatile ocular volume changes using automated segmentation of the choroid, which, together with Dynamic Contour Tonometry (DCT) measurements of intraocular pressure (IOP), allows estimation of the ocular rigidity (OR) coefficient. Spectral Domain Optical Coherence Tomography (OCT) videos were acquired with Enhanced Depth Imaging (EDI) at 7Hz during ~50 seconds at the fundus. A novel segmentation algorithm based on graph search with an edge-probability weighting scheme was developed to measure choroidal thickness (CT) at each frame. Global ocular volume fluctuations were derived from frame-to-frame CT variations using an approximate eye model. Immediately after imaging, IOP and ocular pulse amplitude (OPA) were measured using DCT. OR was calculated from these peak pressure and volume changes. Our automated segmentation algorithm provides the first non-invasive method for determining ocular volume change due to pulsatile choroidal filling, and the estimation of the OR constant. Future applications of this method offer an important avenue to understanding the biomechanical basis of ocular pathophysiology. PMID:26137373

  5. Association between Exposure to Smartphones and Ocular Health in Adolescents.

    PubMed

    Kim, Joowon; Hwang, Yunji; Kang, Seungheon; Kim, Minhye; Kim, Tae-Shin; Kim, Jay; Seo, Jeongmin; Ahn, Hyojeong; Yoon, Sungjoon; Yun, Jun Pil; Lee, Yae Lim; Ham, Hyunsoo; Yu, Hyeong Gon; Park, Sue K

    2016-08-01

    Smartphone use has dramatically increased in recent years. Smartphones may have adverse health effects, particularly on the eyes, because users stare at the screen for a much longer time than they do with ordinary mobile phones. The objective of this study was to elucidate the relationship between smartphone use and ocular symptoms among adolescents. Information on smartphone use and ocular symptoms (blurring, redness, visual disturbance, secretion, inflammation, lacrimation and dryness) related to eye fatigue and strain from 715 adolescent subjects from three cities in Korea was obtained using a structured questionnaire. Ocular health was scored using number of ocular symptoms. Odds ratios (ORs), 95% confidence intervals (95% CIs) and p-values for ocular symptoms were calculated with binomial and multinomial logistic regression models. Higher prevalence rates for ocular symptoms were observed in groups with greater exposure to smartphones (p < 0.05). Longer daily smartphone use was associated with a higher likelihood of having multiple ocular symptoms (5-7 symptoms out of 7 symptoms; p = 0.005). Excessive/intermittent use (>2 hours daily and ≤2 hours continuously) and excessive/persistent use (>2 hours daily and >2 hours continuously) compared to shorter use (<2 hours daily) were associated with multiple ocular symptoms (OR 2.18, 95% CI 1.09-4.39; OR 2.26, 95% CI 1.11-4.57, respectively). A higher lifetime exposure to smartphones was associated with a higher likelihood of having multiple ocular symptoms (OR 3.05, 95% CI 1.51-6.19; p = 0.001). Increasing exposure to smartphones can have a negative impact on ocular health in adolescents.

  6. Determinants of ocular deviation in esotropic subjects under general anesthesia.

    PubMed

    Daien, Vincent; Turpin, Chloé; Lignereux, François; Belghobsi, Riadh; Le Meur, Guylene; Lebranchu, Pierre; Pechereau, Alain

    2013-01-01

    The authors attempted to identify the determinants of ocular deviation in a population of patients with esotropia under general anesthesia. Forty-one patients with esotropia were included. Horizontal ocular deviation was evaluated by the photographic Hirschberg test both in the awakened state and under general anesthesia before surgery. Changes in ocular deviation were measured and a multivariate analysis was used to assess its clinical determinants. The mean age (± standard deviation [SD]) of study subjects was 13 ± 11 years and 51% were females. The mean spherical equivalent refraction of the right eye was 2.44 ± 2.50 diopters (D), with no significant difference between eyes (P = .26). The mean ocular deviation changed significantly, from 33.5 ± 12.5 prism diopters (PD) at preoperative examination to 8.8 ± 11.4 PD under general anesthesia (P = .0001). The changes in ocular deviation positively correlated with the pre-operative ocular deviation (correlation coefficient r = 0.59, P = .0001) and negatively correlated with patient age (correlation coefficient r = -0.53, P = .0001). These two determinants remained significant after multivariate adjustment of the following variables: preoperative ocular deviation; age; gender; spherical equivalent refraction; and number of previous strabismus surgeries (model r(2) = 0.49, P = .0001). The ocular position under general anesthesia was reported as a key factor in the surgical treatment of subjects with esotropia; therefore, its clinical determinants were assessed. The authors observed that preoperative ocular deviation and patient age were the main factors that influenced the ocular position under general anesthesia. Copyright 2013, SLACK Incorporated.

  7. Neurodegeneration and Vision Loss after Mild Blunt Trauma in the C57Bl/6 and DBA/2J Mouse

    PubMed Central

    Bricker-Anthony, Courtney; Rex, Tonia S.

    2015-01-01

    Damage to the eye from blast exposure can occur as a result of the overpressure air-wave (primary injury), flying debris (secondary injury), blunt force trauma (tertiary injury), and/or chemical/thermal burns (quaternary injury). In this study, we investigated damage in the contralateral eye after a blast directed at the ipsilateral eye in the C57Bl/6J and DBA/2J mouse. Assessments of ocular health (gross pathology, electroretinogram recordings, optokinetic tracking, optical coherence tomography and histology) were performed at 3, 7, 14 and 28 days post-trauma. Olfactory epithelium and optic nerves were also examined. Anterior pathologies were more common in the DBA/2J than in the C57Bl/6 and could be prevented with non-medicated viscous eye drops. Visual acuity decreased over time in both strains, but was more rapid and severe in the DBA/2J. Retinal cell death was present in approximately 10% of the retina at 7 and 28 days post-blast in both strains. Approximately 60% of the cell death occurred in photoreceptors. Increased oxidative stress and microglial reactivity was detected in both strains, beginning at 3 days post-injury. However, there was no sign of injury to the olfactory epithelium or optic nerve in either strain. Although our model directs an overpressure air-wave at the left eye in a restrained and otherwise protected mouse, retinal damage was detected in the contralateral eye. The lack of damage to the olfactory epithelium and optic nerve, as well as the different timing of cell death as compared to the blast-exposed eye, suggests that the injuries were due to physical contact between the contralateral eye and the housing chamber of the blast device and not propagation of the blast wave through the head. Thus we describe a model of mild blunt eye trauma. PMID:26148200

  8. Mouse Experimental Myopia Has Features of Primate Myopia

    PubMed Central

    Tkatchenko, Tatiana V.; Shen, Yimin

    2010-01-01

    Purpose. Several recent studies have suggested that experimental myopia can be induced in mice. However, it is not clear what role the photopic visual input plays in this process and whether mouse myopia is similar to human myopia. The purpose of this study was to carry out an in vivo high-resolution analysis of changes in ocular components and refractive state of the eye upon induction of experimental myopia in mice. Methods. A high-resolution small animal MRI system and a high-resolution automated eccentric infrared photorefractor were used to analyze changes of the refractive state and ocular components in C57BL/6J mice associated with experimental myopia induced by diffusers and −25 D lenses under photopic conditions. Results. The authors found that both diffusers and −25 D lenses induce myopia in C57BL/6J mice under photopic conditions (continuous light, 200 ± 15 lux). The extent of myopic shift induced by −25 D lenses was greater than the shift induced by diffusers (−15.2 ± 0.7 D, lenses; −12.0 ± 1.4 D, diffusers). Myopia in mice is attributed to an increase in size of the postequatorial segment of the eye. Experimental myopia in mice can be induced only during the susceptible period in postnatal development, which ends around postnatal day 67. Conclusions. Both diffusers and spectacle lenses induce myopia in mice under photopic conditions, during the susceptible period in postnatal development. Myopia in mice is associated with elongation of the vitreous chamber of the eye, as in humans and nonhuman primates. PMID:19875658

  9. Pattern of Expression of p53, Its Family Members, and Regulators during Early Ocular Development and in the Post-Mitotic Retina

    PubMed Central

    Vuong, Linda; Brobst, Daniel E.; Saadi, Anisse; Ivanovic, Ivana; Al-Ubaidi, Muayyad R.

    2012-01-01

    Purpose. Because of its role in cell cycle regulation and apoptosis, p53 may be involved in maintaining the post-mitotic state of the adult eye. To shed light on the role of p53 in retinal development and maintenance, this study investigated the pattern of expression of p53, its family members, and its regulators during the development of the mouse eye. Methods. Relative quantitative real-time PCR (qRT-PCR) was used to determine the steady-state levels of target transcripts in RNA extracted from wild-type mouse whole eyes or retinas between embryonic day (E) 15 and post-natal day (P) 30. Immunoblotting was used to compare the steady-state levels of the protein to that of the transcript. Results. Transcript and protein levels for p53 in the eye were highest at E17 and E18, respectively. However, both p53 transcript and protein levels dropped precipitously thereafter, and no protein was detected on immunoblots after P3. Expression patterns of p63, p73, Mdm2, Mdm4, and Yy1 did not follow that of p53. Immunohistochemistry analysis of the developing eye showed that both p53 and Mdm2 are abundantly expressed at E18 in all layers of the retinal neuroblast. Conclusions. Downregulation of p53 in the post-mitotic retina suggests that, although p53 may be involved in ocular and retinal development, it may play a minimal role in healthy adult retinal function. PMID:22714890

  10. Replacement of serum with ocular fluid for cryopreservation of immature testes.

    PubMed

    Pothana, Lavanya; Devi, Lalitha; Venna, Naresh Kumar; Pentakota, Niharika; Varma, Vivek Phani; Jose, Jedy; Goel, Sandeep

    2016-12-01

    Cryopreservation of immature testis is a feasible approach for germplasm preservation of male animals. Combinations of dimethyl sulfoxide (DMSO) and foetal bovine serum (FBS) are used for testis cryopreservation. However, an alternative to FBS is needed, because FBS is expensive. Buffalo ocular fluid (BuOF), a slaughter house by-product, could be an economical option. The objective of the present study was to assess whether BuOF can replace FBS for cryopreservation of immature mouse (Mus musculus), rat (Rattus norvegicus), and buffalo (Bubalus bubalis) testes. Results showed that rodent and buffalo testes frozen in DMSO (10% for rodents and 20% for buffalo) with 20% FBS or BuOF had similar numbers of viable and DNA-damaged cells (P > 0.05). The expression of cell proliferation- (PCNA) and apoptosis-specific proteins (Annexin V and BAX/BCL2 ratio) were also comparable in mouse and buffalo testes frozen in DMSO with FBS or BuOF (P > 0.05). Interestingly, rat testis frozen in DMSO with BuOF had lower expression of Annexin V protein than testis frozen in DMSO with FBS (P < 0.05). The percentage of meiotic germ cells (pachytene-stage spermatocytes) in xenografts from testis frozen either in DMSO with BuOF or FBS did not significantly differ in rats or buffalo (P > 0.05). These findings provide evidence that BuOF has potential to replace FBS for cryopreservation of immature rodent and buffalo testis. Further investigation is needed to explore whether BuOF can replace FBS for testis cryopreservation of other species. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Clinical Evaluation of a Royal Jelly Supplementation for the Restoration of Dry Eye: A Prospective Randomized Double Blind Placebo Controlled Study and an Experimental Mouse Model

    PubMed Central

    Inoue, Sachiko; Kawashima, Motoko; Hisamura, Ryuji; Imada, Toshihiro; Izuta, Yusuke; Nakamura, Shigeru; Ito, Masataka; Tsubota, Kazuo

    2017-01-01

    Background Dry eye is a multifactorial disease characterized by ocular discomfort and visual impairment. Lacrimal gland function has been shown to decrease with aging, a known potent risk factor for dry eye. We have previously found that orally administrated royal jelly (RJ) restored tear secretion in a rat model of dry eye. Methods and Findings We examined the effects of RJ oral administration on dry eye in this prospective, randomized, double-blind, placebo-controlled study. Forty-three Japanese patients aged 20–60 years with subjective dry eye symptoms were randomized to an RJ group (1200 mg/tablet, six tablets daily) or a placebo group for 8 weeks. Keratoconjunctival epithelial damage, tear film break-up time, tear secretion volume, meibum grade, biochemical data, and subjective dry eye symptoms based on a questionnaire were investigated at baseline, and at 4 and 8 weeks after intervention. Adverse events were reported via medical interviews. In the RJ group, tear volume significantly increased after intervention (p = 0.0009). In particular, patients with a baseline Schirmer value of ≤10 mm showed a significant increase compared with baseline volume (p = 0.0005) and volume in the placebo group (p = 0.0051). No adverse events were reported. We also investigated the effect of RJ (300 mg/kg per day) administration using a mouse model of dry eye. Orally repeated administration of RJ preserved tear secretion, potentially through direct activation of the secretory function of the lacrimal glands. Conclusion Our results suggest that RJ improves tear volume in patients with dry eye. Trial Registration Registered NO. the University Hospital Medical Information Network in Japan (UMIN000014446) PMID:28060936

  12. Clinical Evaluation of a Royal Jelly Supplementation for the Restoration of Dry Eye: A Prospective Randomized Double Blind Placebo Controlled Study and an Experimental Mouse Model.

    PubMed

    Inoue, Sachiko; Kawashima, Motoko; Hisamura, Ryuji; Imada, Toshihiro; Izuta, Yusuke; Nakamura, Shigeru; Ito, Masataka; Tsubota, Kazuo

    2017-01-01

    Dry eye is a multifactorial disease characterized by ocular discomfort and visual impairment. Lacrimal gland function has been shown to decrease with aging, a known potent risk factor for dry eye. We have previously found that orally administrated royal jelly (RJ) restored tear secretion in a rat model of dry eye. We examined the effects of RJ oral administration on dry eye in this prospective, randomized, double-blind, placebo-controlled study. Forty-three Japanese patients aged 20-60 years with subjective dry eye symptoms were randomized to an RJ group (1200 mg/tablet, six tablets daily) or a placebo group for 8 weeks. Keratoconjunctival epithelial damage, tear film break-up time, tear secretion volume, meibum grade, biochemical data, and subjective dry eye symptoms based on a questionnaire were investigated at baseline, and at 4 and 8 weeks after intervention. Adverse events were reported via medical interviews. In the RJ group, tear volume significantly increased after intervention (p = 0.0009). In particular, patients with a baseline Schirmer value of ≤10 mm showed a significant increase compared with baseline volume (p = 0.0005) and volume in the placebo group (p = 0.0051). No adverse events were reported. We also investigated the effect of RJ (300 mg/kg per day) administration using a mouse model of dry eye. Orally repeated administration of RJ preserved tear secretion, potentially through direct activation of the secretory function of the lacrimal glands. Our results suggest that RJ improves tear volume in patients with dry eye. Registered NO. the University Hospital Medical Information Network in Japan (UMIN000014446).

  13. Imaging Retinal Vascular Changes in the Mouse Model of Oxygen-Induced Retinopathy

    PubMed Central

    Furtado, João M.; Davies, Michael H.; Choi, Dongseok; Lauer, Andreas K.; Appukuttan, Binoy; Bailey, Steven T.; Rahman, Hassan T.; Payne, John F.; Stempel, Andrew J.; Mohs, Kathleen; Powers, Michael R.; Yeh, Steven; Smith, Justine R.

    2012-01-01

    Purpose Oxygen-induced retinopathy in the mouse is the standard experimental model of retinopathy of prematurity. Assessment of the pathology involves in vitro analysis of retinal vaso-obliteration and retinal neovascularization. The authors studied the clinical features of oxygen-induced retinopathy in vivo using topical endoscopy fundus imaging (TEFI), in comparison to standard investigations, and evaluated a system for grading these features. Methods Postnatal day (P)7 mice were exposed to 75% oxygen for five days to induce retinopathy or maintained in room air as controls. Retinal vascular competence was graded against standard photographs by three masked graders. Retinal photographs were obtained at predetermined ages using TEFI. Postmortem, retinal vaso-obliteration was measured in whole mounts with labeled vasculature, and retinal neovascularization was quantified in hematoxylin- and eosin-stained ocular cross sections. Results Fundus photography by TEFI was possible from P15, when retinal vascular incompetence, including dilatation and tortuosity, was significant in mice with oxygen-induced retinopathy in comparison to controls. Vascular incompetence peaked in severity at P17 and persisted through P25. Comparison with in vitro analyses indicated that vascular changes were most severe after retinal avascularity had begun to decrease in area, and coincident with the maximum of retinal neovascularization. A weighted Fleiss-Cohen kappa indicated good intra- and interobserver agreement for a 5-point grading system. Conclusions Topical endoscopy fundus imaging demonstrates retinal vascular incompetence in mice with oxygen-induced retinopathy. The technique complements standard postmortem analysis for following the course of the model. Translational Relevance Topical endoscopy fundus imaging has application in the evaluation of novel biologic drugs for retinopathy of prematurity. PMID:24049705

  14. The leaves of Diospyros kaki exert beneficial effects on a benzalkonium chloride-induced murine dry eye model.

    PubMed

    Kim, Kyung-A; Hyun, Lee Chung; Jung, Sang Hoon; Yang, Sung Jae

    2016-01-01

    In this study, the beneficial effects of the oral administration of ethanol extract of Diospyros kaki (EEDK) were tested on a mouse dry eye model induced by benzalkonium chloride (BAC). A solution of 0.2% BAC was administered topically to mouse eyes for 14 days, twice daily, to induce dry eye. Various concentrations of EEDK were administrated daily by oral gavage for 14 days after BAC treatment. Preservative-free eye drops were instilled in the positive-control group. The tear secretion volume (Schirmer's test), tear break-up time (BUT), and fluorescein score were measured on the ocular surface. BAC-induced corneal damage was tested with hematoxylin-eosin staining. Moreover, apoptotic cell death in the corneal epithelial layer was investigated with terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining. The protein expression level of interleukin-1alpha (IL-1α), IL-1β, IL-6, tumor necrosis factor- alpha (TNF-α), and monocyte chemotactic protein-1 (MCP-1) was determined with western blot analysis. Furthermore, squamous metaplasia in the corneal epithelial layer was detected with immunofluorescent staining for cytokeratine-10. The cellular proliferation in the cornea was examined with immunohistochemical staining for Ki-67. EEDK treatment resulted in prolonged BUT, decreased fluorescein score, increased tear volume, and smoother epithelial cells compared with BAC treatment alone in the cornea. Moreover, EEDK treatment inhibited the inflammatory response and corneal epithelial cell death in a BAC-induced murine dry eye model, and changes in squamous cells were inhibited. Proliferative activity in the corneal epithelium cells was improved with EEDK. EEDK could be a potential therapeutic agent in the clinical treatment of dry eye.

  15. Rapamycin Eye Drops Suppress Lacrimal Gland Inflammation In a Murine Model of Sjögren's Syndrome

    PubMed Central

    Shah, Mihir; Edman, Maria C.; Reddy Janga, Srikanth; Yarber, Frances; Meng, Zhen; Klinngam, Wannita; Bushman, Jonathan; Ma, Tao; Liu, Siyu; Louie, Stan; Mehta, Arjun; Ding, Chuanqing; MacKay, J. Andrew; Hamm-Alvarez, Sarah F.

    2017-01-01

    Purpose To evaluate the efficacy of topical rapamycin in treating autoimmune dacryoadenitis in a mouse model of Sjögren's syndrome. Methods We developed rapamycin in a poly(ethylene glycol)-distearoyl phosphatidylethanolamine (PEG-DSPE) micelle formulation to maintain solubility. Rapamycin or PEG-DSPE eye drops (vehicle) were administered in a well-established Sjögren's syndrome disease model, the male nonobese diabetic (NOD) mice, twice daily for 12 weeks starting at 8 weeks of age. Mouse tear fluid was collected and tear Cathepsin S, a putative tear biomarker for Sjögren's syndrome, was measured. Lacrimal glands were retrieved for histological evaluation, and quantitative real-time PCR of genes associated with Sjögren's syndrome pathogenesis. Tear secretion was measured using phenol red threads, and corneal fluorescein staining was used to assess corneal integrity. Results Lymphocytic infiltration of lacrimal glands from rapamycin-treated mice was significantly (P = 0.0001) reduced by 3.8-fold relative to vehicle-treated mice after 12 weeks of treatment. Rapamycin, but not vehicle, treatment increased tear secretion and decreased corneal fluorescein staining after 12 weeks. In rapamycin-treated mice, Cathepsin S activity was significantly reduced by 3.75-fold in tears (P < 0.0001) and 1.68-fold in lacrimal gland lysates (P = 0.003) relative to vehicle-treated mice. Rapamycin significantly altered the expression of several genes linked to Sjögren's syndrome pathogenesis, including major histocompatibility complex II, TNF-α, IFN-γ, and IL-12a, as well as Akt3, an effector of autophagy. Conclusions Our findings suggest that topical rapamycin reduces autoimmune-mediated lacrimal gland inflammation while improving ocular surface integrity and tear secretion, and thus has potential for treating Sjögren's syndrome–associated dry eye. PMID:28122086

  16. Heritability of refractive error and ocular biometrics: the Genes in Myopia (GEM) twin study.

    PubMed

    Dirani, Mohamed; Chamberlain, Matthew; Shekar, Sri N; Islam, Amirul F M; Garoufalis, Pam; Chen, Christine Y; Guymer, Robyn H; Baird, Paul N

    2006-11-01

    A classic twin study was undertaken to assess the contribution of genes and environment to the development of refractive errors and ocular biometrics in a twin population. A total of 1224 twins (345 monozygotic [MZ] and 267 dizygotic [DZ] twin pairs) aged between 18 and 88 years were examined. All twins completed a questionnaire consisting of a medical history, education, and zygosity. Objective refraction was measured in all twins, and biometric measurements were obtained using partial coherence interferometry. Intrapair correlations for spherical equivalent and ocular biometrics were significantly higher in the MZ than in the DZ twin pairs (P < 0.05), when refraction was considered as a continuous variable. A significant gender difference in the variation of spherical equivalent and ocular biometrics was found (P < 0.05). A genetic model specifying an additive, dominant, and unique environmental factor that was sex limited was the best fit for all measured variables. Heritability of spherical equivalents of 88% and 75% were found in the men and women, respectively, whereas, that of axial length was 94% and 92%, respectively. Additive genetic effects accounted for a greater proportion of the variance in spherical equivalent, whereas the variance in ocular biometrics, particularly axial length was explained mostly by dominant genetic effects. Genetic factors, both additive and dominant, play a significant role in refractive error (myopia and hypermetropia) as well as in ocular biometrics, particularly axial length. The sex limitation ADE model (additive genetic, nonadditive genetic, and environmental components) provided the best-fit genetic model for all parameters.

  17. Effect of Gabapentin/Memantine on the Infantile Nystagmus Syndrome in the Zebrafish Model: Implications for the Therapy of Ocular Motor Diseases.

    PubMed

    Bögli, Stefan Yu; Afthinos, Maresa; Huang, Melody Ying-Yu

    2017-06-01

    Infantile nystagmus syndrome (INS) is a disorder characterized by typical horizontal eye oscillations. Due to the uncertain etiology of INS, developing specific treatments remains difficult. Single reports demonstrated, on limited measures, alleviating effects of gabapentin and memantine. In the current study, we employed the zebrafish INS model belladonna (bel) to conduct an in-depth study of how gabapentin and memantine interventions alleviate INS signs, which may further restore visual conditions in affected subjects. Moreover, we described the influence of both medications on ocular motor functions in healthy zebrafish, evaluating possible iatrogenic effects. Ocular motor function and INS characteristics were assessed by eliciting optokinetic response, spontaneous nystagmus, and spontaneous saccades in light and in dark, in 5- to 6-day postfertilization bel larvae and heterozygous siblings. Single larvae were recorded before and after a 1-hour drug treatment (200 mM gabapentin/0.2 mM memantine). Both interventions significantly reduced nystagmus intensity (gabapentin: 59.98%, memantine: 39.59%). However, while the application of gabapentin affected all tested ocular motor functions, memantine specifically reduced nystagmus amplitude and intensity, and thus left controls completely unaffected. Finally, both drug treatments resulted in specific changes in nystagmus waveform and velocity. Our study provides deeper insight into gabapentin and memantine treatment effect in the zebrafish INS model. Moreover, this study should establish zebrafish as a pharmacologic animal model for treating nystagmus and ocular motor disease, serving as a basis for future large-scale drug screenings.

  18. [Eye lens radiation exposure during ureteroscopy with and without a face protection shield: Investigations on a phantom model].

    PubMed

    Zöller, G; Figel, M; Denk, J; Schulz, K; Sabo, A

    2016-03-01

    Eye lens radiation exposure during radiologically-guided endoscopic procedures may result in radiation-induced cataracts; therefore, we investigated the ocular radiation exposure during ureteroscopy on a phantom model. Using an Alderson phantom model and eye lens dosimeters, we measured the ocular radiation exposure depending on the number of X-ray images and on the duration of fluoroscopic imaging. The measurements were done with and without using a face protection shield. We could demonstrate that a significant ocular radiation exposure can occur, depending on the number of X-ray images and on the duration time of fluoroscopy. Eye lens doses up to 0.025 mSv were recorded even using modern digital X-ray systems. Using face protection shields this ocular radiation exposure can be reduced to a minimum. The International Commission on Radiological Protection (ICRP) recommendations of a mean eye lens dosage of 20 mSv/year may be exceeded during repeated ureteroscopy by a high volume surgeon. Using a face protection shield, the eye lens dose during ureteroscopy could be reduced to a minimum in a phantom model. Further investigations will show whether these results can be transferred to real life ureteroscopic procedures.

  19. Involvement of Corneal Lymphangiogenesis in a Mouse Model of Allergic Eye Disease

    PubMed Central

    Lee, Hyun-Soo; Hos, Deniz; Blanco, Tomas; Bock, Felix; Reyes, Nancy J.; Mathew, Rose; Cursiefen, Claus; Dana, Reza; Saban, Daniel R.

    2015-01-01

    Purpose. The contribution of lymphangiogenesis (LA) to allergy has received considerable attention and therapeutic inhibition of this process via targeting VEGF has been considered. Likewise, certain inflammatory settings affecting the ocular mucosa can trigger pathogenic LA in the naturally avascular cornea. Chronic inflammation in allergic eye disease (AED) impacts the conjunctiva and cornea, leading to sight threatening conditions. However, whether corneal LA is involved is completely unknown. We addressed this using a validated mouse model of AED. Methods. Allergic eye disease was induced by ovalbumin (OVA) immunization and chronic OVA exposure. Confocal microscopy of LYVE-1–stained cornea allowed evaluation of corneal LA, and qRT-PCR was used to evaluate expression of VEGF-C, -D, and -R3 in these mice. Administration of VEGF receptor (R) inhibitor was incorporated to inhibit corneal LA in AED. Immune responses were evaluated by in vitro OVA recall responses of T cells, and IgE levels in the serum. Results. Confocal microscopy of LYVE-1–stained cornea revealed the distinct presence of corneal LA in AED, and corroborated by increased corneal expression of VEGF-C, -D, and -R3. Importantly, prevention of corneal LA in AED via VEGFR inhibition was associated with decreased T helper two responses and IgE production. Furthermore, VEGFR inhibition led a significant reduction in clinical signs of AED. Conclusions. Collectively, these data reveal that there is a distinct involvement of corneal LA in AED. Furthermore, VEGFR inhibition prevents corneal LA and consequent immune responses in AED. PMID:26024097

  20. THE ROLE OF ELECTRICAL SIGNALS IN MURINE CORNEAL WOUND RE-EPITHELIALISATION

    PubMed Central

    Kucerova, R.; Walczysko, P.; Reid, B.; Ou, J.; Leiper, L. J.; Rajnicek, A. M.; McCaig, C. D.; Zhao, M.; Collinson, J. M.

    2011-01-01

    Ion flow from intact tissue into epithelial wound sites results in lateral electric currents that may represent a major driver of wound healing cell migration. Use of applied electric fields to promote wound healing is the basis of Medicare-approved electric stimulation therapy. This study investigated the roles for electric fields in wound re-epithelialisation, using the Pax6+/− mouse model of the human ocular surface abnormality aniridic keratopathy (in which wound healing and corneal epithelial cell migration are disrupted). Both wild-type and Pax6+/− corneal epithelial cells showed increased migration speeds in response to applied electric fields in vitro. However, only Pax6+/+ cells demonstrated directional galvanotaxis towards the cathode, with activation of pSrc signalling, polarised to the leading edges of cells. In vivo, the epithelial wound site normally represents a cathode, but 43% of Pax6+/− corneas exhibited reversed endogenous wound-induced currents (the wound was an anode). These corneas healed at the same rate as wild-type. Surprisingly, epithelial migration did not correlate with direction or magnitude of endogenous currents for wild-type or mutant corneas. Furthermore, during healing in vivo, no polarisation of pSrc was observed. We found little evidence that Src-dependent mechanisms of cell migration, observed in response to applied EFs in vitro, normally exist in vivo. It is concluded that endogenous electric fields do not drive long-term directionality of sustained healing migration in this mouse corneal epithelial model. Ion flow from wounds may nevertheless represent an important component of wound signalling initiation. PMID:20945376

  1. Development and Tissue Origins of the Mammalian Cranial Base

    PubMed Central

    Iseki, S.; Bamforth, S. D.; Olsen, B. R.; Morriss-Kay, G. M.

    2008-01-01

    The vertebrate cranial base is a complex structure composed of bone, cartilage and other connective tissues underlying the brain; it is intimately connected with development of the face and cranial vault. Despite its central importance in craniofacial development, morphogenesis and tissue origins of the cranial base have not been studied in detail in the mouse, an important model organism. We describe here the location and time of appearance of the cartilages of the chondrocranium. We also examine the tissue origins of the mouse cranial base using a neural crest cell lineage cell marker, Wnt1-Cre/R26R, and a mesoderm lineage cell marker, Mesp1-Cre/R26R. The chondrocranium develops between E11 and E16 in the mouse, beginning with development of the caudal (occipital) chondrocranium, followed by chondrogenesis rostrally to form the nasal capsule, and finally fusion of these two parts via the midline central stem and the lateral struts of the vault cartilages. X-Gal staining of transgenic mice from E8.0 to 10 days post-natal showed that neural crest cells contribute to all of the cartilages that form the ethmoid, presphenoid, and basisphenoid bones with the exception of the hypochiasmatic cartilages. The basioccipital bone and non-squamous parts of the temporal bones are mesoderm derived. Therefore the prechordal head is mostly composed of neural crest-derived tissues, as predicted by the New Head Hypothesis. However, the anterior location of the mesoderm-derived hypochiasmatic cartilages, which are closely linked with the extra-ocular muscles, suggests that some tissues associated with the visual apparatus may have evolved independently of the rest of the “New Head”. PMID:18680740

  2. Dry Eye Disease and Microbial Keratitis: Is There a Connection?

    PubMed Central

    Narayanan, Srihari; Redfern, Rachel L.; Miller, William L.; Nichols, Kelly K.; McDermott, Alison M.

    2013-01-01

    Dry eye is a common ocular surface disease of multifactorial etiology characterized by elevated tear osmolality and inflammation leading to a disrupted ocular surface. The latter is a risk factor for ocular surface infection, yet overt infection is not commonly seen clinically in the typical dry eye patient. This suggests that important innate mechanisms operate to protect the dry eye from invading pathogens. This article reviews the current literature on epidemiology of ocular surface infection in dry eye patients and laboratory-based studies on innate immune mechanisms operating at the ocular surface and their alterations in human dry eye and animal models. The review highlights current understanding of innate immunity in dry eye and identifies gaps in our knowledge to help direct future studies to further unravel the complexities of dry eye disease and its sequelae. PMID:23583043

  3. The temperature-sensitive mutants of Toxoplasma gondii and ocular toxoplasmosis.

    PubMed

    Lu, Fangli; Huang, Shiguang; Kasper, Lloyd H

    2009-01-22

    The risk of blindness caused by ocular toxoplasmosis supports efforts to improve our understanding for control of this disease. In this study, the involvement of CD8(+), CD4(+), B cell, and IL-10 gene in the immune response of primary ocular infection with the temperature-sensitive mutant (ts-4) of the RH Toxoplasma gondii strain, and in the protective immunity of ocular ts-4 vaccination and challenge with RH strain was investigated in murine models utilizing inbred C57BL/6 mice-deficient in CD4(+), CD8(+), B cells (microMT), or IL-10 gene. Compared to naive mice, all WT and mutant mice had different degree of ocular pathological changes after ts-4 ocular infection, in which both CD8 KO and IL-10 KO mice showed the most severe ocular lesions. Immunized by ts-4 intracameral (i.c.) inoculation, all mutant mice had partially decreased vaccine-induced resistance associated with increased ocular parasite burdens after RH strain challenge. A significant increase of the percentages of B cells and CD8(+) T cells in the draining lymph nodes were observed in WT and IL-10 KO mice after either infection or challenge. The levels of specific anti-toxoplasma IgG in both eye fluid and serum from all the mice were significantly increased after ts-4 i.c. immunization, except microMT mice. These results suggest that the avirulent ts-4 of T. gondii inoculated intracamerally can induce both ocular pathology and ocular protective immunity; CD4(+), CD8(+), B cell, and IL-10 gene are all necessary to the vaccine-induced resistance to ocular challenge by virulent RH strain, in which CD8(+) T cells are the most important component.

  4. A situational analysis of ocular health promotion in the South African primary health-care system.

    PubMed

    Sithole, Hlupheka Lawrence

    2017-03-01

    South Africa has a serious burden of avoidable blindness and visual impairment, which may be due to poor ocular health promotional policies and programs or implementation. Therefore, this paper sought to critically analyse the South African primary health-care policies and programs, to identify the components of ocular health promotional policies and programs as well as how they are currently being implemented and to suggest areas that can be improved in order to minimise the burden of blindness and visual impairment. Triangulated quantitative and qualitative research methods were used in the study. Questionnaire and interviews were used to solicit data from national and provincial managers of different health directorates. Eye-care managers from each province also completed the questionnaire. Furthermore, relevant health policy and program documents from national and provincial departments of health were studied to identify areas relating to ocular health promotion. The study found varying degrees of implementation of various ocular health promotional activities in the provinces with the majority of respondents (62 per cent) indicating that ocular health promotion was not part of their responsibility and another 81 per cent revealing that vision screening does not form part of their health promotional programs. It further revealed a lack of a dedicated directorate for ocular health-care issues and the absence of an integrated ocular health promotional policy. Ocular health promotional activities were absent in other provinces. This may be a major contributing factor to poor ocular health promotion in South Africa and hence, the high prevalence of blindness and visual impairment. Therefore, it is recommended that an integrated ocular health promotional model (directorate and policies) be developed and be part of the South African primary health-care system. © 2016 Optometry Australia.

  5. A model-based theory on the origin of downbeat nystagmus.

    PubMed

    Marti, Sarah; Straumann, Dominik; Büttner, Ulrich; Glasauer, Stefan

    2008-07-01

    The pathomechanism of downbeat nystagmus (DBN), an ocular motor sign typical for vestibulo-cerebellar lesions, remains unclear. Previous hypotheses conjectured various deficits such as an imbalance of central vertical vestibular or smooth pursuit pathways to be causative for the generation of spontaneous upward drift. However, none of the previous theories explains the full range of ocular motor deficits associated with DBN, i.e., impaired vertical smooth pursuit (SP), gaze evoked nystagmus, and gravity dependence of the upward drift. We propose a new hypothesis, which explains the ocular motor signs of DBN by damage of the inhibitory vertical gaze-velocity sensitive Purkinje cells (PCs) in the cerebellar flocculus (FL). These PCs show spontaneous activity and a physiological asymmetry in that most of them exhibit downward on-directions. Accordingly, a loss of vertical floccular PCs will lead to disinhibition of their brainstem target neurons and, consequently, to spontaneous upward drift, i.e., DBN. Since the FL is involved in generation and control of SP and gaze holding, a single lesion, e.g., damage to vertical floccular PCs, may also explain the associated ocular motor deficits. To test our hypothesis, we developed a computational model of vertical eye movements based on known ocular motor anatomy and physiology, which illustrates how cortical, cerebellar, and brainstem regions interact to generate the range of vertical eye movements seen in healthy subjects. Model simulation of the effect of extensive loss of floccular PCs resulted in ocular motor features typically associated with cerebellar DBN: (1) spontaneous upward drift due to decreased spontaneous PC activity, (2) gaze evoked nystagmus corresponding to failure of the cerebellar loop supporting neural integrator function, (3) asymmetric vertical SP deficit due to low gain and asymmetric attenuation of PC firing, and (4) gravity-dependence of DBN caused by an interaction of otolith-ocular pathways with impaired neural integrator function.

  6. Corneal protection by the ocular mucin secretagogue 15(S)-HETE in a rabbit model of desiccation-induced corneal defect.

    PubMed

    Gamache, Daniel A; Wei, Zhong-You; Weimer, Lori K; Miller, Steven T; Spellman, Joan M; Yanni, John M

    2002-08-01

    The mucin secretagogue 15(S)-HETE was found to stimulate glycoprotein secretion in human ocular tissue at submicromolar concentrations in the present studies. Therefore, the ability of topically applied 15(S)-HETE to preserve corneal integrity was investigated in a rabbit model of desiccation-induced corneal defect. Desiccation-induced corneal injury was elicited in anesthetized rabbits by maintaining one eye open with a speculum. Corneal staining and corneal thickness changes were determined immediately following desiccation. 15(S)-HETE dose-dependently reduced corneal damage (ED50 = 120 nM) during a two-hour desiccation. Corneal staining was unchanged relative to control using a 1 microM dose of 15(S)-HETE. Through four hours of desiccation, 15(S)-HETE (500 nM) decreased corneal staining by 71% and completely prevented corneal thinning. 15(S)-HETE (1 microM) was significantly more efficacious than an artificial tear product over the 4-hour desiccation period. There was no evidence of tachyphylaxis following repeated topical ocular dosing of 15(S)-HETE. These studies demonstrate that 15(S)-HETE stimulates ocular mucin secretion in vitro and effectively protects the cornea in a rabbit model of desiccation-induced injury. The results suggest that the ocular mucin secretagogue 15(S)-HETE may have therapeutic utility in dry eye patients, alleviating corneal injury and restoring corneal integrity.

  7. Intraobserver reproducibility of retinal nerve fiber layer measurements using scanning laser polarimetry and optical coherence tomography in normal and ocular hypertensive subjects.

    PubMed

    Lleó-Pérez, A; Ortuño-Soto, A; Rahhal, M S; Martínez-Soriano, F; Sanchis-Gimeno, J A

    2004-01-01

    To evaluate quantitatively the intraobserver reproducibility of measurements of the retinal nerve fiber layer (RNFL) in healthy subjects and an ocular hypertensive population using two nerve fiber analyzers. Sixty eyes of normal (n=30) and ocular hypertensive subjects (n=30) were consecutively recruited for this study and underwent a complete ophthalmologic examination and achromatic automated perimetry. RNFL were measured using scanning laser polarimeter (GDx-VCC) and optical coherence tomography (OCT Model 3000). Reproducibility of the RNFL measurements obtained with both nerve fiber analyzers were compared using the coefficient of variation. In both groups the authors found fair correlations between the two methods in all ratio and thickness parameters. The mean coefficient of variation for measurement of the variables ranged from 2.24% to 13.12% for GDx-VCC, and from 5.01% to 9.24% for OCT Model 3000. The authors could not detect any significant differences between healthy and ocular hypertensive eyes, although in normal eyes the correlations improved slightly. Nevertheless, the test-retest correlation was slightly better for GDx-VCC than for OCT Model 3000 (5.55% and 7.11%, respectively). Retinal mapping software of both nerve fiber analyzers allows reproducible measurement of RNFL in both healthy subjects and ocular hypertensive eyes, and shows fair correlations and good intraobserver reproducibility. However, in our study, GDx showed a better test-retest correlation.

  8. Collagen VII deficient mice show morphologic and histologic corneal changes that phenotypically mimic human dystrophic epidermolysis bullosa of the eye.

    PubMed

    Chen, Vicki M; Shelke, Rajani; Nyström, Alexander; Laver, Nora; Sampson, James F; Zhiyi, Cao; Bhat, Najma; Panjwani, Noorjahan

    2018-06-16

    Absence of collagen VII causes blistering of the skin, eyes and many other tissues. This disease is termed dystrophic epidermolysis bullosa (DEB). Corneal fibrosis occurs in up to 41% and vision loss in up to 64% of patients. Standard treatments are supportive and there is no cure. The immune-histologic and morphologic changes in the corneas of the mouse model for this disease have not been described in the literature. Our purpose is to characterize the eyes of these mice to determine if this is an appropriate model for study of human therapeutics. Western blot analysis (WB) and immunohistochemistry (IHC) were performed to assess the relative collagen VII protein levels and its location within the cornea. Additional IHC for inflammatory and fibrotic biomarkers alpha-smooth muscle actin (α-SMA), transforming growth factor-beta (TGF-β), connective tissue growth factor (CTGF), proteinase 3, tenascin C and collagen III were performed. Clinical photographs documenting opacification of the corneas of animals of differing ages were assessed and scored independently by 2 examiners. Histology was then used to investigate morphologic changes. IHC and WB confirmed that these mice are deficient in collagen VII production at the level of the basement membrane when compared with wild-types. IHC showed anomalous deposition of collagen III throughout the stroma. Of the 5 biomarkers tested, TGF-β showed the strongest and most consistently staining. Photographs documented corneal opacities only in mice older than 10 weeks, opacities were not seen in younger animals. Histology showed multiple abnormalities, including epithelial hyperplasia, ulceration, fibrosis, edema, dysplasia, neovascularization and bullae formation. The collagen VII hypomorphic mouse shows reduced collagen VII production at the level of the corneal basement membrane. Corneal changes are similar to pathology seen in humans with this disease. The presence of anomalous stromal collagen III and TGF-β appear to be the most consistent and strongest staining biomarkers in diseased mice. This mouse appears to mimic human corneal disease. It is an appropriate model for testing of therapeutics to treat EB ocular disease. Copyright © 2018. Published by Elsevier Ltd.

  9. True color blood flow imaging using a high-speed laser photography system

    NASA Astrophysics Data System (ADS)

    Liu, Chien-Sheng; Lin, Cheng-Hsien; Sun, Yung-Nien; Ho, Chung-Liang; Hsu, Chung-Chi

    2012-10-01

    Physiological changes in the retinal vasculature are commonly indicative of such disorders as diabetic retinopathy, glaucoma, and age-related macular degeneration. Thus, various methods have been developed for noninvasive clinical evaluation of ocular hemodynamics. However, to the best of our knowledge, current ophthalmic instruments do not provide a true color blood flow imaging capability. Accordingly, we propose a new method for the true color imaging of blood flow using a high-speed pulsed laser photography system. In the proposed approach, monochromatic images of the blood flow are acquired using a system of three cameras and three color lasers (red, green, and blue). A high-quality true color image of the blood flow is obtained by assembling the monochromatic images by means of image realignment and color calibration processes. The effectiveness of the proposed approach is demonstrated by imaging the flow of mouse blood within a microfluidic channel device. The experimental results confirm the proposed system provides a high-quality true color blood flow imaging capability, and therefore has potential for noninvasive clinical evaluation of ocular hemodynamics.

  10. High quality optical microangiography of ocular microcirculation and measurement of total retinal blood flow in mouse eye

    NASA Astrophysics Data System (ADS)

    Zhi, Zhongwei; Yin, Xin; Dziennis, Suzan; Alpers, Charles E.; Wang, Ruikang K.

    2013-03-01

    Visualization and measurement of retinal blood flow (RBF) is important to the diagnosis and management of different eye diseases, including diabetic retinopathy. Optical microangiography (OMAG) is developed for generating 3D dynamic microcirculation image and later refined into ultra-high sensitive OMAG (UHS-OMAG) for true capillary vessels imaging. Here, we present the application of OMAG imaging technique for visualization of depth-resolved vascular network within retina and choroid as well as measurement of total retinal blood flow in mice. A fast speed spectral domain OCT imaging system at 820nm with a line scan rate of 140 kHz was developed to image mouse posterior eye. By applying UHS-OMAG scanning protocol and processing algorithm, we achieved true capillary level imaging of retina and choroid vasculature in mouse eye. The vascular pattern within different retinal layers and choroid was presented. An en face Doppler OCT approach [1] without knowing Doppler angle was adopted for the measurement of total retinal blood flow. The axial blood flow velocity is measured in an en face plane by raster scanning and the flow is calculated by integrating over the vessel area of the central retinal artery.

  11. Light reintroduction after dark exposure reactivates plasticity in adults via perisynaptic activation of MMP-9

    PubMed Central

    2017-01-01

    The sensitivity of ocular dominance to regulation by monocular deprivation is the canonical model of plasticity confined to a critical period. However, we have previously shown that visual deprivation through dark exposure (DE) reactivates critical period plasticity in adults. Previous work assumed that the elimination of visual input was sufficient to enhance plasticity in the adult mouse visual cortex. In contrast, here we show that light reintroduction (LRx) after DE is responsible for the reactivation of plasticity. LRx triggers degradation of the ECM, which is blocked by pharmacological inhibition or genetic ablation of matrix metalloproteinase-9 (MMP-9). LRx induces an increase in MMP-9 activity that is perisynaptic and enriched at thalamo-cortical synapses. The reactivation of plasticity by LRx is absent in Mmp9−/− mice, and is rescued by hyaluronidase, an enzyme that degrades core ECM components. Thus, the LRx-induced increase in MMP-9 removes constraints on structural and functional plasticity in the mature cortex. PMID:28875930

  12. Integrative Analysis of Disease Signatures Shows Inflammation Disrupts Juvenile Experience-Dependent Cortical Plasticity

    PubMed Central

    Smith, Milo R.; Burman, Poromendro

    2016-01-01

    Throughout childhood and adolescence, periods of heightened neuroplasticity are critical for the development of healthy brain function and behavior. Given the high prevalence of neurodevelopmental disorders, such as autism, identifying disruptors of developmental plasticity represents an essential step for developing strategies for prevention and intervention. Applying a novel computational approach that systematically assessed connections between 436 transcriptional signatures of disease and multiple signatures of neuroplasticity, we identified inflammation as a common pathological process central to a diverse set of diseases predicted to dysregulate plasticity signatures. We tested the hypothesis that inflammation disrupts developmental cortical plasticity in vivo using the mouse ocular dominance model of experience-dependent plasticity in primary visual cortex. We found that the administration of systemic lipopolysaccharide suppressed plasticity during juvenile critical period with accompanying transcriptional changes in a particular set of molecular regulators within primary visual cortex. These findings suggest that inflammation may have unrecognized adverse consequences on the postnatal developmental trajectory and indicate that treating inflammation may reduce the burden of neurodevelopmental disorders. PMID:28101530

  13. Efficiency of RAFT-synthesized PDMAEMA in gene transfer to the retina.

    PubMed

    Bitoque, Diogo B; Simão, Sónia; Oliveira, Ana V; Machado, Susana; Duran, Margarita R; Lopes, Eduardo; da Costa, Ana M Rosa; Silva, Gabriela A

    2017-01-01

    Gene therapy has long been heralded as the new hope to evolve from symptomatic care of genetic pathologies to a full cure. Recent successes in using gene therapy for treating several ocular and haematopoietic pathologies have shown the great potential of this approach that, in the early days, relied on the use of viral vectors, which were considered by many to be undesirable for human treatment. Therefore, there is considerable interest and effort in developing non-viral vectors, with efficiency close to that of viral vectors. The aim of this study was to develop suitable non-viral carriers for gene therapy to treat pathologies affecting the retina. In this study poly(2-(N,N-dimethylamino)ethyl methacrylate), PDMAEMA was synthesized by reversible addition-fragmentation chain transfer (RAFT) and the in vitro cytocompatibility and transfection efficiency of a range of polymer:DNA ratios evaluated using a retinal cell line; in vivo biocompatibility was evaluated by ocular injection in C57BL/6 mice. The results showed that through RAFT, it is possible to produce a defined-size polymer that is compatible with cell viability in vitro and capable of efficiently directing gene expression in a polymer-DNA ratio-dependent manner. When injected into the eyes of mice, these vectors induced a transient, mild inflammation, characteristic of the implantation of medical devices. These results form the basis of future studies where RAFT-synthesized PDMAEMA will be used to deliver gene expression systems to the retina of mouse models of retinal pathologies. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.

  14. Monte Carlo dosimetry for {sup 103}Pd, {sup 125}I, and {sup 131}Cs ocular brachytherapy with various plaque models using an eye phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lesperance, Marielle; Martinov, M.; Thomson, R. M., E-mail: rthomson@physics.carleton.ca

    Purpose: To investigate dosimetry for ocular brachytherapy for a range of eye plaque models containing{sup 103}Pd, {sup 125}I, or {sup 131}Cs seeds with model-based dose calculations. Methods: Five representative plaque models are developed based on a literature review and are compared to the standardized COMS plaque, including plaques consisting of a stainless steel backing and acrylic insert, and gold alloy backings with: short collimating lips and acrylic insert, no lips and silicone polymer insert, no lips and a thin acrylic layer, and individual collimating slots for each seed within the backing and no insert. Monte Carlo simulations are performed usingmore » the EGSnrc user-code BrachyDose for single and multiple seed configurations for the plaques in water and within an eye model (including nonwater media). Simulations under TG-43 assumptions are also performed, i.e., with the same seed configurations in water, neglecting interseed and plaque effects. Maximum and average doses to ocular structures as well as isodose contours are compared for simulations of each radionuclide within the plaque models. Results: The presence of the plaque affects the dose distribution substantially along the plaque axis for both single seed and multiseed simulations of each plaque design in water. Of all the plaque models, the COMS plaque generally has the largest effect on the dose distribution in water along the plaque axis. Differences between doses for single and multiple seed configurations vary between plaque models and radionuclides. Collimation is most substantial for the plaque with individual collimating slots. For plaques in the full eye model, average dose in the tumor region differs from those for the TG-43 simulations by up to 10% for{sup 125}I and {sup 131}Cs, and up to 17% for {sup 103}Pd, and in the lens region by up to 29% for {sup 125}I, 34% for {sup 103}Pd, and 28% for {sup 131}Cs. For the same prescription dose to the tumor apex, the lowest doses to critical ocular structures are generally delivered with plaques containing {sup 103}Pd seeds. Conclusions: The combined effects of ocular and plaque media on dose are significant and vary with plaque model and radionuclide, suggesting the importance of model-based dose calculations employing accurate ocular and plaque media and geometries for eye plaque brachytherapy.« less

  15. Design and elaboration of freeze-dried PLGA nanoparticles for the transcorneal permeation of carprofen: Ocular anti-inflammatory applications.

    PubMed

    Parra, Alexander; Mallandrich, Mireia; Clares, Beatriz; Egea, María A; Espina, Marta; García, María L; Calpena, Ana C

    2015-12-01

    This work aimed the design and development of poly(lactic-co-glycolic) acid (PLGA) nanoparticles (NPs) for the ocular delivery of Carprofen (CP) by a central rotatable composite design 2(3)+ star. NPs showed adequate size for ocular administration (189.50 ± 1.67 nm), low polydispersity (0.01 ± 0.01), negative charge surface (-22.80 ± 0.66 mV) and optimal entrapment efficiency (74.70 ± 0.95%). Physicochemical analysis confirmed that CP was dispersed inside the NPs. The drug release followed a first order kinetic model providing greater sustained CP release after lyophilization. Ex vivo permeation analysis through isolated rabbit cornea revealed that a sufficient amount of CP was retained in the tissue avoiding excessive permeation and thus, potential systemic levels. Ex vivo ocular tolerance results showed no signs of ocular irritancy, which was also confirmed by in vivo Draize test. In vivo ocular anti-inflammatory efficacy test confirmed an optimal efficacy of NPs and its potential application in eye surgery. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Long-Term Visual Training Increases Visual Acuity and Long-Term Monocular Deprivation Promotes Ocular Dominance Plasticity in Adult Standard Cage-Raised Mice.

    PubMed

    Hosang, Leon; Yusifov, Rashad; Löwel, Siegrid

    2018-01-01

    For routine behavioral tasks, mice predominantly rely on olfactory cues and tactile information. In contrast, their visual capabilities appear rather restricted, raising the question whether they can improve if vision gets more behaviorally relevant. We therefore performed long-term training using the visual water task (VWT): adult standard cage (SC)-raised mice were trained to swim toward a rewarded grating stimulus so that using visual information avoided excessive swimming toward nonrewarded stimuli. Indeed, and in contrast to old mice raised in a generally enriched environment (Greifzu et al., 2016), long-term VWT training increased visual acuity (VA) on average by more than 30% to 0.82 cycles per degree (cyc/deg). In an individual animal, VA even increased to 1.49 cyc/deg, i.e., beyond the rat range of VAs. Since visual experience enhances the spatial frequency threshold of the optomotor (OPT) reflex of the open eye after monocular deprivation (MD), we also quantified monocular vision after VWT training. Monocular VA did not increase reliably, and eye reopening did not initiate a decline to pre-MD values as observed by optomotry; VA values rather increased by continued VWT training. Thus, optomotry and VWT measure different parameters of mouse spatial vision. Finally, we tested whether long-term MD induced ocular dominance (OD) plasticity in the visual cortex of adult [postnatal day (P)162-P182] SC-raised mice. This was indeed the case: 40-50 days of MD induced OD shifts toward the open eye in both VWT-trained and, surprisingly, also in age-matched mice without VWT training. These data indicate that (1) long-term VWT training increases adult mouse VA, and (2) long-term MD induces OD shifts also in adult SC-raised mice.

  17. General Pharmacokinetic Model for Topically Administered Ocular Drug Dosage Forms.

    PubMed

    Deng, Feng; Ranta, Veli-Pekka; Kidron, Heidi; Urtti, Arto

    2016-11-01

    In ocular drug development, an early estimate of drug behavior before any in vivo experiments is important. The pharmacokinetics (PK) and bioavailability depend not only on active compound and excipients but also on physicochemical properties of the ocular drug formulation. We propose to utilize PK modelling to predict how drug and formulational properties affect drug bioavailability and pharmacokinetics. A physiologically relevant PK model based on the rabbit eye was built to simulate the effect of formulation and physicochemical properties on PK of pilocarpine solutions and fluorometholone suspensions. The model consists of four compartments: solid and dissolved drug in tear fluid, drug in corneal epithelium and aqueous humor. Parameter values and in vivo PK data in rabbits were taken from published literature. The model predicted the pilocarpine and fluorometholone concentrations in the corneal epithelium and aqueous humor with a reasonable accuracy for many different formulations. The model includes a graphical user interface that enables the user to modify parameters easily and thus simulate various formulations. The model is suitable for the development of ophthalmic formulations and the planning of bioequivalence studies.

  18. Healthy and pathological cerebellar Spiking Neural Networks in Vestibulo-Ocular Reflex.

    PubMed

    Antonietti, Alberto; Casellato, Claudia; Geminiani, Alice; D'Angelo, Egidio; Pedrocchi, Alessandra

    2015-01-01

    Since the Marr-Albus model, computational neuroscientists have been developing a variety of models of the cerebellum, with different approaches and features. In this work, we developed and tested realistic artificial Spiking Neural Networks inspired to this brain region. We tested in computational simulations of the Vestibulo-Ocular Reflex protocol three different models: a network equipped with a single plasticity site, at the cortical level; a network equipped with a distributed plasticity, at both cortical and nuclear levels; a network with a pathological plasticity mechanism at the cortical level. We analyzed the learning performance of the three different models, highlighting the behavioral differences among them. We proved that the model with a distributed plasticity produces a faster and more accurate cerebellar response, especially during a second session of acquisition, compared with the single plasticity model. Furthermore, the pathological model shows an impaired learning capability in Vestibulo-Ocular Reflex acquisition, as found in neurophysiological studies. The effect of the different plasticity conditions, which change fast and slow dynamics, memory consolidation and, in general, learning capabilities of the cerebellar network, explains differences in the behavioral outcome.

  19. Dosimetric models of the eye and lens of the eye and their use in assessing dose coefficients for ocular exposures.

    PubMed

    Bolch, W E; Dietze, G; Petoussi-Henss, N; Zankl, M

    2015-06-01

    Based upon recent epidemiological studies of ocular exposure, the Main Commission of the International Commission on Radiological Protection (ICRP) in ICRP Publication 118 states that the threshold dose for radiation-induced cataracts is now considered to be approximately 0.5 Gy for both acute and fractionated exposures. Consequently, a reduction was also recommended for the occupational annual equivalent dose to the lens of the eye from 150 mSv to 20 mSv, averaged over defined periods of 5 years. To support ocular dose assessment and optimisation, Committee 2 included Annex F within ICRP Publication 116 . Annex F provides dose coefficients - absorbed dose per particle fluence - for photon, electron, and neutron irradiation of the eye and lens of the eye using two dosimetric models. The first approach uses the reference adult male and female voxel phantoms of ICRP Publication 110. The second approach uses the stylised eye model of Behrens et al., which itself is based on ocular dimensional data given in Charles and Brown. This article will review the data and models of Annex F with particular emphasis on how these models treat tissue regions thought to be associated with stem cells at risk. © The International Society for Prosthetics and Orthotics Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  20. Asymptomatic HLA-A*02:01–Restricted Epitopes from Herpes Simplex Virus Glycoprotein B Preferentially Recall Polyfunctional CD8+ T Cells from Seropositive Asymptomatic Individuals and Protect HLA Transgenic Mice against Ocular Herpes

    PubMed Central

    Dervillez, Xavier; Qureshi, Huma; Chentoufi, Aziz A.; Khan, Arif A.; Kritzer, Elizabeth; Yu, David C.; Diaz, Oscar R.; Gottimukkala, Chetan; Kalantari, Mina; Villacres, Maria C.; Scarfone, Vanessa M.; McKinney, Denise M.; Sidney, John; Sette, Alessandro; Nesburn, Anthony B.; Wechsler, Steven L.; BenMohamed, Lbachir

    2014-01-01

    Evidence from C57BL/6 mice suggests that CD8+ T cells, specific to the immunodominant HSV-1 glycoprotein B (gB) H-2b–restricted epitope (gB498–505), protect against ocular herpes infection and disease. However, the possible role of CD8+ T cells, specific to HLA-restricted gB epitopes, in protective immunity seen in HSV-1–seropositive asymptomatic (ASYMP) healthy individuals (who have never had clinical herpes) remains to be determined. In this study, we used multiple prediction algorithms to identify 10 potential HLA-A*02:01–restricted CD8+ T cell epitopes from the HSV-1 gB amino acid sequence. Six of these epitopes exhibited high-affinity binding to HLA-A*02:01 molecules. In 10 sequentially studied HLA-A*02:01–positive, HSV-1–seropositive ASYMP individuals, the most frequent, robust, and polyfunctional CD8+ T cell responses, as assessed by a combination of tetramer, IFN-γ-ELISPOT, CFSE proliferation, CD107a/b cytotoxic degranulation, and multiplex cytokine assays, were directed mainly against epitopes gB342–350 and gB561–569. In contrast, in 10 HLA-A*02:01–positive, HSV-1–seropositive symptomatic (SYMP) individuals (with a history of numerous episodes of recurrent clinical herpes disease) frequent, but less robust, CD8+ T cell responses were directed mainly against nonoverlapping epitopes (gB183–191 and gB441–449). ASYMP individuals had a significantly higher proportion of HSV-gB–specific CD8+ T cells expressing CD107a/b degranulation marker and producing effector cytokines IL-2, IFN-γ, and TNF-α than did SYMP individuals. Moreover, immunization of a novel herpes-susceptible HLA-A*02:01 transgenic mouse model with ASYMP epitopes, but not with SYMP epitopes, induced strong CD8+ T cell–dependent protective immunity against ocular herpes infection and disease. These findings should guide the development of a safe and effective T cell–based herpes vaccine. PMID:24101547

  1. Thermal safety of ultrasound-enhanced ocular drug delivery: A modeling study

    PubMed Central

    Nabili, Marjan; Geist, Craig; Zderic, Vesna

    2015-01-01

    Purpose: Delivery of sufficient amounts of therapeutic drugs into the eye for treatment of various ocular diseases is often a challenging task. Ultrasound was shown to be effective in enhancing ocular drug delivery in the authors’ previous in vitro and in vivo studies. Methods: The study reported here was designed to investigate the safety of ultrasound application and its potential thermal effects in the eye using PZFlex modeling software. The safety limit in this study was set as a temperature increase of no more than 1.5 °C based on regulatory recommendations and previous experimental safety studies. Acoustic and thermal specifications of different human eye tissues were obtained from the published literature. The tissues of particular interest in this modeling safety study were cornea, lens, and the location of optic nerve in the posterior eye. Ultrasound application was modeled at frequencies of 400 kHz–1 MHz, intensities of 0.3–1 W/cm2, and exposure duration of 5 min, which were the parameters used in the authors’ previous drug delivery experiments. The baseline eye temperature was 37 °C. Results: The authors’ results showed that the maximal tissue temperatures after 5 min of ultrasound application were 38, 39, 39.5, and 40 °C in the cornea, 39.5, 40, 42, and 43 °C in the center of the lens, and 37.5, 38.5, and 39 °C in the back of the eye (at the optic nerve location) at frequencies of 400, 600, 800 kHz, and 1 MHz, respectively. Conclusions: The ocular temperatures reached at higher frequencies were considered unsafe based on current recommendations. At a frequency of 400 kHz and intensity of 0.8 W/cm2 (parameters shown in the authors’ previous in vivo studies to be optimal for ocular drug delivery), the temperature increase was small enough to be considered safe inside different ocular tissues. However, the impact of orbital bone and tissue perfusion should be included in future modeling efforts to determine the safety of this method in the whole orbit especially regarding potential adverse optic nerve heating at the location of the bone. PMID:26429235

  2. Inferior ectopic pupil and typical ocular coloboma in RCS rats.

    PubMed

    Tsuji, Naho; Ozaki, Kiyokazu; Narama, Isao; Matsuura, Tetsuro

    2011-08-01

    Ocular coloboma is sometimes accompanied by corectopia in humans and therefore ectopic pupil may indicate ocular coloboma in experimental animals. The RCS strain of rats has a low incidence of microphthalmia. We found that inferior ectopic pupil is associated exclusively with small-sized eyes in this strain. The objective of the current study was to evaluate whether inferior ectopic pupil is associated with iridal coloboma and other types of ocular coloboma in RCS rats. Both eyes of RCS rats were examined clinically, and those with inferior ectopic pupils underwent morphologic and morphometric examinations. In a prenatal study, coronal serial sections of eyeballs from fetuses at gestational day 16.5 were examined by using light microscopy. Ectopic pupils in RCS rats were found exclusively in an inferior position, where the iris was shortened. Fundic examination revealed severe chorioretinal coloboma in all cases of inferior ectopic pupil. The morphologic characteristics closely resembled those of chorioretinal coloboma in humans. Histopathologic examination of primordia showed incomplete closure of the optic fissure in 4 eyeballs of RCS fetuses. Neither F(1) rats nor N(2) (progeny of RCS × BN matings) displayed any ocular anomalies, including ectopic pupils. The RCS strain is a suitable model for human ocular coloboma, and inferior ectopic pupil appears to be a strong indicator of ocular coloboma.

  3. Inferior Ectopic Pupil and Typical Ocular Coloboma in RCS Rats

    PubMed Central

    Tsuji, Naho; Ozaki, Kiyokazu; Narama, Isao; Matsuura, Tetsuro

    2011-01-01

    Ocular coloboma is sometimes accompanied by corectopia in humans and therefore ectopic pupil may indicate ocular coloboma in experimental animals. The RCS strain of rats has a low incidence of microphthalmia. We found that inferior ectopic pupil is associated exclusively with small-sized eyes in this strain. The objective of the current study was to evaluate whether inferior ectopic pupil is associated with iridal coloboma and other types of ocular coloboma in RCS rats. Both eyes of RCS rats were examined clinically, and those with inferior ectopic pupils underwent morphologic and morphometric examinations. In a prenatal study, coronal serial sections of eyeballs from fetuses at gestational day 16.5 were examined by using light microscopy. Ectopic pupils in RCS rats were found exclusively in an inferior position, where the iris was shortened. Fundic examination revealed severe chorioretinal coloboma in all cases of inferior ectopic pupil. The morphologic characteristics closely resembled those of chorioretinal coloboma in humans. Histopathologic examination of primordia showed incomplete closure of the optic fissure in 4 eyeballs of RCS fetuses. Neither F1 rats nor N2 (progeny of RCS × BN matings) displayed any ocular anomalies, including ectopic pupils. The RCS strain is a suitable model for human ocular coloboma, and inferior ectopic pupil appears to be a strong indicator of ocular coloboma. PMID:22330254

  4. Norrin expression in endothelial cells in the developing mouse retina.

    PubMed

    Lee, Hanjae; Jo, Dong Hyun; Kim, Jin Hyoung; Kim, Jeong Hun

    2013-06-01

    Norrin, a protein that acts on Frizzled-4 receptor, participates in angiogenesis in a variety of contexts through the Wnt-signaling pathway. Specifically, Norrin is found to play a crucial role in retinal vascularization. Norrin's pivotal role in angiogenesis led us to investigate its expression and the primary source in the developing retina. In this study we demonstrate, for the first time, that Norrin protein is expressed along the retinal blood vessels. The expression of Norrin coincided with the pattern of vascular growth in the developing mouse retina, and its expression was identified from the endothelial cells of the retinal capillaries. Furthermore, Norrin was also expressed on endothelial cells of the developing human retina. Given that Norrin is crucial in the normal development and maintenance of ocular capillaries, our finding provides a hint of the involvement of Norrin in the self generative and protective mechanism of the endothelial cells in the developing retina. Copyright © 2012 Elsevier GmbH. All rights reserved.

  5. Anti-Inflammatory Effects of Rebamipide Eyedrop Administration on Ocular Lesions in a Murine Model of Primary Sjögren's Syndrome

    PubMed Central

    Arakaki, Rieko; Eguchi, Hiroshi; Yamada, Akiko; Kudo, Yasusei; Iwasa, Akihiko; Enkhmaa, Tserennadmid; Hotta, Fumika; Mitamura-Aizawa, Sayaka; Mitamura, Yoshinori; Hayashi, Yoshio; Ishimaru, Naozumi

    2014-01-01

    Background Topical therapy is effective for dry eye, and its prolonged effects should help in maintaining the quality of life of patients with dry eye. We previously reported that the oral administration of rebamipide (Reb), a mucosal protective agent, had a potent therapeutic effect on autoimmune lesions in a murine model of Sjögren's syndrome (SS). However, the effects of topical treatment with Reb eyedrops on the ocular lesions in the murine model of SS are unknown. Methods and Finding Reb eyedrops were administered to the murine model of SS aged 4–8 weeks four times daily. Inflammatory lesions of the extraorbital and intraorbital lacrimal glands and Harderian gland tissues were histologically evaluated. The direct effects of Reb on the lacrimal glands were analyzed using cultured lacrimal gland cells. Tear secretions of Reb-treated mice were significantly increased compared with those of untreated mice. In addition to the therapeutic effect of Reb treatment on keratoconjunctivitis, severe inflammatory lesions of intraorbital lacrimal gland tissues in this model of SS were resolved. The mRNA expression levels of IL-10 and mucin 5Ac in conjunctival tissues from Reb-treated mice was significantly increased compared with those of control mice. Moreover, lactoferrin production from lacrimal gland cells was restored by Reb treatment. Conclusion Topical Reb administration had an anti-inflammatory effect on the ocular autoimmune lesions in the murine model of SS and a protective effect on the ocular surfaces. PMID:24866156

  6. A paraxial schematic eye model for the growing C57BL/6 mouse.

    PubMed

    Schmucker, Christine; Schaeffel, Frank

    2004-01-01

    The mouse eye has potential to become an important model for studies on the genetic control of eye growth and myopia. However, no data are published on the development of its optical properties. We developed a paraxial schematic model of the growing eye for the most common laboratory mouse strain, the C57BL/6 mouse, for the age range between 22 and 100 days. Refractive development was followed with eccentric infrared photorefraction and corneal curvature with infrared photokeratometry. To measure ocular dimensions, freshly excised eyes were immediately frozen after enucleation to minimize distortions. Eyes were cut with a cryostat down to the bisecting horizontal plane, until the optic nerve head became visible. The standard deviations were +/-10 microm for repeated measurements in highly magnified videographs, taken in several section planes close to the equator in the same eyes. To evaluate inter-eye and inter-individual variability, a total of 20 mice (34 eyes) were studied, with 3-4 eyes for each of the 9 sampling ages. Schematic eye models were developed using paraxial ray tracing software (OSLO, LT Lambda Research Corporation, and a self-written program). The measured refractive errors were initially +4.0+/-0.6 D at approximately 30 days, and levelled off with +7.0+/-2.5 D at about 70 days. Corneal radius of curvature did not change with age (1.414+/-0.019 mm). Both axial lens diameter and axial eye length grew linearly (regression equations: lens, 1619 microm +5.5 microm/day, R=0.916; axial length, 2899 microm +4.4 microm/day, R=0.936). The lens grew so fast that vitreous chamber depth declined with age (regression equation: 896 microm -3.2 microm/day, R=0.685). The radii of curvature of the anterior lens surface increased during development (from 0.982 mm at day 22 to 1.208 mm at day 100), whereas the radii of the posterior lens surface remained constant (-1.081+/-0.054 mm). The calculated homogeneous lens index increased linearly with age (from 1.568 to 1.605). The small eye artifact, calculated from the dioptric difference of the positions of the vitreo-retinal interface and the photoreceptor plane, increased from +35.2 to +39.1 D, which was much higher than the hyperopia measured with photorefraction. Retinal image magnification increased from 31 to 34 microm/deg, and the f/number remained < or =1 at all ages, suggesting a bright retinal image. A calculated axial eye elongation of 5.4-6.5 microm was sufficient to make the schematic eye 1 D more myopic. The most striking features of the mouse eye were that linear growth was slow but extended far beyond sexual maturity, that the corneal curvature did not increase, and that the prominent lens growth caused a developmental decline of the vitreous chamber depth.

  7. Fully automated, deep learning segmentation of oxygen-induced retinopathy images

    PubMed Central

    Xiao, Sa; Bucher, Felicitas; Wu, Yue; Rokem, Ariel; Lee, Cecilia S.; Marra, Kyle V.; Fallon, Regis; Diaz-Aguilar, Sophia; Aguilar, Edith; Friedlander, Martin; Lee, Aaron Y.

    2017-01-01

    Oxygen-induced retinopathy (OIR) is a widely used model to study ischemia-driven neovascularization (NV) in the retina and to serve in proof-of-concept studies in evaluating antiangiogenic drugs for ocular, as well as nonocular, diseases. The primary parameters that are analyzed in this mouse model include the percentage of retina with vaso-obliteration (VO) and NV areas. However, quantification of these two key variables comes with a great challenge due to the requirement of human experts to read the images. Human readers are costly, time-consuming, and subject to bias. Using recent advances in machine learning and computer vision, we trained deep learning neural networks using over a thousand segmentations to fully automate segmentation in OIR images. While determining the percentage area of VO, our algorithm achieved a similar range of correlation coefficients to that of expert inter-human correlation coefficients. In addition, our algorithm achieved a higher range of correlation coefficients compared with inter-expert correlation coefficients for quantification of the percentage area of neovascular tufts. In summary, we have created an open-source, fully automated pipeline for the quantification of key values of OIR images using deep learning neural networks. PMID:29263301

  8. Mucosal tolerance disruption favors disease progression in an extraorbital lacrimal gland excision model of murine dry eye.

    PubMed

    Guzmán, Mauricio; Keitelman, Irene; Sabbione, Florencia; Trevani, Analía S; Giordano, Mirta N; Galletti, Jeremías G

    2016-10-01

    Dry eye is a highly prevalent immune disorder characterized by a dysfunctional tear film and a Th1/Th17 T cell response at the ocular surface. The specificity of these pathogenic effector T cells remains to be determined, but auto-reactivity is considered likely. However, we have previously shown that ocular mucosal tolerance to an exogenous antigen is disrupted in a scopolamine-induced murine dry eye model and that it is actually responsible for disease progression. Here we report comparable findings in an entirely different murine model of dry eye that involves resection of the extraorbital lacrimal glands but no systemic muscarinic receptor blockade. Upon ocular instillation of ovalbumin, a delayed breakdown in mucosal tolerance to this antigen was observed in excised but not in sham-operated mice, which was mediated by interferon γ- and interleukin 17-producing antigen-specific T cells. Consistently, antigen-specific regulatory T cells were detectable in sham-operated but not in excised mice. As for other models of ocular surface disorders, epithelial activation of the NF-κB pathway by desiccating stress was determinant in the mucosal immune outcome. Underscoring the role of mucosal tolerance disruption in dry eye pathogenesis, its prevention by a topical NF-κB inhibitor led to reduced corneal damage in excised mice. Altogether these results show that surgically originated desiccating stress also initiates an abnormal Th1/Th17 T cell response to harmless exogenous antigens that reach the ocular surface. This event might actually contribute to corneal damage and challenges the conception of dry eye as a strictly autoimmune disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Therapeutic Effect of Human Adipose Tissue-Derived Mesenchymal Stem Cells in Experimental Corneal Failure Due to Limbal Stem Cell Niche Damage.

    PubMed

    Galindo, Sara; Herreras, José M; López-Paniagua, Marina; Rey, Esther; de la Mata, Ana; Plata-Cordero, María; Calonge, Margarita; Nieto-Miguel, Teresa

    2017-10-01

    Limbal stem cells are responsible for the continuous renewal of the corneal epithelium. The destruction or dysfunction of these stem cells or their niche induces limbal stem cell deficiency (LSCD) leading to visual loss, chronic pain, and inflammation of the ocular surface. To restore the ocular surface in cases of bilateral LSCD, an extraocular source of stem cells is needed to avoid dependence on allogeneic limbal stem cells that are difficult to obtain, isolate, and culture. The aim of this work was to test the tolerance and the efficacy of human adipose tissue-derived mesenchymal stem cells (hAT-MSCs) to regenerate the ocular surface in two experimental models of LSCD that closely resemble different severity grades of the human pathology. hAT-MSCs transplanted to the ocular surface of the partial and total LSCD models developed in rabbits were well tolerated, migrated to inflamed tissues, reduced inflammation, and restrained the evolution of corneal neovascularization and corneal opacity. The expression profile of the corneal epithelial cell markers CK3 and E-cadherin, and the limbal epithelial cell markers CK15 and p63 was lost in the LSCD models, but was partially recovered after hAT-MSC transplantation. For the first time, we demonstrated that hAT-MSCs improve corneal and limbal epithelial phenotypes in animal LSCD models. These results support the potential use of hAT-MSCs as a novel treatment of ocular surface failure due to LSCD. hAT-MSCs represent an available, non-immunogenic source of stem cells that may provide therapeutic benefits in addition to reduce health care expenses. Stem Cells 2017;35:2160-2174. © 2017 AlphaMed Press.

  10. A Novel Biomimetic Nanosponge Protects the Retina from the Enterococcus faecalis Cytolysin.

    PubMed

    LaGrow, Austin L; Coburn, Phillip S; Miller, Frederick C; Land, Craig; Parkunan, Salai Madhumathi; Luk, Brian T; Gao, Weiwei; Zhang, Liangfang; Callegan, Michelle C

    2017-01-01

    Intraocular infections are a potentially blinding complication of common ocular surgeries and traumatic eye injuries. Bacterial toxins synthesized in the eye can damage intraocular tissue, often resulting in poor visual outcomes. Enteroccocus faecalis causes blinding infections and is responsible for 8 to 17% of postoperative endophthalmitis cases. These infections are increasingly difficult to treat due to the emergence of multidrug-resistant strains. Virulent E. faecalis isolates secrete a pore-forming bicomponent cytolysin that contributes to retinal tissue damage during endophthalmitis. We hypothesized that a biomimetic nanosponge, which mimics erythrocytes, might adsorb subunits of the cytolysin and reduce retinal damage, protecting vision. To test the efficacy of nanosponges in neutralizing the cytolysin in vitro , hemoglobin release assays were performed on culture supernatants from cytolysin-producing E. faecalis with and without preincubation with nanosponges. Treatment with nanosponges for 30 min reduced hemolytic activity by ~70%. To determine whether nanosponges could neutralize the cytolysin in vivo , electroretinography was performed on mice 24 h after intravitreal injection with cytolysin-containing supernatants treated with nanosponges. Pretreatment of cytolysin-containing supernatants with nanosponges increased the A-wave retention from 12.2% to 65.5% and increased the B-wave retention from 21.0% to 77.0%. Histology revealed that in nanosponge-treated eyes, retinas remained intact and attached, with little to no damage. Rabbit nanosponges were also nontoxic and noninflammatory when injected into mouse eyes. In an experimental murine model of E. faecalis endophthalmitis, injection of nanosponges into the vitreous 6 h after infection with a wild-type cytolysin-producing strain increased A-wave retention from 5.9% to 31% and increased B-wave retention from 12.6% to 27.8%. Together, these results demonstrated that biomimetic nanosponges neutralized cytolysin activity and protected the retinas from damage. These results suggest that this novel strategy might also protect eyes from the activities of pore-forming toxins of other virulent ocular bacterial pathogens. IMPORTANCE Endophthalmitis is a serious, potentially blinding infection that can result in vision loss, leaving a patient with only the ability to count fingers, or it may require enucleation of the globe. The incidence of postoperative endophthalmitis has markedly increased over the past 2 decades, paralleling the rise in ocular surgeries and intravitreal therapies. E. faecalis is a leading cause of infection following ocular procedures, and such infections are increasingly difficult to treat due to multidrug resistance. Cytolysin is the primary virulence factor responsible for retinal tissue damage in E. faecalis eye infections. Treatment of these infections with antibiotics alone does not impede ocular damage and loss of visual function. Pore-forming toxins (PFTs) have been established as major virulence factors in endophthalmitis caused by several bacterial species. These facts establish a critical need for a novel therapy to neutralize bacterial PFTs such as cytolysin. Here, we demonstrate that biomimetic nanosponges neutralize cytolysin, protect the retina, preserve vision, and may provide an adjunct detoxification therapy for bacterial infections.

  11. The EpiOcular™ Eye Irritation Test is the Method of Choice for the In Vitro Eye Irritation Testing of Agrochemical Formulations: Correlation Analysis of EpiOcular Eye Irritation Test and BCOP Test Data According to the UN GHS, US EPA and Brazil ANVISA Classification Schemes.

    PubMed

    Kolle, Susanne N; Rey Moreno, Maria Cecilia; Mayer, Winfried; van Cott, Andrew; van Ravenzwaay, Bennard; Landsiedel, Robert

    2015-07-01

    The Bovine Corneal Opacity and Permeability (BCOP) test is commonly used for the identification of severe ocular irritants (GHS Category 1), but it is not recommended for the identification of ocular irritants (GHS Category 2). The incorporation of human reconstructed tissue model-based tests into a tiered test strategy to identify ocular non-irritants and replace the Draize rabbit eye irritation test has been suggested (OECD TG 405). The value of the EpiOcular™ Eye Irritation Test (EIT) for the prediction of ocular non-irritants (GHS No Category) has been demonstrated, and an OECD Test Guideline (TG) was drafted in 2014. The purpose of this study was to evaluate whether the BCOP test, in conjunction with corneal histopathology (as suggested for the evaluation of the depth of the injury( and/or the EpiOcular-EIT, could be used to predict the eye irritation potential of agrochemical formulations according to the UN GHS, US EPA and Brazil ANVISA classification schemes. We have assessed opacity, permeability and histopathology in the BCOP assay, and relative tissue viability in the EpiOcular-EIT, for 97 agrochemical formulations with available in vivo eye irritation data. By using the OECD TG 437 protocol for liquids, the BCOP test did not result in sufficient correct predictions of severe ocular irritants for any of the three classification schemes. The lack of sensitivity could be improved somewhat by the inclusion of corneal histopathology, but the relative viability in the EpiOcular-EIT clearly outperformed the BCOP test for all three classification schemes. The predictive capacity of the EpiOcular-EIT for ocular non-irritants (UN GHS No Category) for the 97 agrochemical formulations tested (91% sensitivity, 72% specificity and 82% accuracy for UN GHS classification) was comparable to that obtained in the formal validation exercise underlying the OECD draft TG. We therefore conclude that the EpiOcular-EIT is currently the best in vitro method for the prediction of the eye irritation potential of liquid agrochemical formulations. 2015 FRAME.

  12. An Eye on Age-Related Macular Degeneration: The Role of MicroRNAs in Disease Pathology.

    PubMed

    Berber, Patricia; Grassmann, Felix; Kiel, Christina; Weber, Bernhard H F

    2017-02-01

    Age-related macular degeneration (AMD) is the primary cause of blindness in developed countries, and is the third leading cause worldwide. Emerging evidence suggests that beside environmental and genetic factors, epigenetic mechanisms, such as microRNA (miRNA) regulation of gene expression, are relevant to AMD providing an exciting new avenue for research and therapy. MiRNAs are short, non-coding RNAs thought to be imperative for coping with cellular stress. Numerous studies have analyzed miRNA dysregulation in AMD patients, although with varying outcomes. Four studies which profiled dysregulated circulating miRNAs in AMD yielded unique sets, and there is only minimal overlap in ocular miRNA profiling of AMD. Mouse models of AMD, including oxygen-induced retinopathy and laser-induced choroidal neovascularization, showed similarities to some extent with miRNA patterns in AMD. For example, miR-146a is an extensively researched miRNA thought to modulate inflammation, and was found to be upregulated in AMD mice and cellular systems, but also in human AMD retinae and vitreous humor. Similarly, mir-17, miR-125b and miR-155 were dysregulated in multiple AMD mouse models as well as in human AMD plasma or retinae. These miRNAs are thought to regulate angiogenesis, apoptosis, phagocytosis, and inflammation. A promising avenue of research is the modulation of such miRNAs, as the phenotype of AMD mice could be ameliorated with antagomirs or miRNA-mimic treatment. However, before meaningful strides can be made to develop miRNAs as a diagnostic or therapeutic tool, reproducible miRNA profiles need to be established for the various clinical outcomes of AMD.

  13. Induction of Macrophage Chemotaxis by Aortic Extracts from Patients with Marfan Syndrome Is Related to Elastin Binding Protein

    PubMed Central

    Guo, Gao; Gehle, Petra; Doelken, Sandra; Martin-Ventura, José Luis; von Kodolitsch, Yskert; Hetzer, Roland; Robinson, Peter N.

    2011-01-01

    Marfan syndrome is an autosomal dominantly inherited disorder of connective tissue with prominent skeletal, ocular, and cardiovascular manifestations. Aortic aneurysm and dissection are the major determinants of premature death in untreated patients. In previous work, we showed that extracts of aortic tissues from the mgR mouse model of Marfan syndrome showed increased chemotactic stimulatory activity related to the elastin-binding protein. Aortic samples were collected from 6 patients with Marfan syndrome and 8 with isolated aneurysms of the ascending aorta. Control samples were obtained from 11 organ donors without known vascular or connective tissue diseases. Soluble proteins extracted from the aortic samples of the two patient groups were compared against buffer controls and against the aortic samples from controls with respect to the ability to induce macrophage chemotaxis as measured using a modified Boyden chamber, as well as the reactivity to a monoclonal antibody BA4 against bioactive elastin peptides using ELISA. Samples from Marfan patients displayed a statistically significant increase in chemotactic inductive activity compared to control samples. Additionally, reactivity to BA4 was significantly increased. Similar statistically significant increases were identified for the samples from patients with idiopathic thoracic aortic aneurysm. There was a significant correlation between the chemotactic index and BA4 reactivity, and the increases in chemotactic activity of extracts from Marfan patients could be inhibited by pretreatment with lactose, VGVAPG peptides, or BA4, which indicates the involvement of EBP in mediating the effects. Our results demonstrate that aortic extracts of patients with Marfan syndrome can elicit macrophage chemotaxis, similar to our previous study on aortic extracts of the mgR mouse model of Marfan syndrome (Guo et al., Circulation 2006; 114:1855-62). PMID:21647416

  14. Effects of ocular aberrations on contrast detection in noise.

    PubMed

    Liang, Bo; Liu, Rong; Dai, Yun; Zhou, Jiawei; Zhou, Yifeng; Zhang, Yudong

    2012-08-06

    We use adaptive optics (AO) techniques to manipulate the ocular aberrations and elucidate the effects of these ocular aberrations on contrast detection in a noisy background. The detectability of sine wave gratings at frequencies of 4, 8, and 16 circles per degree (cpd) was measured in a standard two-interval force-choice staircase procedure against backgrounds of various levels of white noise. The observer's ocular aberrations were either corrected with AO or left uncorrected. In low levels of external noise, contrast detection thresholds are always lowered by AO correction, whereas in high levels of external noise, they are generally elevated by AO correction. Higher levels of external noise are required to make this threshold elevation observable when signal spatial frequencies increase from 4 to 16 cpd. The linear-amplifier-model fit shows that mostly sampling efficiency and equivalent noise both decrease with AO correction. Our findings indicate that ocular aberrations could be beneficial for contrast detection in high-level noises. The implications of these findings are discussed.

  15. In vivo photoacoustic imaging of chorioretinal oxygen gradients

    NASA Astrophysics Data System (ADS)

    Hariri, Ali; Wang, Junxin; Kim, Yeji; Jhunjhunwala, Anamik; Chao, Daniel L.; Jokerst, Jesse V.

    2018-03-01

    Chorioretinal imaging has a crucial role for the patients with chorioretinal vascular diseases, such as neovascular age-related macular degeneration. Imaging oxygen gradients in the eye could better diagnose and treat ocular diseases. Here, we describe the use of photoacoustic ocular imaging (PAOI) in measuring chorioretinal oxygen saturation (CR - sO2) gradients in New Zealand white rabbits (n = 5) with ocular ischemia. We observed good correlation (R2 = 0.98) between pulse oximetry and PAOI as a function of different oxygen percentages in inhaled air. We then used an established ocular ischemia model in which intraocular pressure is elevated to constrict ocular blood flow, and notice a positive correlation (R2 = 0.92) between the injected volume of phosphate buffered saline (PBS) and intraocular pressure (IOP) as well as a negative correlation (R2 = 0.98) between CR - sO2 and injected volume of PBS. The CR - sO2 was measured before (baseline), during (ischemia), and after the infusion (600-μL PBS). The ischemia-reperfusion model did not affect the measurement of the sO2 using a pulse oximeter on the animal's paw, but the chorioretinal PAOI signal showed a nearly sixfold decrease in CR - sO2 (n = 5, p = 0.00001). We also observe a sixfold decrease in CR - sO2 after significant elevation of IOP during ischemia, with an increase close to baseline during reperfusion. These data suggest that PAOI can detect changes in chorioretinal oxygenation and may be useful for application to imaging oxygen gradients in ocular disease.

  16. Ectopic vesicular glutamate release at the optic nerve head and axon loss in mouse experimental glaucoma.

    PubMed

    Fu, Christine T; Sretavan, David W

    2012-11-07

    Although clinical and experimental observations indicate that the optic nerve head (ONH) is a major site of axon degeneration in glaucoma, the mechanisms by which local retinal ganglion cell (RGC) axons are injured and damage spreads among axons remain poorly defined. Using a laser-induced ocular hypertension (LIOH) mouse model of glaucoma, we found that within 48 h of intraocular pressure elevation, RGC axon segments within the ONH exhibited ectopic accumulation and colocalization of multiple components of the glutamatergic presynaptic machinery including the vesicular glutamate transporter VGLUT2, several synaptic vesicle marker proteins, glutamate, the soluble N-ethylmaleimide-sensitive factor attachment protein receptor complex and active zone cytomatrix components, as well as ultrastructurally identified, synaptophysin-containing vesicles. Ectopic vesicle exocytosis and glutamate release were detected in acute preparations of the LIOH ONH. Immunolocalization and analysis using the ionotropic receptor channel-permeant cation agmatine indicated that ONH axon segments and glia expressed glutamate receptors, and these receptors were more active after LIOH compared with controls. Pharmacological antagonism of glutamate receptors and neuronal activity resulted in increased RGC axon sparing in vivo. Furthermore, in vivo RGC-specific genetic disruption of the vesicular glutamate transporter VGLUT2 or the obligatory NMDA receptor subunit NR1 promoted axon survival in experimental glaucoma. As the inhibition of ectopic glutamate vesicular release or glutamate receptivity can independently modify the severity of RGC axon loss, synaptic release mechanisms may provide useful therapeutic entry points into glaucomatous axon degeneration.

  17. Dry eye symptoms align more closely to non-ocular conditions than to tear film parameters.

    PubMed

    Galor, Anat; Felix, Elizabeth R; Feuer, William; Shalabi, Nabeel; Martin, Eden R; Margolis, Todd P; Sarantopoulos, Constantine D; Levitt, Roy C

    2015-08-01

    To evaluate the relationship between dry eye symptoms, non-ocular conditions and tear film parameters. Cross-sectional study. The study population consisted of patients who were seen in the Miami Veterans Affairs eye clinic. Patients filled out standardised questionnaires assessing dry eye symptoms (dry eye questionnaire 5 (DEQ5) and ocular surface disease index (OSDI)), non-ocular pain, depression and post-traumatic stress disorder (PTSD), and also underwent measurement of tear film parameters. Correlations between dry eye symptoms and non-ocular conditions as compared with tear film parameters. 136 patients with a mean age of 65 (SD 11) years participated in the study. All correlations between the dry eye questionnaire scores (DEQ5 and OSDI) and (A) self-reported non-ocular pain measures (numerical rating scale and pain history), (B) depression and (C) PTSD were significant and moderate in strength (Pearson's coefficient 0.24 to 0.60, p<0.01 for all). All correlations between the dry eye questionnaires and tear film measures were weak (Pearson's coefficient -0.10 to 0.18) and most were not significant. Multivariable linear regression analyses revealed that PTSD and non-ocular pain more closely associated with dry eye symptoms than did tear film parameters. Specifically, non-ocular pain and PTSD accounted for approximately 36% of the variability in DEQ5 scores (R=0.60) and approximately 40% of variability in OSDI scores (R=0.64). Of note, none of the tear parameters remained significantly associated with dry eye symptoms in either model. Dry eye symptoms more closely align to non-ocular pain, depression and PTSD than to tear film parameters. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  18. The EpiOcular Eye Irritation Test (EIT) for hazard identification and labelling of eye irritating chemicals: protocol optimisation for solid materials and the results after extended shipment.

    PubMed

    Kaluzhny, Yulia; Kandárová, Helena; Handa, Yuki; DeLuca, Jane; Truong, Thoa; Hunter, Amy; Kearney, Paul; d'Argembeau-Thornton, Laurence; Klausner, Mitchell

    2015-05-01

    The 7th Amendment to the EU Cosmetics Directive and the EU REACH Regulation have reinforced the need for in vitro ocular test methods. Validated in vitro ocular toxicity tests that can predict the human response to chemicals, cosmetics and other consumer products are required for the safety assessment of materials that intentionally, or inadvertently, come into contact with the eye. The EpiOcular Eye Irritation Test (EIT), which uses the normal human cell-based EpiOcular™ tissue model, was developed to address this need. The EpiOcular-EIT is able to discriminate, with high sensitivity and accuracy, between ocular irritant/corrosive materials and those that require no labelling. Although the original EpiOcular-EIT protocol was successfully pre-validated in an international, multicentre study sponsored by COLIPA (the predecessor to Cosmetics Europe), data from two larger studies (the EURL ECVAM-COLIPA validation study and an independent in-house validation at BASF SE) resulted in a sensitivity for the protocol for solids that was below the acceptance criteria set by the Validation Management Group (VMG) for eye irritation, and indicated the need for improvement of the assay's sensitivity for solids. By increasing the exposure time for solid materials from 90 minutes to 6 hours, the optimised EpiOcular-EIT protocol achieved 100% sensitivity, 68.4% specificity and 84.6% accuracy, thereby meeting all the acceptance criteria set by the VMG. In addition, to satisfy the needs of Japan and the Pacific region, the EpiOcular-EIT method was evaluated for its performance after extended shipment and storage of the tissues (4-5 days), and it was confirmed that the assay performs with similar levels of sensitivity, specificity and reproducibility in these circumstances. 2015 FRAME.

  19. Bevacizumab and Panretinal photocoagulation protect against ocular hypertension after posterior subtenon injection of triamcinolone acetonide for diabetic macular edema.

    PubMed

    Hsieh, Yi-Ting; Yang, Chung-May; Chang, Shu-Hui

    2017-08-01

    To analyze the prognostic factors for ocular hypertension after posterior subtenon injection of triamcinolone acetonide (PSTA) for the treatment of diabetic macular edema (DME). Patients who received PSTA for DME from January 2006 to December 2011 were enrolled retrospectively and were followed until December 2012 in one hospital. Modified Cox regression models were used to analyze the factors associated with ocular hypertension, which was defined as an intraocular pressure>21 mmHg after PSTA. A total of 180 PSTA injections were given to 114 eyes from 73 adults with DME. During a mean follow-up of 50.4 weeks after each injection, ocular hypertension occurred in 20.6% of injections (28.1% of eyes). Treatment-naïve patients with proliferative diabetic retinopathy (PDR) had a higher risk of ocular hypertension after PSTA than those with nonproliferative diabetic retinopathy (NPDR) [hazard ratio (HR)=3.255, p=0.030]. Intravitreal injection of bevacizumab (IVB) before PSTA had a significant effect in lowering the risk of ocular hypertension after PSTA in patients with PDR who had received panretinal photocoagulation (PRP) (HR=0.107, p=0.035). Both prompt PRP and IVB following PSTA had a protective effect against ocular hypertension in treatment-naïve patients with PDR (HR=0.086, p=0.0002 and HR=0.155, p=0.049, respectively). Treatment-naïve patients with PDR had a higher risk of ocular hypertension after PSTA than those with NPDR. Bevacizumab and prompt PRP both had a protective effect against ocular hypertension after PSTA in patients with PDR. Copyright © 2016. Published by Elsevier B.V.

  20. Profile of ocular trauma in industries-related hospital.

    PubMed

    Shashikala, P; Sadiqulla, Mohammed; Shivakumar, D; Prakash, K H

    2013-05-01

    Ocular trauma is a worldwide cause of visual morbidity, a significant proportion of which occurs in the industrial workplace and includes a spectrum of simple ocular surface foreign bodies, abrasions to devastating perforating injuries causing blindness. Being preventable is of social and medical concern. A prospective case series study, to know the profile of ocular trauma at a hospital caters exclusively to factory employees and their families, to co-relate their demographic and clinical profile and to identify the risk factors. Patients with ocular trauma who presented at ESIC Model hospital, Rajajinagar, Bangalore, from June 2010 to May 2011 were taken a detailed demographic data, nature and cause of injury, time interval between the time of injury and presentation along with any treatment received. Ocular evaluation including visual acuity, anterior and posterior segment findings, intra-ocular pressure and gonio-scopy in closed globe injuries, X-rays for intraocular foreign body, B-scan and CT scan were done. Data analyzed as per the ocular trauma classification group. The rehabilitation undertaken medically or surgically was analyzed. At follow-up, the final best corrected visual acuity was noted. A total of 306 cases of ocular trauma were reported; predominantly in 20-40 year age group (72.2%) and in men (75%). The work place related cases were 50.7%and of these, fall of foreign bodies led the list. Visual prognosis was poorer in road traffic accidents rather than work place injuries owing to higher occurrence of open globe injuries and optic neuropathy. Finally, 11% of injured cases ended up with poor vision. Targeting groups most at risk, providing effective eye protection, and developing workplace safety cultures may together reduce occupational eye injuries.

  1. (Pro)renin receptor: Involvement in diabetic retinopathy and development of molecular targeted therapy.

    PubMed

    Kanda, Atsuhiro; Ishida, Susumu

    2018-03-25

    The renin-angiotensin system (RAS), a crucial regulator of systemic blood pressure (circulatory RAS), plays distinct roles in pathological angiogenesis and inflammation in various organs (tissue RAS), such as diabetic microvascular complications. Using ocular clinical samples and animal disease models, we elucidated molecular mechanisms in which tissue RAS excites the expression of vascular endothelial growth factor (VEGF)-A responsible for retinal inflammation and angiogenesis, the two major pathological events in diabetic retinopathy (DR). Furthermore, we showed the involvement of (pro)renin receptor [(P)RR] in retinal RAS activation and its concurrent intracellular signal transduction (e.g., extracellular signal-regulated kinase); namely, the (P)RR-induced dual pathogenic bioactivity referred to as the receptor-associated prorenin system. Indeed, neovascular endothelial cells in the fibrovascular tissue collected from eyes with proliferative DR were immunoreactive for the receptor-associated prorenin system components including prorenin, (P)RR, phosphorylated extracellular signal-regulated kinase and VEGF-A. Protein levels of soluble (P)RR increased with its positive correlations with prorenin, renin enzymatic activity and VEGF in the vitreous of proliferative DR eyes, suggesting a close link between (P)RR and VEGF-A-driven angiogenic activity. Furthermore, we revealed an unsuspected, PAPS-independent role of (P)RR in glucose-induced oxidative stress. Recently, we developed an innovative single-strand ribonucleic acid interference molecule selectively targeting human and mouse (P)RR, and confirmed its efficacy in suppressing diabetes-induced retinal inflammation in mice. Our data using clinical samples and animal models suggested the significant implication of (P)RR in the pathogenesis of DR, and the potential usefulness of the ribonucleic acid interference molecule as a therapeutic agent to attenuate ocular inflammation and angiogenesis. © 2018 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd.

  2. What We Have Learned From the Ocular Hypertension Treatment Study.

    PubMed

    Gordon, Mae O; Kass, Michael A

    2018-05-01

    To identify results from the Ocular Hypertension Study that can aid patients and clinicians to make evidence-based decisions about the management of ocular hypertension. Perspective. At 60 months, the cumulative frequency of developing primary open-angle glaucoma (POAG) was 4.4% in the medication group and 9.5% in the observation group (hazard ratio for medication, 0.40; 95% confidence interval [CI], 0.27-0.59; P < .0001). At 13 years the cumulative proportion of participants who developed POAG was 0.22 (95% CI 0.19-0.25) in the original observation group and 0.16 (95% CI 0.13-0.19) in the original medication group (complementary log-log x 2 P = .009). A 5-factor model (older age, higher IOP, thinner central corneal thickness, larger cup-to-disc ratio, and higher visual field pattern standard deviation) separated participants at high and low risk of developing POAG. Clinicians and patients can make evidence-based decisions about the management of ocular hypertension using the risk model and considering patient age, medical status, life expectancy, and personal preference. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Proteolytic processing of connective tissue growth factor in normal ocular tissues and during corneal wound healing.

    PubMed

    Robinson, Paulette M; Smith, Tyler S; Patel, Dilan; Dave, Meera; Lewin, Alfred S; Pi, Liya; Scott, Edward W; Tuli, Sonal S; Schultz, Gregory S

    2012-12-13

    Connective tissue growth factor (CTGF) is a fibrogenic cytokine that is up-regulated by TGF-β and mediates most key fibrotic actions of TGF-β, including stimulation of synthesis of extracellular matrix and differentiation of fibroblasts into myofibroblasts. This study addresses the role of proteolytic processing of CTGF in human corneal fibroblasts (HCF) stimulated with TGF-β, normal ocular tissues and wounded corneas. Proteolytic processing of CTGF in HCF cultures, normal animal eyes, and excimer laser wounded rat corneas were examined by Western blot. The identity of a 21-kDa band was determined by tandem mass spectrometry, and possible alternative splice variants of CTGF were assessed by 5' Rapid Amplification of cDNA Ends (RACE). HCF stimulated by TGF-β contained full length 38-kDa CTGF and fragments of 25, 21, 18, and 13 kDa, while conditioned medium contained full length 38- and a 21-kDa fragment of CTGF that contained the middle "hinge" region of CTGF. Fragmentation of recombinant CTGF incubated in HCF extracts was blocked by the aspartate protease inhibitor, pepstatin. Normal mouse, rat, and rabbit whole eyes and rabbit ocular tissues contained abundant amounts of C-terminal 25- and 21-kDa fragments and trace amounts of 38-kDa CTGF, although no alternative transcripts were detected. All forms of CTGF (38, 25, and 21 kDa) were detected during healing of excimer ablated rat corneas, peaking on day 11. Proteolytic processing of 38-kDa CTGF occurs during corneal wound healing, which may have important implications in regulation of corneal scar formation.

  4. Impact of Chemical Structure on Conjunctival Drug Permeability: Adopting Porcine Conjunctiva and Cassette Dosing for Construction of In Silico Model.

    PubMed

    Ramsay, Eva; Ruponen, Marika; Picardat, Théo; Tengvall, Unni; Tuomainen, Marjo; Auriola, Seppo; Toropainen, Elisa; Urtti, Arto; Del Amo, Eva M

    2017-09-01

    Conjunctiva occupies most of the ocular surface area, and conjunctival permeability affects ocular and systemic drug absorption of topical ocular medications. Therefore, the aim of this study was to obtain a computational in silico model for structure-based prediction of conjunctival drug permeability. This was done by employing cassette dosing and quantitative structure-property relationship (QSPR) approach. Permeability studies were performed ex vivo across fresh porcine conjunctiva and simultaneous dosing of a cassette mixture composed of 32 clinically relevant drug molecules with wide chemical space. The apparent permeability values were obtained using drug concentrations that were quantified with liquid chromatography tandem-mass spectrometry. The experimental data were utilized for building a QSPR model for conjunctival permeability predictions. The conjunctival permeability values presented a 17-fold range (0.63-10.74 × 10 -6 cm/s). The final QSPR had a Q 2 value of 0.62 and predicted the external test set with a mean fold error of 1.34. The polar surface area, hydrogen bond donor, and halogen ratio were the most relevant descriptors for defining conjunctival permeability. This work presents for the first time a predictive QSPR model of conjunctival drug permeability and a comprehensive description on conjunctival isolation from the porcine eye. The model can be used for developing new ocular drugs. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  5. Sex differences in the effect of aging on dry eye disease.

    PubMed

    Ahn, Jong Ho; Choi, Yoon-Hyeong; Paik, Hae Jung; Kim, Mee Kum; Wee, Won Ryang; Kim, Dong Hyun

    2017-01-01

    Aging is a major risk factor in dry eye disease (DED), and understanding sexual differences is very important in biomedical research. However, there is little information about sex differences in the effect of aging on DED. We investigated sex differences in the effect of aging and other risk factors for DED. This study included data of 16,824 adults from the Korea National Health and Nutrition Examination Survey (2010-2012), which is a population-based cross-sectional survey. DED was defined as the presence of frequent ocular dryness or a previous diagnosis by an ophthalmologist. Basic sociodemographic factors and previously known risk factors for DED were included in the analyses. Linear regression modeling and multivariate logistic regression modeling were used to compare the sex differences in the effect of risk factors for DED; we additionally performed tests for interactions between sex and other risk factors for DED in logistic regression models. In our linear regression models, the prevalence of DED symptoms in men increased with age ( R =0.311, P =0.012); however, there was no association between aging and DED in women ( P >0.05). Multivariate logistic regression analyses showed that aging in men was not associated with DED (DED symptoms/diagnosis: odds ratio [OR] =1.01/1.04, each P >0.05), while aging in women was protectively associated with DED (DED symptoms/diagnosis: OR =0.94/0.91, P =0.011/0.003). Previous ocular surgery was significantly associated with DED in both men and women (men/women: OR =2.45/1.77 [DED symptoms] and 3.17/2.05 [DED diagnosis], each P <0.001). Tests for interactions of sex revealed significantly different aging × sex and previous ocular surgery × sex interactions ( P for interaction of sex: DED symptoms/diagnosis - 0.044/0.011 [age] and 0.012/0.006 [previous ocular surgery]). There were distinct sex differences in the effect of aging on DED in the Korean population. DED following ocular surgery also showed sexually different patterns. Age matching and sex matching are strongly recommended in further studies about DED, especially DED following ocular surgery.

  6. Homoisoflavonoids as potential antiangiogenic agents for retinal neovascularization.

    PubMed

    Amin, Sk Abdul; Adhikari, Nilanjan; Gayen, Shovanlal; Jha, Tarun

    2017-11-01

    A number of people worldwide have been suffering from ocular neovascularization that may be treated by a variety of drugs but these may possess adverse effects. Therefore, small antiangiogenic molecules with higher potency and lower toxic effects are intended. However, homoisoflavonoids of natural origin show the potential antiangiogenic effect in ocular neovascularization. These homoisoflavonoids are judged quantitatively in terms of statistical validation through multi-chemometric modeling approaches for the betterment and refinement of their structures required for higher antiangiogenic activity targeted to ocular neovascularization. These approaches may be utilized to design better antiangiogenic homoisoflavonoids. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. Glycerogelatin-based ocular inserts of aceclofenac: physicochemical, drug release studies and efficacy against prostaglandin E₂-induced ocular inflammation.

    PubMed

    Mathurm, Manish; Gilhotra, Ritu Mehra

    2011-01-01

    An attempt has been made in the present study to formulate soluble ocular inserts of aceclofenac to facilitate the bioavailability of the drug into the eye, as no eye drop solution could be formulated. Glycero-gelatin ocular inserts/films were prepared and physicochemical parameters and drug release profiles of glycerol-gelatin films of aceclofenac were compared with surface cross-linked films of similar compositions. Ocular irritation of the developed formulation was also checked by HET-CAM test and efficacy of the developed formulation against prostaglandin-induced ocular inflammation in rabbit eye was determined. The non-cross-linked films showed poor mechanical, physicochemical properties, and very little potential of sustaining drug release, however cross-linking the films enhanced tensile strength by 70%, but elasticity decreased by 95%. The cross-linked ocular inserts showed less swelling than non-cross-linked. Formulation AF8 (20% gelatin and 70% glycerin, treated by cross-linker for 1 h) demonstrated the longest drug release for 24 h. As per the kinetic models all films showed a constant drug release with Higuchi diffusion mechanism. Formulation was found to be practically non-irritant. The optimized formulation was tested and compared with eye drops of aceclofenac for anti-inflammatory activity in rabbits against PGE₂-induced inflammation. In vivo studies with developed formulation indicated a significant inhibition of PGE₂-induced PMN migration as compared to eye drops. In conclusion, ocular inserts of aceclofenac was found promising as it achieved sustained drug release and better pharmacodynamic activity.

  8. VEGF-A165b Is Cytoprotective and Antiangiogenic in the Retina

    PubMed Central

    Magnussen, Anette L.; Rennel, Emma S.; Hua, Jing; Bevan, Heather S.; Long, Nicholas Beazley; Lehrling, Christina; Gammons, Melissa; Floege, Juergen; Harper, Steven J.; Agostini, Hansjürgen T.; Bates, David O.; Churchill, Amanda J.

    2010-01-01

    Purpose. A number of key ocular diseases, including diabetic retinopathy and age-related macular degeneration, are characterized by localized areas of epithelial or endothelial damage, which can ultimately result in the growth of fragile new blood vessels, vitreous hemorrhage, and retinal detachment. VEGF-A165, the principal neovascular agent in ocular angiogenic conditions, is formed by proximal splice site selection in its terminal exon 8. Alternative splicing of this exon results in an antiangiogenic isoform, VEGF-A165b, which is downregulated in diabetic retinopathy. Here the authors investigate the antiangiogenic activity of VEGF165b and its effect on retinal epithelial and endothelial cell survival. Methods. VEGF-A165b was injected intraocularly in a mouse model of retinal neovascularization (oxygen-induced retinopathy [OIR]). Cytotoxicity and cell migration assays were used to determine the effect of VEGF-A165b. Results. VEGF-A165b dose dependently inhibited angiogenesis (IC50, 12.6 pg/eye) and retinal endothelial migration induced by 1 nM VEGF-A165 across monolayers in culture (IC50, 1 nM). However, it also acts as a survival factor for endothelial cells and retinal epithelial cells through VEGFR2 and can stimulate downstream signaling. Furthermore, VEGF-A165b injection, while inhibiting neovascular proliferation in the eye, reduced the ischemic insult in OIR (IC50, 2.6 pg/eye). Unlike bevacizumab, pegaptanib did not interact directly with VEGF-A165b. Conclusions. The survival effects of VEGF-A165b signaling can protect the retina from ischemic damage. These results suggest that VEGF-A165b may be a useful therapeutic agent in ischemia-induced angiogenesis and a cytoprotective agent for retinal pigment epithelial cells. PMID:20237249

  9. Decreased reactivation of a herpes simplex virus type 1 (HSV-1) latency associated transcript (LAT) mutant using the in vivo mouse UV-B model of induced reactivation

    PubMed Central

    BenMohamed, Lbachir; Osorio, Nelson; Srivastava, Ruchi; Khan, Arif A.; Simpson, Jennifer L.; Wechsler, Steven L.

    2015-01-01

    Blinding ocular herpetic disease in humans is due to herpes simplex virus type 1 (HSV-1) reactivations from latency, rather than to primary acute infection. The cellular and molecular mechanisms that control the HSV-1 latency-reactivation cycle remain to be fully elucidated. The aim of this study was to determine if reactivation of the HSV-1 latency associated transcript (LAT) deletion mutant (dLAT2903) was impaired in this model, as it is in the rabbit model of induced and spontaneous reactivation and in the explant TG induced reactivation model in mice. The eyes of mice latently infected with wild type HSV-1 strain McKrae (LAT(+) virus) or dLAT2903 (LAT(−) virus) were irradiated with UV-B and reactivation was determined. We found that compared to LAT(−) virus, LAT(+) virus reactivated at a higher rate as determined by shedding of virus in tears on days 3 to 7 after UV-B treatment. Thus, the UV-B induced reactivation model of HSV-1 appears to be a useful small animal model for studying the mechanisms involved in how LAT enhances the HSV-1 reactivation phenotype. The utility of the model for investigating the immune evasion mechanisms regulating the HSV-1 latency/reactivation cycle and for testing the protective efficacy of candidate therapeutic vaccines and drugs are discussed. PMID:26002839

  10. Non-contact measurement of linear external dimensions of the mouse eye

    PubMed Central

    Wisard, Jeffrey; Chrenek, Micah A.; Wright, Charles; Dalal, Nupur; Pardue, Machelle T.; Boatright, Jeffrey H.; Nickerson, John M.

    2010-01-01

    Biometric analyses of quantitative traits in eyes of mice can reveal abnormalities related to refractive or ocular development. Due to the small size of the mouse eye, highly accurate and precise measurements are needed to detect meaningful differences. We sought a non-contact measuring technique to obtain highly accurate and precise linear dimensions of the mouse eye. Laser micrometry was validated with gauge block standards. Simple procedures to measure eye dimensions on three axes were devised. Mouse eyes from C57BL/6J and rd10 on a C57BL/6J background were dissected and extraocular muscle and fat removed. External eye dimensions of axial length (anterior-posterior (A-P) axis) and equatorial diameter (superior-inferior (S-I) and nasal-temporal (N-T) axes) were obtained with a laser micrometer. Several approaches to prevent or ameliorate evaporation due to room air were employed. The resolution of the laser micrometer was less than 0.77 microns, and it provided accurate and precise non-contact measurements of eye dimensions on three axes. External dimensions of the eye strongly correlated with eye weight. The N-T and S-I dimensions of the eye correlated with each other most closely from among the 28 pair-wise combinations of the several parameters that were collected. The equatorial axis measurements correlated well from the right and left eye of each mouse. The A-P measurements did not correlate or correlated poorly in each pair of eyes. The instrument is well suited for the measurement of enucleated eyes and other structures from most commonly used species in experimental vision research and ophthalmology. PMID:20067806

  11. Non-contact measurement of linear external dimensions of the mouse eye.

    PubMed

    Wisard, Jeffrey; Chrenek, Micah A; Wright, Charles; Dalal, Nupur; Pardue, Machelle T; Boatright, Jeffrey H; Nickerson, John M

    2010-03-30

    Biometric analyses of quantitative traits in eyes of mice can reveal abnormalities related to refractive or ocular development. Due to the small size of the mouse eye, highly accurate and precise measurements are needed to detect meaningful differences. We sought a non-contact measuring technique to obtain highly accurate and precise linear dimensions of the mouse eye. Laser micrometry was validated with gauge block standards. Simple procedures to measure eye dimensions on three axes were devised. Mouse eyes from C57BL/6J and rd10 on a C57BL/6J background were dissected and extraocular muscle and fat removed. External eye dimensions of axial length (anterior-posterior (A-P) axis) and equatorial diameter (superior-inferior (S-I) and nasal-temporal (N-T) axes) were obtained with a laser micrometer. Several approaches to prevent or ameliorate evaporation due to room air were employed. The resolution of the laser micrometer was less than 0.77 microm, and it provided accurate and precise non-contact measurements of eye dimensions on three axes. External dimensions of the eye strongly correlated with eye weight. The N-T and S-I dimensions of the eye correlated with each other most closely from among the 28 pair-wise combinations of the several parameters that were collected. The equatorial axis measurements correlated well from the right and left eye of each mouse. The A-P measurements did not correlate or correlated poorly in each pair of eyes. The instrument is well suited for the measurement of enucleated eyes and other structures from most commonly used species in experimental vision research and ophthalmology. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  12. Thermal safety of ultrasound-enhanced ocular drug delivery: A modeling study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nabili, Marjan, E-mail: mnabili@gwmail.gwu.edu; Geist, Craig, E-mail: cgeist@mfa.gwu.edu, E-mail: zderic@gwu.edu; Zderic, Vesna, E-mail: cgeist@mfa.gwu.edu, E-mail: zderic@gwu.edu

    Purpose: Delivery of sufficient amounts of therapeutic drugs into the eye for treatment of various ocular diseases is often a challenging task. Ultrasound was shown to be effective in enhancing ocular drug delivery in the authors’ previous in vitro and in vivo studies. Methods: The study reported here was designed to investigate the safety of ultrasound application and its potential thermal effects in the eye using PZFlex modeling software. The safety limit in this study was set as a temperature increase of no more than 1.5 °C based on regulatory recommendations and previous experimental safety studies. Acoustic and thermal specifications ofmore » different human eye tissues were obtained from the published literature. The tissues of particular interest in this modeling safety study were cornea, lens, and the location of optic nerve in the posterior eye. Ultrasound application was modeled at frequencies of 400 kHz–1 MHz, intensities of 0.3–1 W/cm{sup 2}, and exposure duration of 5 min, which were the parameters used in the authors’ previous drug delivery experiments. The baseline eye temperature was 37 °C. Results: The authors’ results showed that the maximal tissue temperatures after 5 min of ultrasound application were 38, 39, 39.5, and 40 °C in the cornea, 39.5, 40, 42, and 43 °C in the center of the lens, and 37.5, 38.5, and 39 °C in the back of the eye (at the optic nerve location) at frequencies of 400, 600, 800 kHz, and 1 MHz, respectively. Conclusions: The ocular temperatures reached at higher frequencies were considered unsafe based on current recommendations. At a frequency of 400 kHz and intensity of 0.8 W/cm{sup 2} (parameters shown in the authors’ previous in vivo studies to be optimal for ocular drug delivery), the temperature increase was small enough to be considered safe inside different ocular tissues. However, the impact of orbital bone and tissue perfusion should be included in future modeling efforts to determine the safety of this method in the whole orbit especially regarding potential adverse optic nerve heating at the location of the bone.« less

  13. Simulations of simple Bovine and Homo sapiens outer cortex ocular lens membrane models with a majority concentration of cholesterol.

    PubMed

    Adams, Mark; Wang, Eric; Zhuang, Xiaohong; Klauda, Jeffery B

    2017-11-21

    The lipid composition of bovine and human ocular lens membranes has been probed, and a variety of lipids have been found including phosphatidylcholine (PC), phosphatidylethanolamine (PE), sphingomyelin (SM), and cholesterol (CHOL) with cholesterol being present in particularly high concentrations. In this study, we use the all-atom CHARMM36 force field to simulate binary, ternary, and quaternary mixtures as models of the ocular lens. High concentration of cholesterol, in combination with different and varying diversity of phospholipids (PL) and sphingolipids (SL), affect the structure of the ocular lens lipid bilayer. The following analyses were done for each simulation: surface area per lipid, component surface area per lipid, deuterium order parameters (S CD ), electron density profiles (EDP), membrane thickness, hydrogen bonding, radial distribution functions, clustering, and sterol tilt angle distribution. The S CD show significant bilayer alignment and packing in cholesterol-rich bilayers. The EDP show the transition from liquid crystalline to liquid ordered with the addition of cholesterol. Hydrogen bonds in our systems show the tendency for intramolecular interactions between cholesterol and fully saturated lipid tails for less complex bilayers. But with an increased number of components in the bilayer, the acyl chain of the lipids becomes a less important characteristic, and the headgroup of the lipid becomes more significant. Overall, cholesterol is the driving force of membrane structure of the ocular lens membrane where interactions between cholesterol, PL, and SL determine structure and function of the biomembrane. The goal of this work is to develop a baseline for further study of more physiologically realistic ocular lens lipid membranes. This article is part of a Special Issue entitled: Emergence of Complex Behavior in Biomembranes edited by Marjorie Longo. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Topical Coenzyme Q10 demonstrates mitochondrial-mediated neuroprotection in a rodent model of ocular hypertension.

    PubMed

    Davis, Benjamin Michael; Tian, Kailin; Pahlitzsch, Milena; Brenton, Jonathan; Ravindran, Nivedita; Butt, Gibran; Malaguarnera, Giulia; Normando, Eduardo M; Guo, Li; Cordeiro, M Francesca

    2017-09-01

    Coenzyme Q10 (CoQ10) is a mitochondrial-targeted antioxidant with known neuroprotective activity. Its ocular effects when co-solubilised with α-tocopherol polyethylene glycol succinate (TPGS) were evaluated. In vitro studies confirmed that CoQ10 was significantly protective in different retinal ganglion cell (RGC) models. In vivo studies in Adult Dark Agouti (DA) rats with unilateral surgically-induced ocular hypertension (OHT) treated with either CoQ10/TPGS micelles or TPGS vehicle twice daily for three weeks were performed, following which retinal cell health was assessed in vivo using DARC (Detection of Apoptotic Retinal Cells) and post-mortem with Brn3a histological assessment on whole retinal mounts. CoQ10/TPGS showed a significant neuroprotective effect compared to control with DARC (p<0.05) and Brn3 (p<0.01). Topical CoQ10 appears an effective therapy preventing RGC apoptosis and loss in glaucoma-related models. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Ultraviolet vision in birds: the importance of transparent eye media

    PubMed Central

    Lind, Olle; Mitkus, Mindaugas; Olsson, Peter; Kelber, Almut

    2014-01-01

    Ultraviolet (UV)-sensitive visual pigments are widespread in the animal kingdom but many animals, for example primates, block UV light from reaching their retina by pigmented lenses. Birds have UV-sensitive (UVS) visual pigments with sensitivity maxima around 360–373 nm (UVS) or 402–426 nm (violet-sensitive, VS). We describe how these pigments are matched by the ocular media transmittance in 38 bird species. Birds with UVS pigments have ocular media that transmit more UV light (wavelength of 50% transmittance, λT0.5, 323 nm) than birds with VS pigments (λT0.5, 358 nm). Yet, visual models predict that colour discrimination in bright light is mostly dependent on the visual pigment (UVS or VS) and little on the ocular media. We hypothesize that the precise spectral tuning of the ocular media is mostly relevant for detecting weak UV signals, e.g. in dim hollow-nests of passerines and parrots. The correlation between eye size and UV transparency of the ocular media suggests little or no lens pigmentation. Therefore, only small birds gain the full advantage from shifting pigment sensitivity from VS to UVS. On the other hand, some birds with VS pigments have unexpectedly low UV transmission of the ocular media, probably because of UV blocking lens pigmentation. PMID:24258716

  16. Chitosan-based thermosensitive hydrogel as a promising ocular drug delivery system: preparation, characterization, and in vivo evaluation.

    PubMed

    Chen, Xingwei; Li, Xinru; Zhou, Yanxia; Wang, Xiaoning; Zhang, Yanhui; Fan, Yating; Huang, Yanqing; Liu, Yan

    2012-11-01

    The purpose of this study was to evaluate the feasibility of in situ thermosensitive hydrogel based on chitosan in combination with disodium α-d-Glucose 1-phosphate (DGP) for ocular drug delivery system. Aqueous solution of chitosan/DGP underwent sol-gel transition as temperature increased which was flowing sol at room temperature and then turned into non-flowing hydrogel at physiological temperature. The properties of gels were characterized regarding gelation time, gelation temperature, and morphology. The sol-to-gel phase transition behaviors were affected by the concentrations of chitosan, DGP and the model drug levocetirizine dihydrochloride (LD). The developed hydrogel presented a characteristic of a rapid release at the initial period followed by a sustained release and remarkably enhanced the cornea penetration of LD. The results of ocular irritation demonstrated the excellent ocular tolerance of the hydrogel. The ocular residence time for the hydrogel was significantly prolonged compared with eye drops. The drug-loaded hydrogel produced more effective anti-allergic conjunctivitis effects compared with LD aqueous solution. These results showed that the chitosan/DGP thermosensitive hydrogel could be used as an ideal ocular drug delivery system in terms of the suitable sol-gel transition temperature, mild pH environment in the hydrogel as well as the organic solvent free.

  17. Ultraviolet vision in birds: the importance of transparent eye media.

    PubMed

    Lind, Olle; Mitkus, Mindaugas; Olsson, Peter; Kelber, Almut

    2014-01-07

    Ultraviolet (UV)-sensitive visual pigments are widespread in the animal kingdom but many animals, for example primates, block UV light from reaching their retina by pigmented lenses. Birds have UV-sensitive (UVS) visual pigments with sensitivity maxima around 360-373 nm (UVS) or 402-426 nm (violet-sensitive, VS). We describe how these pigments are matched by the ocular media transmittance in 38 bird species. Birds with UVS pigments have ocular media that transmit more UV light (wavelength of 50% transmittance, λ(T0.5), 323 nm) than birds with VS pigments (λ(T0.5), 358 nm). Yet, visual models predict that colour discrimination in bright light is mostly dependent on the visual pigment (UVS or VS) and little on the ocular media. We hypothesize that the precise spectral tuning of the ocular media is mostly relevant for detecting weak UV signals, e.g. in dim hollow-nests of passerines and parrots. The correlation between eye size and UV transparency of the ocular media suggests little or no lens pigmentation. Therefore, only small birds gain the full advantage from shifting pigment sensitivity from VS to UVS. On the other hand, some birds with VS pigments have unexpectedly low UV transmission of the ocular media, probably because of UV blocking lens pigmentation.

  18. Toxoplasma Gondii Infection of Chicken Embryos Causes Retinal Changes and Modulates HSP90B1 Gene Expression: A Promising Ocular Toxoplasmosis Model.

    PubMed

    Nasaré, Alex M; Tedesco, Roberto C; Cristovam, Priscila C; Cenedese, Marcos A; Galisteo, Andrés J; Andrade, Heitor F; Gomes, José Álvaro P; Guimarães, Érik V; Barbosa, Helene S; Alonso, Luis G

    2015-12-01

    HSP90B1 is a gene that codifies heat shock protein 108 (HSP108) that belongs to a group of proteins induced under stress situation, and it has close relation with the nervous system, especially in the retina. Toxoplasma gondii causes ocular toxoplasmosis that has been associated with a late manifestation of the congenital toxoplasmosis although experimental models show that morphological alterations are already present during embryological development. Here, we used 18 eyes of Gallus domesticus embryos in 7th and 20th embryonic days to establish a model of congenital ocular toxoplasmosis, experimentally infected in its fifth day correlating with HSP90B1 gene expression. Embryos' eyes were histologically evaluated, and gene expression was performed by real-time polymerase chain reaction (PCR). Our data showed parasite present in the choroid, unusual migration of retinal pigment epithelium, and chorioretinal scars, and a tendency to a lower expression of the HSP90B1 gene upon experimental infection. This is a promising model to better understand T. gondii etiopathogeny.

  19. Effects of Quercetin in a Mouse Model of Experimental Dry Eye.

    PubMed

    Oh, Ha Na; Kim, Chae Eun; Lee, Ji Hyun; Yang, Jae Wook

    2015-09-01

    To evaluate the effect of treatment with quercetin in a mouse model of dry eye. 0.5% quercetin eye drops were prepared and an experimental dry eye model was induced in NOD.B10.H2(b) mice through desiccation stress. The mice were divided into 3 groups according to the treatment regimen: the DS 10D group (desiccation stress for 10 days), the phosphate buffered saline (PBS) group, and the quercetin group. Tear volumes and corneal irregularity scores were measured at 3, 5, 7, and 10 days after treatment. Hematoxylin and eosin staining, periodic acid-Schiff staining, and immunohistochemistry were performed at the end of the experiment. The quercetin group had increased tear volumes (0.2 ± 0.03 μm, P < 0.05) and decreased corneal irregularity scores (0.7 ± 0.6, P < 0.05) compared with those of the PBS group. On histological examination, the quercetin group exhibited restored smooth corneal surfaces without detaching corneal epithelial cells and had significantly increased goblet cell density (13.8 ± 0.8 cells/0.1 mm², P < 0.05) compared with the PBS group. The quercetin group also exhibited significant declines of MMP-2 (5.1-fold of control, P < 0.01), MMP-9 (2.5-fold of control, P < 0.01), ICAM-1 (2.2-fold of control, P < 0.01), and VCAM-1 (2.3-fold of control, P < 0.01) levels in the lacrimal gland than did the PBS group. Topical application of quercetin can help to improve ocular surface disorders of dry eye not only by decreasing the corneal surface irregularity but also by increasing the tear volume and goblet cell density. Moreover, quercetin has the potential for use in eye drops as a treatment for dry eye disease with antiinflammatory effects on the lacrimal functional unit.

  20. Retinal accumulation of zeaxanthin, lutein, and β-carotene in mice deficient in carotenoid cleavage enzymes.

    PubMed

    Li, Binxing; Vachali, Preejith P; Shen, Zhengqing; Gorusupudi, Aruna; Nelson, Kelly; Besch, Brian M; Bartschi, Alexis; Longo, Simone; Mattinson, Ty; Shihab, Saeed; Polyakov, Nikolay E; Suntsova, Lyubov P; Dushkin, Alexander V; Bernstein, Paul S

    2017-06-01

    Carotenoid supplementation can prevent and reduce the risk of age-related macular degeneration (AMD) and other ocular disease, but until now, there has been no validated and well-characterized mouse model which can be employed to investigate the protective mechanism and relevant metabolism of retinal carotenoids. β-Carotene oxygenases 1 and 2 (BCO1 and BCO2) are the only two carotenoid cleavage enzymes found in animals. Mutations of the bco2 gene may cause accumulation of xanthophyll carotenoids in animal tissues, and BCO1 is involved in regulation of the intestinal absorption of carotenoids. To determine whether or not mice deficient in BCO1 and/or BCO2 can serve as a macular pigment mouse model, we investigated the retinal accumulation of carotenoids in these mice when fed with zeaxanthin, lutein, or β-carotene using an optimized carotenoid feeding method. HPLC analysis revealed that all three carotenoids were detected in sera, livers, retinal pigment epithelium (RPE)/choroids, and retinas of all of the mice, except that no carotenoid was detectable in the retinas of wild type (WT) mice. Significantly higher amounts of zeaxanthin and lutein accumulated in the retinas of BCO2 knockout (bco2 -/- ) mice and BCO1/BCO2 double knockout (bco1 -/- /bco2 -/- ) mice relative to BCO1 knockout (bco1 -/- ) mice, while bco1 -/- mice preferred to take up β-carotene. The levels of zeaxanthin and lutein were higher than β-carotene levels in the bco1 -/- /bco2 -/- retina, consistent with preferential uptake of xanthophyll carotenoids by retina. Oxidative metabolites were detected in mice fed with lutein or zeaxanthin but not in mice fed with β-carotene. These results indicate that bco2 -/- and bco1 -/- /bco2 -/- mice could serve as reasonable non-primate models for macular pigment function in the vertebrate eye, while bco1 -/- mice may be more useful for studies related to β-carotene. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Critical role of caveolin-1 in ocular neovascularization and multitargeted antiangiogenic effects of cavtratin via JNK

    PubMed Central

    Jiang, Yida; Lin, Xianchai; Tang, Zhongshu; Lee, Chunsik; Tian, Geng; Du, Yuxiang; Yin, Xiangke; Ren, Xiangrong; Huang, Lijuan; Ye, Zhimin; Chen, Wei; Zhang, Fan; Mi, Jia; Gao, Zhiqin; Wang, Shasha; Chen, Qishan; Xing, Liying; Wang, Bin; Cao, Yihai; Sessa, William C.; Ju, Rong; Liu, Yizhi; Li, Xuri

    2017-01-01

    Ocular neovascularization is a devastating pathology of numerous ocular diseases and is a major cause of blindness. Caveolin-1 (Cav-1) plays important roles in the vascular system. However, little is known regarding its function and mechanisms in ocular neovascularization. Here, using comprehensive model systems and a cell permeable peptide of Cav-1, cavtratin, we show that Cav-1 is a critical player in ocular neovascularization. The genetic deletion of Cav-1 exacerbated and cavtratin administration inhibited choroidal and retinal neovascularization. Importantly, combined administration of cavtratin and anti–VEGF-A inhibited neovascularization more effectively than monotherapy, suggesting the existence of other pathways inhibited by cavtratin in addition to VEGF-A. Indeed, we found that cavtratin suppressed multiple critical components of pathological angiogenesis, including inflammation, permeability, PDGF-B and endothelial nitric oxide synthase expression (eNOS). Mechanistically, we show that cavtratin inhibits CNV and the survival and migration of microglia and macrophages via JNK. Together, our data demonstrate the unique advantages of cavtratin in antiangiogenic therapy to treat neovascular diseases. PMID:28923916

  2. Incremental cost-effectiveness of laser therapy for choroidal neovascularization associated with histoplasmosis.

    PubMed

    Brown, G C; Brown, M M; Sharma, S; Busbee, B; Brown, H

    2000-01-01

    Laser photocoagulation has been shown in a large clinical trial to be efficacious in reducing the degree of vision loss occurring secondary to choroidal neovascularization (CNV) associated with ocular histoplasmosis. Nevertheless, data are lacking concerning the impact of the therapy on quality of life and its value to stakeholders in health care. Recently, information concerning the utility value of visual states has become available. Accordingly, the authors undertook to ascertain the cost-effectiveness of laser photocoagulation for the treatment of extrafoveal CNV occurring in eyes with ocular histoplasmosis. Design--A computer simulation, econometric model is presented to evaluate the incremental cost-effectiveness of laser photocoagulation therapy, as compared with the natural course of the disease, for the treatment of patients with extrafoveal CNV associated with ocular histoplasmosis. The model applies long-term visual data from previous clinical trials, utility analysis (which reflects patient perceptions of quality of life), decision analysis with Markov modeling, and present value analysis with discounting to account for the time value of money. Outcome measure--Cost per quality-adjusted life-year gained from treatment. Laser photocoagulation therapy for extrafoveal CNV associated with ocular histoplasmosis costs $4167 1999 US dollars (at a 3% discount rate) for each quality-adjusted life-year gained from treatment. Sensitivity analysis shows that changing the discount rate substantially alters the cost-effectiveness, with a value of $1339 at a 0% discount rate and $56,250 at a 10% discount rate. Compared with therapeutic modalities for other disease entities, laser therapy for the treatment of extrafoveal CNV associated with ocular histoplasmosis appears to be a cost-effective treatment from the patient preference-based point of view.

  3. Anatomical manifestations of primary blast ocular trauma observed in a postmortem porcine model.

    PubMed

    Sherwood, Daniel; Sponsel, William E; Lund, Brian J; Gray, Walt; Watson, Richard; Groth, Sylvia L; Thoe, Kimberly; Glickman, Randolph D; Reilly, Matthew A

    2014-02-24

    We qualitatively describe the anatomic features of primary blast ocular injury observed using a postmortem porcine eye model. Porcine eyes were exposed to various levels of blast energy to determine the optimal conditions for future testing. We studied 53 enucleated porcine eyes: 13 controls and 40 exposed to a range of primary blast energy levels. Eyes were preassessed with B-scan and ultrasound biomicroscopy (UBM) ultrasonography, photographed, mounted in gelatin within acrylic orbits, and monitored with high-speed videography during blast-tube impulse exposure. Postimpact photography, ultrasonography, and histopathology were performed, and ocular damage was assessed. Evidence for primary blast injury was obtained. While some of the same damage was observed in the control eyes, the incidence and severity of this damage in exposed eyes increased with impulse and peak pressure, suggesting that primary blast exacerbated these injuries. Common findings included angle recession, internal scleral delamination, cyclodialysis, peripheral chorioretinal detachments, and radial peripapillary retinal detachments. No full-thickness openings of the eyewall were observed in any of the eyes tested. Scleral damage demonstrated the strongest associative tendency for increasing likelihood of injury with increased overpressure. These data provide evidence that primary blast alone (in the absence of particle impact) can produce clinically relevant ocular damage in a postmortem model. The blast parameters derived from this study are being used currently in an in vivo model. We also propose a new Cumulative Injury Score indicating the clinical relevance of observed injuries.

  4. The Harvard angiogenesis story.

    PubMed

    Miller, Joan W

    2014-01-01

    I shall discuss the work of researchers at Harvard Medical School who came together in the early 1990s. Scattered across various Harvard-affiliated hospitals and research centers, these individuals were unified by their interest in ocular neovascularization. Together and separately, they investigated models of ocular neovascularization, exploring tumor angiogenesis in eye development and disease. Copyright © 2014 The Author. Published by Elsevier Inc. All rights reserved.

  5. Corneal Mechanical Thresholds Negatively Associate With Dry Eye and Ocular Pain Symptoms.

    PubMed

    Spierer, Oriel; Felix, Elizabeth R; McClellan, Allison L; Parel, Jean Marie; Gonzalez, Alex; Feuer, William J; Sarantopoulos, Constantine D; Levitt, Roy C; Ehrmann, Klaus; Galor, Anat

    2016-02-01

    To examine associations between corneal mechanical thresholds and metrics of dry eye. This was a cross-sectional study of individuals seen in the Miami Veterans Affairs eye clinic. The evaluation consisted of questionnaires regarding dry eye symptoms and ocular pain, corneal mechanical detection and pain thresholds, and a comprehensive ocular surface examination. The main outcome measures were correlations between corneal thresholds and signs and symptoms of dry eye and ocular pain. A total of 129 subjects participated in the study (mean age 64 ± 10 years). Mechanical detection and pain thresholds on the cornea correlated with age (Spearman's ρ = 0.26, 0.23, respectively; both P < 0.05), implying decreased corneal sensitivity with age. Dry eye symptom severity scores and Neuropathic Pain Symptom Inventory (modified for the eye) scores negatively correlated with corneal detection and pain thresholds (range, r = -0.13 to -0.27, P < 0.05 for values between -0.18 and -0.27), suggesting increased corneal sensitivity in those with more severe ocular complaints. Ocular signs, on the other hand, correlated poorly and nonsignificantly with mechanical detection and pain thresholds on the cornea. A multivariable linear regression model found that both posttraumatic stress disorder (PTSD) score (β = 0.21, SE = 0.03) and corneal pain threshold (β = -0.03, SE = 0.01) were significantly associated with self-reported evoked eye pain (pain to wind, light, temperature) and explained approximately 32% of measurement variability (R = 0.57). Mechanical detection and pain thresholds measured on the cornea are correlated with dry eye symptoms and ocular pain. This suggests hypersensitivity within the corneal somatosensory pathways in patients with greater dry eye and ocular pain complaints.

  6. Corneal Mechanical Thresholds Negatively Associate With Dry Eye and Ocular Pain Symptoms

    PubMed Central

    Spierer, Oriel; Felix, Elizabeth R.; McClellan, Allison L.; Parel, Jean Marie; Gonzalez, Alex; Feuer, William J.; Sarantopoulos, Constantine D.; Levitt, Roy C.; Ehrmann, Klaus; Galor, Anat

    2016-01-01

    Purpose To examine associations between corneal mechanical thresholds and metrics of dry eye. Methods This was a cross-sectional study of individuals seen in the Miami Veterans Affairs eye clinic. The evaluation consisted of questionnaires regarding dry eye symptoms and ocular pain, corneal mechanical detection and pain thresholds, and a comprehensive ocular surface examination. The main outcome measures were correlations between corneal thresholds and signs and symptoms of dry eye and ocular pain. Results A total of 129 subjects participated in the study (mean age 64 ± 10 years). Mechanical detection and pain thresholds on the cornea correlated with age (Spearman's ρ = 0.26, 0.23, respectively; both P < 0.05), implying decreased corneal sensitivity with age. Dry eye symptom severity scores and Neuropathic Pain Symptom Inventory (modified for the eye) scores negatively correlated with corneal detection and pain thresholds (range, r = −0.13 to −0.27, P < 0.05 for values between −0.18 and −0.27), suggesting increased corneal sensitivity in those with more severe ocular complaints. Ocular signs, on the other hand, correlated poorly and nonsignificantly with mechanical detection and pain thresholds on the cornea. A multivariable linear regression model found that both posttraumatic stress disorder (PTSD) score (β = 0.21, SE = 0.03) and corneal pain threshold (β = −0.03, SE = 0.01) were significantly associated with self-reported evoked eye pain (pain to wind, light, temperature) and explained approximately 32% of measurement variability (R = 0.57). Conclusions Mechanical detection and pain thresholds measured on the cornea are correlated with dry eye symptoms and ocular pain. This suggests hypersensitivity within the corneal somatosensory pathways in patients with greater dry eye and ocular pain complaints. PMID:26886896

  7. Calorie restriction (CR) and CR mimetics for the prevention and treatment of age-related eye disorders.

    PubMed

    Kawashima, Motoko; Ozawa, Yoko; Shinmura, Ken; Inaba, Takaaki; Nakamura, Shigeru; Kawakita, Tetsuya; Watanabe, Mitsuhiro; Tsubota, Kazuo

    2013-10-01

    The morbidity of ocular diseases, including macular degeneration, diabetic retinopathy, and dry eye disease, has been gradually increasing worldwide. Because these diseases develop from age-associated ocular dysfunctions, interventions against the aging process itself may be a promising strategy for their management. Among the several approaches to interrupt aging processes, calorie restriction (CR) has been shown to recover and/or slow age-related functional declines in various organs, including the eye. Here, we review interventions against the aging process as potential therapeutic approaches to age-related ocular diseases. The effects of CR and CR mimetics in animal models of age-related eye diseases are explored. Furthermore, we discuss the possibilities of expanding this research to prospective studies to elucidate the molecular mechanisms by which CR and/or CR mimetics preserve ocular functions. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Effect of viscosity on tear drainage and ocular residence time.

    PubMed

    Zhu, Heng; Chauhan, Anuj

    2008-08-01

    An increase in residence time of dry eye medications including artificial tears will likely enhance therapeutic benefits. The drainage rates and the residence time of eye drops depend on the viscosity of the instilled fluids. However, a quantitative understanding of the dependence of drainage rates and the residence time on viscosity is lacking. The current study aims to develop a mathematical model for the drainage of Newtonian fluids and also for power-law non-Newtonian fluids of different viscosities. This study is an extension of our previous study on the mathematical model of tear drainage. The tear drainage model is modified to describe the drainage of Newtonian fluids with viscosities higher than the tear viscosity and power-law non-Newtonian fluids with rheological parameters obtained from fitting experimental data in literature. The drainage rate through canaliculi was derived from the modified drainage model and was incorporated into a tear mass balance to calculate the transients of total solute quantity in ocular fluids and the bioavailability of instilled drugs. For Newtonian fluids, increasing the viscosity does not affect the drainage rate unless the viscosity exceeds a critical value of about 4.4 cp. The viscosity has a maximum impact on drainage rate around a value of about 100 cp. The trends are similar for shear thinning power law fluids. The transients of total solute quantity, and the residence time agrees at least qualitatively with experimental studies. A mathematical model has been developed for the drainage of Newtonian fluids and power-law fluids through canaliculi. The model can quantitatively explain different experimental observations on the effect of viscosity on the residence of instilled fluids on the ocular surface. The current study is helpful for understanding the mechanism of fluid drainage from the ocular surface and for improving the design of dry eye treatments.

  9. Human-computer interfaces applied to numerical solution of the Plateau problem

    NASA Astrophysics Data System (ADS)

    Elias Fabris, Antonio; Soares Bandeira, Ivana; Ramos Batista, Valério

    2015-09-01

    In this work we present a code in Matlab to solve the Problem of Plateau numerically, and the code will include human-computer interface. The Problem of Plateau has applications in areas of knowledge like, for instance, Computer Graphics. The solution method will be the same one of the Surface Evolver, but the difference will be a complete graphical interface with the user. This will enable us to implement other kinds of interface like ocular mouse, voice, touch, etc. To date, Evolver does not include any graphical interface, which restricts its use by the scientific community. Specially, its use is practically impossible for most of the Physically Challenged People.

  10. Refractive index measurement of the mouse crystalline lens using optical coherence tomography

    PubMed Central

    Chakraborty, Ranjay; Lacy, Kip D.; Tan, Christopher C.; Park, Han na; Pardue, Machelle T.

    2014-01-01

    In recent years, there has been a growing interest for using mouse models in refractive development and myopia research. The crystalline lens is a critical optical component of the mouse eye that occupies greater than 50% of the ocular space, and significant increases in thickness with age. However, changes in refractive index of the mouse crystalline lens are less known. In this study, we examined the changes in thickness and refractive index of the mouse crystalline lens for two different strains, wild-type (WT) and a nyx mutant (nob) over the course of normal visual development or after form deprivation. Refractive index and lens thickness measurements were made on ex vivo lens using spectral domain optical coherence tomography (SD-OCT). Comparison of refractive index measurements on 5 standard ball lenses using the SD-OCT and their known refractive indices (manufacturer provided) indicated good precision (intra-class correlation coefficient, 0.998 and Bland-Altman coefficient of repeatability, 0.116) of the SD-OCT to calculate mouse lens refractive index ex vivo. During normal visual development, lens thickness increased significantly with age for three different cohorts of mice, aged 4 (average thickness from both eyes; WT: 1.78 ± 0.03, nob: 1.79 ± 0.08 mm), 10 (WT: 2.02 ± 0.05, nob: 2.01 ± 0.04 mm) and 16 weeks (WT: 2.12 ± 0.06, nob: 2.09 ± 0.06 mm, p<0.001). Lens thickness was not significantly different between the two strains at any age (p=0.557). For mice with normal vision, refractive index for isolated crystalline lenses in nob mice was significantly greater than WT mice (mean for all ages; WT: 1.42 ± 0.01, nob: 1.44 ± 0.001, p<0.001). After 4 weeks of form deprivation to the right eye using a skull-mounted goggling apparatus, a thinning of the crystalline lens was observed in both right and left eyes of goggled animals compared to their naïve controls (average from both the right and the left eye) for both strains (p=0.052). In form deprived mice, lens refractive index was significantly different between the goggled animals and non-goggled naïve controls in nob mice, but not in WT mice (p=0.009). Both eyes of goggled nob mice had significantly greater lens refractive index (goggled, 1.49 ± 0.01; opposite, 1.47 ± 0.03) compared to their naïve controls (1.45 ± 0.02, p<0.05). The results presented here suggest that there are genetic differences in the crystalline lens refractive index of the mouse eye, and that the lens refractive index in mice significantly increase with form deprivation. Research applications requiring precise optical measurements of the mouse eye should take these lens refractive indices into account when interpreting SD-OCT data. PMID:24939747

  11. Genomic locus modulating corneal thickness in the mouse identifies POU6F2 as a potential risk of developing glaucoma

    PubMed Central

    Li, Ying; Wang, Jiaxing; Allingham, R. Rand; Hauser, Michael A.; Wiggs, Janey L.; Geisert, Eldon E.

    2018-01-01

    Central corneal thickness (CCT) is one of the most heritable ocular traits and it is also a phenotypic risk factor for primary open angle glaucoma (POAG). The present study uses the BXD Recombinant Inbred (RI) strains to identify novel quantitative trait loci (QTLs) modulating CCT in the mouse with the potential of identifying a molecular link between CCT and risk of developing POAG. The BXD RI strain set was used to define mammalian genomic loci modulating CCT, with a total of 818 corneas measured from 61 BXD RI strains (between 60–100 days of age). The mice were anesthetized and the eyes were positioned in front of the lens of the Phoenix Micron IV Image-Guided OCT system or the Bioptigen OCT system. CCT data for each strain was averaged and used to QTLs modulating this phenotype using the bioinformatics tools on GeneNetwork (www.genenetwork.org). The candidate genes and genomic loci identified in the mouse were then directly compared with the summary data from a human POAG genome wide association study (NEIGHBORHOOD) to determine if any genomic elements modulating mouse CCT are also risk factors for POAG.This analysis revealed one significant QTL on Chr 13 and a suggestive QTL on Chr 7. The significant locus on Chr 13 (13 to 19 Mb) was examined further to define candidate genes modulating this eye phenotype. For the Chr 13 QTL in the mouse, only one gene in the region (Pou6f2) contained nonsynonymous SNPs. Of these five nonsynonymous SNPs in Pou6f2, two resulted in changes in the amino acid proline which could result in altered secondary structure affecting protein function. The 7 Mb region under the mouse Chr 13 peak distributes over 2 chromosomes in the human: Chr 1 and Chr 7. These genomic loci were examined in the NEIGHBORHOOD database to determine if they are potential risk factors for human glaucoma identified using meta-data from human GWAS. The top 50 hits all resided within one gene (POU6F2), with the highest significance level of p = 10−6 for SNP rs76319873. POU6F2 is found in retinal ganglion cells and in corneal limbal stem cells. To test the effect of POU6F2 on CCT we examined the corneas of a Pou6f2-null mice and the corneas were thinner than those of wild-type littermates. In addition, these POU6F2 RGCs die early in the DBA/2J model of glaucoma than most RGCs. Using a mouse genetic reference panel, we identified a transcription factor, Pou6f2, that modulates CCT in the mouse. POU6F2 is also found in a subset of retinal ganglion cells and these RGCs are sensitive to injury. PMID:29370175

  12. A Method to Prevent Protein Delocalization in Imaging Mass Spectrometry of Non-Adherent Tissues: Application to Small Vertebrate Lens Imaging

    PubMed Central

    Anderson, David M. G.; Floyd, Kyle A.; Barnes, Stephen; Clark, Judy M.; Clark, John I.; Mchaourab, Hassane; Schey, Kevin L.

    2015-01-01

    MALDI imaging requires careful sample preparation to obtain reliable, high quality images of small molecules, peptides, lipids, and proteins across tissue sections. Poor crystal formation, delocalization of analytes, and inadequate tissue adherence can affect the quality, reliability, and spatial resolution of MALDI images. We report a comparison of tissue mounting and washing methods that resulted in an optimized method using conductive carbon substrates that avoids thaw mounting or washing steps, minimizes protein delocalization, and prevents tissue detachment from the target surface. Application of this method to image ocular lens proteins of small vertebrate eyes demonstrates the improved methodology for imaging abundant crystallin protein products. This method was demonstrated for tissue sections from rat, mouse, and zebrafish lenses resulting in good quality MALDI images with little to no delocalization. The images indicate, for the first time in mouse and zebrafish, discrete localization of crystallin protein degradation products resulting in concentric rings of distinct protein contents that may be responsible for the refractive index gradient of vertebrate lenses. PMID:25665708

  13. Quantitative reflection spectroscopy at the human ocular fundus

    NASA Astrophysics Data System (ADS)

    Hammer, Martin; Schweitzer, Dietrich

    2002-01-01

    A new model of the reflection of the human ocular fundus on the basis of the adding-doubling method, an approximate solution of the radiative transport equation, is described. This model enables the calculation of the concentrations of xanthophyll in the retina, of melanin in the retinal pigment epithelium and the choroid, and of haemoglobin in the choroid from fundus reflection spectra. The concentration values found in 12 healthy subjects are in excellent agreement with published data. In individual cases of pathologic fundus alterations, possible benefits to the ophthalmologic diagnostics are demonstrated.

  14. Expression of Olfactory Signaling Genes in the Eye

    PubMed Central

    Velmeshev, Dmitry; Faghihi, Mohammad; Shestopalov, Valery I.; Slepak, Vladlen Z.

    2014-01-01

    Purpose To advance our understanding how the outer eye interacts with its environment, we asked which cellular receptors are expressed in the cornea, focusing on G protein-coupled receptors. Methods Total RNA from the mouse cornea was subjected to next-generation sequencing using the Illumina platform. The data was analyzed with TopHat and CuffLinks software packages. Expression of a representative group of genes detected by RNA-seq was further analyzed by RT-PCR and in situ hybridization using RNAscope technology and fluorescent microscopy. Results We generated more than 46 million pair-end reads from mouse corneal RNA. Bioinformatics analysis revealed that the mouse corneal transcriptome reconstructed from these reads represents over 10,000 gene transcripts. We identified 194 GPCR transcripts, of which 96 were putative olfactory receptors. RT-PCR analysis confirmed the presence of several olfactory receptors and related genes, including olfactory marker protein and the G protein associated with olfaction, Gαolf. In situ hybridization showed that mRNA for olfactory marker protein, Gαolf and possibly some olfactory receptors were found in the corneal epithelial cells. In addition to the corneal epithelium, Gαolf was present in the ganglionic and inner nuclear layers of the retina. One of the olfactory receptors, Olfr558, was present primarily in vessels of the eye co-stained with antibodies against alpha-smooth muscle actin, indicating expression in arterioles. Conclusions Several species of mRNA encoding putative olfactory receptors and related genes are expressed in the mouse cornea and other parts of the eye indicating they may play a role in sensing chemicals in the ocular environment. PMID:24789354

  15. A Novel Biomimetic Nanosponge Protects the Retina from the Enterococcus faecalis Cytolysin

    PubMed Central

    LaGrow, Austin L.; Coburn, Phillip S.; Miller, Frederick C.; Land, Craig; Parkunan, Salai Madhumathi; Luk, Brian T.; Gao, Weiwei; Zhang, Liangfang

    2017-01-01

    ABSTRACT Intraocular infections are a potentially blinding complication of common ocular surgeries and traumatic eye injuries. Bacterial toxins synthesized in the eye can damage intraocular tissue, often resulting in poor visual outcomes. Enteroccocus faecalis causes blinding infections and is responsible for 8 to 17% of postoperative endophthalmitis cases. These infections are increasingly difficult to treat due to the emergence of multidrug-resistant strains. Virulent E. faecalis isolates secrete a pore-forming bicomponent cytolysin that contributes to retinal tissue damage during endophthalmitis. We hypothesized that a biomimetic nanosponge, which mimics erythrocytes, might adsorb subunits of the cytolysin and reduce retinal damage, protecting vision. To test the efficacy of nanosponges in neutralizing the cytolysin in vitro, hemoglobin release assays were performed on culture supernatants from cytolysin-producing E. faecalis with and without preincubation with nanosponges. Treatment with nanosponges for 30 min reduced hemolytic activity by ~70%. To determine whether nanosponges could neutralize the cytolysin in vivo, electroretinography was performed on mice 24 h after intravitreal injection with cytolysin-containing supernatants treated with nanosponges. Pretreatment of cytolysin-containing supernatants with nanosponges increased the A-wave retention from 12.2% to 65.5% and increased the B-wave retention from 21.0% to 77.0%. Histology revealed that in nanosponge-treated eyes, retinas remained intact and attached, with little to no damage. Rabbit nanosponges were also nontoxic and noninflammatory when injected into mouse eyes. In an experimental murine model of E. faecalis endophthalmitis, injection of nanosponges into the vitreous 6 h after infection with a wild-type cytolysin-producing strain increased A-wave retention from 5.9% to 31% and increased B-wave retention from 12.6% to 27.8%. Together, these results demonstrated that biomimetic nanosponges neutralized cytolysin activity and protected the retinas from damage. These results suggest that this novel strategy might also protect eyes from the activities of pore-forming toxins of other virulent ocular bacterial pathogens. IMPORTANCE Endophthalmitis is a serious, potentially blinding infection that can result in vision loss, leaving a patient with only the ability to count fingers, or it may require enucleation of the globe. The incidence of postoperative endophthalmitis has markedly increased over the past 2 decades, paralleling the rise in ocular surgeries and intravitreal therapies. E. faecalis is a leading cause of infection following ocular procedures, and such infections are increasingly difficult to treat due to multidrug resistance. Cytolysin is the primary virulence factor responsible for retinal tissue damage in E. faecalis eye infections. Treatment of these infections with antibiotics alone does not impede ocular damage and loss of visual function. Pore-forming toxins (PFTs) have been established as major virulence factors in endophthalmitis caused by several bacterial species. These facts establish a critical need for a novel therapy to neutralize bacterial PFTs such as cytolysin. Here, we demonstrate that biomimetic nanosponges neutralize cytolysin, protect the retina, preserve vision, and may provide an adjunct detoxification therapy for bacterial infections. PMID:29202038

  16. Differential effects of black currant anthocyanins on diffuser- or negative lens-induced ocular elongation in chicks.

    PubMed

    Iida, Hiroyuki; Nakamura, Yuko; Matsumoto, Hitoshi; Kawahata, Keiko; Koga, Jinichiro; Katsumi, Osamu

    2013-01-01

    To compare the inhibitory effects of 4 different types of black currant anthocyanins (BCAs) on ocular elongation in 2 different chick myopia models. In the first model, diffusers were used to induce form vision deprivation. In the second model, negative (-8D) spherical lenses were used to create a defocused retinal image. Either the diffusers or the -8D lenses were placed on the right eyes of 8-day-old chicks for 4 days. Ocular biometric components were measured using an A-scan ultrasound instrument on the third day after application of either the diffusers or -8D lenses. Interocular differences (globe component dimensions of the right diffuser or eyes covered with -8D lenses minus those of the open left eyes) were considered to evaluate the effect of BCAs. The BCAs used were cyanidin-3-glucoside (C3G), cyanidin-3-rutinoside (C3R), delphinidin-3-rutinoside (D3R), and delphinidin-3-glucoside (D3G). Each anthocyanin was administered intravenously at a dose of 0.027 μmol/kg once a day for 3 days. Compared to the vehicle treatment, C3G and C3R treatments significantly reduced both differential increases (positive values of interocular differences) of the ocular axial length induced by diffusers or -8D lenses (diffusers; C3G, C3R, and control: 0.32±0.051 mm, P<0.05; 0.25±0.034 mm, P<0.01; and 0.52±0.047 mm, -8D lenses; C3G, C3R, and control: 0.25±0.049 mm, P<0.01; 0.17±0.049 mm, P<0.001; and 0.50±0.056 mm). In contrast, compared to vehicle treatment, D3R treatment significantly decreased the differential increases in the ocular axial length only in chicks with myopia induced by -8D lenses (D3R and control: 0.17±0.049 mm and 0.50±0.056 mm, P<0.001). D3G did not inhibit the differential increase in the ocular axial length induced by either diffusers or -8D lenses. This study showed that the 4 tested BCAs had different effects on the 2 different experimental models of myopia.

  17. Safety Profile of Stromal Hydration of Clear Corneal Incisions with Cefuroxime in the Mouse Model.

    PubMed

    Moosajee, Mariya; Tracey-White, Dhani; Harbottle, Richard P; Ferguson, Veronica

    2016-09-01

    The use of sutureless clear corneal incisions (CCIs) for phacoemulsification is an established surgical technique, but the dynamic morphology of the wound and poor construction can lead to an increased risk of postoperative endophthalmitis. Stromal hydration with balanced salt solution (BSS) can improve the self-sealing status. Intracameral cefuroxime has reduced endophthalmitis rates. This study investigates the safety profile of stromal hydration with cefuroxime, as sequestering antibiotic at the wound may potentially provide added protection against infection. MF-1 mice underwent bilateral CCI, followed by stromal hydration with 5 μL of 10 mg/mL cefuroxime, cefuroxime-texas red conjugate (for detection using confocal microscopy), or BSS. Corneas were harvested from 1 h to 12 weeks postoperatively; gross morphology, histology, and apoptotic cell death levels were investigated to determine the safety profile. Bactericidal activity of cefuroxime was assayed using homogenized whole cornea following stromal hydration at 1 h, 24 h, and day 7 against gram-negative Escherichia coli. Cefuroxime stromal hydration did not alter corneal morphology, with no evidence of corneal scarring or vascularization. Corneal histology and levels of apoptosis were minimal and comparable to the BSS groups up to 12 weeks. Confocal microscopy detected cefuroxime-texas red up to 1 week surrounding the corneal wound. Whole corneal tissue homogenates displayed bactericidal activity up to 24 h postoperatively. Stromal hydration of CCI with cefuroxime is safe in mouse corneas. A reservoir of antibiotic at the wound can potentially act as a barrier of defense against infection following cataract and associated ocular surgery.

  18. Arap1 Deficiency Causes Photoreceptor Degeneration in Mice.

    PubMed

    Moshiri, Ala; Humpal, Devin; Leonard, Brian C; Imai, Denise M; Tham, Addy; Bower, Lynette; Clary, Dave; Glaser, Thomas M; Lloyd, K C Kent; Murphy, Christopher J

    2017-03-01

    Small guanosine triphosphatase (GTPase) ADP-ribosylation factors (Arfs) regulate membrane traffic and actin reorganization under the control of GTPase-activating proteins (GAPs). Arap1 is an Arf-directed GAP that inhibits the trafficking of epidermal growth factor receptor (EGFR) to the early endosome, but the diversity of its functions is incompletely understood. The aim of this study was to determine the role of Arap1 in the mammalian retina. Genetically engineered Arap1 knockout mice were screened for ocular abnormalities in the National Institutes of Health Knockout Mouse Production and Phenotyping (KOMP2) Project. Arap1 knockout and wild-type eyes were imaged using optical coherence tomography and fundus photography, and analyzed by immunohistochemistry. Arap1-/- mice develop a normal appearing retina, but undergo photoreceptor degeneration starting at 4 weeks postnatal age. The fundus appearance of mutants is notable for pigmentary changes, optic nerve pallor, vascular attenuation, and outer retinal thinning, reminiscent of retinitis pigmentosa in humans. Immunohistochemical studies suggest the cell death is predominantly in the outer nuclear layer. Functional evaluation of the retina by electroretinography reveals amplitudes are reduced. Arap1 is detected most notably in Müller glia, and not in photoreceptors, implicating a role for Müller glia in photoreceptor survival. Arap1 is necessary for normal photoreceptor survival in mice, and may be a novel gene relevant to human retinal degenerative processes, although its mechanism is unknown. Further studies in this mouse model of retinal degeneration will give insights into the cellular functions and signaling pathways in which Arap1 participates.

  19. Wavelet Representation of the Corneal Pulse for Detecting Ocular Dicrotism

    PubMed Central

    Melcer, Tomasz; Danielewska, Monika E.; Iskander, D. Robert

    2015-01-01

    Purpose To develop a reliable and powerful method for detecting the ocular dicrotism from non-invasively acquired signals of corneal pulse without the knowledge of the underlying cardiopulmonary information present in signals of ocular blood pulse and the electrical heart activity. Methods Retrospective data from a study on glaucomatous and age-related changes in corneal pulsation [PLOS ONE 9(7),(2014):e102814] involving 261 subjects was used. Continuous wavelet representation of the signal derivative of the corneal pulse was considered with a complex Gaussian derivative function chosen as mother wavelet. Gray-level Co-occurrence Matrix has been applied to the image (heat-maps) of CWT to yield a set of parameters that can be used to devise the ocular dicrotic pulse detection schemes based on the Conditional Inference Tree and the Random Forest models. The detection scheme was first tested on synthetic signals resembling those of a dicrotic and a non-dicrotic ocular pulse before being used on all 261 real recordings. Results A detection scheme based on a single feature of the Continuous Wavelet Transform of the corneal pulse signal resulted in a low detection rate. Conglomeration of a set of features based on measures of texture (homogeneity, correlation, energy, and contrast) resulted in a high detection rate reaching 93%. Conclusion It is possible to reliably detect a dicrotic ocular pulse from the signals of corneal pulsation without the need of acquiring additional signals related to heart activity, which was the previous state-of-the-art. The proposed scheme can be applied to other non-stationary biomedical signals related to ocular dynamics. PMID:25906236

  20. Mouse Retinal Pigmented Epithelial Cell Lines retain their phenotypic characteristics after transfection with Human Papilloma Virus: A new tool to further the study of RPE biology

    PubMed Central

    Catanuto, Paola; Espinosa-Heidmann, Diego; Pereira-Simon, Simone; Sanchez, Patricia; Salas, Pedro; Hernandez, Eleut; Cousins, Scott W.; Elliot, Sharon J.

    2009-01-01

    Development of immortalized mouse retinal pigmented epithelial cell (RPE) lines that retain many of their in vivo phenotypic characteristics, would aid in studies of ocular diseases including age related macular degeneration (AMD). RPE cells were isolated from 16 month old (estrogen receptor knockout) ERKOα and ERKOβ mice and their C57Bl/6 wild type littermates. RPE65 and cellular retinaldehyde binding protein (CRALBP) expression, in vivo markers of RPE cells, were detected by real-time RT-PCR and western analysis. We confirmed the presence of epithelial cell markers, ZO1, cytokeratin 8 and 18 by immunofluorescence staining. In addition, we confirmed the distribution of actin filaments and the expression of ezrin. To develop cell lines, RPE cells were isolated, propagated and immortalized using human papilloma virus (HPV) 16 (E6/E7). RPE-specific markers and morphology were assessed before and after immortalization. In wildtype littermate controls, there was no evidence of any alterations in the parameters that we examined including MMP-2, TIMP-2, collagen type IV, and estrogen receptor (ER) α and ERβ protein expression and ER copy number ratio. Therefore, immortalized mouse RPE cell lines that retain their in vivo phenotype can be isolated from either pharmacologically or genetically manipulated mice, and may be used to study RPE cell biology. PMID:19013153

  1. ZIKA virus infection causes persistent chorioretinal lesions.

    PubMed

    Manangeeswaran, Mohanraj; Kielczewski, Jennifer L; Sen, H Nida; Xu, Biying C; Ireland, Derek D C; McWilliams, Ian L; Chan, Chi-Chao; Caspi, Rachel R; Verthelyi, Daniela

    2018-05-25

    Zika-infected patients can have eye involvement ranging from mild conjunctivitis to severe chorioretinal lesions, however the possible long-term sequelae of infection and timeline to recovery remain unknown. Here we describe the partial recovery of chorioretinal lesions in an immunocompetent patient diagnosed with bilateral posterior uveitis associated with Zika infection and show that some lesions resolved with focal atrophy evident as pigmentary changes on funduscopy. To better understand the progression of the lesions and correlate the changes in fundus imaging with local viral load, immune responses, and retinal damage, we developed a symptomatic mouse model of ocular Zika virus infection. Imaging of the fundus revealed multiple hypopigmentary patches indicative of chorioretinal degeneration as well as thinning of the retina that mirror the lesions in patients. Microscopically, the virus primarily infected the optic nerve, retinal ganglion cells, and inner nuclear layer cells, showing thinning of the outer plexiform layer. During acute infection, the eyes showed retinal layer disorganization, retinitis, vitritis, and focal choroiditis, with mild cellular infiltration and increased expression of tumor necrosis factor, interferon-γ, granzyme B, and perforin. Focal areas of gliosis and retinal degeneration persisted 60 dpi. The model recapitulates features of ZIKA infections in patients and should help elucidate the mechanisms underlying the damage to the eyes and aid in the development of effective therapeutics.

  2. Acute immunosuppression and syngeneic bone marrow transplantation in ocular autoimmunity abort disease, but do not result in induction of long-term protection.

    PubMed

    Savion, S; Silver, P B; Chan, C C; Caspi, R R

    1998-09-01

    Acute immunosuppression induced by total body irradiation (TBI) or cyclophosphamide (Cy) treatment, followed by syngeneic bone marrow transplantation (SBMT), was reported to be effective in inducing long-term tolerance in some autoimmune disease models. We examined the efficacy of this approach in the mouse model of experimental autoimmune uveoretinitis (EAU). Development of EAU induced by the interphotoreceptor retinoid binding protein (IRBP) was abolished almost completely by either TBI or Cy treatment, followed by SBMT, instituted one week after priming. In parallel, IRBP-specific delayed-type hypersensitivity (DTH) responses and lymph node cell proliferation were strongly suppressed or abolished. However, when these IRBP-immunized, lymphoablated and BM reconstituted mice were rechallenged with the immunizing antigen seven weeks after the primary immunization, they were not protected from developing disease, despite the fact that DTH and lymph node cell proliferation to the antigen were suppressed relative to controls. TBI treatment appeared somewhat more effective than Cy treatment as judged by its more profound effect on immunological responses. These results demonstrate the ability of acute immunosuppression followed by reconstitution of the immune system to inhibit the development of EAU, although long-term protection from disease was not achieved.

  3. Density of ocular components of the bovine eye.

    PubMed

    Su, Xiao; Vesco, Christina; Fleming, Jacquelyn; Choh, Vivian

    2009-10-01

    Density is essential for acoustic characterization of tissues and provides a basic input for ultrasound backscatter and absorption models. Despite the existence of extensive compilations of acoustic properties, neither unified data on ocular density nor comparisons of the densities between all ocular components can be found. This study was undertaken to determine the mass density of all the ocular components of the bovine eye. Liquid components were measured through mass/volume ratio, whereas solid tissues were measured with two different densitometry techniques based on Archimedes Principle. The first method determines the density by measuring dry and wet weight of the tissues. The second method consists of immersing the tissues in sucrose solutions of varying densities and observing their buoyancy. Although the mean densities for all tissues were found to be within 0.02 g/cm by both methods, only the sucrose solution method offered a consistent relative order for all measured ocular components, as well as a considerably smaller standard deviation (a maximum standard deviation of 0.004 g/cm for cornea). The lens was found to be the densest component, followed by the sclera, cornea, choroid, retina, aqueous, and vitreous humors. The consistent results of the sucrose solution tests suggest that the ocular mass density is a physical property that is more dependent on the compositional and structural characteristics of the tissue and than on population variability.

  4. Implementation Intentions as a Strategy to Increase the Notification Rate of Potential Ocular Tissue Donors by Nurses: A Clustered Randomized Trial in Hospital Settings

    PubMed Central

    2014-01-01

    Aim. The purpose of this study is to evaluate the impact, among nurses in hospital settings, of a questionnaire-based implementation intentions intervention on notification of potential ocular tissue donors to donation stakeholders. Methods. This randomized intervention was clustered at the level of hospital departments with two study arms: questionnaire-based implementation intentions intervention and control. In the intervention group, nurses were asked to plan specific actions if faced with a number of barriers when reporting potential ocular donors. The primary outcome was the potential ocular tissue donors' notification rate before and after the intervention. Analysis was based on a generalized linear model with an identity link and a binomial distribution. Results. We compared outcomes in 26 departments from 5 hospitals, 13 departments per condition. The implementation intentions intervention did not significantly increase the notification rate of ocular tissue donors (intervention: 23.1% versus control: 21.1%; χ 2 = 1.14, 2; P = 0.56). Conclusion. A single and brief implementation intentions intervention among nurses did not modify the notification rate of potential ocular tissue donors to donation stakeholders. Low exposure to the intervention was a major challenge in this study. Further studies should carefully consider a multicomponent intervention to increase exposure to this type of intervention. PMID:25132990

  5. A mass and solute balance model for tear volume and osmolarity in the normal and the dry eye.

    PubMed

    Gaffney, E A; Tiffany, J M; Yokoi, N; Bron, A J

    2010-01-01

    Tear hyperosmolarity is thought to play a key role in the mechanism of dry eye, a common symptomatic condition accompanied by visual disturbance, tear film instability, inflammation and damage to the ocular surface. We have constructed a model for the mass and solute balance of the tears, with parameter estimation based on extensive data from the literature which permits the influence of tear evaporation, lacrimal flux and blink rate on tear osmolarity to be explored. In particular the nature of compensatory events has been estimated in aqueous-deficient (ADDE) and evaporative (EDE) dry eye. The model reproduces observed osmolarities of the tear meniscus for the healthy eye and predicts a higher concentration in the tear film than meniscus in normal and dry eye states. The differential is small in the normal eye, but is significantly increased in dry eye, especially for the simultaneous presence of high meniscus concentration and low meniscus radius. This may influence the interpretation of osmolarity values obtained from meniscus samples since they need not fully reflect potential damage to the ocular surface caused by tear film hyperosmolarity. Interrogation of the model suggests that increases in blink rate may play a limited role in compensating for a rise in tear osmolarity in ADDE but that an increase in lacrimal flux, together with an increase in blink rate, may delay the development of hyperosmolarity in EDE. Nonetheless, it is predicted that tear osmolarity may rise to much higher levels in EDE than ADDE before the onset of tear film breakup, in the absence of events at the ocular surface which would independently compromise tear film stability. Differences in the predicted responses of the pre-ocular tears in ADDE compared to EDE or hybrid disease to defined conditions suggest that no single, empirically-accessible variable can act as a surrogate for tear film concentration and the potential for ocular surface damage. This emphasises the need to measure and integrate multiple diagnostic indicators to determine outcomes and prognosis. Modelling predictions in addition show that further studies concerning the possibility of a high lacrimal flux phenotype in EDE are likely to be profitable.

  6. Effects of Menthol-Containing Artificial Tears on Tear Stimulation and Ocular Surface Integrity in Normal and Dry Eye Rat Models.

    PubMed

    Ahn, Somin; Eom, Youngsub; Kang, Boram; Park, Jungboung; Lee, Hyung Keun; Kim, Hyo Myung; Song, Jong Suk

    2018-05-01

    To evaluate the effects of menthol-containing artificial tears on tear stimulation and ocular surface integrity in normal and dry eye rat models. A total of 54 male Lewis rats were used. The levels of tear secretion and tear MUC5AC concentrations were compared between the menthol-containing artificial tear-treated group (menthol group) and the vehicle-treated group (vehicle group). The groups were compared after a single instillation to evaluate the immediate effects, and after repeated instillation (five times a day for 5 days) to evaluate the longer-term effects. Tear lactate dehydrogenase (LDH) activity was measured to evaluate eye drop instillation-induced ocular surface damage. The effects of menthol-containing artificial tears were also evaluated in a dry eye rat model. After a single instillation of menthol-containing artificial tears, tear secretion increased from 4.37 (±0.75) mm at baseline to 7.37 (±1.60) mm. However, after repeated instillations, the effects of tear stimulation decreased. The tear MUC5AC concentration was significantly lower in the menthol group than in the vehicle group after a single instillation, but not after repeated instillation. However, the tear LDH concentration was significantly increased in the menthol group after repeated instillation. In the dry eye rat model, the extent of menthol-induced tear stimulation was reduced. Menthol-containing artificial tears increased tear secretion, but lowered the tear MUC5AC concentration. Menthol-induced tear stimulation was reduced after repeated instillation for 5 days and in the dry eye rat model. Conversely, repeated instillation of menthol-induced ocular surface damage, resulting in increased tear LDH activity.

  7. A methodology based on the "anterior chamber of rabbit eyes" model for noninvasively determining the biocompatibility of biomaterials in an immune privileged site.

    PubMed

    Lu, Pei-Lin; Lai, Jui-Yang; Tabata, Yasuhiko; Hsiue, Ging-Ho

    2008-07-01

    In this study, a novel methodology based on the anterior chamber of rabbit eyes model was developed to evaluate the in vivo biocompatibility of biomaterials in an immune privileged site. The 7-mm-diameter membrane implants made from either a biological tissue material (amniotic membrane, AM group) or a biomedical polymeric material (gelatin, GM group) were inserted in rabbit anterior chamber for 36 months and characterized by biomicroscopic examinations, intraocular pressure measurements, and corneal thickness measurements. The noninvasive ophthalmic parameters were scored to provide a quantitative grading system. In this animal model, both AM and GM implants were visible in an ocular immune privileged site during clinical observations. The implants of the AM group appeared as soft tissue patches and have undergone a slow dissolution process resulting in a partial reduction of their size. Additionally, the AM implants did not induce any foreign body reaction or change in ocular tissue response for the studied period. By contrast, in the GM groups, significant corneal edema, elevated intraocular pressure, and increased corneal thickness were noted in the early postoperative phase (within 3 days), but resolved rapidly with in vivo dissolution of the gelatin. The results from the ocular grading system showed that both implants had good long-term biocompatibility in an ocular immune privileged site for up to 3 years. It is concluded that the anterior chamber of rabbit eyes model is an efficient method for noninvasively determining the immune privileged tissue/biomaterial interactions. (c) 2007 Wiley Periodicals, Inc.

  8. Long-Term Visual Training Increases Visual Acuity and Long-Term Monocular Deprivation Promotes Ocular Dominance Plasticity in Adult Standard Cage-Raised Mice

    PubMed Central

    Yusifov, Rashad

    2018-01-01

    Abstract For routine behavioral tasks, mice predominantly rely on olfactory cues and tactile information. In contrast, their visual capabilities appear rather restricted, raising the question whether they can improve if vision gets more behaviorally relevant. We therefore performed long-term training using the visual water task (VWT): adult standard cage (SC)-raised mice were trained to swim toward a rewarded grating stimulus so that using visual information avoided excessive swimming toward nonrewarded stimuli. Indeed, and in contrast to old mice raised in a generally enriched environment (Greifzu et al., 2016), long-term VWT training increased visual acuity (VA) on average by more than 30% to 0.82 cycles per degree (cyc/deg). In an individual animal, VA even increased to 1.49 cyc/deg, i.e., beyond the rat range of VAs. Since visual experience enhances the spatial frequency threshold of the optomotor (OPT) reflex of the open eye after monocular deprivation (MD), we also quantified monocular vision after VWT training. Monocular VA did not increase reliably, and eye reopening did not initiate a decline to pre-MD values as observed by optomotry; VA values rather increased by continued VWT training. Thus, optomotry and VWT measure different parameters of mouse spatial vision. Finally, we tested whether long-term MD induced ocular dominance (OD) plasticity in the visual cortex of adult [postnatal day (P)162–P182] SC-raised mice. This was indeed the case: 40–50 days of MD induced OD shifts toward the open eye in both VWT-trained and, surprisingly, also in age-matched mice without VWT training. These data indicate that (1) long-term VWT training increases adult mouse VA, and (2) long-term MD induces OD shifts also in adult SC-raised mice. PMID:29379877

  9. Normative biometrics for fetal ocular growth using volumetric MRI reconstruction.

    PubMed

    Velasco-Annis, Clemente; Gholipour, Ali; Afacan, Onur; Prabhu, Sanjay P; Estroff, Judy A; Warfield, Simon K

    2015-04-01

    To determine normative ranges for fetal ocular biometrics between 19 and 38 weeks gestational age (GA) using volumetric MRI reconstruction. The 3D images of 114 healthy fetuses between 19 and 38 weeks GA were created using super-resolution volume reconstructions from MRI slice acquisitions. These 3D images were semi-automatically segmented to measure fetal orbit volume, binocular distance (BOD), interocular distance (IOD), and ocular diameter (OD). All biometry correlated with GA (Volume, Pearson's correlation coefficient (CC) = 0.9680; BOD, CC = 0.9552; OD, CC = 0.9445; and IOD, CC = 0.8429), and growth curves were plotted against linear and quadratic growth models. Regression analysis showed quadratic models to best fit BOD, IOD, and OD and a linear model to best fit volume. Orbital volume had the greatest correlation with GA, although BOD and OD also showed strong correlation. The normative data found in this study may be helpful for the detection of congenital fetal anomalies with more consistent measurements than are currently available. © 2015 John Wiley & Sons, Ltd. © 2015 John Wiley & Sons, Ltd.

  10. Ocular Nerve Growth Factor (NGF) and NGF Eye Drop Application as Paradigms to Investigate NGF Neuroprotective and Reparative Actions.

    PubMed

    Tirassa, Paola; Rosso, Pamela; Iannitelli, Angela

    2018-01-01

    The eye is a central nervous system structure that is uniquely accessible to local treatment. Through the ocular surface, it is possible to access the retina, optic nerve, and brain. Animal models of retina degeneration or optic nerve crush could thus serve as tools to investigate whether and how factors, which are anterogradely or retrogradely transported through the optic nerve, might contribute to activate neuroprotection and eventually regeneration. Among these factors, nerve growth factor (NGF) plays a crucial role during development of the visual system, as well as during the entire life span, and in pathological conditions. The ability of NGF to exert survival and trophic actions on the retina and brain cells when applied intraocularly and topically as eye drops is critically reviewed here, together with the effects of ocular neurotrophins on neuronal pathways influencing body rhythm, cognitions, and behavioral functions. The latest data from animal models and humans are presented, and the mechanism of action of ocularly administered NGF is discussed. NGF eye drops are proposed as an experimental strategy to investigate the role and cellular targets of neurotrophins in the mechanism(s) underlying neurodegeneration/regeneration and their involvement in the regulation of neurological and behavioral dysfunctions.

  11. Porcine retinal cell line VIDO R1 and Chlamydia suis to modelize ocular chlamydiosis.

    PubMed

    Käser, Tobias; Cnudde, Thomas; Hamonic, Glenn; Rieder, Meghanne; Pasternak, J Alex; Lai, Ken; Tikoo, Suresh K; Wilson, Heather L; Meurens, François

    2015-08-15

    Human ocular Chlamydia trachomatis infections can lead to trachoma, the major cause of infectious blindness worldwide. Trachoma control strategies are very helpful but logistically challenging, and a trachoma vaccine is needed but not available. Pigs are a valuable large animal model for various immunological questions and could facilitate the study of human ocular chlamydial infections. In addition, a recent study identified the zoonotic potential of Chlamydia suis, the natural pathogen of pigs. In terms of the One Health Initiative, understanding the host-pathogen-interactions and finding a vaccine for porcine chlamydia infections would also benefit human health. Thus, we infected the porcine retinal cell line VIDO R1 with C. suis and analyzed the chlamydial life cycle and the innate immune response of the infected cells. Our results indicate that C. suis completes its life cycle in VIDO R1 cells within 48 h, comparable to C. trachomatis in humans. C. suis infection of VIDO R1 cells led to increased levels of various innate immune mediators like pathogen recognition receptors, cytokines and chemokines including IL6, TNFα, and MMP9, also most relevant in human C. trachomatis infections. These results illustrate the first steps in the host-pathogen-interactions of ocular C. suis infections in pigs and show their similarity to C. trachomatis infections in humans, justifying further testing of pigs as an animal model for human trachoma. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Methods to Induce Chronic Ocular Hypertension

    PubMed Central

    Dey, Ashim; Manthey, Abby L.; Chiu, Kin; Do, Chi-Wai

    2018-01-01

    Glaucoma, a form of progressive optic neuropathy, is the second leading cause of blindness worldwide. Being a prominent disease affecting vision, substantial efforts are being made to better understand glaucoma pathogenesis and to develop novel treatment options including neuroprotective and neuroregenerative approaches. Cell transplantation has the potential to play a neuroprotective and/or neuroregenerative role for various ocular cell types (e.g., retinal cells, trabecular meshwork). Notably, glaucoma is often associated with elevated intraocular pressure, and over the past 2 decades, several rodent models of chronic ocular hypertension (COH) have been developed that reflect these changes in pressure. However, the underlying pathophysiology of glaucoma in these models and how they compare to the human condition remains unclear. This limitation is the primary barrier for using rodent models to develop novel therapies to manage glaucoma and glaucoma-related blindness. Here, we review the current techniques used to induce COH-related glaucoma in various rodent models, focusing on the strengths and weaknesses of the each, in order to provide a more complete understanding of how these models can be best utilized. To so do, we have separated them based on the target tissue (pre-trabecular, trabecular, and post-trabecular) in order to provide the reader with an encompassing reference describing the most appropriate rodent COH models for their research. We begin with an initial overview of the current use of these models in the evaluation of cell transplantation therapies. PMID:29637819

  13. Progesterone Treatment in Two Rat Models of Ocular Ischemia

    PubMed Central

    Allen, Rachael S.; Olsen, Timothy W.; Sayeed, Iqbal; Cale, Heather A.; Morrison, Katherine C.; Oumarbaeva, Yuliya; Lucaciu, Irina; Boatright, Jeffrey H.; Pardue, Machelle T.; Stein, Donald G.

    2015-01-01

    Purpose. To determine whether the neurosteroid progesterone, shown to have protective effects in animal models of traumatic brain injury, stroke, and spinal cord injury, is also protective in ocular ischemia animal models. Methods. Progesterone treatment was tested in two ocular ischemia models in rats: a rodent anterior ischemic optic neuropathy (rAION) model, which induces permanent monocular optic nerve stroke, and the middle cerebral artery occlusion (MCAO) model, which causes transient ischemia in both the retina and brain due to an intraluminal filament that blocks the ophthalmic and middle cerebral arteries. Visual function and retinal histology were assessed to determine whether progesterone attenuated retinal injury in these models. Additionally, behavioral testing and 2% 2,3,5-triphenyltetrazolium chloride (TTC) staining in brains were used to compare progesterone's neuroprotective effects in both retina and brain using the MCAO model. Results. Progesterone treatment showed no effect on visual evoked potential (VEP) reduction and retinal ganglion cell loss in the permanent rAION model. In the transient MCAO model, progesterone treatment reduced (1) electroretinogram (ERG) deficits, (2) MCAO-induced upregulation of glutamine synthetase (GS) and glial fibrillary acidic protein (GFAP), and (3) retinal ganglion cell loss. As expected, progesterone treatment also had significant protective effects in behavioral tests and a reduction in infarct size in the brain. Conclusions. Progesterone treatment showed protective effects in the retina following MCAO but not rAION injury, which may result from mechanistic differences with injury type and the therapeutic action of progesterone. PMID:26024074

  14. Characterization of rat model of acute anterior uveitis using optical coherence tomography angiography

    NASA Astrophysics Data System (ADS)

    Choi, Woo June; Pepple, Kathryn L.; Zhi, Zhongwei; Wang, Ruikang K.

    2015-03-01

    Uveitis, or ocular inflammation, is a cause of severe visual impairment. Rodent models of uveitis are powerful tools used to investigate the pathological mechanisms of ocular inflammation and to study the efficacy of new therapies prior to human testing. In this paper, we report the utility of spectral-domain optical coherence tomography (SD-OCT) angiography in characterizing the inflammatory changes induced in the anterior segment of a rat model of uveitis. Acute anterior uveitis (AAU) was induced in two rats by intravitreal injection of a killed mycobacterial extract. One of them received a concurrent periocular injection of steroids to model a treatment effect. OCT imaging was performed prior to inflammation induction on day 0 (baseline), and 2 days post-injection (peak inflammation). Baseline and inflamed images were compared. OCT angiography identified swelling of the cornea, inflammatory cells in the anterior and posterior chambers, a fibrinous papillary membrane, and dilation of iris vessels in the inflamed eyes when compared to baseline images. Steroid treatment was shown to prevent the changes associated with inflammation. This is a novel application of anterior OCT imaging in animal models of uveitis, and provides a high resolution, in vivo assay for detecting and quantifying ocular inflammation and the response to new therapies.

  15. Ocular wavefront analysis of aspheric compared with spherical monofocal intraocular lenses in cataract surgery: Systematic review with metaanalysis.

    PubMed

    Schuster, Alexander K; Tesarz, Jonas; Vossmerbaeumer, Urs

    2015-05-01

    This review was conducted to compare the physical effect of aspheric IOL implantation on wavefront properties with that of spherical IOL implantation. The peer-reviewed literature was systematically searched in Medline, Embase, Web of Science, Biosis, and the Cochrane Library according to the Cochrane Collaboration method. Inclusion criteria were randomized controlled trials comparing the use of aspheric versus spherical monofocal IOL implantation that assessed visual acuity, contrast sensitivity, or quality of vision. A secondary outcome was ocular wavefront analysis; spherical aberration, higher-order aberrations (HOAs), coma, and trefoil were evaluated. Effects were calculated as standardized mean differences (Hedges g) and were pooled using random-effect models. Thirty-four of 43 studies provided data for wavefront analysis. Aspheric monofocal IOL implantation resulted in less ocular spherical aberration and fewer ocular HOAs than spherical IOLs. This might explain the better contrast sensitivity in patients with aspheric IOLs. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  16. Pediatric ocular trauma score as a prognostic tool in the management of pediatric traumatic cataracts.

    PubMed

    Shah, Mehul A; Agrawal, Rupesh; Teoh, Ryan; Shah, Shreya M; Patel, Kashyap; Gupta, Satyam; Gosai, Siddharth

    2017-05-01

    To introduce and validate the pediatric ocular trauma score (POTS) - a mathematical model to predict visual outcome trauma in children with traumatic cataract METHODS: In this retrospective cohort study, medical records of consecutive children with traumatic cataracts aged 18 and below were retrieved and analysed. Data collected included age, gender, visual acuity, anterior segment and posterior segment findings, nature of surgery, treatment for amblyopia, follow-up, and final outcome was recorded on a precoded data information sheet. POTS was derived based on the ocular trauma score (OTS), adjusting for age of patient and location of the injury. Visual outcome was predicted using the OTS and the POTS and using receiver operating characteristic (ROC) curves. POTS predicted outcomes were more accurate compared to that of OTS (p = 0.014). POTS is a more sensitive and specific score with more accurate predicted outcomes compared to OTS, and is a viable tool to predict visual outcomes of pediatric ocular trauma with traumatic cataract.

  17. An Ocular Protein Triad Can Classify Four Complex Retinal Diseases

    NASA Astrophysics Data System (ADS)

    Kuiper, J. J. W.; Beretta, L.; Nierkens, S.; van Leeuwen, R.; Ten Dam-van Loon, N. H.; Ossewaarde-van Norel, J.; Bartels, M. C.; de Groot-Mijnes, J. D. F.; Schellekens, P.; de Boer, J. H.; Radstake, T. R. D. J.

    2017-01-01

    Retinal diseases generally are vision-threatening conditions that warrant appropriate clinical decision-making which currently solely dependents upon extensive clinical screening by specialized ophthalmologists. In the era where molecular assessment has improved dramatically, we aimed at the identification of biomarkers in 175 ocular fluids to classify four archetypical ocular conditions affecting the retina (age-related macular degeneration, idiopathic non-infectious uveitis, primary vitreoretinal lymphoma, and rhegmatogenous retinal detachment) with one single test. Unsupervised clustering of ocular proteins revealed a classification strikingly similar to the clinical phenotypes of each disease group studied. We developed and independently validated a parsimonious model based merely on three proteins; interleukin (IL)-10, IL-21, and angiotensin converting enzyme (ACE) that could correctly classify patients with an overall accuracy, sensitivity and specificity of respectively, 86.7%, 79.4% and 92.5%. Here, we provide proof-of-concept for molecular profiling as a diagnostic aid for ophthalmologists in the care for patients with retinal conditions.

  18. Instability of ocular alignment in childhood esotropia.

    PubMed

    Christiansen, Stephen P; Chandler, Danielle L; Holmes, Jonathan M; Arnold, Robert W; Birch, Eileen; Dagi, Linda R; Hoover, Darren L; Klimek, Deborah L; Melia, B Michele; Paysse, Evelyn; Repka, Michael X; Suh, Donny W; Ticho, Benjamin H; Wallace, David K; Weaver, Richard Grey

    2008-12-01

    Instability of ocular alignment may cause surgeons to delay surgical correction of childhood esotropia. The authors investigated the stability of ocular alignment over 18 weeks in children with infantile esotropia (IET), acquired nonaccommodative esotropia (ANAET), or acquired partially accommodative esotropia (APAET). Prospective, observational study. Two hundred thirty-three children aged 2 months to less than 5 years with IET, ANAET, or APAET of less than 6 months' duration. Ocular alignment was measured at baseline and at 6-week intervals for 18 weeks. Using definitions derived from a nested test-retest study and computer simulation modeling, ocular alignment was classified as unstable if there was a change of 15 prism diopters (PD) or more between any 2 of the 4 measurements, as stable if all 4 measurements were within 5 PD or less of one another, or as uncertain if neither criteria was met. Of those who completed all 3 follow-up visits within time windows for analysis, 27 (46%) of 59 subjects with IET had ocular alignment classified as unstable (95% confidence interval [CI], 33%-59%), 20% as stable (95% CI, 11%-33%), and 34% as uncertain (95% CI, 22%-47%). Thirteen (22%) of 60 subjects with ANAET had ocular alignment classified as unstable (95% CI, 12%-34%), 37% as stable (95% CI, 25%-50%), and 42% as uncertain (95% CI, 29%-55%). Six (15%) of 41 subjects with APAET had ocular alignment classified as unstable (95% CI, 6%-29%), 39% as stable (95% CI, 24%-56%), and 46% as uncertain (95% CI, 31%-63%). For IET, subjects who were older at presentation were less likely to have unstable angles than subjects who were younger at presentation (risk ratio for unstable vs stable per additional month of age, 0.85; 99% CI, 0.74-0.99). Ocular alignment instability is common in children with IET, ANAET, and APAET. The impact of this finding on the optimal timing for strabismus surgery in childhood esotropia awaits further study. The author(s) have no proprietary or commercial interest in any materials discussed in this article.

  19. Targeted delivery of hyaluronic acid to the ocular surface by a polymer-peptide conjugate system for dry eye disease.

    PubMed

    Lee, David; Lu, Qiaozhi; Sommerfeld, Sven D; Chan, Amanda; Menon, Nikhil G; Schmidt, Tannin A; Elisseeff, Jennifer H; Singh, Anirudha

    2017-06-01

    Hyaluronic acid (HA) solutions effectively lubricate the ocular surface and are used for the relief of dry eye related symptoms. However, HA undergoes rapid clearance due to limited adhesion, which necessitates frequent instillation. Conversely, highly viscous artificial tear formulations with HA blur vision and interfere with blinking. Here, we developed an HA-eye drop formulation that selectively binds and retains HA for extended periods of time on the ocular surface. We synthesized a heterobifunctional polymer-peptide system with one end binding HA while the other end binding either sialic acid-containing glycosylated transmembrane molecules on the ocular surface epithelium, or type I collagen molecule within the tissue matrix. HA solution was mixed with the polymer-peptide system and tested on both ex vivo and in vivo models to determine its ability to prolong HA retention. Furthermore, rabbit ocular surface tissues treated with binding peptides and HA solutions demonstrated superior lubrication with reduced kinetic friction coefficients compared to tissues treated with conventional HA solution. The results suggest that binding peptide-based solution can keep the ocular surface enriched with HA for prolonged times as well as keep it lubricated. Therefore, this system can be further developed into a more effective treatment for dry eye patients than a standard HA eye drop. Eye drop formulations containing HA are widely used to lubricate the ocular surface and relieve dry eye related symptoms, however its low residence time remains a challenge. We designed a polymer-peptide system for the targeted delivery of HA to the ocular surface using sialic acid or type I collagen as anchors for HA immobilization. The addition of the polymer-peptide system to HA eye drop exhibited a reduced friction coefficient, and it can keep the ocular surface enriched with HA for prolonged time. This system can be further developed into a more effective treatment for dry eye than a standard HA eye drop. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. A nanomedicine to treat ocular surface inflammation: performance on an experimental dry eye murine model.

    PubMed

    Contreras-Ruiz, L; Zorzi, G K; Hileeto, D; López-García, A; Calonge, M; Seijo, B; Sánchez, A; Diebold, Y

    2013-05-01

    MUC5AC is a glycoprotein with gel-forming properties, whose altered expression has been implicated in the pathogenesis of dry eye disease. The aim of our study was to achieve an efficient in vivo transfection of MUC5AC, restore its normal levels in an inflamed ocular surface and determine whether restored MUC5AC levels improve ocular surface inflammation. Cationized gelatin-based nanoparticles (NPs) loaded with a plasmid coding a modified MUC5AC protein (pMUC5AC) were instilled in healthy and experimental dry eye (EDE) mice. MUC5AC expression, clinical signs, corneal fluorescein staining and tear production were evaluated. Ocular specimens were processed for histopathologic evaluation, including goblet cell count and CD4 immunostaining. Neither ocular discomfort nor irritation was observed in vivo after NP treatment. Expression of modified MUC5AC was significantly higher in ocular surface tissue of pMUC5AC-NP-treated animals than that of controls. In healthy mice, pMUC5AC-NPs had no effect on fluorescein staining or tear production. In EDE mice, both parameters significantly improved after pMUC5AC-NP treatment. Anterior eye segment of treated mice showed normal architecture and morphology with lack of remarkable inflammatory changes, and a decrease in CD4+ T-cell infiltration. Thus, pMUC5AC-NPs were well tolerated and able to induce the expression of modified MUC5A in ocular surface tissue, leading to reduction of the inflammation and, consequently improving the associated clinical parameters, such as tear production and fluorescein staining. These results identify a potential application of pMUC5AC-NPs as a new therapeutic modality for the treatment of dry eye disease.

  1. Finding mouse models of human lymphomas and leukemia's using the Jackson laboratory mouse tumor biology database.

    PubMed

    Begley, Dale A; Sundberg, John P; Krupke, Debra M; Neuhauser, Steven B; Bult, Carol J; Eppig, Janan T; Morse, Herbert C; Ward, Jerrold M

    2015-12-01

    Many mouse models have been created to study hematopoietic cancer types. There are over thirty hematopoietic tumor types and subtypes, both human and mouse, with various origins, characteristics and clinical prognoses. Determining the specific type of hematopoietic lesion produced in a mouse model and identifying mouse models that correspond to the human subtypes of these lesions has been a continuing challenge for the scientific community. The Mouse Tumor Biology Database (MTB; http://tumor.informatics.jax.org) is designed to facilitate use of mouse models of human cancer by providing detailed histopathologic and molecular information on lymphoma subtypes, including expertly annotated, on line, whole slide scans, and providing a repository for storing information on and querying these data for specific lymphoma models. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Mouse models rarely mimic the transcriptome of human neurodegenerative diseases: A systematic bioinformatics-based critique of preclinical models.

    PubMed

    Burns, Terry C; Li, Matthew D; Mehta, Swapnil; Awad, Ahmed J; Morgan, Alexander A

    2015-07-15

    Translational research for neurodegenerative disease depends intimately upon animal models. Unfortunately, promising therapies developed using mouse models mostly fail in clinical trials, highlighting uncertainty about how well mouse models mimic human neurodegenerative disease at the molecular level. We compared the transcriptional signature of neurodegeneration in mouse models of Alzheimer׳s disease (AD), Parkinson׳s disease (PD), Huntington׳s disease (HD) and amyotrophic lateral sclerosis (ALS) to human disease. In contrast to aging, which demonstrated a conserved transcriptome between humans and mice, only 3 of 19 animal models showed significant enrichment for gene sets comprising the most dysregulated up- and down-regulated human genes. Spearman׳s correlation analysis revealed even healthy human aging to be more closely related to human neurodegeneration than any mouse model of AD, PD, ALS or HD. Remarkably, mouse models frequently upregulated stress response genes that were consistently downregulated in human diseases. Among potential alternate models of neurodegeneration, mouse prion disease outperformed all other disease-specific models. Even among the best available animal models, conserved differences between mouse and human transcriptomes were found across multiple animal model versus human disease comparisons, surprisingly, even including aging. Relative to mouse models, mouse disease signatures demonstrated consistent trends toward preserved mitochondrial function protein catabolism, DNA repair responses, and chromatin maintenance. These findings suggest a more complex and multifactorial pathophysiology in human neurodegeneration than is captured through standard animal models, and suggest that even among conserved physiological processes such as aging, mice are less prone to exhibit neurodegeneration-like changes. This work may help explain the poor track record of mouse-based translational therapies for neurodegeneration and provides a path forward to critically evaluate and improve animal models of human disease. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Efficacy of a New Ocular Surface Modulator in Restoring Epithelial Changes in an In Vitro Model of Dry Eye Syndrome.

    PubMed

    Barabino, Stefano; De Servi, Barbara; Aragona, Salvatore; Manenti, Demetrio; Meloni, Marisa

    2017-03-01

    So far tear substitutes have demonstrated a limited role in restoring ocular surface damage in dry eye syndrome (DES). The aim of this study was to assess the efficacy of a new ocular surface modulator in an in vitro model of human corneal epithelium (HCE) damaged by severe osmotic stress mirroring the features of dry eye conditions. A reconstructed HCE model challenged by the introduction of sorbitol in the culture medium for 16 h was used to induce an inflammatory pathway and to impair the tight junctions integrity determining a severe modification of the superficial layer ultrastructure. At the end of the overnight stress period in the treated HCE series, 30 μl of the ocular surface modulator (T-LysYal, Sildeha, Switzerland) and of hyaluronic acid (HA) in the control HCE series were applied for 24 h. The following parameters were quantified: scanning electron microscopy (SEM), trans-epithelial electrical resistance (TEER), immunofluorescence analysis of integrin β1 (ITG-β1), mRNA expression of Cyclin D-1 (CCND1), and ITG-β1. In the positive control after the osmotic stress the HCE surface damage was visible at the ultrastructural level with loss of cell-cell interconnections, intercellular matrix destruction, and TEER reduction. After 24 h of treatment with T-LysYal, HCE showed a significant improvement of the ultrastructural morphological organization and increased expression of ITG-β1 at the tissue level when compared to positive and control series. A significant increase of mRNA expression for ITG-β1 and CCND1 was shown in the HA-treated cells compared to T-LysYal. TEER measurement showed a significant reduction in all groups after 16 h without modifications after the treatment period. This study has shown the possibility of a new class of agents denominated ocular surface modulators to restore corneal cells damaged by dry eye conditions. Further in vivo studies are certainly necessary to confirm these results.

  4. A MODEL FOR THE TEAR FILM AND OCULAR SURFACE TEMPERATURE FOR PARTIAL BLINKS

    PubMed Central

    Deng, Quan; Braun, R. J.; Driscoll, T. A.; King-Smith, P. E.

    2015-01-01

    In this paper, we investigate the dynamics of tear film and the associated temperature variation for partial blinks. We investigate the mechanism of fluid supply during partial blink cycles, and compare the film thickness with observation in vivo. We find that varying the thickness of the fluid layer beneath the moving upper lid improves the agreement for the in vivo measurement of tear film thickness after a half blink. By examining the flux of the fluid, we provide an explanation of this assumption. We also investigate the temperature dynamics both at the ocular surface and inside the simulated anterior chamber. Our simulation results suggest that the ocular surface temperature readjusts rapidly to normal temperature distribution after partial blinks. PMID:25635242

  5. Are ultrasound-guided ophthalmic blocks injurious to the eye? A comparative rabbit model study of two ultrasound devices evaluating intraorbital thermal and structural changes.

    PubMed

    Palte, Howard D; Gayer, Steven; Arrieta, Esdras; Scot Shaw, Eric; Nose, Izuru; Lee, Elizabete; Arheart, Kristopher L; Dubovy, Sander; Birnbach, David J; Parel, Jean-Marie

    2012-07-01

    Since Atkinson's original description of retrobulbar block in 1936, needle-based anesthetic techniques have become integral to ophthalmic anesthesia. These techniques are unfortunately associated with rare, grave complications such as globe perforation. Ultrasound has gained widespread acceptance for peripheral nerve blockade, but its translation to ocular anesthesia has been hampered because sonic energy, in the guise of thermal or biomechanical insult, is potentially injurious to vulnerable eye tissue. The US Food and Drug Administration (FDA) has defined guidelines for safe use of ultrasound for ophthalmic examination, but most ultrasound devices used by anesthesiologists are not FDA-approved for ocular application because they generate excessive energy. Regulating agencies state that ultrasound examinations can be safely undertaken as long as tissue temperatures do not increase >1.5°C above physiological levels. Using a rabbit model, we investigated the thermal and mechanical ocular effects after prolonged ultrasonic exposure to single orbital- and nonorbital-rated devices. In a dual-phase study, aimed at detecting ocular injury, the eyes of 8 rabbits were exposed to continuous 10-minute ultrasound examinations from 2 devices: (1) the Sonosite Micromaxx (nonorbital rated) and (2) the Sonomed VuMax (orbital rated) machines. In phase I, temperatures were continuously monitored via thermocouples implanted within specific eye structures (n = 4). In phase II the eyes were subjected to ultrasonic exposure without surgical intervention (n = 4). All eyes underwent light microscopy examinations, followed at different intervals by histology evaluations conducted by an ophthalmic pathologist. Temperature changes were monitored in the eyes of 4 rabbits. The nonorbital-rated transducer produced increases in ocular tissue temperature that surpassed the safe limit (increases >1.5°C) in the lens of 3 rabbits (at 5.0, 5.5, and 1.5 minutes) and cornea of 2 rabbits (both at 1.5 minutes). A secondary analysis of temporal temperature differences between the orbital-rated and nonorbital transducers revealed statistically significant differences (Bonferroni-adjusted P < 0.05) in the cornea at 3.5 minutes, the lens at 2.5 minutes, and the vitreous at 4.0 minutes. Light microscopy and histology failed to elicit ocular injury in either group. The nonorbital-rated ultrasound machine (Sonosite Micromaxx) increases the ocular tissue temperature. A larger study is needed to establish safety. Until then, ophthalmic ultrasound-guided blocks should only be performed with ocular-rated devices.

  6. Are Ultrasound-Guided Ophthalmic Blocks Injurious to the Eye? A Comparative Rabbit Model Study of Two Ultrasound Devices Evaluating Intraorbital Thermal and Structural Changes

    PubMed Central

    Palte, Howard D.; Gayer, Steven; Arrieta, Esdras; Shaw, Eric Scot; Nose, Izuru; Lee, Elizabete; Arheart, Kristopher L.; Dubovy, Sander; Birnbach, David J.; Parel, Jean-Marie

    2012-01-01

    Background Since Atkinson’s original description of retrobulbar block in 1936, needle-based anesthetic techniques have become integral to ophthalmic anesthesia. These techniques are unfortunately associated with rare, grave complications such as globe perforation. Ultrasound has gained widespread acceptance for peripheral nerve blockade but its translation to ocular anesthesia has been hampered because sonic energy, in the guise of thermal or biomechanical insult, is potentially injurious to vulnerable eye tissue. The United States Food and Drug Administration have defined guidelines for safe use of ultrasound for ophthalmic examination but most ultrasound devices used by anesthesiologists are not Food and Drug Administration-approved for ocular application because they generate excessive energy. Regulating agencies state that ultrasound examination can be safely undertaken as long as tissue temperatures do not increase >1.5°C above physiological levels. Methods Using a rabbit model, we investigated the thermal and mechanical ocular effects after prolonged ultrasonic exposure to single orbital and non-orbital-rated devices. In a dual-phase study, aimed at detecting ocular injury, the eyes of 8 rabbits were exposed to continuous 10-minute ultrasound examinations from two devices: 1) the Sonosite Micromaxx (non-orbital-rated) and 2) the Sonomed VuMax (orbital-rated) machines. In Phase I temperatures were continuously monitored via thermocouples implanted within specific eye structures (n=4). In Phase II the eyes were subjected to ultrasonic exposure without surgical intervention (n=4). All eyes underwent light microscopy examinations followed, at different intervals, by histology evaluations conducted by an ophthalmic pathologist. Results Temperature changes were monitored in the eyes of four rabbits. The non-orbital-rated transducer produced increases in ocular tissue temperature that surpassed the safe limit (increases> 1.50C ) in the lens of three rabbits (at 5.0, 5.5 and 1.5 minutes) and cornea of two rabbits (both at 1.5 minutes). A secondary analysis of temporal temperature differences between the orbital-rated and non-orbital transducers revealed statistically significant differences (Bonferroni-adjusted p < 0.05) in the cornea at 3.5 minutes, the lens at 2.5 minutes and the vitreous at 4.0 minutes. Light microscopy and histology failed to elicit ocular injury in either group. Conclusions The non-orbital-rated ultrasound machine (Sonosite Micromaxx) increases the ocular tissue temperature. A larger study is needed to establish safety. Until then, ophthalmic blocks performed with ultrasound should be performed only with ocular-rated devices. PMID:22504211

  7. A scalable and deformable stylized model of the adult human eye for radiation dose assessment

    NASA Astrophysics Data System (ADS)

    El Basha, Daniel; Furuta, Takuya; Iyer, Siva S. R.; Bolch, Wesley E.

    2018-05-01

    With recent changes in the recommended annual limit on eye lens exposures to ionizing radiation, there is considerable interest in predictive computational dosimetry models of the human eye and its various ocular structures including the crystalline lens, ciliary body, cornea, retina, optic nerve, and central retinal artery. Computational eye models to date have been constructed as stylized models, high-resolution voxel models, and polygon mesh models. Their common feature, however, is that they are typically constructed of nominal size and of a roughly spherical shape associated with the emmetropic eye. In this study, we present a geometric eye model that is both scalable (allowing for changes in eye size) and deformable (allowing for changes in eye shape), and that is suitable for use in radiation transport studies of ocular exposures and radiation treatments of eye disease. The model allows continuous and variable changes in eye size (axial lengths from 20 to 26 mm) and eye shape (diopters from  ‑12 to  +6). As an explanatory example of its use, five models (emmetropic eyes of small, average, and large size, as well as average size eyes of  ‑12D and  +6D) were constructed and subjected to normally incident beams of monoenergetic electrons and photons, with resultant energy-dependent dose coefficients presented for both anterior and posterior eye structures. Electron dose coefficients were found to vary with changes to both eye size and shape for the posterior eye structures, while their values for the crystalline lens were found to be sensitive to changes in only eye size. No dependence upon eye size or eye shape was found for photon dose coefficients at energies below 2 MeV. Future applications of the model can include more extensive tabulations of dose coefficients to all ocular structures (not only the lens) as a function of eye size and shape, as well as the assessment of x-ray therapies for ocular disease for patients with non-emmetropic eyes.

  8. The Relationship Between Ocular Itch, Ocular Pain, and Dry Eye Symptoms (An American Ophthalmological Society Thesis).

    PubMed

    Galor, Anat; Small, Leslie; Feuer, William; Levitt, Roy C; Sarantopoulos, Konstantinos D; Yosipovitch, Gil

    2017-08-01

    To evaluate associations between sensations of ocular itch and dry eye (DE) symptoms, including ocular pain, and DE signs. A cross-sectional study of 324 patients seen in the Miami Veterans Affairs eye clinic was performed. The evaluation consisted of questionnaires regarding ocular itch, DE symptoms, descriptors of neuropathic-like ocular pain (NOP), and evoked pain sensitivity testing on the forehead and forearm, followed by a comprehensive ocular surface examination including corneal mechanical sensitivity testing. Analyses were performed to examine for differences between those with and without subjective complaints of ocular itch. The mean age was 62 years with 92% being male. Symptoms of DE and NOP were more frequent in patients with moderate-severe ocular itch compared to those with no or mild ocular itch symptoms. With the exception of ocular surface inflammation (abnormal matrix metalloproteinase 9 testing) which was less common in those with moderate-severe ocular itch symptoms, DE signs were not related to ocular itch. Individuals with moderate-severe ocular itch also demonstrated greater sensitivity to evoked pain on the forearm and had higher non-ocular pain, depression, and post-traumatic stress disorders scores, compared to those with no or mild itch symptoms. Subjects with moderate-severe ocular itch symptoms have more severe symptoms of DE, NOP, non-ocular pain and demonstrate abnormal somatosensory testing in the form of increased sensitivity to evoked pain at a site remote from the eye, consistent with generalized hypersensitivity.

  9. The Relationship Between Ocular Itch, Ocular Pain, and Dry Eye Symptoms (An American Ophthalmological Society Thesis)

    PubMed Central

    Galor, Anat; Small, Leslie; Feuer, William; Levitt, Roy C.; Sarantopoulos, Konstantinos D.; Yosipovitch, Gil

    2017-01-01

    Purpose To evaluate associations between sensations of ocular itch and dry eye (DE) symptoms, including ocular pain, and DE signs. Methods A cross-sectional study of 324 patients seen in the Miami Veterans Affairs eye clinic was performed. The evaluation consisted of questionnaires regarding ocular itch, DE symptoms, descriptors of neuropathic-like ocular pain (NOP), and evoked pain sensitivity testing on the forehead and forearm, followed by a comprehensive ocular surface examination including corneal mechanical sensitivity testing. Analyses were performed to examine for differences between those with and without subjective complaints of ocular itch. Results The mean age was 62 years with 92% being male. Symptoms of DE and NOP were more frequent in patients with moderate-severe ocular itch compared to those with no or mild ocular itch symptoms. With the exception of ocular surface inflammation (abnormal matrix metalloproteinase 9 testing) which was less common in those with moderate-severe ocular itch symptoms, DE signs were not related to ocular itch. Individuals with moderate-severe ocular itch also demonstrated greater sensitivity to evoked pain on the forearm and had higher non-ocular pain, depression, and post-traumatic stress disorders scores, compared to those with no or mild itch symptoms. Conclusions Subjects with moderate-severe ocular itch symptoms have more severe symptoms of DE, NOP, non-ocular pain and demonstrate abnormal somatosensory testing in the form of increased sensitivity to evoked pain at a site remote from the eye, consistent with generalized hypersensitivity. PMID:29391860

  10. Refractive index measurement of the mouse crystalline lens using optical coherence tomography.

    PubMed

    Chakraborty, Ranjay; Lacy, Kip D; Tan, Christopher C; Park, Han Na; Pardue, Machelle T

    2014-08-01

    In recent years, there has been a growing interest for using mouse models in refractive development and myopia research. The crystalline lens is a critical optical component of the mouse eye that occupies greater than 50% of the ocular space, and significant increases in thickness with age. However, changes in refractive index of the mouse crystalline lens are less known. In this study, we examined the changes in thickness and refractive index of the mouse crystalline lens for two different strains, wild-type (WT) and a nyx mutant (nob) over the course of normal visual development or after form deprivation. Refractive index and lens thickness measurements were made on ex vivo lenses using spectral domain optical coherence tomography (SD-OCT). Comparison of refractive index measurements on 5 standard ball lenses using the SD-OCT and their known refractive indices (manufacturer provided) indicated good precision (intra-class correlation coefficient, 0.998 and Bland-Altman coefficient of repeatability, 0.116) of the SD-OCT to calculate mouse lens refractive index ex vivo. During normal visual development, lens thickness increased significantly with age for three different cohorts of mice, aged 4 (average thickness from both eyes; WT: 1.78 ± 0.03, nob: 1.79 ± 0.08 mm), 10 (WT: 2.02 ± 0.05, nob: 2.01 ± 0.04 mm) and 16 weeks (WT: 2.12 ± 0.06, nob: 2.09 ± 0.06 mm, p < 0.001). Lens thickness was not significantly different between the two strains at any age (p = 0.557). For mice with normal vision, refractive index for isolated crystalline lenses in nob mice was significantly greater than WT mice (mean for all ages; WT: 1.42 ± 0.01, nob: 1.44 ± 0.001, p < 0.001). After 4 weeks of form deprivation to the right eye using a skull-mounted goggling apparatus, a thinning of the crystalline lens was observed in both right and left eyes of goggled animals compared to their naïve controls (average from both the right and the left eye) for both strains (p = 0.052). In form deprived mice, lens refractive index was significantly different between the goggled animals and non-goggled naïve controls in nob mice, but not in WT mice (p = 0.009). Both eyes of goggled nob mice had significantly greater lens refractive index (goggled, 1.49 ± 0.01; opposite, 1.47 ± 0.03) compared to their naïve controls (1.45 ± 0.02, p < 0.05). The results presented here suggest that there are genetic differences in the crystalline lens refractive index of the mouse eye, and that the lens refractive index in mice significantly increase with form deprivation. Research applications requiring precise optical measurements of the mouse eye should take these lens refractive indices into account when interpreting SD-OCT data. Published by Elsevier Ltd.

  11. Time course and topographic distribution of ocular fundus pulsation measured by low-coherence tissue interferometry

    NASA Astrophysics Data System (ADS)

    Dragostinoff, Nikolaus; Werkmeister, René M.; Klaizer, József; Gröschl, Martin; Schmetterer, Leopold

    2013-12-01

    Low-coherence tissue interferometry is a technique for the depth-resolved measurement of ocular fundus pulsations. Whereas fundus pulsation amplitudes at preselected axial positions can readily be assessed by this method, coupling of the interferometer with a pulse oximeter additionally allows for the reconstruction of the time course of ocular fundus pulsation with respect to the cardiac cycle of the subject. For this purpose, the interferogram resulting from the superposition of waves reflected at the cornea and the ocular fundus is recorded synchronously with the plethysmogram. A new method for evaluating the time course of synthetic interferograms in combination with plethysmograms based on averaging several pulse periods has been developed. This technique allows for the analysis of amplitudes, time courses, and phase differences of fundus pulsations at preselected axial and transversal positions and for creating fundus pulsation movies. Measurements are performed in three healthy emmetropic subjects at angles from 0 deg to 18 deg to the axis of vision. Considerably different time courses, amplitudes, and phases with respect to the cardiac cycle are found at different angles. Data on ocular fundus pulsation obtained with this technique can-among other applications-be used to verify and to improve biomechanical models of the eye.

  12. Understanding the Presence and Roles of Ap4A (Diadenosine Tetraphosphate) in the Eye.

    PubMed

    Crooke, Almudena; Guzman-Aranguez, Ana; Carracedo, Gonzalo; de Lara, Maria J Perez; Pintor, Jesus

    Diadenosine tetraphosphate abbreviated Ap 4 A is a naturally occurring dinucleotide, which is present in most of the ocular fluids. Due to its intrinsic resistance to enzyme degradation compared to mononucleotides, this molecule can exhibit profound actions on ocular tissues, including the ocular surface, ciliary body, trabecular meshwork, and probably the retina. The actions of Ap 4 A are mostly carried out by P2Y 2 receptors, but the participation of P2X2 and P2Y 6 in processes such as the regulation of intraocular pressure (IOP), together with the P2Y 2 , is pivotal. Beyond the physiological role, this dinucleotide can present on the ocular surface keeping a right production of tear secretion or regulating IOP. It is important to note that exogenous application of Ap 4 A to cells or animal models can significantly modify pathophysiological conditions and thus is an attractive therapeutic molecule. The ocular location where Ap 4 A actions have not been fully elucidated is in the retina. Although some analogues show interesting actions on pathological situations such as retinal detachment, little is known about the real effect of this dinucleotide, this being one of the challenges that require pursuing in the near future.

  13. Effects of Dorzolamide on Retinal and Choroidal Blood Flow in the DBA/2J Mouse Model of Glaucoma

    PubMed Central

    Chandra, Saurav; Muir, Eric R.; Deo, Kaiwalya; Kiel, Jeffrey W.; Duong, Timothy Q.

    2016-01-01

    Purpose To test the hypothesis that acute topical dorzolamide (DZ) decreases intraocular pressure (IOP) and increases retinal and choroidal blood flow in the DBA/2J mouse model of glaucoma. Methods Retinal and choroidal blood flow were measured in 4- and 9-month-old DBA/2J mice, and 4-month C57BL/6 (control) mice under isoflurane anesthesia using magnetic resonance imaging. Ocular blood flow was measured at baseline, and 1 and 2 hours after topical dorzolamide. Intraocular pressure was measured using a rebound tonometer in a subset of animals at the same time points. Results Baseline IOP in the 4-month-old DBA/2J mice and C57BL/6 mice was not significantly different (P > 0.05), and IOP in both groups was less than in the 9-month-old DBA/2J mice (P < 0.05 for both). Compared to baseline, dorzolamide reduced IOP at 1 and 2 hours after dorzolamide in the 4- (P < 0.05) and 9-month-old (P < 0.01) DBA/2J mice, but not in the C57BL/6J mice (P > 0.05). Baseline retinal blood flow was lower in the 4-month and 9-month-old DBA/2J mice compared with the 4-month-old C57BL/6J mice (P < 0.05). Baseline choroidal blood flow in the 9-month-old DBA/2J mice was less than in the C57BL/6J mice (P < 0.05). Compared with baseline, both retinal and choroidal blood flow increased at 1-hour post-dorzolamide and remained elevated 2 hours later in the 9-month-old DBA/2J mice (P < 0.05). Conclusions Dorzolamide lowers IOP and raises retinal and choroidal blood flow in older DBA/2J mice, consistent with the study hypothesis. PMID:26934140

  14. Nonclinical safety evaluation of boric acid and a novel borate-buffered contact lens multi-purpose solution, Biotrue™ multi-purpose solution.

    PubMed

    Lehmann, David M; Cavet, Megan E; Richardson, Mary E

    2010-12-01

    Multipurpose solutions (MPS) often contain low concentrations of boric acid as a buffering agent. Limited published literature has suggested that boric acid and borate-buffered MPS may alter the corneal epithelium; an effect attributed to cytotoxicity induced by boric acid. However, this claim has not been substantiated. We investigated the effect of treating cells with relevant concentrations of boric acid using two cytotoxicity assays, and also assessed the impact of boric acid on corneal epithelial barrier function by measuring TEER and immunostaining for tight junction protein ZO-1 in human corneal epithelial cells. Boric acid was also assessed in an in vivo ocular model when administered for 28 days. Additionally, we evaluated Biotrue multi-purpose solution, a novel borate-buffered MPS, alone and with contact lenses for ocular compatibility in vitro and in vivo. Boric acid passed both cytotoxicity assays and did not alter ZO-1 distribution or corneal TEER. Furthermore, boric acid was well-tolerated on-eye following repeated administration in a rabbit model. Finally, Biotrue multi-purpose solution demonstrated good ocular biocompatibility both in vitro and in vivo. This MPS was not cytotoxic and was compatible with the eye when administered alone and when evaluated with contact lenses. We demonstrate that boric acid and a borate-buffered MPS is compatible with the ocular environment. Our findings provide evidence that ocular effects reported for some borate-buffered MPS may be incorrectly attributed to boric acid and are more likely a function of the unique combination of ingredients in the MPS formulation tested. Copyright © 2010 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  15. Ocular hydrofluoric acid burns: animal model, mechanism of injury and therapy.

    PubMed Central

    McCulley, J P

    1990-01-01

    A series of ocular HF burns was produced in rabbits in order to clarify the nature of the injury and to provide a description of the animal model. Burned eyes were evaluated clinically and allowed to progress for up to 65 days before histologic examination. The mechanism of HF toxicity was investigated through the study of burns produced by chemicals chosen to mimic its pH effects, osmotic effects, and effects of the free fluoride ion alone. The severe progressive caustic effect of HF on the eyes was found to depend on the combination of pH and the toxic effects of the free fluoride ion, together causing extensive dose-related damage to superficial and deep structures of the eye. Mild burns caused reversible ocular injury; whereas more severe burns lead to corneal stromal scarring, vascularization, edema, formation of calcific band keratopathy plus iris and ciliary body fibrosis. An investigation was made of potential treatments for experimental ocular HF burns in rabbits. Topical ointments containing MgO or MgSO4 and irrigations with or subconjunctival injections of H2O or solutions containing NaCl, MgCl2, CaCl2, LaCl3, hyamine, zephiran, calcium gluconate or a mixture of divalent metal ions were tested for toxicity and for therapeutic value in ocular HF burns. Immediate single irrigation with H2O, NaCl or MgCl2 solution was most effective. Other therapeutic agents commonly used in HF skin burn therapy were either too toxic in normal eyes or caused additive damage to burned eyes. Images FIGURE 1 FIGURE 6 FIGURE 7 FIGURE 8 PMID:2095035

  16. A comparative study of a preservative-free latanoprost cationic emulsion (Catioprost) and a BAK-preserved latanoprost solution in animal models.

    PubMed

    Daull, Philippe; Buggage, Ronald; Lambert, Grégory; Faure, Marie-Odile; Serle, Janet; Wang, Rong-Fang; Garrigue, Jean-Sébastien

    2012-10-01

    Benzalkonium chloride (BAK), a common preservative in eye drops, can induce ocular surface toxicity that may decrease glaucoma therapy compliance. The ocular hypotensive effect, pharmacokinetic (PK) profiles, and local tolerance of a preservative-free latanoprost 0.005% cationic emulsion (Catioprost(®)), and a BAK-preserved latanoprost 0.005% solution (Xalatan(®)), were compared. The ocular hypotensive effect was evaluated in monkeys with elevated intraocular pressure (IOP) induced by laser photocoagulation of the trabecular meshwork. Each monkey (n=8) received both latanoprost formulations once daily for 5 consecutive treatment days in a crossover design with at least a 2-week washout period between treatments. IOP was measured at baseline (on day 1, no instillation), on vehicle treatment day (day 0), and on treatment days 1, 3, and 5 before drug instillation and then hourly for 6 h. In rabbits, the ocular and systemic concentrations of latanoprost free acid were determined following a single instillation and the local tolerance of twice daily instillations over 28 days was assessed. Both the preservative-free and BAK-preserved latanoprost formulations shared the same efficacy profile with the maximum IOP reduction occurring 2 h after each morning dose (-15%, -20%, and -26%; -15%, -23%, and -23% on days 1, 3, and 5, respectively) and lasting through 24 h. The equivalence in efficacy was confirmed by the PK data demonstrating similar area under the curves (AUCs). While both formulations were well tolerated, the incidence of conjunctival hyperemia was reduced by 42% with the BAK-free latanoprost cationic emulsion. In animal models, a preservative-free latanoprost cationic emulsion was as effective as Xalatan(®) for lowering IOP with an improved ocular tolerance profile.

  17. An animal model (guinea pig) of ocular siderosis: histopathology, pharmacology, and electrophysiology.

    PubMed

    Mumcuoglu, Tarkan; Ozge, Gokhan; Soykut, Bugra; Erdem, Onur; Gunal, Armagan; Acikel, Cengizhan

    2015-03-01

    Ocular siderosis is a rare sight-threatening complication that occurs after a penetrating ocular injury by an iron-containing foreign body. The purposes of this study were to (i) investigate the histopathology, electrophysiology and iron levels/accumulation in ocular siderosis using an animal (Guinea pig) model and (ii) determine the appropriate timing for follow-up foreign body-removal surgery. Thirty guinea pigs were divided into five groups (n = 6 animals/group). On day-1, an iron body was inserted into the vitreous of the right eye of all animals; the left eyes were left undisturbed and were used as controls. At the end of each week during the 5-week study period, electroretinography (ERG) was performed on all animals in one of the five groups. Each animal in that group was sacrificed, after which both eyes were enucleated for histopathological and pharmacological evaluation of intraocular iron. Accumulated iron levels of study eyes were significantly higher than those of control eyes (135.13 and 13.55 μg/g, respectively, p < 0.01). In addition, there was a significant decrease in electrophysiological responses of study eyes. During the first week, iron levels were higher in study eyes than control eyes, but neither histological iron accumulation nor decreased electrophysiological responses could be detected. By the end of the second week, increased iron accumulation was observed histologically in intraocular tissues, along with signs of retinal toxicity, as verified by decreased electrophysiological responses. The present study indicates that the 14th day after a penetrating eye injury by an iron-containing intraocular foreign body represents a clinically critical threshold, after which structural damage to and functional alterations in ocular tissues occur.

  18. Dry eye disease and uveitis: A closer look at immune mechanisms in animal models of two ocular autoimmune diseases.

    PubMed

    Bose, Tanima; Diedrichs-Möhring, Maria; Wildner, Gerhild

    2016-12-01

    Understanding the immunopathogenesis of autoimmune and inflammatory diseases is a prerequisite for specific and effective therapeutical intervention. This review focuses on animal models of two common ocular inflammatory diseases, dry eye disease (DED), affecting the ocular surface, and uveitis with inflammation of the inner eye. In both diseases autoimmunity plays an important role, in idiopathic uveitis immune reactivity to intraocular autoantigens is pivotal, while in dry eye disease autoimmunity seems to play a role in one subtype of disease, Sjögren' syndrome (SjS). Comparing the immune mechanisms underlying both eye diseases reveals similarities, and significant differences. Studies have shown genetic predispositions, T and B cell involvement, cytokine and chemokine signatures and signaling pathways as well as environmental influences in both DED and uveitis. Uveitis and DED are heterogeneous diseases and there is no single animal model, which adequately represents both diseases. However, there is evidence to suggest that certain T cell-targeting therapies can be used to treat both, dry eye disease and uveitis. Animal models are essential to autoimmunity research, from the basic understanding of immune mechanisms to the pre-clinical testing of potential new therapies. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Eye Irritation Test (EIT) for Hazard Identification of Eye Irritating Chemicals using Reconstructed Human Cornea-like Epithelial (RhCE) Tissue Model.

    PubMed

    Kaluzhny, Yulia; Kandárová, Helena; d'Argembeau-Thornton, Laurence; Kearney, Paul; Klausner, Mitchell

    2015-08-23

    To comply with the Seventh Amendment to the EU Cosmetics Directive and EU REACH legislation, validated non-animal alternative methods for reliable and accurate assessment of ocular toxicity in man are needed. To address this need, we have developed an eye irritation test (EIT) which utilizes a three dimensional reconstructed human cornea-like epithelial (RhCE) tissue model that is based on normal human cells. The EIT is able to separate ocular irritants and corrosives (GHS Categories 1 and 2 combined) and those that do not require labeling (GHS No Category). The test utilizes two separate protocols, one designed for liquid chemicals and a second, similar protocol for solid test articles. The EIT prediction model uses a single exposure period (30 min for liquids, 6 hr for solids) and a single tissue viability cut-off (60.0% as determined by the MTT assay). Based on the results for 83 chemicals (44 liquids and 39 solids) EIT achieved 95.5/68.2/ and 81.8% sensitivity/specificity and accuracy (SS&A) for liquids, 100.0/68.4/ and 84.6% SS&A for solids, and 97.6/68.3/ and 83.1% for overall SS&A. The EIT will contribute significantly to classifying the ocular irritation potential of a wide range of liquid and solid chemicals without the use of animals to meet regulatory testing requirements. The EpiOcular EIT method was implemented in 2015 into the OECD Test Guidelines as TG 492.

  20. Eye Irritation Test (EIT) for Hazard Identification of Eye Irritating Chemicals using Reconstructed Human Cornea-like Epithelial (RhCE) Tissue Model

    PubMed Central

    Kaluzhny, Yulia; Kandárová, Helena; d’Argembeau-Thornton, Laurence; Kearney, Paul; Klausner, Mitchell

    2015-01-01

    To comply with the Seventh Amendment to the EU Cosmetics Directive and EU REACH legislation, validated non-animal alternative methods for reliable and accurate assessment of ocular toxicity in man are needed. To address this need, we have developed an eye irritation test (EIT) which utilizes a three dimensional reconstructed human cornea-like epithelial (RhCE) tissue model that is based on normal human cells. The EIT is able to separate ocular irritants and corrosives (GHS Categories 1 and 2 combined) and those that do not require labeling (GHS No Category). The test utilizes two separate protocols, one designed for liquid chemicals and a second, similar protocol for solid test articles. The EIT prediction model uses a single exposure period (30 min for liquids, 6 hr for solids) and a single tissue viability cut-off (60.0% as determined by the MTT assay). Based on the results for 83 chemicals (44 liquids and 39 solids) EIT achieved 95.5/68.2/ and 81.8% sensitivity/specificity and accuracy (SS&A) for liquids, 100.0/68.4/ and 84.6% SS&A for solids, and 97.6/68.3/ and 83.1% for overall SS&A. The EIT will contribute significantly to classifying the ocular irritation potential of a wide range of liquid and solid chemicals without the use of animals to meet regulatory testing requirements. The EpiOcular EIT method was implemented in 2015 into the OECD Test Guidelines as TG 492. PMID:26325674

  1. System parameters for erythropoiesis control model: Comparison of normal values in human and mouse model

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The computer model for erythropoietic control was adapted to the mouse system by altering system parameters originally given for the human to those which more realistically represent the mouse. Parameter values were obtained from a variety of literature sources. Using the mouse model, the mouse was studied as a potential experimental model for spaceflight. Simulation studies of dehydration and hypoxia were performed. A comparison of system parameters for the mouse and human models is presented. Aside from the obvious differences expected in fluid volumes, blood flows and metabolic rates, larger differences were observed in the following: erythrocyte life span, erythropoietin half-life, and normal arterial pO2.

  2. New platforms for multi-functional ocular lenses: engineering double-sided functionalized nano-coatings.

    PubMed

    Mehta, Prina; Justo, Lucas; Walsh, Susannah; Arshad, Muhammad S; Wilson, Clive G; O'Sullivan, Ciara K; Moghimi, Seyed M; Vizirianakis, Ioannis S; Avgoustakis, Konstantinos; Fatouros, Dimitris G; Ahmad, Zeeshan

    2015-05-01

    A scalable platform to prepare multi-functional ocular lenses is demonstrated. Using rapidly dissolving polyvinylpyrrolidone (PVP) as the active stabilizing matrix, both sides of ocular lenses were coated using a modified scaled-up masking electrohydrodynamic atomization (EHDA) technique (flow rates variable between 5 and 10 µL/min, applied voltage 4-11 kV). Each side was coated (using a specially designed flip-able well) selectively with a pre-determined morphology and model drug substance. PVP nanoparticles (inner side, to be in contact with the cornea, mean size

  3. α-Melanocyte-stimulating hormone ameliorates ocular surface dysfunctions and lesions in a scopolamine-induced dry eye model via PKA-CREB and MEK-Erk pathways.

    PubMed

    Ru, Yusha; Huang, Yue; Liu, Huijuan; Du, Juan; Meng, Zhu; Dou, Zexia; Liu, Xun; Wei, Rui Hua; Zhang, Yan; Zhao, Shaozhen

    2015-12-21

    Dry eye is a highly prevalent, chronic, and multifactorial disease that compromises quality of life and generates socioeconomic burdens. The pathogenic factors of dry eye disease (DED) include tear secretion abnormalities, tear film instability, and ocular surface inflammation. An effective intervention targeting the pathogenic factors is needed to control this disease. Here we applied α-Melanocyte-stimulating hormone (α-MSH) twice a day to the ocular surface of a scopolamine-induced dry eye rat model. The results showed that α-MSH at different doses ameliorated tear secretion, tear film stability, and corneal integrity, and corrected overexpression of proinflammatory factors, TNF-α, IL-1β, and IFN-γ, in ocular surface of the dry eye rats. Moreover, α-MSH, at 10(-4) μg/μl, maintained corneal morphology, inhibited apoptosis, and restored the number and size of conjunctival goblet cells in the dry eye rats. Mechanistically, α-MSH activated both PKA-CREB and MEK-Erk pathways in the dry eye corneas and conjunctivas; pharmacological blockade of either pathway abolished α-MSH's protective effects, suggesting that both pathways are necessary for α-MSH's protection under dry eye condition. The peliotropic protective functions and explicit signaling mechanism of α-MSH warrant translation of the α-MSH-containing eye drop into a novel and effective intervention to DED.

  4. α-Melanocyte-stimulating hormone ameliorates ocular surface dysfunctions and lesions in a scopolamine-induced dry eye model via PKA-CREB and MEK-Erk pathways

    PubMed Central

    Ru, Yusha; Huang, Yue; Liu, Huijuan; Du, Juan; Meng, Zhu; Dou, Zexia; Liu, Xun; Wei, Rui Hua; Zhang, Yan; Zhao, Shaozhen

    2015-01-01

    Dry eye is a highly prevalent, chronic, and multifactorial disease that compromises quality of life and generates socioeconomic burdens. The pathogenic factors of dry eye disease (DED) include tear secretion abnormalities, tear film instability, and ocular surface inflammation. An effective intervention targeting the pathogenic factors is needed to control this disease. Here we applied α-Melanocyte-stimulating hormone (α-MSH) twice a day to the ocular surface of a scopolamine-induced dry eye rat model. The results showed that α-MSH at different doses ameliorated tear secretion, tear film stability, and corneal integrity, and corrected overexpression of proinflammatory factors, TNF-α, IL-1β, and IFN-γ, in ocular surface of the dry eye rats. Moreover, α-MSH, at 10−4 μg/μl, maintained corneal morphology, inhibited apoptosis, and restored the number and size of conjunctival goblet cells in the dry eye rats. Mechanistically, α-MSH activated both PKA-CREB and MEK-Erk pathways in the dry eye corneas and conjunctivas; pharmacological blockade of either pathway abolished α-MSH’s protective effects, suggesting that both pathways are necessary for α-MSH’s protection under dry eye condition. The peliotropic protective functions and explicit signaling mechanism of α-MSH warrant translation of the α-MSH-containing eye drop into a novel and effective intervention to DED. PMID:26685899

  5. In vitro methods of assessing ocular biocompatibility using THP-1-derived macrophages.

    PubMed

    McCanna, David Joseph; Barthod-Malat, Aurore V; Gorbet, Maud B

    2015-01-01

    Macrophages play an important role in the elimination of infections, the removal of debris and in tissue repair after infection and trauma. In vitro models that assess ocular biomaterials for toxicity typically focus on the effects of these materials on epithelial or fibroblast cells. This investigation evaluated known ocular toxins deposited on model materials for their effects on the viability and activation of macrophages. THP-1-derived macrophages were cultured onto silicone films (used as a base biomaterial) deposited with chemical toxins (benzalkonium chloride (BAK), zinc diethyldithiocarbamate (ZDEC) and lipopolysaccharide (LPS)). Utilizing three fluorescent dyes calcein, ethidium homodimer-1 (EthD-1) and annexin V, the viability of macrophages attached to the biomaterial was determined using confocal microscopy. Propidium iodide (PI) staining and alamarBlue® (resazurin) reduction were used to assess cell death and metabolic activity. CD14, CD16, CD33, CD45, and CD54 expression of adherent macrophages, were also evaluated to detect LPS activation of macrophages using flow cytometry. The sensitivity of this test battery was demonstrated as significant toxicity from treated surfaces with ZDEC (0.001-0.01%), and BAK (0.001%-0.1%) was detected. Also, macrophage activation could be detected by measuring CD54 expression after exposure to adsorbed LPS. These in vitro methods will be helpful in determining the toxicity potential of new ocular biomaterials.

  6. Rearrangement of Retinogeniculate Projection Patterns after Eye-Specific Segregation in Mice

    PubMed Central

    Hayakawa, Itaru; Kawasaki, Hiroshi

    2010-01-01

    It has been of interest whether and when the rearrangement of neuronal circuits can be induced after projection patterns are formed during development. Earlier studies using cats reported that the rearrangement of retinogeniculate projections could be induced even after eye-specific segregation has occurred, but detailed and quantitative characterization of this rearrangement has been lacking. Here we delineate the structural changes of retinogeniculate projections in the C57BL/6 mouse in response to monocular enucleation (ME) after eye-specific segregation. When ME was performed after eye-specific segregation, rearrangement of retinogeniculate axons in the dorsal lateral geniculate nucleus (dLGN) was observed within 5 days. Although this rearrangement was observed both along the dorsomedial-ventrolateral and outer-inner axes in the dLGN, it occurred more rapidly along the outer-inner axis. We also examined the critical period for this rearrangement and found that the rearrangement became almost absent by the beginning of the critical period for ocular dominance plasticity in the primary visual cortex. Taken together, our findings serve as a framework for the assessment of phenotypes of genetically altered mouse strains as well as provide insights into the mechanisms underlying the rearrangement of retinogeniculate projections. PMID:20544023

  7. Human mammary microenvironment better regulates the biology of human breast cancer in humanized mouse model.

    PubMed

    Zheng, Ming-Jie; Wang, Jue; Xu, Lu; Zha, Xiao-Ming; Zhao, Yi; Ling, Li-Jun; Wang, Shui

    2015-02-01

    During the past decades, many efforts have been made in mimicking the clinical progress of human cancer in mouse models. Previously, we developed a human breast tissue-derived (HB) mouse model. Theoretically, it may mimic the interactions between "species-specific" mammary microenvironment of human origin and human breast cancer cells. However, detailed evidences are absent. The present study (in vivo, cellular, and molecular experiments) was designed to explore the regulatory role of human mammary microenvironment in the progress of human breast cancer cells. Subcutaneous (SUB), mammary fat pad (MFP), and HB mouse models were developed for in vivo comparisons. Then, the orthotopic tumor masses from three different mouse models were collected for primary culture. Finally, the biology of primary cultured human breast cancer cells was compared by cellular and molecular experiments. Results of in vivo mouse models indicated that human breast cancer cells grew better in human mammary microenvironment. Cellular and molecular experiments confirmed that primary cultured human breast cancer cells from HB mouse model showed a better proliferative and anti-apoptotic biology than those from SUB to MFP mouse models. Meanwhile, primary cultured human breast cancer cells from HB mouse model also obtained the migratory and invasive biology for "species-specific" tissue metastasis to human tissues. Comprehensive analyses suggest that "species-specific" mammary microenvironment of human origin better regulates the biology of human breast cancer cells in our humanized mouse model of breast cancer, which is more consistent with the clinical progress of human breast cancer.

  8. Numerical Modeling of Ocular Dysfunction in Space

    NASA Technical Reports Server (NTRS)

    Nelson, Emily S.; Mulugeta, Lealem; Vera, J.; Myers, J. G.; Raykin, J.; Feola, A. J.; Gleason, R.; Samuels, B.; Ethier, C. R.

    2014-01-01

    Upon introduction to microgravity, the near-loss of hydrostatic pressure causes a marked cephalic (headward) shift of fluid in an astronaut's body. The fluid shift, along with other factors of spaceflight, induces a cascade of interdependent physiological responses which occur at varying time scales. Long-duration missions carry an increased risk for the development of the Visual Impairment and Intracranial Pressure (VIIP) syndrome, a spectrum of ophthalmic changes including posterior globe flattening, choroidal folds, distension of the optic nerve sheath, kinking of the optic nerve and potentially permanent degradation of visual function. In the cases of VIIP found to date, the initial onset of symptoms occurred after several weeks to several months of spaceflight, by which time the gross bodily fluid distribution is well established. We are developing a suite of numerical models to simulate the effects of fluid shift on the cardiovascular, central nervous and ocular systems. These models calculate the modified mean volumes, flow rates and pressures that are characteristic of the altered quasi-homeostatic state in microgravity, including intracranial and intraocular pressures. The results of the lumped models provide initial and boundary data to a 3D finite element biomechanics simulation of the globe, optic nerve head and retrobulbar subarachnoid space. The integrated set of models will be used to investigate the evolution of the biomechanical stress state in the ocular tissues due to long-term exposure to microgravity.

  9. 5-Aminoimidazole-4-carboxamide ribonucleoside-mediated adenosine monophosphate-activated protein kinase activation induces protective innate responses in bacterial endophthalmitis.

    PubMed

    Kumar, Ajay; Giri, Shailendra; Kumar, Ashok

    2016-12-01

    The retina is considered to be the most metabolically active tissue in the body. However, the link between energy metabolism and retinal inflammation, as incited by microbial infection such as endophthalmitis, remains unexplored. In this study, using a mouse model of Staphylococcus aureus (SA) endophthalmitis, we demonstrate that the activity (phosphorylation) of 5' adenosine monophosphate-activated protein kinase alpha (AMPKα), a cellular energy sensor and its endogenous substrate; acetyl-CoA carboxylase is down-regulated in the SA-infected retina. Intravitreal administration of an AMPK activator, 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR), restored AMPKα and acetyl-CoA carboxylase phosphorylation. AICAR treatment reduced both the bacterial burden and intraocular inflammation in SA-infected eyes by inhibiting NF-kB and MAP kinases (p38 and JNK) signalling. The anti-inflammatory effects of AICAR were diminished in eyes pretreated with AMPK inhibitor, Compound C. The bioenergetics (Seahorse) analysis of SA-infected microglia and bone marrow-derived macrophages revealed an increase in glycolysis, which was reinstated by AICAR treatment. AICAR also reduced the expression of SA-induced glycolytic genes, including hexokinase 2 and glucose transporter 1 in microglia, bone marrow-derived macrophages and the mouse retina. Interestingly, AICAR treatment enhanced the bacterial phagocytic and intracellular killing activities of cultured microglia, macrophages and neutrophils. Furthermore, AMPKα1 global knockout mice exhibited increased susceptibility towards SA endophthalmitis, as evidenced by increased inflammatory mediators and bacterial burden and reduced retinal function. Together, these findings provide the first evidence that AMPK activation promotes retinal innate defence in endophthalmitis by modulating energy metabolism and that it can be targeted therapeutically to treat ocular infections. © 2016 John Wiley & Sons Ltd.

  10. UV-B-induced DNA damage and repair in the mouse lens.

    PubMed

    Mesa, Rosana; Bassnett, Steven

    2013-10-17

    Epidemiologic studies have linked UV-B exposure to development of cortical cataracts, but the underlying molecular mechanism(s) is unresolved. Here, we used a mouse model to examine the nature and distribution of DNA photolesions produced by ocular UV-B irradiation. Anesthetized mice, eye globes, or isolated lenses were exposed to UV-B. Antibodies specific for 6-4 photoproducts (6-4 PPs) or cyclobutane pyrimidine dimers (CPDs) were used to visualize DNA adducts. Illumination of intact globes with UV-B-induced 6-4 PP and CPD formation in cells of the cornea, anterior iris, and central lens epithelium. Photolesions were not detected in retina or lens cells situated in the shadow of the iris. Photolesions in lens epithelial cells were produced with radiant exposures significantly below the minimal erythemal dose. Lens epithelial cells rapidly repaired 6-4 PPs, but CPD levels did not markedly diminish, even over extended postirradiation recovery periods in vitro or in vivo. The repair of 6-4 PPs did not depend on the proliferative activity of the epithelial cells, since the repair rate in the mitotically-active germinative zone (GZ) was indistinguishable from that of quiescent cells in the central epithelium. Even relatively modest exposures to UV-B produced 6-4 PP and CPD photolesions in lens epithelial cells. Cyclobutane pyrimidine dimer lesions were particularly prevalent and were repaired slowly if at all. Studies on sun-exposed skin have established a causal connection between photolesions and so-called UV-signature mutations. If similar mechanisms apply in the lens, it suggests that somatic mutations in lens epithelial cells may contribute to the development of cortical cataracts.

  11. A herpes simplex virus type 1 mutant disrupted for microRNA H2 with increased neurovirulence and rate of reactivation

    PubMed Central

    Jiang, Xianzhi; Brown, Don; Osorio, Nelson; Hsiang, Chinhui; Li, Lily; Chan, Lucas; BenMohamed, Lbachir; Wechsler, Steven L.

    2015-01-01

    The herpes simplex virus type 1 (HSV-1) latency associated transcript (LAT) encodes several microRNAs. One of these, miR-H2, overlaps and is antisense to the ICP0 gene, and appears to decrease expression of the ICP0 protein. To determine if miR-H2 plays a role in the HSV-1 latency-reactivation cycle, we constructed a mutant, McK-ΔH2, in which this microRNA has been disrupted without altering the predicted amino acid sequence of ICP0. McK-ΔH2 produced increased amounts of ICP0. Although replication of McK-ΔH2 was similar to that of its wt McKrae parental virus in RS cells and mouse eyes, McK-ΔH2 was more neurovirulent in Swiss Webster mice than McKrae based on the percent of mice that died from herpes encephalitis following ocular infection. In addition, using a mouse TG explant model of induced reactivation, we show here for the first time that miR-H2 appears to play a role in modulating HSV-1 reactivation. Although the percent of TG from which virus reactivated by day 10 after explant was similar for McK-ΔH2, wt McKrae, and the marker rescued virus McK-ΔH2Res, at earlier times significantly more reactivation was seen with McK-ΔH2. Our results suggest that in the context of the virus, miR-H2 downregulates ICP0 and this moderates both HSV-1 neurovirulence and reactivation. PMID:25645379

  12. Role of Orai1 and store-operated calcium entry in mouse lacrimal gland signalling and function.

    PubMed

    Xing, Juan; Petranka, John G; Davis, Felicity M; Desai, Pooja N; Putney, James W; Bird, Gary S

    2014-03-01

    Lacrimal glands function to produce an aqueous layer, or tear film, that helps to nourish and protect the ocular surface. Lacrimal glands secrete proteins, electrolytes and water, and loss of gland function can result in tear film disorders such as dry eye syndrome, a widely encountered and debilitating disease in ageing populations. To combat these disorders, understanding the underlying molecular signalling processes that control lacrimal gland function will give insight into corrective therapeutic approaches. Previously, in single lacrimal cells isolated from lacrimal glands, we demonstrated that muscarinic receptor activation stimulates a phospholipase C-coupled signalling cascade involving the inositol trisphosphate-dependent mobilization of intracellular calcium and the subsequent activation of store-operated calcium entry (SOCE). Since intracellular calcium stores are finite and readily exhausted, the SOCE pathway is a critical process for sustaining and maintaining receptor-activated signalling. Recent studies have identified the Orai family proteins as critical components of the SOCE channel activity in a wide variety of cell types. In this study we characterize the role of Orai1 in the function of lacrimal glands using a mouse model in which the gene for the calcium entry channel protein, Orai1, has been deleted. Our data demonstrate that lacrimal acinar cells lacking Orai1 do not exhibit SOCE following activation of the muscarinic receptor. In comparison with wild-type and heterozygous littermates, Orai1 knockout mice showed a significant reduction in the stimulated tear production following injection of pilocarpine, a muscarinic receptor agonist. In addition, calcium-dependent, but not calcium-independent exocytotic secretion of peroxidase was eliminated in glands from knockout mice. These studies indicate a critical role for Orai1-mediated SOCE in lacrimal gland signalling and function.

  13. Vitamin K does not prevent soft tissue mineralization in a mouse model of pseudoxanthoma elasticum

    PubMed Central

    Brampton, Christopher; Yamaguchi, Yukiko; Vanakker, Olivier; Laer, Lut Van; Chen, Li-Hsieh; Thakore, Manoj; De Paepe, Anne; Pomozi, Viola; Szabó, Pál T; Martin, Ludovic; Váradi, András

    2011-01-01

    Pseudoxanthoma elasticum (PXE) is a heritable disease characterized by calcified elastic fibers in cutaneous, ocular and vascular tissues. PXE is caused by mutations in ABCC6, which encodes a protein of the ATP-driven organic anion transporter family. The inability of this transporter to secrete its substrate into the circulation is the likely cause of PXE. Vitamin K plays a role in the regulation of mineralization processes as a co-factor in the carboxylation of calcification inhibitors such as Matrix Gla Protein (MGP). Vitamin K precursor or a conjugated form has been proposed as potential substrate(s) for ABCC6. We investigated whether an enriched diet of vitamin K1 or vitamin K2 (MK4) could stop or slow the disease progression in Abcc6-/- mice. Abcc6-/- mice were placed on a diet of either vitamin K1 or MK4 at 5 or 100 mg/kg at prenatal, 3 weeks or 3 months of age. Disease progression was quantified by measuring the calcium content of one side of the mouse muzzle skin and histological staining for calcium of the opposing side. Raising the vitamin K1 or MK4 content of the diet increased the concentration of circulating MK4 in the serum. However, this increase did not significantly affect the MGP carboxylation status or reduce its abnormal abundance, the total calcium content or the pathologic calcification in the whiskers of the 3 treatment groups compared to controls. Our findings showed that raising the dietary intake of vitamin K1 or MK4 was not beneficial in the treatment of PXE and suggested that the availability of vitamin K may not be a limiting factor in this pathology. PMID:21597330

  14. Novel application assigned to toluquinol: inhibition of lymphangiogenesis by interfering with VEGF‐C/VEGFR‐3 signalling pathway

    PubMed Central

    Blacher, S; Paupert, J; Quesada, A R; Medina, M A; Noël, A

    2016-01-01

    Background and Purpose Lymphangiogenesis is an important biological process associated with the pathogenesis of several diseases, including metastatic dissemination, graft rejection, lymphoedema and other inflammatory disorders. The development of new drugs that block lymphangiogenesis has become a promising therapeutic strategy. In this study, we investigated the ability of toluquinol, a 2‐methyl‐hydroquinone isolated from the culture broth of the marine fungus Penicillium sp. HL‐85‐ALS5‐R004, to inhibit lymphangiogenesis in vitro, ex vivo and in vivo. Experimental Approach We used human lymphatic endothelial cells (LECs) to analyse the effect of toluquinol in 2D and 3D in vitro cultures and in the ex vivo mouse lymphatic ring assay. For in vivo approaches, the transgenic Fli1:eGFPy1 zebrafish, mouse ear sponges and cornea models were used. Western blotting and apoptosis analyses were carried out to search for drug targets. Key Results Toluquinol inhibited LEC proliferation, migration, tubulogenesis and sprouting of new lymphatic vessels. Furthermore, toluquinol induced apoptosis of LECs after 14 h of treatment in vitro, blocked the development of the thoracic duct in zebrafish and reduced the VEGF‐C‐induced lymphatic vessel formation and corneal neovascularization in mice. Mechanistically, we demonstrated that this drug attenuates VEGF‐C‐induced VEGFR‐3 phosphorylation in a dose‐dependent manner and suppresses the phosphorylation of Akt and ERK1/2. Conclusions and Implications Based on these findings, we propose toluquinol as a new candidate with pharmacological potential for the treatment of lymphangiogenesis‐related pathologies. Notably, its ability to suppress corneal neovascularization paves the way for applications in vascular ocular pathologies. PMID:27018653

  15. Phenotypic and Functional Characterization of Herpes Simplex Virus Glycoprotein B Epitope-Specific Effector and Memory CD8+ T Cells from Symptomatic and Asymptomatic Individuals with Ocular Herpes

    PubMed Central

    Khan, Arif A.; Srivastava, Ruchi; Spencer, Doran; Garg, Sumit; Fremgen, Daniel; Vahed, Hawa; Lopes, Patricia P.; Pham, Thanh T.; Hewett, Charlie; Kuang, Jasmine; Ong, Nicolas; Huang, Lei; Scarfone, Vanessa M.; Nesburn, Anthony B.

    2015-01-01

    ABSTRACT Herpes simplex virus 1 (HSV-1) glycoprotein B (gB)-specific CD8+ T cells protect mice from herpes infection and disease. However, whether and which HSV-1 gB-specific CD8+ T cells play a key role in the “natural” protection seen in HSV-1-seropositive healthy asymptomatic (ASYMP) individuals (who have never had clinical herpes disease) remain to be determined. In this study, we have dissected the phenotypes and the functions of HSV-1 gB-specific CD8+ T cells from HLA-A*02:01 positive, HSV-1 seropositive ASYMP and symptomatic (SYMP) individuals (with a history of numerous episodes of recurrent ocular herpes disease). We found the following. (i) Healthy ASYMP individuals maintained a significantly higher proportion of differentiated HSV-1 gB-specific effector memory CD8+ T cells (TEM cells) (CD45RAlow CCR7low CD44high CD62Llow). In contrast, SYMP patients had frequent less-differentiated central memory CD8+ T cells (TCM cells) (CD45RAlow CCR7high CD44low CD62Lhigh). (ii) ASYMP individuals had significantly higher proportions of multifunctional effector CD8+ T cells which responded mainly to gB342–350 and gB561–569 “ASYMP” epitopes, and simultaneously produced IFN-γ, CD107a/b, granzyme B, and perforin. In contrast, effector CD8+ T cells from SYMP individuals were mostly monofunctional and were directed mainly against nonoverlapping gB17–25 and gB183–191 “SYMP” epitopes. (iii) Immunization of an HLA-A*02:01 transgenic mouse model of ocular herpes with “ASYMP” CD8+ TEM cell epitopes, but not with “SYMP” CD8+ TCM cell epitopes, induced a strong CD8+ T cell-dependent protective immunity against ocular herpes infection and disease. Our findings provide insights into the role of HSV-specific CD8+ TEM cells in protection against herpes and should be considered in the development of an effective vaccine. IMPORTANCE A significantly higher proportion of differentiated and multifunctional HSV-1 gB-specific effector memory CD8+ T cells (TEM cells) (CD45RAlow CCR7low CD44high CD62Llow) were found in healthy ASYMP individuals who are seropositive for HSV-1 but never had any recurrent herpetic disease, while there were frequent less-differentiated and monofunctional central memory CD8+ T cells (TCM cells) (CD45RAlow CCR7high CD44low CD62Lhigh) in SYMP patients. Immunization with “ASYMP” CD8+ TEM cell epitopes, but not with “SYMP” CD8+ TCM cell epitopes, induced a strong protective HSV-specific CD8+ T cell response in HLA-A*02:01 transgenic mice. These findings are important for the development of a safe and effective T cell-based herpes vaccine. PMID:25609800

  16. RECURRENCE RATES OF OCULAR TOXOPLASMOSIS DURING PREGNANCY

    PubMed Central

    Braakenburg, Arthur M.D.; Crespi, Catherine M.; Holland, Gary N.; Wu, Sheng; Yu, Fei; Rothova, Aniki

    2014-01-01

    Purpose To investigate whether recurrence rates of ocular toxoplasmosis are higher during pregnancy among women of childbearing age. Design Retrospective longitudinal cohort study. Methods We reviewed medical records of all women seen at a university eye clinic (Utrecht, Netherlands) during episodes of active toxoplasmic retinochoroiditis that occurred while the women were of childbearing age (16–42 years). Each woman was sent a questionnaire requesting information regarding all pregnancies and episodes of ocular toxoplasmosis, whether or not episodes were observed at the eye clinic. Conditional fixed-effects Poisson regression was used to model incident rate ratios of recurrence during pregnant versus non-pregnant intervals, adjusted for potential confounders, including age at time of active toxoplasmic retinochoroiditis and interval since last episode of active disease, which are known to influence risk of recurrence. Results Questionnaires were returned by 50 (58%) of 86 women, 34 of whom had 69 pregnancies during 584 person-years of study. There were 128 episodes of ocular toxoplasmosis during the study period (6 during pregnancy). First episodes of ocular toxoplasmosis occurred between ages 9.6 and 38.5 years. Youngest age at pregnancy was 16.1 years; oldest age at childbirth was 40.9 years. Incident rate ratios for pregnant versus non-pregnant intervals were in the direction of lower recurrence rates during pregnancy, with point estimates of 0.54 and 0.75 under two different approaches, but ratios were not significantly different from the null value (p-values of 0.16 and 0.55). Conclusions Recurrence rates of ocular toxoplasmosis are likely not higher during pregnancy, in contrast to traditional beliefs. PMID:24412127

  17. Recurrence rates of ocular toxoplasmosis during pregnancy.

    PubMed

    Braakenburg, Arthur M D; Crespi, Catherine M; Holland, Gary N; Wu, Sheng; Yu, Fei; Rothova, Aniki

    2014-04-01

    To investigate whether recurrence rates of ocular toxoplasmosis are higher during pregnancy in women of childbearing age. Retrospective longitudinal cohort study. We reviewed medical records of all women seen at a university eye clinic (Utrecht, Netherlands) during episodes of active toxoplasmic retinochoroiditis that occurred while the women were of childbearing age (16-42 years). Each woman was sent a questionnaire requesting information regarding all pregnancies and episodes of ocular toxoplasmosis, whether or not episodes were observed at the eye clinic. Conditional fixed-effects Poisson regression was used to model incidence rate ratios of recurrence during pregnant versus nonpregnant intervals, adjusted for potential confounders, including age at time of active toxoplasmic retinochoroiditis and interval since last episode of active disease, which are known to influence risk for recurrence. Questionnaires were returned by 50 (58%) of 86 women, 34 of whom had had 69 pregnancies during 584 person-years of study. There were 128 episodes of ocular toxoplasmosis during the study period (6 during pregnancy). First episodes of ocular toxoplasmosis occurred between ages 9.6 and 38.5 years. The youngest age at pregnancy was 16.1 years; the oldest age at childbirth was 40.9 years. The incidence-rate ratios for pregnant versus nonpregnant intervals were in the direction of lower recurrence rates during pregnancy, with point estimates of 0.54 and 0.75 under 2 different approaches, but the ratios were not significantly different from the null value (P values of 0.16 and 0.55). Recurrence rates of ocular toxoplasmosis are probably not higher during pregnancy, in contrast to traditional beliefs. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. High Resolution Chest Computerized Tomography in the Diagnosis of Ocular Sarcoidosis in a High TB Endemic Population.

    PubMed

    Babu, Kalpana; Shukla, Sai Bhakti; Philips, Mariamma

    2017-04-01

    To review the role of high resolution chest computed tomography (HRCT) in ocular sarcoidosis in a high TB endemic population. This was a retrospective study. Out of 140 cases, 54 had ocular sarcoidosis, while 86 cases had ocular tuberculosis. Abnormal HRCT findings was noted in 52 cases (96.3%) of ocular sarcoidosis compared with 55 cases (64.7%) of ocular tuberculosis (p = 0.001). Mediastinal lymphadenopathy was the most common finding in both groups (p = 0.544). Hilar lymphadenopathy and fissural nodules were significantly seen in ocular sarcoidosis (p = 0.001). Necrosis was seen in three cases of ocular sarcoidosis. In nearly half of the cases, it was not possible to differentiate between sarcoidosis and tuberculosis on HRCT. HRCT is a useful diagnostic tool in ocular sarcoidosis. Bilateral hilar lymphadenopathy and fissural nodules are significant findings in ocular sarcoidosis. A confident diagnosis of ocular sarcoidosis is made by the amalgamation of results of clinical, radiologic, and other laboratory investigations.

  19. The Mouse Tumor Biology Database: A Comprehensive Resource for Mouse Models of Human Cancer.

    PubMed

    Krupke, Debra M; Begley, Dale A; Sundberg, John P; Richardson, Joel E; Neuhauser, Steven B; Bult, Carol J

    2017-11-01

    Research using laboratory mice has led to fundamental insights into the molecular genetic processes that govern cancer initiation, progression, and treatment response. Although thousands of scientific articles have been published about mouse models of human cancer, collating information and data for a specific model is hampered by the fact that many authors do not adhere to existing annotation standards when describing models. The interpretation of experimental results in mouse models can also be confounded when researchers do not factor in the effect of genetic background on tumor biology. The Mouse Tumor Biology (MTB) database is an expertly curated, comprehensive compendium of mouse models of human cancer. Through the enforcement of nomenclature and related annotation standards, MTB supports aggregation of data about a cancer model from diverse sources and assessment of how genetic background of a mouse strain influences the biological properties of a specific tumor type and model utility. Cancer Res; 77(21); e67-70. ©2017 AACR . ©2017 American Association for Cancer Research.

  20. The role of the lacrimal functional unit in the pathophysiology of dry eye.

    PubMed

    Stern, Michael E; Gao, Jianping; Siemasko, Karyn F; Beuerman, Roger W; Pflugfelder, Stephen C

    2004-03-01

    The majority of dry eye symptoms are due to a chronic inflammation of the lacrimal functional unit resulting in a loss of tear film integrity and normal function. This leads to a reduction in the ability of the ocular surface to respond to environmental challenges. The underlying cause of tear film dysfunction is the alteration of tear aqueous, mucin, and lipid components. This may result from a systemic autoimmune disease or a local autoimmune event. A lack of systemic androgen support to the lacrimal gland has been shown to be a facilitative factor in the initiation of this type of pathophysiology. Tear secretion is controlled by the lacrimal functional unit consisting of the ocular surface (cornea, conjunctiva, accessory lacrimal glands, and meibomian glands), the main lacrimal gland and the interconnecting innervation. If any portion of this functional unit is compromised, lacrimal gland support to the ocular surface is impeded. Factors such as neurogenic inflammation and T cell involvement in the disease pathogenesis as well as newly developed animal models of ocular surface inflammation are discussed.

  1. Lacrimal gland-derived IL-22 regulates IL-17-mediated ocular mucosal inflammation

    PubMed Central

    Ji, Yong Woo; Mittal, Sharad K.; Hwang, Ho Sik; Chang, Eun-Ju; Lee, Joon H.; Seo, Yuri; Yeo, Areum; Noh, Hyemi; Lee, Hye Sun; Chauhan, Sunil K.; Lee, Hyung Keun

    2016-01-01

    Inflammatory damage of mucosal surface of the eye is a hallmark of dry eye disease (DED), and in severe cases can lead to significant discomfort, visual impairment, and blindness. DED is a multifactorial autoimmune disorder with a largely unknown pathogenesis. Using a cross-sectional patient study and a well-characterized murine model of DED, herein we investigated the immunoregulatory function of interleukin-22 (IL-22) in the pathogenesis of DED. We found that IL-22 levels were elevated in lacrimal fluids of DED patients and inversely correlated with severity of disease. Acinar cells of the lacrimal glands, not inflammatory immune cells, are the primary source of IL-22, which suppresses inflammation in ocular surface epithelial cells upon desiccating stress. Moreover, loss of function analyses using IL-22 knock-out mice demonstrated that IL-22 is essential for suppression of ocular surface infiltration of Th17 cells and inhibition of DED induction. Our novel findings elucidate immunoregulatory function of lacrimal gland-derived IL-22 in inhibiting IL-17-mediated ocular surface epitheliopathy in DED thus making IL-22 a new relevant therapeutic target. PMID:28051088

  2. Increases in Ocular Syphilis-North Carolina, 2014-2015.

    PubMed

    Oliver, Sara E; Cope, Anna Barry; Rinsky, Jessica L; Williams, Charnetta; Liu, Gui; Hawks, Stephanie; Peterman, Thomas A; Markowitz, Lauri; Fleischauer, Aaron T; Samoff, Erika

    2017-10-30

    Ocular syphilis is an inflammatory eye disease due to Treponema pallidum infection. In the United States, syphilis rates have increased since 2000; clusters of ocular syphilis were reported in 2015. We investigated ocular syphilis in North Carolina to describe the epidemiology and clinical course of disease. We reviewed syphilis cases reported to North Carolina during 2014-2015 and abstracted information from health department interviews for cases with ocular symptoms and no other defined etiology. To assess duration and severity of ocular symptoms, we also reviewed medical records and conducted structured interviews. We compared the prevalence of ocular manifestations among reported syphilis cases by demographic and clinical characteristics. Among 4232 syphilis patients, 63 (1.5%) had ocular syphilis: 21 in 2014 and 42 in 2015, a 100% increase. Total syphilis cases increased 35% through 2015. No patient with ocular syphilis named another ocular syphilis patient as a sex partner. Patients presented in all syphilis stages; 24 (38%) were diagnosed in primary or secondary syphilis. Ocular manifestations were more prevalent among syphilis patients who were male, aged ≥40 years, white, and infected with human immunodeficiency virus. No risk behaviors were associated with ocular syphilis. Among 39 interviewed patients, 34 (87%) reported reduced vision during infection; 12 (31%) reported residual visual symptoms posttreatment. In North Carolina, ocular syphilis increased from 2014 to 2015 and may be due to increased recognition of ocular manifestations, or a true increase in ocular syphilis. Many ocular syphilis patients experienced vision loss; however, most improved posttreatment. Published by Oxford University Press for the Infectious Diseases Society of America 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  3. Compound 49b Reduces Inflammatory Markers and Apoptosis after Ocular Blast Injury

    DTIC Science & Technology

    2015-11-01

    provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid...finalize the testing of Compound 49b in the IGBP-3 pathway in a trauma model. Specifically, we have done experimentation on how the inflammatory...effects of Compound 49b after ocular blast injury and successfully generated a method for the isolation of retinal ganglion cells, which are critical

  4. Gene Therapy Targeting Glaucoma: Where Are We?

    PubMed Central

    Liu, Xuyang; Rasmussen, Carol A.; Gabelt, B’Ann T.; Brandt, Curtis R.; Kaufman, Paul L.

    2010-01-01

    In a chronic disease such as glaucoma, a therapy that provides a long lasting local effect, with minimal systemic side effects, while circumventing the issue of patient compliance, is very attractive. The field of gene therapy is growing rapidly and ocular applications are expanding. Our understanding of the molecular pathogenesis of glaucoma is leading to greater specificity in ocular tissue targeting. Improvements in gene delivery techniques, refinement of vector construction methods, and development of better animal models combine to bring this potential therapy closer to reality. PMID:19539835

  5. Molecular genetics of inherited eye disorders.

    PubMed

    MacDonald, I M; Sasi, R

    1994-10-01

    In the past 10 y, there have been considerable advances in the mapping, isolation, and characterization of many genes for important ocular conditions: retinitis pigmentosa, Norrie disease, Waardenburg syndrome, choroideremia, aniridia, retinoblastoma, and others. The candidate gene approach has now supplemented classical linkage studies and positional cloning in the investigation of ocular disorders. Developmentally expressed genes and animal models have provided insights as to the etiology of other disorders. With this knowledge at hand, genetic counselling for heritable eye diseases has been greatly improved.

  6. Silibinin, dexamethasone, and doxycycline as potential therapeutic agents for treating vesicant-inflicted ocular injuries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tewari-Singh, Neera, E-mail: Neera.Tewari-Singh@ucdenver.edu; Jain, Anil K., E-mail: Anil.Jain@ucdenver.edu; Inturi, Swetha, E-mail: Swetha.Inturi@ucdenver.edu

    There are no effective and approved therapies against devastating ocular injuries caused by vesicating chemical agents sulfur mustard (SM) and nitrogen mustard (NM). Herein, studies were carried out in rabbit corneal cultures to establish relevant ocular injury biomarkers with NM for screening potential efficacious agents in laboratory settings. NM (100 nmol) exposure of the corneas for 2 h (cultured for 24 h), showed increases in epithelial thickness, ulceration, apoptotic cell death, epithelial detachment microbullae formation, and the levels of VEGF, cyclooxygenase-2 (COX-2) and matrix metalloproteinase-9 (MMP-9). Employing these biomarkers, efficacy studies were performed with agent treatments 2 h and everymore » 4 h thereafter, for 24 h following NM exposure. Three agents were evaluated, including prescription drugs dexamethasone (0.1%; anti-inflammatory steroid) and doxycycline (100 nmol; antibiotic and MMP inhibitor) that have been studied earlier for treating vesicant-induced eye injuries. We also examined silibinin (100 μg), a non-toxic natural flavanone found to be effective in treating SM analog-induced skin injuries in our earlier studies. Treatments of doxycycline + dexamethasone, and silibinin were more effective than doxycycline or dexamethasone alone in reversing NM-induced epithelial thickening, microbullae formation, apoptotic cell death, and MMP-9 elevation. However, dexamethasone and silibinin alone were more effective in reversing NM-induced VEGF levels. Doxycycline, dexamethasone and silibinin were all effective in reversing NM-induced COX-2 levels. Apart from therapeutic efficacy of doxycycline and dexamethasone, these results show strong multifunctional efficacy of silibinin in reversing NM-induced ocular injuries, which could help develop effective and safe therapeutics against ocular injuries by vesicants. -- Highlights: ► Established injury biomarkers in rabbit corneal culture with nitrogen mustard (NM) ► This NM model is a cost effective system to evaluate and optimize therapeutics. ► Show that doxycycline and dexamethasone reduce NM-caused ocular injuries ► Demonstrate that silibinin effectively reverses NM-caused ocular injury endpoints ► Suggest optimization of identified agents against ocular injuries by vesicants.« less

  7. Gallus gallus orthologous to human alpha-dystroglycanopathies candidate genes: Gene expression and characterization during chicken embryogenesis.

    PubMed

    Izquierdo-Lahuerta, Adriana; de Luis, Oscar; Gómez-Esquer, Francisco; Cruces, Jesús; Coloma, Antonio

    2016-09-23

    Alpha-dystroglycanopathies are a heterogenic group of human rare diseases that have in common defects of α-dystroglycan O-glycosylation. These congenital disorders share common features as muscular dystrophy, malformations on central nervous system and more rarely altered ocular development, as well as mutations on a set of candidate genes involved on those syndromes. Severity of the syndromes is variable, appearing Walker-Warburg as the most severe where mutations at protein O-mannosyl transferases POMT1 and POMT2 genes are frequently described. When studying the lack of MmPomt1 in mouse embryonic development, as a murine model of Walker-Warburg syndrome, MmPomt1 null phenotype was lethal because Reitchert's membrane fails during embryonic development. Here, we report gene expression from Gallus gallus orthologous genes to human candidates on alpha-dystroglycanopathies POMT1, POMT2, POMGnT1, FKTN, FKRP and LARGE, making special emphasis in expression and localization of GgPomt1. Results obtained by quantitative RT-PCR, western-blot and immunochemistry revealed close gene expression patterns among human and chicken at key tissues affected during development when suffering an alpha-dystroglycanopathy, leading us to stand chicken as a useful animal model for molecular characterization of glycosyltransferases involved in the O-glycosylation of α-Dystroglycan and its role in embryonic development. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Full-field OCT: applications in ophthalmology

    NASA Astrophysics Data System (ADS)

    Grieve, Kate; Dubois, Arnaud; Paques, Michel; Le Gargasson, Jean-Francois; Boccara, Albert C.

    2005-04-01

    We present images of ocular tissues obtained using ultrahigh resolution full-field OCT. The experimental setup is based on the Linnik interferometer, illuminated by a tungsten halogen lamp. En face tomographic images are obtained in real-time without scanning by computing the difference of two phase-opposed interferometric images recorded by a high-resolution CCD camera. A spatial resolution of 0.7 μm × 0.9 μm (axial × transverse) is achieved thanks to the short source coherence length and the use of high numerical aperture microscope objectives. A detection sensitivity of 90 dB is obtained by means of image averaging and pixel binning. Whole unfixed eyes and unstained tissue samples (cornea, lens, retina, choroid and sclera) of ex vivo rat, mouse, rabbit and porcine ocular tissues were examined. The unprecedented resolution of our instrument allows cellular-level resolution in the cornea and retina, and visualization of individual fibers in the lens. Transcorneal lens imaging was possible in all animals, and in albino animals, transscleral retinal imaging was achieved. We also introduce our rapid acquisition full-field optical coherence tomography system designed to accommodate in vivo ophthalmologic imaging. The variations on the original system technology include the introduction of a xenon arc lamp as source, and rapid image acquisition performed by a high-speed CMOS camera, reducing acquisition time to 5 ms per frame.

  9. Development of diagnostic and treatment strategies for glaucoma through understanding and modification of scleral and lamina cribrosa connective tissue

    PubMed Central

    Quigley, Harry A.; Cone, Frances E.

    2013-01-01

    There is considerable evidence that the state of ocular connective tissues and their response in glaucomatous disease affects the degree of glaucoma damage. Both experimental and clinical data suggest that improved diagnostic and prognostic information could be derived from assessment of the mechanical responsiveness of the sclera and lamina cribrosa to intraocular pressure (IOP). Controlled mutagenesis of the sclera has produced a mouse strain that is relatively resistant to increased IOP. Alteration of the baseline scleral state could be accomplished through either increased cross-linking of fibrillar components or their reduction. The sclera is a dynamic structure, altering its structure and behavior in response to IOP change. The biochemical pathways that control these responses are fertile areas for new glaucoma treatments. PMID:23535950

  10. Ischemic Stroke Patients Demonstrate Increased Carotid Plaque Microvasculature Compared to (Ocular) Transient Ischemic Attack Patients

    PubMed Central

    van Hoof, Raf H.M.; Schreuder, Floris H.B.M.; Nelemans, Patty; Truijman, Martine T.B.; van Orshoven, Narender P.; Schreuder, Tobien H.; Mess, Werner H.; Heeneman, Sylvia; van Oostenbrugge, Robert J.; Wildberger, Joachim E.; Kooi, M. Eline

    2017-01-01

    Background Patients with a recent ischemic stroke have a higher risk of recurrent stroke compared to (ocular) transient ischemic attack (TIA) patients. Plaque microvasculature is considered as a feature of plaque vulnerability and can be quantified with carotid dynamic contrast-enhanced MRI (DCE-MRI). The purpose of this cross-sectional study was to explore the association between plaque microvasculature and the type of recent cerebrovascular events in symptomatic patients with mild-to-moderate carotid stenosis. Methods A total of 87 symptomatic patients with a recent stroke (n = 35) or (ocular) TIA (n = 52) underwent carotid DCE-MRI examination. Plaque microvasculature was studied in the vessel wall and adventitia using DCE-MRI and the pharmacokinetic modeling parameter Ktrans. Statistical analysis was performed with logistic regression, correcting for associated clinical risk factors. Results The 75th percentile adventitial (OR 1.97, 95% CI 1.18–3.29) Ktrans was significantly associated with a recent ischemic stroke compared to (ocular) TIA in multivariate analysis, while clinical risk factors were not significantly associated with the type of event. Conclusions This study indicates a positive association of leaky plaque microvasculature with a recent ischemic stroke compared to (ocular) TIA. Prospective longitudinal studies are needed to investigate whether Ktrans or other plaque characteristics may serve as an imaging marker for predicting (the type of) future cerebrovascular events. PMID:28946147

  11. Relationship between refractive error and ocular biometrics in twin children: the Guangzhou Twin Eye Study.

    PubMed

    Wang, Decai; Liu, Bin; Huang, Shengsong; Huang, Wenyong; He, Mingguang

    2014-09-01

    A cross-sectional study was conducted to explore the relationship between refractive error and ocular biometrics in children from the Guangzhou twin eye study. Twin participants aged 7-15 years were selected from Guangzhou Twin Eye Study. Ocular examinations included visual acuity measurement, ocular motility evaluation, autorefraction under cycloplegia, and anterior segment, media, and fundus examination. Axial length (AL), anterior chamber depth (ACD), and corneal curvature radius were measured using partial coherence laser interferometry. A multivariate linear regression model was used for statistical analysis. Twin children from Guangzhou city showed a decreased spherical equivalent with age, whereas both AL and ACD were increased and corneal curvature radius remained unchanged. When adjusted by age and gender, the data from 77% of twins presenting with spherical equivalent changes indicated that these were caused by predictable variables (R2 = 0.77, P < 0.001). Primary factors affecting children's refraction included axial length (β = -0.97,P < 0.001), ACD (β = 0.33, P < 0.001), and curvature radius (β = 2.10, P < 0.001). Girls had a higher tendency for myopic status than did boys (β = -0.26, P < 0.001). Age exerted no effect upon the changes in refraction (β = -0.01, P = 0.25). Refraction is correlated with ocular biometrics. Refractive status is largely determined by axial length as the major factor.

  12. Retinal protective effects of topically administered agmatine on ischemic ocular injury caused by transient occlusion of the ophthalmic artery

    PubMed Central

    Hong, S.; Hara, H.; Shimazawa, M.; Hyakkoku, K.; Kim, C.Y.; Seong, G.J.

    2012-01-01

    Agmatine, an endogenous polyamine and putative neuromodulator, is known to have neuroprotective effects on various neurons in the central nervous system. We determined whether or not topically administered agmatine could reduce ischemic retinal injury. Transient ocular ischemia was achieved by intraluminal occlusion of the middle cerebral artery of ddY mice (30-35 g) for 2 h, which is known to also induce occlusion of the ophthalmic artery. In the agmatine group (N = 6), a 1.0 mM agmatine-containing ophthalmic solution was administered four times daily for 2 weeks before occlusion. In the control group (N = 6), a 0.1% hyaluronic acid ophthalmic solution was instilled at the same times. At 22 h after reperfusion, the eyeballs were enucleated and the retinal sections were stained by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL). Transient ocular ischemia induced apoptosis of retinal cells in the entire retinal layer, and topically administered agmatine can significantly reduce this ischemic retinal injury. The proportion of apoptotic cells was definitely decreased (P < 0.001; Kruskal-Wallis test). Overall, we determined that topical agmatine application effectively decreases retinal damage in an in vivo ocular ischemic injury model. This implies that agmatine is a good candidate as a direct neuroprotective agent for eyes with ocular ischemic diseases. PMID:22331138

  13. Association Between Unprotected Ultraviolet Radiation Exposure and Recurrence of Ocular Herpes Simplex Virus

    PubMed Central

    Ludema, Christina; Cole, Stephen R.; Poole, Charles; Smith, Jennifer S.; Schoenbach, Victor J.; Wilhelmus, Kirk R.

    2014-01-01

    Studies have suggested that exposure to ultraviolet (UV) light may increase risk of herpes simplex virus (HSV) recurrence. Between 1993 and 1997, the Herpetic Eye Disease Study (HEDS) randomized 703 participants with ocular HSV to receipt of acyclovir or placebo for prevention of ocular HSV recurrence. Of these, 308 HEDS participants (48% female and 85% white; median age, 49 years) were included in a nested study of exposures thought to cause recurrence and were followed for up to 15 months. We matched weekly UV index values from the National Oceanic and Atmospheric Administration to each participant's study center and used marginal structural Cox models to account for time-varying psychological stress and contact lens use and selection bias from dropout. There were 44 recurrences of ocular HSV, yielding an incidence of 4.3 events per 1,000 person-weeks. Weighted hazard ratios comparing persons with ≥8 hours of time outdoors to those with less exposure were 0.84 (95% confidence interval (CI): 0.27, 2.63) and 3.10 (95% CI: 1.14, 8.48) for weeks with a UV index of <4 and ≥4, respectively (ratio of hazard ratios = 3.68, 95% CI: 0.43, 31.4). Though results were imprecise, when the UV index was higher (i.e., ≥4), spending 8 or more hours per week outdoors was associated with increased risk of ocular HSV recurrence. PMID:24142918

  14. An innovative method of ocular prosthesis fabrication by bio-CAD and rapid 3-D printing technology: A pilot study.

    PubMed

    Alam, Md Shahid; Sugavaneswaran, M; Arumaikkannu, G; Mukherjee, Bipasha

    2017-08-01

    Ocular prosthesis is either a readymade stock shell or custom made prosthesis (CMP). Presently, there is no other technology available, which is either superior or even comparable to the conventional CMP. The present study was designed to fabricate ocular prosthesis using computer aided design (CAD) and rapid manufacturing (RM) technology and to compare it with custom made prosthesis (CMP). The ocular prosthesis prepared by CAD was compared with conventional CMP in terms of time taken for fabrication, weight, cosmesis, comfort, and motility. Two eyes of two patients were included. Computerized tomography scan of wax model of socket was converted into three dimensional format using Materialize Interactive Medical Image Control System (MIMICS)software and further refined. This was given as an input to rapid manufacturing machine (Polyjet 3-D printer). The final painting on prototype was done by an ocularist. The average effective time required for fabrication of CAD prosthesis was 2.5 hours; and weight 2.9 grams. The same for CMP were 10 hours; and 4.4 grams. CAD prosthesis was more comfortable for both the patients. The study demonstrates the first ever attempt of fabricating a complete ocular prosthesis using CAD and rapid manufacturing and comparing it with conventional CMP. This prosthesis takes lesser time for fabrication, and is more comfortable. Studies with larger sample size will be required to further validate this technique.

  15. Drug discovery in prostate cancer mouse models.

    PubMed

    Valkenburg, Kenneth C; Pienta, Kenneth J

    2015-01-01

    The mouse is an important, though imperfect, organism with which to model human disease and to discover and test novel drugs in a preclinical setting. Many experimental strategies have been used to discover new biological and molecular targets in the mouse, with the hopes of translating these discoveries into novel drugs to treat prostate cancer in humans. Modeling prostate cancer in the mouse, however, has been challenging, and often drugs that work in mice have failed in human trials. The authors discuss the similarities and differences between mice and men; the types of mouse models that exist to model prostate cancer; practical questions one must ask when using a mouse as a model; and potential reasons that drugs do not often translate to humans. They also discuss the current value in using mouse models for drug discovery to treat prostate cancer and what needs are still unmet in field. With proper planning and following practical guidelines by the researcher, the mouse is a powerful experimental tool. The field lacks genetically engineered metastatic models, and xenograft models do not allow for the study of the immune system during the metastatic process. There remain several important limitations to discovering and testing novel drugs in mice for eventual human use, but these can often be overcome. Overall, mouse modeling is an essential part of prostate cancer research and drug discovery. Emerging technologies and better and ever-increasing forms of communication are moving the field in a hopeful direction.

  16. Model simulation studies to clarify the effect on saccadic eye movements of initial condition velocities set by the Vestibular Ocular Reflex (VOR)

    NASA Technical Reports Server (NTRS)

    Nam, M. H.; Winters, J. M.; Stark, L.

    1981-01-01

    Voluntary active head rotations produced vestibulo-ocular reflex eye movements (VOR) with the subject viewing a fixation target. When this target jumped, the size of the refixation saccades were a function of the ongoing initial velocity of the eye. Saccades made against the VOR were larger in magnitude. Simulation of a reciprocally innervated model eye movement provided results comparable to the experimental data. Most of the experimental effect appeared to be due to linear summation for saccades of 5 and 10 degree magnitude. For small saccades of 2.5 degrees, peripheral nonlinear interaction of state variables in the neuromuscular plant also played a role as proven by comparable behavior in the simulated model with known controller signals.

  17. Blockade of the interaction of leukotriene b4 with its receptor prevents development of autoimmune uveitis.

    PubMed

    Liao, Tianjiang; Ke, Yan; Shao, Wen-Hai; Haribabu, Bodduluri; Kaplan, Henry J; Sun, Deming; Shao, Hui

    2006-04-01

    To investigate the role of leukotriene B4 (LTB4) and its receptor BLT1 in the pathogenesis of mouse uveitis. Experimental autoimmune uveitis (EAU) was induced in B10RIII mice by immunization of interphotoreceptor retinoid binding protein (IRBP; peptide sequence 161-180) or in C57BL/6 (B6) mice by transfer of activated T cells specific for IRBP1-20. The animals were then treated with and without the BLT1 receptor antagonist, CP105696, at the disease onset after immunization or at day 0 or day 6 after T-cell transfer. EAU was also induced in wild-type B6 (WT) and BLT1-deficient (BLT1-/-) mice by reciprocal transfer of the T cells from B6 to BLT1-deficient mice and vise versa. Clinical signs of inflammation and ocular histology were compared. The chemotactic activity of LTB4 on naïve and IRBP-specific autoreactive T cells as well as effector leukocytes was examined. The treatment of CP105696, greatly reduced the intensity of ongoing disease. IRBP1-20-specific T cells derived from wild-type B6 mice induced only mild uveitis in syngeneic BLT1-deficient mice and that IRBP1-20-specific T cells derived from BLT1-/- mice induced milder disease in wild-type B6 mice than those derived from wild-type B6 mice, suggesting that expression of the LTB4 receptor on both activated autoreactive T cells and effector leukocytes was necessary for ocular inflammation to occur. Consistent with these data, transfer of autoreactive T cells from B6 mice to 5-lipoxygenase-deficient (5-LO-/-) mice, which have a functional defect in LTB4 expression, also failed to induce uveitis in the recipient mice. The results demonstrate a critical role for LTB4 in ocular inflammation and in the development and progression of EAU and suggest a new potential target for therapeutic intervention in this disease.

  18. A candidate gene for X-linked Ocular Albinism (OA1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bassi, M.T.; Schiaffino, V.; Rugarli, E.

    1994-09-01

    Ocular Albinism of the Nettleship-Fall type 1 (OA1) is the most common form of ocular albinism. It is transmitted as an X-linked recessive trait with affected males showing severe reduction of visual acuity, nystagmus, strabismus, photophobia. Ophthalmologic examination reveals foveal hypoplasia, hypopigmentation of the retina and iris translucency. Microscopic examination of melanocytes suggests that the underlying defect in OA1 is an abnormality in melanosome formation. Recently we assembled a 350 kb cosmid contig spanning the entire critical region on Xp22.3, which measures approximately 110 kb. A minimum set of cosmids was used to identify transcribed sequences using both cDNA selectionmore » and exon amplification. Two putative exons recovered by exon amplification strategy were found to be highly conserved throughout evolution and, therefore, they were used as probes for the screening of fetal and adult retina cDNA libraries. This led to the isolation of clones spanning a full-length cDNA which measures 7.6 kb. Sequence analysis revealed that the predicted protein product shows homology with syntrophines and a Xenopus laevis apical protein. The gene covers approximately 170 kb of DNA and spans the entire critical region for OA1, being deleted in two patients with contiguous gene deletion including OA1 and in one patient with isolated OA1. Therefore, this new gene represents a very strong candidate for involvement in OA1 (an alternative, but unlikely possibility to be considered is that the true OA1 gene lies within an intron of the former). Northern analysis revealed very high level of expression in retina and melanoma. Unlike most Xp22.3 genes, this gene is conserved in the mouse. We are currently performing SSCP analysis and direct sequencing of exons on DNAs from approximately 60 unrelated patients with OA1 for mutation detection.« less

  19. SmartEye and Polhemus data for vestibulo-ocular reflex and optokinetic reflex model.

    PubMed

    Le, Anh Son; Aoki, Hirofumi

    2018-06-01

    In this data article, this dataset included raw data of head and eye movement that collected by Polhemus (Polhemus Inc) and SmartEye (Smart Eye AB) equipment. Subjects who have driver license participated in this experiment. The experiment was conducted with a driving simulator that was controlled by CarSim (Mechanical simulation Co., Anna Arbor, MI) with the vehicle motion. This data set not only contained the eye and head movement but also had eye gaze, pupil diameter, saccades, and so on. It can be used for the parameter identification of the vestibulor-ocular reflex (VOR) model, simulation eye movement, as well as running other analysis related to eye movement.

  20. Ocular injuries due to projectile impacts.

    PubMed

    Scott, W R; Lloyd, W C; Benedict, J V; Meredith, R

    2000-01-01

    An animal model has been developed using enucleated porcine eyes to evaluate ocular trauma. The eyes were pressurized to approximately 18 mmHg and mounted in a container with a 10% gelatin mixture. The corneas of sixteen pressurized eyes were impacted by a blunt metal projectile (mass of 2.6 gm, 3.5 gm or 45.5 gm) at velocities of 4.0 to 38.1 m/s. The impacted eyes were evaluated by an ophthalmologist. A numerical classification scheme was used to categorize the severity of the ocular injury. A chi-squared test indicates that the injury level is associated with the kinetic energy (KE) and not the momentum of the projectile. The enucleated eyes began to experience lens dislocations when the KE of the projectile was approximately 0.75 Nm, and retinal injuries when the KE was approximately 1.20 Nm.

  1. Ocular Injuries Due to Projectile Impacts

    PubMed Central

    (Michael) Scott, William R.; Lloyd, William C.; Benedict, James V.; Meredith, Roy

    2000-01-01

    An animal model has been developed using enucleated porcine eyes to evaluate ocular trauma. The eyes were pressurized to approximately 18mmHg and mounted in a container with a 10% gelatin mixture. The corneas of sixteen pressurized eyes were impacted by a blunt metal projectile (mass of 2.6gm, 3.5gm or 45.5gm) at velocities of 4.0 to 38.1 m/s. The impacted eyes were evaluated by an ophthalmologist. A numerical classification scheme was used to categorize the severity of the ocular injury. A chi-squared test indicates that the injury level is associated with the kinetic energy (KE) and not the momentum of the projectile. The enucleated eyes began to experience lens dislocations when the KE of the projectile was approximately 0.75Nm, and retinal injuries when the KE was approximately 1.20Nm. PMID:11558084

  2. Can UV radiation-blocking soft contact lenses attenuate UV radiation to safe levels during summer months in the southern United States?

    PubMed

    Walsh, James E; Bergmanson, Jan P G; Saldana, Gerardo; Gaume, Amber

    2003-01-01

    Peak solar UV radiation (UVR) intensities are typically experienced in summer months. People living in the southern states of the United States, where the UVR frequently exceeds the recommended minimum erythema dose (MED), are at particular risk, especially outdoor workers. The present study analyzed summertime MED readings in Houston, TX, to assess the frequency of intensities regarded as unhealthy. The study also sought to assess whether UV-blocking hydrogel contact lenses provide ocular protection from these high doses. Readings, taken at midday using a UVR biometer, were analyzed to assess the potential UVR risk. The spectral response of the meter, modified by the spectral transmission curves of the contact lenses, allowed us to mathematically assess the ocular protection provided. In addition, ambient UVR measurements were taken at midday, using a portable UVR radiometer. The detector was adapted so that a standard diameter hydrogel contact lens could be placed over it to quantify the UV-blocking capabilities of the lens. The MED readings showed that the recommended safety standards were exceeded approximately at local midday 90% of the time. Model calculations and empirical data demonstrated that contact lenses attenuated the MED readings by up to 90%, bringing them well within the recommended Environmental Protection Agency safety standards. The efficacy of the model used in this study was verified through direct comparison of the modeled and measured data. UV-blocking hydrogel soft contact lenses reduce the MED to the human eye and therefore limit the lifetime ocular dose. These lenses are highly recommended to prevent the development of UVR-related ocular pathologic conditions.

  3. Degenerative effects in rat eyes after experimental ocular hypertension.

    PubMed

    Scarsella, G; Nebbioso, M; Stefanini, S; Pescosolido, N

    2012-10-08

    This study was used to evaluate the degenerative effects on the retina and eye-cup sections after experimental induction of acute ocular hypertension on animal models. In particular, vascular events were directly focused in this research in order to assess the vascular remodeling after transient ocular hypertension on rat models. After local anaesthesia by administration of eye drops of 0.4% oxibuprocaine, 16 male adult Wistar rats were injected in the anterior chamber of the right eye with 15 µL of methylcellulose (MTC) 2% in physiological solution. The morphology and the vessels of the retina and eye-cup sections were examined in animals sacrificed 72 h after induction of ocular hypertension. In retinal fluorescein angiographies (FAGs), by means of fluorescein isothiocyanate-coniugated dextran (FITC), the radial venules showed enlargements and increased branching, while the arterioles appeared focally thickened. The length and size of actually perfused vessels appeared increased in the whole superficial plexus. In eye-cup sections of MTC-injected animals, in deep plexus and connecting layer there was a bigger increase of vessels than in controls. Moreover, the immunolocalization of astrocytic marker glial fibrillary acidic protein (GFAP) revealed its increased expression in internal limiting membrane and ganglion cell layer, as well as its presence in Müller cells. Finally, the pro-angiogenic factor vascular endothelial growth factor (VEGF) was found to be especially expressed by neurones of ganglion cell layer, both in control and in MTC-injected eyes. The data obtained in this experimental model on the interactions among glia, vessels and neurons should be useful to evaluate if also in glaucomatous patients the activation of vessel-adjacent glial cells might play key roles in following neuronal dysfunction.

  4. Orthology for comparative genomics in the mouse genome database.

    PubMed

    Dolan, Mary E; Baldarelli, Richard M; Bello, Susan M; Ni, Li; McAndrews, Monica S; Bult, Carol J; Kadin, James A; Richardson, Joel E; Ringwald, Martin; Eppig, Janan T; Blake, Judith A

    2015-08-01

    The mouse genome database (MGD) is the model organism database component of the mouse genome informatics system at The Jackson Laboratory. MGD is the international data resource for the laboratory mouse and facilitates the use of mice in the study of human health and disease. Since its beginnings, MGD has included comparative genomics data with a particular focus on human-mouse orthology, an essential component of the use of mouse as a model organism. Over the past 25 years, novel algorithms and addition of orthologs from other model organisms have enriched comparative genomics in MGD data, extending the use of orthology data to support the laboratory mouse as a model of human biology. Here, we describe current comparative data in MGD and review the history and refinement of orthology representation in this resource.

  5. Custom-made ocular prosthesis.

    PubMed

    Gunaseelaraj, Rajkumar; Karthikeyan, Suma; Kumar, Mohan N; Balamurugan, T; Jagadeeshwaran, A R

    2012-08-01

    An ocular defect may affect a patient psychologically. An ocular prosthesis is given to uplift the patient psychologically and improve the confidence. Ocular prosthesis can be custom made or a stock shell. To improve the comfort and matching of the prosthesis with that of the adjacent natural eye an custom made ocular prosthesis is preferred. Different techniques are available to fabricate a custom ocular prosthesis, here we have used paper iris disk technique.

  6. Ocular health assessment of cocoa farmers in a rural community in Ghana.

    PubMed

    Boadi-Kusi, Samuel Bert; Hansraj, Rekha; Kumi-Kyereme, Akwasi; Mashige, Khathutshelo Percy; Awusabo-Asare, Kofi; Ocansey, Stephen; Kyei, Samuel

    2014-01-01

    Cocoa farming provides employment for over 800,000 households in rural Ghana, with the country currently touted as the second largest producer of cocoa worldwide. Agriculture is one of the riskiest occupations for the eyes due to the numerous ocular hazards on farms. The authors conducted an ocular health assessment among cocoa farmers at Mfuom, a rural community in the Central Region of Ghana, to examine the ocular health status and the ocular safety measures used by cocoa farmers. A structured questionnaire was used to evaluate demographic characteristics, ocular injuries, and utilization of eye care services and ocular protection, and a clinical examination was used to evaluate their ocular status. Cocoa farmers were at high risk for ocular injuries and farm-related vision disorders and utilized eye care services and ocular protection poorly. Ocular condition identified were mainly refractive error (28.6%), cataract (20.0%), glaucoma (11.7%), conjunctivitis (13%), pterygium (2.7%), and cornea opacity (2.2%). There is a need for the introduction of an interventional eye care program to help address the ocular health challenges identified among the farmers. This can be done through collaborative efforts by educational institutions, government, and other role players in the agricultural industry to improve the quality of life of the vulnerable cocoa farmers in rural Ghana.

  7. Interpreting the corneal response to oxygen: Is there a basis for re-evaluating data from gas-goggle studies?

    PubMed

    Papas, Eric B; Sweeney, Deborah F

    2016-10-01

    When anoxia (0% oxygen) is created within a gas-tight goggle, ocular physiological responses, including corneal swelling, limbal hyperaemia and pH change, are known to vary, depending on the presence or absence of a low, oxygen transmissibility contact lens. A new theory is proposed to account for this discrepancy based on the concept of lid derived oxygen, whereby oxygen originating from the vascular plexus of the palpebral conjunctiva supplements that available to the ocular surface in an open, normally blinking eye, even when the surrounding gaseous atmosphere is anoxic. The effect of a lid derived contribution to corneal oxygenation was assessed by using existing experimental data to model open-eye, corneal swelling behavior as a function of atmospheric oxygen content, both with and without the presence of a contact lens. These models predict that under atmospheric anoxia, contact lens wear results in 13.2% corneal swelling compared with only 5.4% when the lens was absent. Lid derived oxygen acts to provide the ocular surface in the non-contact lens wearing, normally blinking, open-eye with up to 4.7% equivalent oxygen concentration, even within the anoxic environment of a nitrogen filled goggle. Correcting for lid derived oxygen eliminates previously observed discrepancies in corneal swelling behavior and harmonizes the models for the contact lens wearing and gas-goggle cases. On this basis it is proposed that true anoxia at the ocular surface cannot be achieved by atmospheric manipulation (i.e. a gas-goggle) alone but requires an additional presence, e.g. a low, oxygen transmissibility contact lens, to prevent access to oxygen from the eyelids. Data from previously conducted experiments in which the gas-goggle paradigm was used, may have been founded on underestimates of the real oxygen concentration acting on the ocular surface at the time and if so, will require re-interpretation. Future work in this area should consider if a correction for lid derived oxygen is necessary. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Ocular emergencies presenting to Menelik II Hospital.

    PubMed

    Negussie, Dereje; Bejiga, Abebe

    2011-01-01

    Ocular conditions such as trauma, painful red eye of any cause, painless sudden visual loss and others are commonly seen as ocular emergencies, and can lead to ocular morbidity and visual loss. To determine types and causes of ocular emergencies seen at Menelik II hospital. A cross-sectional study was conducted from April to October, 2007. Consecutive patients who presented with ocular emergencies at any time of the day were prospectively evaluated and registered on a formatted questionnaire. Evaluation of the patients included history of presenting illness, visual acuity testing intraocular pressure measurement on non-perforated and non-infected eyes, and complete eye examination in order to arrive at the diagnosis. A total of 26,400 patients attended Menelik II hospital during the study period. Of these, 758 (3%) were persons with an ocular emergency. The majority of patients (n=551; 72.7%) were male, with a male to female ratio of 2.7:1. The age group of 16 to 30 years was the most affected (47.9%), followed by those aged 15 years or younger (27.3%). Ocular trauma and ocular infections accounted for 75.6% and 13.1% of cases, respectively. Of the total ocular emergencies, open globe injuries constituted 171 (22.6%), corneal foreign bodies and abrasion 125 (16.5%), and open adnexal injuries 119 (15.7%). Metal and wood were the commonest work-related causes of ocular injuries in adults, with both together accounting for 60% of all ocular injuries. Children, on the other hand, sustained ocular injury while playing with others in 128 (22.3%) of cases. This study was able to provide a more complete picture to improve understanding of the nature and circumstances of ocular emergencies in Ethiopia. Ocular emergencies were dominated by ocular trauma, particularly affecting males and working-age adults. Public education and use of protective safety measures are recommended to alleviate the problem.

  9. Mucoadhesive ocular insert based on thiolated poly(acrylic acid): development and in vivo evaluation in humans.

    PubMed

    Hornof, Margit; Weyenberg, Wim; Ludwig, Annick; Bernkop-Schnürch, Andreas

    2003-05-20

    The aim of the study was to develop a mucoadhesive ocular insert for the controlled delivery of ophthalmic drugs and to evaluate its efficacy in vivo. The inserts tested were based either on unmodified or thiolated poly(acrylic acid). Water uptake and swelling behavior of the inserts as well as the drug release rates of the model drugs fluorescein and two diclofenac salts with different solubility properties were evaluated in vitro. Fluorescein was used as fluorescent tracer to study the drug release from the insert in humans. The mean fluorescein concentration in the cornea/tearfilm compartment as a function of time was determined after application of aqueous eye drops and inserts composed of unmodified and of thiolated poly(acrylic acid). The acceptability of the inserts by the volunteers was also evaluated. Inserts based on thiolated poly(acrylic acid) were not soluble and had good cohesive properties. A controlled release was achieved for the incorporated model drugs. The in vivo study showed that inserts based on thiolated poly(acrylic acid) provide a fluorescein concentration on the eye surface for more than 8 h, whereas the fluorescein concentration rapidly decreased after application of aqueous eye drops or inserts based on unmodified poly(acrylic acid). Moreover, these inserts were well accepted by the volunteers. The present study indicates that ocular inserts based on thiolated poly(acrylic acid) are promising new solid devices for ocular drug delivery.

  10. Statistical-mechanical analysis of self-organization and pattern formation during the development of visual maps

    NASA Astrophysics Data System (ADS)

    Obermayer, K.; Blasdel, G. G.; Schulten, K.

    1992-05-01

    We report a detailed analytical and numerical model study of pattern formation during the development of visual maps, namely, the formation of topographic maps and orientation and ocular dominance columns in the striate cortex. Pattern formation is described by a stimulus-driven Markovian process, the self-organizing feature map. This algorithm generates topologically correct maps between a space of (visual) input signals and an array of formal ``neurons,'' which in our model represents the cortex. We define order parameters that are a function of the set of visual stimuli an animal perceives, and we demonstrate that the formation of orientation and ocular dominance columns is the result of a global instability of the retinoptic projection above a critical value of these order parameters. We characterize the spatial structure of the emerging patterns by power spectra, correlation functions, and Gabor transforms, and we compare model predictions with experimental data obtained from the striate cortex of the macaque monkey with optical imaging. Above the critical value of the order parameters the model predicts a lateral segregation of the striate cortex into (i) binocular regions with linear changes in orientation preference, where iso-orientation slabs run perpendicular to the ocular dominance bands, and (ii) monocular regions with low orientation specificity, which contain the singularities of the orientation map. Some of these predictions have already been verified by experiments.

  11. Genetically Engineered Mouse Models for Studying Inflammatory Bowel Disease

    PubMed Central

    Mizoguchi, Atsushi; Takeuchi, Takahito; Himuro, Hidetomo; Okada, Toshiyuki; Mizoguchi, Emiko

    2015-01-01

    Inflammatory bowel disease (IBD) is a chronic intestinal inflammatory condition that is mediated by very complex mechanisms controlled by genetic, immune, and environmental factors. More than 74 kinds of genetically engineered mouse strains have been established since 1993 for studying IBD. Although mouse models cannot fully reflect human IBD, they have provided significant contributions for not only understanding the mechanism, but also developing new therapeutic means for IBD. Indeed, 20 kinds of genetically engineered mouse models carry the susceptibility genes identified in human IBD, and the functions of some other IBD susceptibility genes have also been dissected out using mouse models. Cutting-edge technologies such as cell-specific and inducible knockout systems, which were recently employed to mouse IBD models, have further enhanced the ability of investigators to provide important and unexpected rationales for developing new therapeutic strategies for IBD. In this review article, we briefly introduce 74 kinds of genetically engineered mouse models that spontaneously develop intestinal inflammation. PMID:26387641

  12. The in vitro and in vivo evaluation of ddC as a topical antiviral for ocular adenovirus infections.

    PubMed

    Romanowski, Eric G; Yates, Kathleen A; Gordon, Y Jerold

    2009-11-01

    To evaluate the antiviral activity of 2', 3'-dideoxycytidine (ddC) in vitro against a panel of ocular adenovirus serotypes and in vivo in the ocular Ad5/NZW rabbit replication model. In vitro, the 50% inhibitory concentrations (IC(50)) of ddC and cidofovir were determined using standard plaque-reduction assays. In vivo, 40 rabbits were topically inoculated in both eyes with Ad5 after corneal scarification. On day 1, the rabbits were equally divided into four topical treatment groups: 3% ddC; 2% ddC; 0.5% cidofovir; and saline. ddC and saline eyes were treated four times daily for 7 days, and cidofovir-treated eyes were treated twice daily for 7 days. Eyes were cultured for virus a multiple times over 2 weeks. The in vitro IC(50) for ddC ranged from 0.18 to 1.85 microg/mL, whereas those for cidofovir ranged from 0.018 to 5.47 microg/mL. ddC was more potent than cidofovir for seven of nine serotypes. In vivo, 3% ddC, 2% ddC, and 0.5% cidofovir significantly reduced the number of Ad5-positive cultures per total (days 1-14), mean Ad5 ocular titer (days 1-5), and duration of shedding (among other outcome measures) compared with the saline control. The 3% and 2% ddC treatments were significantly more efficacious than the 0.5% cidofovir treatment in the parameters listed above. ddC demonstrated potent antiadenovirus activity in vitro and in vivo. Systemic safety studies after topical ocular administration are needed to evaluate ddC as a topical antiviral treatment for adenoviral ocular infections in the target population.

  13. Caspase-9 Mediates Photoreceptor Death After Blunt Ocular Trauma

    PubMed Central

    Blanch, Richard J.; Ahmed, Zubair; Thompson, Adam R.; Akpan, Nsikan; Snead, David R. J.; Berry, Martin; Troy, Carol M.; Scott, Robert A. H.; Logan, Ann

    2014-01-01

    Purpose. Ocular trauma is common in civilian and military populations. Commotio retinae involves acute disruption of photoreceptor outer segments after blunt ocular trauma, with subsequent photoreceptor apoptosis causing permanent visual impairment. The mechanisms of photoreceptor death in commotio retinae have not previously been described, although caspase-dependent death is important in other nontraumatic retinal degenerations. We assessed the role of caspase-9 as a mediator of photoreceptor death in a rat model of ballistic ocular trauma causing commotio retinae. Methods. Bilateral commotio retinae was induced in rats by ballistic ocular trauma. Caspase-9 activity was assessed by immunohistochemistry, Western blotting, and bVAD-fmk active caspase capture. Caspase-9 was inhibited by unilateral intravitreal injection of highly specific X-linked inhibitor of apoptosis (IAP) baculoviral IAP repeat 3 (XBIR3) domain linked to the cell transduction peptide penetratin 1 (Pen-1) after ballistic injury, and the affected eyes were compared with control eyes treated with Pen-1 injection alone, and retinal function was assessed by electroretinogram a-wave amplitude and photoreceptor survival by outer nuclear layer thickness. Results. Increased levels of cleaved caspase-9 were shown in photoreceptors 5 hours after injury, and catalytically active full-length caspase-9 was isolated from retinas. Photoreceptor death after commotio retinae was reduced by caspase-9 inhibition by using Pen-1–XBIR3, and electroretinographic measurements of photoreceptor function was preserved, providing structural and functional neuroprotection. Conclusions. The time course of caspase-9 activation and the neuroprotective effects of inhibition suggest that caspase-9 initiates cell death in a proportion of photoreceptors after blunt ocular trauma and that an intravitreally delivered biologic inhibitor may be an effective translational treatment strategy. PMID:25190658

  14. Pathophysiology of blast-induced ocular trauma in rats after repeated exposure to low-level blast overpressure.

    PubMed

    Choi, Jae Hyek; Greene, Whitney A; Johnson, Anthony J; Chavko, Mikulas; Cleland, Jeffery M; McCarron, Richard M; Wang, Heuy-Ching

    2015-04-01

    The incidence of blast-induced ocular injury has dramatically increased due to advances in weaponry and military tactics. A single exposure to blast overpressure (BOP) has been shown to cause damage to the eye in animal models; however, on the battlefield, military personnel are exposed to BOP multiple times. The effects of repeated exposures to BOP on ocular tissues have not been investigated. The purpose of this study is to characterize the effects of single or repeated exposure on ocular tissues. A compressed air shock tube was used to deliver 70 ± 7 KPa BOP to rats, once (single blast overpressure [SBOP]) or once daily for 5 days (repeated blast overpressure [RBOP]). Immunohistochemistry was performed to characterize the pathophysiology of ocular injuries induced by SBOP and RBOP. Apoptosis was determined by quantification activated caspase 3. Gliosis was examined by detection of glial fibrillary acidic protein (GFAP). Inflammation was examined by detection of CD68. Activated caspase 3 was detected in ocular tissues from all animals subjected to BOP, while those exposed to RBOP had more activated caspase 3 in the optic nerve than those exposed to SBOP. GFAP was detected in the retinas from all animals subjected to BOP. CD68 was detected in optic nerves from all animals exposed to BOP. SBOP and RBOP induced retinal damage. RBOP caused more apoptosis in the optic nerve than SBOP, suggesting that RBOP causes more severe optic neuropathy than SBOP. SBOP and RBOP caused gliosis in the retina and increased inflammation in the optic nerve. © 2014 Royal Australian and New Zealand College of Ophthalmologists.

  15. Impact of mometasone furoate nasal spray on individual ocular symptoms of allergic rhinitis: a meta-analysis.

    PubMed

    Bielory, L; Chun, Y; Bielory, B P; Canonica, G W

    2011-05-01

    Intranasal corticosteroids (INSs) are a mainstay of treatment of allergic rhinitis (AR) nasal symptoms. The INS mometasone furoate nasal spray (MFNS) has well-documented efficacy and safety for the treatment and prophylaxis of nasal symptoms of seasonal AR (SAR) and for the treatment of nasal symptoms of perennial AR (PAR). Increasing interest has focused on whether INSs, including MFNS, may have beneficial effects on the ocular symptoms frequently associated with AR. We performed a meta-analysis of 10 randomized, placebo-controlled trials of the efficacy of MFNS 200 mcg daily in relieving ocular allergy symptoms, including itching/burning, redness, and tearing/watering in both SAR and PAR. Four PAR studies and six SAR studies are included in the analysis. A fixed-effect inverse variance model was used to calculate weighted mean differences, 95% confidence intervals (CIs) for each comparison, and a combined overall treatment effect (Z) with P-value. In both analyses of SAR and PAR studies, including 3132 patients, all individual ocular symptoms were reduced in patients treated with MFNS. Overall treatment effect was significant for all three individual ocular symptoms in the SAR studies (Z = 9.18 for tearing, Z = 10.15 for itching, and Z = 8.88 for redness; P < 0.00001 for all) and in the PAR studies (Z = 5.94, P < 0.00001 for tearing; Z = 2.43, P = 0.02 for itching; and Z = 2.42, P = 0.02 for redness). Our findings add to the growing body of literature supporting the positive class effect of INSs, including MFNS, on ocular symptoms associated with SAR and PAR. © 2011 John Wiley & Sons A/S.

  16. The Effects of Increasing Ocular Surface Stimulation on Blinking and Tear Secretion

    PubMed Central

    Wu, Ziwei; Begley, Carolyn G.; Port, Nicholas; Bradley, Arthur; Braun, Richard; King-Smith, Ewen

    2015-01-01

    Purpose. To investigate the effect of varying levels of ocular surface stimulation on the timing and amplitude of the blink and tear secretion. Methods. Following instillation of fluorescein dye, increasing levels of air flow were directed toward the central corneas of 10 healthy subjects. Interblink interval (IBI), tear meniscus height (TMH), and fluorescence intensity were measured simultaneously. Because blinking can obscure changes in TMH, we developed novel measures of tear secretion by calculating tear meniscus fluorescein concentration (TMFC) from intensity using a mathematical model. The change of TMH and TMFC over trials and the slope of the TMFC within each IBI (IBI-TTR) were further calculated. Results. The mean IBI was decreased by 8.08 ± 8.54 seconds from baseline to maximum air stimulation. The TMH increase was highly variable (0.41 ± 0.39 mm) among subjects, compared to the fluorescence tear turnover metrics: decrease in TMFC of 2.84 ± 0.98 natural logarithm or ln(%) and IBI-TTR of 0.065 ± 0.032 ln(%)/sec. Ocular surface stimulation was highly correlated with the TMFC and IBI-TTR, but less so with TMH (Pearson's r = 0.71, 0.69, and 0.40, P < 0.01, respectively). Blinking and tearing were significantly correlated with each other (Pearson's r = 0.56, P < 0.01), but tearing lagged behind by an average of 6.54 ± 4.07 seconds. Conclusions. Blinking and tearing share a common origin with sensory stimulation at the ocular surface. Both showed a dose–response increase with surface stimulation and were correlated with each other. These methods can potentially be used to understand alterations in ocular surface sensory function and associated protective responses in dry eye and other disorders of the ocular surface. PMID:26132780

  17. The Effects of Increasing Ocular Surface Stimulation on Blinking and Tear Secretion.

    PubMed

    Wu, Ziwei; Begley, Carolyn G; Port, Nicholas; Bradley, Arthur; Braun, Richard; King-Smith, Ewen

    2015-07-01

    To investigate the effect of varying levels of ocular surface stimulation on the timing and amplitude of the blink and tear secretion. Following instillation of fluorescein dye, increasing levels of air flow were directed toward the central corneas of 10 healthy subjects. Interblink interval (IBI), tear meniscus height (TMH), and fluorescence intensity were measured simultaneously. Because blinking can obscure changes in TMH, we developed novel measures of tear secretion by calculating tear meniscus fluorescein concentration (TMFC) from intensity using a mathematical model. The change of TMH and TMFC over trials and the slope of the TMFC within each IBI (IBI-TTR) were further calculated. The mean IBI was decreased by 8.08 ± 8.54 seconds from baseline to maximum air stimulation. The TMH increase was highly variable (0.41 ± 0.39 mm) among subjects, compared to the fluorescence tear turnover metrics: decrease in TMFC of 2.84 ± 0.98 natural logarithm or ln(%) and IBI-TTR of 0.065 ± 0.032 ln(%)/sec. Ocular surface stimulation was highly correlated with the TMFC and IBI-TTR, but less so with TMH (Pearson's r = 0.71, 0.69, and 0.40, P < 0.01, respectively). Blinking and tearing were significantly correlated with each other (Pearson's r = 0.56, P < 0.01), but tearing lagged behind by an average of 6.54 ± 4.07 seconds. Blinking and tearing share a common origin with sensory stimulation at the ocular surface. Both showed a dose-response increase with surface stimulation and were correlated with each other. These methods can potentially be used to understand alterations in ocular surface sensory function and associated protective responses in dry eye and other disorders of the ocular surface.

  18. Inhibition of neutral sphingomyelinase decreases elevated levels of inducible nitric oxide synthase and apoptotic cell death in ocular hypertensive rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aslan, Mutay, E-mail: mutayaslan@akdeniz.edu.tr; Basaranlar, Goksun; Unal, Mustafa

    Endoplasmic reticulum (ER) stress and excessive nitric oxide production via induction of inducible nitric oxide synthase (NOS2) have been implicated in the pathogenesis of neuronal retinal cell death in ocular hypertension. Neutral sphingomyelinase (N-SMase)/ceramide pathway can regulate NOS2 expression, hence this study determined the role of selective neutral sphingomyelinase (N-SMase) inhibition on retinal NOS2 levels, ER stress, apoptosis and visual evoked potentials (VEPs) in a rat model of elevated intraocular pressure (EIOP). NOS2 expression and retinal protein nitration were significantly greater in EIOP and significantly decreased with N-SMase inhibition. A significant increase was observed in retinal ER stress markers pPERK,more » CHOP and GRP78 in EIOP, which were not significantly altered by N-SMase inhibition. Retinal TUNEL staining showed increased apoptosis in all EIOP groups; however N-SMase inhibition significantly decreased the percent of apoptotic cells in EIOP. Caspase-3, -8 and -9 activities were significantly increased in EIOP and returned to baseline levels following N-SMase inhibition. Latencies of all VEP components were significantly prolonged in EIOP and shortened following N-SMase inhibition. Data confirm the role of nitrative injury in EIOP and highlight the protective effect of N-SMase inhibition in EIOP via down-regulation of NOS2 levels and nitrative stress. - Highlights: • Inhibition of N-SMase decreases NOS2 levels in ocular hypertension. • Inhibition of N-SMase decreases protein nitration in ocular hypertension. • Inhibition of N-SMase decreases caspase activation in ocular hypertension. • Inhibition of N-SMase decreases apoptosis in ocular hypertension.« less

  19. The albino chick as a model for studying ocular developmental anomalies, including refractive errors, associated with albinism.

    PubMed

    Rymer, Jodi; Choh, Vivian; Bharadwaj, Shrikant; Padmanabhan, Varuna; Modilevsky, Laura; Jovanovich, Elizabeth; Yeh, Brenda; Zhang, Zhan; Guan, Huanxian; Payne, W; Wildsoet, Christine F

    2007-10-01

    Albinism is associated with a variety of ocular anomalies including refractive errors. The purpose of this study was to investigate the ocular development of an albino chick line. The ocular development of both albino and normally pigmented chicks was monitored using retinoscopy to measure refractive errors and high frequency A-scan ultrasonography to measure axial ocular dimensions. Functional tests included an optokinetic nystagmus paradigm to assess visual acuity, and flash ERGs to assess retinal function. The underlying genetic abnormality was characterized using a gene microarray, PCR and a tyrosinase assay. The ultrastructure of the retinal pigment epithelium (RPE) was examined using transmission electron microscopy. PCR confirmed that the genetic abnormality in this line is a deletion in exon 1 of the tyrosinase gene. Tyrosinase gene expression in isolated RPE cells was minimally detectable, and there was minimal enzyme activity in albino feather bulbs. The albino chicks had pink eyes and their eyes transilluminated, reflecting the lack of melanin in all ocular tissues. All three main components, anterior chamber, crystalline lens and vitreous chamber, showed axial expansion over time in both normal and albino animals, but the anterior chambers of albino chicks were consistently shallower than those of normal chicks, while in contrast, their vitreous chambers were longer. Albino chicks remained relatively myopic, with higher astigmatism than the normally pigmented chicks, even though both groups underwent developmental emmetropization. Albino chicks had reduced visual acuity yet the ERG a- and b-wave components had larger amplitudes and shorter than normal implicit times. Developmental emmetropization occurs in the albino chick but is impaired, likely because of functional abnormalities in the RPE and/or retina as well as optical factors. In very young chicks the underlying genetic mutation may also contribute to refractive error and eye shape abnormalities.

  20. The tear film and ocular mucins.

    PubMed

    Davidson, Harriet J; Kuonen, Vanessa J

    2004-01-01

    Abstract The trilaminar tear film, composed of the lipid, aqueous and mucin layers, has many functions including defending the ocular surface. The aqueous layer has several soluble antimicrobial factors that protect the ocular surface. Ocular mucins have recently been studied with regard to their role in the defense of the eye as well as in dry eye syndromes. To date, 15 mucin genes have been identified, and six of these mucin genes are localized to or secreted by ocular glands or epithelia. Understanding the production, secretion and function of ocular mucins will aid in the treatment of dry eye syndromes and ocular surface microbial infections.

  1. Understanding Lymphangiogenesis in Knockout Models, the Cornea, and Ocular Diseases for the Development of Therapeutic Interventions

    PubMed Central

    Yang, Jessica F.; Walia, Amit; Huang, Yu-hui; Han, Kyu-yeon; Rosenblatt, Mark I; Azar, Dimitri T.; Chang, Jin-Hong

    2015-01-01

    A major focus of cancer research for several decades has been understanding the ability of tumors to induce new blood vessel formation, a process known as angiogenesis. Unfortunately, only limited success has been achieved in the clinical application of angiogenesis inhibitors. We now know that lymphangiogenesis, the growth of lymphatic vessels, likely also plays a major role in tumor progression. Thus, therapeutic strategies targeting lymphangiogenesis or both lymphangiogenesis and angiogenesis may represent promising approaches for treating cancer and other diseases. Importantly, research progress toward understanding lymphangiogenesis is significantly behind that related to angiogenesis. A PubMed search of ‘angiogenesis’ returns nearly 80,000 articles, whereas a search of ‘lymphangiogenesis’ returns approximately 2,635 articles. This stark contrast can be explained by the lack of molecular markers for identifying the invisible lymphatic vasculature that persisted until less than two decades ago combined with the intensity of research interest in angiogenesis during the past half-century. Still, significant strides have been made in developing strategies to modulate lymphangiogenesis, largely using ocular disease models. Here, we review the current knowledge of lymphangiogenesis in the context of knockout models, ocular diseases, the biology of activators and inhibitors, and the potential for therapeutic interventions targeting this process. PMID:26706194

  2. Environmental enrichment accelerates ocular dominance plasticity in mouse visual cortex whereas transfer to standard cages resulted in a rapid loss of increased plasticity.

    PubMed

    Kalogeraki, Evgenia; Pielecka-Fortuna, Justyna; Löwel, Siegrid

    2017-01-01

    In standard cage (SC) raised mice, experience-dependent ocular dominance (OD) plasticity in the primary visual cortex (V1) rapidly declines with age: in postnatal day 25-35 (critical period) mice, 4 days of monocular deprivation (MD) are sufficient to induce OD-shifts towards the open eye; thereafter, 7 days of MD are needed. Beyond postnatal day 110, even 14 days of MD failed to induce OD-plasticity in mouse V1. In contrast, mice raised in a so-called "enriched environment" (EE), exhibit lifelong OD-plasticity. EE-mice have more voluntary physical exercise (running wheels), and experience more social interactions (bigger housing groups) and more cognitive stimulation (regularly changed labyrinths or toys). Whether experience-dependent shifts of V1-activation happen faster in EE-mice and how long the plasticity promoting effect would persist after transferring EE-mice back to SCs has not yet been investigated. To this end, we used intrinsic signal optical imaging to visualize V1-activation i) before and after MD in EE-mice of different age groups (from 1-9 months), and ii) after transferring mice back to SCs after postnatal day 130. Already after 2 days of MD, and thus much faster than in SC-mice, EE-mice of all tested age groups displayed a significant OD-shift towards the open eye. Transfer of EE-mice to SCs immediately abolished OD-plasticity: already after 1 week of SC-housing and MD, OD-shifts could no longer be visualized. In an attempt to rescue abolished OD-plasticity of these mice, we either administered the anti-depressant fluoxetine (in drinking water) or supplied a running wheel in the SCs. OD-plasticity was only rescued for the running wheel- mice. Altogether our results show that raising mice in less deprived environments like large EE-cages strongly accelerates experience-dependent changes in V1-activation compared to the impoverished SC-raising. Furthermore, preventing voluntary physical exercise of EE-mice in adulthood immediately precludes OD-shifts in V1.

  3. Environmental enrichment accelerates ocular dominance plasticity in mouse visual cortex whereas transfer to standard cages resulted in a rapid loss of increased plasticity

    PubMed Central

    Pielecka-Fortuna, Justyna; Löwel, Siegrid

    2017-01-01

    In standard cage (SC) raised mice, experience-dependent ocular dominance (OD) plasticity in the primary visual cortex (V1) rapidly declines with age: in postnatal day 25–35 (critical period) mice, 4 days of monocular deprivation (MD) are sufficient to induce OD-shifts towards the open eye; thereafter, 7 days of MD are needed. Beyond postnatal day 110, even 14 days of MD failed to induce OD-plasticity in mouse V1. In contrast, mice raised in a so-called “enriched environment” (EE), exhibit lifelong OD-plasticity. EE-mice have more voluntary physical exercise (running wheels), and experience more social interactions (bigger housing groups) and more cognitive stimulation (regularly changed labyrinths or toys). Whether experience-dependent shifts of V1-activation happen faster in EE-mice and how long the plasticity promoting effect would persist after transferring EE-mice back to SCs has not yet been investigated. To this end, we used intrinsic signal optical imaging to visualize V1-activation i) before and after MD in EE-mice of different age groups (from 1–9 months), and ii) after transferring mice back to SCs after postnatal day 130. Already after 2 days of MD, and thus much faster than in SC-mice, EE-mice of all tested age groups displayed a significant OD-shift towards the open eye. Transfer of EE-mice to SCs immediately abolished OD-plasticity: already after 1 week of SC-housing and MD, OD-shifts could no longer be visualized. In an attempt to rescue abolished OD-plasticity of these mice, we either administered the anti-depressant fluoxetine (in drinking water) or supplied a running wheel in the SCs. OD-plasticity was only rescued for the running wheel- mice. Altogether our results show that raising mice in less deprived environments like large EE-cages strongly accelerates experience-dependent changes in V1-activation compared to the impoverished SC-raising. Furthermore, preventing voluntary physical exercise of EE-mice in adulthood immediately precludes OD-shifts in V1. PMID:29073219

  4. In vivo ocular efficacy profile of mapracorat, a novel selective glucocorticoid receptor agonist, in rabbit models of ocular disease.

    PubMed

    Shafiee, Afshin; Bucolo, Claudio; Budzynski, Ewa; Ward, Keith W; López, Francisco J

    2011-03-14

    To compare the efficacy of mapracorat (formerly ZK-245186, and subsequently BOL-303242-X), a novel selective glucocorticoid receptor agonist (SEGRA), with that of dexamethasone (DEX) in rabbit models of ocular disease. The effects of topical BOL-303242-X and DEX on intraocular pressure (IOP) and body weight changes were also evaluated. Dry eye was induced by atropine sulfate administration and was treated with saline, BOL-303242-X (0.1%-1.0%), DEX (0.1%), Restasis 0.05% (Allergan, Inc., Irvine, CA), or Refresh Endura (Allergan, Inc.) three times per day for 7 to 8 days. For paracentesis studies, vehicle, BOL-303242-X (0.1%, 0.5%, and 1.0%), or DEX (0.1%) were repeatedly administered topically 3 hours before paracentesis and continued for 90 minutes afterward. For IOP and body weight measurements, right eyes of rabbits were topically treated with vehicle, BOL-303242-X (1.0% or 0.1%), or DEX (0.1%) four times per day for 6 weeks. In the dry eye model, BOL-303242-X and DEX were fully efficacious, maintaining tear volume and tear breakup time (TBUT) at baseline levels. Although Restasis improved tear volume compared with vehicle, no changes were observed in TBUT. In the paracentesis study, BOL-303242-X and DEX improved ocular inflammation. BOL-303242-X reduced protein and PGE(2) levels. Finally, BOL-303242-X showed no effects on integrated IOP or body weight, whereas DEX significantly increased integrated IOP and prevented the increase of body weight observed in the vehicle-treated animals. BOL-303242-X shows full anti-inflammatory efficacy (similar to DEX) in experimental models of dry eye and postoperative inflammation while demonstrating reduced effects in IOP and body weight. These data indicate that mapracorat, a SEGRA, shows efficacy similar to that of traditional steroids while exhibiting an improved side effect profile in IOP and muscle wasting.

  5. An in vitro approach to investigate ocular metabolism of a topical, selective β1-adrenergic blocking agent, betaxolol.

    PubMed

    Bushee, Jennifer L; Dunne, Christine E; Argikar, Upendra A

    2015-05-01

    1. Topical glaucoma treatments have often been limited by poor absorption and bioavailability. Betaxolol, a selective β1-blocker, has been well studied for its pharmacokinetics and disposition. Limited ocular, betaxolol metabolism data is available despite a growing number of novel ocular treatments. 2. In vitro ocular fractions indicated the formation of an active metabolite, across rat, rabbit and human, which was only observed historically in the liver. 3. Ocular metabolic profiles of preclinical toxicology species, rat and rabbit, were not predictive of human in vitro ocular data. M1 was specific to human and only captured by the liver data. 4. Liver S9 over predicted the extent of ocular metabolism compared to ocular fractions. Rabbit liver S9 fractions demonstrated extensive glucuronidation and higher parent turn-over in 1 h as compared to other matrices. 5. This research assesses in vitro species and organ differences across preclinical species and human. The complex data set highlights the need for an in vitro ocular system to explore poorly documented ocular metabolism.

  6. Aquaporins in the eye: Expression, function, and roles in ocular disease☆

    PubMed Central

    Schey, Kevin L.; Wang, Zhen; Wenke, Jamie L.; Qi, Ying

    2015-01-01

    Background All thirteen known mammalian aquaporins have been detected in the eye. Moreover, aquaporins have been identified as playing essential roles in ocular functions ranging from maintenance of lens and corneal transparency to production of aqueous humor to maintenance of cellular homeostasis and regulation of signal transduction in the retina. Scope of review This review summarizes the expression and known functions of ocular aquaporins and discusses their known and potential roles in ocular diseases. Major conclusions Aquaporins play essential roles in all ocular tissues. Remarkably, not all aquaporin function as a water permeable channel and the functions of many aquaporins in ocular tissues remain unknown. Given their vital roles in maintaining ocular function and their roles in disease, aquaporins represent potential targets for future therapeutic development. General significance Since aquaporins play key roles in ocular physiology, an understanding of these functions is important to improving ocular health and treating diseases of the eye. It is likely that future therapies for ocular diseases will rely on modulation of aquaporin expression and/or function. This article is part of a Special Issue entitled Aquaporins. PMID:24184915

  7. Cluster bomb ocular injuries.

    PubMed

    Mansour, Ahmad M; Hamade, Haya; Ghaddar, Ayman; Mokadem, Ahmad Samih; El Hajj Ali, Mohamad; Awwad, Shady

    2012-01-01

    To present the visual outcomes and ocular sequelae of victims of cluster bombs. This retrospective, multicenter case series of ocular injury due to cluster bombs was conducted for 3 years after the war in South Lebanon (July 2006). Data were gathered from the reports to the Information Management System for Mine Action. There were 308 victims of clusters bombs; 36 individuals were killed, of which 2 received ocular lacerations and; 272 individuals were injured with 18 receiving ocular injury. These 18 surviving individuals were assessed by the authors. Ocular injury occurred in 6.5% (20/308) of cluster bomb victims. Trauma to multiple organs occurred in 12 of 18 cases (67%) with ocular injury. Ocular findings included corneal or scleral lacerations (16 eyes), corneal foreign bodies (9 eyes), corneal decompensation (2 eyes), ruptured cataract (6 eyes), and intravitreal foreign bodies (10 eyes). The corneas of one patient had extreme attenuation of the endothelium. Ocular injury occurred in 6.5% of cluster bomb victims and 67% of the patients with ocular injury sustained trauma to multiple organs. Visual morbidity in civilians is an additional reason for a global ban on the use of cluster bombs.

  8. Ocular sarcoidosis: new diagnostic modalities and treatment.

    PubMed

    Yang, Sung J; Salek, Sherveen; Rosenbaum, James T

    2017-09-01

    Ocular involvement in sarcoidosis is present in up to 80% of patients and is frequently manifested before diagnosis of the underlying systemic disease. Considering the therapeutic consequences, early diagnosis of the underlying disease is advantageous in patients presenting with ocular inflammation. There are several ocular findings suggestive of underlying sarcoidosis, such as granulomatous keratic precipitates, iris nodules, cells in the vitreous humor known as snowballs and snowbanks, and retinal periphlebitis. High suspicion is crucial for the diagnosis of sarcoidosis. This review on ocular sarcoidosis will mainly focus on new diagnostic and treatment modalities. Recent studies found possible new diagnostic indicators for the diagnosis of ocular sarcoidosis which include not only serum profiles but also vitreous sample analysis. Ophthalmologic imaging techniques have improved to investigate the ocular structure in detail. Results from recent uveitis clinical trials have included sarcoidosis as an underlying cause and have reported positive results. The diagnosis of ocular sarcoidosis can be challenging in some cases. High suspicion is important to diagnose ocular sarcoidosis with various laboratory and ophthalmic tools. There are many possible options for the treatment of ocular sarcoidosis including various biologic agents.

  9. Genome-wide expression profiling of five mouse models identifies similarities and differences with human psoriasis.

    PubMed

    Swindell, William R; Johnston, Andrew; Carbajal, Steve; Han, Gangwen; Wohn, Christian; Lu, Jun; Xing, Xianying; Nair, Rajan P; Voorhees, John J; Elder, James T; Wang, Xiao-Jing; Sano, Shigetoshi; Prens, Errol P; DiGiovanni, John; Pittelkow, Mark R; Ward, Nicole L; Gudjonsson, Johann E

    2011-04-04

    Development of a suitable mouse model would facilitate the investigation of pathomechanisms underlying human psoriasis and would also assist in development of therapeutic treatments. However, while many psoriasis mouse models have been proposed, no single model recapitulates all features of the human disease, and standardized validation criteria for psoriasis mouse models have not been widely applied. In this study, whole-genome transcriptional profiling is used to compare gene expression patterns manifested by human psoriatic skin lesions with those that occur in five psoriasis mouse models (K5-Tie2, imiquimod, K14-AREG, K5-Stat3C and K5-TGFbeta1). While the cutaneous gene expression profiles associated with each mouse phenotype exhibited statistically significant similarity to the expression profile of psoriasis in humans, each model displayed distinctive sets of similarities and differences in comparison to human psoriasis. For all five models, correspondence to the human disease was strong with respect to genes involved in epidermal development and keratinization. Immune and inflammation-associated gene expression, in contrast, was more variable between models as compared to the human disease. These findings support the value of all five models as research tools, each with identifiable areas of convergence to and divergence from the human disease. Additionally, the approach used in this paper provides an objective and quantitative method for evaluation of proposed mouse models of psoriasis, which can be strategically applied in future studies to score strengths of mouse phenotypes relative to specific aspects of human psoriasis.

  10. Model predictions of ocular injury from 1315-nm laser light

    NASA Astrophysics Data System (ADS)

    Polhamus, Garrett D.; Zuclich, Joseph A.; Cain, Clarence P.; Thomas, Robert J.; Foltz, Michael

    2003-06-01

    With the advent of future weapons systems that employ high energy lasers, the 1315 nm wavelength will present a new laser safety hazard to the armed forces. Experiments in non-human primates using this wavelength have demonstrated a range of ocular injuries, including corneal, lenticular and retinal lesions, as a function of pulse duration and spot size at the cornea. To improve our understanding of this phenomena, there is a need for a mathematical model that properly predicts these injuries and their dependence on appropriate exposure parameters. This paper describes the use of a finite difference model of laser thermal injury in the cornea and retina. The model was originally developed for use with shorter wavelength laser irradiation, and as such, requires estimation of several key parameters used in the computations. The predictions from the model are compared to the experimental data, and conclusions are drawn regarding the ability of the model to properly follow the published observations at this wavelength.

  11. A Review of Ocular Graft-Versus-Host Disease.

    PubMed

    Munir, Saleha Z; Aylward, James

    2017-05-01

    : Graft-versus-host disease (GVHD) is a major complication that occurs following allogeneic hematopoietic stem cell transplantation, which is a potential curative therapy used in a variety of malignant or benign hematological diseases. Graft-versus-host disease primarily occurs in many organs, but most notably in the skin, lungs, gastrointestinal tract, liver, eyes, mucosa, and musculoskeletal system. Ocular manifestations of GVHD may precede other systemic GVHD findings, and it may be a poor prognosis for mortality. While all parts of the eye may be affected, ocular GVHD occurs primarily in the ocular surface. Dry eye disease or keratoconjunctivitis sicca is the most common presenting manifestation of chronic ocular GVHD. Dry eye disease in ocular GVHD is a multifactorial process, which involves destruction and fibrosis of lacrimal glands and conjunctiva, leading to tear film deficiency and instability. Depending on the severity of ocular involvement and response to treatment, ocular GVHD may cause decreased quality of life. Management of GVHD begins with prevention by understanding risk factors and by implementing prophylactic treatment after allogeneic hematopoietic stem cell transplantation. A multidisciplinary approach to the prevention and treatment of GVHD is important, and there are currently no preventive therapies available for ocular GVHD. Once diagnosed, ocular GVHD treatment strategies target ocular surface lubrication and support, tear film stabilization, inflammation reduction, and surgical intervention. The goal of this review is to define ocular GVHD and its categorical manifestations, as well as to describe the importance of comprehensive assessment, diagnosis, and ophthalmologic treatment and management of ocular GVHD with a multidisciplinary approach.

  12. Quality of life in purely ocular myasthenia in Japan

    PubMed Central

    2014-01-01

    Background Since there has been no conclusive evidence regarding the treatment of ocular myasthenia, treatment guidelines were recently issued by the European Federation of Neurological Societies/European Neurological Society (EFNS/ENS). However, the therapeutic outcomes concerning the quality-of-life (QOL) of patients with ocular myasthenia are not yet fully understood. Methods We investigated the therapeutic outcomes of patients with purely ocular myasthenia in a multicenter cross-sectional survey in Japan. To evaluate the severity of ocular symptoms, we used the ocular-quantitative MG (QMG) score advocated by Myasthenia Gravis Foundation of America. We used the Japanese translated version of the MG-QOL15, a self-appraised scoring system. Results Of 607 myasthenia gravis (MG) patients with an observation-duration of illness ≥ 2 years, the cases of 123 patients (20%) were limited to ocular muscles (purely ocular myasthenia). During the entire clinical course, 81 patients experienced both ptosis and diplopia, 36 had ptosis alone, and six had diplopia alone. Acetyl-cholinesterase inhibitors and prednisolone were used in 98 and 52 patients, respectively. Treatment improved ocular symptoms, with the mean reduction in ocular-QMG score of 2.3 ± 1.8 points. However, 47 patients (38%) failed to gain minimal manifestation or a better status. Patients with unfavorable outcomes also self-reported severe QOL impairment. Multivariate analyses showed that the pretreatment ocular-QMG score was associated with unfavorable outcomes, but not associated with the patient’s QOL. Conclusion A treatment strategy designed in accord with a patient's ocular presentation must be considered in order to improve ocular symptoms and the patient's QOL. PMID:24996227

  13. Monochromatic ocular wave aberrations in young monkeys

    PubMed Central

    Ramamirtham, Ramkumar; Kee, Chea-su; Hung, Li-Fang; Qiao-Grider, Ying; Roorda, Austin; Smith, Earl L.

    2006-01-01

    High-order monochromatic aberrations could potentially influence vision-dependent refractive development in a variety of ways. As a first step in understanding the effects of wave aberration on refractive development, we characterized the maturational changes that take place in the high-order aberrations of infant rhesus monkey eyes. Specifically, we compared the monochromatic wave aberrations of infant and adolescent animals and measured the longitudinal changes in the high-order aberrations of infant monkeys during the early period when emmetropization takes place. Our main findings were that (1) adolescent monkey eyes have excellent optical quality, exhibiting total RMS errors that were slightly better than those for adult human eyes that have the same numerical aperture and (2) shortly after birth, infant rhesus monkeys exhibited relatively larger magnitudes of high-order aberrations predominately spherical aberration, coma, and trefoil, which decreased rapidly to assume adolescent values by about 200 days of age. The results demonstrate that rhesus monkey eyes are a good model for studying the contribution of individual ocular components to the eye’s overall aberration structure, the mechanisms responsible for the improvements in optical quality that occur during early ocular development, and the effects of high-order aberrations on ocular growth and emmetropization. PMID:16750549

  14. Preparation and evaluation of a timolol maleate drug-resin ophthalmic suspension as a sustained-release formulation in vitro and in vivo.

    PubMed

    Qin, Fuhong; Zeng, Li; Zhu, Yongtao; Cao, Jingjing; Wang, Xiaohui; Liu, Wei

    2016-01-01

    The aim of this work was to assess the performance of resin as an ocular delivery system. Timolol maleate (TM) was chosen as the model drug and an ion exchange resin (IER) as the carrier. The drug-resin complex was prepared using an oscillation method and then characterized regarding particle size, zeta potential, morphology, and drug content. After in vitro drug release study and corneal permeation study were performed, in vivo studies were performed in New Zealand albino rabbits using a suspension with particles sized 4.8 ± 1.2 μm and drug loading at 43.00 ± 0.09%. The results indicate that drug released from the drug-resin ophthalmic suspension permeated the cornea and displayed a sustained-release behavior. Drug levels in the ocular tissues after administration of the drug-resin ophthalmic suspension were significantly higher than after treatment with an eye drop formulation but were lower in body tissues and in the plasma. In conclusion, resins have great potential as effective ocular drug delivery carriers to increase ocular bioavailability of timolol while simultaneously reducing systemic drug absorption.

  15. Corneal and conjunctival drug permeability: Systematic comparison and pharmacokinetic impact in the eye.

    PubMed

    Ramsay, Eva; Del Amo, Eva M; Toropainen, Elisa; Tengvall-Unadike, Unni; Ranta, Veli-Pekka; Urtti, Arto; Ruponen, Marika

    2018-07-01

    On the surface of the eye, both the cornea and conjunctiva are restricting ocular absorption of topically applied drugs, but barrier contributions of these two membranes have not been systemically compared. Herein, we studied permeability of 32 small molecular drug compounds across an isolated porcine cornea and built a quantitative structure-property relationship (QSPR) model for the permeability. Corneal drug permeability (data obtained for 25 drug molecules) showed a 52-fold range in permeability (0.09-4.70 × 10 -6  cm/s) and the most important molecular descriptors in predicting the permeability were hydrogen bond donor, polar surface area and halogen ratio. Corneal permeability values were compared to their conjunctival drug permeability values. Ocular drug bioavailability and systemic absorption via conjunctiva were predicted for this drug set with pharmacokinetic calculations. Drug bioavailability in the aqueous humour was simulated to be <5% and trans-conjunctival systemic absorption was 34-79% of the dose. Loss of drug across the conjunctiva to the blood circulation restricts significantly ocular drug bioavailability and, therefore, ocular absorption does not increase proportionally with the increasing corneal drug permeability. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Psychosocial impact on anophthalmic patients wearing ocular prosthesis.

    PubMed

    Goiato, M C; dos Santos, D M; Bannwart, L C; Moreno, A; Pesqueira, A A; Haddad, M F; dos Santos, E G

    2013-01-01

    The aim of this study was to assess the improvement in psychosocial awareness of anophthalmic patients wearing ocular prostheses and its relationship with demographic characteristics, factors of loss/treatment, social activity, and relationship between professional and patient. Surveys including a form for evaluation of psychosocial pattern were conducted with 40 anophthalmic patients rehabilitated with ocular prosthesis at the Center of Oral Oncology in the authors' dental school from January 1998 to November 2010. The improvement in psychosocial awareness was assessed by comparing the perception of some feelings reported in the period of eye loss and currently. Wilcoxon tests were applied for comparison of patients' perception between the periods. χ(2) tests were used to assess the relationship between the improvement in psychosocial awareness and the variables of the study. In addition, the logistic regression model measured this relationship with the measure of odds ratio. The feelings of shame, shyness, preoccupation with hiding it, sadness, insecurity and fear were significant for improvement in psychosocial awareness. It was concluded that the anophthalmic patients wearing an ocular prosthesis has significant improvement in psychosocial awareness after rehabilitation. Copyright © 2012 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  17. Simvastatin as an Adjunct to Conventional Therapy of Non-infectious Uveitis: A Randomized, Open-Label Pilot Study.

    PubMed

    Shirinsky, Ivan V; Biryukova, Anastasia A; Shirinsky, Valery S

    2017-12-01

    Statins have been shown to reduce ocular inflammation in animal models of uveitis and to prevent development of uveitis in observational studies. There have been no experimental human studies evaluating statins' efficacy and safety in uveitis. In this study, we aimed to investigate efficacy and safety of simvastatin in patients with uveitis. For this single-center, open-label, randomized study, we enrolled patients with acute non-infectious uveitis. The patients were randomized to receive 40 mg simvastatin per day for 2 months in addition to conventional treatment or conventional treatment alone. The studied outcomes were the rate of steroid-sparing control of ocular inflammation, measures of ocular inflammation, intraocular pressure, and visual acuity. Fifty patients were enrolled in the study. Twenty-five patients were randomly assigned to receive simvastatin with conventional treatment and 25 to conventional treatment alone. Simvastatin was associated with significantly higher rates of steroid-sparing ocular inflammation control, decrease in anterior chamber inflammation, and improvement in visual acuity. The treatment was well tolerated, no serious adverse effects were observed. Our findings suggest that statins may have therapeutic potential in uveitis. These results need to be confirmed in double-blind, randomized, controlled studies.

  18. Sub-lethal Ocular Trauma (SLOT): Establishing a Standardized Blast Threshold to Facilitate Diagnostic, Early Treatment, and Recovery Studies for Blast Injuries to the Eye and Optic Nerve

    DTIC Science & Technology

    2014-09-01

    the less, we observed 64 a broad array of ocular injuries. Petras et al. (1997) observed a similar trend in rats exposed to overpressures of...2013. PMID: 22185582. Petras , J.M., Bauman, R.A., and Elsayed, N.M., 1997, Visual system degeneration induced by blast overpressure: Toxicology...2012, Primary blast injury to the eye and orbit: Finite element modeling: Investigative Ophthalmology: v. 53, pp. 8057–8066. Sanchez, R., Martin , R

  19. [The application progress of 3D printing technology in ophthalmology].

    PubMed

    Ji, Z K; Zhao, Y; Yu, S S; Zhao, H

    2018-01-11

    3D printing is a kind of technology that makes 3D models from computer-aided designs through additive manufacturing, in which successive layers of the material are deposited onto underlying layers to construct 3D objects. In recent years, 3D printing is gradually applied in the field of ophthalmology, such as the cornea, retina, orbital operation, ocular tumor radiotherapy, ocular implants and ophthalmology teaching. This article reviews the application status of 3D printing technology in the basic research and clinical treatment in ophthalmology. (Chin J Ophthalmol, 2018, 54: 72-76) .

  20. Distribution and outcome of ocular lesions in snakes examined at a veterinary teaching hospital: 67 cases (1985-2010).

    PubMed

    Hausmann, Jennifer C; Hollingsworth, Steven R; Hawkins, Michelle G; Kass, Philip H; Maggs, David J

    2013-07-15

    To determine the distribution and clinical outcome of ocular lesions in snakes. Retrospective case series. 67 snakes with ocular lesions. Signalment, lesion duration, diagnosis, treatment, and clinical outcome were recorded for all snakes with ocular lesions that were examined at a veterinary teaching hospital from 1985 to 2010. 71 ocular lesions were detected in 67 of 508 (13%) snakes examined. Affected snakes were of the families Boidae, Pythonidae, Colubridae, and Viperidae. The distribution of ocular lesions did not vary by taxonomic family, age, or sex; however, snakes from the genus Epicrates with ocular lesions were overrepresented in the population. The most commonly diagnosed ocular lesions were retained spectacle (n = 41), pseudobuphthalmos or subspectacular abscess (13), trauma (8), and cataracts (4). Pseudobuphthalmos or subspectacular abscess developed more frequently in Colubridae than in non-Colubridae snakes. Of the 16 snakes with retained spectacles for which data were available, the lesion recurred once in 4 snakes and multiple times in 5 snakes. Results indicated that retained spectacle was the most common ocular lesion diagnosed in snakes. Compared with other snakes with ocular lesions, snakes of the genus Epicrates had a higher than expected frequency of ocular lesions in general and snakes of the family Colubridae had a higher than expected frequency of pseudobuphthalmos or subspectacular abscess.

  1. Ocular anatomy in medieval arabic medicine. A review.

    PubMed

    Laios, Konstantinos; Moschos, Marilita M; George, Androutsos

    2016-01-01

    In medieval Arabic medicine Ophthalmology had a central role. Ocular anatomy was described in many ophthalmological treatises of the physicians of the time. These physicians followed the doctrines of Galen according ocular anatomy, nevertheless their contribution to the history of ocular anatomy was the presentation of ocular anatomical sketches in their manuscripts for the fist time in medical history.

  2. Modeling eye-head gaze shifts in multiple contexts without motor planning

    PubMed Central

    Haji-Abolhassani, Iman; Guitton, Daniel

    2016-01-01

    During gaze shifts, the eyes and head collaborate to rapidly capture a target (saccade) and fixate it. Accordingly, models of gaze shift control should embed both saccadic and fixation modes and a mechanism for switching between them. We demonstrate a model in which the eye and head platforms are driven by a shared gaze error signal. To limit the number of free parameters, we implement a model reduction approach in which steady-state cerebellar effects at each of their projection sites are lumped with the parameter of that site. The model topology is consistent with anatomy and neurophysiology, and can replicate eye-head responses observed in multiple experimental contexts: 1) observed gaze characteristics across species and subjects can emerge from this structure with minor parametric changes; 2) gaze can move to a goal while in the fixation mode; 3) ocular compensation for head perturbations during saccades could rely on vestibular-only cells in the vestibular nuclei with postulated projections to burst neurons; 4) two nonlinearities suffice, i.e., the experimentally-determined mapping of tectoreticular cells onto brain stem targets and the increased recruitment of the head for larger target eccentricities; 5) the effects of initial conditions on eye/head trajectories are due to neural circuit dynamics, not planning; and 6) “compensatory” ocular slow phases exist even after semicircular canal plugging, because of interconnections linking eye-head circuits. Our model structure also simulates classical vestibulo-ocular reflex and pursuit nystagmus, and provides novel neural circuit and behavioral predictions, notably that both eye-head coordination and segmental limb coordination are possible without trajectory planning. PMID:27440248

  3. Ocular adnexal asymmetry in models: a magazine photograph analysis.

    PubMed

    Ing, Edsel; Safarpour, Azien; Ing, Tom; Ing, Sabrina

    2006-04-01

    Symmetry of facial features often correlates with a perception of physical attractiveness, and ophthalmologists are sometimes consulted by patients for eyelid, eyebrow, or orbital asymmetry. Our objective was to determine the prevalence of ocular adnexal asymmetry among people generally regarded as attractive. The mean width of the horizontal palpebral fissure (MHPF) for both men and women was determined in 40 adult volunteers. Then unobscured, head-on photographs of models looking in the primary position were digitally scanned from popular magazines. Eyelid height, eyelid folds, eyebrow height, medial canthus to midline distance, pupil to midline distance, and orbital dystopia measurements were made. After the measurements from the models were scaled to size by factoring with the MHPF obtained from the volunteers, the results were analyzed by paired samples t test for right-left asymmetry of the ocular adnexal measurements. We also examined for antimongoloid slant in the models. The MHPF of the volunteers was 27+/-1.3 mm for women and 29.6+/-2.0 mm for men. Of 102 magazine photographs analyzed, 55 were women and 47 men. As a group, the models showed a statistically significant asymmetry (p<0.05) in the horizontal fissure width, upper central lid fold, upper temporal lid fold, central eyebrow height, temporal eyebrow height, medial canthal to midline distance, pupil to midline distance, and orbital dystopia. The female models had more eyebrow asymmetry. The male models had more asymmetry at the horizontal fissure and with orbital dystopia. Two male models also had a unilateral antimongoloid slant. Small to moderate amounts of eyelid, eyebrow, and orbital asymmetry were observed in faces generally perceived as attractive. This fact should be considered during preoperative discussions with patients considering oculoplastic surgery.

  4. Ocular HSV-1: Is the Cornea a Reservoir for Viral Latency or a Fast Pit Stop?

    PubMed Central

    Kennedy, David P.; Clement, Christian; Arceneaux, Richard L.; Bhattacharjee, Partha S.; Huq, Tashfin S.; Hill, James M.

    2010-01-01

    Purpose To present a review supporting and refuting evidence from mouse, rabbit, non-human primate, and human studies of herpes simplex virus type 1 (HSV-1) concerning corneal latency. Methods More than 50 research papers on HSV-1 published in peer-reviewed journals were examined. Results Infectious HSV-1 has been found in mouse denervated tissues and in tissues with negative cultures from the corresponding ganglion. However, the different mouse strains have shown varied responses to different strains of HSV, making it difficult to relate such findings to humans. Rabbit studies provide excellent evidence for HSV-1 corneal latency including data on HSV-1 migration from the cornea into the corneoscleral rim and on the distribution of HSV-1 DNA in the cornea. However, the available methods for the detection of infectious HSV-1 may not be sensitive enough to detect low-level infection. Infectious HSV-1 has been successfully isolated from the tears of non-human primates in the absence of detectable corneal lesions. The recurrence of corneal ulcers in non-human primates before the appearance of infectious HSV-1 in tears suggests that the origin of the HSV-1 is the cornea, rather than the TG. Human studies presented evidence of both ganglion and corneal latency. Conclusion Understanding HSV-1 disease progression and the possibility of corneal latency could lead to more effective treatments for herpetic keratitis. However, it is unlikely that operational latency in the cornea will be definitively proven unless a new method with higher sensitivity for the detection of infectious virus is developed. PMID:21304287

  5. Persistent hyperplastic primary vitreous in transgenic mice expressing IE180 of the pseudorabies virus.

    PubMed

    Taharaguchi, Satoshi; Yoshida, Kazuhiko; Tomioka, Yukiko; Yoshino, Saori; Uede, Toshimitsu; Ono, Etsuro

    2005-05-01

    Pseudorabies virus (PRV), a representative member of the alpha-herpesvirus family, causes nervous symptoms and ocular lesions, such as keratoconjunctivitis and retinal degeneration in piglets. The immediate-early protein IE180 of the PRV is known to be essential, not only in viral gene expression, but also in the cellular gene expression in host cells. The purpose of this study was to examine the effect of IE180 on the development of the mouse eye, by using transgenic technology. Transgenic mice expressing IE180 were generated and their eyes analyzed by histology, immunocytochemistry, and the bromodeoxyuridine cell proliferation assay. A fibrovascular retrolental tissue analogous to persistent hyperplastic primary vitreous (PHPV) in humans was observed in a transgenic mouse line expressing IE180. The gross anatomy of the eye showed white pupils. Analysis of hematoxylin and eosin-stained sections revealed that the retrolental tissue adhered to the neuroretina, the inner nuclear and ganglion cell layers were disorganized, and rosettelike arrangements of dysplastic photoreceptor cells were present. Bromodeoxyuridine-positive cells were detected in the retrolental tissues of postnatal day (P)1, P7, and P14 mice. The retrolental mass in the P7 transgenic mouse was composed of melanocytes and endothelial cells, which were detected by a cocktail of antibodies against endoglin, CD31, and VEGF receptor-2. The observation that the eye disease in transgenic mice is similar to that in PHPV in humans raises the possibility that expression of the immediate-early gene of alpha-herpesviruses may contribute to PHPV.

  6. Optimizing mouse models of neurodegenerative disorders: are therapeutics in sight?

    PubMed

    Lutz, Cathleen M; Osborne, Melissa A

    2013-01-01

    The genomic and biologic conservation between mice and humans, along with our increasing ability to manipulate the mouse genome, places the mouse as a premier model for deciphering disease mechanisms and testing potential new therapies. Despite these advantages, mouse models of neurodegenerative disease are sometimes difficult to generate and can present challenges that must be carefully addressed when used for preclinical studies. For those models that do exist, the standardization and optimization of the models is a critical step in ensuring success in both basic research and preclinical use. This review looks back on the history of model development for neurodegenerative diseases and highlights the key strategies that have been learned in order to improve the design, development and use of mouse models in the study of neurodegenerative disease.

  7. Image analysis of ocular fundus for retinopathy characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ushizima, Daniela; Cuadros, Jorge

    2010-02-05

    Automated analysis of ocular fundus images is a common procedure in countries as England, including both nonemergency examination and retinal screening of patients with diabetes mellitus. This involves digital image capture and transmission of the images to a digital reading center for evaluation and treatment referral. In collaboration with the Optometry Department, University of California, Berkeley, we have tested computer vision algorithms to segment vessels and lesions in ground-truth data (DRIVE database) and hundreds of images of non-macular centric and nonuniform illumination views of the eye fundus from EyePACS program. Methods under investigation involve mathematical morphology (Figure 1) for imagemore » enhancement and pattern matching. Recently, we have focused in more efficient techniques to model the ocular fundus vasculature (Figure 2), using deformable contours. Preliminary results show accurate segmentation of vessels and high level of true-positive microaneurysms.« less

  8. Ocular bioavailability and systemic loss of topically applied ophthalmic drugs.

    PubMed

    Patton, T F; Francoeur, M

    1978-02-01

    We used 20-day-old rabbits as a model to show that the ocular bioavailability of topically applied pilocarpine nitrate increased as the instilled volume of the drug was decreased. Decreasing the instilled volume from 25 to 5 microliter permitted a dosage reduction of greater than 2.5 times without sacrificing overall drug concentrations in the eye. Since only a small fraction of topically applied doses to the eye actually reached the interior of the eye, the remainder of the dose was lost and available for systemic absorption. The reduction in dosage permitted by this approach resulted in less drug appearing in the general circulation, as shown by comparative plasma level-time profiles. The advantages of reducing drop size are improved ocular bioavailability permitting the use of smaller doses; and less systemic drug loss, thus reducing the potential for systemic side effects. These advantages could be especially significant in the pediatric and geriatric age groups.

  9. Characterization of the pH and Temperature in the Rabbit, Pig, and Monkey Eye: Key Parameters for the Development of Long-Acting Delivery Ocular Strategies.

    PubMed

    Lorget, Florence; Parenteau, Audrey; Carrier, Michel; Lambert, Daniel; Gueorguieva, Ana; Schuetz, Chris; Bantseev, Vlad; Thackaberry, Evan

    2016-09-06

    Many long-acting delivery strategies for ocular indications rely on pH- and/or temperature-driven release of the therapeutic agent and degradation of the drug carrier. Yet, these physiological parameters are poorly characterized in ocular animal models. These strategies aim at reducing the frequency of dosing, which is of particular interest for the treatment of chronic disorders affecting the posterior segment of the eye, such as macular degeneration that warrants monthly or every other month intravitreal injections. We used anesthetized white New Zealand rabbits, Yucatan mini pigs, and cynomolgus monkeys to characterize pH and temperature in several vitreous locations and the central aqueous location. We also established post mortem pH changes in the vitreous. Our data showed regional and species differences, which need to be factored into strategies for developing biodegradable long-acting delivery systems.

  10. MRI in ocular drug delivery

    PubMed Central

    Li, S. Kevin; Lizak, Martin J.; Jeong, Eun-Kee

    2008-01-01

    Conventional pharmacokinetic methods for studying ocular drug delivery are invasive and cannot be conveniently applied to humans. The advancement of MRI technology has provided new opportunities in ocular drug-delivery research. MRI provides a means to non-invasively and continuously monitor ocular drug-delivery systems with a contrast agent or compound labeled with a contrast agent. It is a useful technique in pharmacokinetic studies, evaluation of drug-delivery methods, and drug-delivery device testing. Although the current status of the technology presents some major challenges to pharmaceutical research using MRI, it has a lot of potential. In the past decade, MRI has been used to examine ocular drug delivery via the subconjunctival route, intravitreal injection, intrascleral injection to the suprachoroidal space, episcleral and intravitreal implants, periocular injections, and ocular iontophoresis. In this review, the advantages and limitations of MRI in the study of ocular drug delivery are discussed. Different MR contrast agents and MRI techniques for ocular drug-delivery research are compared. Ocular drug-delivery studies using MRI are reviewed. PMID:18186077

  11. HIV-1 gp120 Glycoprotein Interacting with Dendritic Cell-specific Intercellular Adhesion Molecule 3-grabbing Non-integrin (DC-SIGN) Down-Regulates Tight Junction Proteins to Disrupt the Blood Retinal Barrier and Increase Its Permeability.

    PubMed

    Qian, Yi-Wen; Li, Chuan; Jiang, Ai-Ping; Ge, Shengfang; Gu, Ping; Fan, Xianqun; Li, Tai-Sheng; Jin, Xia; Wang, Jian-Hua; Wang, Zhi-Liang

    2016-10-28

    Approximately 70% of HIV-1 infected patients acquire ocular opportunistic infections and manifest eye disorders during the course of their illness. The mechanisms by which pathogens invade the ocular site, however, are unclear. Under normal circumstances, vascular endothelium and retinal pigment epithelium (RPE), which possess a well developed tight junction complex, form the blood-retinal barrier (BRB) to prevent pathogen invasion. We hypothesize that disruption of the BRB allows pathogen entry into ocular sites. The hypothesis was tested using in vitro models. We discovered that human RPE cells could bind to either HIV-1 gp120 glycoproteins or HIV-1 viral particles. Furthermore, the binding was mediated by dendritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN) expressed on RPE cells. Upon gp120 binding to DC-SIGN, cellular NF-κB signaling was triggered, leading to the induction of matrix metalloproteinases, which subsequently degraded tight junction proteins and disrupted the BRB integrity. DC-SIGN knockdown or prior blocking with a specific antibody abolished gp120-induced matrix metalloproteinase expression and reduced the degradation of tight junction proteins. This study elucidates a novel mechanism by which HIV, type 1 invades ocular tissues and provides additional insights into the translocation or invasion process of ocular complication-associated pathogens. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Co-ordinated ocular development from human iPS cells and recovery of corneal function.

    PubMed

    Hayashi, Ryuhei; Ishikawa, Yuki; Sasamoto, Yuzuru; Katori, Ryosuke; Nomura, Naoki; Ichikawa, Tatsuya; Araki, Saori; Soma, Takeshi; Kawasaki, Satoshi; Sekiguchi, Kiyotoshi; Quantock, Andrew J; Tsujikawa, Motokazu; Nishida, Kohji

    2016-03-17

    The eye is a complex organ with highly specialized constituent tissues derived from different primordial cell lineages. The retina, for example, develops from neuroectoderm via the optic vesicle, the corneal epithelium is descended from surface ectoderm, while the iris and collagen-rich stroma of the cornea have a neural crest origin. Recent work with pluripotent stem cells in culture has revealed a previously under-appreciated level of intrinsic cellular self-organization, with a focus on the retina and retinal cells. Moreover, we and others have demonstrated the in vitro induction of a corneal epithelial cell phenotype from pluripotent stem cells. These studies, however, have a single, tissue-specific focus and fail to reflect the complexity of whole eye development. Here we demonstrate the generation from human induced pluripotent stem cells of a self-formed ectodermal autonomous multi-zone (SEAM) of ocular cells. In some respects the concentric SEAM mimics whole-eye development because cell location within different zones is indicative of lineage, spanning the ocular surface ectoderm, lens, neuro-retina, and retinal pigment epithelium. It thus represents a promising resource for new and ongoing studies of ocular morphogenesis. The approach also has translational potential and to illustrate this we show that cells isolated from the ocular surface ectodermal zone of the SEAM can be sorted and expanded ex vivo to form a corneal epithelium that recovers function in an experimentally induced animal model of corneal blindness.

  13. Inner layer-embedded contact lenses for pH-triggered controlled ocular drug delivery.

    PubMed

    Zhu, Qiang; Liu, Chang; Sun, Zheng; Zhang, Xiaofei; Liang, Ning; Mao, Shirui

    2018-07-01

    Contact lenses (CLs) are ideally suited for controlled ocular drug delivery, but are limited by short release duration, poor storage stability and low drug loading. In this study, we present a novel inner layer-embedded contact lens capable of pH-triggered extended ocular drug delivery with good storage stability. Blend film of ethyl cellulose and Eudragit S100 was used as the inner layer, while pHEMA hydrogel was used as outer layer to fabricate inner layer-embedded contact lens. Using diclofenac sodium(DS) as a drug model, influence of polymer ratio in the blend film, EC viscosity, drug/polymer ratio, inner layer thickness and outlayer thickness of pHEMA hydrogel on drug release behavior was studied and optimized for daily use. The pH-triggered drug eluting pattern enables the inner layer-embedded contact lens being stored in phosphate buffer solution pH 6.8 with ignorable drug loss and negligible changes in drug release pattern. In vivo pharmacokinetic study in rabbits showed sustained drug release for over 24 h in tear fluid, indicating significant improvement in drug corneal residence time. A level A IVIVC was established between in vitro drug release and in vivo drug concentration in tear fluid. In conclusion, this inner layer embedded contact lens design could be used as a platform for extended ocular drug delivery with translational potential for both anterior and posterior ocular diseases therapy. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Identification and localization of trauma-related biomarkers using matrix assisted laser desorption/ionization imaging mass spectrometry

    NASA Astrophysics Data System (ADS)

    Jones, Kirstin; Reilly, Matthew A.; Glickman, Randolph D.

    2017-02-01

    Current treatments for ocular and optic nerve trauma are largely ineffective and may have adverse side effects; therefore, new approaches are needed to understand trauma mechanisms. Identification of trauma-related biomarkers may yield insights into the molecular aspects of tissue trauma that can contribute to the development of better diagnostics and treatments. The conventional approach for protein biomarker measurement largely relies on immunoaffinity methods that typically can only be applied to analytes for which antibodies or other targeting means are available. Matrix assisted laser-assisted desorption/ionization imaging mass spectrometry (MALDI-IMS) is a specialized application of mass spectrometry that not only is well suited to the discovery of novel or unanticipated biomarkers, but also provides information about the spatial localization of biomarkers in tissue. We have been using MALDI-IMS to find traumarelated protein biomarkers in retina and optic nerve tissue from animal models subjected to ocular injury produced by either blast overpressure or mechanical torsion. Work to date by our group, using MALDI-IMS, found that the pattern of protein expression is modified in the injured ocular tissue as soon as 24 hr post-injury, compared to controls. Specific proteins may be up- or down-regulated by trauma, suggesting different tissue responses to a given injury. Ongoing work is directed at identifying the proteins affected and mapping their expression in the ocular tissue, anticipating that systematic analysis can be used to identify targets for prospective therapies for ocular trauma.

  15. Applications and Limitations of Mouse Models for Understanding Human Atherosclerosis

    PubMed Central

    von Scheidt, Moritz; Zhao, Yuqi; Kurt, Zeyneb; Pan, Calvin; Zeng, Lingyao; Yang, Xia; Schunkert, Heribert; Lusis, Aldons J.

    2017-01-01

    Most of the biological understanding of mechanisms underlying coronary artery disease (CAD) derives from studies of mouse models. The identification of multiple CAD loci and strong candidate genes in large human genome-wide association studies (GWAS) presented an opportunity to examine the relevance of mouse models for the human disease. We comprehensively reviewed the mouse literature, including 827 literature-derived genes, and compared it to human data. First, we observed striking concordance of risk factors for atherosclerosis in mice and humans. Second, there was highly significant overlap of mouse genes with human genes identified by GWAS. In particular, of the 46 genes with strong association signals in CAD-GWAS that were studied in mouse models all but one exhibited consistent effects on atherosclerosis-related phenotypes. Third, we compared 178 CAD-associated pathways derived from human GWAS with 263 from mouse studies and observed that over 50% were consistent between both species. PMID:27916529

  16. A Novel Closed-Head Model of Mild Traumatic Brain Injury Using Focal Primary Overpressure Blast to the Cranium in Mice

    PubMed Central

    Guley, Natalie H.; Rogers, Joshua T.; Del Mar, Nobel A.; Deng, Yunping; Islam, Rafiqul M.; D'Surney, Lauren; Ferrell, Jessica; Deng, Bowei; Hines-Beard, Jessica; Bu, Wei; Ren, Huiling; Elberger, Andrea J.; Marchetta, Jeffrey G.; Rex, Tonia S.; Honig, Marcia G.

    2016-01-01

    Abstract Mild traumatic brain injury (TBI) from focal head impact is the most common form of TBI in humans. Animal models, however, typically use direct impact to the exposed dura or skull, or blast to the entire head. We present a detailed characterization of a novel overpressure blast system to create focal closed-head mild TBI in mice. A high-pressure air pulse limited to a 7.5 mm diameter area on the left side of the head overlying the forebrain is delivered to anesthetized mice. The mouse eyes and ears are shielded, and its head and body are cushioned to minimize movement. This approach creates mild TBI by a pressure wave that acts on the brain, with minimal accompanying head acceleration-deceleration. A single 20-psi blast yields no functional deficits or brain injury, while a single 25–40 psi blast yields only slight motor deficits and brain damage. By contrast, a single 50–60 psi blast produces significant visual, motor, and neuropsychiatric impairments and axonal damage and microglial activation in major fiber tracts, but no contusive brain injury. This model thus reproduces the widespread axonal injury and functional impairments characteristic of closed-head mild TBI, without the complications of systemic or ocular blast effects or head acceleration that typically occur in other blast or impact models of closed-skull mild TBI. Accordingly, our model provides a simple way to examine the biomechanics, pathophysiology, and functional deficits that result from TBI and can serve as a reliable platform for testing therapies that reduce brain pathology and deficits. PMID:26414413

  17. Antimicrobial Blue Light Therapy for Infectious Keratitis: Ex Vivo and In Vivo Studies.

    PubMed

    Zhu, Hong; Kochevar, Irene E; Behlau, Irmgard; Zhao, Jie; Wang, Fenghua; Wang, Yucheng; Sun, Xiaodong; Hamblin, Michael R; Dai, Tianhong

    2017-01-01

    To investigate the effectiveness of antimicrobial blue light (aBL) as an alternative or adjunctive therapeutic for infectious keratitis. We developed an ex vivo rabbit model and an in vivo mouse model of infectious keratitis. A bioluminescent strain of Pseudomonas aeruginosa was used as the causative pathogen, allowing noninvasive monitoring of the extent of infection in real time via bioluminescence imaging. Quantitation of bacterial luminescence was correlated to colony-forming units (CFU). Using the ex vivo and in vivo models, the effectiveness of aBL (415 nm) for the treatment of keratitis was evaluated as a function of radiant exposure when aBL was delivered at 6 or 24 hours after bacterial inoculation. The aBL exposures calculated to reach the retina were compared to the American National Standards Institute standards to estimate aBL retinal safety. Pseudomonas aeruginosa keratitis fully developed in both the ex vivo and in vivo models at 24 hours post inoculation. Bacterial luminescence in the infected corneas correlated linearly to CFU (R2 = 0.921). Bacterial burden in the infected corneas was rapidly and significantly reduced (>2-log10) both ex vivo and in vivo after a single exposure of aBL. Recurrence of infection was observed in the aBL-treated mice at 24 hours after aBL exposure. The aBL toxicity to the retina is largely dependent on the aBL transmission of the cornea. Antimicrobial blue light is a potential alternative or adjunctive therapeutic for infectious keratitis. Further studies of corneal and retinal safety using large animal models, in which the ocular anatomies are similar to that of humans, are warranted.

  18. Hydroxyapatite ocular implant and non-integrated implants in eviscerated patients

    PubMed Central

    Gradinaru, S; Popescu, V; Leasu, C; Pricopie, S; Yasin, S; Ciuluvica, R; Ungureanu, E

    2015-01-01

    Introduction: This study compares the outcomes and complications of hydroxyapatite ocular implant and non-integrated ocular implants following evisceration. Materials and Methods: This is a retrospective study of 90 patients who underwent evisceration for different ocular affections, in the Ophthalmology Department of the University Emergency Hospital Bucharest, between January 2009 and December 2013. The outcomes measured were conjunctival dehiscence, socket infection, implant exposure and extrusion rate. Results: Forty-three patients had the hydroxyapatite implant (coralline–Integrated Ocular Implants, USA or synthetic–FCI, France) and forty-seven received non-integrated ocular implants (24 acrylic and 23 silicone). Five cases of socket infection, thirteen cases of extrusion and two cases of conjunctival dehiscence were encountered. Conclusions: There was a higher rate of conjunctival dehiscence with hydroxyapatite ocular implant, but implant extrusion and socket infection were found in non-integrated ocular implants. PMID:25914747

  19. Utility of angiotensin-converting enzyme activity in aqueous humor in the diagnosis of ocular sarcoidosis.

    PubMed

    Mihailovic-Vucinic, Violeta; Popevic, Ljubica; Popevic, Spasoje; Stjepanovic, Mihailo; Aleksic, Andjelka; Stanojevic-Paovic, Anka

    2017-10-01

    Many studies include elevated activity of angiotensin-converting enzyme (ACE) in serum in sarcoidosis and in ocular sarcoidosis as well, but there are only a few analyzing ACE activities in aqueous humor. The aim of this study is to illuminate the diagnostic value of ACE in aqueous humor in patients with ocular sarcoidosis. We analyzed twenty patients with ocular sarcoidosis and 18 patients with nonocular involvement. All patients have biopsy-positive sarcoidosis of the lungs and/or mediastinal lymph nodes. Blood samples for ACE serum levels were obtained from all patients. Aqueous humor samples were taken by paracentesis with a 25-gauge needle in local anesthesia. With appropriate statistical tests, we compared ACE activity in serum and aqueous humor in patients with and without ocular sarcoidosis. The majority of our patients with ocular sarcoidosis were female (12/20), also in the group with systemic sarcoidosis and without ocular involvement (12/6). Mean age of the whole analyzed group of sarcoidosis patients was 45 ± 6 years. There is no statistically significant difference in ACE activity in serum between two groups of patients (with and without ocular sarcoidosis). There is statistically significant difference in ACE activity in aqueous humor among patients with ocular and nonocular sarcoidosis. ACE activity in aqueous humor is significantly higher in patients with ocular sarcoidosis. Increased ACE activity in aqueous humor can point to a diagnosis of ocular sarcoidosis, without the need for ocular biopsy.

  20. Low vision rehabilitation and ocular problems among industrial workers in a developing country.

    PubMed

    Omar, R; Knight, V F; Aziz Mohammed, M A

    2014-01-01

    Work-related ocular injuries and illnesses were among the major causes of job absenteeism. This study was conducted to determine if low vision rehabilitation was provided following work-related ocular problems among industrial workers in a developing country. This was a retrospective analysis of case records. Randomly selected records of all employees from the Social Security Organization (SOCSO) Medical Board for 2004 who suffered from ocular injuries and illnesses were selected. Rates of ocular injuries and illnesses according to age, gender, races, types of injuries, types of industries, visual rehabilitation and types of medical interventions were tabulated and analysed. A total of 26 cases of ocular injuries and illnesses were identified where 46.2% suffered from ocular injuries. The remaining 53.8% had ocular and/or systemic diseases. The 40-49-yearold age group suffered the greatest number of injuries (26.92%). Ocular perforating injuries (66.67%) and ocular contusions (33.33%) were the most common types of ocular injury among industrial workers in Kuala Lumpur. Most injuries occurred among workers in the service industry (50%). Almost 60% of these injured workers did not receive any low vision rehabilitation after medical intervention while 25% were given contact lenses or spectacles as rehabilitation and remaining had surgery. The low vision rehabilitation is still unexplored in the management of ocular injuries and illnesses among industrial workers. Introducing low vision rehabilitation can benefit both workers and employers as it provides care beyond spectacles or contact lens prescriptions.

  1. Genetically engineered mouse models for studying inflammatory bowel disease.

    PubMed

    Mizoguchi, Atsushi; Takeuchi, Takahito; Himuro, Hidetomo; Okada, Toshiyuki; Mizoguchi, Emiko

    2016-01-01

    Inflammatory bowel disease (IBD) is a chronic intestinal inflammatory condition that is mediated by very complex mechanisms controlled by genetic, immune, and environmental factors. More than 74 kinds of genetically engineered mouse strains have been established since 1993 for studying IBD. Although mouse models cannot fully reflect human IBD, they have provided significant contributions for not only understanding the mechanism, but also developing new therapeutic means for IBD. Indeed, 20 kinds of genetically engineered mouse models carry the susceptibility genes identified in human IBD, and the functions of some other IBD susceptibility genes have also been dissected out using mouse models. Cutting-edge technologies such as cell-specific and inducible knockout systems, which were recently employed to mouse IBD models, have further enhanced the ability of investigators to provide important and unexpected rationales for developing new therapeutic strategies for IBD. In this review article, we briefly introduce 74 kinds of genetically engineered mouse models that spontaneously develop intestinal inflammation. Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  2. Mouse Tumor Biology (MTB): a database of mouse models for human cancer.

    PubMed

    Bult, Carol J; Krupke, Debra M; Begley, Dale A; Richardson, Joel E; Neuhauser, Steven B; Sundberg, John P; Eppig, Janan T

    2015-01-01

    The Mouse Tumor Biology (MTB; http://tumor.informatics.jax.org) database is a unique online compendium of mouse models for human cancer. MTB provides online access to expertly curated information on diverse mouse models for human cancer and interfaces for searching and visualizing data associated with these models. The information in MTB is designed to facilitate the selection of strains for cancer research and is a platform for mining data on tumor development and patterns of metastases. MTB curators acquire data through manual curation of peer-reviewed scientific literature and from direct submissions by researchers. Data in MTB are also obtained from other bioinformatics resources including PathBase, the Gene Expression Omnibus and ArrayExpress. Recent enhancements to MTB improve the association between mouse models and human genes commonly mutated in a variety of cancers as identified in large-scale cancer genomics studies, provide new interfaces for exploring regions of the mouse genome associated with cancer phenotypes and incorporate data and information related to Patient-Derived Xenograft models of human cancers. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. The latest animal models of ovarian cancer for novel drug discovery.

    PubMed

    Magnotti, Elizabeth; Marasco, Wayne A

    2018-03-01

    Epithelial ovarian cancer is a heterogeneous disease classified into five subtypes, each with a different molecular profile. Most cases of ovarian cancer are diagnosed after metastasis of the primary tumor and are resistant to traditional platinum-based chemotherapeutics. Mouse models of ovarian cancer have been utilized to discern ovarian cancer tumorigenesis and the tumor's response to therapeutics. Areas covered: The authors provide a review of mouse models currently employed to understand ovarian cancer. This article focuses on advances in the development of orthotopic and patient-derived tumor xenograft (PDX) mouse models of ovarian cancer and discusses current humanized mouse models of ovarian cancer. Expert opinion: The authors suggest that humanized mouse models of ovarian cancer will provide new insight into the role of the human immune system in combating and augmenting ovarian cancer and aid in the development of novel therapeutics. Development of humanized mouse models will take advantage of the NSG and NSG-SGM3 strains of mice as well as new strains that are actively being derived.

  4. How Genetically Engineered Mouse Tumor Models Provide Insights Into Human Cancers

    PubMed Central

    Politi, Katerina; Pao, William

    2011-01-01

    Genetically engineered mouse models (GEMMs) of human cancer were first created nearly 30 years ago. These early transgenic models demonstrated that mouse cells could be transformed in vivo by expression of an oncogene. A new field emerged, dedicated to generating and using mouse models of human cancer to address a wide variety of questions in cancer biology. The aim of this review is to highlight the contributions of mouse models to the diagnosis and treatment of human cancers. Because of the breadth of the topic, we have selected representative examples of how GEMMs are clinically relevant rather than provided an exhaustive list of experiments. Today, as detailed here, sophisticated mouse models are being created to study many aspects of cancer biology, including but not limited to mechanisms of sensitivity and resistance to drug treatment, oncogene cooperation, early detection, and metastasis. Alternatives to GEMMs, such as chemically induced or spontaneous tumor models, are not discussed in this review. PMID:21263096

  5. Integrating model behavior, optimization, and sensitivity/uncertainty analysis: overview and application of the MOUSE software toolbox

    USDA-ARS?s Scientific Manuscript database

    This paper provides an overview of the Model Optimization, Uncertainty, and SEnsitivity Analysis (MOUSE) software application, an open-source, Java-based toolbox of visual and numerical analysis components for the evaluation of environmental models. MOUSE is based on the OPTAS model calibration syst...

  6. Model-based dose calculations for COMS eye plaque brachytherapy using an anatomically realistic eye phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lesperance, Marielle; Inglis-Whalen, M.; Thomson, R. M., E-mail: rthomson@physics.carleton.ca

    Purpose : To investigate the effects of the composition and geometry of ocular media and tissues surrounding the eye on dose distributions for COMS eye plaque brachytherapy with{sup 125}I, {sup 103}Pd, or {sup 131}Cs seeds, and to investigate doses to ocular structures. Methods : An anatomically and compositionally realistic voxelized eye model with a medial tumor is developed based on a literature review. Mass energy absorption and attenuation coefficients for ocular media are calculated. Radiation transport and dose deposition are simulated using the EGSnrc Monte Carlo user-code BrachyDose for a fully loaded COMS eye plaque within a water phantom andmore » our full eye model for the three radionuclides. A TG-43 simulation with the same seed configuration in a water phantom neglecting the plaque and interseed effects is also performed. The impact on dose distributions of varying tumor position, as well as tumor and surrounding tissue media is investigated. Each simulation and radionuclide is compared using isodose contours, dose volume histograms for the lens and tumor, maximum, minimum, and average doses to structures of interest, and doses to voxels of interest within the eye. Results : Mass energy absorption and attenuation coefficients of the ocular media differ from those of water by as much as 12% within the 20–30 keV photon energy range. For all radionuclides studied, average doses to the tumor and lens regions in the full eye model differ from those for the plaque in water by 8%–10% and 13%–14%, respectively; the average doses to the tumor and lens regions differ between the full eye model and the TG-43 simulation by 2%–17% and 29%–34%, respectively. Replacing the surrounding tissues in the eye model with water increases the maximum and average doses to the lens by 2% and 3%, respectively. Substituting the tumor medium in the eye model for water, soft tissue, or an alternate melanoma composition affects tumor dose compared to the default eye model simulation by up to 16%. In the full eye model simulations, the average dose to the lens is larger by 7%–9% than the dose to the center of the lens, and the maximum dose to the optic nerve is 17%–22% higher than the dose to the optic disk for all radionuclides. In general, when normalized to the same prescription dose at the tumor apex, doses delivered to all structures of interest in the full eye model are lowest for{sup 103}Pd and highest for {sup 131}Cs, except for the tumor where the average dose is highest for {sup 103}Pd and lowest for {sup 131}Cs. Conclusions : The eye is not radiologically water-equivalent, as doses from simulations of the plaque in the full eye model differ considerably from doses for the plaque in a water phantom and from simulated TG-43 calculated doses. This demonstrates the importance of model-based dose calculations for eye plaque brachytherapy, for which accurate elemental compositions of ocular media are necessary.« less

  7. Dynamic performance of accommodating intraocular lenses in a negative feedback control system: a simulation-based study.

    PubMed

    Schor, Clifton M; Bharadwaj, Shrikant R; Burns, Christopher D

    2007-07-01

    A dynamic model of ocular accommodation is used to simulate the stability and dynamic performance of accommodating intraocular lenses (A-IOLs) that replace the hardened natural ocular lens that is unable to change focus. Accommodation simulations of an older eye with A-IOL materials having biomechanical properties of a younger eye illustrate overshoots and oscillations resulting from decreased visco-elasticity of the A-IOL. Stable dynamics of an A-IOL are restored by adaptation of phasic and tonic neural-control properties of accommodation. Simulations indicate that neural control must be recalibrated to avoid unstable dynamic accommodation with A-IOLs. An interactive web-model of A-IOL illustrating these properties is available at http://schorlab.berkeley.edu.

  8. The Visual System of Zebrafish and its Use to Model Human Ocular Diseases

    PubMed Central

    Gestri, Gaia; Link, Brian A; Neuhauss, Stephan CF

    2011-01-01

    Free swimming zebrafish larvae depend mainly on their sense of vision to evade predation and to catch prey. Hence there is strong selective pressure on the fast maturation of visual function and indeed the visual system already supports a number of visually-driven behaviors in the newly hatched larvae. The ability to exploit the genetic and embryonic accessibility of the zebrafish in combination with a behavioral assessment of visual system function has made the zebrafish a popular model to study vision and its diseases. Here, we review the anatomy, physiology and development of the zebrafish eye as the basis to relate the contributions of the zebrafish to our understanding of human ocular diseases. PMID:21595048

  9. Ocular surface injury from a microwave superheated egg resulting in a pseudopterygium.

    PubMed

    Gagnon, Michael R; Dickinson, Paul J

    2005-05-01

    To describe the first case of ocular surface injury resulting in a pseudopterygium from a microwave superheated egg. Case report. A 12-year-old girl sustained an ocular surface injury resulting in a pseudopterygium from a microwave superheated egg. Microwave superheated eggs can result in ocular injury. This case illustrates the potential ocular danger involved with microwave ovens.

  10. Cluster Bomb Ocular Injuries

    PubMed Central

    Mansour, Ahmad M.; Hamade, Haya; Ghaddar, Ayman; Mokadem, Ahmad Samih; El Hajj Ali, Mohamad; Awwad, Shady

    2012-01-01

    Purpose: To present the visual outcomes and ocular sequelae of victims of cluster bombs. Materials and Methods: This retrospective, multicenter case series of ocular injury due to cluster bombs was conducted for 3 years after the war in South Lebanon (July 2006). Data were gathered from the reports to the Information Management System for Mine Action. Results: There were 308 victims of clusters bombs; 36 individuals were killed, of which 2 received ocular lacerations and; 272 individuals were injured with 18 receiving ocular injury. These 18 surviving individuals were assessed by the authors. Ocular injury occurred in 6.5% (20/308) of cluster bomb victims. Trauma to multiple organs occurred in 12 of 18 cases (67%) with ocular injury. Ocular findings included corneal or scleral lacerations (16 eyes), corneal foreign bodies (9 eyes), corneal decompensation (2 eyes), ruptured cataract (6 eyes), and intravitreal foreign bodies (10 eyes). The corneas of one patient had extreme attenuation of the endothelium. Conclusions: Ocular injury occurred in 6.5% of cluster bomb victims and 67% of the patients with ocular injury sustained trauma to multiple organs. Visual morbidity in civilians is an additional reason for a global ban on the use of cluster bombs. PMID:22346132

  11. Frequency-tuning characteristics of cervical and ocular vestibular evoked myogenic potentials induced by air-conducted tone bursts.

    PubMed

    Park, Hong Ju; Lee, In-Sik; Shin, Jung Eun; Lee, Yeo Jin; Park, Mun Su

    2010-01-01

    To better characterize both ocular and cervical vestibular evoked myogenic potentials (VEMP) responses at different frequencies of sound in 20 normal subjects. Cervical and ocular VEMPs were recorded. The intensities of sound stimulation decreased from the maximal intensity, until no responses were evoked. Thresholds, amplitudes, latencies and interaural amplitude difference ratio (IADR) at the maximal stimulation were calculated. Both tests showed the similar frequency tuning, with the lowest threshold and highest amplitude for 500-Hz tone-burst stimuli. Sound stimulation at 500Hz showed the response rates of 100% in both tests. Cervical VEMPs showed higher incidence than ocular VEMPs. Ocular VEMP thresholds were significantly higher than those of cervical VEMP. Cervical VEMP amplitudes were significantly higher than ocular VEMP amplitudes. IADRs of ocular and cervical VEMPs did not differ significantly. Ocular VEMP showed the similar frequency tuning to cervical VEMP. Cervical VEMP responses showed higher incidence, lower thresholds and larger amplitudes than ocular VEMP. Cervical VEMP is a more reliable measure than ocular VEMP, though the results of both tests will be complementary. Five hundred Hertz is the optimal frequency to use. Copyright 2009 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  12. Diagnosis of ocular toxoplasmosis by two polymerase chain reaction (PCR) examinations: qualitative multiplex and quantitative real-time.

    PubMed

    Sugita, Sunao; Ogawa, Manabu; Inoue, Shizu; Shimizu, Norio; Mochizuki, Manabu

    2011-09-01

    To establish a two-step polymerase chain reaction (PCR) diagnostic system for ocular toxoplasmosis. A total of 13 ocular fluid samples (11 aqueous humor and 2 vitreous fluid) were collected from 13 patients with clinically suspected ocular toxoplasmosis. Ten ocular samples from other uveitis patients and 20 samples from subjects without ocular inflammation were used as controls. Two polymerase chain reaction (PCR) methods, i.e., qualitative multiplex PCR and quantitative real-time PCR, were used to measure the toxoplasma genome (T. gondii B1 gene). Qualitative multiplex PCR detected T. gondii B1 gene in the ocular fluids of 11 out of 13 patients with clinically suspected ocular toxoplasmosis. In real-time PCR, we detected high copy numbers of T. gondii DNA (5.1 × 10(2)-2.1 × 10(6) copies/mL) in a total of 10 patients (10/13, 77%). Only ocular toxoplasmosis scar lesions were observed in the three real-time PCR-negative patients. PCR assay results for the samples from the two control groups were all negative. The two-step PCR examination to detect toxoplasma DNA is a useful tool for diagnosing ocular toxoplasmosis.

  13. [Do prisms according to Hans-Joachim Haase influence ocular prevalence?].

    PubMed

    Kromeier, Miriam; Schmitt, Christina; Bach, Michael; Kommerell, Guntram

    2002-12-01

    Ocular prevalence is defined as an unequal weighting of the eyes in the directional perception of stereo objects. Opinions differ as to the cause and relevance of ocular prevalence. Hans-Joachim Haase suggested that ocular prevalence is due to fixation disparity, brought about by incomplete compensation of heterophoria. He further suggested that prismatic spectacles determined by his "measuring and correcting methodology" (MKH) could restore bicentral fixation and thus establish a perceptual balance between both eyes. We examined 10 non-strabismic subjects with a visual acuity of > or = 1.0 in both eyes. It turned out that all 10 had a "fixation disparity type II", characterised according to Haase by a "disparate retinal correspondence". All subjects underwent the automatic Freiburg Ocular Prevalence Test, without and with MKH prisms. In addition we examined ocular prevalence under forced vergence and compared ocular prevalence with stereoacuity. Spontaneous ocular prevalence ranged between 1 and 69 %. Averaged over all 10 subjects, ocular prevalence without and with the MKH prisms were not significantly different. Statistical evaluation of single subjects revealed only in one of the 10 a significant difference (Bonferroni-corrected p = 0.001). In the subgroup of 5 subjects who underwent forced vergence, ocular prevalence remained unaltered between 0 and 18 Delta base out. The stereoscopic threshold of all 10 subjects ranged between 1.5 and 14.5 arcsec. There was no correlation between ocular prevalence and stereoscopic threshold (r = - 0.2, p = 0.5). Our results indicate that ocular prevalence is largely independent of phoria correction and vergence stress. The excellent stereoacuity of all subjects suggests that ocular prevalence is abandoned for the sake of optimal resolution when very small differences in depth have to be judged.

  14. Disrupting the male germ line to find infertility and contraception targets.

    PubMed

    Archambeault, Denise R; Matzuk, Martin M

    2014-05-01

    Genetically-manipulated mouse models have become indispensible for broadening our understanding of genes and pathways related to male germ cell development. Until suitable in vitro systems for studying spermatogenesis are perfected, in vivo models will remain the gold standard for inquiry into testicular function. Here, we discuss exciting advances that are allowing researchers faster, easier, and more customizable access to their mouse models of interest. Specifically, the trans-NIH Knockout Mouse Project (KOMP) is working to generate knockout mouse models of every gene in the mouse genome. The related Knockout Mouse Phenotyping Program (KOMP2) is performing systematic phenotypic analysis of this genome-wide collection of knockout mice, including fertility screening. Together, these programs will not only uncover new genes involved in male germ cell development but also provide the research community with the mouse models necessary for further investigations. In addition to KOMP/KOMP2, another promising development in the field of mouse models is the advent of CRISPR (clustered regularly interspaced short palindromic repeat)-Cas technology. Utilizing 20 nucleotide guide sequences, CRISPR/Cas has the potential to introduce sequence-specific insertions, deletions, and point mutations to produce null, conditional, activated, or reporter-tagged alleles. CRISPR/Cas can also successfully target multiple genes in a single experimental step, forgoing the multiple generations of breeding traditionally required to produce mouse models with deletions, insertions, or mutations in multiple genes. In addition, CRISPR/Cas can be used to create mouse models carrying variants identical to those identified in infertile human patients, providing the opportunity to explore the effects of such mutations in an in vivo system. Both the KOMP/KOMP2 projects and the CRISPR/Cas system provide powerful, accessible genetic approaches to the study of male germ cell development in the mouse. A more complete understanding of male germ cell biology is critical for the identification of novel targets for potential non-hormonal contraceptive intervention. Copyright © 2014. Published by Elsevier Masson SAS.

  15. A simplified technique for in situ excision of cornea and evisceration of retinal tissue from human ocular globe.

    PubMed

    Parekh, Mohit; Ferrari, Stefano; Di Iorio, Enzo; Barbaro, Vanessa; Camposampiero, Davide; Karali, Marianthi; Ponzin, Diego; Salvalaio, Gianni

    2012-06-12

    Enucleation is the process of retrieving the ocular globe from a cadaveric donor leaving the rest of the globe undisturbed. Excision refers to the retrieval of ocular tissues, especially cornea, by cutting it separate from the ocular globe. Evisceration is the process of removing the internal organs referred here as retina. The ocular globe consists of the cornea, the sclera, the vitreous body, the lens, the iris, the retina, the choroid, muscles etc (Suppl. Figure 1). When a patient is suffering from corneal damage, the cornea needs to be removed and a healthy one must be transplanted by keratoplastic surgeries. Genetic disorders or defects in retinal function can compromise vision. Human ocular globes can be used for various surgical procedures such as eye banking, transplantation of human cornea or sclera and research on ocular tissues. However, there is little information available on human corneal and retinal excision, probably due to the limited accessibility to human tissues. Most of the studies describing similar procedures are performed on animal models. Research scientists rely on the availability of properly dissected and well-conserved ocular tissues in order to extend the knowledge on human eye development, homeostasis and function. As we receive high amount of ocular globes out of which approximately 40% (Table 1) of them are used for research purposes, we are able to perform huge amount of experiments on these tissues, defining techniques to excise and preserve them regularly. The cornea is an avascular tissue which enables the transmission of light onto the retina and for this purpose should always maintain a good degree of transparency. Within the cornea, the limbus region, which is a reservoir of the stem cells, helps the reconstruction of epithelial cells and restricts the overgrowth of the conjunctiva maintaining corneal transparency and clarity. The size and thickness of the cornea are critical for clear vision, as changes in either of them could lead to distracted, unclear vision. The cornea comprises of 5 layers; a) epithelium, b) Bowman's layer, c) stroma, d) Descemet's membrane and e) endothelium. All layers should function properly to ensure clear vision(4,5,6). The choroid is the intermediate tunic between the sclera and retina, bounded on the interior by the Bruch's membrane and is responsible for blood flow in the eye. The choroid also helps to regulate the temperature and supplies nourishment to the outer layers of the retina(5,6). The retina is a layer of nervous tissue that covers the back of the ocular globe (Suppl. Figure 1) and consists of two parts: a photoreceptive part and a non-receptive part. The retina helps to receive the light from the cornea and lens and converts it into the chemical energy eventually transmitted to the brain with help of the optic nerve(5,6). The aim of this paper is to provide a protocol for the dissection of corneal and retinal tissues from human ocular globes. Avoiding cross-contamination with adjacent tissues and preserving RNA integrity is of fundamental importance as such tissues are indispensable for research purposes aimed at (i) characterizing the transcriptome of the ocular tissues, (ii) isolating stem cells for regenerative medicine projects, and (iii) evaluating histological differences between tissues from normal/affected subjects. In this paper we describe the technique we currently use to remove the cornea, the choroid and retinal tissues from an ocular globe. Here we provide a detailed protocol for the dissection of the human ocular globe and the excision of corneal and retinal tissues. The accompanying video will help researchers to learn an appropriate technique for the retrieval of precious human tissues which are difficult to find regularly.

  16. Genome-Wide Expression Profiling of Five Mouse Models Identifies Similarities and Differences with Human Psoriasis

    PubMed Central

    Swindell, William R.; Johnston, Andrew; Carbajal, Steve; Han, Gangwen; Wohn, Christian; Lu, Jun; Xing, Xianying; Nair, Rajan P.; Voorhees, John J.; Elder, James T.; Wang, Xiao-Jing; Sano, Shigetoshi; Prens, Errol P.; DiGiovanni, John; Pittelkow, Mark R.; Ward, Nicole L.; Gudjonsson, Johann E.

    2011-01-01

    Development of a suitable mouse model would facilitate the investigation of pathomechanisms underlying human psoriasis and would also assist in development of therapeutic treatments. However, while many psoriasis mouse models have been proposed, no single model recapitulates all features of the human disease, and standardized validation criteria for psoriasis mouse models have not been widely applied. In this study, whole-genome transcriptional profiling is used to compare gene expression patterns manifested by human psoriatic skin lesions with those that occur in five psoriasis mouse models (K5-Tie2, imiquimod, K14-AREG, K5-Stat3C and K5-TGFbeta1). While the cutaneous gene expression profiles associated with each mouse phenotype exhibited statistically significant similarity to the expression profile of psoriasis in humans, each model displayed distinctive sets of similarities and differences in comparison to human psoriasis. For all five models, correspondence to the human disease was strong with respect to genes involved in epidermal development and keratinization. Immune and inflammation-associated gene expression, in contrast, was more variable between models as compared to the human disease. These findings support the value of all five models as research tools, each with identifiable areas of convergence to and divergence from the human disease. Additionally, the approach used in this paper provides an objective and quantitative method for evaluation of proposed mouse models of psoriasis, which can be strategically applied in future studies to score strengths of mouse phenotypes relative to specific aspects of human psoriasis. PMID:21483750

  17. Management of the ocular surface and tear film before, during, and after laser in situ keratomileusis.

    PubMed

    Albietz, Julie M; Lenton, Lee M

    2004-01-01

    To identify evidence-based, best practice strategies for managing the ocular surface and tear film before, during, and after laser in situ keratomileusis (LASIK). After a comprehensive review of relevant published literature, evidence-based recommendations for best practice management strategies are presented. Symptoms of ocular irritation and signs of dysfunction of the integrated lacrimal gland/ocular surface functional gland unit are common before and after LASIK. The status of the ocular surface and tear film before LASIK can impact surgical outcomes in terms of potential complications during and after surgery, refractive outcome, optical quality, patient satisfaction, and the severity and duration of dry eye after LASIK. Before LASIK, the health of the ocular surface should be optimized and patients selected appropriately. Dry eye before surgery and female gender are risk factors for developing chronic dry eye after LASIK. Management of the ocular surface during LASIK can minimize ocular surface damage and the risk of adverse outcomes. Long-term management of the tear film and ocular surface after LASIK can reduce the severity and duration of dry eye symptoms and signs. Strategies to manage the integrated ocular surface/lacrimal gland functional unit before, during, and after LASIK can optimize outcomes. As problems with the ocular surface and tear film are relatively common, attention should focus on the use and improvement of evidence-based management strategies.

  18. Knowledge and awareness of ocular allergy among undergraduate students of public universities in Ghana.

    PubMed

    Kyei, Samuel; Tettey, Bernard; Asiedu, Kofi; Awuah, Agnes

    2016-10-28

    Ocular allergy is a growing public health problem that greatly impacts the day-to-day life of sufferers and their families. Other aspects of their activities of daily living such as schooling, professional, and social life are affected hence an increased awareness and knowledge of ocular allergies, their detection and treatment is paramount. This study was to assess the level of knowledge and awareness of ocular allergy among undergraduate students of public universities in Ghana. A descriptive cross sectional survey was conducted among 1000 students from three selected public universities in Ghana. Each respondent completed a questionnaire that had questions concerning awareness and knowledge of ocular allergy. Out of the 1000 students, 347 (34.7 %) were aware of ocular allergy. Of these 347 students, the level of knowledge of ocular allergy was generally low. Majority of the students had their source of information about ocular allergy from the media and the internet. There was statistical significant association among awareness of ocular allergy, sources of information and programme of study (p < 0.001). Level of awareness among university students is generally low. Students' programmes of study influenced their knowledge of ocular allergy. Public health measures are recommended to help educate students on the prevention and control of ocular allergy as well as the complications associated with this condition.

  19. Serological IgG avidity test for ocular toxoplasmosis.

    PubMed

    Suresh, Subramaniam; Nor-Masniwati, Saidin; Nor-Idahriani, Muhd Nor; Wan-Hazabbah, Wan-Hitam; Zeehaida, Mohamed; Zunaina, Embong

    2012-01-01

    The purpose of this study was to evaluate the immunoglobulin (Ig) G avidity of serological toxoplasmosis testing in patients with ocular inflammation and to determine the clinical manifestations of ocular toxoplasmosis. A retrospective review of all patients presenting with ocular inflammation to the Hospital Universiti Sains Malaysia, Kelantan, Malaysia between 2005 and 2009 was undertaken. Visual acuity, clinical manifestations at presentation, toxoplasmosis antibody testing, and treatment records were analyzed. A total of 130 patients with ocular inflammation were reviewed retrospectively. The patients had a mean age of 38.41 (standard deviation 19.24, range 6-83) years. Seventy-one patients (54.6%) were found to be seropositive, of whom five (3.8%) were both IgG and IgM positive (suggestive of recently acquired ocular toxoplasmosis) while one (0.8%) showed IgG avidity ≤40% (suggestive of recently acquired ocular toxoplasmosis) and 65 patients (50.0%) showed IgG avidity >40% (suggestive of reactivation of toxoplasmosis infection). Chorioretinal scarring as an ocular manifestation was significantly more common in patients with seropositive toxoplasmosis (P = 0.036). Eighteen patients (13.8%) were diagnosed as having recent and/or active ocular toxoplasmosis based on clinical manifestations and serological testing. Ocular toxoplasmosis is a clinical diagnosis, but specific toxoplasmosis antibody testing helps to support the diagnosis and to differentiate between reactivation of infection and recently acquired ocular toxoplasmosis.

  20. Poly(amidoamine) dendrimers as ophthalmic vehicles for ocular delivery of pilocarpine nitrate and tropicamide.

    PubMed

    Vandamme, Th F; Brobeck, L

    2005-01-20

    The purpose of this study was to determine the influence of a controlled incremental increase in size, molecular weight and number of amine, carboxylate and hydroxyl surface groups in several series of poly(amidoamine) (PAMAM) dendrimers for controlled ocular drug delivery. The duration of residence time was evaluated after solubilization of several series of PAMAM dendrimers (generations 1.5 and 2-3.5 and 4) in buffered phosphate solutions containing 2 per thousand (w/v) of fluorescein. The New Zealand albino rabbit was used as an in vivo model for qualitative and quantitative assessment of ocular tolerance and retention time after a single application of 25 microl of dendrimer solution to the eye. The same model was also used to determine the prolonged miotic or mydriatic activities of dendrimer solutions, some containing pilocarpine nitrate and some tropicamide, respectively. Residence time was longer for the solutions containing dendrimers with carboxylic and hydroxyl surface groups. No prolongation of remanence time was observed when dendrimer concentration (0.25-2%) increased. The remanence time of PAMAM dendrimer solutions on the cornea showed size and molecular weight dependency. This study allowed novel macromolecular carriers to be designed with prolonged drug residence time for the ophthalmic route.

  1. Arc restores juvenile plasticity in adult mouse visual cortex

    PubMed Central

    Jenks, Kyle R.; Kim, Taekeun; Pastuzyn, Elissa D.; Okuno, Hiroyuki; Taibi, Andrew V.; Bear, Mark F.

    2017-01-01

    The molecular basis for the decline in experience-dependent neural plasticity over age remains poorly understood. In visual cortex, the robust plasticity induced in juvenile mice by brief monocular deprivation during the critical period is abrogated by genetic deletion of Arc, an activity-dependent regulator of excitatory synaptic modification. Here, we report that augmenting Arc expression in adult mice prolongs juvenile-like plasticity in visual cortex, as assessed by recordings of ocular dominance (OD) plasticity in vivo. A distinguishing characteristic of juvenile OD plasticity is the weakening of deprived-eye responses, believed to be accounted for by the mechanisms of homosynaptic long-term depression (LTD). Accordingly, we also found increased LTD in visual cortex of adult mice with augmented Arc expression and impaired LTD in visual cortex of juvenile mice that lack Arc or have been treated in vivo with a protein synthesis inhibitor. Further, we found that although activity-dependent expression of Arc mRNA does not change with age, expression of Arc protein is maximal during the critical period and declines in adulthood. Finally, we show that acute augmentation of Arc expression in wild-type adult mouse visual cortex is sufficient to restore juvenile-like plasticity. Together, our findings suggest a unifying molecular explanation for the age- and activity-dependent modulation of synaptic sensitivity to deprivation. PMID:28790183

  2. Transcleral delivery of triamcinolone acetonide and ranibizumab to retinal tissues using macroesis.

    PubMed

    Singh, Rishi P; Mathews, Michael Ellen; Kaufman, Michael; Riga, Alan

    2010-02-01

    To determine the feasibility of macroesis for the delivery of ranibizumab and triamcinolone acetonide via a transcleral route. Macroesis is a non-invasive method of drug delivery that uses alternating current (AC) to deliver drugs to target tissues. Two preclinical models of drug delivery were used for feasibility studies of delivering ranibizumab and triamcinolone acetonide to ocular tissues. In the first model, full-thickness sections of rabbit ocular tissue (conjunctiva to retina) were placed on an interdigitated electrode platform, and the drug was placed on the surface of the tissue. A non-uniform electrical field was applied to the ocular tissue, and electrical conductivity, a measurement of drug delivery, was monitored during the course of the experiment. In a second model, termed a 'simulated vitreous model,' the same full-thickness sections of rabbit ocular tissue were mounted below the electrode device, and the test compounds were placed on the electrodes. The fluid below the tissue, which simulated the vitreous cavity, was analysed using UV spectroscopy at the end of the study for the presence of drug. In the electrical conductivity studies, the electric characteristics of the tissue-drug system clearly showed movement of the drug through the tissue to the dielectric sensor based on changes in the electrical conductivity of the tissue sample with triamcinolone. No change in tissue conductivity was observed when no drug was placed. No heat generation occurred during the course of the study; nor was any gross tissue destruction noted. In the simulated vitreous model, studies using triamcinolone yielded concentrations ranging from 0.280 to 0.970 mg/ml, depending on the voltage, frequency and time applied. In as little as 6.7 min, clinically efficacious doses could be obtained in the preclinical system. Studies using ranibizumab yielded concentrations of 0.070-0.171 mg/ml, depending on the voltage, frequency, and time applied. In as little at 6.7 min, 92.8% throughput could be achieved. Successful delivery of ranibizumab and triamcinolone acetonide can be achieved with macroesis in preclinical studies.

  3. Evolving paradigm in the management of allergic rhinitis-associated ocular symptoms: role of intranasal corticosteroids.

    PubMed

    Blaiss, Michael S

    2008-03-01

    Along with nasal symptoms, ocular symptoms such as itching, tearing, and redness are common, bothersome components of the allergic rhinitis (AR) profile. Treatment of the patient with ocular allergy symptoms should take into account a variety of factors, including severity of symptoms, convenience/compliance issues, and patient preferences. To review from the primary care perspective the epidemiology, pathophysiology, and management of ocular symptoms associated with AR, and to evaluate the emerging role of intranasal corticosteroids (INSs). A search of the PubMed database identified clinical trials that assessed efficacy of agents in reducing ocular allergy symptoms. Internet searches identified further information including data on over-the-counter agents for treatment of ocular symptoms. Searches were conducted using search terms such as pathophysiology, epidemiology, ocular allergy, quality of life, drug class, and drug names. Primary care physicians are often the first point of contact for patients with seasonal AR (SAR) or perennial AR (PAR) symptoms. Ocular allergy associated with SAR and PAR (seasonal and perennial allergic conjunctivitis, respectively) is characterized by both early- and late-phase reactions, with symptoms often persisting long after allergen exposure. Non-pharmacologic measures such as allergen avoidance, use of artificial tears, and cool compresses are pertinent for all ocular allergy sufferers, but may not afford adequate symptom control. Pharmacotherapy options have traditionally included topical ophthalmic products for cases of isolated ocular symptoms, and oral antihistamines for patients with both nasal and ocular symptoms. However, this paradigm is changing with new evidence regarding the efficacy of INSs in reducing ocular symptoms. A number of meta-analyses and individual studies, most of which studied ocular symptoms as secondary variables, have demonstrated the ocular effects of INSs versus topical and oral antihistamines. Additional prospective studies on this topic are encouraged to provide further evidence for these findings. In light of their well-established efficacy in reducing nasal allergy symptoms, INSs offer a comprehensive treatment option in patients with nasal and ocular symptoms. Oral antihistamines and/or topical eye drops may also be necessary depending on symptom control.

  4. Ocular Manifestations of Noonan Syndrome: A Prospective Clinical and Genetic Study of 25 Patients.

    PubMed

    van Trier, Dorothée C; Vos, Anna M C; Draaijer, Renske W; van der Burgt, Ineke; Draaisma, Jos M Th; Cruysberg, Johannes R M

    2016-10-01

    To determine the full spectrum of ocular manifestations in patients with Noonan syndrome (NS). Prospective cross-sectional clinical and genetic study in a tertiary referral center. Twenty-five patients with NS (mean age, 14 years; range, 8 months-25 years) clinically diagnosed by validated criteria. All patients were examined by the same team following a detailed study protocol. Genetic analyses were performed in 23 patients. Ocular abnormalities of vision and refraction, external ocular features, ocular position and motility, anterior segment, posterior segment, and intraocular pressure. Ocular features of vision and refraction were amblyopia (32%), myopia (40%), and astigmatism (52%). External ocular features were epicanthic folds (84%), hypertelorism (68%), ptosis (56%), high upper eyelid crease (64%), lower eyelid retraction (60%), abnormal upward slanting palpebral fissures (36%), downward slanting palpebral fissures (32%), and lagophthalmos (28%). Orthoptic abnormalities included strabismus (40%), abnormal stereopsis (44%), and limited ocular motility (40%). Anterior segment abnormalities included prominent corneal nerves (72%) and posterior embryotoxon (32%). Additional ocular features were found, including nonglaucomatous optic disc excavation (20%), relatively low (<10 mmHg) intraocular pressure (22%), and optic nerve hypoplasia (4%). Mutations were established in 22 patients: 19 PTPN11 mutations (76%), 1 SOS1 mutation, 1 BRAF mutation, and 1 KRAS mutation. The patient with the highest number of prominent corneal nerves had an SOS1 mutation. The patient with the lowest visual acuity, associated with bilateral optic nerve hypoplasia, had a BRAF mutation. Patients with severe ptosis and nearly total absence of levator muscle function had PTPN11 mutations. All patients showed at least 3 ocular features (range, 3-13; mean, 7), including at least 1 external ocular feature in more than 95% of the patients. Noonan syndrome is a clinical diagnosis with multiple genetic bases associated with an extensive variety of congenital ocular abnormalities. Ocular features of NS are characterized by 1 or more developmental anomalies of the eyelids (involving the position, opening, and closure) associated with various other ocular abnormalities in childhood, including amblyopia, myopia, astigmatism, strabismus, limited ocular motility, prominent corneal nerves, and posterior embryotoxon. Copyright © 2016 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lesperance, Marielle; Inglis-Whalen, M.; Thomson, R. M., E-mail: rthomson@physics.carleton.ca

    Purpose : To investigate the effects of the composition and geometry of ocular media and tissues surrounding the eye on dose distributions for COMS eye plaque brachytherapy with{sup 125}I, {sup 103}Pd, or {sup 131}Cs seeds, and to investigate doses to ocular structures. Methods : An anatomically and compositionally realistic voxelized eye model with a medial tumor is developed based on a literature review. Mass energy absorption and attenuation coefficients for ocular media are calculated. Radiation transport and dose deposition are simulated using the EGSnrc Monte Carlo user-code BrachyDose for a fully loaded COMS eye plaque within a water phantom andmore » our full eye model for the three radionuclides. A TG-43 simulation with the same seed configuration in a water phantom neglecting the plaque and interseed effects is also performed. The impact on dose distributions of varying tumor position, as well as tumor and surrounding tissue media is investigated. Each simulation and radionuclide is compared using isodose contours, dose volume histograms for the lens and tumor, maximum, minimum, and average doses to structures of interest, and doses to voxels of interest within the eye. Results : Mass energy absorption and attenuation coefficients of the ocular media differ from those of water by as much as 12% within the 20–30 keV photon energy range. For all radionuclides studied, average doses to the tumor and lens regions in the full eye model differ from those for the plaque in water by 8%–10% and 13%–14%, respectively; the average doses to the tumor and lens regions differ between the full eye model and the TG-43 simulation by 2%–17% and 29%–34%, respectively. Replacing the surrounding tissues in the eye model with water increases the maximum and average doses to the lens by 2% and 3%, respectively. Substituting the tumor medium in the eye model for water, soft tissue, or an alternate melanoma composition affects tumor dose compared to the default eye model simulation by up to 16%. In the full eye model simulations, the average dose to the lens is larger by 7%–9% than the dose to the center of the lens, and the maximum dose to the optic nerve is 17%–22% higher than the dose to the optic disk for all radionuclides. In general, when normalized to the same prescription dose at the tumor apex, doses delivered to all structures of interest in the full eye model are lowest for{sup 103}Pd and highest for {sup 131}Cs, except for the tumor where the average dose is highest for {sup 103}Pd and lowest for {sup 131}Cs. Conclusions : The eye is not radiologically water-equivalent, as doses from simulations of the plaque in the full eye model differ considerably from doses for the plaque in a water phantom and from simulated TG-43 calculated doses. This demonstrates the importance of model-based dose calculations for eye plaque brachytherapy, for which accurate elemental compositions of ocular media are necessary.« less

  6. Topical Ocular Drug Delivery to the Back of the Eye by Mucus-Penetrating Particles

    PubMed Central

    Schopf, Lisa R.; Popov, Alexey M.; Enlow, Elizabeth M.; Bourassa, James L.; Ong, Winston Z.; Nowak, Pawel; Chen, Hongming

    2015-01-01

    Purpose: Enhanced drug exposure to the ocular surface typically relies on inclusion of viscosity-enabling agents, whereas delivery to the back of the eye generally focuses on invasive means, such as intraocular injections. Using our novel mucus-penetrating particle (MPP) technology, which rapidly and uniformly coats and penetrates mucosal barriers, we evaluated if such drug formulations could increase ocular drug exposure and improve topical drug delivery. Methods: Pharmacokinetic (PK) profiling of topically administered loterprednol etabonate formulated as MPP (LE-MPP) was performed in rabbits and a larger species, the mini-pig. Pharmacodynamic evaluation was done in a rabbit model of VEGF-induced retinal vascular leakage. Cellular potency and PK profile were determined for a second compound, KAL821, a novel receptor tyrosine kinase inhibitor (RTKi). Results: We demonstrated in animals that administration of LE-MPP increased exposure at the ocular surface and posterior compartments. Furthermore using a rabbit vascular leakage model, we demonstrated that biologically effective drug concentrations of LE were delivered to the back of the eye using the MPP technology. We also demonstrated that a novel RTKi formulated as MPPs provided drug levels to the back of the eye above its cellular inhibitory concentration. Conclusions: Topical dosing of MPPs of LE or KAL821 enhanced drug exposure at the front of the eye, and delivered therapeutically relevant drug concentrations to the back of the eye, in animals. Translational Relevance: These preclinical data support using MPP technology to engineer topical formulations to deliver therapeutic drug levels to the back of the eye and could provide major advancements in managing sight-threatening diseases. PMID:26101724

  7. A Dynamic Systems Theory Model of Visual Perception Development

    ERIC Educational Resources Information Center

    Coté, Carol A.

    2015-01-01

    This article presents a model for understanding the development of visual perception from a dynamic systems theory perspective. It contrasts to a hierarchical or reductionist model that is often found in the occupational therapy literature. In this proposed model vision and ocular motor abilities are not foundational to perception, they are seen…

  8. [Effect of topical application of a recombinant adenovirus carrying promyelocytic leukemia gene in a psoriasis-like mouse model].

    PubMed

    Wang, Qiongyu; Zhang, Aijun; Ma, Huiqun; Wang, Shijie; Ma, Yunyun; Zou, Xingwei; Li, Ruilian

    2013-03-01

    To investigate the effects of topical treatment with adenovirus-mediated promyelocytic leukemia gene (PML) gene in a psoriasis-like mouse model. The effect of adenovirus-mediated PML gene on the granular layer of mouse tail scale epidermis and epithelial mitosis were observed on longitudinal histological sections prepared from the tail skin and vaginal epithelium of the mice. Adenovirus-mediated PML gene significantly inhibited mitosis of mouse vaginal epithelial cells and promoted the formation of granular layer in mouse tail scale epidermis. The therapeutic effect of PML gene in the psoriasis-like mouse model may be associated with increased granular cells and suppressed epidemic cell proliferation.

  9. Generation of transgenic mouse model using PTTG as an oncogene.

    PubMed

    Kakar, Sham S; Kakar, Cohin

    2015-01-01

    The close physiological similarity between the mouse and human has provided tools to understanding the biological function of particular genes in vivo by introduction or deletion of a gene of interest. Using a mouse as a model has provided a wealth of resources, knowledge, and technology, helping scientists to understand the biological functions, translocation, trafficking, and interaction of a candidate gene with other intracellular molecules, transcriptional regulation, posttranslational modification, and discovery of novel signaling pathways for a particular gene. Most importantly, the generation of the mouse model for a specific human disease has provided a powerful tool to understand the etiology of a disease and discovery of novel therapeutics. This chapter describes in detail the step-by-step generation of the transgenic mouse model, which can be helpful in guiding new investigators in developing successful models. For practical purposes, we will describe the generation of a mouse model using pituitary tumor transforming gene (PTTG) as the candidate gene of interest.

  10. Phenotypic and functional characterization of herpes simplex virus glycoprotein B epitope-specific effector and memory CD8+ T cells from symptomatic and asymptomatic individuals with ocular herpes.

    PubMed

    Khan, Arif A; Srivastava, Ruchi; Spencer, Doran; Garg, Sumit; Fremgen, Daniel; Vahed, Hawa; Lopes, Patricia P; Pham, Thanh T; Hewett, Charlie; Kuang, Jasmine; Ong, Nicolas; Huang, Lei; Scarfone, Vanessa M; Nesburn, Anthony B; Wechsler, Steven L; BenMohamed, Lbachir

    2015-04-01

    Herpes simplex virus 1 (HSV-1) glycoprotein B (gB)-specific CD8(+) T cells protect mice from herpes infection and disease. However, whether and which HSV-1 gB-specific CD8(+) T cells play a key role in the "natural" protection seen in HSV-1-seropositive healthy asymptomatic (ASYMP) individuals (who have never had clinical herpes disease) remain to be determined. In this study, we have dissected the phenotypes and the functions of HSV-1 gB-specific CD8(+) T cells from HLA-A*02:01 positive, HSV-1 seropositive ASYMP and symptomatic (SYMP) individuals (with a history of numerous episodes of recurrent ocular herpes disease). We found the following. (i) Healthy ASYMP individuals maintained a significantly higher proportion of differentiated HSV-1 gB-specific effector memory CD8(+) T cells (TEM cells) (CD45RA(low) CCR7(low) CD44(high) CD62L(low)). In contrast, SYMP patients had frequent less-differentiated central memory CD8(+) T cells (TCM cells) (CD45RA(low) CCR7(high) CD44(low) CD62L(high)). (ii) ASYMP individuals had significantly higher proportions of multifunctional effector CD8(+) T cells which responded mainly to gB342-350 and gB561-569 "ASYMP" epitopes, and simultaneously produced IFN-γ, CD107(a/b), granzyme B, and perforin. In contrast, effector CD8(+) T cells from SYMP individuals were mostly monofunctional and were directed mainly against nonoverlapping gB17-25 and gB183-191 "SYMP" epitopes. (iii) Immunization of an HLA-A*02:01 transgenic mouse model of ocular herpes with "ASYMP" CD8(+) TEM cell epitopes, but not with "SYMP" CD8(+) TCM cell epitopes, induced a strong CD8(+) T cell-dependent protective immunity against ocular herpes infection and disease. Our findings provide insights into the role of HSV-specific CD8(+) TEM cells in protection against herpes and should be considered in the development of an effective vaccine. A significantly higher proportion of differentiated and multifunctional HSV-1 gB-specific effector memory CD8(+) T cells (TEM cells) (CD45RA(low) CCR7(low) CD44(high) CD62L(low)) were found in healthy ASYMP individuals who are seropositive for HSV-1 but never had any recurrent herpetic disease, while there were frequent less-differentiated and monofunctional central memory CD8(+) T cells (TCM cells) (CD45RA(low) CCR7(high) CD44(low) CD62L(high)) in SYMP patients. Immunization with "ASYMP" CD8(+) TEM cell epitopes, but not with "SYMP" CD8(+) TCM cell epitopes, induced a strong protective HSV-specific CD8(+) T cell response in HLA-A*02:01 transgenic mice. These findings are important for the development of a safe and effective T cell-based herpes vaccine. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  11. Trehalose protects against ocular surface disorders in experimental murine dry eye through suppression of apoptosis.

    PubMed

    Chen, Wei; Zhang, Xiaobo; Liu, Mimi; Zhang, Jingna; Ye, Ya; Lin, Ying; Luyckx, Jacques; Qu, Jia

    2009-09-01

    The disaccharide trehalose is a key element involved in anhydrobiosis (the capability of surviving almost complete dehydration) in many organisms. Its presence also confers resistance to desiccation and high osmolarity in bacterial and human cells by protecting proteins and membranes from denaturation. The present study used a novel murine dry eye model induced by controlled low-humidity air velocity to determine whether topically applied trehalose could heal ocular surface epithelial disorders caused by ocular surface desiccation. In addition, the efficacy of 87.6 mM trehalose eyedrops was compared with that of 20% serum, the efficacy of which has been well documented. Mice ocular surface epithelial disorders were induced by exposure of murine eyes to continuous controlled low-humidity air velocity in an intelligently controlled environmental system (ICES) for 21 days, which accelerated the tear evaporation. The mice were then randomized into three groups: the control group received PBS (0.01 M) treatment; a second group received 87.6 mM trehalose eyedrops treatment; and the third group received mice serum eyedrops treatment. Each treatment was administered as a 10 microl dose every 6 h for 14 days. The resultant changes in corneal barrier function and histopathologic examination of cornea and conjunctiva were analyzed and the level of apoptosis on the ocular surface was assessed using active caspase-3. After 14 days of treatment, the corneal fluorescein staining area, the ruffling and desquamating cells on the apical corneal epithelium, as well as the apoptotic cells on ocular surface epithelium had significantly reduced in eyes treated with trehalose compared with those treated with serum and PBS. In contrast, after 14 days of treatment, improvements in the thickness of the corneal epithelium, the squamous metaplasia in conjunctival epithelium and the number of goblet cells of the conjunctiva were less marked in eyes treated with trehalose compared with serum. These results demonstrated that trehalose could improve the appearance of ocular surface epithelial disorders due to desiccation through suppression of apoptosis. Trehalose produces some of the same responses as serum upon topical application and can maintain corneal health.

  12. Impact insertion of transfer-molded microneedle for localized and minimally invasive ocular drug delivery.

    PubMed

    Song, Hyun Beom; Lee, Kang Ju; Seo, Il Ho; Lee, Ji Yong; Lee, Sang-Mok; Kim, Jin Hyoung; Kim, Jeong Hun; Ryu, WonHyoung

    2015-07-10

    It has been challenging for microneedles to deliver drugs effectively to thin tissues with little background support such as the cornea. Herein, we designed a microneedle pen system, a single microneedle with a spring-loaded microneedle applicator to provide impact insertion. To firmly attach solid microneedles with 140 μm in height at the end of macro-scale applicators, a transfer molding process was employed. The fabricated microneedle pens were then applied to mouse corneas. The microneedle pens successfully delivered rhodamine dye deep enough to reach the stromal layer of the cornea with small entry only about 1000 μm(2). When compared with syringes or 30 G needle tips, microneedle pens could achieve more localized and minimally invasive delivery without any chances of perforation. To investigate the efficacy of microneedle pens as a way of drug delivery, sunitinib malate proven to inhibit in vitro angiogenesis, was delivered to suture-induced angiogenesis model. When compared with delivery by a 30 G needle tip dipped with sunitinib malate, only delivery by microneedle pens could effectively inhibit corneal neovascularization in vivo. Microneedle pens could effectively deliver drugs to thin tissues without impairing merits of using microneedles: localized and minimally invasive delivery. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Neuroprotective and Anti-Inflammatory Effects of Rhus coriaria Extract in a Mouse Model of Ischemic Optic Neuropathy.

    PubMed

    Khalilpour, Saba; Behnammanesh, Ghazaleh; Suede, Fouad; Ezzat, Mohammed O; Muniandy, Jayadhisan; Tabana, Yasser; Ahamed, Mohamed Khadeer; Tamayol, Ali; Majid, Amin Malik Shah; Sangiovanni, Enrico; Dell'Agli, Mario; Majid, Aman Shah

    2018-04-23

    Modulating oxidative stresses and inflammation can potentially prevent or alleviate the pathological conditions of diseases associated with the nervous system, including ischemic optic neuropathy. In this study we evaluated the anti-neuroinflammatory and neuroprotective activities of Rhus coriaria ( R. coriaria) extract in vivo. The half maximal inhibitory concentration (IC 50 ) for DPPH, ABTS and β⁻carotene were 6.79 ± 0.009 µg/mL, 10.94 ± 0.09 µg/mL, and 6.25 ± 0.06 µg/mL, respectively. Retinal ischemia was induced by optic nerve crush injury in albino Balb/c mice. The anti-inflammatory activity of ethanolic extract of R. coriaria (ERC) and linoleic acid (LA) on ocular ischemia was monitored using Fluorescence Molecular Tomography (FMT). Following optic nerve crush injury, the mice treated with 400 mg/kg of ERC and LA exhibited an 84.87% and 86.71% reduction of fluorescent signal (cathepsin activity) respectively. The results of this study provide strong scientific evidence for the neuroprotective activity of the ERC, identifying LA as one of the main components responsible for the effect. ERC may be useful and worthy of further development for its adjunctive utilization in the treatment of optic neuropathy.

  14. Overview of the mutation spectrum in familial exudative vitreoretinopathy and Norrie disease with identification of 21 novel variants in FZD4, LRP5, and NDP.

    PubMed

    Nikopoulos, Konstantinos; Venselaar, Hanka; Collin, Rob W J; Riveiro-Alvarez, Rosa; Boonstra, F Nienke; Hooymans, Johanna M M; Mukhopadhyay, Arijit; Shears, Deborah; van Bers, Marleen; de Wijs, Ilse J; van Essen, Anthonie J; Sijmons, Rolf H; Tilanus, Mauk A D; van Nouhuys, C Erik; Ayuso, Carmen; Hoefsloot, Lies H; Cremers, Frans P M

    2010-06-01

    Wnt signaling is a crucial component of the cell machinery orchestrating a series of physiological processes such as cell survival, proliferation, and migration. Among the plethora of roles that Wnt signaling plays, its canonical branch regulates eye organogenesis and angiogenesis. Mutations in the genes encoding the low density lipoprotein receptor protein 5 (LRP5) and frizzled 4 (FZD4), acting as coreceptors for Wnt ligands, cause familial exudative vitreoretinopathy (FEVR). Moreover, mutations in the gene encoding NDP, a ligand for these Wnt receptors, cause Norrie disease and FEVR. Both FEVR and Norrie disease share similar phenotypic characteristics, including abnormal vascularization of the peripheral retina and formation of fibrovascular masses in the eye that can lead to blindness. In this mutation update, we report 21 novel variants for FZD4, LRP5, and NDP, and discuss the putative functional consequences of missense mutations. In addition, we provide a comprehensive overview of all previously published variants in the aforementioned genes and summarize the phenotypic characteristics in mouse models carrying mutations in the orthologous genes. The increasing molecular understanding of Wnt signaling, related to ocular development and blood supply, offers more tools for accurate disease diagnosis that may be important in the development of therapeutic interventions.

  15. Retinal neurodegeneration may precede microvascular changes characteristic of diabetic retinopathy in diabetes mellitus.

    PubMed

    Sohn, Elliott H; van Dijk, Hille W; Jiao, Chunhua; Kok, Pauline H B; Jeong, Woojin; Demirkaya, Nazli; Garmager, Allison; Wit, Ferdinand; Kucukevcilioglu, Murat; van Velthoven, Mirjam E J; DeVries, J Hans; Mullins, Robert F; Kuehn, Markus H; Schlingemann, Reinier Otto; Sonka, Milan; Verbraak, Frank D; Abràmoff, Michael David

    2016-05-10

    Diabetic retinopathy (DR) has long been recognized as a microvasculopathy, but retinal diabetic neuropathy (RDN), characterized by inner retinal neurodegeneration, also occurs in people with diabetes mellitus (DM). We report that in 45 people with DM and no to minimal DR there was significant, progressive loss of the nerve fiber layer (NFL) (0.25 μm/y) and the ganglion cell (GC)/inner plexiform layer (0.29 μm/y) on optical coherence tomography analysis (OCT) over a 4-y period, independent of glycated hemoglobin, age, and sex. The NFL was significantly thinner (17.3 μm) in the eyes of six donors with DM than in the eyes of six similarly aged control donors (30.4 μm), although retinal capillary density did not differ in the two groups. We confirmed significant, progressive inner retinal thinning in streptozotocin-induced "type 1" and B6.BKS(D)-Lepr(db)/J "type 2" diabetic mouse models on OCT; immunohistochemistry in type 1 mice showed GC loss but no difference in pericyte density or acellular capillaries. The results suggest that RDN may precede the established clinical and morphometric vascular changes caused by DM and represent a paradigm shift in our understanding of ocular diabetic complications.

  16. PTB-associated splicing factor inhibits IGF-1-induced VEGF upregulation in a mouse model of oxygen-induced retinopathy.

    PubMed

    Dong, Lijie; Nian, Hong; Shao, Yan; Zhang, Yan; Li, Qiutang; Yi, Yue; Tian, Fang; Li, Wenbo; Zhang, Hong; Zhang, Xiaomin; Wang, Fei; Li, Xiaorong

    2015-05-01

    Pathological retinal neovascularization, including retinopathy of prematurity and age-related macular degeneration, is the most common cause of blindness worldwide. Insulin-like growth factor-1 (IGF-1) has a direct mitogenic effect on endothelial cells, which is the basis of angiogenesis. Vascular endothelial growth factor (VEGF) activation in response to IGF-1 is well documented; however, the molecular mechanisms responsible for the termination of IGF-1 signaling are still not completely elucidated. Here, we show that the polypyrimidine tract-binding protein-associated splicing factor (PSF) is a potential negative regulator of VEGF expression induced by IGF stimulation. Functional analysis demonstrated that ectopic expression of PSF inhibits IGF-1-stimulated transcriptional activation and mRNA expression of the VEGF gene, whereas knockdown of PSF increased IGF-1-stimulated responses. PSF recruited Hakai to the VEGF transcription complex, resulting in inhibition of IGF-1-mediated transcription. Transfection with Hakai siRNA reversed the PSF-mediated transcriptional repression of VEGF gene transcription. In summary, these results show that PSF can repress the transcriptional activation of VEGF stimulated by IGF-1 via recruitment of the Hakai complex and delineate a novel regulatory mechanism of IGF-1/VEGF signaling that may have implications in the pathogenesis of neovascularization in ocular diseases.

  17. Ocular Blood Flow Changes in Behçet Disease Patients with/without Thrombotic Disease

    PubMed Central

    Yüksel, Harun; Türkcü, Fatih M.; Hamidi, Cihat; Cingü, Abdullah K.; Çinar, Yasin; Şahin, Muhammed; Özkurt, Zeynep; Çaça, İhsan

    2014-01-01

    ABSTRACT In this study, the authors aimed to evaluate ocular blood flow changes in Behçet disease (BD) with and without thrombotic disease. Ninety eyes of 90 patients with a diagnosis of BD (30 eyes with active uveitis, 23 eyes with inactive uveitis, 25 eyes without ocular involvement, and 12 eyes without ocular involvement and with a history of thrombosis) and 30 eyes of 30 age- and sex-matched control patients without any systemic disease with a total of 120 eyes were evaluated. In all cases, ophthalmic, central retinal, and ciliary artery flow parameters were measured with colour Doppler ultrasonography (CDU). The ocular blood flow parameters of all vessels in patients with active uveitis were found to be affected. All the flow parameters in the CRAs of the study groups were significantly different from the control group (p < 0.001). Additionally, in non-ocular BD patients with thrombosis, blood flow parameters were affected more than the parameters in non-ocular BD patients without thrombosis and control patients. In conclusion, major haemodynamic changes were observed using CDU in the ophthalmic vessels of ocular Behçet patients. Also, CDU may detect ocular blood flow alterations before initial ocular clinical manifestations appear in BD patients PMID:27928286

  18. Ocular Blood Flow Changes in Behçet Disease Patients with/without Thrombotic Disease.

    PubMed

    Yüksel, Harun; Türkcü, Fatih M; Hamidi, Cihat; Cingü, Abdullah K; Çinar, Yasin; Şahin, Muhammed; Özkurt, Zeynep; Çaça, İhsan

    2014-01-01

    In this study, the authors aimed to evaluate ocular blood flow changes in Behçet disease (BD) with and without thrombotic disease. Ninety eyes of 90 patients with a diagnosis of BD (30 eyes with active uveitis, 23 eyes with inactive uveitis, 25 eyes without ocular involvement, and 12 eyes without ocular involvement and with a history of thrombosis) and 30 eyes of 30 age- and sex-matched control patients without any systemic disease with a total of 120 eyes were evaluated. In all cases, ophthalmic, central retinal, and ciliary artery flow parameters were measured with colour Doppler ultrasonography (CDU). The ocular blood flow parameters of all vessels in patients with active uveitis were found to be affected. All the flow parameters in the CRAs of the study groups were significantly different from the control group ( p  < 0.001). Additionally, in non-ocular BD patients with thrombosis, blood flow parameters were affected more than the parameters in non-ocular BD patients without thrombosis and control patients. In conclusion, major haemodynamic changes were observed using CDU in the ophthalmic vessels of ocular Behçet patients. Also, CDU may detect ocular blood flow alterations before initial ocular clinical manifestations appear in BD patients.

  19. What Is the Predictive Value of Animal Models for Vaccine Efficacy in Humans? Reevaluating the Potential of Mouse Models for the Human Immune System.

    PubMed

    Jameson, Stephen C; Masopust, David

    2018-04-02

    Much of what we understand about immunology, including the response to vaccines, come from studies in mice because they provide many practical advantages compared with research in higher mammals and humans. Nevertheless, modalities for preventing or treating disease do not always translate from mouse to humans, which has led to increasing scrutiny of the continued merits of mouse research. Here, we summarize the pros and cons of current laboratory mouse models for immunology research and discuss whether overreliance on nonphysiological, ultra-hygienic animal husbandry approaches has limited the ultimate translation potential of mouse-derived data to humans. Alternative approaches are discussed that may extend the use of the mouse model for preclinical studies. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.

  20. Evaluation of iridociliary and lenticular elasticity using shear-wave elastography in rabbit eyes.

    PubMed

    Detorakis, Efstathios T; Drakonaki, Eleni E; Ginis, Harilaos; Karyotakis, Nikolaos; Pallikaris, Ioannis G

    2014-01-01

    A previous study has employed shear-wave ultrasound elastographic imaging to assess corneal rigidity in an ex-vivo porcine eye model. This study employs the same modality in vivo in a rabbit eye model in order to assess lens, ciliary body and total ocular rigidity changes following the instillation of atropine and pilocarpine. Ten non-pigmented female rabbits were examined. Measurements of the lens, ciliary body and total ocular rigidity as well as lens thickness and anterior chamber depth were taken with the Aixplorer system (SuperSonic Imagine, Aix-en-Provence, France) with the SuperLinear™ SL 15-4 transducer in both eyes at baseline as well as after pilocarpine and atropine instillation. The IOP was also measured with the TonoPen tonometer. Changes in rigidity in the examined areas following atropine instillation were statistically not significant. Ciliary body rigidity was significantly increased whereas lens and total ocular rigidity were significantly reduced following pilocarpine instillation. The decrease in lens rigidity following pilocarpine was significantly associated with the respective increase in ciliary body rigidity. Shear-wave ultrasound elastography can detect in vivo rigidity changes in the anterior segment of the rabbit eye model and may potentially be applied in human eyes, providing useful clinical information on conditions in which rigidity changes play an important role, such as glaucoma, pseudoexfoliation syndrome or presbyopia.

Top