Science.gov

Sample records for mouse oocyte killing

  1. Distribution of mitochondria in reconstructed mouse oocytes.

    PubMed

    Fulka, Helena

    2004-02-01

    It has been suggested that nucleus replacement (transfer) may be used as an efficient oocyte therapy in order to prevent transmission of mutated mitochondrial DNA from mother to offspring in humans. The essential and not yet answered question is how mitochondria surrounding the karyoplast will be distributed in the newly reconstructed oocytes. In our model experiments, we have evaluated the distribution of mitochondria in reconstructed immature mouse oocytes when germinal vesicle karyoplasts, with labeled mitochondria, were fused to unlabeled cytoplasts. The penetration of mitochondria from karyoplasts into cytoplasts can be detected almost immediately after the beginning of fusion. In immature reconstructed oocytes, mitochondria are first located in the oocyte center but they are homogeneously distributed within the whole cytoplasm before the completion of maturation. Fusion of oocytes at different stages of maturation suggests that the speed of mitochondria distribution is cell cycle dependent.

  2. Effects of alphafetoprotein on isolated mouse oocytes.

    PubMed

    Lambert, J C; Seralini, G E; Stora, C; Vallette, G; Vranckx, R; Nunez, E A

    1986-01-01

    The supposition of an effect of alphafetoprotein (AFP) on female germinal cells is put forward. The spontaneous in vitro maturation of adult mouse oocytes is significantly inhibited when mouse AFP replaces albumin in culture medium. Furthermore, the very unusual degenerative appearance of the cells subjected to AFP seems to indicate that this meiotic inhibition is linked to a premature degeneration of the oocytes rather than to a blockage of the cells at an earlier stage of maturation. Accordingly AFP, perhaps through its ligands, may play a role in reducing the number of gonocytes during fetal and immediate post-natal life rather than in stopping oocyte meiosis at the diplotene stage.

  3. Mitofusin-2 is required for mouse oocyte meiotic maturation

    PubMed Central

    Zhang, Jing-Hua; Zhang, Teng; Gao, Si-Hua; Wang, Ke; Yang, Xiu-Yan; Mo, Fang-Fang; Na Yu; An, Tian; Li, Yu-Feng; Hu, Ji-Wei; Jiang, Guang-Jian

    2016-01-01

    Mitofusin-2 (Mfn2) is essential for embryonic development, anti-apoptotic events, protection against free radical-induced lesions, and mitochondrial fusion in many cells. However, little is known about its mechanism and function during oocyte maturation. In this study, we found that Mfn2 was expressed in the cytoplasm during different stages of mouse oocyte maturation. Mfn2 was mainly associated with α-tubulin during oocyte maturation. Knockdown of Mfn2 by specific siRNA injection into oocytes caused the mitochondrial morphology and quantity to change, resulting in severely defective spindles and misaligned chromosomes. This led to metaphase I arrest and the failure of first polar body extrusion. Furthermore, Mfn2 depletion from GV stage oocytes caused the redistribution of p38 MAPK in oocyte cytoplasm. These findings provide insights into potential mechanisms of Mfn2-mediated cellular alterations, which may have significant implications for oocyte maturation. PMID:27485634

  4. Age-Associated Lipidome Changes in Metaphase II Mouse Oocytes.

    PubMed

    Mok, Hyuck Jun; Shin, Hyejin; Lee, Jae Won; Lee, Geun-Kyung; Suh, Chang Suk; Kim, Kwang Pyo; Lim, Hyunjung Jade

    2016-01-01

    The quality of mammalian oocytes declines with age, which negatively affects fertilization and developmental potential. The aging process often accompanies damages to macromolecules such as proteins, DNA, and lipids. To investigate if aged oocytes display an altered lipidome compared to young oocytes, we performed a global lipidomic analysis between oocytes from 4-week-old and 42 to 50-week-old mice. Increased oxidative stress is often considered as one of the main causes of cellular aging. Thus, we set up a group of 4-week-old oocytes treated with hydrogen peroxide (H2O2), a commonly used oxidative stressor, to compare if similar lipid species are altered between aged and oxidative-stressed oocytes. Between young and aged oocytes, we identified 26 decreased and 6 increased lipids in aged oocytes; and between young and H2O2-treated oocytes, we identified 35 decreased and 26 increased lipids in H2O2-treated oocytes. The decreased lipid species in these two comparisons were overlapped, whereas the increased lipid species were distinct. Multiple phospholipid classes, phosphatidic acid (PA), phosphatidylinositol (PI), phosphatidylserine (PS), and lysophosphatidylserine (LPS) significantly decreased both in H2O2-treated and aged oocytes, suggesting that the integrity of plasma membrane is similarly affected under these conditions. In contrast, a dramatic increase in diacylglycerol (DG) was only noted in H2O2-treated oocytes, indicating that the acute effect of H2O2-caused oxidative stress is distinct from aging-associated lipidome alteration. In H2O2-treated oocytes, the expression of lysophosphatidylcholine acyltransferase 1 increased along with increases in phosphatidylcholine. Overall, our data reveal that several classes of phospholipids are affected in aged oocytes, suggesting that the integrity of plasma membrane is associated with maintaining fertilization and developmental potential of mouse oocytes.

  5. Age-Associated Lipidome Changes in Metaphase II Mouse Oocytes

    PubMed Central

    Lee, Jae Won; Lee, Geun-Kyung; Suh, Chang Suk; Kim, Kwang Pyo; Lim, Hyunjung Jade

    2016-01-01

    The quality of mammalian oocytes declines with age, which negatively affects fertilization and developmental potential. The aging process often accompanies damages to macromolecules such as proteins, DNA, and lipids. To investigate if aged oocytes display an altered lipidome compared to young oocytes, we performed a global lipidomic analysis between oocytes from 4-week-old and 42 to 50-week-old mice. Increased oxidative stress is often considered as one of the main causes of cellular aging. Thus, we set up a group of 4-week-old oocytes treated with hydrogen peroxide (H2O2), a commonly used oxidative stressor, to compare if similar lipid species are altered between aged and oxidative-stressed oocytes. Between young and aged oocytes, we identified 26 decreased and 6 increased lipids in aged oocytes; and between young and H2O2-treated oocytes, we identified 35 decreased and 26 increased lipids in H2O2-treated oocytes. The decreased lipid species in these two comparisons were overlapped, whereas the increased lipid species were distinct. Multiple phospholipid classes, phosphatidic acid (PA), phosphatidylinositol (PI), phosphatidylserine (PS), and lysophosphatidylserine (LPS) significantly decreased both in H2O2-treated and aged oocytes, suggesting that the integrity of plasma membrane is similarly affected under these conditions. In contrast, a dramatic increase in diacylglycerol (DG) was only noted in H2O2-treated oocytes, indicating that the acute effect of H2O2-caused oxidative stress is distinct from aging-associated lipidome alteration. In H2O2-treated oocytes, the expression of lysophosphatidylcholine acyltransferase 1 increased along with increases in phosphatidylcholine. Overall, our data reveal that several classes of phospholipids are affected in aged oocytes, suggesting that the integrity of plasma membrane is associated with maintaining fertilization and developmental potential of mouse oocytes. PMID:26881843

  6. Tristetraprolin functions in cytoskeletal organization during mouse oocyte maturation

    PubMed Central

    Liu, Xiaohui; Li, Xiaoyan; Ma, Rujun; Xiong, Bo; Sun, Shao-Chen; Liu, Honglin; Gu, Ling

    2016-01-01

    Tristetraprolin (TTP), a member of TIS11 family containing CCCH tandem zinc finger, is one of the best characterized RNA-binding proteins. However, to date, the role of TTP in mammalian oocytes remains completely unknown. In the present study, we report the altered maturational progression and cytokinesis, upon specific knockdown of TTP in mouse oocytes. Furthermore, by confocal scanning, we observe the failure to form cortical actin cap during meiosis of TTP-depleted oocytes. Loss of TTP in oocytes also results in disruption of meiotic spindle morphology and chromosome alignment. In support of these findings, incidence of aneuploidy is accordingly increased when TTP is abated in oocytes. Our results suggest that TTP as a novel cytoskeletal regulator is required for spindle morphology/chromosome alignment and actin polymerization in oocytes. PMID:27458159

  7. PTK2b function during fertilization of the mouse oocyte

    SciTech Connect

    Luo, Jinping; McGinnis, Lynda K.; Carlton, Carol; Beggs, Hilary E.; Kinsey, William H.

    2014-08-01

    Highlights: • PTK2b is expressed in oocytes and is activated following fertilization. • PTK2b suppression in oocytes prevents fertilization, but not parthenogenetic activation. • PTK2b suppression prevents the oocyte from fusing with or incorporating bound sperm. • PTK2b suppressed oocytes that fail to fertilize do not exhibit calcium oscillations. - Abstract: Fertilization triggers rapid changes in intracellular free calcium that serve to activate multiple signaling events critical to the initiation of successful development. Among the pathways downstream of the fertilization-induced calcium transient is the calcium-calmodulin dependent protein tyrosine kinase PTK2b or PYK2 kinase. PTK2b plays an important role in fertilization of the zebrafish oocyte and the objective of the present study was to establish whether PTK2b also functions in mammalian fertilization. PTK2b was activated during the first few hours after fertilization of the mouse oocyte during the period when anaphase resumption was underway and prior to the pronuclear stage. Suppression of PTK2b kinase activity in oocytes blocked sperm incorporation and egg activation although sperm-oocyte binding was not affected. Oocytes that failed to incorporate sperm after inhibitor treatment showed no evidence of a calcium transient and no evidence of anaphase resumption suggesting that egg activation did not occur. The results indicate that PTK2b functions during the sperm-egg fusion process or during the physical incorporation of sperm into the egg cytoplasm and is therefore critical for successful development.

  8. DNA damage response during mouse oocyte maturation

    PubMed Central

    Mayer, Alexandra; Baran, Vladimir; Sakakibara, Yogo; Brzakova, Adela; Ferencova, Ivana; Motlik, Jan; Kitajima, Tomoya S.; Schultz, Richard M.; Solc, Petr

    2016-01-01

    ABSTRACT Because low levels of DNA double strand breaks (DSBs) appear not to activate the ATM-mediated prophase I checkpoint in full-grown oocytes, there may exist mechanisms to protect chromosome integrity during meiotic maturation. Using live imaging we demonstrate that low levels of DSBs induced by the radiomimetic drug Neocarzinostatin (NCS) increase the incidence of chromosome fragments and lagging chromosomes but do not lead to APC/C activation and anaphase onset delay. The number of DSBs, represented by γH2AX foci, significantly decreases between prophase I and metaphase II in both control and NCS-treated oocytes. Transient treatment with NCS increases >2-fold the number of DSBs in prophase I oocytes, but less than 30% of these oocytes enter anaphase with segregation errors. MRE11, but not ATM, is essential to detect DSBs in prophase I and is involved in H2AX phosphorylation during metaphase I. Inhibiting MRE11 by mirin during meiotic maturation results in anaphase bridges and also increases the number of γH2AX foci in metaphase II.  Compromised DNA integrity in mirin-treated oocytes indicates a role for MRE11 in chromosome integrity during meiotic maturation. PMID:26745237

  9. [Effect of alpha-fetoprotein on isolated mouse oocytes].

    PubMed

    Lambert, J C; Vallette, G; Seralini, G E; Vranckx, R; Nunez, E; Stora, C

    1986-01-01

    Data are presented which indicate a possible action of alpha-fetoprotein (AFP) on female germinal cells. The in vitro maturation of mature mice oocytes was significantly inhibited when mouse AFP replaced albumin in the culture medium. In addition, the degenerative aspect of oocytes cultured with AFP seemed to indicate that this meïotic inhibition was caused by a premature degeneration of oocytes rather than by a blockage at a specific stage of maturation. Thus AFP, perhaps through its ligands, may play a role in the reduction of germinal cells during fetal and immediate post-natal life rather than in the arrest of meïosis at the diplotene stage.

  10. PTK2b function during fertilization of the mouse oocyte.

    PubMed

    Luo, Jinping; McGinnis, Lynda K; Carlton, Carol; Beggs, Hilary E; Kinsey, William H

    2014-08-01

    Fertilization triggers rapid changes in intracellular free calcium that serve to activate multiple signaling events critical to the initiation of successful development. Among the pathways downstream of the fertilization-induced calcium transient is the calcium-calmodulin dependent protein tyrosine kinase PTK2b or PYK2 kinase. PTK2b plays an important role in fertilization of the zebrafish oocyte and the objective of the present study was to establish whether PTK2b also functions in mammalian fertilization. PTK2b was activated during the first few hours after fertilization of the mouse oocyte during the period when anaphase resumption was underway and prior to the pronuclear stage. Suppression of PTK2b kinase activity in oocytes blocked sperm incorporation and egg activation although sperm-oocyte binding was not affected. Oocytes that failed to incorporate sperm after inhibitor treatment showed no evidence of a calcium transient and no evidence of anaphase resumption suggesting that egg activation did not occur. The results indicate that PTK2b functions during the sperm-egg fusion process or during the physical incorporation of sperm into the egg cytoplasm and is therefore critical for successful development.

  11. Size-specific follicle selection improves mouse oocyte reproductive outcomes

    PubMed Central

    Xiao, Shuo; Duncan, Francesca E.; Bai, Lu; Nguyen, Catherine T.; Shea, Lonnie D.; Woodruff, Teresa K.

    2015-01-01

    Encapsulated in vitro follicle growth (eIVFG) has great potential to provide an additional fertility preservation option for young women and girls with cancer or other reproductive health threatening diseases. Currently, follicles are cultured for a defined period of time and analyzed as a cohort. However, follicle growth is not synchronous, and culturing follicles for insufficient or excessive times can result in compromised gamete quality. Our objective is to determine whether the selection of follicles based on size, rather than absolute culture time, better predict follicle maturity and oocyte quality. Multilayer secondary mouse follicles were isolated and encapsulated in 0.25% alginate. Follicles were cultured individually either for defined time periods or up to specific follicle diameter ranges, at which point several reproductive endpoints were analyzed. The metaphase II (MII) percentage after oocyte maturation on day 6 was the highest (85%) when follicles were cultured for specific days. However, if follicles were cultured to a terminal diameter of 300–350 μm irrespective of absolute time in culture, 93% of the oocytes reached MII. More than 90% of MII oocytes matured from follicles with diameters of 300–350 μm showed normal spindle morphology and chromosome alignment, 85% of oocytes showed 2 pronuclei after in vitro fertilization (IVF), 81% developed into the 2-cell embryo stage, and 38% developed to the blastocyst stage, all significantly higher than the percentages in the other follicle size groups. Our study demonstrates that size-specific follicle selection can be used as a non-invasive marker to identify high quality oocytes and improve reproductive outcomes during eIVFG. PMID:26116002

  12. Vitrification, in vitro fertilization, and development of Atg7 deficient mouse oocytes

    PubMed Central

    Bang, Soyoung; Lee, Geun-Kyung; Shin, Hyejin; Suh, Chang Suk

    2016-01-01

    Objective Autophagy contributes to the clearance and recycling of macromolecules and organelles in response to stress. We previously reported that vitrified mouse oocytes show acute increases in autophagy during warming. Herein, we investigate the potential role of Atg7 in oocyte vitrification by using an oocyte-specific deletion model of the Atg7 gene, a crucial upstream gene in the autophagic pathway. Methods Oocyte-specific Atg7 deficient mice were generated by crossing Atg7 floxed mice and Zp3-Cre transgenic mice. The oocytes were vitrified-warmed and then subjected to in vitro fertilization and development. The rates of survival, fertilization, and development were assessed in the Atg7 deficient oocytes in comparison with the wildtype oocytes. Light chain 3 (LC3) immunofluorescence staining was performed to determine whether this method effectively evaluates the autophagy status of oocytes. Results The survival rate of vitrified-warmed Atg7f/f;Zp3-Cre (Atg7d/d) metaphase II (MII) oocytes was not significantly different from that of the wildtype (Atg7f/f) oocytes. Fertilization and development in the Atg7d/d oocytes were significantly lower than the Atg7f/f oocytes, comparable to the Atg5d/d oocytes previously described. Notably, the developmental rate improved slightly in vitrified-warmed Atg7d/d MII oocytes when compared to fresh Atg7d/d oocytes. LC3 immunofluorescence staining showed that this method can be reliably used to assess autophagic activation in oocytes. Conclusion We confirmed that the LC3-positive signal is nearly absent in Atg7d/d oocytes. While autophagy is induced during the warming process after vitrification of MII oocytes, the Atg7 gene is not essential for survival of vitrified-warmed oocytes. Thus, induction of autophagy during warming of vitrified MII oocytes seems to be a natural response to manage cold or other cellular stresses. PMID:27104152

  13. Time-Lapse Dynamics of the Mouse Oocyte Chromatin Organisation during Meiotic Resumption

    PubMed Central

    Redi, Carlo Alberto; Zuccotti, Maurizio

    2014-01-01

    In the mammalian oocyte, distinct patterns of centromeres and pericentromeric heterochromatin localisation correlate with the gamete's developmental competence. Mouse antral oocytes display two main types of chromatin organisation: SN oocytes, with a ring of Hoechst-positive chromatin surrounding the nucleolus, and NSN oocytes lacking this ring. When matured to MII and fertilised, only SN oocytes develop beyond the 2-cell, and reach full term. To give detailed information on the dynamics of the SN or NSN chromatin during meiosis resumption, we performed a 9 hr time-lapse observation. The main significant differences recorded are: (1) reduction of the nuclear area only in SN oocytes; (2) ~17 min delay of GVBD in NSN oocytes; (3) chromatin condensation, after GVBD, in SN oocytes; (4) formation of 4-5 CHCs in SN oocytes; (5) increase of the perivitelline space, ~57 min later in NSN oocytes; (6) formation of a rosette-like disposition of CHCs, ~84 min later in SN oocytes; (7) appearance of the MI plate ~40 min later in NSN oocytes. Overall, we described a pathway of transition from the GV to the MII stage that is punctuated of discrete recordable events showing their specificity and occurring with different time kinetics in the two types of oocytes. PMID:24864231

  14. Sensitivity of mouse oocytes to nicotine-induced perturbations during oocyte meiotic maturation and aneuploidy in vivo and in vitro.

    PubMed

    Mailhes, J B; Young, D; Caldito, G; London, S N

    2000-03-01

    Oocyte meiosis is sensitive to endogenous and exogenous perturbations that upset the temporal sequence of biochemical reactions during oocyte maturation (OM) and predispose oocytes to aneuploidy. Nicotine is an alkaloid that has been reported to disrupt the rate of OM, reduce ovulation and fertilization rates, and increase diploidy. The objective of this study was to test the hypothesis that nicotine perturbs the rate of OM and induces aneuploidy in mouse oocytes in vivo and in vitro. Female mice were given 7.5 IU pregnant mare's serum and either 0, 5.0, 7.5, or 10 mg/kg nicotine in vivo at -3, 0, and +3 h relative to a 5 IU injection of HCG. Oocytes were also cultured in vitro in the presence of 0, 1.0, 5.0, or 10.0 mmol/l nicotine. In vivo, significant (P < 0.05) differences in the proportions of oocytes with premature centromere separation and premature anaphase were found at 10.0 mg/kg nicotine suggesting that the rate of OM was advanced. Also, at this dose the proportion of ovulated oocytes was reduced by approximately 50% relative to controls. In vitro, only non-significant differences were found among the parameters measured. Although nicotine reduced the ovulation rate and perturbed the rate of OM in vivo, these data show that the rate of aneuploidy was not significantly elevated.

  15. Differing roles of pyruvate dehydrogenase kinases during mouse oocyte maturation

    PubMed Central

    Hou, Xiaojing; Zhang, Liang; Han, Longsen; Ge, Juan; Ma, Rujun; Zhang, Xuesen; Moley, Kelle; Schedl, Tim; Wang, Qiang

    2015-01-01

    ABSTRACT Pyruvate dehydrogenase kinases (PDKs) modulate energy homeostasis in multiple tissues and cell types, under various nutrient conditions, through phosphorylation of the α subunit (PDHE1α, also known as PDHA1) of the pyruvate dehydrogenase (PDH) complex. However, the roles of PDKs in meiotic maturation are currently unknown. Here, by undertaking knockdown and overexpression analysis of PDK paralogs (PDK1–PDK4) in mouse oocytes, we established the site-specificity of PDKs towards the phosphorylation of three serine residues (Ser232, Ser293 and Ser300) on PDHE1α. We found that PDK3-mediated phosphorylation of Ser293-PDHE1α results in disruption of meiotic spindle morphology and chromosome alignment and decreased total ATP levels, probably through inhibition of PDH activity. Unexpectedly, we discovered that PDK1 and PDK2 promote meiotic maturation, as their knockdown disturbs the assembly of the meiotic apparatus, without significantly altering ATP content. Moreover, phosphorylation of Ser232-PDHE1α was demonstrated to mediate PDK1 and PDK2 action in meiotic maturation, possibly through a mechanism that is distinct from PDH inactivation. These findings reveal that there are divergent roles of PDKs during oocyte maturation and indicate a new mechanism controlling meiotic structure. PMID:25991547

  16. Efficient Gene Knockdown in Mouse Oocytes through Peptide Nanoparticle-Mediated SiRNA Transfection

    PubMed Central

    Jin, Zhen; Li, Ruichao; Zhou, Chunxiang; Shi, Liya; Zhang, Xiaolan; Yang, Zhixia; Zhang, Dong

    2016-01-01

    The use of mouse oocytes as a model for studying female meiosis is very important in reproductive medicine. Gene knockdown by specific small interfering RNA (siRNA) is usually the first step in the study of the function of a target gene in mouse oocytes during in vitro maturation. Traditionally, the only way to introduce siRNA into mouse oocytes is through microinjection, which is certainly less efficient and strenuous than siRNA transfection in somatic cells. Recently, in research using somatic cells, peptide nanoparticle-mediated siRNA transfection has been gaining popularity over liposome nanoparticle-mediated methods because of its high efficiency, low toxicity, good stability, and strong serum compatibility. However, no researchers have yet tried transfecting siRNA into mouse oocytes because of the existence of the protective zona pellucida surrounding the oocyte membrane (vitelline membrane). We therefore tested whether peptide nanoparticles can introduce siRNA into mouse oocytes. In the present study, we showed for the first time that our optimized program can efficiently knock down a target gene with high specificity. Furthermore, we achieved the expected meiotic phenotypes after we knocked down a test unknown target gene TRIM75. We propose that peptide nanoparticles may be superior for preliminary functional studies of unknown genes in mouse oocytes. PMID:26974323

  17. Efficient Gene Knockdown in Mouse Oocytes through Peptide Nanoparticle-Mediated SiRNA Transfection.

    PubMed

    Jin, Zhen; Li, Ruichao; Zhou, Chunxiang; Shi, Liya; Zhang, Xiaolan; Yang, Zhixia; Zhang, Dong

    2016-01-01

    The use of mouse oocytes as a model for studying female meiosis is very important in reproductive medicine. Gene knockdown by specific small interfering RNA (siRNA) is usually the first step in the study of the function of a target gene in mouse oocytes during in vitro maturation. Traditionally, the only way to introduce siRNA into mouse oocytes is through microinjection, which is certainly less efficient and strenuous than siRNA transfection in somatic cells. Recently, in research using somatic cells, peptide nanoparticle-mediated siRNA transfection has been gaining popularity over liposome nanoparticle-mediated methods because of its high efficiency, low toxicity, good stability, and strong serum compatibility. However, no researchers have yet tried transfecting siRNA into mouse oocytes because of the existence of the protective zona pellucida surrounding the oocyte membrane (vitelline membrane). We therefore tested whether peptide nanoparticles can introduce siRNA into mouse oocytes. In the present study, we showed for the first time that our optimized program can efficiently knock down a target gene with high specificity. Furthermore, we achieved the expected meiotic phenotypes after we knocked down a test unknown target gene TRIM75. We propose that peptide nanoparticles may be superior for preliminary functional studies of unknown genes in mouse oocytes.

  18. Mouse Oocytes Acquire Mechanisms that Permit Independent Cell Volume Regulation at the End of Oogenesis.

    PubMed

    Richard, Samantha; Tartia, Alina P; Boison, Detlev; Baltz, Jay M

    2016-09-02

    Mouse embryos employ a unique mechanism of cell volume regulation in which glycine is imported via the GLYT1 transporter to regulate intracellular osmotic pressure. Independent cell volume regulation normally becomes active in the oocyte after ovulation is triggered. This involves two steps: the first is the release of the strong adhesion between the oocyte and zona pellucida (ZP) while the second is the activation of GLYT1. In fully-grown oocytes, release of adhesion and GLYT1 activation also occur spontaneously in oocytes removed from the follicle. It is unknown, however, whether the capacity to release oocyte-ZP adhesion or activate GLYT1 first arises in the oocyte after ovulation is triggered or instead growing oocytes already possess these capabilities but they are suppressed in the follicle. Here, we assessed when during oogenesis oocyte-ZP adhesion can be released and when GLYT1 can be activated, with adhesion assessed by an osmotic assay and GLYT1 activity determined by [(3) H]-glycine uptake. Oocyte-ZP adhesion could not be released by growing oocytes until they were nearly fully grown. Similarly, the amount of GLYT1 activity that can be elicited in oocytes increased sharply at the end of oogenesis. The SLC6A9 protein that is responsible for GLYT1 activity and Slc6a9 transcripts are present in growing oocytes and increased over the course of oogenesis. Furthermore, SLC6A9 becomes localized to the oocyte plasma membrane as the oocyte grows. Thus, oocytes acquire the ability to regulate their cell volume by releasing adhesion to the ZP and activating GLYT1 as they approach the end of oogenesis. This article is protected by copyright. All rights reserved.

  19. L-proline: a highly effective cryoprotectant for mouse oocyte vitrification

    PubMed Central

    Zhang, Lu; Xue, Xu; Yan, Jie; Yan, Li-Ying; Jin, Xiao-Hu; Zhu, Xiao-Hui; He, Zhi-Zhu; Liu, Jing; Li, Rong; Qiao, Jie

    2016-01-01

    Recent studies have shown that L-proline is a natural osmoprotectant and an antioxidant to protect cells from injuries such as that caused by freezing and thawing in many species including plant, ram sperm and human endothelial cells. Nevertheless, this nontoxic cryoprotectant has not yet been applied to mammalian oocyte vitrification. In this study we evaluated the efficiency and safety of the new cryoprotectant in oocyte vitrification. The results indicated that L-proline improves the survival rate of vitrified oocytes, protects mitochondrial functions and could be applied as a new cryoprotectant in mouse oocyte vitrification. PMID:27412080

  20. Effect of Acrylamide on Oocyte Nuclear Maturation and Cumulus Cells Apoptosis in Mouse In Vitro

    PubMed Central

    Liu, Shuzhen; Jiang, Ligang; Zhong, Tao; Kong, Shuhui; Zheng, Rongbin; Kong, Fengyun; Zhang, Cong; Zhang, Lei; An, Liguo

    2015-01-01

    Acrylamide (ACR) is a chemical compound with severe neurotoxicity, genotoxicity, carcinogenicity and reproductive toxicity. Recent studies showed that ACR impairs the function of reproductive organs, e.g., epididymis and testes. In vitro maturation of mouse oocyte is a sensitive assay to identify potential chemical hazard to female fertility. The aim of this study was to evaluate the adverse effects of ACR on the nuclear maturation and cumulus cells apoptosis of mouse oocytes in vitro. Cumulus–oocyte complexes were incubated in a maturation medium containing 0, 5, 10 and 20 μM of ACR. Chromosome alignment and spindle morphology of oocytes was determined by immunofluorescence and confocal microscopy. Our results showed that oocytes exposed to different doses of ACR in vitro were associated with a significant decrease of oocyte maturation, significant increase of chromosome misalignment rate, occurrence of abnormal spindle configurations, and the inhibition of oocyte parthenogenetic activation. Furthermore, apoptosis of cumulus cells was determined by TUNEL and CASPASE-3 assay. Results showed that apoptosis in cumulus cells was enhanced and the expression of CASPASE-3 was increased after cumulus–oocyte complexes were exposed to ACR. Therefore, ACR may affect the nuclear maturation of oocytes via the apoptosis of cumulus cells in vitro. PMID:26275143

  1. Effect of Acrylamide on Oocyte Nuclear Maturation and Cumulus Cells Apoptosis in Mouse In Vitro.

    PubMed

    Liu, Shuzhen; Jiang, Ligang; Zhong, Tao; Kong, Shuhui; Zheng, Rongbin; Kong, Fengyun; Zhang, Cong; Zhang, Lei; An, Liguo

    2015-01-01

    Acrylamide (ACR) is a chemical compound with severe neurotoxicity, genotoxicity, carcinogenicity and reproductive toxicity. Recent studies showed that ACR impairs the function of reproductive organs, e.g., epididymis and testes. In vitro maturation of mouse oocyte is a sensitive assay to identify potential chemical hazard to female fertility. The aim of this study was to evaluate the adverse effects of ACR on the nuclear maturation and cumulus cells apoptosis of mouse oocytes in vitro. Cumulus-oocyte complexes were incubated in a maturation medium containing 0, 5, 10 and 20 μM of ACR. Chromosome alignment and spindle morphology of oocytes was determined by immunofluorescence and confocal microscopy. Our results showed that oocytes exposed to different doses of ACR in vitro were associated with a significant decrease of oocyte maturation, significant increase of chromosome misalignment rate, occurrence of abnormal spindle configurations, and the inhibition of oocyte parthenogenetic activation. Furthermore, apoptosis of cumulus cells was determined by TUNEL and CASPASE-3 assay. Results showed that apoptosis in cumulus cells was enhanced and the expression of CASPASE-3 was increased after cumulus-oocyte complexes were exposed to ACR. Therefore, ACR may affect the nuclear maturation of oocytes via the apoptosis of cumulus cells in vitro.

  2. Effect of mycotoxin-containing diets on epigenetic modifications of mouse oocytes by fluorescence microscopy analysis.

    PubMed

    Zhu, Cheng-Cheng; Hou, Yan-Jun; Han, Jun; Liu, Hong-Lin; Cui, Xiang-Shun; Kim, Nam-Hyung; Sun, Shao-Chen

    2014-08-01

    Mycotoxins, such as aflatoxin (AF), fumonisin B1, zearalenone (ZEA), and deoxynivalenol (DON), are commonly found in many food commodities. Mycotoxins have been shown to increase DNA methylation levels in a human intestinal cell line. We previously showed that the developmental competence of oocytes was affected in mice that had been fed a mycotoxin-containing diet. In this study, we explored possible mechanisms of low mouse oocyte developmental competence after mycotoxin treatment in an epigenetic modification perspective. Mycotoxin-contaminated maize (DON at 3,875 μg/kg, ZEA at 1,897 μg/kg, and AF at 806 μg/kg) was included in diets at three different doses (mass percentage: 0, 15, and 30%) and fed to mice for 4 weeks. The fluorescence intensity analysis showed that the general DNA methylation levels increased in oocytes from high dose mycotoxin-fed mice. Mouse oocyte histone methylation was also altered. H3K9me3 and H4K20me3 level increased in oocytes from mycotoxin-fed mice, whereas H3K27me3 and H4K20me2 level decreased in oocytes from mycotoxin-fed mice. Thus, our results indicate that naturally occurring mycotoxins have effects on epigenetic modifications in mouse oocytes, which may be one of the reasons for reduced oocyte developmental competence.

  3. Biotin-deficient diet induces chromosome misalignment and spindle defects in mouse oocytes.

    PubMed

    Tsuji, Ai; Nakamura, Toshinobu; Shibata, Katsumi

    2015-01-01

    Increased abnormal oocytes due to meiotic chromosome misalignment and spindle defects lead to elevated rates of infertility, miscarriage, and trisomic conceptions. Here, we investigated the effect of biotin deficiency on oocyte quality. Three-week-old female ICR mice were fed a biotin-deficient or control diet (0, 0.004 g biotin/kg diet) for 21 days. On day 22, these mouse oocytes were analyzed by immunofluorescence. Due to biotin, undernutrition increased the frequency of abnormal oocytes (the biotin deficient vs. control: 40 vs. 16%). Next, the remaining mice in the biotin-deficient group were fed a control or biotin-deficient diet from day 22 to 42. Although biotin nutritional status in the recovery group was restored, the frequency of abnormal oocytes in the recovery group was still higher than that in the control group (48 vs. 18%). Our results indicate that steady, sufficient biotin intake is required for the production of high-quality oocytes in mice.

  4. Epsin2 promotes polarity establishment and meiotic division through activating Cdc42 in mouse oocyte

    PubMed Central

    Zhang, Jiaqi; Liu, Xiaohui; Ma, Rujun; Hou, Xiaojing; Ge, Juan; Wang, Qiang

    2016-01-01

    Epsins are a conserved family of endocytic adaptors essential for diverse biological events. However, its role in oocytes remains completely unknown. Here, we report that specific depletion of Epsin2 in mouse oocytes significantly disrupts meiotic progression. Confocal microscopy reveals that Epsin2 knockdown results in the failure of actin cap formation and polar body extrusion during meiosis, indicative of the importance of Epsin2 in polarity establishment and cytokinesis. In addition, spindle defects and chromosome misalignment are readily observed in oocytes depleted of Epsin2. Moreover, we find that Epsin2 knockdown markedly decreases the activity of Cdc42 in oocytes and importantly, that the dominant-positive mutant of Cdc42 (Cdc42Q61L) is capable of partially rescuing the deficient phenotypes of Epsin2-knockdown oocytes. Together, our data identify Epsin2 as a novel player in regulating oocyte maturation, and demonstrate that Epsin2 promotes polarity establishment and meiotic division via activating Cdc42. PMID:27463009

  5. Amino Acid Correction of Regulatory Volume Decrease Evoked by Hypotonic Stress in Mouse Oocytes In Vitro.

    PubMed

    Pogorelova, M A; Golichenkov, V A; Pogorelova, V N; Panait, A I; Smirnov, A A; Pogorelov, A G

    2015-05-01

    Regulatory volume decrease in response to hypotonic stress is typical of the oocytes and early mouse embryos. Changes in the kinetics of osmotic reaction can be used as a marker of the modulating effect of the incubation medium on transmembrane transport in embryonic cells. Quantitative laser scanning microtomography (QLSM) was used to measure oocyte volume. In this paper, it is shown that addition of 5 μM glycine, taurine, or GABA, as well as ATP to Dulbecco's medium abolished the regulatory volume decrease in mature mouse oocytes.

  6. Analysis of the Phospholipid Profile of Metaphase II Mouse Oocytes Undergoing Vitrification

    PubMed Central

    Bang, Soyoung; Mok, Hyuck Jun; Suh, Chang Suk; Kim, Kwang Pyo; Lim, Hyunjung Jade

    2014-01-01

    Oocyte freezing confers thermal and chemical stress upon the oolemma and various other intracellular structures due to the formation of ice crystals. The lipid profiles of oocytes and embryos are closely associated with both, the degrees of their membrane fluidity, as well as the degree of chilling and freezing injuries that may occur during cryopreservation. In spite of the importance of lipids in the process of cryopreservation, the phospholipid status in oocytes and embryos before and after freezing has not been investigated. In this study, we employed mass spectrometric analysis to examine if vitrification has an effect on the phospholipid profiles of mouse oocytes. Freshly prepared metaphase II mouse oocytes were vitrified using copper grids and stored in liquid nitrogen for 2 weeks. Fresh and vitrified-warmed oocytes were subjected to phospholipid extraction procedure. Mass spectrometric analyses revealed that multiple species of phospholipids are reduced in vitrified-warmed oocytes. LIFT analyses identified 31 underexpressed and 5 overexpressed phospholipids in vitrified mouse oocytes. The intensities of phosphatidylinositol (PI) {18∶2/16∶0} [M−H]− and phosphatidylglycerol (PG) {14∶0/18∶2} [M−H]− were decreased the most with fold changes of 30.5 and 19.1 in negative ion mode, respectively. Several sphingomyelins (SM) including SM {d38∶3} [M+H]+ and SM {d34∶0} [M+K]+ were decreased significantly in positive ion mode. Overall, the declining trend of multiple phospholipids demonstrates that vitrification has a marked effect on phospholipid profiles of oocytes. These results show that the identified phospholipids can be used as potential biomarkers of oocyte undergoing vitrification and will allow for the development of strategies to preserve phospholipids during oocyte cryopreservation. PMID:25033391

  7. A new approach for the oocyte genotoxicity assay: adaptation of comet assay on mouse cumulus-oocyte complexes.

    PubMed

    Greco, F; Perrin, J; Auffan, M; Tassistro, V; Orsière, T; Courbiere, B

    2015-07-01

    Conventional genotoxicity tests are technically difficult to apply to oocytes, and results obtained on somatic cells cannot be extrapolated to gametes. We have previously described a comet assay (original-CA) on denuded mouse oocytes, but, in vivo, oocytes are not isolated from their surrounding follicular cells. Our objective was to develop a comet assay on cumulus-oocyte complexes (COC-CA) for a more physiological approach to study the genotoxicity of environmental factors on oocytes. For COC-CA, whole COC were exposed directly to exogenous agents after ovulation and removal from oviducts. Three conditions were studied: a negative control group, and two positive control groups, one of which was exposed to hydrogen peroxide (H2O2) and the other group was incubated with cerium dioxide nanoparticles (CeO2 NPs). With both tests, DNA damage was significant in the presence of both H2O2 and CeO2 NPs compared with the negative control. COC-CA offers an interesting tool for assaying the genotoxicity of environmental agents towards germinal cells. Furthermore, COC-CA is less time-consuming and simplifies the protocol of the original-CA, because COC-CA is easier to perform without the washing-out procedure.

  8. Effects of melatonin on oocyte maturation in PCOS mouse model.

    PubMed

    Nikmard, Fatemeh; Hosseini, Elham; Bakhtiyari, Mehrdad; Ashrafi, Mahnaz; Amidi, Fardin; Aflatoonian, Reza

    2017-04-01

    The purpose of oocyte in vitro maturation is generation of mature oocytes that could support future development. Efforts have been made to enhance oocyte developmental competence by developing optimal culture conditions. The present study is conducted to determine melatonin effects on quality of polycystic ovarian syndrome (PCOS) oocytes when it has been added during in vitro maturation, and immature oocytes were cultured in defined conditioned medium with and without different melatonin concentrations. Melatonin could significantly improve nuclear maturation of PCOS oocytes (81.1% vs. 56.3%, P < 0.05 were achieved with 10(-6) mol/L concentration). Cleavage rate was significantly higher in 10(-5) mol/L concentration compared to untreated oocytes in PCOS (54% vs. 35%, respectively) and it was significantly higher with 10(-6) mol/L concentration in the control group, 55% versus 38%, compared to untreated oocytes. This study showed that melatonin has the potential to induce oocyte nuclear maturation and guarantee fertilization potential. © 2016 Japanese Society of Animal Science.

  9. G beta gamma signaling reduces intracellular cAMP to promote meiotic progression in mouse oocytes.

    PubMed

    Gill, Arvind; Hammes, Stephen R

    2007-02-01

    In nearly every vertebrate species, elevated intracellular cAMP maintains oocytes in prophase I of meiosis. Prior to ovulation, gonadotropins trigger various intra-ovarian processes, including the breakdown of gap junctions, the activation of EGF receptors, and the secretion of steroids. These events in turn decrease intracellular cAMP levels in select oocytes to allow meiotic progression, or maturation, to resume. Studies suggest that cAMP levels are kept elevated in resting oocytes by constitutive G protein signaling, and that the drop in intracellular cAMP that accompanies maturation may be due in part to attenuation of this inhibitory G protein-mediated signaling. Interestingly, one of these G protein regulators of meiotic arrest is the Galpha(s) protein, which stimulates adenylyl cyclase to raise intracellular cAMP in two important animal models of oocyte development: Xenopus leavis frogs and mice. In addition to G(alpha)(s), constitutive Gbetagamma activity similarly stimulates adenylyl cyclase to raise cAMP and prevent maturation in Xenopus oocytes; however, the role of Gbetagamma in regulating meiosis in mouse oocytes has not been examined. Here we show that Gbetagamma does not contribute to the maintenance of murine oocyte meiotic arrest. In fact, contrary to observations in frog oocytes, Gbetagamma signaling in mouse oocytes reduces cAMP and promotes oocyte maturation, suggesting that Gbetagamma might in fact play a positive role in promoting oocyte maturation. These observations emphasize that, while many general concepts and components of meiotic regulation are conserved from frogs to mice, specific differences exist that may lead to important insights regarding ovarian development in vertebrates.

  10. Follicle-stimulating hormone accelerates mouse oocyte development in vivo.

    PubMed

    Demeestere, Isabelle; Streiff, Agathe K; Suzuki, João; Al-Khabouri, Shaima; Mahrous, Enas; Tan, Seang Lin; Clarke, Hugh J

    2012-07-01

    During folliculogenesis, oocytes grow and acquire developmental competence in a mutually dependent relationship with their adjacent somatic cells. Follicle-stimulating hormone (FSH) plays an essential and well-established role in the differentiation of somatic follicular cells, but its function in the development of the oocyte has still not been elucidated. We report here that oocytes of Fshb(-/-) mice, which cannot produce FSH, grow at the same rate and reach the same size as those of wild-type mice. Consistent with this observation, the granulosa cells of Fshb(-/-) mice express the normal quantity of mRNA encoding Kit ligand, which has been implicated in oocyte growth. Oocytes of Fshb(-/-) mice also accumulate normal quantities of cyclin B1 and CDK1 proteins and mitochondrial DNA. Moreover, they acquire the ability to complete meiotic maturation in vitro and undergo transition from non-surrounded nucleolus to surrounded nucleolus. However, these events of late oocyte development are significantly delayed. Following in vitro maturation and fertilization, only a small number of embryos derived from oocytes of Fshb(-/-) mice reach the blastocyst stage. Administration of equine chorionic gonadotropin, which provides FSH activity, 48 h before in vitro maturation increases the number of blastocysts obtained subsequently. These results indicate that FSH is not absolutely required for oocyte development in vivo but that this process occurs more rapidly in its presence. We suggest that FSH may coordinate the development of the germline and somatic compartments of the follicle, ensuring that ovulation releases a developmentally competent egg.

  11. Effect of Warming Rate on the Survival of Vitrified Mouse Oocytes and on the Recrystallization of Intracellular Ice1

    PubMed Central

    Seki, Shinsuke; Mazur, Peter

    2008-01-01

    Successful cryopreservation demands there be little or no intracellular ice. One procedure is classical slow equilibrium freezing, and it has been successful in many cases. However, for some important cell types, including some mammalian oocytes, it has not. For the latter, there are increasing attempts to cryopreserve them by vitrification. However, even if intracellular ice formation (IIF) is prevented during cooling, it can still occur during the warming of a vitrified sample. Here, we examine two aspects of this occurrence in mouse oocytes. One took place in oocytes that were partly dehydrated by an initial hold for 12 min at −25°C. They were then cooled rapidly to −70°C and warmed slowly, or they were warmed rapidly to intermediate temperatures and held. These oocytes underwent no IIF during cooling but blackened from IIF during warming. The blackening rate increased about 5-fold for each five-degree rise in temperature. Upon thawing, they were dead. The second aspect involved oocytes that had been vitrified by cooling to −196°C while suspended in a concentrated solution of cryoprotectants and warmed at rates ranging from 140°C/min to 3300°C/min. Survivals after warming at 140°C/min and 250°C/min were low (<30%). Survivals after warming at ≥2200°C/min were high (80%). When warmed slowly, they were killed, apparently by the recrystallization of previously formed small internal ice crystals. The similarities and differences in the consequences of the two types of freezing are discussed. PMID:18562703

  12. Mancozeb adversely affects meiotic spindle organization and fertilization in mouse oocytes.

    PubMed

    Rossi, Gianna; Palmerini, Maria Grazia; Macchiarelli, Guido; Buccione, Roberto; Cecconi, Sandra

    2006-07-01

    In this study the effects of mancozeb, a widely used ethylenebisdithiocarbamate fungicide, on mouse oocyte meiotic maturation and fertilization were analyzed. Oocyte cumulus cell-complexes were matured in vitro with or without increasing concentrations of the fungicide (from 0.001 to 1 microg/ml) that, due to its different stability in organic solvents and in water, was resuspended either in dimethyl sulfoxide or in culture medium. Although, about 95% of oocytes reached the metaphase II stage; mancozeb-exposed oocytes showed a dose-dependent increase of alterations in spindle morphology, and this negative effect was more evident when the fungicide was resuspended in culture medium. Under the latter culture condition, oocytes matured in the presence of 0.1 and 1 microg/ml mancozeb showed a significant reduction also in the formation of male and female pronuclei. These results indicate that mancozeb can adversely affect mammalian reproductive performance, likely by perturbing microtubular organization during meiotic maturation.

  13. In vitro maturation and in vitro fertilization of mouse oocytes and preimplantation embryo culture.

    PubMed

    Kidder, Benjamin L

    2014-01-01

    Epigenetic regulation of gene expression in the germline is important for reproductive success of mammals. Misregulation of genes whose expression is correlated with reproductive success may result in subfertility or infertility. To study epigenetic events that occur during oocyte maturation and preimplantation embryo development, it is important to generate large numbers of ovarian follicles and embryos. Oocyte maturation can be modeled using in vitro maturation (IVM), which is a system of maturing ovarian follicles in a culture dish. In addition, fertilization and early embryogenesis can be modeled using in vitro fertilization (IVF), which involves the fertilization of mature oocytes with capacitated sperm in a culture dish. Here, we describe protocols for in vitro maturation (IVM) and in vitro fertilization (IVF) of mouse oocytes and preimplantation embryo culture. These protocols are suitable for the study of oocyte and embryo biology and the production of embryonic mice.

  14. [Intensity loss of two-photon excitation fluorescence microscopy images of mouse oocyte chromosomes].

    PubMed

    Zhao, Feng-Ying; Wu, Hong-Xin; Chen, Die-Yan; Ma, Wan-Yun

    2014-07-01

    As an optical microscope with high resolution, two-photon excitation (TPE) fluorescence microscope is widely used in noninvasive 3D optical imaging of biological samples. Compared with confocal laser scanning microscope, TPE fluorescence microscope provides a deeper detecting depth. In spite of that, the image quality of sample always declines as the detecting depth increases when a noninvasive 3D optical imaging of thicker samples is performed. Mouse oocytes with a large diameter, which play an important role in clinical and biological fields, have obvious absorption and scattering effects. In the present paper, we performed compensation for two-photon fluorescence images of mouse oocyte chromosomes. Using volume as a parameter, the attenuation degree of these chromosomes was also studied. The result of our data suggested that there exists a severe axial intensity loss in two-photon microscopic images of mouse oocytes due to the absorption and scattering effects. It is necessary to make compensation for these images of mouse oocyte chromosomes obtained from two-photon microscopic system. It will be specially needed in studying the quantitative three-dimensional information of mouse oocytes.

  15. The Role of RING Box Protein 1 in Mouse Oocyte Meiotic Maturation

    PubMed Central

    Zhou, Lin; Yang, Ye; Zhang, Juanjuan; Guo, Xuejiang; Bi, Ye; Li, Xin; Zhang, Ping; Zhang, Junqiang; Lin, Min; Zhou, Zuomin; Shen, Rong; Guo, Xirong; Huo, Ran; Ling, Xiufeng; Sha, Jiahao

    2013-01-01

    RING box protein-1 (RBX1) is an essential component of Skp1-cullin-F-box protein (SCF) E3 ubiquitin ligase and participates in diverse cellular processes by targeting various substrates for degradation. However, the physiological function of RBX1 in mouse oocyte maturation remains unknown. Here, we examined the expression, localization and function of RBX1 during mouse oocyte meiotic maturation. Immunofluorescence analysis showed that RBX1 displayed dynamic distribution during the maturation process: it localized around and migrated along with the spindle and condensed chromosomes. Rbx1 knockdown with the appropriate siRNAs led to a decreased rate of first polar body extrusion and most oocytes were arrested at metaphase I. Moreover, downregulation of Rbx1 caused accumulation of Emi1, an inhibitor of the anaphase-promoting complex/cyclosome (APC/C), which is required for mouse meiotic maturation. In addition, we found apparently increased expression of the homologue disjunction-associated protein securin and cyclin B1, which are substrates of APC/C E3 ligase and need to be degraded for meiotic progression. These results indicate the essential role of the SCFβTrCP-EMI1-APC/C axis in mouse oocyte meiotic maturation. In conclusion, we provide evidence for the indispensable role of RBX1 in mouse oocyte meiotic maturation. PMID:23874827

  16. Nicotinamide: a class III HDACi delays in vitro aging of mouse oocytes.

    PubMed

    Lee, Ah Reum; Kishigami, Satoshi; Amano, Tomoko; Matsumoto, Kazuya; Wakayama, Teruhiko; Hosoi, Yoshihiko

    2013-01-01

    Postovulatory mammalian oocyte developmental potential decreases with aging in vivo and in vitro. Aging oocytes typically show cellular fragmentation and chromosome scattering with an abnormally shaped spindle over time. Previously, it was shown that histone acetylation in the mouse oocyte increased during aging and that treatment with trichostatin A (TSA), an inhibitor for class I and II histone deacetylases (HDACs), enhanced the acetylation, that is, aging. In this study, we examined the effect of nicotinamide (NAM), an inhibitor for class III HDACs, on in vitro aging of mouse oocytes as well as TSA. We found that treatment with NAM significantly inhibited cellular fragmentation, spindle elongation and astral microtubules up to 48 h of culture. Although presence of TSA partially inhibited cellular fragmentation and spindle elongation up to 36 h of culture, treatment with TSA induced chromosome scattering at 24 h of culture and more severe cellular fragmentation at 48 h of culture. Further, we found that α-tubulin, a nonhistone protein, increased acetylation during aging, suggesting that not only histone but nonhistone protein acetylation may also increase with oocyte aging. Thus, these data indicate that protein acetylation is abnormally regulated in aging oocytes, which are associated with a variety of aging phenotypes, and that class I/II and class III HDACs may play distinct roles in aging oocytes.

  17. Quantitative imaging of lipids in live mouse oocytes and early embryos using CARS microscopy

    PubMed Central

    Bradley, Josephine; Pope, Iestyn; Masia, Francesco; Sanusi, Randa; Langbein, Wolfgang; Borri, Paola

    2016-01-01

    Mammalian oocytes contain lipid droplets that are a store of fatty acids, whose metabolism plays a substantial role in pre-implantation development. Fluorescent staining has previously been used to image lipid droplets in mammalian oocytes and embryos, but this method is not quantitative and often incompatible with live cell imaging and subsequent development. Here we have applied chemically specific, label-free coherent anti-Stokes Raman scattering (CARS) microscopy to mouse oocytes and pre-implantation embryos. We show that CARS imaging can quantify the size, number and spatial distribution of lipid droplets in living mouse oocytes and embryos up to the blastocyst stage. Notably, it can be used in a way that does not compromise oocyte maturation or embryo development. We have also correlated CARS with two-photon fluorescence microscopy simultaneously acquired using fluorescent lipid probes on fixed samples, and found only a partial degree of correlation, depending on the lipid probe, clearly exemplifying the limitation of lipid labelling. In addition, we show that differences in the chemical composition of lipid droplets in living oocytes matured in media supplemented with different saturated and unsaturated fatty acids can be detected using CARS hyperspectral imaging. These results demonstrate that CARS microscopy provides a novel non-invasive method of quantifying lipid content, type and spatial distribution with sub-micron resolution in living mammalian oocytes and embryos. PMID:27151947

  18. Isolation and Characterization of Mouse Antral Oocytes Based on Nucleolar Chromatin Organization.

    PubMed

    Monti, Manuela; Redi, Carlo Alberto

    2016-01-07

    This protocol describes a simple and quick method to isolate and characterize mouse antral GV (Germinal Vesicle) oocytes as able (SN, Surrounded Nucleolus) or unable (NSN, Not Surrounded Nucleolus) to develop to the blastocyst stage after in vitro maturation (IVM) and in vitro fertilization (IVF). It makes use of Hoeschst33342 (or any other DNA intercalating dye) able to bind to the heterochromatin of the nucleolus showing a ring in the SN oocytes or not, like in the NSN oocytes. This represents the easiest and quickest way to sort both antral oocytes that can be eventually used for IVM or IVF procedures. Briefly, the protocol consists of the following steps: hormone injection to stimulate follicular growth; isolation of the oocytes at the GV stage from the antral compartment by puncturing the ovary with a sterile needle; preparation of thin glass pipettes for mouth pipetting of the oocytes; sorting of the oocytes with Hoechst33342 prepared at a supravital concentration; IVM, IVF or any other molecular/cellular analysis. Unfortunately there are still few evidences to sort SN and NSN oocytes using less invasive techniques. If and once they will be identified, they could be potentially applied to human assisted reproductive technologies, although with several aspects that should be modified. To date, this technique has potential implications to dramatically increase IVM and IVF successful procedures in both endangered and species with economic interest.

  19. Resveratrol protects mouse oocytes from methylglyoxal-induced oxidative damage.

    PubMed

    Liu, Yu; He, Xiao-Qin; Huang, Xin; Ding, Lu; Xu, Lin; Shen, Yu-Ting; Zhang, Fei; Zhu, Mao-Bi; Xu, Bai-Hui; Qi, Zhong-Quan; Wang, Hai-Long

    2013-01-01

    Methylglyoxal, a reactive dicarbonyl compound, is mainly formed from glycolysis. Methylglyoxal can lead to the dysfunction of mitochondria, the depletion of cellular anti-oxidation enzymes and the formation of advanced glycation ends. Previous studies showed that the accumulation of methylglyoxal and advanced glycation ends can impair the oocyte maturation and reduce the oocyte quality in aged and diabetic females. In this study, we showed that resveratrol, a kind of phytoalexin found in the skin of grapes, red wine and other botanical extracts, can alleviate the adverse effects caused by methylglyoxal, such as inhibition of oocyte maturation and disruption of spindle assembly. Besides, methylglyoxal-treated oocytes displayed more DNA double strands breaks and this can also be decreased by treatment of resveratrol. Further investigation of these processes revealed that methylglyoxal may affect the oocyte quality by resulting in excessive reactive oxygen species production, aberrant mitochondrial distribution and high level lipid peroxidation, and resveratrol can block these cytotoxic changes. Collectively, our results showed that resveratrol can protect the oocytes from methylglyoxal-induced cytotoxicity and this was mainly through the correction of the abnormity of cellular reactive oxygen species metabolism.

  20. Granulosa cell-oocyte interactions: the phosphorylation of specific proteins in mouse oocytes at the germinal vesicle stage is dependent upon the differentiative state of companion somatic cells

    SciTech Connect

    Cecconi, S.; Tatone, C.; Buccione, R.; Mangia, F.; Colonna, R. )

    1991-05-01

    The role of granulosa cells in the regulation of mouse ovarian oocyte metabolism was investigated. Fully grown antral oocytes, isolated from surrounding cumulus cells, were cultured on monolayers of preantral granulosa cells in the presence of dbcAMP to prevent the resumption of meiosis. Under these conditions metabolic cooperativity was established between the two cell types as early as 1 hr after seeding. Moreover, cocultured oocytes phosphorylated two polypeptides of 74 and 21 kDa which are normally phosphorylated in follicle-enclosed growing oocytes but not in cumulus cell-enclosed fully grown oocytes at the germinal vesicle stage. When cocultured oocytes were allowed to resume meiosis, the 74 and 21 kDa proteins were synthesized but no longer phosphorylated even though intercellular coupling between the two cell types was maintained during radiolabeling. It appears therefore: (a) that the different protein kinase activity of growing and fully grown germinal vesicle-stage mouse oocytes is related to the differentiative state of granulosa cells, and (b) that the regulation of oocyte protein phosphorylation activity by granulosa cells is dependent on the meiotic stage of the oocyte.

  1. The Impact of Myeloperoxidase and Activated Macrophages on Metaphase II Mouse Oocyte Quality

    PubMed Central

    Shaeib, Faten; Khan, Sana N.; Thakur, Mili; Kohan-Ghadr, Hamid-Reza; Drewlo, Sascha; Saed, Ghassan M.; Pennathur, Subramaniam; Abu-Soud, Husam M.

    2016-01-01

    Myeloperoxidase (MPO), an abundant heme-containing enzyme present in neutrophils, monocytes, and macrophages, is produced in high levels during inflammation, and associated with poor reproductive outcomes. MPO is known to generate hypochlorous acid (HOCl), a damaging reactive oxygen species (ROS) utilizing hydrogen peroxide (H2O2) and chloride (Cl-). Here we investigate the effect of activated immune cells and MPO on oocyte quality. Mouse metaphase II oocytes were divided into the following groups: 1) Incubation with a catalytic amount of MPO (40 nM) for different incubation periods in the presence of 100 mM Cl- with and without H2O2 and with and without melatonin (100 μM), at 37°C (n = 648/648 total number of oocytes in each group for oocytes with and without cumulus cells); 2) Co-cultured with activated mouse peritoneal macrophage and neutrophils cells (1.0 x 106 cells/ml) in the absence and presence of melatonin (200 μM), an MPO inhibitor/ROS scavenger, for different incubation periods in HTF media, at 37°C (n = 200/200); 3) Untreated oocytes incubated for 4 hrs as controls (n = 73/64). Oocytes were then fixed, stained and scored based on the microtubule morphology and chromosomal alignment. All treatments were found to negatively affect oocyte quality in a time dependent fashion as compared to controls. In all cases the presence of cumulus cells offered no protection; however significant protection was offered by melatonin. Similar results were obtained with oocytes treated with neutrophils. This work provides a direct link between MPO and decreased oocyte quality. Therefore, strategies to decrease MPO mediated inflammation may influence reproductive outcomes. PMID:26982351

  2. Acetyl CoA carboxylase inactivation and meiotic maturation in mouse oocytes.

    PubMed

    Valsangkar, Deepa S; Downs, Stephen M

    2015-09-01

    In mouse oocytes, meiotic induction by pharmacological activation of PRKA (adenosine monophosphate-activated protein kinase; formerly known as AMPK) or by hormones depends on stimulation of fatty acid oxidation (FAO). PRKA stimulates FAO by phosphorylating and inactivating acetyl CoA carboxylase (ACAC; formerly ACC), leading to decreased malonyl CoA levels and augmenting fatty-acid transport into mitochondria. We investigated a role for ACAC inactivation in meiotic resumption by testing the effect of two ACAC inhibitors, CP-640186 and Soraphen A, on mouse oocytes maintained in meiotic arrest in vitro. These inhibitors significantly stimulated the resumption of meiosis in arrested cumulus cell-enclosed oocytes, denuded oocytes, and follicle-enclosed oocytes. This stimulation was accompanied by an increase in FAO. Etomoxir, a malonyl CoA analogue, prevented meiotic resumption as well as the increase in FAO induced by ACAC inhibition. Citrate, an ACAC activator, and CBM-301106, an inhibitor of malonyl CoA decarboxylase, which converts malonyl CoA to acetyl CoA, suppressed both meiotic induction and FAO induced by follicle-stimulating hormone, presumably by maintaining elevated malonyl CoA levels. Mouse oocyte-cumulus cell complexes contain both isoforms of ACAC (ACACA and ACACB); when wild-type and Acacb(-/-) oocytes characteristics were compared, we found that these single-knockout oocytes showed a significantly higher FAO level and a reduced ability to maintain meiotic arrest, resulting in higher rates of germinal vesicle breakdown. Collectively, these data support the model that ACAC inactivation contributes to the maturation-promoting activity of PRKA through stimulation of FAO.

  3. Kif4 Is Essential for Mouse Oocyte Meiosis

    PubMed Central

    Camlin, Nicole J.; McLaughlin, Eileen A.; Holt, Janet E.

    2017-01-01

    Progression through the meiotic cell cycle must be strictly regulated in oocytes to generate viable embryos and offspring. During mitosis, the kinesin motor protein Kif4 is indispensable for chromosome condensation and separation, midzone formation and cytokinesis. Additionally, the bioactivity of Kif4 is dependent on phosphorylation via Aurora Kinase B and Cdk1, which regulate Kif4 function throughout mitosis. Here, we examine the role of Kif4 in mammalian oocyte meiosis. Kif4 localized in the cytoplasm throughout meiosis I and II, but was also observed to have a dynamic subcellular distribution, associating with both microtubules and kinetochores at different stages of development. Co-localization and proximity ligation assays revealed that the kinetochore proteins, CENP-C and Ndc80, are potential Kif4 interacting proteins. Functional analysis of Kif4 in oocytes via antisense knock-down demonstrated that this protein was not essential for meiosis I completion. However, Kif4 depleted oocytes displayed enlarged polar bodies and abnormal metaphase II spindles, indicating an essential role for this protein for correct asymmetric cell division in meiosis I. Further investigation of the phosphoregulation of meiotic Kif4 revealed that Aurora Kinase and Cdk activity is critical for Kif4 kinetochore localization and interaction with Ndc80 and CENP-C. Finally, Kif4 protein but not gene expression was found to be upregulated with age, suggesting a role for this protein in the decline of oocyte quality with age. PMID:28125646

  4. The cohesion stabilizer sororin favors DNA repair and chromosome segregation during mouse oocyte meiosis.

    PubMed

    Huang, Chun-Jie; Yuan, Yi-Feng; Wu, Di; Khan, Faheem Ahmed; Jiao, Xiao-Fei; Huo, Li-Jun

    2017-03-01

    Maintenance and timely termination of cohesion on chromosomes ensures accurate chromosome segregation to guard against aneuploidy in mammalian oocytes and subsequent chromosomally abnormal pregnancies. Sororin, a cohesion stabilizer whose relevance in antagonizing the anti-cohesive property of Wings-apart like protein (Wapl), has been characterized in mitosis; however, the role of Sororin remains unclear during mammalian oocyte meiosis. Here, we show that Sororin is required for DNA damage repair and cohesion maintenance on chromosomes, and consequently, for mouse oocyte meiotic program. Sororin is constantly expressed throughout meiosis and accumulates on chromatins at germinal vesicle (GV) stage/G2 phase. It localizes onto centromeres from germinal vesicle breakdown (GVBD) to metaphase II stage. Inactivation of Sororin compromises the GVBD and first polar body extrusion (PBE). Furthermore, Sororin inactivation induces DNA damage indicated by positive γH2AX foci in GV oocytes and precocious chromatin segregation in MII oocytes. Finally, our data indicate that PlK1 and MPF dissociate Sororin from chromosome arms without affecting its centromeric localization. Our results define Sororin as a determinant during mouse oocyte meiotic maturation by favoring DNA damage repair and chromosome separation, and thereby, maintaining the genome stability and generating haploid gametes.

  5. Hazardous Apoptotic Effects of 2-Bromopropane on Maturation of Mouse Oocytes, Fertilization, and Fetal Development

    PubMed Central

    Chan, Wen-Hsiung

    2010-01-01

    2-Bromopropane (2-BP) is used as an alternative to ozone-depleting cleaning solvents. Previously, we reported that 2-BP has cytotoxic effects on mouse blastocysts and is associated with defects in subsequent development. Here, we further investigate the effects of 2-BP on oocyte maturation and subsequent pre- and post-implantation development, both in vitro and in vivo. Notably, 2-BP induced a significant reduction in the rates of oocyte maturation, fertilization, and in vitro embryonic development. Treatment of oocytes with 2-BP during in vitro maturation (IVM) resulted in increased resorption of postimplantation embryos and decreased fetal weights. Experiments with a mouse model disclosed that consumption of drinking water containing 20 μM 2-BP led to decreased oocyte maturation in vivo and fertilization in vitro, as well as impairment of early embryonic development. Interestingly, pretreatment with a caspase-3-specific inhibitor effectively prevented 2-BP-triggered hazardous effects, suggesting that embryonic impairment by 2-BP occurs via a caspase-dependent apoptotic process. A study using embryonic stem cells as the assay model conclusively demonstrated that 2-BP induces cell death processes through apoptosis and not necrosis, and inhibits early embryo development in mouse embryonic stem cells. These results collectively confirm the hazardous effects of 2-BP on embryos derived from pretreated oocytes. PMID:21151443

  6. MEK inhibitors block AICAR-induced maturation in mouse oocytes by a MAPK-independent mechanism.

    PubMed

    LaRosa, Cean; Downs, Stephen M

    2005-02-01

    The present study was carried out to assess the possible role of mitogen-activated protein kinase (MAPK) in the meiosis-inducing action of the AMP-activated protein kinase (AMPK) activator, 5-aminoimidazole-4-carboxamide 1-beta-ribofuranoside (AICAR). Cumulus cell-enclosed oocytes (CEO) or denuded oocytes (DO) from immature, eCG-primed mice were cultured 4 hr in Eagle's minimum essential medium containing dbcAMP plus increasing concentrations of AICAR or okadaic acid (OA). OA is a phosphatase inhibitor known to stimulate both meiotic maturation and MAPK activation and served as a positive control. Both OA and AICAR were potent inducers of meiotic resumption in mouse oocytes and brought about the phosphorylation (and thus, activation) of MAPK, but by different kinetics: MAPK phosphorylation preceded GVB in OA-treated oocytes, while that resulting from AICAR treatment appeared only after GVB. The MEK inhibitors, PD98059 and U0126, blocked the meiotic resumption induced by AICAR but not that induced by OA. Although the MEK inhibitors suppressed MAPK phosphorylation in both OA- and AICAR-treated oocytes, meiotic resumption was not causally linked to MAPK phosphorylation in either group. Furthermore, AICAR-induced meiotic resumption in Mos-null oocytes (which are unable to stimulate MAPK) was also abrogated by PD98059 treatment. A non-specific effect of the MEK inhibitors on AICAR accessibility to the oocyte was discounted by showing that they failed to suppress either nucleoside uptake or AICAR-stimulated phosphorylation of acetyl CoA carboxylase (ACC), a substrate of AMPK. The suppression of AICAR-induced maturation by MEK inhibitors must, therefore, be occurring by actions unrelated to MEK stimulation of MAPK; consequently, it would be prudent to consider this possible non-specific action of the inhibitors when they are used to block MAPK activation in mouse oocytes.

  7. Uranium in drinking water: effects on mouse oocyte quality.

    PubMed

    Kundt, Miriam S; Martinez-Taibo, Carolina; Muhlmann, Maria C; Furnari, Juan C

    2009-05-01

    The aim of this work was to evaluate the reproductive toxicological effects of uranium (U) at 2.5, 5, and 10 mgU/kg/d chronically administered in drinking water for 40 d. Swiss female control mice (n = 28) and mice chronically contaminated with uranyl nitrate in drinking water (n = 36) were tested. The number and quality of ovulated oocytes, chromatin organization, and nuclear integrity were evaluated. No significant differences were obtained in the numbers of ovulated oocytes between the different groups. Nevertheless, in 1,520 of the oocytes examined, dysmorphism increased from 11.99% in the control group to 27.99%, 27.19%, and 27.43% in each of the contaminated groups, respectively, in a dose-independent manner. On the other hand, morphological chromatin organization from 880 oocytes examined showed an increase in metaphase plate abnormalities from 37.20% (+/-7.21) in the control group to 55.13% (+/-21.36), 58.29% (+/-21.72), and 64.10% (+/-12.62) in each of the contaminated groups, respectively. Cumulus cell (CC) micronucleation, a parameter of nuclear integrity, increased from 0.21% (+/-0.31) in the control group to 1.92 (+/-0.95), 2.98 (+/-0.97), and 3.2 (+/-0.98), respectively. Both metaphase plate abnormalities and CC micronucleation showed an increase in a dose-dependent manner (r = 0.9; p < 0.001). The oocyte and its microenvironment showed high sensitivity to uranium contamination by drinking water. The lowest observed adverse effect level for this system is estimated at a level below 2.5 mgU/kg/d for female mice.

  8. GGPP-Mediated Protein Geranylgeranylation in Oocyte Is Essential for the Establishment of Oocyte-Granulosa Cell Communication and Primary-Secondary Follicle Transition in Mouse Ovary

    PubMed Central

    Xu, Na; Zhu, Rui-Lou; Wang, Xiu-Xing; Chen, Zhong; Tao, Wei-Wei; Yao, Bing; Sun, Hai-Xiang; Huang, Xing-Xu; Xue, Bin; Li, Chao-Jun

    2017-01-01

    Folliculogenesis is a progressive and highly regulated process, which is essential to provide ova for later reproductive life, requires the bidirectional communication between the oocyte and granulosa cells. This physical connection-mediated communication conveys not only the signals from the oocyte to granulosa cells that regulate their proliferation but also metabolites from the granulosa cells to the oocyte for biosynthesis. However, the underlying mechanism of establishing this communication is largely unknown. Here, we report that oocyte geranylgeranyl diphosphate (GGPP), a metabolic intermediate involved in protein geranylgeranylation, is required to establish the oocyte-granulosa cell communication. GGPP and geranylgeranyl diphosphate synthase (Ggpps) levels in oocytes increased during early follicular development. The selective depletion of GGPP in mouse oocytes impaired the proliferation of granulosa cells, primary-secondary follicle transition and female fertility. Mechanistically, GGPP depletion inhibited Rho GTPase geranylgeranylation and its GTPase activity, which was responsible for the accumulation of cell junction proteins in the oocyte cytoplasm and the failure to maintain physical connection between oocyte and granulosa cells. GGPP ablation also blocked Rab27a geranylgeranylation, which might account for the impaired secretion of oocyte materials such as Gdf9. Moreover, GGPP administration restored the defects in oocyte-granulosa cell contact, granulosa cell proliferation and primary-secondary follicle transition in Ggpps depletion mice. Our study provides the evidence that GGPP-mediated protein geranylgeranylation contributes to the establishment of oocyte-granulosa cell communication and then regulates the primary-secondary follicle transition, a key phase of folliculogenesis essential for female reproductive function. PMID:28072828

  9. Induced melanin reduces mutations and cell killing in mouse melanoma.

    PubMed

    Li, W; Hill, H Z

    1997-03-01

    When melanin absorbs light energy, it can produce potentially damaging active oxygen species. There is little doubt that constitutive pigment in dark-skinned individuals is photoprotective against skin cancer, but induced pigment-as in tanning-may not be. The first step in cancer induction is mutation in DNA. The most suitable systems for evaluating the role of melanin are those in which pigment can be varied and mutations can be measured. Several cell lines from Cloudman S91 mouse melanoma can be induced to form large quantities of melanin pigment after treatment with a number of different agents enabling comparison of mutant yields in the same cells differing principally in pigment concentration. In these studies, melanin was induced with synthetic alpha-melanocyte-stimulating hormone and with isobutyl methyl xanthine in the cell line S91/mel. The former inducer produced about 50% more pigment than the latter. Survival and mutation induction at the Na+/K(+)-ATPase locus were studied using ethyl methane sulfonate (EMS), a standard mutagen and five UV lamps emitting near monochromatic and polychromatic UV light in the three wave-length ranges of UV. There was greater protection against killing and mutation induction in the more heavily pigmented cells after exposure to EMS and after irradiation with monochromatic UVC and UVB. There was significant protection against killing by polychromatic UVB + UVA (FS20), but the small degree of protection against mutation was not significant. No significant change in killing and mutation using the same protocol was seen in S91/amel, a related cell line that does not respond to these inducers. No mutants were produced by either monochromatic or polychromatic UVA at doses that killed 50% of the cells. Our results show that induced pigment-shown earlier to be eumelanin (K. A. Cieszka et al., Exp. Dermatol. 4, 192-198, 1995)-is photo- and chemoprotective, but it is less effective in protection against mutagenesis by polychromatic

  10. Effects of ochratoxin a on mouse oocyte maturation and fertilization, and apoptosis during fetal development.

    PubMed

    Huang, Fu-Jen; Chan, Wen-Hsiung

    2016-06-01

    We previously reported that ochratoxin A (OTA), a mycotoxin found in many foods worldwide, causes nephrotoxicity, hepatotoxicity, and immunotoxicity, and is a risk factor for abnormal embryonic development. More specifically, OTA triggers apoptotic processes in the inner cell mass of mouse blastocysts, decreasing cell viability and embryonic development. In the current study, we investigated the deleterious effects of OTA on mouse oocyte maturation, in vitro fertilization (IVF), and subsequent pre- and postimplantation development both in vitro and in vivo. Notably, OTA significantly impaired mouse oocyte maturation, decreased IVF rates, and inhibited subsequent embryonic development in vitro. Preincubation of oocytes with OTA during in vitro maturation increased postimplantation embryonic resorption and decreased mouse fetal weight. In an in vivo animal model, provision of 1-10 μM OTA in the drinking water or intravenous injection of 1 or 2 mg/kg body weight of OTA decreased oocyte maturation and IVF, and had deleterious effects on early embryonic development. Importantly, preincubation of oocytes with a caspase-3-specific inhibitor effectively blocked these OTA-triggered deleterious effects, suggesting that the embryonic injury induced by OTA is mediated via a caspase-dependent apoptotic mechanism. Furthermore, OTA upregulated the levels of p53 and p21 in blastocyst cells derived from OTA-pretreated oocytes, indicating that such cells undergo apoptosis via p53-, p21-, and caspase-3-dependent regulatory mechanisms. This could have deleterious effects on embryonic implantation and fetal survival rates, as seen in our animal models. © 2014 Wiley Periodicals, Inc. Environ Toxicol 31: 724-735, 2016.

  11. Water transport and estimated transmembrane potential during freezing of mouse oocytes.

    PubMed

    Toner, M; Cravalho, E G; Armant, D R

    1990-05-01

    The kinetics of water transport and the changes in transmembrane potential during freezing of mouse oocytes in isotonic phosphate buffered saline (PBS) were simulated using thermodynamic models. The permeability to water at 0 degree C, Lpg, and the activation energy, ELp, of metaphase II mouse oocytes from B6D2F1 mice were determined to be 0.044 +/- 0.008 micron/min-atm and 13.3 +/- 2.5 kcal/mol during freezing at 2 degrees C/min. The inactive cell volume was determined to be 0.214 with a correlation coefficient of 0.995, indicating that the oocytes closely follow the ideal Boyle-van't Hoff relation. The mean value of the oocyte diameter was 79.41 +/- 4.62 microns. These results were used to predict the behavior of mouse oocytes under various freezing conditions. The effect of the cooling rate on the cell volume and cytoplasm undercooling was investigated. The changes in transmembrane potential were also investigated during freezing of mouse oocytes. The computer simulations showed that at the beginning of the freezing process (-1 degrees C), the fast growth of ice in the extracellular solution causes a sharp increase of the membrane potential. It is predicted that the change in membrane potential is substantial for almost all cooling rates. Estimations show that values as high as -90 mV may be reached during freezing. The hyperpolarization of the membrane may cause orientation of the dipoles within the membrane. For membrane proteins with 300 debye dipole moment, the theoretical prediction suggests that the percentage of dipoles aligned with the membrane potential increases from 16% at 0 degrees C prior to freezing to 58% at -8 degrees C after seeding of the external ice followed with a cooling at 120 degrees C/min.

  12. Triphenyltin chloride induces spindle microtubule depolymerisation and inhibits meiotic maturation in mouse oocytes.

    PubMed

    Shen, Yu-Ting; Song, Yue-Qiang; He, Xiao-Qin; Zhang, Fei; Huang, Xin; Liu, Yu; Ding, Lu; Xu, Lin; Zhu, Mao-Bi; Hu, Wen-Feng; Qi, Zhong-Quan; Wang, Hai-Long; Yang, Xiang-Jun

    2014-10-01

    Meiosis produces haploid gametes for sexual reproduction. Triphenyltin chloride (TPTCL) is a highly bioaccumulated and toxic environmental oestrogen; however, its effect on oocyte meiosis remains unknown. We examined the effect of TPTCL on mouse oocyte meiotic maturation in vitro and in vivo. In vitro, TPTCL inhibited germinal vesicle breakdown (GVBD) and first polar body extrusion (PBE) in a dose-dependent manner. The spindle microtubules completely disassembled and the chromosomes condensed after oocytes were exposed to 5 or 10μgmL(-1) TPTCL. γ-Tubulin protein was abnormally localised near chromosomes rather than on the spindle poles. In vivo, mice received TPTCL by oral gavage for 10 days. The general condition of the mice deteriorated and the ovary coefficient was reduced (P<0.05). The number of secondary and mature ovarian follicles was significantly reduced by 10mgkg(-1) TPTCL (P<0.05). GVBD decreased in a non-significant, dose-dependent manner (P>0.05). PBE was inhibited with 10mgkg(-1) TPTCL (P<0.05). The spindles of in vitro and in vivo metaphase II oocytes were disassembled with 10mgkg(-1) TPTCL. These results suggest that TPTCL seriously affects meiotic maturation by disturbing cell-cycle progression, disturbing the microtubule cytoskeleton and inhibiting follicle development in mouse oocytes.

  13. Rho-GTPase effector ROCK phosphorylates cofilin in actin-meditated cytokinesis during mouse oocyte meiosis.

    PubMed

    Duan, Xing; Liu, Jun; Dai, Xiao-Xin; Liu, Hong-Lin; Cui, Xiang-Shun; Kim, Nam-Hyung; Wang, Zhen-Bo; Wang, Qiang; Sun, Shao-Chen

    2014-02-01

    During oocyte meiosis, a spindle forms in the central cytoplasm and migrates to the cortex. Subsequently, the oocyte extrudes a small body and forms a highly polarized egg; this process is regulated primarily by actin. ROCK is a Rho-GTPase effector that is involved in various cellular functions, such as stress fiber formation, cell migration, tumor cell invasion, and cell motility. In this study, we investigated possible roles for ROCK in mouse oocyte meiosis. ROCK was localized around spindles after germinal vesicle breakdown and was colocalized with cytoplasmic actin and mitochondria. Disrupting ROCK activity by RNAi or an inhibitor resulted in cell cycle progression and polar body extrusion failure. Time-lapse microscopy showed that this may have been due to spindle migration and cytokinesis defects, as chromosomes segregated but failed to extrude a polar body and then realigned. Actin expression at oocyte membranes and in cytoplasm was significantly decreased after these treatments. Actin caps were also disrupted, which was confirmed by a failure to form cortical granule-free domains. The mitochondrial distribution was also disrupted, which indicated that mitochondria were involved in the ROCK-mediated actin assembly. In addition, the phosphorylation levels of Cofilin, a downstream molecule of ROCK, decreased after disrupting ROCK activity. Thus, our results indicated that a ROCK-Cofilin-actin pathway regulated meiotic spindle migration and cytokinesis during mouse oocyte maturation.

  14. Depletion of the LINC complex disrupts cytoskeleton dynamics and meiotic resumption in mouse oocytes

    PubMed Central

    Luo, Yibo; Lee, In-Won; Jo, Yu-Jin; Namgoong, Suk; Kim, Nam-Hyung

    2016-01-01

    The SUN (Sad-1/UNC-84) and KASH (Klarsicht/ANC-1/Syne/homology) proteins constitute the linker of nucleoskeleton and cytoskeleton (LINC) complex on the nuclear envelope. To date, the SUN1/KASH5 complex is known to function as meiotic-specific factors. In this study, gene-silencing methods were used to explore the roles of SUN1 and KASH5 in mouse oocytes after prophase. SUN1 was detected throughout the nucleus; however, KASH5 was dispersed through the cell. After germinal vesicle breakdown (GVBD), SUN1 and KASH5 migrated during spindle formation and localized to the spindle poles at the MII stage. Most oocytes were arrested at the germinal vesicle (GV) stage after depletion of either SUN1 or KASH5. The DNA damage response was triggered in SUN1-depleted oocytes and thus gave rise to the G2/M checkpoint protein, p-CHK1. Oocytes that underwent GVBD had relatively small and abnormal spindles and lower levels of cytoplasm F-actin mesh. Immunofluorescence results also indicated the dislocation of pericentrin and P150Glued after SUN1 or KASH5 depletion. Furthermore, KASH5 localized exclusively near the oocyte cortex after SUN1 depletion, but SUN1 localization was unaffected in KASH5-depleted oocytes. Taken together, the results suggest that SUN1 and KASH5 are essential factors in the regulation of meiotic resumption and spindle formation. PMID:26842404

  15. Polarized Cdc42 activation promotes polar body protrusion and asymmetric division in mouse oocytes

    PubMed Central

    Dehapiot, Benoit; Carrière, Virginie; Carroll, John; Halet, Guillaume

    2013-01-01

    Asymmetric meiotic divisions in mammalian oocytes rely on the eccentric positioning of the spindle and the remodeling of the overlying cortex, resulting in the formation of small polar bodies. The mechanism of this cortical polarization, exemplified by the formation of a thick F-actin cap, is poorly understood. Cdc42 is a major player in cell polarization in many systems; however, the spatio-temporal dynamics of Cdc42 activation during oocyte meiosis, and its contribution to mammalian oocyte polarization, have remained elusive. In this study, we investigated Cdc42 activation (Cdc42–GTP), dynamics and role during mouse oocyte meiotic divisions. We show that Cdc42–GTP accumulates in restricted cortical regions overlying meiotic chromosomes or chromatids, in a Ran–GTP-dependent manner. This polarized activation of Cdc42 is required for the recruitment of N-WASP and the formation of F-actin-rich protrusions during polar body formation. Cdc42 inhibition in MII oocytes resulted in the release of N-WASP into the cytosol, a loss of the polarized F-actin cap, and a failure to protrude the second polar body. Cdc42 inhibition also resulted in central spindle defects in activated MII oocytes. In contrast, emission of the first polar body during oocyte maturation could occur in the absence of a functional Cdc42/N-WASP pathway. Therefore, Cdc42 is a new protagonist in chromatin-induced cortical polarization in mammalian oocytes, with an essential role in meiosis II completion, through the recruitment and activation of N-WASP, downstream of the chromatin-centered Ran–GTP gradient. PMID:23384564

  16. The Defensive Role of Cumulus Cells Against Reactive Oxygen Species Insult in Metaphase II Mouse Oocytes.

    PubMed

    Shaeib, Faten; Khan, Sana N; Ali, Iyad; Thakur, Mili; Saed, Mohammed G; Dai, Jing; Awonuga, Awoniyi O; Banerjee, Jashoman; Abu-Soud, Husam M

    2016-04-01

    We investigated the ability of reactive oxygen species (ROS), such as hydrogen peroxide (H(2)O(2)), hydroxyl radical ((·)OH), and hypochlorous acid (HOCl), to overcome the defensive capacity of cumulus cells and elucidate the mechanism through which ROS differentially deteriorate oocyte quality. Metaphase II mouse oocytes with (n = 1634) and without cumulus cells (n = 1633) were treated with increasing concentration of ROS, and the deterioration in oocyte quality was assessed by the changes in the microtubule morphology and chromosomal alignment. Oocyte and cumulus cell viability and cumulus cell number were assessed by indirect immunofluorescence, staining of gap junction protein, and trypan blue staining. The treated oocytes showed decreased quality as a function of increasing concentrations of ROS when compared to controls. Cumulus cells show protection against H(2)O(2) and (·)OH insult at lower concentrations, but this protection was lost at higher concentrations (>50 μmol/L). At higher H(2)O(2) concentrations, treatment dramatically influenced the cumulus cell number and viability with resulting reduction in the antioxidant capacity making the oocyte more susceptible to oxidative damage. However, cumulus cells offered no significant protection against HOCl at any concentration used. In all circumstances in which cumulus cells did not offer protection to the oocyte, both cumulus cell number and viability were decreased. Therefore, the deterioration in oocyte quality may be caused by one or more of the following: a decrease in the antioxidant machinery by the loss of cumulus cells, the lack of scavengers for specific ROS, and/or the ability of the ROS to overcome these defenses.

  17. Inhibition of calcineurin by FK506 stimulates germinal vesicle breakdown of mouse oocytes in hypoxanthine-supplemented medium

    PubMed Central

    Wang, Li; Zhen, Yan-Hong; Liu, Xiao-Ming; Cao, Jing; Wang, Yan-Ling

    2017-01-01

    Calcineurin (CN) is a serine/threonine phosphatase which plays important roles in meiosis maturation in invertebrate oocytes; however, the role of CN in mouse oocytes is relatively unexplored. In this study, we examined the expression, localization and functional roles of CN in mouse oocytes and granulosa cells. The RT-PCR results showed that the β isoform of calcineurin A subunit (Cn A) expressed significantly higher than α and γ isoforms, and the expression of Cn Aβ mRNA obviously decreased in oocytes in which germinal vesicle breakdown (GVBD) occurred, while only B1 of calcineurin B subunit (Cn B) was detected in oocytes and stably expressed during oocytes maturation. The following fluorescence experiment showed that Cn A was mainly located in the nucleus of germinal vesicle (GV) stage oocytes and gruanlosa cells, and subsequently dispersed into the entire cytoplasm after GVBD. The decline of Cn A in oocytes suggested that it may play an important role in GVBD. To further clarify the role of calcineurin during meiotic maturation, FK506 (a calcineurin inhibitor) was used in the culture medium contained hypoxanthine (HX) which could keep mouse oocytes staying at GV stage. As expected, FK506 could induce a significant elevation of GVBD rate and increase the MPF level of denuded oocytes (DOs). Furthermore, FK506 could also play an induction role of GVBD of oocytes in COCs and follicles, and the process could be counteracted by MAPK kinase inhibitor (U0126). Above all, the results implied that calcineurin might play a crucial role in development of mouse oocytes and MPF and MAPK pathways are involved in this process. PMID:28243539

  18. Mancozeb exposure in vivo impairs mouse oocyte fertilizability.

    PubMed

    Rossi, Gianna; Buccione, Roberto; Baldassarre, Massimiliano; Macchiarelli, Guido; Palmerini, Maria Grazia; Cecconi, Sandra

    2006-02-01

    Mancozeb is known to alter reproductive performance in exposed animals, but its specific mechanism of action is still unclear. We investigated whether in female mice of the F1 generation, mancozeb could affect oocyte ability to undergo complete meiotic maturation and fertilization. Female mice were treated with 50 and 500 mg/kg of mancozeb (or vehicle in the controls) from gestational day 2 to postnatal day 20. Results demonstrated that only at the highest dose, mancozeb induced a significant decrease in the number of ovulated eggs. Moreover, at this dose mancozeb caused a significant decrease of fertilizability related to a reduction of the formation of male and female pronuclei.

  19. Size of lethality target in mouse immature oocytes determined with accelerated heavy ions.

    PubMed

    Straume, T; Dobson, R L; Kwan, T C

    1989-01-01

    Mouse immature oocytes were irradiated in vivo with highly charged, heavy ions from the Bevalac accelerator at the Lawrence Berkeley Laboratory. The particles used were 670-MeV/nucleon Si14+, 570-MeV/nucleon Ar18+, and 450-MeV/nucleon Fe26+. The cross-sectional area of the lethality target in these extremely radiosensitive cells was determined from fluence-response curves and information on energy deposition by delta rays. Results indicate a target cross-section larger than that of the nucleus, one which closely approximates the cross-sectional area of the entire oocyte. For 450-MeV/nucleon Fe26+ particles, the predicted target cross-sectional area is 120 +/- 16 microns2, comparing well with the microscopically determined cross-sectional area of 111 +/- 12 microns2 for these cells. The present results are in agreement with our previous target studies which implicate the oocyte plasma membrane.

  20. Cryopreservation of unfertilized mouse oocytes: the effect of replacing sodium with choline in the freezing medium.

    PubMed

    Stachecki, J J; Cohen, J; Willadsen, S M

    1998-12-01

    Although embryo cryopreservation has become commonplace in many species, effective methods are not available for routine freezing of unfertilized eggs. Cryopreservation-induced damage may be caused by the high concentration of sodium ions in conventional freezing media. This study investigates the effect of a newly developed low-sodium choline-based medium (CJ2) on the ability of unfertilized, metaphase II mouse eggs to survive cryopreservation and develop to the blastocyst stage in vitro. Specifically, the effects of cooling to subzero temperatures, thawing rate, LN2 plunge temperature, and equilibration with a low-sodium medium prior to freezing are examined. In contrast to cooling to 23, 0, or -7.0 degreesC in a sodium-based freezing medium (ETFM), cooling in CJ2 had no significant negative effect on oocyte survival or development. Oocytes frozen in CJ2 survived plunging into LN2 from -10, -20, or -33 degreesC at significantly higher rates than oocytes frozen in ETFM. With the protocol used (1.5 M PrOH, 0.1 M sucrose, -0.3 C/min, plunging at -33 degreesC) rapid thawing by direct submersion in 30 degreesC water was more detrimental to oocyte survival than holding in air for 30 or 120 s prior to transfer to water. Equilibration of unfertilized oocytes with a low-sodium medium prior to cryopreservation in CJ2 significantly increased survival and blastocyst development. These results demonstrate that the high concentration of sodium in conventional freezing media is detrimental to oocyte cryopreservation and show that choline is a promising replacement. Reducing the sodium content of the freezing medium to a very low level or eliminating sodium altogether may allow oocytes and other cells to be frozen more effectively.

  1. Quick freezing of unfertilized mouse oocytes using ethylene glycol with sucrose or trehalose.

    PubMed

    Rayos, A A; Takahashi, Y; Hishinuma, M; Kanagawa, H

    1994-01-01

    Unfertilized mouse oocytes were frozen by directly plunging them into liquid nitrogen vapour after equilibration in a freezing medium containing 3 mol ethylene glycol l-1 with 0.25 mol sucrose or trehalose l-1 for 5-40 min. After thawing and dilution of the cryoprotectant, oocytes of normal morphology were inseminated in vitro and the effect of equilibration period on the rates of fertilization and development in vitro was examined. Regardless of the equilibration in the freezing medium, no significant difference was observed on the fertilization rate of frozen-thawed oocytes. However, higher fertilization and higher normal fertilization rates were obtained with equilibration in 3 mol ethylene glycol l-1 with either 0.25 mol sucrose l-1 or trehalose for 20 and 40 min than with 5 and 10 min equilibration. Development rates to two-cell embryos and expanded blastocysts of in vitro fertilized frozen-thawed oocytes that were equilibrated in the freezing medium for 20 and 40 min were significantly higher (P < 0.05 or P < 0.01) than with 5 min equilibration. Development in vivo was assessed by transferring blastocysts derived from unfertilized oocytes frozen by the optimum treatment (20 min equilibration in the freezing medium before freezing) into the uterine horns of day 3 pseudopregnant female recipients. The development rate of frozen-thawed oocytes to the blastocyst stage after insemination in vitro was significantly lower than that of the non-frozen control (P < 0.001). However, transfer of the blastocysts derived from frozen-thawed oocytes to the uterine horns of the recipients in fetal development and implantation rates similar to those of the control.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Improved low-CPA vitrification of mouse oocytes using quartz microcapillary.

    PubMed

    Choi, Jung Kyu; Huang, Haishui; He, Xiaoming

    2015-06-01

    Cryopreservation by low-cryoprotectant (CPA) vitrification has the potential to combine all the advantages of the conventional high-CPA vitrification and slow-freezing approaches while avoiding their drawbacks. However, current low-CPA vitrification protocol for cryopreservation of oocytes requires a lengthy and multi-step procedure for unloading CPAs. In this study, we report a much-simplified procedure of using quartz microcapillary (QMC) for low-CPA vitrification of mouse oocytes with only one step for unloading CPAs. The immediate viability of oocytes after the improved low-CPA vitrification was determined to be more than 90%. Moreover, no significant difference was observed in terms of embryonic development from the two-cell to blastocyst stages between the fresh and vitrified oocytes after in vitro fertilization (IVF). This improved low-CPA vitrification technology has the potential for efficient cryopreservation of oocytes to preserve the fertility of mammals including humans for assisted reproductive medicine, maintenance of animal resource and endangered species, and livestock management.

  3. Stag3 regulates microtubule stability to maintain euploidy during mouse oocyte meiotic maturation

    PubMed Central

    Zhang, Mianqun; Dai, Xiaoxin; Sun, Yalu; Lu, Yajuan; Zhou, Changyin; Miao, Yilong; Wang, Ying; Xiong, Bo

    2017-01-01

    Stag3, a meiosis-specific subunit of cohesin complex, has been demonstrated to function in both male and female reproductive systems in mammals. However, its roles during oocyte meiotic maturation have not been fully defined. In the present study, we report that Stag3 uniquely accumulates on the spindle apparatus and colocalizes with microtubule fibers during mouse oocyte meiotic maturation. Depletion of Stag3 by gene-targeting morpholino disrupts normal spindle assembly and chromosome alignment in oocytes. We also find that depletion of Stag3 reduces the acetylated level of tubulin and microtubule resistance to microtubule depolymerizing drug, suggesting that Stag3 is required for microtubule stability. Consistent with these observations, kinetochore-microtubule attachment, an important mechanism controlling chromosome alignment, is severely impaired in Stag3-depleted oocytes, resultantly causing the significantly increased incidence of aneuploid eggs. Collectively, our data reveal that Stag3 is a novel regulator of microtubule dynamics to ensure euploidy during moue oocyte meiotic maturation. PMID:27906670

  4. The Role of Microfilaments in Early Meiotic Maturation of Mouse Oocytes

    NASA Astrophysics Data System (ADS)

    Calarco, Patricia G.

    2005-04-01

    Mouse oocyte microfilaments (MF) were perturbed by depolymerization (cytochalasin B) or stabilization (jasplakinolide) and correlated meiotic defects examined by confocal microscopy. MF, microtubules, and mitochondria were vitally stained; centrosomes ([gamma]-tubulin), after fixation. MF depolymerization by cytochalasin in culture medium did not affect central migration of centrosomes, mitochondria, or nuclear breakdown (GVBD); some MF signal was localized around the germinal vesicle (GV). In maturation-blocking medium (containing IBMX), central movement was curtailed and cortical MF aggregations made the plasma membrane wavy. Occasional long MF suggested that not all MF were depolymerized. MF stabilization by jasplakinolide led to MF aggregations throughout the cytoplasm. GVBD occurred (unless IBMX was present) but no spindle formed. Over time, most oocytes constricted creating a dumbbell shape with MF concentrated under one-half of the oocyte cortex and on either side of the constriction. In IBMX medium, the MF-containing half of the dumbbell over time sequestered the GV, MF, mitochondria, and one to two large cortical centrosomes; the non-MF half appeared empty. Cumulus processes contacted the oocyte surface (detected by microtubule content) and mirrored MF distribution. Results demonstrated that MF play an essential role in meiosis, primarily through cortically mediated events, including centrosome localization, spindle (or GV) movement to the periphery, activation of (polar body) constriction, and establishment of oocyte polarity. The presence of a cortical “organizing pole” is hypothesized.

  5. Biased inheritance of mitochondria during asymmetric cell division in the mouse oocyte.

    PubMed

    Dalton, Caroline M; Carroll, John

    2013-07-01

    A fundamental rule of cell division is that daughter cells inherit half the DNA complement and an appropriate proportion of cellular organelles. The highly asymmetric cell divisions of female meiosis present a different challenge because one of the daughters, the polar body, is destined to degenerate, putting at risk essential maternally inherited organelles such as mitochondria. We have therefore investigated mitochondrial inheritance during the meiotic divisions of the mouse oocyte. We find that mitochondria are aggregated around the spindle by a dynein-mediated mechanism during meiosis I, and migrate together with the spindle towards the oocyte cortex. However, at cell division they are not equally segregated and move instead towards the oocyte-directed spindle pole and are excluded from the polar body. We show that this asymmetrical inheritance in favour of the oocyte is not caused by bias in the spindle itself but is dependent on an intact actin cytoskeleton, spindle-cortex proximity, and cell cycle progression. Thus, oocyte-biased inheritance of mitochondria is a variation on rules that normally govern organelle segregation at cell division, and ensures that essential maternally inherited mitochondria are retained to provide ATP for early mammalian development.

  6. Glycine increases preimplantation development of mouse oocytes following vitrification at the germinal vesicle stage

    PubMed Central

    Cao, Xin-Yan; Rose, Jack; Wang, Shi-Yong; Liu, Yong; Zhao, Meng; Xing, Ming-Jie; Chang, Tong; Xu, Baozeng

    2016-01-01

    Ice-free cryopreservation, referred to as vitrification, is receiving increased attention in the human and animal assisted reproduction. However, it introduces the detrimental osmotic stress by adding and removing high contents of cryoprotectants. In this study, we evaluated the effects of normalizing cell volume regulation by adding glycine, an organic osmolyte, during vitrification of mouse germinal vesicle stage oocyte and/or subsequent maturation on its development. The data showed that glycine supplementation in either vitrification/thawing or maturation medium significantly improved the cytoplasmic maturation of MII oocytes manifested by spindle assembly, chromosomal alignment, mitochondrial distribution, euploidy rate, and blastocyst development following fertilization in vitro, compared to the control without glycine treatment. Furthermore, glycine addition during both vitrification/thawing and maturation further enhanced the oocyte quality demonstrated by various markers, including ATP contents and embryo development. Lastly, the effect of anti-apoptosis was also observed when glycine was added during vitrification. Our result suggests that reducing osmotic stress induced by vitrification could improve the development of vitrified mouse oocyte. PMID:27845423

  7. Four-dimensional visualization and quantitative analysis of meiotic spindle movements in live mouse oocytes.

    PubMed

    Tian, N; Zhang, L; Liu, B; Wang, P; Li, Y; Ma, W

    2012-09-01

    This paper made a different attempt of real-time observation of the meiotic spindle movements in living mouse oocyte using a convenient method. This method was based on an experimental phenomenon discovered in our work. In living mouse oocytes, a high concentration of calcium ions (Ca(2+)) was observed throughout the region occupied by the initial meiotic spindle. After Ca(2+) labelling with Fura-2, a weakly fluorescent area (WFA) appeared on each side of the chromosomes. The activities of the WFAs changed during spindle development. By real-time tracking of WFAs, we were able to indirectly observe the meiotic spindle movements. Occasionally, it was observed that the first meiotic spindle rotated from an orientation parallel to the cortex to become perpendicular, instead of migrating from the oocyte centre to the cortex along its axis. Moreover, we analysed this uncommon rotation of the first meiotic spindle and found that the whole rotation process can be divided into two phases: the early slow-speed rotation and the subsequent rapid-speed rotation. We further characterized this rotation with respect to rotational speed and acceleration at all the stages of development. By using a two-photon laser-scanning microscope in combination with Fura-2 dye that is nondamaging to oocytes, we provide a convenient method for indirect visualization and quantitative analysis of spindle movements by real-time tracking of WFAs. This method is easy to operate and master, and economical with time and effort.

  8. Combined inhibitory effects of low temperature and N-acetyl-l-cysteine on the postovulatory aging of mouse oocytes.

    PubMed

    Li, Qian; Cui, Long-Bo

    2016-04-01

    The postovulatory aging of oocytes eventually affects the development of oocytes and embryos. Oxidative stress is known to accelerate the onset of apoptosis in oocytes and influence their capacity for fertilisation. This study aimed to reveal the roles of temperature and the antioxidant N-acetyl-l-cysteine in preventing the aging of postovulatory mouse oocytes. First, newly ovulated mouse oocytes were cultured at various temperature and time combinations in HCZB medium with varying concentrations of N-acetyl-l-cysteine to assess signs of aging and developmental potential. When cultured in HCZB with 300 μM N-acetyl-l-cysteine at different temperature and incubation time combinations (namely 25°C for 12 h, 15°C for 24 h and 5°C for 12 h), the increase in the susceptibility of oocytes to activating stimuli was efficiently prevented, and the developmental potential was maintained following Sr2+ activation or in vitro fertilisation. After incubation at either 15°C for 36 h or 5°C for 24 h, oocytes that had decreased blastocyst rates displayed unrecoverable abnormal cortical granule distribution together with decreased BCL2 levels, total glutathione concentrations and glutathione/glutathione disulphide (GSH/GSSG) ratios. In conclusion, postovulatory oocyte aging could be effectively inhibited by appropriate N-acetyl-l-cysteine addition at low temperatures. In addition, a simple method for the temporary culture of mature oocytes was established.

  9. Oocyte heterogeneity with respect to the meiotic silencing of unsynapsed X chromosomes in the XY female mouse.

    PubMed

    Taketo, Teruko; Naumova, Anna K

    2013-10-01

    In the XY pachytene spermatocyte, the sex chromosomes do not synapse except for the pseudoautosomal region and become transcriptionally silenced. It has been suggested that the meiotic silencing of unsynapsed chromatin (MSUC) also occurs in oocytes. In the XY sex-reversed female mouse, the sex chromosomes fail to pair in the majority of oocytes and a greater number of oocytes are eliminated during the meiotic prophase compared to the XX female. Yet, many XY oocytes survive to reach the second meiotic metaphase. The goal of our current study was to determine whether the single X chromosome shows the characteristics of asynapsis and meiotic silencing in a proportion of XY oocytes, which can explain the survival of the remaining oocytes. We first examined the accumulation of markers associated with asynapsis or transcriptional silencing, i.e., BRCA1, γH2AX, H3K9me3, and H3K27me3, at the single X chromosome in the XY oocyte. We found that γH2AX and BRCA1 were enriched on the single X chromosome whereas H3K9me3 was not, and H3K27me3 was enriched at all chromosomes in the majority of XY oocytes. We next examined the meiotic silencing of the single X chromosome using enrichment of the X-encoded ATRX protein. On average, ATRX enrichment was lower in XY oocytes than in XX oocytes as expected from its half gene dosage. However, the intensity of ATRX staining in XY oocytes harboring γH2AX domains showed a remarkable heterogeneity. We conclude that MSUC occurs with varying consequences, resulting in a heterogeneous population of oocytes with respect to protein enrichment in the XY female mouse.

  10. Behavior of centrosomes during fertilization and cell division in mouse oocytes and in sea urchin eggs

    NASA Technical Reports Server (NTRS)

    Schatten, Heide; Schatten, Gerald; Balczon, Ron; Simerly, Calvin; Mazia, Daniel

    1986-01-01

    The behavior of centrosomes during the stages of fertilization and cell division in mouse oocytes and in sea urchin eggs was monitored in an immunofluorescence microscope, using autoimmune centrosomal antiserum derived from a patient with scleroderma to label the centrosomal material. These observations showed that centrosomes reproduce during the interphase and aggregate and separate during cell mitosis. Results supported the hypothesis of Mazia (1984), who proposed that centrosomes are 'flexible bodies'. It was also found that, while the sea urchin centrosomes are paternally inherited as was initially proposed by Bovery (1904), the mouse centrosomes are of maternal origin.

  11. In Vivo acrylamide exposure may cause severe toxicity to mouse oocytes through its metabolite glycidamide

    PubMed Central

    Aras, Duru; Cakar, Zeynep; Ozkavukcu, Sinan; Can, Alp; Cinar, Ozgur

    2017-01-01

    High acrylamide (ACR) content in heat-processed carbohydrate-rich foods, as well as roasted products such as coffee, almonds etc., has been found to be as a risk factor for carcinogenicity and genotoxicity by The World Health Organization. Glycidamide (GLY), the epoxide metabolite of ACR, is processed by the cytochrome P-450 enzyme system and has also been found to be a genotoxic agent. The aim of this study was to determine whether ACR and/or GLY have any detrimental effect on the meiotic cell division of oocytes. For this purpose, germinal vesicle-stage mouse oocytes were treated with 0, 100, 500, or 1000 μM ACR or 0, 25, or 250 μM GLY in vitro. In vivo experiments were performed after an intraperitoneal injection of 25 mg/kg/day ACR of female BALB/c mice for 7 days. The majority of in vitro ACR-treated oocytes reached the metaphase-II stage following 18 hours of incubation, which was not significantly different from the control group. Maturation of the oocytes derived from in vivo ACR-treated mice was impaired significantly. Oocytes, reaching the M-II stage in the in vivo ACR-treated group, were characterized by a decrease in meiotic spindle mass and an increase in chromosomal disruption. In vitro GLY treatment resulted in the degeneration of all oocytes, indicating that ACR toxicity on female germ cells may occur through its metabolite, GLY. Thus, ACR exposure must be considered, together with its metabolite GLY, when female fertility is concerned. PMID:28182799

  12. Oocyte-granulosa cell interactions during mouse follicular development: regulation of kit ligand expression and its role in oocyte growth.

    PubMed

    Thomas, Fiona H; Vanderhyden, Barbara C

    2006-04-12

    Ovarian folliculogenesis is regulated by both endocrine and intraovarian mechanisms that coordinate the processes of oocyte growth and somatic cell proliferation and differentiation. Within the follicle, paracrine interactions between the oocyte and surrounding granulosa cells are critical for normal cell development and function. This review focuses on the role of paracrine interactions during early oocyte and follicular development that ensure proper coordination of oocyte and somatic cell function. Particular emphasis is given to granulosa cell-derived Kit Ligand (KitL), whose functional importance for oocyte growth has been demonstrated by a wide range of in vivo and in vitro studies. Reported interactions between KitL and oocyte-derived growth differentiation factor-9 (GDF9) and bone morphogenetic protein-15 (BMP15) suggest the molecular basis of oocyte-granulosa cell interactions, but also hint at the complexity of these communications. These paracrine interactions and the structure of the oocyte-granulosa cell interface are follicle stage-specific and regulated by FSH. Elucidation of the molecular mechanisms that promote the development of healthy oocytes with good developmental competence has potential applications for improving fertility and for in vitro growth systems for oocytes from domestic animals and humans.

  13. Inhibitory effects of pre- and posttest drugs on mouse-killing by rats.

    PubMed

    Gay, P E; Leaf, R C; Arble, F B

    1975-01-01

    Mouse-killing in rats was gradually inhibited by repeated posttest injections of d-amphetamine (1.5 mg/kg), l-amphetamine (1.5 mg/kg) or pilocarpine (7.5 mg/kg), but not by control substances. Of these drugs, only d-amphetamine inhibited killing when given prior to a mouse-killing test. Further experiments suggested that anorexia per se did not contribute to drug-induced inhibitory effects, but that changes in internal state were important to the development of inhibition. Pretest injections appear to inhibit predatory killing by a direct pharmacological action on some target site or sites, while posttest injections produce a learned aversion to predatory killing.

  14. DYNLT3 is required for chromosome alignment during mouse oocyte meiotic maturation.

    PubMed

    Huang, Xin; Wang, Hai-Long; Qi, Shu-Tao; Wang, Zhen-Bo; Tong, Jing-Shan; Zhang, Qing-Hua; Ouyang, Ying-Chun; Hou, Yi; Schatten, Heide; Qi, Zhong-Quan; Sun, Qing-Yuan

    2011-10-01

    Dynein light chain, Tctex-type 3 (DYNLT3), is a member of the cytoplasmic dynein DYNLT light chain family and has been reported to have a potential role in chromosome congression in human mitosis. However, its role in mammalian meiosis is unclear. In this study, we examined its localization, expression, and functions in mouse oocyte meiosis. Immunofluorescent staining showed that DYNLT3 was restricted to the germinal vesicle and associated with kinetochores at the germinal vesicle breakdown stage, metaphase I and metaphase II. The expression level of DYNLT3 was similar at all meiotic stages. Depletion of DYNLT3 by antibody injection resulted in chromosome misalignment and decrease of the polar body extrusion rate. We further found that DYNLT3-depleted oocytes displayed kinetochore-microtubule detachments. Chromosome-spread experiments showed that depletion of DYNLT3 inhibited the metaphase-anaphase transition by preventing homologous chromosome segregation in meiosis I. Our data suggest that DYNLT3 is required for chromosome alignment and homologous chromosome segregation during mouse oocyte meiosis.

  15. Probe-Level Analysis of Expression Microarrays Characterizes Isoform-Specific Degradation during Mouse Oocyte Maturation

    PubMed Central

    Salisbury, Jesse; Hutchison, Keith W.; Wigglesworth, Karen; Eppig, John J.; Graber, Joel H.

    2009-01-01

    Background Gene expression microarrays have provided many insights into changes in gene expression patterns between different tissue types, developmental stages, and disease states. Analyses of these data focused primarily measuring the relative abundance of transcripts of a gene, while treating most or all transcript isoforms as equivalent. Differences in the selection between transcript isoforms can, however, represent critical changes to either the protein product or the posttranscriptional regulation of the transcript. Novel analyses on existing microarray data provide fresh insights and new interpretations into transcriptome-wide changes in expression. Methodology A probe-level analysis of existing gene expression arrays revealed differences in mRNA processing, primarily affecting the 3′-untranslated region. Working with the example of microarrays drawn from a transcriptionally silent period of mouse oocyte development, probe-level analysis (implemented here as rmodel) identified genes whose transcript isoforms have differing stabilities. Comparison of micorarrays measuring cDNA generated from oligo-dT and random primers revealed further differences in the polyadenylation status of some transcripts. Additional analysis provided evidence for sequence-targeted cleavage, including putative targeting sequences, as one mechanism of degradation for several hundred transcripts in the maturing oocyte. Conclusions The capability of probe-level analysis to elicit novel findings from existing expression microarray data was demonstrated. The characterization of differences in stability between transcript isoforms in maturing mouse oocytes provided some mechanistic details of degradation. Similar analysis of existing archives of expression microarray data will likely provide similar discoveries. PMID:19834616

  16. Cytoplasmic movement profiles of mouse surrounding nucleolus and not-surrounding nucleolus antral oocytes during meiotic resumption.

    PubMed

    Bui, Thi Thu Hien; Belli, Martina; Fassina, Lorenzo; Vigone, Giulia; Merico, Valeria; Garagna, Silvia; Zuccotti, Maurizio

    2017-02-24

    Full-grown mouse antral oocytes are classified as surrounding nucleolus (SN) or not-surrounding nucleolus (NSN), depending on the respective presence or absence of a ring of Hoechst-positive chromatin surrounding the nucleolus. In culture, both types of oocytes resume meiosis and reach the metaphase II (MII) stage, but following insemination, NSN oocytes arrest at the two-cell stage whereas SN oocytes may develop to term. By coupling time-lapse bright-field microscopy with image analysis based on particle image velocimetry, we provide the first systematic measure of the changes to the cytoplasmic movement velocity (CMV) occurring during the germinal vesicle-to-MII (GV-to-MII) transition of these two types of oocytes. Compared to SN oocytes, NSN oocytes display a delayed GV-to-MII transition, which can be mostly explained by retarded germinal vesicle break down and first polar body extrusion. SN and NSN oocytes also exhibit significantly different CMV profiles at four main time-lapse intervals, although this difference was not predictive of SN or NSN oocyte origin because of the high variability in CMV. When CMV profile was analyzed through a trained artificial neural network, however, each single SN or NSN oocyte was blindly identified with a probability of 92.2% and 88.7%, respectively. Thus, the CMV profile recorded during meiotic resumption may be exploited as a cytological signature for the non-invasive assessment of the oocyte developmental potential, and could be informative for the analysis of the GV-to-MII transition of oocytes of other species.

  17. Protein synthesis inhibitors prevent both spontaneous and hormone-dependent maturation of isolated mouse oocytes

    SciTech Connect

    Downs, S.M. )

    1990-11-01

    The present study was carried out to examine the role of protein synthesis in mouse oocyte maturation in vitro. In the first part of this study, the effects of cycloheximide (CX) were tested on spontaneous meiotic maturation when oocytes were cultured in inhibitor-free medium. CX reversibly suppressed maturation of oocytes as long as maturation was either initially prevented by the phosphodiesterase inhibitor, 3-isobutyl-1-methyl-xanthine (IBMX), or delayed by follicle-stimulating hormone (FSH). In the second part of this study, the actions of protein synthesis inhibitors were tested on hormone-induced maturation. CEO were maintained in meiotic arrest for 21-22 h with hypoxanthine, and germinal vesicle breakdown (GVB) was induced with follicle-stimulating hormone (FSH). Three different protein synthesis inhibitors (CX, emetine (EM), and puromycin (PUR)) each prevented the stimulatory action of FSH on GVB in a dose-dependent fashion. This was accompanied by a dose-dependent suppression of 3H-leucine incorporation by oocyte-cumulus cell complexes. The action of these inhibitors on FSH- and epidermal growth factor (EGF)-induced GVB was next compared. All three drugs lowered the frequency of GVB in the FSH-treated groups, below even that of the controls (drug + hypoxanthine); the drugs maintained meiotic arrest at the control frequencies in the EGF-treated groups. Puromycin aminonucleoside, an analog of PUR with no inhibitory action on protein synthesis, had no effect. The three inhibitors also suppressed the stimulatory action of FSH on oocyte maturation when meiotic arrest was maintained with the cAMP analog, dbcAMP.

  18. Successful Cryopreservation of Mouse Oocytes by Using Low Concentrations of Trehalose and Dimethylsulfoxide1

    PubMed Central

    Eroglu, Ali; Bailey, Sarah E.; Toner, Mehmet; Toth, Thomas L.

    2008-01-01

    Sugars such as trehalose, sucrose, and glucose are effectively used by a variety of animals (e.g., brine shrimp, tardigrades, some frogs, and insects), as well as by bacteria, yeasts, and plant seeds to survive freezing and extreme drying. The objective of this study was to examine the potential application of sugars to mammalian oocyte cryopreservation. To this end, we used trehalose, a nonreducing disaccharide, and mouse metaphase II oocytes as models. Our experiments show that extracellular trehalose alone affords some protection at high subzero temperatures (e.g., −15°C), which diminishes with further cooling of the oocytes to −30°C and below. When present both intracellularly and extracellularly, trehalose dramatically improves the cryosurvival with increasing extracellular concentrations to 0.5 M, even after cooling to −196°C. Furthermore, the combination of intracellular and extracellular trehalose with small amounts of a conventional penetrating cryoprotectant (i.e., 0.5 M dimethylsulfoxide) provide high survival, fertilization, and embryonic development rates statistically similar to untreated controls. When transferred to foster mothers, cryopreserved oocytes give rise to healthy offspring showing the proof of principle. Our experiments with differential scanning calorimetry indicate that when cooled using the same cryopreservation protocol, the mixture of 0.5 M trehalose and cryopreservation medium undergoes glass transition at high subzero temperatures, which further substantiates the use of sugars as intracellular and extracellular cryoprotectants. Taken together, our results are in agreement with the survival schemes in nature and demonstrate the successful use of sugars in cryopreservation of mammalian oocytes. PMID:18815355

  19. In mouse oocytes the mitochondrion-originated germinal body-like structures accumulate mouse Vasa homologue (MVH) protein.

    PubMed

    Reunov, Arkadiy A; Reunova, Yulia A

    2015-08-01

    Mouse Vasa homologue (MVH) antibodies were applied to mouse Graafian oocytes to clarify if mitochondrion-originated germinal body-like structures, described previously by conventional electron microscopy, were associated with the germ plasm. It was found that both the mitochondrion-like structures with cristae and the germinal body-like structures that lacked any signs of cristae were labelled specifically by the anti-MVH antibody. Moreover, some granules were MVH-positive ultrastructural hybrids of the mitochondria and germinal body-like structures, the presence of which clearly supported the idea of a mitochondrial origin for the germinal body-like structures. This finding is the first evidence that mitochondrion-originated germinal body-like granules represent mouse germ plasm.

  20. Cortical Granule Exocytosis Is Mediated by Alpha-SNAP and N-Ethilmaleimide Sensitive Factor in Mouse Oocytes.

    PubMed

    de Paola, Matilde; Bello, Oscar Daniel; Michaut, Marcela Alejandra

    2015-01-01

    Cortical granule exocytosis (CGE), also known as cortical reaction, is a calcium- regulated secretion that represents a membrane fusion process during meiotic cell division of oocytes. The molecular mechanism of membrane fusion during CGE is still poorly understood and is thought to be mediated by the SNARE pathway; nevertheless, it is unkown if SNAP (acronym for soluble NSF attachment protein) and NSF (acronym for N-ethilmaleimide sensitive factor), two key proteins in the SNARE pathway, mediate CGE in any oocyte model. In this paper, we documented the gene expression of α-SNAP, γ-SNAP and NSF in mouse oocytes. Western blot analysis showed that the expression of these proteins maintains a similar level during oocyte maturation and early activation. Their localization was mainly observed at the cortical region of metaphase II oocytes, which is enriched in cortical granules. To evaluate the function of these proteins in CGE we set up a functional assay based on the quantification of cortical granules metaphase II oocytes activated parthenogenetically with strontium. Endogenous α-SNAP and NSF proteins were perturbed by microinjection of recombinant proteins or antibodies prior to CGE activation. The microinjection of wild type α-SNAP and the negative mutant of α-SNAP L294A in metaphase II oocytes inhibited CGE stimulated by strontium. NEM, an irreversibly inhibitor of NSF, and the microinjection of the negative mutant NSF D1EQ inhibited cortical reaction. The microinjection of anti-α-SNAP and anti-NSF antibodies was able to abolish CGE in activated metaphase II oocytes. The microinjection of anti-γ SNAP antibody had no effect on CGE. Our findings indicate, for the first time in any oocyte model, that α-SNAP, γ-SNAP, and NSF are expressed in mouse oocytes. We demonstrate that α-SNAP and NSF have an active role in CGE and propose a working model.

  1. Cortical Granule Exocytosis Is Mediated by Alpha-SNAP and N-Ethilmaleimide Sensitive Factor in Mouse Oocytes

    PubMed Central

    de Paola, Matilde; Bello, Oscar Daniel; Michaut, Marcela Alejandra

    2015-01-01

    Cortical granule exocytosis (CGE), also known as cortical reaction, is a calcium- regulated secretion that represents a membrane fusion process during meiotic cell division of oocytes. The molecular mechanism of membrane fusion during CGE is still poorly understood and is thought to be mediated by the SNARE pathway; nevertheless, it is unkown if SNAP (acronym for soluble NSF attachment protein) and NSF (acronym for N-ethilmaleimide sensitive factor), two key proteins in the SNARE pathway, mediate CGE in any oocyte model. In this paper, we documented the gene expression of α-SNAP, γ-SNAP and NSF in mouse oocytes. Western blot analysis showed that the expression of these proteins maintains a similar level during oocyte maturation and early activation. Their localization was mainly observed at the cortical region of metaphase II oocytes, which is enriched in cortical granules. To evaluate the function of these proteins in CGE we set up a functional assay based on the quantification of cortical granules metaphase II oocytes activated parthenogenetically with strontium. Endogenous α-SNAP and NSF proteins were perturbed by microinjection of recombinant proteins or antibodies prior to CGE activation. The microinjection of wild type α-SNAP and the negative mutant of α-SNAP L294A in metaphase II oocytes inhibited CGE stimulated by strontium. NEM, an irreversibly inhibitor of NSF, and the microinjection of the negative mutant NSF D1EQ inhibited cortical reaction. The microinjection of anti-α-SNAP and anti-NSF antibodies was able to abolish CGE in activated metaphase II oocytes. The microinjection of anti-γ SNAP antibody had no effect on CGE. Our findings indicate, for the first time in any oocyte model, that α-SNAP, γ-SNAP, and NSF are expressed in mouse oocytes. We demonstrate that α-SNAP and NSF have an active role in CGE and propose a working model. PMID:26267363

  2. Human PLCζ exhibits superior fertilization potency over mouse PLCζ in triggering the Ca2+ oscillations required for mammalian oocyte activation

    PubMed Central

    Nomikos, Michail; Theodoridou, Maria; Elgmati, Khalil; Parthimos, Dimitris; Calver, Brian L.; Buntwal, Luke; Nounesis, George; Swann, Karl; Lai, F. Anthony

    2014-01-01

    A sperm-specific phospholipase C-zeta (PLCζ) is believed to play an essential role in oocyte activation during mammalian fertilization. Sperm PLCζ has been shown to trigger a prolonged series of repetitive Ca2+ transients or oscillations in oocytes that precede activation. This remarkable intracellular Ca2+ signalling phenomenon is a distinctive characteristic observed during in vitro fertilization by sperm. Previous studies have notably observed an apparent differential ability of PLCζ from disparate mammalian species to trigger Ca2+ oscillations in mouse oocytes. However, the molecular basis and confirmation of the apparent PLCζ species difference in activity remains to be provided. In the present study, we provide direct evidence for the superior effectiveness of human PLCζ relative to mouse PLCζ in generating Ca2+ oscillations in mouse oocytes. In addition, we have designed and constructed a series of human/mouse PLCζ chimeras to enable study of the potential role of discrete PLCζ domains in conferring the enhanced Ca2+ signalling potency of human PLCζ. Functional analysis of these human/mouse PLCζ domain chimeras suggests a novel role of the EF-hand domain in the species-specific differences in PLCζ activity. Our empirical observations are compatible with a basic mathematical model for the Ca2+ dependence of generating cytoplasmic Ca2+ oscillations in mammalian oocytes by sperm PLCζ. PMID:24478462

  3. Assessment of Mouse Germinal Vesicle Stage Oocyte Quality by Evaluating the Cumulus Layer, Zona Pellucida, and Perivitelline Space

    PubMed Central

    Liu, Ying-Lei; Chen, Ying; Zhou, Cheng-Jie; Wu, Sha-Na; Shen, Jiang-Peng; Liang, Cheng-Guang

    2014-01-01

    To improve the outcome of assisted reproductive technology (ART) for patients with ovulation problems, it is necessary to retrieve and select germinal vesicle (GV) stage oocytes with high developmental potential. Oocytes with high developmental potential are characterized by their ability to undergo proper maturation, fertilization, and embryo development. In this study, we analyzed morphological traits of GV stage mouse oocytes, including cumulus cell layer thickness, zona pellucida thickness, and perivitelline space width. Then, we assessed the corresponding developmental potential of each of these oocytes and found that it varies across the range measured for each morphological trait. Furthermore, by manipulating these morphological traits in vitro, we were able to determine the influence of morphological variation on oocyte developmental potential. Manually altering the thickness of the cumulus layer showed strong effects on the fertilization and embryo development potentials of oocytes, whereas manipulation of zona pellucida thickness effected the oocyte maturation potential. Our results provide a systematic detailed method for selecting GV stage oocytes based on a morphological assessment approach that would benefit for several downstream ART applications. PMID:25144310

  4. Cross species fertilization and development investigated by cat sperm injection into mouse oocytes.

    PubMed

    Xu, Yong-Nan; Cui, Xiang-Shun; Sun, Shao-Chen; Jin, Yong-Xun; Kim, Nam-Hyung

    2011-07-01

    The use of intracytoplasmic sperm injection (ICSI) in model animals is a powerful approach for the study of species-specific fertilization processes and multiploidy embryogenesis. In this study, we examined the fertilization process in mouse oocytes following injection of a single mouse or cat sperm, two mouse spermatozoa or mouse and cat spermatozoa. These treatments did not affect histone H3K9 acetylation or methylation, although the pattern of DNA methylation differed following the injection of cat sperm. Immunocytochemical staining revealed that sperm chromatin was normally incorporated with female mouse chromatin following any of the four injection scenarios. Furthermore, metaphase was successfully entered to reach a normal two-cell stage, and cell division could even persist to produce blastocyst stage embryos. In addition, both mouse and cat Pou5l and Nanog mRNA were expressed in the hybrid embryos. These results suggest that, although epigenetic modification of DNA is affected by the sperm injection treatment, fertilization and cleavage occur in a non-species-specific manner. In addition, despite abnormal division of the chromosomes, intra- and inter-species ICSI produced embryos that could develop into blastocysts.

  5. Ultrastructure of the oocytes of the Egyptian sping mouse (Acomys cahirinus).

    PubMed

    Kang, Y H; Anderson, W A

    1975-06-01

    The oocytes of types 2, 3, 4 and 5 follicles from the normal spiny mouse were examined withe the electron microsome. Multiple juxtanuclear Golgi bodies, mitochondria associated with flattened granular endoplasmic reticulum, and large nucleus are the main features of the type 2 follicle oocyte. The numbers of mitochondria and Golgi apparati increase significantly at later stages. Small mitochondrial aggregates lacking "intermitochondrial cement" are seen in the ooplasm of types 3, 4 and 5 follicles. "Lamellar complexes" comprising two to six elongate flattened rough ER cisternae and intercisternal filaments begin to appear in the occyte of the type 3 follicle. The intercisternal filaments may be observed as punctate-, dashed-, and solid-lines in cross sections. In tangential sections the filaments display a paracrystalline structure. In the type 4 follicle oocytes, the "lamellar complex" becomes more extensive; polysomes and ribosomal fibrils are juxtaposed to the "lamellar complexes." Bundles of ribosomal fibrils are abundant in the ooplasm of the type 5 follicle. The origin of ribosomal filaments and the functional significance of "lamellar complexes" are discussed.

  6. Multiple conductance classes of mouse nicotinic acetylcholine receptors expressed in Xenopus oocytes.

    PubMed Central

    Kullberg, R; Owens, J L; Camacho, P; Mandel, G; Brehm, P

    1990-01-01

    Acetylcholine receptor (AcChoR) subunit mRNAs transcribed from mouse BC3H-1 cDNAs were injected into Xenopus oocytes and the expressed AcChoR channels were examined by single channel recording. Injection of alpha-, beta-, gamma-, and delta-subunit mRNAs produced two predominant channel classes with conductances of approximately 50 and approximately 12 pS, while infrequent openings of approximately 25-pS channels were also observed. Injection of alpha-, beta-, and gamma-subunit mRNAs produced a single class of approximately 12-pS AcChoR channels, which resembled the smallest conductance channels present in alpha beta gamma omega-injected oocytes. Assembly of delta-less channels may thus explain the lowest conductance AcChoR channels in alpha beta gamma delta-injected oocytes and might also account for similar channels that have been observed in vertebrate skeletal muscle. Images PMID:2315303

  7. Mouse oocytes suppress miR-322-5p expression in ovarian granulosa cells

    PubMed Central

    SUMITOMO, Jun-ichi; EMORI, Chihiro; MATSUNO, Yuta; UENO, Mizuki; KAWASAKI, Kurenai; ENDO, Takaho A.; SHIROGUCHI, Katsuyuki; FUJII, Wataru; NAITO, Kunihiko; SUGIURA, Koji

    2016-01-01

    This study tested the hypothesis that oocyte-derived paracrine factors (ODPFs) regulate miRNA expression in mouse granulosa cells. Expression of mmu-miR-322-5p (miR-322) was higher in mural granulosa cells (MGCs) than in cumulus cells of the Graafian follicles. The expression levels of miR-322 decreased when cumulus cells or MGCs were co-cultured with oocytes denuded of their cumulus cells. Inhibition of SMAD2/3 signaling by SB431542 increased miR-322 expression by cumulus-oocyte complexes (COCs). Moreover, the cumulus cells but not the MGCs in Bmp15–/–/Gdf9+/– (double-mutant) mice exhibited higher miR-322 expression than those of wild-type mice. Taken together, these results show that ODPFs suppress the expression of miR-322 in cumulus cells. Gene ontology analysis of putative miR-322 targets whose expression was detected in MGCs with RNA-sequencing suggested that multiple biological processes are affected by miR-322 in MGCs. These results demonstrate that ODPFs regulate miRNA expression in granulosa cells and that this regulation may participate in the differential control of cumulus cell versus MGC functions. Therefore, the ODPF-mediated regulation of cumulus cells takes place at both transcriptional and post-transcriptional levels. PMID:27180925

  8. Nicotinamide impairs entry into and exit from meiosis I in mouse oocytes.

    PubMed

    Riepsamen, Angelique; Wu, Lindsay; Lau, Laurin; Listijono, Dave; Ledger, William; Sinclair, David; Homer, Hayden

    2015-01-01

    Following exit from meiosis I, mammalian oocytes immediately enter meiosis II without an intervening interphase, accompanied by rapid reassembly of a bipolar spindle that maintains condensed chromosomes in a metaphase configuration (metaphase II arrest). Here we study the effect of nicotinamide (NAM), a non-competitive pan-sirtuin inhibitor, during meiotic maturation in mouse oocytes. Sirtuins are a family of seven NAD+-dependent deacetylases (Sirt1-7), which are involved in multiple cellular processes and are emerging as important regulators in oocytes and embryos. We found that NAM significantly delayed entry into meiosis I associated with delayed accumulation of the Cdk1 co-activator, cyclin B1. GVBD was also inhibited by the Sirt2-specific inhibitor, AGK2, and in a very similar pattern to NAM, supporting the notion that as in somatic cells, NAM inhibits sirtuins in oocytes. NAM did not affect subsequent spindle assembly, chromosome alignment or the timing of first polar body extrusion (PBE). Unexpectedly, however, in the majority of oocytes with a polar body, chromatin was decondensed and a nuclear structure was present. An identical phenotype was observed when flavopiridol was used to induce Cdk1 inactivation during late meiosis I prior to PBE, but not if Cdk1 was inactivated after PBE when metaphase II arrest was already established, altogether indicating that NAM impaired establishment rather than maintenance of metaphase II arrest. During meiosis I exit in NAM-treated medium, we found that cyclin B1 levels were lower and inhibitory Cdk1 phosphorylation was increased compared with controls. Although activation of the anaphase-promoting complex-Cdc20 (APC-Cdc20) occurred on-time in NAM-treated oocytes, Cdc20 levels were higher in very late meiosis I, pointing to exaggerated APC-Cdc20-mediated proteolysis as a reason for lower cyclin B1 levels. Collectively, therefore, our data indicate that by disrupting Cdk1 regulation, NAM impairs entry into meiosis I and

  9. Ejaculated Mouse Sperm Enter Cumulus-Oocyte Complexes More Efficiently In Vitro than Epididymal Sperm

    PubMed Central

    Suarez, Susan S.

    2015-01-01

    The mouse is an established and popular animal model for studying reproductive biology. Epididymal mouse sperm, which lack exposure to secretions of male accessory glands and do not precisely represent ejaculated sperm for the study of sperm functions, have been almost exclusively used in studies. We compared ejaculated and epididymal sperm in an in vitro fertilization setting to examine whether ejaculated sperm enter cumulus-oocyte complexes more efficiently. In order to prepare sperm for fertilization, they were incubated under capacitating conditions. At the outset of incubation, ejaculated sperm stuck to the glass surfaces of slides and the incidences of sticking decreased with time; whereas, very few epididymal sperm stuck to glass at any time point, indicating differences in surface charge. At the end of the capacitating incubation, when sperm were added to cumulus-oocyte complexes, the form of flagellar movement differed dramatically; specifically, ejaculated sperm predominantly exhibited increased bending on one side of the flagellum (a process termed pro-hook hyperactivation), while epididymal sperm equally exhibited increased bending on one or the other side of the flagellum (pro-hook or anti-hook hyperactivation). This indicates that accessory sex gland secretions might have modified Ca2+ signaling activities in sperm, because the two forms of hyperactivation are reported to be triggered by different Ca2+ signaling patterns. Lastly, over time, more ejaculated than epididymal sperm entered the cumulus oocyte complexes. We concluded that modification of sperm by male accessory gland secretions affects the behavior of ejaculated sperm, possibly providing them with an advantage over epididymal sperm for reaching the eggs in vivo. PMID:25996155

  10. Effects of Trichostatin A on Cumulus Expansion during Mouse Oocyte Maturation.

    PubMed

    Du, Ming; Fu, Xiangwei; Zhou, Yanhua; Zhu, Shien

    2013-11-01

    This study was conducted to investigate the effects of Trichostatin A (TSA) on cumulus expansion during mouse oocyte maturation. TSA treatment inhibited cumulus expansion and significantly reduced the cumulus expansion index (CEI) (p<0.05). To determine the underlying mechanism, the expression levels of several key factors that play crucial roles in cumulus expansion including components of extracellular matrix (ECM) (Has2, Ptgs2, Ptx3, and Tnfaip6) and Growth differentiation factor 9 (GDF9) were measured in control and TSA treated samples by real-time PCR. The effect of TSA on ERK phosphorylation (p-ERK1/2) in cumulus cells and GDF9 protein level in fully grown oocytes (FGOs) were detected by Western blotting. The expression levels of the ECM genes were significantly decreased (p<0.05) by TSA treatment while GDF9 expression did not response to TSA (p>0.05). TSA treatment blocked the activation of ERK1/2 (p<0.05) and had no significant effect on GDF9 protein expression (p>0.05). Collectively, these results suggested that TSA treatment altered ECM gene expression and blocked ERK1/2 activation to inhibit cumulus expansion in the mouse.

  11. Bayesian Inference of Forces Causing Cytoplasmic Streaming in Caenorhabditis elegans Embryos and Mouse Oocytes.

    PubMed

    Niwayama, Ritsuya; Nagao, Hiromichi; Kitajima, Tomoya S; Hufnagel, Lars; Shinohara, Kyosuke; Higuchi, Tomoyuki; Ishikawa, Takuji; Kimura, Akatsuki

    2016-01-01

    Cellular structures are hydrodynamically interconnected, such that force generation in one location can move distal structures. One example of this phenomenon is cytoplasmic streaming, whereby active forces at the cell cortex induce streaming of the entire cytoplasm. However, it is not known how the spatial distribution and magnitude of these forces move distant objects within the cell. To address this issue, we developed a computational method that used cytoplasm hydrodynamics to infer the spatial distribution of shear stress at the cell cortex induced by active force generators from experimentally obtained flow field of cytoplasmic streaming. By applying this method, we determined the shear-stress distribution that quantitatively reproduces in vivo flow fields in Caenorhabditis elegans embryos and mouse oocytes during meiosis II. Shear stress in mouse oocytes were predicted to localize to a narrower cortical region than that with a high cortical flow velocity and corresponded with the localization of the cortical actin cap. The predicted patterns of pressure gradient in both species were consistent with species-specific cytoplasmic streaming functions. The shear-stress distribution inferred by our method can contribute to the characterization of active force generation driving biological streaming.

  12. Bayesian Inference of Forces Causing Cytoplasmic Streaming in Caenorhabditis elegans Embryos and Mouse Oocytes

    PubMed Central

    Niwayama, Ritsuya; Nagao, Hiromichi; Kitajima, Tomoya S.; Hufnagel, Lars; Shinohara, Kyosuke; Higuchi, Tomoyuki; Ishikawa, Takuji

    2016-01-01

    Cellular structures are hydrodynamically interconnected, such that force generation in one location can move distal structures. One example of this phenomenon is cytoplasmic streaming, whereby active forces at the cell cortex induce streaming of the entire cytoplasm. However, it is not known how the spatial distribution and magnitude of these forces move distant objects within the cell. To address this issue, we developed a computational method that used cytoplasm hydrodynamics to infer the spatial distribution of shear stress at the cell cortex induced by active force generators from experimentally obtained flow field of cytoplasmic streaming. By applying this method, we determined the shear-stress distribution that quantitatively reproduces in vivo flow fields in Caenorhabditis elegans embryos and mouse oocytes during meiosis II. Shear stress in mouse oocytes were predicted to localize to a narrower cortical region than that with a high cortical flow velocity and corresponded with the localization of the cortical actin cap. The predicted patterns of pressure gradient in both species were consistent with species-specific cytoplasmic streaming functions. The shear-stress distribution inferred by our method can contribute to the characterization of active force generation driving biological streaming. PMID:27472658

  13. Regulation of fatty acid oxidation in mouse cumulus-oocyte complexes during maturation and modulation by PPAR agonists.

    PubMed

    Dunning, Kylie R; Anastasi, Marie R; Zhang, Voueleng J; Russell, Darryl L; Robker, Rebecca L

    2014-01-01

    Fatty acid oxidation is an important energy source for the oocyte; however, little is known about how this metabolic pathway is regulated in cumulus-oocyte complexes. Analysis of genes involved in fatty acid oxidation showed that many are regulated by the luteinizing hormone surge during in vivo maturation, including acyl-CoA synthetases, carnitine transporters, acyl-CoA dehydrogenases and acetyl-CoA transferase, but that many are dysregulated when cumulus-oocyte complexes are matured under in vitro maturation conditions using follicle stimulating hormone and epidermal growth factor. Fatty acid oxidation, measured as production of ³H₂O from [³H]palmitic acid, occurs in mouse cumulus-oocyte complexes in response to the luteinizing hormone surge but is significantly reduced in cumulus-oocyte complexes matured in vitro. Thus we sought to determine whether fatty acid oxidation in cumulus-oocyte complexes could be modulated during in vitro maturation by lipid metabolism regulators, namely peroxisome proliferator activated receptor (PPAR) agonists bezafibrate and rosiglitazone. Bezafibrate showed no effect with increasing dose, while rosiglitazone dose dependently inhibited fatty acid oxidation in cumulus-oocyte complexes during in vitro maturation. To determine the impact of rosiglitazone on oocyte developmental competence, cumulus-oocyte complexes were treated with rosiglitazone during in vitro maturation and gene expression, oocyte mitochondrial activity and embryo development following in vitro fertilization were assessed. Rosiglitazone restored Acsl1, Cpt1b and Acaa2 levels in cumulus-oocyte complexes and increased oocyte mitochondrial membrane potential yet resulted in significantly fewer embryos reaching the morula and hatching blastocyst stages. Thus fatty acid oxidation is increased in cumulus-oocyte complexes matured in vivo and deficient during in vitro maturation, a known model of poor oocyte quality. That rosiglitazone further decreased fatty acid

  14. Reversible Disassembly of the Actin Cytoskeleton Improves the Survival Rate and Developmental Competence of Cryopreserved Mouse Oocytes

    PubMed Central

    Hosu, Basarab G.; Mullen, Steven F.; Critser, John K.; Forgacs, Gabor

    2008-01-01

    Effective cryopreservation of oocytes is critically needed in many areas of human reproductive medicine and basic science, such as stem cell research. Currently, oocyte cryopreservation has a low success rate. The goal of this study was to understand the mechanisms associated with oocyte cryopreservation through biophysical means using a mouse model. Specifically, we experimentally investigated the biomechanical properties of the ooplasm prior and after cryopreservation as well as the consequences of reversible dismantling of the F-actin network in mouse oocytes prior to freezing. The study was complemented with the evaluation of post-thaw developmental competence of oocytes after in vitro fertilization. Our results show that the freezing-thawing process markedly alters the physiological viscoelastic properties of the actin cytoskeleton. The reversible depolymerization of the F-actin network prior to freezing preserves normal ooplasm viscoelastic properties, results in high post-thaw survival and significantly improves developmental competence. These findings provide new information on the biophysical characteristics of mammalian oocytes, identify a pathophysiological mechanism underlying cryodamage and suggest a novel cryopreservation method. PMID:18665248

  15. Chronic Unpredictable Stress Decreases Expression of Brain-Derived Neurotrophic Factor (BDNF) in Mouse Ovaries: Relationship to Oocytes Developmental Potential

    PubMed Central

    Tong, Xian-Hong; Han, Hui; Shen, Ni; Jin, Ren-Tao; Wang, Wei; Zhou, Gui-Xiang; He, Guo-Ping; Liu, Yu-Sheng

    2012-01-01

    Background Brain-derived neurotropic factor (BDNF) was originally described in the nervous system but has been shown to be expressed in ovary tissues recently, acting as a paracrine/autocrine regulator required for developments of follicles and oocytes. Although it is generally accepted that chronic stress impairs female reproduction and decreases the expression of BDNF in limbic structures of central nervous system, which contributes to mood disorder. However, it is not known whether chronic stress affects oocytes developments, nor whether it affects expression of BDNF in ovary. Methods Mice were randomly assigned into control group, stressed group, BDNF-treated group and BDNF-treated stressed group. The chronic unpredictable mild stress model was used to produce psychosocial stress in mice, and the model was verified by open field test and hypothalamic-pituitary-adrenal (HPA) axis activity. The methods of immunohistochemistry and western blotting were used to detect BDNF protein level and distribution. The number of retrieved oocytes, oocyte maturation, embryo cleavage and the rates of blastocyst formation after parthenogenetic activation were evaluated. Results Chronic unpredictable stress decreased the BDNF expression in antral follicles, but didn’t affect the BDNF expression in primordial, primary and secondary follicles. Chronic unpredictable stress also decreased the number of retrieved oocytes and the rate of blastocyst formation, which was rescued by exogenous BDNF treatment. Conclusion BDNF in mouse ovaries may be related to the decreased number of retrieved oocytes and impaired oocytes developmental potential induced by chronic unpredictable stress. PMID:23284991

  16. Mouse cumulus-denuded oocytes restore developmental capacity completely when matured with optimal supplementation of cysteamine, cystine, and cumulus cells.

    PubMed

    Zhou, Ping; Wu, Yan-Guang; Wei, De-Li; Li, Qing; Wang, Gang; Zhang, Jie; Luo, Ming-Jiu; Tan, Jing-He

    2010-04-01

    Our objectives were to study how cysteamine, cystine, and cumulus cells (CCs), as well as oocytes interact to increase oocyte intracellular glutathione (GSH) and thereby to establish an efficient in vitro maturation system for cumulus-denuded oocytes (DOs). Using M16 that contained no thiol as maturation medium, we showed that when supplemented alone, neither cystine nor cysteamine promoted GSH synthesis of mouse DOs, but they did when used together. Although goat CCs required either cysteamine or cystine to promote GSH synthesis, mouse CCs required both. In the presence of cystine, goat CCs produced cysteine but mouse CCs did not. Cysteamine reduced cystine to cysteine in cell-free M16. When TCM-199 that contained 83 microM cystine was used as maturation medium, supplementation with cysteamine alone had no effect, but supplementation with 100 microM cysteamine and 200 microM cystine increased blastulation of DOs matured with CC coculture to a level as high as achieved in cumulus-surrounded oocytes (COCs). Similar numbers of young were produced after two-cell embryos from mouse COCs or CC-cocultured DOs matured with optimal thiol supplementation were transferred to pseudopregnant recipients. It is concluded that 1) mouse CCs can use neither cysteamine nor cystine to promote GSH synthesis, but goat CCs can use either one; 2) goat CCs promote mouse oocyte GSH synthesis by reducing cystine to cysteine, but how they use cysteamine requires further investigation; and 3) mouse DOs can use neither cystine nor cysteamine for GSH synthesis, but they restore developmental capacity completely when matured in the presence of optimum supplementation of cysteamine, cystine, and CCs.

  17. KIF2A regulates the spindle assembly and the metaphase I-anaphase I transition in mouse oocyte

    PubMed Central

    Chen, Ming-Huang; Liu, Yu; Wang, Ya-Long; Liu, Rui; Xu, Bai-Hui; Zhang, Fei; Li, Fei-Ping; Xu, Lin; Lin, Yan-Hong; He, Shu-Wen; Liao, Bao-Qiong; Fu, Xian-Pei; Wang, Xiao-Xue; Yang, Xiang-Jun; Wang, Hai-Long

    2016-01-01

    KIF2A, a member of the kinesin-13 family, has been reported to play a role in spindle assembly in mitosis. However, its function in mammalian meiosis remains unknown. In this research, we examined the expression, localization and function of KIF2A during mouse oocyte meiosis. KIF2A was expressed in some key stages in mouse oocyte meiosis. Immunofluorescent staining showed that KIF2A distributed in the germinal vesicle at the germinal vesicle stage and as the spindle assembling after meiosis resumption, KIF2A gradually accumulated to the entire spindle. The treatment of oocytes with taxol and nocodazole demonstrated that KIF2A was co-localized with α-tubulin. Depletion of KIF2A by specific short interfering (si) RNA injection resulted in abnormal spindle assembly, failure of spindle migration, misaligned chromosomes and asymmetric cell division. Meanwhile, SKA1 expression level was decreased and the TACC3 localization was disrupted. Moreover, depletion of KIF2A disrupted the actin cap formation, arrested oocytes at metaphase I with spindle assembly checkpoint protein BubR1 activated and finally reduced the rate of the first polar body extrusion. Our data indicate that KIF2A regulates the spindle assembly, asymmetric cytokinesis and the metaphase I-anaphase I transition in mouse oocyte. PMID:27991556

  18. Effect of Rat Medicated Serum Containing You Gui Wan on Mouse Oocyte In Vitro Maturation and Subsequent Fertilization Competence

    PubMed Central

    Jiang, Xiao-Hui; Deng, Yan-li; Lu, Hua; Duan, Heng; Zhen, Xia; Hu, Xiang; Liang, Xin

    2014-01-01

    You Gui Wan (YGW) is a classic herbal formula in traditional Chinese medicine (TCM) used for the clinical treatment of infertility. This study was to explore whether YGW has an impact on mouse oocyte maturation in vitro and subsequent fertilization competence. Rat medicated serum containing YGW was prepared by orally administrating YGW. Mouse immature oocytes were cultured with YGW medicated serum and compared to those cultured with or without normal rat serum or follicle-stimulating hormone (FSH). YGW medicated serum significantly increased the percentages of matured oocytes when compared to the groups with or without normal rat serum (P < 0.01). Furthermore, YGW medicated serum increased the rate of in vitro fertilization (IVF) when compared to the groups treated with FSH and with or without normal rat serum (P < 0.001). YGW medicated serum also had significant effects on the mRNA expressions of PKA, CREB, MAPK, PKC, PKG, and MPF and the concentrations of cAMP, cGMP, and NO in matured oocytes. These results indicate that YGW can promote mouse oocyte maturation and IVF in vitro. Signaling pathways, such as the cAMP/PKA/MAPK, the PKC-MAPK, and the NO-cGMP-PKG pathway, which are similar to those induced by FSH, may be responsible for this action. PMID:25530775

  19. VEGF and FGF2 Improve Revascularization, Survival, and Oocyte Quality of Cryopreserved, Subcutaneously-Transplanted Mouse Ovarian Tissues

    PubMed Central

    Li, Sheng-Hsiang; Hwu, Yuh-Ming; Lu, Chung-Hao; Chang, Hsiao-Ho; Hsieh, Cheng-En; Lee, Robert Kuo-Kuang

    2016-01-01

    This study was conducted to investigate the effect of the vascular endothelial growth factor (VEGF) and fibroblast growth factor 2 (FGF2) on revascularization, survival, and oocyte quality of cryopreserved, subcutaneously-transplanted mouse ovarian tissue. Autologous subcutaneous transplantation of vitrified-thawed mouse ovarian tissues treated with (experimental group) or without (control group) VEGF and FGF2 was performed. After transplantation to the inguinal region for two or three weeks, graft survival, angiogenesis, follicle development, and oocyte quality were examined after gonadotropin administration. VEGF coupled with FGF2 (VEGF/FGF2) promoted revascularization and significantly increased the survival rate of subcutaneously-transplanted cryopreserved ovarian tissues compared with untreated controls. The two growth factors did not show long-term effects on the ovarian grafts. In contrast to the untreated ovarian grafts, active folliculogenesis was revealed as the number of follicles at various stages and of mature oocytes in antral follicles after gonadotropin administration were remarkably higher in the VEGF/FGF2-treated groups. Although the fertilization rate was similar between the VEGF/FGF2 and control groups, the oocyte quality was much better in the VEGF/FGF2-treated grafts as demonstrated by the higher ratio of blastocyst development. Introducing angiogenic factors, such as VEGF and FGF2, may be a promising strategy to improve revascularization, survival, and oocyte quality of cryopreserved, subcutaneously-transplanted mouse ovarian tissue. PMID:27483256

  20. Injury effects of ginkgolide B on maturation of mouse oocytes, fertilization, and fetal development in vitro and in vivo.

    PubMed

    Shiao, Nion-Heng; Chan, Wen-Hsiung

    2009-07-10

    Ginkgolide B (GKB), the major active component of Ginkgo biloba extracts, exerts both stimulatory and inhibitory effects on apoptotic signaling. Previous studies by our group demonstrated that ginkgolide treatment of mouse blastocysts induces apoptosis, decreases cell number, hinders early postimplantation blastocyst development, and increases early-stage blastocyst death. Here, we further investigate the effects of GKB on oocyte maturation, and subsequent pre- and postimplantation development in vitro and in vivo. In our experiments, GKB induced a significant reduction in the rate of oocyte maturation, fertilization, and in vitro embryonic development. Treatment of oocytes with 1-6 microM GKB during in vitro maturation (IVM) led to increased resorption of postimplantation embryos and decreased placental and fetal weights. Data obtained using an in vivo mouse model further disclosed that consumption of drinking water containing 3-6 microM GKB led to decreased oocyte maturation and in vitro fertilization, as well as early embryo developmental injury, specifically, inhibition of development to the blastocyst stage in vivo. To our knowledge, this is the first study to investigate the impact of GKB on maturation of mouse oocytes, fertilization, and sequential embryonic development.

  1. Fertilizability and chromosomal integrity of frozen-thawed Bryde's whale (Balaenoptera edeni) spermatozoa intracytoplasmically injected into mouse oocytes.

    PubMed

    Watanabe, H; Tateno, H; Kusakabe, H; Matsuoka, T; Kamiguchi, Y; Fujise, Y; Ishikawa, H; Ohsumi, S; Fukui, Y

    2007-02-01

    Prior to attempting the in vitro production of embryos in the Bryde's whale (Balaenoputera edeni), we investigated whether spermatozoa can retain the capacity for oocyte activation and pronucleus formation as well as chromosomal integrity under cryopreservation by using intracytoplasmic sperm injection (ICSI) into mouse oocytes. Regardless of motility and viability, whale spermatozoa efficiently led to the activation of mouse oocytes (90.3-97.4%), and sperm nuclei successfully transformed into male pronucleus within activated ooplasm (87.2-93.6%). Chromosome analysis at the first cleavage metaphase (M) of the hybrid zygotes revealed that a majority (95.2%) of motile spermatozoa had the normal chromosome complement, while the percentage of chromosomal normality was significantly reduced to 63.5% in immotile spermatozoa and 50.0% in dead spermatozoa due to the increase in structural chromosome aberrations. This is the first report showing that motile Bryde's whale spermatozoa are competent to support embryonic development.

  2. Obox4-silencing-activated STAT3 and MPF/MAPK signaling accelerate nuclear membrane breakdown in mouse oocytes.

    PubMed

    Lee, Hyun-Seo; Kim, Kyeoung-Hwa; Kim, Eun-Young; Lee, Su-Yeon; Ko, Jung-Jae; Lee, Kyung-Ah

    2016-04-01

    Mouse oocytes begin to mature in vitro once liberated from ovarian follicles. Previously, we showed that oocyte-specific homeobox 4 (Obox4) is critical for maintaining the intact nuclear membrane of the germinal vesicle (GV) in oocytes and for completing meiosis at the metaphase I-II (MI-MII) transition. This study further examines the molecular mechanisms of OBOX4 in regulating GV nuclear membrane breakdown. Maturation-promoting factor (MPF) and MAPK are normally inactive in GV stage oocytes but were activated prematurely in arrested GV stage oocytes by 3-isobutyl-1-metyl-xanthine (IBMX) in vitro after Obox4 RNA interference (RNAi). Furthermore, signal transducer and activator of transcription 3 (STAT3) was significantly activated by Obox4 RNAi. We confirmed that this Obox4 RNAi-induced premature STAT3 and MPF/MAPK activation at the GV stage provoked subsequent GV breakdown (GVBD) despite the opposing force of high cAMP in the IBMX-supplemented medium to maintain intact GV. When cumulus-oocyte complexes were exposed to interferon α (IFNA), a STAT3 activator, oocytes matured and cumulus cells expanded to resume nuclear maturation in IBMX-supplemented medium, suggesting that STAT3 activation is sufficient for stimulating the continuation of meiosis. Using Stattic, a specific STAT3 inhibitor, we confirmed that GVBD involves STAT3 activation in Obox4-silenced oocytes. Based on these findings, we concluded that i) Obox4 is an important upstream regulator of MPF/MAPK and STAT3 signaling, and ii) Obox4 is a key regulator of the GV arrest mechanism in oocytes.

  3. Pronuclear epigenetic modification of protamine deficient human sperm following injection into mouse oocytes.

    PubMed

    Rajabi, Hoda; Mohseni-Kouchesfehani, Homa; Mohammadi-Sangcheshmeh, Abdollah; Farifteh-Nobijari, Fattaneh; Salehi, Mohammad

    2016-01-01

    Epigenetic abnormalities and abnormal chromatin structure in sperm may lead to male infertility. Protamine deficiency is among the disorders of chromatin structure in sperm. The study of epigenetic changes in male pronuclei is necessary since abnormal sperm is sometimes used to create embryos using assisted reproductive techniques. The present study was carried out to compare epigenetic global marks in male pronuclei derived from normal and protamine deficient sperm cells. To do so, interspecies fertilization was used to obtain the male pronucleus. Normal and protamine deficient sperm cells, which were identified by chromomycin A3 staining, were injected into mouse oocytes. Oocytes were cultured until pronuclear formation and were then labeled with different antibodies (anti 5-methylcytosine, anti 5-hydroxymethylcytosine, and anti acetyl H4K12). Based on the fluorescence intensity, the level of each of these epigenetic factors was determined and they revealed a significant relationship between the level of sperm protamine deficiency and sperm epigenetic factors. Protamine deficiency was found to be associated with an increased methylation (p=0) and decreased hydroxymethylation rate (p=0.015) of the male pronucleus chromatin. However, no association was found between protamine deficiency and the level of H4K12 acetylation (p=0.548). Also, the efficiency of fertilization in protamine deficient sperm cells was less than normal. These results suggest that protamine deficient sperm cells lead to the formation of epigenetically altered pronuclei.

  4. Activin A accelerates the progression of fetal oocytes throughout meiosis and early oogenesis in the mouse.

    PubMed

    Liang, Gui-Jin; Zhang, Xi-Feng; Wang, Jun-Jie; Sun, Yuan-Chao; Sun, Xiao-Feng; Cheng, Shun-Feng; Li, Lan; De Felici, Massimo; Shen, Wei

    2015-10-15

    Activins can exert several roles in ovary development. However, little is known about their involvement in early mammalian oogenesis. In this study, we reported that activin receptors (including ActRIA, ActRIB, ActRIIA, and ActRIIB) are expressed throughout the development of the mouse ovaries from 12.5 days postcoitum (dpc) to 21 days postparturition (dpp). Moreover, we found that in vitro, the addition of activin A (ActA) to the culture medium of 12.5 dpc ovarian tissues accelerated the progression of oocytes throughout meiotic prophase I stages. This result was reproduced in vivo following administration of ActA to pregnant mice. The in vitro effect of ActA was associated with increased expression of premeiotic and meiotic genes (including Dazl, Spo11, Stra8, Scp3, and Rec8) in the ovarian tissues. Mechanistically, ActA-dependent SMAD3 signaling modulated the expression of members of the retinoic acid (RA) system, including the RA degradation CYP26B1 enzyme and the RA receptors. Finally, ActA promoted the survival and growth of fetal and early postnatal oocytes and primordial follicle assembly both in vitro and in vivo. In conclusion, the present study identifies new roles of ActA in early oogenesis and suggested that ActA and RA might cooperate in promoting meiosis in female germ cells.

  5. Kid depletion in mouse oocytes associated with multinucleated blastomere formation and inferior embryo development.

    PubMed

    Egashira, Akiyoshi; Yamauchi, Nobuhiko; Islam, Md Rashedul; Yamagami, Kazuki; Tanaka, Asami; Suyama, Hikaru; El-Sayed, El-Sharawy Mohamed; Tabata, Shoji; Kuramoto, Takashi

    2016-08-01

    This study investigated the knockdown (KD) of Kid on maturation developmental competence and multinucleation of mouse germinal vesicle (GV) oocytes after parthenogenetic activation. Data revealed that Kid messenger RNA (mRNA) was expressed in GV and MII stage oocyte and 1- and 2-cell embryos. Additionally, Kid mRNA expression in the Kid KD group decreased by nearly 46% compared to the control small interfering RNA (siRNA) groups. The rate of multinucleated embryos in the Kid KD group (52.4%) was significantly higher (P < 0.05) than the control siRNA group (4.7%). Finally, the developmental rates were significantly lower in the Kid siRNA group at > 4-cell stage (28.6% vs. 53.5%) and the blastocyst stage (2.4% vs. 23.3%) compared to the control siRNA groups. Suppression of Kid using siRNA caused multinucleation in early embryos with high frequency and it may increase 2- to 4-cell arrested embryos and reduce the developmental competence to blastocyst.

  6. Cytotoxic effects of CdSe quantum dots on maturation of mouse oocytes, fertilization, and fetal development.

    PubMed

    Hsieh, Ming-Shu; Shiao, Nion-Heng; Chan, Wen-Hsiung

    2009-05-14

    Quantum dots (QDs) are useful novel luminescent markers, but their embryonic toxicity is yet to be fully established, particularly in oocyte maturation and sperm fertilization. Earlier experiments by our group show that CdSe-core QDs have cytotoxic effects on mouse blastocysts and are associated with defects in subsequent development. Here, we further investigate the influence of CdSe-core QDs on oocyte maturation, fertilization, and subsequent pre- and postimplantation development. CdSe-core QDs induced a significant reduction in the rates of oocyte maturation, fertilization, and in vitro embryo development, but not ZnS-coated CdSe QDs. Treatment of oocytes with 500 nM CdSe-core QDs during in vitro maturation (IVM) led to increased resorption of postimplantation embryos and decreased placental and fetal weights. To our knowledge, this is the first study to report the negative impact of CdSe-core QDs on mouse oocyte development. Moreover, surface modification of CdSe-core QDs with ZnS effectively prevented this cytotoxicity.

  7. Recovery of cell nuclei from 15,000 years old mammoth tissues and its injection into mouse enucleated matured oocytes.

    PubMed

    Kato, Hiromi; Anzai, Masayuki; Mitani, Tasuku; Morita, Masahiro; Nishiyama, Yui; Nakao, Akemi; Kondo, Kenji; Lazarev, Petr A; Ohtani, Tsuyoshi; Shibata, Yasuyuki; Iritani, Akira

    2009-01-01

    Here, we report the recovery of cell nuclei from 14,000-15,000 years old mammoth tissues and the injection of those nuclei into mouse enucleated matured oocytes by somatic cell nuclear transfer (SCNT). From both skin and muscle tissues, cell nucleus-like structures were successfully recovered. Those nuclei were then injected into enucleated oocytes and more than half of the oocytes were able to survive. Injected nuclei were not taken apart and remained its nuclear structure. Those oocytes did not show disappearance of nuclear membrane or premature chromosome condensation (PCC) at 1 hour after injection and did not form pronuclear-like structures at 7 hours after injection. As half of the oocytes injected with nuclei derived from frozen-thawed mouse bone marrow cells were able to form pronuclear-like structures, it might be possible to promote the cell cycle of nuclei from ancient animal tissues by suitable pre-treatment in SCNT. This is the first report of SCNT with nuclei derived from mammoth tissues.

  8. Effects of protein kinase C activators on germinal vesicle breakdown and polar body emission of mouse oocytes

    SciTech Connect

    Bornslaeger, E.A.; Poueymirou, W.T.; Mattei, P.; Schultz, R.M.

    1986-01-01

    Protein phosphorylation mediated by cAMP-dependent protein kinase is instrumental in maintaining meiotic arrest of mouse oocytes. To assess whether protein phosphorylation mediated by calcium/phospholipid-dependent protein kinase (protein kinase C) might also inhibit the resumption of meiosis, oocytes were treated with activators of this enzyme. The active phorbol esters 12-O-tetra-decanoyl phorbol-13-acetate (TPA) and 4..beta..-phorbol, 12,13-didecanoate (4..beta..-PDD) inhibited germinal vesicle breakdown (GVBD), as did a more natural activator of protein kinase, C, sn-1,2-dioctanoylglycerol (diC/sub 8/). An inactive phorbol ester, 4a-phorbol 12,13-didecanoate (4..cap alpha..-PDD), did not inhibit GVBD. TPA did not inhibit the maturation-associated decrease in oocyte cAMP. Microinjected heat-stable protein inhibitor of a cAMP-dependent protein kinase failed to induce GVBD in the presence of TPA. Both TPA and diC/sub 8/ partially inhibited specific changes in oocyte phosphoprotein metabolism that are tightly correlated with resumption of meiosis; these agents also induced the apparent phosphorylation of specific oocyte proteins. These results suggest that protein kinase C activators may inhibit resumption of meiosis by acting distal to a decrease in cAMP-dependent protein kinase activity, but prior to changes in oocyte phosphoprotein metabolism that are presumably required for resumption of meiosis.

  9. Method of euthanasia influences the oocyte fertilization rate with fresh mouse sperm.

    PubMed

    Hazzard, Karen C; Watkins-Chow, Dawn E; Garrett, Lisa J

    2014-11-01

    In vitro fertilization (IVF) is used to produce mouse embryos for a variety of reasons. We evaluated the effect of the method of euthanasia on the fertilization rate in 2 different IVF protocols. Oocytes collected from C57BL/6J female mice euthanized by CO2 inhalation or cervical dislocation were used in IVF with fresh sperm from either wild-type or genetically engineered C57BL/6J. Compared with CO2 inhalation, cervical dislocation improved the resulting rate of fertilization by 18% in an IVF method using Cook media and by 13% in an IVF method using methyl-B cyclodextrin and reduced glutathione. The lower fertilization rate due to euthanasia by CO2 inhalation was accompanied by changes in blood pH and body temperature despite efforts to minimize temperature drops. In our hands, euthanasia by cervical dislocation improved fertilization rates and consequently reduced the number of egg-donor mice required.

  10. Expression of Variant Ribosomal RNA Genes in Mouse Oocytes and Preimplantation Embryos1

    PubMed Central

    Ihara, Motomasa; Tseng, Hung; Schultz, Richard M.

    2011-01-01

    Ribosomal DNA (rDNA) is not composed of multiple copies of identical transcription units, as commonly believed, but rather of at least seven rDNA variant subtypes that are expressed in somatic cells. This finding raises the possibility that ribosome function may be modulated as proposed by the ribosome filter hypothesis. We report here that mouse oocytes and preimplantation embryos express all the rDNA variants except variant V and that there is no marked developmental change in the qualitative pattern of variant expression. The maternal and embryonic ribosome pools are therefore quite similar, minimizing the likelihood that developmental changes in composition of the ribosome population are critical for preimplantation development. PMID:21209414

  11. Expression of Nox genes in rat organs, mouse oocytes, and sea urchin eggs.

    PubMed

    Maru, Yoshiro; Nishino, Takeshi; Kakinuma, Katsuko

    2005-04-01

    Degenerate primers were designed to isolate new homologs of Nox family genes in rat organs and sea urchin eggs. The primers were capable of amplifying Nox1, Nox2, Nox3, Nox4, Duox1 and Duox2 but not Nox5, and failed to isolate novel homologs in rat. However, a novel homolog (named as Nox-U1) was identified in sea urchin eggs. In the most conserved region (amino acid 336--417 in human Nox2) Nox-U1 has the highest identity with Nox2, which appears to be abundant in mouse oocytes. However, phylogenetic analysis of the entire sequence has revealed that Nox-U1 is closer to Nox4 or Nox5 than Nox2 or Nox3. Histidine residues assumed to be responsible for heme ligation, motifs for FAD- and NADPH-binding, and two asparagine-linked glycosylation sites are conserved.

  12. Overexpression of SETβ, a protein localizing to centromeres, causes precocious separation of chromatids during the first meiosis of mouse oocytes.

    PubMed

    Qi, Shu-Tao; Wang, Zhen-Bo; Ouyang, Ying-Chun; Zhang, Qing-Hua; Hu, Meng-Wen; Huang, Xin; Ge, Zhaojia; Guo, Lei; Wang, Ya-Peng; Hou, Yi; Schatten, Heide; Sun, Qing-Yuan

    2013-04-01

    Chromosome segregation in mammalian oocyte meiosis is an error-prone process, and any mistake in this process may result in aneuploidy, which is the main cause of infertility, abortion and many genetic diseases. It is now well known that shugoshin and protein phosphatase 2A (PP2A) play important roles in the protection of centromeric cohesion during the first meiosis. PP2A can antagonize the phosphorylation of rec8, a member of the cohesin complex, at the centromeres and thus prevent cleavage of rec8 and so maintain the cohesion of chromatids. SETβ is a protein that physically interacts with shugoshin and inhibits PP2A activity. We thus hypothesized that SETβ might regulate cohesion protection and chromosome segregation during oocyte meiotic maturation. Here we report for the first time the expression, subcellular localization and functions of SETβ during mouse oocyte meiosis. Immunoblotting analysis showed that the expression level of SETβ was stable from the germinal vesicle stage to the MII stage of oocyte meiosis. Immunofluorescence analysis showed SETβ accumulation in the nucleus at the germinal vesicle stage, whereas it was targeted mainly to the inner centromere area and faintly localized to the interchromatid axes from germinal vesicle breakdown to MI stages. At the MII stage, SETβ still localized to the inner centromere area, but could relocalize to kinetochores in a process perhaps dependent on the tension on the centromeres. SETβ partly colocalized with PP2A at the inner centromere area. Overexpression of SETβ in mouse oocytes caused precocious separation of sister chromatids, but depletion of SETβ by RNAi showed little effects on the meiotic maturation process. Taken together, our results suggest that SETβ, even though it localizes to centromeres, might not be essential for chromosome separation during mouse oocyte meiotic maturation, although its forced overexpression causes premature chromatid separation.

  13. Effects of Simulated Weightlessness on Mammalian Development. Part 2: Meiotic Maturation of Mouse Oocytes During Clinostat Rotation

    NASA Technical Reports Server (NTRS)

    Wolgemuth, D. J.; Grills, G. S.

    1985-01-01

    In order to understand the role of gravity in basic cellular processes that are important during development, the effects of a simulated microgravity environment on mammalian gametes and early embryos cultured in vitro are examined. A microgravity environment is simulated by use of a clinostat, which essentially reorients cells relative to the gravity vector. Initial studies have focused on assessing the effects of clinostat rotation on the meiotic progression of mouse oocytes. Modifications centered on providing the unique in vitro culture of the clinostat requirements of mammalian oocytes and embryos: 37 C temperature, constant humidity, and a 5% CO2 in air environment. The oocytes are observed under the dissecting microscope for polar body formation and gross morphological appearance. They are then processed for cytogenetic analysis.

  14. The relationship between apoptosis, chromatin configuration, histone modification and competence of oocytes: A study using the mouse ovary-holding stress model

    PubMed Central

    Lin, Juan; Chen, Fei; Sun, Ming-Ju; Zhu, Jiang; Li, You-Wei; Pan, Liu-Zhu; Zhang, Jie; Tan, Jing-He

    2016-01-01

    The epigenetic factors causing competence differences between SN (surrounded nucleolus) and NSN (non-surrounded nucleolus) oocytes, the significance for the increased histone acetylation and methylation in SN oocytes, and whether chromatin configuration or histone modification determines oocyte competence, are unclear. This study has addressed these issues by using the ovary-holding (OH) stress models where oocyte SN configuration was uncoupled from histone modifications and developmental potential. Prepubertal mouse ovaries containing high percentages of NSN oocytes were preserved at 37 or 39 °C for 1 or 2 h before examination for oocyte chromatin configuration, developmental competence, histone modification and apoptosis. Whereas 1-h OH at 37 °C caused a moderate apoptosis with increased oocyte competence, improved histone modification and a normal NSN-to-SN transition, harsher OH conditions induced a severe apoptosis with decreased oocyte competence, impaired histone modification and a pseudo (premature) NSN-to-SN transition. Observations on Fas/FasL expression and using the gld (generalized lymphoproliferative disorder) mice harboring FasL mutations indicated that OH triggered oocyte apoptosis with activation of the Fas signaling. It was concluded that OH stress caused oocyte apoptosis with activation of the Fas/FasL system and that oocyte competence was more closely correlated with histone modification than with chromatin configuration. PMID:27321442

  15. L-carnitine supplementation during vitrification of mouse oocytes at the germinal vesicle stage improves preimplantation development following maturation and fertilization in vitro.

    PubMed

    Moawad, Adel R; Tan, Seang Lin; Xu, Baozeng; Chen, Hai Ying; Taketo, Teruko

    2013-04-01

    Oocyte cryopreservation is important for assisted reproductive technologies (ART). Although cryopreservation of metaphase II (MII) oocytes has been successfully used, MII oocytes are vulnerable to the damage inflicted by the freezing procedure. Cryopreservation of germinal vesicle stage oocytes (GV-oocytes) is an alternative choice; however, blastocyst development from GV-oocytes is limited largely due to the need for in vitro maturation (IVM). Herein, we evaluated the effects of l-carnitine (LC) supplementation during vitrification and thawing of mouse GV-oocytes, IVM, and embryo culture on preimplantation development after in vitro fertilization (IVF). We first compared the rate of embryonic development from the oocytes that had been collected at the GV stage from three mouse strains, (B6.DBA)F1, (B6.C3H)F1, and B6, and processed for IVM and IVF, as well as that from the oocytes matured in vivo, i.e. ovulated (IVO). Our results demonstrated that the rate of blastocyst development was the highest in the (B6.DBA)F1 strain and the lowest in the B6 strain. We then supplemented the IVM medium with 0.6 mg/ml LC. The rate of blastocyst development improved in the B6 but not in the (B6.DBA)F1 strain. Vitrification of GV-oocytes in the basic medium alone reduced the rate of blastocyst development in both of those mouse strains. LC supplementation to the IVM medium alone did not change the percentage of blastocyst development. However, LC supplementation to both vitrification and IVM media significantly improved blastocyst development to the levels comparable with those obtained from vitrified/thawed IVO oocytes in both of the (B6.DBA)F1 and B6 strains. We conclude that LC supplementation during vitrification is particularly efficient in improving the preimplantation development from the GV-oocytes that otherwise have lower developmental competence in culture.

  16. TRPM7-like channels are functionally expressed in oocytes and modulate post-fertilization embryo development in mouse

    PubMed Central

    Carvacho, Ingrid; Ardestani, Goli; Lee, Hoi Chang; McGarvey, Kaitlyn; Fissore, Rafael A.; Lykke-Hartmann, Karin

    2016-01-01

    The Transient Receptor Potential (TRP) channels are a family of cationic ion channels widely distributed in mammalian tissues. In general, the global genetic disruption of individual TRP channels result in phenotypes associated with impairment of a particular tissue and/or organ function. An exception is the genetic ablation of the TRP channel TRPM7, which results in early embryonic lethality. Nevertheless, the function of TRPM7 in oocytes, eggs and pre-implantation embryos remains unknown. Here, we described an outward rectifying non-selective current mediated by a TRP ion channel in immature oocytes (germinal vesicle stage), matured oocytes (metaphase II eggs) and 2-cell stage embryos. The current is activated by specific agonists and inhibited by distinct blockers consistent with the functional expression of TRPM7 channels. We demonstrated that the TRPM7-like channels are homo-tetramers and their activation mediates calcium influx in oocytes and eggs, which is fundamental to support fertilization and egg activation. Lastly, we showed that pharmacological inhibition of the channel function delays pre-implantation embryo development and reduces progression to the blastocyst stage. Our data demonstrate functional expression of TRPM7-like channels in mouse oocytes, eggs and embryos that may play an essential role in the initiation of embryo development. PMID:27681336

  17. Limiting dilution bisulfite (pyro)sequencing reveals parent-specific methylation patterns in single early mouse embryos and bovine oocytes.

    PubMed

    El Hajj, Nady; Trapphoff, Tom; Linke, Matthias; May, Andreas; Hansmann, Tamara; Kuhtz, Juliane; Reifenberg, Kurt; Heinzmann, Julia; Niemann, Heiner; Daser, Angelika; Eichenlaub-Ritter, Ursula; Zechner, Ulrich; Haaf, Thomas

    2011-10-01

    To detect rare epigenetic effects associated with assisted reproduction, it is necessary to monitor methylation patterns of developmentally important genes in a few germ cells and individual embryos. Bisulfite treatment degrades DNA and reduces its complexity, rendering methylation analysis from small amounts of DNA extremely challenging. Here we describe a simple approach that allows determining the parent-specific methylation patterns of multiple genes in individual early embryos. Limiting dilution (LD) of bisulfite-treated DNA is combined with independent multiplex PCRs of single DNA target molecules to avoid amplification bias. Using this approach, we compared the methylation status of three imprinted (H19, Snrpn and Igf2r) and one pluripotency-related gene (Oct4) in three different groups of single mouse two-cell embryos. Standard in vitro fertilization of superovulated oocytes and the use of in vitro matured oocytes were not associated with significantly increased rates of stochastic single CpG methylation errors and epimutations (allele methylation errors), when compared with the in vivo produced controls. Similarly, we compared the methylation patterns of two imprinted genes (H19 and Snrpn) in individual mouse 16-cell embryos produced in vivo from superovulated and non-superovulated oocytes and did not observe major between-group differences. Using bovine oocytes and polar bodies as a model, we demonstrate that LD even allows the methylation analysis of multiple genes in single cells.

  18. Nek9 regulates spindle organization and cell cycle progression during mouse oocyte meiosis and its location in early embryo mitosis

    PubMed Central

    Yang, Shang-Wu; Gao, Chen; Chen, Lei; Song, Ya-Li; Zhu, Jin-Liang; Qi, Shu-Tao; Jiang, Zong-Zhe; Wang, Zhong-Wei; Lin, Fei; Huang, Hao; Xing, Fu-Qi; Sun, Qing-Yuan

    2012-01-01

    Nek9 (also known as Nercc1), a member of the NIMA (never in mitosis A) family of protein kinases, regulates spindle formation, chromosome alignment and segregation in mitosis. Here, we showed that Nek9 protein was expressed from germinal vesicle (GV) to metaphase II (MII) stages in mouse oocytes with no detectable changes. Confocal microscopy identified that Nek9 was localized to the spindle poles at the metaphase stages and associated with the midbody at anaphase or telophase stage in both meiotic oocytes and the first mitotic embyros. Depletion of Nek9 by specific morpholino injection resulted in severely defective spindles and misaligned chromosomes with significant pro-MI/MI arrest and failure of first polar body (PB1) extrusion. Knockdown of Nek9 also impaired the spindle-pole localization of γ-tubulin and resulted in retention of the spindle assembly checkpoint protein Bub3 at the kinetochores even after 10 h of culture. Live-cell imaging analysis also confirmed that knockdown of Nek9 resulted in oocyte arrest at the pro-MI/MI stage with abnormal spindles, misaligned chromosomes and failed polar body emission. Taken together, our results suggest that Nek9 may act as a MTOC-associated protein regulating microtubule nucleation, spindle organization and, thus, cell cycle progression during mouse oocyte meiotic maturation, fertilization and early embryo cleavage. PMID:23159858

  19. Quantitative investigations on the effects of exposure durations to the combined cryoprotective agents on mouse oocyte vitrification procedures.

    PubMed

    Wang, Liang; Liu, Jun; Zhou, Guang-Bin; Hou, Yun-Peng; Li, Jun-Jie; Zhu, Shi-En

    2011-11-01

    Vitrification by using two-step exposures to combined cryoprotective agents (CPAs) has become one of the most common methods for oocyte cryopreservation. By quantitatively examining the status of oocytes during CPA additions and dilutions, we can analyze the degree of the associated osmotic damages. The osmotic responses of mouse MII oocyte in the presence of the combined CPAs (ethylene glycol, EG, and dimethyl sulfoxide, DMSO) were recorded and analyzed. A two-parameter model was used in the curve-fitting calculation to determine the values of hydraulic conductivity (L(p)) and permeability (P(s)) to the combined CPAs at 25°C and 37°C. The effects of exposure durations and the exposure temperatures on the cryopreservation in terms of frozen-thawed cell survival rates and subsequent development were examined in a series of cryopreservation experiments. Mouse MII oocytes were exposed to pretreatment solution (PTS) and vitrification solution (VS) at specific temperatures. The PTS used in our experiment was 10% EG and 10% DMSO dissolved in modified PBS (mPBS), and the VS was EDFS30 (15% EG, 15% DMSO, 3 × 10(-3) M Ficoll, and 0.35 M sucrose in mPBS).The accumulative osmotic damage (AOD) and intracellular CPA concentrations were calculated under the different cryopreservation conditions, and for the first time, the quantitative interactions between survival rates, subsequent development rates, and values of AOD were investigated.

  20. Laser-assisted in vitro fertilization facilitates fertilization of vitrified-warmed C57BL/6 mouse oocytes with fresh and frozen-thawed spermatozoa, producing live pups.

    PubMed

    Woods, Stephanie E; Qi, Peimin; Rosalia, Elizabeth; Chavarria, Tony; Discua, Allan; Mkandawire, John; Fox, James G; García, Alexis

    2014-01-01

    The utility of cryopreserved mouse gametes for reproduction of transgenic mice depends on development of assisted reproductive technologies, including vitrification of unfertilized mouse oocytes. Due to hardening of the zona pellucida, spermatozoa are often unable to penetrate vitrified-warmed (V-W) oocytes. Laser-assisted in vitro fertilization (LAIVF) facilitates fertilization by allowing easier penetration of spermatozoa through a perforation in the zona. We investigated the efficiency of V-W C57BL/6NTac oocytes drilled by the XYClone laser, compared to fresh oocytes. By using DAP213 for cryoprotection, 83% (1,470/1,762) of vitrified oocytes were recovered after warming and 78% were viable. Four groups were evaluated for two-cell embryo and live offspring efficiency: 1) LAIVF using V-W oocytes, 2) LAIVF using fresh oocytes, 3) conventional IVF using V-W oocytes and 4) conventional IVF using fresh oocytes. First, the groups were tested using fresh C57BL/6NTac spermatozoa (74% motile, 15 million/ml). LAIVF markedly improved the two-cell embryo efficiency using both V-W (76%, 229/298) and fresh oocytes (69%, 135/197), compared to conventional IVF (7%, 12/182; 6%, 14/235, respectively). Then, frozen-thawed C57BL/6NTac spermatozoa (35% motile, 15 million/ml) were used and LAIVF was again found to enhance fertilization efficiency, with two-cell embryo rates of 87% (298/343) using V-W oocytes (P<0.05, compared to fresh spermatozoa), and 73% (195/266) using fresh oocytes. Conventional IVF with frozen-thawed spermatozoa using V-W (6%, 10/168) and fresh (5%, 15/323) oocytes produced few two-cell embryos. Although live offspring efficiency following embryo transfer was greater with conventional IVF (35%, 18/51; LAIVF: 6%, 50/784), advantage was seen with LAIVF in live offspring obtained from total oocytes (5%, 50/1,010; conventional IVF: 2%, 18/908). Our results demonstrated that zona-drilled V-W mouse oocytes can be used for IVF procedures using both fresh and frozen

  1. Inhibition of the Binding between RGS2 and β-Tubulin Interferes with Spindle Formation and Chromosome Segregation during Mouse Oocyte Maturation In Vitro

    PubMed Central

    Sun, Zhao-Gui; Zhang, Zhi; Zhu, Yan

    2016-01-01

    RGS2 is a negative regulator of G protein signaling that contains a GTPase-activating domain and a β-tubulin binding region. This study aimed to determine the localization and function of RGS2 during mouse oocyte maturation in vitro. Immunofluorescent staining revealed that RGS2 was widely expressed in the cytoplasm with a greater abundance on both meiotic spindles and first/second polar bodies from the fully-grown germinal vesicle (GV) stage to the MII stages. Co-expression of RGS2 and β-tubulin could also be detected in the spindle and polar body of mouse oocytes at the MI, AI, and MII stages. Inhibition of the binding site between RGS2 and β-tubulin was accomplished by injecting anti-RGS2 antibody into GV-stage oocytes, which could result in oocytes arrest at the MI or AI stage during in vitro maturation, but it did not affect germinal vesicle breakdown. Moreover, injecting anti-RGS2 antibody into oocytes resulted in a significant reduction in the rate of first polar body extrusion and abnormal spindle formation. Additionally, levels of phosphorylated MEK1/2 were significantly reduced in anti-RGS2 antibody injected oocytes compared with control oocytes. These findings suggest that RGS2 might play a critical role in mouse oocyte meiotic maturation by affecting β-tubulin polymerization and chromosome segregation. PMID:27463806

  2. Effects of Mono-(2-Ethylhexyl) Phthalate and Di-(2-Ethylhexyl) Phthalate Administrations on Oocyte Meiotic Maturation, Apoptosis and Gene Quantification in Mouse Model

    PubMed Central

    Absalan, Forouzan; Saremy, Sadegh; Mansori, Esrafil; Taheri Moghadam, Mahin; Eftekhari Moghadam, Ali Reza; Ghanavati, Razie

    2017-01-01

    Objective Phthalates, which are commonly used to render plastics into soft and flexible materials, have also been determined as developmental and reproductive toxicants in human and animals. The purpose of this study was to evaluate the effect of mono-(2- ethylhexyl) phthalate (MEHP) and di-(2-ethylhexyl) phthalate (DEHP) oral administrations on maturation of mouse oocytes, apoptosis and gene transcription levels. Materials and Methods In this experimental study, immature oocytes recovered from Naval Medical Research Institute (NMRI) mouse strain (6-8 weeks), were divided into seven different experimental and control groups. Control group oocytes were retrieved from mice that received only normal saline. The experimental groups I, II or III oocytes were retrieved from mice treated with 50, 100 or 200 µl DEHP (2.56 µM) solution, respectively. The experimental groups IV, V or VI oocytes were retrieved from mouse exposed to 50, 100 or 200 µl MEHP (2.56 µM) solution, respectively. Fertilization and embryonic development were carried out in OMM and T6 medium. Apoptosis was assessed by annexin V-FITC/Dead Cell Apoptosis Kit, with PI staining. In addition, the mRNA levels of Pou5f1, Ccna1 and Asah1 were examined in oocytes. Finally, mouse embryo at early blastocyst stage was stained with acridine-orange (AO) and ethidium-bromide (EB), in order to access their viability. Results The proportion of oocytes that progressed up to metaphase II (MII) and 2-cells embryo formation stage was significantly decreased by exposure to MEHP or DEHP, in a dose-dependent manner. Annexin V and PI positive oocytes showed greater quantity in the treated mice than control. Quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) revealed that expression levels of Pou5f1, Asah1 and Ccna1 were significantly lower in the treated mouse oocytes than control. The total cell count for blastocyst developed from the treated mouse oocytes was lower than the controls. Conclusion These

  3. Cdk1, but not Cdk2, is the sole Cdk that is essential and sufficient to drive resumption of meiosis in mouse oocytes.

    PubMed

    Adhikari, Deepak; Zheng, Wenjing; Shen, Yan; Gorre, Nagaraju; Ning, Yao; Halet, Guillaume; Kaldis, Philipp; Liu, Kui

    2012-06-01

    Mammalian oocytes are arrested at the prophase of meiosis I during fetal or postnatal development, and the meiosis is resumed by the preovulatory surge of luteinizing hormone. The in vivo functional roles of cyclin-dependent kinases (Cdks) during the resumption of meiosis in mammalian oocytes are largely unknown. Previous studies have shown that deletions of Cdk3, Cdk4 or Cdk6 in mice result in viable animals with normal oocyte maturation, indicating that these Cdks are not essential for the meiotic maturation of oocytes. In addition, conventional knockout of Cdk1 and Cdk2 leads to embryonic lethality and postnatal follicular depletion, respectively, making it impossible to study the functions of Cdk1 and Cdk2 in oocyte meiosis. In this study, we generated conditional knockout mice with oocyte-specific deletions of Cdk1 and Cdk2. We showed that the lack of Cdk1, but not of Cdk2, leads to female infertility due to a failure of the resumption of meiosis in the oocyte. Re-introduction of Cdk1 mRNA into Cdk1-null oocytes largely resumed meiosis. Thus, Cdk1 is the sole Cdk that is essential and sufficient to drive resumption of meiosis in mouse oocytes. We also found that Cdk1 maintains the phosphorylation status of protein phosphatase 1 and lamin A/C in oocytes in order for meiosis resumption to occur.

  4. Casein kinase 1 alpha regulates chromosome congression and separation during mouse oocyte meiotic maturation and early embryo development.

    PubMed

    Wang, Lu; Lu, Angeleem; Zhou, Hong-Xia; Sun, Ran; Zhao, Jie; Zhou, Cheng-Jie; Shen, Jiang-Peng; Wu, Sha-Na; Liang, Cheng-Guang

    2013-01-01

    Casein kinase I alpha (CK1α) is a member of serine/threonine protein kinase, generally present in all eukaryotes. In mammals, CK1α regulates the transition from interphase to metaphase in mitosis. However, little is known about its role in meiosis. Here we examined Ck1α mRNA and protein expression, as well as its subcellular localization in mouse oocytes from germinal vesicle to the late 1-cell stage. Our results showed that the expression level of CK1α was increased in metaphase. Immunostaining results showed that CK1α colocalized with condensed chromosomes during oocyte meiotic maturation and early embryo development. We used the loss-of-function approach by employing CK1α specific morpholino injection to block the function of CK1α. This functional blocking leads to failure of polar body 1 (PB1) extrusion, chromosome misalignment and MII plate incrassation. We further found that D4476, a specific and efficient CK1 inhibitor, decreased the rate of PB1 extrusion. Moreover, D4476 resulted in giant polar body extrusion, oocyte pro-MI arrest, chromosome congression failure and impairment of embryo developmental potential. In addition, we employed pyrvinium pamoate (PP), an allosteric activator of CK1α, to enhance CK1α activity in oocytes. Supplementation of PP induced oocyte meiotic maturation failure, severe congression abnormalities and misalignment of chromosomes. Taken together, our study for the first time demonstrates that CK1α is required for chromosome alignment and segregation during oocyte meiotic maturation and early embryo development.

  5. Chromosome malsegregation and embryonic lethality induced by treatment of normally ovulated mouse oocytes with nocodazole.

    PubMed

    Generoso, W M; Katoh, M; Cain, K T; Hughes, L A; Foxworth, L B; Mitchell, T J; Bishop, J B

    1989-02-01

    The mouse egg is ovulated with its nucleus arrested at the metaphase-II stage of meiosis. Sperm entry triggers the completion of the second meiotic division. It has been speculated that damage to the meiotic spindle of normally ovulated eggs at around the time of sperm entry could result in chromosome malsegregation and the death of conceptuses with numerical chromosome anomalies. This hypothesis was tested using nocodazole, a microtubule inhibitor. Nocodazole was administered either to maturing preovulatory oocytes or to normally ovulated eggs at one of the following stages: (1) the time of sperm entry, (2) early pronuclear stage, (3) pronuclear DNA synthesis, (4) prior to first cleavage division, (5) early 2-cell stage, or (6) prior to the second cleavage division. Little or no effect was observed for treatment times other than the time of sperm entry, when the egg is being activated to complete the second meiotic division. Remarkably high frequencies of embryonic lethality, expressed at around the time of implantation, were induced at this stage. Cytogenetic analysis of first cleavage metaphases of zygotes treated at the time of sperm entry revealed a high incidence of varied numerical chromosome anomalies, with changes in ploidy being predominant.

  6. Involvement of the cytoskeleton in the movement of cortical granules during oocyte maturation, and cortical granule anchoring in mouse eggs.

    PubMed

    Connors, S A; Kanatsu-Shinohara, M; Schultz, R M; Kopf, G S

    1998-08-01

    Exocytosis of cortical granules in mouse eggs is required to produce the zona pellucida block to polyspermy. In this study, we examined the role of microfilaments and microtubules in the regulation of cortical granule movement toward the cortex during oocyte maturation and anchoring of cortical granules in the cortex. Fluorescently labeled cortical granules, microfilaments, and microtubules were visualized using laser-scanning confocal microscopy. It was observed that cortical granules migrate to the periphery of the oocyte during oocyte maturation. This movement is blocked by the treatment of oocytes with cytochalasin D, an inhibitor of microfilament polymerization, but not with nocodazole or colchicine, inhibitors of microtubule polymerization. Cortical granules, once anchored at the cortex, remained in the cortex following treatment of metaphase II-arrested eggs with each of these inhibitors; i.e., there was neither inward movement nor precocious exocytosis. Finally, the single cortical granule-free domain that normally becomes localized over the metaphase II spindle was not observed when the chromosomes become scattered following microtubule disruption with nocodazole or colchicine. In these instances a cortical granule-free domain was observed over each individual chromosome, suggesting that the chromosome or chromosome-associated material, and not the spindle, dictates the localization of the cortical granule-free domain.

  7. Oocyte maturation and expression pattern of follicular genes during in-vitro culture of vitrified mouse pre-antral follicles.

    PubMed

    Jamalzaei, Parisa; Valojerdi, Mojtaba Rezazadeh; Ebrahimi, Bita; Farrokhi, Ali

    2016-01-01

    Our aim was to evaluate the oocyte maturation rate and follicular genes expression pattern during in-vitro culture of vitrified mouse pre-antral follicles. Middle sized pre-antral follicles were isolated mechanically from the ovaries of pre-pubertal mice and distributed in vitrification and control groups. In the vitrification group, follicles were washed in equilibration and vitrification solutions and then were immersed in liquid nitrogen after loading on cryotop tips. After warming in descending concentrations of sucrose solutions, fresh and vitrified-warmed follicles were cultured for 13 days. Follicles survival rate and follicular genes expression were assessed during in vitro culture. Finally, at the end of the culture period oocytes maturation rate were compared in both groups. In the vitrification group, follicles survival rate was lower significantly comparing to the control group (P < 0.05), whereas oocytes maturation rate were similar. Although at the beginning of the culture period, expression of some genes such as Gdf9, Bmp15, Tgfβ1 and BmprII were higher in the vitrification group (P < 0.05), during the rest of the culture period expression pattern of all follicular genes were similar in both groups. In conclusion, survival rate of cryotop vitrified pre-antral follicles reduced during culture period while oocytes maturation and follicular genes expression did not show any noticeable alteration.

  8. FSH Regulates mRNA Translation in Mouse Oocytes and Promotes Developmental Competence.

    PubMed

    Franciosi, Federica; Manandhar, Shila; Conti, Marco

    2016-02-01

    A major challenge in assisted reproductive technology is to develop conditions for in vitro oocyte maturation yielding high-quality eggs. Efforts are underway to assess whether known hormonal and local factors play a role in oocyte developmental competence and to identify the molecular mechanism involved. Here we have tested the hypothesis that FSH improves oocyte developmental competence by regulating the translational program in the oocyte. Accumulation of oocyte proteins (targeting protein for the Xenopus kinesin xklp2 and IL-7) associated with improved oocyte quality is increased when cumulus-oocyte complexes are incubated with FSH. This increase is due to enhanced translation of the corresponding mRNAs, as indicated by microinjection of constructs in which the 3' untranslated region of the Tpx2 or Il7 transcripts is fused to the luciferase reporter. A transient activation of the phosphatidyl-inositol 3-phosphate/AKT cascade in the oocyte preceded the increase in translation. When the epidermal growth factor (EGF) receptor is down-regulated in follicular cells, the FSH-induced rate of maternal mRNA translation and AKT activation were lost, demonstrating that the effects of FSH are indirect and require EGF receptor signaling in the somatic compartment. Using Pten(fl/fl):Zp3cre oocytes in which the AKT is constitutively activated, translation of reporters was increased and was no longer sensitive to FSH stimulation. More importantly, the oocytes lacking the phosphate and tensin homolog gene showed increased developmental competence, even when cultured in the absence of FSH or growth factors. Thus, we demonstrate that FSH intersects with the follicular EGF network to activate the phosphatidyl-inositol 3-phosphate/AKT cascade in the oocyte to control translation and developmental competence. These findings provide a molecular rationale for the use of FSH to improve egg quality.

  9. Nicotine-induced Disturbances of Meiotic Maturation in Cultured Mouse Oocytes: Alterations of Spindle Integrity and Chromosome Alignment.

    PubMed

    Zenzes, Maria Teresa; Bielecki, Ryszard

    2004-09-15

    We investigated whether nicotine exposure in vitro of mouse oocytes affects spindle and chromosome function during meiotic maturation (M-I and M-II). Oocytes in germinal vesicle (GV) stage were cultured in nicotine for 8 h or for 16 h, to assess effects in M-I and in metaphase II (M-II). The latter culture setting used the three protocols: 8 h nicotine then 8 h medium (8N + 8M); 16 h nicotine (16N); 8 h medium then 8 h nicotine (8M + 8N). Non-toxic concentrations of nicotine at 1.0, 2.5, 5.0 and 10.0 mmol/L were used. Spindle-chromosome configurations were analyzed with wide-field optical sectioning microscopy. In 8 h cultures, nicotine exposure resulted in dose-related increased proportions of M-I oocytes with defective spindle-chromosome configurations. A dose-related delayed entry into anaphase I was also detected. In 16 h cultures, nicotine exposure for the first 8 h (8N + 8M), or for 16 h (16N), resulted in dose- and time-related increased proportions of oocytes arrested in M-I (10 mmol/L; 8 h: 53.2%, controls 9.6%; 16 h: 87.6%, controls 8.5%). Defects in M-I spindles and chromosomes caused M-I arrest leading to dose-related decreased proportions of oocytes that reached metaphase-II (10 mmol/L 8 h: 46.8%, controls 90.4%;16 h: 12.4%, controls 91.5%). A delayed anaphase-I affected the normal timing of M-II, leading to abnormal oocytes with dispersed chromosomes, or with double spindles and no polar body. Nicotine exposure during the second 8 h (8M + 8N) resulted in dose-related, increased proportions of M-II oocytes with defective spindles and chromosomes (10 mmol/L: 42.9%, controls 2.0%). Nicotine has no adverse effects on GV break down, but induces spindle and chromosome defects compromising oocyte meiotic maturation and development.

  10. Application of oocyte cryopreservation technology in TALEN-mediated mouse genome editing.

    PubMed

    Nakagawa, Yoshiko; Sakuma, Tetsushi; Nakagata, Naomi; Yamasaki, Sho; Takeda, Naoki; Ohmuraya, Masaki; Yamamoto, Takashi

    2014-01-01

    Reproductive engineering techniques, such as in vitro fertilization (IVF) and cryopreservation of embryos or spermatozoa, are essential for preservation, reproduction, and transportation of genetically engineered mice. However, it has not yet been elucidated whether these techniques can be applied for the generation of genome-edited mice using engineered nucleases such as transcription activator-like effector nucleases (TALENs). Here, we demonstrate the usefulness of frozen oocytes fertilized in vitro using frozen sperm for TALEN-mediated genome editing in mice. We examined side-by-side comparisons concerning sperm (fresh vs. frozen), fertilization method (mating vs. IVF), and fertilized oocytes (fresh vs. frozen) for the source of oocytes used for TALEN injection; we found that fertilized oocytes created under all tested conditions were applicable for TALEN-mediated mutagenesis. In addition, we investigated whether the ages in weeks of parental female mice can affect the efficiency of gene modification, by comparing 5-week-old and 8-12-week-old mice as the source of oocytes used for TALEN injection. The genome editing efficiency of an endogenous gene was consistently 95-100% when either 5-week-old or 8-12-week-old mice were used with or without freezing the oocytes. Thus, our report describes the availability of freeze-thawed oocytes and oocytes from female mice at various weeks of age for TALEN-mediated genome editing, thus boosting the convenience of such innovative gene targeting strategies.

  11. Deformation of a single mouse oocyte in a constricted microfluidic channel.

    PubMed

    Luo, ZhengYuan; Guven, Sinan; Gozen, Irep; Chen, Pu; Tasoglu, Savas; Anchan, Raymond M; Bai, BoFeng; Demirci, Utkan

    2015-10-01

    Single oocyte manipulation in microfluidic channels via precisely controlled flow is critical in microfluidic-based in vitro fertilization. Such systems can potentially minimize the number of transfer steps among containers for rinsing as often performed during conventional in vitro fertilization and can standardize protocols by minimizing manual handling steps. To study shape deformation of oocytes under shear flow and its subsequent impact on their spindle structure is essential for designing microfluidics for in vitro fertilization. Here, we developed a simple yet powerful approach to (i) trap a single oocyte and induce its deformation through a constricted microfluidic channel, (ii) quantify oocyte deformation in real-time using a conventional microscope, and (iii) retrieve the oocyte from the microfluidic device to evaluate changes in their spindle structures. We found that oocytes can be significantly deformed under high flow rates, e.g., 10 μl/min in a constricted channel with a width and height of 50 and 150 μm, respectively. Oocyte spindles can be severely damaged, as shown here by immunocytochemistry staining of the microtubules and chromosomes. The present approach can be useful to investigate underlying mechanisms of oocyte deformation exposed to well-controlled shear stresses in microfluidic channels, which enables a broad range of applications for reproductive medicine.

  12. Post-ovulatory aging of mouse oocytes in vivo and in vitro: Effects of caffeine on exocytosis and translocation of cortical granules.

    PubMed

    Zheng, Jie; Yin, Xun-Qiang; Ge, Wei; He, Gui-Fang; Qian, Wei-Ping; Ma, Jun-Yu; Shen, Wei; Yin, Shen; Sun, Qing-Yuan

    2016-11-01

    The developmental potential of post-ovulatory oocytes decreases with aging in vivo and in vitro. In this study, we aimed to investigate the effects of a potent antioxidant caffeine on cortical granules (CGs) distribution in mouse oocytes aging in vivo and in vitro. We found that in vivo administration of 150 mg/kg caffeine caused ovulation of some morphologically abnormal oocytes showing premature exocytosis or congregation of CGs, but significantly decreased abnormal distribution of CGs in oocytes aging for 6 h, 12 h and 18 h in vivo compared to those without caffeine treatment. Unexpectedly, supplementation of oocyte culture medium with 10 mmol/L caffeine accelerated CGs release of oocytes and the normal CG distribution rate dramatically decreased from 6 h in oocytes aging in vitro. It appeared that oocytes showed a high degree of abnormal CG distribution by aging for 18 h, and caffeine might delay oocyte CG exocytosis in vivo, but accelerates CG exocytosis in vitro. Our findings may have implications for improving assisted reproduction technologies.

  13. Mouse Ovarian Very Small Embryonic-Like Stem Cells Resist Chemotherapy and Retain Ability to Initiate Oocyte-Specific Differentiation

    PubMed Central

    Sriraman, Kalpana; Anand, Sandhya; Bhutda, Smita

    2015-01-01

    This study was undertaken to investigate stem cells in adult mouse ovary, the effect of chemotherapy on them and their potential to differentiate into germ cells. Very small embryonic-like stem cells (VSELs) that were SCA-1+/Lin−/CD45−, positive for nuclear octamer-binding transforming factor 4 (OCT-4), Nanog, and cell surface stage-specific embryonic antigen 1, were identified in adult mouse ovary. Chemotherapy resulted in complete loss of follicular reserve and cytoplasmic OCT-4 positive progenitors (ovarian germ stem cells) but VSELs survived. In ovarian surface epithelial (OSE) cell cultures from chemoablated ovary, proliferating germ cell clusters and mouse vasa homolog/growth differentiation factor 9-positive oocyte-like structure were observed by day 6, probably arising as a result of differentiation of the surviving VSELs. Follicle-stimulating hormone (FSH) exerted a direct stimulatory action on the OSE and induced stem cells proliferation and differentiation into premeiotic germ cell clusters during intact chemoablated ovaries culture. The FSH analog pregnant mare serum gonadotropin treatment to chemoablated mice increased the percentage of surviving VSELs in ovary. The results of this study provide evidence for the presence of potential VSELs in mouse ovaries and show that they survive chemotherapy, are modulated by FSH, and retain the ability to undergo oocyte-specific differentiation. These results show relevance to women who undergo premature ovarian failure because of oncotherapy. PMID:25779995

  14. Prophase I arrest of mouse oocytes mediated by natriuretic peptide precursor C requires GJA1 (connexin-43) and GJA4 (connexin-37) gap junctions in the antral follicle and cumulus-oocyte complex.

    PubMed

    Richard, Samantha; Baltz, Jay M

    2014-06-01

    Fully grown germinal vesicle stage mouse oocytes remain arrested in meiotic prophase I until ovulation. This arrest is maintained by cGMP produced in cumulus granulosa cells surrounding the oocyte. Recently, it was found that cGMP production in cumulus cells depends on NPR2 guanylate cyclase activated by its ligand natriuretic peptide precursor C (NPPC). It is assumed that cGMP reaches the oocyte through gap junctions that couple cumulus granulosa cells to each other and to the oocyte. Previous work identified two main types of gap junctions in the follicle, connexin-43 gap junctions (GJA1 protein) between granulosa cells and connexin-37 gap junctions (GJA4) between cumulus cells and the oocyte. However, it had not been established that both types are required for meiotic arrest mediated by NPPC/NPR2 signaling. To investigate this, we used connexin mimetic peptides (CMPs) that specifically disrupt gap junction isoforms within cumulus-oocyte complexes (COCs) and isolated antral follicles in culture. We furthermore developed a punctured antral follicle preparation to permit CMP access to the antral cavity in an otherwise intact follicle. CMP directed against connexin-43 (Cx43 CMP) overcame NPPC-mediated meiotic arrest in both isolated COCs and antral follicles. Cx37 CMP, in contrast, had no effect when present in the medium, but released oocyte arrest in the presence of NPPC when microinjected into the perivitelline space near the oocyte surface in COCs. This is consistent with both connexin isoforms being required for meiotic arrest and with the reported localization of connexin-43 throughout the cumulus cells and connexin-37 at the oocyte surface.

  15. EZH2 is required for mouse oocyte meiotic maturation by interacting with and stabilizing spindle assembly checkpoint protein BubRI

    PubMed Central

    Qu, Yi; Lu, Danyu; Jiang, Hao; Chi, Xiaochun; Zhang, Hongquan

    2016-01-01

    Enhancer of zeste homolog 2 (EZH2) trimethylates histone H3 Lys 27 and plays key roles in a variety of biological processes. Stability of spindle assembly checkpoint protein BubR1 is essential for mitosis in somatic cells and for meiosis in oocytes. However, the role of EZH2 in oocyte meiotic maturation was unknown. Here, we presented a mechanism underlying EZH2 control of BubR1 stability in the meiosis of mouse oocytes. We identified a methyltransferase activity-independent function of EZH2 by demonstrating that EZH2 regulates spindle assembly and the polar body I extrusion. EZH2 was increased with the oocyte progression from GVBD to MII, while EZH2 was concentrated on the chromosomes. Interestingly, inhibition of EZH2 methyltranferase activity by DZNep or GSK343 did not affect oocyte meiotic maturation. However, depletion of EZH2 by morpholino led to chromosome misalignment and abnormal spindle assembly. Furthermore, ectopic expression of EZH2 led to oocyte meiotic maturation arrested at the MI stage followed by chromosome misalignment and aneuploidy. Mechanistically, EZH2 directly interacted with and stabilized BubR1, an effect driving EZH2 into the concert of meiosis regulation. Collectively, we provided a paradigm that EZH2 is required for mouse oocyte meiotic maturation. PMID:27226494

  16. Regulation of Mouse Oocyte Microtubule and Organelle Dynamics by PADI6 and the Cytoplasmic Lattices

    PubMed Central

    Kan, Rui; Yurttas, Piraye; Kim, Boram; Jin, Mei; Wo, Luccie; Lee, Bora; Gosden, Roger; Coonrod, Scott A.

    2010-01-01

    Organelle positioning and movement in oocytes is largely mediated by microtubules (MTs) and their associated motor proteins. While yet to be studied in germ cells, cargo trafficking in somatic cells is also facilitated by specific recognition of acetylated MTs by motor proteins. We have previously shown that oocyte-restricted PADI6 is essential for formation of a novel oocyte-restricted fibrous structure, the cytoplasmic lattices (CPLs). Here, we show that α-tubulin appears to be associated with the PADI6/CPL complex. Next, we demonstrate that organelle positioning and redistribution is defective in PADI6-null oocytes and that alteration of MT polymerization or MT motor activity does not induce organelle redistribution in these oocytes. Finally, we report that levels of acetylated microtubules are dramatically suppressed in the cytoplasm of PADI6-null oocytes, suggesting that the observed organelle redistribution failure is due to defects in stable cytoplasmic MTs. These results demonstrate that the PADI6/CPL superstructure plays a key role in regulating MT-mediated organelle positioning and movement. PMID:21147087

  17. Maternal chromatin remodeling during maturation and after fertilization in mouse oocytes.

    PubMed

    Spinaci, Marcella; Seren, Eraldo; Mattioli, Mauro

    2004-10-01

    Immunofluorescence staining with antibodies against acetylated histone H4 and 5-methylcytosine was carried out to investigate female chromatin remodeling throughout oocyte maturation and chromatin rearrangement involving both male and female genomes after fertilization. Oocyte cytoplasm remodels female chromatin in preparation of the fertilizing event and the subsequent chromatin rearrangement. Histone H4 are in fact progressively deacetylated whereas demethylating enzymes do not seem to be active over this period. The acetylase/deacetylase balance seems to be cell cycle dependent as female chromatin is deacetylated during maturation and reacetylated at telophase II stage both after fertilization and activation. On the contrary, DNA demethylation seems to be strictly selective. It is in fact confined to the remodeling of paternal genome after fertilization of mature oocytes as the ooplasm is not effective in demethylating either paternal chromatin in germinal vesicle breakdown (GVBD) fertilized oocytes or maternal genome of partenogenetically activated oocytes. Surprisingly, we induced maternal chromatin demethylation after fertilization by treating oocytes with a combination of a methyltransferase inhibitor, 5-azacytidine (5-AzaC), and a reversible and specific inhibitor of histone deacetylase, trichostatin A (TSA). This treatment likely induces a hyperacetylation of histones (thus favoring the access to demethylating enzymes by opening female chromatin structure) associated with a block of reparative methylation by inhibiting methytransferases. This manipulation of chromatin remodeling may have applications regarding the biological significance of aberrant DNA methylation.

  18. WNT4-like protein is a cortical granule component in mouse oocytes and functions in regulating preimplantation embryogenesis.

    PubMed

    Liu, Min; Yang, Huei-Ting

    2016-01-01

    Mammalian cortical granules (CG) are membrane-bound organelles located in the cortex of the unfertilized oocytes. Upon fertilization, CG undergo exocytosis to function in blocking polyspermy. While cortical granules are important in fertilization, their exact biochemical composition and reproductive function have not been fully defined. In the present study, a 66 kDa wingless-type MMTV integration site family, member 4 (WNT4)-like protein, with mouse CG origin was identified. Oocytes that were double labeled with lectin Lens culinaris agglutinin (LCA) and WNT4 antibody showed colocalization of the WNT4 molecules and cortical granules. The disappearance of WNT4 molecules in the artificially activated oocytes that were devoid of cortical granules confirmed their granule origin. Following fertilization, WNT4 remained associated with zygotes and blastomeres of 2-cell and 8-cell embryos; however the amount of protein present was reduced more than 2-fold as embryos developed. Prior to implantation, WNT4 appeared to be detectable only in the trophoblast cells. Our functional study revealed that WNT4 molecules were involved in regulating zygotic cleavage and early embryogenesis. To our knowledge, this is the first study demonstrating mammalian cortical granules contain signaling molecules that are involved in the regulation of the first phase of embryonic development.

  19. Melatonin protects oocyte quality from Bisphenol A-induced deterioration in the mouse.

    PubMed

    Zhang, Mianqun; Dai, Xiaoxin; Lu, Yajuan; Miao, Yilong; Zhou, Changyin; Cui, Zhaokang; Liu, Honglin; Xiong, Bo

    2017-02-08

    Bisphenol A (BPA) has been reported to adversely affect the mammalian reproductive system in both sexes. However, the underlying mechanisms regarding how BPA disrupts the mammalian oocyte quality and how to prevent it have not been fully defined. Here, we document that BPA weakens oocyte quality by impairing both oocyte meiotic maturation and fertilization ability. We find that oral administration of BPA (100 μg/kg body weight per day for 7 days) compromises the first polar body extrusion (78.0% vs 57.0%, P<.05) by disrupting normal spindle assembly, chromosome alignment, and kinetochore-microtubule attachment. This defect could be remarkably ameliorated (76.7%, P<.05) by concurrent oral administration of melatonin (30 mg/kg body weight per day for 7 days). In addition, BPA administration significantly decreases the fertilization rate of oocytes (87.2% vs 41.1%, P<.05) by reducing the number of sperm binding to the zona pellucida, which is consistent with the premature cleavage of ZP2 as well as the mis-localization and decreased protein level of ovastacin. Also, the localization and protein level of Juno, the sperm receptor on the egg membrane, are strikingly impaired in BPA-administered oocytes. Finally, we show that melatonin administration substantially elevates the in vitro fertilization rate (63.0%, P<.05) by restoring above defects of fertilization proteins and events, which might be mediated by the improvement of oocyte quality via reduction of ROS levels and inhibition of apoptosis. Collectively, our data reveal that melatonin has a protective action against BPA-induced deterioration of oocyte quality in mice.

  20. Activation of Mouse Cumulus-Oocyte Complex Maturation In Vitro Through EGF-Like Activity of Versican.

    PubMed

    Dunning, Kylie R; Watson, Laura N; Zhang, Voueleng J; Brown, Hannah M; Kaczmarek, Adrian K; Robker, Rebecca L; Russell, Darryl L

    2015-05-01

    In vitro maturation of oocytes is suboptimal to in vivo maturation with altered gene expression and compromised oocyte quality. The large proteoglycan versican is abundant in mouse cumulus-oocyte complexes (COCs) matured in vivo but is absent in cultured COCs. Versican is also positively correlated with human oocyte quality. Versican contains an epidermal growth factor (EGF) motif, and based on EGF-like activities in other systems we hypothesized that versican acts as an EGF-like signaling factor during COC maturation. Here, we purified recombinant versican and compared its function with that of EGF during in vitro maturation (IVM). Versican significantly increased cumulus expansion and induced cumulus-specific genes Ptgs2, Tnfaip6, and Has2, which was blocked by EGF receptor antagonist. Microarray analysis revealed that versican has overlapping function with EGF; however, a subset of genes was uniquely altered following 6 h of IVM with either treatment. Following 6 h of IVM, both Areg and Ereg were significantly increased by both treatments, whereas Egln3, Nr4a1, Nr4a2, Nr4a3, and Adamts5 were significantly higher following versican treatment compared with EGF. In contrast, Sprr1a and Aqp3 were increased after 6 h of EGF but not versican treatment. To determine whether there were temporal differences, COCs were cultured with EGF or versican for 0-12 h. Versican-induced expression occurred later but remained elevated for longer compared with EGF for Ptgs2, Ereg, and Nr4a3. The unique expression profiles of Aqp3 and Nr4a3 during IVM were similarly regulated in vivo. These data indicate that versican has EGF-like effects on COC gene expression, but with distinct temporal characteristics.

  1. Acrylamide toxic effects on mouse oocyte quality and fertility in vivo.

    PubMed

    Duan, Xing; Wang, Qiao-Chu; Chen, Kun-Lin; Zhu, Cheng-Cheng; Liu, Jun; Sun, Shao-Chen

    2015-06-25

    Acrylamide is an industrial chemical that has attracted considerable attention due to its presumed carcinogenic, neurotoxic, and cytotoxic effects. In this study we investigated possible acrylamide reproductive toxic effects in female mice. Mice were fed an acrylamide-containing diet for 6 weeks. Our results showed the following effects of an acrylamide-containing diet. (1) Ovary weights were reduced in acrylamide-treated mice and oocyte developmental competence was also reduced, as shown by reduced GVBD and polar body extrusion rates. (2) Acrylamide feeding resulted in aberrant oocyte cytoskeletons, as shown by an increased abnormal spindle rate and confirmed by disrupted γ-tubulin and p-MAPK localization. (3) Acrylamide feeding resulted in oxidative stress and oocyte early stage apoptosis, as shown by increased ROS levels and p-MAPK expression. (4) Fluorescence intensity analysis showed that DNA methylation levels were reduced in acrylamide-treated oocytes and histone methylation levels were also altered, as H3K9me2, H3K9me3, H3K4me2, and H3K27me3 levels were reduced after acrylamide treatment. (5) After acrylamide feeding, the litter sizes of acrylamide-treated mice were significantly smaller compared to thus of control mice. Thus, our results indicated that acrylamide might affect oocyte quality through its effects on cytoskeletal integrity, ROS generation, apoptosis induction, and epigenetic modifications.

  2. Embryonic development after exposure of mouse oocyte to various amount of ovarian endometriotic fluid

    PubMed Central

    Kim, Hashin; Jeong, Mina; Kim, Seul Ki

    2016-01-01

    This study assesses the fertilization and blastocyst-forming rate in mice cumulus-oocyte complexes (COCs) after the exposure of human ovarian endometriotic fluid. Endometriotic fluid was obtained from a single patient by aspiration at the time of a laparoscopic cystectomy and serially diluted. COCs were obtained from 46-week-old female BDF1 mice. After exposure to ovarian endometriotic fluid for five minutes, the COCs were washed three times and the oocytes were then fertilized by mice sperm. The fertilization and blastocyst formation rate and the proportion of hatching/hatched blastocyst in the four treatment groups were not inferior to those in non-exposure group. PMID:27462598

  3. The influence of reduced glutathione in fertilization medium on the fertility of in vitro-matured C57BL/6 mouse oocytes.

    PubMed

    Ishizuka, Y; Nishimura, M; Matsumoto, K; Miyashita, M; Takeo, T; Nakagata, N; Hosoi, Y; Anzai, M

    2013-09-15

    It is well known that IVM oocytes show a decreased potential for fertility and development compared with in vivo-matured oocytes. In this study, we added reduced glutathione (GSH) to the fertilization medium during IVF to investigate its effect on the fertility and early embryo development of IVM oocytes. The fertilization rate for IVM oocytes and fresh sperm increased with the addition of GSH (0, 1.0, and 2.0 mM: 51%, 76%, and 70%). Moreover, the addition of GSH to the fertilization medium also improved the developmental potential compared with the control sample (0 mM). In addition, we performed IVF using IVM oocytes and frozen/thawed sperm that had been cryopreserved in a mouse bank. Results indicated a marked increase in the fertilization rate when 1.0 mM GSH was added to the fertilization medium compared with when no GSM was used (0.0 mM GSH: 2% (3/195); 1.0 mM GSH: 33% (156/468)). Furthermore, the fertilization rate improved dramatically via zona drilling using laser equipment (52%: 267/516), whereas normal offspring were obtainsed after transferring embryos created via IVF using IVM oocytes and frozen/thawed sperm. This is the first report in which offspring have been obtained via IVF using IVM oocytes and frozen/thawed sperm.

  4. A Gs-linked receptor maintains meiotic arrest in mouse oocytes, but luteinizing hormone does not cause meiotic resumption by terminating receptor-Gs signaling

    PubMed Central

    Norris, Rachael P.; Freudzon, Leon; Freudzon, Marina; Hand, Arthur R.; Mehlmann, Lisa M.; Jaffe, Laurinda A.

    2008-01-01

    The maintenance of meiotic prophase arrest in fully grown vertebrate oocytes depends on the activity of a Gs G-protein that activates adenylyl cyclase and elevates cAMP, and in the mouse oocyte, Gs is activated by a constitutively active orphan receptor, GPR3. To determine whether the action of luteinizing hormone (LH) on the mouse ovarian follicle causes meiotic resumption by inhibiting GPR3-Gs signaling, we examined the effect of LH on the localization of Gαs. Gs activation in response to stimulation of an exogenously expressed β2-adrenergic receptor causes Gαs to move from the oocyte plasma membrane into the cytoplasm, whereas Gs inactivation in response to inhibition of the β2-adrenergic receptor causes Gαs to move back to the plasma membrane. However, LH does not cause a change in Gαs localization, indicating that LH does not act by terminating receptor-Gs signaling. PMID:17850783

  5. Knockdown of UCHL5IP causes abnormalities in γ-tubulin localisation, spindle organisation and chromosome alignment in mouse oocyte meiotic maturation.

    PubMed

    Wang, Ya-Peng; Qi, Shu-Tao; Wei, Yanchang; Ge, Zhao-Jia; Chen, Lei; Hou, Yi; Ouyang, Ying-Chun; Schatten, Heide; Zhao, Jian-Guo; Sun, Qing-Yuan

    2013-01-01

    UCHL5IP is one of the subunits of the haus complex, which is important for microtubule generation, spindle bipolarity and accurate chromosome segregation in Drosophila and human mitotic cells. In this study, the expression and localisation of UCHL5IP were explored, as well as its functions in mouse oocyte meiotic maturation. The results showed that the UCHL5IP protein level was consistent during oocyte maturation and it was localised to the meiotic spindle in MI and MII stages. Knockdown of UCHL5IP led to spindle defects, chromosome misalignment and disruption of γ-tubulin localisation in the spindle poles. These results suggest that UCHL5IP plays critical roles in spindle formation during mouse oocyte meiotic maturation.

  6. Chromosomal aberrations in in-vitro matured oocytes influence implantation and ongoing pregnancy rates in a mouse model undergoing intracytoplasmic sperm injection.

    PubMed

    Li, Min; Zhao, Hong-Cui; Li, Rong; Yu, Yang; Qiao, Jie

    2014-01-01

    Implantation failure and early pregnancy loss have been reported to be closely related to the quality of mammalian oocytes; however, the pregnant outcome of embryos from in-vitro matured (IVM) oocytes remains unknown. In this study we examined spindle assembly and chromosome segregation during differentiation, and the duration of IVM of mouse oocytes. The resulting implantation and pregnancy outcomes were analyzed to clarify the relationship between the spindle and chromosomes of IVM oocytes and implantation and early pregnancy. Cumulus-enclosed germinal vesicle oocytes were collected and randomly cultured in IVM medium with different IVM durations. One part of IVM oocytes were analyzed the spindle and chromosome morphology by immunofluorescence method, and the other part of them were fertilized by intracytoplasmic sperm injection. The resulting embryos were transferred into pseudo-pregnant female mice, and the post-implantation and full term development was observed. The chromosome aberrations and incorrect spindle assembly seems not affect the early development and blastocyst cell number derived from IVM oocytes, however the development potential of the resulting embryos after implantation were significant decreased with the ratio increasing of chromosome aberrations and incorrect spindle assembly. Accordingly, the full-term development was also decreased. In conclusion, the present study showed the spindle assembly of in vitro-matured oocytes was one of the most important factors that affected the implantation and ongoing pregnancy rates of IVM oocytes, and the improvement by an appropriate duration of maturation in vitro will enhance the post-implantation development potential of the resulting embryos, and decrease implantation failure and early pregnancy loss.

  7. Nucleolus-like bodies of fully-grown mouse oocytes contain key nucleolar proteins but are impoverished for rRNA.

    PubMed

    Shishova, Kseniya V; Lavrentyeva, Elena A; Dobrucki, Jurek W; Zatsepina, Olga V

    2015-01-15

    It is well known that fully-grown mammalian oocytes, rather than typical nucleoli, contain prominent but structurally homogenous bodies called "nucleolus-like bodies" (NLBs). NLBs accumulate a vast amount of material, but their biochemical composition and functions remain uncertain. To clarify the composition of the NLB material in mouse GV oocytes, we devised an assay to detect internal oocyte proteins with fluorescein-5-isothiocyanate (FITC) and applied the fluorescent RNA-binding dye acridine orange to examine whether NLBs contain RNA. Our results unequivocally show that, similarly to typical nucleoli, proteins and RNA are major constituents of transcriptionally active (or non-surrounded) NLBs as well as of transcriptionally silent (or surrounded) NLBs. We also show, by exposing fixed oocytes to a mild proteinase K treatment, that the NLB mass in oocytes of both types contains nucleolar proteins that are involved in all major steps of ribosome biogenesis, including rDNA transcription (UBF), early rRNA processing (fibrillarin), and late rRNA processing (NPM1/nucleophosmin/B23, nucleolin/C23), but none of the nuclear proteins tested, including SC35, NOBOX, topoisomerase II beta, HP1α, and H3. The ribosomal RPL26 protein was detected within the NLBs of NSN-type oocytes but is virtually absent from NLBs of SN-type oocytes. Taking into account that the major class of nucleolar RNA is ribosomal RNA (rRNA), we applied fluorescence in situ hybridization with oligonucleotide probes targeting 18S and 28S rRNAs. The results show that, in contrast to active nucleoli, NLBs of fully-grown oocytes are impoverished for the rRNAs, which is consistent with the absence of transcribed ribosomal genes in the NLB mass. Overall, the results of this study suggest that NLBs of fully-grown mammalian oocytes serve for storing major nucleolar proteins but not rRNA.

  8. Two pathways regulate cortical granule translocation to prevent polyspermy in mouse oocytes.

    PubMed

    Cheeseman, Liam P; Boulanger, Jérôme; Bond, Lisa M; Schuh, Melina

    2016-12-19

    An egg must be fertilized by a single sperm only. To prevent polyspermy, the zona pellucida, a structure that surrounds mammalian eggs, becomes impermeable upon fertilization, preventing the entry of further sperm. The structural changes in the zona upon fertilization are driven by the exocytosis of cortical granules. These translocate from the oocyte's centre to the plasma membrane during meiosis. However, very little is known about the mechanism of cortical granule translocation. Here we investigate cortical granule transport and dynamics in live mammalian oocytes by using Rab27a as a marker. We show that two separate mechanisms drive their transport: myosin Va-dependent movement along actin filaments, and an unexpected vesicle hitchhiking mechanism by which cortical granules bind to Rab11a vesicles powered by myosin Vb. Inhibiting cortical granule translocation severely impaired the block to sperm entry, suggesting that translocation defects could contribute to miscarriages that are caused by polyspermy.

  9. Two pathways regulate cortical granule translocation to prevent polyspermy in mouse oocytes

    PubMed Central

    Cheeseman, Liam P.; Boulanger, Jérôme; Bond, Lisa M.; Schuh, Melina

    2016-01-01

    An egg must be fertilized by a single sperm only. To prevent polyspermy, the zona pellucida, a structure that surrounds mammalian eggs, becomes impermeable upon fertilization, preventing the entry of further sperm. The structural changes in the zona upon fertilization are driven by the exocytosis of cortical granules. These translocate from the oocyte's centre to the plasma membrane during meiosis. However, very little is known about the mechanism of cortical granule translocation. Here we investigate cortical granule transport and dynamics in live mammalian oocytes by using Rab27a as a marker. We show that two separate mechanisms drive their transport: myosin Va-dependent movement along actin filaments, and an unexpected vesicle hitchhiking mechanism by which cortical granules bind to Rab11a vesicles powered by myosin Vb. Inhibiting cortical granule translocation severely impaired the block to sperm entry, suggesting that translocation defects could contribute to miscarriages that are caused by polyspermy. PMID:27991490

  10. Complete in vitro generation of fertile oocytes from mouse primordial germ cells

    PubMed Central

    Morohaku, Kanako; Tanimoto, Ren; Sasaki, Keisuke; Kawahara-Miki, Ryouka; Kono, Tomohiro; Hayashi, Katsuhiko; Hirao, Yuji; Obata, Yayoi

    2016-01-01

    Reconstituting gametogenesis in vitro is a key goal for reproductive biology and regenerative medicine. Successful in vitro reconstitution of primordial germ cells and spermatogenesis has recently had a significant effect in the field. However, recapitulation of oogenesis in vitro remains unachieved. Here we demonstrate the first reconstitution, to our knowledge, of the entire process of mammalian oogenesis in vitro from primordial germ cells, using an estrogen-receptor antagonist that promotes normal follicle formation, which in turn is crucial for supporting oocyte growth. The fundamental events in oogenesis (i.e., meiosis, oocyte growth, and genomic imprinting) were reproduced in the culture system. The most rigorous evidence of the recapitulation of oogenesis was the birth of fertile offspring, with a maximum of seven pups obtained from a cultured gonad. Moreover, cryopreserved gonads yielded functional oocytes and offspring in this culture system. Thus, our in vitro system will enable both innovative approaches for a deeper understanding of oogenesis and a new avenue to create and preserve female germ cells. PMID:27457928

  11. ZP3 is Required for Germinal Vesicle Breakdown in Mouse Oocyte Meiosis

    PubMed Central

    Gao, Lei-Lei; Zhou, Chun-Xiang; Zhang, Xiao-Lan; Liu, Peng; Jin, Zhen; Zhu, Gang-Yi; Ma, Yang; Li, Jing; Yang, Zhi-Xia; Zhang, Dong

    2017-01-01

    ZP3 is a principal component of the zona pellucida (ZP) of mammalian oocytes and is essential for normal fertility, and knockout of ZP3 causes complete infertility. ZP3 promotes fertilization by recognizing sperm binding and activating the acrosome reaction; however, additional cellular roles for ZP3 in mammalian oocytes have not been yet reported. In the current study, we found that ZP3 was strongly expressed in the nucleus during prophase and gradually translocated to the ZP. Knockdown of ZP3 by a specific siRNA dramatically inhibited germinal vesicle breakdown (GVBD) (marking the beginning of meiosis), significantly reducing the percentage of MII oocytes. To investigate the ZP3-mediated mechanisms governing GVBD, we identified potential ZP3-interacting proteins by immunoprecipitation and mass spectrometry. We identified Protein tyrosine phosphatase, receptor type K (Ptprk), Aryl hydrocarbon receptor-interacting protein-like 1 (Aipl1), and Diaphanous related formin 2 (Diaph2) as potential candidates, and established a working model to explain how ZP3 affects GVBD. Finally, we provided preliminary evidence that ZP3 regulates Akt phosphorylation, lamin binding to the nuclear membrane via Aipl1, and organization of the actin cytoskeleton via Diaph2. These findings contribute to our understanding of a novel role played by ZP3 in GVBD. PMID:28145526

  12. LH prevents cisplatin-induced apoptosis in oocytes and preserves female fertility in mouse

    PubMed Central

    Rossi, Valerio; Lispi, Monica; Longobardi, Salvatore; Mattei, Maurizio; Rella, Francesca Di; Salustri, Antonietta; De Felici, Massimo; Klinger, Francesca G

    2017-01-01

    Premature ovarian failure and female infertility are frequent side effects of anticancer therapies, owing to the extreme sensitivity of the ovarian reserve oocytes to the damaging effects of irradiation and chemotherapy on DNA. We report here a robust protective effect of luteinizing hormone (LH) on the primordial follicle pool of prepubertal ovaries against the cisplatin (Cs)-induced apoptosis. In vitro LH treatment of prepubertal ovarian fragments generated anti-apoptotic signals by a subset of ovarian somatic cells expressing LH receptor (LHR) through cAMP/PKA and Akt pathways. Such signals, reducing the oocyte level of pro-apoptotic TAp63 protein and favoring the repair of the Cs-damaged DNA in the oocytes, prevented their apoptosis. Noteworthy, in vivo administration to prepubertal female mice of a single dose of LH together with Cs inhibited the depletion of the primordial follicle reserve caused by the drug and preserved their fertility in reproductive age, preventing significant alteration in the number of pregnancy and of delivered pups. In conclusion, these findings establish a novel ovoprotective role for LH and further support the very attracting prospective to use physiological 'fertoprotective' approaches for preventing premature infertility and risks linked to precocious menopause in young patients who survived cancer after chemotherapy. PMID:27689876

  13. Temporary developmental arrest after storage of fertilized mouse oocytes at 4 degrees C: effects on embryonic development, maternal mRNA processing and cell cycle.

    PubMed

    Sakurai, Takayuki; Kimura, Minoru; Sato, Masahiro

    2005-05-01

    The aim of this study was to examine whether fertilized mouse oocytes can survive after short-term incubation (for 6-48 h) at 4 degrees C. When fertilized oocytes of ICR and C57BL/6 (B6) strain were incubated at 4 degrees C and returned to normal culture conditions (37 degrees C), development of these 4 degrees C-treated embryos for up to 12 h (for ICR) to blastocyst stage did not differ from that of untreated oocytes. Even 4 degrees C-treated embryos for 48 h developed to blastocysts at relatively good rates (33.3% for ICR and 50.8% for B6). The in vivo development of 4 degrees C-treated embryos for 12, 24 and 36 h to fetal stage was similar to that of untreated ones. BrdU labelling assay revealed temporary cessation of DNA replication in 4 degrees C-treated fertilized oocytes. Post-fertilization events including cytoplasmic polyadenylation of maternal mRNAs, mRNA degradation of a cell cycle-related gene and elevated mRNA expression of zygotic gene activation-related genes were temporarily suppressed in 4 degrees C-treated embryos. These findings indicate that 4 degrees C-treatment of fertilized murine oocytes results in temporary cessation of molecular events. We also show that 4 degrees C-treated fertilized oocytes for 12 h can be used for preparation of transgenic mice.

  14. Cyclin A2 is required for sister chromatid segregation, but not separase control, in mouse oocyte meiosis.

    PubMed

    Touati, Sandra A; Cladière, Damien; Lister, Lisa M; Leontiou, Ioanna; Chambon, Jean-Philippe; Rattani, Ahmed; Böttger, Franziska; Stemmann, Olaf; Nasmyth, Kim; Herbert, Mary; Wassmann, Katja

    2012-11-29

    In meiosis, two specialized cell divisions allow the separation of paired chromosomes first, then of sister chromatids. Separase removes the cohesin complex holding sister chromatids together in a stepwise manner from chromosome arms in meiosis I, then from the centromere region in meiosis II. Using mouse oocytes, our study reveals that cyclin A2 promotes entry into meiosis, as well as an additional unexpected role; namely, its requirement for separase-dependent sister chromatid separation in meiosis II. Untimely cyclin A2-associated kinase activity in meiosis I leads to precocious sister separation, whereas inhibition of cyclin A2 in meiosis II prevents it. Accordingly, endogenous cyclin A is localized to kinetochores throughout meiosis II, but not in anaphase I. Additionally, we found that cyclin B1, but not cyclin A2, inhibits separase in meiosis I. These findings indicate that separase-dependent cohesin removal is differentially regulated by cyclin B1 and A2 in mammalian meiosis.

  15. Uptake of betaine into mouse cumulus-oocyte complexes via the SLC7A6 isoform of y+L transporter.

    PubMed

    Corbett, Hannah E; Dubé, Chantal D; Slow, Sandy; Lever, Michael; Trasler, Jacquetta M; Baltz, Jay M

    2014-04-01

    Betaine (N,N,N-trimethylglycine) has previously been shown to function in cell volume homeostasis in early mouse embryos and also to be a key donor to the methyl pool in the blastocyst. A betaine transporter (SLC6A20A or SIT1) has been shown to be activated after fertilization, but there is no saturable betaine uptake in mouse oocytes or eggs. Unexpectedly, the same high level of betaine is present in mature metaphase II (MII) eggs as is found in one-cell embryos despite the lack of transport in oocytes or eggs. Significant saturable betaine transport is, however, present in intact cumulus-oocyte complexes (COCs). This transport system has an affinity for betaine of ∼227 μM. The inhibition profile indicates that betaine transport by COCs could be completely blocked by methionine, proline, leucine, lysine, and arginine, and transport is dependent on Na(+) but not Cl(-). This is consistent with transport by a y+L-type amino acid transport system. Both transcripts and protein of one y+L isoform, SLC7A6 (y+LAT2), are present in COCs, with little or no expression in isolated germinal vesicle (GV)-stage oocytes, MII eggs, or one-cell embryos. Betaine accumulated by COCs is transferred into the enclosed GV oocyte, which requires functional gap junctions. Thus, at least a portion of the endogenous betaine in MII eggs could be derived from transport into cumulus cells and subsequent transfer into the enclosed oocyte before gap junction closure during meiotic maturation. The oocyte-derived betaine then could be regulated and supplemented by the SIT1 transporter that arises in the embryo after fertilization.

  16. In vivo killing and degradation of Mycobacterium aurum within mouse peritoneal macrophages.

    PubMed Central

    Silva, M T; Appelberg, R; Silva, M N; Macedo, P M

    1987-01-01

    We studied the in vivo killing and degradation of Mycobacterium aurum, a nonpathogenic, acid-fast bacillus, within macrophages after inoculation into the peritoneal cavity of CD-1 mice. The degradative process could be divided in five successive steps that were characterized on ultrastructural and cytochemical grounds and the relative contributions of which were determined by quantitative electron microscopy of samples taken at different times. The main ultrastructural alterations observed during the degradative process were ribosome disaggregation, coagulation of the cytoplasmic matrix, and change in the membrane profile from asymmetric to symmetric, with loss of the polysaccharide components from the outer layer, followed by membrane solubilization and intracellular clearing, followed by digestion of the innermost (peptidoglycan) layer of the cell wall, and at the end of the process, disorganization and collapse of the remaining layers of the cell wall. The correlation between viability and morphology indicated that the first ultrastructural signs of viability loss are cytoplasmic coagulation, change in the membrane geometry, and disappearance of ribosomes. The labeling of lysosomes of peritoneal macrophages with ferritin or by the cytochemical demonstration of inorganic trimetaphosphatase showed that fusion of lysosomes with phagosomes containing mycobacteria occurs in the phagocytes in the mouse peritoneal cavity and is already extensive as soon as 1 h after the inoculation of the bacilli. Images PMID:3623691

  17. Effect of the expression of aquaporins 1 and 3 in mouse oocytes and morulae on the nucleation temperature for intracellular ice formation

    PubMed Central

    Seki, Shinsuke; Edashige, Keisuke; Wada, Sakiko; Mazur, Peter

    2013-01-01

    The occurrence of intracellular ice formation (IIF) is the most important factor determining whether or not cells survive a cryopreservation procedure. What is not clear is the mechanism or route by which an external ice crystal can traverse the plasma membrane and cause the heterogeneous nucleation of the supercooled solution within the cell. We have hypothesized that one route is through preexisting pores in aquaporin (AQP) proteins that span the plasma membranes of many cell types. Since the plasma membrane of mature mouse oocytes expresses little AQP, we compared the ice nucleation temperature of native oocytes with that of oocytes induced to express AQP1 and AQP3. The oocytes were suspended in 1.0 M ethylene glycol in PBS for 15 minutes, cooled in a Linkam cryostage to –7.0 °C, induced to freeze externally, and finally cooled at 20 °C/min to –70 °C. IIF that occurred during the 20 °C/min cooling is manifested by abrupt black flashing. The mean IIF temperatures for native oocytes, for oocytes sham injected with water, for oocytes expressing AQP1, and for those expressing AQP3 were –34, –40, –35, and –25 °C, respectively. The fact that the ice nucleation temperature of oocytes expressing AQP3 was 10° to 15° C higher than the others is consistent with our hypothesis. AQP3 pores can supposedly be closed by low pH or by treatment with double-stranded AQP3 RNA. However, when morulae were subjected to such treatments, the IIF temperature still remained high. A possible explanation is suggested. PMID:21734033

  18. Expression of focal adhesion kinase in mouse cumulus-oocyte complexes, and effect of phosphorylation at Tyr397 on cumulus expansion.

    PubMed

    Ohtake, Jun; Sakurai, Masahiro; Hoshino, Yumi; Tanemura, Kentaro; Sato, Eimei

    2015-03-01

    We investigated the expression of focal adhesion kinase (FAK) in mouse cumulus-oocyte complexes (COCs), as well as the role of FAK phosphorylation at Tyr397 during oocyte maturation. The effect of inhibiting FAK phosphorylation at Tyr397 during in vitro maturation (IVM) on subsequent fertilization and preimplantation embryo development was also examined. Western blotting analyses revealed that total and Tyr397-phosphorylated FAK were expressed in vivo in both cumulus cells and oocytes. Immunocytochemical studies localized this kinase throughout the cytoplasm of cumulus cells and oocytes; in particular, Tyr397-phosphorylated FAK tended to accumulate in regions where cumulus cells contact each other. Interestingly, the in vivo level of Tyr397 phosphorylation in cumulus cells was significantly lower after compared to before cumulus expansion. Addition of FAK inhibitor 14, which specifically blocks phosphorylation at Tyr397, stimulated oocyte meiotic maturation and cumulus expansion during IVM in the absence of follicle-stimulating hormone (FSH). Reverse-transcriptase PCR showed that the mRNA expression of hyaluronan synthase 2 (Has2), a marker of cumulus expansion, was significantly induced in cumulus cells. Subsequent in vitro fertilization and culture showed that more oocytes developed to the blastocyst stage when they were treated with FAK inhibitor 14 during IVM, although the blastocyst total cell number was lower than in oocytes stimulated with FSH. These results indicate that FAK is involved in the maturation of COCs; specifically, phosphorylation at Tyr397 may regulate cumulus expansion via the expression of Has2 mRNA in cumulus cells, which could affect the developmental competence of oocytes.

  19. Effects of simulated weightlessness on mammalian development. Part 1: Development of clinostat for mammalian tissue culture and use in studies on meiotic maturation of mouse oocytes

    NASA Technical Reports Server (NTRS)

    Wolegemuth, D. J.; Grills, G. S.

    1984-01-01

    The effects of weightlessness on three aspects of mammalian reproduction: oocyte development, fertilization, and early embryogenesis was studied. Zero-gravity conditions within the laboratory by construction of a clinostat designed to support in vitro tissue culture were simulated and the effects of simulated weightlessness on meiotic maturation in mammalian oocytes using mouse as the model system were studied. The timing and frequency of germinal vesicule breakdown and polar body extrusion, and the structural and numerical properties of meiotic chromosomes at Metaphase and Metaphase of meiosis are assessed.

  20. A requirement for fatty acid oxidation in the hormone-induced meiotic maturation of mouse oocytes.

    PubMed

    Valsangkar, Deepa; Downs, Stephen M

    2013-08-01

    We have previously shown that fatty acid oxidation (FAO) is required for AMP-activated protein kinase (PRKA)-induced maturation in vitro. In the present study, we have further investigated the role of this metabolic pathway in hormone-induced meiotic maturation. Incorporating an assay with (3)H-palmitic acid as the substrate, we first examined the effect of PRKA activators on FAO levels. There was a significant stimulation of FAO in cumulus cell-enclosed oocytes (CEO) treated with 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) and RSVA405. In denuded oocytes (DO), AICAR stimulated FAO only in the presence of carnitine, the molecule that facilitates fatty acyl CoA entry into the mitochondria. The carnitine palmitoyltransferase 1 activator C75 successfully stimulated FAO in CEO. All three of these activators trigger germinal vesicle breakdown. Meiotic resumption induced by follicle-stimulating hormone (FSH) or amphiregulin was completely inhibited by the FAO inhibitors etomoxir, mercaptoacetate, and malonyl CoA. Importantly, FAO was increased in CEO stimulated by FSH and epidermal growth factor, and this increase was blocked by FAO inhibitors. Moreover, compound C, a PRKA inhibitor, prevented the FSH-induced increase in FAO. Both carnitine and palmitic acid augmented hormonal induction of maturation. In a more physiological setting, etomoxir eliminated human chorionic gonadotropin (hCG)-induced maturation in follicle-enclosed oocytes. In addition, CEO and DO from hCG-treated mice displayed an etomoxir-sensitive increase in FAO, indicating that this pathway was stimulated during in vivo meiotic resumption. Taken together, our data indicate that hormone-induced maturation in mice requires a PRKA-dependent increase in FAO.

  1. Effect of lectins on hepatic clearance and killing of Candida albicans by the isolated perfused mouse liver.

    PubMed Central

    Sawyer, R T; Garner, R E; Hudson, J A

    1992-01-01

    The isolated perfused mouse liver model was used to study the effects of various lectins on hepatic trapping and killing of Candida albicans. After mouse livers were washed with 20 to 30 ml of perfusion buffer, 10(6) C. albicans CFU were infused into the livers. At the time of recovery, 63% +/- 2% (mean +/- standard error of the mean) of the infused C. albicans CFU were recovered from the liver and 14% +/- 1% were recovered from the effluent for a total recovery of 77% +/- 2%. This indicated that 86% +/- 9% of the original inoculum was trapped by the liver and that 23% +/- 2% was killed within the liver. When included in both preperfusion and postperfusion buffers (0.2 mg of lectin per ml), Ulex europeaus lectin (binding specificity for fucose) decreased hepatic trapping of C. albicans by 37% and eluted trapped C. albicans from the liver only when included in postperfusion buffer. By comparison, treatment of C. albicans with U. europeaus lectin before infusion had no effect on the trapping or killing of yeast cells. When Lens culinaris lectin (binding specificity for mannose) was included in the perfusion buffers, hepatic killing of C. albicans increased by 16% with no significant effect on hepatic killing when yeast cells were treated with L. culinaris lectin before infusion. Forty to 55% of the infused C. albicans were killed when concanavalin A (binding specificities for mannose and glucose), Glycine max (binding specificity for N-acetylgalactosamine), or Arachis hypogea (binding specificity for galactose) lectin was included in the perfusion buffer or when yeast cells were treated with these lectins before their infusion. When C. albicans was treated with concanavalin A at a concentration of less than 0.02 mg/ml, hepatic killing of yeast cells was not significantly increased. The data suggest that a fucose-containing receptor on the surface of either sinusoidal endothelial cells or Kupffer cells is involved in the trapping of C. albicans by the perfused mouse

  2. Killing of Targets by CD8+ T Cells in the Mouse Spleen Follows the Law of Mass Action

    PubMed Central

    Ganusov, Vitaly V.; Barber, Daniel L.; De Boer, Rob J.

    2011-01-01

    It has been difficult to correlate the quality of CD8 T cell responses with protection against viral infections. To investigate the relationship between efficacy and magnitude of T cell responses, we quantify the rate at which individual CD8 effector and memory T cells kill target cells in the mouse spleen. Using mathematical modeling, we analyze recent data on the loss of target cells pulsed with three different peptides from the mouse lymphocytic choriomeningitis virus (LCMV) in mouse spleens with varying numbers of epitope-specific CD8 T cells. We find that the killing of targets follows the law of mass-action, i.e., the death rate of individual target cells remains proportional to the frequency (or the total number) of specific CD8 T cells in the spleen despite the fact that effector cell densities and effector to target ratios vary about a 1000-fold. The killing rate of LCMV-specific CD8 T cells is largely independent of T cell specificity and differentiation stage. Our results thus allow one to calculate the critical T cell concentration at which growth of a virus with a given replication rate can be prevented from the start of infection by memory CD8 T cell response. PMID:21283669

  3. Killing of targets by effector CD8 T cells in the mouse spleen follows the law of mass action

    SciTech Connect

    Ganusov, Vitaly V

    2009-01-01

    In contrast with antibody-based vaccines, it has been difficult to measure the efficacy of T cell-based vaccines and to correlate the efficacy of CD8 T cell responses with protection again viral infections. In part, this difficulty is due to poor understanding of the in vivo efficacy of CD8 T cells produced by vaccination. Using a: recently developed experimental method of in vivo cytotoxicity we have investigated quantitative aspects of killing of peptide-pulsed targets by effector and memory CD8 T cells, specific to three epitopes of lymphocytic choriomeningitis virus (LCMV), in the mouse spleen. By analyzing data on killing of targets with varying number of epitope-specific effector and memory CD8 T cells, we find that killing of targets by effectors follows the law of mass-action, that is the death rate of peptide-pulsed targets is proportional to the frequency of CTLs in the spleen. In contrast, killing of targets by memory CD8 T cells does not follow the mass action law because the death rate of targets saturates at high frequencies of memory CD8 T cells. For both effector and memory cells, we also find little support for the killing term that includes the decrease of the death rate of targets with target cell density. Interestingly, our analysis suggests that at low CD8 T cell frequencies, memory CD8 T cells on the per capita basis are more efficient at killing peptide-pulsed targets than effectors, but at high frequencies, effectors are more efficient killers than memory T cells. Comparison of the estimated killing efficacy of effector T cells with the value that is predicted from theoretical physics and based on motility of T cells in lymphoid tissues, suggests that limiting step in the killing of peptide-pulsed targets is delivering the lethal hit and not finding the target. Our results thus form a basis for quantitative understanding of the process of killing of virus-infected cells by T cell responses in tissues and can be used to correlate the

  4. Relationship between intracellular ice formation in oocytes of the mouse and Xenopus and the physical state of the external medium--a revisit.

    PubMed

    Mazur, Peter; Kleinhans, F W

    2008-02-01

    We have previously reported that intracellular ice formation (IIF) in mouse oocytes suspended in glycerol/PBS solutions or ethylene glycol (EG)/PBS solutions and rapidly cooled to -50 degrees C or below occurs at temperatures where a critical fraction of the external water remains unfrozen [P. Mazur, S. Seki, I.L. Pinn, F.W. Kleinhans, K. Edashige, Extra- and intracellular ice formation in mouse oocytes, Cryobiology 51 (2005) 29-53; P. Mazur, I.L. Pinn, F.W. Kleinhans, The temperature of intracellular ice formation in mouse oocytes vs. the unfrozen fraction at that temperature, Cryobiology 54 (2007) 223-233]. For mouse oocytes in PBS or glycerol/PBS that fraction is 0.06; for oocytes in EG that fraction was calculated to be 0.13, more than double. The fractions unfrozen are computed from ternary phase diagrams. In the previous publication, we used the EG data of Woods et al. [E.J. Woods, M.A.J. Zieger, D.Y. Gao, J.K. Critser, Equations for obtaining melting points for the ternary system ethylene glycol/sodium chloride/Water and their application to cryopreservation., Cryobiology 38 (1999) 403-407]. Since then, we have determined that ternary phase diagrams for EG/NaCl/water synthesized by summing binary phase data for EG/water NaCl/water gives substantially different curves, which seem more realistic [F.W. Kleinhans, P. Mazur, Comparison of actual vs. synthesized ternary phase diagrams for solutes of cryobiological interest, Cryobiology 54 (2007) 212-222]. Unfrozen fractions at the temperatures of IIF computed from these synthesized phase diagrams are about half of those calculated from the Woods et al. data, and are in close agreement with the computations for glycerol; i.e., IIF occurs when about 92-94% of the external water is frozen. A parallel paper was published by Guenther et al. [J.F. Guenther, S. Seki, F.W. Kleinhans, K. Edashige, D.M. Roberts, P. Mazur, Extra-and intra-cellular ice formation in Stage I and II Xenopus laevis oocytes, Cryobiology 52 (2006

  5. Transition Metal Chelator Induces Progesterone Production in Mouse Cumulus-Oocyte Complexes and Corpora Lutea.

    PubMed

    Tian, X; Anthony, K; Diaz, Francisco J

    2017-04-01

    Progesterone production is upregulated in granulosa cells (cumulus and mural) after the LH surge, but the intra-follicular mechanisms regulating this transition are not completely known. Recent findings show that the transition metal chelator, N,N,N',N'-tetrakis-(2-pyridylmethyl)-ethylenediamine (TPEN), impairs ovarian function. In this study, we provide evidence that chelating transition metals, including zinc, enhances progesterone production. The findings show that TPEN (transition metal chelator) increases abundance of Cyp11a1 and Star messenger RNA (mRNA) between 8- and 20-fold and progesterone production more than 3-fold in cultured cumulus-oocyte complexes (COC). Feeding a zinc-deficient diet for 10 days, but not 3 days, increased Star, Hsd3b, and prostaglandin F2 alpha receptor (Ptgfr) mRNA ~2.5-fold, suggesting that the effect of TPEN is through modulation of zinc availability. Progesterone from cumulus cells promotes oocyte developmental potential. Blocking progesterone production with epostane during maturation reduced subsequent blastocyst formation from 89 % in control to 18 % in epostane-treated complexes, but supplementation with progesterone restored blastocyst developmental potential to 94 %. Feeding a zinc-deficient diet for 5 days before ovulation did not affect the number of CL, STAR protein, or serum progesterone. However, incubating luteal tissue with TPEN increased abundance of Star, Hsd3b, and Ptgfr mRNA 2-3-fold and increased progesterone production 3-fold. TPEN is known to abolish SMAD2/3 signaling in cumulus cells. However, treatment of COC with the SMAD2/3 phosphorylation inhibitor, SB421542, did not by itself induce steroidogenic transcripts but did potentiate EGF-induced Star mRNA expression. Collectively, the results show that depletion of transition metals with TPEN acutely enhances progesterone biosynthesis in COC and luteal tissue.

  6. Research on stress-induced apoptosis of natural killer cells and the alteration of their killing activity in mouse liver

    PubMed Central

    Ma, Zhen; Liu, Yang; Zhou, Xin; Yu, Hai-Long; Li, Ming-Qi; Tomiyama-Miyaji, Chikako; Abo, Toru; Bai, Xue-Feng

    2013-01-01

    AIM: To investigate the stress-induced apoptosis of natural killer (NK) cells and the changes in their killing activity in mouse livers. METHODS: A restraint stress model was established in mice. Flow cytometry was employed to measure the percentage of NK cells and the changes in their absolute number in mouse liver. The cytotoxicity of hepatic and splenic NK cells was assessed against YAC-1 target cells via a 4 h 51Cr-release assay. RESULTS: The restraint stress stimulation induced the apoptosis of NK cells in the liver and the spleen, which decreased the cell number. The number and percentage of NK cells in the spleen decreased. However, the number of NK cells in the liver decreased, whereas the percentage of NK cells was significantly increased. The apoptosis of NK cells increased gradually with prolonged stress time, and the macrophage-1 (Mac-1)+ NK cells were more susceptible to apoptosis than Mac-1- NK cells. Large numbers of Mac-1- NK cells in the liver, which are more resistant to stress-induced apoptosis, were observed than the Mac-1- NK cells in the spleen. The stress stimulation diminished the killing activity of NK cells in the spleen was significantly decreased, but the retention of numerous Mac-1- NK cells in the liver maintained the killing ability. CONCLUSION: Significant stress-induced apoptosis was observed among Mac-1+ NK cells, but not Mac-1- NK cells in the mouse liver. Stress stimulation markedly decreased the killing activity of NK cells in the spleen but remained unchanged in the liver. PMID:24115824

  7. Protein tyrosine kinase signaling in the mouse oocyte cortex during sperm-egg interactions and anaphase resumption.

    PubMed

    McGinnis, Lynda K; Luo, Jinping; Kinsey, William H

    2013-04-01

    Fertilization triggers activation of a series of pre-programmed signal transduction pathways in the oocyte that establish a block to polyspermy, induce meiotic resumption, and initiate zygotic development. Fusion between sperm and oocyte results in rapid changes in oocyte intracellular free-calcium levels, which in turn activate multiple protein kinase cascades in the ooplasm. The present study examined the possibility that sperm-oocyte interaction involves localized activation of oocyte protein tyrosine kinases, which could provide an alternative signaling mechanism to that triggered by the fertilizing sperm. Confocal immunofluorescence analysis with antibodies to phosphotyrosine and phosphorylated protein tyrosine kinases allowed detection of minute signaling events localized to the site of sperm-oocyte interaction that were not amenable to biochemical analysis. The results provide evidence for localized accumulation of phosphotyrosine at the site of sperm contact, binding, or fusion, which suggests active protein tyrosine kinase signaling prior to and during sperm incorporation. The PYK2 kinase was found to be concentrated and activated at the site of sperm-oocyte interaction, and likely participates in this response. Widespread activation of PYK2 and FAK kinases was subsequently observed within the oocyte cortex, indicating that sperm incorporation is followed by more global signaling via these kinases during meiotic resumption. The results demonstrate an alternate signaling pathway triggered in mammalian oocytes by sperm contact, binding, or fusion with the oocyte.

  8. Identification and characterization of two novel classes of small RNAs in the mouse germline: retrotransposon-derived siRNAs in oocytes and germline small RNAs in testes

    PubMed Central

    Watanabe, Toshiaki; Takeda, Atsushi; Tsukiyama, Tomoyuki; Mise, Kazuyuki; Okuno, Tetsuro; Sasaki, Hiroyuki; Minami, Naojiro; Imai, Hiroshi

    2006-01-01

    Small RNAs ranging in size between 18 and 30 nucleotides (nt) are found in many organisms including yeasts, plants, and animals. Small RNAs are involved in the regulation of gene expression through translational repression, mRNA degradation, and chromatin modification. In mammals, microRNAs (miRNAs) are the only small RNAs that have been well characterized. Here, we have identified two novel classes of small RNAs in the mouse germline. One class consists of ∼20- to 24-nt small interfering RNAs (siRNAs) from mouse oocytes, which are derived from retroelements including LINE, SINE, and LTR retrotransposons. Addition of retrotransposon-derived sequences to the 3′ untranslated region (UTR) of a reporter mRNA destabilizes the mRNA significantly when injected into full-grown oocytes. These results suggest that retrotransposons are suppressed through the RNAi pathway in mouse oocytes. The other novel class of small RNAs is 26- to 30-nt germline small RNAs (gsRNAs) from testes. gsRNAs are expressed during spermatogenesis in a developmentally regulated manner, are mapped to the genome in clusters, and have strong strand bias. These features are reminiscent of Tetrahymena ∼23- to 24-nt small RNAs and Caenorhabditis elegans X-cluster small RNAs. A conserved novel small RNA pathway may be present in diverse animals. PMID:16766679

  9. Protective effects of resveratrol against mancozeb induced apoptosis damage in mouse oocytes

    PubMed Central

    Liu, Yu; Chen, Ming-Huang; Zhang, Zhen; Fu, Xian-Pei; Fu, Bin-Bin; Liao, Bao-Qiong; Lin, Yan-Hong; Qi, Zhong-Quan; Wang, Hai-Long

    2017-01-01

    Mancozeb, a mixture of ethylene-bis-dithiocarbamate manganese and zinc salts, is one of the most widely used fungicides in agriculture. Mancozeb could lead to mitochondria dysfunction, cellular anti-oxidation enzymes depletion and apoptotic pathways activation. Previous studies indicated the exposure of mancozeb through mother would lead to irregular estrous cycles, decreased progesterone levels, reduced litter sizes, and more frequent delivery of dead fetuses. In this study, we investigated mancozeb inducing reproductive toxicity, especially focusing on its apoptotic effect and epigenetic modifications. We also showed that resveratrol, a kind of phytoalexin found in peanuts and grapes, can alleviate mancozeb's adverse effects, such as declined fertility, decreased ovary weight and primary follicles. Besides, mancozeb treated oocytes displayed suboptimal developmental competence and this can also be improved by treatment of resveratrol. More detailed investigation of these processes revealed that mancozeb increased reactive oxygen species, causing cell apoptosis and abnormal epigenetic modifications, and resveratrol can block these cytotoxic changes. Collectively, our results showed that resveratrol can alleviate mancozeb induced infertility and this was mainly through the correction of apoptotic tendency and the abnormity of cellular epigenetic modification. PMID:28031523

  10. Protective effects of resveratrol against mancozeb induced apoptosis damage in mouse oocytes.

    PubMed

    Liu, Yu; Wang, Ya-Long; He, Shu-Wen; Chen, Ming-Huang; Zhang, Zhen; Fu, Xian-Pei; Fu, Bin-Bin; Liao, Bao-Qiong; Lin, Yan-Hong; Qi, Zhong-Quan; Wang, Hai-Long

    2017-01-24

    Mancozeb, a mixture of ethylene-bis-dithiocarbamate manganese and zinc salts, is one of the most widely used fungicides in agriculture. Mancozeb could lead to mitochondria dysfunction, cellular anti-oxidation enzymes depletion and apoptotic pathways activation. Previous studies indicated the exposure of mancozeb through mother would lead to irregular estrous cycles, decreased progesterone levels, reduced litter sizes, and more frequent delivery of dead fetuses. In this study, we investigated mancozeb inducing reproductive toxicity, especially focusing on its apoptotic effect and epigenetic modifications. We also showed that resveratrol, a kind of phytoalexin found in peanuts and grapes, can alleviate mancozeb's adverse effects, such as declined fertility, decreased ovary weight and primary follicles. Besides, mancozeb treated oocytes displayed suboptimal developmental competence and this can also be improved by treatment of resveratrol. More detailed investigation of these processes revealed that mancozeb increased reactive oxygen species, causing cell apoptosis and abnormal epigenetic modifications, and resveratrol can block these cytotoxic changes. Collectively, our results showed that resveratrol can alleviate mancozeb induced infertility and this was mainly through the correction of apoptotic tendency and the abnormity of cellular epigenetic modification.

  11. Cryopreservation of oocytes and embryos: use of a mouse model to investigate effects upon zona hardness and formulate treatment strategies in an in-vitro fertilization programme.

    PubMed

    Matson, P L; Graefling, J; Junk, S M; Yovich, J L; Edirisinghe, W R

    1997-07-01

    Mouse oocytes and embryos were obtained following ovulation induction of (C57B16 x CBA) F1 animals. Zonae pellucidae were exposed to alpha-chymotrypsin in phosphate-buffered medium (PB1) supplemented with 3 mg/ml bovine serum albumin upon a heated stage (37 degrees C) and were observed constantly through an inverted microscope. The endpoint of the bioassay was the limits of the zona no longer being seen clearly at x 200 magnification, and the time taken for each zona to dissolve was recorded. A dose-dependent response in dissolution time was clearly seen, with 1% alpha-chymotrypsin being chosen as the routine working solution. Cryopreservation of 2-cell mouse embryos using propanediol did not cause zona hardening but induced a small and significant softening, as gauged by the time taken for zona dissolution (2181 +/- 167 versus 1864 +/- 82 s). Zona hardening was not suspected to occur after the freezing of human embryos as there was no difference in implantation rates per embryo for in-vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI) treatment cycles between fresh [IVF: 63/644 (9.7%); ICSI: 51/330 (15.5%)] and frozen embryos [IVF: 36/458 (7.9%); ICSI: 18/112 (16.1%)]. Conversely, significant hardening of the zonae of mature oocytes was seen following cryopreservation (747 +/- 393 s) compared with freshly ovulated oocytes (151 +/- 68 s). It is concluded that (i) the freezing of murine oocytes with propanediol results in zona hardening, implying a possible benefit of ICSI after the cryopreservation of human oocytes, and (ii) the cryopreservation of embryos is not associated with zona hardening or reduced implantation, making microdissection of the zona in such cases generally unwarranted.

  12. Inhibition of chromatin assembly in Xenopus oocytes correlates with derepression of the mouse mammary tumor virus promoter.

    PubMed Central

    Perlmann, T; Wrange, O

    1991-01-01

    The mouse mammary tumor virus (MMTV) promoter is positively regulated by glucocorticoid hormone via binding of glucocorticoid receptor to a specific response element. Upon addition of hormone, a nucleosome containing the glucocorticoid response element is removed or structurally altered, suggesting that the nucleosome interferes with transcription. Accordingly, inhibition of chromatin assembly should relieve the repression and result in an increased constitutive activity. We have tested this hypothesis by injecting nonspecific competitor DNA into Xenopus laevis oocytes to titrate endogenous histones. The coinjection of competitor DNA altered chromatin structure: nucleosomal ladders produced by micrococcal nuclease were disrupted, and the unique helical setting of the MMTV promoter in a nucleosome was lost, as shown by in situ DNase I footprinting. Basal MMTV transcription was drastically increased by competitor DNA, whereas a coinjected, constitutively active adenovirus 2 major late promoter was not stimulated. These results show that the uninduced MMTV promoter is under negative control and provide direct support for the theory that the nucleosomal organization maintains the repression of this promoter in its uninduced state. Images PMID:1656227

  13. Cooperative effects of 17β-estradiol and oocyte-derived paracrine factors on the transcriptome of mouse cumulus cells.

    PubMed

    Emori, Chihiro; Wigglesworth, Karen; Fujii, Wataru; Naito, Kunihiko; Eppig, John J; Sugiura, Koji

    2013-12-01

    Oocyte-derived paracrine factors (ODPFs) and estrogens are both essential for the development and function of ovarian follicles in mammals. Cooperation of these two factors was assessed in vitro using intact cumulus-oocyte complexes, cumulus cells cultured after the removal of oocytes [oocytectomized (OOX) cumulus cells], and OOX cumulus cells cocultured with denuded oocytes, all in the presence or absence of 17β-estradiol (E2). Effects on the cumulus cell transcriptome were assessed by microarray analysis. There was no significant difference between the cumulus cell transcriptomes of either OOX cumulus cells cocultured with oocytes or intact cumulus-oocyte complexes. Therefore, oocyte-mediated regulation of the cumulus cell transcriptome is mediated primarily by ODPFs and not by gap junctional communication between oocytes and cumulus cells. Gene ontology analysis revealed that both ODPFs and E2 strongly affected the biological processes associated with cell proliferation in cumulus cells. E2 had limited effects on ODPF-regulated biological processes. However, in sharp contrast, ODPFs significantly affected biological processes regulated by E2 in cumulus cells. For example, only in the presence of ODPFs did E2 significantly promote the biological processes related to phosphorylation-mediated signal transduction in cumulus cells, such as the signaling pathways of epidermal growth factor, vascular endothelial growth factor, and platelet-derived growth factor. Therefore, ODPFs and E2 cooperate to regulate the cumulus cell transcriptome and, in general, oocytes modulate the effects of estrogens on cumulus cell function.

  14. Targeting of MCL-1 kills MYC-driven mouse and human lymphomas even when they bear mutations in p53.

    PubMed

    Kelly, Gemma L; Grabow, Stephanie; Glaser, Stefan P; Fitzsimmons, Leah; Aubrey, Brandon J; Okamoto, Toru; Valente, Liz J; Robati, Mikara; Tai, Lin; Fairlie, W Douglas; Lee, Erinna F; Lindstrom, Mikael S; Wiman, Klas G; Huang, David C S; Bouillet, Philippe; Rowe, Martin; Rickinson, Alan B; Herold, Marco J; Strasser, Andreas

    2014-01-01

    The transcriptional regulator c-MYC is abnormally overexpressed in many human cancers. Evasion from apoptosis is critical for cancer development, particularly c-MYC-driven cancers. We explored which anti-apoptotic BCL-2 family member (expressed under endogenous regulation) is essential to sustain c-MYC-driven lymphoma growth to reveal which should be targeted for cancer therapy. Remarkably, inducible Cre-mediated deletion of even a single Mcl-1 allele substantially impaired the growth of c-MYC-driven mouse lymphomas. Mutations in p53 could diminish but not obviate the dependency of c-MYC-driven mouse lymphomas on MCL-1. Importantly, targeting of MCL-1 killed c-MYC-driven human Burkitt lymphoma cells, even those bearing mutations in p53. Given that loss of one allele of Mcl-1 is well tolerated in healthy tissues, our results suggest that therapeutic targeting of MCL-1 would be an attractive therapeutic strategy for MYC-driven cancers.

  15. Taurine and beta-alanine act on both GABA and glycine receptors in Xenopus oocyte injected with mouse brain messenger RNA.

    PubMed

    Horikoshi, T; Asanuma, A; Yanagisawa, K; Anzai, K; Goto, S

    1988-09-01

    The responding pathway (process from agonist binding to channel opening) of taurine and beta-alanine was investigated in Xenopus oocytes injected with mouse brain poly(A)+ RNA. Responses to gamma-aminobutyric acid (GABA), glycine, taurine and beta-alanine were induced in oocytes injected with poly(A)+ RNA extracted from 3 regions, cerebrum, cerebellum and brainstem of the mouse brain. From comparison, responses to these 4 inhibitory amino acids in each regional poly(A)+ RNA-injected oocytes were categorized into at least 3 groups: (1) GABA, (2) glycine, and (3) taurine and beta-alanine. No cross-desensitization was observed between GABA response and glycine response, but taurine and beta-alanine responses cross-desensitized both the GABA and glycine responses. Taurine and beta-alanine responses were partially inhibited by the GABA antagonist, bicuculline, and also by the glycine antagonist, strychnine. The results suggest that the taurine or the beta-alanine response in the brain is caused through both the GABA receptor and the glycine receptor.

  16. Attachment, ingestion and intracellular killing of Helicobacter pylori by human peripheral blood mononuclear leukocytes and mouse peritoneal inflammatory macrophages.

    PubMed

    Chmiela, M; Paziak-Domanska, B; Wadström, T

    1995-02-01

    The different steps of phagocytosis, attachment, ingestion and intracellular killing of cells of Helicobacter pylori strain 17874 (expressing sialic acid-specific haemagglutinin) and cells of H. pylori strain 17875 (expressing non-sialic acid-specific haemagglutinin) have been studied. More cells of sialopositive H. pylori strain 17874 have been found attached to human peripheral blood mononuclear leukocytes (PBM) and mouse peritoneal inflammatory macrophages (PIM) than cells of sialonegative H. pylori strain 17875. Binding of cells of H. pylori strain 17874 has been significantly inhibited by treatment of phagocytes with neuraminidase. Inhibition of adhesion of these bacteria preincubated with foetuin to normal phagocytic cells has also been found. Well adhering cells of H. pylori strain 17874 were more resistant to killing mechanisms of human PBM and mouse PIM than cells of strain 17875. Good, probably sialic acid-specific haemagglutinin dependent, adhesion of H. pylori bacteria to phagocytes can be considered as an important virulence factor which facilitates the pathogen to avoid the defence mechanisms.

  17. RhoA-mediated FMNL1 regulates GM130 for actin assembly and phosphorylates MAPK for spindle formation in mouse oocyte meiosis.

    PubMed

    Wang, Fei; Zhang, Liang; Duan, Xing; Zhang, Guang-Li; Wang, Zhen-Bo; Wang, Qiang; Xiong, Bo; Sun, Shao-Chen

    2015-01-01

    Formin-like 1 (FMNL1) is a member of Formin family proteins which are the actin nucleators. Although FMNL1 activities have been shown to be essential for cell adhesion, cytokinesis, cell polarization and migration in mitosis, the functional roles of mammalian FMNL1 during oocyte meiosis remain uncertain. In this study, we investigated the functions of FMNL1 in mouse oocytes using specific morpholino (MO) microinjection and live cell imaging. Immunofluorescent staining showed that in addition to its cytoplasmic distribution, FMNL1 was primarily localized at the spindle poles after germinal vesicle breakdown (GVBD). FMNL1 knockdown caused the low rate of polar body extrusion and resulted in large polar bodies. Time-lapse microscopic and immunofluorescence intensity analysis indicated that this might be due to the aberrant actin expression levels. Cortical polarity was disrupted as shown by a loss of actin cap and cortical granule free domain (CGFD) formation, which was confirmed by a failure of meiotic spindle positioning. And this might be the reason for the large polar body formation. Spindle formation was also disrupted, which might be due to the abnormal localization of p-MAPK. These results indicated that FMNL1 affected both actin dynamics and spindle formation for the oocyte polar body extrusion. Moreover, FMNL1 depletion resulted in aberrant localization and expression patterns of a cis-Golgi marker protein, GM130. Finally, we found that the small GTPase RhoA might be the upstream regulator of FMNL1. Taken together, our data indicate that FMNL1 is required for spindle organization and actin assembly through a RhoA-FMNL1-GM130 pathway during mouse oocyte meiosis.

  18. A Motor-Gradient and Clustering Model of the Centripetal Motility of MTOCs in Meiosis I of Mouse Oocytes

    PubMed Central

    2016-01-01

    Asters nucleated by Microtubule (MT) organizing centers (MTOCs) converge on chromosomes during spindle assembly in mouse oocytes undergoing meiosis I. Time-lapse imaging suggests that this centripetal motion is driven by a biased ‘search-and-capture’ mechanism. Here, we develop a model of a random walk in a drift field to test the nature of the bias and the spatio-temporal dynamics of the search process. The model is used to optimize the spatial field of drift in simulations, by comparison to experimental motility statistics. In a second step, this optimized gradient is used to determine the location of immobilized dynein motors and MT polymerization parameters, since these are hypothesized to generate the gradient of forces needed to move MTOCs. We compare these scenarios to self-organized mechanisms by which asters have been hypothesized to find the cell-center- MT pushing at the cell-boundary and clustering motor complexes. By minimizing the error between simulation outputs and experiments, we find a model of “pulling” by a gradient of dynein motors alone can drive the centripetal motility. Interestingly, models of passive MT based “pushing” at the cortex, clustering by cross-linking motors and MT-dynamic instability gradients alone, by themselves do not result in the observed motility. The model predicts the sensitivity of the results to motor density and stall force, but not MTs per aster. A hybrid model combining a chromatin-centered immobilized dynein gradient, diffusible minus-end directed clustering motors and pushing at the cell cortex, is required to comprehensively explain the available data. The model makes experimentally testable predictions of a spatial bias and self-organized mechanisms by which MT asters can find the center of a large cell. PMID:27706163

  19. HCO3−/Cl− Exchange Inactivation and Reactivation during Mouse Oocyte Meiosis Correlates with MEK/MAPK-Regulated Ae2 Plasma Membrane Localization

    PubMed Central

    Zhou, Chenxi; Tiberi, Mario; Liang, Binhui; Alper, Seth L.; Baltz, Jay M.

    2009-01-01

    Background Germinal Vesicle (GV) stage mouse oocytes in first meiotic prophase exhibit highly active HCO3−/Cl− exchange—a class of transport nearly ubiquitously involved in regulation of intracellular pH and cell volume. During meiosis, however, oocyte HCO3−/Cl− exchange becomes inactivated during first metaphase (MI), remains inactive in second metaphase (MII), and is reactivated only after egg activation. Previous work using pharmacological manipulations had indicated that activity of the MEK/MAPK signaling pathway was negatively correlated with HCO3−/Cl− exchange activity during meiosis. However, the mechanism by which the exchanger is inactivated during meiotic progression had not been determined, nor had the role of MEK/MAPK been directly established. Methodology/Principal Findings Expression of a constitutively active form of MEK (MAP kinase kinase), which prevented the normal downregulation of MAPK after egg activation, also prevented reactivation of HCO3−/Cl− exchange. Conversely, suppression of endogenous MAPK activity with dominant negative MEK activated the normally quiescent HCO3−/Cl− exchange in mature MII eggs. A GFP-tagged form of the HCO3−/Cl− exchanger isoform Ae2 (Slc4a2) was strongly expressed at the GV oocyte plasma membrane, but membrane localization decreased markedly during meiotic progression. A similar pattern for endogenous Ae2 was confirmed by immunocytochemistry. The loss of membrane-localized Ae2 appeared selective, since membrane localization of a GFP-tagged human dopamine D1 receptor did not change during meiotic maturation. Conclusions Direct manipulation of MAPK activity indicated that GFP-tagged Ae2 localization depended upon MAPK activity. Inactivation of HCO3−/Cl− exchange during the meiotic cell cycle may therefore reflect the loss of Ae2 from the oocyte plasma membrane, downstream of MEK/MAPK signaling. This identifies a novel role for MEK/MAPK-mediated cytostatic factor (CSF) activity during

  20. cyclic GMP Mediated Inhibition of Spontaneous Germinal Vesicle Breakdown Both with and without Cumulus in Mouse Oocyte.

    PubMed

    Hwang, Heekyung; Cheon, Yong-Pil

    2016-12-01

    Intact germinal vesicle (GV) arrest and release are essential for maintaining the fertility of mammals inducing human. Intact germinal vesicle release, maturation of oocytes is maintained by very complex procedures along with folliculogenesis and is a critical step for embryonic development. Cyclic guanosine monophosphate (cGMP) has been suggested a key factor for meiotic arrest but so far its mechanisms are controversy. In this study we examine the effects of cGMP on germinal vesicle breakdown in cumulus-enclosed oocytes and denuded oocytes. Spontaneous maturation was inhibited by a cGMP agonist, 8-Br-cGMP with concentration dependent manners both in cumulus-enclosed oocytes and denuded oocytes. The inhibitory effect was more severe in denuded oocytes than cumulus-enclosed oocytes. The Rp-8-Br-cGMP and Rp-pCPT-8-Br-cGMP did not severely block GVB compared to 8-Br-cGMP. The spontaneous GVB inhibitory effects were different by the existence of cumulus. Based on them it is suggested that the cumulus modulates the role of cGMP in GV arrest.

  1. Review: Lamin A/C, caspase-6, and chromatin configuration during meiosis resumption in the mouse oocyte.

    PubMed

    Arnault, Emilie; Doussau, Mireille; Pesty, Arlette; Lefèvre, Brigitte; Courtot, Anne-Marie

    2010-02-01

    After in vitro maturation (IVM), isolation of the healthiest oocytes is essential for successful in vitro fertilization. As germinal vesicle (GV) oocytes resume meiosis through healthy or apoptotic pathways without discernable morphological criteria, we checked for an apoptotic element acting at the nucleus level. We hypothesized that caspase-6 with its corresponding substrate, lamin A/C, could be a potential target candidate, because caspase-6 is the only functional caspase for lamin A/C. We used immunohistochemistry methods, Western blots, and a specific caspase-6 inhibitor to determine the presence of lamin A/C and caspase-6 during oogenesis and in isolated oocytes. Our results demonstrated that these proteins were always present and that their distributions were related to oocyte maturity, determined by chromatin configuration and oocyte diameter. Caspase-6 inhibition slowed meiosis resumption suggesting the involvement of caspase-6 in the oocyte apoptotic pathway. Lamin A/C and caspase-6 could be valuable tools in the knowledge of oocyte in vitro destiny.

  2. cyclic GMP Mediated Inhibition of Spontaneous Germinal Vesicle Breakdown Both with and without Cumulus in Mouse Oocyte

    PubMed Central

    Hwang, Heekyung; Cheon, Yong-Pil

    2016-01-01

    ABSTRACT Intact germinal vesicle (GV) arrest and release are essential for maintaining the fertility of mammals inducing human. Intact germinal vesicle release, maturation of oocytes is maintained by very complex procedures along with folliculogenesis and is a critical step for embryonic development. Cyclic guanosine monophosphate (cGMP) has been suggested a key factor for meiotic arrest but so far its mechanisms are controversy. In this study we examine the effects of cGMP on germinal vesicle breakdown in cumulus-enclosed oocytes and denuded oocytes. Spontaneous maturation was inhibited by a cGMP agonist, 8-Br-cGMP with concentration dependent manners both in cumulus-enclosed oocytes and denuded oocytes. The inhibitory effect was more severe in denuded oocytes than cumulus-enclosed oocytes. The Rp-8-Br-cGMP and Rp-pCPT-8-Br-cGMP did not severely block GVB compared to 8-Br-cGMP. The spontaneous GVB inhibitory effects were different by the existence of cumulus. Based on them it is suggested that the cumulus modulates the role of cGMP in GV arrest. PMID:28144640

  3. Microinjected centromere [corrected] kinetochore antibodies interfere with chromosome movement in meiotic and mitotic mouse oocytes [published erratum appears in J Cell Biol 1990 Dec;111(6 Pt 1):following 2800

    PubMed Central

    1990-01-01

    Kinetochores may perform several functions at mitosis and meiosis including: (a) directing anaphase chromosome separation, (b) regulating prometaphase alignment of the chromosomes at the spindle equator (congression), and/or (c) capturing and stabilizing microtubules. To explore these functions in vivo, autoimmune sera against the centromere/kinetochore complex are microinjected into mouse oocytes during specific phases of first or second meiosis, or first mitosis. Serum E.K. crossreacts with an 80-kD protein in mouse cells and detects the centromere/kinetochore complex in permeabilized cells or when microinjected into living oocytes. Chromosome separation at anaphase is not blocked when these antibodies are microinjected into unfertilized oocytes naturally arrested at second meiotic metaphase, into eggs at first mitotic metaphase, or into immature oocytes at first meiotic metaphase. Microtubule capture and spindle reformation occur normally in microinjected unfertilized oocytes recovering from cold or microtubule disrupting drugs; the chromosomes segregate correctly after parthenogenetic activation. Prometaphase congression is dramatically influenced when antikinetochore/centromere antibodies are introduced during interphase or in prometaphase-stage meiotic or mitotic eggs. At metaphase, these oocytes have unaligned chromosomes scattered throughout the spindle with several remaining at the poles; anaphase is aberrant and, after division, karyomeres are found in the polar body and oocyte or daughter blastomeres. Neither nonimmune sera, diffuse scleroderma sera, nor sham microinjections affect either meiosis or mitosis. These results suggest that antikinetochore/centromere antibodies produced by CREST patients interfere with chromosome congression at prometaphase in vivo. PMID:2211822

  4. Oocyte aging-induced Neuronatin (NNAT) hypermethylation affects oocyte quality by impairing glucose transport in porcine

    PubMed Central

    Gao, Ying-Ying; Chen, Li; Wang, Tao; Nie, Zheng-Wen; Zhang, Xia; Miao, Yi-Liang

    2016-01-01

    DNA methylation plays important roles in regulating many physiological behaviors; however, few studies were focused on the changes of DNA methylation during oocyte aging. Early studies showed that some imprinted genes’ DNA methylation had been changed in aged mouse oocytes. In this study, we used porcine oocytes to test the hypothesis that oocyte aging would alter DNA methylation pattern of genes and disturb their expression in age oocytes, which affected the developmental potential of oocytes. We compared several different types of genes and found that the expression and DNA methylation of Neuronatin (NNAT) were disturbed in aged oocytes significantly. Additional experiments demonstrated that glucose transport was impaired in aged oocytes and injection of NNAT antibody into fresh oocytes led to the same effects on glucose transport. These results suggest that the expression of NNAT was declined by elevating DNA methylation, which affected oocyte quality by decreasing the ability of glucose transport in aged oocytes. PMID:27782163

  5. Recent progress in reproduction of whale oocytes.

    PubMed

    Zheng, Yue-Liang

    2013-08-01

    Whale oocytes recovered from follicles can be matured in vitro. Whale sperm and mature oocytes can be used for in vitro fertilization (IVF), and IVF embryos have the ability to develop to morula stage. Whale sperm injected into bovine or mouse oocytes can activate the oocytes and form pronucleus. Interspecies somatic cell nuclear transfer embryos have been reconstructed with whale somatic cell nucleus and enucleated bovine or porcine oocytes, and interspecies cloned embryos can develop in vitro. This paper reviews recent progress in maturation, fertilization and development of whale oocytes.

  6. Ammonium accumulation and use of mineral oil overlay do not alter imprinting establishment at three key imprinted genes in mouse oocytes grown and matured in a long-term follicle culture.

    PubMed

    Anckaert, Ellen; Adriaenssens, Tom; Romero, Sergio; Smitz, Johan

    2009-10-01

    Imprinted genes are differentially methylated during gametogenesis to allow parent-of-origin-specific monoallelic expression. Follicle culture under oil overlay has been associated with altered imprinting establishment in mouse oocytes. We previously demonstrated normal imprinting establishment at four key imprinted genes in mouse oocytes grown and matured in a long-term in vitro follicle culture system without oil overlay. Ammonium (300 microM) has been linked to aberrant imprinting in in vitro preimplantation embryo culture. Compared to culture without oil, mineral oil overlay during follicle culture led to a dramatic increase in ammonia levels in culture medium: mean ammonia levels were, respectively, 39 and 290 microM at Day 4 of culture, 73 and 465 microM at Day 8, and 101 and 725 microM at Day 12 (P < 0.0001). Mineral oil overlay and high ammonia levels (comparable to the follicle culture system for which aberrant imprinting was previously described) during follicle culture did not affect follicle survival, metaphase II (MII) rate, or MII oocyte diameter. Bisulphite sequencing revealed that high levels of ammonia and mineral oil overlay during follicle culture did not alter the methylation status of differentially methylated regions of three key imprinted genes (Snrpn, Igf2r, and H19) in MII oocytes. In the current culture setup, ammonium accumulation and mineral oil overlay during follicle culture do not induce aberrant imprinting establishment at the studied regulatory sequences in mouse oocytes.

  7. FOXO1, FOXO3, AND FOXO4 are differently expressed during mouse oocyte maturation and preimplantation embryo development.

    PubMed

    Kuscu, Nilay; Celik-Ozenci, Ciler

    2015-01-01

    Preimplantation embryo development is affected by its environment. FoxO transcription factors are regulated by PI3K/Akt signaling pathway that essentially supports growth and development. FoxO transcription factors are at the interface of crucial cellular processes, orchestrating programs of gene expression that regulate apoptosis, cell-cycle arrest, oxidative stress resistance, DNA repair, glucose metabolism, and differentiation. In the presence of growth factors, FoxO transcription factors are localized in the cytoplasm, whereas under stress conditions they move to the nucleus and trigger transcriptional activities of their target genes. The aim of the present study is to investigate whether FoxO transcription factors are present during in vivo oocyte maturation and preimplantation embryo development. Presence and localizations of FoxO1, FoxO3 and FoxO4 proteins have been determined with immunofluorescence staining. Our results have confirmed that FoxO1, FoxO3 and FoxO4 proteins are differentially expressed in prophase I, metaphase I, metaphase II oocytes, as well as in fertilized oocyte, 2-cell embryo, 4-cell embryo, 8-cell embryo, morula, and blastocyst. FoxOs translocate to nucleus in embryos with developmental delay. Our findings indicate that FoxO transcription factors are present during both oocyte and embryo in vivo maturation and provide fundamental knowledge that FoxOs may regulate in vitro embryo development under stress conditions.

  8. The GTPase SPAG-1 orchestrates meiotic program by dictating meiotic resumption and cytoskeleton architecture in mouse oocytes

    PubMed Central

    Huang, Chunjie; Wu, Di; Khan, Faheem Ahmed; Jiao, Xiaofei; Guan, Kaifeng; Huo, Lijun

    2016-01-01

    In mammals, a finite population of oocytes is generated during embryogenesis, and proper oocyte meiotic divisions are crucial for fertility. Sperm-associated antigen 1 (SPAG-1) has been implicated in infertility and tumorigenesis; however, its relevance in cell cycle programs remains rudimentary. Here we explore a novel role of SPAG-1 during oocyte meiotic progression. SPAG-1 associated with meiotic spindles and its depletion severely compromised M-phase entry (germinal vesicle breakdown [GVBD]) and polar body extrusion. The GVBD defect observed was due to an increase in intraoocyte cAMP abundance and decrease in ATP production, as confirmed by the activation of AMP-dependent kinase (AMPK). SPAG-1 RNA interference (RNAi)–elicited defective spindle morphogenesis was evidenced by the dysfunction of γ-tubulin, which resulted from substantially reduced phosphorylation of MAPK and irregularly dispersed distribution of phospho-MAPK around spindles instead of concentration at spindle poles. Significantly, actin expression abruptly decreased and formation of cortical granule–free domains, actin caps, and contractile ring disrupted by SPAG-1 RNAi. In addition, the spindle assembly checkpoint remained functional upon SPAG-1 depletion. The findings broaden our knowledge of SPAG-1, showing that it exerts a role in oocyte meiotic execution via its involvement in AMPK and MAPK signaling pathways. PMID:27053660

  9. Adverse Effects of High Concentrations of Fluoride on Characteristics of the Ovary and Mature Oocyte of Mouse.

    PubMed

    Yin, Songna; Song, Chao; Wu, Haibo; Chen, Xin; Zhang, Yong

    2015-01-01

    Reproductive toxicity has been an exciting topic of research in reproductive biology in recent years. Soluble fluoride salts are toxic at high concentrations; their reproductive toxicity was assessed in this study by administering different fluoride salt concentrations to mice. Continuous feeding for five weeks resulted in damage to the histological architecture of ovaries. The expression of genes, including Dazl, Stra8, Nobox, Sohlh1, and ZP3 gene, associated with oocyte formation were much lower in the experimental group as compared with the control group. The number of in vitro fertilization of mature oocytes were also much lower in the experimental group as compared with control. Moreover, the fertility of female mice, as assessed by mating with normal male mice, was also lower in experimental compared with control groups. The expression of the oocyte-specific genes: Bmp15, Gdf9, H1oo, and ZP2, which are involved in oocyte growth and the induction of the acrosome reaction, decreased with the fluoride administration. DNA methylation and histone acetylation (H3K18ac and H3K9ac) are indispensable for germline development and genomic imprinting in mammals, and fluoride administration resulted in reduced levels of H3K9ac and H3K18ac in the experimental group as compared with the control group, as detected by immunostaining. Our results indicate that the administration of high concentrations of fluoride to female mice significantly reduced the number of mature oocytes and hampered their development and fertilization. Thus, this study lays a foundation for future studies on fluoride-induced reproductive disorders in women.

  10. Data on morphology, large-scale chromatin configuration and the occurrence of proteins and rRNA in nucleolus-like bodies of fully-grown mouse oocytes in different fixatives.

    PubMed

    Shishova, Kseniya V; Khodarovich, Yuriy M; Lavrentyeva, Elena A; Zatsepina, Olga V

    2016-06-01

    Here we provide data on accessibility of nucleolus-like bodies (NLBs) of fully-grown (GV) mouse oocytes to fluorescence in situ hybridization (FISH) probes and anti-nucleolar antibodies as well as on oocyte general morphology and large scale chromatin configuration, which relate to the research article "High-resolution microscopy of active ribosomal genes and key members of the rRNA processing machinery inside nucleolus-like bodies of fully-grown mouse oocytes" (Shishova et al., 2015 [1]). Experimental factors include: a cross-linking reagent formaldehyde and two denaturing fixatives, such as 70% ethanol and a mixture of absolute methanol and glacial acetic acid (3:1, v/v).

  11. The transcriptome of human oocytes

    PubMed Central

    Kocabas, Arif Murat; Crosby, Javier; Ross, Pablo J.; Otu, Hasan H.; Beyhan, Zeki; Can, Handan; Tam, Wai-Leong; Rosa, Guilherme J. M.; Halgren, Robert G.; Lim, Bing; Fernandez, Emilio; Cibelli, Jose Bernardo

    2006-01-01

    The identification of genes and deduced pathways from the mature human oocyte can help us better understand oogenesis, folliculogenesis, fertilization, and embryonic development. Human metaphase II oocytes were used within minutes after removal from the ovary, and its transcriptome was compared with a reference sample consisting of a mixture of total RNA from 10 different normal human tissues not including the ovary. RNA amplification was performed by using a unique protocol. Affymetrix Human Genome U133 Plus 2.0 GeneChip arrays were used for hybridizations. Compared with reference samples, there were 5,331 transcripts significantly up-regulated and 7,074 transcripts significantly down-regulated in the oocyte. Of the oocyte up-regulated probe sets, 1,430 have unknown function. A core group of 66 transcripts was identified by intersecting significantly up-regulated genes of the human oocyte with those from the mouse oocyte and from human and mouse embryonic stem cells. GeneChip array results were validated using RT-PCR in a selected set of oocyte-specific genes. Within the up-regulated probe sets, the top overrepresented categories were related to RNA and protein metabolism, followed by DNA metabolism and chromatin modification. This report provides a comprehensive expression baseline of genes expressed in in vivo matured human oocytes. Further understanding of the biological role of these genes may expand our knowledge on meiotic cell cycle, fertilization, chromatin remodeling, lineage commitment, pluripotency, tissue regeneration, and morphogenesis. PMID:16968779

  12. Meiosis, egg activation, and nuclear envelope breakdown are differentially reliant on Ca2+, whereas germinal vesicle breakdown is Ca2+ independent in the mouse oocyte

    NASA Technical Reports Server (NTRS)

    Tombes, R. M.; Simerly, C.; Borisy, G. G.; Schatten, G.

    1992-01-01

    During early development, intracellular Ca2+ mobilization is not only essential for fertilization, but has also been implicated during other meiotic and mitotic events, such as germinal vesicle breakdown (GVBD) and nuclear envelope breakdown (NEBD). In this study, the roles of intracellular and extracellular Ca2+ were examined during meiotic maturation and reinitiation at parthenogenetic activation and during first mitosis in a single species using the same methodologies. Cumulus-free metaphase II mouse oocytes immediately resumed anaphase upon the induction of a large, transient Ca2+ elevation. This resumption of meiosis and associated events, such as cortical granule discharge, were not sensitive to extracellular Ca2+ removal, but were blocked by intracellular Ca2+ chelators. In contrast, meiosis I was dependent on external Ca2+; in its absence, the formation and function of the first meiotic spindle was delayed, the first polar body did not form and an interphase-like state was induced. GVBD was not dependent on external Ca2+ and showed no associated Ca2+ changes. NEBD at first mitosis in fertilized eggs, on the other hand, was frequently, but not always associated with a brief Ca2+ transient and was dependent on Ca2+ mobilization. We conclude that GVBD is Ca2+ independent, but that the dependence of NEBD on Ca2+ suggests regulation by more than one pathway. As cells develop from Ca(2+)-independent germinal vesicle oocytes to internal Ca(2+)-dependent pronuclear eggs, internal Ca2+ pools increase by approximately fourfold.

  13. Silencing and trans-activation of the mouse IL-2 gene in Xenopus oocytes by proteins from resting and mitogen-induced primary T-lymphocytes.

    PubMed Central

    Mouzaki, A; Weil, R; Muster, L; Rungger, D

    1991-01-01

    The Xenopus oocyte system was used to test functionally, putative trans-active elements involved in the transcriptional control of the mouse interleukin-2 (IL-2) gene in resting and mitogen-induced primary T-lymphocytes. The IL-2 gene injected into the oocyte is active over a wide range of DNA concentrations. This basal activity is silenced by the addition of protein extracts from G0-arrested spleen cells. Extracts from 8 h-stimulated spleen cells do not silence but moderately increase transcription over basal level. When IL-2 transcription is silenced first by an injection of extract from resting spleen cells, the addition of proteins from stimulated cells results in a strong increase in transcription (derepression). Use of proteins from purified splenic T-lymphocytes shows that both silencer(s) and activator(s) are contributed by these cells. Extracts from control tissues have neither a silencing nor stimulatory effect. None of the proteins tested affects the activities of co-injected control genes. Injections with IL-2 promoter mutants indicate that the main target sequence of the silencing and activating factors is a purine region (Pu-box) lying between positions -261 and -292 upstream of the IL-2 gene. Bandshift assays show differential binding of the Pu-box with proteins from resting or activated T-cells. Images PMID:2026141

  14. Meiosis, egg activation, and nuclear envelope breakdown are differentially reliant on Ca2+, whereas germinal vesicle breakdown is Ca2+ independent in the mouse oocyte

    PubMed Central

    1992-01-01

    During early development, intracellular Ca2+ mobilization is not only essential for fertilization, but has also been implicated during other meiotic and mitotic events, such as germinal vesicle breakdown (GVBD) and nuclear envelope breakdown (NEBD). In this study, the roles of intracellular and extracellular Ca2+ were examined during meiotic maturation and reinitiation at parthenogenetic activation and during first mitosis in a single species using the same methodologies. Cumulus- free metaphase II mouse oocytes immediately resumed anaphase upon the induction of a large, transient Ca2+ elevation. This resumption of meiosis and associated events, such as cortical granule discharge, were not sensitive to extracellular Ca2+ removal, but were blocked by intracellular Ca2+ chelators. In contrast, meiosis I was dependent on external Ca2+; in its absence, the formation and function of the first meiotic spindle was delayed, the first polar body did not form and an interphase-like state was induced. GVBD was not dependent on external Ca2+ and showed no associated Ca2+ changes. NEBD at first mitosis in fertilized eggs, on the other hand, was frequently, but not always associated with a brief Ca2+ transient and was dependent on Ca2+ mobilization. We conclude that GVBD is Ca2+ independent, but that the dependence of NEBD on Ca2+ suggests regulation by more than one pathway. As cells develop from Ca(2+)-independent germinal vesicle oocytes to internal Ca(2+)-dependent pronuclear eggs, internal Ca2+ pools increase by approximately fourfold. PMID:1577859

  15. A Small Molecule Inhibitor of Human RAD51 Potentiates Breast Cancer Cell Killing by Therapeutic Agents in Mouse Xenografts

    PubMed Central

    Huang, Fei; Mazin, Alexander V.

    2014-01-01

    The homologous recombination pathway is responsible for the repair of DNA double strand breaks. RAD51, a key homologous recombination protein, promotes the search for homology and DNA strand exchange between homologous DNA molecules. RAD51 is overexpressed in a variety of cancer cells. Downregulation of RAD51 by siRNA increases radio- or chemo-sensitivity of cancer cells. We recently developed a specific RAD51 small molecule inhibitor, B02, which inhibits DNA strand exchange activity of RAD51 in vitro. In this study, we used human breast cancer cells MDA-MB-231 to investigate the ability of B02 to inhibit RAD51 and to potentiate an anti-cancer effect of chemotherapeutic agents including doxorubicin, etoposide, topotecan, and cisplatin. We found that the combination of B02 with cisplatin has the strongest killing effect on the cancer cells. We then tested the effect of B02 and cisplatin on the MDA-MB-231 cell proliferation in mouse xenografts. Our results showed that B02 significantly enhances the therapeutic effect of cisplatin on tumor cells in vivo. Our current data demonstrate that use of RAD51-specific small molecule inhibitor represents a feasible strategy of a combination anti-cancer therapy. PMID:24971740

  16. Pertussis toxin-catalyzed ADP-ribosylation of a G protein in mouse oocytes, eggs, and preimplantation embryos: Developmental changes and possible functional roles

    SciTech Connect

    Jones, J.; Schultz, R.M. )

    1990-06-01

    G proteins, which in many somatic cells serve as mediators of signal transduction, were identified in preimplantation mouse embryos by their capacity to undergo pertussis toxin-catalyzed ADP-ribosylation. Two pertussis toxin (PT) substrates with Mr = 38,000 and 39,000 (alpha 38 and alpha 39) are present in approximately equal amounts. Relative to the amount in freshly isolated germinal vesicle (GV)-intact oocytes, the amount of PT-catalyzed ADP-ribosylation of alpha 38-39 falls during oocyte maturation, rises between the one- and two-cell stages, falls by the eight-cell and morula stages, and increases again by the blastocyst stage. The decrease in PT-catalyzed ADP-ribosylation of alpha 38-39 that occurs during oocyte maturation, however, does not require germinal vesicle breakdown (GVBD), since inhibiting GVBD with 3-isobutyl-1-methyl xanthine (IBMX) does not prevent the decrease in the extent of PT-catalyzed ADP-ribosylation. A biologically active phorbol diester (12-O-tetradecanoyl phorbol 13-acetate), but not an inactive one (4 alpha-phorbol 12,13-didecanoate, 4 alpha-PDD), totally inhibits the increase in PT-catalyzed ADP-ribosylation of alpha 38-39 that occurs between the one- and two-cell stage; TPA inhibits cleavage, but not transcriptional activation, which occurs in the two-cell embryo. In contrast, cytochalasin D, genistein, or aphidicolin, each of which inhibits cleavage of one-cell embryos, or alpha-amanitin or H8, each of which inhibits transcriptional activation but not cleavage of one-cell embryos, have little or inhibitory effects on the increase in PT-catalyzed ADP-ribosylation of alpha 38-39. Results of immunoblotting experiments using an antibody that is highly specific for alpha il-3 reveal the presence of a cross-reactive species of Mr = 38,000 (alpha 38) in the GV-intact oocyte, metaphase II-arrested egg, and one-, two-cell embryos.

  17. The chromosome passenger complex is required for fidelity of chromosome transmission and cytokinesis in meiosis of mouse oocytes

    PubMed Central

    Sharif, Bedra; Na, Jie; Lykke-Hartmann, Karin; McLaughlin, Stephen H.; Laue, Ernest; Glover, David M.; Zernicka-Goetz, Magdalena

    2010-01-01

    The existence of two forms of the chromosome passenger complex (CPC) in the mammalian oocyte has meant that its role in female meiosis has remained unclear. Here we use loss- and gain-of function approaches to assess the meiotic functions of one of the shared components of these complexes, INCENP, and of the variable kinase subunits, Aurora B or Aurora C. We show that either the depletion of INCENP or the combined inhibition of Aurora kinases B and C activates the anaphase-promoting complex or cyclosome (APC/C) before chromosomes have properly congressed in meiosis I and also prevents cytokinesis and hence extrusion of the first polar body. Overexpression of Aurora C also advances APC/C activation and results in cytokinesis failure in a high proportion of oocytes, indicative of a dominant effect on CPC function. Together, this points to roles for the meiotic CPC in functions similar to the mitotic roles of the complex: correcting chromosome attachment to microtubules, facilitating the spindle-assembly checkpoint (SAC) function and enabling cytokinesis. Surprisingly, overexpression of Aurora B leads to a failure of APC/C activation, stabilization of securin and consequently a failure of chiasmate chromosomes to resolve – a dominant phenotype that is completely suppressed by depletion of INCENP. Taken together with the differential distribution of Aurora proteins B and C on chiasmate chromosomes, this points to differential functions of the two forms of CPC in regulating the separation of homologous chromosomes in meiosis I. PMID:21123620

  18. 2-Deoxy-D-glucose inhibits intracellular multiplication and promotes intracellular killing of Legionella pneumophila in A/J mouse macrophages.

    PubMed Central

    Ogawa, M; Yoshida, S; Mizuguchi, Y

    1994-01-01

    Legionella pneumophila can grow intracellularly in A/J mouse macrophages. 2-Deoxy-D-glucose (2dG) (0.1, 1, and 10 mM) inhibited intracellular multiplication and promoted intracellular killing of L. pneumophila dose dependently when it was added to the culture medium of macrophage monolayers, whereas it did not inhibit the bacterial growth in buffered yeast extract broth, which was used for an L. pneumophila culture. The effect of 2dG was reversible because the surviving bacteria resumed intracellular multiplication after the washing away of 2dG from the culture. The effect of 2dG was also competitively inhibited by high concentrations of glucose. The inhibitory effect of 2dG was not attributed to the inhibition of bacterial phagocytosis by macrophages. Furthermore, sodium fluoride (0.1 and 1 mM), cycloheximide (0.1 and 1 microgram/ml), and tunicamycin (1, 2, and 5 micrograms/ml) did not promote the killing of L. pneumophila in macrophages, implying that the inhibitory effect of 2dG cannot be attributed to the inhibition of glycolysis, protein synthesis, and protein glycosylation in macrophages. We suggest that 2dG promotes intracellular killing of L. pneumophila by activating some novel killing mechanism of macrophages. PMID:8262638

  19. Cryopreservation of unfertilized human oocytes.

    PubMed

    Stachecki, James J; Cohen, Jacques; Garrisi, John; Munné, Santiago; Burgess, Colleen; Willadsen, Steen M

    2006-08-01

    Previous investigations revealed that choline-based freezing media developed in our laboratory were superior to conventional sodium-based media for storing mouse oocytes. This paper examines the ability of the choline-based medium CJ2 and a modified form of this medium, CJ3, to cryopreserve unfertilized human oocytes. Oocytes that were consented for research and matured overnight, as well as freshly collected, donor, mature metaphase II (MII) oocytes, were cryopreserved using choline-based media and an optimized slow-cooling protocol. The results showed higher survival and fertilization rates when CJ3 supplemented with 0.2 mmol/l sucrose was used as compared with CJ2 supplemented with either 0.1 mmol/l or 0.2 mmol/l sucrose. Freshly collected oocytes were more difficult to cryopreserve than those matured in vitro. Modification of the base medium proved to be one of the key factors in obtaining survival rates over 90%. Fertilization rates, embryo development, and genetic analysis of embryos resulting from control and frozen-thawed oocytes are provided. There appears to be a high correlation between chromosomal anomalies and abnormal morphology in embryos from thawed oocytes.

  20. Dynamic maintenance of asymmetric meiotic spindle position through Arp2/3-complex-driven cytoplasmic streaming in mouse oocytes.

    PubMed

    Yi, Kexi; Unruh, Jay R; Deng, Manqi; Slaughter, Brian D; Rubinstein, Boris; Li, Rong

    2011-08-28

    Mature mammalian oocytes are poised for completing meiosis II (MII) on fertilization by positioning the spindle close to an actomyosin-rich cortical cap. Here, we show that the Arp2/3 complex localizes to the cortical cap in a Ran-GTPase-dependent manner and nucleates actin filaments in the cortical cap and a cytoplasmic actin network. Inhibition of Arp2/3 activity leads to rapid dissociation of the spindle from the cortex. Live-cell imaging and spatiotemporal image correlation spectroscopy analysis reveal that actin filaments flow continuously away from the Arp2/3-rich cortex, driving a cytoplasmic streaming expected to exert a net pushing force on the spindle towards the cortex. Arp2/3 inhibition not only diminishes this actin flow and cytoplasmic streaming but also enables a reverse streaming driven by myosin-II-based cortical contraction, moving the spindle away from the cortex. Thus, the asymmetric MII spindle position is dynamically maintained as a result of balanced forces governed by the Arp2/3 complex.

  1. Measurement of the size of intracellular ice crystals in mouse oocytes using a melting point depression method and the influence of intracellular solute concentrations.

    PubMed

    Han, Xu; Critser, John K

    2009-12-01

    Characterization of intracellular ice formed during the cooling procedures of cells significantly benefits the development and optimization design of cryopreservation or cryosurgery techniques. In this study, we investigated the influence of the concentration of extracellular non-permeable and permeable solutes on the melting points of the intracellular ice in mouse oocytes using cryomicroscopy. The results showed that the melting points of the intracellular ice are always lower than the extracellular ice. Based on this observation and the Gibbs-Thomson relation, we established a physical model to calculate the size of intracellular ice crystals and described its relationship with the concentrations of intracellular permeating solutes and macromolecules. This model predicts that the increased concentration of macromolecules in cells, by increasing the extracellular non-permeating solute concentration, can significantly lower the required concentration of permeable solutes for intracellular vitrification. The prediction was tested through the cryomicroscopic observation of the co-existence of intracellular vitrification and extracellular crystallization during cooling at 100 degrees C/min when the extracellular solutions contain 5 molal (m) ethylene glycol and 0.3 to 0.6m NaCl.

  2. Proteomes of Animal Oocytes: What Can We Learn for Human Oocytes in the In Vitro Fertilization Programme?

    PubMed Central

    Virant-Klun, Irma; Krijgsveld, Jeroen

    2014-01-01

    Oocytes are crucial cells for mammalian reproduction, yet the molecular principles underlying oocyte development are only partially understood. Therefore, contemporary proteomic approaches have been used increasingly to provide new insights into oocyte quality and maturation in various species such as mouse, pig, and cow. Especially, animal studies have helped in elucidating the molecular status of oocytes during in vitro maturation and other procedures of assisted reproduction. The aim of this review is to summarize the literature on mammalian oocyte proteome and secretome research in the light of natural and assisted reproduction and on lessons to be learned for human oocytes, which have so far remained inaccessible for proteome analysis. PMID:24804254

  3. Phagocytic and chemiluminescent responses of mouse peritoneal macrophages to living and killed Salmonella typhimurium and other bacteria

    SciTech Connect

    Tomita, T.; Blumenstock, E.; Kanegasaki, S.

    1981-06-01

    In the presence of luminol, resident as well as thioglycolate-induced and immunized macrophages emitted chemiluminescence more efficiently when the cells were exposed to living Salmonella typhimurium than when they were exposed to the same bacterium killed by ultraviolet light or heat. This phenomenon was observed whether or not the bacterium was opsonized. The different response to living and killed bacteria was also found with Escherichia coli, Pseudomonas aeruginosa, Proteus morganii, and Enterobacter aerogenes, but not with Shigella sonnei, Klebsiella pneumoniae, and Propionibacterium acnes. The results suggest that macrophages respond better to living, motile bacteria than to nonmotile or killed bacteria. The experimental results obtained with motility mutants of S. typhimurium, E. coli, and P. aeruginosa confirm that macrophages exposed to the motile bacteria emit chemiluminescence more efficiently and ingest the motile bacteria at a much faster rate than the nonmotile bacteria.

  4. NPPC/NPR2 signaling is essential for oocyte meiotic arrest and cumulus oophorus formation during follicular development in the mouse ovary.

    PubMed

    Kiyosu, Chiyo; Tsuji, Takehito; Yamada, Kaoru; Kajita, Shimpei; Kunieda, Tetsuo

    2012-08-01

    Natriuretic peptide type C (NPPC) and its high affinity receptor, natriuretic peptide receptor 2 (NPR2), have been assumed to be involved in female reproduction and have recently been shown to play an essential role in maintaining meiotic arrest of oocytes. However, the overall role of NPPC/NPR2 signaling in female reproduction and ovarian function is still less clear. Here we report the defects observed in oocytes and follicles of mice homozygous for Nppc(lbab) or Npr2(cn), mutant alleles of Nppc or Npr2 respectively to clarify the exact consequences of lack of NPPC/NPR2 signaling in female reproductive systems. We found that: i) Npr2(cn)/Npr2(cn) female mice ovulated a comparable number of oocytes as normal mice but never produced a litter; ii) all ovulated oocytes of Npr2(cn)/Npr2(cn) and Nppc(lbab)/Nppc(lbab) mice exhibited abnormalities, such as fragmented or degenerated ooplasm and never developed to the two-cell stage after fertilization; iii) histological examination of the ovaries of Npr2(cn)/Npr2(cn) and Nppc(lbab)/Nppc(lbab) mice showed that oocytes in antral follicles prematurely resumed meiosis and that immediately before ovulation, oocytes showed disorganized chromosomes or fragmented ooplasm; and iv) ovulated oocytes and oocytes in the periovulatory follicles of the mutant mice were devoid of cumulus cells. These findings demonstrate that NPPC/NPR2 signaling is essential for oocyte meiotic arrest and cumulus oophorus formation, which affects female fertility through the production of oocytes with developmental capacity.

  5. Time-lapse cinematography study of the germinal vesicle behaviour in mouse primary oocytes treated with activators of protein kinases A and C.

    PubMed

    Alexandre, H; Mulnard, J

    1988-12-01

    A passive erratic movement of the germinal vesicle (GV), already visible in small incompetent oocytes, is followed by an active scalloping of the nuclear membrane soon before GV breakdown (GVBD) in cultured competent oocytes. Maturation can be inhibited by activators of protein kinase A (PK-A) and protein kinase C (PK-C). Our time-lapse cinematography analysis allowed us to describe an unexpected behaviour of the GV when PK-C, but not PK-A, is activated: GV undergoes a displacement toward the cortex according to the same biological clock which triggers the programmed translocation of the spindle in control oocytes. It is concluded that, when oocytes become committed to undergo maturation, the cytoplasm acquires a PK-A-controlled "centrifugal displacement property" which is not restricted to the spindle.

  6. Shortened estrous cycle length, increased FSH levels, FSH variance, oocyte spindle aberrations, and early declining fertility in aging senescence-accelerated mouse prone-8 (SAMP8) mice: concomitant characteristics of human midlife female reproductive aging.

    PubMed

    Bernstein, Lori R; Mackenzie, Amelia C L; Kraemer, Duane C; Morley, John E; Farr, Susan; Chaffin, Charles L; Merchenthaler, István

    2014-06-01

    Women experience a series of specific transitions in their reproductive function with age. Shortening of the menstrual cycle begins in the mid to late 30s and is regarded as the first sign of reproductive aging. Other early changes include elevation and increased variance of serum FSH levels, increased incidences of oocyte spindle aberrations and aneuploidy, and declining fertility. The goal of this study was to investigate whether the mouse strain senescence-accelerated mouse-prone-8 (SAMP8) is a suitable model for the study of these midlife reproductive aging characteristics. Midlife SAMP8 mice aged 6.5-7.85 months (midlife SAMP8) exhibited shortened estrous cycles compared with SAMP8 mice aged 2-3 months (young SAMP8, P = .0040). Midlife SAMP8 mice had high FSH levels compared with young SAMP8 mice, and mice with a single day of high FSH exhibited statistically elevated FSH throughout the cycle, ranging from 1.8- to 3.6-fold elevation on the days of proestrus, estrus, metestrus, and diestrus (P < .05). Midlife SAMP8 mice displayed more variance in FSH than young SAMP8 mice (P = .01). Midlife SAMP8 ovulated fewer oocytes (P = .0155). SAMP8 oocytes stained with fluorescently labeled antitubulin antibodies and scored in fluorescence microscopy exhibited increased incidence of meiotic spindle aberrations with age, from 2/126 (1.59%) in young SAMP8 to 38/139 (27.3%) in midlife SAMP8 (17.2-fold increase, P < .0001). Finally, SAMP8 exhibited declining fertility from 8.9 pups/litter in young SAMP8 to 3.5 pups/litter in midlife SAMP8 mice (P < .0001). The age at which these changes occur is younger than for most mouse strains, and their simultaneous occurrence within a single strain has not been described previously. We propose that SAMP8 mice are a model of midlife human female reproductive aging.

  7. Cationic Antimicrobial Peptides and Biogenic Silver Nanoparticles Kill Mycobacteria without Eliciting DNA Damage and Cytotoxicity in Mouse Macrophages

    PubMed Central

    Mohanty, Soumitra; Jena, Prajna; Mehta, Ranjit; Pati, Rashmirekha; Banerjee, Birendranath; Patil, Satish

    2013-01-01

    With the emergence of multidrug-resistant mycobacterial strains, better therapeutic strategies are required for the successful treatment of the infection. Although antimicrobial peptides (AMPs) and silver nanoparticles (AgNPs) are becoming one of the popular antibacterial agents, their antimycobacterial potential is not fully evaluated. In this study, we synthesized biogenic-silver nanoparticles using bacterial, fungal, and plant biomasses and analyzed their antibacterial activities in combination with AMPs against mycobacteria. Mycobacterium smegmatis was found to be more susceptible to AgNPs compared to M. marinum. We found that NK-2 showed enhanced killing effect with NP-1 and NP-2 biogenic nanoparticles at a 0.5-ppm concentration, whereas LLKKK-18 showed antibacterial activity only with NP-2 at 0.5-ppm dose against M. smegmatis. In case of M. marinum NK-2 did not show any additive activity with NP-1 and NP-2 and LLKKK-18 alone completely inhibited the bacterial growth. Both NP-1 and NP-2 also showed increased killing of M. smegmatis in combination with the antituberculosis drug rifampin. The sizes and shapes of the AgNPs were determined by transmission electron microscopy and dynamic light scattering. AgNPs showed no cytotoxic or DNA damage effects on macrophages at the mycobactericidal dose, whereas treatment with higher doses of AgNPs caused toxicity and micronuclei formation in cytokinesis blocked cells. Macrophages actively endocytosed fluorescein isothiocyanate-labeled AgNPs resulting in nitric oxide independent intracellular killing of M. smegmatis. Apoptosis and cell cycle studies showed that treatment with higher dose of AgNPs arrested macrophages at the G1-phase. In summary, our data suggest the combined effect of biogenic-AgNPs and antimicrobial peptides as a promising antimycobacterial template. PMID:23689720

  8. Epidermal growth factor receptor signaling-dependent calcium elevation in cumulus cells is required for NPR2 inhibition and meiotic resumption in mouse oocytes.

    PubMed

    Wang, Yakun; Kong, Nana; Li, Na; Hao, Xiaoqiong; Wei, Kaiwen; Xiang, Xi; Xia, Guoliang; Zhang, Meijia

    2013-09-01

    In preovulatory ovarian follicles, the oocyte is maintained in meiotic prophase arrest by natriuretic peptide precursor C (NPPC) and its receptor natriuretic peptide receptor 2 (NPR2). LH treatment results in the decrease of NPR2 guanylyl cyclase activity that promotes resumption of meiosis. We investigated the regulatory mechanism of LH-activated epidermal growth factor (EGF) receptor signaling on NPR2 function. Cumulus cell-oocyte complex is cultured in the medium with 30 nM NPPC to prevent oocyte spontaneous maturation. In this system, EGF could stimulate oocyte meiotic resumption after 4 hours of incubation. Further study showed that EGF elevated intracellular calcium concentrations of cumulus cells and decreased cGMP levels in cumulus cells and oocytes, and calcium-elevating reagents ionomycin and sphingosine-1-phosphate mimicked the effects of EGF on oocyte maturation and cGMP levels. EGF-mediated cGMP levels and meiotic resumption could be reversed by EGF receptor inhibitor AG1478 and the calcium chelator bis-(o-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid, tetra(acetoxymethyl)-ester. EGF also decreased the expression of Npr2 mRNA in cumulus cells, which may not be involved in meiotic resumption, because the block of NPR2 protein de novo synthesis by cycloheximide had no effect on NPPC and EGF-mediated oocyte maturation. However, EGF had no effect on oocyte maturation when meiotic arrest was maintained in the present of cGMP analog 8-bromoadenosine-cGMP. These results suggest that EGF receptor signaling induces meiotic resumption by elevating calcium concentrations of cumulus cells to decrease NPR2 guanylyl cyclase activity.

  9. Comparative analysis of cell killing and autosomal mutation in mouse kidney epithelium exposed to 1 GeV/nucleon iron ions in vitro or in situ.

    PubMed

    Kronenberg, Amy; Gauny, Stacey; Kwoh, Ely; Connolly, Lanelle; Dan, Cristian; Lasarev, Michael; Turker, Mitchell S

    2009-11-01

    Astronauts receive exposures to high-energy heavy ions from galactic cosmic radiation. Although high-energy heavy ions are mutagenic and carcinogenic, their mutagenic potency in epithelial cells, where most human cancers develop, is poorly understood. Mutations are a critical component of human cancer, and mutations involving autosomal loci predominate. This study addresses the cytotoxic and mutagenic effects of 1 GeV/nucleon iron ions in mouse kidney epithelium. Mutant fractions were measured for an endogenous autosomal locus (Aprt) that detects all types of mutagenic events contributing to human cancer. Results for kidneys irradiated in situ are compared with results for kidney cells from the same strain exposed in vitro. The results demonstrate dose-dependent cell killing in vitro and for cells explanted 3-4 months postirradiation in situ, but in situ exposures were less likely to result in cell death than in vitro exposures. Prolonged incubation in situ (8-9 months) further attenuated cell killing at lower doses. Iron ions were mutagenic to cells in vitro and for irradiated kidneys. No sparing was seen for mutant frequency with a long incubation period in situ. In addition, the degree of mutation induction (relative increase over background) was similar for cells exposed in vitro or in situ. We speculate that the latent effects of iron-ion exposure contribute to the maintenance of an elevated mutation burden in an epithelial tissue.

  10. Cyclic AMP-elevating Agents Promote Cumulus Cell Survival and Hyaluronan Matrix Stability, Thereby Prolonging the Time of Mouse Oocyte Fertilizability.

    PubMed

    Di Giacomo, Monica; Camaioni, Antonella; Klinger, Francesca G; Bonfiglio, Rita; Salustri, Antonietta

    2016-02-19

    Cumulus cells sustain the development and fertilization of the mammalian oocyte. These cells are retained around the oocyte by a hyaluronan-rich extracellular matrix synthesized before ovulation, a process called cumulus cell-oocyte complex (COC) expansion. Hyaluronan release and dispersion of the cumulus cells progressively occur after ovulation, paralleling the decline of oocyte fertilization. We show here that, in mice, postovulatory changes of matrix are temporally correlated to cumulus cell death. Cumulus cell apoptosis and matrix disassembly also occurred in ovulated COCs cultured in vitro. COCs expanded in vitro with FSH or EGF underwent the same changes, whereas those expanded with 8-bromo-adenosine-3',5'-cyclic monophosphate (8-Br-cAMP) maintained integrity for a longer time. It is noteworthy that 8-Br-cAMP treatment was also effective on ovulated COCs cultured in vitro, prolonging the vitality of the cumulus cells and the stability of the matrix from a few hours to >2 days. Stimulation of endogenous adenylate cyclase with forskolin or inhibition of phosphodiesterase with rolipram produced similar effects. The treatment with selective cAMP analogues suggests that the effects of cAMP elevation are exerted through an EPAC-independent, PKA type II-dependent signaling pathway, probably acting at the post-transcriptional level. Finally, overnight culture of ovulated COCs with 8-Br-cAMP significantly counteracted the decrease of fertilization rate, doubling the number of fertilized oocytes compared with control conditions. In conclusion, these studies suggest that cAMP-elevating agents prevent cumulus cell senescence and allow them to continue to exert beneficial effects on oocyte and sperm, thereby extending in vitro the time frame of oocyte fertilizability.

  11. Cyclic AMP-elevating Agents Promote Cumulus Cell Survival and Hyaluronan Matrix Stability, Thereby Prolonging the Time of Mouse Oocyte Fertilizability*

    PubMed Central

    Di Giacomo, Monica; Camaioni, Antonella; Klinger, Francesca G.; Bonfiglio, Rita; Salustri, Antonietta

    2016-01-01

    Cumulus cells sustain the development and fertilization of the mammalian oocyte. These cells are retained around the oocyte by a hyaluronan-rich extracellular matrix synthesized before ovulation, a process called cumulus cell-oocyte complex (COC) expansion. Hyaluronan release and dispersion of the cumulus cells progressively occur after ovulation, paralleling the decline of oocyte fertilization. We show here that, in mice, postovulatory changes of matrix are temporally correlated to cumulus cell death. Cumulus cell apoptosis and matrix disassembly also occurred in ovulated COCs cultured in vitro. COCs expanded in vitro with FSH or EGF underwent the same changes, whereas those expanded with 8-bromo-adenosine-3′,5′-cyclic monophosphate (8-Br-cAMP) maintained integrity for a longer time. It is noteworthy that 8-Br-cAMP treatment was also effective on ovulated COCs cultured in vitro, prolonging the vitality of the cumulus cells and the stability of the matrix from a few hours to >2 days. Stimulation of endogenous adenylate cyclase with forskolin or inhibition of phosphodiesterase with rolipram produced similar effects. The treatment with selective cAMP analogues suggests that the effects of cAMP elevation are exerted through an EPAC-independent, PKA type II-dependent signaling pathway, probably acting at the post-transcriptional level. Finally, overnight culture of ovulated COCs with 8-Br-cAMP significantly counteracted the decrease of fertilization rate, doubling the number of fertilized oocytes compared with control conditions. In conclusion, these studies suggest that cAMP-elevating agents prevent cumulus cell senescence and allow them to continue to exert beneficial effects on oocyte and sperm, thereby extending in vitro the time frame of oocyte fertilizability. PMID:26694612

  12. Effects of nicotine administration on elemental concentrations in mouse granulosa cells, maturing oocytes and oviduct epithelium studied by X-ray microanalysis.

    PubMed

    Jin, Z; Jin, M; Nilsson, B O; Roomans, G M

    1998-10-01

    A normal maturation of the oocytes is dependent upon, among other things, normally functioning granulosa and corona radiata cells. Analyses performed during human in vitro fertilization programs have revealed that, in smokers, ovarian functions are affected and that smokers have a decreased fertilization rate. Further, animal studies have indicated that nicotine can reach the genital tractus, and that nicotine administration interferes with oocyte maturation, fertilization and early pregnancy. We applied X-ray microanalysis to monitor whether nicotine administration changed the ionic balance of cells in the reproductive tract (granulosa cells, oocytes and oviduct epithelial cells). The animals were given nicotine in the drinking water at a concentration of 108 mumol/l. After 15 days the animals were superovulated, ovaries and oviducts were frozen, and thick cryosections were prepared for energy-dispersive X-ray microanalysis. In the granulosa cells, the concentrations of Na and Cl increased after nicotine treatment, while the K concentrations decreased resulting in an increased Na/K ratio. The treated oocytes had a higher K concentration and a decreased Na/K ratio compared to the controls. In the epithelial cells of the oviduct, the concentrations of Na and K decreased after nicotine treatment without any changes in the Na/K ratio. Thus, heavy nicotine administration to mice causes significant changes in the ionic composition of the granulosa cells, the ovarian oocytes and the oviduct epithelium.

  13. Unique subcellular distribution of phosphorylated Plk1 (Ser137 and Thr210) in mouse oocytes during meiotic division and pPlk1Ser137 involvement in spindle formation and REC8 cleavage

    PubMed Central

    Du, Juan; Cao, Yan; Wang, Qian; Zhang, Nana; Liu, Xiaoyu; Chen, Dandan; Liu, Xiaoyun; Xu, Qunyuan; Ma, Wei

    2015-01-01

    Polo-like kinase 1 (Plk1) is pivotal for proper mitotic progression, its targeting activity is regulated by precise subcellular positioning and phosphorylation. Here we assessed the protein expression, subcellular localization and possible functions of phosphorylated Plk1 (pPlk1Ser137 and pPlk1Thr210) in mouse oocytes during meiotic division. Western blot analysis revealed a peptide of pPlk1Ser137 with high and stable expression from germinal vesicle (GV) until metaphase II (MII), while pPlk1Thr210 was detected as one large single band at GV stage and 2 small bands after germinal vesicle breakdown (GVBD), which maintained stable up to MII. Immunofluorescence analysis showed pPlk1Ser137 was colocalized with microtubule organizing center (MTOC) proteins, γ-tubulin and pericentrin, on spindle poles, concomitantly with persistent concentration at centromeres and dynamic aggregation between chromosome arms. Differently, pPlk1Thr210 was persistently distributed across the whole body of chromosomes after meiotic resumption. The specific Plk1 inhibitor, BI2536, repressed pPlk1Ser137 accumulation at MTOCs and between chromosome arms, consequently disturbed γ-tubulin and pericentrin recruiting to MTOCs, destroyed meiotic spindle formation, and delayed REC8 cleavage, therefore arresting oocytes at metaphase I (MI) with chromosome misalignment. BI2536 completely reversed the premature degradation of REC8 and precocious segregation of chromosomes induced with okadaic acid (OA), an inhibitor to protein phosphatase 2A. Additionally, the protein levels of pPlk1Ser137 and pPlk1Thr210, as well as the subcellular distribution of pPlk1Thr210, were not affected by BI2536. Taken together, our results demonstrate that Plk1 activity is required for meiotic spindle assembly and REC8 cleavage, with pPlk1Ser137 is the action executor, in mouse oocytes during meiotic division. PMID:26654596

  14. Prophase I arrest and progression to metaphase I in mouse oocytes: comparison of resumption of meiosis and recovery from G2-arrest in somatic cells.

    PubMed

    Solc, Petr; Schultz, Richard M; Motlik, Jan

    2010-09-01

    Mammalian oocytes are arrested at prophase I until puberty when luteinizing hormone (LH) induces resumption of meiosis of follicle-enclosed oocytes. Resumption of meiosis is tightly coupled with regulating cyclin-dependent kinase 1 (CDK1) activity. Prophase I arrest depends on inhibitory phosphorylation of CDK1 and anaphase-promoting complex-(APC-CDH1)-mediated regulation of cyclin B levels. Prophase I arrest is maintained by endogenously produced cyclic adenosine monophosphate (cAMP), which activates protein kinase A (PKA) that in turn phosphorylates (and activates) the nuclear kinase WEE2. In addition, PKA-mediated phosphorylation of the phosphatase CDC25B results in its cytoplasmic retention. The combined effect maintains low levels of CDK1 activity that are not sufficient to initiate resumption of meiosis. LH triggers synthesis of epidermal growth factor-like factors in mural granulosa cells and leads to reduced cGMP transfer from cumulus cells to oocytes via gap junctions that couple the two cell types. cGMP inhibits oocyte phosphodiesterase 3A (PDE3A) and a decline in oocyte cGMP results in increased PDE3A activity. The ensuing decrease in oocyte cAMP triggers maturation by alleviating the aforementioned phosphorylations of WEE2 and CDC25B. As a direct consequence CDC25B translocates into the nucleus. The resulting activation of CDK1 also promotes extrusion of WEE2 from the nucleus thereby providing a positive amplification mechanism for CDK1 activation. Other kinases, e.g. protein kinase B, Aurora kinase A and polo-like kinase 1, also participate in resumption of meiosis. Mechanisms governing meiotic prophase I arrest and resumption of meiosis share common features with DNA damage-induced mitotic G2-checkpoint arrest and checkpoint recovery, respectively. These common features include CDC14B-dependent activation of APC-CDH1 in prophase I arrested oocytes or G2-arrested somatic cells, and CDC25B-dependent cell cycle resumption in both oocytes and somatic

  15. Inter-alpha-inhibitor binding to hyaluronan in the cumulus extracellular matrix is required for optimal ovulation and development of mouse oocytes.

    PubMed

    Hess, K A; Chen, L; Larsen, W J

    1999-08-01

    This report characterizes the effects of excess hyaluronan (HA) upon the expansion of the cumulus oocyte complex (COC) within intact follicles and upon ovulation and oocyte viability in mice. Covalent linkage between heavy chains of the inter-alpha-inhibitor (IalphaI) family of serum glycoproteins and HA is necessary for optimal cumulus extracellular matrix (cECM) stabilization and cumulus expansion. Intravenous administration of HA oligosaccharides inhibited the binding of IalphaI to endogenous HA, disrupting the process of expansion and resulting in a reduction in the size of the cumulus mass. Western blot and immunocytochemical analyses of COCs from HA-treated animals demonstrated a reduction of IalphaI heavy chains within the cECM. Additionally, HA-treated immature animals ovulated 56.3% fewer COCs compared to control animals. The developmental potential of COCs in HA-treated animals was also tested. Extended periods of oviductal storage of COCs ovulated by HA-injected adult mice resulted in a reduction of normal embryos and a significant increase in the proportion of fragmented oocytes/embryos. These observations support the view that covalent binding of IalphaI heavy chains to HA is required for optimal cumulus expansion, extrusion of the COCs from the follicle at ovulation, and maintenance of oocyte viability within the oviduct.

  16. Tests for urethane induction of germ-cell mutations and germ-cell killing in the mouse.

    PubMed

    Russell, L B; Hunsicker, P R; Oakberg, E F; Cummings, C C; Schmoyer, R L

    1987-08-01

    Urethane, a chemical that has given varied results in mutagenesis assays, was tested in the mouse specific-locus test, and its effect on germ-cell survival was explored. Altogether 32,828 offspring were observed from successive weekly matings of males exposed to the maximum tolerated i.p. dose of 1750 mg urethane/kg. The combined data rule out (at the 5% significance level) an induced mutation rate greater than 1.7 times the historical control rate. For spermatogonial stem cells alone, the multiple ruled out is 3.2, and for poststem-cell stages, 3.5. Litter sizes from successive conceptions made in any of the first 7 weeks give no indication of induced dominant lethality, confirming results of past dominant-lethal assays. That urethane (or an active metabolite) reaches germ cells is indicated by SCE induction in spermatogonia demonstrated by other investigators. Cytotoxic effects in spermatogonia are suggested by our finding of a slight reduction in numbers of certain types of spermatogonia in seminiferous tubule cross-sections and of a borderline decrease in the number of litters conceived during the 8th and 9th posttreatment weeks. The negative results for induction of gene mutations as well as clastogenic damage are at variance with Nomura's reports of dominant effects (F1 cancers and malformations) produced by urethane.

  17. Site specific mutation of the Zic2 locus by microinjection of TALEN mRNA in mouse CD1, C3H and C57BL/6J oocytes.

    PubMed

    Davies, Benjamin; Davies, Graham; Preece, Christopher; Puliyadi, Rathi; Szumska, Dorota; Bhattacharya, Shoumo

    2013-01-01

    Transcription Activator-Like Effector Nucleases (TALENs) consist of a nuclease domain fused to a DNA binding domain which is engineered to bind to any genomic sequence. These chimeric enzymes can be used to introduce a double strand break at a specific genomic site which then can become the substrate for error-prone non-homologous end joining (NHEJ), generating mutations at the site of cleavage. In this report we investigate the feasibility of achieving targeted mutagenesis by microinjection of TALEN mRNA within the mouse oocyte. We achieved high rates of mutagenesis of the mouse Zic2 gene in all backgrounds examined including outbred CD1 and inbred C3H and C57BL/6J. Founder mutant Zic2 mice (eight independent alleles, with frameshift and deletion mutations) were created in C3H and C57BL/6J backgrounds. These mice transmitted the mutant alleles to the progeny with 100% efficiency, allowing the creation of inbred lines. Mutant mice display a curly tail phenotype consistent with Zic2 loss-of-function. The efficiency of site-specific germline mutation in the mouse confirm TALEN mediated mutagenesis in the oocyte to be a viable alternative to conventional gene targeting in embryonic stem cells where simple loss-of-function alleles are required. This technology enables allelic series of mutations to be generated quickly and efficiently in diverse genetic backgrounds and will be a valuable approach to rapidly create mutations in mice already bearing one or more mutant alleles at other genetic loci without the need for lengthy backcrossing.

  18. Targeted Killings

    DTIC Science & Technology

    2013-03-01

    American territory in history. Two aircraft torpedoed into the Twin Towers in New York City at speeds of over 490mph killing 2,595 people . Shortly...bomb exploded in the World Trade Center in New York City, killing a half-dozen people and wounding over a thousand. Over the next three years Al...executed his most incredible attack killing close to 3,000 people . President Bush announced to the world that, “U.S. troops will hunt down terrorists and

  19. The beneficial effects of cumulus cells and oocyte-cumulus cell gap junctions depends on oocyte maturation and fertilization methods in mice.

    PubMed

    Zhou, Cheng-Jie; Wu, Sha-Na; Shen, Jiang-Peng; Wang, Dong-Hui; Kong, Xiang-Wei; Lu, Angeleem; Li, Yan-Jiao; Zhou, Hong-Xia; Zhao, Yue-Fang; Liang, Cheng-Guang

    2016-01-01

    Cumulus cells are a group of closely associated granulosa cells that surround and nourish oocytes. Previous studies have shown that cumulus cells contribute to oocyte maturation and fertilization through gap junction communication. However, it is not known how this gap junction signaling affects in vivo versus in vitro maturation of oocytes, and their subsequent fertilization and embryonic development following insemination. Therefore, in our study, we performed mouse oocyte maturation and insemination using in vivo- or in vitro-matured oocyte-cumulus complexes (OCCs, which retain gap junctions between the cumulus cells and the oocytes), in vitro-matured, denuded oocytes co-cultured with cumulus cells (DCs, which lack gap junctions between the cumulus cells and the oocytes), and in vitro-matured, denuded oocytes without cumulus cells (DOs). Using these models, we were able to analyze the effects of gap junction signaling on oocyte maturation, fertilization, and early embryo development. We found that gap junctions were necessary for both in vivo and in vitro oocyte maturation. In addition, for oocytes matured in vivo, the presence of cumulus cells during insemination improved fertilization and blastocyst formation, and this improvement was strengthened by gap junctions. Moreover, for oocytes matured in vitro, the presence of cumulus cells during insemination improved fertilization, but not blastocyst formation, and this improvement was independent of gap junctions. Our results demonstrate, for the first time, that the beneficial effect of gap junction signaling from cumulus cells depends on oocyte maturation and fertilization methods.

  20. A comparison of cell killing by heat and/or X rays in Chinese hamster V79 cells, Friend erythroleukemia mouse cells, and human thymocyte MOLT-4 cells.

    PubMed

    Raaphorst, G P; Szekely, J; Lobreau, A; Azzam, E I

    1983-05-01

    The radiation and/or heat sensitivity of Chinese hamster V79 cells, Friend erythroleukemia (FELC) mouse cells, and MOLT-4 human transformed thymocytes were compared. MOLT-4 cells were more radiosensitive (D0 = 0.50 Gy) than FELC (D0 = 0.65 Gy) and V79 cells (D0 = 1.43 Gy). Arrhenius analysis showed that MOLT-4 cells were more heat sensitive than FELC or V79 cells below 42.0 degrees C, but more heat resistant at higher temperatures. In addition, the MOLT-4 cells showed a single-heat inactivation energy between 41.0 and 45.0 degrees C, while FELC and V79 cells both showed a transition in the inactivation energy at about 43.0 and 43.5 degrees C, respectively. These differences may be related to the fact that the upper temperature limit for the development of thermal tolerance during continuous heating was lower for MOLT-4 cells than for FELC or V79 cells. Killing of FELC and V79 cells was dependent on the sequence in which heat and X rays were applied, but the greatest effect was obtained when both treatments were given simultaneously. Recovery occurred when treatments were separated by incubation at 37.0 degrees C. The MOLT-4 cells did not show a sequence dependence for heating and irradiation. Survival of MOLT-4 cells after heating and/or irradiation was compared using trypan blue dye exclusion or colony formation. Both assays showed similar qualitative responses, but survival levels measured by the trypan blue assay were much higher than those determined from the colony-forming assay.

  1. Killing Range

    PubMed Central

    Asal, Victor; Rethemeyer, R. Karl; Horgan, John

    2015-01-01

    This paper presents an analysis of the Provisional Irish Republican Army's (PIRA) brigade level behavior during the Northern Ireland Conflict (1970-1998) and identifies the organizational factors that impact a brigade's lethality as measured via terrorist attacks. Key independent variables include levels of technical expertise, cadre age, counter-terrorism policies experienced, brigade size, and IED components and delivery methods. We find that technical expertise within a brigade allows for careful IED usage, which significantly minimizes civilian casualties (a specific strategic goal of PIRA) while increasing the ability to kill more high value targets with IEDs. Lethal counter-terrorism events also significantly affect a brigade's likelihood of killing both civilians and high-value targets but in different ways. Killing PIRA members significantly decreases IED fatalities but also significantly decreases the possibility of zero civilian IED-related deaths in a given year. Killing innocent Catholics in a Brigade's county significantly increases total and civilian IED fatalities. Together the results suggest the necessity to analyze dynamic situational variables that impact terrorist group behavior at the sub-unit level. PMID:25838603

  2. Aging of oocyte, ovary, and human reproduction.

    PubMed

    Ottolenghi, Chris; Uda, Manuela; Hamatani, Toshio; Crisponi, Laura; Garcia, Jose-Elias; Ko, Minoru; Pilia, Giuseppe; Sforza, Chiarella; Schlessinger, David; Forabosco, Antonino

    2004-12-01

    We review age-related changes in the ovary and their effect on female fertility, with particular emphasis on follicle formation, follicle dynamics, and oocyte quality. The evidence indicates that the developmental processes leading to follicle formation set the rules determining follicle quiescence and growth. This regulatory system is maintained until menopause and is directly affected in at least some models of premature ovarian failure (POF), most strikingly in the Foxl2 mouse knockout, a model of human POF with monogenic etiology (blepharophimosis/ptosis/epicanthus inversus syndrome). Several lines of evidence indicate that if the ovarian germ cell lineage maintains regenerative potential, as recently suggested in the mouse, a role in follicle dynamics for germ stem cells, if any, is likely indirect or secondary. In addition, age-related variations in oocyte quality in animal models suggest that reproductive competence is acquired progressively and might depend on parallel growth and differentiation of follicle cells and stroma. Genomewide analyses of the mouse oocyte transcriptome have begun to be used to systematically investigate the mechanisms of reproductive competence that are altered with aging. Investigative and therapeutic strategies can benefit from considering the role of continuous interactions between follicle cells and oocytes from the beginning of histogenesis to full maturation.

  3. Photo activation of HPPH encapsulated in “Pocket” liposomes triggers multiple drug release and tumor cell killing in mouse breast cancer xenografts

    PubMed Central

    Sine, Jessica; Urban, Cordula; Thayer, Derek; Charron, Heather; Valim, Niksa; Tata, Darrell B; Schiff, Rachel; Blumenthal, Robert; Joshi, Amit; Puri, Anu

    2015-01-01

    We recently reported laser-triggered release of photosensitive compounds from liposomes containing dipalmitoylphosphatidylcholine (DPPC) and 1,2 bis(tricosa-10,12-diynoyl)-sn-glycero-3-phosphocholine (DC8,9PC). We hypothesized that the permeation of photoactivated compounds occurs through domains of enhanced fluidity in the liposome membrane and have thus called them “Pocket” liposomes. In this study we have encapsulated the red light activatable anticancer photodynamic therapy drug 2-(1-Hexyloxyethyl)-2-devinyl pyropheophorbide-a (HPPH) (Ex/Em410/670 nm) together with calcein (Ex/Em490/517 nm) as a marker for drug release in Pocket liposomes. A mole ratio of 7.6:1 lipid:HPPH was found to be optimal, with >80% of HPPH being included in the liposomes. Exposure of liposomes with a cw-diode 660 nm laser (90 mW, 0–5 minutes) resulted in calcein release only when HPPH was included in the liposomes. Further analysis of the quenching ratios of liposome-entrapped calcein in the laser treated samples indicated that the laser-triggered release occurred via the graded mechanism. In vitro studies with MDA-MB-231-LM2 breast cancer cell line showed significant cell killing upon treatment of cell-liposome suspensions with the laser. To assess in vivo efficacy, we implanted MDA-MB-231-LM2 cells containing the luciferase gene along the mammary fat pads on the ribcage of mice. For biodistribution experiments, trace amounts of a near infrared lipid probe DiR (Ex/Em745/840 nm) were included in the liposomes. Liposomes were injected intravenously and laser treatments (90 mW, 0.9 cm diameter, for an exposure duration ranging from 5–8 minutes) were done 4 hours postinjection (only one tumor per mouse was treated, keeping the second flank tumor as control). Calcein release occurred as indicated by an increase in calcein fluorescence from laser treated tumors only. The animals were observed for up to 15 days postinjection and tumor volume and luciferase expression was measured. A

  4. [Mitochondrial and oocyte development].

    PubMed

    Deng, Wei-Ping; Ren, Zhao-Rui

    2007-12-01

    Oocyte development and maturation is a complicated process. The nuclear maturation and cytoplasmic maturation must synchronize which can ensure normal oocyte fertilization and following development. Mitochondrial is the most important cellular organell in cytoplasm, and the variation of its distribution during oocyte maturation, the capacity of OXPHOS generating ATP as well as the content or copy number or transcription level of mitochondrial DNA play an important role in oocyte development and maturation. Therefore, the studies on the variation of mitochondrial distribution, function and mitochondrial DNA could enhance our understanding of the physiology of reproduction and provide new insight to solve the difficulties of assisted reproduction as well as cloning embryo technology.

  5. Testicular oocytes in MRL/MpJ mice possess similar morphological, genetic, and functional characteristics to ovarian oocytes.

    PubMed

    Otsuka-Kanazawa, Saori; Ichii, Osamu; Kon, Yasuhiro

    2015-08-01

    In general, mammalian males produce only spermatozoa in their testes and females produce only oocytes in their ovaries. However, newborn MRL/MpJ male mice produce oocytes within their testes. In this study, we examined the initiation and progression of oogenesis in fetal and neonatal MRL/MpJ mouse testes and evaluated the characteristics of testicular oocytes. Germ cells with positive reactions to oogenesis markers such as NOBOX oogenesis homeobox and synaptonemal complex protein 3 were observed in the MRL/MpJ fetal testes on embryonic day 18.5. These fetal testicular oocytes possessed maternal-specific methylation patterns of histone and DNA. The level of DNA methylation was still low in postnatal testicular oocytes at day 14 after birth. Additionally, the postnatal testicular oocytes contained both X and Y chromosomes and had the ability to fuse with sperm. These results suggest that some XY germ cells in fetal testes of MRL/MpJ mice enter meiosis prematurely, undergo oogenesis, and differentiate into oocytes. In addition, MRL/MpJ testicular oocytes have the ability to carry on oogenesis before and shortly after birth until they obtain some of the morphological, epigenetic, and functional characteristics of oocytes.

  6. Developmental competence of oocytes grown in vitro: Has it peaked already?

    PubMed Central

    MOROHAKU, Kanako; HIRAO, Yuji; OBATA, Yayoi

    2015-01-01

    In vitro growth of immature oocytes provides opportunities to increase gametic resources and to understand the mechanisms underlying oocyte development. Many studies on the in vitro growth of oocytes have been reported thus far; however, only a few cases have been reported, which demonstrated that oocytes can support full-term development after in vitro fertilization. Our research group recently found that culture of mouse neonatal primordial follicles increased the birthrate; however, the establishment of an in vitro system that can completely mimic follicle or oocyte growth in vivo and control oogenesis remains an ongoing challenge. PMID:26685717

  7. Functional Topography of the Fully Grown Human Oocyte

    PubMed Central

    Monti, Manuela; Calligaro, Alberto; Behr, Barry; Pera, Renee Rejo; Redi, Carlo Alberto; Wossidlo, Mark

    2017-01-01

    In vivo maturation (IVM) of human oocytes is a technique used to increase the number of usable oocytes for in vitro fertilization (IVF) and represents a necessity for women with different ovarian pathologies. During IVM the oocytes progress from the germinal vesicle stage (GV) through the metaphase II and during this journey both nuclear and cytoplasmic rearrangements must be obtained to increase the probability to get viable and healthy zygotes/embryos after IVF. As the successful clinical outcomes of this technique are a reality, we wanted to investigate the causes behind oocytes maturation arrest. For obvious ethical reasons, we were able to analyze only few human immature oocytes discarded and donated to research by transmission electron microscopy showing that, as in the mouse, they have different chromatin and cytoplasmic organizations both essential for further embryo development. PMID:28348419

  8. The expression profile of the major mouse SPO11 isoforms indicates that SPO11beta introduces double strand breaks and suggests that SPO11alpha has an additional role in prophase in both spermatocytes and oocytes.

    PubMed

    Bellani, Marina A; Boateng, Kingsley A; McLeod, Dianne; Camerini-Otero, R Daniel

    2010-09-01

    Both in mice and humans, two major SPO11 isoforms are generated by alternative splicing: SPO11alpha (exon 2 skipped) and SPO11beta. Thus, the alternative splicing event must have emerged before the mouse and human lineages diverged and was maintained during 90 million years of evolution, arguing for an essential role for both isoforms. Here we demonstrate that developmental regulation of alternative splicing at the Spo11 locus governs the sequential expression of SPO11 isoforms in male meiotic prophase. Protein quantification in juvenile mice and in prophase mutants indicates that early spermatocytes synthesize primarily SPO11beta. Estimation of the number of SPO11 dimers (betabeta/alphabeta/alphaalpha) in mutants in which spermatocytes undergo a normal number of double strand breaks but arrest in midprophase due to inefficient repair argues for a role for SPO11beta-containing dimers in introducing the breaks in leptonema. Expression kinetics in males suggested a role for SPO11alpha in pachytene/diplotene spermatocytes. Nevertheless, we found that both alternative transcripts can be detected in oocytes throughout prophase I, arguing against a male-specific function for this isoform. Altogether, our data support a role for SPO11alpha in mid- to late prophase, presumably acting as a topoisomerase, that would be conserved in male and female meiocytes.

  9. Evaluation of Mouse Oocyte In Vitro Maturation Developmental Competency in Dynamic Culture Systems by Design and Construction of A Lab on A Chip Device and Its Comparison with Conventional Culture System

    PubMed Central

    Sadeghzadeh Oskouei, Behnaz; Pashaiasl, Maryam; Heidari, Mohammad Hasan; Salehi, Mohammad; Veladi, Hadi; Ghaderi Pakdel, Firuz; Shahabi, Parviz; Novin, Marefat Ghaffari

    2016-01-01

    Objective In conventional assisted reproductive technology (ART), oocytes are cultured in static microdrops within Petri dishes that contain vast amounts of media. However, the in vivo environment is dynamic. This study assesses in vitro oocyte maturation through the use of a new microfluidic device. We evaluate oocyte fertilization to the blastocyct stage and their glutathione (GSH) contents in each experimental group. Materials and Methods In this experimental study, we established a dynamic culture condition. Immature oocytes were harvested from ovaries of Naval Medical Research Institute (NMRI) mice. Oocytes were randomly placed in static (passive) and dynamic (active) in vitro maturation (IVM) culture medium for 24 hours. In vitro matured oocytes underwent fertilization, after which we placed the pronucleus (PN) stage embryos in microdrops and followed their developmental stages to blastocyst formation after 3 days. GSH content of the in vitro matured oocytes was assessed by monochlorobimane (MCB) staining. Results We observed significantly higher percentages of mature metaphase II oocytes (MII) in the passive and active dynamic culture systems (DCS) compared to the static group (P<0.01). There were significantly less mean numbers of germinal vesicle (GV) and degenerated oocytes in the passive and active dynamic groups compared to the static group (P<0.01). Fertilization and blastocyst formation rate in the dynamic systems were statistically significant compared to the static cultures (P<0.01). There was significantly higher GSH content in dynamically matured oocytes compared to statically matured oocytes (P<0.01). Conclusion Dynamic culture for in vitro oocyte maturation improves their developmental competency in comparison with static culture conditions. PMID:27540525

  10. Combined vaccination of live 1B Chlamydophila abortus and killed phase I Coxiella burnetii vaccine does not destroy protection against chlamydiosis in a mouse model

    PubMed Central

    2004-01-01

    Abstract Q fever and chlamydiosis often affect ovine and caprine flocks simultaneously or successively. Combination vaccines effective against these 2 diseases would be of great value in veterinary medicine. Unfortunately, the current effective vaccines are a live vaccine for chlamydiosis and killed vaccine for Q fever. Vaccination of mice with live chlamydiosis vaccine 1B and killed phase I vaccine against Q fever at 2 points on the back at the same time produced good protection against chlamydial abortion. This suggests that it may be possible to vaccinate ewes and goats against chlamydiosis and Q fever simultaneously. PMID:15352550

  11. Beyond killing

    PubMed Central

    Vale, Pedro F.; McNally, Luke; Doeschl-Wilson, Andrea; King, Kayla C.; Popat, Roman; Domingo-Sananes, Maria R.; Allen, Judith E.; Soares, Miguel P.; Kümmerli, Rolf

    2016-01-01

    The antibiotic pipeline is running dry and infectious disease remains a major threat to public health. An efficient strategy to stay ahead of rapidly adapting pathogens should include approaches that replace, complement or enhance the effect of both current and novel antimicrobial compounds. In recent years, a number of innovative approaches to manage disease without the aid of traditional antibiotics and without eliminating the pathogens directly have emerged. These include disabling pathogen virulence-factors, increasing host tissue damage control or altering the microbiota to provide colonization resistance, immune resistance or disease tolerance against pathogens. We discuss the therapeutic potential of these approaches and examine their possible consequences for pathogen evolution. To guarantee a longer half-life of these alternatives to directly killing pathogens, and to gain a full understanding of their population-level consequences, we encourage future work to incorporate evolutionary perspectives into the development of these treatments. PMID:27016341

  12. Imbalance between the expression dosages of X-chromosome and autosomal genes in mammalian oocytes.

    PubMed

    Fukuda, Atsushi; Tanino, Motohiko; Matoba, Ryo; Umezawa, Akihiro; Akutsu, Hidenori

    2015-09-15

    Oocytes have unique characteristics compared with other cell types. In mouse and human oocytes, two X chromosomes are maintained in the active state. Previous microarray studies have shown that the balance of the expression state is maintained in haploid oocytes. Here, we investigated transcripts using RNA-sequence technology in mouse and human oocytes. The median expression ratio between X chromosome and autosomal genes (X:A) in immature mouse oocytes increased as the gene expression levels increased, reaching a value of 1. However, the ratio in mature oocytes was under 1 for all expression categories. Moreover, we observed a markedly low ratio resulting from the bimodal expression patterns of X-linked genes. The low X:A expression ratio in mature oocyte was independent of DNA methylation. While mature human oocytes exhibited a slightly low X:A expression ratio, this was the result of the skewed high frequency of lowly expressed X-linked genes rather than the bimodal state. We propose that this imbalance between the expression dosages of X-chromosome and autosomal genes is a feature of transcripts in mammalian oocytes lacking X-chromosome inactivation.

  13. Chromosome Cohesion Established by Rec8-Cohesin in Fetal Oocytes Is Maintained without Detectable Turnover in Oocytes Arrested for Months in Mice.

    PubMed

    Burkhardt, Sabrina; Borsos, Máté; Szydlowska, Anna; Godwin, Jonathan; Williams, Suzannah A; Cohen, Paula E; Hirota, Takayuki; Saitou, Mitinori; Tachibana-Konwalski, Kikuë

    2016-03-07

    Sister chromatid cohesion mediated by the cohesin complex is essential for chromosome segregation in mitosis and meiosis [1]. Rec8-containing cohesin, bound to Smc3/Smc1α or Smc3/Smc1β, maintains bivalent cohesion in mammalian meiosis [2-6]. In females, meiotic DNA replication and recombination occur in fetal oocytes. After birth, oocytes arrest at the prolonged dictyate stage until recruited to grow into mature oocytes that divide at ovulation. How cohesion is maintained in arrested oocytes remains a pivotal question relevant to maternal age-related aneuploidy. Hypothetically, cohesin turnover regenerates cohesion in oocytes. Evidence for post-replicative cohesion establishment mechanism exists, in yeast and invertebrates [7, 8]. In mouse fetal oocytes, cohesin loading factor Nipbl/Scc2 localizes to chromosome axes during recombination [9, 10]. Alternatively, cohesion is maintained without turnover. Consistent with this, cohesion maintenance does not require Smc1β transcription, but unlike Rec8, Smc1β is not required for establishing bivalent cohesion [11, 12]. Rec8 maintains cohesion without turnover during weeks of oocyte growth [3]. Whether the same applies to months or decades of arrest is unknown. Here, we test whether Rec8 activated in arrested mouse oocytes builds cohesion revealed by TEV cleavage and live-cell imaging. Rec8 establishes cohesion when activated during DNA replication in fetal oocytes using tamoxifen-inducible Cre. In contrast, no new cohesion is detected when Rec8 is activated in arrested oocytes by tamoxifen despite cohesin synthesis. We conclude that cohesion established in fetal oocytes is maintained for months without detectable turnover in dictyate-arrested oocytes. This implies that women's fertility depends on the longevity of cohesin proteins that established cohesion in utero.

  14. The Effects of Voluntary Exercise on Oocyte Quality in a Diet-Induced Obese Murine Model

    PubMed Central

    Boudoures, Anna L.; Chi, Maggie; Thompson, Alysha; Zhang, Wendy; Moley, Kelle H.

    2016-01-01

    Obesity negatively affects many aspects of the human body, including reproductive function. In females, the root of the decline in fertility is linked to problems in the oocyte. Problems seen in oocytes that positively correlate with increasing BMI include changes to the metabolism, lipid accumulation, meiosis, and metaphase II (MII) spindle structure. Studies in mice indicate dietary interventions fail to reverse these problems [4]. How exercise affects the oocytes has not been addressed. Therefore, we hypothesized an exercise intervention would improve oocyte quality. Here we show in a mouse model of an exercise intervention can improve lipid metabolism in germinal vesicle (GV) stage oocytes. Oocytes significantly increased activity and transcription of the β-oxidation enzyme Hadha (Hydroxyacyl-CoA-dehydrogenase) in response to exercise training only if the mice had been fed a high fat diet (HFD). An exercise intervention also reversed the lipid accumulation seen in GV stage oocytes of HFD females. However, delays in meiosis and disorganized MII spindles remained present. Therefore, exercise is able to improve, but not reverse, damage imparted on oocytes as a result of a high fat diet and obesity. By utilizing an exercise intervention on a HFD, we determined only lipid content and lipid metabolism is changed in GV oocytes. Moving forward, interventions to improve oocyte quality may need to be more targeted to the oocyte specifically. Because of the HFD induced deficiency in β-oxidation, dietary supplementation with substrates to improve lipid utilization may be more beneficial. PMID:26700938

  15. Glucocorticoids impair oocyte developmental potential by triggering apoptosis of ovarian cells via activating the Fas system

    PubMed Central

    Yuan, Hong-Jie; Han, Xiao; He, Nan; Wang, Guo-Liang; Gong, Shuai; Lin, Juan; Gao, Min; Tan, Jing-He

    2016-01-01

    Previous studies indicate that stress damages oocytes with increased secretion of glucorticoids. However, although injection of female mice with cortisol decreased oocyte competence, exposure of mouse oocytes directly to physiological or stress-induced concentrations of glucorticoids did not affect oocyte maturation and embryo development. This study has explored the mechanisms by which glucocorticoids impair oocyte competence. Female mice were injected with cortisol and the effects of cortisol-injection on oocyte competence, ovarian cell apoptosis and Fas/FasL activation were observed. The results showed that cortisol-injection decreased (a) oocyte developmental potential, (b) the E2/P4 ratio in serum and ovaries, and (c) expression of insulin-like growth factor 1, brain-derived neurotrophic factor and glucocorticoid receptor in mural granulosa cells (MGCs), while increasing levels of (a) cortisol in serum and ovaries, (b) apoptosis in MGCs and cumulus cells (CCs), (c) FasL secretion in ovaries and during oocyte maturation in vitro, and (d) Fas in MGCs, CCs and oocytes. The detrimental effects of cortisol-injection on oocyte competence and apoptosis of MGCs and CCs were significantly relieved when the gld (generalized lymphoproliferative disorder) mice harboring FasL mutations were observed. Together, the results suggested that glucocorticoids impair oocyte competence by triggering apoptosis of ovarian cells via activating the Fas system. PMID:27040909

  16. Glucocorticoids impair oocyte developmental potential by triggering apoptosis of ovarian cells via activating the Fas system.

    PubMed

    Yuan, Hong-Jie; Han, Xiao; He, Nan; Wang, Guo-Liang; Gong, Shuai; Lin, Juan; Gao, Min; Tan, Jing-He

    2016-04-04

    Previous studies indicate that stress damages oocytes with increased secretion of glucorticoids. However, although injection of female mice with cortisol decreased oocyte competence, exposure of mouse oocytes directly to physiological or stress-induced concentrations of glucorticoids did not affect oocyte maturation and embryo development. This study has explored the mechanisms by which glucocorticoids impair oocyte competence. Female mice were injected with cortisol and the effects of cortisol-injection on oocyte competence, ovarian cell apoptosis and Fas/FasL activation were observed. The results showed that cortisol-injection decreased (a) oocyte developmental potential, (b) the E2/P4 ratio in serum and ovaries, and (c) expression of insulin-like growth factor 1, brain-derived neurotrophic factor and glucocorticoid receptor in mural granulosa cells (MGCs), while increasing levels of (a) cortisol in serum and ovaries, (b) apoptosis in MGCs and cumulus cells (CCs), (c) FasL secretion in ovaries and during oocyte maturation in vitro, and (d) Fas in MGCs, CCs and oocytes. The detrimental effects of cortisol-injection on oocyte competence and apoptosis of MGCs and CCs were significantly relieved when the gld (generalized lymphoproliferative disorder) mice harboring FasL mutations were observed. Together, the results suggested that glucocorticoids impair oocyte competence by triggering apoptosis of ovarian cells via activating the Fas system.

  17. Oocyte Maturation and Development

    PubMed Central

    Verlhac, Marie-Hélène; Terret, Marie-Emilie

    2016-01-01

    Sexual reproduction is essential for many organisms to propagate themselves. It requires the formation of haploid female and male gametes: oocytes and sperms. These specialized cells are generated through meiosis, a particular type of cell division that produces cells with recombined genomes that differ from their parental origin. In this review, we highlight the end process of female meiosis, the divisions per se, and how they can give rise to a functional female gamete preparing itself for the ensuing zygotic development. In particular, we discuss why such an essential process in the propagation of species is so poorly controlled, producing a strong percentage of abnormal female gametes in the end. Eventually, we examine aspects related to the lack of centrosomes in female oocytes, the asymmetry in size of the mammalian oocyte upon division, and in mammals the direct consequences of these long-lived cells in the ovary. PMID:26998245

  18. High-resolution microscopy of active ribosomal genes and key members of the rRNA processing machinery inside nucleolus-like bodies of fully-grown mouse oocytes.

    PubMed

    Shishova, Kseniya V; Khodarovich, Yuriy M; Lavrentyeva, Elena A; Zatsepina, Olga V

    2015-10-01

    Nucleolus-like bodies (NLBs) of fully-grown (germinal vesicle, GV) mammalian oocytes are traditionally considered as morphologically distinct entities, which, unlike normal nucleoli, contain transcribed ribosomal genes (rDNA) solely at their surface. In the current study, we for the first time showed that active ribosomal genes are present not only on the surface but also inside NLBs of the NSN-type oocytes. The "internal" rRNA synthesis was evidenced by cytoplasmic microinjections of BrUTP as precursor and by fluorescence in situ hybridization with a probe to the short-lived 5'ETS segment of the 47S pre-rRNA. We further showed that in the NLB mass of NSN-oocytes, distribution of active rDNA, RNA polymerase I (UBF) and rRNA processing (fibrillarin) protein factors, U3 snoRNA, pre-rRNAs and 18S/28S rRNAs is remarkably similar to that in somatic nucleoli capable to make pre-ribosomes. Overall, these observations support the occurrence of rDNA transcription, rRNA processing and pre-ribosome assembly in the NSN-type NLBs and so that their functional similarity to normal nucleoli. Unlike the NSN-type NLBs, the NLBs of more mature SN-oocytes do not contain transcribed rRNA genes, U3 snoRNA, pre-rRNAs, 18S and 28S rRNAs. These results favor the idea that in a process of transformation of NSN-oocytes to SN-oocytes, NLBs cease to produce pre-ribosomes and, moreover, lose their rRNAs. We also concluded that a denaturing fixative 70% ethanol used in the study to fix oocytes could be more appropriate for light microscopy analysis of nucleolar RNAs and proteins in mammalian fully-grown oocytes than a commonly used cross-linking aldehyde fixative, formalin.

  19. Mining the oocyte transcriptome.

    PubMed

    Andreu-Vieyra, Claudia; Lin, Yi-Nan; Matzuk, Martin M

    2006-01-01

    Mammalian folliculogenesis and oocyte physiology are complex and not fully understood. However, major advances over the past 15 years in our ability to create and study in vivo models have improved our understanding of these essential physiological processes. More recently, the availability of vast arrays of DNA sequence information in the forms of "complete" genomes, expressed sequence tag libraries and microarray data from reproductive tissues have stimulated the discovery of new information through genome scanning, prediction programs and in silico screening techniques. These technological improvements will help to expand our understanding of folliculogenesis and oocyte physiology and improve human reproductive health.

  20. How do oocytes disappear?

    PubMed

    Bonilla-Musoles, F; Renau, J; Hernandez-Yago, J; Torres, J

    1975-07-29

    It has been study using transmission and scanner electron microscopy the mean procedures of dessaparence of the oocytes. On described three methods: 1. The necrosis of the oocytes. 2. The autolysis and fagocitosis by granulosa cells. 3. The migration of those to the superphicie and fall into the peritoneal cavity. Using the scanner electron microscopy in ovaries of fetus and newborn it seems the latest method to bee the most important during the intrauterine life. After the birth, this last phenomenon seems to disappear.

  1. Antimalarial Pyrido[1,2-a]benzimidazoles: Lead Optimization, Parasite Life Cycle Stage Profile, Mechanistic Evaluation, Killing Kinetics, and in Vivo Oral Efficacy in a Mouse Model.

    PubMed

    Singh, Kawaljit; Okombo, John; Brunschwig, Christel; Ndubi, Ferdinand; Barnard, Linley; Wilkinson, Chad; Njogu, Peter M; Njoroge, Mathew; Laing, Lizahn; Machado, Marta; Prudêncio, Miguel; Reader, Janette; Botha, Mariette; Nondaba, Sindisiwe; Birkholtz, Lyn-Marie; Lauterbach, Sonja; Churchyard, Alisje; Coetzer, Theresa L; Burrows, Jeremy N; Yeates, Clive; Denti, Paolo; Wiesner, Lubbe; Egan, Timothy J; Wittlin, Sergio; Chibale, Kelly

    2017-02-23

    Further structure-activity relationship (SAR) studies on the recently identified pyrido[1,2-a]benzimidazole (PBI) antimalarials have led to the identification of potent, metabolically stable compounds with improved in vivo oral efficacy in the P. berghei mouse model and additional activity against parasite liver and gametocyte stages, making them potential candidates for preclinical development. Inhibition of hemozoin formation possibly contributes to the mechanism of action.

  2. A novel, native-format bispecific antibody triggering T-cell killing of B-cells is robustly active in mouse tumor models and cynomolgus monkeys

    PubMed Central

    Smith, Eric J.; Olson, Kara; Haber, Lauric J.; Varghese, Bindu; Duramad, Paurene; Tustian, Andrew D.; Oyejide, Adelekan; Kirshner, Jessica R.; Canova, Lauren; Menon, Jayanthi; Principio, Jennifer; MacDonald, Douglas; Kantrowitz, Joel; Papadopoulos, Nicholas; Stahl, Neil; Yancopoulos, George D.; Thurston, Gavin; Davis, Samuel

    2015-01-01

    Bispecific antibodies, while showing great therapeutic potential, pose formidable challenges with respect to their assembly, stability, immunogenicity, and pharmacodynamics. Here we describe a novel class of bispecific antibodies with native human immunoglobulin format. The design exploits differences in the affinities of the immunoglobulin isotypes for Protein A, allowing efficient large-scale purification. Using this format, we generated a bispecific antibody, REGN1979, targeting the B cell marker, CD20, and the CD3 component of the T cell receptor, which triggers redirected killing of B cells. In mice, this antibody prevented growth of B cell tumors and also caused regression of large established tumors. In cynomolgus monkeys, low doses of REGN1979 caused prolonged depletion of B cells in peripheral blood with a serum half-life of approximately 14 days. Further, the antibody induced a deeper depletion of B cells in lymphoid organs than rituximab. This format has broad applicability for development of clinical bispecific antibodies. PMID:26659273

  3. Reactive oxygen species and oocyte aging: role of superoxide, hydrogen peroxide, and hypochlorous acid.

    PubMed

    Goud, Anuradha P; Goud, Pravin T; Diamond, Michael P; Gonik, Bernard; Abu-Soud, Husam M

    2008-04-01

    Aging of the unfertilized oocyte inevitably occurs following ovulation, limiting its fertilizable life span. However, the mechanisms that regulate oocyte aging are still unclear. We hypothesize that reactive oxygen species such as superoxide (O2-), hydrogen peroxide (H2O2), and hypochlorous acid (HOCl) are likely candidates that may initiate these changes in the oocyte. In order to test this hypothesis, we investigated direct effects of O2- [hypoxanthine/xanthine oxidase system generating 0.12 (n=42) and 0.25 (n=45) microM O2-/min], H2O2 (20 or 100 microM, n=60), and HOCl, (1, 10, and 100 microM, n=50) on freshly ovulated or relatively old mouse oocytes, while their sibling oocytes were fixed immediately or cultured under physiological conditions (n=96). The aging process was assessed by the zona pellucida dissolution time (ZPDT), ooplasm microtubule dynamics (OMD), and cortical granule (CG) status. The ZPDT increased 2-fold in relatively old, compared to young, untreated oocytes (P<0.0001). Exposure to O2- increased it even further (P<0.0001). Similarly, more O2- exposed oocytes exhibited increased OMD and major CG loss, with fewer having normal OMD and intact CG compared to untreated controls. Interestingly, young oocytes resisted "aging," when exposed to 20 microM H2O2, while the same enhanced the aging phenomena in relatively old oocytes (P<0.05). Exposure to even very low levels of HOCl induced the aging phenomena in young and relatively old oocytes, and higher concentrations of HOCl compromised oocyte viability. Overall, O2-, H2O2, and HOCl each augment oocyte aging, more so in relatively old oocytes, suggesting compromised antioxidant capacity in aging oocytes.

  4. Thermostability of sperm nuclei assessed by microinjection into hamster oocytes

    EPA Science Inventory

    Nuclei isolated from spermatozoa of various species (golden hamster, mouse, human, rooster, and the fish tilapia) were heated at 60 degrees-125 degrees C for 20-120 min and then microinjected into hamster oocytes to determine whether they could decondense and develop into pronucl...

  5. Synergistic streptococcal phage λSA2 and B30 endolysins kill streptococci in cow milk and in a mouse model of mastitis

    PubMed Central

    Schmelcher, Mathias; Powell, Anne M.; Camp, Mary J.; Pohl, Calvin S.; Donovan, David M.

    2015-01-01

    Bovine mastitis results in billion dollar losses annually in the United States alone. Streptococci are among the most relevant causative agents of this disease. Conventional antibiotic therapy is often unsuccessful and contributes to development of antibiotic resistance. Bacteriophage endolysins represent a new class of antimicrobials against these bacteria. In this work, we characterized the endolysins (lysins) of the streptococcal phages λSA2 and B30 and evaluated their potential as anti-mastitis agents. When tested in vitro against live streptococci, both enzymes exhibited near-optimum lytic activities at ionic strengths, pH, and Ca2+ concentrations consistent with cow milk. When tested in combination in a checkerboard assay, the lysins were found to exhibit strong synergy. The λSA2 lysin displayed high activity in milk against Streptococcus dysgalactiae (reduction of CFU/ml by 3.5 log units at 100 μg/ml), Streptococcus agalactiae (2 log), and Streptococcus uberis (4 log), whereas the B30 lysin was less effective. In a mouse model of bovine mastitis, both enzymes significantly reduced intramammary concentrations of all three streptococcal species (except for B30 vs. S. dysgalactiae), and the effects on mammary gland wet weights and TNFα concentrations were consistent with these findings. Unexpectedly, the synergistic effect determined for the two enzymes in vitro was not observed in the mouse model. Overall, our results illustrate the potential of endolysins for treatment of Streptococcus-induced bovine mastitis. PMID:25895090

  6. Synergistic streptococcal phage λSA2 and B30 endolysins kill streptococci in cow milk and in a mouse model of mastitis.

    PubMed

    Schmelcher, Mathias; Powell, Anne M; Camp, Mary J; Pohl, Calvin S; Donovan, David M

    2015-10-01

    Bovine mastitis results in billion dollar losses annually in the USA alone. Streptococci are among the most relevant causative agents of this disease. Conventional antibiotic therapy is often unsuccessful and contributes to development of antibiotic resistance. Bacteriophage endolysins represent a new class of antimicrobials against these bacteria. In this work, we characterized the endolysins (lysins) of the streptococcal phages λSA2 and B30 and evaluated their potential as anti-mastitis agents. When tested in vitro against live streptococci, both enzymes exhibited near-optimum lytic activities at ionic strengths, pH, and Ca(2+) concentrations consistent with cow milk. When tested in combination in a checkerboard assay, the lysins were found to exhibit strong synergy. The λSA2 lysin displayed high activity in milk against Streptococcus dysgalactiae (reduction of CFU/ml by 3.5 log units at 100 μg/ml), Streptococcus agalactiae (2 log), and Streptococcus uberis (4 log), whereas the B30 lysin was less effective. In a mouse model of bovine mastitis, both enzymes significantly reduced intramammary concentrations of all three streptococcal species (except for B30 vs. S. dysgalactiae), and the effects on mammary gland wet weights and TNFα concentrations were consistent with these findings. Unexpectedly, the synergistic effect determined for the two enzymes in vitro was not observed in the mouse model. Overall, our results illustrate the potential of endolysins for treatment of Streptococcus-induced bovine mastitis.

  7. DNA Double-Strand Breaks Induce the Nuclear Actin Filaments Formation in Cumulus-Enclosed Oocytes but Not in Denuded Oocytes

    PubMed Central

    Sun, Ming-Hong; Yang, Mo; Xie, Feng-Yun; Wang, Wei; Zhang, Lili; Shen, Wei; Yin, Shen

    2017-01-01

    As a gamete, oocyte needs to maintain its genomic integrity and passes this haploid genome to the next generation. However, fully-grown mouse oocyte cannot respond to DNA double-strand breaks (DSBs) effectively and it is also unable to repair them before the meiosis resumption. To compensate for this disadvantage and control the DNA repair events, oocyte needs the cooperation with its surrounding cumulus cells. Recently, evidences have shown that nuclear actin filament formation plays roles in cellular DNA DSB repair. To explore whether these nuclear actin filaments are formed in the DNA-damaged oocytes, here, we labeled the filament actins in denuded oocytes (DOs) and cumulus-enclosed oocytes (CEOs). We observed that the nuclear actin filaments were formed only in the DNA-damaged CEOs, but not in DOs. Formation of actin filaments in the nucleus was an event downstream to the DNA damage response. Our data also showed that the removal of cumulus cells led to a reduction in the nuclear actin filaments in oocytes. Knocking down of the Adcy1 gene in cumulus cells did not affect the formation of nuclear actin filaments in oocytes. Notably, we also observed that the nuclear actin filaments in CEOs could be induced by inhibition of gap junctions. From our results, it was confirmed that DNA DSBs induce the nuclear actin filament formation in oocyte and which is controlled by the cumulus cells. PMID:28099474

  8. Inhibitory effect of heat-killed Lactobacillus strain on immunoglobulin E-mediated degranulation and late-phase immune reactions of mouse bone marrow-derived mast cells.

    PubMed

    Kawahara, Takeshi

    2010-12-01

    This study investigated the in vitro effect of Lactobacillus strains, a major group of probiotic lactic acid bacteria, on immunoglobulin E (IgE)- and antigen-induced mast cell degranulation and subsequent gene expression. Bone marrow-derived mast cells (BMMCs) from DBA/2 mice were cultured with heat-killed Lactobacillus strains for 24 h. Some strains significantly inhibited IgE- and antigen-induced β-hexosaminidase release from BMMCs. Furthermore, Lactobacillus reuteri NBRC 15892, which exhibited the strongest inhibitory activity, significantly reduced the elevated interleukin (IL)-4, IL-13, tumor necrosis factor-α, and cyclooxygenase-2 expression levels that was induced by 1-2 h of stimulation with IgE and antigens. The suppressive effect of NBRC 15892 strain on BMMC degranulation was significantly reduced in the presence of a toll-like receptor (TLR)2-neutralizing antibody. In addition, downregulation of cell surface FcεRIα expression was observed after 6 h of NBRC 15892 treatment. These results suggest that some Lactobacillus strains inhibited IgE-mediated mast cell degranulation and subsequent late-phase reactions involving mast cells via a TLR2-dependent mechanism with FcεRIα downregulation.

  9. Oocyte freezing: here to stay?

    PubMed

    Van der Elst, Josiane

    2003-01-01

    Oocyte freezing is an established technology but, in contrast to embryo freezing, it has very limited application in clinical IVF programmes. Is there a chance that oocyte freezing will become an integrated routine in assisted reproductive technology? The delicate cytological architecture of the oocyte with a cold-sensitive spindle and a hardening zona have made the frozen oocyte 'unwanted' in assisted reproductive technology. Nevertheless, empirical improvements in freezing protocols and the use of ICSI for fertilization have led to an increasing number of live births. This mitigates against a simple ban on oocyte freezing. While efficiency of oocyte freezing can certainly be further improved by basic research, it is clear that there are humanitarian reasons for considering oocyte freezing as a future fully utilized assisted reproductive technology. The storage of the female genome as a particulate entity can provide an alternative in case of moral, ethical, legal or religious concerns about embryo freezing. Oocyte freezing can also offer hope for oocyte donation and preservation of fertility for women facing ovarian loss. The message is one of cautious optimism when looking for a place for oocyte freezing in routine assisted reproductive technology.

  10. [Pregnancy following oocyte donation].

    PubMed

    Boks, D E; Braat, D D

    1997-08-23

    Five women, aged 31, 26, 31, 34, and 28 years, became pregnant after oocyte donation and in-vitro fertilization. One was a carrier of Leber's optical atrophy, three had had an early menopause (in two because of chromosomal abnormalities), and one had had bilateral ovarian extirpation because of a cystadenoma and endometriosis. Three developed (pre-)eclampsia during pregnancy and one had a serious fluxus post partum. One twin died in utero, the other children were healthy. In the Netherlands in-vitro fertilization (with or without egg-donation) takes place up to the age of about 40. Regarding the high incidence of obstetrical complications in women under 40, raising the age limit could lead to even more pregnancy problems. Candidates for oocyte donation should be informed about these risks, furthermore they should not deliver at home.

  11. Natriuretic peptides stimulate oocyte meiotic resumption in bovine.

    PubMed

    De Cesaro, Matheus P; Macedo, Mariana P; Santos, Joabel T; Rosa, Paulo R A; Ludke, Charles A; Rissi, Vitor B; Gasperin, Bernardo G; Gonçalves, Paulo B D

    2015-08-01

    The aim of the present study was to evaluate the expression of mRNA encoding natriuretic peptides (NPs) and their receptors in the cumulus-oocyte complex in cattle, a monovular mammalian species, and also to investigate the role of NPs in oocyte meiotic resumption in vitro. mRNA was observed for the NP precursor type-A (NPPA), type-C (NPPC), NP receptor-1 (NPR-1), receptor-2 (NPR-2) and receptor-3 (NPR-3) in bovine cumulus cells, and NPR-2 mRNA was observed in oocytes. These results are different from those obtained in mouse and pig models. The effects of NPPA, NP precursor type-B (NPPB) and NPPC on the resumption of arrested meiosis maintained by forskolin were studied at three different doses (10, 100 and 1000nM) with a 12h culture system. The germinal vesicle breakdown rates were greater (P≤0.05) in oocytes that were cultured in the presence of one or a combination of NPs (from 44% to 73%) than the negative control (from 24% to 27%). Additionally, it was demonstrated that the concentration of cyclic guanosine 3',5'-monophosphate (cGMP) is increased by NPPA and NPPC in oocytes and cumulus cells after 3h of in vitro maturation. However, in both groups, the concentration of cyclic adenosine 3',5'-monophosphate (cAMP) in the oocyte did not increase between 3 and 6h of culture, even when forskolin was used. In summary, we observed the presence of mRNA for NPs and their receptors in the bovine cumulus-oocyte complex and demonstrated that, in vitro, NPPA, NPPB and NPPC stimulate oocyte meiotic resumption in a monovular species.

  12. Oocyte cryopreservation in oncological patients.

    PubMed

    Porcu, Eleonora; Fabbri, Raffaella; Damiano, Giuseppe; Fratto, Rosita; Giunchi, Susanna; Venturoli, Stefano

    2004-04-05

    The use of chemotherapy and radiotherapy in oncological patients may reduce their reproductive potential. Sperm cryopreservation has been already used in men affected by neoplastic disease. Oocyte cryopreservation might be an important solution for these patients at risk of losing ovarian function. A program of oocyte cryopreservation for oncological patients is also present in our center. From June 1996 to January 2000, 18 patients awaiting chemotherapy and radiotherapy for neoplastic disease were included in our oocyte cryopreservation program. Our experience documents that oocyte storage may be a concrete and pragmatic alternative for oncological patients. The duration of oocyte storage does not seem to interfere with oocyte survival as pregnancies occurred even after several years of gamete cryopreservation in liquid nitrogen.

  13. Combinatory antibiotic therapy increases rate of bacterial kill but not final outcome in a novel mouse model of Staphylococcus aureus spinal implant infection

    PubMed Central

    Hu, Yan; Johansen, Daniel; Loftin, Amanda H.; Dworsky, Erik; Zoller, Stephen D.; Park, Howard Y.; Hamad, Christopher D.; Nelson, George E.; Francis, Kevin P.; Scaduto, Anthony; Bernthal, Nicholas M.

    2017-01-01

    Background Management of spine implant infections (SII) are challenging. Explantation of infected spinal hardware can destabilize the spine, but retention can lead to cord compromise and biofilm formation, complicating management. While vancomycin monotherapy is commonly used, in vitro studies have shown reduced efficacy against biofilm compared to combination therapy with rifampin. Using an established in vivo mouse model of SII, we aim to evaluate whether combination therapy has increased efficacy compared to both vancomycin alone and infected controls. Methods An L-shaped, Kirschner-wire was transfixed into the L4 spinous process of 12-week-old C57BL/6 mice, and inoculated with bioluminescent Staphylococcus aureus. Mice were randomized into a vancomycin group, a combination group with vancomycin plus rifampin, or a control group receiving saline. Treatment began on post-operative day (POD) 7 and continued through POD 14. In vivo imaging was performed to monitor bioluminescence for 35 days. Colony-forming units (CFUs) were cultured on POD 35. Results Bioluminescence peaked around POD 7 for all groups. The combination group had a 10-fold decrease in signal by POD 10. The vancomycin and control groups reached similar levels on POD 17 and 21, respectively. On POD 25 the combination group dropped below baseline, but rebounded to the same level as the other groups, demonstrating a biofilm-associated infection by POD 35. Quantification of CFUs on POD 35 confirmed an ongoing infection in all three groups. Conclusions Although both therapies were initially effective, they were not able to eliminate implant biofilm bacteria, resulting in a rebound infection after antibiotic cessation. This model shows, for the first time, why histologic-based, static assessments of antimicrobials can be misleading, and the importance of longitudinal tracking of infection. Future studies can use this model to test combinations of antibiotic therapies to see if they are more effective in

  14. Planning a dynamic kill

    SciTech Connect

    Abel, L.W.

    1996-05-01

    This article discusses the methodology, design philosophy, and guidelines for planning a dynamic-kill operation for a wild well. The topics covered are two methods of computer analysis for designing dynamic-kill requirements, the design process, determining the pumping spread, and the pitfalls that a designer faces in planning a dynamic kill.

  15. Oocyte quality in mice is affected by a mycotoxin-contaminated diet.

    PubMed

    Hou, Yan-Jun; Xiong, Bo; Zheng, Wei-Jiang; Duan, Xing; Cui, Xiang-Shun; Kim, Nam-Hyung; Wang, Qiang; Xu, Yin-Xue; Sun, Shao-Chen

    2014-05-01

    Mycotoxins, such as deoxynivalenol (DON), zearalenone (ZEN), and aflatoxin (AF), are commonly found in many food commodities and may impair the growth and reproductive efficiency of animals and humans. We investigated the effects of a mycotoxin-contaminated diet on mouse oocyte quality. Maize contaminated with DON (3.875 mg/kg), ZEN (1,897 μg/kg), and AF (806 μg/kg) was incorporated into a mouse diet at three different levels (0, 15, and 30% w/w). After 4 weeks, ovarian and germinal vesicle oocyte indices decreased in mycotoxin-fed mice. Oocytes from these mice exhibited low developmental competence with reduced germinal vesicle breakdown and polar body extrusion rates. Embryo developmental competence also showed a similar pattern, and the majority of embryos could not develop to the morula stage. Actin expression was also reduced in both the oocyte cortex and cytoplasm, which was accompanied by decreased expression of the actin nucleation factors profilin-1 and mDia1. Moreover, a large percentage of oocytes derived from mice that were fed a mycotoxin-contaminated diet exhibited aberrant spindle morphology, a loss of the cortical granule-free domain, and abnormal mitochondrial distributions, which further supported the decreased oocyte quality. Thus, our results demonstrate that mycotoxins are toxic to the mouse reproductive system by affecting oocyte quality.

  16. Is the mouse a clinically relevant model for human fertilization failures?

    PubMed

    Neuber, E; Powers, R D

    2000-01-01

    This study compares failed fertilization oocytes from patients participating in an in-vitro fertilization (IVF) programme with failed fertilization oocytes from B6SJLF(1)/J mice, in order to characterize and describe the distribution of DNA in oocytes that do not undergo normal fertilization. Our goal is to evaluate the mouse IVF system as a model to gain insight into reasons for human fertilization failures. All oocytes were stained with the vital fluorescent dye, Hoechst 33342, which rapidly stains double-stranded DNA. Of the 237 human oocytes that had been scored as failed fertilization by brightfield microscopy, 61 (25.7%) showed the presence of at least one spermatozoon within the oocyte cytoplasm. In contrast, out of 69 failed fertilization mouse oocytes, only one oocyte showed the presence of a spermatozoon within its cytoplasm. Mouse failed fertilization oocytes exhibited a significantly lower internal sperm rate (P < 0.0001) than human failed fertilization oocytes. Human failed fertilization oocytes show a higher incidence of sperm penetration, but the cytoplasm fails to support pronuclear development, whereas, at least in this strain, mouse failed fertilization oocytes arise from an inability of the spermatozoa to penetrate the oocyte. This study suggests that the mouse is not a clinically relevant model for human fertilization failures.

  17. The crucial role of zona pellucida in cryopreservation of oocytes by vitrification.

    PubMed

    Choi, Jung Kyu; Yue, Tao; Huang, Haishui; Zhao, Gang; Zhang, Mingjun; He, Xiaoming

    2015-10-01

    Mammalian oocytes have a proteinaceous hydrogel-like outer shell known as the zona pellucida (ZP) that semi-encloses their plasma membrane and cytoplasm. In this study, we cryopreserved mouse oocytes either with or without ZP by vitrification. Our results show that the presence of an intact ZP could significantly improve the post-vitrification survival of oocytes to 92.1% from 13.3% for oocytes without ZP. Moreover, there was no significant difference in embryonic development between fresh and cryopreserved oocytes with ZP after in vitro fertilization (IVF). Further atomic force microscopy (AFM) analysis showed that the intact oocytes with ZP have an elastic modulus that is more than 85 times higher than that of oocytes without ZP. This may partially explain the important role of ZP in protecting the oocytes by resisting the mechanical stress due to possible ice formation during cryopreservation by vitrification. Collectively, this study reveals a new biophysical role of ZP during vitrification of oocytes and suggests microencapsulation of the many mammalian cells without a ZP in ZP-like hydrogel is an effective strategy to improve their survival post cryopreservation by vitrification.

  18. The Crucial Role of Zona Pellucida in Cryopreservation of Oocytes by Vitrification

    PubMed Central

    Choi, Jung Kyu; Yue, Tao; Huang, Haishui; Zhao, Gang; Zhang, Mingjun; He, Xiaoming

    2015-01-01

    Mammalian oocytes have a proteinaceous hydrogel-like outer shell known as the zona pellucida (ZP) that semi-encloses their plasma membrane and cytoplasm. In this study, we cryopreserved mouse oocytes either with or without ZP by vitrification. Our results show that the presence of an intact ZP could significantly improve the post-vitrification survival of oocytes to 92.1% from 13.3% for oocytes without ZP. Moreover, there was no significant difference in embryonic development between fresh and cryopreserved oocytes with ZP after in vitro fertilization (IVF). Further atomic force microscopy (AFM) analysis showed that the intact oocytes with ZP have an elastic modulus that is more than 85 times higher than that of oocytes without ZP. This may partially explain the important role of ZP in protecting the oocytes by resisting the mechanical stress due to possible ice formation during cryopreservation by vitrification. Collectively, this study reveals a new biophysical role of ZP during vitrification of oocytes and suggests microencapsulation of the many mammalian cells without a ZP in ZP-like hydrogel is an effective strategy to improve their survival post cryopreservation by vitrification. PMID:26297946

  19. Epigenetic profile of developmentally important genes in bovine oocytes.

    PubMed

    Heinzmann, J; Hansmann, T; Herrmann, D; Wrenzycki, C; Zechner, U; Haaf, T; Niemann, H

    2011-03-01

    Assisted reproductive technologies are associated with an increased incidence of epigenetic aberrations, specifically in imprinted genes. Here, we used the bovine oocyte as a model to determine putative epigenetic mutations at three imprinted gene loci caused by the type of maturation, either in vitro maturation (IVM) in Tissue Culture Medium 199 (TCM) or modified synthetic oviduct fluid (mSOF) medium, or in vivo maturation. We applied a limiting dilution approach and direct bisulfite sequencing to analyze the methylation profiles of individual alleles (DNA molecules) for H19/IGF2, PEG3, and SNRPN, which are each associated with imprinting defects in humans and/or the mouse model, and are known to be differentially methylated in bovine embryos. Altogether, we obtained the methylation patterns of 203 alleles containing 4,512 CpG sites from immature oocytes, 213 alleles with 4,779 CpG sites from TCM-matured oocytes, 215 alleles/4,725 CpGs in mSOF-matured oocytes, and 78 alleles/1,672 CpGs from in vivo-matured oocytes. The total rate of individual CpGs and entire allele methylation errors did not differ significantly between the two IVM and the in vivo group, indicating that current IVM protocols have no or only marginal effects on these critical epigenetic marks. Furthermore, the mRNA expression profiles of the three imprinted genes and a panel of eight other genes indicative of oocyte competence were determined by quantitative real-time PCR. We found different mRNA expression profiles between in vivo-matured oocytes versus their in vitro-matured counterparts, suggesting an influence on regulatory mechanisms other than DNA methylation.

  20. Maturation of Oocytes in Vitro.

    PubMed

    Lonergan, Patrick; Fair, Trudee

    2016-01-01

    Only a fraction of oocytes present in the ovaries at birth are ever ovulated during the lifetime of a female mammal. In vitro maturation (IVM) offers the possibility to exploit what is a largely untapped biological resource. Although IVM is used routinely for the in vitro production of embryos in domestic species, especially cattle, its clinical use in human-assisted reproduction is still evolving. The successful recapitulation in vitro of the events associated with successful oocyte maturation is not always achieved, with the majority of immature oocytes typically failing to develop to the blastocyst stage. Evidence suggests that although culture conditions throughout in vitro embryo production may have a modest influence on the developmental potential of the early embryo, the quality of the oocyte at the start of the process is the key factor determining the proportion of oocytes developing to the blastocyst stage.

  1. Involvement of mouse and porcine PLCζ-induced calcium oscillations in preimplantation development of mouse embryos

    SciTech Connect

    Yoneda, Akihiro; Watanabe, Tomomasa

    2015-05-01

    In mammals, phospholipase Cζ (PLCζ) has the ability to trigger calcium (Ca{sup 2+}) oscillations in oocytes, leading to oocyte activation. Although there is a species-specific difference in the PLCζ-induced Ca{sup 2+} oscillatory pattern, whether PLCζ-induced Ca{sup 2+} oscillations affect preimplantation embryonic development remains unclear. Here, we show that Ca{sup 2+} oscillations in mouse PLCζ cRNA-injected oocytes stopped just before pronuclear formation, while that in porcine PLCζ cRNA-injected oocytes continued for several hours after pronuclei had been formed. This difference of Ca{sup 2+} oscillations in oocytes after pronuclear formation was dependent on the difference in the nuclear localization signal (NLS) sequence of PLCζ between the mouse and pig. However, mouse and porcine PLCζ cRNA-injected oocytes parthenogenetically developed to blastocysts regardless of the absence or presence of Ca{sup 2+} oscillations after pronuclear formation. Furthermore, the developmental rate of mouse or porcine PLCζ-activated oocytes injected with round spermatids to the blastocyst stage was not significantly different from that of strontium-activated oocytes injected with round spermatids. These results suggest that the PLCζ-induced Ca{sup 2+} oscillatory pattern in mouse oocytes is dependent on the NLS sequence of PLCζ and injection of PLCζ may be a useful method for activation of round spermatid-injected and somatic nuclear transferred oocytes. - Highlights: • Porcine PLCζ-induced Ca{sup 2+} oscillations continued after pronuclear formation. • The Ca{sup 2+} oscillatory pattern was dependent on the difference in the NLS sequence of PLCζ. • PLCζ-activated oocytes parthenogenetically developed to blastocysts. • PLCζ-activated oocytes injected with round spermatids developed to blastocysts.

  2. [Motivations of oocytes donors].

    PubMed

    Cauvin, P

    2009-01-01

    Oocyte donation is a complex situation that requires the applicant couple to deal with the presence of the donor in the history of the child conception. Accepting the eggs is not the same thing than accepting the donor. Her place in the child's life depends on how his parents will accept her phantasmal reality beyond her real person. Paying attention to the story told by the donors on their motivations may help parents internalize this conception to three. We show from two clinical observations, that the generosity of donors is connected to personal issues that do not relate to unborn child or its parents. If there are two mothers in oocyte donation, they are not really in competition because there are also two children: the child conceived through donation is that of the project of the couple, the child to which the donor thinks, is and will remain in phantasmal domain, i.e. linked to the personal history of the donor. We also show that the psychological interview fully responds to the donor expectations when it seeks to highlight her motives.

  3. Null Killing vectors

    NASA Astrophysics Data System (ADS)

    Lukács, B.; Perjés, Z.; Sebestyén, Á.

    1981-06-01

    Space-times admitting a null Killing vector are studied, using the Newman-Penrose spin coefficient formalism. The properties of the eigenrays (principal null curves of the Killing bivector) are shown to be related to the twist of the null Killing vector. Among the electrovacs, the ones containing a null Maxwell field turn out to belong to the twist-free class. An electrovac solution is obtained for which the null Killing vector is twisting and has geodesic and shear-free eigenrays. This solution is parameterless and appears to be the field of a zero-mass, spinning, and charged source.

  4. Different fates of oocytes with DNA double-strand breaks in vitro and in vivo.

    PubMed

    Lin, Fei; Ma, Xue-Shan; Wang, Zhen-Bo; Wang, Zhong-Wei; Luo, Yi-Bo; Huang, Lin; Jiang, Zong-Zhe; Hu, Meng-Wen; Schatten, Heide; Sun, Qing-Yuan

    2014-01-01

    In female mice, despite the presence of slight DNA double-strand breaks (DSBs), fully grown oocytes are able to undergo meiosis resumption as indicated by germinal vesicle breakdown (GVBD); however, severe DNA DSBs do reduce and delay entry into M phase through activation of the DNA damage checkpoint. But little is known about the effect of severe DNA DSBs on the spindle assembly checkpoint (SAC) during oocyte maturation. We showed that nearly no first polar body (PB1) was extruded at 12 h of in vitro maturation (IVM) in severe DNA DSBs oocytes, and the limited number of oocytes with PB1 were actually at telophase. However, about 60% of the severe DNA DSBs oocytes which underwent GVBD at 2 h of IVM released a PB1 at 18 h of IVM and these oocytes did reach the second metaphase (MII) stage. Chromosome spread at MI and MII stages showed that chromosomes fragmented after GVBD in severe DNA DSBs oocytes. The delayed PB1 extrusion was due to the disrupted attachment of microtubules to kinetochores and activation of the SAC. At the same time, misaligned chromosome fragments became obvious at the first metaphase (MI) in severe DNA DSBs oocytes. These data implied that the inactivation of SAC during the metaphase-anaphase transition of first meiosis was independent of chromosome integrity. Next, we induced DNA DSBs in vivo, and found that the number of superovulated oocytes per mouse was significantly reduced; moreover, this treatment increased the percentage of apoptotic oocytes. These results suggest that DNA DSBs oocytes undergo apoptosis in vivo.

  5. Live imaging RNAi screen reveals genes essential for meiosis in mammalian oocytes.

    PubMed

    Pfender, Sybille; Kuznetsov, Vitaliy; Pasternak, Michał; Tischer, Thomas; Santhanam, Balaji; Schuh, Melina

    2015-08-13

    During fertilization, an egg and a sperm fuse to form a new embryo. Eggs develop from oocytes in a process called meiosis. Meiosis in human oocytes is highly error-prone, and defective eggs are the leading cause of pregnancy loss and several genetic disorders such as Down's syndrome. Which genes safeguard accurate progression through meiosis is largely unclear. Here we develop high-content phenotypic screening methods for the systematic identification of mammalian meiotic genes. We targeted 774 genes by RNA interference within follicle-enclosed mouse oocytes to block protein expression from an early stage of oocyte development onwards. We then analysed the function of several genes simultaneously by high-resolution imaging of chromosomes and microtubules in live oocytes and scored each oocyte quantitatively for 50 phenotypes, generating a comprehensive resource of meiotic gene function. The screen generated an unprecedented annotated data set of meiotic progression in 2,241 mammalian oocytes, which allowed us to analyse systematically which defects are linked to abnormal chromosome segregation during meiosis, identifying progression into anaphase with misaligned chromosomes as well as defects in spindle organization as risk factors. This study demonstrates how high-content screens can be performed in oocytes, and allows systematic studies of meiosis in mammals.

  6. Ion-kill dosimetry

    NASA Technical Reports Server (NTRS)

    Katz, R.; Cucinotta, F. A.; Fromm, M.; Chambaudet, A.

    2001-01-01

    Unanticipated late effects in neutron and heavy ion therapy, not attributable to overdose, imply a qualitative difference between low and high LET therapy. We identify that difference as 'ion kill', associated with the spectrum of z/beta in the radiation field, whose measurement we label 'ion-kill dosimetry'.

  7. Oocyte development, meiosis and aneuploidy.

    PubMed

    MacLennan, Marie; Crichton, James H; Playfoot, Christopher J; Adams, Ian R

    2015-09-01

    Meiosis is one of the defining events in gametogenesis. Male and female germ cells both undergo one round of meiotic cell division during their development in order to reduce the ploidy of the gametes, and thereby maintain the ploidy of the species after fertilisation. However, there are some aspects of meiosis in the female germline, such as the prolonged arrest in dictyate, that appear to predispose oocytes to missegregate their chromosomes and transmit aneuploidies to the next generation. These maternally-derived aneuploidies are particularly problematic in humans where they are major contributors to miscarriage, age-related infertility, and the high incidence of Down's syndrome in human conceptions. This review will discuss how events that occur in foetal oocyte development and during the oocytes' prolonged dictyate arrest can influence meiotic chromosome segregation and the incidence of aneuploidy in adult oocytes.

  8. Evolution of coalitionary killing.

    PubMed

    Wrangham, R W

    1999-01-01

    Warfare has traditionally been considered unique to humans. It has, therefore, often been explained as deriving from features that are unique to humans, such as the possession of weapons or the adoption of a patriarchal ideology. Mounting evidence suggests, however, that coalitional killing of adults in neighboring groups also occurs regularly in other species, including wolves and chimpanzees. This implies that selection can favor components of intergroup aggression important to human warfare, including lethal raiding. Here I present the principal adaptive hypothesis for explaining the species distribution of intergroup coalitional killing. This is the "imbalance-of-power hypothesis," which suggests that coalitional killing is the expression of a drive for dominance over neighbors. Two conditions are proposed to be both necessary and sufficient to account for coalitional killing of neighbors: (1) a state of intergroup hostility; (2) sufficient imbalances of power between parties that one party can attack the other with impunity. Under these conditions, it is suggested, selection favors the tendency to hunt and kill rivals when the costs are sufficiently low. The imbalance-of-power hypothesis has been criticized on a variety of empirical and theoretical grounds which are discussed. To be further tested, studies of the proximate determinants of aggression are needed. However, current evidence supports the hypothesis that selection has favored a hunt-and-kill propensity in chimpanzees and humans, and that coalitional killing has a long history in the evolution of both species.

  9. Report Bee Kills

    EPA Pesticide Factsheets

    EPA uses incident report data to help inform our pesticide regulatory decisions. Information from these reports helps us identify patterns of bee kills associated with the use of specific pesticides or active ingredients. Here's how to report incidents.

  10. HORMAD1-dependent checkpoint/surveillance mechanism eliminates asynaptic oocytes.

    PubMed

    Kogo, Hiroshi; Tsutsumi, Makiko; Ohye, Tamae; Inagaki, Hidehito; Abe, Takaya; Kurahashi, Hiroki

    2012-06-01

    Meiotic pachytene checkpoints monitor the failure of homologous recombination and synapsis to ensure faithful chromosome segregation during gamete formation. To date, the molecular basis of the mammalian pachytene checkpoints has remained largely unknown. We here report that mouse HORMAD1 is required for a meiotic prophase checkpoint that eliminates asynaptic oocytes. Hormad1-deficient mice are infertile and show an extensive failure of homologous pairing and synapsis, consistent with the evolutionarily conserved function of meiotic HORMA domain proteins. Unexpectedly, Hormad1-deficient ovaries contain a normal number of oocytes despite asynapsis and consequently produce aneuploid oocytes, indicating a checkpoint failure. By the analysis of Hormad1/Spo11 double mutants, the Hormad1 deficiency was found to abrogate the massive oocyte loss in the Spo11-deficient ovary. The Hormad1 deficiency also causes the eventual loss of pseudo sex body in the Spo11-deficient ovary and testis. These results suggest the involvement of HORMAD1 in the repressive chromatin domain formation that is proposed to be important in the meiotic prophase checkpoints. We also show the extensive phosphorylation of HORMAD1 in the Spo11-deficient testis and ovary, suggesting an involvement of novel DNA damage-independent phosphorylation signaling in the surveillance mechanism. Our present results provide clues to HORMAD1-dependent checkpoint in response to asynapsis in mammalian meiosis.

  11. Coenzyme Q10 restores oocyte mitochondrial function and fertility during reproductive aging

    PubMed Central

    Ben-Meir, Assaf; Burstein, Eliezer; Borrego-Alvarez, Aluet; Chong, Jasmine; Wong, Ellen; Yavorska, Tetyana; Naranian, Taline; Chi, Maggie; Wang, Ying; Bentov, Yaakov; Alexis, Jennifer; Meriano, James; Sung, Hoon-Ki; Gasser, David L; Moley, Kelle H; Hekimi, Siegfried; Casper, Robert F; Jurisicova, Andrea

    2015-01-01

    Female reproductive capacity declines dramatically in the fourth decade of life as a result of an age-related decrease in oocyte quality and quantity. The primary causes of reproductive aging and the molecular factors responsible for decreased oocyte quality remain elusive. Here, we show that aging of the female germ line is accompanied by mitochondrial dysfunction associated with decreased oxidative phosphorylation and reduced Adenosine tri-phosphate (ATP) level. Diminished expression of the enzymes responsible for CoQ production, Pdss2 and Coq6, was observed in oocytes of older females in both mouse and human. The age-related decline in oocyte quality and quantity could be reversed by the administration of CoQ10. Oocyte-specific disruption of Pdss2 recapitulated many of the mitochondrial and reproductive phenotypes observed in the old females including reduced ATP production and increased meiotic spindle abnormalities, resulting in infertility. Ovarian reserve in the oocyte-specific Pdss2-deficient animals was diminished, leading to premature ovarian failure which could be prevented by maternal dietary administration of CoQ10. We conclude that impaired mitochondrial performance created by suboptimal CoQ10 availability can drive age-associated oocyte deficits causing infertility. PMID:26111777

  12. Parthenogenetic activation of bovine oocytes using bovine and murine phospholipase C zeta

    PubMed Central

    Ross, Pablo J; Beyhan, Zeki; Iager, Amy E; Yoon, Sook-Young; Malcuit, Christopher; Schellander, Karl; Fissore, Rafael A; Cibelli, Jose B

    2008-01-01

    Background During natural fertilization, sperm fusion with the oocyte induces long lasting intracellular calcium oscillations which in turn are responsible for oocyte activation. PLCZ1 has been identified as the factor that the sperm delivers into the egg to induce such a response. We tested the hypothesis that PLCZ1 cRNA injection can be used to activate bovine oocytes. Results Mouse and bovine PLCZ1 cRNAs were injected into matured bovine oocytes at different concentrations. Within the concentrations tested, mouse PLCZ1 injection activated bovine oocytes at a maximum rate when the pipette concentration of cRNA ranged from 0.25 to 1 μg/μL, while bovine PLCZ1 was optimal at 0.1 μg/μL. At their most effective concentrations, PLCZ1 induced parthenogenetic development at rates similar to those observed using other activation stimuli such as Ionomycin/CHX and Ionomycin/DMAP. Injection of mouse and bovine PLCZ1 cRNA induced dose-dependent sperm-like calcium oscillations whose frequency increased over time. Injection of bovine and mouse PLCZ1 cRNA also induced IP3R-1 degradation, although bovine PLCZ1 cRNA evoked greater receptor degradation than its mouse counterpart. Conclusion Injection of PLCZ1 cRNA efficiently activated bovine oocytes by inducing a sperm-like calcium oscillatory pattern. Importantly, the high rate of aneuploidy encountered in parthenogenetic embryos activated by certain chemical means was not observed in PLCZ1 activated embryos. PMID:18284699

  13. Meiosis and Maternal Aging: Insights from Aneuploid Oocytes and Trisomy Births

    PubMed Central

    Herbert, Mary; Kalleas, Dimitrios; Cooney, Daniel; Lamb, Mahdi; Lister, Lisa

    2015-01-01

    In most organisms, genome haploidization requires reciprocal DNA exchanges (crossovers) between replicated parental homologs to form bivalent chromosomes. These are resolved to their four constituent chromatids during two meiotic divisions. In female mammals, bivalents are formed during fetal life and remain intact until shortly before ovulation. Extending this period beyond ∼35 years greatly increases the risk of aneuploidy in human oocytes, resulting in a dramatic increase in infertility, miscarriage, and birth defects, most notably trisomy 21. Bivalent chromosomes are stabilized by cohesion between sister chromatids, which is mediated by the cohesin complex. In mouse oocytes, cohesin becomes depleted from chromosomes during female aging. Consistent with this, premature loss of centromeric cohesion is a major source of aneuploidy in oocytes from older women. Here, we propose a mechanistic framework to reconcile data from genetic studies on human trisomy and oocytes with recent advances in our understanding of the molecular mechanisms of chromosome segregation during meiosis in model organisms. PMID:25833844

  14. Meiosis and maternal aging: insights from aneuploid oocytes and trisomy births.

    PubMed

    Herbert, Mary; Kalleas, Dimitrios; Cooney, Daniel; Lamb, Mahdi; Lister, Lisa

    2015-04-01

    In most organisms, genome haploidization requires reciprocal DNA exchanges (crossovers) between replicated parental homologs to form bivalent chromosomes. These are resolved to their four constituent chromatids during two meiotic divisions. In female mammals, bivalents are formed during fetal life and remain intact until shortly before ovulation. Extending this period beyond ∼35 years greatly increases the risk of aneuploidy in human oocytes, resulting in a dramatic increase in infertility, miscarriage, and birth defects, most notably trisomy 21. Bivalent chromosomes are stabilized by cohesion between sister chromatids, which is mediated by the cohesin complex. In mouse oocytes, cohesin becomes depleted from chromosomes during female aging. Consistent with this, premature loss of centromeric cohesion is a major source of aneuploidy in oocytes from older women. Here, we propose a mechanistic framework to reconcile data from genetic studies on human trisomy and oocytes with recent advances in our understanding of the molecular mechanisms of chromosome segregation during meiosis in model organisms.

  15. The microtubule catastrophe promoter Sentin delays stable kinetochore–microtubule attachment in oocytes

    PubMed Central

    Głuszek, A. Agata; Cullen, C. Fiona; Li, Wenjing; Battaglia, Rachel A.; Radford, Sarah J.; Costa, Mariana F.; McKim, Kim S.; Goshima, Gohta

    2015-01-01

    The critical step in meiosis is to attach homologous chromosomes to the opposite poles. In mouse oocytes, stable microtubule end-on attachments to kinetochores are not established until hours after spindle assembly, and phosphorylation of kinetochore proteins by Aurora B/C is responsible for the delay. Here we demonstrated that microtubule ends are actively prevented from stable attachment to kinetochores until well after spindle formation in Drosophila melanogaster oocytes. We identified the microtubule catastrophe-promoting complex Sentin-EB1 as a major factor responsible for this delay. Without this activity, microtubule ends precociously form robust attachments to kinetochores in oocytes, leading to a high proportion of homologous kinetochores stably attached to the same pole. Therefore, regulation of microtubule ends provides an alternative novel mechanism to delay stable kinetochore–microtubule attachment in oocytes. PMID:26668329

  16. Involvement of the serine protease inhibitor, SERPINE2, and the urokinase plasminogen activator in cumulus expansion and oocyte maturation.

    PubMed

    Lu, Chung-Hao; Lee, Robert Kuo-Kuang; Hwu, Yuh-Ming; Lin, Ming-Huei; Yeh, Ling-Yu; Chen, Ying-Jie; Lin, Shau-Ping; Li, Sheng-Hsiang

    2013-01-01

    The serpin peptidase inhibitor, clade E, member 2 (SERPINE2) inhibits urokinase-type plasminogen activator (PLAU) and tissue-type plasminogen activator. Higher SERPINE2 expression levels were detected in cumulus cells of human immature oocytes than in those of mature oocytes. The objective of this study was to evaluate whether high SERPINE2 levels in cumulus cells are associated with oocyte immaturity. Using the mouse cumulus-oocyte complex as an experimental model, the effects of elimination and overexpression of SERPINE2 in cumulus cells on cumulus expansion and oocyte maturation were assayed by in vitro maturation. Serpine2 and PLAU transcripts were the most highly expressed serpins and plasminogen activators, respectively. Their expression was coordinately regulated in cumulus cells during gonadotropin-induced oocyte maturation. Silencing of Serpine2 expression using small interfering RNAs or blockage of SERPINE2 protein using a specific antibody had no effect on oocyte maturation. However, overexpression of Serpine2 or exogenous supplementation with high levels of SERPINE2 impaired cumulus expansion and oocyte maturation, probably by decreasing hyaluronan synthase 2 (Has2) and versican (Vcan) mRNA expression. Amiloride, a specific PLAU inhibitor, also suppressed these processes. PLAU supplementation of the oocyte in vitro maturation medium caused earlier and more extensive expansion of cumulus cells and oocyte maturation that may be mediated by increased Has2 mRNA expression. However, these effects were neutralized by coincubation with SERPINE2 or amiloride and PLAU. In conclusion, SERPINE2 and PLAU are involved in cumulus expansion and oocyte maturation. High SERPINE2 levels impair these processes, probably by decreasing cumulus matrix gene expression as well as reducing cumulus hyaluronan contents and inhibiting PLAU activity. These findings may explain why cumulus cells surrounding immature human oocytes express high SERPINE2 levels.

  17. Oocyte development, meiosis and aneuploidy

    PubMed Central

    MacLennan, Marie; Crichton, James H.; Playfoot, Christopher J.; Adams, Ian R.

    2015-01-01

    Meiosis is one of the defining events in gametogenesis. Male and female germ cells both undergo one round of meiotic cell division during their development in order to reduce the ploidy of the gametes, and thereby maintain the ploidy of the species after fertilisation. However, there are some aspects of meiosis in the female germline, such as the prolonged arrest in dictyate, that appear to predispose oocytes to missegregate their chromosomes and transmit aneuploidies to the next generation. These maternally-derived aneuploidies are particularly problematic in humans where they are major contributors to miscarriage, age-related infertility, and the high incidence of Down's syndrome in human conceptions. This review will discuss how events that occur in foetal oocyte development and during the oocytes’ prolonged dictyate arrest can influence meiotic chromosome segregation and the incidence of aneuploidy in adult oocytes. PMID:26454098

  18. Defining The Neighborhoods That Escort The Oocyte Through Its Early Life Events And Into A Functional Follicle

    PubMed Central

    Jorgensen, Joan S.

    2014-01-01

    The ovary functions to chaperone the most precious cargo for female individuals, the oocyte, to allow the passage of genetic material to subsequent generations. Within the ovary, single oocytes are surrounded by a legion of granulosa cells inside each follicle. These two cell types depend upon one another to support follicle formation and oocyte survival. The infrastructure and events that work together to ultimately form these functional follicles within the ovary are unprecedented, given that the oocyte is fated like all other neighboring cells within the embryo prior to gastrulation. This review discusses the journey of the germ cell in the context of the developing female mouse embryo, with a focus on specific signaling events and cell-cell interactions that escort the primordial germ cell as it is specified into the germ-cell fate, migrates through the hindgut into the gonad, differentiates into an oocyte, and culminates upon formation of the primordial and then primary follicle. PMID:24105719

  19. Human oocyte maturation in vitro.

    PubMed

    Coticchio, Giovanni; Dal-Canto, Mariabeatrice; Guglielmo, Maria-Cristina; Mignini-Renzini, Mario; Fadini, Rubens

    2012-01-01

    Oocytes from medium-sized antral follicles have already completed their growth phase and, if released from the follicular environment and cultured in vitro, are able to resume the meiotic process and mature. However, in vitro maturation (IVM) does not entirely support all the nuclear and cytoplasmic changes that occur physiologically as an effect of the ovulatory stimulus. Regardless, oocyte IVM is widely applied for the breeding of agriculturally important species. In assisted reproduction technology, IVM has been proposed as an alternative treatment to circumvent the drawbacks of standard ovarian stimulation regimens. Initially introduced to eliminate the risks of ovarian hyperstimulation syndrome afflicting women presenting with polycystic ovaries, subsequently IVM has been suggested to represent an additional approach suitable also for normovulatory patients. So far, in children born from IVM cycles, no doubts of an increased incidence of congenital abnormalities have been raised. Many more births would be achieved if novel IVM systems, currently dominated by empiricism, could be conceived according to more physiological criteria. Recent findings shedding new light on the control of meiotic progression, the support of cumulus cells to the oocyte cellular reorganization occurring during maturation, and the modulation of the stimulus that promotes oocyte maturation downstream the mid-cycle gonadotropin signal are likely to provide crucial hints for the development of more efficient IVM systems.

  20. The double-edged sword of the mammalian oocyte – advantages, drawbacks and approaches for basic and clinical analysis at the single cell level

    PubMed Central

    Brayboy, L.M.; Wessel, G.M.

    2016-01-01

    Oocytes are usually the largest cells in the body and as such offer unique opportunities for single-cell analysis. Unfortunately, these cells are also some of the rarest in the mammalian female, usually necessitating single-cell analysis. In cases of infertility in humans, determining the quality of the oocyte is often restricted to a morphological analysis or to the study of cellular behaviors in the developing embryo. Minimally invasive approaches could greatly assist the clinician to prioritize oocytes for fertilization or following fertilization, which embryo to transfer back into the woman. Transcriptomics of human and mouse oocytes may have great utility, and recently it was learned that the polar body faithfully reflects the transcript prevalence in the oocyte. The polar body may thus serve as a minimally invasive proxy for an oocyte in the clinic. In the mouse, the transcriptomes of oocytes from mice of the same strain are markedly similar; no significant differences are apparent in transcript prevalence or identity. In human oocytes however, the transcript pool is highly variable. This is likely the result of different histories of each oocyte, in the age of the donor woman, the different hormonal exposures and the prolonged time from specification of the primary oocyte to the fully grown and ovulated egg. This variability in human oocytes also emphasizes the need for cell-by-cell analysis of the oocytes in vitro; which oocytes have a better potential for fertilization and development? To this end, new imaging capabilities are being employed. For example, a single-cell analytical device for oocytes (the simple perfusion apparatus, or SPA) enables investigators to load multiple oocytes in individual wells, to visualize them on the microscope and to use controlled temperature and media flow by perfusion for optimal clinical applications. Recently, developed Raman microspectroscopy approaches suggest that this imaging modality may enable more in

  1. Killing vectors and anisotropy

    SciTech Connect

    Krisch, J. P.; Glass, E. N.

    2009-08-15

    We consider an action that can generate fluids with three unequal stresses for metrics with a spacelike Killing vector. The parameters in the action are directly related to the stress anisotropies. The field equations following from the action are applied to an anisotropic cosmological expansion and an extension of the Gott-Hiscock cosmic string.

  2. Children Who Kill.

    ERIC Educational Resources Information Center

    Natale, Jo Anna

    1999-01-01

    Two recent books, "When Good Kids Kill," by Michael D. Kelleher, and "Lost Boys," by James Garbarino, explore how children become killers and suggest ways to reduce our high-pressure society's epidemic levels of youth violence. Physically or psychologically distant parents and unaffirmative media messages are negative…

  3. Recent Progress in Cryopreservation of Bovine Oocytes

    PubMed Central

    Hochi, Shinichi

    2014-01-01

    Principle of oocyte cryoinjury is first overviewed and then research history of cryopreservation using bovine oocytes is summarized for the last two decades with a few special references to recent progresses. Various types of cryodevices have been developed to accelerate the cooling rate and applied to the oocytes from large domestic species enriched with cytoplasmic lipid droplets. Two recent approaches include the qualitative improvement of IVM oocytes prior to the vitrification and the short-term recovery culture of vitrified-warmed oocytes prior to the subsequent IVF. Supplementation of L-carnitine to IVM medium of bovine oocytes has been reported to reduce the amount of cytoplasmic lipid droplets and improve the cryotolerance of the oocytes, but it is still controversial whether the positive effect of L-carnitine is reproducible. Incidence of multiple aster formation, a possible cause for low developmental potential of vitrified-warmed bovine oocytes, was inhibited by a short-term culture of the postwarm oocytes in the presence of Rho-associated coiled-coil kinase (ROCK) inhibitor. Use of an antioxidant α-tocopherol, instead of the ROCK inhibitor, also supported the revivability of the postwarm bovine oocytes. Further improvements of the vitrification procedure, combined with pre- and postvitrification chemical treatment, would overcome the high sensitivity of bovine oocytes to cryopreservation. PMID:24738063

  4. Recent progress in cryopreservation of bovine oocytes.

    PubMed

    Hwang, In-Sul; Hochi, Shinichi

    2014-01-01

    Principle of oocyte cryoinjury is first overviewed and then research history of cryopreservation using bovine oocytes is summarized for the last two decades with a few special references to recent progresses. Various types of cryodevices have been developed to accelerate the cooling rate and applied to the oocytes from large domestic species enriched with cytoplasmic lipid droplets. Two recent approaches include the qualitative improvement of IVM oocytes prior to the vitrification and the short-term recovery culture of vitrified-warmed oocytes prior to the subsequent IVF. Supplementation of L-carnitine to IVM medium of bovine oocytes has been reported to reduce the amount of cytoplasmic lipid droplets and improve the cryotolerance of the oocytes, but it is still controversial whether the positive effect of L-carnitine is reproducible. Incidence of multiple aster formation, a possible cause for low developmental potential of vitrified-warmed bovine oocytes, was inhibited by a short-term culture of the postwarm oocytes in the presence of Rho-associated coiled-coil kinase (ROCK) inhibitor. Use of an antioxidant α-tocopherol, instead of the ROCK inhibitor, also supported the revivability of the postwarm bovine oocytes. Further improvements of the vitrification procedure, combined with pre- and postvitrification chemical treatment, would overcome the high sensitivity of bovine oocytes to cryopreservation.

  5. Cold-induced changes in amphibian oocytes

    SciTech Connect

    Angelier, N.; Moreau, N.A.; N'Da, E.A.; Lautredou, N.F. )

    1989-08-01

    Female Pleurodeles waltl newts (Amphibia, urodele), usually raised at 20 degrees C, were submitted to low temperatures; oocytes responded to this cold stress by drastic changes both in lampbrush chromosome structure and in protein pattern. Preexisting lateral loops of lampbrush chromosomes were reduced in size and number, while cold-induced loops which were tremendously developed, occurred on defined bivalents of the oocyte at constant, reproducible sites. A comparison of protein patterns in control and stressed oocytes showed two main differences: in stressed oocytes, overall protein synthesis was reduced, except for a set of polypeptides, the cold-stress proteins; second, there was a striking inversion of the relative amount of beta- and gamma-actin found in the oocyte nucleus before and after cold stress. Whereas beta-actin was the predominant form in control oocytes, gamma-actin became the major form in stressed oocytes.

  6. Housing and Husbandry of Xenopus laevis Affect the Quality of Oocytes for Heterologous Expression Studies

    PubMed Central

    Delpire, Eric; Gagnon, Kenneth B; Ledford, Jonathan J; Wallace, Jeanne M

    2011-01-01

    To assess the effect of Xenopus husbandry on oocyte quality for membrane transport physiology experiments, we compared a recirculating-water housing system with a static-water system in a 23-mo study. Two groups of frogs (n = 8) were maintained separately for the entire study: one group was housed in a multiinvestigator centrally managed Xenopus facility, which consists of 33 tanks placed on a shared and recirculating water system; the other group was housed in a satellite facility used by a single investigator and consisting of static tanks placed in a dedicated cold-room. The activity of a heterologously expressed membrane transporter was assessed every 4 to 5 wk for a total of 23 mo. Activity of the mouse cotransporter NKCC1 was assessed through isotopic 86Rb influx measurements under 2 experimental conditions: stimulation of cotransporter by coinjection of regulatory kinases and by exposure to a hypertonic solution. The results showed a significant difference in the level of ion fluxes under these 2 experimental conditions between the 2 groups of oocytes. During the entire period, oocytes isolated from frogs maintained in the static facility demonstrated consistently robust NKCC1 function, whereas oocytes isolated from frogs maintained in the recirculating facility showed inconsistent and weaker cotransporter function. Furthermore, the oocytes isolated from frogs maintained in the recirculating facility showed significant deterioration during the summer months (April to August), a seasonal variation that was muted in frog oocytes maintained in the static facility. PMID:21333163

  7. Expression and characterization of three Aurora kinase C splice variants found in human oocytes.

    PubMed

    Fellmeth, Jessica E; Gordon, Derek; Robins, Christian E; Scott, Richard T; Treff, Nathan R; Schindler, Karen

    2015-08-01

    Chromosome segregation is an extensively choreographed process yet errors still occur frequently in female meiosis, leading to implantation failure, miscarriage or offspring with developmental disorders. Aurora kinase C (AURKC) is a component of the chromosome passenger complex and is highly expressed in gametes. Studies in mouse oocytes indicate that AURKC is required to regulate chromosome segregation during meiosis I; however, little is known about the functional significance of AURKC in human oocytes. Three splice variants of AURKC exist in testis tissue. To determine which splice variants human oocytes express, we performed quantitative real-time PCR using single oocytes and found expression of all three variants. To evaluate the functional differences between the variants, we created green fluorescent protein-tagged constructs of each variant to express in oocytes from Aurkc(-/-) mice. By quantifying metaphase chromosome alignment, cell cycle progression, phosphorylation of INCENP and microtubule attachments to kinetochores, we found that AURKC_v1 was the most capable of the variants at supporting metaphase I chromosome segregation. AURKC_v3 localized to chromosomes properly and supported cell cycle progression to metaphase II, but its inability to correct erroneous microtubule attachments to kinetochores meant that chromosome segregation was not as accurate compared with the other two variants. Finally, when we expressed the three variants simultaneously, error correction was more robust than when they were expressed on their own. Therefore, oocytes express three variants of AURKC that are not functionally equivalent in supporting meiosis, but fully complement meiosis when expressed simultaneously.

  8. Dynamic changes in histone modifications precede de novo DNA methylation in oocytes.

    PubMed

    Stewart, Kathleen R; Veselovska, Lenka; Kim, Jeesun; Huang, Jiahao; Saadeh, Heba; Tomizawa, Shin-ichi; Smallwood, Sébastien A; Chen, Taiping; Kelsey, Gavin

    2015-12-01

    Erasure and subsequent reinstatement of DNA methylation in the germline, especially at imprinted CpG islands (CGIs), is crucial to embryogenesis in mammals. The mechanisms underlying DNA methylation establishment remain poorly understood, but a number of post-translational modifications of histones are implicated in antagonizing or recruiting the de novo DNA methylation complex. In mouse oogenesis, DNA methylation establishment occurs on a largely unmethylated genome and in nondividing cells, making it a highly informative model for examining how histone modifications can shape the DNA methylome. Using a chromatin immunoprecipitation (ChIP) and genome-wide sequencing (ChIP-seq) protocol optimized for low cell numbers and novel techniques for isolating primary and growing oocytes, profiles were generated for histone modifications implicated in promoting or inhibiting DNA methylation. CGIs destined for DNA methylation show reduced protective H3K4 dimethylation (H3K4me2) and trimethylation (H3K4me3) in both primary and growing oocytes, while permissive H3K36me3 increases specifically at these CGIs in growing oocytes. Methylome profiling of oocytes deficient in H3K4 demethylase KDM1A or KDM1B indicated that removal of H3K4 methylation is necessary for proper methylation establishment at CGIs. This work represents the first systematic study performing ChIP-seq in oocytes and shows that histone remodeling in the mammalian oocyte helps direct de novo DNA methylation events.

  9. Expression and characterization of three Aurora kinase C splice variants found in human oocytes

    PubMed Central

    Fellmeth, Jessica E.; Gordon, Derek; Robins, Christian E.; Scott, Richard T.; Treff, Nathan R.; Schindler, Karen

    2015-01-01

    Chromosome segregation is an extensively choreographed process yet errors still occur frequently in female meiosis, leading to implantation failure, miscarriage or offspring with developmental disorders. Aurora kinase C (AURKC) is a component of the chromosome passenger complex and is highly expressed in gametes. Studies in mouse oocytes indicate that AURKC is required to regulate chromosome segregation during meiosis I; however, little is known about the functional significance of AURKC in human oocytes. Three splice variants of AURKC exist in testis tissue. To determine which splice variants human oocytes express, we performed quantitative real-time PCR using single oocytes and found expression of all three variants. To evaluate the functional differences between the variants, we created green fluorescent protein-tagged constructs of each variant to express in oocytes from Aurkc−/− mice. By quantifying metaphase chromosome alignment, cell cycle progression, phosphorylation of INCENP and microtubule attachments to kinetochores, we found that AURKC_v1 was the most capable of the variants at supporting metaphase I chromosome segregation. AURKC_v3 localized to chromosomes properly and supported cell cycle progression to metaphase II, but its inability to correct erroneous microtubule attachments to kinetochores meant that chromosome segregation was not as accurate compared with the other two variants. Finally, when we expressed the three variants simultaneously, error correction was more robust than when they were expressed on their own. Therefore, oocytes express three variants of AURKC that are not functionally equivalent in supporting meiosis, but fully complement meiosis when expressed simultaneously. PMID:25995441

  10. Targeted Disruption of Nrg1 in Granulosa Cells Alters the Temporal Progression of Oocyte Maturation

    PubMed Central

    Kawashima, Ikko; Umehara, Takashi; Noma, Noritaka; Kawai, Tomoko; Shitanaka, Manami

    2014-01-01

    Neuregulin 1 (NRG1) is induced in granulosa cells by LH and acts on granulosa and cumulus cells during ovulation. In this study, we sought to determine the role of NRG1 in oocyte maturation by generating a granulosa cell–specific Nrg1 knockout mouse (Nrg1flox/flox;Cyp19a1Cre mice [gcNrg1KO]). In the gcNrg1KO mice, meiosis was induced 2 hours earlier than in control mice. More than 60% of the oocytes in the mutant mice spontaneously re-resumed meiosis beyond the MII stage. The percentage of successful fertilization was comparable in oocytes of both genotypes collected at 14 or 16 hours after human chorionic gonadotropin injection but was significantly lower in oocytes of the gcNrg1KO mice at 18 or 20 hours. The number of pups per litter was significantly decreased in gcNrg1KO mice. To determine the molecular events associated with the abnormal progression of meiosis in the gcNrg1KO mouse oocytes, the defects of cumulus/granulosa cell functions were analyzed. The expression of genes involved in luteinization and cumulus expansion was significantly higher at 2 hours after human chorionic gonadotropin injection in the gcNrg1KO mice; this was related to abnormal activation of protein kinase C (PKC) and phosphorylation of connexin-43 in cumulus cells. Changes in connexin-43 by PKC might lead to early meiotic resumption of oocytes in gcNrg1KO mice. We conclude that NRG1 is induced by LH in mural granulosa cells and exerts an important regulatory role in oocyte meiotic maturation and competence by reducing PKC activation in cumulus cells and preventing premature progression to the MII stage that leads to abnormal fertilization and fertility. PMID:24650175

  11. Fatty acid metabolism during maturation affects glucose uptake and is essential to oocyte competence.

    PubMed

    Paczkowski, M; Schoolcraft, W B; Krisher, R L

    2014-10-01

    Fatty acid β-oxidation (FAO) is essential for oocyte maturation in mice. The objective of this study was to determine the effect of etomoxir (a FAO inhibitor; 100 μM), carnitine (1 mM), and palmitic acid (1 or 100 μM) during maturation on metabolism and gene expression of the oocyte and cumulus cells, and subsequent embryo development in the mouse. Carnitine significantly increased embryo development, while there was a decrease in development following maturation with 100 μM palmitic acid or etomoxir (P<0.05) treatment. Glucose consumption per cumulus-oocyte complex (COC) was decreased after treatment with carnitine and increased following etomoxir treatment (P<0.05). Intracellular oocyte lipid content was decreased after carnitine or etomoxir exposure (P<0.05). Abundance of Slc2a1 (Glut1) was increased after etomoxir treatment in the oocyte and cumulus cells (P<0.05), suggesting stimulation of glucose transport and potentially the glycolytic pathway for energy production when FAO is inhibited. Abundance of carnitine palmitoyltransferase 2 (Cpt2) tended to increase in oocytes (P=0.1) after treatment with 100 μM palmitic acid and in cumulus cells after exposure to 1 μM palmitic acid (P=0.07). Combined with carnitine, 1 μM palmitic acid increased the abundance of Acsl3 (P<0.05) and Cpt2 tended to increase (P=0.07) in cumulus cells, suggesting FAO was increased during maturation in response to stimulators and fatty acids. In conclusion, fatty acid and glucose metabolism are related to the mouse COC, as inhibition of FAO increases glucose consumption. Stimulation of FAO decreases glucose consumption and lipid stores, positively affecting subsequent embryo development, while an overabundance of fatty acid or reduced FAO negatively affects oocyte quality.

  12. Comparison of blastocyst and Sage media for in vitro maturation of human immature oocytes.

    PubMed

    Pongsuthirak, Pallop; Songveeratham, Sorramon; Vutyavanich, Teraporn

    2015-03-01

    In vitro maturation (IVM) of human oocytes is an attractive alternative to conventional assisted reproductive technology (ART) treatment, as it involves no or minimal ovarian stimulation. Currently, commercialized media specifically designed for IVM are often used. These media are expensive, have limited shelf life, and must be ordered in advance. If standard culture media can be used in place of the specialized IVM media, it would simplify management and make IVM more feasible and more widely employed in ART centers around the world, especially in developing countries where resources are scarce. This study was, therefore, conducted to test the hypothesis that blastocyst medium was as good as commercial IVM medium to support maturation and developmental competence of human immature oocytes as previously shown in the mouse system. Immature oocytes were obtained by needle aspiration from 89 pregnant women during cesarean deliveries between April 2012 and February 2013. Sibling oocytes were allocated to Sage IVM media (512 oocytes) or blastocyst medium (520 oocytes) and assessed for maturation 36 hours later. Mature oocytes were inseminated by intracytoplasmic sperm injection and cultured up to 144 hours. There was no difference in maturation rate (65.0% vs 68.7%; P = .218) or fertilization rate (66.9% vs 66.4%; P = .872) of oocytes matured in vitro in both media. There was also no difference in the formation of good-quality blastocysts (46.6% vs 45.9%; P = .889) in the 2 groups. Further study should be done to ascertain implantation and pregnancy potential of these embryos.

  13. Production of Live Offspring from Vitrified-Warmed Oocytes Collected at Metaphase I Stage

    PubMed Central

    Xu, Jie; Cheng, An-Sheng; Chang, Chia-Chun; Nagy, Zsolt Peter; Yang, Cho-Chen; Ding, Shih-Torng; Sung, Li-Ying

    2016-01-01

    Vitrification of matured oocytes is widely adopted in human clinics and animal research laboratories. Cryopreservation of immature oocytes, particularly those at metaphase I (MI), remains a challenge. In the present work, mouse MI oocytes denuded of cumulus cells were vitrified and warmed (V/W) either prior to (V/W-BEFORE-IVM, n = 562) or after (V/W-AFTER-IVM, n = 664) in vitro maturation (IVM). Derivative metaphase II (MII) oocytes were then used for intracytoplasmic sperm injection (ICSI). In the control groups, in vivo matured MII oocytes were used freshly (FRESH-MII, n = 517) or after V/W (MII-V/W, n = 617). In vitro and in vivo developmental competencies were compared among groups. Satisfactory blastocyst rates were achieved in V/W-BEFORE-IVM (27.5%) and V/W-AFTER-IVM (32.4%) groups, albeit as expected still lower than those from fresh-MII (56.1%) or MII-V/W (45.6%) oocytes. Similarly, the term development rates from V/W-BEFORE-IVM and V/W-AFTER-IVM were 12.4% and 16.7% respectively, acceptable but lower than those of the fresh-MII (41.2%) and MII-V/W (23.3%) groups. These data demonstrate that oocytes collected at MI stage are amenable to V/W, which can be performed before or after IVM with acceptable development rates including production of healthy pups. These findings provide useful knowledge to researchers and clinical practitioners for preservation and use of the otherwise discarded MI oocytes. PMID:27333297

  14. DNase I and II present in avian oocytes: a possible involvement in sperm degradation at polyspermic fertilisation.

    PubMed

    Stepińska, Urszula; Olszańska, Bozenna

    2003-02-01

    During polyspermic fertilisation in birds numerous spermatozoa enter the eggs, in contrast to the situation in mammals where fertilisation is monospermic. However, in birds only one of the spermatozoa which have entered an egg participates in zygote nucleus formation, while the supernumerary spermatozoa degenerate at early embryogenesis. Our previous work has demonstrated the presence in preovulatory quail oocytes of DNase I and II activities able to digest naked lambdaDNA/HindIII substrate in vitro. In the present studies, the activities of both DNases in quail oocytes at different stages of oogenesis and in ovulated mouse oocytes were assayed in vitro using the same substrate. Degradation of quail spermatozoa by quail oocyte extracts was also checked. Digestion of the DNA substrate was evaluated by electrophoresis on agarose gels. The activities of DNase I and II in quail oocytes increased during oogenesis and were the highest in mature oocytes. The activities were present not only in germinal discs but also in a thin layer of cytoplasm adhering to the perivitelline layer surrounding the yolk. At all stages of oogenesis the activity of DNase II was much higher than that of DNase I. DNA contained in spermatozoa was also degraded by the quail oocyte extracts under conditions optimal for both DNases. In contrast to what is observed in quail oocytes, no DNase activities were detected in ovulated mouse eggs; this is logical as they would be useless or even harmful in monospermic fertilisation. The possible role of DNase activities in avian oocytes, in degradation of accessory spermatozoa during polyspermic fertilisation, is discussed.

  15. [Controversy in ART: should we cryopreserve oocytes or embryos? Do prefer oocytes].

    PubMed

    Boyer, P

    2014-09-01

    Since the beginning of IVF, cryopreservation concern spermatozoa or embryos due to the poor efficiency of oocyte freezing. To date, oocyte vitrification allows changing our practice privileging female gamete vitrification instead of human embryo freezing.

  16. Oocyte Activation and Fertilisation: Crucial Contributors from the Sperm and Oocyte.

    PubMed

    Yeste, Marc; Jones, Celine; Amdani, Siti Nornadhirah; Coward, Kevin

    2017-01-01

    This chapter intends to summarise the importance of sperm- and oocyte-derived factors in the processes of sperm-oocyte binding and oocyte activation. First, we describe the initial interaction between sperm and the zona pellucida, with particular regard to acrosome exocytosis. We then describe how sperm and oocyte membranes fuse, with special reference to the discovery of the sperm protein IZUMO1 and its interaction with the oocyte membrane receptor JUNO. We then focus specifically upon oocyte activation, the fundamental process by which the oocyte is alleviated from metaphase II arrest by a sperm-soluble factor. The identity of this sperm factor has been the source of much debate recently, although mounting evidence, from several different laboratories, provides strong support for phospholipase C ζ (PLCζ), a sperm-specific phospholipase. Herein, we discuss the evidence in support of PLCζ and evaluate the potential role of other candidate proteins, such as post-acrosomal WW-binding domain protein (PAWP/WBP2NL). Since the cascade of downstream events triggered by the sperm-borne oocyte activation factor heavily relies upon specialised cellular machinery within the oocyte, we also discuss the critical role of oocyte-borne factors, such as the inositol trisphosphate receptor (IP3R), protein kinase C (PKC), store-operated calcium entry (SOCE) and calcium/calmodulin-dependent protein kinase II (CaMKII), during the process of oocyte activation. In order to place the implications of these various factors and processes into a clinical context, we proceed to describe their potential association with oocyte activation failure and discuss how clinical techniques such as the in vitro maturation of oocytes may affect oocyte activation ability. Finally, we contemplate the role of artificial oocyte activating agents in the clinical rescue of oocyte activation deficiency and discuss options for more endogenous alternatives.

  17. Gene Expression of Dnmt1 Isoforms in Porcine Oocytes, Embryos, and Somatic Cells

    PubMed Central

    DeCourcy, Kristi; Ball, Suyapa F.; Hylan, Darin; Ayares, David L.

    2013-01-01

    Abstract In the mouse, the dynamics of genomic methylation and the initial events of gametic imprinting are controlled by the activity of an oocyte isoform of the DNA methyltransferase-1 (Dnmt1o) enzyme. The objectives of this study were to identify the alternative splicing variants of Dnmt1 in porcine oocytes and determine the gene expression pattern of the different Dnmt1 isoforms during embryo development. A rapid amplification of cDNA ends (RACE ) system was used to amplify the 5′ cDNA end of Dnmt1 isoforms in porcine oocytes. RNA levels of the Dnmt1 isoforms were analyzed in porcine oocytes and embryos. DNMT1 protein expression of oocytes and somatic cells were analyzed by western blot and immunostaining. Two new Dnmt1o RNA isoforms were identified—Dnmt1o1 and Dnmt1o2. The previously reported somatic Dnmt1 isoform (Dnmt1s) was expressed at low but constant levels in oocytes and embryos from the two-cell to the blastocyst stage. Abundant RNA levels of Dnmt1o1 and Dnmt1o2 were detected in oocytes and embryos from the two- to the eight- to 16-cell stage. Levels of these Dnmt1o transcripts were low at the morula and blastocyst stages. Although Dnmt1s was present in all the somatic cell types analyzed, Dnmt1o1 and Dnmt1o2 were not detected in any somatic tissues. As predicted by the RNA sequence and verified by western blot analysis, Dnmt1o1 and Dnmt1o2 RNAs translate one DNMT1o enzyme. Western blot analysis confirmed that both the oocyte and the somatic forms of DNMT1 protein are present in porcine oocytes and early embryos, whereas somatic cells produce only DNMT1s protein. DNMT1o is localized mainly in the nuclei of oocytes and early embryos, whereas DNMT1s is expressed in the ooplasm cortex of oocytes and cytoplasm of early embryos. PMID:23808878

  18. NMR observation of Tau in Xenopus oocytes

    NASA Astrophysics Data System (ADS)

    Bodart, Jean-François; Wieruszeski, Jean-Michel; Amniai, Laziza; Leroy, Arnaud; Landrieu, Isabelle; Rousseau-Lescuyer, Arlette; Vilain, Jean-Pierre; Lippens, Guy

    2008-06-01

    The observation by NMR spectroscopy of microinjected 15N-labelled proteins into Xenopus laevis oocytes might open the way to link structural and cellular biology. We show here that embedding the oocytes into a 20% Ficoll solution maintains their structural integrity over extended periods of time, allowing for the detection of nearly physiological protein concentrations. We use these novel conditions to study the neuronal Tau protein inside the oocytes. Spectral reproducibility and careful comparison of the spectra of Tau before and after cell homogenization is presented. When injecting Tau protein into immature oocytes, we show that both its microtubule association and different phosphorylation events can be detected.

  19. Fourier analysis of mitochondrial distribution in oocytes

    NASA Astrophysics Data System (ADS)

    Hollmann, Joseph L.; Brooks, Dana H.; Newmark, Judith A.; Warner, Carol M.; DiMarzio, Charles A.

    2011-03-01

    This paper describes a novel approach to quantifying mitochondrial patterns which are typically described using the qualitative terms "diffuse" "aggregated" and are potentially key indicators for an oocyte's health and survival potential post-implantation. An oocyte was isolated in a confocal image and a coarse grid was superimposed upon it. The spatial spectrum was calculated and an aggregation factor was generated. A classifier for healthy cells was developed and verified. The aggregation factor showed a clear distinction between the healthy and unhealthy oocytes. The ultimate goal is to screen oocytes for viability preimplantation, thus improving the outcome of in vitro fertilization (IVF) treatments.

  20. Charged conformal Killing spinors

    SciTech Connect

    Lischewski, Andree

    2015-01-15

    We study the twistor equation on pseudo-Riemannian Spin{sup c}-manifolds whose solutions we call charged conformal Killing spinors (CCKSs). We derive several integrability conditions for the existence of CCKS and study their relations to spinor bilinears. A construction principle for Lorentzian manifolds admitting CCKS with nontrivial charge starting from CR-geometry is presented. We obtain a partial classification result in the Lorentzian case under the additional assumption that the associated Dirac current is normal conformal and complete the classification of manifolds admitting CCKS in all dimensions and signatures ≤5 which has recently been initiated in the study of supersymmetric field theories on curved space.

  1. Medicalized killing in Auschwitz.

    PubMed

    Lifton, R J

    1982-11-01

    Since late 1977 I have been conducting a psychological study of medical behavior in Auschwitz, and of Nazi doctors in general. I have been especially interested in the relationship of doctors, SS doctors in particular, to the killing process--in the transformation from healer to killer. I am concerned with the importance of the medicalized pattern for the overall Nazi project of mass murder and have therefore tried to examine the interaction of biomedical ideology, political ideology, and individual behavior. Finally, the work raises questions of more general significance: for doctors and medicine elsewhere; for scientists, other professionals, and institutions of all kinds; for approaches to "triage" and control over life and death; and for our understanding of human nature and human values. After describing how I did the study, I will discuss what I call the Nazi "biomedical vision" and its relationship to the killing of mental patients as well as to Auschwitz. Next I will suggest features of the Auschwitz atmosphere, particularly in regard to the psychological factors, or mechanisms, that enabled the Nazi doctors to do what they did. Finally, I will turn very briefly to the more general problems raised by the study.

  2. Intersex (Testicular Oocytes) in smallmouth bass from the Potomac River and selected nearby drainages

    USGS Publications Warehouse

    Blazer, V.S.; Iwanowicz, L.R.; Iwanowicz, D.D.; Smith, D.R.; Young, J.A.; Hedrick, J.D.; Foster, S.W.; Reeser, S.J.

    2007-01-01

    Intersex, or the presence of characteristics of both sexes, in fishes that are normally gonochoristic has been used as an indicator of exposure to estrogenic compounds. In 2003, during health assessments conducted in response to kills and a high prevalence of skin lesions observed in smallmouth bass Micropterus dolomieu in the South Branch of the Potomac River, the presence of immature oocytes within testes was noted. To evaluate this condition, a severity index (0-4) was developed based on the distribution of oocytes within the testes. Using gonad samples collected from 2003 to 2005, the number of histologic sections needed to accurately detect the condition in mature smallmouth bass was statistically evaluated. The reliability of detection depended on the severity index and the number of sections examined. Examining five transverse sections taken along the length of the gonad resulted in a greater than 90% probability of detecting testicular oocytes when the severity index exceeded 0.5. Using the severity index we compared smallmouth bass collected at selected sites within the South Branch during three seasons in 2004. Seasonal differences in severity and prevalence were observed. The highest prevalence and severity were consistently noted during the prespawn-spawning season, when compared with the postspawn season. In 2005, smallmouth bass were collected at selected out-of-basin sites in West Virginia where fish kills and external skin lesions have not been reported, as well as at sites in the Shenandoah River, Virginia (part of the Potomac drainage), where kills and lesions occurred in 2004-2005. The prevalence of testicular oocytes is discussed in terms of human population and agricultural intensity. ?? Copyright by the American Fisheries Society 2007.

  3. Control of Oocyte Reawakening by Kit

    PubMed Central

    Castrillon, Diego H.

    2016-01-01

    In mammals, females are born with finite numbers of oocytes stockpiled as primordial follicles. Oocytes are “reawakened” via an ovarian-intrinsic process that initiates their growth. The forkhead transcription factor Foxo3 controls reawakening downstream of PI3K-AKT signaling. However, the identity of the presumptive upstream cell surface receptor controlling the PI3K-AKT-Foxo3 axis has been questioned. Here we show that the receptor tyrosine kinase Kit controls reawakening. Oocyte-specific expression of a novel constitutively-active KitD818V allele resulted in female sterility and ovarian failure due to global oocyte reawakening. To confirm this result, we engineered a novel loss-of-function allele, KitL. Kit inactivation within oocytes also led to premature ovarian failure, albeit via a contrasting phenotype. Despite normal initial complements of primordial follicles, oocytes remained dormant with arrested oocyte maturation. Foxo3 protein localization in the nucleus versus cytoplasm explained both mutant phenotypes. These genetic studies provide formal genetic proof that Kit controls oocyte reawakening, focusing future investigations into the causes of primary ovarian insufficiency and ovarian aging. PMID:27500836

  4. Mammalian oocyte development: checkpoints for competence.

    PubMed

    Fair, Trudee

    2010-01-01

    During the lifespan of the female, biochemical changes occur in the ovarian environment. These changes are brought about by numerous endogenous and exogenous factors, including husbandry practices, production demands and disease, and can have a profound effect on ovarian oocyte quality and subsequent embryo development. Despite many investigations, there is no consensus regarding the time or period of follicular oocyte development that is particularly sensitive to insult. Here, the key molecular and morphological events that occur during oocyte and follicle growth are reviewed, with a specific focus on identifying critical checkpoints in oocyte development. The secondary follicle stage appears to be a key phase in follicular oocyte development because major events such as activation of the oocyte transcriptome, sequestration of the zona pellucida, establishment of bidirectional communication between the granulosa cells and the oocyte and cortical granule synthesis occur during this period of development. Several months later, the periovulatory period is also characterised by the occurrence of critical events, including appropriate degradation or polyadenylation of mRNA transcripts, resumption of meiosis, spindle formation, chromosome alignment and segregation, and so should also be considered as a potential checkpoint of oocyte development.

  5. Apoptosis in mammalian oocytes: a review.

    PubMed

    Tiwari, Meenakshi; Prasad, Shilpa; Tripathi, Anima; Pandey, Ashutosh N; Ali, Irfan; Singh, Arvind K; Shrivastav, Tulsidas G; Chaube, Shail K

    2015-08-01

    Apoptosis causes elimination of more than 99% of germ cells from cohort of ovary through follicular atresia. Less than 1% of germ cells, which are culminated in oocytes further undergo apoptosis during last phases of oogenesis and depletes ovarian reserve in most of the mammalian species including human. There are several players that induce apoptosis directly or indirectly in oocytes at various stages of meiotic cell cycle. Premature removal of encircling granulosa cells from immature oocytes, reduced levels of adenosine 3',5'-cyclic monophosphate and guanosine 3',5'-cyclic monophosphate, increased levels of calcium (Ca(2+)) and oxidants, sustained reduced level of maturation promoting factor, depletion of survival factors, nutrients and cell cycle proteins, reduced meiotic competency, increased levels of proapoptotic as well as apoptotic factors lead to oocyte apoptosis. The BH3-only proteins also act as key regulators of apoptosis in oocyte within the ovary. Both intrinsic (mitochondria-mediated) as well as extrinsic (cell surface death receptor-mediated) pathways are involved in oocyte apoptosis. BID, a BH3-only protein act as a bridge between both apoptotic pathways and its cleavage activates cell death machinery of both the pathways inside the follicular microenvironment. Oocyte apoptosis leads to the depletion of ovarian reserve that directly affects reproductive outcome of various mammals including human. In this review article, we highlight some of the important players and describe the pathways involved during oocyte apoptosis in mammals.

  6. Identifying candidate oocyte reprogramming factors using cross-species global transcriptional analysis.

    PubMed

    Awe, Jason P; Byrne, James A

    2013-04-01

    There is mounting evidence to suggest that the epigenetic reprogramming capacity of the oocyte is superior to that of the current factor-based reprogramming approaches and that some factor-reprogrammed induced pluripotent stem cells (iPSCs) retain a degree of epigenetic memory that can influence differentiation capacity and may be linked to the observed expression of immunogenicity genes in iPSC derivatives. One hypothesis for this differential reprogramming capacity is the "chromatin loosening/enhanced reprogramming" concept, as previously described by John Gurdon and Ian Wilmut, as well as others, which postulates that the oocyte possesses factors that loosen the somatic cell chromatin structure, providing the epigenetic and transcriptional regulatory factors more ready access to repressed genes and thereby significantly increasing epigenetic reprogramming. However, to empirically test this hypothesis a list of candidate oocyte reprogramming factors (CORFs) must be ascertained that are significantly expressed in metaphase II oocytes. Previous studies have focused on intraspecies or cross-species transcriptional analysis of up to two different species of oocytes. In this study, we have identified eight CORFs (ARID2, ASF1A, ASF1B, DPPA3, ING3, MSL3, H1FOO, and KDM6B) based on unbiased global transcriptional analysis of oocytes from three different species (human, rhesus monkey, and mouse) that both demonstrate significant (p<0.05, FC>3) expression in oocytes of all three species and have well-established roles in loosening/opening up chromatin structure. We also identified an additional 15 CORFs that fit within our proposed "chromatin opening/fate transformative" (COFT) model. These CORFs may be able to augment Shinya Yamanaka's previously identified reprogramming factors (OCT4, SOX2, KLF4, and cMYC) and potentially facilitate the removal of epigenetic memory in iPSCs and/or reduce the expression of immunogenicity genes in iPSC derivatives, and may have

  7. Scrambled and fried: Cigarette smoke exposure causes antral follicle destruction and oocyte dysfunction through oxidative stress

    SciTech Connect

    Sobinoff, A.P.; Beckett, E.L.; Jarnicki, A.G.; Sutherland, J.M.; McCluskey, A.; Hansbro, P.M.; McLaughlin, E.A.

    2013-09-01

    Cigarette smoke is a reproductive hazard associated with pre-mature reproductive senescence and reduced clinical pregnancy rates in female smokers. Despite an increased awareness of the adverse effects of cigarette smoke exposure on systemic health, many women remain unaware of the adverse effects of cigarette smoke on female fertility. This issue is compounded by our limited understanding of the molecular mechanisms behind cigarette smoke induced infertility. In this study we used a direct nasal exposure mouse model of cigarette smoke-induced chronic obstructive pulmonary disease to characterise mechanisms of cigarette-smoke induced ovotoxicity. Cigarette smoke exposure caused increased levels of primordial follicle depletion, antral follicle oocyte apoptosis and oxidative stress in exposed ovaries, resulting in fewer follicles available for ovulation. Evidence of oxidative stress also persisted in ovulated oocytes which escaped destruction, with increased levels of mitochondrial ROS and lipid peroxidation resulting in reduced fertilisation potential. Microarray analysis of ovarian tissue correlated these insults with a complex mechanism of ovotoxicity involving genes associated with detoxification, inflammation, follicular activation, immune cell mediated apoptosis and membrane organisation. In particular, the phase I detoxifying enzyme cyp2e1 was found to be significantly up-regulated in developing oocytes; an enzyme known to cause molecular bioactivation resulting in oxidative stress. Our results provide a preliminary model of cigarette smoke induced sub-fertility through cyp2e1 bioactivation and oxidative stress, resulting in developing follicle depletion and oocyte dysfunction. - Highlights: • Cigarette smoke exposure targets developing follicle oocytes. • The antral follicle oocyte is a primary site of ovarian cigarette smoke metabolism. • Cyp2e1 is a major enzyme involved in ameliorating smoke-induced ovotoxicity. • Cigarette smoke causes oocyte

  8. Proteome of the Caenorhabditis elegans oocyte.

    PubMed

    Chik, John K; Schriemer, David C; Childs, Sarah J; McGhee, James D

    2011-05-06

    Oocytes were purified from the temperature-sensitive fertilization-defective fer-1(b232ts) mutant of the nematode Caenorhabditis elegans and used for comprehensive mass spectrometric analysis. Using stringent criteria, 1165 C. elegans proteins were identified; at lower stringency, an additional 288 proteins were identified. We validate the high degree of sample purity and evaluate several possible sources of bias in the proteomic data. We compare the classes of proteins identified in the current oocyte proteome with protein classes identified in our previously determined oocyte transcriptome. The oocyte proteome appears enriched in proteins likely to be needed immediately upon fertilization, whereas the transcriptome appears enriched in molecules and processes needed later in embryogenesis. The current study provides fundamental background information for future more detailed studies of oocyte biology.

  9. Growth and fertilization of porcine fetal oocytes grafted under the renal capsules of nude mice.

    PubMed

    Kaneko, Hiroyuki; Kikuchi, Kazuhiro; Noguchi, Junko

    2016-10-15

    The fetal ovary contains a larger pool of oocytes than the adult ovary, but utilization of the fetal oocytes of large animals has hardly been examined. In this study, we investigated the developmental competence of oocytes grown in host mice harboring ovarian grafts obtained from fetal pigs. Ovarian fragments from fetuses at 55, 70, and 90 days postartificial insemination (dpi) were grafted into ovariectomized nude mice (Crlj:CD1-Foxn1(nu); 55-, 70- and 90-dpi groups, respectively). For comparison, ovarian fragments from 20-day postpartum (dpp) piglets were also grafted (20-dpp group). About 60 days after detection of vaginal opening, the mice were given 62.5 U/mL porcine FSH for 13 days by infusion to enhance their follicular development. In the fetal ovaries before grafting, the percentage of germ cells in primordial follicles (termed primordial oocytes) relative to the total number of germ cells was 0.06% at 55 dpi, 2.4% at 70 dpi, and 7.2% at 90 dpi, but the majority was contained within egg nests. At 20 dpp, primordial oocytes accounted for 91.7% of the total number of germ cells and the rest were mostly in primary follicles. After FSH stimulation of host mice, formation of antral follicles was promoted in the grafts of the 70- and 90-dpi groups as well as the 20-dpp group, but a very small number of antral follicles developed in the 55-dpi group consistent with the lowest (P < 0.05) levels of circulating inhibin in that group. The mean number of full-sized oocytes with meiotic competence recovered per mouse was 6.0 in the 70-dpi, 18.0 in the 90-dpi, and 21.2 in the 20-dpp groups, whereas virtually no oocytes were recovered from mice in the 55-dpi group. Moreover, the mature oocytes in the 70- and 90-dpi groups were fertilized in vitro, as shown by formation of male and female pronuclei, but the percentage of oocytes penetrated by sperm was low in the 70- (49%) and 90-dpi (29%) groups as compared with the 20-dpp group (88%). These results clearly

  10. Latrunculin A depolarizes starfish oocytes.

    PubMed

    Moccia, F

    2007-12-01

    Depolymerization of the actin cytoskeleton may liberate Ca2+ from InsP3-sensitive stores in some cell types, including starfish oocytes, while inhibiting Ca2+ influx in others. However, no information is available on the modulation of membrane potential (V(m)) by actin. The present study was aimed to ascertain whether the widely employed actin depolymerizing drug, latrunculin A (Lat A), affects V(m) in mature oocytes of the starfish Astropecten aranciacus. Lat A induced a membrane depolarization which was mimicked by cytochalasin D, another popular actin disruptor, and prevented by jasplakinolide, a stabilizer of the actin network. Lat A-elicited depolarization consisted in a positive shift in V(m) which reached the threshold of activation of voltage-gated Ca2+ channels (VGCC), thus triggering an action potential. Lat A-promoted depolarization lacked the action potential in Ca2+-free sea water, while it was abolished upon removal of external Na+. Moreover, membrane depolarization was prevented by pre-injection of BAPTA and heparin, but not ryanodine. These data indicate that Lat A induces a membrane depolarization by releasing Ca2+ from InsP3Rs. The Ca2+ signal in turn activates a Ca2+-dependent Na+ entry, which causes the positive shift in V(m) and stimulates the VGCC.

  11. Simple Perfusion Apparatus (SPA) for Manipulation, Tracking and Study of Oocytes and Embryos

    PubMed Central

    Angione, Stephanie L.; Oulhen, Nathalie; Brayboy, Lynae M.; Tripathi, Anubhav; Wessel, Gary M.

    2016-01-01

    Objective To develop and implement a device and protocol for oocyte analysis at a single cell level. The device must be capable of high resolution imaging, temperature control, perfusion of media, drugs, sperm, and immunolabeling reagents all at defined flow-rates. Each oocyte and resultant embryo must remain spatially separated and defined. Design Experimental laboratory study Setting University and Academic Center for reproductive medicine. Patients/Animals Women with eggs retrieved for ICSI cycles, adult female FVBN and B6C3F1 mouse strains, sea stars. Intervention Real-time, longitudinal imaging of oocytes following fluorescent labeling, insemination, and viability tests. Main outcome measure(s) Cell and embryo viability, immunolabeling efficiency, live cell endocytosis quantitation, precise metrics of fertilization and embryonic development. Results Single oocytes were longitudinally imaged following significant changes in media, markers, endocytosis quantitation, and development, all with supreme control by microfluidics. Cells remained viable, enclosed, and separate for precision measurements, repeatability, and imaging. Conclusions We engineered a simple device to load, visualize, experiment, and effectively record individual oocytes and embryos, without loss of cells. Prolonged incubation capabilities provide longitudinal studies without need for transfer and potential loss of cells. This simple perfusion apparatus (SPA) provides for careful, precise, and flexible handling of precious samples facilitating clinical in vitro fertilization approaches. PMID:25450296

  12. Does smoking really kill anybody?

    PubMed

    Eysenck, H J

    1995-12-01

    Statements that so many people are killed by smoking use the term "kill" in a very unusual manner which is easily misunderstood by people not expert in epidemiology. In addition, the usual calculations leave out of account the fact that smoking interacts synergistically with other risk factors, so that it is a combination of risk factors rather than any specific one that is likely to have a causal influence on mortality. Strictly speaking it is quite inappropriate to state that smoking kills anybody, if we use the term "kill" in a meaningful fashion.

  13. Kill operation requires thorough analysis

    SciTech Connect

    Abel, L.W.

    1995-05-15

    Full control of a blowout well requires a properly designed post-capping kill operation because failures in regaining well control usually occur during the kill operation, not during capping. Capping (the installation of pressure control or diverter equipment on the wellhead) is generally very reliable in gaining control of a blowout well. The following techniques are some of the viable means of killing blowout wells once the capping assemblies are in place: direct shut in of the flow; bullheading; momentum kill; volumetric control for migration of fluids or lubrication after migration ceases; and dynamic kills (friction-based dynamic kills or mass flow rate kills) The objective of most post-capping operations is to stop the flow and put the well under hydrostatic control. The means of killing a blowout once capping assemblies are in place should be chosen with care to avoid problems such as cratering, equipment failure, and underground blowouts. The particular circumstances and well integrity will dictate which kill method will be the most viable. Each of these five methods are explained.

  14. H3 Thr3 phosphorylation is crucial for meiotic resumption and anaphase onset in oocyte meiosis.

    PubMed

    Wang, Qian; Wei, Haojie; Du, Juan; Cao, Yan; Zhang, Nana; Liu, Xiaoyun; Liu, Xiaoyu; Chen, Dandan; Ma, Wei

    2016-01-01

    Haspin-catalyzed histone H3 threonine 3 (Thr3) phosphorylation facilitates chromosomal passenger complex (CPC) docking at centromeres, regulating indirectly chromosome behavior during somatic mitosis. It is not fully known about the expression and function of H3 with phosphorylated Thr3 (H3T3-P) during meiosis in oocytes. In this study, we investigated the expression and sub-cellular distribution of H3T3-P, as well as its function in mouse oocytes during meiotic division. Western blot analysis revealed that H3T3-P expression was only detected after germinal vesicle breakdown (GVBD), and gradually increased to peak level at metaphase I (MI), but sharply decreased at metaphase II (MII). Immunofluorescence showed H3T3-P was only brightly labeled on chromosomes after GVBD, with relatively high concentration across the whole chromosome axis from pro-metaphase I (pro-MI) to MI. Specially, H3T3-P distribution was exclusively limited to the local space between sister centromeres at MII stage. Haspin inhibitor, 5-iodotubercidin (5-ITu), dose- and time-dependently blocked H3T3-P expression in mouse oocytes. H3T3-P inhibition delayed the resumption of meiosis (GVBD) and chromatin condensation. Moreover, the loss of H3T3-P speeded up the meiotic transition to MII of pro-MI oocytes in spite of the presence of non-aligned chromosomes, even reversed MI-arrest induced with Nocodazole. The inhibition of H3T3-P expression distinguishably damaged MAD1 recruitment on centromeres, which indicates the spindle assembly checkpoint was impaired in function, logically explaining the premature onset of anaphase I. Therefore, Haspin-catalyzed histone H3 phosphorylation is essential for chromatin condensation and the following timely transition from meiosis I to meiosis II in mouse oocytes during meiotic division.

  15. Effect of ovary storage and oocyte transport method on maturation rate of horse oocytes.

    PubMed

    Love, Linda B; Choi, Young Ho; Love, Charles C; Varner, Dickson D; Hinrichs, Katrin

    2003-02-01

    Two experiments were conducted to determine the effects of storage on equine ovaries or isolated oocytes. Ovaries were collected at an abattoir and were maintained at room temperature during collection and transport (3-9h total). After arrival at the laboratory, ovaries were divided into three groups: immediate oocyte collection (control), storage at room temperature overnight (15-18 h) before oocyte collection, or storage at 4 degrees C overnight before oocyte collection. Collected oocytes were cultured in maturation medium for 24h. There was a significant increase in the proportion of oocytes classified as having compact cumuli in the two storage groups when compared with the controls. For oocytes originally having expanded cumuli, the rate of maturation to MII was significantly higher in the control group (72%) than in either storage group, and the maturation rate for oocytes from ovaries stored at room temperature (27%) was significantly higher than that for ovaries stored at 4 degrees C (10%). A similar trend was seen for oocytes originally having compact cumuli (24, 11, and 3% in MI-II for control, room temperature, and cold groups, respectively). In Experiment 2, we evaluated the effect of different packaging systems on the maturation of horse oocytes within a portable incubator. Use of 1 ml of equilibrated maturation medium in a 1 ml glass vial was associated with maturation equivalent to that for standard incubation.

  16. Diffused Intra-Oocyte Hydrogen Peroxide Activates Myeloperoxidase and Deteriorates Oocyte Quality.

    PubMed

    Khan, Sana N; Shaeib, Faten; Najafi, Tohid; Kavdia, Mahendra; Gonik, Bernard; Saed, Ghassan M; Goud, Pravin T; Abu-Soud, Husam M

    2015-01-01

    Hydrogen peroxide (H2O2) is a relatively long-lived signaling molecule that plays an essential role in oocyte maturation, implantation, as well as early embryonic development. Exposure to relatively high levels of H2O2 functions efficiently to accelerate oocyte aging and deteriorate oocyte quality. However, little precise information exists regarding intra-oocyte H2O2 concentrations, and its diffusion to the oocyte milieu. In this work, we utilized an L-shaped amperometric integrated H2O2-selective probe to directly and quantitatively measure the real-time intra-oocyte H2O2 concentration. This investigation provides an exact measurement of H2O2 in situ by reducing the possible loss of H2O2 caused by diffusion or reactivity with other biological systems. This experiment suggests that the intra-oocyte H2O2 levels of oocytes obtained from young animals are reasonably high and remained constant during the procedure measurements. However, the intra-oocyte H2O2 concentration dropped significantly (40-50% reduction) in response to catalase pre-incubation, suggesting that the measurements are truly H2O2 based. To further confirm the extracellular diffusion of H2O2, oocytes were incubated with myeloperoxidase (MPO), and the diffused H2O2 triggered MPO chlorinating activity. Our results show that the generated hypochlorous acid (HOCl) facilitated the deterioration in oocyte quality, a process that could be prevented by pre-incubating the oocytes with melatonin, which was experimentally proven to be oxidized utilizing HPLC methods. This study is the first to demonstrate direct quantitative measurement of intracellular H2O2, and its extracellular diffusion and activation of MPO as well as its impact on oocyte quality. These results may help in designing more accurate treatment plans in assisted reproduction under inflammatory conditions.

  17. Diffused Intra-Oocyte Hydrogen Peroxide Activates Myeloperoxidase and Deteriorates Oocyte Quality

    PubMed Central

    Khan, Sana N.; Shaeib, Faten; Najafi, Tohid; Kavdia, Mahendra; Gonik, Bernard; Saed, Ghassan M.; Goud, Pravin T.; Abu-Soud, Husam M.

    2015-01-01

    Hydrogen peroxide (H2O2) is a relatively long-lived signaling molecule that plays an essential role in oocyte maturation, implantation, as well as early embryonic development. Exposure to relatively high levels of H2O2 functions efficiently to accelerate oocyte aging and deteriorate oocyte quality. However, little precise information exists regarding intra-oocyte H2O2 concentrations, and its diffusion to the oocyte milieu. In this work, we utilized an L-shaped amperometric integrated H2O2-selective probe to directly and quantitatively measure the real-time intra-oocyte H2O2 concentration. This investigation provides an exact measurement of H2O2 in situ by reducing the possible loss of H2O2 caused by diffusion or reactivity with other biological systems. This experiment suggests that the intra-oocyte H2O2 levels of oocytes obtained from young animals are reasonably high and remained constant during the procedure measurements. However, the intra-oocyte H2O2 concentration dropped significantly (40-50% reduction) in response to catalase pre-incubation, suggesting that the measurements are truly H2O2 based. To further confirm the extracellular diffusion of H2O2, oocytes were incubated with myeloperoxidase (MPO), and the diffused H2O2 triggered MPO chlorinating activity. Our results show that the generated hypochlorous acid (HOCl) facilitated the deterioration in oocyte quality, a process that could be prevented by pre-incubating the oocytes with melatonin, which was experimentally proven to be oxidized utilizing HPLC methods. This study is the first to demonstrate direct quantitative measurement of intracellular H2O2, and its extracellular diffusion and activation of MPO as well as its impact on oocyte quality. These results may help in designing more accurate treatment plans in assisted reproduction under inflammatory conditions. PMID:26197395

  18. Asymptotic symmetries on Killing horizons

    NASA Astrophysics Data System (ADS)

    Koga, Jun-Ichirou

    2001-12-01

    We investigate asymptotic symmetries regularly defined on spherically symmetric Killing horizons in Einstein theory with or without the cosmological constant. These asymptotic symmetries are described by asymptotic Killing vectors, along which the Lie derivatives of perturbed metrics vanish on a Killing horizon. We derive the general form of the asymptotic Killing vectors and find that the group of asymptotic symmetries consists of rigid O(3) rotations of a horizon two-sphere and supertranslations along the null direction on the horizon, which depend arbitrarily on the null coordinate as well as the angular coordinates. By introducing the notion of asymptotic Killing horizons, we also show that local properties of Killing horizons are preserved not only under diffeomorphisms but also under nontrivial transformations generated by the asymptotic symmetry group. Although the asymptotic symmetry group contains the Diff(S1) subgroup, which results from supertranslations dependent only on the null coordinate, it is shown that the Poisson brackets algebra of the conserved charges conjugate to asymptotic Killing vectors does not acquire nontrivial central charges. Finally, by considering extended symmetries, we discuss the fact that unnatural reduction of the symmetry group is necessary in order to obtain the Virasoro algebra with nontrivial central charges, which is not justified when we respect the spherical symmetry of Killing horizons.

  19. Dopamine transporter: expression in Xenopus oocytes.

    PubMed

    Uhl, G R; O'Hara, B; Shimada, S; Zaczek, R; DiGiorgianni, J; Nishimori, T

    1991-01-01

    Xenopus oocytes can express biologically relevant transport activity after injection of mRNAs encoding several carrier molecules. mRNA from PC12 cells, as well as transcripts from a rat ventral midbrain library, can be expressed in these oocytes and allow them to display pharmacologically specific dopamine uptake. mRNA-injected oocytes incubated with tritiated dopamine contain tritiated dopamine and metabolites; lower amounts of radiolabeled dopamine and more radiolabeled metabolites are found in oocytes co-incubated with cocaine or in water-injected oocytes. Tritiated dopamine uptake into mRNA-injected oocytes is time, sodium, and temperature dependent. It is blocked by cocaine and mazindol, but not by haloperidol. It is not found after injection of mRNA from other brain regions. A size-selected rat midbrain library constructed in the plasma vector pCDM8 yields mRNA transcripts whose injection into oocytes causes cocaine-blockable [3H]dopamine uptake. These findings provide an assay for purification of the dopamine transporter cDNA by sib selection techniques.

  20. How electroshock weapons kill!

    NASA Astrophysics Data System (ADS)

    Lundquist, Marjorie

    2010-03-01

    Growing numbers of law enforcement officers now carry an electroshock weapon (ESW). Over 500 U.S. deaths have followed ESW use in the past 26 years; over 450 of these deaths followed use of an electromuscular disruptor in the past 9 years. Most training courses teach that ESWs are safe; that they can kill only by the direct effect of electric current on the heart; and that a death following use of an ESW always has some other cause. All these teachings are false! The last was disproved by Lundquist.^1 Williams^2 ruled out direct electrical effects as a cause of almost all the 213 deaths he studied, leaving disruption of normal physiological processes as the only alternative explanation. Careful study of all such deaths identifies 4 different ways that death has or could have been brought about by the ESW: kidney failure following rhabdomyolysis [rare]; cardiac arrest from hyperkalemia following rhabdomyolysis [undocumented]; lactic acid-induced ventricular fibrillation [conclusive proof impossible]; and [most common] anoxia from so much lactic acid in the circulating blood that it acts as an oxygen scavenger, continuously depleting the blood of oxygen until most of the lactate has been metabolized. ^1M. Lundquist, BAPS 54(1) K1.270(2009). ^2Howard E. Williams, Taser Electronic Control Devices and Sudden In-Custody Death, 2008.

  1. How honey kills bacteria.

    PubMed

    Kwakman, Paulus H S; te Velde, Anje A; de Boer, Leonie; Speijer, Dave; Vandenbroucke-Grauls, Christina M J E; Zaat, Sebastian A J

    2010-07-01

    With the rise in prevalence of antibiotic-resistant bacteria, honey is increasingly valued for its antibacterial activity. To characterize all bactericidal factors in a medical-grade honey, we used a novel approach of successive neutralization of individual honey bactericidal factors. All bacteria tested, including Bacillus subtilis, methicillin-resistant Staphylococcus aureus, extended-spectrum beta-lactamase producing Escherichia coli, ciprofloxacin-resistant Pseudomonas aeruginosa, and vancomycin-resistant Enterococcus faecium, were killed by 10-20% (v/v) honey, whereas > or = 40% (v/v) of a honey-equivalent sugar solution was required for similar activity. Honey accumulated up to 5.62 +/- 0.54 mM H(2)O(2) and contained 0.25 +/- 0.01 mM methylglyoxal (MGO). After enzymatic neutralization of these two compounds, honey retained substantial activity. Using B. subtilis for activity-guided isolation of the additional antimicrobial factors, we discovered bee defensin-1 in honey. After combined neutralization of H(2)O(2), MGO, and bee defensin-1, 20% honey had only minimal activity left, and subsequent adjustment of the pH of this honey from 3.3 to 7.0 reduced the activity to that of sugar alone. Activity against all other bacteria tested depended on sugar, H(2)O(2), MGO, and bee defensin-1. Thus, we fully characterized the antibacterial activity of medical-grade honey.

  2. Anti-bacterial and anti-toxic immunity induced by a killed whole-cell-cholera toxin B subunit cholera vaccine is essential for protection against lethal bacterial infection in mouse pulmonary cholera model.

    PubMed

    Kang, S-S; Yang, J S; Kim, K W; Yun, C-H; Holmgren, J; Czerkinsky, C; Han, S H

    2013-07-01

    The lack of appropriate animal model for studying protective immunity has limited vaccine development against cholera. Here, we demonstrate a pulmonary cholera model conferred by intranasal administration of mice with live Vibrio cholerae. The bacterial components, but not cholera toxin, caused lethal and acute pneumonia by inducing massive inflammation. Intranasal immunization with Dukoral, comprising killed whole bacteria and recombinant cholera toxin B subunit (rCTB), developed both mucosal and systemic antibody responses with protection against the lethal challenge. Either rCTB-free Dukoral or rCTB alone partially protected the mice against the challenge. However, reconstitution of rCTB-free Dukoral with rCTB restored full protection. Parenteral immunization with Dukoral evoked strong systemic immunity without induction of mucosal immunity or protection from the challenge. These results suggest that both anti-bacterial and anti-toxic immunity are required for protection against V. cholerae-induced pneumonia, and this animal model is useful for pre-clinical evaluation of candidate cholera vaccines.

  3. Alteration of radioprotective effects of heat-killed Lactobacillus casei in X-irradiated C3H/He mouse related to blood level of proinflammatory cytokines by corticoids.

    PubMed

    Tanaka, Izumi; Tanaka, Mika; Satoh, Akiko; Kurematsu, Ayako; Ishiwata, Akiko; Suzuki, Keiko; Ishihara, Hiroshi

    2010-01-01

    It is well known that a pre-administration of proinflammatory cytokines alters hematopoietic progenitor cells to promote an increase resistance against radiation and increases the survival rate in mice irradiated with lethal doses of radiation. Inflammation stimulators, such as some bacterial constituents, are also reported to have similar radioprotective action. We found that pre-administration of heat-killed Lactobacillus casei (HLC) to mice increases the level of interleukin (IL)-1 beta in circulation as well as the survival rate following lethal dose of radiation. Since HLC stimulates early immune responses, effects by drugs to modify inflammation were studied. The increase of both blood IL-1 beta levels and survival rates by HLC were simultaneously accelerated by coadministration of mineralocorticoid and inhibited by glucocorticoids or corticotropin. Neither parameter was modified by non-steroidal anti-inflammatory or anti-rheumatoid drugs. This suggests that both expected radioprotective action and unexpected systemic action, realized as an increase in plasma cytokines, by inflammation-related radioprotectors can be controlled by the coadministration of drugs at least in C3H/He mice, based on consideration of their pharmacological properties.

  4. A monoclonal antibody that specifically reacts with human embryonal carcinomas, spermatogonia and oocytes is able to induce human EC cell death.

    PubMed

    Nakano, T; Umezawa, A; Abe, H; Suzuki, N; Yamada, T; Nozawa, S; Hata, J

    1995-02-01

    We developed a mouse monoclonal antibody, 6E2 (IgG3), against a human embryonal carcinoma (EC) cell line, NCR-G3, that possesses totipotent differentiation capabilities. Culturing human EC cells in the presence of 6E2 causes their death. It has been shown that 6E2 kills EC cells dose dependently. In immunohistochemical examination with normal human germ cells, 6E2 reacted specifically with spermatogonia and oocytes. Among human germ cell tumor tissues on aceton-fixed frozen sections, 6E2 reacted with embryonal carcinomas, seminomas and dysgerminomas, but it did not react with choriocarcinomas or with yolk sac tumors. Consistently, in flow cytometric analysis of cultured human germ cell tumor cell lines, 6E2 reacted exclusively with EC cells including NCR-G3 cells. It was revealed, by preserving its antigenicity after treatment with periodic acid and tunicamycin and by radiolabeling cells followed by immunoprecipitation, that the molecule defined by 6E2 is a cell surface protein having a molecular weight of approximately 80 kDa. These data illustrate that the molecule defined by 6E2 links human germ cell tumors, especially embryonal carcinoma, seminoma and dysgerminoma, to their normal counterparts and that it may play a role in survival and proliferation of human EC cells.

  5. Is the time interval between HCG administration and oocyte retrieval associated with oocyte retrieval rate?

    PubMed

    Bosdou, Julia K; Kolibianakis, Efstratios M; Venetis, Christos A; Zepiridis, Leonidas; Chatzimeletiou, Katerina; Makedos, Anastasios; Triantafyllidis, Stylianos; Masouridou, Sevasti; Mitsoli, Anna; Tarlatzis, Basil

    2015-11-01

    The aim of this study was to evaluate whether prolongation of the time interval between HCG administration and oocyte retrieval, from 36 h to 38 h, affects oocyte retrieval rate in women undergoing ovarian stimulation with gonadotrophins and GnRH antagonists for IVF. One hundred and fifty-six normo-ovulatory women were randomized to have oocyte retrieval performed 36 h (n = 78) or 38 h (n = 78) following HCG administration. Oocyte retrieval rate was defined as number of cumulus-oocyte-complex (COC) retrieved/follicle ≥ 11 mm present on day of HCG administration. No significant differences were observed between the groups regarding baseline characteristics. Moreover, no significant difference was observed between the groups regarding oocyte retrieval rate (difference: + 1.2%, 95% CI for difference between medians: -4.5 to +12.1). The median (95% CI for the median) was not significantly different between the groups regarding number of cumulus-oocyte-complexes (COCs) retrieved: 5.5 (5.0-7.0) versus 6.0 (5.0-6.2), respectively, and fertilization rates: 57.7% (50.0-66.7) versus 50.0% (44.8-65.5), respectively. Live birth rates were similar between the groups (20.5% versus 16.7%, RD: + 3.8%, 95% CI: -8.5 to +16.1, respectively). Prolongation of time interval between HCG administration and oocyte retrieval from 36 h to 38 h does not affect oocyte retrieval rate.

  6. Oocyte shuttle, a recombinant protein transporting donor DNA into the Xenopus oocyte in situ.

    PubMed

    Rungger, Duri; Muster, Lisbeth; Georgiev, Oleg; Rungger-Brändle, Elisabeth

    2017-02-15

    The newly developed oocyte shuttle protein contains a streptavidin moiety that tightly binds biotinylated DNA. Injected intravenously into adult Xenopus females, the protein-DNA complex is rapidly transported through the bloodstream and, within the ovary, the vitellogenin ligand present in the protein binds to the receptors at the surface of the oocytes. The bound complex is internalized and translocates into the oocyte nucleus thanks to an SV40 nuclear localization signal, enhanced by an adjacent casein kinase phosphorylation site. Functioning of the shuttle protein is documented by transporting DNA molecules that, upon intramolecular homologous recombination within the oocyte nucleus, express easily traceable markers such as green fluorescence or tetracycline resistance.

  7. Aquaporin7 plays a crucial role in tolerance to hyperosmotic stress and in the survival of oocytes during cryopreservation.

    PubMed

    Tan, Ya-Jing; Zhang, Xue-Ying; Ding, Guo-Lian; Li, Rong; Wang, Li; Jin, Li; Lin, Xian-Hua; Gao, Ling; Sheng, Jian-Zhong; Huang, He-Feng

    2015-12-04

    Hyperosmotic stress may induce apoptosis of different cells. However, oocytes show tolerance to osmotic stress during cryopreservation by vitrification, which is an assisted reproductive technique. The underlying mechanism is still not understood. Here, we demonstrated that hyperosmosis produced by high concentrations of cryoprotectants, including DMSO, ethylene glycol and sucrose, significantly upregulated the protein levels of aquaporin (AQP) 7, but not AQP3 and AQP9, in mouse oocytes. Knockdown of AQP7 expression by siRNA-injection significantly reduced the survival of oocytes after vitrification. In oocytes, AQP7 was shown to bind with F-actin, a protein involved in almost all biological events. Moreover, we found that hyperosmosis could upregulate the phosphorylation levels of CPE-binding protein (CPEB) and Aurora A. Inhibition of the PI3K and PKC pathways blocked the hyperosmosis-induced upregulation of AQP7 and the phosphorylation of CPEB and Aurora A in oocytes. In conclusion, hyperosmosis could upregulate the expression of AQP7 via Aurora A/CPEB phosphorylation mediated by the PI3K and PKC pathways, and upregulation of AQP7 plays an important role in improving of tolerance to hyperosmotic stress and survival of oocytes during cryopreservation by vitrification.

  8. Detection of DNA damage in oocytes of small ovarian follicles following phosphoramide mustard exposures of cultured rodent ovaries in vitro

    SciTech Connect

    Petrillo, Stephanie K.; Desmeules, Patrice; Truong, To-Quyen; Devine, Patrick J.

    2011-06-01

    Healthy oocytes are critical for producing healthy children, but little is known about whether or not oocytes have the capacity to identify and recover from injury. Using a model ovotoxic alkylating drug, cyclophosphamide (CPA), and its active metabolite, phosphoramide mustard (PM), we previously showed that PM ({>=} 3 {mu}M) caused significant follicle loss in postnatal day 4 (PND4) mouse ovaries in vitro. We now investigate whether PM induces DNA damage in oocytes, examining histone H2AX phosphorylation ({gamma}H2AX), a marker of DNA double-strand breaks (DSBs). Exposure of cultured PND4 mouse ovaries to 3 and 0.1 {mu}M PM induced significant losses of primordial and small primary follicles, respectively. PM-induced {gamma}H2AX was observed predominantly in oocytes, in which foci of {gamma}H2AX staining increased in a concentration-dependent manner and peaked 18-24 h after exposure to 3-10 {mu}M PM. Numbers of oocytes with {>=} 5 {gamma}H2AX foci were significantly increased both 1 and 8 days after exposure to {>=} 1 {mu}M PM compared to controls. Inhibiting the kinases that phosphorylate H2AX significantly increased follicle loss relative to PM alone. In adult mice, CPA also induced follicle loss in vivo. PM also significantly decreased primordial follicle numbers ({>=} 30 {mu}M) and increased {gamma}H2AX foci ({>=} 3 {mu}M) in cultured PND4 Sprague-Dawley rat ovaries. Results suggest oocytes can detect PM-induced damage at or below concentrations which cause significant follicle loss, and there are quantitative species-specific differences in sensitivity. Surviving oocytes with DNA damage may represent an increased risk for fertility problems or unhealthy offspring.

  9. Biomolecule screening for efficient attachment of biofunctionalized microparticles to the zona pellucida of mammalian oocytes and embryos.

    PubMed

    Novo, Sergio; Ibáñez, Elena; Barrios, Leonardo; Castell, Onofre; Nogués, Carme

    2013-10-01

    Individual tagging of oocytes and embryos through the attachment of micrometer-sized polysilicon barcodes to their zona pellucida (ZP) is a promising approach to ensure their correct identification and traceability in human assisted reproduction and in animal production programs. To provide barcodes with the capacity of binding to the ZP, they must be first biofunctionalized with a biomolecule capable of binding to the ZP of both oocytes and embryos. The aim of this work was to select, among an anti-ZP2 antibody and the two lectins wheat germ agglutinin (WGA) and phytohemagglutinin-L, the most optimal biomolecule for the eventual biofunctionalization of barcodes, using mouse oocytes and embryos and commercially available microspheres as a model. Despite the anti-ZP2 antibody showed the highest number of binding sites onto the ZP surface, as determined by field emission scanning electron microscopy, the binding of anti-ZP2-biofunctionalized microspheres to the ZP of cultured oocytes and embryos was less robust and less stable than the binding of lectin-biofunctionalized ones. WGA proved to be, among the three candidates tested, the most appropriate biomolecule to biofunctionalize microparticles with the aim to attach them to the ZP of both oocytes and embryos and to maintain them attached through oocyte activation (zona reaction) and in vitro culture up to the blastocyst stage. As saccharides recognized by WGA are highly abundant in the ZP of most mammalian species, WGA-biofuncionalized microparticles would be able to attach to the ZP of oocytes/embryos of species other than the mouse, such as humans and farm animals.

  10. Activin Decoy Receptor ActRIIB:Fc Lowers FSH and Therapeutically Restores Oocyte Yield, Prevents Oocyte Chromosome Misalignments and Spindle Aberrations, and Increases Fertility in Midlife Female SAMP8 Mice

    PubMed Central

    Mackenzie, Amelia C. L.; Lee, Se-Jin; Chaffin, Charles L.; Merchenthaler, István

    2016-01-01

    Women of advanced maternal age (AMA) (age ≥ 35) have increased rates of infertility, miscarriages, and trisomic pregnancies. Collectively these conditions are called “egg infertility.” A root cause of egg infertility is increased rates of oocyte aneuploidy with age. AMA women often have elevated endogenous FSH. Female senescence-accelerated mouse-prone-8 (SAMP8) has increased rates of oocyte spindle aberrations, diminished fertility, and rising endogenous FSH with age. We hypothesize that elevated FSH during the oocyte's FSH-responsive growth period is a cause of abnormalities in the meiotic spindle. We report that eggs from SAMP8 mice treated with equine chorionic gonadotropin (eCG) for the period of oocyte growth have increased chromosome and spindle misalignments. Activin is a molecule that raises FSH, and ActRIIB:Fc is an activin decoy receptor that binds and sequesters activin. We report that ActRIIB:Fc treatment of midlife SAMP8 mice for the duration of oocyte growth lowers FSH, prevents egg chromosome and spindle misalignments, and increases litter sizes. AMA patients can also have poor responsiveness to FSH stimulation. We report that although eCG lowers yields of viable oocytes, ActRIIB:Fc increases yields of viable oocytes. ActRIIB:Fc and eCG cotreatment markedly reduces yields of viable oocytes. These data are consistent with the hypothesis that elevated FSH contributes to egg aneuploidy, declining fertility, and poor ovarian response and that ActRIIB:Fc can prevent egg aneuploidy, increase fertility, and improve ovarian response. Future studies will continue to examine whether ActRIIB:Fc works via FSH and/or other pathways and whether ActRIIB:Fc can prevent aneuploidy, increase fertility, and improve stimulation responsiveness in AMA women. PMID:26713784

  11. Expression of human epileptic temporal lobe neurotransmitter receptors in Xenopus oocytes: An innovative approach to study epilepsy

    PubMed Central

    Palma, Eleonora; Esposito, Vincenzo; Mileo, Anna Maria; Di Gennaro, Giancarlo; Quarato, Pierpaolo; Giangaspero, Felice; Scoppetta, Ciriaco; Onorati, Paolo; Trettel, Flavia; Miledi, Ricardo; Eusebi, Fabrizio

    2002-01-01

    Poly(A+) RNA was extracted from the temporal lobe (TL) of medically intractable epileptic patients which underwent surgical TL resection. Injection of this mRNA into Xenopus oocytes led to the expression of ionotropic receptors for γ-aminobutyric acid (GABA), kainate (KAI) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA). Membrane currents elicited by GABA inverted polarity at −15 mV, close to the oocyte's chloride equilibrium potential, were inhibited by bicuculline, and were potentiated by pentobarbital and flunitrazepam. These basic characteristics were also displayed by GABA currents elicited in oocytes injected with mRNAs isolated from human TL glioma (TLG) or from mouse TL. However, the GABA receptors expressed by the epileptic TL mRNA exhibited some unusual properties, consisting in a rapid current run-down after repetitive GABA applications and a large EC50 (125 μM). AMPA alone evoked very small or nil currents, whereas KAI induced larger currents. Nevertheless, upon cyclothiazide treatment, AMPA elicited substantial currents that, like the KAI currents, were inhibited by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). Furthermore, the glutamate receptor 5 (GluR5) agonist, ATPA, failed to evoke an obvious current although both RT-PCR and Western blot analyses showed GluR5 expression in the epileptic TL. Oocytes injected with mouse TL or human TLG mRNAs generated KAI and AMPA currents similar to those evoked in oocytes injected with epileptic TL mRNA but, in contrast to these, the mouse TL and human TLG oocytes were also responsive to ATPA. Our findings are in accord with the concept that both a depression of GABA inhibition and a dysfunction of the KAI-receptor system maintain a high neuronal excitability that results in epileptic seizures. PMID:12409614

  12. Oocyte glutathione and fertilisation outcome of Macaca nemestrina and Macaca fascicularis in in vivo- and in vitro-matured oocytes.

    PubMed

    Curnow, E C; Ryan, J P; Saunders, D M; Hayes, E S

    2010-01-01

    Fertilisation and development of IVM non-human primate oocytes is limited compared with that of in vivo-matured (IVO) oocytes. The present study describes the IVM of macaque oocytes with reference to oocyte glutathione (GSH). Timing of maturation, comparison of IVM media and cysteamine (CYS) supplementation as a modulator of GSH were investigated. A significantly greater proportion of oocytes reached MII after 30 h compared with 24 h of IVM. Following insemination, IVM oocytes had a significantly lower incidence of normal fertilisation (i.e. 2PN = two pronuclei and at least one polar body) and a higher rate of abnormal fertilisation (1PN = one pronucleus and at least one polar body) compared with IVO oocytes. Immunofluorescence of 1PN zygotes identified incomplete sperm head decondensation and failure of male pronucleus formation as the principal cause of abnormal fertilisation in IVM oocytes. The IVO oocytes had significantly higher GSH content than IVM oocytes. Cumulus-denuded oocytes had significantly lower GSH following IVM compared with immature oocytes at collection. Cysteamine supplementation of the IVM medium significantly increased the GSH level of cumulus-intact oocytes and reduced the incidence of 1PN formation, but did not improve GSH levels of the denuded oocyte. Suboptimal GSH levels in macaque IVM oocytes may be related to reduced fertilisation outcomes.

  13. Effect of In Vitro Maturation Technique and Alpha Lipoic Acid Supplementation on Oocyte Maturation Rate: Focus on Oxidative Status of Oocytes

    PubMed Central

    Zavareh, Saeed; Karimi, Isaac; Salehnia, Mojdeh; Rahnama, Ali

    2016-01-01

    Background Therapeutic potential of in vitro maturation (IVM) in infertility is growing with great promise. Although significant progress is obtained in recent years, existing IVM protocols are far from favorable results. The first aim of this study was to investigate whether two step IVM manner change reactive oxygen species (ROS) and total anti- oxidant capacity (TAC) levels. The second aim was to find the effect of alpha lipoic acid (ALA) supplementation on oocyte maturation rate and on ROS/TAC levels during IVM. Materials and Methods In this experimental study, mouse germinal vesicle (GV) oocytes divided into cumulus denuded oocytes (DOs) and cumulus oocyte complexes (COCs) groups. GVs were matured in vitro in the presence or absence of ALA only for 18 hours (control) or with pre-culture of forskolin plus cilostamide for an additional 18 hours. Matured oocytes obtained following 18 and 36 hours based on experimental design. In parallel, the ROS and TAC levels were measured at different time (0, 18 and 36 hours) by 2',7'-dichlorodihydrofluorescein (DCFH) probe and ferric reducing/antioxidant power (FRAP) assay, respectively. Results Maturation rate of COCs was significantly higher than DOs in control group (P<0.05), while there was no significant difference between COCs and DOs when were pre-cultured with forskolin plus cilostamide. ROS and TAC levels was increased and decreased respectively in DOs after 18 hours while in COCs did not change at 18 hours and showed a significant increase and decrease respectively at 36 hours (P<0.05). ROS and TAC levels in the presence of ALA were significantly decreased and increased respectively after 36 hours (P<0.05) whereas, maturation rates of COCs and DOs were similar to their corresponding control groups. Conclusion ALA decreased ROS and increased TAC but could not affect maturation rate of both COCs and DOs in one or two step IVM manner. PMID:26985332

  14. Computer-assisted oocyte morphometry before ICSI: correlation of oocyte measurements with fertilization and embryo development.

    PubMed

    Camargos, Maria das Graças R S; Lobach, Veronica N M; Pereira, Francisco A N; Lemos, Cláudia N C D; Reis, Fernando M; Camargos, Aroldo F

    2012-03-01

    The present study aimed to correlate morphometric parameters of the oocytes with the occurrence of fertilization following intracytoplasmic sperm injection (ICSI). In a prospective, controlled cohort design, women (n = 32) who were candidates for ICSI had oocytes (n = 258) collected and submitted to morphometric evaluation using the Cronus3 software program. The morphometric parameters obtained were oocyte diameter, perivitelline space width, zona pellucida thickness, and first polar body diameter. The median oocyte diameter was similar in cases in which fertilization occurred compared with those in which fertilization failed (75.2 and 75.9 μm, respectively; P = .218). The 2 groups also had similar measurements of perivitelline space, zona pellucida, and first polar body. However, the best quality zygotes identified by a morphological score resulted from oocytes with larger diameter (75.6 vs 74.0 μm; P < .01) and narrow perivitelline space (5.3 vs 7.1 μm; P < .01). Embryo development, as assessed by cleavage at second day of culture, was not significantly associated with oocyte morphometric parameters. These findings suggest that morphometric parameters of the oocytes do not correlate with the occurrence of fertilization following ICSI but may assist in selecting oocytes more likely to originate high-quality zygotes.

  15. Rebuilding MTOCs upon centriole loss during mouse oogenesis.

    PubMed

    Luksza, Małgorzata; Queguigner, Isabelle; Verlhac, Marie-Hélène; Brunet, Stéphane

    2013-10-01

    The vast majority of animal cells contain canonical centrosomes as a main microtubule-organizing center defined by a central pair of centrioles. As a rare and striking exception to this rule, vertebrate oocytes loose their centrioles at an early step of oogenesis. At the end of oogenesis, centrosomes are eventually replaced by numerous acentriolar microtubule-organizing centers (MTOCs) that shape the spindle poles during meiotic divisions. The mechanisms involved in centrosome and acentriolar MTOCs metabolism in oocytes have not been elucidated yet. In addition, little is known about microtubule organization and its impact on intracellular architecture during the oocyte growth phase following centrosome disassembly. We have investigated this question in the mouse by coupling immunofluorescence and live-imaging approaches. We show that growing oocytes contain dispersed pericentriolar material, responsible for microtubule assembly and distribution all over the cell. The gradual enlargement of PCM foci eventually leads in competent oocytes to the formation of big perinuclear MTOCs and to the assembly of large microtubule asters emanating from the close vicinity of the nucleus. Upon meiosis resumption, perinuclear MTOCs spread around the nuclear envelope, which in parallel is remodelled before breaking-down, via a MT- and dynein-dependent mechanism. Only fully competent oocytes are able to perform this dramatic reorganization at NEBD. Therefore, the MTOC-MT reorganization that we describe is one of key feature of mouse oocyte competency.

  16. The sensitivity of the DNA damage checkpoint prevents oocyte maturation in endometriosis

    PubMed Central

    Hamdan, Mukhri; Jones, Keith T.; Cheong, Ying; Lane, Simon I. R.

    2016-01-01

    Mouse oocytes respond to DNA damage by arresting in meiosis I through activity of the Spindle Assembly Checkpoint (SAC) and DNA Damage Response (DDR) pathways. It is currently not known if DNA damage is the primary trigger for arrest, or if the pathway is sensitive to levels of DNA damage experienced physiologically. Here, using follicular fluid from patients with the disease endometriosis, which affects 10% of women and is associated with reduced fertility, we find raised levels of Reactive Oxygen Species (ROS), which generate DNA damage and turn on the DDR-SAC pathway. Only follicular fluid from patients with endometriosis, and not controls, produced ROS and damaged DNA in the oocyte. This activated ATM kinase, leading to SAC mediated metaphase I arrest. Completion of meiosis I could be restored by ROS scavengers, showing this is the primary trigger for arrest and offering a novel clinical therapeutic treatment. This study establishes a clinical relevance to the DDR induced SAC in oocytes. It helps explain how oocytes respond to a highly prevalent human disease and the reduced fertility associated with endometriosis. PMID:27841311

  17. LSD1 is essential for oocyte meiotic progression by regulating CDC25B expression in mice

    PubMed Central

    Kim, Jeesun; Singh, Anup Kumar; Takata, Yoko; Lin, Kevin; Shen, Jianjun; Lu, Yue; Kerenyi, Marc A.; Orkin, Stuart H.; Chen, Taiping

    2015-01-01

    Mammalian oocytes are arrested at prophase I until puberty when hormonal signals induce the resumption of meiosis I and progression to meiosis II. Meiotic progression is controlled by CDK1 activity and is accompanied by dynamic epigenetic changes. Although the signalling pathways regulating CDK1 activity are well defined, the functional significance of epigenetic changes remains largely unknown. Here we show that LSD1, a lysine demethylase, regulates histone H3 lysine 4 di-methylation (H3K4me2) in mouse oocytes and is essential for meiotic progression. Conditional deletion of Lsd1 in growing oocytes results in precocious resumption of meiosis and spindle and chromosomal abnormalities. Consequently, most Lsd1-null oocytes fail to complete meiosis I and undergo apoptosis. Mechanistically, upregulation of CDC25B, a phosphatase that activates CDK1, is responsible for precocious meiotic resumption and also contributes to subsequent spindle and chromosomal defects. Our findings uncover a functional link between LSD1 and the major signalling pathway governing meiotic progression. PMID:26626423

  18. LSD1 is essential for oocyte meiotic progression by regulating CDC25B expression in mice.

    PubMed

    Kim, Jeesun; Singh, Anup Kumar; Takata, Yoko; Lin, Kevin; Shen, Jianjun; Lu, Yue; Kerenyi, Marc A; Orkin, Stuart H; Chen, Taiping

    2015-12-02

    Mammalian oocytes are arrested at prophase I until puberty when hormonal signals induce the resumption of meiosis I and progression to meiosis II. Meiotic progression is controlled by CDK1 activity and is accompanied by dynamic epigenetic changes. Although the signalling pathways regulating CDK1 activity are well defined, the functional significance of epigenetic changes remains largely unknown. Here we show that LSD1, a lysine demethylase, regulates histone H3 lysine 4 di-methylation (H3K4me2) in mouse oocytes and is essential for meiotic progression. Conditional deletion of Lsd1 in growing oocytes results in precocious resumption of meiosis and spindle and chromosomal abnormalities. Consequently, most Lsd1-null oocytes fail to complete meiosis I and undergo apoptosis. Mechanistically, upregulation of CDC25B, a phosphatase that activates CDK1, is responsible for precocious meiotic resumption and also contributes to subsequent spindle and chromosomal defects. Our findings uncover a functional link between LSD1 and the major signalling pathway governing meiotic progression.

  19. Quantification of mtDNA in single oocytes, polar bodies and subcellular components by real-time rapid cycle fluorescence monitored PCR.

    PubMed

    Steuerwald, N; Barritt, J A; Adler, R; Malter, H; Schimmel, T; Cohen, J; Brenner, C A

    2000-08-01

    Oocytes, in general, are greatly enriched in mitochondria to support higher rates of macromolecular synthesis and critical physiological processes characteristic of early development. An inability of these organelles to amplify and/or to accumulate ATP has been linked to developmental abnormality or arrest. The number of mitochondrial genomes present in mature mouse and human metaphase II oocytes was estimated by fluorescent rapid cycle DNA amplification, which is a highly sensitive technique ideally suited to quantitative mitochondrial DNA (mtDNA) analysis in individual cells. A considerable degree of variability was observed between individual samples. An overall average of 1.59 x 10(5) and 3.14 x 10(5) mtDNA molecules were detected per mouse and human oocyte, respectively. Furthermore, the mtDNA copy number was examined in polar bodies and contrasted with the concentration in their corresponding oocytes. In addition, the density of mtDNA in a cytoplasmic sample was estimated in an attempt to determine the approximate number of mitochondria transferred during clinical cytoplasmic donation procedures as well as to develop a clinical tool for the assessment and selection of oocytes during in vitro fertilisation procedures. However, no correlation was identified between the mtDNA concentration in either polar bodies or cytoplasmic samples and their corresponding oocyte.

  20. Dynamic Pattern of HOXB9 Protein Localization during Oocyte Maturation and Early Embryonic Development in Mammals

    PubMed Central

    Sauvegarde, Caroline; Paul, Delphine; Bridoux, Laure; Jouneau, Alice; Degrelle, Séverine; Hue, Isabelle; Rezsohazy, René; Donnay, Isabelle

    2016-01-01

    Background We previously showed that the homeodomain transcription factor HOXB9 is expressed in mammalian oocytes and early embryos. However, a systematic and exhaustive study of the localization of the HOXB9 protein, and HOX proteins in general, during mammalian early embryonic development has so far never been performed. Results The distribution of HOXB9 proteins in oocytes and the early embryo was characterized by immunofluorescence from the immature oocyte stage to the peri-gastrulation period in both the mouse and the bovine. HOXB9 was detected at all studied stages with a dynamic expression pattern. Its distribution was well conserved between the two species until the blastocyst stage and was mainly nuclear. From that stage on, trophoblastic cells always showed a strong nuclear staining, while the inner cell mass and the derived cell lines showed important dynamic variations both in staining intensity and in intra-cellular localization. Indeed, HOXB9 appeared to be progressively downregulated in epiblast cells and only reappeared after gastrulation had well progressed. The protein was also detected in the primitive endoderm and its derivatives with a distinctive presence in apical vacuoles of mouse visceral endoderm cells. Conclusions Together, these results could suggest the existence of unsuspected functions for HOXB9 during early embryonic development in mammals. PMID:27798681

  1. Kif2a regulates spindle organization and cell cycle progression in meiotic oocytes

    PubMed Central

    Yi, Zi-Yun; Ma, Xue-Shan; Liang, Qiu-Xia; Zhang, Teng; Xu, Zhao-Yang; Meng, Tie-Gang; Ouyang, Ying-Chun; Hou, Yi; Schatten, Heide; Sun, Qing-Yuan; Quan, Song

    2016-01-01

    Kif2a is a member of the Kinesin-13 microtubule depolymerases. Here, we report the expression, subcellular localization and functions of Kif2a during mouse oocyte meiotic maturation. Immunoblotting analysis showed that Kif2a was gradually increased form GV to the M I stages, and then decreased slightly at the M II stage. Confocal microscopy identified that Kif2a localized to the meiotic spindle, especially concentrated at the spindle poles and inner centromeres in metaphase and translocated to the midbody at telophase. Kif2a depletion by siRNA microinjection generated severely defective spindles and misaligned chromosomes, reduced microtubule depolymerization, which led to significant pro-M I/M Iarrest and failure of first polar body (PB1) extrusion. Kif2a-depleted oocytes were also defective in spindle pole localization of γ-tubulin and showed spindle assembly checkpoint (SAC) protein Bub3 at the kinetochores even after 10 hr extended culture. These results demonstrate that Kif2a may act as a microtubule depolymerase, regulating microtubule dynamics, spindle assembly and chromosome congression, and thus cell cycle progression during mouse oocyte meiotic maturation. PMID:27991495

  2. RNAi: Mammalian oocytes do it without RNA-dependent RNA polymerase

    PubMed Central

    STEIN, PAULA; SVOBODA, PETR; ANGER, MARTIN; SCHULTZ, RICHARD M.

    2003-01-01

    Studies in mutant organisms deficient in RNA interference (RNAi) and related post-transcriptional gene silencing implicated a role for a single class of RNA-dependent RNA polymerases (RdRp). Nevertheless, sequence homologs to these RdRps have not been found in coelomate organisms such as Drosophila or mammals. This lack of homologous sequences does not exclude that an RdRp functions in RNAi in these organisms because an RdRp could be acquired by horizontal transfer from an RNA virus. In fact, such a sequence is found in mice (Aquarius) and we observe that it is expressed in mouse oocytes and early embryos, which exhibit RNAi. We report here that cordycepin, an inhibitor of RNA synthesis, does not prevent Mos double-strand RNA (dsRNA) to target endogenous Mos mRNA in mouse oocytes and that targeting a chimeric Mos–EGFP mRNA with dsRNA to EGFP does not reduce the endogenous Mos mRNA, but does target the chimeric mRNA. These results indicate that an RdRp is not involved in dsRNA-mediated mRNA degradation in mammalian oocytes, and possibly in mammals in general, and therefore that only homologous sequences to the dsRNA are targeted for degradation. PMID:12554861

  3. Selective killing of nonreplicating mycobacteria.

    PubMed

    Bryk, Ruslana; Gold, Benjamin; Venugopal, Aditya; Singh, Jasbir; Samy, Raghu; Pupek, Krzysztof; Cao, Hua; Popescu, Carmen; Gurney, Mark; Hotha, Srinivas; Cherian, Joseph; Rhee, Kyu; Ly, Lan; Converse, Paul J; Ehrt, Sabine; Vandal, Omar; Jiang, Xiuju; Schneider, Jean; Lin, Gang; Nathan, Carl

    2008-03-13

    Antibiotics are typically more effective against replicating rather than nonreplicating bacteria. However, a major need in global health is to eradicate persistent or nonreplicating subpopulations of bacteria such as Mycobacterium tuberculosis (Mtb). Hence, identifying chemical inhibitors that selectively kill bacteria that are not replicating is of practical importance. To address this, we screened for inhibitors of dihydrolipoamide acyltransferase (DlaT), an enzyme required by Mtb to cause tuberculosis in guinea pigs and used by the bacterium to resist nitric oxide-derived reactive nitrogen intermediates, a stress encountered in the host. Chemical screening for inhibitors of Mtb DlaT identified select rhodanines as compounds that almost exclusively kill nonreplicating mycobacteria in synergy with products of host immunity, such as nitric oxide and hypoxia, and are effective on bacteria within macrophages, a cellular reservoir for latent Mtb. Compounds that kill nonreplicating pathogens in cooperation with host immunity could complement the conventional chemotherapy of infectious disease.

  4. Motility contrast imaging of live porcine cumulus-oocyte complexes

    NASA Astrophysics Data System (ADS)

    An, Ran; Turek, John; Machaty, Zoltan; Nolte, David

    2013-02-01

    Freshly-harvested porcine oocytes are invested with cumulus granulosa cells in cumulus-oocyte complexes (COCs). The cumulus cell layer is usually too thick to image the living oocyte under a conventional microscope. Therefore, it is difficult to assess the oocyte viability. The low success rate of implantation is the main problem for in vitro fertilization. In this paper, we demonstrate our dynamic imaging technique called motility contrast imaging (MCI) that provides a non-invasive way to monitor the COCs before and after maturation. MCI shows a change of intracellular activity during oocyte maturation, and a measures dynamic contrast between the cumulus granulosa shell and the oocytes. MCI also shows difference in the spectral response between oocytes that were graded into quality classes. MCI is based on shortcoherence digital holography. It uses intracellular motility as the endogenous imaging contrast of living tissue. MCI presents a new approach for cumulus-oocyte complex assessment.

  5. Elective oocyte cryopreservation: who should pay?

    PubMed

    Mertes, Heidi; Pennings, Guido

    2012-01-01

    Despite the initial reactions of disapproval, more and more fertility clinics are now offering oocyte cryopreservation to healthy women in order to extend their reproductive options. However, so-called social freezing is not placed on an equal footing with 'regular' IVF treatments where public funding is concerned. In those countries or states where IVF patients receive a number of free cycles, we argue that fertilization and transfer cycles of women who proactively cryopreserved their oocytes should be covered. Moreover, when the argument of justice is consistently applied, coverage should also include the expenses of ovarian stimulation, oocyte retrieval and storage. Different modalities are possible: full coverage from the onset, reimbursement in cash or reimbursement in kind, by offering more free transfer cycles.

  6. Theoretical considerations for oocyte cryopreservation by freezing.

    PubMed

    Fahy, Gregory M

    2007-06-01

    Attempts to cryopreserve oocytes by freezing have, to date, been based mostly on empirical approaches rather than on basic principles, and perhaps in part for this reason have not been very successful. Theoretical considerations suggest some fairly 'heretical' conclusions. The concentrations of permeating cryoprotectants employed in past studies have probably been inadequate, and the choice of propylene glycol (PG) as a protective agent is questionable. The use of non-penetrating agents, such as sucrose to preshrink oocytes prior to freezing and which, therefore, exacerbate osmotic stress during freezing, may be inappropriate, yet may protect in part by reducing the concentration of PG during freezing. The methods used to add and remove cryoprotectant may be suboptimal, and may be based on an inadequate understanding of the cryobiological constraints for oocyte survival. Given these concerns, it is not surprising that fully satisfactory results have been elusive, but there is every reason to believe that greater success is possible using a more theoretically appropriate approach.

  7. Oocyte cryopreservation and ovarian tissue banking.

    PubMed

    Ledda, S; Leoni, G; Bogliolo, L; Naitana, S

    2001-04-01

    Oocyte cryopreservation, despite its impact on conservation of genetic resources, is not yet an established technology. Several problems need to be solved before this technology can be applied regularly. Chilling membrane susceptibility and formation of ice due to the large volume of the cell are the major problems observed. However, during the last years, several studies were done to obtain viable oocytes after cryopreservation. The addition of molecules known to stabilize membranes and the creation of freezing systems with rapid cooling throughout the transition phase have yielded a good percentage of viable immature and mature oocytes More recently, storage of female gametes was achieved by cryopreservation of cortical ovarian tissue. The possibility of restoring fertility by transplantation of frozen ovarian tissue or its long-term culture in vitro represents an important future means of preserving the fertility of patients and of storing the gametes of rare animals.

  8. Calcium ion currents mediating oocyte maturation events

    PubMed Central

    Tosti, Elisabetta

    2006-01-01

    During maturation, the last phase of oogenesis, the oocyte undergoes several changes which prepare it to be ovulated and fertilized. Immature oocytes are arrested in the first meiotic process prophase, that is morphologically identified by a germinal vesicle. The removal of the first meiotic block marks the initiation of maturation. Although a large number of molecules are involved in complex sequences of events, there is evidence that a calcium increase plays a pivotal role in meiosis re-initiation. It is well established that, during this process, calcium is released from the intracellular stores, whereas less is known on the role of external calcium entering the cell through the plasma membrane ion channels. This review is focused on the functional role of calcium currents during oocyte maturation in all the species, from invertebrates to mammals. The emerging role of specific L-type calcium channels will be discussed. PMID:16684344

  9. Cytoplasmic asters are required for progression past the first cell cycle in cloned mouse embryos.

    PubMed

    Miki, Hiromi; Inoue, Kimiko; Ogonuki, Narumi; Mochida, Keiji; Nagashima, Hiroshi; Baba, Tadashi; Ogura, Atsuo

    2004-12-01

    Unlike the oocytes of most other animal species, unfertilized murine oocytes contain cytoplasmic asters, which act as microtubule-organizing centers following fertilization. This study examined the role of asters during the first cell cycle of mouse nuclear transfer (NT) embryos. NT was performed by intracytoplasmic injection of cumulus cells. Cytoplasmic asters were localized by staining with an anti-alpha-tubulin antibody. Enucleation of MII oocytes caused no significant change in the number of cytoplasmic asters. The number of asters decreased after transfer of the donor nuclei into these enucleated oocytes, probably because some of the asters participated in the formation of the spindle that anchors the donor chromosomes. The cytoplasmic asters became undetectable within 2 h of oocyte activation, irrespective of the presence or absence of the donor chromosomes. After the standard NT protocol, a spindle-like structure persisted between the pseudopronuclei of these oocytes throughout the pronuclear stage. The asters reappeared shortly before the first mitosis and formed the mitotic spindle. When the donor nucleus was transferred into preactivated oocytes (delayed NT) that were devoid of free asters, the microtubules and microfilaments were distributed irregularly in the ooplasm and formed dense bundles within the cytoplasm. Thereafter, all of the delayed NT oocytes underwent fragmentation and arrested development. Treatment of these delayed NT oocytes with Taxol, which is a microtubule-assembling agent, resulted in the formation of several aster-like structures and reduced fragmentation. Some Taxol-treated oocytes completed the first cell cycle and developed further. This study demonstrates that cytoplasmic asters play a crucial role during the first cell cycle of murine NT embryos. Therefore, in mouse NT, the use of MII oocytes as recipients is essential, not only for chromatin reprogramming as previously reported, but also for normal cytoskeletal organization

  10. Cyclin A1 is expressed in mouse ovary.

    PubMed

    Wei, Hongquan; Li, Yuanhong; Zhao, Chen; Jiang, Xuejun; Chen, Hongduo; Lang, Ming-Fei; Sun, Jing

    2014-01-01

    Cyclin A1 belongs to the type-A cyclins and participates in cell cycle regulation. Since its discovery, cyclin A1 has been shown mostly in testis. It plays important roles in spermatogenesis. However, there were also reports on ovary expression of cyclin A1. Therefore, we intended to revisit the expression of cyclin A1 in mouse ovary. Our study showed that cyclin A1 was expressed at the mRNA level and the protein level in mouse ovary. Tissue staining revealed that cyclin A1 was expressed in maturating oocytes. With the recent data on the functions of cyclins in somatic and stem cells, we also discussed the possibilities of further studies of cyclin A1 in mouse oocytes and perhaps in the oogonial stem cells. Our findings not only add to the supportive evidence of cyclin A1 expression in oocytes, but also may promote more interest in exploring cyclin A1 functions in ovary.

  11. Expression of HSG is essential for mouse blastocyst formation

    SciTech Connect

    Jiang Guangjian; Pan Lei; Huang Xiuying; Han Mei; Wen Jinkun . E-mail: wjk@hebmu.edu.cn; Sun Fangzhen . E-mail: fzsun@genetics.ac.cn

    2005-09-23

    It has been shown recently that hyperplasia suppressor gene (HSG) is a powerful regulator for cell proliferation and has a critical role in mitochondrial fusion in many cells. However, little is known about its expression, localization, and function during oocyte maturation and early embryogenesis. In this study, with indirect immunofluorescent staining and Western blotting, we found that HSG was expressed in mouse oocytes and preimplantation embryos which primarily exhibited a submembrane distribution pattern in the cytoplasm. Moreover, HSG mainly associated with {beta}-tubulin during oocyte maturation and early embryonic development. When mouse zygotes were injected with HSG antisense plasmid and cultured in vitro, their capacity to form blastocysts was severely impaired. Our results indicate that HSG plays an essential role in mouse preimplantation development.

  12. Effects of gonadotrophins, growth hormone, and activin A on enzymatically isolated follicle growth, oocyte chromatin organization, and steroid secretion.

    PubMed

    Ola, Safiriyu Idowu; Ai, Jun-Shu; Liu, Jing-He; Wang, Qiang; Wang, Zhen-Bo; Chen, Da-Yuan; Sun, Qing-Yuan

    2008-01-01

    So far, standard follicle culture systems can produce blastocyst from less than 40% of the in vitro matured oocytes compared to over 70% in the in vivo counterpart. Because the capacity for embryonic development is strictly associated with the terminal stage of oocyte growth, the nuclear maturity status of the in vitro grown oocyte was the subject of this study. Mouse early preantral follicles (100-130 microm) and early antral follicles (170-200 microm) isolated enzymatically were cultured for 12 and 4 days, respectively, in a collagen-free dish. The serum-based media were supplemented with either 100 mIU/ml FSH (FSH only); 100 mIU/ml FSH + 10 mIU/ml LH (FSH-LH); 100 mIU/ml FSH + 1 mIU/ml GH (FSH-GH) or 100 mIU/ml FSH + 100 ng/ml activin A (FSH-AA). Follicle survival was highest in follicle stimulating hormone (FSH)-AA group in both cultured preantral (91.8%) and antral follicles (82.7%). Survival rates in the other groups ranged between 48% (FSH only, preantral follicle culture) and 78.7% (FSH only, antral follicle culture). Estradiol and progesterone were undetectable in medium lacking gonadotrophins while AA supplementation in synergy with FSH caused increased estradiol secretion and a simultaneously lowered progesterone secretion. Chromatin configuration of oocytes from surviving follicles at the end of culture revealed that there were twice more developmentally incompetent non-surrounded nucleolus (NSN) oocytes (>65%) than the competent surrounded nucleolus (SN) oocytes (<34%). We conclude that the present standard follicle culture system does not produce optimum proportion of developmentally competent oocytes.

  13. Effect of oocyte quality on the relative abundance of specific gene transcripts in bovine mature oocytes and 16-cell embryos

    PubMed Central

    Bilodeau-Goeseels, Sylvie

    2003-01-01

    Although the developmental potential of oocytes is related to oocyte quality, whether the expression of specific genes is altered in oocytes of different quality and in resulting embryos is not known. Semi-quantitative reverse transcription-polymerase chain reaction was used to compare the relative abundance of 2 transcripts for housekeeping proteins (β-actin and ribosomal protein L30) and 3 transcripts for growth factor ligand or receptors (platelet derived growth factor receptor α (PDGFRα), basic fibroblast growth factor (bFGF)), in mature bovine oocytes of high versus low developmental potential. The transcripts for L30, PDGFRα, and bFGF in 16-cell embryos originating from these oocytes were also examined. No significant effect of oocyte quality was detected for any of the transcripts examined from oocytes or 16-cell embryos. In conclusion, a lower developmental potential of oocytes with advanced signs of atresia, was not associated with a lower level of abundance of the transcripts examined. PMID:12760483

  14. Regulation of Pcsk6 expression during the preantral to antral follicle transition in mice: opposing roles of FSH and oocytes.

    PubMed

    Diaz, Francisco J; Sugiura, Koji; Eppig, John J

    2008-01-01

    Several secreted products of the TGFbeta superfamily have important roles during follicular development and are produced by both oocytes and somatic cells (granulosa and theca) in the follicle. The proprotein convertases are a family of seven known proteins that process TGFbeta ligands and other secreted products to their mature active form. The present study examined the regulation of steady-state levels of Pcsk6 mRNA, which encodes a convertase protein known to process members of the TGFbeta superfamily, during mouse follicular development. Pcsk6 mRNA and protein were expressed in preantral but not cumulus or mural granulosa cells. Pcsk6 mRNA levels in preantral granulosa cells were not regulated by growing oocytes of preantral follicles, but were elevated by FSH. Furthermore, Pcsk6 mRNA in preantral granulosa cells was potently suppressed by factor(s) secreted by fully grown oocytes from antral follicles, in part through SMAD2/3-mediated pathways. Oocytes acquired the ability to suppress the steady-state levels of Pcsk6 mRNA in granulosa cells during the preantral to antral follicle transition. Suppression of Pcsk6 mRNA by oocytes could reflect a change in the mechanism(s) regulating the activity of members of the TGFbeta superfamily.

  15. The role of Rad51 in safeguarding mitochondrial activity during the meiotic cell cycle in mammalian oocytes

    PubMed Central

    Kim, Kyeoung-Hwa; Park, Ji-Hoon; Kim, Eun-Young; Ko, Jung-Jae; Park, Kyung-Soon; Lee, Kyung-Ah

    2016-01-01

    Rad51 is a conserved eukaryotic protein that mediates the homologous recombination repair of DNA double-strand breaks that occur during mitosis and meiosis. In addition, Rad51 promotes mitochondrial DNA synthesis when replication stress is increased. Rad51 also regulates cell cycle progression by preserving the G2/M transition in embryonic stem cells. In this study, we report a novel function of Rad51 in regulating mitochondrial activity during in vitro maturation of mouse oocytes. Suppression of Rad51 by injection of Rad51 dsRNA into germinal vesicle-stage oocytes resulted in arrest of meiosis in metaphase I. Rad51-depleted oocytes showed chromosome misalignment and failures in spindle aggregation, affecting the completion of cytokinesis. We found that Rad51 depletion was accompanied by decreased ATP production and mitochondrial membrane potential and increased DNA degradation. We further demonstrated that the mitochondrial defect activated autophagy in Rad51-depleted oocytes. Taken together, we concluded that Rad51 functions to safeguard mitochondrial integrity during the meiotic maturation of oocytes. PMID:27677401

  16. Farm Education at Stony Kill.

    ERIC Educational Resources Information Center

    Parisio, Richard

    1986-01-01

    Describes typical winter farm lessons for students visiting Stony Kill Farm Environmental Education Center located 70 miles north of New York City: butter and corncake making, soil erosion experiments, dissecting and growing seeds. Emphasizes major theme of conservation of farmland from destructive farming practices and careless development. (NEC)

  17. Does Assessment Kill Student Creativity?

    ERIC Educational Resources Information Center

    Beghetto, Ronald A.

    2005-01-01

    Does assessment kill creativity? In this article, creativity is defined and discussed and an overview of creativity and motivational research is provided to describe how assessment practices can influence students' creativity. Recommendations for protecting creativity when assessing students also are provided.

  18. Obesity-Dependent Increases in Oocyte mRNAs Are Associated With Increases in Proinflammatory Signaling and Gut Microbial Abundance of Lachnospiraceae in Female Mice.

    PubMed

    Xie, Fang; Anderson, Christopher L; Timme, Kelsey R; Kurz, Scott G; Fernando, Samodha C; Wood, Jennifer R

    2016-04-01

    RNAs stored in the metaphase II-arrested oocyte play important roles in successful embryonic development. Their abundance is defined by transcriptional activity during oocyte growth and selective degradation of transcripts during LH-induced oocyte maturation. Our previous studies demonstrated that mRNA abundance is increased in mature ovulated oocytes collected from obese humans and mice and therefore may contribute to reduced oocyte developmental competence associated with metabolic dysfunction. In the current study mouse models of diet-induced obesity were used to determine whether obesity-dependent increases in proinflammatory signaling regulate ovarian abundance of oocyte-specific mRNAs. The abundance of oocyte-specific Bnc1, Dppa3, and Pou5f1 mRNAs as well as markers of proinflammatory signaling were significantly increased in ovaries of obese compared with lean mice which were depleted of fully grown preovulatory follicles. Chromatin-immunoprecipitation analyses also demonstrated increased association of phosphorylated signal transducer and activator of transcription 3 with the Pou5f1 promoter in ovaries of obese mice suggesting that proinflammatory signaling regulates transcription of this gene in the oocyte. The cecum microbial content of lean and obese female mice was subsequently examined to identify potential relationships between microbial composition and proinflammatory signaling in the ovary. Multivariate Association with Linear Models identified significant positive correlations between cecum abundance of the bacterial family Lachnospiraceae and ovarian abundance of Tnfa as well as Dppa3, Bnc1, and Pou5f1 mRNAs. Together, these data suggest that diet-induced changes in gut microbial composition may be contributing to ovarian inflammation which in turn alters ovarian gene expression and ultimately contributes to obesity-dependent reduction in oocyte quality and development of infertility in obese patients.

  19. Subcellular localization of proline-rich tyrosine kinase 2 during oocyte fertilization and early-embryo development in mice

    PubMed Central

    MENG, Xiao-qian; DAI, Yuan-yuan; JING, Lai-dong; BAI, Jing; LIU, Shu-zhen; ZHENG, Ke-gang; PAN, Jie

    2016-01-01

    Proline-rich tyrosine kinase 2 (Pyk2), a non-receptor tyrosine kinase, is a member of the focal adhesion kinase family and is highly expressed in oocytes. Using a combination of confocal microscopy and RNAi, we localized and studied the function of both Pyk2 and tyrosine-phosphorylated Pyk2 (p-Pyk2) during mouse oocyte fertilization and early embryo development. At the onset of fertilization, Pyk2 and p-Pyk2 were detected predominantly in sperm heads and the oocyte cytoplasm. Upon formation of male and female pronuclei, Pyk2 and its activated form leave the cytoplasm and accumulate in the two pronuclei. We detected Pyk2 in blastomere nuclei and found both Pyk2 and p-Pyk2 in the pre-blastula cytoplasm. Pyk2 and its activated form then disappeared from the blastula nuclei and localized to the perinuclear regions, where blastula cells come into contact with each other. Pyk2 knockdown via microinjection of siRNA into the zygote did not inhibit early embryo development. Our results suggest that Pyk2 plays multiple functional roles in mouse oocyte fertilization as well as throughout early embryo development. PMID:27086609

  20. Oocyte shuttle, a recombinant protein transporting donor DNA into the Xenopus oocyte in situ

    PubMed Central

    Muster, Lisbeth; Georgiev, Oleg; Rungger-Brändle, Elisabeth

    2017-01-01

    ABSTRACT The newly developed oocyte shuttle protein contains a streptavidin moiety that tightly binds biotinylated DNA. Injected intravenously into adult Xenopus females, the protein-DNA complex is rapidly transported through the bloodstream and, within the ovary, the vitellogenin ligand present in the protein binds to the receptors at the surface of the oocytes. The bound complex is internalized and translocates into the oocyte nucleus thanks to an SV40 nuclear localization signal, enhanced by an adjacent casein kinase phosphorylation site. Functioning of the shuttle protein is documented by transporting DNA molecules that, upon intramolecular homologous recombination within the oocyte nucleus, express easily traceable markers such as green fluorescence or tetracycline resistance. PMID:28202471

  1. Cryopreservation of hamster oocytes: effects of vitrification or freezing on human sperm penetration of zona-free hamster oocytes.

    PubMed

    Critser, J K; Arneson, B W; Aaker, D V; Ball, G D

    1986-08-01

    Three experiments were conducted for evaluation of the efficacy of conventional freezing or vitrification of hamster oocytes for use in a human sperm penetration assay (hSPA). In experiment 1, oocytes were cryopreserved and evaluated for survival on the basis of morphologic criteria. Survival of vitrified oocytes and that of frozen oocytes were not different, whereas all cryopreserved groups had lower survival than noncryopreserved controls. In experiment 2, oocytes were conventionally frozen or vitrified and evaluated in an hSPA. Vitrified oocytes had a lower frequency of sperm penetration than frozen oocytes, and all cryopreserved groups had lower penetration rates than untreated controls. In experiment 3, oocytes were exposed to the cryoprotectant used to vitrify (VS1) or freeze (DMSO) but not cooled prior to evaluation in an hSPA. Exposure to DMSO but not VS1 reduced hSPA values. It is concluded from these experiments that while all cryopreserved oocytes do not survive, at current stages of development conventionally frozen oocytes perform better than vitrified oocytes in the hSPA and losses associated with conventional freezing procedures may be related to cryoprotectant exposure, whereas vitrification losses are more probably due to events associated with rapid cooling and/or warming of the oocytes.

  2. TrkB receptors are required for follicular growth and oocyte survival in the mammalian ovary

    PubMed Central

    Paredes, Alfonso; Romero, Carmen; Dissen, Gregory A.; DeChiara, Tom M.; Reichardt, Louis; Cornea, Anda; Ojeda, Sergio R.; Xu, Baoji

    2009-01-01

    Although it is well established that both follicular assembly and the initiation of follicle growth in the mammalian ovary occur independently of pituitary hormone support, the factors controlling these processes remain poorly understood. We now report that neurotrophins (NTs) signaling via TrkB receptors are required for the growth of newly formed follicles. Both neurotrophin-4/5 (NT-4) and brain-derived neurotrophic factor (BDNF), the preferred TrkB ligands, are expressed in the infantile mouse ovary. Initially, they are present in oocytes, but this site of expression switches to granulosa cells after the newly assembled primordial follicles develop into growing primary follicles. Full-length kinase domain-containing TrkB receptors are expressed at low and seemingly unchanging levels in the oocytes and granulosa cells of both primordial and growing follicles. In contrast, a truncated TrkB isoform lacking the intracellular domain of the receptor is selectively expressed in oocytes, where it is targeted to the cell membrane as primary follicles initiate growth. Using gene-targeted mice lacking all TrkB isoforms, we show that the ovaries of these mice or those lacking both NT-4 and BDNF suffer a stage-selective deficiency in early follicular development that compromises the ability of follicles to grow beyond the primary stage. Proliferation of granulosa cells— required for this transition—and expression of FSH receptors (FSHR), which reflects the degree of biochemical differentiation of growing follicles, are reduced in trkB-null mice. Ovaries from these animals grafted under the kidney capsule of wild-type mice fail to sustain follicular growth and show a striking loss of follicular organization, preceded by massive oocyte death. These results indicate that TrkB receptors are required for the early growth of ovarian follicles and that they exert this function by primarily supporting oocyte development as well as providing granulosa cells with a proliferative

  3. Mechanisms of nondisjunction induction in drosophila oocytes.

    PubMed

    Leigh, B

    1979-08-01

    Quantitative and qualitative studies on the induction of no-disjunction and related phenomena can be carried out using the germ cells of Drosophila. X-Irradiation breaks chromosomes and cold-shock disrupts spindles, these two treatments producing different spectra of nondisjunction in oocytes.

  4. Sperm-induced calcium oscillations of human oocytes show distinct features in oocyte center and periphery.

    PubMed

    Tesarik, J; Sousa, M; Mendoza, C

    1995-06-01

    Temporal and spatial characteristics of explosive periodic increases (spikes) of intracellular free Ca2+ concentration ([Ca2+]i) induced by sperm in human oocytes (Ca2+ oscillations) were analyzed by confocal laser scanning microscopy and compared to Ca2+ oscillations induced in oocytes by the thiol reagent thimerosal. During the steady-state period of sperm-induced Ca2+ oscillations, each individual [Ca2+]i spike invariably began from a focus in oocyte periphery and spread throughout the entire peripheral region before propagating to the central ooplasm. This peripheral Ca2+ wave was immediately followed by an explosive [Ca2+]i increase in the central ooplasm. However, this central [Ca2+]i rise only peaked when [Ca2+]i in the peripheral ooplasm was already on the decline. Moreover, the peak [Ca2+]i values were always considerably higher in the oocyte center than in the periphery. In contrast, thimerosal-induced Ca2+ oscillations did not show this particular form of propagation. These data show that sperm-induced Ca2+ oscillations have a unique pattern of spatial dynamics and suggest that the bulk of Ca2+ mobilized during each spike is released from stores that have a relatively high threshold for Ca(2+)-induced Ca2+ release (CICR). These stores are poorly developed, if not absent, in the oocyte cortex, and CICR from them is triggered by previous CICR from another type of store with a lower threshold that are preferentially located in the oocyte cortex and act as a detonator.

  5. Cortical granule complements in human oocytes undergoing partial zona dissection.

    PubMed

    Lanzendorf, S E; Kazer, R R; Patton, P E; Wolf, D P

    1992-02-01

    This study was performed to evaluate the effects of mechanical stimulation and sucrose treatment on the oocyte activation process. Fresh and aged human oocytes were exposed to sucrose and zonae were dissected with microneedles before fixation and quantitative analysis of cortical granules by transmission electron microscopy. Examination of the mean number of cortical granules/analyzed segment revealed no significant differences between control oocytes or oocytes treated with sucrose or sucrose treatment followed by zona dissection. A significant decline in the number of cortical granules/segment was observed for oocytes undergoing prolonged culture after dissection (P less than 0.05). Thus, zona dissection and sucrose exposure of freshly aspirated mature human oocytes do not result in classical oocyte activation.

  6. Selection of Ovine Oocytes by Brilliant Cresyl Blue Staining

    PubMed Central

    Wang, Liqin; Lin, Jiapeng; Huang, Juncheng; Wang, Jing; Zhao, Yuncheng; Chen, Tong

    2012-01-01

    Sheep oocytes derived from the ovaries collected from the slaughterhouse are often used for research on in vitro embryo production, animal cloning, transgenesis, embryonic stem cells, and other embryo biotechnology aspects. Improving the in vitro culture efficiency of oocytes can provide more materials for similar studies. Generally, determination of oocyte quality is mostly based on the layers of cumulus cells and cytoplasm or cytoplasm uniformity and colors. This requires considerable experience to better identify oocyte quality because of the intense subjectivity involved (Gordon (2003), Madison et al. (1992) and De Loos et al. (1992)). BCB staining is a function of glucose-6-phosphate dehydrogenase (G6PD) activity, an enzyme synthesized in developing oocytes, which decreases in activity with maturation. Therefore, unstained oocytes (BCB−) are high in G6PD activity, while the less mature oocytes stains are deep blue (BCB+) due to insuffcient G6PD activity to decolorize the BCB dye. PMID:22675245

  7. Beetle Kill Wall at NREL

    ScienceCinema

    None

    2016-07-12

    When it comes to designing an interior decorative feature for one of the most energy efficient office buildings in the world, very few would consider bringing in a beetle to do the job. But thats what happened at the U.S. Department of Energy's (DOE) Research Support Facility (RSF) located on the National Renewable Energy Laboratory (NREL) campus.In June, the RSF will become home to more than 800 workers from DOE and NREL and building visitors will be greeted with a soaring, two-story high wall entirely covered with wood harvested from the bark beetle infestation that has killed millions of pine trees in the Western U.S. But, the use of beetle kill wood is just one example of the resources being leveraged to make the RSF a model for sustainability and one more step toward NRELs goal to be a net zero energy campus.

  8. Beetle Kill Wall at NREL

    SciTech Connect

    2010-01-01

    When it comes to designing an interior decorative feature for one of the most energy efficient office buildings in the world, very few would consider bringing in a beetle to do the job. But thats what happened at the U.S. Department of Energy's (DOE) Research Support Facility (RSF) located on the National Renewable Energy Laboratory (NREL) campus.In June, the RSF will become home to more than 800 workers from DOE and NREL and building visitors will be greeted with a soaring, two-story high wall entirely covered with wood harvested from the bark beetle infestation that has killed millions of pine trees in the Western U.S. But, the use of beetle kill wood is just one example of the resources being leveraged to make the RSF a model for sustainability and one more step toward NRELs goal to be a net zero energy campus.

  9. Women who kill their mates.

    PubMed

    Bourget, Dominique; Gagné, Pierre

    2012-01-01

    Spousal homicide perpetrators are much more likely to be men than women. Accordingly, little research has focused on delineating characteristics of women who have committed spousal homicide. A retrospective clinical review of coroners' files containing all cases of spousal homicide occurring in Quebec over a 20-year period was carried out. A total of 276 spousal homicides occurred between 1991 and 2010, with 42 homicides by female spouses and 234 homicides by male spouses. Differences between homicides committed by female offenders and male offenders are discussed, and findings on spousal homicide committed by women are compared with those of previous studies. Findings regarding offenses perpetrated by females in the context of mental illness, domestic violence, and homicide-suicide are explored. The finding that only 28% of the female offenders in the Quebec sample had previously been subjected to violence by their victim is in contrast to the popular belief and reports that indicate that most female-perpetrated spousal homicide occurs in self-defense or in reaction to long-term abuse. In fact, women rarely gave a warning before killing their mates. Most did not suffer from a mental illness, although one-fifth were acutely intoxicated at the time of the killing. In the vast majority of cases of women who killed their mates, there were very few indicators that might have signaled the risk and helped predict the violent lethal behavior.

  10. Aromatase is expressed and active in the rainbow trout oocyte during final oocyte maturation.

    PubMed

    Gohin, Maella; Bodinier, Pascal; Fostier, Alexis; Chesnel, Franck; Bobe, Julien

    2011-07-01

    While it is generally well accepted that the ovarian follicular sites of estradiol-17β (E2) synthesis are restricted to somatic cells, the possible contribution of the germinal compartment has received little or no attention in teleosts. In order to demonstrate the expression of ovarian aromatase in the oocyte, cyp19a1a mRNA was studied in ovarian follicles by in situ hybridization. In addition, the expression of cyp19a1a was studied in both somatic and germinal compartments of the ovarian follicle in rainbow trout (Oncorhynchus mykiss) during final oocyte maturation (i.e., maturational competence acquisition and subsequent meiosis resumption) by real-time PCR. The enzymatic activity of ovarian aromatase was also studied in both somatic and germinal compartments of the ovarian follicle. Finally, E2 levels were monitored in follicle-enclosed oocytes throughout the pre-ovulatory period. We were able to demonstrate a significant ovarian aromatase expression and activity in the late vitellogenic oocyte. Furthermore, a dramatic decrease in aromatase expression and activity occurs in the oocyte during late oogenesis, concomitantly with the trend observed in surrounding follicular layers. We also report an unexpected increase of E2 levels in the oocyte during the pre-ovulatory period. To our knowledge, these observations are reported for the first time in any teleost species. Together, our data support the hypothesis of the participation of the germinal compartment in follicular estrogen synthesis and a biological role of E2 during oocyte and/or early embryo development.

  11. Effects of purinergic stimulation, CFTR and osmotic stress on amiloride-sensitive Na+ transport in epithelia and Xenopus oocytes.

    PubMed

    Schreiber, R; König, J; Sun, J; Markovich, D; Kunzelmann, K

    2003-03-15

    Both stimulation of purinergic receptors by ATP and activation of the cystic fibrosis transmembrane conductance regulator (CFTR) inhibit amiloride-sensitive Na+ transport and activate Cl- secretion. These changes in ion transport may well affect cell volume. We therefore examined whether cell shrinkage or cell swelling do affect amiloride-sensitive Na+ transport in epithelial tissues or Xenopus oocytes and whether osmotic stress interferes with regulation of Na+ transport by ATP or CFTR. Stimulation of purinergic receptors by ATP/UTP or activation of CFTR by IBMX and forskolin inhibited amiloride-sensitive transport in mouse trachea and colon, respectively, by a mechanism that was Cl- dependent. When exposed to a hypertonic but not hypotonic bath solution, amiloride-sensitive Na+ transport was inhibited in mouse trachea and colon, independent of the extracellular Cl- concentration. Both inhibition of Na+ transport by hypertonic bath solution and ATP were additive. When coexpressed in Xenopus oocytes, activation of CFTR by IBMX and forskolin inhibited the epithelial Na+ channel (ENaC) in a Cl- dependent fashion. However, both hypertonic and hypotonic bath solutions showed only minor effects on amiloride-sensitive conductance, independent of the bath Cl- concentration. Moreover, CFTR-induced inhibition of ENaC could be detected in oocytes even after exposure to hypertonic or hypotonic bath solutions. We conclude that amiloride-sensitive Na+ absorption in mouse airways and colon is inhibited by cell shrinkage by a mechanism that does not interfere with purinergic and CFTR-mediated inhibition of ENaC.

  12. Oocyte induction of EGF responsiveness in somatic cells is associated with the acquisition of porcine oocyte developmental competence.

    PubMed

    Ritter, Lesley J; Sugimura, Satoshi; Gilchrist, Robert B

    2015-06-01

    Oocytes progressively acquire the competence to support embryo development as oogenesis proceeds with ovarian folliculogenesis. The objectives of this study were to investigate oocyte-secreted factor (OSF) participation in the development of somatic cell epidermal growth factor (EGF) responsiveness associated with oocyte developmental competence. A well-established porcine model was employed using oocytes from small (<4 mm) vs medium sized (>4 mm) antral follicles, representing low vs moderate developmental competence, respectively. Cumulus-oocyte complexes (COCs) were treated in vitro with inducers of oocyte maturation, and cumulus cell functions and oocyte developmental competence were assessed. COCs from small follicles responded to FSH but, unlike COCs from larger follicles, were incapable of responding to EGF family growth factors known to mediate oocyte maturation in vivo, exhibiting perturbed cumulus expansion and expression of associated transcripts (HAS2 and TNFAIP6). Low and moderate competence COCs expressed equivalent levels of EGF receptor (EGFR) mRNA; however, the former had less total EGFR protein leading to failed activation of phospho-EGFR and phospho-ERK1/2, despite equivalent total ERK1/2 protein levels. Native OSFs from moderate, but not from low, competence oocytes established EGF responsiveness in low competence COCs. Four candidate recombinant OSFs failed to mimic the actions of native OSFs in regulating cumulus expansion. Treatment with OSFs and EGF enhanced oocyte competence but only of the low competence COCs. These data suggest that developmental acquisition by the oocyte of capacity to regulate EGF responsiveness in the oocyte's somatic cells is a major milestone in the oocyte's developmental program and contributes to coordinated oocyte and somatic cell development.

  13. 33 CFR 117.702 - Arthur Kill.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Arthur Kill. 117.702 Section 117... OPERATION REGULATIONS Specific Requirements New Jersey § 117.702 Arthur Kill. (a) The draw of the Arthur Kill (AK) Railroad Bridge shall be maintained in the full open position for navigation at all...

  14. 33 CFR 117.702 - Arthur Kill.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Arthur Kill. 117.702 Section 117... OPERATION REGULATIONS Specific Requirements New Jersey § 117.702 Arthur Kill. (a) The draw of the Arthur Kill (AK) Railroad Bridge shall be maintained in the full open position for navigation at all...

  15. 33 CFR 117.702 - Arthur Kill.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Arthur Kill. 117.702 Section 117... OPERATION REGULATIONS Specific Requirements New Jersey § 117.702 Arthur Kill. (a) The draw of the Arthur Kill (AK) Railroad Bridge shall be maintained in the full open position for navigation at all...

  16. 33 CFR 117.702 - Arthur Kill.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Arthur Kill. 117.702 Section 117... OPERATION REGULATIONS Specific Requirements New Jersey § 117.702 Arthur Kill. (a) The draw of the Arthur Kill (AK) Railroad Bridge shall be maintained in the full open position for navigation at all...

  17. 33 CFR 117.702 - Arthur Kill.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Arthur Kill. 117.702 Section 117... OPERATION REGULATIONS Specific Requirements New Jersey § 117.702 Arthur Kill. (a) The draw of the Arthur Kill (AK) Railroad Bridge shall be maintained in the full open position for navigation at all...

  18. Sex aneuploidy of unfertilized human oocytes after intracytoplasmic sperm injection

    SciTech Connect

    Lee, G.; Ward, D.C.; Jones, E.E.

    1994-09-01

    Intracytoplasmic sperm injection (ICSI) has recently achieved successful fertilization and pregnancy in human in vitro fertilization, particularly in cases of severe male factor infertility. One criticism of this novel clinical technique is that it bypasses the natural selection process of fertilization. We use fluorescence in situ hybridization (FISH) to analyze oocytes which fail to fertilize after ICSI in the Yale IVF Program. The purpose of this study is to determine whether failed fertilization after ICSI can be attributed to sex chromosome aneuploidy in the oocyte. Fertilization of oocytes is determined by the presence of two pronuclei on light microscopic examination (400X). Multi-probe FISH with DAPI (4,6,-diamino-2-phenyl-indole) counterstain is then performed to determine oocyte ploidy and the presence of decondensed sperm. Centromeric probes for X, Y and 17 are used simultaneously in each oocyte for in situ hybridization to oocyte chromatin. In all oocytes examined after ICSI to date, unfertilized oocytes have decondensed sperm DNA present confirming appropriate intracytoplasmic placement of the sperm. Preliminary results obtained from 31 oocytes have not identified any sex chromosome aneuploidies. The FISH technique used in post-ICSI oocytes is a model system for delineating genetic causes of failed fertilization in the human.

  19. Ultrastructural observation of oocytes in six types of stony corals.

    PubMed

    Tsai, Sujune; Chang, Wei-Chieh; Chavanich, Suchana; Viyakarn, Voranop; Lin, Chiahsin

    2016-08-01

    In this study, the ultrastructure of the oocytes of 6 types of scleractinian corals was observed by transmission electron microscopy (TEM). Moreover, histological and ultrastructural analyses were performed to improve our understanding of the organelles involved in coral oocyte formation. In all 6 stony coral species, the microvilli were tubular and directly grew from the surface of the oocyte membrane; yolk bodies, lipid granules, and cortical alveoli accounted for most of the volume inside the oocytes, suggesting that they are associated with energy storage and buoyancy. Clear differences were observed in the size of yolk bodies and lipid granules in the oocytes of the 6 stony coral species, which occupied approximately 55%-80% of the inner space of the oocytes. Galaxea fascicularis exhibited the largest lipid granule volume, but the oocytes contained only an average number of 12.45 lipid granules per unit area. Only Montipora incrassata oocytes contained symbiotic algae. The smallest size and proportion of lipid granules in M. incrassata oocytes may be attributed to the presence of symbiotic algae and large yolk bodies, which may help oocytes produce energy and function as a nutritional source. This study is crucial for improving the understanding of the basic biology of coral reproduction, and the ensuing datasets is critical for conservation-oriented studies seeking to cryopreserve corals during these times of dramatic global climate change.

  20. 33 CFR 117.801 - Newtown Creek, Dutch Kills, English Kills and their tributaries.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Newtown Creek, Dutch Kills, English Kills and their tributaries. 117.801 Section 117.801 Navigation and Navigable Waters COAST GUARD....801 Newtown Creek, Dutch Kills, English Kills and their tributaries. (a) The following...

  1. 33 CFR 117.801 - Newtown Creek, Dutch Kills, English Kills and their tributaries.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Newtown Creek, Dutch Kills, English Kills and their tributaries. 117.801 Section 117.801 Navigation and Navigable Waters COAST GUARD....801 Newtown Creek, Dutch Kills, English Kills and their tributaries. (a) The following...

  2. 33 CFR 117.801 - Newtown Creek, Dutch Kills, English Kills and their tributaries.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Newtown Creek, Dutch Kills, English Kills and their tributaries. 117.801 Section 117.801 Navigation and Navigable Waters COAST GUARD....801 Newtown Creek, Dutch Kills, English Kills and their tributaries. (a) The following...

  3. 33 CFR 117.801 - Newtown Creek, Dutch Kills, English Kills and their tributaries.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Newtown Creek, Dutch Kills, English Kills and their tributaries. 117.801 Section 117.801 Navigation and Navigable Waters COAST GUARD....801 Newtown Creek, Dutch Kills, English Kills and their tributaries. (a) The following...

  4. 33 CFR 117.801 - Newtown Creek, Dutch Kills, English Kills and their tributaries.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Newtown Creek, Dutch Kills, English Kills and their tributaries. 117.801 Section 117.801 Navigation and Navigable Waters COAST GUARD....801 Newtown Creek, Dutch Kills, English Kills and their tributaries. (a) The following...

  5. Embryonic poly(A)-binding protein (EPAB) is required for oocyte maturation and female fertility in mice

    PubMed Central

    Guzeloglu-Kayisli, Ozlem; Lalioti, Maria D.; Aydiner, Fulya; Sasson, Isaac; Ilbay, Orkan; Sakkas, Denny; Lowther, Katie M.; Mehlmann, Lisa M.; Seli, Emre

    2014-01-01

    Gene expression during oocyte maturation and early embryogenesis up to zygotic genome activation requires translational activation of maternally-derived mRNAs. EPAB [embryonic poly(A)-binding protein] is the predominant poly(A)-binding protein during this period in Xenopus, mouse and human. In Xenopus oocytes, ePAB stabilizes maternal mRNAs and promotes their translation. To assess the role of EPAB in mammalian reproduction, we generated Epab-knockout mice. Although Epab−/− males and Epab+/− of both sexes were fertile, Epab−/− female mice were infertile, and could not generate embryos or mature oocytes in vivo or in vitro. Epab−/− oocytes failed to achieve translational activation of maternally-stored mRNAs upon stimulation of oocyte maturation, including Ccnb1 (cyclin B1) and Dazl (deleted in azoospermia-like) mRNAs. Microinjection of Epab mRNA into Epab−/− germinal vesicle stage oocytes did not rescue maturation, suggesting that EPAB is also required for earlier stages of oogenesis. In addition, late antral follicles in the ovaries of Epab−/− mice exhibited impaired cumulus expansion, and a 8-fold decrease in ovulation, associated with a significant down-regulation of mRNAs encoding the EGF (epidermal growth factor)-like growth factors Areg (amphiregulin), Ereg (epiregulin) and Btc (betacellulin), and their downstream regulators, Ptgs2 (prostaglandin synthase 2), Has2 (hyaluronan synthase 2) and Tnfaip6 (tumour necrosis factor α-induced protein 6). The findings from the present study indicate that EPAB is necessary for oogenesis, folliculogenesis and female fertility in mice. PMID:22621333

  6. Mammalian oocyte activation by the synergistic action of discrete sperm head components: induction of calcium transients and involvement of proteolysis.

    PubMed

    Perry, A C; Wakayama, T; Cooke, I M; Yanagimachi, R

    2000-01-15

    Sperm-borne oocyte-activating factor (SOAF) elicits activation sufficient for full development and originates from sperm head submembrane matrices. SOAF comprises discrete, heat-sensitive and -stable components (referred to here respectively as SOAF-I and -II) which are each necessary but not sufficient to activate oocytes. The heat-sensitive SOAF component, SOAF-I(m), becomes solubilized from the perinuclear matrix under reducing conditions (the SOAF transition) to generate SOAF-I(s). Although calcium transients likely play an important role in oocyte activation at fertilization, the question is open as to whether demembranated heads or SOAF-I(s) and/or SOAF-II can induce calcium transients. We now report that injection of demembranated sperm heads into mouse oocytes efficiently induced Ca(2+) oscillations. When injected independently, SOAF-I(s) and demembranated heads heated to 48 degrees C failed to generate Ca(2+) oscillations. However, co-injection of SOAF-I(s) and 48 degrees C-heated heads induced oscillations, mirroring their synergistic ability to activate oocytes. This suggests that SOAF-mediated activation proceeds via pathways resembling those at fertilization and provides the first direct evidence that multiple sperm components are required to induce Ca(2+) oscillations. We probed the SOAF-I(s) liberation at the center of this activation and show that in vitro it was sensitive to a profile of serine protease inhibitors. These findings support a model in which mammalian oocyte activation, including the induction of calcium transients, involves proteolytic processing of SOAF from sperm head submembrane compartments.

  7. Microtubule actin crosslinking factor 1 regulates the Balbiani body and animal-vegetal polarity of the zebrafish oocyte.

    PubMed

    Gupta, Tripti; Marlow, Florence L; Ferriola, Deborah; Mackiewicz, Katarzyna; Dapprich, Johannes; Monos, Dimitri; Mullins, Mary C

    2010-08-19

    Although of fundamental importance in developmental biology, the genetic basis for the symmetry breaking events that polarize the vertebrate oocyte and egg are largely unknown. In vertebrates, the first morphological asymmetry in the oocyte is the Balbiani body, a highly conserved, transient structure found in vertebrates and invertebrates including Drosophila, Xenopus, human, and mouse. We report the identification of the zebrafish magellan (mgn) mutant, which exhibits a novel enlarged Balbiani body phenotype and a disruption of oocyte polarity. To determine the molecular identity of the mgn gene, we positionally cloned the gene, employing a novel DNA capture method to target region-specific genomic DNA of 600 kb for massively parallel sequencing. Using this technique, we were able to enrich for the genomic region linked to our mutation within one week and then identify the mutation in mgn using massively parallel sequencing. This is one of the first successful uses of genomic DNA enrichment combined with massively parallel sequencing to determine the molecular identity of a gene associated with a mutant phenotype. We anticipate that the combination of these technologies will have wide applicability for the efficient identification of mutant genes in all organisms. We identified the mutation in mgn as a deletion in the coding sequence of the zebrafish microtubule actin crosslinking factor 1 (macf1) gene. macf1 is a member of the highly conserved spectraplakin family of cytoskeletal linker proteins, which play diverse roles in polarized cells such as neurons, muscle cells, and epithelial cells. In mgn mutants, the oocyte nucleus is mislocalized; and the Balbiani body, localized mRNAs, and organelles are absent from the periphery of the oocyte, consistent with a function for macf1 in nuclear anchoring and cortical localization. These data provide the first evidence for a role for spectraplakins in polarization of the vertebrate oocyte and egg.

  8. Cytoplasmic Streaming in the Drosophila Oocyte.

    PubMed

    Quinlan, Margot E

    2016-10-06

    Objects are commonly moved within the cell by either passive diffusion or active directed transport. A third possibility is advection, in which objects within the cytoplasm are moved with the flow of the cytoplasm. Bulk movement of the cytoplasm, or streaming, as required for advection, is more common in large cells than in small cells. For example, streaming is observed in elongated plant cells and the oocytes of several species. In the Drosophila oocyte, two stages of streaming are observed: relatively slow streaming during mid-oogenesis and streaming that is approximately ten times faster during late oogenesis. These flows are implicated in two processes: polarity establishment and mixing. In this review, I discuss the underlying mechanism of streaming, how slow and fast streaming are differentiated, and what we know about the physiological roles of the two types of streaming.

  9. DNA (deoxyribonucleic acid) synthesis following microinjection of heterologous sperm and somatic cell nuclei into hamster oocytes

    SciTech Connect

    Naish, S.J.; Perreault, S.D.; Zirkin, B.R.

    1987-01-01

    The authors investigated the ability of the hamster oocyte to initiate DNA synthesis in nuclei differing in basic protein content. DNA synthesis was studied by autoradiography in oocytes that had been incubated in /sup 3/H-thymidine after being parthenogenetically activated by sham microinjection, or microinjected with hamster, mouse, rabbit, or fish sperm nuclei, or hamster hepatocyte nuclei. Within 6 hr of sham or nucleus microinjection, nuclei of each type underwent transformation into pronuclei and synthesized DNA. These results demonstrated that the hamster egg can access and utilize its own and each type of template provided, whether homologous or heterologous. However, pronuclei derived from hamster sperm nuclei were more likely to be synthesizing DNA at 6 hr than pronuclei derived from sperm nuclei of other species. The authors conclude that the mechanisms employed by the hamster oocyte to transform hamster sperm nuclei into pronuclei and to effect DNA synthesis in these nuclei are not specific for the hamster sperm nucleus. Nevertheless, these mechanisms apparently operate more efficiently when the hamster sperm nucleus, rather than a heterologous sperm nucleus, is present.

  10. Epigenetic reprogramming in somatic cells induced by extract from germinal vesicle stage pig oocytes.

    PubMed

    Bui, Hong-Thuy; Kwon, Deug-Nam; Kang, Min-Hui; Oh, Mi-Hye; Park, Mi-Ryung; Park, Woo-Jin; Paik, Seung-Sam; Van Thuan, Nguyen; Kim, Jin-Hoi

    2012-12-01

    Genomic reprogramming factors in the cytoplasm of germinal vesicle (GV) stage oocytes have been shown to improve the efficiency of producing cloned mouse offspring through the exposure of nuclei to a GV cytoplasmic extract prior to somatic cell nuclear transfer (SCNT) to enucleated oocytes. Here, we developed an extract of GV stage pig oocytes (GVcyto-extract) to investigate epigenetic reprogramming events in treated somatic cell nuclei. This extract induced differentiation-associated changes in fibroblasts, resulting in cells that exhibit pluripotent stem cell-like characteristics and that redifferentiate into three primary germ cell layers both in vivo and in vitro. The GVcyto-extract treatment induced large numbers of high-quality SCNT-generated blastocysts, with methylation and acetylation of H3-K9 and expression of Oct4 and Nanog at levels similar to in vitro fertilized embryos. Thus, GVcyto-extract could elicit differentiation plasticity in treated fibroblasts, and SCNT-mediated reprogramming reset the epigenetic state in treated cells more efficiently than in untreated cells. In summary, we provide evidence for the generation of stem-like cells from differentiated somatic cells by treatment with porcine GVcyto-extract.

  11. Cumulus Cells Block Oocyte Meiotic Resumption via Gap Junctions in Cumulus Oocyte Complexes Subjected to DNA Double-Strand Breaks.

    PubMed

    Sun, Ming-Hong; Zheng, Jie; Xie, Feng-Yun; Shen, Wei; Yin, Shen; Ma, Jun-Yu

    2015-01-01

    During mammalian oocyte growth, genomic DNA may accumulate DNA double-strand breaks (DSBs) induced by factors such as reactive oxygen species. Recent evidence demonstrated that slight DSBs do not activate DNA damage checkpoint proteins in denuded oocytes. These oocytes, even with DNA DSBs, can resume meiosis and progress to metaphase of meiosis II. Meiotic resumption in oocytes is also controlled by the surrounding cumulus cells; accordingly, we analyzed whether cumulus-cell enclosed oocytes (CEOs) with DNA damage are able to resume meiosis. Compared with DNA-damaged denuded oocytes, we found that meiotic resumption rates of CEOs significantly decreased. To assess the mechanism by which cumulus cells block meiotic resumption in CEOs with DNA DSBs, we treated the cumulus oocyte complex with the gap junction inhibitor carbenoxolone and found that carbenoxolone can rescue the block in CEO meiosis induced by DNA DSBs. Since cumulus cell-synthesized cAMPs can pass through the gap junctions between oocyte and cumulus cell to block oocyte meiosis, we measured the expression levels of adenylate cyclase 1 (Adcy1) in cumulus cells, and G-protein coupled receptor 3 (Gpr3) and phosphodiesterase 3A (Pde3a) in oocytes, and found that the mRNA expression level of Adcy1 increased significantly in DNA-damaged cumulus cells. In conclusion, our results indicate that DNA DSBs promote cAMP synthesis in cumulus cells, and cumulus cAMPs can inhibit meiotic resumption of CEOs through gap junctions.

  12. Killing(-Yano) tensors in string theory

    NASA Astrophysics Data System (ADS)

    Chervonyi, Yuri; Lunin, Oleg

    2015-09-01

    We construct the Killing(-Yano) tensors for a large class of charged black holes in higher dimensions and study general properties of such tensors, in particular, their behavior under string dualities. Killing(-Yano) tensors encode the symmetries beyond isometries, which lead to insights into dynamics of particles and fields on a given geometry by providing a set of conserved quantities. By analyzing the eigenvalues of the Killing tensor, we provide a prescription for constructing several conserved quantities starting from a single object, and we demonstrate that Killing tensors in higher dimensions are always associated with ellipsoidal coordinates. We also determine the transformations of the Killing(-Yano) tensors under string dualities, and find the unique modification of the Killing-Yano equation consistent with these symmetries. These results are used to construct the explicit form of the Killing(-Yano) tensors for the Myers-Perry black hole in arbitrary number of dimensions and for its charged version.

  13. Novel Ca2+ increases in the maturing oocytes of starfish during the germinal vesicle breakdown.

    PubMed

    Limatola, Nunzia; Chun, Jong T; Kyozuka, Keiichiro; Santella, Luigia

    2015-11-01

    It has been known that the intracellular Ca(2+) level transiently rises at the specific stages of mitosis such as the moment of nuclear envelope breakdown and at the metaphase-anaphase transition. Comparable intracellular Ca(2+) increases may also take place during meiosis, as was intermittently reported in mouse, Xenopus, and starfish oocytes. In a majority of starfish species, the maturing oocytes display an intracellular Ca(2+) increase within few minutes after the addition of the maturation hormone, 1-methyladenine (1-MA). Although starfish oocytes at meiosis also manifest a Ca(2+) increase at the time of polar body extrusion, a similar Ca(2+) increase has never been observed during the envelope breakdown of the nucleus (germinal vesicle, GV). Here, we report, for the first time, the existence of an additional Ca(2+) response in the maturing oocytes of Asterina pectinifera at the time of GV breakdown. In contrast to the immediate early Ca(2+) response to 1-MA, which is independent of external Ca(2+) and takes a form of intracellular Ca(2+) wave traveling three times as fast as that in the fertilized eggs, this late stage Ca(2+) response comprised a train of numerous spikes representing Ca(2+) influx. These Ca(2+) spikes coinciding with GV breakdown were mostly eliminated when the GV was removed from the oocytes prior to the addition of 1-MA, suggesting that the Ca(2+) spikes are rather a consequence of the GV breakdown. In support of the idea that these Ca(2+) spikes play a physiological role, the oocytes matured in calcium-free seawater had a higher rate of cleavage failure 2h after the fertilization in natural seawater. Specific inhibitors of L-type Ca(2+) channels, verapamil and diltiazem, severely suppressed the amplitude of the individual Ca(2+) spikes, but not their frequencies. On the other hand, latrunculin-A (LAT-A), which promotes net depolymerization of the actin cytoskeleton, had a dual effect on this late Ca(2+) response. When added immediately

  14. Ovarian development in athymic nude mice. IV. The effect of PMSG and oestradiol on the growth of the oocyte and follicle.

    PubMed

    Lintern-Moore, S; Pantelouris, E M

    1976-01-01

    Retarded follicular and oocyte nucleolar growth rates in ovaries of 1 month old congenitally athymic nude mice are restored by pregnant mare serum gonadotrophin (PMSG). By contrast oestradiol-17beta depresses follicular growth rate in phenotypically normal (control) mice to levels found in nude littermates. Paradoxically, oestradiol-17beta stimulates nucleolar growth rate in control mice, but not nudes, to levels found in PMSG treated groups. These results are discussed in relation to the position of the thymus gland in the pituitary/ovarian axis and the mode of action gonadotrophin upon oocyte and follicular growth in the pre-puberal mouse ovary.

  15. The insemination of goldfish ( Carassium auratus) oocyte matured in vitro

    NASA Astrophysics Data System (ADS)

    Wang, Renxue; Wu, Xianhan; Zhou, Jing; Zhang, Shicui; Ma, Yingjie; Wu, Shangqin; Shi, Yingxian

    1991-03-01

    Full maturation of goldfish oocyte was induced in vitro by 17 α-hydroxy-20β-dihydroprogesterone. The oocyte maturation involves GV migration to the periphery of the oocyte and germinal vesicle breakdown (GVBD). In the experiment, incubation duration for GVBD varied in different broods of oocytes. Generally, if the duration for GVBD was shorter than 6 h, oocytes would have a better chance to survive after maturation and insemination. The maturation of nucleus (GV) and cytoplasm are not synchronous. Cytoplasm maturation occurs several hs after GVBD. Oocytes inseminated 8 9 h after GVBD have the highest fertilizing and hatching rate. Fertilized ova matured in vitro can develop to sexually mature adults capable of reproduction.

  16. The effect of cooling and hypertonic exposure on murine oocyte function, fertilization, and development.

    PubMed

    Hunter, J E; Fuller, B J; Bernard, A; Shaw, R W

    1995-08-01

    Several individual but related steps are involved in the cryopreservation process, including the addition of cryoprotectants at various temperatures, cooling to subzero temperatures, and long-term storage. The process is completed by rewarming and removal of cryoprotectants prior to a return to physiological conditions. In this series of experiments we have attempted to distinguish the effects of some of these procedures. Control, untreated ovulated mouse oocytes showed 95% in vitro fertilization (190/200) and 92% subsequent development to hatching blastocyst (184/200). Exposure of oocytes to either isotonic or hypertonic media at 37 degrees C did not significantly change the rate of fertilization (90%, 108/120; and 89%, 154/174, respectively) or subsequent embryonic development (85%, 102/120; and 82%, 143/174, respectively). Slow cooling in isotonic medium (-3 degrees C/min) to 0 degree C had no effect on the rate of fertilization (83%, 103/124), but rapid cooling (> 1000 degrees C/min) to 0 degree C resulted in a significant reduction in fertilization rate to 75% (151/202). When oocytes suspended in a hypertonic solution were cooled using slow or rapid rates, there were marked decreases in fertilization to 26% (61/231) and 56% (156/278), respectively. Subsequent embryonic growth was reduced to 15% (34/231) after slow cooling and 26% (72/278) after rapid cooling. Exposure of oocytes to glycerol at 37 degrees C and dimethyl sulfoxide at 0 degree C reduced the fertilization rate to 57% (67/118) and 73% (103/145), respectively, with a corresponding reduction in embryonic growth to 52% (61/118) and 65% (94/145), but there were no additional effects of cooling or hypertonic exposure after addition of cryoprotectants.

  17. Effect of nicotine on in vitro maturation of bovine oocytes.

    PubMed

    Liu, Ying; Li, Guang-Peng; Rickords, Lee F; White, Kenneth L; Sessions, Benjamin R; Aston, Kenneth I; Bunch, Thomas D

    2008-01-15

    The putative effect of nicotine on maturation and the chromosomal complement of bovine oocytes were investigated in the present study. Cumulus-enclosed oocytes were incubated in maturation medium with 0, 0.5, 1.0, 2.5, 5.0, and 10.0 mmol concentrations of nicotine. The results indicated that: (1) nicotine affected cumulus cell expansion in a dose-dependent manner and the perivitelline space failed to form when concentrations were equal to or greater than 5.0 mmol; (2) oocytes treated with 0.5 and 1.0 mmol nicotine concentrations resulted in maturation rates (83.3% and 85.9%, respectively) which was similar to the control (86.2%), whereas treatment with 2.5 and 5.0 mmol concentrations significantly decreased maturation rates to 70.2% and 26.7%, respectively; (3) nicotine at or over 2.5 mmol caused extremely irregular meiotic spindles and interrupted microfilament organization; (4) chromosomal analyses of oocytes with PB1 showed that oocytes derived from 0.5 and 1.0 mmol nicotine groups had haploid complements similar to the control (87-90%), but when the concentrations were increased to 2.5 and 5.0 mmol the haploid state was significantly reduced to around 70%; (5) oocytes at GVBD (germinal vesicle breakdown) and metaphase I stages were less affected by nicotine at 5.0 and 10.0 mmol concentrations than GV-stage oocytes; (6) maturation rates of the short-term nicotine-treated oocytes could be improved when subsequently incubated in normal maturation medium. Prolonged culture of nicotine-pretreated oocytes resulted in self-activation and some oocytes formed 1 or 2 pronuclei. In conclusion, nicotine affects bovine oocyte cumulus cell expansion, maturation rate, and chromosomal complement in a dose-dependent and an oocyte-stage-dependent manner.

  18. Fish kill from underwater explosions

    USGS Publications Warehouse

    Stuart, David J.

    1962-01-01

    The U.S. Geological Survey has used 23 different shotpoints during two seasons of field work in our seismic study of crustal structure in western United States. Without exception, it has been found that under-water shotpoints result in a more efficient conversion of explosive energy into seismic energy than do drilled-hole shotpoints. This experience, together with elimination of drilling costs, has led to the use of underwater shotpoints wherever possible. Three of the 23 shotpoints were in the Pacific Ocean, and for these we have no detailed information on the fish kill. Another six shotpoints were located in inland bodies of water. These are: * Soda Lake near Fallon, Nevada * Mono Lake near Lee Vining, California * Lake Mead near Boulder City, Nevada * Shasta Lake near Redding, California * C.J. Strike Reservoir near Bruneau, Idaho * Lucky Peak Reservoir near Boise, Idaho The 22 high-explosive charges, weighing a total of 95,100 pounds, that were fired in lakes containing fish life resulted in the known death of 2,413 game fish with a total weight of 759 pounds. The average mortality was 110 game fish or 34.5 pounds of game fish killed per average shot of 4,325 pounds of high-explosives.

  19. Are oocytes from the anestrous bitch competent for meiosis?

    PubMed

    Chastant-Maillard, S; Saint-Dizier, M; Grimard, B; Chebrout, M; Thoumire, S; Reynaud, K

    2012-12-01

    In the bitch, oocyte meiosis resumption takes place in the oviduct. Using oocytes from anestrous bitches, in vitro maturation (IVM) generally gives very poor results. To investigate the contribution of oocyte competence to the low IVM yield, we compared in vivo maturation in an optimal environment with conventional IVM. A total of 418 grade 1 cumulus-oocyte complexes (COCs) from 10 anestrous bitches were transferred into the oviducts of recipient bitches either on Day -1 (n = 3 recipients), Day 0 (n = 2) or on Day +1 (n = 2) relative to ovulation. For each donor bitch, 20 grade 1 COCs were also cultured in vitro. After 72 h of in vivo or IVM, the nuclear stage of oocytes was determined after DNA and tubulin staining. Of the 154 oocytes recovered and examined after intratubal transfer, only 2% reached the metaphase I or II stage and 38.3% were degenerated. Oocytes cultured in vitro displayed a higher metaphase rate (7.6%, n = 170) and lower degeneration rate (12.9%) compared with transferred oocytes (p < 0.001). These results clearly demonstrate that the oocyte competence is the major limiting factor of IVM efficiency in the dog. Mimicking the tubal environment may thus not be sufficient to increase IVM yield in this species.

  20. Survival of oocytes recovered from vitrified sheep ovarian tissues.

    PubMed

    Al-aghbari, A M; Menino, A R

    2002-05-15

    The objective of this work was to develop an effective vitrification technique for cryopreserving oocytes in sheep ovarian tissues. Ovaries were surgically recovered from 15 pubertal ewes and the ovarian cortex was cut into sections. Ovarian tissues were placed in equilibration medium consisting of 4% (v/v) ethylene glycol (EG) and 20% (v/v) FBS in TCM-199 on ice for 30 min and transferred to vitrification solution (35% EG, 5% polyvinylpyrrolidone, 0.4M trehalose and 20% FBS in TCM-199) for 5 min. Ovarian tissues were vitrified by dropping the tissue on the surface of a steel cube cooled by liquid nitrogen. Cumulus-enclosed oocyte complexes (COC) were also collected and vitrified following the procedure used for ovarian tissues. After 2-3 weeks of storage in liquid nitrogen, ovarian tissues and COC were thawed at 37 degrees C in 0.3M trehalose and COC in ovarian tissues were mechanically and enzymatically isolated. Vitrified COC and freshly collected COC were washed twice in maturation medium (TCM-199 supplemented with 0.255 mM pyruvate and 10% heat-treated estrus cow serum) and cultured in 50 microl drops of maturation medium under paraffin oil for 23-25h at 39 degrees C in a humidified atmosphere of 5% CO(2) in air. After culture, cumulus cells were removed by hyaluronidase treatment and vortexing and oocytes were fixed and stained. No significant differences were observed between vitrified oocytes, oocytes recovered from vitrified ovarian tissues and non-vitrified control oocytes in the percentage of oocytes with acceptable staining per total number of oocytes fixed or with visible chromatin per total number of oocytes with acceptable staining. However, fewer (P<0.05) oocytes obtained from vitrified ovarian tissues (70%) reached metaphase II compared to vitrified oocytes (88%) and non-vitrified control oocytes (90%). In contrast, when oocytes with at least 3-5 layers of cumulus cells were considered from each of the three groups, no differences (P>0.05) were

  1. Oocyte triplet pairing for electrophysiological investigation of gap junctional coupling

    PubMed Central

    Hayar, Abdallah; Charlesworth, Amanda; Garcia-Rill, Edgar

    2010-01-01

    Gap junctions formed by expressing connexin subunits in Xenopus oocytes provide a valuable tool for revealing the gating properties of intercellular gap junctions in electrically coupled cells. We describe a new method that consists of simultaneous triple recordings from 3 apposed oocytes expressing exogenous connexins. The advantages of this method is that in one single experiment, one oocyte serves as control while a pair of oocytes, which have been manipulated differently, may be tested for different gap junctional properties. Moreover, we can study simultaneously the gap junctional coupling of 3 different pairs of oocytes in the same preparation. If the experiment consists of testing the effect of a single drug, this approach will reduce the time required, as background coupling in control pairs of oocytes does not need to be measured separately as with the conventional 2 oocyte pairing. The triplet approach also increases confidence that any changes seen in junctional communication are due to the experimental treatment and not variation in the preparation of oocytes or execution of the experiment. In this study, we show the example of testing the gap junctional properties among three oocytes, two of which are expressing rat connexin36. PMID:20230857

  2. Cracking the egg: molecular dynamics and evolutionary aspects of the transition from the fully grown oocyte to embryo

    PubMed Central

    Evsikov, Alexei V.; Graber, Joel H.; Brockman, J. Michael; Hampl, Aleš; Holbrook, Andrea E.; Singh, Priyam; Eppig, John J.; Solter, Davor; Knowles, Barbara B.

    2006-01-01

    Fully grown oocytes (FGOs) contain all the necessary transcripts to activate molecular pathways underlying the oocyte-to-embryo transition (OET). To elucidate this critical period of development, an extensive survey of the FGO transcriptome was performed by analyzing 19,000 expressed sequence tags of the Mus musculus FGO cDNA library. Expression of 5400 genes and transposable elements is reported. For a majority of genes expressed in mouse FGOs, homologs transcribed in eggs of Xenopus laevis or Ciona intestinalis were found, pinpointing evolutionary conservation of most regulatory cascades underlying the OET in chordates. A large proportion of identified genes belongs to several gene families with oocyte-restricted expression, a likely result of lineage-specific genomic duplications. Gene loss by mutation and expression in female germline of retrotransposed genes specific to M. musculus is documented. These findings indicate rapid diversification of genes involved in female reproduction. Comparison of the FGO and two-cell embryo transcriptomes demarcated the processes important for oogenesis from those involved in OET and identified novel motifs in maternal mRNAs associated with transcript stability. Discovery of oocyte-specific eukaryotic translation initiation factor 4E distinguishes a novel system of translational regulation. These results implicate conserved pathways underlying transition from oogenesis to initiation of development and illustrate how genes acquire and lose reproductive functions during evolution, a potential mechanism for reproductive isolation. PMID:17015433

  3. Micromechanical Analysis of the Hyaluronan-Rich Matrix Surrounding the Oocyte Reveals a Uniquely Soft and Elastic Composition.

    PubMed

    Chen, Xinyue; Bonfiglio, Rita; Banerji, Suneale; Jackson, David G; Salustri, Antonietta; Richter, Ralf P

    2016-06-21

    The cumulus cell-oocyte complex (COC) matrix is an extended coat that forms around the oocyte a few hours before ovulation and plays vital roles in oocyte biology. Here, we analyzed the micromechanical response of mouse COC matrix by colloidal-probe atomic force microscopy. We found that the COC matrix is elastic insofar as it does not flow and its original shape is restored after force release. At the same time, the COC matrix is extremely soft. Specifically, the most compliant parts of in vivo and in vitro expanded COC matrices yielded Young's modulus values of 0.5 ± 0.1 Pa and 1.6 ± 0.3 Pa, respectively, suggesting both high porosity and a large mesh size (≥100 nm). In addition, the elastic modulus increased progressively with indentation. Furthermore, using optical microscopy to correlate these mechanical properties with ultrastructure, we discovered that the COC is surrounded by a thick matrix shell that is essentially devoid of cumulus cells and is enhanced upon COC expansion in vivo. We propose that the pronounced nonlinear elastic behavior of the COC matrix is a consequence of structural heterogeneity and serves important functions in biological processes such as oocyte transport in the oviduct and sperm penetration.

  4. Germ cell formation from embryonic stem cells and the use of somatic cell nuclei in oocytes.

    PubMed

    Pelosi, Emanuele; Forabosco, Antonino; Schlessinger, David

    2011-03-01

    Embryonic stem cells (ESCs) have remarkable properties of pluripotency and self-renewal, along with the retention of chromosomal integrity. Germ cells function as a kind of "transgenerational stem cells," transmitting genetic information from one generation to the next. The formation of putative primordial germ cells (PGCs) and germ cells from mouse and human ESCs (hESCs) has, in fact, been shown, and the apparent derivation of functional mouse male gametes has also been described. Additionally, investigators have successfully reprogrammed somatic nuclei into a pluripotent state by inserting them into ESCs or oocytes. This would enable the generation of ESCs genetically identical to the somatic cell donor and their use in cell therapy. However, these methodologies are still inefficient and their mechanisms poorly understood. Until full comprehension of these processes is obtained, clinical applications remain remote. Nevertheless, they represent promising tools in the future, enhancing methods of therapeutic cloning and infertility treatment.

  5. Oocyte Developmental Competence: Insights from Cross-Species Differential Gene Expression and Human Oocyte-Specific Functional Gene Networks.

    PubMed

    Biase, Fernando H

    2017-03-01

    Understanding oocyte developmental competence remains a key challenge for reproductive biology and systems sciences. The transcriptome of oocytes in eutherians is highly complex and is associated with the success of embryo development. Due to sample limitations from humans, animal models are used for investigation of the oocyte transcriptome. Nonetheless, little is known about the diversity of the oocyte transcriptome across eutherians. In this report, comprehensive investigation of 7 public data sets in 4 species, human, macaque, mice, and cattle, shows that 16,572 genes are expressed in oocytes. Approximately 26% of the genes were expressed in all four species. There were 1390, 489, and 187 genes specifically expressed in human, mice, and cattle oocytes, respectively. Coexpression clustering of the genes specifically expressed in human oocytes revealed functional enrichment (FDR <0.05) of Gene Ontology (GO) terms important for oocyte physiology (i.e., "cellular response to metal ion," "negative regulation of growth," "hormone activity," and "receptor activity"). Interrogation of 4 data sets revealed 26 genes whose expressions were significantly (FDR ≤0.1) associated with oocyte developmental competence and concordant fold change in 2 studies. The genes AK2, AKAP1, ECHS1, MRPL10, MRPL24, PTRH2, STX17, SUCLG1, SUOX, and TOMM34 were associated with the GO term "mitochondrion" (FDR <0.01). Collectively, the results offer new insights on gene transcript levels associated with oocyte developmental competence and the central role of mitochondrion for oocyte's health among eutherians. Caution should be exercised, however, when extending the inferences related to gene expression associated with oocyte quality across eutherians.

  6. Cryopreservation of in vitro matured oocytes after ex vivo oocyte retrieval from gynecologic cancer patients undergoing radical surgery

    PubMed Central

    Park, Chan Woo; Lee, Sun Hee; Yang, Kwang Moon; Lee, In Ho; Lim, Kyung Teak; Lee, Ki Heon

    2016-01-01

    Objective The aim of this study was to report a case series of in vitro matured (IVM) oocyte freezing in gynecologic cancer patients undergoing radical surgery under time constraints as an option for fertility preservation (FP). Methods Case series report. University-based in vitro fertilization center. Six gynecologic cancer patients who were scheduled to undergo radical surgery the next day were referred for FP. The patients had endometrial (n=2), ovarian (n=3), and double primary endometrial and ovarian (n=1) cancer. Ex vivo retrieval of immature oocytes from macroscopically normal ovarian tissue was followed by mature oocyte freezing after IVM or embryo freezing with intracytoplasmic sperm injection. Results A total of 53 oocytes were retrieved from five patients, with a mean of 10.6 oocytes per patient. After IVM, a total of 36 mature oocytes were obtained, demonstrating a 67.9% maturation rate. With regard to the ovarian cancer patients, seven IVM oocytes were frozen from patient 3, who had stage IC cancer, whereas one IVM oocyte was frozen from patient 4, who had stage IV cancer despite being of a similar age. With regard to the endometrial cancer patients, 15 IVM oocytes from patient 1 were frozen. Five embryos were frozen after the fertilization of IVM oocytes from patient 6. Conclusion Immature oocytes can be successfully retrieved ex vivo from macroscopically normal ovarian tissue before radical surgery. IVM oocyte freezing provides a possible FP option in patients with advanced-stage endometrial or ovarian cancer without the risk of cancer cell spillage or time delays. PMID:27358831

  7. Porcine oocyte maturation in vitro: role of cAMP and oocyte-secreted factors – A practical approach

    PubMed Central

    APPELTANT, Ruth; SOMFAI, Tamás; MAES, Dominiek; VAN SOOM, Ann; KIKUCHI, Kazuhiro

    2016-01-01

    Polyspermy or the penetration of more than one sperm cell remains a problem during porcine in vitro fertilization (IVF). After in vitro culture of porcine zygotes, only a low percentage of blastocysts develop and their quality is inferior to that of in vivo derived blastocysts. It is unknown whether the cytoplasmic maturation of the oocyte is sufficiently sustained in current in vitro maturation (IVM) procedures. The complex interplay between oocyte and cumulus cells during IVM is a key factor in this process. By focusing on this bidirectional communication, it is possible to control the coordination of cumulus expansion, and nuclear and cytoplasmic maturation during IVM to some extent. Therefore, this review focuses on the regulatory mechanisms between oocytes and cumulus cells to further the development of new in vitro embryo production (IVP) procedures, resulting in less polyspermy and improved oocyte developmental potential. Specifically, we focused on the involvement of cAMP in maturation regulation and function of oocyte-secreted factors (OSFs) in the bidirectional regulatory loop between oocyte and cumulus cells. Our studies suggest that maintaining high cAMP levels in the oocyte during the first half of IVM sustained improved oocyte maturation, resulting in an enhanced response after IVF and cumulus matrix disassembly. Recent research indicated that the addition of OSFs during IVM enhanced the developmental competence of small follicle-derived oocytes, which was stimulated by epidermal growth factor (EGF) via developing EGF-receptor signaling. PMID:27349308

  8. A Taenia crassiceps metacestode factor enhances ovarian follicle atresia and oocyte degeneration in female mice.

    PubMed

    Solano, S; Zepeda, N; Copitin, N; Fernandez, A M; Tato, P; Molinari, J L

    2015-01-01

    The histopathological effects of Taenia crassiceps infection or T. crassiceps metacestode factor inoculation on the mouse ovary were determined using six female mice in three groups: infected mice, mice inoculated with the metacestode factor and control mice. The control group was subcutaneously inoculated with healthy peritoneal fluid. The infected group was intraperitoneally inoculated with 40 T. crassiceps metacestodes, and the metacestode factor group was subcutaneously inoculated with T. crassiceps metacestode factor (MF). Light and electron microscopy and TUNEL (terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labelling) assays revealed a significant increase in ovarian follicular atresia (predominantly in antral/preovulatory stages of development), oocyte degeneration (P< 0.05), and a decrease in the amount of corpus luteum in follicles of mice infected and inoculated with MF compared with the control group. Significant abnormalities of the granulosa cells and oocytes of the primordial, primary and secondary ovarian follicles occurred in both treated mouse groups (P< 0.05) compared with no degeneration in the control group. These pathological changes in female mice either infected with T. crassiceps metacestodes or inoculated with T. crassiceps MF may have consequences for ovulation and fertility.

  9. TAF4b Regulates Oocyte-Specific Genes Essential for Meiosis

    PubMed Central

    Grive, Kathryn J.; Gustafson, Eric A.; Seymour, Kimberly A.; Baddoo, Melody; Schorl, Christoph; Golnoski, Kayla; Rajkovic, Aleksandar; Brodsky, Alexander S.; Freiman, Richard N.

    2016-01-01

    TAF4b is a gonadal-enriched subunit of the general transcription factor TFIID that is implicated in promoting healthy ovarian aging and female fertility in mice and humans. To further explore the potential mechanism of TAF4b in promoting ovarian follicle development, we analyzed global gene expression at multiple time points in the human fetal ovary. This computational analysis revealed coordinate expression of human TAF4B and critical regulators and effectors of meiosis I including SYCP3, YBX2, STAG3, and DAZL. To address the functional relevance of this analysis, we turned to the embryonic Taf4b-deficient mouse ovary where, for the first time, we demonstrate, severe deficits in prophase I progression as well as asynapsis in Taf4b-deficient oocytes. Accordingly, TAF4b occupies the proximal promoters of many essential meiosis and oogenesis regulators, including Stra8, Dazl, Figla, and Nobox, and is required for their proper expression. These data reveal a novel TAF4b function in regulating a meiotic gene expression program in early mouse oogenesis, and support the existence of a highly conserved TAF4b-dependent gene regulatory network promoting early oocyte development in both mice and women. PMID:27341508

  10. Interactions between oocytes and cumulus cells during in vitro maturation of porcine cumulus-oocyte complexes in a chemically defined medium: effect of denuded oocytes on cumulus expansion and oocyte maturation.

    PubMed

    Appeltant, R; Somfai, T; Nakai, M; Bodó, S; Maes, D; Kikuchi, K; Van Soom, A

    2015-03-01

    The aim of the present study was to clarify interactions between oocytes and cumulus cells (CCs) on the level of cumulus expansion and oocyte maturation during IVM of cumulus-oocyte complexes (COCs) in a chemically defined medium using a system that allows individual tracking of oocytes. Especially, the influence of oocyte-secreted factors was investigated by the aid of addition of denuded oocytes (DOs) as a possible approach to improve the IVM system. The basic maturation medium was porcine oocyte medium with addition of gonadotropins only during the first 20 hours of IVM. During IVM, COCs were kept fixed to the bottom of culture dish by adhesive Cell-Tak coating, which enabled individual tracking of COCs during IVM. Size changes in COCs during IVM were measured by digital image analysis. Cumulus expansion in a porcine oocyte medium of intact COCs increased in a typical manner until 20 hours and decreased in size subsequently until 48 hours of IVM (P < 0.05). Removal of oocytes from COCs by oocytectomy allowed the expansion of CCs to some extent, although their expansion ability was lower than that of COCs (P < 0.05). Addition of DOs (COCs to DOs ratio of 9:16) did not improve cumulus expansion and oocyte maturation rates of intact COCs (P > 0.05) but did enhance cumulus expansion of oocytectomized complexes (P < 0.05). Furthermore, removal of CCs before IVM increased oocyte maturation rates compared with COCs (52.3% and 32.9%, respectively) (P < 0.05) and a similar effect was observed in COCs when the gap junction inhibitor carbenoxolone was added to the IVM medium: carbenoxolone repressed the expansion of COCs at 20 hours of IVM. In conclusion, the porcine oocyte enhances cumulus expansion both by gap junctional communications and presumably by oocyte-secreted factor production. Nevertheless, the presence of oocytes is not a prerequisite for this process. In return, CCs maintain meiotic arrest in cumulus-enclosed oocytes during the initial culture

  11. Detection of genes associated with developmental competence of bovine oocytes.

    PubMed

    Nemcova, Lucie; Jansova, Denisa; Vodickova-Kepkova, Katerina; Vodicka, Petr; Jeseta, Michal; Machatkova, Marie; Kanka, Jiri

    2016-03-01

    The developmental competence of oocytes is acquired progressively during folliculogenesis and is linked to follicular size. It has been documented that oocytes originating from larger follicles exhibit a greater ability to develop to the blastocyst stage. The differences in cytoplasmic factors such as mRNA transcripts could explain the differences in oocyte developmental potential. We used bovine oligonucleotide microarrays to characterize differences between the gene expression profiles of germinal vesicle stage (GV) oocytes with greater developmental competence from medium follicles (MF) and those with less developmental competence from small follicles (SF). After normalizing the microarray data, our analysis found differences in the level of 60 transcripts (≥1.4 fold), corresponding to 49 upregulated and 11 downregulated transcripts in MF oocytes compared to SF oocytes. The gene expression data were classified according to gene ontology, the majority of the genes were associated with the regulation of transcription, translation, the cell cycle, and mitochondrial activity. A subset of 16 selected genes was validated for GV oocytes by quantitative real-time RT-PCR; significant differences (P˂0.01) were found in the level of TAF1A, MTRF1L, ATP5C1, UBL5 and MAP3K13 between the MF and SF oocytes. After maturation the transcript level remained stable for ATP5F1, BRD7, and UBL5 in both oocyte categories. The transcript level of another 13 genes substantially dropped in the MF and/or SF oocytes. It can be concluded that the developmental competence of bovine oocytes and embryos may be a quantitative trait dependent on small changes in the transcription profiles of many genes.

  12. Counselling couples and donors for oocyte donation: the decision to use either known or anonymous oocytes.

    PubMed

    Baetens, P; Devroey, P; Camus, M; Van Steirteghem, A C; Ponjaert-Kristoffersen, I

    2000-02-01

    In order to avoid a long waiting period, the Centre for Reproductive Medicine of the Free University of Brussels suggests that couples in need of donor oocytes search for a donor among family and friends. Recipient couples can choose between two types of donation: known donation, i.e. treatment with the oocytes of the donor recruited by the couple, or anonymous donation, i.e. an exchange of the donor recruited by the couple with a donor recruited by another couple in order to ensure anonymity between donor and recipients. In total, 144 couples were counselled by a psychologist in the decision-making process with regard to the kind of donation to be used. Some 68.8% of the recipient couples preferred known donation. This choice was mainly motivated by reasons related to fears associated with anonymity, such as fear of the unknown origin of genetic material and the trust that couples had in 'their' donor. Almost one-third of the couples opted to use anonymous oocytes. The desire to establish explicit boundaries between the two families involved was the major motivation for this choice. Approximately 44% of the couples were willing to tell the child about the oocyte donation.

  13. A kill curve for Phanerozoic marine species

    NASA Technical Reports Server (NTRS)

    Raup, D. M.

    1991-01-01

    A kill curve for Phanerozoic species is developed from an analysis of the stratigraphic ranges of 17,621 genera, as compiled by Sepkoski. The kill curve shows that a typical species' risk of extinction varies greatly, with most time intervals being characterized by very low risk. The mean extinction rate of 0.25/m.y. is thus a mixture of long periods of negligible extinction and occasional pulses of much higher rate. Because the kill curve is merely a description of the fossil record, it does not speak directly to the causes of extinction. The kill curve may be useful, however, to li inverted question markmit choices of extinction mechanisms.

  14. Timelike Killing spinors in seven dimensions

    SciTech Connect

    Cariglia, Marco; Conamhna, Oisin A.P. Mac

    2004-12-15

    We employ the G-structure formalism to study supersymmetric solutions of minimal and SU(2) gauged supergravities in seven dimensions admitting Killing spinors with an associated timelike Killing vector. The most general such Killing spinor defines a SU(3) structure. We deduce necessary and sufficient conditions for the existence of a timelike Killing spinor on the bosonic fields of the theories, and find that such configurations generically preserve one out of 16 supersymmetries. Using our general supersymmetric ansatz we obtain numerous new solutions, including squashed or deformed anti-de Sitter solutions of the gauged theory, and a large class of Goedel-like solutions with closed timelike curves.

  15. Newcastle disease virus selectively kills human tumor cells.

    PubMed

    Reichard, K W; Lorence, R M; Cascino, C J; Peeples, M E; Walter, R J; Fernando, M B; Reyes, H M; Greager, J A

    1992-05-01

    Newcastle disease virus (NDV), strain 73-T, has previously been shown to be cytolytic to mouse tumor cells. In this study, we have evaluated the ability of NDV to replicate in and kill human tumor cells in culture and in athymic mice. Plaque assays were used to determine the cytolytic activity of NDV on six human tumor cell lines, fibrosarcoma (HT1080), osteosarcoma (KHOS), cervical carcinoma (KB8-5-11), bladder carcinoma (HCV29T), neuroblastoma (IMR32), and Wilm's tumor (G104), and on nine different normal human fibroblast lines. NDV formed plaques on all tumor cells tested as well as on chick embryo cells (CEC), the native host for NDV. Plaques did not form on any of the normal fibroblast lines. To detect NDV replication, virus yield assays were performed which measured virus particles in infected cell culture supernatants. Virus yield increased 10,000-fold within 24 hr in tumor and CEC supernatants. Titers remained near zero in normal fibroblast supernatants. In vivo tumoricidal activity was evaluated in athymic nude Balb-c mice by subcutaneous injection of 9 x 10(6) tumor cells followed by intralesional injection of either live or heat-killed NDV (1.0 x 10(6) plaque forming units [PFU]), or medium. After live NDV treatment, tumor regression occurred in 10 out of 11 mice bearing KB8-5-11 tumors, 8 out of 8 with HT-1080 tumors, and 6 out of 7 with IMR-32 tumors. After treatment with heat-killed NDV no regression occurred (P less than 0.01, Fisher's exact test). Nontumor-bearing mice injected with 1.0 x 10(8) PFU of NDV remained healthy. These results indicate that NDV efficiently and selectively replicates in and kills tumor cells, but not normal cells, and that intralesional NDV causes complete tumor regression in athymic mice with a high therapeutic index.

  16. Embryo development of fresh ‘versus’ vitrified metaphase II oocytes after ICSI: a prospective randomized sibling-oocyte study

    PubMed Central

    Rienzi, Laura; Romano, Stefania; Albricci, Laura; Maggiulli, Roberta; Capalbo, Antonio; Baroni, Elena; Colamaria, Silvia; Sapienza, Fabio; Ubaldi, Filippo

    2010-01-01

    BACKGROUND A successful oocyte cryopreservation programme is of utmost importance where a limited number of oocytes can be inseminated per cycle, to overcome legal and ethical issues related to embryo storage, for oocyte donation programmes and for fertility preservation (especially for cancer patients). Vitrification has been recently proposed as an effective procedure for this purpose. METHODS In order to validate the effectiveness of oocyte vitrification a non-inferiority trial was started on sibling metaphase II (MII) oocytes. To demonstrate the non-inferiority based on an absolute difference of 17% in the fertilization rate per sibling oocyte, a minimum of 222 oocytes were required. After oocyte denudation, MII oocytes with normal morphology were randomly allocated to fresh ICSI insemination or to vitrification procedure. If pregnancy was not obtained a subsequent ICSI cycle was performed with warmed oocytes of the same cohort. In both groups, three oocytes were inseminated per cycle by ICSI procedure. Primary end-points were fertilization rates calculated per warmed and per injected oocytes. Secondary end-points were zygote and embryo morphology. RESULTS A total of 244 oocytes were involved in this study. Of the 120 fresh sibling oocytes inseminated, 100 were fertilized (83.3%). Survival rate of sibling vitrified oocytes was 96.8% (120/124 oocytes). Fertilization rate after ICSI was 76.6% (95/124) per warmed oocyte and 79.2% (95/120) per survived/inseminated oocyte. No statistical difference in fertilization rates was observed between the two groups when calculated per sibling oocytes (absolute difference −6.73%; OR: 0.65; 95% CI = 0.33–1.29; P = 0.20) and per inseminated oocyte (absolute difference −4.17%; OR: 0.76; 95% CI = 0.37–1.53; P = 0.50). Embryo development was also similar in both treatment groups up till Day 2. The percentage of excellent quality embryos was 52.0% (52/100) in the fresh group and 51.6% (49/95) in the vitrification group

  17. Priming innate immune responses to infection by cyclooxygenase inhibition kills antibiotic susceptible and resistant bacteria

    PubMed Central

    Stables, Melanie J.; Newson, Justine; Ayoub, Samir S.; Brown, Jeremy; Hyams, Catherine J.; Gilroy, Derek W.

    2017-01-01

    Inhibition of cyclooxygenase (COX)-derived prostaglandins (PGs) by non-steroidal anti-inflammatory drugs (NSAIDs) mediates leukocyte killing of bacteria. However, the relative contribution of COX 1 versus COX 2 to this process as well as the mechanisms controlling it in mouse and humans are unknown. Indeed, the potential of NSAIDs to facilitate leukocyte killing of drug-resistance bacteria warrants investigation. Therefore, we carried a series of experiments in mouse and humans finding that COX 1 is the predominant isoform active in PG synthesis during infection and that its prophylactic or therapeutic inhibition primes leukocytes to kill bacteria by increasing phagocytic uptake and reactive oxygen intermediate-mediated killing in a cAMP-dependent manner. Moreover, NSAIDs enhance bacterial killing in humans, exerting an additive effect when used in combination with antibiotics. Finally, NSAIDs, through the inhibition of COX prime the innate immune system to mediate bacterial clearance of penicillin-resistant Streptococcus pneumoniae serotype 19A, which is a well recognised vaccine escape serotype of particular concern given its increasing prevalence and multi-antibiotic resistance. Therefore, these data underline the importance of lipid mediators in host responses to infection and the potential of inhibitors of PG signaling pathways as adjunctive therapies, particularly in the context of antibiotic resistance. PMID:20606163

  18. cAMP modulation during sheep in vitro oocyte maturation delays progression of meiosis without affecting oocyte parthenogenetic developmental competence.

    PubMed

    Buell, Margaret; Chitwood, James L; Ross, Pablo J

    2015-03-01

    Removal of oocytes from their natural inhibitory follicular environment results in spontaneous resumption of meiosis independent of normal signaling events that occur in vivo. Controlling the onset of meiotic resumption via maintenance of elevated oocyte cAMP levels with adenylyl cyclase (AC) activation and phosphodiesterase (PDE) inhibition, and subsequent hormone stimulation with follicle FSH has been shown to dramatically improve developmental competence of bovine and murine IVM oocytes. This study evaluated the effect of cAMP modulation during IVM of sheep oocytes on meiotic progression and development to blastocyst after parthenogenetic activation. Changes in oocyte cAMP levels were quantified during the first 2h of in vitro maturation in control or cAMP-modulating medium. No significant changes in intra-oocyte cAMP were observed under control conditions, though a slight and transient drop was noticed at 15 min of maturation. Addition of the AC stimulator Forskolin and the PDE inhibitors IBMX altered the cAMP profile, resulting in 10-fold elevation of cAMP by 15 min and sustained >3-fold elevated levels from 30 to 120 min. The effect of cAMP elevation on meiotic resumption was measured by completion of germinal vesicle breakdown. Modulated oocytes were significantly delayed when compared to control media oocytes. Also, progression to MII was significantly delayed in modulated versus control oocytes at 20 and 24h, though no differences persisted to 28 h. Lastly, when control and modulated oocytes were parthenogenetically activated, no differences in blastocyst formation were observed. Thus, while cAMP modulation delayed meiotic progression, it did not improve developmental competence of sheep IVM oocytes.

  19. On-chip enucleation of an oocyte by untethered microrobots

    NASA Astrophysics Data System (ADS)

    Ichikawa, Akihiko; Sakuma, Shinya; Sugita, Masakuni; Shoda, Tatsuro; Tamakoshi, Takahiro; Akagi, Satoshi; Arai, Fumihito

    2014-09-01

    We propose a novel on-chip enucleation of an oocyte with zona pellucida by using a combination of untethered microrobots. To achieve enucleation within the closed space of a microfluidic chip, two microrobots, a microknife and a microgripper were integrated into the microfluidic chip. These microrobots were actuated by an external magnetic force produced by permanent magnets placed on the robotic stage. The tip of the microknife was designed by considering the biological geometric feature of an oocyte, i.e. the oocyte has a polar body in maturation stage II. Moreover, the microknife was fabricated by using grayscale lithography, which allows fabrication of three-dimensional microstructures. The microgripper has a gripping function that is independent of the driving mechanism. On-chip enucleation was demonstrated, and the enucleated oocytes are spherical, indicating that the cell membrane of the oocytes remained intact. To confirm successful enucleation using this method, we investigated the viability of oocytes after enucleation. The results show that the production rate, i.e. the ratio between the number of oocytes that reach the blastocyst stage and the number of bovine oocytes after nucleus transfer, is 100%. The technique will contribute to complex cell manipulation such as cell surgery in lab-on-a-chip devices.

  20. In vitro embryos production after oocytes treatment with forskolin.

    PubMed

    Paschoal, Daniela Martins; Maziero, Rosiára Rosária Dias; Sudano, Mateus José; Guastali, Midyan Daroz; Vergara, Luis Eduardo; Crocomo, Letícia Ferrari; Lima-Neto, João Ferreira de; Magalhães, Luis Carlos Oña; Monteiro, Bianca Andriolo; Rascado, Tatiana da Silva; Martins, Alício; Leal, Claudia Lima Verde; Landim-Alvarenga, Fernanda da Cruz

    2016-04-01

    The inhibition of nuclear maturation allows time for the oocyte to accumulate molecules that are important for embryonic development. Thus, the objective of this work was to evaluate the effect of blocking oocyte meiosis with the addition of forskolin, an efficient inhibitor of nuclear maturation, in in vitro maturation (IVM) medium. Forskolin was added to the IVM medium for 6 h at concentrations of 0.1 mM, 0.05 mM or 0.025 mM, then the oocytes were allowed to mature in drug-free medium for 18 h. The oocytes were assessed for the stage of nuclear maturation, the activity and distribution of mitochondria, oocyte ultrastructure, the number of viable cells and the apoptosis rate. After forskolin treatment, the oocytes were fertilized in vitro and cultured for 7 days. On day 7, the blastocyst rate, the ultrastructure, the number of intact cells and the apoptosis rate of the blastocysts were measured. No differences were observed for the stage of nuclear maturation of the oocyte, the mitochondrial activity and distribution, the blastocyst rate or total number of intact cells. However, a higher rate of apoptosis was observed in the blastocysts produced from oocytes blocked for 6 h with the higher concentration of forskolin (P < 0.05). We conclude that all the experimental groups reached the MII stage after the addition of forskolin and that the highest concentration of forskolin caused cellular degeneration without harming embryo production on the 7th day.

  1. Cellular, biochemical and molecular mechanisms regulating oocyte maturation.

    PubMed

    Dekel, Nava

    2005-04-29

    The original model for regulation of oocyte maturation proposed by us in 1978 postulated that gap junction-mediated transmission of cAMP from the follicle cells to the oocyte inhibits meiosis and that luteinizing hormone (LH) terminates the flux of the follicle cAMP to the oocyte. A decrease in oocyte cAMP below inhibitory threshold occurs since oocytes lack the ability to generate sufficient amounts of cAMP to compensate for the phosphodiesterase activity. Our previous studies provided evidence to support this model. More recent studies in our laboratory were directed at identification of the cellular biochemical and molecular events initiated within rat oocytes upon the relief of cAMP inhibition. These studies: (i) identified an oocyte specific A kinase anchoring protein (AKAP) that is phosphorylated in oocytes resuming meiosis, (ii) confirmed that cdc25B governs meiosis reinitiation and demonstrated that its expression is translationally regulated, (iii) substantiated the indispensable role of proteasomal degradation at completion of the first meiotic division in a mammalian system, (iv) elucidated the role of MPF reactivation in suppressing interphase between the two meiotic divisions and (v) provided evidence that mos translation is negatively regulated by a protein kinase A (PKA)-mediated action of cAMP and is dependent on an active MPF. A detailed account on each of these findings is presented in this chapter.

  2. Altered expression of Armet and Mrlp51 in the oocyte, preimplantation embryo, and brain of mice following oocyte in vitro maturation but postnatal brain development and cognitive function are normal.

    PubMed

    Wang, Ning; Wang, Liya; Le, Fang; Zhan, Qitao; Zheng, Yingming; Ding, Guolian; Chen, Xijing; Sheng, Jianzhong; Dong, Minyue; Huang, Hefeng; Jin, Fan

    2011-09-01

    Despite the efforts to recapitulate the follicle environment, oocytes from in vitro maturation (IVM) have poorer developmental potential than those matured in vivo and the effects on the resultant offspring are of concern. The aim of this study was to determine altered gene expression in oocytes following IVM and to evaluate the expression of the arginine rich, mutated in early stage of tumors gene (Armet) and mitochondrial ribosomal protein L51 (Mrpl51) in embryos and brains of fetal/postnatal mice and the brain development of IVM offspring. An IVM mouse model was established while oocytes matured in vivo were used as the controls. Suppressive subtractive hybridization (SSH) and RT-PCR/western blot were used to analyze the differential expression of genes/proteins between IVM and the control group. HE staining and water maze were used to assess the histological changes in brain tissue and cognition of the offspring. The rates of fertilization, cleavage, and live birth were significantly decreased in IVM group. Thirteen genes were upregulated in IVM oocytes compared with the control, including Armet and Mrpl51. The higher level of Armet in IVM oocytes was retained in brain of newborn mice, which could be related to the upregulation of activating transcription factor 6 (Atf6) and X-box binding protein 1 (Xbp1), while Mrpl51 was expressed normally in brain of postnatal mice. No significant differences were detected in brain weight, neuronal counts, and the cognition in the offspring between the two groups. The present results suggested that IVM could affect the pregnancy outcome and the Armet and Mrpl51 gene/protein expression. The change in Armet expression lasted while the change of Mrpl51 disappeared after birth. However, the brain development of the offspring seemed to be unaffected by IVM.

  3. Xenopus oocyte meiosis lacks spindle assembly checkpoint control

    PubMed Central

    Shao, Hua; Ma, Chunqi; Chen, Eric

    2013-01-01

    The spindle assembly checkpoint (SAC) functions as a surveillance mechanism to detect chromosome misalignment and to delay anaphase until the errors are corrected. The SAC is thought to control mitosis and meiosis, including meiosis in mammalian eggs. However, it remains unknown if meiosis in the eggs of nonmammalian vertebrate species is also regulated by SAC. Using a novel karyotyping technique, we demonstrate that complete disruption of spindle microtubules in Xenopus laevis oocytes did not affect the bivalent-to-dyad transition at the time oocytes are undergoing anaphase I. These oocytes also acquired the ability to respond to parthenogenetic activation, which indicates proper metaphase II arrest. Similarly, oocytes exhibiting monopolar spindles, via inhibition of aurora B or Eg5 kinesin, underwent monopolar anaphase on time and without additional intervention. Therefore, the metaphase-to-anaphase transition in frog oocytes is not regulated by SAC. PMID:23569212

  4. Loss of function of KIF1B impairs oocyte meiotic maturation and early embryonic development in mice.

    PubMed

    Kong, Xiang-Wei; Wang, Dong-Hui; Zhou, Cheng-Jie; Zhou, Hong-Xia; Liang, Cheng-Guang

    2016-11-01

    Kinesin family member 1B (KIF1B) is an important microtubule-dependent monomeric motor in mammals, although little is known about its role in meiosis. We profiled KIF1B expression and localization during oocyte maturation and early embryonic development in mice, revealing a dynamic pattern throughout meiotic progression. Depletion or inhibition of KIF1B leads to abnormal polar body extrusion, disordered spindle dynamics, defects in chromosome congression, increased aneuploidy, and impaired embryonic development. Further, KIF1B depletion affects the distribution of mitochondria and abundance of ATP. Taken together, our study demonstrates that mouse KIF1B is important for spindle assembly, chromosome congression, and mitochondrial distribution during oocyte maturation and early embryonic development. Mol. Reprod. Dev. 83: 1027-1040, 2016 © 2016 Wiley Periodicals, Inc.

  5. Oocyte donation in patients without ovarian function.

    PubMed

    Devroey, P; Wisanto, A; Camus, M; Van Waesberghe, L; Bourgain, C; Liebaers, I; Van Steirteghem, A C

    1988-08-01

    The clinical, hormonal and cytogenetic findings in 36 women with primary ovarian failure, referred for oocyte or embryo donations are reported. Fifteen women were suffering from ovarian dysgenesis and 11 from premature menopause. Six of these 26 patients showed X-chromosome abnormalities. One patient had a Noonan syndrome. The remaining 10 had surgical menopause. The mean duration of their infertility was 6.5 +/- 3.2 years (+/- SD). All patients had elevated serum gonadotrophins within the menopausal range. Hypothalamic, pituitary and thyroid function were found to be intact. In one of the 15 ovarian biopsies on the patients with chromosomal competent ovarian failure, primordial follicles were found. Hysterosalpingograms revealed a normal uterine cavity in all patients. In view of oocyte donation, careful evaluation of the obstetric risk was mandatory in the six patients with X-chromosome aberrations and in the patient with the Noonan syndrome, because of their short stature and possible concomitant cardiovascular and renal disease. After substitution therapy with oestradiol valerate and natural progesterone, 13 pregnancies were established, seven patients delivered (one set of twins), eight healthy children were born, three pregnancies aborted and three pregnancies are progressing normally.

  6. Oocyte-dependent activation of MTOR in cumulus cells controls the development and survival of cumulus-oocyte complexes.

    PubMed

    Guo, Jing; Shi, Lanying; Gong, Xuhong; Jiang, Mengjie; Yin, Yaoxue; Zhang, Xiaoyun; Yin, Hong; Li, Hui; Emori, Chihiro; Sugiura, Koji; Eppig, John J; Su, You-Qiang

    2016-08-15

    Communication between oocytes and their companion somatic cells promotes the healthy development of ovarian follicles, which is crucial for producing oocytes that can be fertilized and are competent to support embryogenesis. However, how oocyte-derived signaling regulates these essential processes remains largely undefined. Here, we demonstrate that oocyte-derived paracrine factors, particularly GDF9 and GDF9-BMP15 heterodimer, promote the development and survival of cumulus-cell-oocyte complexes (COCs), partly by suppressing the expression of Ddit4l, a negative regulator of MTOR, and enabling the activation of MTOR signaling in cumulus cells. Cumulus cells expressed less Ddit4l mRNA and protein than mural granulosa cells, which is in striking contrast to the expression of phosphorylated RPS6 (a major downstream effector of MTOR). Knockdown of Ddit4l activated MTOR signaling in cumulus cells, whereas inhibition of MTOR in COCs compromised oocyte developmental competence and cumulus cell survival, with the latter likely to be attributable to specific changes in a subset of transcripts in the transcriptome of COCs. Therefore, oocyte suppression of Ddit4l expression allows for MTOR activation in cumulus cells, and this oocyte-dependent activation of MTOR signaling in cumulus cells controls the development and survival of COCs.

  7. A study of the first and second polar bodies in mouse oogenesis

    SciTech Connect

    Evsikov, A.V.; Evsikov, S.V.

    1995-05-01

    The possibility of using a polar body for biopsy of human oocytes and early embryos has recently been shown. Genetic analysis of polar bodies can also provide additional information about the mechanisms underlying oocyte maturation. The first polar body is extremely unstable: in mouse oocytes, it disintegrates within several hours. Thus, the possibilities for its analysis are limited. We obtained karyoplasts of mouse eggs that contained the metaphase II spindle. By using them as a model for the first polar body, we studied the causes of its rapid disintegration. The rates of disintegration of the karyoplasts treated with various inhibitors of the cytoskeleton indicate that disintegration of the first polar body may be due to interaction between the actin cytoskeleton, chromatin, and the plasma membrane. The second polar body is found in mouse embryos until the blastocyst stage. Fusion of the second polar body with the enucleated zygote allowed analysis of its chromosomes. 22 refs., 5 figs., 1 tab.

  8. Bull heading to kill live gas wells

    SciTech Connect

    Oudeman, P.; Avest, D. ter; Grodal, E.O.; Asheim, H.A.; Meissner, R.J.H.

    1994-12-31

    To kill a live closed-in gas well by bull heading down the tubing, the selected pump rate should be high enough to ensure efficient displacement of the gas into the formation (i.e., to avoid the kill fluid bypassing the gas). On the other hand, the pressures that develop during bull heading at high rate must not exceed wellhead pressure rating, tubing or casing burst pressures or the formation breakdown gradient, since this will lead, at best, to a very inefficient kill job. Given these constraints, the optimum kill rate, requited hydraulic horsepower, density and type of kill fluids have to be selected. For this purpose a numerical simulator has been developed, which predicts the sequence of events during bull heading. Pressures and flow rates in the well during the kill job are calculated, taking to account slip between the gas and kill fluid, hydrostatic and friction pressure drop, wellbore gas compression and leak-off to the formation. Comparison with the results of a dedicated field test demonstrates that these parameters can be estimated accurately. Example calculations will be presented to show how the simulator can be used to identify an optimum kill scenario.

  9. Antibacterial surface design - Contact kill

    NASA Astrophysics Data System (ADS)

    Kaur, Rajbir; Liu, Song

    2016-08-01

    Designing antibacterial surfaces has become extremely important to minimize Healthcare Associated Infections which are a major cause of mortality worldwide. A previous biocide-releasing approach is based on leaching of encapsulated biocides such as silver and triclosan which exerts negative impacts on the environment and potentially contributes to the development of bacterial resistance. This drawback of leachable compounds led to the shift of interest towards a more sustainable and environmentally friendly approach: contact-killing surfaces. Biocides that can be bound onto surfaces to give the substrates contact-active antibacterial activity include quaternary ammonium compounds (QACs), quaternary phosphoniums (QPs), carbon nanotubes, antibacterial peptides, and N-chloramines. Among the above, QACs and N-chloramines are the most researched contact-active biocides. We review the engineering of contact-active surfaces using QACs or N-chloramines, the modes of actions as well as the test methods. The charge-density threshold of cationic surfaces for desired antibacterial efficacy and attempts to combine various biocides for the generation of new contact-active surfaces are discussed in detail. Surface positive charge density is identified as a key parameter to define antibacterial efficacy. We expect that this research field will continue to attract more research interest in view of the potential impact of self-disinfective surfaces on healthcare-associated infections, food safety and corrosion/fouling resistance required on industrial surfaces such as oil pipes and ship hulls.

  10. Momentum kill procedure can quickly control blowouts

    SciTech Connect

    Watson, W.D. ); Moore, P. )

    1993-08-30

    The momentum kill method can help in quickly regaining control of a blowing well, providing the blowing well rate and fluid properties can be estimated reasonably. The momentum of the kill fluid counteracts and overcomes the flowing momentum of formation fluids. In other words, sufficient mud density pumped at a sufficient rate is directed into the flow stream to force the escaping fluid column back into the well bore. Sufficient kill fluid hydrostatic pressure must be stacked'' in the hole so that the well remains dead after the operation. The momentum kill is not a panacea for all blowouts. An assessment must be made of the potential problems unique to this method, and certain requirements must be met if the technique is to be successful. The paper discusses some of the considerations for evaluating the use of the momentum kill method.

  11. Meiosis, Balbiani body and early asymmetry of Thermobia oocyte.

    PubMed

    Tworzydlo, Waclaw; Marek, Magdalena; Kisiel, Elzbieta; Bilinski, Szczepan M

    2017-03-01

    The meiotic division guarantees maintenance of a genetic diversity; it consists of several stages, with prophase I being the longest and the most complex. We decided to follow the course of initial stages of meiotic division in ovaries of Thermobia domestica using modified techniques of squash preparations, semithin sections, and electron microscopy. We show that germaria contain numerous germline cells that can be classified into three categories: cystoblasts, meiotic oocytes, and growing previtellogenic oocytes. The cystoblasts are located most apically. The meiotic oocytes occupy the middle part of the germarium, and the previtellogenic oocytes can be found in the most basal part, near the vitellarium. Analyses of the semithin sections and squash preparations show that post leptotene meiotic chromosomes gather in one region of the nucleoplasm where they form the so-called bouquet. The telomeres of the bouquet chromosomes are attached to a relatively small area (segment) of the nuclear envelope. Next to this envelope segment, the nucleolar organizers are also located. We show that in concert to sequential changes inside the oocyte nuclei, rearrangement of organelles within the ooplasm (oocyte cytoplasm) takes place. This leads to the formation of the Balbiani body and consequent asymmetry of the ooplasm. These early nuclear and cytoplasmic asymmetries, however, are transient. During diplotene, the chromosome bouquet disappears, while the Balbiani body gradually disperses throughout the ooplasm. Finally, our observations indicate the presence of lampbrush chromosomes in the nuclei of previtellogenic oocytes. In the close vicinity to lampbrush chromosomes, characteristic spherical nuclear bodies are present.

  12. Comparison of the cryo-tolerance of vitrified gorgonian oocytes

    PubMed Central

    Tsai, Sujune; Yang, Vivian; Lin, Chiahsin

    2016-01-01

    Coral reefs have been declining considerably in recent years because of changes to the environment and climate. The cryopreservation of coral gametes is an essential alternative method that yields immense success in preserving corals. This study focuses on developing vitrification techniques for Junceella fragilis and Ellisella robusta oocytes, and presents a comparison on the cryotolerance of their vitrified oocytes. The results revealed that these coral oocytes could be preserved for a longer period in equilibration solution 2 and vitrification solution (VS) 2 at 5 °C than at 26 °C. Oocyte viability decreased significantly when VS2 was used for >4 min at 26 °C compared with the control. Cryoprotectant tolerance was higher in E. robusta oocytes than in J. fragilis oocytes. However, E. robusta was determined to be more cryo-tolerant, with differences attributed to their habitats, thus making E. robusta is likely a superior candidate species for further study. The results of this study on the effects of coral cryopreservation provide a foundation for developing protocols further for the cryopreservation of the oocytes of gorgonian corals. PMID:26984101

  13. Progesterone influences cytoplasmic maturation in porcine oocytes developing in vitro

    PubMed Central

    Jin, Yong-Xun; Kwon, Jeong-Woo

    2016-01-01

    Progesterone (P4), an ovarian steroid hormone, is an important regulator of female reproduction. In this study, we explored the influence of progesterone on porcine oocyte nuclear maturation and cytoplasmic maturation and development in vitro. We found that the presence of P4 during oocyte maturation did not inhibit polar body extrusions but significantly increased glutathione and decreased reactive oxygen species (ROS) levels relative to that in control groups. The incidence of parthenogenetically activated oocytes that could develop to the blastocyst stage was higher (p < 0.05) when oocytes were exposed to P4 as compared to that in the controls. Cell numbers were increased in the P4-treated groups. Further, the P4-specific inhibitor mifepristone (RU486) prevented porcine oocyte maturation, as represented by the reduced incidence (p < 0.05) of oocyte first polar body extrusions. RU486 affected maturation promoting factor (MPF) activity and maternal mRNA polyadenylation status. In general, these data show that P4 influences the cytoplasmic maturation of porcine oocytes, at least partially, by decreasing their polyadenylation, thereby altering maternal gene expression. PMID:27672508

  14. Lipid transport to avian oocytes and to the developing embryo.

    PubMed

    Schneider, Wolfgang J

    2016-05-01

    Studies of receptor-mediated lipoprotein metabolic pathways in avian species have revealed that physiological intricacies of specific cell types are highly analogous to those in mammals. A prime example for the power of comparative studies across different animal kingdoms, elucidated in the chicken, is that the expression of different lipoprotein receptors in somatic cells and oocytes are the key to oocyte growth. In avian species, yolk precursor transport from the hen's liver to rapidly growing oocytes and the subsequent transfer of yolk nutrients via the yolk sac to the developing embryo are highly efficient processes. Oocytes grow from a diameter of 5 mm to 2.5-3 cm in only 7 days, and the yolk sac transfers nutrients from the yolk stored in the mature oocyte to the embryo within just 2 weeks. The underlying key transport mechanism is receptor-mediated endocytosis of macromolecules, i.e., of hepatically synthesized yolk precursors for oocyte growth, and of mature yolk components for embryo nutrition, respectively. Recently, the receptors involved, as well as the role of lipoprotein synthesis in the yolk sac have been identified. As outlined here, lipoprotein degradation/resynthesis cycles and the expression of lipoprotein receptors are not only coordinated with the establishment of the follicular architecture embedding the oocyte, but also with the generation of the yolk sac vasculature essential for nutrient transfer to the embryo.

  15. STUDIES ON THE HUMAN OOCYTE AND ITS FOLLICLE

    PubMed Central

    Hertig, Arthur T.; Adams, Eleanor C.

    1967-01-01

    Oocytes in primordial ("resting") follicles in adult human ovaries contain a complex paranuclear structure identified by light microscopists as Balbiani's vitelline body. By electron microscopy this structure is composed of a mass of mitochondria with associated endoplasmic reticulum, multiple compound aggregates which form a ring around the cytocentrum, and a single stack or coil of annulate lamellae either attached to the nuclear membrane or free in the cytoplasm. The compound aggregates contain vacuoles and finely divided electron-opaque material. Evidence is presented for the probable transport of this material between the oocyte and its environment. The cytocentrum contains a central aggregate of amorphous electron-opaque deposits which appear to become periodically aligned on fine fibrils to form the long coarse fibers at the periphery of the cytocentrum. The apparent prevalence of annulate lamellae attached or adjacent to the nuclear membrane of oocytes in ovaries removed during the mid-follicular (estrogenic) phase of the cycle indicates the need for further study of a possible hormonal influence on the resting oocyte. By light microscopy phosphatases were not found within the oocyte, but adenosine-monophosphatase activity is present in the cortical cells surrounding primordial follicles, and also at the periphery of each primitive follicle cell, most prominently at the oocyte side. Glucose-6-phosphate dehydrogenase activity is present within the oocyte cytoplasm. PMID:4292010

  16. Lipid transport to avian oocytes and to the developing embryo

    PubMed Central

    Schneider, Wolfgang J.

    2016-01-01

    Abstract Studies of receptor-mediated lipoprotein metabolic pathways in avian species have revealed that physiological intricacies of specific cell types are highly analogous to those in mammals. A prime example for the power of comparative studies across different animal kingdoms, elucidated in the chicken, is that the expression of different lipoprotein receptors in somatic cells and oocytes are the key to oocyte growth. In avian species, yolk precursor transport from the hen's liver to rapidly growing oocytes and the subsequent transfer of yolk nutrients via the yolk sac to the developing embryo are highly efficient processes. Oocytes grow from a diameter of 5 mm to 2.5-3 cm in only 7 days, and the yolk sac transfers nutrients from the yolk stored in the mature oocyte to the embryo within just 2 weeks. The underlying key transport mechanism is receptor-mediated endocytosis of macromolecules, i.e., of hepatically synthesized yolk precursors for oocyte growth, and of mature yolk components for embryo nutrition, respectively. Recently, the receptors involved, as well as the role of lipoprotein synthesis in the yolk sac have been identified. As outlined here, lipoprotein degradation/resynthesis cycles and the expression of lipoprotein receptors are not only coordinated with the establishment of the follicular architecture embedding the oocyte, but also with the generation of the yolk sac vasculature essential for nutrient transfer to the embryo. PMID:26585559

  17. In vitro maturation and artificial activation of donkey oocytes.

    PubMed

    Zhao, Gaoping; Wu, Kaifeng; Cui, Liang; Zhao, Lixia; Liu, Yiyi; Tan, Xiuwen; Zhou, Huanmin

    2011-09-01

    Three media were evaluated for their ability to support in vitro maturation of donkey (Equus asinus) oocytes and their development after parthenogenetic activation. The basal medium for Medium 1 (M1) and Medium 2 (M2) was M199 and DMEM/F12 respectively, whereas, Medium 3 (M3) consisted of equal parts (v/v) of M199 and DMEM/F12. All three media were supplemented with 10% (v/v) fetal calf serum, 0.01 units/mL porcine FSH, 0.01 units/mL equine LH, 200 ng/mL insulin-like growth factor 1(IGF-I), 10 μl/mL insulin-transferrin-selenium (ITS), 0.1 mg/mL taurine, 0.1 mg/mL L-cysteine, 0.05 mg/mL L-glutamine, 0.11 mg/mL sodium pyruvate, and 25 mg/mL gentamycin. There were no significant differences among the three maturation media for oocyte maturation. Maturation rate of donkey oocytes in M1 was 53% for compact (Cp) cumulus-oocyte complexes and 75% for expanded (Ex) cumulus-oocyte complexes; in M2 these were 55 and 77%, respectively; and in M3, 58 and 75%. The percentage of cleaved parthenotes and 4- or 8-cell embryos were not significantly different for oocytes matured in the various media (61 and 24% for M1; 66 and 32% for M2; and 67 and 33% for M3). Oocytes matured in M3 tended to yield a higher rate of advanced embryo development (morula) than oocytes matured in M1 (22 vs 9%; P = 0.07). In conclusion, donkey oocytes were matured and parthenogenetically activated in vitro, using methods similar to those used in the horse.

  18. Spacetime encodings. III. Second order Killing tensors

    SciTech Connect

    Brink, Jeandrew

    2010-01-15

    This paper explores the Petrov type D, stationary axisymmetric vacuum (SAV) spacetimes that were found by Carter to have separable Hamilton-Jacobi equations, and thus admit a second-order Killing tensor. The derivation of the spacetimes presented in this paper borrows from ideas about dynamical systems, and illustrates concepts that can be generalized to higher-order Killing tensors. The relationship between the components of the Killing equations and metric functions are given explicitly. The origin of the four separable coordinate systems found by Carter is explained and classified in terms of the analytic structure associated with the Killing equations. A geometric picture of what the orbital invariants may represent is built. Requiring that a SAV spacetime admits a second-order Killing tensor is very restrictive, selecting very few candidates from the group of all possible SAV spacetimes. This restriction arises due to the fact that the consistency conditions associated with the Killing equations require that the field variables obey a second-order differential equation, as opposed to a fourth-order differential equation that imposes the weaker condition that the spacetime be SAV. This paper introduces ideas that could lead to the explicit computation of more general orbital invariants in the form of higher-order Killing tensors.

  19. High-throughput electrophysiology with Xenopus oocytes

    PubMed Central

    Papke, Roger L.; Smith-Maxwell, Cathy

    2010-01-01

    Voltage-clamp techniques are typically used to study the plasma membrane proteins, such as ion channels and transporters that control bioelectrical signals. Many of these proteins have been cloned and can now be studied as potential targets for drug development. The two approaches most commonly used for heterologous expression of cloned ion channels and transporters involve either transfection of the genes into small cells grown in tissue culture or the injection of the genetic material into larger cells. The standard large cells used for the expression of cloned cDNA or synthetic RNA are the egg progenitor cells (oocytes) of the African frog, Xenopus laevis. Until recently, cellular electrophysiology was performed manually, one cell at a time by a single operator. However, methods of high-throughput electrophysiology have been developed which are automated and permit data acquisition and analysis from multiple cells in parallel. These methods are breaking a bottleneck in drug discovery, useful in some cases for primary screening as well as for thorough characterization of new drugs. Increasing throughput of high-quality functional data greatly augments the efficiency of academic research and pharmaceutical drug development. Some examples of studies that benefit most from high-throughput electrophysiology include pharmaceutical screening of targeted compound libraries, secondary screening of identified compounds for subtype selectivity, screening mutants of ligand-gated channels for changes in receptor function, scanning mutagenesis of protein segments, and mutant-cycle analysis. We describe here the main features and potential applications of OpusXpress, an efficient commercially available system for automated recording from Xenopus oocytes. We show some types of data that have been gathered by this system and review realized and potential applications. PMID:19149490

  20. Analysis of nuclear reprogramming following nuclear transfer to Xenopus oocyte.

    PubMed

    Jullien, Jerome

    2015-01-01

    Germinal vesicle of stage V-VI Xenopus Laevis oocytes (at the prophase I stage of meiosis) can be used to transplant mammalian nuclei. In this type of interspecies nuclear transfer no cell division occurs and no new cell types are generated. However, the transplanted nuclei undergo extensive transcriptional reprogramming. Here, it is first explained how to carry out transplantation of multiple mammalian cell nuclei to Xenopus oocytes. It is then described how to perform RT-qPCR, Western Blot, Chromatin Immunoprecipitation, and live imaging analysis to monitor transcriptional reprogramming of the nuclei transplanted to oocytes.

  1. Relationship between respiration rate and weight of loach oocytes.

    PubMed

    Ozernyuk, N D; Zotin, A I

    1975-01-01

    It is shown that the constant k in the equation QO2 equals apk and the constant b in the equation qo2 equals aP-b change during the oogenesis of the loach. Hence, the growth of oocytes differs considerably from the growth of animals, where the constants k and b do not change with increase in weight. It is suggested that the relationship between the respiration rate and weight of the oocytes is due to the change in the amount of mitochondria in the oocytes.

  2. Expressing and characterizing mechanosensitive channels in Xenopus oocytes.

    PubMed

    Maksaev, Grigory; Haswell, Elizabeth S

    2015-01-01

    The oocytes of the African clawed frog (Xenopus laevis) comprise one of the most widely used membrane protein expression systems. While frequently used for studies of transporters and ion channels, the application of this system to the study of mechanosensitive ion channels has been overlooked, perhaps due to a relative abundance of native expression systems. Recent advances, however, have illustrated the advantages of the oocyte system for studying plant and bacterial mechanosensitive channels. Here we describe in detail the methods used for heterologous expression and characterization of bacterial and plant mechanosensitive channels in Xenopus oocytes.

  3. Donor motivations, associated risks and ethical considerations of oocyte donation.

    PubMed

    Boutelle, Amy L

    2014-01-01

    Three decades after the first reported successful cases, oocyte donation continues to grow in popularity and regard as an established method to aid women in achieving their reproductive goals. As a result of the increased demand for donated oocytes, many young women in the U.S. volunteer to undergo complex medical procedures to donate their oocytes in return for financial compensation. To best care for these women before, during and after donation, it is important to explore donor characteristics and motivations, discuss the safety of the donation procedure and examine the ethical issues related to this process.

  4. Rapamycin Rescues the Poor Developmental Capacity of Aged Porcine Oocytes

    PubMed Central

    Lee, Seung Eun; Kim, Eun Young; Choi, Hyun Yong; Moon, Jeremiah Jiman; Park, Min Jee; Lee, Jun Beom; Jeong, Chang Jin; Park, Se Pill

    2014-01-01

    Unfertilized oocytes age inevitably after ovulation, which limits their fertilizable life span and embryonic development. Rapamycin affects mammalian target of rapamycin (mTOR) expression and cytoskeleton reorganization during oocyte meiotic maturation. The goal of this study was to examine the effects of rapamycin treatment on aged porcine oocytes and their in vitro development. Rapamycin treatment of aged oocytes for 24 h (68 h in vitro maturation [IVM]; 44 h+10 μM rapamycin/24 h, 47.52±5.68) or control oocytes (44 h IVM; 42.14±4.40) significantly increased the development rate and total cell number compared with untreated aged oocytes (68 h IVM, 22.04±5.68) (p<0.05). Rapamycin treatment of aged IVM oocytes for 24 h also rescued aberrant spindle organization and chromosomal misalignment, blocked the decrease in the level of phosphorylated-p44/42 mitogen-activated protein kinase (MAPK), and increased the mRNA expression of cytoplasmic maturation factor genes (MOS, BMP15, GDF9, and CCNB1) compared with untreated, 24 h-aged IVM oocytes (p<0.05). Furthermore, rapamycin treatment of aged oocytes decreased reactive oxygen species (ROS) activity and DNA fragmentation (p<0.05), and downregulated the mRNA expression of mTOR compared with control or untreated aged oocytes. By contrast, rapamycin treatment of aged oocytes increased mitochondrial localization (p<0.05) and upregulated the mRNA expression of autophagy (BECN1, ATG7, MAP1LC3B, ATG12, GABARAP, and GABARAPL1), anti-apoptosis (BCL2L1 and BIRC5; p<0.05), and development (NANOG and SOX2; p<0.05) genes, but it did not affect the mRNA expression of pro-apoptosis genes (FAS and CASP3) compared with the control. This study demonstrates that rapamycin treatment can rescue the poor developmental capacity of aged porcine oocytes. PMID:25049998

  5. Human oocyte cryopreservation: a valid alternative to embryo cryopreservation?

    PubMed

    Tucker, Michael; Morton, Paula; Liebermann, Juergen

    2004-04-05

    Embryo cryopreservation has become an ethical necessity due to the way human in vitro fertilization (IVF) infertility therapy has developed. Limited embryonic implantation has by necessity driven IVF therapy to adopt ways to maximize the harvest of oocytes following ovarian hyperstimulation with its attendant risks. Collection of more oocytes has allowed more embryos to be generated to compensate for poor embryonic viability, often leading to transfer of multiple embryos to increase per transfer pregnancy rates. In an era of improving embryonic viability and prevailing trend toward single embryo transfers, production of excessive numbers of surplus embryos appears increasingly inappropriate. At which stage embryo cryopreservation can be undertaken most effectively remains controversial. Embryo cryopreservation nevertheless represents the current solution to the problem of excessive embryo production, but inherently raises ethical concerns for certain couples uncomfortable with what they might perceive to be "experimental" cryostorage, who in extreme circumstances may even choose to limit the number of oocytes inseminated to obviate the production of spare embryos. On a more practical level, cryostored embryos are co-owned by two people who may separate, and as such the embryos then face an uncertain fate, commonly decided in courts of law. Oocyte cryopreservation, if consistent and successful, offers a way to avoid the above complications of routine IVF therapy. Oocytes may need to be cryostored in the event of unforeseen non-production of sperm during IVF therapy, allowing a more measured consideration of donor sperm use or other means of sperm retrieval. Beyond IVF for infertility therapy using a couple's own gametes, oocyte cryopreservation provides a wonderful opportunity to optimize donor oocyte cryo-banking, reducing costs and improving convenience. Meanwhile, frozen embryo donation is an approach that many couples are uncomfortable with, and allows only for

  6. Xenopus Gq alpha subunit activates the phosphatidylinositol pathway in Xenopus oocytes but does not consistently induce oocyte maturation.

    PubMed Central

    Guttridge, K L; Smith, L D; Miledi, R

    1995-01-01

    We cloned the Xenopus laevis form of Gq alpha subunit to study its effects on oocyte maturation. Injection of Xenopus Gq alpha mRNA into stage 6 oocytes activated the phospholipase C/phosphatidylinositol pathway. The oocyte membrane became permeable to calcium ions and was able to generate transient inward currents (T(in)), due to the opening of Ca(2+)-dependent Cl- channels. The T(in) amplitude developed over several hours and disappeared by 24 hr. Diacylglycerol levels were found to parallel the appearance and disappearance of the T(in). The concurrent decline of T(in) values and diacylglycerol was not due to a failure in the synthesis of Gq alpha protein, which was produced continuously for > 24 hr. After Xenopus Gq alpha mRNA injection, germinal vesicle breakdown (GVBD) was variable (0-100%) in stage 6 oocytes, whereas none of the stage 4 oocytes underwent GVBD. In contrast, stage 6 oocytes injected with mRNA encoding the Go alpha G protein consistently underwent GVBD but did not acquire T(in). Our results show that activation of phospholipase C is not an absolute requisite for the induction of maturation, although in oocytes of some frogs phospholipase C activation can trigger a pathway to GVBD. Images Fig. 7 PMID:7877971

  7. Endocytosis of Cytotoxic Granules Is Essential for Multiple Killing of Target Cells by T Lymphocytes.

    PubMed

    Chang, Hsin-Fang; Bzeih, Hawraa; Schirra, Claudia; Chitirala, Praneeth; Halimani, Mahantappa; Cordat, Emmanuelle; Krause, Elmar; Rettig, Jens; Pattu, Varsha

    2016-09-15

    CTLs are serial killers that kill multiple target cells via exocytosis of cytotoxic granules (CGs). CG exocytosis is tightly regulated and has been investigated in great detail; however, whether CG proteins are endocytosed following exocytosis and contribute to serial killing remains unknown. By using primary CTLs derived from a knock-in mouse of the CG membrane protein Synaptobrevin2, we show that CGs are endocytosed in a clathrin- and dynamin-dependent manner. Following acidification, endocytosed CGs are recycled through early and late, but not recycling endosomes. CGs are refilled with granzyme B at the late endosome stage and polarize to subsequent synapses formed between the CTL and new target cells. Importantly, inhibiting CG endocytosis in CTLs results in a significant reduction of their cytotoxic activity. Thus, our data demonstrate that continuous endocytosis of CG membrane proteins is a prerequisite for efficient serial killing of CTLs and identify key events in this process.

  8. Dynamic regulation of DNA methyltransferases in human oocytes and preimplantation embryos after assisted reproductive technologies.

    PubMed

    Petrussa, Laetitia; Van de Velde, Hilde; De Rycke, Martine

    2014-09-01

    DNA methylation is a key epigenetic modification which is essential for normal embryonic development. Major epigenetic reprogramming takes place during gametogenesis and in the early embryo; the complex DNA methylation patterns are established and maintained by DNA methyltransferases (DNMTs). However, the influence of assisted reproductive technologies (ART) on DNA methylation reprogramming enzymes has predominantly been studied in mice and less so in human oocytes and embryos. The expression and localization patterns of the four known DNMTs were analysed in human oocytes and IVF/ICSI embryos by immunocytochemistry and compared between a reference group of good quality fresh embryos and groups of abnormally developing embryos or embryo groups after cryopreservation. In humans, DNMT1o rather than DNMT1s seems to be the key player for maintaining methylation in early embryos. DNMT3b, rather than DNMT3a and DNMT3L, appears to ensure global DNA remethylation in the blastocysts before implantation. DNMT3L, an important regulator of maternal imprint methylation in mouse, was not detected in human oocytes (GV, MI and MII stage). Our study confirms the existence of species differences for mammalian DNA methylation enzymes. In poor quality fresh embryos, the switch towards nuclear DNMT3b expression was delayed and nuclear DNMT1, DNMT1s and DNMT3b expression was less common. Compared with the reference embryos, a smaller number of cryopreserved embryos showed nuclear DNMT1, while a delayed switch to nuclear DNMT3b and an extended DNMT1s temporal expression pattern were also observed. The spatial and temporal expression patterns of DNMTs seem to be disturbed in abnormally developing embryos and in embryos that have been cryopreserved. Further research must be performed in order to understand whether the potentially disturbed embryonic DNMT expression after cryopreservation has any long-term developmental consequences.

  9. The dormant and the fully competent oocyte: comparing the transcriptome of human oocytes from primordial follicles and in metaphase II.

    PubMed

    Grøndahl, Marie Louise; Borup, Rehannah; Vikeså, Jonas; Ernst, Erik; Andersen, Claus Yding; Lykke-Hartmann, Karin

    2013-09-01

    Oocytes become enclosed in primordial follicles during fetal life and remain dormant there until activation followed by growth and meiotic resumption. Current knowledge about the molecular pathways involved in oogenesis is incomplete. This study identifies the specific transcriptome of the human oocyte in the quiescent state and at the pinnacle of maturity at ovulation. In silico bioinformatic comparisons were made between the transcriptome of human oocytes from dormant primordial follicles and that of human metaphase II (MII) oocytes and granulosa cells and unique gene expression profiles were identified as well as functional and pathway enrichments associated with the oocytes from the two developmental hallmarks. A total of 729 genes were highly enriched in oocytes from primodial follicles and 1456 genes were highly enriched in MII oocytes (>10-fold, P < 0.001) representing functional categories such as cell cycle regulation, DNA protection and epigenetics, with representative genes validated by qPCR analysis. Dominating canonical pathways in the oocytes from primordial follicles were androgen, estrogen receptor, glucocorticoid receptor and PI3K/AKT signaling (P < 0.001). In the MII, mitotic roles of polo-like kinases, estrogen receptor, JAK/Stat signaling (P < 0.001) and the ERK/MAPK (P < 0.01) signaling were enriched. Some of the highly differentially expressed genes were completely new in human reproduction (CDR1, TLC1A, UHRF2) while other genes [ABO, FOLR1 (folate receptor), CHRNA3 (nicotine receptor)] may relate to clinical observations as diverse as premature ovarian failure, folic acid deficiency and smoking affecting female fertility. The in silico analysis identified novel reproduction-associated genes and highlighted molecular mechanisms and pathways associated with the unique functions of the human oocyte in its two extremes during folliculogenesis. The data provides a fundamental basis for future functional studies in regulation of human oogenesis.

  10. Enhancement of the immune response against Salmonella infection of mice by heat-killed multispecies combinations of lactic acid bacteria.

    PubMed

    Chen, Chih-Yuan; Tsen, Hau-Yang; Lin, Chun-Li; Lin, Chien-Ku; Chuang, Li-Tsen; Chen, Chin-Shuh; Chiang, Yu-Cheng

    2013-11-01

    Heat-killed lactic acid bacteria (LAB) has advantages over live LAB in that it has a long shelf-life and is therefore easy to store and transport. From four LAB strains selected by immunomodulatory activity and adherent properties, we prepared the heat-killed multispecies combination of LAB (MLAB) and the cell walls from MLAB under two conditions (100 °C for 30 min and 121 °C for 15 min). Different effects on the adherent properties of these four LAB strains were observed, depending on the heating conditions. With mouse macrophage cells, the two heat-killed MLABs (HMLABs) showed significantly higher induction activities on the production of interleukin 12 (IL-12) than their individual strains did. Heat-killed MLABs and cell-wall preparations were able to reduce the Salmonella invasion of Caco-2 and mouse macrophage cells. Feeding mice with HMLAB could inhibit the Salmonella invasion of mice significantly. For these mice, the expression level of pro-inflammatory cytokines, such as TNF-α and IL-6, in mouse serum was reduced while that of the anti-inflammatory cytokine, i.e. IL-10, was enhanced. The HMLABs developed in this study showed higher protective effect against Salmonella invasion either of Caco-2 cells or of mice, relative to the heat-killed lactobacilli, which consisted of Lactobacillus acidophilus strains selected at random. In conclusion, the HMLABs were potentially useful for the protection of mice against Salmonella infection and the induced inflammation.

  11. Repeated ultrasound-guided transvaginal oocyte retrieval from cyclic Murrah buffaloes (Bubalus bubalis): oocyte recovery and quality.

    PubMed

    Gupta, V; Manik, R S; Chauhan, M S; Singla, S K; Akshey, Y S; Palta, P

    2006-01-01

    The present study was undertaken to explore the potential of the Murrah breed of buffaloes as donors of oocytes and to find out the recovery rate and oocyte quality in cyclic Murrah buffaloes subjected to oocyte recovery once a week. Murrah buffaloes (n = 5) were synchronized for estrus by a single prostaglandin injection schedule. The animals were subjected to transvaginal oocyte retrieval (TVOR) once weekly for 6 weeks, starting from Day 7 of the oe