Science.gov

Sample records for mouse peritoneal macrophages

  1. Differential turnover of phospholipid acyl groups in mouse peritoneal macrophages

    SciTech Connect

    Kuwae, T.; Schmid, P.C.; Johnson, S.B.; Schmid, H.H. )

    1990-03-25

    Phospholipid acyl turnover was assessed in mouse peritoneal exudate cells which consisted primarily of macrophages. The cells were incubated for up to 5 h in media containing 40% H218O, and uptake of 18O into ester carbonyls of phospholipids was determined by gas chromatography-mass spectrometry of hydrogenated methyl esters. The uptake was highest in choline phospholipids and phosphatidylinositol, less in ethanolamine phospholipids, and much less in phosphatidylserine. Acyl groups at the sn-1 and sn-2 positions of diacyl glycerophospholipids, including arachidonic and other long-chain polyunsaturated fatty acids, acquired 18O at about the same rate. Acyl groups of alkylacyl glycerophosphocholine exhibited lower rates of 18O uptake, and acyl groups of ethanolamine plasmalogens (alkenylacyl glycerophosphoethanolamines) acquired only minimal amounts of 18O within 5 h, indicating a low average acyl turnover via free fatty acids. Pulse experiments with exogenous 3H-labeled arachidonic acid supported the concept that acylation of alkenyl glycerophosphoethanolamine occurs by acyl transfer from other phospholipids rather than via free fatty acids and acyl-CoA. The 18O content of intracellular free fatty acids increased gradually over a 5-h period, whereas in extracellular free fatty acids it reached maximal 18O levels within the first hour. Arachidonate and other long-chain polyunsaturated fatty acids were found to participate readily in deacylation-reacylation reactions but were present only in trace amounts in the free fatty acid pools inside and outside the cells. We conclude that acyl turnover of macrophage phospholipids through hydrolysis and reacylation is rapid but tightly controlled so that appreciable concentrations of free arachidonic acid do not occur.

  2. Immunostimulatory effect of spinach aqueous extract on mouse macrophage-like J774.1 cells and mouse primary peritoneal macrophages.

    PubMed

    Ishida, Momoko; Ose, Saya; Nishi, Kosuke; Sugahara, Takuya

    2016-07-01

    We herein report the immunostimulatory effect of spinach aqueous extract (SAE) on mouse macrophage-like J774.1 cells and mouse primary peritoneal macrophages. SAE significantly enhanced the production of interleukin (IL)-6 and tumor necrosis factor-α by both J774.1 cells and peritoneal macrophages by enhancing the expression levels of these cytokine genes. In addition, the phagocytosis activity of J774.1 cells was facilitated by SAE. Immunoblot analysis revealed that SAE activates mitogen-activated protein kinase and nuclear factor-κB cascades. It was found that SAE activates macrophages through not only TLR4, but also other receptors. The production of IL-6 was significantly enhanced by peritoneal macrophages from SAE-administered BALB/c mice, suggesting that SAE has a potential to stimulate macrophage activity in vivo. Taken together, these data indicate that SAE would be a beneficial functional food with immunostimulatory effects on macrophages.

  3. [Effects of alkaloids from Coptidis Rhizoma on mouse peritoneal macrophages in vitro].

    PubMed

    Zhou, Xia; Peng, Yao-zong; Huang, Tao; Li, Ling; Mou, Shao-xia; Kou, Shu-ming; Li, Xue-gang

    2015-12-01

    This work was mainly studied the effects of the four alkaloids from Coptidis Rhizoma on the mouse peritoneal macrophages in vitro and preliminarily discussed the regulating mechanisms. The effect of alkaloids from Coptidis Rhizoma on the vitality of macrophages was measured by the MTT assay. The effect of alkaloids on the phagocytosis of macrophages was determined by neutral red trial and respiratory burst activity was tested by NBT. The expressions of respiratory-burst-associated genes influenced by alkaloids were detected by qRT-PCR. The conformation change of membrane protein in macrophages by the impact of alkaloids was studied by fluorospectro-photometer. Results showed that the four alkaloids from Coptidis Rhizoma could increase the phagocytosis of macrophages in different level and berberine had the best effect. Berberine, coptisine and palmatine had up-regulation effects on respiratory burst activity of mouse peritoneal macrophages stimulated by PMA and regulatory activity on the mRNA expression of PKC, p40phox or p47phox, whereas the epiberberine had no significant influence on respiratory burst. Moreover, alkaloids from Coptidis Rhizoma could change the conformation of membrane protein and the berberine showed the strongest activity. The results suggested that the four alkaloids from Coptidis Rhizoma might activate macrophages through changing the conformation of membrane protein of macrophages and then enhanced the phagocytosis and respiratory burst activity of macrophages. Furthermore, the regulatory mechanism of alkaloids on the respiratory burst activity of macrophages may be also related to the expression level of PKC, p40phox and p47phox.

  4. Growth of Mycobacterium lepraemurium in nonstimulated and stimulated mouse peritoneal-derived and bone marrrow-derived macrophages in vitro.

    PubMed Central

    Alexander, J; Smith, C C

    1978-01-01

    Mycobacterium lepraemurium cells were found to multiply in normal mouse peritoneal-derived and bone marrow-derived macrophages in vitro. Whereas activated peritoneal-derived macrophages demonstrated marked bacteriostasis for M. lepraemurium, significant bactericidal activity was exhibited by activated bone marrow-derived macrophages. However, only a small proportion of the bacterial were killed by activated bone marrow-derived macrophages with subsequent and enhanced bacteria growth. It is suggested that a rapid turnover of monocytes in active lesions is required to control mycobacterial infections in vivo. These results would suggest that careful consideration be given to the choice of the host cell in studies involving obligate intracellular parasites. PMID:365762

  5. Inhibition of mouse peritoneal macrophage DNA synthesis by infection with the Arenavirus Pichinde. Interim report

    SciTech Connect

    Friedlander, A.M.; Jahrling, P.B.; Merrill, P.; Tobery, S.

    1983-01-19

    Macrophage DNA synthesis and proliferation occur during the development of cell-mediated immunity and in the early non-specific reaction to infection. Arenaviruses have a predilection for infection of cells of the reticuloendothelial system and in this study we have examined the effect of the arenavirus Pichinde on macrophage DNA synthesis. We have found that infection of mouse peritoneal macrophages with Pichinde caused a profound dose dependent inhibition of the DNA synthesis induced by macrophage growth factor/colony stimulating factor. At a multiplicity of inoculum of five there is a 75-95% inhibition of DNA synthesis. Viable virus is necessary for inhibition since Pichinde inactivated by heat or cobalt irradiation had no effect. Similarly, virus pre-treated with an antiserum to Pichinde was without inhibitory effect. Inhibition was demonstrated by measuring DNA synthesis spectrofluorometrically as well as by 3H-thymidine incorporation. The inhibition of DNA synthesis was not associated with any cytopathology. There was no evidence that the inhibition was due to soluble factors, such as prostaglandins or interferon, released by infected cells. These studies demonstrate, for the first time in vitro, a significant alteration in macrophage function caused by infection with an arenavirus. It is possible that inhibition of macrophage proliferation represents a mechanism by which some microorganisms interfere with host resistance.

  6. In vivo killing and degradation of Mycobacterium aurum within mouse peritoneal macrophages.

    PubMed Central

    Silva, M T; Appelberg, R; Silva, M N; Macedo, P M

    1987-01-01

    We studied the in vivo killing and degradation of Mycobacterium aurum, a nonpathogenic, acid-fast bacillus, within macrophages after inoculation into the peritoneal cavity of CD-1 mice. The degradative process could be divided in five successive steps that were characterized on ultrastructural and cytochemical grounds and the relative contributions of which were determined by quantitative electron microscopy of samples taken at different times. The main ultrastructural alterations observed during the degradative process were ribosome disaggregation, coagulation of the cytoplasmic matrix, and change in the membrane profile from asymmetric to symmetric, with loss of the polysaccharide components from the outer layer, followed by membrane solubilization and intracellular clearing, followed by digestion of the innermost (peptidoglycan) layer of the cell wall, and at the end of the process, disorganization and collapse of the remaining layers of the cell wall. The correlation between viability and morphology indicated that the first ultrastructural signs of viability loss are cytoplasmic coagulation, change in the membrane geometry, and disappearance of ribosomes. The labeling of lysosomes of peritoneal macrophages with ferritin or by the cytochemical demonstration of inorganic trimetaphosphatase showed that fusion of lysosomes with phagosomes containing mycobacteria occurs in the phagocytes in the mouse peritoneal cavity and is already extensive as soon as 1 h after the inoculation of the bacilli. Images PMID:3623691

  7. Production of nitric oxide in mouse peritoneal macrophages after priming with interferon-gamma by the stem of Sinomenium acutum.

    PubMed

    Kim, H M; Oh, D I; Chung, C K

    1999-09-01

    The present study demonstrates that the aqueous extract of Sinomenium acutum stem (SSAE) produces nitric oxide (NO) upon treatment with recombinant interferon gamma (rIFN-gamma) in mouse peritoneal macrophages. Apparently SSAE has no effect on NO production by itself. This production is dependent on L-arginine and can be inhibited by the L-arginine analogue N(G)-monomethyl-L-arginine. The increased production of NO from rIFN-gamma plus SSAE-stimulated cells was decreased by the treatment of protein kinase C inhibitor. Tumor necrosis factor-alpha (TNF-alpha) has been shown to stimulate the oxidative metabolism of L-arginine to produce NO. Mouse peritoneal macrophages secrete high levels of TNF-alpha after incubation with rIFN-gamma plus SSAE. In addition, SSAE-induced NO production is progressively inhibited by anti-murine TNF-alpha neutralizing antibody. These results show that the capacity of SSAE to increase NO production from rIFN-gamma-primed mouse peritoneal macrophages is the result of SSAE-induced TNF-alpha secretion.

  8. Suppression of Mcl-1 induces apoptosis in mouse peritoneal macrophages infected with Mycobacterium tuberculosis.

    PubMed

    Wang, Fei-Yu; Wang, Xin-Min; Wang, Chan; Wang, Xiao-Fang; Zhang, Yu-Qing; Wu, Jiang-Dong; Wu, Fang; Zhang, Wan-Jiang; Zhang, Le

    2016-04-01

    The effect of myeloid cell leukemia-1 (Mcl-1) inhibition on apoptosis of peritoneal macrophages in mice infected with Mycobacterium tuberculosis was investigated and the primary signaling pathway associated with the transcriptional regulation of Mcl-1 was identified. Real-time PCR and western blotting indicated that Mcl-1 transcript and protein expression are upregulated during infection with virulent M. tuberculosis H37Rv and Xinjiang strains but not with attenuated M. tuberculosis strain H37Ra or Bacillus Calmette-Guérin. Mcl-1 transcript and protein expression were downregulated by specific inhibitors of the Janus kinase/signal transducer and activator of transcription (JAK/STAT), mitogen-activated protein kinase (MAPK) and phosphoinositol 3-kinase (PI3K) pathways (AG490, PD98059 and LY294002, respectively). The strongest inhibitor of Mcl-1 expression was PD98059, the MAPK inhibitor. Flow cytometry demonstrated that the rate of apoptosis in peritoneal macrophages is significantly higher in mice infected with M. tuberculosis and the rate of apoptosis is correlated with the virulence of the strain of M. tuberculosis. Apoptosis was found to be upregulated by AG490, PD98059 and LY294002, whereas inhibition of the MAPK pathway sensitized the infected macrophages to apoptosis. Taken together, these results suggest that specific downregulation of Mcl-1 significantly increases apoptosis of peritoneal macrophages and that the MAPK signaling pathway is the primary mediator of Mcl-1 expression.

  9. Subcellular localization of the PGE2 synthesis activity in mouse resident peritoneal macrophages

    PubMed Central

    1984-01-01

    The aim of this work was to establish, on a quantitative basis, the subcellular distribution of the enzyme system that converts arachidonic acid into prostaglandin (PG) E2 in mouse resident peritoneal (MRP) macrophages. Kinetic studies were conducted on cell-free extracts derived from cells cultivated for 1 d, using [1-14C]arachidonic acid as substrate and measuring the label in PGE2 after extraction and thin layer chromatography. The activity was synergistically enhanced by L- adrenaline and reduced glutathione, inhibited by indomethacin, and linearly related to the concentration of the cell-free extract. It was labile at 0 degrees C in the medium used for homogenization and fractionation of the cells (half-life less than 2 h). Addition of catalase (0.15 mg/ml) to the suspension medium increased the initial activity (by congruent to 70%) and the stability (half-life congruent to 6 h) of the enzyme in cytoplasmic extracts. It enabled us to establish the density distribution after isopycnic centrifugation in a linear gradient of sucrose. The sample centrifuged consisted of untreated cytoplasmic extracts, or cytoplasmic extracts treated with digitonin and Na pyrophosphate. Comparison of the centrifugation behavior of PGE2 synthesis activity with that of various enzymes used as reference for the major subcellular entities has revealed that PGE2 synthesis fairly fits the density profile of sulfatase C in each case. The conclusion is that at least the rate-limiting reaction in the conversion of arachidonic acid into PGE2 is catalyzed by an enzyme associated with the endoplasmic reticulum. PMID:6420497

  10. Role of prostaglandin E2 in peptidoglycan mediated iNOS expression in mouse peritoneal macrophages in vitro.

    PubMed

    Dahiya, Yogesh; Pandey, Rajeev Kumar; Bhatt, Kunal H; Sodhi, Ajit

    2010-10-08

    Many extracellular stimuli, e.g. microbial products, cytokines etc., result in the expression of inducible nitric oxide synthase (iNOS) in macrophages. However, it is not known whether expression of the iNOS gene in response to microbial products is a primary response of macrophages, or is the result of paracrine/autocrine signalling induced by endogenous biomolecules that are synthesised as a result of host cell-microbe interaction. In this paper we demonstrate that iNOS expression in mouse peritoneal macrophages in response to bacterial peptidoglycan (PGN) is a secondary effect requiring autocrine signalling of endogenously produced prostaglandin E2, and that PGN stimulation is mandatory, but not sufficient in itself, for induction of iNOS expression.

  11. Effects of Omega-3-Rich Harp Seal Oil on the Production of Pro-Inflammatory Cytokines in Mouse Peritoneal Macrophages.

    PubMed

    Choi, Myungwon; Ju, Jaehyun; Suh, Jae Soo; Park, Kun-Young; Kim, Kwang Hyuk

    2015-06-01

    Omega-3, a polyunsaturated fatty acid, is an essential fatty acid necessary for human health, and it protects against cardiovascular disease, inflammation, autoimmune diseases, and cancer. In the present study, we investigated the effects of omega-3-rich harp seal oil (HSO) on the production of nitric oxide (NO) and cytokines, such as tumor necrosis factor (TNF)-α, interleukin-(IL)-1β, IL-6, and IL-12/IL-23 (p40) in peritoneal macrophages of mice. The culture supernatants of murine macrophages exposed to lipopolysaccharide (LPS), HSO, or HSO+LPS were harvested to assay IL-1β, TNF-α, IL-6, and IL-12/IL-23 (p40) cytokines and NO. TNF-α, IL-1 β, and IL-12/IL-23 (p40) levels, except IL-6, were lower in the culture supernatants of mouse peritoneal macrophages exposed to LPS plus HSO than those of the groups exposed to LPS alone. These observations demonstrate that omega-3-rich harp seal oil downregulates the production of the pro-inflammatory cytokines such as IL-1β, TNF-α, and IL-12/IL-23 (p40). These results suggest that HSO could be potentially used as a preventive agent or as an adjunct in anti-inflammatory therapy, if more research results were accumulated.

  12. Effects of Omega-3-Rich Harp Seal Oil on the Production of Pro-Inflammatory Cytokines in Mouse Peritoneal Macrophages

    PubMed Central

    Choi, Myungwon; Ju, Jaehyun; Suh, Jae Soo; Park, Kun-Young; Kim, Kwang Hyuk

    2015-01-01

    Omega-3, a polyunsaturated fatty acid, is an essential fatty acid necessary for human health, and it protects against cardiovascular disease, inflammation, autoimmune diseases, and cancer. In the present study, we investigated the effects of omega-3-rich harp seal oil (HSO) on the production of nitric oxide (NO) and cytokines, such as tumor necrosis factor (TNF)-α, interleukin-(IL)-1β, IL-6, and IL-12/IL-23 (p40) in peritoneal macrophages of mice. The culture supernatants of murine macrophages exposed to lipopolysaccharide (LPS), HSO, or HSO+LPS were harvested to assay IL-1β, TNF-α, IL-6, and IL-12/IL-23 (p40) cytokines and NO. TNF-α, IL-1 β, and IL-12/IL-23 (p40) levels, except IL-6, were lower in the culture supernatants of mouse peritoneal macrophages exposed to LPS plus HSO than those of the groups exposed to LPS alone. These observations demonstrate that omega-3-rich harp seal oil downregulates the production of the pro-inflammatory cytokines such as IL-1β, TNF-α, and IL-12/IL-23 (p40). These results suggest that HSO could be potentially used as a preventive agent or as an adjunct in anti-inflammatory therapy, if more research results were accumulated. PMID:26175994

  13. Culture of mouse peritoneal macrophages with mouse serum induces lipid bodies that associate with the parasitophorous vacuole and decrease their microbicidal capacity against Toxoplasma gondii

    PubMed Central

    Mota, Laura Azeredo Miranda; Roberto, João; Monteiro, Verônica Gomes; Lobato, Caroliny Samary Silva; de Oliveira, Marco Antonio; da Cunha, Maura; D’Ávila, Heloisa; Seabra, Sérgio Henrique; Bozza, Patrícia Torres; DaMatta, Renato Augusto

    2014-01-01

    Lipid bodies [lipid droplets (LBs)] are lipid-rich organelles involved in lipid metabolism, signalling and inflammation. Recent findings suggest a role for LBs in host response to infection; however, the potential functions of this organelle in Toxoplasma gondii infection and how it alters macrophage microbicidal capacity during infection are not well understood. Here, we investigated the role of host LBs in T. gondii infection in mouse peritoneal macrophages in vitro. Macrophages cultured with mouse serum (MS) had higher numbers of LBs than those cultured in foetal bovine serum and can function as a model to study the role of LBs during intracellular pathogen infection. LBs were found in association with the parasitophorous vacuole, suggesting that T. gondii may benefit from this lipid source. Moreover, increased numbers of macrophage LBs correlated with high prostaglandin E2 (PGE2) production and decreased nitric oxide (NO) synthesis. Accordingly, LB-enriched macrophages cultured with MS were less efficient at controlling T. gondii growth. Treatment of macrophages cultured with MS with indomethacin, an inhibitor of PGE2 production, increased the microbicidal capacity against T. gondii. Collectively, these results suggest that culture with MS caused a decrease in microbicidal activity of macrophages against T. gondii by increasing PGE2 while lowering NO production. PMID:25317704

  14. Relationship between membrane potential changes and superoxide-releasing capacity in resident and activated mouse peritoneal macrophages

    SciTech Connect

    Kitagawa, S.; Johnston, R.B. Jr.

    1985-11-01

    To understand better the molecular basis for the enhanced respiratory burst of activated macrophages (M phi), the relationship between the stimulus-induced changes in membrane potential and release of superoxide anion (O/sub 2//sup -/) in mouse peritoneal M phi was investigated. Resident M phi and M phi elicited by injection of lipopolysaccharide (LPS-M phi) or obtained from animals infected with bacille Calmette-Guerin (BCG-M phi) were used. LPS-M phi and BCG-M phi showed more pronounced changes in membrane potential (depolarization) and greater release of O/sub 2//sup -/ on contact with phorbol myristate acetate (PMA) than did resident macrophages. The lag time between addition of stimulus and onset of release of O/sub 2//sup -/ was reduced in activated compared with resident cells. Membrane potential changes began 60 to 90 sec before release of O/sub 2//sup -/ could be detected in each cell type. The dose-response curves for triggering of membrane potential changes and O/sub 2//sup -/ release by PMA were identical. The magnitude of membrane potential changes and of O/sub 2//sup -/ release in LPS-M phi and BCG-M phi declined progressively during in vitro culture, and values on day 3 approached those in resident macrophages (deactivation). Extracellular glucose was required for effective stimulated change in membrane potential and O/sub 2//sup -/ release. These findings indicate that membrane potential changes are closely associated with O/sub 2//sup -/-releasing capacity in macrophages, and that the systems that mediate membrane potential changes and production of O/sub 2//sup -/ develop or decline concomitantly during activation or deactivation of the cells.

  15. Attachment, ingestion and intracellular killing of Helicobacter pylori by human peripheral blood mononuclear leukocytes and mouse peritoneal inflammatory macrophages.

    PubMed

    Chmiela, M; Paziak-Domanska, B; Wadström, T

    1995-02-01

    The different steps of phagocytosis, attachment, ingestion and intracellular killing of cells of Helicobacter pylori strain 17874 (expressing sialic acid-specific haemagglutinin) and cells of H. pylori strain 17875 (expressing non-sialic acid-specific haemagglutinin) have been studied. More cells of sialopositive H. pylori strain 17874 have been found attached to human peripheral blood mononuclear leukocytes (PBM) and mouse peritoneal inflammatory macrophages (PIM) than cells of sialonegative H. pylori strain 17875. Binding of cells of H. pylori strain 17874 has been significantly inhibited by treatment of phagocytes with neuraminidase. Inhibition of adhesion of these bacteria preincubated with foetuin to normal phagocytic cells has also been found. Well adhering cells of H. pylori strain 17874 were more resistant to killing mechanisms of human PBM and mouse PIM than cells of strain 17875. Good, probably sialic acid-specific haemagglutinin dependent, adhesion of H. pylori bacteria to phagocytes can be considered as an important virulence factor which facilitates the pathogen to avoid the defence mechanisms.

  16. Injection of mice with antibody to mouse interferon alpha/beta decreases the level of 2'-5' oligoadenylate synthetase in peritoneal macrophages.

    PubMed Central

    Gresser, I; Vignaux, F; Belardelli, F; Tovey, M G; Maunoury, M T

    1985-01-01

    Injection of conventional or axenic weanling mice with potent sheep or goat antibody to mouse interferon alpha/beta resulted in a decrease in the basal level of 2-5A synthetase in resting peritoneal macrophages and rendered these cells permissive for vesicular stomatitis virus. There was a good inverse correlation between the level of 2-5A synthetase in peritoneal macrophages and the permissivity of these cells for vesicular stomatitis virus. The peritoneal macrophages of 1- and 2-week-old mice had low levels of 2-5A synthetase and were permissive for vesicular stomatitis virus, whereas at 3 weeks (and after) there was a marked increase in the level of 2-5A synthetase in peritoneal macrophages, and these cells were no longer permissive for vesicular stomatitis virus. We suggest that low levels of interferon alpha or beta or both are produced in normal mice, and that this interferon contributes to host defense by inducing and maintaining an antiviral state in some cells. PMID:2981340

  17. Escherichia coli maltose-binding protein activates mouse peritoneal macrophages and induces M1 polarization via TLR2/4 in vivo and in vitro.

    PubMed

    Ni, Weihua; Zhang, Qingyong; Liu, Guomu; Wang, Fang; Yuan, Hongyan; Guo, Yingying; Zhang, Xu; Xie, Fei; Li, Qiongshu; Tai, Guixiang

    2014-07-01

    Maltose-binding protein (MBP) is a component of the maltose transport system of Escherichia coli. Our previous study found that MBP combined with Bacillus Calmette-Guerin (BCG) increases the percentage of activated macrophages in the spleen and the pinocytic activity of peritoneal macrophages in vivo. However, the effect of MBP alone on macrophages remains unclear. In the present study, the results showed that MBP enhanced LPS-stimulated macrophage activity in vivo. Subsequently, we investigated the regulatory effect of MBP on mouse peritoneal macrophages in vitro and the possible underlying mechanism. The results showed that MBP directly promoted macrophage phagocytic activity and increased the production of NO, IL-1β and IL-6. Notably, macrophage phenotypic analysis showed that MBP significantly increased iNOS, IL-12p70 and CD16/32. In contrast, MBP decreased the secretion of IL-10 and slightly decreased Arg-1 mRNA and CD206 protein expression. These results suggested that MBP activated macrophages and polarized them into M1 macrophages. Further study found that MBP directly bound to macrophages and upregulated TLR2 mRNA expression. This process was accompanied by a clear increase in MyD88 expression and phosphorylation of p38 MAPK and IκB-α, but these effects were largely abrogated by pretreatment with anti-TLR2 or anti-TLR4 antibodies. The effects of MBP on macrophage NO production were also partially inhibited by anti-TLR2 and/or anti-TLR4 antibodies. Furthermore, the effect of MBP on IL-12 and IL-10 secretion was largely influenced by the NF-κB inhibitor PDTC and the p38 MAPK inhibitor SB203580. These results suggest that MBP directly activates macrophages and induces M1 polarization through a process that may involve TLR2 and TLR4.

  18. Interleukin-12 synthesis is a required step in trehalose dimycolate-induced activation of mouse peritoneal macrophages.

    PubMed Central

    Oswald, I P; Dozois, C M; Petit, J F; Lemaire, G

    1997-01-01

    Trehalose dimycolate (TDM), a glycolipid present in the cell wall of Mycobacterium spp., is a powerful immunostimulant. TDM primes murine macrophages (Mphi) to produce nitric oxide (NO) and to develop antitumoral activity upon activation with low doses of lipopolysaccharide (LPS). In this study, we investigated the ability of TDM to induce interleukin 12 (IL-12) and the role of this cytokine in TDM-induced activation of murine Mphi. RNA isolated from peritoneal exudate cells (PEC) collected at different times after TDM injection was used to determine IL-12 (p35 and p40 subunits) and gamma interferon (IFN-gamma) mRNA levels by semiquantitative reverse transcriptase-PCR. Constitutive expression of IL-12p35 was observed in PEC from untreated as well as from TDM-injected mice. In contrast, expression of the IL-12p40 subunit was almost undetectable in control PEC but was dramatically upregulated in PEC from TDM-injected mice. IL-12p40 expression peaked at 8 h and subsided to baseline levels at 39 h postinjection. TDM was also able to induce IFN-gamma expression; however, kinetics of induction of IFN-gamma was different from that of IL-12p40. Maximal levels of IFN-gamma mRNA were reached by 24 h and did not return to baseline by 4 days. In addition, pretreatment of mice with neutralizing monoclonal antibodies directed against IL-12 (C15.6.7 and C15.1.2) blocked IFN-gamma mRNA induction in PEC from TDM-treated mice. We further determined if the induction of IL-12 and/or IFN-gamma contributes to the in vivo priming effect of TDM on peritoneal Mphi. TDM-injected mice were treated in vivo with anti-IL-12 or anti-IFN-gamma (XMG.1.6) monoclonal antibodies. TDM-primed Mphi were then activated in vitro with LPS and tested for their ability to produce NO and to develop cytostatic activity toward cocultivated L1210 tumor cells. Priming of Mphi by TDM was completely blocked by in vivo neutralization of either IL-12 or IFN-gamma as demonstrated by an absence of tumoricidal activity

  19. Isofraxidin exhibited anti-inflammatory effects in vivo and inhibited TNF-α production in LPS-induced mouse peritoneal macrophages in vitro via the MAPK pathway.

    PubMed

    Niu, Xiaofeng; Xing, Wei; Li, Weifeng; Fan, Ting; Hu, Hua; Li, Yongmei

    2012-10-01

    Isofraxidin (IF) is a Coumarin compound that can be isolated from medicinal plants, such as Sarcandra glabra (Thunb.). Nakai is widely used in Asian countries for the treatment of anti-bacterial, anti-inflammatory and anti-tumour action. The present investigation was designed to evaluate the effect of IF on inflammation and nociception. In addition, we investigated a potential novel mechanism to explain the anti-inflammatory properties of IF. In vivo, xylene-induced mouse ear edema, carrageenan-induced rat paw edema, LPS-induced mouse endotoxic shock, acetic acid-induced mice writhing and formalin-induced mouse pain models were used to evaluate the anti-inflammatory activity of IF. In vitro, we examined the effects of IF inhibition on TNF-α production and the regulation of ERK1/2 and p38 phosphorylation activity in LPS-induced mouse peritoneal macrophages. Our results demonstrated that IF can significantly decrease xylene-induced ear edema, carrageenan-induced paw edema, acetic acid-induced writhing and formalin-induced pain. Moreover, IF greatly inhibited the production of TNF-α in the serum of LPS-stimulated mice and peritoneal macrophages, and it decreased phospho-p38 and ERK1/2 protein expression in LPS-stimulated mouse peritoneal macrophages. Overall, our data suggest that IF possesses significant analgesic and anti-inflammatory activities that may be mediated through the regulation of pro-inflammatory cytokines, TNF-α and the phosphorylation of p38 and ERK1/2.

  20. Effects of Opsonization and Gamma Interferon on Growth of Brucella Melitensis 16M in Mouse Peritoneal Macrophages In Vitro

    DTIC Science & Technology

    2000-01-01

    SUBTITLE Effects of Opsonization and Gamma Interferon on Growth of Brucella , melitensis 16M in Mouse Peritoneal Microphages rom In Vitro 3. REPORT...with Brucella melitensis 16M treated with complement- and/or antibody-rich serum. Mouse serum rich in antibody against Brucella lipopolysaccnaride...pathogens of humans and livestock. Brucella meli- tensis usually infects sheep, goats , and camels and is the most pathogenic species for humans (1). Like

  1. Uptake by mouse peritoneal macrophages of large cholesteryl ester-rich particles isolated from human atherosclerotic lesions.

    PubMed

    Hoff, H F; Clevidence, B A

    1987-06-01

    We have previously shown that a lipoprotein fraction consisting of large cholesteryl ester-rich particles can be isolated from homogenates of human aortic plaques by gel exclusion chromatography. This fraction was recognized by a high-affinity binding site on mouse peritoneal macrophages (MPM) resulting in unregulated uptake, stimulation of cholesterol esterification, and massive accumulation of cholesteryl esters. In this report we have further characterized such a fraction, designated lipid-protein complex (LP), which can be isolated from the void volume fraction of a Bio-Gel A-150m column following chromatography of plaque extracts. LP possessed a mean cholesterol-to-protein ratio of 2.3; it was heterogeneous in size and structure as observed by electron microscopy after negative staining, and it stimulated cholesterol esterification in MPM in a linear fashion over a 48-hr time interval, suggesting that the binding site on MPM recognizing LP was not down-regulated by intracellular cholesterol content. This uptake resulted in the presence of oil red O-positive intracellular droplets and numerous vacuoles containing electron-dense structures, whereas MPM incubated without lipoprotein showed few vacuoles or lipid droplets. Using SDS-PAGE and immunoblot and dot-blot techniques, we found that the major proteins associated with LP were albumin and fibronectin, whereas apoB and apoE were present in lower amounts. These proteins may be responsible for opsonization of LP, making it recognizable to receptors on MPM and facilitating LP uptake by MPM. LP isolated from tissue extracts without homogenization had the same structural and functional characteristics, suggesting that homogenization per se was not responsible for creating a particle that was recognized by MPM. However, homogenization yielded two to three times more LP. MPM uptake of LP derived from lysed foam cells may represent one of the mechanisms by which fatty streak lesions may grow to larger atherosclerotic

  2. Amelioration of oxidative DNA damage in mouse peritoneal macrophages by Hippophae salicifolia due to its proton (H+) donation capability: Ex vivo and in vivo studies

    PubMed Central

    Chakraborty, Mainak; Karmakar, Indrajit; Haldar, Sagnik; Das, Avratanu; Bala, Asis; Haldar, Pallab Kanti

    2016-01-01

    Introduction: The present study evaluates the antioxidant effect of methanol extract of Hippophae salicifolia (MEHS) bark with special emphasis on its role on oxidative DNA damage in mouse peritoneal macrophages. Material and Methods: In vitro antioxidant activity was estimated by standard antioxidant assays whereas the antioxidant activity concluded the H+ donating capacity. Mouse erythrocytes’ hemolysis and peritoneal macrophages’ DNA damage were determined spectrophotometrically. In vivo antioxidant activity of MEHS was determined in carbon tetrachloride-induced mice by studying its effect on superoxide anion production in macrophages cells, superoxide dismutase in the cell lysate, DNA damage, lipid peroxidation, and reduces glutathione. Results: The extract showed good in vitro antioxidant activities whereas the inhibitory concentrations values ranged from 5.80 to 106.5 μg/ml. MEHS significantly (P < 0.05) attenuated the oxidative DNA damage. It also attenuated the oxidative conversion of hemoglobin to methemoglobin and elevation of enzymatic and nonenzymatic antioxidant in cells. Conclusion: The result indicates MEHS has good in vitro-in vivo antioxidant property as well as the protective effect on DNA and red blood cell may be due to its H+ donating property. PMID:27413349

  3. Cholesteryl ester loading of mouse peritoneal macrophages is associated with changes in the expression or modification of specific cellular proteins, including increase in an alpha-enolase isoform.

    PubMed

    Bottalico, L A; Kendrick, N C; Keller, A; Li, Y; Tabas, I

    1993-02-01

    This report explores the hypothesis that massive cholesteryl ester (CE) accumulation in macrophages, such as that occurring in atheroma foam cells, results in changes in the expression or modification of specific cellular proteins. Two-dimensional (2-D) gel electrophoretic patterns of metabolically labeled cellular proteins from mouse peritoneal macrophages that were loaded with CE (through incubation with acetylated low density lipoprotein [acetyl-LDL] for 4 days) were compared with those of control macrophages. Densitometric analysis of 2-D gel autoradiograms from the cell lysates revealed statistically significant changes in seven cellular proteins (five decreases and two increases). The changes in protein expression (foam cell versus control) ranged from a 458 +/- 164% (p < 0.001) increase to a 35 +/- 34% (p < 0.001) decrease (n = 11). Incubation of macrophages with beta-very low density lipoprotein, which also increased the CE content of macrophages (albeit to a lesser extent than acetyl-LDL), resulted in changes in five of the seven proteins. In contrast, incubation of cells with LDL, fucoidan, or latex beads, none of which caused CE accumulation, did not lead to significant changes in four of these five proteins. One of these four proteins, which increased fourfold to fivefold in foam cells (M(r) = 49,000; isoelectric point of 6.8), was purified by preparative 2-D gel electrophoresis. Internal amino acid sequence of cyanogen bromide fragments of this protein as well as Western blot analysis identified this protein as an isoform of alpha-enolase. The increased expression of this alpha-enolase isoform, which was seen as early as day 2 of acetyl-LDL incubation of the macrophages, was diminished by including an inhibitor of cholesterol esterification during the acetyl-LDL incubation period. In conclusion, macrophage foam cell formation is associated with distinct changes in protein expression, including a marked increase in an isoform of alpha

  4. High mobility group box 1 protein synergizes with lipopolysaccharide and peptidoglycan for nitric oxide production in mouse peritoneal macrophages in vitro.

    PubMed

    Chakraborty, Rituparna; Bhatt, Kunal H; Sodhi, Ajit

    2013-05-01

    Extracellular high mobility group box 1 (HMGB1) protein and nitric oxide (NO) has been credited with multiple inflammatory functions using in vivo and in vitro systems. Therefore, delineating their regulation may be an important therapeutic strategy for the treatment of sepsis. In the present study, it is demonstrated that recombinant HMGB1 (rHMGB1) synergizes with sub threshold concentration of TLR2 agonist (PGN; 1 μg/ml) as well as with TLR4 agonist (LPS; 1 ng/ml) to induce NO release in mouse peritoneal macrophages. The enhanced iNOS expression was also observed at the transcription and translational level. Co-incubation of macrophages with rHMGB1 with either PGN or LPS showed enhanced expression of TLR2, TLR4 and RAGE. TLR2, TLR4 or RAGE knockdown macrophages effectively inhibited the rHMGB1+PGN or LPS induced NO synergy. It was further observed that the JNK MAPK inhibitor SP600125 attenuated the PGN+rHMGB1 induced iNOS/NO synergy whereas p38 MAPK inhibitor SB908912 inhibited iNOS/NO synergy induced by LPS+rHMGB1. It was also observed that the activation of NF-κB is essential for the synergy as the pharmacological inhibition or siRNA knockdown of NF-κB (cRel) significantly reduced the rHMGB1+PGN or rHMGB1+LPS induced enhanced iNOS/NO expression. Altogether, the data suggests that the co-incubation of macrophages with rHMGB1 with either LPS or PGN induces the synergistic effect on iNOS expression and NO release by the upregulation of surface receptors (TLR2, TLR4 and RAGE) which in turn amplifies the MAPKs (p38 and JNK) and NF-κB activation and results in enhanced iNOS expression and NO production.

  5. CRIg-expressing peritoneal macrophages are associated with disease severity in patients with cirrhosis and ascites

    PubMed Central

    Irvine, Katharine M.; Banh, Xuan; Gadd, Victoria L.; Wojcik, Kyle K.; Ariffin, Juliana K.; Jose, Sara; Lukowski, Samuel; Baillie, Gregory J.; Sweet, Matthew J.; Powell, Elizabeth E.

    2016-01-01

    Infections are an important cause of morbidity and mortality in patients with decompensated cirrhosis and ascites. Hypothesizing that innate immune dysfunction contributes to susceptibility to infection, we assessed ascitic fluid macrophage phenotype and function. The expression of complement receptor of the immunoglobulin superfamily (CRIg) and CCR2 defined two phenotypically and functionally distinct peritoneal macrophage subpopulations. The proportion of CRIghi macrophages differed between patients and in the same patient over time, and a high proportion of CRIghi macrophages was associated with reduced disease severity (model for end-stage liver disease) score. As compared with CRIglo macrophages, CRIghi macrophages were highly phagocytic and displayed enhanced antimicrobial effector activity. Transcriptional profiling by RNA sequencing and comparison with human macrophage and murine peritoneal macrophage expression signatures highlighted similarities among CRIghi cells, human macrophages, and mouse F4/80hi resident peritoneal macrophages and among CRIglo macrophages, human monocytes, and mouse F4/80lo monocyte-derived peritoneal macrophages. These data suggest that CRIghi and CRIglo macrophages may represent a tissue-resident population and a monocyte-derived population, respectively. In conclusion, ascites fluid macrophage subset distribution and phagocytic capacity is highly variable among patients with chronic liver disease. Regulating the numbers and/or functions of these macrophage populations could provide therapeutic opportunities in cirrhotic patients. PMID:27699269

  6. Receptors for oxidized low-density lipoprotein on elicited mouse peritoneal macrophages can recognize both the modified lipid moieties and the modified protein moieties: Implications with respect to macrophage recognition of apoptotic cells

    PubMed Central

    Bird, David A.; Gillotte, Kristin L.; Hörkkö, Sohvi; Friedman, Peter; Dennis, Edward A.; Witztum, Joseph L.; Steinberg, Daniel

    1999-01-01

    It has been shown previously that the binding of oxidized low-density lipoprotein (OxLDL) to resident mouse peritoneal macrophages can be inhibited (up to 70%) by the apoprotein B (apoB) isolated from OxLDL, suggesting that macrophage recognition of OxLDL is primarily dependent on its modified protein moiety. However, recent experiments have demonstrated that the lipids isolated from OxLDL and reconstituted into a microemulsion can also strongly inhibit uptake of OxLDL (up to 80%). The present studies show that lipid microemulsions prepared from OxLDL bind to thioglycollate-elicited macrophages at 4°C in a saturable fashion and inhibit the binding of intact OxLDL and also of the apoB from OxLDL. Reciprocally, the binding of the OxLDL-lipid microemulsions was strongly inhibited by intact OxLDL. A conjugate of synthetic 1-palmitoyl 2(5-oxovaleroyl) phosphatidylcholine (an oxidation product of 1-palmitoyl 2-arachidonoyl phosphatidylcholine) with serum albumin, shown previously to inhibit macrophage binding of intact OxLDL, also inhibited the binding of both the apoprotein and the lipid microemulsions prepared from OxLDL. Finally, a monoclonal antibody against oxidized phospholipids, one that inhibits binding of intact OxLDL to macrophages, also inhibited the binding of both the resolubilized apoB and the lipid microemulsions prepared from OxLDL. These studies support the conclusions that: (i) at least some of the macrophage receptors for oxidized LDL can recognize both the lipid and the protein moieties; and (ii) oxidized phospholipids, in the lipid phase of the lipoprotein and/or covalently linked to the apoB of OxLDL, likely play a role in that recognition. PMID:10339590

  7. Phagocytic and chemiluminescent responses of mouse peritoneal macrophages to living and killed Salmonella typhimurium and other bacteria

    SciTech Connect

    Tomita, T.; Blumenstock, E.; Kanegasaki, S.

    1981-06-01

    In the presence of luminol, resident as well as thioglycolate-induced and immunized macrophages emitted chemiluminescence more efficiently when the cells were exposed to living Salmonella typhimurium than when they were exposed to the same bacterium killed by ultraviolet light or heat. This phenomenon was observed whether or not the bacterium was opsonized. The different response to living and killed bacteria was also found with Escherichia coli, Pseudomonas aeruginosa, Proteus morganii, and Enterobacter aerogenes, but not with Shigella sonnei, Klebsiella pneumoniae, and Propionibacterium acnes. The results suggest that macrophages respond better to living, motile bacteria than to nonmotile or killed bacteria. The experimental results obtained with motility mutants of S. typhimurium, E. coli, and P. aeruginosa confirm that macrophages exposed to the motile bacteria emit chemiluminescence more efficiently and ingest the motile bacteria at a much faster rate than the nonmotile bacteria.

  8. Lipopolysaccharide (LPS) alters phosphatidylcholine metabolism in elicited peritoneal macrophages

    SciTech Connect

    Grove, R.I.; Allegretto, N.J.; Kiener, P.A.; Warr, G.A. )

    1990-07-01

    We investigated the effects of LPS on mouse peritoneal macrophage phospholipids using radiolabeled precursors. LPS (200 ng/ml) stimulated incorporation of ({sup 32}P) into all classes of phospholipids within 0.5 hr, and after 2 hr the increase was 60% greater than controls. Separation of the phospholipid classes by thin-layer chromatography revealed a selective increase in incorporation of label into phosphatidylcholine (PC) (90% increase compared to approximately 50% in the other phospholipids). In macrophages labeled with ({sup 3}H)-choline, LPS stimulated both the incorporation of label into PC and the release of incorporated label into the medium. The time dependencies of stimulated ({sup 3}H) release and ({sup 32}P) incorporation were similar. These data are consistent with the hypothesis that LPS activates macrophages via a PC-specific phospholipase-dependent mechanism.

  9. Esculin exhibited anti-inflammatory activities in vivo and regulated TNF-α and IL-6 production in LPS-stimulated mouse peritoneal macrophages in vitro through MAPK pathway.

    PubMed

    Niu, Xiaofeng; Wang, Yu; Li, Weifeng; Zhang, Hailin; Wang, Xiumei; Mu, Qingli; He, Zehong; Yao, Huan

    2015-12-01

    Esculin, a coumarinic derivative found in Aesculus hippocastanum L. (Horse-chestnut), has been reported to have potent anti-inflammatory properties. The present study is designed to investigate the protective effects of esculin on various inflammation models in vivo and in vitro and to clarify the possible mechanism. Induced-animal models of inflammation and lipopolysaccharide (LPS)-challenged mouse peritoneal macrophages were used to examine the anti-inflammatory activity of esculin. In present study, xylene-induced mouse ear edema, carrageenan-induced rat paw edema, and carrageenan-induced mouse pleurisy were attenuated by esculin. In vitro, the pro-inflammatory cytokine levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in supernatant were reduced by esculin. Meanwhile, we found that esculin significantly inhibited LPS-induced activation of mitogen-activated protein kinase (MAPK) pathway in peritoneal macrophages. These results suggest that esculin has potent anti-inflammatory activities in vivo and in vitro, which may involve the inhibition of the MAPK pathway. Esculin may be a promising preventive agent for inflammatory diseases in human.

  10. Immunoregulation by macrophages II. Separation of mouse peritoneal macrophages having tumoricidal and bactericidal activities and those secreting PGE and interleukin I

    SciTech Connect

    Hopper, K.E.; Cahill, J.M.

    1983-06-01

    Macrophage subpopulations having bactericidal or tumoricidal activities and secreting interleukin I (IL1) or prostaglandin E (PGE) were identified through primary or secondary infection with Salmonella enteritidis and separated by sedimentation velocity. Bactericidal activity was measured by (3H)-thymidine release from Listeria monocytogenes and tumoricidal activity by 51Cr-release from C-4 fibrosarcoma or P815 mastocytoma cells. Macrophages with bactericidal activity were distinguished from those with tumoricidal activity a) during secondary infection when cytolytic activity occurred only at days 1-4 post injection and bactericidal activity remained high throughout and b) after sedimentation velocity separation. Cytolysis was consistently greatest among adherent cells of low sedimentation velocity, whereas cells with bactericidal activity increased in size during the infection. Tumour cytostasis (inhibition and promotion of (3H)-thymidine uptake) differed from cytolysis in that the former was more prolonged during infection and was also detected among large cells. Secretion of immunoregulatory molecules PGE and IL1 occurred maximally among different macrophage subpopulations separated by sedimentation velocity and depending on the type of stimulus used in vitro. There was an inverse correlation between IL1 production and PGE production after stimulation with C3-zymosan or lipopolysaccharide (LPS). The development of immunity during infection may therefore be dependent upon the relative proportions of effector and regulatory macrophage subpopulations and the selective effects of environmental stimuli on these functions.

  11. Anti-Inflammatory Effects of Hyptis albida Chloroform Extract on Lipopolysaccharide-Stimulated Peritoneal Macrophages

    PubMed Central

    Sánchez Miranda, Elizabeth; Pérez Ramos, Julia; Fresán Orozco, Cristina; Zavala Sánchez, Miguel Angel; Pérez Gutiérrez, Salud

    2013-01-01

    We examined the effects of a chloroform extract of Hyptis albida (CHA) on inflammatory responses in mouse lipopolysaccharide (LPS) induced peritoneal macrophages. Our findings indicate that CHA inhibits LPS-induced production of tumor necrosis factor (TNF-α) and interleukin-6 (IL-6). During the process, levels of cyclooxygenase-2 (COX-2), nitric oxide synthase (iNOS), and nitric oxide (NO) increased in the mouse peritoneal macrophages; however, the extract suppressed them significantly. These results provide novel insights into the anti-inflammatory actions of CHA and support its potential use in the treatment of inflammatory diseases. PMID:23970974

  12. Chemotherapeutic agent CPT-11 eliminates peritoneal resident macrophages by inducing apoptosis.

    PubMed

    Huang, Mei-Yun; Pan, Hao; Liang, Yi-Dan; Wei, Hong-Xia; Xu, Li-Hui; Zha, Qing-Bing; He, Xian-Hui; Ouyang, Dong-Yun

    2016-02-01

    CPT-11 (Irinotecan) is a first-line chemotherapeutic agent in clinic, but it may induce side effects including diarrhea and enteritis in patients. The underlying mechanism of CPT-11's intestinal toxicity is unclear. Peritoneal resident macrophages have been reported to be important for the maintenance of intestinal homeostasis. In this study, we evaluated the cytotoxic effects of CPT-11 on mouse peritoneal resident macrophages. CPT-11 was administered intraperitoneally to mice and their peritoneal exudate cells were isolated for evaluation. CPT-11 treatment strikingly decreased the ratio of F4/80(hi)MHCII(low) large peritoneal macrophages (LPMs), which are regarded as prenatally-originated peritoneal resident macrophages. Consistent with this, the transcription factor GATA6 specifically expressed in LPMs was barely detectable in the macrophages from CPT-11-treated mice, indicative of elimination of LPMs. Such elimination of LPMs was at least partly due to CPT-induced apoptosis in macrophages, because inhibition of apoptosis by caspase-3 inhibitor z-DEVD-fmk significantly diminished the loss of GATA6(+) LPMs. As GATA6 is a transcription factor that controls expression of multiple genes regulating peritoneal B-1 cell development and translocation, elimination of GATA6(+) LPMs led to a great reduction in B-1 cells in the peritoneal cavity after CPT-11 treatment. These results indicated that CPT-11-induced apoptosis contributed to the elimination of peritoneal resident macrophages, which might in turn impair the function of peritoneal B-1 cells in maintaining intestinal homeostasis. Our findings may at least partly explain why CPT-11 treatment in cancer patients induces diarrhea and enteritis, which may provide a novel avenue to prevent such side effects.

  13. Endomorphin-suppressed nitric oxide release from mice peritoneal macrophages.

    PubMed

    Balog, Tihomir; Sarić, Ana; Sobocanec, Sandra; Kusić, Borka; Marotti, Tatjana

    2010-02-01

    Endomorphins are newly discovered mu-opioid receptor selective immunocompetent opioid peptides. Endomorphin 1 is predominantly distributed in brain, while endomorphin 2 is widely allocated in the spinal cord. Lately, endomorphins have been investigated as modulators of reactive oxygen and nitrogen species. Nitric oxide is short lived radical involved in various biological processes such as regulation of blood vessel contraction, inflammation, neurotransmission and apoptosis. The aim of this work was to investigate the in vivo effects of endomorphins on nitric oxide release and NOS 2 isoenzyme upregulation in mice peritoneal macrophages additionally challenged ex vivo with lipopolysaccharide. The results showed that endomorphin 1 or endomorphin 2 in vitro did not change NO release from peritoneal mouse macrophages during a 48 h incubation period. On the other hand in vivo endomorphins had suppressive effect on NO release as well as on NOS 2 and IL-1 protein concentration. The most of suppressive effect in vivo of both endomorphins was blocked with 30 min pretreatment with mu-receptor selective antagonist beta-FNA, which proved involvement of opioid receptor pathway in suppressive effects of endomorphins.

  14. Regulation of LPS-induced mRNA expression of pro-inflammatory cytokines via alteration of NF-κB activity in mouse peritoneal macrophages exposed to fluoride.

    PubMed

    Tian, Yuhu; Huo, Meijun; Li, Guangsheng; Li, Yanyan; Wang, Jundong

    2016-10-01

    F toxicity to immune system, especially to macrophage, has been studied a lot recently. Nuclear factor-kappa B (NF-κB), as a transcription factor, plays a central role in immune and inflammatory responses via the regulation of downstream gene expression. Recent studies indicated that fluoride effect on inflammatory cytokine secretion, however, the molecular mechanism was less understood. In our study, peritoneal macrophages (PMs) were divided several groups and were administrated sodium fluoride (NaF, 50, 100, 200, 400, 800 μM) and/or lipopolysaccharide (LPS, 30 ng/mg). The mRNA expression of p65, inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1β) in macrophages exposed to fluoride was determined by quantitative real-time RT-PCR respectively. The translocation of NF-κB from cytoplasm to nucleus, which in a way reflects NF-κB activity, was demonstrated by Immunofluorescence and ELISA. Our results showed that fluoride had a dose-dependent effect on NF-κB activity, which coincided with LPS-induced mRNA expression of its downstream genes, iNOS and IL-1β. Fluoride alone causes no effect on gene expression. However, the mRNA expression of TNF-α showed non-NF-κB-dependent manner. Therefore, we come to the conclusion that fluoride can regulate LPS-induced mRNA expression of iNOS and IL-1β via NF-κB pathway in mouse peritoneal macrophages.

  15. Inhibitory effects of coumarin and acetylene constituents from the roots of Angelica furcijuga on D-galactosamine/lipopolysaccharide-induced liver injury in mice and on nitric oxide production in lipopolysaccharide-activated mouse peritoneal macrophages.

    PubMed

    Yoshikawa, Masayuki; Nishida, Norihisa; Ninomiya, Kiyofumi; Ohgushi, Teruki; Kubo, Mizuho; Morikawa, Toshio; Matsuda, Hisashi

    2006-01-15

    The methanolic extract (200 mg/kg, p.o. and i.p.), principal coumarin constituents (isoepoxypteryxin, anomalin, and praeroside IV), and a polyacetylene constituent (falcarindiol) (25 mg/kg, i.p.) from the roots of Angelica furcijuga protected the liver injury induced by D-galactosamine (D-GalN)/lipopolysaccharide (LPS) in mice. In in vitro experiments, coumarin constituents (hyuganins A-D, anomalin, pteryxin, isopteryxin, and suksdorfin) and polyacetylene constituents [(-)-falcarinol and falcarindiol] substantially inhibited LPS-induced NO and/or TNF-alpha production in mouse peritoneal macrophages, and isoepoxypteryxin inhibited D-GalN-induced cytotoxicity in primary cultured rat hepatocytes. Furthermore, hyuganin A, anomalin, and isopteryxin inhibited the decrease in cell viability by TNF-alpha in L929 cells.

  16. Peritonitis-induced antitumor activity of peritoneal macrophages from uremic patients.

    PubMed

    Turyna, Bohdan; Jurek, Aleksandra; Gotfryd, Kamil; Siaśkiewicz, Agnieszka; Kubit, Piotr; Klein, Andrzej

    2004-01-01

    The macrophages belong to the effector cells of both nonspecific and specific immune response. These cells generally express little cytotoxicity unless activated. The present work was intended to determine if peritoneal macrophages collected from patients on Continuous Ambulatory Peritoneal Dialysis (CAPD) during episodes of peritonitis were active against human tumor cell lines without further in vitro stimulation. We also compared macrophage antitumor potential with effectiveness of drugs used in cancer therapy (taxol and suramin). Conditioned medium (CM) of macrophages collected during inflammation-free periods did not exhibit cytostatic and cytotoxic activity against both tumor (A549 and HTB44) and non-transformed (BEAS-2B and CRL2190) cells. Exposure of tumor cells to CM of macrophages harvested during peritonitis resulted in significant suppression of proliferation, impairment of viability and induction of apoptosis, in contrast to non-transformed cells, which remained unaffected. The efficacy of CM of inflammatory macrophages as an antitumor agent appeared to be comparable to cytostatic and cytotoxic potency of taxol and suramin or, in the case of HTB44 cells, even higher. The results obtained suggest that activated human macrophages might represent a useful tool for cancer immunotherapy.

  17. Single-cell analysis reveals new subset markers of murine peritoneal macrophages and highlights macrophage dynamics upon Staphylococcus aureus peritonitis.

    PubMed

    Accarias, Solène; Genthon, Clémence; Rengel, David; Boullier, Séverine; Foucras, Gilles; Tabouret, Guillaume

    2016-07-01

    Resident macrophages play a central role in maintaining tissue homeostasis and immune surveillance. Here, we used single cell-based qPCR coupled with flow cytometry analysis to further define the phenotypes of large and small resident peritoneal macrophages (LPMs and SPMs, respectively) in mice. We demonstrated that the expression of Cxcl13, IfngR1, Fizz-1 and Mrc-1 clearly distinguished between LPMs and SPMs subsets. Using these markers, the dynamics of peritoneal macrophages in a Staphylococcus aureus-induced peritonitis model were analyzed. We found that S. aureus infection triggers a massive macrophage disappearance reaction in both subsets. Thereafter, inflammatory monocytes rapidly infiltrated the cavity and differentiated to replenish the SPMs. Although phenotypically indistinguishable from resident SPMs by flow cytometry, newly recruited SPMs had a different pattern of gene expression dominated by M2 markers combined with M1 associated features (inos expression). Interestingly, S. aureus elicited SPMs showed a robust expression of Cxcl13, suggesting that these cells may endorse the role of depleted LPMs and contribute to restoring peritoneal homeostasis. These data provide information on both resident and recruited macrophages dynamics upon S. aureus infection and demonstrate that single-cell phenotyping is a promising and highly valuable approach to unraveling macrophage diversity and plasticity.

  18. Effect of Kramecyne on the Inflammatory Response in Lipopolysaccharide-Stimulated Peritoneal Macrophages

    PubMed Central

    Sánchez-Miranda, E.; Lemus-Bautista, J.; Pérez, S.; Pérez-Ramos, J.

    2013-01-01

    Kramecyne is a new peroxide, it was isolated from Krameria cytisoides, methanol extract, and this plant was mostly found in North and South America. This compound showed potent anti-inflammatory activity; however, the mechanisms by which this compound exerts its anti-inflammatory effect are not well understood. In this study, we examined the effects of kramecyne on inflammatory responses in mouse lipopolysaccharide- (LPS-) induced peritoneal macrophages. Our findings indicate that kramecyne inhibits LPS-induced production of tumor necrosis factor (TNF-α) and interleukin- (IL-) 6. During the inflammatory process, levels of cyclooxygenase- (COX-) 2, nitric oxide synthase (iNOS), and nitric oxide (NO) increased in mouse peritoneal macrophages; however, kramecyne suppressed them significantly. These results provide novel insights into the anti-inflammatory actions and support its potential use in the treatment of inflammatory diseases. PMID:23573152

  19. Immunological impact of magnetic nanoparticles (Ferucarbotran) on murine peritoneal macrophages

    NASA Astrophysics Data System (ADS)

    Yeh, Chen-Hao; Hsiao, Jong-Kai; Wang, Jaw-Lin; Sheu, Fuu

    2010-01-01

    Ferucarbotran, a clinically used superparamagnetic iron oxide, is widely developed as a magnetic resonance imaging (MRI) contrast agent and has the potential to improve the monitoring of macrophage recirculation in vivo. However, the biological effect of Ferucarbotran or magnetic nanoparticles (MNPs) on macrophage is not clearly understood yet. This study is aimed to examine the immunological impact of Ferucarbotran toward murine peritoneal macrophages. Cells treated with Ferucarbotran demonstrated a dose-responsive increase of granularity in the cytoplasm. After 24 h of incubation, viability and cytotoxicity in macrophages treated with 200 μg Fe/mL of Ferucarbotran were not affected. Macrophages loaded with Ferucarbotran above 100 μg Fe/mL showed a significant ( p < 0.01) increase in cytokine (TNF-α, IL-1β, IL-6) secretion and mRNA expression, followed by nitric oxide (NO) secretion and iNOS mRNA expression. Chemotactic responses of Ferucarbotran-preloaded macrophages toward CX3CL1 were significantly ( p < 0.05) lower than those of untreated macrophages. Taking together, Ferucarbotran at high dose (100 μg Fe/mL) could induce murine peritoneal macrophages activation in pro-inflammatory cytokine secretion and NO production.

  20. Immunomodulation by Blastomyces dermatitidis: functional activity of murine peritoneal macrophages.

    PubMed Central

    McDaniel, L S; Cozad, G C

    1983-01-01

    Cell-mediated immunity plays the dominant role in the immune response of mice to Blastomyces dermatitidis infections. Since macrophages play an important role in cell-mediated immunity, the interactions between sensitized murine peritoneal macrophages and the yeast phase of B. dermatitidis were investigated. Scanning electron microscopy showed that the sensitized macrophages readily phagocytized B. dermatitidis yeast cells. In addition, there appeared to be activation of metabolic pathways within the sensitized macrophages, as indicated by increased chemiluminescence activity during phagocytosis. Sensitized macrophages were significantly better at controlling intracellular proliferation of the yeast cells when compared to nonsensitized cells. This was determined by disruption of macrophages and plating for viable yeasts. Scanning electron microscope observations offered further substantiation. Experiments with Candida albicans indicated that B. dermatitidis non-specifically activated macrophages. At 2 h postphagocytosis, 30% fewer C. albicans in B. dermatitidis-activated macrophages were able to form germ tubes. These studies demonstrated the multiple potential of activated macrophages with regard to their functional activity. Images PMID:6840859

  1. Elicitation of macrophages from the peritoneal cavity of channel catfish

    USGS Publications Warehouse

    Jenkins, J.A.; Klesius, P.H.

    1998-01-01

    Four chemicals were evaluated for elicitation of macrophages in peritoneal cavities of 250-300g healthy channel catfish Ictalurus punctatus. Cellular exudates were collected at 3, 5, 7, 10, 14, and 20 d following intraperitoneal injections with squalene, Freund's incomplete adjuvant (FIA), goat serum, thioglycollate, or as a control, phosphate-buffered saline. Injection with either squalene or FIA induced significantly greater (P ??? 0.0001) macrophage recruitment than the other chemicals. The effectiveness of squalene and FIA was compared further by macrophage collection daily for 7 d. Squalene and FIA elicited similarly high macrophage responses (P ??? 0.0450), the highest being 3.43 x 106 macrophages/mL (SE, 2.4 x l06) at 99% purity at day 2 and 2.1 X 106 macrophages/mL (SE, 0.7 x 106) at day 14 at 80% purity, respectively. In both experiments, the time after injection was not statistically significant, nor was there an interaction between time and chemicals. The occurrence of cells other than macrophages decreased with time to yield macrophage recoveries of 47-99% for squalene and 30-80% for FIA. Two subsets of macrophages were observed by means of flow cytometry. As demonstrated by chemiluminescence, the squalene-elicited cells produced high-energy oxygen compounds important to the phagocytic process.

  2. A role for connexin43 in macrophage phagocytosis and host survival after bacterial peritoneal infection.

    PubMed

    Anand, Rahul J; Dai, Shipan; Gribar, Steven C; Richardson, Ward; Kohler, Jeff W; Hoffman, Rosemary A; Branca, Maria F; Li, Jun; Shi, Xiao-Hua; Sodhi, Chhinder P; Hackam, David J

    2008-12-15

    The pathways that lead to the internalization of pathogens via phagocytosis remain incompletely understood. We now demonstrate a previously unrecognized role for the gap junction protein connexin43 (Cx43) in the regulation of phagocytosis by macrophages and in the host response to bacterial infection of the peritoneal cavity. Primary and cultured macrophages were found to express Cx43, which localized to the phagosome upon the internalization of IgG-opsonized particles. The inhibition of Cx43 using small interfering RNA or by obtaining macrophages from Cx43 heterozygous or knockout mice resulted in significantly impaired phagocytosis, while transfection of Cx43 into Fc-receptor expressing HeLa cells, which do not express endogenous Cx43, conferred the ability of these cells to undergo phagocytosis. Infection of macrophages with adenoviruses expressing wild-type Cx43 restored phagocytic ability in macrophages from Cx43 heterozygous or deficient mice, while infection with viruses that expressed mutant Cx43 had no effect. In understanding the mechanisms involved, Cx43 was required for RhoA-dependent actin cup formation under adherent particles, and transfection with constitutively active RhoA restored a phagocytic phenotype after Cx43 inactivation. Remarkably, mortality was significantly increased in a mouse model of bacterial peritonitis after Cx43 inhibition and in Cx43 heterozygous mice compared with untreated and wild-type counterparts. These findings reveal a novel role for Cx43 in the regulation of phagocytosis and rearrangement of the F-actin cytoskeleton, and they implicate Cx43 in the regulation of the host response to microbial infection.

  3. The immunomodulatory effects of 3-monochloro-1,2-propanediol on murine splenocyte and peritoneal macrophage function in vitro.

    PubMed

    Byun, Jung A; Ryu, Mi Hyun; Lee, Jong Kwon

    2006-04-01

    3-Monochloro-1,2-propanediol (MCPD) is a well-known by-product of acid-hydrolyzed soy sauce during its manufacturing process. MCPD has been reported genotoxic in vitro, and reproductive toxicity and carcinogenicity in rats. To evaluate the immunomodulatory effect of MCPD on murine splenocyte and macrophage in vitro, we investigated splenocyte blastogenesis by concanavalin A (Con A), anti-CD3, and lipopolyssacharide (LPS), the production of cytokines from splenocyte, and the activity of mouse peritoneal macrophages. There was a significant decrease in lymphocyte blastogenesis to Con A or anti-CD3 at subtoxic dose of MCPD. A significant decrease in splenocyte blastogenesis to LPS was also observed. The production level of interferon (IFN)-gamma on splenocyte culture with Con A was significantly reduced at the higher concentration than 1.0mM of MCPD. The levels of interleukin (IL)-4 and IL-10 were also decreased at high concentrations of MCPD. There was a significant decrease in production of nitric oxide (NO) by peritoneal macrophages treated with MCPD. MCPD also inhibits tumor necrosis factor (TNF)-alpha production of stimulated macrophages. These results indicate that MCPD might be able to reduce the functionality of lymphocytes and peritoneal macrophages in vitro.

  4. Estradiol Is a Critical Mediator of Macrophage-Nerve Cross Talk in Peritoneal Endometriosis

    PubMed Central

    Greaves, Erin; Temp, Julia; Esnal-Zufiurre, Arantza; Mechsner, Sylvia; Horne, Andrew W.; Saunders, Philippa T.K.

    2016-01-01

    Endometriosis occurs in approximately 10% of women and is associated with persistent pelvic pain. It is defined by the presence of endometrial tissue (lesions) outside the uterus, most commonly on the peritoneum. Peripheral neuroinflammation, a process characterized by the infiltration of nerve fibers and macrophages into lesions, plays a pivotal role in endometriosis-associated pain. Our objective was to determine the role of estradiol (E2) in regulating the interaction between macrophages and nerves in peritoneal endometriosis. By using human tissues and a mouse model of endometriosis, we demonstrate that macrophages in lesions recovered from women and mice are immunopositive for estrogen receptor β, with up to 20% being estrogen receptor α positive. In mice, treatment with E2 increased the number of macrophages in lesions as well as concentrations of mRNAs encoded by Csf1, Nt3, and the tyrosine kinase neurotrophin receptor, TrkB. By using in vitro models, we determined that the treatment of rat dorsal root ganglia neurons with E2 increased mRNA concentrations of the chemokine C-C motif ligand 2 that stimulated migration of colony-stimulating factor 1–differentiated macrophages. Conversely, incubation of colony-stimulating factor 1 macrophages with E2 increased concentrations of brain-derived neurotrophic factor and neurotrophin 3, which stimulated neurite outgrowth from ganglia explants. In summary, we demonstrate a key role for E2 in stimulating macrophage-nerve interactions, providing novel evidence that endometriosis is an estrogen-dependent neuroinflammatory disorder. PMID:26073038

  5. The equine alveolar macrophage: functional and phenotypic comparisons with peritoneal macrophages.

    PubMed

    Karagianni, Anna E; Kapetanovic, Ronan; McGorum, Bruce C; Hume, David A; Pirie, Scott R

    2013-10-01

    Alveolar macrophages (AMs) constitute the first line of defence in the lung of all species, playing a crucial role in the regulation of immune responses to inhaled pathogens. A detailed understanding of the function and phenotype of AMs is a necessary pre-requisite to both elucidating their role in preventing opportunistic bacterial colonisation of the lower respiratory tract and developing appropriate preventative strategies. The purpose of the study was to characterise this important innate immune cell at the tissue level by making functional and phenotypic comparisons with peritoneal macrophages (PMs). We hypothesised that the tissue of origin determines a unique phenotype of AMs, which may constitute an appropriate therapeutic target for certain equine respiratory diseases. Macrophages isolated from the lung and the peritoneal cavity of 9 horses were stimulated with various toll like receptor (TLR) ligands and the production of nitrite, tumour necrosis factor alpha (TNFα), interleukin (IL) 10 and indoleamine 2,3-dioxygenase (IDO) were measured by the Griess reaction and enzyme linked immunosorbent assay (ELISA) and/or quantitative polymerase chain reaction, respectively. Cells were also compared on the basis of phagocytic-capacity and the expression of several cell surface markers. AMs, but not PMs, demonstrated increased TNFα release following stimulation with LPS, polyinosinic polycytidylic acid (Poly IC) and heat-killed Salmonella typhinurium and increased TNFα and IDO mRNA expression when stimulated with LPS. AMs showed high expression of the specific macrophage markers cluster of differentiation (CD) 14, CD163 and TLR4, whereas PMs showed high expression of TLR4 only. AMs, but not PMs, demonstrated efficient phagocytic activity. Our results demonstrate that AMs are more active than PMs when stimulated with various pro-inflammatory ligands, thus supporting the importance of the local microenvironment in the activation status of the macrophage. This

  6. Effect of lipopolysaccharide on protein accumulation by murine peritoneal macrophages: the correlation to activation for macrophage tumoricidal function

    SciTech Connect

    Tannenbaum, C.S.

    1987-01-01

    The protein synthetic patterns of tumoricidal murine peritoneal macrophage populations have been compared to those of non-tumoricidal populations utilizing two dimensional polyacrylamide gel electrophoresis (2D PAGE) of (/sup 35/S)-methionine-labeled proteins. While the protein synthetic patterns exhibited by resident, inflammatory and activated macrophages had numerous common features which distinguished them from the other normal non-macrophage cell types examined, unique proteins also distinguished each macrophage population from the others. Peritoneal macrophages elicited by treatment with heat killed Propionibacterium acnes, the live, attenuated Mycobacterium bovis strain BCG, Listeria monocytogenes and the protozoan flagellate Trypanosoma rhodesiense, all exhibited tumoricidal activity in 16h or 72h functional assays, and shared a common protein synthetic profile which differentiated them from the synthetic patterns characteristic of the non-tumoricidal resident and inflammatory macrophages.

  7. Aging impairs peritoneal but not bone marrow-derived macrophage phagocytosis.

    PubMed

    Linehan, Eimear; Dombrowski, Yvonne; Snoddy, Rachel; Fallon, Padraic G; Kissenpfennig, Adrien; Fitzgerald, Denise C

    2014-08-01

    Aging results in deterioration of the immune system, which is associated with increased susceptibility to infection and impaired wound healing in the elderly. Phagocytosis is an essential process in both wound healing and immune defence. As such, age-related impairments in phagocytosis impact on the health of the elderly population. Phagocytic efficiency in peritoneal macrophages, bone marrow-derived macrophages and bone marrow monocytes from young and old mice was investigated. Aging significantly impaired phagocytosis by peritoneal macrophages, both in vitro and in vivo. However, bone marrow-derived macrophages and bone marrow monocytes did not exhibit age-related impairments in phagocytosis, suggesting no intrinsic defect in these cells. We sought to investigate underlying mechanisms in age-related impairments in phagocytosis by peritoneal macrophages. We hypothesized that microenvironmental factors in the peritoneum of old mice impaired macrophage phagocytosis. Indeed, macrophages from young mice injected into the peritoneum of old mice exhibited impaired phagocytosis. Proportions of peritoneal immune cells were characterized, and striking increases in numbers of T cells, B1 and B2 cells were observed in the peritoneum of old mice compared with young mice. In addition, B cell-derived IL-10 was increased in resting and LPS-activated peritoneal cell cultures from old mice. These data demonstrate that aging impairs phagocytosis by tissue-resident peritoneal macrophages, but not by bone marrow-derived macrophages/monocytes, and suggest that age-related defects in macrophage phagocytosis may be due to extrinsic factors in the tissue microenvironment. As such, defects may be reversible and macrophages could be targeted therapeutically in order to boost immune function in the elderly.

  8. Resident peritoneal leukocytes are important sources of MMP-9 during zymosan peritonitis: superior contribution of macrophages over mast cells.

    PubMed

    Kolaczkowska, Elzbieta; Lelito, Monika; Kozakiewicz, Elzbieta; van Rooijen, Nico; Plytycz, Barbara; Arnold, Bernd

    2007-11-15

    Metalloproteinase 9 (MMP-9) is crucial for normal neutrophil infiltration into zymosan-inflamed peritoneum. During the course of zymosan peritonitis MMP-9 is produced in a biphasic-manner as its presence is detectable as early as 30 min post zymosan and then between 2 and 8 h of inflammation. As inflammatory leukocytes were shown to produce MMP-9 we asked if also resident leukocytes, mast cells and macrophages, contribute to its production. And furthermore, if their contribution is limited only to the early phase of inflammation or extends to the later stages. For this purpose some mice were depleted of either resident macrophages or functional mast cells and expression of MMP-9 in peritoneal leukocytes and its release to the exudate were monitored. It turned out that depletion of peritoneal macrophages decreased both MMP-9 content in the leukocytes and its release to the inflammatory exudate at 30 min and 6h of peritonitis. The functional depletion of mast cells also caused a significant decrease in the production/release of MMP-9 that was especially apparent at the early time point (30 min). Moreover, the study shows concomitant kinetics of MMP-9 expression in leukocytes and its release to the exudatory fluid. The findings indicate that resident tissue leukocytes, and among them especially macrophages, constitute an important source of MMP-9 during acute peritoneal inflammation. Overall, the study shows that resident tissue leukocytes, mostly macrophages, constitute an important cellular source(s) of inflammation-related factors and should be regarded as possible targets of anti-inflammatory treatment.

  9. A thrombin receptor in resident rat peritoneal macrophages

    SciTech Connect

    Kudahl, K.; Fisker, S.; Sonne, O. )

    1991-03-01

    Resident rat peritoneal macrophages possess 6 x 10(2) high-affinity binding sites per cell for bovine thrombin with a Kd of 11 pM, and 7.5 x 10(4) low-affinity sites with a Kd of 5.8 nM. These binding sites are highly specific for thrombin. Half-maximal binding of {sup 125}I-labeled bovine thrombin is achieved after 1 min at 37{degrees}C, and after 12 min at 4 degrees C. The reversibly bound fraction of the ligand dissociates according to a biexponential time course with the rate constants 0.27 and 0.06 min-1 at 4 degrees C. Part of the tracer remains cell-associated even after prolonged incubation, but all cell-associated radio-activity migrates as intact thrombin upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The bound thrombin is minimally endocytosed as judged by the resistance to pH 3 treatment, and the receptor does not mediate a quantitatively important degradation of the ligand. The binding is not dependent on the catalytic site of thrombin, since irreversibly inactivated thrombin also binds to the receptor. {sup 125}I-labeled thrombin covalently cross-linked to its receptor migrates in sodium dodecyl sulfate-polyacrylamide gel electrophoresis with a Mr 160,000, corresponding to an approximate receptor size of Mr 120,000.

  10. Antigen presentation by peritoneal macrophages from young adult and old mice

    SciTech Connect

    Perkins, E.H.; Massucci, J.M.; Glover, P.L.

    1982-01-01

    Macrophages perform vital inductive and regulatory functions in immune processes and host defense mechanisms. However, macrophage function during senescence has not been extensively studied. Although antibody response is dramatically reduced in old animals, antigen presentation has never been directly assessed. Therefore, the antigen-presenting capabilities of purified peritoneal macrophages from young adult and old mice were studied by quantitatively measuring their ability to induce antigen specific proliferation of lymph node T lymphocytes. Increasing numbers (10/sup 2/ to 10/sup 5/) of macrophages from nonimmunized young adult (3 to 6 months) or aged (27 to 36 months) animals were cultured in the presence of antigen with a constant number (2 x 10/sup 5/) of column-separated popliteal lymph node cells from young adult mice. The latter had been immunized with the dinitrophenyl conjugate of bovine ..gamma..-globulin in complete Freund's adjuvant by footpad injection. Macrophages from old animals were equal to macrophages from young adult in stimulating T-lymphocyte proliferation, and the kinetics of incorporation was identical with increasing numbers of macrophages from either young adult or old animals. However, greater numbers of resident or induced peritoneal macrophages were always harvested from old animals. Differences in macrophage activity as assessed by different functional parameters may be reconciled by implicating subpopulations of macrophages that perform separate functions, e.g. Ia-positive antigen presenter and Ia-negative scavenger macrophages.

  11. Peritonitis

    MedlinePlus

    Acute abdomen; Spontaneous bacterial peritonitis; SBP; Cirrhosis - spontaneous peritonitis ... blood, body fluids, or pus in the belly ( abdomen ). One type is called spontaneous bacterial peritonitis (SPP). ...

  12. Expression analysis of G Protein-Coupled Receptors in mouse macrophages

    PubMed Central

    Lattin, Jane E; Schroder, Kate; Su, Andrew I; Walker, John R; Zhang, Jie; Wiltshire, Tim; Saijo, Kaoru; Glass, Christopher K; Hume, David A; Kellie, Stuart; Sweet, Matthew J

    2008-01-01

    Background Monocytes and macrophages express an extensive repertoire of G Protein-Coupled Receptors (GPCRs) that regulate inflammation and immunity. In this study we performed a systematic micro-array analysis of GPCR expression in primary mouse macrophages to identify family members that are either enriched in macrophages compared to a panel of other cell types, or are regulated by an inflammatory stimulus, the bacterial product lipopolysaccharide (LPS). Results Several members of the P2RY family had striking expression patterns in macrophages; P2ry6 mRNA was essentially expressed in a macrophage-specific fashion, whilst P2ry1 and P2ry5 mRNA levels were strongly down-regulated by LPS. Expression of several other GPCRs was either restricted to macrophages (e.g. Gpr84) or to both macrophages and neural tissues (e.g. P2ry12, Gpr85). The GPCR repertoire expressed by bone marrow-derived macrophages and thioglycollate-elicited peritoneal macrophages had some commonality, but there were also several GPCRs preferentially expressed by either cell population. Conclusion The constitutive or regulated expression in macrophages of several GPCRs identified in this study has not previously been described. Future studies on such GPCRs and their agonists are likely to provide important insights into macrophage biology, as well as novel inflammatory pathways that could be future targets for drug discovery. PMID:18442421

  13. Survival and replication of Escherichia coli O157:H7 inside the mice peritoneal macrophages

    PubMed Central

    Al-Mariri, Ayman

    2008-01-01

    The replication of Escherichia coli O157:H7 on the resident peritoneal macrophages of four mice strains (BALB/c, CD1, C57BL, and Swiss) has been investigated. Macrophagial bactericidal killing activity was estimated via studying their ability to internalize (gentamicin-protected) E. coli during 2, 4, 24, and 48 h assays. Host genetic background has been found to show no significant effect on the ability of resident peritoneal macrophages to kill E. coli O157:H7. PMID:24031167

  14. Protective effect of natural flavonoids on rat peritoneal macrophages injury caused by asbestos fibers.

    PubMed

    Kostyuk, V A; Potapovich, A I; Speransky, S D; Maslova, G T

    1996-01-01

    Exposure of macrophages to asbestos fibers resulted in enhancement of the production of oxygen radicals, determined by a lucigenin enhanced chemiluminescence (LEC) assay, a formation of thiobarbituric acid reactive substances (TBARS), a LDH release into the incubation mixture, and a rapid lysis of the cells. Rutin (Rut) and quercetin (Qr) were effective in inhibiting LEC, TBARS formation, and reducing peritoneal macrophages injury caused by asbestos. The concentrations pre-treatment of antioxidants that were required to prevent the injury of peritoneal macrophages caused by asbestos by 50% (IC50) were 90 microM and 290 microM for Qr and Rut, respectively. Both flavonoids were found to be oxidized during exposure of peritoneal macrophages to asbestos and the oxidation was SOD sensitive. The efficacy of flavonoids as antioxidant agents as well as superoxide ion scavengers was also evaluated using appropriate model systems, and both quercetin and rutin were found to be effective in scavenging O2.-. These findings indicate that flavonoids are able to prevent the respiratory burst in rat peritoneal macrophages exposed to asbestos at the stage of activated oxygen species generation, mainly as superoxide scavengers. On the basis of this study it was concluded that natural flavonoids quercetin and rutin would be promising drug candidates for a prophylactic asbestos-induced disease.

  15. CD4-Positive T Cells and M2 Macrophages Dominate the Peritoneal Infiltrate of Patients with Encapsulating Peritoneal Sclerosis

    PubMed Central

    Habib, Sayed M.; Abrahams, Alferso C.; Korte, Mario R.; Zietse, Robert; de Vogel, Lisette L.; Boer, Walther H.; Dendooven, Amélie; Clahsen-van Groningen, Marian C.; Betjes, Michiel G. H.

    2015-01-01

    Background Encapsulating peritoneal sclerosis (EPS) is a severe complication of peritoneal dialysis (PD). Previously, it has been shown that infiltrating CD4-positive T cells and M2 macrophages are associated with several fibrotic conditions. Therefore, the characteristics of the peritoneal cell infiltrate in EPS may be of interest to understand EPS pathogenesis. In this study, we aim to elucidate the composition of the peritoneal cell infiltrate in EPS patients and relate the findings to clinical outcome. Study Design, Setting, and Participants We studied peritoneal membrane biopsies of 23 EPS patients and compared them to biopsies of 15 PD patients without EPS. The cellular infiltrate was characterized by immunohistochemistry to detect T cells(CD3-positive), CD4-positive (CD4+) and CD8-positive T cell subsets, B cells(CD20-positive), granulocytes(CD15-positive), macrophages(CD68-positive), M1(CD80-positive), and M2(CD163-positive) macrophages. Tissues were analysed using digital image analysis. Kaplan-Meier survival analysis was performed to investigate the survival in the different staining groups. Results The cellular infiltrate in EPS biopsies was dominated by mononuclear cells. For both CD3 and CD68, the median percentage of area stained was higher in biopsies of EPS as opposed to non-EPS patients (p<0.001). EPS biopsies showed a higher percentage of area stained for CD4 (1.29%(0.61-3.20)) compared to CD8 (0.71%(0.46-1.01), p = 0.04), while in the non-EPS group these cells were almost equally represented (respectively 0.28%(0.05-0.83) versus 0.22%(0.17-0.43), p = 0.97). The percentage of area stained for both CD80 and CD163 was higher in EPS than in non-EPS biopsies (p<0.001), with CD163+ cells being the most abundant phenotype. Virtually no CD20-positive and CD15-positive cells were present in biopsies of a subgroup of EPS patients. No relation was found between the composition of the mononuclear cell infiltrate and clinical outcome. Conclusions A

  16. Bacteroides fragilis induce necrosis on mice peritoneal macrophages: In vitro and in vivo assays

    SciTech Connect

    Vieira, J.M.B.D.; Seabra, S.H.; Vallim, D.C.; Americo, M.A.; Fracallanza, S.E.L.; Vommaro, R.C.; Domingues, R.M.C.P.

    2009-10-02

    Bacteroides fragilis is an anaerobic bacteria component of human intestinal microbiota and agent of infections. In the host B. fragilis interacts with macrophages, which produces toxic radicals like NO. The interaction of activated mice peritoneal macrophages with four strains of B. fragilis was evaluated on this study. Previously was shown that such strains could cause metabolic and morphologic alterations related to macrophage death. In this work propidium iodide staining showed the strains inducing macrophage necrosis in that the labeling was evident. Besides nitroblue tetrazolium test showed that B. fragilis stimulates macrophage to produce oxygen radicals. In vivo assays performed in BalbC mice have results similar to those for in vitro tests as well as scanning electron microscopy, which showed the same surface pore-like structures observed in vitro before. The results revealed that B. fragilis strains studied lead to macrophage death by a process similar to necrosis.

  17. Citral and eugenol modulate DNA damage and pro-inflammatory mediator genes in murine peritoneal macrophages.

    PubMed

    Porto, Marilia de Paula; da Silva, Glenda Nicioli; Luperini, Bruno Cesar Ottoboni; Bachiega, Tatiana Fernanda; de Castro Marcondes, João Paulo; Sforcin, José Maurício; Salvadori, Daisy Maria Fávero

    2014-11-01

    Citral and eugenol have been broadly studied because of their anti-inflammatory, antioxidant and antiparasitic potentials. In this study, the effects of citral (25, 50 and 100 µg/mL) and eugenol (0.31, 0.62, 1.24 and 2.48 µg/mL) on the expression (RT-PCR) of the pro-inflammatory mediator genes NF-κB1, COX-2 and TNF-α were evaluated in mouse peritoneal macrophages with or without activation by a bacterial lipopolysaccharide (LPS). Additionally, the genotoxic potentials of two compounds and their capacities to modulate the DNA damage induced by doxorubicin (DXR) were investigated using the comet assay. The data revealed that neither citral nor eugenol changed COX-2, NF-κB1 or TNF-α expression in resting macrophages. However, in LPS-activated cells, citral induced the hypoexpression of COX-2 (100 µg/mL) and TNF-α (50 and 100 µg/mL). Hypoexpression of TNF-α was also detected after cellular exposure to eugenol at the highest concentration (2.48 µg/mL). Both compounds exhibited genotoxic potential (citral at 50 and 100 µg/mL and eugenol at all concentrations) but also showed chemopreventive effects, in various treatment protocols. Both citral and eugenol might modulate inflammatory processes and DXR-induced DNA damage, but the use of these compounds must be viewed with caution because they are also able to induce primary DNA lesions.

  18. The Immunomodulatory Activity of Jacaric Acid, a Conjugated Linolenic Acid Isomer, on Murine Peritoneal Macrophages

    PubMed Central

    Liu, Wai Nam; Leung, Kwok Nam

    2015-01-01

    This study aims at demonstrating the immunomodulatory property of jacaric acid, a conjugated linolenic acid (CLNA) isomer that is present in jacaranda seed oil, on murine peritoneal macrophages. Our results showed that jacaric acid exhibited no significant cytotoxicity on the thioglycollate-elicited murine peritoneal macrophages as revealed by the neutral red uptake assay, but markedly increased their cytostatic activity on the T-cell lymphoma MBL-2 cells as measured by the fluorometric CyQuant® NF Cell Proliferation Assay Kit. Flow cytometric analysis indicated that jacaric acid could enhance the endocytic activity of macrophages and elevated their intracellular production of superoxide anion. Moreover, jacaric acid-treated macrophages showed an increase in the production of nitric oxide which was accompanied by an increase in the expression level of inducible nitric oxide synthase protein. In addition, the secretion of several pro-inflammatory cytokines, including interferon-γ, interleukin-1β and tumor necrosis factor-α, was up-regulated. Collectively, our results indicated that the naturally-occurring CLNA isomer, jacaric acid, could exhibit immunomodulating activity on the murine peritoneal macrophages in vitro, suggesting that this CLNA isomer may act as an immunopotentiator which can be exploited for the treatment of some immunological disorders with minimal toxicity and fewer side effects. PMID:26629697

  19. Morphological effects of autologous hsp70 on peritoneal macrophages in a murine T cell lymphoma.

    PubMed

    Gautam, P K; Kumar, S; Deepak, P; Acharya, A

    2013-12-01

    Heat shock protein 70 is highly conserved cytosolic protein which have important role in growth, development, and apoptosis. Hsp70 is well-known activator of macrophages and enhances the release of specific and non-specific effector molecules that have major role in tumor destruction and immunopotentiation of host. However, morphological effects of hsp 70 has not been carried out, therefore, morphological effects of hsp 70 on murine peritoneal macrophages were examined by light microscopy and scanning electron microscopy. Thioglycolate-induced peritoneal macrophages were prepared from BALB/c mice and cultured for 24 h in the presence of the hsp70. Tumor-associated macrophages treated with 10 μg/ml were varied in shape, mostly spindle shaped, i.e., stretched bidirectionally; surface ruffles were increased and their lamellipodia was prominent which suggest that hsp 70 treatment not only enhances the functional state of the peritoneal macrophages but also initiate immense morphological changes leading to increased endothelium adherence, increased antigen uptake, and increased migration to the inflammatory site.

  20. The Immunomodulatory Activity of Jacaric Acid, a Conjugated Linolenic Acid Isomer, on Murine Peritoneal Macrophages.

    PubMed

    Liu, Wai Nam; Leung, Kwok Nam

    2015-01-01

    This study aims at demonstrating the immunomodulatory property of jacaric acid, a conjugated linolenic acid (CLNA) isomer that is present in jacaranda seed oil, on murine peritoneal macrophages. Our results showed that jacaric acid exhibited no significant cytotoxicity on the thioglycollate-elicited murine peritoneal macrophages as revealed by the neutral red uptake assay, but markedly increased their cytostatic activity on the T-cell lymphoma MBL-2 cells as measured by the fluorometric CyQuant® NF Cell Proliferation Assay Kit. Flow cytometric analysis indicated that jacaric acid could enhance the endocytic activity of macrophages and elevated their intracellular production of superoxide anion. Moreover, jacaric acid-treated macrophages showed an increase in the production of nitric oxide which was accompanied by an increase in the expression level of inducible nitric oxide synthase protein. In addition, the secretion of several pro-inflammatory cytokines, including interferon-γ, interleukin-1β and tumor necrosis factor-α, was up-regulated. Collectively, our results indicated that the naturally-occurring CLNA isomer, jacaric acid, could exhibit immunomodulating activity on the murine peritoneal macrophages in vitro, suggesting that this CLNA isomer may act as an immunopotentiator which can be exploited for the treatment of some immunological disorders with minimal toxicity and fewer side effects.

  1. Effects of microwave exposure on the hamster immune system. II. Peritoneal macrophage function

    SciTech Connect

    Rama Rao, G.; Cain, C.A.; Lockwood, J.; Tompkins, W.A.

    1983-01-01

    Acute exposure to hamsters to microwave energy (2.45 GHz; 25 mW/cm2 for 60 min) resulted in activation of peritoneal macrophages that were significantly more viricidal to vaccinia virus as compared to sham-exposed or normal (minimum-handling) controls. Macrophages from microwave-exposed hamsters became activated as early as 6 h after exposure and remained activated for up to 12 days. The activation of macrophages by microwave exposure paralleled the macrophage activation after vaccinia virus immunization. Activated macrophages from vaccinia-immunized hamsters did not differ in their viricidal activity when the hamsters were microwave- or sham-exposed. Exposure for 60 min at 15 mW/cm2 did not activate the macrophages while 40 mW/cm2 exposure was harmful to some hamsters. Average maximum core temperatures in the exposed (25 mW/cm2) and sham groups were 40.5 degrees C (+/- 0.35 SD) and 38.4 degrees C (+/- 0.5 SD), respectively. In vitro heating of macrophages to 40.5 degrees C was not as effective as in vivo microwave exposure in activating macrophages to the viricidal state. Macrophages from normal, sham-exposed, and microwave-exposed hamsters were not morphologically different, and they all phagocytosed India ink particles. Moreover, immune macrophage cytotoxicity for virus-infected or noninfected target cells was not suppressed in the microwave-irradiated group (25 mW/cm2, 1 h) as compared to sham-exposed controls, indicating that peritoneal macrophages were not functionally suppressed or injured by microwave hyperthermia.

  2. Vascular endothelial growth factor is produced by peritoneal fluid macrophages in endometriosis and is regulated by ovarian steroids.

    PubMed Central

    McLaren, J; Prentice, A; Charnock-Jones, D S; Millican, S A; Müller, K H; Sharkey, A M; Smith, S K

    1996-01-01

    Angiogenesis is important in the pathophysiology of endometriosis, a condition characterized by implantation of ectopic endometrium in the peritoneal cavity. Vascular endothelial growth factor (VEGF) is a potent angiogenic factor involved in physiological and pathological angiogenesis, and elevated levels of VEGF are found in peritoneal fluid of patients with endometriosis. Our aim was to investigate the site of expression and regulation of VEGF in endometriosis. VEGF immunoreactivity was found in tissue macrophages present in ectopic endometrium and in activated peritoneal fluid macrophages. Macrophage activation was highest in women with endometriosis, and media conditioned by peritoneal fluid macrophages from these women caused a VEGF-dependent increase in endothelial cell proliferation above that seen from normal women. Peritoneal fluid macrophages secreted VEGF in response to ovarian steroids, and this secretion was enhanced after activation with lipopolysaccharide. Peritoneal fluid macrophages expressed receptors for steroid hormones. VEGF receptors flt and KDR (kinase domain receptor) were also detected, suggesting autocrine regulation. During the menstrual cycle, expression of flt was constant but that of KDR was increased in the luteal phase, at which time the cells migrated in response to VEGF. KDR expression and the migratory response were significantly higher in patients with endometriosis. This study demonstrates that activated macrophages are a major source of VEGF in endometriosis and that this expression is regulated directly by ovarian steroids. PMID:8755660

  3. Nitric oxide is overproduced by peritoneal macrophages in rat taurocholate pancreatitis: the mechanism of inducible nitric oxide synthase expression.

    PubMed

    Satoh, A; Shimosegawa, T; Kimura, K; Moriizumi, S; Masamune, A; Koizumi, M; Toyota, T

    1998-11-01

    To investigate the pathobiology of severe acute pancreatitis, we studied the expression of inducible nitric oxide synthase (iNOS) in peritoneal macrophages of experimental pancreatitis. Taurocholate (TCA) pancreatitis and cerulein (CE) pancreatitis were used as models of lethal and self-limited pancreatitis, respectively, and the mechanism of iNOS expression in peritoneal macrophages was studied. Serum nitrate and nitrite (NOx) concentrations increased during the course of TCA pancreatitis, and iNOS-immunoreactivity was detected in the peritoneal macrophages 12 h after the induction of TCA pancreatitis, but these phenomena were not observed in CE pancreatitis. Despite the difference in the iNOS expression, the iNOS messenger RNA (mRNA) and the activation of nuclear factor-kappa B (NF-kappa B) were detected in the peritoneal macrophages of both pancreatitis models. The supernatant of TCA pancreatitis ascites could induce iNOS in the peritoneal macrophages of normal rats in vitro, but the peritoneal lavage fluid of CE pancreatitis rats could not. The results indicated that there may be qualitative or quantitative differences in the macrophage activation between the two types of experimental pancreatitis and suggested that the ascites of rats with lethal acute pancreatitis contains some soluble factors that activate the macrophage/monocyte system and cause an overproduction of NO by the iNOS expression.

  4. TLR4-mediated activation of mouse macrophages by Korean mistletoe lectin-C (KML-C).

    PubMed

    Park, Hong-Jai; Hong, Ju-ho; Kwon, Hyung-Joon; Kim, Youngchan; Lee, Kwan-Hee; Kim, Jong-Bae; Song, Seong K

    2010-06-04

    Korean mistletoe lectin (KML-C) is an adjuvant that activates systemic and mucosal immune cells to release cytokines including TNF-alpha, which induces immunity against viruses and cancer cells. Although the immunomodulatory activity of KML-C has been well established, the underlying mechanism of action of KML-C has yet to be explored. When mouse peritoneal macrophages were treated with KML-C, both transcription and translation of TLR4 were upregulated. KML-C-induced TLR4 downstream events were similar to those activated by LPS: the upregulation of interleukin-1 receptor-associated kinase-1 (IRAK1); resulting in macrophage activation and TNF-alpha production. When TLR4 was blocked using a TLR4-specific neutralizing antibody, TNF-alpha production from the macrophages was significantly inhibited. Moreover, TLR4-deficient mouse macrophages treated with KML-C also secreted greatly reduced level of TNF-alpha secretion. Finally, TLR4 molecules were co-precipitated with KML-C, to which agarose beads were conjugated, indicating that those molecules are associated. These data indicate that KML-C activates mouse macrophages to secrete TNF-alpha by interacting with the TLR4 molecule and activating its signaling pathways.

  5. Anti-inflammatory effects of miR-21 in the macrophage response to peritonitis.

    PubMed

    Barnett, Rebecca Elise; Conklin, Daniel J; Ryan, Lindsey; Keskey, Robert C; Ramjee, Vikram; Sepulveda, Ernesto A; Srivastava, Sanjay; Bhatnagar, Aruni; Cheadle, William G

    2016-02-01

    We investigated the role of microRNA-21 in the macrophage response to peritonitis; microRNA-21 expression increases in peritoneal macrophages after lipopolysaccharide stimulation but is delayed until 48 hours after cecal ligation and puncture. MicroRNA-21-null mice and bone marrow-derived cell lines were exposed to cecal ligation and puncture or lipopolysaccharide, and survival, microRNA-21 levels, target messenger RNAs and proteins, and cytokines were assayed. Macrophages were also transfected with microRNA-21 mimics and antagomirs, and similar endpoints were measured. Survival in microRNA-21-null mice was significantly decreased after lipopolysaccharide-induced peritonitis but unchanged after cecal ligation and puncture compared with similarly treated wild-type mice. MicroRNA-21 expression, tumor necrosis factor-α, interleukin 6, and programmed cell death protein 4 levels were increased after lipopolysaccharide addition in peritoneal cells. Pelino1 and sprouty (SPRY) messenger RNAs were similarly increased early, whereas programmed cell death protein 4 messenger RNA was decreased after lipopolysaccharide, and all microR-21 target messenger RNAs were subsequently decreased by 24 hours after lipopolysaccharide. Transfection with mimics and antagomirs led to appropriate responses in microRNA-21 and tumor necrosis factor-α. Knockdown of microRNA-21 in bone marrow-derived cells showed increased tumor necrosis factor-α and decreased interleukin 10 in response to lipopolysaccharide. Target proteins were unaffected by knockdown as was extracellular signal-regulated kinase; however, the nuclear factor κB p65 subunit was increased after lipopolysaccharide in the microRNA-21 knockout cells. In contrast, there was little change in these parameters after cecal ligation and puncture induction between null and wild-type mice. MicroRNA-21 is beneficial to survival in mice following lipopolysaccharide peritonitis. Overexpression of microRNA-21 decreased tumor necrosis factor

  6. A new monoclonal antibody to study mouse macrophage antigen during BHT-induced lung injury and repair.

    PubMed

    Kennel, S J; Lankford, T; Galloway, P; Witschi, H P

    1989-04-01

    A rat monoclonal antibody 133-13A to a mouse lung carcinoma cell line was found to react with macrophages in mouse lung [1]. This monoclonal antibody is different from previously described antibodies to macrophages. Immunogold electron-microscopy and immunoperoxidase light microscopy have been used to show that MoAb 133-13A binds specifically to macrophages in normal and in BHT treated mouse lungs. This MoAb recognizes a protein of approximately 100 kDa (P100) on cultured lung carcinoma cells and a 87 kDa protein on macrophages from lung or the peritoneal cavity which is different from other macrophage antigens. The surface glycoprotein has been purified from cultured cells using immunoaffinity chromatography. The purified protein was radioiodinated and MoAb 133-13A was used to develop a competition radioimmunoassay to quantitate P100. Spleen, intestines, lung, skin and uterus all have high levels of P100. P100 on peritoneal macrophages has been determined to be about 94,000 molecules/cell. Analyses of lung lavage and whole lung homogenates from mice treated with BHT, BHT plus 70% O2, and 70% O2 alone show that treated animals have elevated P100 content compared to corn oil treated mice.

  7. In vitro Staphylococcus aureus-induced oxidative stress in mice murine peritoneal macrophages: a duration-dependent approach

    PubMed Central

    Chakraborty, Subhankari Prasad; Roy, Somenath

    2014-01-01

    Objective To evaluate the free radical generation and status of the antioxidant enzymes in murine peritoneal macrophage during in vitro vancomycin sensitive Staphylococcus aureus (VSSA) treatment with different time interval. Methods Peritoneal macrophages were treated with 5×106 CFU/mL VSSA cell suspension in vitro for different time interval (1, 2, 3, 6, 12, and 24 h) and superoxide anion generation, NADPH oxidase activity, myeloperoxidase activity, nitric oxide generation, antioxidant enzyme status and components of glutathione cycle were analyzed. Results Superoxide anion generation, NADPH oxidase activity, myeloperoxidase activity and nitric oxide generation got peak at 3 h, indicating maximum free radical generation through activation of NADPH oxidase in murine peritoneal macrophages during VSSA infection. Reduced glutathione level, glutathione peroxidase, glutathione reductase, and glutathione-s-transferase activity were decreased significantly (P<0.05) with increasing time of VSSA infection. But the oxidized glutathione level was time dependently increased significantly (P<0.05) in murine peritoneal macrophages. All the changes in peritoneal macrophages after 3 h in vitro VSSA treatment had no significant difference. Conclusions From this study, it may be summarized that in vitro VSSA infection not only generates excess free radical but also affects the antioxidant status and glutathione cycle in murine peritoneal macrophages. PMID:25183101

  8. The galactose-recognizing system of rat peritoneal macrophages; identification and characterization of the receptor molecule.

    PubMed

    Kelm, S; Schauer, R

    1988-08-01

    Resident rat peritoneal macrophages express a galactose-recognizing system, which mediates binding and uptake of cells and glycoproteins exposing terminal galactose residues. Here we describe the identification, isolation, and characterization of the corresponding receptor molecule. Using photoaffinity labelling of adherent peritoneal macrophages with the 4-azido-6-125I-salicylic acid derivative of anti-freeze glycoprotein 8 followed by SDS-PAGE and autoradiography, we identified the receptor of these cells as a protein with an apparent molecular mass of 42 kDa. Furthermore, cell surface receptors were radioiodinated by an affinity-supported labelling technique using the conjugate of asialoorosomucoid and lactoperoxidase, followed by extraction and isolation by affinity chromatography. Finally, the native receptor was isolated and analysed. To estimate its binding activity in solutions, a suitable binding assay was developed, using the precipitation of receptor-ligand complex with polyethylene glycol to separate bound from unbound 125I-asialoorosomucoid, which was used as ligand. It is shown that the isolated receptor binds to galactose-exposing particles and distinguishes between sialidase-treated and -untreated erythrocytes, similar to peritoneal macrophages. The binding characteristics of the membrane-bound and the solubilized receptor are described in the following paper of Lee et al.

  9. Peritonitis

    MedlinePlus

    Diseases and Conditions Peritonitis By Mayo Clinic Staff Peritonitis is inflammation of the peritoneum — a silk-like membrane that lines your inner abdominal ... usually due to a bacterial or fungal infection. Peritonitis can result from any rupture (perforation) in your ...

  10. Effects of selenizing angelica polysaccharide and selenizing garlic polysaccharide on immune function of murine peritoneal macrophage.

    PubMed

    Gao, Zhenzhen; Liu, Kuanhui; Tian, Weijun; Wang, Hongchao; Liu, Zhenguang; Li, Youying; Li, Entao; Liu, Cui; Li, Xiuping; Hou, Ranran; Yue, Chanjuan; Wang, Deyun; Hu, Yuanliang

    2015-07-01

    The effects of two selenizing polysaccharides (sCAP2 and sGPS6) on immune function of murine peritoneal macrophages taking two non-selenizing polysaccharides (CAP and GPS) and modifier Na2SeO3 as control. In vitro test, the changes of selenizing polysaccharides, non-selenizing polysaccharides and Na2SeO3 on murine macrophages function were evaluated by phagocytosis and nitric oxide (NO) secretion tests. In vivo test, the mice were injected respectively with 0.2, 0.4 and 0.6 mg of sCAP2, sGPS6, CAP and GPS, or Na2SeO3 80 μg or normal saline 0.4 mL. The peritoneal macrophages were collected and cultured to determine the contents of TNF-α, IL-6 and IL-10 in supernatants by enzyme-linked immunosorbent assay. The results showed that sCAP2 and sGPS6 could significantly promote the phagocytosis and secretion of NO and three cytokines of macrophages in comparison with CAP and GPS. sCAP2 possessed the strongest activity. This indicates that selenylation modification can further improve the immune-enhancing activity of polysaccharide, and sCAP2 could be as a new immunopotentiator.

  11. The equine alveolar macrophage: Functional and phenotypic comparisons with peritoneal macrophages☆

    PubMed Central

    Karagianni, Anna E.; Kapetanovic, Ronan; McGorum, Bruce C.; Hume, David A.; Pirie, Scott R.

    2013-01-01

    Alveolar macrophages (AMs) constitute the first line of defence in the lung of all species, playing a crucial role in the regulation of immune responses to inhaled pathogens. A detailed understanding of the function and phenotype of AMs is a necessary pre-requisite to both elucidating their role in preventing opportunistic bacterial colonisation of the lower respiratory tract and developing appropriate preventative strategies. The purpose of the study was to characterise this important innate immune cell at the tissue level by making functional and phenotypic comparisons with peritoneal macrophages (PMs). We hypothesised that the tissue of origin determines a unique phenotype of AMs, which may constitute an appropriate therapeutic target for certain equine respiratory diseases. Macrophages isolated from the lung and the peritoneal cavity of 9 horses were stimulated with various toll like receptor (TLR) ligands and the production of nitrite, tumour necrosis factor alpha (TNFα), interleukin (IL) 10 and indoleamine 2,3-dioxygenase (IDO) were measured by the Griess reaction and enzyme linked immunosorbent assay (ELISA) and/or quantitative polymerase chain reaction, respectively. Cells were also compared on the basis of phagocytic-capacity and the expression of several cell surface markers. AMs, but not PMs, demonstrated increased TNFα release following stimulation with LPS, polyinosinic polycytidylic acid (Poly IC) and heat-killed Salmonella typhinurium and increased TNFα and IDO mRNA expression when stimulated with LPS. AMs showed high expression of the specific macrophage markers cluster of differentiation (CD) 14, CD163 and TLR4, whereas PMs showed high expression of TLR4 only. AMs, but not PMs, demonstrated efficient phagocytic activity. Our results demonstrate that AMs are more active than PMs when stimulated with various pro-inflammatory ligands, thus supporting the importance of the local microenvironment in the activation status of the macrophage. This

  12. Asbestos body formation and iron accumulation in mouse peritoneal granulomas after the introduction of crocidolite asbestos fibers

    SciTech Connect

    Koerten, H.K.; Hazekamp, J.; Kroon, M.; Daems, W.T. )

    1990-01-01

    This report describes the cell biology of the development of asbestos bodies after a single intraperitoneal injection of a suspension of crocidolite asbestos fibers into the mouse peritoneal cavity. The majority of the infected fibers were found in aggregates of peritoneal macrophages, exudate cells, and fibrous tissue. These aggregates developed into granulomas containing not only numerous asbestos fibers, but also cells of various types, including macrophages, multinucleated giant cells, fibroblasts, plasma cells, granulocytes, and mast cells. Cytoplasmic ferritin was abundantly present in macrophages and giant cells. In addition, iron-rich inclusion bodies were detected. The results of this study show that asbestos body formation can occur outside the pleural cavity. Asbestos body formation occurred in the granulomas after periods of 1 month and longer. On the basis of morphologic criteria, various types of asbestos body were distinguished. X-ray microanalysis showed that variations in the density of the coat could attributed to the presence of chemical elements in various concentrations. Evidence is presented that asbestos body formation is an extracellular phenomenon.

  13. Immunocytochemical demonstration of feline infectious peritonitis virus within cerebrospinal fluid macrophages.

    PubMed

    Ives, Edward J; Vanhaesebrouck, An E; Cian, Francesco

    2013-12-01

    A 4-month-old female entire domestic shorthair cat presented with an acute onset of blindness, tetraparesis and subsequent generalised seizure activity. Haematology and serum biochemistry demonstrated a moderate, poorly regenerative anaemia, hypoalbuminaemia and hyperglobulinaemia with a low albumin:globulin ratio. Serology for feline coronavirus antibody was positive with an elevated alpha-1 acid glycoprotein. Analysis of cisternal cerebrospinal fluid (CSF) demonstrated markedly elevated protein and a mixed, predominately neutrophilic pleocytosis. Immunocytochemistry for feline coronavirus was performed on the CSF, with positive staining observed inside macrophages. The cat was subsequently euthanased, and both histopathology and immunohistochemistry were consistent with a diagnosis of feline infectious peritonitis. This is the first reported use of immunocytochemistry for detection of feline coronavirus within CSF macrophages. If this test proves highly specific, as for identification of feline coronavirus within tissue or effusion macrophages, it would be strongly supportive of an ante-mortem diagnosis of feline infectious peritonitis in cats with central nervous system involvement without the need for biopsy.

  14. Anti-inflammatory action of γ-irradiated genistein in murine peritoneal macrophage

    NASA Astrophysics Data System (ADS)

    Sung, Nak-Yun; Byun, Eui-Baek; Song, Du-Sup; Jin, Yeung-Bae; Park, Jae-Nam; Kim, Jae-Kyung; Park, Jong-Heum; Song, Beom-Seok; Park, Sang-Hyun; Lee, Ju-Woon; Kim, Jae-Hun

    2014-12-01

    This present study was to examine the cytotoxicity and anti-inflammatory activity of gamma (γ)-irradiated genistein in murine peritoneal macrophage. Inflammation to macrophage was induced by adding the lipopolysaccharide (LPS). γ-Irradiated genistein significantly decreased the cytotoxicity to murine peritoneal macrophage in dose ranges from 5 to 10 μM than that of non-irradiated genistein. Anti-inflammatory activity within the doses less than 2 μM showed that γ-irradiated genistein treatment remarkably reduced the lipopolysaccharide-induced inflammation by decreasing the nitric oxide (NO) and cytokines (TNF-α, IL-6) production. In a structural analysis through the high pressure liquid chromatography (HPLC), γ-irradiated genistein showed a new peak production distinguished from main peak of genistein (non-irradiated). Therefore, increase of anti-inflammatory activity may closely mediate with structural changes induced by γ irradiation exposure. Based on the above result, γ-irradiation could be an effective tool for reduction of toxicity and increase of physiological activity of biomolecules.

  15. Killing of Pseudomonas pseudomallei by polymorphonuclear leukocytes and peritoneal macrophages from chicken, sheep, swine and rabbits.

    PubMed

    Markova, N; Kussovski, V; Radoucheva, T

    1998-07-01

    Differences in the kinetics of Pseudomonas pseudomallei killing by peritoneal macrophages (PM) and polymorphonuclear leucocytes (PMNL) from chickens, sheep, swine and rabbits were found. P. pseudomallei was rapidly killed by porcine PM and PMNL. However the bacterial killing by ovine and lapine PM and PMNL proceeded at a slower rate. In contrast, chicken PM and PMNL ingested and killed the lowest number of P. pseudomallei bacteria. The differences in the bactericidal activity of PM and PMNL from different animal species correlated with the level of their acid phosphatase and glycolytic activity.

  16. In Vitro Response of Guinea Pig Peritoneal Macrophages to Legionella pneumophila

    DTIC Science & Technology

    1981-03-01

    causative agent of I strains. were cultured onl Mueller-Hinton agar supt)I- Legionnaires disease , have niot heeni well defined. niented with 2...In Vitro Responlse of Guinea Pig Peritoneal Macrophages to Legionella pneumophila It. A. KISIIIMi~O~’ .1. Ii.,W11ITE, F. G. SIREY, V. (U.1 Mc(GANN, R...obtained from the Centers for two washes of Hlanks balanced salt solution. Bacteria. Disease Control. Atlanta, Ga. The virulent P1hiladel- suspended in Earle

  17. Dielectrophoretic differentiation of mouse ovarian surface epithelial cells, macrophages, and fibroblasts using contactless dielectrophoresis

    PubMed Central

    Salmanzadeh, Alireza; Kittur, Harsha; Sano, Michael B.; C. Roberts, Paul; Schmelz, Eva M.; Davalos, Rafael V.

    2012-01-01

    Ovarian cancer is the leading cause of death from gynecological malignancies in women. The primary challenge is the detection of the cancer at an early stage, since this drastically increases the survival rate. In this study we investigated the dielectrophoretic responses of progressive stages of mouse ovarian surface epithelial (MOSE) cells, as well as mouse fibroblast and macrophage cell lines, utilizing contactless dielectrophoresis (cDEP). cDEP is a relatively new cell manipulation technique that has addressed some of the challenges of conventional dielectrophoretic methods. To evaluate our microfluidic device performance, we computationally studied the effects of altering various geometrical parameters, such as the size and arrangement of insulating structures, on dielectrophoretic and drag forces. We found that the trapping voltage of MOSE cells increases as the cells progress from a non-tumorigenic, benign cell to a tumorigenic, malignant phenotype. Additionally, all MOSE cells display unique behavior compared to fibroblasts and macrophages, representing normal and inflammatory cells found in the peritoneal fluid. Based on these findings, we predict that cDEP can be utilized for isolation of ovarian cancer cells from peritoneal fluid as an early cancer detection tool. PMID:22536308

  18. Dual origin of mouse spleen macrophages

    PubMed Central

    1984-01-01

    The present study concerns the isolation, characterization, origin, and kinetics of spleen macrophages. The spleen was first perfused in situ to remove monocytes from the vascular bed and then dissected and treated with collagenase. The macrophages in the cell suspension thus obtained were characterized morphologically and cytochemically and then quantitated. The spleen cell suspension was incubated for 24 h in Leighton tubes to obtain an enriched glass-adherent population of macrophages for characterization and [3H]thymidine-labeling studies. Almost all of the adhering macrophages were esterase positive, had Fc and C3b receptors, and ingested EIgG and opsonized bacteria. In vitro labeling with [3H]thymidine showed that approximately 5% of the mononuclear phagocytes in the spleen synthesize DNA and must be considered to be dividing cells. The course of the number of labeled monocytes and macrophages after a single injection of [3H]thymidine indicates migration of monocytes into the spleen, where they become macrophages. Calculation of the influx of monocytes into the spleen and of the local production of macrophages by DNA-synthesizing mononuclear phagocytes showed that under steady-state conditions, 55% of the population of spleen macrophages is supplied by monocyte influx and 45% by local production. This means that there is a dual origin of spleen macrophages. The mean turnover time calculated with the value for the efflux of spleen macrophages is 6.0 d. PMID:6491600

  19. The penetration of rifampicin, pyrazinamide, and pyrazinoic acid into mouse macrophages.

    PubMed

    Acocella, G; Carlone, N A; Cuffini, A M; Cavallo, G

    1985-12-01

    The degree of penetration of rifampicin, pyrazinamide, and its metabolite pyrazinoic acid in mouse macrophages was evaluated over a period of 24 h. Cell cultures were exposed to 14C-labeled drugs at concentrations corresponding to peak, trough, and intermediate serum concentrations observed in humans after administration of therapeutic doses. The study was carried out with dead, resident, and stimulated peritoneal macrophages. The results indicated that the 3 compounds penetrate macrophages rapidly. At the lower concentrations, uptake of the 3 drugs is practically complete. With increasing concentrations, the absolute amount in the intracellular compartment increased. Comparison of the degree of penetration of the 3 drugs into dead, resident, and stimulated macrophages seems to suggest that the process of transfer through the macrophage wall is of a passive nature and not related to the metabolic state of the cells. Analysis of the binding of the 3 drugs to intracellular proteins indicated that more binding sites are probably available for rifampicin than for the other 2 drugs.

  20. Selective induction of metabolic activation programs in peritoneal macrophages by lipopolysaccharide substructures.

    PubMed Central

    Lehmann, V; Benninghoff, B; Dröge, W

    1991-01-01

    The structural elements of Salmonella typhimurium lipopolysaccharides (LPS) that are able to stimulate peritoneal macrophages to produce increased amounts of prostaglandin E2, ornithine, and citrulline, agents known to modulate immune responses, are described. Two different incomplete lipid A structures which lack the carbohydrate portion, the nonhydroxylated fatty acids lauric acid and myristic acid (lipid A precursor IB), and additional palmitic acid (lipid A precursor IA) stimulated increased prostaglandin E2 synthesis but were unable to augment ornithine and citrulline production at concentrations of up to 0.5 microgram/ml. Acyl-deficient smooth LPS containing lipid A precursors IA and IB substituted by the complete carbohydrate region were able to augment prostaglandin E2 and ornithine production but failed, even at a high concentration (0.5 microgram/ml), to stimulate citrulline production. Moreover, Re glycolipids and smooth intact LPS containing the lipid A region with 3-acyloxyacyl residues possessed all of the structural requirements to induce increased prostaglandin E2, ornithine, and citrulline synthesis. Finally, all of the LPS structures, including lipid A precursors IA and IB stimulated, in combination with gamma interferon, production of citrulline with similar efficiencies. These results demonstrate that LPS contains various substructures including regions of the carbohydrate and lipid A structure that can deliver signals for the activation of peritoneal macrophages. Signals for partial activation of macrophages to produce prostaglandins and ornithine can be delivered by acyl-deficient LPS structures. In contrast, full activation of macrophages to produce citrulline requires an additional signal that is delivered by 3-acyloxyacyl residues of the lipid A region or gamma interferon. PMID:1906843

  1. TNF-alpha, produced by feline infectious peritonitis virus (FIPV)-infected macrophages, upregulates expression of type II FIPV receptor feline aminopeptidase N in feline macrophages.

    PubMed

    Takano, Tomomi; Hohdatsu, Tsutomu; Toda, Ayako; Tanabe, Maki; Koyama, Hiroyuki

    2007-07-20

    The pathogenicity of feline infectious peritonitis virus (FIPV) is known to depend on macrophage tropism, and this macrophage infection is enhanced by mediation via anti-S antibody (antibody-dependent enhancement, ADE). In this study, we found that TNF-alpha production was increased with viral replication in macrophages inoculated with a mixture of FIPV and anti-S antibody, and demonstrated that this culture supernatant had feline PBMC apoptosis-inducing activity. We also demonstrated that the expression level of the FIPV virus receptor, feline aminopeptidase N (fAPN), was increased in macrophages of FIP cats. For upregulation of TNF-alpha and fAPN in macrophages, viral replication in macrophages is necessary, and their expressions were increased by ADE of FIPV infection. It was demonstrated that a heat-resistant fAPN-inducing factor was present in the culture supernatant of FIPV-infected macrophages, and this factor was TNF-alpha: fAPN expression was upregulated in recombinant feline TNF-alpha-treated macrophages, and FIPV infectivity was increased in these macrophages. These findings suggested that FIPV replication in macrophages increases TNF-alpha production in macrophages, and the produced TNF-alpha acts and upregulates fAPN expression, increasing FIPV sensitivity.

  2. Differential responses of rat alveolar and peritoneal macrophages to man-made vitreous fibers in vitro.

    PubMed

    Dörger, M; Münzing, S; Allmeling, A M; Messmer, K; Krombach, F

    2001-03-01

    Different approaches, including inhalation and intraperitoneal injection assays, have been used to assess the potential health effects of man-made vitreous fibers (MMVF). The purpose of this study was to compare the phagocytic activity and the formation of reactive oxygen species by rat alveolar macrophages (AM) and peritoneal macrophages (PM) upon exposure to MMVF10 glass wool and MMVF21 rock wool fibers. Macrophage (Mphi) phagocytosis of mineral fibers was assessed by optical videomicroscopy and computer-aided image analysis. Mphi were classified as cells not associated with fibers, cells with attached fibers, cells with incompletely phagocytized fibers (an appearance known as "frustrated phagocytosis"), and cells with completely phagocytized fibers. The production of superoxide anions by AM and PM upon incubation with MMVF10 and MMVF21 fibers was determined by the superoxide dismutase-inhibitable reduction of ferricytochrome C. PM were found to have a lower phagocytic activity than AM. A significantly higher percentage of AM than of PM underwent frustrated phagocytosis of MMVF10 and MMVF21 fibers. In line with these findings, AM generated higher levels of oxygen radicals than PM upon exposure to MMVF21 fibers. In contrast, MMVF10 fibers failed to induce the generation of reactive oxygen species by both AM and PM. Our in vitro results show that the phagocytic activity, in particular the frustrated phagocytosis of mineral fibers, was significantly lower in PM than in AM. The data support the idea that the durability and biopersistence of mineral fibers are higher in the peritoneal cavity than in the lung.

  3. Macrophage Isolation from the Mouse Small and Large Intestine

    PubMed Central

    Harusato, Akihito; Geem, Duke; Denning, Timothy L.

    2016-01-01

    Macrophages play important roles in maintaining intestinal homeostasis via their ability to orchestrate responses to the normal microbiota as well as pathogens. One of the most important steps in beginning to understand the functions of these cells is the ability to effectively isolate them from the complex intestinal environment. Here, we detail methodology for the isolation and phenotypic characterization of macrophages from the mouse small and large intestine. PMID:27246032

  4. Generation and Characterization of Mouse Regulatory Macrophages.

    PubMed

    Carretero-Iglesia, Laura; Hill, Marcelo; Cuturi, Maria Cristina

    2016-01-01

    In the last years, cell therapy has become a promising approach to therapeutically manipulate immune responses in autoimmunity, cancer, and transplantation. Several types of lymphoid and myeloid cells origin have been generated in vitro and tested in animal models. Their efficacy to decrease pharmacological treatment has successfully been established. Macrophages play an important role in physiological and pathological processes. They represent an interesting cell population due to their high plasticity in vivo and in vitro. Here, we describe a protocol to differentiate murine regulatory macrophages in vitro from bone marrow precursors. We also describe several methods to assess macrophage classical functions, as their bacterial killing capacity and antigen endocytosis and degradation. Importantly, regulatory macrophages also display suppressive characteristics, which are addressed by the study of their hypostimulatory T lymphocyte capacity and polyclonal T lymphocyte activation suppression.

  5. Low-dose cisplatin administration to septic mice improves bacterial clearance and programs peritoneal macrophage polarization to M1 phenotype.

    PubMed

    Li, Yanyan; Wang, Zhenling; Ma, Xuelei; Shao, Bin; Gao, Xiang; Zhang, Binglan; Xu, Guangchao; Wei, Yuquan

    2014-11-01

    Sepsis is a systemic inflammatory response to infection, and early responses of macrophages are vital in controlling the infected microorganisms. We used a cecal ligation and puncture (CLP) model of sepsis to determine the role of cisplatin (0.1, 0.5 and 1 mg kg(-1)) with respect to peritoneal macrophages, controlling peritoneal/blood bacterial infection, and systemic inflammation. We found that mice which received low-dose (0.1 and 0.5 mg kg(-1)) i.p. cisplatin had lower mortality rate and improved clinical scores compared with mice in normal saline-treated group, and the level of IL-6 and TNF-α was significantly reduced after cisplatin administration in peritoneal fluid of mice underwent CLP. Although cisplatin had no directly bactericidal ability, the numbers of bacteria in peritoneal and blood were significantly reduced at 24 and 72 h after the onset of CLP. Besides, in vivo phagocytosis and killing assay showed that the ability of macrophage derived from peritoneum was significantly increased with cisplatin treatment (5, 10, and 15 μM) for both gram-positive (Enterococcus faecalis) and gram-negative (Escherichia coli) bacteria. This was associated with the macrophage phenotype polarization from CD11b(+) F4/80(high) CD206(-) to CD11b(+) F4/80(low) CD206(-) M1 group. These findings underscore the importance of low-dose cisplatin in the treatment of sepsis.

  6. Expression of Nocardia brasiliensis superoxide dismutase during the early infection of murine peritoneal macrophages.

    PubMed

    Revol, Agnès; Espinoza-Ruiz, Marisol; Medina-Villanueva, Igor; Salinas-Carmona, Mario Cesar

    2006-12-01

    Nocardia brasiliensis is the main agent of actinomycetoma in Mexico, but little is known about its virulence and molecular pathogenic pathways. These facultative intracellular bacteria are able to survive and divide within the host phagocytic cells, in part by neutralizing the reactive oxygen intermediates. Superoxide dismutase (SOD) participates in the intracellular survival of several bacterial species and, in particular, constitutes one of Nocardia asteroides virulence factors. To clarify SOD participation in the N. brasiliensis early infective process, we report its isolation and the consequent comparison of its transcript level. A 630 bp polymerase chain reaction fragment that included most of the coding sequence of N. brasiliensis sodA was cloned. A competitive assay was developed, allowing comparison of bacterial sod expression in exponential culture and 1 h after infecting peritoneal macrophages from BALB/c mice. At that time, there were viable bacteria in the macrophages. The intracellular bacteria presented a clear decrease in their sod transcript amount, although their 16S rRNA (used as an internal control) and hsp levels were maintained or slightly increased, respectively. These results indicate that sodA transcription is not maintained within the SOS bacterial response induced by phagosomal conditions. Further kinetics will be necessary to precisely define sod transcriptional regulation during N. brasiliensis intra-macrophage growth.

  7. Evidence that Resorption of Bone by Rat Peritoneal Macrophages Occurs in an Acidic Environment

    NASA Technical Reports Server (NTRS)

    Blair, H. C.

    1985-01-01

    Skeletal loss in space, like any form of osteoporosis, reflects a relative imbalance of the activities of cells resorbing (degrading) or forming bone. Consequently, prevention of weightlessness induced bone loss may theoretically be accomplished by (1) stimulating bone formation or (2) inhibiting bone resorption. This approach, however, requires fundamental understanding of the mechanisms by which cells form or degrade bone, information not yet at hand. An issue central to bone resorption is the pH at which resorption takes place. The pH dependent spectral shift of a fluorescent dye (fluorescein isothiocyanate) conjugated to bone matrix was used to determine the pH at the resorptive cell bone matrix interface. Devitalized rat bone was used as the substrate, and rat peritoneal macrophages were used as the bone resorbing cells. The results suggest that bone resorption is the result of generation of an acidic microenvironment at the cell matrix junction.

  8. Overload training inhibits phagocytosis and ROS generation of peritoneal macrophages: role of IGF-1 and MGF.

    PubMed

    Xiao, Weihua; Chen, Peijie; Wang, Ru; Dong, Jingmei

    2013-01-01

    We tested the hypothesis that overload training inhibits the phagocytosis and the reactive oxygen species (ROS) generation of peritoneal macrophages (Mϕs), and that insulin-like growth factor-1(IGF-1) and mechano-growth factor (MGF) produced by macrophages may contribute to this process. Rats were randomized to two groups, sedentary control group (n = 10) and overload training group (n = 10). The rats of overload training group were subjected to 11 weeks of experimental training protocol. Blood sample was used to determine the content of hemoglobin, testosterone, and corticosterone. The phagocytosis and the ROS generation of Mϕs were measured by the uptake of neutral red and the flow cytometry, respectively. IGF-1 and MGF mRNA levels in Mϕs were determined by real-time PCR. In addition, we evaluated the effects of IGF-1 and MGF peptide on phagocytosis and ROS generation of Mϕs in vitro. The data showed that overload training significantly decreased the body weight (19.3 %, P < 0.01), the hemoglobin (13.5 %, P < 0.01), the testosterone (55.3 %, P < 0.01) and the corticosterone (40.6 %, P < 0.01) in blood. Moreover, overload training significantly decreased the phagocytosis (27 %, P < 0.05) and the ROS generation (35 %, P < 0.01) of Mϕs. IGF-1 and MGF mRNA levels in Mϕs from overload training group increased significantly compared with the control group (21-fold and 92-fold, respectively; P < 0.01). In vitro experiments showed that IGF-1 had no significant effect on the phagocytosis and the ROS generation of Mϕs. Unlike IGF-1, MGF peptide impaired the phagocytosis of Mϕs in dose-independent manner. In addition, MGF peptide of some concentrations (i.e., 1, 10, 50, 100 ng/ml) significantly inhibited the ROS generation of Mϕs. These results suggest that overload training inhibits the phagocytosis and the ROS generation of peritoneal macrophages, and that MGF produced by macrophages may play a key role in this process. This may represent a novel mechanism of

  9. Cl-IB-MECA enhances TNF-α release in peritoneal macrophages stimulated with LPS.

    PubMed

    Forte, Giovanni; Sorrentino, Rosalinda; Montinaro, Antonella; Pinto, Aldo; Morello, Silvana

    2011-05-01

    Adenosine receptor A3 (A3R) belongs to the Gi/Gq-coupled receptor family, that leads to the intracellular cAMP reduction and intracellular calcium increase, respectively. A3R is widely expressed and it can play a crucial role in many patho-physiological conditions, including inflammation. Here we investigate the effect of Cl-IB-MECA, A3R agonist, on the production of TNF-α. We found that Cl-IB-MECA enhances LPS-induced TNF-α release in peritoneal macrophages. This effect is reduced by MRS1191, A3R antagonist and by forskolin, activator of adenylyl cyclase. pIκBα increased in LPS+Cl-IB-MECA-treated macrophages, while total IκB kinase-β (IKKβ) reduced. Indeed, p65NF-κB nuclear translocation increased in cells treated with LPS+Cl-IB-MECA. Moreover, IMD 0354, IKKβ inhibitor, significantly abrogated the effect of Cl-IB-MECA on TNF-α release. Inhibition of protein kinase C (PKC) significantly reduced Cl-IB-MECA-induced TNF-α release in LPS-stimulated macrophages. Furthermore, LY-294002, PI3K inhibitor, reduced the TNF-α production enhanced by Cl-IB-MECA, although the phosphorylation status of Akt did not change in cells treated with LPS+Cl-IB-MECA than LPS alone. In summary, these data show that Cl-IB-MECA is able to enhance TNF-α production in LPS-treated macrophages in an NF-κB- dependent manner.

  10. Identification and characterization of poly(I:C)-induced molecular responses attenuated by nicotine in mouse macrophages.

    PubMed

    Cui, Wen-Yan; Zhao, Shufang; Polanowska-Grabowska, Renata; Wang, Ju; Wei, Jinxue; Dash, Bhagirathi; Chang, Sulie L; Saucerman, Jeffrey J; Gu, Jun; Li, Ming D

    2013-01-01

    To further our understanding of the effects of nicotine on the molecular responses of macrophages during virus or virus-like infections, poly(I:C)-stimulated macrophage-like RAW264.2 cells or mouse primary peritoneal macrophages were challenged with nicotine; and their molecular responses were evaluated using a qRT-PCR array, antibody array, ELISA, Western blotting, and Ca(2+) imaging. Of 51 genes expressed in the Toll-like receptor (TLR) and RIG-I-like receptor (RLR) pathways, mRNA expression of 15 genes in RAW264.7 cells was attenuated by nicotine, of which mRNA expression of IL-6, TNF-α, and IL-1β was confirmed to be attenuated in peritoneal macrophages. Concurrently, nicotine treatment attenuated the release of IL-6 and TNF-α from poly(I:C)-stimulated macrophages. However, when poly(I:C)-stimulated macrophages were challenged with nicotine plus α-bungarotoxin (α-BTX), secretion of IL-6 and TNF-α was found to be in a level seen with poly(I:C) stimulation only, indicating that α7-nAChR, a highly Ca(2+) permeable ion channel sensitive to blockade by α-BTX, is involved in this process. Furthermore, results from an antibody array indicated that nicotine treatment attenuated the phosphorylation of 82 sites, including Thr286 on CaMKIIα, from poly(I:C)-stimulated RAW264.7 cells, of which 28 are expressed in the downstream cascade of Ca(2+) signaling. Coincidentally, poly(I:C)-stimulated macrophages showed attenuated expression of phosphorylated CaMKIIα when pretreated with nicotine. In addition, nicotine attenuated intracellular Ca(2+) signal from poly(I:C)-stimulated RAW264.7 cells. Collectively, these results indicate that poly(I:C)-induced molecular responses of macrophages could be significantly attenuated by nicotine.

  11. Peritoneal macrophages from patients with cirrhotic ascites show impaired phagocytosis and vigorous respiratory burst

    PubMed Central

    Ahmed, Abdel Motaal M.; Bomford, Adrian; Nouri-Aria, Kayhan T.; Davies, Ted; Smith, Roger; Williams, Roger

    2011-01-01

    Cirrhotic patients (CPs) are susceptible to spontaneous bacterial peritonitis (SBP). Aim of this study was to examine if this susceptibility was related to peritoneal macrophages' (PMs) altered host defence. Absorbance of phagocytosed particles by PMs from CPs was lower than that of control (31.88% vs. 77.2%). Particle opsonisation increased the absorbance to 41% in CPs' PMs, and this value remains lower than the control; 77.2%. Respiratory burst (RB) was expressed as fluorescence index values, and these were higher in PMs from CPs than in controls (82 vs. 41, 73 vs. 26 and 71 vs. 26). IFN-γ made no further increase of RB values in PMs from CPs. CD14 expression was also higher in CPs' PMs. IFN-γ significantly downregulated CD14 expression in both CPs' PMs and control. Reduced phagocytosis by predominantly CD14-positive PMs from CPs could be related to intense RB. Findings suggest altered host defence that could contribute to susceptibility to SBP. PMID:24371553

  12. Presence of SNAP-23 and syntaxin 4 in mouse and hamster peritoneal mast cells.

    PubMed

    Salinas, Eva; Rodríguez, Gonzalo; Quintanar, J Luis

    2007-01-01

    Mast cells (MCs) play a crucial role in inflammatory reactions. Their presence and number in the peritoneal cavity is important to overcome and enhance resistance to peritoneal infection. When MCs are activated they release a variety of biological mediators from their granules, such as histamine, that contribute to the appropriate and rapid local immune response. Granular content is released using a process of compound exocytosis, also termed degranulation. SNAP-23 and syntaxin 4 are plasma membrane proteins involved in degranulation of rat MCs. Their presence, however, has not been studied in MCs of other rodent species. The aim of the present study was to investigate using immunocytochemistry whether SNAP-23 and syntaxin 4 are present in peritoneal MCs of the mouse and hamster. In addition, the diameter, percentage and histamine content of these cells were also analyzed. Our results demonstrate that SNAP-23 and syntaxin 4 are present in the mouse and hamster peritoneal MCs, suggesting that proteins involved in the secretory process in MCs are conserved among species. Likewise, we conclude that peritoneal MCs of mouse and hamster are heterogeneous in size, percentage and histamine content.

  13. Reduced secretion of the inflammatory cytokine IL-1β by stimulated peritoneal macrophages of radiosensitive Balb/c mice after exposure to 0.5 or 0.7 Gy of ionizing radiation.

    PubMed

    Frischholz, Birgit; Wunderlich, Roland; Rühle, Paul-Friedrich; Schorn, Christine; Rödel, Franz; Keilholz, Ludwig; Fietkau, Rainer; Gaipl, Udo S; Frey, Benjamin

    2013-08-01

    Since the beginning of the 20th century, low dose radiotherapy (LD-RT) has been practiced and established as therapy of inflammatory diseases. Several clinical studies already have proven the anti-inflammatory effect of low doses of ionizing irradiation (LDR). However, further research is inevitable to reveal the underlying immune-biological mechanisms. Focus has been set on the modulation of activated macrophages by LDR, since they participate in both, initiation and resolution of inflammation. Here we examined with an ex vivo peritoneal mouse macrophage model how LDR modulates the secretion of the inflammatory cytokines IL-1β and TNF-α by activated macrophages and whether the basal radiosensitivity of the immune cells has influence on it. Peritoneal macrophages of Balb/c mice responded to exposure of 0.5 or 0.7 Gy of ionizing irradiation (X-ray) with significant decreased release of IL-1β and slightly, but not significantly, reduced release of TNF-α. Macrophages of the less radiosensitive C57BL/6 mice did not show this anti-inflammatory reaction. This was observed in both wild type and human TNF-α transgenic animals with C57BL/6 background. We conclude that only the inflammatory phenotype of more radiosensitive macrophages is reduced by LDR and that ex vivo and in vivo models with primary cells should be applied to examine how the immune system is modulated by LDR.

  14. 22-Oxacalcitriol Prevents Progression of Peritoneal Fibrosis in a Mouse Model

    PubMed Central

    Hirose, Misaki; Nishino, Tomoya; Obata, Yoko; Nakazawa, Masayuki; Nakazawa, Yuka; Furusu, Akira; Abe, Katsushige; Miyazaki, Masanobu; Koji, Takehiko; Kohno, Shigeru

    2013-01-01

    ♦ Objective: Vitamin D plays an important role in calcium homeostasis and is used to treat secondary hyperparathyroidism among dialysis patients. The biologic activity of vitamin D and its analogs is mediated by vitamin D receptor (VDR), which is distributed widely throughout the body. Recent papers have revealed that low vitamin D levels are correlated with severe fibrosis in chronic diseases, including cystic fibrosis and hepatitis. The aim of the present study was to evaluate the protective effects of vitamin D against the progression of peritoneal fibrosis. ♦ Methods: Peritoneal fibrosis was induced by injection of chlorhexidine gluconate (CG) into the peritoneal cavity of mice every other day for 3 weeks. An analog of vitamin D, 22-oxacalcitriol (OCT), was administered subcutaneously daily from initiation of the CG injections. The peritoneal tissue was excised at 3 weeks. Changes in morphology were assessed by hematoxylin and eosin staining. Expression of VDR, alpha smooth muscle actin (as a marker of myofibroblasts), type III collagen, transforming growth factor β(TGF-β), phosphorylated Smad2/3, F4/80 (as a marker of macrophages), and monocyte chemoattractant protein-1 (MCP-1) was examined by immunohistochemistry. Southwestern histochemistry was used to detect activated nuclear factor κB (NF-κB). ♦ Results: In the CG-injected mice, immunohistochemical analysis revealed expression of VDR in mesothelial cells, myofibroblasts, and macrophages in the thickened submesothelial zone. Treatment with OCT significantly prevented peritoneal fibrosis and reduced the accumulation of type III collagen in CG-treated mice. Among the markers of fibrosis, the numbers of myofibroblasts, cells positive for TGF-β, and cells positive for phosphorylated Smad2/3 were significantly decreased in the OCT-treated group compared with the vehicle-treated group. Furthermore, OCT suppressed inflammatory mediators of fibrosis, as shown by the reduced numbers of activated NF

  15. Photoimmunotherapy of Gastric Cancer Peritoneal Carcinomatosis in a Mouse Model

    PubMed Central

    Sato, Kazuhide; Choyke, Peter L.; Kobayashi, Hisataka

    2014-01-01

    Photoimmunotherapy (PIT) is a new cancer treatment that combines the specificity of antibodies for targeting tumors with the toxicity induced by photosensitizers after exposure to near infrared (NIR) light. We performed PIT in a model of disseminated gastric cancer peritoneal carcinomatosis and monitored efficacy with in vivo GFP fluorescence imaging. In vitro and in vivo experiments were conducted with a HER2-expressing, GFP-expressing, gastric cancer cell line (N87-GFP). A conjugate comprised of a photosensitizer, IR-700, conjugated to trastuzumab (tra-IR700), followed by NIR light was used for PIT. In vitro PIT was evaluated by measuring cytotoxicity with dead staining and a decrease in GFP fluorescence. In vivo PIT was evaluated in a disseminated peritoneal carcinomatosis model and a flank xenograft using tumor volume measurements and GFP fluorescence intensity. In vivo anti-tumor effects of PIT were confirmed by significant reductions in tumor volume (at day 15, p<0.0001 vs. control) and GFP fluorescence intensity (flank model: at day 3, PIT treated vs. control p<0.01 and peritoneal disseminated model: at day 3 PIT treated vs. control, p<0.05). Cytotoxic effects in vitro were shown to be dependent on the light dose and caused necrotic cell rupture leading to GFP release and a decrease in fluorescence intensity in vitro. Thus, loss of GFP fluorescence served as a useful biomarker of cell necrosis after PIT. PMID:25401794

  16. Endotoxin suppresses expression of apoprotein E by mouse macrophages in vivo and in culture: a biochemical and genetic study

    SciTech Connect

    Werb, Z.; Chin, J.R.

    1983-09-10

    The synthesis and secretion of apo-E, a component of plasma lipoproteins, are suppressed in mouse macrophages exposed to bacterial lipopolysaccharide endotoxin (LPS) in culture or in vivo. Control mouse macrophages contained intracellular immunofluorescent apo-E, and apo-E represented about 10% of secreted protein. After intraperitoneal injection of LPS, freshly lavaged macrophages neither contained intracellular apo-E nor secreted apo-E. The suppressive effects of LPS and apo-E synthesis in culture were selective, and secretion of many other major macrophage proteins was not affected. When then LPS-elicited macrosphages were cultured for 24-72 h in the absence of LPS, synthesis of apo-E was initiated. Treatment of bone marrow-derived or peritoneal macrophages in culture with less than 1 ng of LPS/ml inhibited apo-E synthesis and secretion by 18 h of treatment. Although LPS stimulates prostaglandin E/sub 2/ synthesis, prostaglandin E/sub 2/ itself did not suppress apo-E synthesis. Macrophages from C3H/HeJ (Lps/sup d//Lps/sup d/) mice, which are resistant to LPS, were neither primed for H/sub 2/O/sub 2/ production nor suppressed for apo-E synthesis in response to LPS in vivo (30 ..mu..g/mouse) or in culture (1..mu../ml), whereas macrophages from the co-isogenic C3H/HeN (Lps/sup n//Lps/sup n/) strain were induced for H/sub 2/O/sub 2/ secretion and had suppressed synthesis of apo-E. Because apo-E serves as a recognition determinant for the receptor-mediated clearance of lipoproteins, the decreased synthesis of apo-E after LPS treatment may in part explain the hyperlipoproteinemia associated with endotoxins in vivo.

  17. Phosphatidylserine receptor Tim-4 is essential for the maintenance of the homeostatic state of resident peritoneal macrophages.

    PubMed

    Wong, Kit; Valdez, Patricia A; Tan, Christine; Yeh, Sherry; Hongo, Jo-Anne; Ouyang, Wenjun

    2010-05-11

    Tim-4 is a phosphatidylserine (PS) receptor that is expressed on various macrophage subsets. It mediates phagocytosis of apoptotic cells by peritoneal macrophages. The in vivo functions of Tim-4 in phagocytosis and immune responses, however, are still unclear. In this study, we show that Tim-4 quickly forms punctate caps on contact with apoptotic cells, in contrast to its normal diffused expression on the surface of phagocytes. Despite its expression in marginal zone and tingible body macrophages, Tim-4 deficiency only minimally affects outcomes of several acute immune challenges, including the trapping of apoptotic cells in the marginal zone, the clearance apoptotic cells by tingible body macrophages, and the formation of germinal centers and elicitation of antibody responses against sheep red blood cells (SRBCs). In addition, Tim-4(-/-) resident peritoneal macrophages (rPMs) phagocytose necrotic cells and other opsonized targets normally. However, their ability to bind and engulf apoptotic cells is significantly compromised both in vitro and in vivo. Most importantly, Tim-4 deficiency results in increased cellularity in the peritoneum. Resting rPMs produce higher TNF-alpha in culture. Their response to LPS, on the contrary, is dampened. Our data support an indispensible role of Tim-4 in maintaining the homeostasis of rPMs.

  18. A Mouse Macrophage Lipidome*♦

    PubMed Central

    Dennis, Edward A.; Deems, Raymond A.; Harkewicz, Richard; Quehenberger, Oswald; Brown, H. Alex; Milne, Stephen B.; Myers, David S.; Glass, Christopher K.; Hardiman, Gary; Reichart, Donna; Merrill, Alfred H.; Sullards, M. Cameron; Wang, Elaine; Murphy, Robert C.; Raetz, Christian R. H.; Garrett, Teresa A.; Guan, Ziqiang; Ryan, Andrea C.; Russell, David W.; McDonald, Jeffrey G.; Thompson, Bonne M.; Shaw, Walter A.; Sud, Manish; Zhao, Yihua; Gupta, Shakti; Maurya, Mano R.; Fahy, Eoin; Subramaniam, Shankar

    2010-01-01

    We report the lipidomic response of the murine macrophage RAW cell line to Kdo2-lipid A, the active component of an inflammatory lipopolysaccharide functioning as a selective TLR4 agonist and compactin, a statin inhibitor of cholesterol biosynthesis. Analyses of lipid molecular species by dynamic quantitative mass spectrometry and concomitant transcriptomic measurements define the lipidome and demonstrate immediate responses in fatty acid metabolism represented by increases in eicosanoid synthesis and delayed responses characterized by sphingolipid and sterol biosynthesis. Lipid remodeling of glycerolipids, glycerophospholipids, and prenols also take place, indicating that activation of the innate immune system by inflammatory mediators leads to alterations in a majority of mammalian lipid categories, including unanticipated effects of a statin drug. Our studies provide a systems-level view of lipid metabolism and reveal significant connections between lipid and cell signaling and biochemical pathways that contribute to innate immune responses and to pharmacological perturbations. PMID:20923771

  19. An online coupled peritoneal macrophage/cell membrane chromatography and high-performance liquid chromatography/mass spectrometry method to screen for anti-inflammatory components from the Chinese traditional medicine Chloranthus multistachys Pei.

    PubMed

    Li, Weifeng; Xing, Wei; Wang, Sicen; Fan, Ting; Huang, Huimin; Niu, Xiaofeng; He, Langchong

    2013-11-01

    Cell membrane chromatography (CMC) is a chromatographic biological affinity method that uses specific cell membranes as the stationary phase. In this study, a novel peritoneal macrophage/cell membrane chromatography (PM/CMC)-online-high performance liquid chromatography/mass spectrometry (HPLC/MS) method was established to screen for the anti-inflammatory components from traditional Chinese medicines using hydrocortisone and dexamethasone as standards. The stationary phase of the CMC employed mouse peritoneal macrophage cell membranes. This method was applied to the purification and identification of components in extracts of Chloranthus multistachys Pei. The major component retained by CMC was identified as isofraxidin by HPLC/MS. In vitro experiments revealed that IF was able to inhibit the production of nitric oxide and tumor necrosis factor-α in lipopolysaccharide-stimulated mice and peritoneal macrophages in a dose-dependent manner. The results demonstrated that the PM/CMC-online-HPLC/MS is an effective screening system for the rapid detection, enrichment, and identification of target components from complex samples.

  20. Mycobacterium tuberculosis Prolyl Oligopeptidase Induces In vitro Secretion of Proinflammatory Cytokines by Peritoneal Macrophages

    PubMed Central

    Portugal, Brina; Motta, Flávia N.; Correa, Andre F.; Nolasco, Diego O.; de Almeida, Hugo; Magalhães, Kelly G.; Atta, Ana L. V.; Vieira, Francisco D.; Bastos, Izabela M. D.; Santana, Jaime M.

    2017-01-01

    Tuberculosis (TB) is a disease that leads to death over 1 million people per year worldwide and the biological mediators of this pathology are poorly established, preventing the implementation of effective therapies to improve outcomes in TB. Host–bacterium interaction is a key step to TB establishment and the proteases produced by these microorganisms seem to facilitate bacteria invasion, migration and host immune response evasion. We presented, for the first time, the identification, biochemical characterization, molecular dynamics (MDs) and immunomodulatory properties of a prolyl oligopeptidase (POP) from Mycobacterium tuberculosis (POPMt). POP is a serine protease that hydrolyzes substrates with high specificity for proline residues and has already been characterized as virulence factor in infectious diseases. POPMt reveals catalytic activity upon N-Suc-Gly-Pro-Leu-Gly-Pro-AMC, a recognized POP substrate, with optimal activity at pH 7.5 and 37°C. The enzyme presents KM and Kcat/KM values of 108 μM and 21.838 mM-1 s-1, respectively. MDs showed that POPMt structure is similar to that of others POPs, which consists of a cylindrical architecture divided into an α/β hydrolase catalytic domain and a β-propeller domain. Finally, POPMt was capable of triggering in vitro secretion of proinflammatory cytokines by peritoneal macrophages, an event dependent on POPMt intact structure. Our data suggests that POPMt may contribute to an inflammatory response during M. tuberculosis infection. PMID:28223969

  1. Enhancement of dengue virus type 2 replication in mouse macrophage cultures by bacterial cell walls, peptidoglycans, and a polymer of peptidoglycan subunits.

    PubMed Central

    Hotta, H; Hotta, S; Takada, H; Kotani, S; Tanaka, S; Ohki, M

    1983-01-01

    The effects of bacterial cell walls, peptidoglycans, and a water-soluble polymer of peptidoglycan subunits on dengue virus type 2 replication in cultured mouse peritoneal macrophages were studied. Pretreatment of macrophage cultures with all of test cell walls isolated from seven bacterial species for 3 days significantly enhanced the virus production in the cultures. Peptidoglycans prepared from four of the above cell walls also exerted the virus production-enhancing effects in a similar manner as the walls. A water-soluble polymer of peptidoglycan subunits which was prepared by treatment of Staphylococcus epidermidis wall peptidoglycan with an interpeptide bridge-splitting enzyme (endopeptidase) also definitely enhanced the virus production in macrophage cultures, although its activity was weaker than that of the original wall and peptidoglycan. Macrophage cultures from athymic nude mice, when treated with cell walls and peptidoglycans of S. epidermidis and Lactobacillus plantarum for 3 days, also showed an increased ability to support dengue virus type 2 replication. The infectious center assay demonstrated that the virus replication enhancement by S. epidermidis cell wall and peptidoglycan was primarily due to an increase in the number of virus-infected cells. This finding did not seem to be in conflict with the observation that macrophages treated with the above cell wall or peptidoglycan phagocytized more latex particles than did untreated macrophages. The conclusions based on the above experiments are that the treatment of mouse peritoneal macrophage cultures with bacterial cell walls and their components increases the take of dengue virus type 2 by macrophages and thus raises the virus production in the macrophage cultures. PMID:6874066

  2. TWEAK Promotes Peritoneal Inflammation

    PubMed Central

    Sanz, Ana Belen; Aroeira, Luiz Stark; Bellon, Teresa; del Peso, Gloria; Jimenez-Heffernan, Jose; Santamaria, Beatriz; Sanchez-Niño, Maria Dolores; Blanco-Colio, Luis Miguel; Lopez-Cabrera, Manuel; Ruiz-Ortega, Marta; Egido, Jesus; Selgas, Rafael; Ortiz, Alberto

    2014-01-01

    Peritoneal dialysis (PD) is complicated by peritonitis episodes that cause loss of mesothelium and eventually sclerosing peritonitis. An improved understanding of the molecular contributors to peritoneal injury and defense may increase the therapeutic armamentarium to optimize peritoneal defenses while minimizing peritoneal injury. There is no information on the expression and function of the cytokine TWEAK and its receptor Fn14 during peritoneal injury. Fn14 expression and soluble TWEAK levels were measured in human PD peritoneal effluent cells or fluids with or without peritonitis. Fn14 expression was also analyzed in peritoneal biopsies from PD patients. Actions of intraperitoneal TWEAK were studied in mice in vivo. sTWEAK levels were increased in peritoneal effluent in PD peritonitis. Effluent sTWEAK levels correlated with the number of peritoneal macrophages (r = 0.491, p = 0.002). Potential TWEAK targets that express the receptor Fn14 include mesothelial cells and macrophages, as demonstrated by flow cytometry of peritoneal effluents and by analysis of peritoneal biopsies. Peritoneal biopsy Fn14 correlated with mesothelial injury, fibrosis and inflammation, suggesting a potential deleterious effect of TWEAK/Fn14. In this regard, intraperitoneal TWEAK administration to mice promoted peritoneal inflammation characterized by increased peritoneal effluent MCP-1, Fn14 and Gr1+ macrophages, increased mesothelial Fn14, MCP-1 and CCL21 expression and submesothelial tissue macrophage recruitment. Taken together these data suggest that the TWEAK/Fn14 system may promote inflammation and tissue injury during peritonitis and PD. PMID:24599047

  3. Macropinocytosis is decreased in diabetic mouse macrophages and is regulated by AMPK

    PubMed Central

    Guest, Christopher B; Chakour, Kenneth S; Freund, Gregory G

    2008-01-01

    Background Macrophages (MΦs) utilize macropinocytosis to integrate immune and metabolic signals in order to initiate an effective immune response. Diabetes is characterized by metabolic abnormalities and altered immune function. Here we examine the influence of diabetes on macropinocytosis in primary mouse macrophages and in an in vitro diabetes model. Results The data demonstrate that peritoneal MΦs from diabetic (db/db) mice had reduced macropinocytosis when compared to MΦs from non-diabetic (db/+) mice. Additionally, MΦs cultured in hyperglycemic conditions were less adept at macropinocytosis than those cultured in low glucose. Notably, AMP-activated protein kinase (AMPK) activity was decreased in MΦs cultured in hyperglycemic conditions. Activation of AMPK with leptin or 5-aminoimidazole-4-carboxamide-1-β-riboside (AICAR) increased macropinocytosis and inhibition of AMPK with compound C decreased macropinocytosis. Conclusion Taken together, these findings indicate that MΦs from diabetic mice have decreased macropinocytosis. This decrease appears dependent on reduced AMPK activity. These results demonstrate a previously unrealized role for AMPK in MΦs and suggest that increasing AMPK activity in diabetic MΦs could improve innate immunity and decrease susceptibility to infection. PMID:18667079

  4. The influence of some metabolic inhibitors on phagocytic activity of mouse macrophages in vitro.

    PubMed

    Cifarelli, A; Pepe, G; Paradisi, F; Piccolo, D

    1979-02-06

    The action of different metabolic inhibitors on phagocytosis by macrophages from mouse peritoneal exudate cultured in vitro was studied. The following metabolic inhibitors were tested: sodium iodoacetate, sodium fluoride, sodium fluoroacetate, sodium malonate, 2-4-dinitrophenol, sodium azide, ouabain and cycloheximide, all at the concentration of 10(-3) M. Iodoacetate caused a strong inhibitory effect on phagocytosis; this observation confirms that glycolysis is the main source of energy for the phagocytic process. On the contrary, fluoride, although it is an effective inhibitor of glycolysis, did not exert any effect. This difference may be explained by the fact that sodium fluoride blocks anaerobic glycolysis only in vitro at an unphysiological temperature (0 degrees C). Fluoroacetate and malonate, two compounds which interfere with the Krebs cycle, did not inhibit phagocytosis, but it is known that the Krebs cycle activity is poorly developed in the macrophagic cells. Sodium azide and 2-4-dinitrophenol, two inhibitors of oxidative phosphorylation, showed an effect on phagocytosis only after 3 h of contact with the cell cultures. Ouabain blocks Na+ and K+ transport across the plasma membrane and, probably, it inhibited phagocytosis by interfering with the movements of the cell membrane. Finally, the mode of action of cycloheximide on phagocytosis is uncertain. This compound inhibits the protein synthesis and, perhaps, it can act by preventing the renewal of the cell membrane.

  5. MicroRNA-223 Induced Repolarization of Peritoneal Macrophages Using CD44 Targeting Hyaluronic Acid Nanoparticles for Anti-Inflammatory Effects

    PubMed Central

    Tran, Thanh-Huyen; Krishnan, Swathi; Amiji, Mansoor M.

    2016-01-01

    The aim of this study was to evaluate macrophages repolarization from pro-inflammatory M1 to anti-inflammatory M2 phenotype upon transfection with microRNA-223 (miR-223) duplexes and miR-223 expressing plasmid DNA encapsulated in CD44-targeting hyaluronic acid-poly(ethyleneimine) (HA-PEI) nanoparticles (NPs). The HA-PEI/miR-223 NPs with spherical shape and an average diameter of 200 nm were efficiently internalized by J774A.1 alveolar and primary peritoneal macrophages and non-cytotoxic at HA-PEI concentration less than 200 μg/mL. Transfection of HA-PEI/miR-223 NPs in J774A.1 macrophages showed significantly higher miR-223 expression than that with HA-PEI/plasmid DNA expressing miR-223 (pDNA-miR-223). HA-PEI/miR-223 NPs mediated transfection increased miR-223 expression to 90 fold in primary peritoneal macrophages compared to untreated cells. The overexpression of miR-223 in both J774A.1 and peritoneal macrophages induced a phenotypic change from M1 to M2 state as indicated by a decrease in iNOS-2 (M1 marker) and an increase in Arg-1 (M2 marker) levels compared to those in lipopolysaccharide (LPS) and interferon-gamma (IFN-γ)-stimulated macrophages (M1). The change in macrophage phenotype by HA-PEI/miR-223 NPs could suppress the inflammation in peritoneal macrophages induced by LPS as evidenced by a significant decrease in pro-inflammatory cytokine levels TNF-α, IL-1β and IL-6, compared to LPS-stimulated peritoneal macrophages without treatment. The results demonstrated that miR-223-encapsulated HA-PEI NPs modulated macrophage polarity toward an anti-inflammatory M2 phenotype, which has potential for the treatment of inflammatory diseases. PMID:27148749

  6. Non-specific recognition in phagocytosis: ingestion of aldehyde-treated erythrocytes by rat peritoneal macrophages.

    PubMed Central

    Capo, C; Bongrand, P; Benoliel, A M; Depieds, R

    1979-01-01

    Particles were chemically modified with aldehydes and incubated with rat peritoneal cells for phagocytosis. All dialdehydes and lower monaldehydes tested (methanal, ethanal and propanal) made sheep erythrocytes phagocytosable. Failure of higher monaldehydes to induce phagocytosis of treated erythrocytes was not due to lack of reactivity with red cell membranes. All erythrocytes tested (bird and mammal red cells were used) and rat thymocytes were phagocytosed by rat macrophages after incubation with aldehyde. Treatment of Candida albicans did not induce phagocytosis: this failure was not due to lack of aldehyde binding (as demonstrated with [14C]-methanal) nor to anti-phagocytic properties of the parasite membrane. Sheep erythrocytes were submitted to enzymatic treatment (pronase, trypsin, neuraminidase) or incubated with succinic anhydride (to block free NH2 groups) or iodacetamide (to block free SH groups) before aldehyde treatment: phagocytosis was not decreased, which suggested that aldehydes did not act by altering some definite surface structure of the treated particles. Treatment of erythrocytes with cross-linking compounds such as tetraazotized o-dianisidine (coupling occurs mainly on tyrosine and histidine residues) or l-ethyl(3-dimethyl aminopropyl) carbodiimide (a bivalent reagent binding free COOH groups) did not induce any substantial phagocytosis of erythrocytes. Phagocytosis of aldehyde treated erythrocytes was partly correlated with hydrophobicity of these cells, as measured with a two-phase partition system. It is concluded that aldehyde-mediated phagocytosis of erythrocytes is mainly due to cross-linking of red cell membrane structures, probably involving free OH groups, which must increase local rigidity and thereby modify hydrophobicity of the red cell surface. Images Figure 1 PMID:437841

  7. Non-specific recognition in phagocytosis: ingestion of aldehyde-treated erythrocytes by rat peritoneal macrophages.

    PubMed

    Capo, C; Bongrand, P; Benoliel, A M; Depieds, R

    1979-03-01

    Particles were chemically modified with aldehydes and incubated with rat peritoneal cells for phagocytosis. All dialdehydes and lower monaldehydes tested (methanal, ethanal and propanal) made sheep erythrocytes phagocytosable. Failure of higher monaldehydes to induce phagocytosis of treated erythrocytes was not due to lack of reactivity with red cell membranes. All erythrocytes tested (bird and mammal red cells were used) and rat thymocytes were phagocytosed by rat macrophages after incubation with aldehyde. Treatment of Candida albicans did not induce phagocytosis: this failure was not due to lack of aldehyde binding (as demonstrated with [14C]-methanal) nor to anti-phagocytic properties of the parasite membrane. Sheep erythrocytes were submitted to enzymatic treatment (pronase, trypsin, neuraminidase) or incubated with succinic anhydride (to block free NH2 groups) or iodacetamide (to block free SH groups) before aldehyde treatment: phagocytosis was not decreased, which suggested that aldehydes did not act by altering some definite surface structure of the treated particles. Treatment of erythrocytes with cross-linking compounds such as tetraazotized o-dianisidine (coupling occurs mainly on tyrosine and histidine residues) or l-ethyl(3-dimethyl aminopropyl) carbodiimide (a bivalent reagent binding free COOH groups) did not induce any substantial phagocytosis of erythrocytes. Phagocytosis of aldehyde treated erythrocytes was partly correlated with hydrophobicity of these cells, as measured with a two-phase partition system. It is concluded that aldehyde-mediated phagocytosis of erythrocytes is mainly due to cross-linking of red cell membrane structures, probably involving free OH groups, which must increase local rigidity and thereby modify hydrophobicity of the red cell surface.

  8. Modulation of phagocytic function in murine peritoneal macrophages by bombesin, gastrin-releasing peptide and neuromedin C.

    PubMed Central

    De la Fuente, M; Del Rio, M; Ferrandez, M D; Hernanz, A

    1991-01-01

    Bombesin, as well as the two mammalian bombesin-like peptides gastrin-releasing peptide and neuromedin C, have been shown in this study to stimulate in vitro all steps of the phagocytic process in murine peritoneal macrophages: adherence to substrate, chemotaxis, ingestion of cells (Candida albicans) and inert particles (latex beads), and production of superoxide anion as measured by nitroblue tetrazolium reduction. A dose-response relationship was observed, with maximal stimulation of phagocytic process between 10(-12)M and 10(-9)M. Gastrin-releasing peptide (GRP) and neuromedin C caused a higher activation of adherence, chemotaxis and ingestion of C. albicans than bombesin. The three neuropeptides induced in murine macrophages a significant, but transient, increase of inositol 1,4,5-trisphosphate (IP3) levels at 60 seconds. On the contrary, these neuropeptides produced a rapid, transient and significant decrease of cAMP at 30 seconds. These results suggest that there are close relations between IP3 and cAMP messenger systems and the phagocytic process in murine peritoneal macrophages when these cells are incubated in the presence of bombesin, GRP or neuromedin C. PMID:1649124

  9. Isoalantolactone inhibits LPS-induced inflammation via NF-κB inactivation in peritoneal macrophages and improves survival in sepsis.

    PubMed

    He, Guodong; Zhang, Xu; Chen, Yanhua; Chen, Jing; Li, Li; Xie, Yubo

    2017-04-10

    Sepsis, a clinical syndrome occurring in patients following infection or injury, is a leading cause of mortality worldwide. It involves uncontrolled inflammatory response resulting in multi-organ failure and even death. Isoalantolactone (IAL), a sesquiterpene lactone, is known for its anti-cancer effects. Nevertheless, little is known about the anti-inflammatory effects of IAL, and the role of IAL in sepsis is unclear. In this study, we demonstrated that IAL decreased lipopolysaccharide (LPS)-mediated production of nitric oxide, PEG2 and cytokines (IL-6, TNF-α) in peritoneal macrophages and RAW 264.7 macrophages. Moreover, molecular mechanism studies indicated that IAL plays an anti-inflammatory role by inhibiting LPS-induced activation of NF-κB pathway in peritoneal macrophages. In vivo, IAL reduced the secretion of IL-6 and TNF-α in serum, and increased the survival rate of mice with LPS-induced sepsis. In addition, IAL attenuated the activation of NF-κB pathway in liver. Taken together, our data suggest that IAL may represent a potentially new drug candidate for the treatment of sepsis.

  10. Receptor-recognized alpha 2-macroglobulin-methylamine elevates intracellular calcium, inositol phosphates and cyclic AMP in murine peritoneal macrophages.

    PubMed Central

    Misra, U K; Chu, C T; Rubenstein, D S; Gawdi, G; Pizzo, S V

    1993-01-01

    Human plasma alpha 2-macroglobulin (alpha 2M) is a tetrameric proteinase inhibitor, which undergoes a conformational change upon reaction with either a proteinase or methylamine. As a result, a receptor recognition site is exposed on each subunit of the molecule enabling it to bind to its receptors on macrophages. We have used Fura-2-loaded murine peritoneal macrophages and digital video fluorescence microscopy to examine the effects of receptor binding on second messenger levels. alpha 2M-methylamine caused a rapid 2-4-fold increase in intracellular Ca2+ concentration ([Ca2+]i) within 5 s of binding to receptors. The agonists induced a focal increase in [Ca2+]i that spread out to other areas of the cell. The increase in [Ca2+]i was dependent on the alpha 2M-methylamine concentration and on the extracellular [Ca2+]. Both sinusoidal and transitory oscillations were observed, which varied from cell to cell. Neither alpha 2M nor boiled alpha 2M-methylamine, forms that are not recognized by the receptor, affected [Ca2+]i in peritoneal macrophages under identical conditions of incubation. The alpha 2M-methylamine-induced rise in [Ca2+]i was accompanied by a rapid and transient increase in macrophage inositol phosphates, including inositol tris- and tetrakis-phosphates. Native alpha 2M did not stimulate a rise in inositol phosphates. Finally, binding of alpha 2M-methylamine to macrophages increased cyclic AMP transiently. Thus receptor-recognized alpha-macroglobulins behave as agonists whose receptor binding causes stimulation of signal transduction pathways. Images Figure 2 PMID:7681282

  11. The Impact of Myeloperoxidase and Activated Macrophages on Metaphase II Mouse Oocyte Quality

    PubMed Central

    Shaeib, Faten; Khan, Sana N.; Thakur, Mili; Kohan-Ghadr, Hamid-Reza; Drewlo, Sascha; Saed, Ghassan M.; Pennathur, Subramaniam; Abu-Soud, Husam M.

    2016-01-01

    Myeloperoxidase (MPO), an abundant heme-containing enzyme present in neutrophils, monocytes, and macrophages, is produced in high levels during inflammation, and associated with poor reproductive outcomes. MPO is known to generate hypochlorous acid (HOCl), a damaging reactive oxygen species (ROS) utilizing hydrogen peroxide (H2O2) and chloride (Cl-). Here we investigate the effect of activated immune cells and MPO on oocyte quality. Mouse metaphase II oocytes were divided into the following groups: 1) Incubation with a catalytic amount of MPO (40 nM) for different incubation periods in the presence of 100 mM Cl- with and without H2O2 and with and without melatonin (100 μM), at 37°C (n = 648/648 total number of oocytes in each group for oocytes with and without cumulus cells); 2) Co-cultured with activated mouse peritoneal macrophage and neutrophils cells (1.0 x 106 cells/ml) in the absence and presence of melatonin (200 μM), an MPO inhibitor/ROS scavenger, for different incubation periods in HTF media, at 37°C (n = 200/200); 3) Untreated oocytes incubated for 4 hrs as controls (n = 73/64). Oocytes were then fixed, stained and scored based on the microtubule morphology and chromosomal alignment. All treatments were found to negatively affect oocyte quality in a time dependent fashion as compared to controls. In all cases the presence of cumulus cells offered no protection; however significant protection was offered by melatonin. Similar results were obtained with oocytes treated with neutrophils. This work provides a direct link between MPO and decreased oocyte quality. Therefore, strategies to decrease MPO mediated inflammation may influence reproductive outcomes. PMID:26982351

  12. Immune Activity of BCG Infected Mouse Macrophages Treated with a Novel Recombinant Mouse Lactoferrin.

    PubMed

    O'Shea, Kelly M; Hwang, Shen-An; Actor, Jeffrey K

    2015-01-01

    Lactoferrin has been investigated for its adjuvant action to boost the BCG vaccine. Previous studies demonstrated that lactoferrin (LF) enhanced efficacy of the Bacillus Calmette-Guérin (BCG) vaccine to protect mice against the virulent Erdman Mycobacterium tuberculosis challenge. The studies here investigate the hypothesis that a novel CHO-derived recombinant mouse LF can modify cytokine production and antigen presentation molecules on macrophages. The mouse LF (rmLF) was examined for effects on bone marrow derived macrophage (BMM) activities when cultured with BCG. Comparisons were made to CHO-derived recombinant human LF (rhLF). Inflammatory cytokine responses were investigated, as were antigen presentation and associated co-stimulatory molecules. Cytokine responses were subsequently measured when these cells were co-cultured with naïve or BCG sensitized CD4+ lymphocytes. While overall responses were similar between mouse, human, and bovine forms, the homologous rmLF treated infected BMMs showed unique activation patterns of cytokine production. These results indicate that species-specific LF can have different effects on mouse macrophages exposed to BCG, thus potentially affecting adjuvant activity when used in models of vaccination in mice.

  13. Aging Enhances the Production of Reactive Oxygen Species and Bactericidal Activity in Peritoneal Macrophages by Upregulating Classical Activation Pathways

    SciTech Connect

    Smallwood, Heather S.; López-Ferrer, Daniel; Squier, Thomas C.

    2011-10-07

    Maintenance of macrophages in their basal state and their rapid activation in response to pathogen detection are central to the innate immune system, acting to limit nonspecific oxidative damage and promote pathogen killing following infection. To identify possible age-related alterations in macrophage function, we have assayed the function of peritoneal macrophages from young (3–4 months) and aged (14–15 months) Balb/c mice. In agreement with prior suggestions, we observe age-dependent increases in the extent of recruitment of macrophages into the peritoneum, as well as ex vivo functional changes involving enhanced nitric oxide production under resting conditions that contribute to a reduction in the time needed for full activation of senescent macrophages following exposure to lipopolysaccharides (LPS). Further, we observe enhanced bactericidal activity following Salmonella uptake by macrophages isolated from aged Balb/c mice in comparison with those isolated from young animals. Pathways responsible for observed phenotypic changes were interrogated using tandem mass spectrometry, which identified age-dependent increases in levels of proteins linked to immune cell pathways under basal conditions and following LPS activation. Immune pathways upregulated in macrophages isolated from aged mice include proteins critical to the formation of the immunoproteasome. Detection of these latter proteins is dramatically enhanced following LPS exposure for macrophages isolated from aged animals; in comparison, the identification of immunoproteasome subunits is insensitive to LPS exposure for macrophages isolated from young animals. Consistent with observed global changes in the proteome, quantitative proteomic measurements indicate that there are age-dependent abundance changes involving specific proteins linked to immune cell function under basal conditions. LPS exposure selectively increases the levels of many proteins involved in immune cell function in aged Balb/c mice

  14. Aging enhances the production of reactive oxygen species and bactericidal activity in peritoneal macrophages by upregulating classical activation pathways.

    PubMed

    Smallwood, Heather S; López-Ferrer, Daniel; Squier, Thomas C

    2011-11-15

    Maintenance of macrophages in their basal state and their rapid activation in response to pathogen detection are central to the innate immune system, acting to limit nonspecific oxidative damage and promote pathogen killing following infection. To identify possible age-related alterations in macrophage function, we have assayed the function of peritoneal macrophages from young (3-4 months) and aged (14-15 months) Balb/c mice. In agreement with prior suggestions, we observe age-dependent increases in the extent of recruitment of macrophages into the peritoneum, as well as ex vivo functional changes involving enhanced nitric oxide production under resting conditions that contribute to a reduction in the time needed for full activation of senescent macrophages following exposure to lipopolysaccharides (LPS). Further, we observe enhanced bactericidal activity following Salmonella uptake by macrophages isolated from aged Balb/c mice in comparison with those isolated from young animals. Pathways responsible for observed phenotypic changes were interrogated using tandem mass spectrometry, which identified age-dependent increases in levels of proteins linked to immune cell pathways under basal conditions and following LPS activation. Immune pathways upregulated in macrophages isolated from aged mice include proteins critical to the formation of the immunoproteasome. Detection of these latter proteins is dramatically enhanced following LPS exposure for macrophages isolated from aged animals; in comparison, the identification of immunoproteasome subunits is insensitive to LPS exposure for macrophages isolated from young animals. Consistent with observed global changes in the proteome, quantitative proteomic measurements indicate that there are age-dependent abundance changes involving specific proteins linked to immune cell function under basal conditions. LPS exposure selectively increases the levels of many proteins involved in immune cell function in aged Balb/c mice

  15. Susceptibility of mouse macrophage J774 to dengue virus infection.

    PubMed

    Moreno-Altamirano, María M B; Sánchez-García, F Javier; Legorreta-Herrera, Martha; Aguilar-Carmona, Israel

    2007-01-01

    The aim of this study was to investigate whether the J774 mouse macrophage cell line could be used as an in vitro model for dengue virus infection (DENV). After 3 days, infection in J774 cells was assessed by detecting dengue virus non-structural protein 1 (NSP-1) production either by dot blot or indirect immunofluorescence assay (IFA) of saponine-permeabilized J774 cells and then confirmed by RT-PCR (171 bp product, corresponding to the DENV-2 core). Based on the presence of NSP-1 in infected but not in non-infected cells by both IFA and dot blot, as well as the amplification of a 171-bp DENV-2-specific RT-PCR product exclusively in the infected cells, the J774 cell line was found to be permissive for dengue virus infection. As far as we know, this is the first report that the J774 mouse macrophage cell line is infected with dengue virus and, thus, that it can be used as an alternative in vitro model for dengue virus infection studies. This finding could help to further elucidate the mechanisms involved in dengue virus infection and pathogenesis.

  16. In vitro time-dependent vancomycin-resistant Staphylococcus aureus-induced free radical generation and status of antioxidant enzymes in murine peritoneal macrophage.

    PubMed

    Chakraborty, Subhankari Prasad; Mahapatra, Santanu Kar; Roy, Somenath

    2012-01-01

    Staphylococcus aureus is most frequently isolated pathogen causing bloodstream infections, skin and soft tissue infections, and pneumonia. The immune cells use reactive oxygen species (ROS) for carrying out their normal functions, while an excess amount of ROS can attack cellular components that lead to cell damage. The aim of the present study was to evaluate the free radical generation and status of the antioxidant enzymes in murine peritoneal macrophage during in vitro vancomycin-resistant S. aureus (VRSA) treatment with different time intervals. Peritoneal macrophages were treated with 5 × 10(6) colony-forming units (CFU)/mL VRSA cell suspension in vitro for different time intervals (1, 2, 3, 6, 12, and 24 h), and superoxide anion generation, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity, myeloperoxidase (MPO) activity, nitric oxide (NO) generation, antioxidant enzyme status, and components of glutathione cycle were analyzed. Superoxide anion generation, NADPH oxidase activity, MPO activity, and NO generation got peak at 3 h indicates maximum free radical generation through activation of NADPH oxidase in murine peritoneal macrophages during VRSA infection. Reduced glutathione level, glutathione peroxidase, glutathione reductase, and glutathione S-transferase activity were decreased significantly (P < 0.05) with increasing time of VRSA infection. But the oxidized glutathione level was time-dependently increased significantly (P < 0.05) in murine peritoneal macrophages. All the changes in peritoneal macrophages after 3 h in vitro VRSA treatment had no significant difference. From this study, it may be summarized that in vitro VRSA infection not only generates excess free radical but also affects the antioxidant status and glutathione cycle in murine peritoneal macrophages.

  17. Modulation of functional characteristics of resident and thioglycollate-elicited peritoneal murine macrophages by a recombinant banana lectin.

    PubMed

    Marinkovic, Emilija; Djokic, Radmila; Lukic, Ivana; Filipovic, Ana; Inic-Kanada, Aleksandra; Kosanovic, Dejana; Gavrovic-Jankulovic, Marija; Stojanovic, Marijana

    2017-01-01

    We demonstrated that a recombinant banana lectin (rBanLec), which structural characteristics and physiological impacts highly resemble those reported for its natural counterparts, binds murine peritoneal macrophages and specifically modulates their functional characteristics. By using rBanLec in concentrations ranging from 1 μg to 10 μg to stimulate resident (RMs) and thioglycollate-elicited (TGMs) peritoneal macrophages from BALB/c and C57BL/6 mice, we have shown that effects of rBanLec stimulation depend on its concentration but also on the functional status of macrophages and their genetic background. rBanLec, in a positive dose-dependent manner, promotes the proliferation of TGMs from both BALB/c and C57BL/6 mice, while its mitogenic influence on RMs is significantly lower (BALB/c mice) or not detectable (C57BL/6 mice). In all peritoneal macrophages, irrespective of their type and genetic background, rBanLec, in a positive dose dependent manner, enhances the secretion of IL-10. rBanLec stimulation of RMs from both BALB/c and C57BL/6 resulted in a positive dose-dependent promotion of proinflammatory phenotype (enhancement of NO production and IL-12 and TNFα secretion, reduction of arginase activity). Positive dose-dependent skewing toward proinflammatory phenotype was also observed in TGMs from C57BL/6 mice. However, the enhancement of rBanLec stimulation promotes skewing of TGMs from BALB/c mice towards anti-inflammatory profile (reduction of NO production and IL-12 secretion, enhancement of arginase activity and TGFβ and IL-4 secretion). Moreover, we established that rBanLec binds oligosaccharide structures of TLR2 and CD14 and that blocking of signaling via these receptors significantly impairs the production of TNFα and NO in BALB/c macrophages. Since the outcome of rBanLec stimulation depends on rBanLec concentration as well as on the functional characteristics of its target cells and their genetic background, further studies are needed to investigate

  18. Modulation of functional characteristics of resident and thioglycollate-elicited peritoneal murine macrophages by a recombinant banana lectin

    PubMed Central

    Marinkovic, Emilija; Djokic, Radmila; Lukic, Ivana; Filipovic, Ana; Inic-Kanada, Aleksandra; Kosanovic, Dejana; Gavrovic-Jankulovic, Marija; Stojanovic, Marijana

    2017-01-01

    We demonstrated that a recombinant banana lectin (rBanLec), which structural characteristics and physiological impacts highly resemble those reported for its natural counterparts, binds murine peritoneal macrophages and specifically modulates their functional characteristics. By using rBanLec in concentrations ranging from 1 μg to 10 μg to stimulate resident (RMs) and thioglycollate-elicited (TGMs) peritoneal macrophages from BALB/c and C57BL/6 mice, we have shown that effects of rBanLec stimulation depend on its concentration but also on the functional status of macrophages and their genetic background. rBanLec, in a positive dose-dependent manner, promotes the proliferation of TGMs from both BALB/c and C57BL/6 mice, while its mitogenic influence on RMs is significantly lower (BALB/c mice) or not detectable (C57BL/6 mice). In all peritoneal macrophages, irrespective of their type and genetic background, rBanLec, in a positive dose dependent manner, enhances the secretion of IL-10. rBanLec stimulation of RMs from both BALB/c and C57BL/6 resulted in a positive dose-dependent promotion of proinflammatory phenotype (enhancement of NO production and IL-12 and TNFα secretion, reduction of arginase activity). Positive dose-dependent skewing toward proinflammatory phenotype was also observed in TGMs from C57BL/6 mice. However, the enhancement of rBanLec stimulation promotes skewing of TGMs from BALB/c mice towards anti-inflammatory profile (reduction of NO production and IL-12 secretion, enhancement of arginase activity and TGFβ and IL-4 secretion). Moreover, we established that rBanLec binds oligosaccharide structures of TLR2 and CD14 and that blocking of signaling via these receptors significantly impairs the production of TNFα and NO in BALB/c macrophages. Since the outcome of rBanLec stimulation depends on rBanLec concentration as well as on the functional characteristics of its target cells and their genetic background, further studies are needed to investigate

  19. Comparative study of peritoneal macrophage functions in mice receiving lethal and non-lethal doses of LPS.

    PubMed

    Víctor, V M; De la Fuente, M

    2000-01-01

    In previous studies, we have observed changes in several functions of peritoneal macrophages from female BALB/c mice with lethal endotoxic shock caused by intraperitoneal injection of Escherichia coli O55:B5 lipopolysaccharide (LPS; 100 mg/kg), which were associated with a high production of superoxide anion and tumor necrosis factor alpha (TNF-alpha). In the present work, both a lethal dose (250 mg/kg) and a non-lethal dose (100 mg/kg) of LPS were used in female Swiss mice. In peritoneal macrophages, the following functions were studied at 2, 4, 12 and 24 h after LPS injection: adherence to substrate, chemotaxis, ingestion of particles, and superoxide anion and TNF-alpha production. In both groups, the results showed a stimulation of adherence, ingestion and superoxide production as well as a decrease of chemotaxis, whereas TNF-alpha could not be detected in either of the two groups. These effects were more evident with the 250 mg/kg dose, especially as regards superoxide anion production, which was higher in the animals treated with a lethal dose of LPS.

  20. Capsaicin exhibits anti-inflammatory property by inhibiting IkB-a degradation in LPS-stimulated peritoneal macrophages.

    PubMed

    Kim, Chu-Sook; Kawada, Teruo; Kim, Byung-Sam; Han, In-Seob; Choe, Suck-Young; Kurata, Tadao; Yu, Rina

    2003-03-01

    Capsaicin, a major ingredient of hot pepper, was considered to exhibit an anti-inflammatory property. In order to clarify the signalling mechanism underlying the anti-inflammatory action of capsaicin, we investigated the effect of capsaicin on the production of inflammatory molecules in lipopolysaccharide (LPS)-stimulated murine peritoneal macrophages. The level of PGE2 was measured by EIA. The expression levels of COX-2, iNOS, IkB-a, and vanilloid receptor-1 (VR-1) were determined at the protein and mRNA levels. Significant inhibition of the production of LPS-induced PGE2 by capsaicin was observed in a dose-dependent manner. Capsaicin did not affect the COX-2 expression at either the protein or mRNA level, but inhibited the enzyme activity of COX-2 and the expression of the iNOS protein. Capsaicin completely blocked LPS-induced disappearance of IkB-a and therefore inactivated NF-kB. The inhibitory action of capsaicin on PGE2 production was not abolished by capsazepine, a specific antagonist to VR-1. A high expression level of the VR-1 like protein (VRL-1) was observed in peritoneal macrophages, while the expression of VR-1 was not detected. These findings suggest that the anti-inflammatory action of capsaicin may occur through a novel mechanism, not by a VR-1 receptor-mediated one. Both capsaicin and capsazepine may be a promising drug candidates for ameliorating inflammatory diseases and cancer.

  1. Conditional-ready mouse embryonic stem cell derived macrophages enable the study of essential genes in macrophage function

    PubMed Central

    Yeung, A. T. Y.; Hale, C.; Xia, J.; Tate, P. H.; Goulding, D.; Keane, J. A.; Mukhopadhyay, S.; Forrester, L.; Billker, O.; Skarnes, W. C.; Hancock, R. E. W.; Dougan, G.

    2015-01-01

    The ability to differentiate genetically modified mouse embryonic stem (ES) cells into functional macrophages provides a potentially attractive resource to study host-pathogen interactions without the need for animal experimentation. This is particularly useful in instances where the gene of interest is essential and a knockout mouse is not available. Here we differentiated mouse ES cells into macrophages in vitro and showed, through a combination of flow cytometry, microscopic imaging, and RNA-Seq, that ES cell-derived macrophages responded to S. Typhimurium, in a comparable manner to mouse bone marrow derived macrophages. We constructed a homozygous mutant mouse ES cell line in the Traf2 gene that is known to play a role in tumour necrosis factor-α signalling but has not been studied for its role in infections or response to Toll-like receptor agonists. Interestingly, traf2-deficient macrophages produced reduced levels of inflammatory cytokines in response to lipopolysaccharide (LPS) or flagellin stimulation and exhibited increased susceptibility to S. Typhimurium infection. PMID:25752829

  2. Conditional-ready mouse embryonic stem cell derived macrophages enable the study of essential genes in macrophage function.

    PubMed

    Yeung, A T Y; Hale, C; Xia, J; Tate, P H; Goulding, D; Keane, J A; Mukhopadhyay, S; Forrester, L; Billker, O; Skarnes, W C; Hancock, R E W; Dougan, G

    2015-03-10

    The ability to differentiate genetically modified mouse embryonic stem (ES) cells into functional macrophages provides a potentially attractive resource to study host-pathogen interactions without the need for animal experimentation. This is particularly useful in instances where the gene of interest is essential and a knockout mouse is not available. Here we differentiated mouse ES cells into macrophages in vitro and showed, through a combination of flow cytometry, microscopic imaging, and RNA-Seq, that ES cell-derived macrophages responded to S. Typhimurium, in a comparable manner to mouse bone marrow derived macrophages. We constructed a homozygous mutant mouse ES cell line in the Traf2 gene that is known to play a role in tumour necrosis factor-α signalling but has not been studied for its role in infections or response to Toll-like receptor agonists. Interestingly, traf2-deficient macrophages produced reduced levels of inflammatory cytokines in response to lipopolysaccharide (LPS) or flagellin stimulation and exhibited increased susceptibility to S. Typhimurium infection.

  3. Asbestos-activated peritoneal macrophages release a factors(s) which inhibits lymphocyte mitogenesis

    SciTech Connect

    Donaldson, K.; Davis, J.M.G.; James, K.

    1984-10-01

    Intraperitoneal asbestos injection in mice has previously been reported to elicit an activated macrophage population. In the present study supernatants from such macrophages were tested for their effect on thymocyte mitogenesis in response to concanavalin A; control supernantants were obtained from saline- and latex-elicited macrophages. Supernatants from asbestos-elicited macrophages were significantly inhibitory to thymocyte mitogenesis while saline- and latex-elicited macrophages did not release significant amounts of such activity. Asbestos-activated macrophage supernatants were inhibitory in a dose-dependent way and the activity was not secreted by macrophages from mice which had received asbestos in the long term. The inhibitory activity was partially dialysable. Supernatants prepared by treating macrophages in vitro with a lethal dose of asbestos were not inhibitory suggesting that the inhibitory activity in the supernatants of asbestos-activated macrophages did not leak from dead or dying cells. The asbestos macrophage supernatant was also significantly inhibitory to mature T-cell-enriched spleen cells but had no effect on fibroblasts, suggesting that the inhibitory effect could be lymphoid cell specific.

  4. Hepatic cells' mitotic and peritoneal macrophage phagocytic activities during Trypanosoma musculi infection in zinc-deficient mice.

    PubMed Central

    Humphrey, P. A.; Ashraf, M.; Lee, C. M.

    1997-01-01

    The effects of zinc deficiency on hepatic cell mitotic and peritoneal macrophage phagocytic activities were examined in mice infected with Trypanosoma musculi or immunized with parasitic products. On a full-complement or pair-fed diet, infected and homogenate-inoculated mice showed mitotic activity gains of 7.9% to 80.3% and 6.5% to 99.0%, respectively. Infected and homogenate-inoculated mice on a zinc-deficient diet showed 21.8% to 95.7% and 17.2% to 65.2%, respectively, more dividing liver cells compared with controls. In comparison to controls, macrophages isolated from infected and homogenate-immunized mice on full-complement or pair-fed diets had phagocytized 13.4% to 31.4% more latex particles from day 50 to 80. In the zinc-deficient group, macrophages isolated from infected mice had significant numbers of phagocytized latex particles (1.8% to 38.5%) from day 20 to day 80 compared with controls. The homogenate-immunized mice also had increased numbers (18.6 to 30.8%) of phagocytized latex particles. PMID:9145631

  5. Morphological and biochemical changes during formocresol induced cell death in murine peritoneal macrophages: apoptotic and necrotic features.

    PubMed

    Cardoso, María Lorena; Todaro, Juan Santiago; Aguirre, María Victoria; Juaristi, Julián Antonio; Brandan, Nora Cristina

    2010-10-01

    The present study was conducted to investigate the role of Formocresol (FC)-induced apoptosis and necrotic cell death in murine peritoneal macrophages (pMø). Macrophages were cultured with 1:100 FC for 2 to 24 h. The viability (trypan blue assay), cell morphology (scanning electronic microscope), and apoptotic and necrotic indexes (light and fluorescent microscopy) were determined at different scheduled times. Simultaneously, the expressions of proteins related to stress, survival, and cell death were measured by western blotting. FC-exposed macrophages exhibited maximal apoptosis from 2 to 6 h, coincident with Bax overexpression (P < 0.001). Additionally, Bcl-x(L) showed maximal expression between 12 and 24 h suggesting its survival effect in pMø. The lowest pMø viability and the increment of the necrotic rate from 4 to 12 h were observed in accordance to Fas and Hsp60 overexpressions. In summary, all the experimental data suggest that two different pathways emerge in pMø exposed to FC, one leading Bax-dependent apoptosis (2-6 h) and the other one favoring necrosis (4-18 h), related to Fas-receptor and Hsp60 stress signal.

  6. Phagocytosis of Cholesteryl Ester Is Amplified in Diabetic Mouse Macrophages and Is Largely Mediated by CD36 and SR-A

    PubMed Central

    Guest, Christopher B.; Hartman, Matthew E.; O'Connor, Jason C.; Chakour, Kenneth S.; Sovari, Ali A.; Freund, Gregory G.

    2007-01-01

    Type 2 diabetes (T2D) is associated with accelerated atherosclerosis, which accounts for approximately 75% of all diabetes-related deaths. Here we investigate the link between diabetes and macrophage cholesteryl ester accumulation. When diabetic (db/db) mice are given cholesteryl ester intraperitoneally (IP), peritoneal macrophages (PerMΦs) recovered from these animals showed a 58% increase in intracellular cholesteryl ester accumulation over PerMΦs from heterozygote control (db/+) mice. Notably, PerMΦ fluid-phase endocytosis and large particle phagocytosis was equivalent in db/+and db/db mice. However, IP administration of CD36 and SR-A blocking antibodies led to 37% and 25% reductions in cholesteryl ester accumulation in PerMΦ. Finally, in order to determine if these scavenger receptors (SRs) were part of the mechanism responsible for the increased accumulation of cholesteryl esters observed in the diabetic mouse macrophages, receptor expression was quantified by flow cytometry. Importantly, db/db PerMΦs showed a 43% increase in CD36 expression and an 80% increase in SR-A expression. Taken together, these data indicate that direct cholesteryl ester accumulation in mouse macrophages is mediated by CD36 and SR-A, and the magnitude of accumulation is increased in db/db macrophages due to increased scavenger receptor expression. PMID:17551591

  7. Generation of a novel mouse model for the inducible depletion of macrophages in vivo.

    PubMed

    Gheryani, Nabeia; Coffelt, Seth B; Gartland, Alison; Rumney, Robin M H; Kiss-Toth, Endre; Lewis, Claire E; Tozer, Gillian M; Greaves, David R; Dear, T Neil; Miller, Gaynor

    2013-01-01

    Macrophages play an essential role in tissue homeostasis, innate immunity, inflammation, and wound repair. Macrophages are also essential during development, severely limiting the use of mouse models in which these cells have been constitutively deleted. Consequently, we have developed a transgenic model of inducible macrophage depletion in which macrophage-specific induction of the cytotoxic diphtheria toxin A chain (DTA) is achieved by administration of doxycycline. Induction of the DTA protein in transgenic animals resulted in a significant 50% reduction in CD68+ macrophages of the liver, spleen, and bone over a period of 6 weeks. Pertinently, the macrophages remaining after doxycycline treatment were substantially smaller and are functionally impaired as shown by reduced inflammatory cytokine production in response to lipopolysaccharide. This inducible model of macrophage depletion can now be utilized to determine the role of macrophages in both development and animal models of chronic inflammatory diseases.

  8. Different effects of the immunomodulatory drug GMDP immobilized onto aminopropyl modified and unmodified mesoporous silica nanoparticles upon peritoneal macrophages of women with endometriosis.

    PubMed

    Antsiferova, Yuliya; Sotnikova, Nataliya; Parfenyuk, Elena

    2013-01-01

    The aim of the present work was to compare in vitro the possibility of application of unmodified silica nanoparticles (UMNPs) and modified by aminopropyl groups silica nanoparticles (AMNPs) for topical delivery of immunomodulatory drug GMDP to the peritoneal macrophages of women with endometriosis. The absence of cytotoxic effect and high cellular uptake was demonstrated for both types of silica nanoparticles. The immobilization of GMDP on the UMNPs led to the suppression of the stimulatory effect of GMDP on the membrane expression of scavenger receptors SR-AI and SR-B, mRNAs expression of NOD2 and RAGE, and synthesis of proteolytic enzyme MMP-9 and its inhibitor TIMP-1. GMDP, immobilized onto AMNPs, enhanced the initially reduced membrane expression of SRs and increased NOD2, RAGE, and MMP-9 mRNAs expression by macrophages. Simultaneously high level of mRNAs expression of factors, preventing undesirable hyperactivation of peritoneal macrophages (SOCS1 and TIMP-1), was observed in macrophages incubated in the presence of GMDP, immobilized onto AMNPs. The effect of AMNPs immobilized GMDP in some cases exceeded the effect of free GMDP. Thus, among the studied types of silica nanoparticles, AMNPs are the most suitable nanoparticles for topical delivery of GMDP to the peritoneal macrophages.

  9. In vitro immune toxicity of polybrominated diphenyl ethers on murine peritoneal macrophages: apoptosis and immune cell dysfunction.

    PubMed

    Lv, Qi-Yan; Wan, Bin; Guo, Liang-Hong; Zhao, Lixia; Yang, Yu

    2015-02-01

    Polybrominated diphenyl ethers (PBDEs) are widely used as flame retardants and are often detected in the environment, wildlife, and humans, presenting potential threats to ecosystem and human health. PBDEs can cause neurotoxicity, hepatotoxicity, and endocrine disruption. However, data on PBDE immunotoxicity are limited, and the toxicity mechanisms remain largely unknown. Both immune cell death and dysfunction can modulate the responses of the immune system. This study examined the toxic effects of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) and decabromodiphenyl ether (BDE-209) on the immune system by using peritoneal macrophages as the model. The macrophages were exposed to PBDEs, and cell death was determined through flow cytometry and immunochemical blot. The results showed that after 24h of exposure, BDE-47 (>5 μM) and BDE-209 (>20 μM) induced cell apoptosis, increased intracellular reactive oxygen species (ROS) formation and depleted glutathione. BDE-47 was more potent than BDE-209; the cytotoxic concentrations for BDE-47 and BDE-209 were determined to be 5 μM and 20 μM, respectively, during 24h of exposure. However, pretreatment with n-acetyl-l-cysteine (ROS scavenger) partially reversed the cytotoxic effects. Further gene expression analyses on Caspase-3,-8,-9, TNFR1, and Bax revealed that both intrinsic and extrinsic apoptotic pathways were activated. More importantly, non-cytotoxic concentrations BDE-47 (<2 μM) and BDE-209 (<10 μM) could impair macrophage accessory cell function in a concentration-dependent manner, but no effects were observed on phagocytic responses. These revealed effects of PBDEs on macrophages may shed light on the toxicity mechanisms of PBDEs and suggest the necessity of evaluating cellular functionality during the risk assessment of PBDE immunotoxicity.

  10. Involvement of proton-sensing receptor TDAG8 in the anti-inflammatory actions of dexamethasone in peritoneal macrophages

    SciTech Connect

    He, Xiao-dong; Tobo, Masayuki; Mogi, Chihiro; Nakakura, Takashi; Komachi, Mayumi; Murata, Naoya; Takano, Mutsumi; Tomura, Hideaki; Sato, Koichi; Okajima, Fumikazu

    2011-12-02

    Highlights: Black-Right-Pointing-Pointer Glucocorticoid (GC) induced the expression of proton-sensing TDAG8 in macrophages. Black-Right-Pointing-Pointer GC enhanced acidic pH-induced cAMP accumulation and inhibition of TNF-{alpha} production. Black-Right-Pointing-Pointer The enhancement of the GC-induced actions was lost by TDAG8 deficiency. Black-Right-Pointing-Pointer GC-induced anti-inflammatory actions are partly mediated by TDAG8 expression. -- Abstract: Dexamethasone (DEX), a potent glucocorticoid, increased the expression of T-cell death associated gene 8 (TDAG8), a proton-sensing G protein-coupled receptor, which is associated with the enhancement of acidic pH-induced cAMP accumulation, in peritoneal macrophages. We explored the role of increased TDAG8 expression in the anti-inflammatory actions of DEX. The treatment of macrophages with either DEX or acidic pH induced the cell death of macrophages; however, the cell death was not affected by TDAG8 deficiency. While DEX inhibited lipopolysaccharide-induced production of tumor necrosis factor-{alpha}, an inflammatory cytokine, which was independent of TDAG8, at neutral pH, the glucocorticoid enhanced the acidic pH-induced inhibition of tumor necrosis factor-{alpha} production in a manner dependent on TDAG8. In conclusion, the DEX-induced increase in TDAG8 expression is in part involved in the glucocorticoid-induced anti-inflammatory actions through the inhibition of inflammatory cytokine production under the acidic pH environment. On the other hand, the role of TDAG8 in the DEX-induced cell death is questionable.

  11. Inflammatory mechanisms in sepsis: elevated invariant natural killer T-cell numbers in mouse and their modulatory effect on macrophage function.

    PubMed

    Heffernan, Daithi S; Monaghan, Sean F; Thakkar, Rajan K; Tran, Mai L; Chung, Chun-Shiang; Gregory, Stephen H; Cioffi, William G; Ayala, Alfred

    2013-08-01

    Invariant natural killer T cells (iNKT) cells are emerging as key mediators of innate immune cellular and inflammatory responses to sepsis and peritonitis. Invariant natural killer T cells mediate survival following murine septic shock. Macrophages are pivotal to survival following sepsis. Invariant natural killer T cells have been shown to modulate various mediators of the innate immune system, including macrophages. We demonstrate sepsis-inducing iNKT-cell exodus from the liver appearing in the peritoneal cavity, the source of the sepsis. This migration was affected by programmed death receptor 1. Programmed death receptor 1 is an inhibitory immune receptor, reported as ubiquitously expressed at low levels on iNKT cells. Programmed death receptor 1 has been associated with markers of human critical illness. Programmed death receptor 1-deficient iNKT cells failed to demonstrate similar migration. To the extent that iNKT cells affected peritoneal macrophage function, we assessed peritoneal macrophages' ability to phagocytose bacteria. Invariant natural killer T(-/-) mice displayed dysfunctional macrophage phagocytosis and altered peritoneal bacterial load. This dysfunction was reversed when peritoneal macrophages from iNKT(-/-) mice were cocultured with wild-type iNKT cells. Together, our results indicate that sepsis induces liver iNKT-cell exodus into the peritoneal cavity mediated by programmed death receptor 1, and these peritoneal iNKT cells appear critical to regulation of peritoneal macrophage phagocytic function. Invariant natural killer T cells offer therapeutic targets for modulating immune responses and detrimental effects of sepsis.

  12. Characterization of mouse peritoneal exudate and associated leukocyte adherence inhibitory activity after intraperitoneal injection of either Bordetella pertussis or Corynebacterium parvum vaccines.

    PubMed Central

    Klein, T W; Pross, S H; Benjamin, W R

    1978-01-01

    Bordetella pertussis and Corynebacterium parvum are commonly used immunopotentiating agents. To explore the inflammatory environment induced by these agents, the peritoneal exudate response in mice following intraperitoneal injection of B. pertussis (PV) and C. parvum (CV) vaccines was investigated. The PV-induced exudate isolated by lavage was characterized by an early neutrophil influx followed by enhanced accumulation of mononuclear cells and fluid protein. The CV exudate was principally mononuclear in nature and displayed fewer numbers of cells and less fluid protein. Both vaccines also enhanced the leukocyte adherence inhibitory activity (LAIA) of peritoneal fluid as measured in vitro. The development of exudate LAIA was T lymphocyte independent. A similar LAIA was demonstrated in nonimmune mouse plasma and serum. Exudate fluid and serum LAIA were heat stable and trypsin sensitive. These studies suggest that significant differences exist in the composition of the local tissue environment following PV and CV injection and that exudate LAIA is serum derived. Further studies in this direction should result in a better understanding of the ways in which inflammatory cells and fluid substances affect lymphocyte-macrophage interaction subsequent to adjuvant administration. PMID:215552

  13. Comparative analysis of the internalization of the macrophage receptor sialoadhesin in human and mouse primary macrophages and cell lines.

    PubMed

    De Schryver, Marjorie; Leemans, Annelies; Pintelon, Isabel; Cappoen, Davie; Maes, Louis; Caljon, Guy; Cos, Paul; Delputte, Peter L

    2016-11-21

    Sialoadhesin (Sn) is a surface receptor expressed on resident macrophages with the ability to bind with sialic acids. During inflammation, an upregulation of Sn is observed. Upon binding of monoclonal antibodies to Sn, the receptor becomes internalized and this has been observed in multiple species. The latter characteristic, combined with the strong upregulation of Sn on inflammatory macrophages and the fact that Sn-positive macrophages contribute to certain inflammatory diseases, makes Sn an interesting entry portal for phenotype-modulating or cytotoxic drugs. Such drugs or toxins can be linked to Sn-specific antibodies which should enable their targeted uptake by macrophages. However, the activity of such drugs depends not only on their internalization but also on the intracellular trafficking and final fate in the endolysosomal system. Although information is available for porcine Sn, the detailed mechanisms of human and mouse Sn internalization and subsequent intracellular trafficking are currently unknown. To allow development of Sn-targeted therapies, differences across species and cellular background need to be characterized in more detail. In the current report, we show that internalization of human and mouse Sn is dynamin-dependent and clathrin-mediated, both in primary macrophages and CHO cell lines expressing a recombinant Sn. In primary macrophages, internalized Sn-specific F(ab')2 fragments are located mostly in the early endosomes. With Fc containing Sn-specific antibodies, there is a slight shift towards lysosomal localization in mouse macrophages, possibly because of an interaction with Fc receptors. Surprisingly, in CHO cell lines expressing Sn, there is a predominant lysosomal localization. Our results show that the mechanism of Sn internalization and intracellular trafficking is concurrent in the tested species. The cellular background in which Sn is expressed and the type of antibody used can affect the intracellular fate, which in turn can

  14. Peptidylarginine deiminase in rat and mouse hemopoietic cells.

    PubMed

    Nagata, S; Senshu, T

    1990-01-15

    Peptidylarginine (protein-L-arginine) deiminase activities have been demonstrated in extracts of rat and mouse peritoneal macrophages, bone marrow cells, splenic adherent cells, neutrophils, and mouse monocyte/macrophage cell lines. The enzyme in these cells is indistinguishable from the skeletal muscle enzyme with respect to immunochemical properties.

  15. Role of resident macrophages, peripheral neutrophils, and translymphatic absorption in bacterial clearance from the peritoneal cavity

    SciTech Connect

    Dunn, D.L.; Barke, R.A.; Knight, N.B.; Humphrey, E.W.; Simmons, R.L.

    1985-08-01

    Microbial pathogens within the peritoneal cavity are thought to encounter three categories of host defense mechanisms: (i) removal mechanisms, which occur via diaphragmatic lymphatic absorption; (ii) killing mechanisms, in which host phagocytes act as effector cells; and (iii) sequestration mechanisms due to fibrin trapping and the formation of adhesions between visceral surfaces. The authors sought to define and quantitate the relative role of the first two components in an experimental rat model of Escherichia coli peritonitis in which fibrinous adhesions do not form. Intraperitoneal challenge with greater than or equal to 2 X 10(8) CFU of viable E. coli led to an initial decline in bacterial numbers followed by ongoing proliferation and greater than 50% mortality. With inocula of less than or equal to 5 X 10(7) CFU, elimination of bacteria occurred after moderate initial proliferation, and no mortality ensued. Nonviable, radiolabeled E. coli organisms were utilized to examine bacterial clearance via translymphatic absorption and phagocytosis. Both processes were extremely rapid, serving to eliminate free bacteria rapidly within the peritoneal cavity.

  16. Bacterial phagocytosis by macrophages from lipopolysaccharide responder and nonresponder mouse strains.

    PubMed Central

    Cuffini, A; Carlone, N A; Forni, G

    1980-01-01

    The phagocytic capacity of macrophages from C3H/H3J mice was assessed against lipopolysaccharide-producing (Escherichia coli) and -nonproducing (Staphylococcus aureus) bacteria. Despite their gene-coded unresponsiveness to lipopolysaccharide endotoxin and lymphokines and their defective tumoricidal activity, proteose peptone-induced C3H/HeJ macrophages did not display a defective phagocytic capacity, but rather displayed an enhanced phagocytosis of both bacterial strains compared with macrophages from closely related C3H/HeN mice. Unstimulated peritoneal resident C3H/HeJ macrophages, on the other hand, displayed a normal phagocytic activity toward E. coli and enhanced phagocytosis toward S. aureus. PMID:6995321

  17. Effect of the native polysaccharide of cashew-nut tree gum exudate on murine peritoneal macrophage modulatory activities.

    PubMed

    Yamassaki, F T; Lenzi, R M; Campestrini, L H; Bovo, F; Seyfried, M; Soldera-Silva, A; Stevan-Hancke, F R; Zawadzki-Baggio, S F; Pettolino, F A; Bacic, A; Maurer, J B B

    2015-07-10

    The native polysaccharide of cashew-nut tree gum exudate (CNTG) and its arabinogalactan-protein component (CNTG-AGP) were tested by using immuno-stimulant and anti-inflammatory in vitro assays of murine peritoneal macrophage activities. In the assay for immuno-stimulant activity (without previous treatment with lipopolysaccharide; LPS), CNTG increased the production of interleukin (IL)-10 and both CNTG and CNTG-AGP decreased the concentrations of IL6. When the macrophages were incubated in the presence of LPS and CNTG a decrease in the levels of nitric oxide (NO(·)) and IFN-γ was observed. The results could explain the popular use of CNTG as an anti-inflammatory. In addition, CNTG is the main component of the cashew-nut tree gum exudate, which has been considered a versatile polymer with potential pharmaceutical and food industry applications. These data may contribute to the study of the immunomodulation activity of plant polysaccharides, as well as encourage future experiments in the field of cashew-nut tree gum exudate applications.

  18. Epigenetic Alterations Induced by Ambient Particulate Matter in Mouse Macrophages

    PubMed Central

    Miousse, Isabelle R.; Chalbot, Marie-Cécile G.; Aykin-Burns, Nükhet; Wang, Xiaoying; Basnakian, Alexei; Kavouras, Ilias G.; Koturbash, Igor

    2014-01-01

    Respiratory mortality and morbidity has been associated with exposure to particulate matter (PM). Experimental evidence suggests involvement of cytotoxicity, oxidative stress, and inflammation in the development of PM-associated pathological states; however, the exact mechanisms remain unclear. In the current study, we analyzed short-term epigenetic response to PM10 (particles with aerodynamic diameter less than 10 μm) exposure in mouse ascitic RAW264.7 macrophages (BALB/C Abelson murine leukemia virus-induced tumor). Ambient PM10 was collected using a high volume sampler in Little Rock, AR. Analysis revealed that PM10 was composed mainly of Al and Fe, and the water soluble organic fraction was dominated by aliphatic and carbohydrate fragments and minor quantities of aromatic components. Exposure to PM10 compromised the cellular epigenome at concentrations 10–200 μg/ml. Specifically, epigenetic alterations were evident as changes in the methylation and expression of repetitive element-associated DNA and associated DNA methylation machinery. These results suggest that epigenetic alterations, in concert with cytotoxicity, oxidative stress, and inflammation, might contribute to the pathogenesis of PM-associated respiratory diseases. PMID:24535919

  19. In vivo effect of fly ash on surface receptors of mice peritoneal macrophages

    SciTech Connect

    Dogra, S.; Khanna, A.K.; Kaw, J.L.

    1987-01-01

    Functional activity of macrophages was studied in mice up to 15 days after intraperitoneal injection of 2.5 and 5.0 mg of fly ash using in vitro parameters. Fly ash did not cause any variation in the type of cellular response. The total cell number decreased significantly by 4 days after fly ash treatment but recovered subsequently. The decrease was dose dependent. Fly ash also caused a 50% depression in the FC receptor mediated phagocytosis of IgG coated sheep erythrocytes (SRBC) by macrophages at 2 days of dust treatment. However, the recovery began earlier with 2.5 mg fly ash than with 5.0 mg fly ash. These changes were not associated with any marked changes in esterase activity of macrophages following phagocytosis of fly ash.

  20. Mechanisms of glucocorticoid induced suppression of phagocytosis in murine peritoneal macrophage cultures

    SciTech Connect

    Becker, J.L.

    1986-01-01

    Glucocorticoids suppress phagocytosis of heat killed Saccharomyces cerevisiae in macrophage cultures. In order to determine the mechanisms by which this response occurs, this investigation was initiated to examine whether the suppression of phagocytosis is mediated by a steroid induced phagocytosis inhibitory protein (PIP). Furthermore, it is postulated that these suppressive effects may be associated with alterations in macrophage phospholipid metabolism. To assess the association between phospholipid metabolism and phagocytosis, control and 1 ..mu..M dexamethasone treated macrophages were exposed to the phospholipase inhibitor bromophenacylbromide. The enzyme inhibitor suppressed phagocytosis in a time and dose dependent manner. However, supplying dexamethasone treated cultures with arachidonate did not reverse the steroid induced suppression of phagocytosis, whether the arachidonate was supplied alone or together with indomethacin and nordihydroguaiaretic acid. Control cells, prelabeled with /sup 3/H-arachidonate, exhibited an increased percentage of the radiolabeled fatty acid in neutral lipids following phagocytosis, with a corresponding decrease in the percentage associated with phosphatidylcholine.

  1. The viable Mycobacterium tuberculosis H37Ra strain induces a stronger mouse macrophage response compared to the heat-inactivated H37Rv strain.

    PubMed

    He, Zong-Lin; Du, Fa-Wang; Du, Xian-Zhi

    2013-05-01

    Macrophages are the target cells for Mycobacterium tuberculosis (M. tuberculosis) as well as key effector cells for clearance of this pathogen. The aim of the present study was to measure and compare the responses of mouse peritoneal macrophages following exposure to the live M. tuberculosis H37Ra and heat-inactivated H37Rv strains. In vitro phagocytosis assays indicated that the macrophages had a higher capacity to engulf the live H37Ra strain compared to the inactivated H37Rv strain. Enzyme-linked immunosorbent assay (ELISA) demonstrated that H37Ra‑stimulated macrophages produced significantly increased concentrations of interleukin‑12p40 (IL‑12p40), tumor necrosis factor-α (TNF‑α) and interferon‑γ (IFN‑γ) compared to the untreated control cells. However, H37Rv exposure induced little to no increase in the levels of the cytokines examined. The results from ELISA were confirmed by reverse transcription-polymerase chain reaction (RT‑PCR) at the mRNA level. There was a dose-dependent increase in nitric oxide (NO) and hydrogen peroxide (H2O2) production from the H37Ra‑stimulated macrophages compared to the H37Rv‑stimulated ones. Confocal microscopy and flow cytometric analysis indicated that the IFN‑γ‑stimulated macrophages from viable H37Ra‑immunized mice had an enhanced surface expression of CD40 ligand (CD40L) compared to those from inactivated H37Rv‑immunized mice. Our data collectively indicate that exposure to the viable H37Ra strain induces a stronger macrophage response compared to exposure to the heat-inactivated H37Rv strain, which may be associated with the increased surface expression of CD40L in activated macrophages.

  2. Stimulation of peritoneal cell arginase by bacterial lipopolysaccharides.

    PubMed

    Ryan, J L; Yohe, W B; Morrison, D C

    1980-05-01

    The conditions under which bacterial endotoxins stimulate arginase production in mouse peritoneal macrophages have been defined. Both lipid-A and lipid-A-associated protein are potent activators. Fetal calf serum and normal mouse serum enhance macrophage arginase levels in the presence and absence of lipopolysaccharide (LPS). LPS in the amount of 10(-1) microgram/ml represents a maximal stimulus for macrophage arginase production and release. Thioglycollate-elicited peritoneal cells have increased arginase activity, compared with resident cells. This activity can be stimulated further by the addition of LPS. Arginase levels may alter the outcome of in vitro immunologic processes by depleting arginine and may also serve as a useful indicator of the state of activation of macrophages.

  3. Influence of cadmium on isolated peritoneal macrophage populations: cadmium inhibits Fc receptor internalization

    SciTech Connect

    Cook, G.B.

    1985-01-01

    In vitro experiments were performed to examine the effect of cadmium on adherent phagocytic cell populations. The authors were able to demonstrate, in vitro, a phagocytic defect that was originally observed in an in vivo system. Using in vitro methodologies, cadmium was found to inhibit opsonin-dependent but not opsonin-independent phagocytosis in two different populations of macrophages. The receptors through which the opsonized /sup 51/Cr-ElgG were internalized were characterized as Fc receptors. They were able to demonstrate that cadmium could reversibly inhibit internalization of Fc receptors. This mechanism, rather than an alteration of the receptors' binding capabilities, was responsible for the observed inhibition of Fc mediated (opsonin-dependent) phagocytosis in both populations of macrophages tested. The defect was not specific for cadmium per se. Zinc treatment caused a similar inhibition of Fc receptor mediated phagocytosis.

  4. The Dipeptidyl Peptidases 4, 8, and 9 in Mouse Monocytes and Macrophages: DPP8/9 Inhibition Attenuates M1 Macrophage Activation in Mice.

    PubMed

    Waumans, Yannick; Vliegen, Gwendolyn; Maes, Lynn; Rombouts, Miche; Declerck, Ken; Van Der Veken, Pieter; Vanden Berghe, Wim; De Meyer, Guido R Y; Schrijvers, Dorien; De Meester, Ingrid

    2016-02-01

    Atherosclerosis remains the leading cause of death in Western countries. Dipeptidyl peptidase (DPP) 4 has emerged as a novel target for the prevention and treatment of atherosclerosis. Family members DPP8 and 9 are abundantly present in macrophage-rich regions of atherosclerotic plaques, and DPP9 inhibition attenuates activation of human M1 macrophages in vitro. Studying this family in a mouse model for atherosclerosis would greatly advance our knowledge regarding their potential as therapeutic targets. We found that DPP4 is downregulated during mouse monocyte-to-macrophage differentiation. DPP8 and 9 expression seems relatively low in mouse monocytes and macrophages. Viability of primary mouse macrophages is unaffected by DPP4 or DPP8/9 inhibition. Importantly, DPP8/9 inhibition attenuates macrophage activation as IL-6 secretion is significantly decreased. Mouse macrophages respond similarly to DPP inhibition, compared to human macrophages. This shows that the mouse could become a valid model species for the study of DPPs as therapeutic targets in atherosclerosis.

  5. How Mouse Macrophages Sense What Is Going On.

    PubMed

    Ley, Klaus; Pramod, Akula Bala; Croft, Michael; Ravichandran, Kodi S; Ting, Jenny P

    2016-01-01

    Macrophages are central to both innate and adaptive immunity. With few exceptions, macrophages are the first cells that sense trouble and respond to disturbances in almost all tissues and organs. They sense their environment, inhibit or kill pathogens, take up apoptotic and necrotic cells, heal tissue damage, and present antigens to T cells. Although the origins (yolk sac versus monocyte-derived) and phenotypes (functions, gene expression profiles, surface markers) of macrophages vary between tissues, they have many receptors in common that are specific to one or a few molecular species. Here, we review the expression and function of almost 200 key macrophage receptors that help the macrophages sense what is going on, including pathogen-derived molecules, the state of the surrounding tissue cells, apoptotic and necrotic cell death, antibodies and immune complexes, altered self molecules, extracellular matrix components, and cytokines, including chemokines.

  6. How Mouse Macrophages Sense What Is Going On

    PubMed Central

    Ley, Klaus; Pramod, Akula Bala; Croft, Michael; Ravichandran, Kodi S.; Ting, Jenny P.

    2016-01-01

    Macrophages are central to both innate and adaptive immunity. With few exceptions, macrophages are the first cells that sense trouble and respond to disturbances in almost all tissues and organs. They sense their environment, inhibit or kill pathogens, take up apoptotic and necrotic cells, heal tissue damage, and present antigens to T cells. Although the origins (yolk sac versus monocyte-derived) and phenotypes (functions, gene expression profiles, surface markers) of macrophages vary between tissues, they have many receptors in common that are specific to one or a few molecular species. Here, we review the expression and function of almost 200 key macrophage receptors that help the macrophages sense what is going on, including pathogen-derived molecules, the state of the surrounding tissue cells, apoptotic and necrotic cell death, antibodies and immune complexes, altered self molecules, extracellular matrix components, and cytokines, including chemokines. PMID:27313577

  7. Diagnostic utility of a direct immunofluorescence test to detect feline coronavirus antigen in macrophages in effusive feline infectious peritonitis.

    PubMed

    Litster, A L; Pogranichniy, R; Lin, T-L

    2013-11-01

    The antemortem diagnosis of feline infectious peritonitis (FIP) remains challenging in clinical practice, since current testing methods have suboptimal diagnostic accuracy. Immunohistochemical testing of biopsy specimens and postmortem examination are the standard diagnostic methods, although direct immunofluorescence (DIF) testing to detect feline coronavirus in macrophages in effusion specimens has been reported to have 100% specificity and has been recommended as an antemortem confirmatory test. The aim of this study was to compare the results of DIF testing in antemortem feline effusions with postmortem results using field samples. Effusion specimens were collected antemortem from 17 cats and tested by DIF, followed by postmortem examination. Histopathological examination of specimens collected at postmortem confirmed FIP in 10/17 cases and ruled out FIP out in 7/17 cases. Antemortem DIF testing was positive in all 10 cases confirmed as FIP at postmortem examination. In the seven cats where FIP was ruled out at postmortem examination, DIF was negative in five cases and positive in the remaining two cases. The calculated sensitivity of DIF testing was 100% and the specificity was 71.4%. Duplicate effusion specimens from eight cats that were initially DIF positive were stored refrigerated (4 °C) or at room temperature (22-25 °C) and subjected to serial DIF testing to determine the duration of positive results. DIF-positive specimens stored at both temperatures retained their positive status for at least 2 days.

  8. Sodium-cromoglycate (Cromolyn) selectively increases the binding and phagocytosis of unsensitized target cells by rat peritoneal macrophages.

    PubMed

    Miklós, K; Tolnay, M; Medgyesi, G A

    1996-09-01

    The influence of sodium-cromoglycate (cromolyn) on the binding and ingestion of sheep erythrocytes (SRBC) by elicited rat peritoneal macrophages (M phi) was studied using unsensitized SRBC. SRBC sensitized by homologous IgG or by IgM and complement as target cells. Preincubation of M phi with the drug (1 nM/1-2 mM/1) markedly enhanced both binding and ingestion of uncoated SRBC. The IgG-related increment in binding and phagocytosis was not significantly influenced by the drug. When target cells were coated by IgM and complement cromolyn pretreatment was ineffective. Preincubation of M phi by bovine brain gangliosides (BBG) diminished the cromolyn-induced enhancement of target cell binding and phagocytosis. When SRBC were pretreated by BBG, an increase of binding and phagocytosis was observed. These data suggest that cromoglycate may enhance the capacity of M phi to bind erythrocytes via ganglioside structures. Coating SRBC by complement components appears to interfere with binding of erythrocytes to M phi ganglioside receptors.

  9. Evaluation of the Leishmanicidal Activity of Rutaceae and Lauraceae Ethanol Extracts on Golden Syrian Hamster (Mesocricetus auratus) Peritoneal Macrophages.

    PubMed

    Chávez Enciso, N A; Coy-Barrera, E D; Patiño, O J; Cuca, L E; Delgado, Gabriela

    2014-05-01

    Traditional medicine has provided a number of therapeutic solutions for the control of infectious agents, cancers, and other diseases. After screening a wide variety of Colombian plant extracts, we have identified promising antileishmanial activity in ethanol extracts from Ocotea macrophylla (Lauraceae) and Zanthoxyllum monophyllum (Rutaceae). In this study, we evaluated the in vitro activity of two ethanol extracts, one from Ocotea macrophylla and the other from Zanthoxyllum monophyllum and one alkaloid fraction of ethanol extract of Zanthoxyllum monophyllum, on peritoneal macrophages isolated from golden Syrian hamsters (Mesocricetus auratus) infected with Leishmania panamensis and Leishmania major promastigotes. All of the extracts studied displayed promising (≥2) selectivity indices (S/I), the most significant of which were for ethanol extract of Zanthoxyllum monophyllum against Leishmania panamensis (S/I=12) and alkaloid fraction of ethanol extract of Zanthoxyllum monophyllum against Leishmania major (S/I=11). These results support the use of ethanol extracts and alkaloid fractions isolated from Ocotea macrophylla and Zanthoxyllum monophyllum, respectively; as therapeutic options for cutaneous leishmaniasis.

  10. Evaluation of the Leishmanicidal Activity of Rutaceae and Lauraceae Ethanol Extracts on Golden Syrian Hamster (Mesocricetus auratus) Peritoneal Macrophages

    PubMed Central

    Chávez Enciso, N. A.; Coy-barrera, E. D.; Patiño, O. J.; Cuca, L. E.; Delgado, Gabriela

    2014-01-01

    Traditional medicine has provided a number of therapeutic solutions for the control of infectious agents, cancers, and other diseases. After screening a wide variety of Colombian plant extracts, we have identified promising antileishmanial activity in ethanol extracts from Ocotea macrophylla (Lauraceae) and Zanthoxyllum monophyllum (Rutaceae). In this study, we evaluated the in vitro activity of two ethanol extracts, one from Ocotea macrophylla and the other from Zanthoxyllum monophyllum and one alkaloid fraction of ethanol extract of Zanthoxyllum monophyllum, on peritoneal macrophages isolated from golden Syrian hamsters (Mesocricetus auratus) infected with Leishmania panamensis and Leishmania major promastigotes. All of the extracts studied displayed promising (≥2) selectivity indices (S/I), the most significant of which were for ethanol extract of Zanthoxyllum monophyllum against Leishmania panamensis (S/I=12) and alkaloid fraction of ethanol extract of Zanthoxyllum monophyllum against Leishmania major (S/I=11). These results support the use of ethanol extracts and alkaloid fractions isolated from Ocotea macrophylla and Zanthoxyllum monophyllum, respectively; as therapeutic options for cutaneous leishmaniasis. PMID:25035529

  11. Aldose reductase (AKR1B) deficiency promotes phagocytosis in bone marrow derived mouse macrophages.

    PubMed

    Singh, Mahavir; Kapoor, Aniruddh; McCracken, James; Hill, Bradford; Bhatnagar, Aruni

    2017-03-01

    Macrophages are critical drivers of the immune response during infection and inflammation. The pathogenesis of several inflammatory conditions, such as diabetes, cancer and sepsis has been linked with aldose reductase (AR), a member of the aldo-keto reductase (AKR) superfamily. However, the role of AR in the early stages of innate immunity such as phagocytosis remains unclear. In this study, we examined the role of AR in regulating the growth and the phagocytic activity of bone marrow-derived mouse macrophages (BMMs) from AR-null and wild-type (WT) mice. We found that macrophages derived from AR-null mice were larger in size and had a slower growth rate than those derived from WT mice. The AR-null macrophages also displayed higher basal, and lipopolysaccharide (LPS) stimulated phagocytic activity than WT macrophages. Moreover, absence of AR led to a marked increase in cellular levels of both ATP and NADPH. These data suggest that metabolic pathways involving AR suppress macrophage energy production, and that inhibition of AR could induce a favorable metabolic state that promotes macrophage phagocytosis. Hence, modulation of macrophage metabolism by inhibition of AR might represent a novel strategy to modulate host defense responses and to modify metabolism to promote macrophage hypertrophy and phagocytosis under inflammatory conditions.

  12. Protective effects of Mangifera indica L. extract, mangiferin and selected antioxidants against TPA-induced biomolecules oxidation and peritoneal macrophage activation in mice.

    PubMed

    Sánchez, G M; Re, L; Giuliani, A; Núñez-Sellés, A J; Davison, G P; León-Fernández, O S

    2000-12-01

    We compared the protective abilities of Mangifera indica L. stem bark extract (Vimang) 50-250 mgkg(-1), mangiferin 50 mgkg(-1), vitamin C 100 mgkg(-1), vitamin E 100 mgkg(-1)and beta -carotene 50 mgkg(-1)against the 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced oxidative damage in serum, liver, brain as well as in the hyper-production of reactive oxygen species (ROS) by peritoneal macrophages. The treatment of mice with Vimang, vitamin E and mangiferin reduced the TPA-induced production of ROS by the peritoneal macrophages by 70, 17 and 44%, respectively. Similarly, the H(2)O(2)levels were reduced by 55-73, 37 and 40%, respectively, when compared to the control group. The TPA-induced sulfhydryl group loss in liver homogenates was attenuated by all the tested antioxidants. Vimang, mangiferin, vitamin C plus E and beta -carotene decreased TPA-induced DNA fragmentation by 46-52, 35, 42 and 17%, respectively, in hepatic tissues, and by 29-34, 22, 41 and 17%, in brain tissues. Similar results were observed in respect to lipid peroxidation in serum, in hepatic mitochondria and microsomes, and in brain homogenate supernatants. Vimang exhibited a dose-dependent inhibition of TPA-induced biomolecule oxidation and of H(2)O(2)production by peritoneal macrophages. Even if Vimang, as well as other antioxidants, provided significant protection against TPA-induced oxidative damage, the former lead to better protection when compared with the other antioxidants at the used doses. Furthermore, the results indicated that Vimang is bioavailable for some vital target organs, including liver and brain tissues, peritoneal exudate cells and serum. Therefore, we conclude that Vimang could be useful to prevent the production of ROS and the oxidative tissue damages in vivo.

  13. The peritoneal macrophage inflammatory profile in cirrhosis depends on the alcoholic or hepatitis C viral etiology and is related to ERK phosphorylation

    PubMed Central

    2012-01-01

    Background The development of ascites in cirrhotic patients generally heralds a deterioration in their clinical status. A differential gene expression profile between alcohol- and hepatitis C virus (HCV)-related cirrhosis has been described from liver biopsies, especially those associated with innate immune responses. The aim of this work was to identify functional differences in the inflammatory profile of monocyte-derived macrophages from ascites in cirrhotic patients of different etiologies in an attempt to extrapolate studies from liver biopsies to immune cells in ascites. To this end 45 patients with cirrhosis and non-infected ascites, distributed according to disease etiology, HCV (n = 15) or alcohol (n = 30) were studied. Cytokines and the cell content in ascites were assessed by ELISA and flow cytometry, respectively. Cytokines and ERK phosphorylation in peritoneal monocyte-derived macrophages isolated and stimulated in vitro were also determined. Results A different pattern of leukocyte migration to the peritoneal cavity and differences in the primed status of macrophages in cirrhosis were observed depending on the viral or alcoholic etiology. Whereas no differences in peripheral blood cell subpopulations could be observed, T lymphocyte, monocyte and polymorphonuclear cell populations in ascites were more abundant in the HCV than the alcohol etiology. HCV-related cirrhosis etiology was associated with a decreased inflammatory profile in ascites compared with the alcoholic etiology. Higher levels of IL-10 and lower levels of IL-6 and IL-12 were observed in ascitic fluid from the HCV group. Isolated peritoneal monocyte-derived macrophages maintained their primed status in vitro throughout the 24 h culture period. The level of ERK1/2 phosphorylation was higher in ALC peritoneal macrophages at baseline than in HCV patients, although the addition of LPS induced a greater increase in ERK1/2 phosphorylation in HCV than in ALC patients. Conclusions The

  14. Lipopolysaccharide Attenuates the Cytotoxicity of Resveratrol in Transformed Mouse Macrophages.

    PubMed

    Achy-Brou, Christelle A Adiabouah; Billack, Blase

    2016-09-01

    Resveratrol and pterostilbene are natural products that are present in plants and have been incorporated into various dietary supplements. Numerous beneficial pharmacologic effects have been reported for these stilbenes; however, the mechanism by which these compounds exert a cytotoxic effect in RAW 264.7 macrophages has not been well characterized. We have previously described that resveratrol is toxic to these tumor-derived macrophages and that stimulation with lipopolysaccharide (LPS) reduces resveratrol toxicity via a mechanism that involves activation of toll like receptor 4. In the present work, we examined the cellular and molecular effects of resveratrol and the related compound pterostilbene by determining cell viability and caspase 3 activity in control and LPS-stimulated RAW 264.7 macrophages incubated with these stilbenes for 24 h. We found that LPS stimulation reduced the cytotoxicity of resveratrol but not of pterostilbene in these cells. When examined for effects on caspase 3 activation after a 24 h incubation, resveratrol and pterostilbene were each found to separately and significantly increase caspase 3 activity in these cells. LPS stimulation prevented caspase 3 activation by pterostilbene and reduced caspase 3 activation by resveratrol in RAW 264.7 macrophages. The data presented here indicate that LPS induces a phenotype switch in tumor-derived RAW 264.7 macrophages in which cells experiencing LPS in the presence of resveratrol or pterostilbene become less likely to activate the pro-apoptotic factor caspase 3.

  15. Piroxicam, indomethacin and aspirin action on a murine fibrosarcoma. Effects on tumour-associated and peritoneal macrophages.

    PubMed Central

    Valdéz, J C; Perdigón, G

    1991-01-01

    Growth of a methylcholanthrene-induced fibrosarcoma in BALB/c mice was accompanied by an increase in the activation state of tumour-associated macrophages (TAM), as measured by their FcIgG receptor expression, phagocytic index and beta-glucuronidase levels. All of these parameters were markedly higher in TAM than in peritoneal macrophages (PM) derived from the same animal. On the other hand, PM from tumour-bearing mice showed lower activation parameters than PM from normal animals. We also studied the effect on tumour development of three inhibitors of prostaglandin synthesis: indomethacin, piroxicam and aspirin. Intraperitoneal administration of these drugs during 8 d was followed by the regression of palpable tumours. Indomethacin (90 mg/d) induced 45% regression, while with piroxicam (two 400 mg/d doses and six 200 mg/d doses) and aspirin (1 mg/d) 32% and 30% regressions, respectively, were observed. The growth rate of nonregressing tumours, which had reached different volumes by the end of the treatment, was delayed to a similar extent by the three anti-inflammatory non-steroidal drugs (NSAID). With respect to TAM, the treatment did not induce any significant change in their activation state, though both piroxicam and indomethacin increased slightly the TAM number. In contrast, NSAID administration was followed by a remarkable increase in the activation parameters of PM when compared with PM from tumour-bearing mice receiving no treatment. Indeed, these parameters were in some cases higher than those of PM from normal mice. The leukocytosis (60,000/microliters) with neutrophilia (80%) induced by tumour growth on peripheral blood leukocytes (PBL) was reversed by the treatment to values close to normal, in parallel with the reduction of tumour size. A drop in haematocrit was also noted which was most probably a consequence of tumour growth rather than of the treatment. This study reveals that the three NSAID tested have a remarkable antitumour activity, which

  16. Macrophage-mediated inflammatory response decreases mycobacterial survival in mouse MSCs by augmenting NO production

    PubMed Central

    Yang, Kun; Wu, Yongjian; Xie, Heping; Li, Miao; Ming, Siqi; Li, Liyan; Li, Meiyu; Wu, Minhao; Gong, Sitang; Huang, Xi

    2016-01-01

    Mycobacterium tuberculosis (MTB) is a hard-to-eradicate intracellular microbe, which escapes host immune attack during latent infection. Recent studies reveal that mesenchymal stem cells (MSCs) provide a protective niche for MTB to maintain latency. However, the regulation of mycobacterial residency in MSCs in the infectious microenvironment remains largely unknown. Here, we found that macrophage-mediated inflammatory response during MTB infection facilitated the clearance of bacilli residing in mouse MSCs. Higher inducible nitric oxide synthase (iNOS) expression and nitric oxide (NO) production were observed in mouse MSCs under macrophage-mediated inflammatory circumstance. Blocking NO production in MSCs increased the survival of intracellular mycobacteria, indicating NO-mediated antimycobacterial activity. Moreover, both nuclear factor κB (NF-κB) and Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathways were involved in iNOS expression and NO production in inflammatory microenvironment. Furthermore, pro-inflammatory cytokine interleukin-1β could trigger NO production in MSCs and exert anti-mycobacterial activity via NF-κB signaling pathway. Neutralization of interleukin-1β in macrophage-mediated inflammatory microenvironment dampened the ability of mouse MSCs to produce NO. Together, our findings demonstrated that macrophage-mediated inflammatory response during mycobacterial infection promotes the clearance of bacilli in mouse MSCs by increasing NO production, which may provide a better understanding of latent MTB infection. PMID:27251437

  17. Vascular endothelial growth factor (VEGF), produced by feline infectious peritonitis (FIP) virus-infected monocytes and macrophages, induces vascular permeability and effusion in cats with FIP.

    PubMed

    Takano, Tomomi; Ohyama, Taku; Kokumoto, Aiko; Satoh, Ryoichi; Hohdatsu, Tsutomu

    2011-06-01

    Feline infectious peritonitis virus (FIPV) causes a fatal disease called FIP in Felidae. The effusion in body cavity is commonly associated with FIP. However, the exact mechanism of accumulation of effusion remains unclear. We investigated vascular endothelial growth factor (VEGF) to examine the relationship between VEGF levels and the amounts of effusion in cats with FIP. Furthermore, we examined VEGF production in FIPV-infected monocytes/macrophages, and we used feline vascular endothelial cells to examine vascular permeability induced by the culture supernatant of FIPV-infected macrophages. In cats with FIP, the production of effusion was related with increasing plasma VEGF levels. In FIPV-infected monocytes/macrophages, the production of VEGF was associated with proliferation of virus. Furthermore, the culture supernatant of FIPV-infected macrophages induced hyperpermeability of feline vascular endothelial cells. It was suggested that vascular permeability factors, including VEGF, produced by FIPV-infected monocytes/macrophages might increase the vascular permeability and the amounts of effusion in cats with FIP.

  18. Cloning and Characterization of Inducible Nitric Oxide Synthase from Mouse Macrophages

    NASA Astrophysics Data System (ADS)

    Xie, Qiao-Wen; Cho, Hearn J.; Calaycay, Jimmy; Mumford, Richard A.; Swiderek, Kristine M.; Lee, Terry D.; Ding, Aihao; Troso, Tiffany; Nathan, Carl

    1992-04-01

    Nitric oxide (NO) conveys a variety of messages between cells, including signals for vasorelaxation, neurotransmission, and cytotoxicity. In some endothelial cells and neurons, a constitutive NO synthase is activated transiently by agonists that elevate intracellular calcium concentrations and promote the binding of calmodulin. In contrast, in macrophages, NO synthase activity appears slowly after exposure of the cells to cytokines and bacterial products, is sustained, and functions independently of calcium and calmodulin. A monospecific antibody was used to clone complementary DNA that encoded two isoforms of NO synthase from immunologically activated mouse macrophages. Liquid chromatography-mass spectrometry was used to confirm most of the amino acid sequence. Macrophage NO synthase differs extensively from cerebellar NO synthase. The macrophage enzyme is immunologically induced at the transcriptional level and closely resembles the enzyme in cytokine-treated tumor cells and inflammatory neutrophils.

  19. Macrophage recruitment and epithelial repair following hair cell injury in the mouse utricle.

    PubMed

    Kaur, Tejbeer; Hirose, Keiko; Rubel, Edwin W; Warchol, Mark E

    2015-01-01

    The sensory organs of the inner ear possess resident populations of macrophages, but the function of those cells is poorly understood. In many tissues, macrophages participate in the removal of cellular debris after injury and can also promote tissue repair. The present study examined injury-evoked macrophage activity in the mouse utricle. Experiments used transgenic mice in which the gene for the human diphtheria toxin receptor (huDTR) was inserted under regulation of the Pou4f3 promoter. Hair cells in such mice can be selectively lesioned by systemic treatment with diphtheria toxin (DT). In order to visualize macrophages, Pou4f3-huDTR mice were crossed with a second transgenic line, in which one or both copies of the gene for the fractalkine receptor CX3CR1 were replaced with a gene for GFP. Such mice expressed GFP in all macrophages, and mice that were CX3CR1(GFP/GFP) lacked the necessary receptor for fractalkine signaling. Treatment with DT resulted in the death of ∼70% of utricular hair cells within 7 days, which was accompanied by increased numbers of macrophages within the utricular sensory epithelium. Many of these macrophages appeared to be actively engulfing hair cell debris, indicating that macrophages participate in the process of 'corpse removal' in the mammalian vestibular organs. However, we observed no apparent differences in injury-evoked macrophage numbers in the utricles of CX3CR1(+/GFP) mice vs. CX3CR1(GFP/GFP) mice, suggesting that fractalkine signaling is not necessary for macrophage recruitment in these sensory organs. Finally, we found that repair of sensory epithelia at short times after DT-induced hair cell lesions was mediated by relatively thin cables of F-actin. After 56 days recovery, however, all cell-cell junctions were characterized by very thick actin cables.

  20. Macrophage Depletion Attenuates Extracellular Matrix Deposition and Ductular Reaction in a Mouse Model of Chronic Cholangiopathies

    PubMed Central

    Syn, Wing-Kin; Lagaisse, Kimberly; van Hul, Noemi; Heindryckx, Femke; Sowa, Jan-Peter; Peeters, Liesbeth; Van Vlierberghe, Hans; Leclercq, Isabelle A.; Canbay, Ali

    2016-01-01

    Chronic cholangiopathies, such as primary and secondary sclerosing cholangitis, are progressive disease entities, associated with periportal accumulation of inflammatory cells, encompassing monocytes and macrophages, peribiliary extracellular matrix (ECM) deposition and ductular reaction (DR). This study aimed to elucidate the relevance of macrophages in the progression of chronic cholangiopathies through macrophage depletion in a 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) mouse model. One group of mice received a single i.p. injection of Clodronate encapsulated liposomes (CLOLipo) at day 7 of a 14 day DDC treatment, while control animals were co-treated with PBSLipo instead. Mice were sacrificed after 7 or respectively 14 days of treatment for immunohistochemical assessment of macrophage recruitment (F4/80), ECM deposition (Sirius Red, Laminin) and DR (CK19). Macrophage depletion during a 14 day DDC treatment resulted in a significant inhibition of ECM deposition. Porto-lobular migration patterns of laminin-rich ECM and ductular structures were significantly attenuated and a progression of DR was effectively inhibited by macrophage depletion. CLOLipo co-treatment resulted in a confined DR to portal regions without amorphous cell clusters. This study suggests that therapeutic options selectively directed towards macrophages might represent a feasible treatment for chronic cholestatic liver diseases. PMID:27618307

  1. Bone marrow-derived and peritoneal macrophages have different inflammatory response to oxLDL and M1/M2 marker expression – implications for atherosclerosis research

    PubMed Central

    Bisgaard, Line S.; Mogensen, Christina K.; Rosendahl, Alexander; Cucak, Helena; Nielsen, Lars Bo; Rasmussen, Salka E.; Pedersen, Tanja X.

    2016-01-01

    Macrophages are heterogeneous and can polarize into specific subsets, e.g. pro-inflammatory M1-like and re-modelling M2-like macrophages. To determine if peritoneal macrophages (PEMs) or bone marrow derived macrophages (BMDMs) resembled aortic macrophages from ApoE−/− mice, their M1/M2 phenotype, inflammatory status, and lipid metabolism signatures were compared. oxLDL accumulation was similar in PEMs and BMDMs. On protein expression level, BMDMs showed an M2-like CD206highCD11clow profile, while cholesterol loading led to enhanced CD11c expression and reduced MCP-1 secretion. In contrast, PEMs expressed low levels of CD206 and CD11c, and responded to cholesterol loading by increasing CD11c expression and MCP-1 secretion. mRNA expression of M1/M2 markers was higher in PEMS than BMDMs, while lipid metabolism genes were similarly expressed. Whole aorta flow cytometry showed an accumulation of M2-like CD206highCD11clow macrophages in advanced versus early atherosclerotic disease in ApoE−/− mice. In isolated lesions, mRNA levels of the M2 markers Socs2, CD206, Retnla, and IL4 were downregulated with increasing disease severity. Likewise, mRNA expression of lipid metabolism genes (SREBP2, ACSL1, SRB1, DGAT1, and cpt1a) was decreased in advanced versus early lesions. In conclusion, PEMs and BMDMs are phenotypically distinct and differ from macrophages in lesions with respect to expression of M1/M2 markers and lipid metabolism genes. PMID:27734926

  2. Early Interactions of Murine Macrophages with Francisella tularensis Map to Mouse Chromosome 19

    PubMed Central

    Fink, Avner; Hassan, Musa A.; Okan, Nihal A.; Sheffer, Michal; Camejo, Ana; Saeij, Jeroen P. J.

    2016-01-01

    ABSTRACT Differences among individuals in susceptibility to infectious diseases can be modulated by host genetics. Much of the research in this field has aimed to identify loci within the host genome that are associated with these differences. In mice, A/J (AJ) and C57BL/6J (B6) mice show differential susceptibilities to various pathogens, including the intracellular pathogen Francisella tularensis. Because macrophages are the main initial target during F. tularensis infection, we explored early interactions of macrophages from these two mouse strains with F. tularensis as well as the genetic factors underlying these interactions. Our results indicate that bacterial interactions with bone marrow-derived macrophages (BMDMs) during early stages of infection are different in the AJ and B6 strains. During these early stages, bacteria are more numerous in B6 than in AJ macrophages and display differences in trafficking and early transcriptional response within these macrophages. To determine the genetic basis for these differences, we infected BMDMs isolated from recombinant inbred (RI) mice derived from reciprocal crosses between AJ and B6, and we followed early bacterial counts within these macrophages. Quantitative trait locus (QTL) analysis revealed a locus on chromosome 19 that is associated with early differences in bacterial counts in AJ versus B6 macrophages. QTL analysis of published data that measured the differential susceptibilities of the same RI mice to an in vivo challenge with F. tularensis confirmed the F. tularensis susceptibility QTL on chromosome 19. Overall, our results show that early interactions of macrophages with F. tularensis are dependent on the macrophage genetic background. PMID:26980837

  3. Morinda citrifolia Linn. fruit (Noni) juice induces an increase in NO production and death of Leishmania amazonensis amastigotes in peritoneal macrophages from BALB/c.

    PubMed

    Almeida-Souza, Fernando; de Souza, Celeste da Silva Freitas; Taniwaki, Noemi Nosomi; Silva, João José Mendes; de Oliveira, Renata Mondêgo; Abreu-Silva, Ana Lúcia; Calabrese, Kátia da Silva

    2016-08-31

    Leishmaniasis is a complex disease that is considered a serious public health problem. Due to the absence of an effective vaccine and debilitating chemotherapy better therapies are urgently needed. This situation has stimulated the search for alternative treatments such as the use of herbal medicines. Several studies conducted with Morinda citrifolia Linn. have shown various biological activities such as antitumor, immunomodulation and antileishmanial activity, however its mechanisms of action are still unknown. This study aimed to analyze the activity of M. citrifolia fruit juice against Leishmania amazonensis and its action on peritoneal macrophages from BALB/c infected with L. amazonensis. Activity against the promastigote forms showed IC50 at 275.3 μg/mL. Transmission electron microscopy was used to evaluate the ultrastructural alterations in the promastigotes treated with the juice and the results showed cytoplasmic vacuolization, lipid inclusion and increased activity of exocytosis. The juice treatment presented an IC50 at 208.4 μg/mL against intracellular amastigotes and led to an increased nitrite production in infected and non-infected macrophages. When macrophages were pre-treated with iNOS inhibitors, aminoguanidine or 1400W, the intracellular amastigotes increased, demonstrating the important role of NO production in M. citrifolia fruit activity. In conclusion, our results reveal that treatment with M. citrifolia fruit juice can increase NO production in peritoneal macrophages and this ability has an important role in the killing of L. amazonensis intracellular amastigotes.

  4. Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages.

    PubMed

    Gautier, Emmanuel L; Shay, Tal; Miller, Jennifer; Greter, Melanie; Jakubzick, Claudia; Ivanov, Stoyan; Helft, Julie; Chow, Andrew; Elpek, Kutlu G; Gordonov, Simon; Mazloom, Amin R; Ma'ayan, Avi; Chua, Wei-Jen; Hansen, Ted H; Turley, Shannon J; Merad, Miriam; Randolph, Gwendalyn J

    2012-11-01

    We assessed gene expression in tissue macrophages from various mouse organs. The diversity in gene expression among different populations of macrophages was considerable. Only a few hundred mRNA transcripts were selectively expressed by macrophages rather than dendritic cells, and many of these were not present in all macrophages. Nonetheless, well-characterized surface markers, including MerTK and FcγR1 (CD64), along with a cluster of previously unidentified transcripts, were distinctly and universally associated with mature tissue macrophages. TCEF3, C/EBP-α, Bach1 and CREG-1 were among the transcriptional regulators predicted to regulate these core macrophage-associated genes. The mRNA encoding other transcription factors, such as Gata6, was associated with single macrophage populations. We further identified how these transcripts and the proteins they encode facilitated distinguishing macrophages from dendritic cells.

  5. Enhancer turnover is associated with a divergent transcriptional response to glucocorticoid in mouse and human macrophages

    PubMed Central

    Hume, David A; Bickmore, Wendy A

    2015-01-01

    Phenotypic differences between individuals and species are controlled in part through differences in expression of a relatively conserved set of genes. Genes expressed in the immune system are subject to especially powerful selection. We have investigated the evolution of both gene expression and candidate enhancers in human and mouse macrophages exposed to glucocorticoid (GC), a regulator of innate immunity and an important therapeutic agent. Our analyses revealed a very limited overlap in the repertoire of genes responsive to GC in human and mouse macrophages. Peaks of inducible binding of the glucocorticoid receptor (GR) detected by ChIP-Seq correlated with induction, but not repression, of target genes in both species, occured at distal regulatory sites not promoters, and were strongly enriched for the consensus GR binding motif. Turnover of GR binding between mouse and human was associated with gain and loss of the motif. There was no detectable signal of positive selection at species-specific GR binding sites, but clear evidence of purifying selection at the small number of conserved sites. We conclude that enhancer divergence underlies the difference in transcriptional activation after GC treatment between mouse and human macrophages. Only the shared inducible loci show evidence of selection and therefore these loci may be important for the subset of responses to GC that is shared between species. PMID:26663721

  6. Antihistoplasma effect of activated mouse splenic macrophages involves production of reactive nitrogen intermediates.

    PubMed Central

    Lane, T E; Wu-Hsieh, B A; Howard, D H

    1994-01-01

    The mechanism by which recombinant murine gamma interferon (rMuIFN-gamma) and bacterial lipopolysaccharide (LPS) activate mouse resident splenic macrophages to inhibit the intracellular growth of the fungus Histoplasma capsulatum was examined. Growth inhibition depended on L-arginine metabolism. The growth inhibitory state normally induced by rMuIFN-gamma and LPS in resident splenic macrophages did not occur when the macrophages were cultured in the presence of NG-monomethyl-L-arginine, a competitive inhibitor of L-arginine metabolism. Resident splenic macrophages treated with rMuIFN-gamma and LPS produced nitrite (NO2-), an end product of L-arginine metabolism. When macrophages were cultured in the presence of NG-monomethyl-L-arginine together with rMuIFN-gamma and LPS, only baseline levels of NO2- were detected. Spleen cells from H. capsulatum-infected mice produced high levels of NO2- in culture. The production of NO2- correlated with in vitro inhibition of the intracellular growth of H. capsulatum. Anti-tumor necrosis factor alpha antibody did not block NO2- production by the immigrant splenic macrophages and did not abolish the antihistoplasma activity. PMID:8168960

  7. Modulation of mouse macrophage polarization in vitro using IL-4 delivery by osmotic pumps.

    PubMed

    Pajarinen, Jukka; Tamaki, Yasunobu; Antonios, Joseph K; Lin, Tzu-Hua; Sato, Taishi; Yao, Zhenyu; Takagi, Michiaki; Konttinen, Yrjö T; Goodman, Stuart B

    2015-04-01

    Modulation of macrophage polarization is emerging as promising means to mitigate wear particle-induced inflammation and periprosthetic osteolysis. As a model for continuous local drug delivery, we used miniature osmotic pumps to deliver IL-4 in order to modulate macrophage polarization in vitro from nonactivated M0 and inflammatory M1 phenotypes towards a tissue regenerative M2 phenotype. Pumps delivered IL-4 into vials containing mouse bone marrow macrophage (mBMM) media. This conditioned media (CM) was collected at seven day intervals up to four weeks (week 1 to week 4 samples). IL-4 concentration in the CM was determined by ELISA and its biological activity was assayed by exposing M0 and M1 mBMMs to week 1 or week 4 CM. The IL-4 concentration in the CM approximated the mathematically calculated amount, and its biological activity was well retained, as both M0 and M1 macrophages exposed to either the week 1 or week 4 CM assumed M2-like phenotype as determined by qRT-PCR, ELISA, and immunocytochemistry. The results show that IL-4 can be delivered using osmotic pumps and that IL-4 delivered can modulate macrophage phenotype. Results build a foundation for in vivo studies using our previously validated animal models and provide possible strategies to locally mitigate wear particle-induced macrophage activation and periprosthetic osteolysis.

  8. A defect in inducible beta-galactosidase of B lymphocytes in the osteopetrotic (mi/mi) mouse.

    PubMed Central

    Yamamoto, N; Naraparaju, V R

    1996-01-01

    Macrophages were activated by administration of an inflammatory lipid metabolite, lysophosphatidylcholine (lyso-Pc), to wild type mice but not murine (microphthalmic) osteopetrotic (mi/mi) mutant mice. In vitro treatment of wild type mouse peritoneal cells with lyso-Pc efficiently activated macrophages whereas lyso-Pc-treatment of mi mutant mouse peritoneal cells resulted in no activation of macrophages. Generation of macrophage activating factor requires a precursor protein, serum vitamin D binding protein (DBP), and participation of lyso-Pc-inducible beta-galactosidase of B lymphocytes. Lyso-Pc-inducible beta-galactosidase of B lymphocytes was found to be defective in mi mutant mice. PMID:8881764

  9. Large-conductance channel formation mediated by P2X7 receptor activation is regulated through distinct intracellular signaling pathways in peritoneal macrophages and 2BH4 cells.

    PubMed

    Faria, R X; Cascabulho, C M; Reis, R A M; Alves, Luiz Anastácio

    2010-07-01

    The P2X(7) receptor (P2X7R) is a ligand-gated ATP receptor that acts as a low- and large-conductance channel (pore) and is known to be coupled to several downstream effectors. Recently, we demonstrated that the formation of a large-conductance channel associated with the P2X(7) receptor is induced by increasing the intracellular Ca(2+) concentration (Faria et al., Am J Physiol Cell Physiol 297:C28-C42, 2005). Here, we investigated the intracellular signaling pathways associated with P2X(7) large-conductance channel formation using the patch clamp technique in conjunction with fluorescent imaging and flow cytometry assays in 2BH4 cells and peritoneal macrophages. Different antagonists were applied to investigate the following pathways: Ca(2+)-calmodulin, phospholipase A, phospholipase D, phospholipase C, protein kinase C (PKC), mitogen-activated protein kinase (MAPK), MAPK/extracellular signal-regulated kinase, phosphoinositide 3-kinase (PI3K), and cytoskeletal proteins. Macroscopic ionic currents induced by 1 mM ATP were reduced by 85% in the presence of PKC antagonists. The addition of antagonists for MAPK, PI3K, and the cytoskeleton (actin, intermediary filament, and microtubule) blocked 92%, 83%, and 95% of the ionic currents induced by 1 mM ATP, respectively. Our results show that PKC, MAPK, PI3K, and cytoskeletal components are involved in P2X(7) receptor large-channel formation in 2BH4 cells and peritoneal macrophages.

  10. Targeting colon cancer cell NF-κB promotes an anti-tumour M1-like macrophage phenotype and inhibits peritoneal metastasis.

    PubMed

    Ryan, A E; Colleran, A; O'Gorman, A; O'Flynn, L; Pindjacova, J; Lohan, P; O'Malley, G; Nosov, M; Mureau, C; Egan, L J

    2015-03-19

    In a model of peritoneal metastasis in immune-competent mice, we show that nuclear factor (NF)-κB inhibition in CT26 colon cancer cells prevents metastasis. NF-κB inhibition, by stable overexpression of IκB-α super-repressor, induced differential polarization of co-cultured macrophages to an M1-like anti-tumour phenotype in vitro. NF-κB-deficient cancer cell-conditioned media (CT26/IκB-α SR) induced interleukin (IL)-12 and nitric oxide (NO) synthase (inducible NO synthase (iNOS)) expression in macrophages. Control cell (CT26/EV) conditioned media induced high levels of IL-10 and arginase in macrophages. In vivo, this effect translated to reduction in metastasis in mice injected with CT26/ IκB-α SR cells and was positively associated with increased CD8(+)CD44(+)CD62L(-) and CD4(+)CD44(+)CD62L(-) effector T cells. Furthermore, inhibition of NF-κB activity induced high levels of NO in infiltrating immune cells and decreases in matrix metalloproteinase-9 expression, simultaneous with increases in tissue inhibitor of metalloproteinases 1 and 2 within tumours. CT26/IκB-α SR tumours displayed increased pro-inflammatory gene expression, low levels of angiogenesis and extensive intratumoral apoptosis, consistent with the presence of an anti-tumour macrophage phenotype. Macrophage depletion reduced tumour size in CT26/EV-injected animals and increased tumour size in CT26/IκB-α SR cells compared with untreated tumours. Our data demonstrate, for the first time, that an important implication of targeting tumour cell NF-κB is skewing of macrophage polarization to an anti-tumour phenotype. This knowledge offers novel therapeutic opportunities for anticancer treatment.

  11. Synergy of anti-CD40, CpG and MPL in activation of mouse macrophages.

    PubMed

    Shi, Yongyu; Felder, Mildred A R; Sondel, Paul M; Rakhmilevich, Alexander L

    2015-08-01

    Activation of macrophages is a prerequisite for their antitumor effects. Several reagents, including agonistic anti-CD40 monoclonal antibody (anti-CD40), CpG oligodeoxynucleotides (CpG) and monophosphoryl lipid A (MPL), can stimulate activation of macrophages. Our previous studies showed synergy between anti-CD40 and CpG and between anti-CD40 and MPL in macrophage activation and antitumor efficacy in mice. In the present study, we asked whether there was synergy among these three reagents. The activation of adherent peritoneal exudate cells (PEC) obtained from mice injected with anti-CD40 and then treated with CpG and/or MPL in vitro was determined by their ability to suppress proliferation of tumor cells and to produce various cytokines and chemokines in vitro. Cell sorting and histology followed by functional testing showed that macrophages were the main cell population in PEC activated by CD40 ligation in vivo. A combination of anti-CD40, CpG or MPL activated PEC to suppress proliferation of B16 cells and produce nitric oxide far greater than the single reagents or any of the double combinations of these reagents. In addition, the combination of all three reagents activated PEC to secrete IL-12, IFN-γ and MCP-1 to a greater degree than any single reagent or any two combined reagents. These results demonstrate that macrophages can be synergistically activated by anti-CD40, CpG and MPL, suggesting that this novel combined approach might be further investigated as potential cancer therapy.

  12. Inhibition of melanin synthesis pathway by tricyclazole increases susceptibility of Fonsecaea pedrosoi against mouse macrophages.

    PubMed

    Cunha, Marcel M L; Franzen, Anderson J; Alviano, Daniela S; Zanardi, Erica; Alviano, Celuta S; De Souza, Wanderley; Rozental, Sonia

    2005-12-15

    Fonsecaea pedrosoi produces melanin, a pigment related to virulence in pathogenic fungi. To understand the involvement of melanin in the protection of fungi, the authors used tricyclazole to inhibit the melanin pathway in F. pedrosoi. Experiments of pigmentation suggested that F. pedrosoi uniquely produces dihydroxynaphthalene-melanin. Pigments produced on cultures modified or not with tricyclazole were extracted by an alkali-acid method and submitted to infrared and ion exchange chromatography analysis; also cytochemistry analysis for cationized ferritin of whole cells was carried out. This group of experiments showed that the tricyclazole treatment on F. pedrosoi produced a melanin-like pigment, but less negatively charged and with less affinity for iron ions than that without the tricyclazole treatment, and this in turn lead to a less negatively charge cell wall surface. Scanning electron microscopy of such pigments showed that the melanin from control cultures maintained their hyphae-like structures, which have been described as "melanin-ghosts," whereas the tricyclazole pigment showed an amorphous surface. Interaction of conidia from cultures of F. pedrosoi, modified by tricyclazole or not, with peritoneal activated macrophages suggested that tricyclazole causes higher association of fungus with macrophages, weakens the fungus capacity to destroy the macrophages, and diminishes the resistance to dry fracture procedures on samples prepared for high resolution scanning electron microscopy.

  13. Dendritic cells and macrophages in the uveal tract of the normal mouse eye

    PubMed Central

    McMenamin, P.

    1999-01-01

    BACKGROUND/AIMS—Dendritic cells (DC) and macrophages are components of the immune cell populations in the uveal tract whose density, distribution, turnover, and function may play a role in the maintenance of immunological homeostasis in the eye. Little is known of these cells in the mouse eye despite this being the predominant experimental model in many studies of ocular immune responses and immunoinflammatory mediated eye diseases. The aim of the present study was to obtain further immunophenotypic data on resident tissue macrophages and DC populations in the mouse uveal tract.
METHODS—Pieces of iris, ciliary body, and choroid dissected from perfusion fixed BALB/c mice were incubated whole in a variety of anti-macrophage and DC monoclonal antibodies (mAbs). Labelled cells were visualised using either single or double immunoperoxidase techniques.
RESULTS—Quantitative analysis and double immunolabelling revealed that 80% of F4/80+ cells (a mAb that recognises both DC and macrophages) in the iris are macrophages (SER4+). The iris contained a network of Ia+ cells (412 (SD 130) cells/mm2) of which two thirds appear to be DC. A similar pattern was observed in the ciliary body and choroid. Only a few DC in the uveal tract were very weakly reactive for mAbs which recognise B7-1 (CD80), B7-2 (CD86), β2 integrin (mAb N418), and multivesicular bodies associated with antigen presentation (mAb M342).
CONCLUSIONS—The present study reveals that the mouse uveal tract, like the rat, contains rich networks of DC and resident tissue macrophages. The networks of resident tissue macrophages in the mouse uveal tract closely resemble similar networks in non-ocular tissues. The phenotype of uveal tract DC suggests they are in the "immature" phase of their life cycle, similar to Langerhans cells of the skin, thus implying their role in situ within the eye is antigen capture and not antigen presentation.

 PMID:10216062

  14. Influence of exercise on NA- and Hsp72-induced release of IFNγ by the peritoneal suspension of macrophages and lymphocytes from genetically obese Zucker rats.

    PubMed

    Martín-Cordero, L; García, J J; Hinchado, M D; Bote, E; Ortega, E

    2013-03-01

    Regular physical exercise is recognized as a nonpharmacological therapeutic strategy in the treatment of metabolic syndrome, and has been proposed for improving obesity, diabetic status, insulin resistance, and immune response. The aim of the present study was to evaluate the effect of a regular exercise program (treadmill running, 5 days/week for 14 weeks at 35 cm/s for 35 min in the last month) on the release of the pro-inflammatory cytokine interferon gamma (IFNγ) by peritoneal cells (macrophages and lymphocytes) from obese Zucker rats (fa/fa) in response to noradrenaline (NA) and heat shock proteins of 72 kDa (Hsp72), and the possible adaptation due to training for a bout acute exercise (a single session of 25-35 min at 35 cm/s). In healthy (lean Fa/fa) and obese animals, peritoneal cells released greater concentrations of IFNγ in response to Hsp72 and lower concentrations in response to NA. The regular exercise training protocol, evaluated in the obese animals, produced a clear change in the regulation of the release of IFNγ. Peritoneal immune cells from trained animals released more IFNγ in response to NA, but there was a reduction in the release of IFNγ in response to Hsp72. In the obese animals, regular exercise caused a change in the inhibitory effect of NA (which now becomes stimulatory) and the stimulatory effect of Hsp72e (which now becomes inhibitory) in relation to the release of IFNγ. This reflects that Hsp72, induced by the prior release of NA following exercise-induced stress, plays a role in the homeostatic balance of release of IFNγ by peritoneal immune cells in obese animals during exercise.

  15. Immunostaining of macrophages, endothelial cells and smooth muscle cells in the atherosclerotic mouse aorta

    PubMed Central

    Menon, Prashanthi; Fisher, Edward A.

    2016-01-01

    The atherosclerotic mouse aorta consists of a heterogeneous population of cells, including macrophages, endothelial cells (EC) and smooth muscle cells (SMC), that play critical roles in cardiovascular disease. Identification of these vascular cells in the vessel wall is important to understanding their function in pathological conditions. Immunohistochemistry is an invaluable technique used to detect the presence of cells in different tissues. Here, we describe immunohistochemical techniques commonly used for the detection of the vascular cells in the atherosclerotic mouse aorta using cell specific markers. PMID:26445786

  16. Enhancer Turnover Is Associated with a Divergent Transcriptional Response to Glucocorticoid in Mouse and Human Macrophages.

    PubMed

    Jubb, Alasdair W; Young, Robert S; Hume, David A; Bickmore, Wendy A

    2016-01-15

    Phenotypic differences between individuals and species are controlled in part through differences in expression of a relatively conserved set of genes. Genes expressed in the immune system are subject to especially powerful selection. We have investigated the evolution of both gene expression and candidate enhancers in human and mouse macrophages exposed to glucocorticoid (GC), a regulator of innate immunity and an important therapeutic agent. Our analyses revealed a very limited overlap in the repertoire of genes responsive to GC in human and mouse macrophages. Peaks of inducible binding of the GC receptor (GR) detected by chromatin immunoprecipitation-Seq correlated with induction, but not repression, of target genes in both species, occurred at distal regulatory sites not promoters, and were strongly enriched for the consensus GR-binding motif. Turnover of GR binding between mice and humans was associated with gain and loss of the motif. There was no detectable signal of positive selection at species-specific GR binding sites, but clear evidence of purifying selection at the small number of conserved sites. We conclude that enhancer divergence underlies the difference in transcriptional activation after GC treatment between mouse and human macrophages. Only the shared inducible loci show evidence of selection, and therefore these loci may be important for the subset of responses to GC that is shared between species.

  17. GDNF-Transfected Macrophages Produce Potent Neuroprotective Effects in Parkinson's Disease Mouse Model

    PubMed Central

    Zhao, Yuling; Haney, Matthew J.; Gupta, Richa; Bohnsack, John P.; He, Zhijian; Kabanov, Alexander V.; Batrakova, Elena V.

    2014-01-01

    The pathobiology of Parkinson's disease (PD) is associated with the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) projecting to the striatum. Currently, there are no treatments that can halt or reverse the course of PD; only palliative therapies, such as replacement strategies for missing neurotransmitters, exist. Thus, the successful brain delivery of neurotrophic factors that promote neuronal survival and reverse the disease progression is crucial. We demonstrated earlier systemically administered autologous macrophages can deliver nanoformulated antioxidant, catalase, to the SNpc providing potent anti-inflammatory effects in PD mouse models. Here we evaluated genetically-modified macrophages for active targeted brain delivery of glial cell-line derived neurotropic factor (GDNF). To capitalize on the beneficial properties afforded by alternatively activated macrophages, transfected with GDNF-encoded pDNA cells were further differentiated toward regenerative M2 phenotype. A systemic administration of GDNF-expressing macrophages significantly ameliorated neurodegeneration and neuroinflammation in PD mice. Behavioral studies confirmed neuroprotective effects of the macrophage-based drug delivery system. One of the suggested mechanisms of therapeutic effects is the release of exosomes containing the expressed neurotropic factor followed by the efficient GDNF transfer to target neurons. Such formulations can serve as a new technology based on cell-mediated active delivery of therapeutic proteins that attenuate and reverse progression of PD, and ultimately provide hope for those patients who are already significantly disabled by the disease. PMID:25229627

  18. Extrathyroidal release of thyroid hormones from thyroglobulin by J774 mouse macrophages.

    PubMed Central

    Brix, K; Herzog, V

    1994-01-01

    Thyroglobulin appears in the circulation of vertebrates at species-specific concentrations. We have observed that the clearance of thyroglobulin from the circulation occurs in the liver by macrophages. Here we show that the thyroid hormones T3 and T4 were released by incubation of mouse macrophages (J774) with thyroglobulin. Thyroid hormone release was a fast process, with an initial rate of approximately 20 pmol T4/mg per min and approximately 0.6 pmol T3/mg per min, indicating that macrophages preferentially release T4. The bulk of released thyroid hormones appeared after 5 min of incubation of macrophages with thyroglobulin, whereas degradation of the protein was detectable only after several hours. During internalization of thyroglobulin, endocytic vesicles and endosomes were reached at 5 min and lysosomes at 60 min. T4 release started extracellularly by secreted proteases and continued along the endocytic pathway of thyroglobulin, whereas T3 release occurred mainly intracellularly when thyroglobulin had reached the lysosomes. This shows that the release of both hormones occurred at distinct cellular sites. Our in vitro observations suggest that macrophages in situ represent an extrathyroidal source for thyroid hormones from circulating thyroglobulin. Images PMID:8163643

  19. Increased NHC Cells in the Peritoneal Cavity of Plasmacytoma Susceptible BALB/c Mouse

    PubMed Central

    Sánchez-González, Berenice; García-Vázquez, Francisco Javier; Farfán-Morales, José Eduardo; Jiménez-Zamudio, Luis Antonio

    2015-01-01

    BALB/c strain mice are unique in that they develop murine plasmacytoma (MPC) as a consequence of the inflammation induced by pristane oil injection in the peritoneal cavity. In this work the Treg, Th17, B1, B2, and NHC lymphocyte populations from the peritoneal environment of BALB/c, the susceptible strain, and C57BL/6 mice, which do not develop MPC after oil treatment, were studied. Both oil-treated strains showed decreased levels of Th17 lymphocytes, no significant variation in Treg lymphocytes, and a drastic decrease of all B lymphocyte populations. However, only oil-induced BALB/c showed increased levels of natural helper cells (NHC) which could be important in the myeloma induction. PMID:26504358

  20. Aqueous extract of Gracilaria tenuistipitata suppresses LPS-induced NF-κB and MAPK activation in RAW 264.7 and rat peritoneal macrophages and exerts hepatoprotective effects on carbon tetrachloride-treated rat.

    PubMed

    Tseng, Chin-Kai; Lin, Chun-Kuang; Chang, Hsueh-Wei; Wu, Yu-Hsuan; Yen, Feng-Lin; Chang, Fang-Rong; Chen, Wei-Chun; Yeh, Chi-Chen; Lee, Jin-Ching

    2014-01-01

    In addition to the previous investigations of bioactivity of aqueous extract of the edible Gracilaria tenuistipitata (AEGT) against H2O2-induced DNA damage and hepatitis C virus replication, the purpose of this study is to evaluate the potential therapeutic properties of AEGT against inflammation and hepatotoxicity using lipopolysaccharide (LPS)-stimulated mouse RAW 264.7 cells, primary rat peritoneal macrophages and carbon tetrachloride (CCl4)-induced acute hepatitis model in rats. AEGT concentration-dependently inhibited the elevated RNA and protein levels of inducible nitric oxide synthase and cyclooxygenase-2, thereby reducing nitric oxide and prostaglandin E2 levels, respectively. Moreover, AEGT significantly suppressed the production of LPS-induced proinflammatory cytokines, including interleukin (IL)-1β, IL-6 and tumor necrosis factor-α. These inhibitory effects were associated with the suppression of nuclear factor-kappa B activation and mitogen-activated protein kinase phosphorylation by AEGT in LPS-stimulated cells. In addition, we highlighted the hepatoprotective and curative effects of AEGT in a rat model of CCl4-intoxicated acute liver injury, which was evident from reduction in the elevated serum aspartate aminotransferase and alanine aminotransferase levels as well as amelioration of histological damage by pre-treatment or post-treatment of AEGT. In conclusion, the results demonstrate that AEGT may serve as a potential supplement in the prevention or amelioration of inflammatory diseases.

  1. Aqueous Extract of Gracilaria tenuistipitata Suppresses LPS-Induced NF-κB and MAPK Activation in RAW 264.7 and Rat Peritoneal Macrophages and Exerts Hepatoprotective Effects on Carbon Tetrachloride-Treated Rat

    PubMed Central

    Tseng, Chin-Kai; Lin, Chun-Kuang; Chang, Hsueh-Wei; Wu, Yu-Hsuan; Yen, Feng-Lin; Chang, Fang-Rong; Chen, Wei-Chun; Yeh, Chi-Chen; Lee, Jin-Ching

    2014-01-01

    In addition to the previous investigations of bioactivity of aqueous extract of the edible Gracilaria tenuistipitata (AEGT) against H2O2-induced DNA damage and hepatitis C virus replication, the purpose of this study is to evaluate the potential therapeutic properties of AEGT against inflammation and hepatotoxicity using lipopolysaccharide (LPS)-stimulated mouse RAW 264.7 cells, primary rat peritoneal macrophages and carbon tetrachloride (CCl4)-induced acute hepatitis model in rats. AEGT concentration-dependently inhibited the elevated RNA and protein levels of inducible nitric oxide synthase and cyclooxygenase-2, thereby reducing nitric oxide and prostaglandin E2 levels, respectively. Moreover, AEGT significantly suppressed the production of LPS-induced proinflammatory cytokines, including interleukin (IL)-1β, IL-6 and tumor necrosis factor-α. These inhibitory effects were associated with the suppression of nuclear factor-kappa B activation and mitogen-activated protein kinase phosphorylation by AEGT in LPS-stimulated cells. In addition, we highlighted the hepatoprotective and curative effects of AEGT in a rat model of CCl4-intoxicated acute liver injury, which was evident from reduction in the elevated serum aspartate aminotransferase and alanine aminotransferase levels as well as amelioration of histological damage by pre-treatment or post-treatment of AEGT. In conclusion, the results demonstrate that AEGT may serve as a potential supplement in the prevention or amelioration of inflammatory diseases. PMID:24475143

  2. Phase-contrast zoom tomography reveals precise locations of macrophages in mouse lungs

    PubMed Central

    Krenkel, Martin; Markus, Andrea; Bartels, Matthias; Dullin, Christian; Alves, Frauke; Salditt, Tim

    2015-01-01

    We have performed x-ray phase-contrast tomography on mouse lung tissue. Using a divergent x-ray beam generated by nanoscale focusing, we used zoom tomography to produce three-dimensional reconstructions with selectable magnification, resolution, and field of view. Thus, macroscopic tissue samples extending over several mm can be studied in sub-cellular-level structural detail. The zoom capability and, in particular, the high dose efficiency are enabled by the near-perfect exit wavefront of an optimized x-ray waveguide channel. In combination with suitable phase-retrieval algorithms, challenging radiation-sensitive and low-contrast samples can be reconstructed with minimal artefacts. The dose efficiency of the method is demonstrated by the reconstruction of living macrophages both with and without phagocytized contrast agents. We also used zoom tomography to visualize barium-labelled macrophages in the context of morphological structures in asthmatic and healthy mouse lung tissue one day after intratracheal application. The three-dimensional reconstructions showed that the macrophages predominantly localized to the alveoli, but they were also found in bronchial walls, indicating that these cells might be able to migrate from the lumen of the bronchi through the epithelium. PMID:25966338

  3. Apigenin induces the apoptosis and regulates MAPK signaling pathways in mouse macrophage ANA-1 cells.

    PubMed

    Liao, Yuexia; Shen, Weigan; Kong, Guimei; Lv, Houning; Tao, Wenhua; Bo, Ping

    2014-01-01

    Apigenin is a naturally occurring plant flavonoid that possesses antioxidant, anti-cancer and anti-inflammatory properties. However, there are few reports has been done on the ability of apigenin to induce apoptosis in macrophages. In this study, mouse macrophage ANA-1 cells were incubated with different concentrations of apigenin. The cell viability was determined by an MTT assay. The cell apoptosis were analyzed by flow cytometric analysis. Apoptosis were also analyzed using a TUNEL assay and a DNA ladder. The level of intracellular ROS was detected using a dichlorofluorescein -diacetate probe. The expression levels of apoptosis-related proteins were detected by western blot analysis. The results showed that apigenin decreased the viability of ANA-1 cells and induced apoptosis in a dose- and time-dependent manner. Apigenin increased the level of intracellular ROS, downregulated the expression of Bcl-2 and upregulated the expression of caspase-3 and caspase-8 in ANA-1 cells. Furthermore, apigenin downregulated the expression of phospho-ERK and phospho-JNK, upregulated the expression of phospho-p38 and had no significant effect on the expression of Bax, ERK, JNK and p38. The results suggested that apigenin induced cell apoptosis in mouse macrophage ANA-1 cells may via increasing intracellular ROS, regulating the MAPK pathway, and then inhibiting Bcl-2 expression.

  4. Phase-contrast zoom tomography reveals precise locations of macrophages in mouse lungs

    NASA Astrophysics Data System (ADS)

    Krenkel, Martin; Markus, Andrea; Bartels, Matthias; Dullin, Christian; Alves, Frauke; Salditt, Tim

    2015-05-01

    We have performed x-ray phase-contrast tomography on mouse lung tissue. Using a divergent x-ray beam generated by nanoscale focusing, we used zoom tomography to produce three-dimensional reconstructions with selectable magnification, resolution, and field of view. Thus, macroscopic tissue samples extending over several mm can be studied in sub-cellular-level structural detail. The zoom capability and, in particular, the high dose efficiency are enabled by the near-perfect exit wavefront of an optimized x-ray waveguide channel. In combination with suitable phase-retrieval algorithms, challenging radiation-sensitive and low-contrast samples can be reconstructed with minimal artefacts. The dose efficiency of the method is demonstrated by the reconstruction of living macrophages both with and without phagocytized contrast agents. We also used zoom tomography to visualize barium-labelled macrophages in the context of morphological structures in asthmatic and healthy mouse lung tissue one day after intratracheal application. The three-dimensional reconstructions showed that the macrophages predominantly localized to the alveoli, but they were also found in bronchial walls, indicating that these cells might be able to migrate from the lumen of the bronchi through the epithelium.

  5. Phase-contrast zoom tomography reveals precise locations of macrophages in mouse lungs.

    PubMed

    Krenkel, Martin; Markus, Andrea; Bartels, Matthias; Dullin, Christian; Alves, Frauke; Salditt, Tim

    2015-05-12

    We have performed x-ray phase-contrast tomography on mouse lung tissue. Using a divergent x-ray beam generated by nanoscale focusing, we used zoom tomography to produce three-dimensional reconstructions with selectable magnification, resolution, and field of view. Thus, macroscopic tissue samples extending over several mm can be studied in sub-cellular-level structural detail. The zoom capability and, in particular, the high dose efficiency are enabled by the near-perfect exit wavefront of an optimized x-ray waveguide channel. In combination with suitable phase-retrieval algorithms, challenging radiation-sensitive and low-contrast samples can be reconstructed with minimal artefacts. The dose efficiency of the method is demonstrated by the reconstruction of living macrophages both with and without phagocytized contrast agents. We also used zoom tomography to visualize barium-labelled macrophages in the context of morphological structures in asthmatic and healthy mouse lung tissue one day after intratracheal application. The three-dimensional reconstructions showed that the macrophages predominantly localized to the alveoli, but they were also found in bronchial walls, indicating that these cells might be able to migrate from the lumen of the bronchi through the epithelium.

  6. Selective inhibitory effects of 50-nm gold nanoparticles on mouse macrophage and spleen cells.

    PubMed

    Kingston, Micah; Pfau, Jean C; Gilmer, John; Brey, Richard

    2016-01-01

    Nanoparticles (NP) are significant to multiple industrial processes, consumer products and medical applications today. The health effects of many different types of NP, however, are largely unknown. The purpose of this study was to test the effects of 50-nm gold NP coated with poly-N-vinylpyrrolidone (PVP) on mouse macrophage and spleen cells with and without lipopolysaccharide (LPS), testing the hypothesis that the NP would modulate immune responses without being overtly toxic. Gold NP had no effect on macrophage viability and, in the absence of LPS, they had no effect on tumor necrosis factor (TNF)-α production as measured by ELISA. The presence of LPS significantly increased the release of TNFα from the macrophages above no-treatment controls, but increasing gold NP concentration led to decreasing release of TNFα. The reactive oxygen species (ROS) produced by exposed macrophages were also reduced compared to untreated controls, both with and without LPS, suggesting some kind of oxygen radical scavenging. In splenocyte cultures, gold NP had no effect alone, but significantly reduced the release of interleukin (IL)-17 and TNFα triggered by LPS. These results suggest that the gold NP used here are not cytotoxic to immune cells at these concentrations, but may affect cellular responses to infection or inflammation by altering the balance of cytokines.

  7. Cloning and characterization of the gene for mouse macrophage migration inhibitory factor (MIF)

    SciTech Connect

    Mitchell, R.; Bacher, M.; Bernhagen, J.

    1995-04-15

    An emerging body of data indicates that the protein mediator described originally as macrophage migration inhibitory factor (MIF) exerts a central and wide ranging role in host inflammatory responses. MIF is a major constituent of corticotrophic cells within the anterior pituitary gland and is secreted into the circulation in a hormone-like fashion. MIF also exists preformed in monocytes/macrophages and is a pivotal mediator in the host response to endotoxic shock. To gain further insight into the biologic expression of this protein that encompasses components of both the immune and the endocrine systems, we have cloned the mouse MIF gene and identified potential regulatory sequences present within the 5{prime}-proximal promoter region. The gene for mouse MIF is located on chromosome 10, spans approximately 1 kb, and shares a high degree of structural homology with its human counterpart. Of note, the consensus enhancer/promoter motifs identified include both inflammatory/growth factor-related elements and sites associated with the genes for certain peptide hormones. We also report the structures of two MIF pseudogenes that account for early observations suggesting that mouse MIF is encoded by a highly homologous multigene family. 38 refs., 5 figs., 1 tab.

  8. Dynamic activation of basilar membrane macrophages in response to chronic sensory cell degeneration in aging mouse cochleae.

    PubMed

    Frye, Mitchell D; Yang, Weiping; Zhang, Celia; Xiong, Binbin; Hu, Bo Hua

    2017-02-01

    In the sensory epithelium, macrophages have been identified on the scala tympani side of the basilar membrane. These basilar membrane macrophages are the spatially closest immune cells to sensory cells and are able to directly respond to and influence sensory cell pathogenesis. While basilar membrane macrophages have been studied in acute cochlear stresses, their behavior in response to chronic sensory cell degeneration is largely unknown. Here we report a systematic observation of the variance in phenotypes, the changes in morphology and distribution of basilar membrane tissue macrophages in different age groups of C57BL/6J mice, a mouse model of age-related sensory cell degeneration. This study reveals that mature, fully differentiated tissue macrophages, not recently infiltrated monocytes, are the major macrophage population for immune responses to chronic sensory cell death. These macrophages display dynamic changes in their numbers and morphologies as age increases, and the changes are related to the phases of sensory cell degeneration. Notably, macrophage activation precedes sensory cell pathogenesis, and strong macrophage activity is maintained until sensory cell degradation is complete. Collectively, these findings suggest that mature tissue macrophages on the basilar membrane are a dynamic group of cells that are capable of vigorous adaptation to changes in the local sensory epithelium environment influenced by sensory cell status.

  9. Development of multiple necrotizing enteritis induced by a tumor necrosis factor-like cytokine from lipopolysaccharide-stimulated peritoneal macrophages in rats.

    PubMed Central

    Torimoto, K.; Sato, N.; Okubo, M.; Yagihashi, A.; Wada, Y.; Hara, I.; Hayasaka, H.; Kikuchi, K.

    1990-01-01

    We report the development of an animal model of multiple necrotizing enteritis (MNE) in rats. When rats were injected directly with a culture supernatant of lipopolysaccharide (LPS)-stimulated rat peritoneal macrophages into the abdominal aorta, the overt pathologic lesions of MNE developed within 30 minutes after injection. The rats showed an elevated level of blood fibrinogen degradation product content even 30 minutes after injection. Furthermore the rats that were pretreated intravenously with heparin sulfate did not develop MNE, indicating the acute disturbances of blood microcirculation in the intestine. Multiple necrotizing enteritis was developed also by the injection with recombinant tumor necrosis factor (rTNF) but rarely was observed with even a high dose of recombinant interleukin-1 (rIL-1) or platelet-activating factor (PAF). The supernatant was cytotoxic in vitro to TNF-susceptible LM and many other cells but was less cytotoxic to the TNF-resistant LR line. Partial purification of the supernatant suggested that the supernatant contained a cytokine that has biochemical features of TNF. Furthermore polyclonal anti-TNF antibody could inhibit not only the cytotoxicity in vitro but also MNE development in vivo by this factor. These data strongly indicate that MNE possibly could be caused by a TNF-like cytokine produced by macrophages that are stimulated by the endotoxin. Images Figure 1 PMID:2240161

  10. Mice Lacking Endoglin in Macrophages Show an Impaired Immune Response

    PubMed Central

    Ojeda-Fernández, Luisa; Recio-Poveda, Lucía; Aristorena, Mikel; Lastres, Pedro; Blanco, Francisco J.; Sanz-Rodríguez, Francisco; Gallardo-Vara, Eunate; de las Casas-Engel, Mateo; Corbí, Ángel; Arthur, Helen M.; Bernabeu, Carmelo; Botella, Luisa M.

    2016-01-01

    Endoglin is an auxiliary receptor for members of the TGF-β superfamily and plays an important role in the homeostasis of the vessel wall. Mutations in endoglin gene (ENG) or in the closely related TGF-β receptor type I ACVRL1/ALK1 are responsible for a rare dominant vascular dysplasia, the Hereditary Hemorrhagic Telangiectasia (HHT), or Rendu-Osler-Weber syndrome. Endoglin is also expressed in human macrophages, but its role in macrophage function remains unknown. In this work, we show that endoglin expression is triggered during the monocyte-macrophage differentiation process, both in vitro and during the in vivo differentiation of blood monocytes recruited to foci of inflammation in wild-type C57BL/6 mice. To analyze the role of endoglin in macrophages in vivo, an endoglin myeloid lineage specific knock-out mouse line (Engfl/flLysMCre) was generated. These mice show a predisposition to develop spontaneous infections by opportunistic bacteria. Engfl/flLysMCre mice also display increased survival following LPS-induced peritonitis, suggesting a delayed immune response. Phagocytic activity is impaired in peritoneal macrophages, altering one of the main functions of macrophages which contributes to the initiation of the immune response. We also observed altered expression of TGF-β1 target genes in endoglin deficient peritoneal macrophages. Overall, the altered immune activity of endoglin deficient macrophages could help to explain the higher rate of infectious diseases seen in HHT1 patients. PMID:27010826

  11. Structural characterization and chromosomal location of the mouse macrophage migration inhibitory factor gene and pseudogenes

    SciTech Connect

    Bozza, M.; Gerard, C.; Kolakowski, L.F. Jr.

    1995-06-10

    Macrophage migration inhibitory factor, MIF, is a cytokine released by T-lymphocytes, macrophages, and the pituitary gland that serves to integrate peripheral and central inflammatory responses. Ubiquitous expression and developmental regulation suggest that MIF may have additional roles outside of the immune system. Here we report the structure and chromosomal location of the mouse Mif gene and the partial characterization of five Mif pseudogenes. The mouse Mif gene spans less than 0.7 kb of chromosomal DNA and is composed of three exons. A comparison between the mouse and the human genes shows a similar gene structure and common regulatory elements in both promoter regions. The mouse Mif gene maps to the middle region of chromosome 10, between Bcr and S100b, which have been mapped to human chromosomes 22q11 and 21q22.3, respectively. The entire sequence of two pseudogenes demonstrates the absence of introns, the presence of the 5{prime} untranslated region of the cDNA, a 3{prime} poly(A) tail, and the lack of sequence similarity with untranscribed regions of the gene. The five pseudogenes are highly homologous to the cDNA, but contain a variable number of mutations that would produce mutated or truncated MIF-like proteins. Phylogenetic analyses of MIF genes and pseudogenes indicate several independent genetic events that can account for multiple genomic integrations. Three of the Mif pseudogenes were also mapped by interspecific backcross to chromosomes 1, 9, and 17. These results suggest that Mif pseudogenes originated by retrotransposition. 46 refs., 5 figs., 1 tab.

  12. Glucocerebrosidase gene-deficient mouse recapitulates Gaucher disease displaying cellular and molecular dysregulation beyond the macrophage.

    PubMed

    Mistry, Pramod K; Liu, Jun; Yang, Mei; Nottoli, Timothy; McGrath, James; Jain, Dhanpat; Zhang, Kate; Keutzer, Joan; Chuang, Wei-Lien; Chuang, Wei-Lein; Mehal, Wajahat Z; Zhao, Hongyu; Lin, Aiping; Mane, Shrikant; Liu, Xuan; Peng, Yuan Z; Li, Jian H; Agrawal, Manasi; Zhu, Ling-Ling; Blair, Harry C; Robinson, Lisa J; Iqbal, Jameel; Sun, Li; Zaidi, Mone

    2010-11-09

    In nonneuronopathic type 1 Gaucher disease (GD1), mutations in the glucocerebrosidase gene (GBA1) gene result in glucocerebrosidase deficiency and the accumulation of its substrate, glucocerebroside (GL-1), in the lysosomes of mononuclear phagocytes. This prevailing macrophage-centric view, however, does not explain emerging aspects of the disease, including malignancy, autoimmune disease, Parkinson disease, and osteoporosis. We conditionally deleted the GBA1 gene in hematopoietic and mesenchymal cell lineages using an Mx1 promoter. Although this mouse fully recapitulated human GD1, cytokine measurements, microarray analysis, and cellular immunophenotyping together revealed widespread dysfunction not only of macrophages, but also of thymic T cells, dendritic cells, and osteoblasts. The severe osteoporosis was caused by a defect in osteoblastic bone formation arising from an inhibitory effect of the accumulated lipids LysoGL-1 and GL-1 on protein kinase C. This study provides direct evidence for the involvement in GD1 of multiple cell lineages, suggesting that cells other than macrophages may be worthwhile therapeutic targets.

  13. Lipid raft-dependent uptake, signaling, and intracellular fate of Porphyromonas gingivalis in mouse macrophages

    PubMed Central

    Wang, Min; Hajishengallis, George

    2009-01-01

    Summary Lipid rafts are cholesterol-enriched microdomains involved in cellular trafficking and implicated as portals for certain pathogens. We sought to determine whether the oral pathogen Porphyromonas gingivalis enters macrophages via lipid rafts, and if so, to examine the impact of raft entry on its intracellular fate. Using J774A.1 mouse macrophages, we found that P. gingivalis colocalizes with lipid rafts in a cholesterol-dependent way. Depletion of cellular cholesterol using methyl-β-cyclodextrin resulted in about 50% inhibition of P. gingivalis uptake, although this effect was reversed by cholesterol reconstitution. The intracellular survival of P. gingivalis was dramatically inhibited in cholesterol-depleted cells relative to untreated or cholesterol-reconstituted cells, even when infections were adjusted to allow equilibration of the initial intracellular bacterial load. P. gingivalis thus appeared to exploit raft-mediated uptake for promoting its survival. Consistent with this, lipid raft disruption enhanced the colocalization of internalized P. gingivalis with lysosomes. In contrast, raft disruption did not affect the expression of host receptors interacting with P. gingivalis, although it significantly inhibited signal transduction. In summary, P. gingivalis uses macrophage lipid rafts as signaling and entry platforms, which determine its intracellular fate to the pathogen’s own advantage. PMID:18547335

  14. Biosynthesis of anandamide and related acylethanolamides in mouse J774 macrophages and N18 neuroblastoma cells.

    PubMed Central

    Di Marzo, V; De Petrocellis, L; Sepe, N; Buono, A

    1996-01-01

    Anandamide (arachidonoylethanolamide, AnNH) has been recently proposed as the endogenous ligand at the brain cannabinoid receptor CB1. Two alternative pathways have been suggested for the biosynthesis of this putative mediator in the central nervous system. Here we present data (1) substantiating further the mechanism by which AnNH is produced by phospholipase D (PLD)-catalysed hydrolysis of N-arachidonoylphosphatidylethanolamine in mouse neuroblastoma N18TG2 cells, and (2) suggesting for the first time that AnNH is biosynthesized via the same mechanism in a non-neuronal cell line, mouse J774 macrophages, together with other acylethanolamides and is possibly involved in the control of the immune/inflammatory response. Lipids from both neuroblastoma cells and J774 macrophages were shown to contain a family of N-acylphosphatidylethanolamines (N-aPEs), including the possible precursor of AnNH, N-arachidonoyl-PE. Treatment with exogenous PLD, but not with exogenous phospholipase A2 and ethanolamine, resulted in the production of a series of acylethanolamides (AEs), including AnNH, from both cell types. The formation of AEs was accompanied by a decrease in the levels of the corresponding N-aPEs. Enzymically active homogenates from either neuroblastoma cells or J774 macrophages were shown to convert synthetic N-[3H]arachidonoyl-PE into [3H]AnNH, thus suggesting that in both cells an enzyme is present which is capable of catalysing the hydrolysis of N-aPE(s) to the corresponding AE(s). Finally, as previously shown in central neurons, on stimulation with ionomycin, J774 macrophages also produced a mixture of AEs including AnNH and palmitoylethanolamide, which has been proposed as the preferential endogenous ligand at the peripheral cannabinoid receptor CB2 and, consequently, as a possible down-modulator of mast cells. On the basis of this as well as previous findings it is now possible to hypothesize for AnNH and palmitoylethanolamide, co-synthesized by macrophages, a role

  15. Lycopene inhibits LPS-induced proinflammatory mediator inducible nitric oxide synthase in mouse macrophage cells.

    PubMed

    Rafi, Mohamed M; Yadav, Prem Narayan; Reyes, Marynell

    2007-01-01

    Lycopene is a fat-soluble red-orange carotenoid found primarily in tomatoes and tomato-derived products, including tomato sauce, tomato paste, and ketchup, and other dietary sources, including dried apricots, guava, watermelon, papaya, and pink grapefruit. In this study, we have demonstrated the molecular mechanism underlying the anti-inflammatory properties of lycopene using a mouse macrophage cell line (RAW 264.7). Treatment with lycopene (10 microM) inhibited lipopolysaccharide (LPS)-stimulated nitric oxide (NO) production (40% compared with the control). Western blotting and reverse transcription-polymerase chain reaction (RT-PCR) analysis showed that lycopene treatment decreased LPS-induced inducible nitric oxide synthase (iNOS) protein and mRNA expression in RAW 264.7 cells, respectively. These results suggest that lycopene has anti-inflammatory activity by inhibiting iNOS proteins and mRNA expressions in mouse macrophage cell lines. Furthermore, cyclooxygenase-2 (COX-2) protein and mRNA expression were not affected by treatment with lycopene.

  16. Genomic cloning of mouse MIF (macrophage inhibitory factor) and genetic mapping of the human and mouse expressed gene and nine mouse pseudogenes

    SciTech Connect

    Kozak, C.A.; Adamson, M.C.; Buckler, C.E.

    1995-06-10

    The single functional mouse gene for MIF (macrophage migration inhibitory factor) has been cloned from a P1 library, and its exon/intron structure determined and shown to resemble that of the human gene. The gene was mapped to chromosome 10 using two multilocus crosses between laboratory strains and either Mus musculus or Mus spretus. Nine additional loci containing related sequences, apparently all processed pseudogenes, were also mapped to chromosomes 1, 2, 3, 7, 8, 9, 12, 17, and 19. While most of these pseudogenes were also found in inbred mice and M. spretus, some are species specific. This suggests that there have been active phases of pseudogene formation in Mus both before and after the separation of musculus and spretus. The human gene contains no pseudogene; we assigned the human gene to chromosome 19, consistent with the location of mouse and human functional genes for MIF in a region of conserved linkage. 43 refs., 4 figs., 1 tab.

  17. Immature monocytes recruited to the ischemic mouse brain differentiate into macrophages with features of alternative activation.

    PubMed

    Miró-Mur, Francesc; Pérez-de-Puig, Isabel; Ferrer-Ferrer, Maura; Urra, Xabier; Justicia, Carles; Chamorro, Angel; Planas, Anna M

    2016-03-01

    Acute stroke induces a local inflammatory reaction causing leukocyte infiltration. Circulating monocytes are recruited to the ischemic brain and become tissue macrophages morphologically indistinguishable from reactive microglia. However, monocytes are a heterogeneous population of cells with different functions. Herein, we investigated the infiltration and fate of the monocyte subsets in a mouse model of focal brain ischemia by permanent occlusion of the distal portion of the middle cerebral artery. We separated two main subtypes of CD11b(hi) monocytes according to their expression of the surface markers Ly6C and CD43. Using adoptive transfer of reporter monocytes and monocyte depletion, we identified the pro-inflammatory Ly6C(hi)CD43(lo)CCR2(+) subset as the predominant monocytes recruited to the ischemic tissue. Monocytes were seen in the leptomeninges from where they entered the cortex along the penetrating arterioles. Four days post-ischemia, they had invaded the infarcted core, where they were often located adjacent to blood vessels. At this time, Iba-1(-) and Iba-1(+) cells in the ischemic tissue incorporated BrdU, but BrdU incorporation was rare in the reporter monocytes. The monocyte phenotype progressively changed by down-regulating Ly6C, up-regulating F4/80, expressing low or intermediate levels of Iba-1, and developing macrophage morphology. Moreover, monocytes progressively acquired the expression of typical markers of alternatively activated macrophages, like arginase-1 and YM-1. Collectively, the results show that stroke mobilized immature pro-inflammatory Ly6C(hi)CD43(lo) monocytes that acutely infiltrated the ischemic tissue reaching the core of the lesion. Monocytes differentiated to macrophages with features of alternative activation suggesting possible roles in tissue repair during the sub-acute phase of stroke.

  18. Protectin DX increases survival in a mouse model of sepsis by ameliorating inflammation and modulating macrophage phenotype.

    PubMed

    Xia, Haifa; Chen, Lin; Liu, Hong; Sun, Zhipeng; Yang, Wen; Yang, Yiyi; Cui, Shunan; Li, Shengnan; Wang, Yaxin; Song, Limin; Abdelgawad, Amro Fayez; Shang, You; Yao, Shanglong

    2017-12-01

    Recently, a serial of studies have demonstrated that lipid mediators derived from Omega-3 fatty acid docosahexaenoic acid have pro-resolving or anti-inflammatory effects in many inflammatory diseases. Here, we sought to evaluate whether Protectin DX (PDX, an isomer of Protecin D1), a newly identified lipid mediator, could protect mice against sepsis and explore the underling mechanism. Animal model of sepsis was established by cecum ligation and puncture (CLP). We found that PDX increased overall survival rate within eight days and attenuated multiple organ injury in septic mice. In addition, PDX reduced pro-inflammatory cytokines and bacterial load 24 h after CLP. Moreover, PDX promoted phagocytosis of peritoneal macrophages and increased the percentage of M2 macrophages in peritoneum of septic mice. In vitro, M2 macrophage markers (Arg1 and Ym1) and its transcriptional regulator (peroxisome proliferator-activated receptor-γ, PPAR-γ) were upregulated in Raw264.7 macrophages challenged with PDX. GW9662 (a PPAR-γ inhibitor) and PPAR-γ siRNA abrogated the induction of Arg1 and Ym1 by PDX in Raw264.7 cells. Taken together, our results suggest that PDX is able to promote M2 polarization, enhance phagocytosis activity of macrophage and accelerate resolution of inflammation, finally leading to increased survival rate of septic mice.

  19. CSF-1 deficiency in the op/op mouse has differential effects on macrophage populations and differentiation stages.

    PubMed

    Wiktor-Jedrzejczak, W; Ratajczak, M Z; Ptasznik, A; Sell, K W; Ahmed-Ansari, A; Ostertag, W

    1992-09-01

    Osteopetrosis and the absence of colony-stimulating factor 1 (CSF-1) in op/op mice are associated with decreased cellularity of the bone marrow (to one tenth of the normal), a very significant reduction in the number of cells recovered from peritoneal, pleural, and alveolar lavages, moderate leukopenia, and a slight decrease in the number of cells per spleen and thymus. Furthermore, op/op mice possess deficiencies in the number of macrophages in various organs. These cells are apparently absent in the bone marrow, severely reduced (5%-15% of the normal number) in peritoneal and pleural cavities and in the lungs. In addition, a marked decrease in the frequency and total number of circulating monocytes is present (5% of the normal). The deficiency of macrophages is less severe in the liver, spleen, and thymus of op/op mice (approximately 30% of those seen in normal). There is a concomitant redistribution of macrophage progenitor cells (granulocyte-macrophage colony-forming units, CFU-GM) in op/op mice from the marrow to the spleen and liver, associated with an increased sensitivity to interleukin 3 (IL-3). Their total number is decreased at least threefold compared to control mice. Moreover, op/op mice have at least a fivefold reduction in the total number of day-11 spleen colony-forming units (CFU-S) associated with their redistribution to the spleen and liver. These data suggest that the macrophage system in op/op mice is reduced at all levels tested, that is, at the level of mature macrophages, the level of progenitors, and the level of stem cells, whereas the redistribution of progenitor and stem cells could be viewed as a secondary consequence of osteopetrosis. Furthermore, these data suggest that macrophage dependency in vivo on CSF-1 is limited and different in various organs. Particularly in the liver, spleen, and thymus, other growth factors may significantly compensate for CSF-1 deficiency. Based on the relative decrease in the number of CFU-GM in the op

  20. PEDF mediates pathological neovascularization by regulating macrophage recruitment and polarization in the mouse model of oxygen-induced retinopathy.

    PubMed

    Gao, Sha; Li, Changwei; Zhu, Yanji; Wang, Yanuo; Sui, Ailing; Zhong, Yisheng; Xie, Bing; Shen, Xi

    2017-02-17

    Macrophages have been demonstrated to play a proangiogenic role in retinal pathological vascular growth. Pigment epithelium-derived factor (PEDF) works as a powerful endogenous angiogenesis inhibitor, but its role in macrophage recruitment and polarization is largely unknown. To explore the underlying mechanisms, we first evaluated macrophage polarization in the retinas of the oxygen-induced retinopathy (OIR) mouse model. Compared to that in normal controls, M1- and M2-like macrophages were all abundantly increased in the retinas of OIR mice. In addition, both M1 and M2 subtypes significantly promoted neovascularization in vitro and in vivo. In addition, we found that PEDF inhibited retinal neovascularization by dampening macrophage recruitment and polarization. Furthermore, PEDF inhibited macrophage polarization through adipose triglyceride lipase (ATGL) by regulating the activation of MAPKs and the Notch1 pathway, as we found that the phosphorylation of MAPKs, including p38MAPK, JNK and ERK, as well as the accumulation of Notch1 were essential for hypoxia-induced macrophage polarization, while PEDF significantly dampened M1 subtype-related iNOS and M2 subtype-related Arg-1 expression by inhibiting hypoxia-induced activation of Notch1 and MAPKs through ATGL. These findings reveal a protective role of PEDF against retinal neovascularization by regulating macrophage recruitment and polarization.

  1. PEDF mediates pathological neovascularization by regulating macrophage recruitment and polarization in the mouse model of oxygen-induced retinopathy

    PubMed Central

    Gao, Sha; Li, Changwei; Zhu, Yanji; Wang, Yanuo; Sui, Ailing; Zhong, Yisheng; Xie, Bing; Shen, Xi

    2017-01-01

    Macrophages have been demonstrated to play a proangiogenic role in retinal pathological vascular growth. Pigment epithelium-derived factor (PEDF) works as a powerful endogenous angiogenesis inhibitor, but its role in macrophage recruitment and polarization is largely unknown. To explore the underlying mechanisms, we first evaluated macrophage polarization in the retinas of the oxygen-induced retinopathy (OIR) mouse model. Compared to that in normal controls, M1- and M2-like macrophages were all abundantly increased in the retinas of OIR mice. In addition, both M1 and M2 subtypes significantly promoted neovascularization in vitro and in vivo. In addition, we found that PEDF inhibited retinal neovascularization by dampening macrophage recruitment and polarization. Furthermore, PEDF inhibited macrophage polarization through adipose triglyceride lipase (ATGL) by regulating the activation of MAPKs and the Notch1 pathway, as we found that the phosphorylation of MAPKs, including p38MAPK, JNK and ERK, as well as the accumulation of Notch1 were essential for hypoxia-induced macrophage polarization, while PEDF significantly dampened M1 subtype-related iNOS and M2 subtype-related Arg-1 expression by inhibiting hypoxia-induced activation of Notch1 and MAPKs through ATGL. These findings reveal a protective role of PEDF against retinal neovascularization by regulating macrophage recruitment and polarization. PMID:28211523

  2. Hemopexin therapy reverts heme-induced proinflammatory phenotypic switching of macrophages in a mouse model of sickle cell disease.

    PubMed

    Vinchi, Francesca; Costa da Silva, Milene; Ingoglia, Giada; Petrillo, Sara; Brinkman, Nathan; Zuercher, Adrian; Cerwenka, Adelheid; Tolosano, Emanuela; Muckenthaler, Martina U

    2016-01-28

    Hemolytic diseases, such as sickle cell anemia and thalassemia, are characterized by enhanced release of hemoglobin and heme into the circulation, heme-iron loading of reticulo-endothelial system macrophages, and chronic inflammation. Here we show that in addition to activating the vascular endothelium, hemoglobin and heme excess alters the macrophage phenotype in sickle cell disease. We demonstrate that exposure of cultured macrophages to hemolytic aged red blood cells, heme, or iron causes their functional phenotypic change toward a proinflammatory state. In addition, hemolysis and macrophage heme/iron accumulation in a mouse model of sickle disease trigger similar proinflammatory phenotypic alterations in hepatic macrophages. On the mechanistic level, this critically depends on reactive oxygen species production and activation of the Toll-like receptor 4 signaling pathway. We further demonstrate that the heme scavenger hemopexin protects reticulo-endothelial macrophages from heme overload in heme-loaded Hx-null mice and reduces production of cytokines and reactive oxygen species. Importantly, in sickle mice, the administration of human exogenous hemopexin attenuates the inflammatory phenotype of macrophages. Taken together, our data suggest that therapeutic administration of hemopexin is beneficial to counteract heme-driven macrophage-mediated inflammation and its pathophysiologic consequences in sickle cell disease.

  3. Hemopexin therapy reverts heme-induced proinflammatory phenotypic switching of macrophages in a mouse model of sickle cell disease

    PubMed Central

    Vinchi, Francesca; Costa da Silva, Milene; Ingoglia, Giada; Petrillo, Sara; Brinkman, Nathan; Zuercher, Adrian; Cerwenka, Adelheid; Tolosano, Emanuela

    2016-01-01

    Hemolytic diseases, such as sickle cell anemia and thalassemia, are characterized by enhanced release of hemoglobin and heme into the circulation, heme-iron loading of reticulo-endothelial system macrophages, and chronic inflammation. Here we show that in addition to activating the vascular endothelium, hemoglobin and heme excess alters the macrophage phenotype in sickle cell disease. We demonstrate that exposure of cultured macrophages to hemolytic aged red blood cells, heme, or iron causes their functional phenotypic change toward a proinflammatory state. In addition, hemolysis and macrophage heme/iron accumulation in a mouse model of sickle disease trigger similar proinflammatory phenotypic alterations in hepatic macrophages. On the mechanistic level, this critically depends on reactive oxygen species production and activation of the Toll-like receptor 4 signaling pathway. We further demonstrate that the heme scavenger hemopexin protects reticulo-endothelial macrophages from heme overload in heme-loaded Hx-null mice and reduces production of cytokines and reactive oxygen species. Importantly, in sickle mice, the administration of human exogenous hemopexin attenuates the inflammatory phenotype of macrophages. Taken together, our data suggest that therapeutic administration of hemopexin is beneficial to counteract heme-driven macrophage-mediated inflammation and its pathophysiologic consequences in sickle cell disease. PMID:26675351

  4. Action of the anti-tumoral zinc(II)phthalocyanine in solution or encapsulated into nanoparticles of poly-ɛ-caprolactone internalized by peritoneal macrophages

    NASA Astrophysics Data System (ADS)

    da Silva Abe, Amanda Santos Franco; Ricci-Júnior, Eduardo; Teixeira Lima Castelo Branco, Morgana; de Brito Gitirana, Lycia

    2016-09-01

    Nanoparticles (NPs) have been used as drug delivery systems (DDS) exhibiting high cell penetration power. As an antitumor photosensitizer, zinc(II) phthalocyanine (ZnPc) was applied in photodynamic therapy (PDT) since its phototoxic activity promotes death of tumor cells in the presence of laser light. Since drugs do not interact only with tumor cells in living organisms, this study aimed to analyze the action of ZnPc-loaded in nanoparticles (ZnPc-NPs) and in solution (free ZnPc) using peritoneal macrophages as a model of non-neoplastic cells that inhabit the tumoral stroma. NPs were produced by emulsion and evaporation of solvent and characterized by dynamic light scattering and transmission electron microscopy. Assays as 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, light microscopy and laser scanning confocal microscopy were performed to evaluate the drug effects in the presence or absence of laser light applied in PDT. NPs exhibited dimensions between 290 and 350 nm and rounded shape. Empty NP did not affect cell viability, showing that these nanocarriers are biocompatible DDS. Free ZnPc was randomly distributed in the cytoplasm, while ZnPc-NP was preferably located near the nucleus. At 5 μg ml-1, free ZnPc caused greater loss of cell viability in the absence of laser when compared to ZnPc-NPs, in the presence or absence of irradiation. In contrast, free ZnPc and ZnPc-NPs (0.5 μg ml-1) promoted cell death to the same extent in cells treated with laser light or not. This demonstrates that the performance of this drug is dose dependent in its free form, but not in its nanoencapsulated form. Cells irradiated with laser (100 mW) and treated with free ZnPc or with ZnPc-NPs showed morphological changes. These observations show that both free ZnPc and ZnPc-NPs irradiated with laser light cause cell damage in peritoneal macrophages.

  5. A Novel Polysaccharide in Insects Activates the Innate Immune System in Mouse Macrophage RAW264 Cells

    PubMed Central

    Ohta, Takashi; Ido, Atsushi; Kusano, Kie; Miura, Chiemi; Miura, Takeshi

    2014-01-01

    A novel water-soluble polysaccharide was identified in the pupae of the melon fly (Bactrocera cucurbitae) as a molecule that activates the mammalian innate immune response. We attempted to purify this innate immune activator using nitric oxide (NO) production in mouse RAW264 macrophages as an indicator of immunostimulatory activity. A novel acidic polysaccharide was identified, which we named “dipterose”, with a molecular weight of 1.01×106 and comprising nine monosaccharides. Dipterose was synthesized in the melon fly itself at the pupal stage. The NO-producing activity of dipterose was approximately equal to that of lipopolysaccharide, a potent immunostimulator. Inhibition of Toll-like receptor 4 (TLR4) led to the suppression of NO production by dipterose. Furthermore, dipterose induced the expression of proinflammatory cytokines and interferon β (IFNβ) and promoted the activation of nuclear factor kappa B (NF-κB) in macrophages, indicating that it stimulates the induction of various cytokines in RAW264 cells via the TLR4 signaling pathway. Our results thus suggest that dipterose activates the innate immune response against various pathogenic microorganisms and viral infections. This is the first identification of an innate immune-activating polysaccharide from an animal. PMID:25490773

  6. Modeling the cellular impact of nanoshell-based biosensors using mouse alveolar macrophage cultures.

    PubMed

    Swarup, Vimal P; Huang, Yiming; Murillo, Genoveva; Saleiro, Diana; Mehta, Rajendra G; Bishnoi, Sandra Whaley

    2011-11-01

    In this study, the relative toxicity of native gold-silica nanoshells (NS) has been compared to nanoshells modified with poly(ethylene glycol)-thiol (PEG-SH) and a Raman-active PEG, p-mercaptoaniline-poly(ethylene glycol) (pMA-PEG), in mouse alveolar macrophage cell cultures (RAW 264.7). The results from toxicity profiling using an MTT assay demonstrate that cell viability post-particle exposure is a function of three factors: nanoshell concentration, surface functionalization, and incubation time. By minimizing particle concentrations and incubation times, cell cultures are able to recover within 24 h of nanoshell removal, indicative of nanoshells having more of a cytostatic versus cytotoxic effect on macrophage cells. The mechanism of the cytostatic effect has been investigated by imaging the presence of reactive oxygen species (ROS) using a fluorescence assay kit (Image-iT™ LIVE) after the introduction of NS to the cell cultures. Elevated ROS signals are seen in the cells containing higher concentration of NS, and indicate that the major reason of toxicity may due to the oxidative stress caused by excess NS particles. Raman imaging experiments with pMA-PEG coated nanoshells showed that cells exposed for even short exposure times (∼2 h) retained those particles up to 24 h after exposure, while migration experiments suggest that surviving cells retain their nanoshells and may reallocate them to progeny cells upon cell division.

  7. A defect in the inflammation-primed macrophage-activation cascade in osteopetrotic rats.

    PubMed

    Yamamoto, N; Lindsay, D D; Naraparaju, V R; Ireland, R A; Popoff, S N

    1994-05-15

    Macrophages were activated by administration of lysophosphatidylcholine (lyso-Pc) or dodecylglycerol (DDG) to wild-type rats but not in osteopetrotic (op) mutant rats. In vitro treatment of wild-type rat peritoneal cells with lyso-Pc or DDG efficiently activated macrophages whereas treatment of op mutant rat peritoneal cells with lyso-Pc or DDG did not activate macrophages. The inflammation-primed macrophage activation cascade in rats requires participation of B lymphocytes and vitamin D binding protein (DBP). Lyso-Pc-inducible beta-galactosidase of wild-type rat B lymphocytes can convert DBP to the macrophage-activating factor (MAF), whereas B lymphocytes of the op mutant rats were shown to be deficient in lyso-Pc-inducible beta-galactosidase. DBP is conserved among mammalian species. Treatment of human DBP (Gc1 protein) with commercial glycosidases yields an extremely high titrated MAF as assayed on mouse and rat macrophages. Because the enzymatically generated MAF (GcMAF) bypasses the role of lymphocytes in macrophage activation, the op mutant rat macrophages were efficiently activated by administration of a small quantity (100 pg/rat) of GcMAF. Likewise, in vitro treatment of op rat peritoneal cells with as little as 40 pg GcMAF/ml activated macrophages.

  8. Different antiviral activity and cell specificity of interferon preparations produced by mouse peritoneal cells at 37 degrees C and at 26 degrees C.

    PubMed

    Cembrzyńska-Nowak, M

    1989-01-01

    Three sublines of mouse L cells and mouse embryo fibroblasts were used for determination of the antiviral activity of mouse interferons produced by nonadherent peritoneal exudate cells incubated either at 37 degrees C or at 26 degrees C. IFN produced at 37 degrees C or at 26 degrees C had the same antiviral activity in L Borgen, L929 cells. However, in MEC IFN-37 degrees had relatively higher activity than IFN-26 degrees. Of the interferon investigated only IFN-37 degrees exhibited antiviral activity in the established line of rat kidney cells. The IFN preparations showed no activity in the human and chicken cells. The studies on the sensitivity of viruses to both forms of IFN revealed that EMC and VSV viruses were equally sensitive to IFN-26 degrees C. However, the replication of EMC virus was more strongly inhibited by IFN-37 degrees than the multiplication of VSV virus.

  9. Evaluation of PLGA containing anti-CTLA4 inhibited endometriosis progression by regulating CD4+CD25+Treg cells in peritoneal fluid of mouse endometriosis model.

    PubMed

    Liu, Qi; Ma, Pingchuan; Liu, Lanxia; Ma, Guilei; Ma, Jingjing; Liu, Xiaoxuan; Liu, Yijin; Lin, Wanjun; Zhu, Yingjun

    2017-01-01

    Our study investigated poly(lactic-co-glycolic acid) (PLGA) as protein delivery vehicles encapsulate CTLA-4-antibody (anti-CTLA-4) which is essential for CD4+CD25+Treg cells suppressive function exposing superior potential for inhibiting endometriosis progress in mouse model than single anti-CTLA-4. Anti-CTLA-4 loaded PLGA combined to ligands CTLA-4 in surface of CD4+CD25+Treg cells which distributed in peritoneal fluid of mouse endometriosis model. The particle size, zeta potential of the anti-CTLA-4 loaded nanoparticles was detected by dynamic light scattering. Morphology of nanoparticles was evaluated by transmission electron microscopy (TEM). Confocal laser scanning microscopy (CLSM) indicated distribution of anti-CTLA-4 with PLGA or without in peritoneal fluid. Cumulative anti-CTLA-4 release from nanoparticles was evaluated by Micro BCA assay. The percentage of CD4+CD25+Treg cells in peritoneal fluid was demonstrated by flow cytometer. In vitro experiment we co-culture ectopic endometrial cells (EEC) with isolated CD4+CD25+Treg cells in peritoneal fluid (PF), proliferation and invasion of ectopic endometrial cells (EEC) was measured by BrdU ELISA assay and Matrigel invasion assay. In comparison with anti-CTLA-4 without nanoparticles, the bioconjugates PLGA/anti-CTLA-4 were tolerated in peritoneal fluid with a controlled release of anti-CTLA-4 in 3, 7, 14days. Moreover, PLGA/anti-CTLA-4 had superior protective regulation ability to reduce level of CD4+CD25+Treg cells in peritoneal fluid. Most strikingly, in vitro experiment, PLGA/anti-CTLA-4 exhibited better ability in inhibiting proliferation and invasion of ectopic endometrial cells in co-culture system compared with anti-CTLA-4. Progressively, PLGA/anti-CTLA-4 had better suppressive activity to inhibited IL-10 and TGF-beta secreted by CD4+CD25+Treg cells which indicating that PLGA/anti-CTLA-4 suppressed cells proliferation and invasion through reduced IL-10 and TGF-beta production. Thus, PLGA/anti-CTLA-4 may

  10. Analysis of TRPV channel activation by stimulation of FCεRI and MRGPR receptors in mouse peritoneal mast cells

    PubMed Central

    Solís-López, A.; Kriebs, U.; Marx, A.; Mannebach, S.; Liedtke, W. B.; Caterina, M. J.; Freichel, M.; Tsvilovskyy, V. V.

    2017-01-01

    The activation of mast cells (MC) is part of the innate and adaptive immune responses and depends on Ca2+ entry across the plasma membrane, leading to the release of preformed inflammatory mediators by degranulation or by de novo synthesis. The calcium conducting channels of the TRPV family, known by their thermo and osmotic sensitivity, have been proposed to be involved in the MC activation in murine, rat, and human mast cell models. So far, immortalized mast cell lines and nonspecific TRPV blockers have been employed to characterize the role of TRPV channels in MC. The aim of this work was to elucidate the physiological role of TRPV channels by using primary peritoneal mast cells (PMCs), a model of connective tissue type mast cells. Our RT-PCR and NanoString analysis identified the expression of TRPV1, TRPV2, and TRPV4 channels in PMCs. For determination of the functional role of the expressed TRPV channels we performed measurements of intracellular free Ca2+ concentrations and beta-hexosaminidase release in PMCs obtained from wild type and mice deficient for corresponding TRPV1, TRPV2 and TRPV4 in response to various receptor-mediated and physical stimuli. Furthermore, substances known as activators of corresponding TRPV-channels were also tested using these assays. Our results demonstrate that TRPV1, TRPV2, and TRPV4 do not participate in activation pathways triggered by activation of the high-affinity receptors for IgE (FcεRI), Mrgprb2 receptor, or Endothelin-1 receptor nor by heat or osmotic stimulation in mouse PMCs. PMID:28158279

  11. Analysis of TRPV channel activation by stimulation of FCεRI and MRGPR receptors in mouse peritoneal mast cells.

    PubMed

    Solís-López, A; Kriebs, U; Marx, A; Mannebach, S; Liedtke, W B; Caterina, M J; Freichel, M; Tsvilovskyy, V V

    2017-01-01

    The activation of mast cells (MC) is part of the innate and adaptive immune responses and depends on Ca2+ entry across the plasma membrane, leading to the release of preformed inflammatory mediators by degranulation or by de novo synthesis. The calcium conducting channels of the TRPV family, known by their thermo and osmotic sensitivity, have been proposed to be involved in the MC activation in murine, rat, and human mast cell models. So far, immortalized mast cell lines and nonspecific TRPV blockers have been employed to characterize the role of TRPV channels in MC. The aim of this work was to elucidate the physiological role of TRPV channels by using primary peritoneal mast cells (PMCs), a model of connective tissue type mast cells. Our RT-PCR and NanoString analysis identified the expression of TRPV1, TRPV2, and TRPV4 channels in PMCs. For determination of the functional role of the expressed TRPV channels we performed measurements of intracellular free Ca2+ concentrations and beta-hexosaminidase release in PMCs obtained from wild type and mice deficient for corresponding TRPV1, TRPV2 and TRPV4 in response to various receptor-mediated and physical stimuli. Furthermore, substances known as activators of corresponding TRPV-channels were also tested using these assays. Our results demonstrate that TRPV1, TRPV2, and TRPV4 do not participate in activation pathways triggered by activation of the high-affinity receptors for IgE (FcεRI), Mrgprb2 receptor, or Endothelin-1 receptor nor by heat or osmotic stimulation in mouse PMCs.

  12. Mouse Mesenchymal Progenitor Cells Expressing Adipogenic and Osteogenic Transcription Factors Suppress the Macrophage Inflammatory Response.

    PubMed

    Fernandez, Natalie; Renna, Heather; McHugh, Lauren; Mazolkova, Katie; Crugnola, William; Evans, Jodi F

    2017-01-01

    Mesenchymal progenitor cell characteristics that can identify progenitor populations with specific functions in immunity are actively being investigated. Progenitors from bone marrow and adipose tissue regulate the macrophage (MΦ) inflammatory response by promoting the switch from an inflammatory to an anti-inflammatory phenotype. Conversely, mesenchymal progenitors from the mouse aorta (mAo) support and contribute to the MΦ response under inflammatory conditions. We used cell lines with purported opposing immune-regulatory function, a bone marrow derived mesenchymal progenitor cell line (D1) and a mouse aorta derived mesenchymal progenitor cell line (mAo). Their interaction and regulation of the MΦ cell response to the inflammatory mediator, lipopolysaccharide (LPS), was examined by coculture. As expected, D1 cells suppressed NO, TNF-α, and IL-12p70 production but MΦ phagocytic activity remained unchanged. The mAo cells enhanced NO and TNF-α production in coculture and enhanced MΦ phagocytic activity. Using flow cytometry and PCR array, we then sought to identify sets of MSC-associated genes and markers that are expressed by these progenitor populations. We have determined that immune-supportive mesenchymal progenitors highly express chondrogenic and tenogenic transcription factors while immunosuppressive mesenchymal progenitors highly express adipogenic and osteogenic transcription factors. These data will be useful for the isolation, purification, and modification of mesenchymal progenitors to be used in the treatment of inflammatory diseases.

  13. Transcriptional signatures of BALB/c mouse macrophages housing multiplying Leishmania amazonensis amastigotes

    PubMed Central

    Fortéa, José Osorio y; de La Llave, Emilie; Regnault, Béatrice; Coppée, Jean-Yves; Milon, Geneviève; Lang, Thierry; Prina, Eric

    2009-01-01

    Background Mammal macrophages (MΦ) display a wide range of functions which contribute to surveying and maintaining tissue integrity. One such function is phagocytosis, a process known to be subverted by parasites like Leishmania (L). Indeed, the intracellular development of L. amazonensis amastigote relies on the biogenesis and dynamic remodelling of a phagolysosome, termed the parasitophorous vacuole, primarily within dermal MΦ. Results Using BALB/c mouse bone marrow-derived MΦ loaded or not with amastigotes, we analyzed the transcriptional signatures of MΦ 24 h later, when the amastigote population was growing. Total RNA from MΦ cultures were processed and hybridized onto Affymetrix Mouse430_2 GeneChips®, and some transcripts were also analyzed by Real-Time quantitative PCR (RTQPCR). A total of 1,248 probe-sets showed significant differential expression. Comparable fold-change values were obtained between the Affymetrix technology and the RTQPCR method. Ingenuity Pathway Analysis software® pinpointed the up-regulation of the sterol biosynthesis pathway (p-value = 1.31e-02) involving several genes (1.95 to 4.30 fold change values), and the modulation of various genes involved in polyamine synthesis and in pro/counter-inflammatory signalling. Conclusion Our findings suggest that the amastigote growth relies on early coordinated gene expression of the MΦ lipid and polyamine pathways. Moreover, these MΦ hosting multiplying L. amazonensis amastigotes display a transcriptional profile biased towards parasite-and host tissue-protective processes. PMID:19302708

  14. Mouse Mesenchymal Progenitor Cells Expressing Adipogenic and Osteogenic Transcription Factors Suppress the Macrophage Inflammatory Response

    PubMed Central

    Fernandez, Natalie; Renna, Heather; McHugh, Lauren; Mazolkova, Katie; Crugnola, William

    2017-01-01

    Mesenchymal progenitor cell characteristics that can identify progenitor populations with specific functions in immunity are actively being investigated. Progenitors from bone marrow and adipose tissue regulate the macrophage (MΦ) inflammatory response by promoting the switch from an inflammatory to an anti-inflammatory phenotype. Conversely, mesenchymal progenitors from the mouse aorta (mAo) support and contribute to the MΦ response under inflammatory conditions. We used cell lines with purported opposing immune-regulatory function, a bone marrow derived mesenchymal progenitor cell line (D1) and a mouse aorta derived mesenchymal progenitor cell line (mAo). Their interaction and regulation of the MΦ cell response to the inflammatory mediator, lipopolysaccharide (LPS), was examined by coculture. As expected, D1 cells suppressed NO, TNF-α, and IL-12p70 production but MΦ phagocytic activity remained unchanged. The mAo cells enhanced NO and TNF-α production in coculture and enhanced MΦ phagocytic activity. Using flow cytometry and PCR array, we then sought to identify sets of MSC-associated genes and markers that are expressed by these progenitor populations. We have determined that immune-supportive mesenchymal progenitors highly express chondrogenic and tenogenic transcription factors while immunosuppressive mesenchymal progenitors highly express adipogenic and osteogenic transcription factors. These data will be useful for the isolation, purification, and modification of mesenchymal progenitors to be used in the treatment of inflammatory diseases. PMID:28191017

  15. Expression profiles for macrophage alternative activation genes in AD and in mouse models of AD

    PubMed Central

    Colton, Carol A; Mott, Ryan T; Sharpe, Hayley; Xu, Qing; Van Nostrand, William E; Vitek, Michael P

    2006-01-01

    Background Microglia are associated with neuritic plaques in Alzheimer disease (AD) and serve as a primary component of the innate immune response in the brain. Neuritic plaques are fibrous deposits composed of the amyloid beta-peptide fragments (Abeta) of the amyloid precursor protein (APP). Numerous studies have shown that the immune cells in the vicinity of amyloid deposits in AD express mRNA and proteins for pro-inflammatory cytokines, leading to the hypothesis that microglia demonstrate classical (Th-1) immune activation in AD. Nonetheless, the complex role of microglial activation has yet to be fully explored since recent studies show that peripheral macrophages enter an "alternative" activation state. Methods To study alternative activation of microglia, we used quantitative RT-PCR to identify genes associated with alternative activation in microglia, including arginase I (AGI), mannose receptor (MRC1), found in inflammatory zone 1 (FIZZ1), and chitinase 3-like 3 (YM1). Results Our findings confirmed that treatment of microglia with anti-inflammatory cytokines such as IL-4 and IL-13 induces a gene profile typical of alternative activation similar to that previously observed in peripheral macrophages. We then used this gene expression profile to examine two mouse models of AD, the APPsw (Tg-2576) and Tg-SwDI, models for amyloid deposition and for cerebral amyloid angiopathy (CAA) respectively. AGI, MRC1 and YM1 mRNA levels were significantly increased in the Tg-2576 mouse brains compared to age-matched controls while TNFα and NOS2 mRNA levels, genes commonly associated with classical activation, increased or did not change, respectively. Only TNFα mRNA increased in the Tg-SwDI mouse brain. Alternative activation genes were also identified in brain samples from individuals with AD and were compared to age-matched control individuals. In AD brain, mRNAs for TNFα, AGI, MRC1 and the chitinase-3 like 1 and 2 genes (CHI3L1; CHI3L2) were significantly increased

  16. Anti-inflammatory effects of oroxylin A on RAW 264.7 mouse macrophages induced with polyinosinic-polycytidylic acid

    PubMed Central

    LEE, JI YOUNG; PARK, WANSU

    2016-01-01

    Oroxylin A (5,7-dihydroxy-6-methoxy-2-phenylchromen-4-one; Baicalein 6-methyl ether) is an active flavonoid compound originally isolated from Scutellaria radix, which has been used to treat pulmonary infection in Korea, China, and Japan. Oroxylin A is known to possess dopamine reuptake inhibitor activity. However, the effects of oroxylin A on virus-induced macrophages has not been fully elucidated. In the present study, the anti-inflammatory effects of oroxylin A on double-stranded RNA-induced macrophages were examined. Production of nitric oxide (NO), various cytokines, as well as calcium release and the mRNA expression of signal transducer and activator of transcription 1 (STAT1) in dsRNA polyinosinic-polycytidylic acid (PIC)-induced RAW 264.7 mouse macrophages were evaluated. Oroxylin A restored the cell viability in PIC-induced RAW 264.7 mouse macrophages at concentrations of up to 50 µM. Additionally, oroxylin A significantly inhibited the production of nitric oxide (NO), interleukin (IL)-1α, IL-1β, IL-6, IL-10, interferon gamma-induced protein 10, granulocyte-colony stimulating factor (CSF), granulocyte macrophage-CSF, leukemia inhibitory factor (IL-6 class cytokine), lipopolysaccharide-induced CXC chemokine (LIX), monocyte chemoattractant protein 1, macrophage inflammatory protein (MIP)-1α, MIP-1β, MIP-2, Regulated on Activation, Normal T Expressed and Secreted, tumor necrosis factor-α, and vascular endothelial growth factor as well as calcium release and the mRNA expression of STAT1 in PIC-induced RAW 264.7 cells (P<0.05). Thus, the present results suggest that oroxylin A has anti-inflammatory properties, associated with its inhibition of NO, cytokines, chemokines and growth factors in PIC-induced macrophages via the calcium-STAT pathway. PMID:27347031

  17. Sperm-macrophage interaction in the mouse: a quantitative assay in vitro using 111indium oxine-labeled sperm

    SciTech Connect

    Olive, D.L.; Weinberg, J.B.; Haney, A.F.

    1987-12-01

    The role of reproductive tract macrophages in contraception and reproductive failure has become widely recognized. However, in vitro analysis of sperm phagocytosis by macrophages has relied upon a semi-quantitative method of sperm counting that is of limited accuracy and reproducibility. We have developed an assay using murine sperm labeled with /sup 111/indium oxine, and results indicate the labeling to be rapid and efficient. Incorporation of /sup 111/indium into sperm increased the dose and sperm concentration and reached 90% maximal uptake after 15 min incubation, with maximal uptake occurring at 30 min. No decrease in sperm motility was noted with levels of oxine in excess of those required for significant labeling. Maximal labeling efficiency occurred in phosphate-buffered saline (PBS), with Dulbecco's modified Eagle's medium (DMEM) + 10% adult bovine serum (ABS) producing significantly less uptake. Label dissociation was detectable in PBS at room temperature, but at 37 degrees C in DMEM + 10% ABS, loss of label occurred at a rate of 23.5%/h. Addition of labeled sperm to murine macrophage monolayers under optimal conditions resulted in uptake of /sup 111/indium by macrophages, while free label was unincorporated. Results indicated assay specificity for macrophage-limited uptake, with insignificant label uptake by nonphagocytic murine fibroblasts and better sensitivity than sperm counting. Macrophages from Bacillus Calmette-Guerin (BCG)-infected mice resulted in a decrease in sperm uptake. Female macrophages showed greater capacity for sperm uptake than those of the male mouse. These initial studies demonstrated the utility of this model system in enhancing the understanding of sperm-macrophage interaction in the female reproductive tract.

  18. Stimulation of beta-adrenoceptors inhibits calcium-dependent potassium-channels in mouse macrophages

    SciTech Connect

    Rosati, C.; Hannaert, P.; Dausse, J.P.; Braquet, P.; Garay, R.

    1986-12-01

    K/sup +/ efflux in mouse macrophages exhibited a rate constant (k/sub k/) of 0.67 +/- 0.04 (h)/sup -1/. This was strongly stimulated by increasing concentrations of the Ca/sup 2 +/ ionophore A23187 up to a maximal value of 4.01 +/- 0.25 (h)/sup -1/ with an IC/sub 50/ of 7.6 +/- 1.9 ..mu..M. Similar results were obtained with the Ca/sup 2 +/ ionophore ionomycin. Binding experiments with /sup 3/H-dihydroalprenolol revealed a high density of beta-adrenergic receptors with apparent dissociation constant of 2.03 +/- 0.06 nM. Isoproterenol at a concentration of 10/sup -6/ -10/sup -5/ M induced a two- to threefold stimulation of endogenous levels of cyclic AMP (cAMP). A23187-stimulated K/sup +/ efflux was partially inhibited by (i) stimulation of adenylate cyclase with isoproterenol, forskolin or, PGE/sub 1/; (ii) exogenous cAMP; and (iii) inhibition of phosphodiesterase with MIX (1-methyl-3-isobutylxanthine). Maximal inhibition of K/sup +/ efflux was obtained by simultaneous addition of isoproterenol and MIX. In dose-response curves, the isoproterenol-sensitive K/sup +/ efflux was half-maximally inhibited (IC/sub 50/) with 2-5 x 10/sup -10/ M of isoproterenol concentration. Propranolol was able to completely block the effect of isoproterenol, with an IC/sub 50/ of about 1-2 x 10/sup -7/ M. Isoproterenol and MIX did not inhibit A23187-stimulated K/sup +/ efflux in an incubation medium where NaCl was replaced by sucrose (or choline), suggesting the involvement of an Na/sup +/:Ca/sup 2 +/ exchange mechanism. The results show that stimulation of beta-adrenoceptors in mouse macrophages counter balances the opening of K/sup +/ channels induced by the calcium ionophore A23187. This likely reflects a decrease in cytoslic free calcium content via a cAMP-mediated stimulation of Na/sup +/:Ca/sup 2 +/ exchange.

  19. Caspase-9/-3 activation and apoptosis are induced in mouse macrophages upon ingestion and digestion of Escherichia coli bacteria.

    PubMed

    Häcker, Hans; Fürmann, Christine; Wagner, Hermann; Häcker, Georg

    2002-09-15

    A number of highly virulent, intracellular bacteria are known to induce cell death by apoptosis in infected host cells. In this work we demonstrate that phagocytosis of bacteria from the Escherichia coli laboratory strain K12 DH5alpha is a potent cell death stimulus for mouse macrophages. RAW264.7 mouse macrophages took up bacteria and digested them within 2-4 h as investigated with green fluorescent protein-expressing bacteria. No evidence of apoptosis was seen at 8 h postexposure, but at 24 h approximately 70% of macrophages displayed an apoptotic phenotype by a series of parameters. Apoptosis was blocked by inhibition of caspases or by forced expression of the apoptosis-inhibiting protein Bcl-2. Processing of caspase-3 and caspase-9 but not caspase-8 was seen suggesting that the mitochondrial branch of the apoptotic pathway was activated. Active effector caspases could be detected in two different assays. Because the adapter molecule myeloid differentiation factor 88 (MyD88) has been implicated in apoptosis, involvement of the Toll-like receptor pathway was investigated. In RAW264.7 cells, heat-treated bacteria were taken up poorly and failed to induce significant apoptosis. However, cell activation was almost identical between live and heat-inactivated bacteria as measured by extracellular signal-regulated kinase activation, generation of free radicals, and TNF secretion. Furthermore, primary bone marrow-derived macrophages from wild-type as well as from MyD88-deficient mice underwent apoptosis upon phagocytosis of bacteria. These results show that uptake and digestion of bacteria leads to MyD88-independent apoptosis in mouse macrophages. This form of cell death might have implications for the generation of the immune response.

  20. Quantitative PCR for glucose transporter and tristetraprolin family gene expression in cultured mouse adipocytes and macrophages.

    PubMed

    Cao, Heping; Cao, Fangping; Roussel, Anne-Marie; Anderson, Richard A

    2013-12-01

    Quantitative real-time PCR (qPCR) such as TaqMan and SYBR Green qPCR are widely used for gene expression analysis. The drawbacks of SYBR Green assay are that the dye binds to any double-stranded DNA which can generate false-positive signals and that the length of the amplicon affects the intensity of the amplification. Previous results demonstrate that TaqMan assay is more sensitive but generates lower calculated expression levels than SYBR Green assay in quantifying seven mRNAs in tung tree tissues. The objective of this study is to expand the analysis using animal cells. We compared both qPCR assays for quantifying 24 mRNAs including those coding for glucose transporter (Glut) and mRNA-binding protein tristetraprolin (TTP) in mouse 3T3-L1 adipocytes and RAW264.7 macrophages. The results showed that SYBR Green and TaqMan qPCR were reliable for quantitative gene expression in animal cells. This result was supported by validation analysis of Glut and TTP family gene expression. However, SYBR Green qPCR overestimated the expression levels in most of the genes tested. Finally, both qPCR instruments (Bio-Rad's CFX96 real-time system and Applied Biosystems' Prism 7700 real-time PCR instrument) generated similar gene expression profiles in the mouse cells. These results support the conclusion that both qPCR assays (TaqMan and SYBR Green qPCR) and both qPCR instruments (Bio-Rad's CFX96 real-time system and Applied Biosystems' Prism 7700 real-time PCR instrument) are reliable for quantitative gene expression analyses in animal cells but SYBR Green qPCR generally overestimates gene expression levels than TaqMan qPCR.

  1. Role of Nitric Oxide and CCAAT/Enhancer-Binding Protein Transcription Factor in Statin-Dependent Induction of Heme Oxygenase-1 in Mouse Macrophages

    PubMed Central

    Al-Hariri, Moustafa; Soussi, Hiba; Hamade, Eva; Alam, Jawed; Habib, Aïda

    2013-01-01

    The effect of statins on heme oxygenase-1 (HO-1) was compared in 2 murine cell lines, RAW 264.7 and J774A.1 cell lines, and in primary peritoneal macrophages of BALB/c or C57BL/6 mice. The role of endogenous nitric oxide and the type of transcription factors involved were explored. Simvastatin and fluvastatin induced HO-1. Pretreatment of cells with l-NMMA or 1400 W, two different nitric oxide synthase inhibitors, partially blocked statin-dependent induction of HO-1 in RAW 264.7 and J774A.1 but not in primary peritoneal macrophages. Induction of HO-1 by statins was dependent on p-38 MAP kinase activation in all types of macrophages. In RAW 264.7 cells, both statins increased the activity of reporter genes linked to the proximal 1.3 kbp promoter of HO-1 (EC50 of 1.4±0.3 µM for simvastatin and 0.6±0.03 µM for fluvastatin). This effect was significantly blocked by 1400 W (80±5.2% inhibition, p<0.02) and mevalonate, the direct metabolite of HMGCoA reductase. Gel retardation experiments implicated C/EBPβ, AP-1 but not USF, for both RAW 264.7 and primary peritoneal macrophages of C57BL/6 mice. Collectively we showed a differential role of endogenous nitric oxide between macrophage cell lines and primary macrophages and an effect of statins in the protection against inflammation by increasing HO-1 expression. PMID:23717538

  2. Comparative Proteomic Analysis of the Molecular Responses of Mouse Macrophages to Titanium Dioxide and Copper Oxide Nanoparticles Unravels Some Toxic Mechanisms for Copper Oxide Nanoparticles in Macrophages

    PubMed Central

    Triboulet, Sarah; Aude-Garcia, Catherine; Armand, Lucie; Collin-Faure, Véronique; Chevallet, Mireille; Diemer, Hélène; Gerdil, Adèle; Proamer, Fabienne; Strub, Jean-Marc; Habert, Aurélie; Herlin, Nathalie; Van Dorsselaer, Alain; Carrière, Marie; Rabilloud, Thierry

    2015-01-01

    Titanium dioxide and copper oxide nanoparticles are more and more widely used because of their catalytic properties, of their light absorbing properties (titanium dioxide) or of their biocidal properties (copper oxide), increasing the risk of adverse health effects. In this frame, the responses of mouse macrophages were studied. Both proteomic and targeted analyses were performed to investigate several parameters, such as phagocytic capacity, cytokine release, copper release, and response at sub toxic doses. Besides titanium dioxide and copper oxide nanoparticles, copper ions were used as controls. We also showed that the overall copper release in the cell does not explain per se the toxicity observed with copper oxide nanoparticles. In addition, both copper ion and copper oxide nanoparticles, but not titanium oxide, induced DNA strands breaks in macrophages. As to functional responses, the phagocytic capacity was not hampered by any of the treatments at non-toxic doses, while copper ion decreased the lipopolysaccharide-induced cytokine and nitric oxide productions. The proteomic analyses highlighted very few changes induced by titanium dioxide nanoparticles, but an induction of heme oxygenase, an increase of glutathione synthesis and a decrease of tetrahydrobiopterin in response to copper oxide nanoparticles. Subsequent targeted analyses demonstrated that the increase in glutathione biosynthesis and the induction of heme oxygenase (e.g. by lovastatin/monacolin K) are critical for macrophages to survive a copper challenge, and that the intermediates of the catecholamine pathway induce a strong cross toxicity with copper oxide nanoparticles and copper ions. PMID:25902355

  3. Comparative proteomic analysis of the molecular responses of mouse macrophages to titanium dioxide and copper oxide nanoparticles unravels some toxic mechanisms for copper oxide nanoparticles in macrophages.

    PubMed

    Triboulet, Sarah; Aude-Garcia, Catherine; Armand, Lucie; Collin-Faure, Véronique; Chevallet, Mireille; Diemer, Hélène; Gerdil, Adèle; Proamer, Fabienne; Strub, Jean-Marc; Habert, Aurélie; Herlin, Nathalie; Van Dorsselaer, Alain; Carrière, Marie; Rabilloud, Thierry

    2015-01-01

    Titanium dioxide and copper oxide nanoparticles are more and more widely used because of their catalytic properties, of their light absorbing properties (titanium dioxide) or of their biocidal properties (copper oxide), increasing the risk of adverse health effects. In this frame, the responses of mouse macrophages were studied. Both proteomic and targeted analyses were performed to investigate several parameters, such as phagocytic capacity, cytokine release, copper release, and response at sub toxic doses. Besides titanium dioxide and copper oxide nanoparticles, copper ions were used as controls. We also showed that the overall copper release in the cell does not explain per se the toxicity observed with copper oxide nanoparticles. In addition, both copper ion and copper oxide nanoparticles, but not titanium oxide, induced DNA strands breaks in macrophages. As to functional responses, the phagocytic capacity was not hampered by any of the treatments at non-toxic doses, while copper ion decreased the lipopolysaccharide-induced cytokine and nitric oxide productions. The proteomic analyses highlighted very few changes induced by titanium dioxide nanoparticles, but an induction of heme oxygenase, an increase of glutathione synthesis and a decrease of tetrahydrobiopterin in response to copper oxide nanoparticles. Subsequent targeted analyses demonstrated that the increase in glutathione biosynthesis and the induction of heme oxygenase (e.g. by lovastatin/monacolin K) are critical for macrophages to survive a copper challenge, and that the intermediates of the catecholamine pathway induce a strong cross toxicity with copper oxide nanoparticles and copper ions.

  4. Double immunofluorescent staining of rat macrophages in formalin-fixed paraffin-embedded tissue using two monoclonal mouse antibodies.

    PubMed

    Isidro, Raymond A; Isidro, Angel A; Cruz, Myrella L; Hernandez, Siomara; Appleyard, Caroline B

    2015-12-01

    The conventional approach of double immunostaining to visualize more than one protein in tissues or cells using antibodies from two different host species is not always feasible due to limitations with antibody availability. Previously reported methodologies for performing multiple immunostains on the same tissue or cells with antibodies originating from the same species are varied in their complexity, sensitivity, and approach to prevent unwanted interactions between antibodies. In the ever-expanding field of macrophage biology, much more is known about mouse and human macrophages than their rat counterparts. The limited availability of validated and well-characterized monoclonal antibodies from different species is one factor responsible for preventing advances in rat macrophage biology. Here we describe an immunostaining method for identifying and examining rat macrophages that is sufficiently sensitive for use in formalin-fixed paraffin-embedded tissue and that uses only commercially available reagents and antibodies. This method can be used to help characterize both physiological and pathophysiological processes in rat macrophages and can be adapted for use with any two antibodies from the same species of origin as long as one of the antibodies is biotinylated.

  5. Anti-Inflammatory Effect of Quercetin on RAW 264.7 Mouse Macrophages Induced with Polyinosinic-Polycytidylic Acid.

    PubMed

    Kim, Young-Jin; Park, Wansu

    2016-04-04

    Quercetin (3,3',4',5,6-pentahydroxyflavone) is a well-known antioxidant and a flavonol found in many fruits, leaves, and vegetables. Quercetin also has known anti-inflammatory effects on lipopolysaccharide-induced macrophages. However, the effects of quercetin on virus-induced macrophages have not been fully reported. In this study, the anti-inflammatory effect of quercetin on double-stranded RNA (dsRNA)-induced macrophages was examined. Quercetin at concentrations up to 50 μM significantly inhibited the production of NO, IL-6, MCP-1, IP-10, RANTES, GM-CSF, G-CSF, TNF-α, LIF, LIX, and VEGF as well as calcium release in dsRNA (50 μg/mL of polyinosinic-polycytidylic acid)-induced RAW 264.7 mouse macrophages (p < 0.05). Quercetin at concentrations up to 50 μM also significantly inhibited mRNA expression of signal transducer and activated transcription 1 (STAT1) and STAT3 in dsRNA-induced RAW 264.7 cells (p < 0.05). In conclusion, quercetin had alleviating effects on viral inflammation based on inhibition of NO, cytokines, chemokines, and growth factors in dsRNA-induced macrophages via the calcium-STAT pathway.

  6. Lens injury stimulates adult mouse retinal ganglion cell axon regeneration via both macrophage- and lens-derived factors.

    PubMed

    Lorber, Barbara; Berry, Martin; Logan, Ann

    2005-04-01

    In the present study the effects of lens injury on retinal ganglion cell axon/neurite re-growth were investigated in adult mice. In vivo, lens injury promoted successful regeneration of retinal ganglion cell axons past the optic nerve lesion site, concomitant with the invasion of macrophages into the eye and the presence of activated retinal astrocytes/Muller cells. In vitro, retinal ganglion cells from lens-lesioned mice grew significantly longer neurites than those from intact mice, which correlated with the presence of enhanced numbers of activated retinal astrocytes/Muller cells. Co-culture of retinal ganglion cells from intact mice with macrophage-rich lesioned lens/vitreous body led to increased neurite lengths compared with co-culture with macrophage-free intact lens/vitreous body, pointing to a neurotrophic effect of macrophages. Furthermore, retinal ganglion cells from mice that had no lens injury but had received intravitreal Zymosan injections to stimulate macrophage invasion into the eye grew significantly longer neurites compared with controls, as did retinal ganglion cells from intact mice co-cultured with macrophage-rich vitreous body from Zymosan-treated mice. The intact lens, but not the intact vitreous body, exerted a neurotrophic effect on retinal ganglion cell neurite outgrowth, suggesting that lens-derived neurotrophic factor(s) conspire with those derived from macrophages in lens injury-stimulated axon regeneration. Together, these results show that lens injury promotes retinal ganglion cell axon regeneration/neurite outgrowth in adult mice, an observation with important implications for axon regeneration studies in transgenic mouse models.

  7. Lentiviral vectors containing mouse Csf1r control elements direct macrophage-restricted expression in multiple species of birds and mammals

    PubMed Central

    Pridans, Clare; Lillico, Simon; Whitelaw, Bruce; Hume, David A

    2014-01-01

    The development of macrophages requires signaling through the lineage-restricted receptor Csf1r. Macrophage-restricted expression of transgenic reporters based upon Csf1r requires the highly conserved Fms-intronic regulatory element (FIRE). We have created a lentiviral construct containing mouse FIRE and promoter. The lentivirus is capable of directing macrophage-restricted reporter gene expression in mouse, rat, human, pig, cow, sheep, and even chicken. Rat bone marrow cells transduced with the lentivirus were capable of differentiating into macrophages expressing the reporter gene in vitro. Macrophage-restricted expression may be desirable for immunization or immune response modulation, and for gene therapy for lysosomal storage diseases and some immunodeficiencies. The small size of the Csf1r transcription control elements will allow the insertion of large “cargo” for applications in gene therapy and vaccine delivery. PMID:26015955

  8. Stimulation of immature lung macrophages with intranasal interferon gamma in a novel neonatal mouse model of respiratory syncytial virus infection.

    PubMed

    Empey, Kerry M; Orend, Jacob G; Peebles, R Stokes; Egaña, Loreto; Norris, Karen A; Oury, Tim D; Kolls, Jay K

    2012-01-01

    Respiratory syncytial virus (RSV) is the leading cause of bronchiolitis and viral death in infants. Reduced CD8 T-cells and negligible interferon gamma (IFNγ) in the airway are associated with severe infant RSV disease, yet there is an abundance of alveolar macrophages (AM) and neutrophils. However, it is unclear, based on our current understanding of macrophage functional heterogeneity, if immature AM improve viral clearance or contribute to inflammation and airway obstruction in the IFNγ-deficient neonatal lung environment. The aim of the current study was to define the age-dependent AM phenotype during neonatal RSV infection and investigate their differentiation to classically activated macrophages (CAM) using i.n. IFNγ in the context of improving viral clearance. Neonatal and adult BALB/cJ mice were infected with 1×10(6) plaque forming units (PFU)/gram (g) RSV line 19 and their AM responses compared. Adult mice showed a rapid and robust CAM response, indicated by increases in major histocompatibility complex class II (MHC II), CD86, CCR7, and a reduction in mannose receptor (MR). Neonatal mice showed a delayed and reduced CAM response, likely due to undetectable IFNγ production. Intranasal (i.n.) treatment with recombinant mouse IFNγ (rIFNγ) increased the expression of CAM markers on neonatal AM, reduced viral lung titers, and improved weight gain compared to untreated controls with no detectable increase in CD4 or CD8 T-cell infiltration. In vitro infection of J774A.1 macrophages with RSV induced an alternatively activated macrophage (AAM) phenotype however, when macrophages were first primed with IFNγ, a CAM phenotype was induced and RSV spread to adjacent Hep-2 cells was reduced. These studies demonstrate that the neonatal AM response to RSV infection is abundant and immature, but can be exogenously stimulated to express the antimicrobial phenotype, CAM, with i.n. rIFNγ.

  9. Murine cytomegalovirus infection of mouse macrophages stimulates early expression of suppressor of cytokine signaling (SOCS)1 and SOCS3

    PubMed Central

    Alston, Christine I.; Dix, Richard D.

    2017-01-01

    Human cytomegalovirus (HCMV) is a species-specific β-herpesvirus that infects for life up to 80% of the world’s population and causes severe morbidity in at-risk immunocompromised populations. Suppressors of cytokine signaling (SOCS)1 and SOCS3 are host proteins that act as inducible negative feedback regulators of cytokine signaling and have been implicated in several ocular diseases and viral infections. We recently found in our mouse model of experimental cytomegalovirus retinitis that subretinally-injected murine cytomegalovirus (MCMV) stimulates ocular SOCS1 and SOCS3 during retrovirus-induced immune suppression of murine AIDS (MAIDS), and that infiltrating macrophages are prominent cellular sources of retinal SOCS1 and SOCS3 expression. Herein we investigate possible virologic mechanisms whereby MCMV infection may stimulate SOCS1 and/or SOCS3 expression in cell culture. We report that infection of IC-21 mouse macrophages with MCMV propagated through the salivary glands of BALB/c mice, but not from tissue culture in C57BL/6 fibroblasts, transiently stimulates SOCS1 and SOCS3 mRNA transcripts, but not SOCS5 mRNA. Viral tegument proteins are insufficient for this stimulation, as replication-deficient UV-inactivated MCMV fails to stimulate SOCS1 or SOCS3 in IC-21 macrophages. By contrast, infection of murine embryonic fibroblasts (MEFs) with either productive MCMV or UV-inactivated MCMV significantly stimulates SOCS1 and SOCS3 mRNA expression early after infection. Treatment of MCMV-infected IC-21 mouse macrophages with the antiviral drug ganciclovir significantly decreases MCMV-stimulated SOCS3 expression at 3 days post-infection. These data suggest cell type-specific, different roles for viral immediate early or early gene expression and/or viral tegument proteins in the early stimulation of SOCS1 and SOCS3 during MCMV infection. Furthermore, putative biphasic stimulation of SOCS3 during late MCMV infection of IC-21 mouse macrophages may occur by divergent

  10. Mesenchymal Stem Cell-Educated Macrophages Ameliorate LPS-Induced Systemic Response

    PubMed Central

    Hu, Yaoqin; Qin, Chaojin; Zheng, Guoping; Tao, Huikang; Zhang, Yan; Qiu, Guanguan; Ge, Menghua; Huang, Lanfang; Chen, Lina; Cheng, Baoli

    2016-01-01

    Both bone marrow and adipose-derived mesenchymal stem cells (ASCs) have immunomodulatory effects. The goal of this study was to determine whether ASCs-educated macrophages could directly ameliorate LPS-induced systemic response in a mouse model. Mouse peritoneal macrophages were cocultured with ASCs in a Transwell system for 2 days to educate macrophages. Mice were divided into 5 groups: control, LPS, LPS + ASCs, LPS + untreated macrophages, and LPS + educated macrophages. Educated macrophages decreased lung inflammation, weight loss, pulmonary edema, and inflammatory cytokine response. In vitro, ASCs increased expression of M2 macrophages independent of direct cell-to-cell contact when macrophages were treated with LPS or serum from patients with acute respiratory distress syndrome (ARDS). When macrophages were cultured with serum from ARDS patients who were treated with ASCs or placebo in our previous clinical trial, there was no difference in M2 macrophage levels before and after ASCs treatment indicating a suboptimal response to the treatment protocol. ASCs also reduced the levels of LPS-induced proinflammatory cytokines in vitro which were mimicked by IL-10 and blocked by antibodies for IL-10 and IL-10 receptor supporting the notion that educated macrophages exert their anti-inflammatory effects via IL-10-dependent mechanisms. PMID:27546994

  11. Uptake of cerium oxide nanoparticles and its influence on functions of mouse leukemic monocyte macrophages

    NASA Astrophysics Data System (ADS)

    Zhou, Xiangyan; Wang, Bing; Jiang, Pengfei; Chen, Yiqi; Mao, Zhengwei; Gao, Changyou

    2015-01-01

    Exposure of the CeO2 nanoparticles (NPs) causes a public concern on their potential health risk due to their wide applications in the fields of fuel additive, commodities, pharmaceutical, and other industries. In this study, the interactions between two commercial CeO2 NPs (D-CeO2 from Degussa and PC-CeO2 from PlasmaChem) and mouse leukemic monocyte macrophage Raw264.7 cells were investigated to provide a fast and in-depth understanding of the biological influences of the NPs. Both types of the CeO2 NPs had a negative surface charge around -12 mV and showed a tendency to form aggregates with sizes of 191 ± 5.9 and 60.9 ± 2.8 nm in cell culture environment, respectively. The cellular uptake of the CeO2 NPs increased along with the increase of feeding dosage and prolongation of the culture time. The PC-CeO2 NPs had a faster uptake rate and reached higher cellular loading amount at the highest feeding concentration (200 µg/mL). In general, both types of the CeO2 NPs had rather small cytotoxicity even with a dosage as high as 200 µg/mL. The D-CeO2 NPs showed a relative stronger cytotoxicity especially at higher concentrations and longer incubation time. The NPs were dispersed in vacuoles (most likely endosomes and lysosomes) and cytoplasm. Although both types of the CeO2 NPs could suppress the production of reactive oxygen species, they impaired the mitochondria membrane potential to some extent. The cytoskeleton organization was altered and consequently the cell adhesion ability decreased after uptake of both types of the CeO2 NPs.

  12. The Macrophage Inhibitor CNI-1493 Blocks Metastasis in a Mouse Model of Ewing Sarcoma through Inhibition of Extravasation

    PubMed Central

    Hesketh, Anthony J.; Maloney, Caroline; Behr, Christopher A.; Edelman, Morris C.; Glick, Richard D.; Al-Abed, Yousef; Symons, Marc; Soffer, Samuel Z.; Steinberg, Bettie M.

    2015-01-01

    Metastatic Ewing Sarcoma carries a poor prognosis, and novel therapeutics to prevent and treat metastatic disease are greatly needed. Recent evidence demonstrates that tumor-associated macrophages in Ewing Sarcoma are associated with more advanced disease. While some macrophage phenotypes (M1) exhibit anti-tumor activity, distinct phenotypes (M2) may contribute to malignant progression and metastasis. In this study, we show that M2 macrophages promote Ewing Sarcoma invasion and extravasation, pointing to a potential target of anti-metastatic therapy. CNI-1493 is a selective inhibitor of macrophage function and has shown to be safe in clinical trials as an anti-inflammatory agent. In a xenograft mouse model of metastatic Ewing Sarcoma, CNI-1493 treatment dramatically reduces metastatic tumor burden. Furthermore, metastases in treated animals have a less invasive morphology. We show in vitro that CNI-1493 decreases M2-stimulated Ewing Sarcoma tumor cell invasion and extravasation, offering a functional mechanism through which CNI-1493 attenuates metastasis. These data indicate that CNI-1493 may be a safe and effective adjuvant agent for the prevention and treatment of metastatic Ewing Sarcoma. PMID:26709919

  13. The Macrophage Inhibitor CNI-1493 Blocks Metastasis in a Mouse Model of Ewing Sarcoma through Inhibition of Extravasation.

    PubMed

    Hesketh, Anthony J; Maloney, Caroline; Behr, Christopher A; Edelman, Morris C; Glick, Richard D; Al-Abed, Yousef; Symons, Marc; Soffer, Samuel Z; Steinberg, Bettie M

    2015-01-01

    Metastatic Ewing Sarcoma carries a poor prognosis, and novel therapeutics to prevent and treat metastatic disease are greatly needed. Recent evidence demonstrates that tumor-associated macrophages in Ewing Sarcoma are associated with more advanced disease. While some macrophage phenotypes (M1) exhibit anti-tumor activity, distinct phenotypes (M2) may contribute to malignant progression and metastasis. In this study, we show that M2 macrophages promote Ewing Sarcoma invasion and extravasation, pointing to a potential target of anti-metastatic therapy. CNI-1493 is a selective inhibitor of macrophage function and has shown to be safe in clinical trials as an anti-inflammatory agent. In a xenograft mouse model of metastatic Ewing Sarcoma, CNI-1493 treatment dramatically reduces metastatic tumor burden. Furthermore, metastases in treated animals have a less invasive morphology. We show in vitro that CNI-1493 decreases M2-stimulated Ewing Sarcoma tumor cell invasion and extravasation, offering a functional mechanism through which CNI-1493 attenuates metastasis. These data indicate that CNI-1493 may be a safe and effective adjuvant agent for the prevention and treatment of metastatic Ewing Sarcoma.

  14. Experimental Evolution of Legionella pneumophila in Mouse Macrophages Leads to Strains with Altered Determinants of Environmental Survival

    PubMed Central

    Ensminger, Alexander W.; Yassin, Yosuf; Miron, Alexander; Isberg, Ralph R.

    2012-01-01

    The Gram-negative bacterium, Legionella pneumophila, is a protozoan parasite and accidental intracellular pathogen of humans. We propose a model in which cycling through multiple protozoan hosts in the environment holds L. pneumophila in a state of evolutionary stasis as a broad host-range pathogen. Using an experimental evolution approach, we tested this hypothesis by restricting L. pneumophila to growth within mouse macrophages for hundreds of generations. Whole-genome resequencing and high-throughput genotyping identified several parallel adaptive mutations and population dynamics that led to improved replication within macrophages. Based on these results, we provide a detailed view of the population dynamics of an experimentally evolving bacterial population, punctuated by frequent instances of transient clonal interference and selective sweeps. Non-synonymous point mutations in the flagellar regulator, fleN, resulted in increased uptake and broadly increased replication in both macrophages and amoebae. Mutations in multiple steps of the lysine biosynthesis pathway were also independently isolated, resulting in lysine auxotrophy and reduced replication in amoebae. These results demonstrate that under laboratory conditions, host restriction is sufficient to rapidly modify L. pneumophila fitness and host range. We hypothesize that, in the environment, host cycling prevents L. pneumophila host-specialization by maintaining pathways that are deleterious for growth in macrophages and other hosts. PMID:22693450

  15. Sex-associated expression of co-stimulatory molecules CD80, CD86, and accessory molecules, PDL-1, PDL-2 and MHC-II, in F480+ macrophages during murine cysticercosis.

    PubMed

    Togno-Peirce, Cristián; Nava-Castro, Karen; Terrazas, Luis Ignacio; Morales-Montor, Jorge

    2013-01-01

    Macrophages are critically involved in the interaction between T. crassiceps and the murine host immune system. Also, a strong gender-associated susceptibility to murine cysticercosis has been reported. Here, we examined the sex-associated expression of molecules MHC-II, CD80, CD86, PD-L1, and PD-L2 on peritoneal F4/80(hi) macrophages of BALB/c mice infected with Taenia crassiceps. Peritoneal macrophages from both sexes of mice were exposed to T. crassiceps total extract (TcEx). BALB/c Females mice recruit higher number of macrophages to the peritoneum. Macrophages from infected animals show increased expression of PDL2 and CD80 that was dependent from the sex of the host. These findings suggest that macrophage recruitment at early time points during T. crassiceps infection is a possible mechanism that underlies the differential sex-associated susceptibility displayed by the mouse gender.

  16. Schistosoma japonicum infection induces macrophage polarization

    PubMed Central

    Xu, Jingwei; Zhang, Hao; Chen, Lin; Zhang, Donghui; Ji, Minjun; Wu, Haiwei; Wu, Guanling

    2014-01-01

    Abstract The role of macrophages (Mφ) as the first line of host defense is well accepted. These cells play a central role in orchestrating crucial functions during schistosomal infection. Thus, understanding the functional diversity of these cells in the process of infection as well as the mechanisms underlying these events is crucial for developing disease control strategies. In this study, we adopted a Mφ polarization recognition system. M1 macrophage was characterized by expressing CD16/32, IL-12 and iNOS. M2 macrophage was characterized by expressing CD206, IL-10 and arg-1. In vivo (mouse peritoneal macrophages of different infection stages were obtained) and in vitro (different S. japonicum antigens were used to stimulate RAW264.7) were characterized by using the above mentioned system. NCA and ACA stimulated RAW264.7 express significantly higher levels of IL-12 while significantly higher levels of IL-10 were detected after soluble egg antigen (SEA) stimulation. The results showed that dramatic changes of antigen in the microenvironment before and after egg production led to macrophage polarization. Furthermore, through TLR blocking experiments, the TLR4 signaling pathway was found to play a role in the process of macrophage polarization toward M1. Our data suggest that macrophage polarization during S. japonicum infection had significant effects on host immune responses to S. japonicum. PMID:25050114

  17. Treatment of dextran sodium sulfate-induced experimental colitis by adoptive transfer of peritoneal cells.

    PubMed

    Liu, Ting; Ren, Jun; Wang, Wei; Wei, Xia-wei; Shen, Guo-bo; Liu, Yan-tong; Luo, Min; Xu, Guang-chao; Shao, Bin; Deng, Sen-yi; He, Zhi-yao; Liang, Xiao; Liu, Yu; Wen, Yan-Zhu; Xiang, Rong; Yang, Li; Deng, Hong-xin; Wei, Yu-quan

    2015-11-13

    The adoptive transfer of the natural regulatory B cells and macrophages should be a useful treatment for inflammation and autoimmune disease. However, it is usually difficult to isolate these cells from the tissues and expand them. Here, we investigated the feasibility of adoptively transferring peritoneal cells (PCs) as a treatment for DSS-induced colitis. We found that peritoneal cavity can provide an easily accessible site for harvesting enough number of PCs, namely, two-dose PCs for the treatment from a mouse in one operation. Adoptive therapy of these cells from healthy mice or those with disease is effectively in reducing the disease activity score. The natural B cells and macrophages of the infused PCs can selectively migrate to lesion sites and regulate the expression of Stat3, NF-κB, Smad3 and Smad7. Additionally, PCs exert dual activity of IL-10 and TGF-β secreted spontaneously by both peritoneal B cells and macrophages, which in turn enhance the induction of regulatory B cells and Macrophages in microenvironment of inflammation. Moreover, PCs can re-establish immunological tolerance in the OVA-immunized mice. Thus, our findings provide a new strategy for colitis therapy and could be of importance in additional exploration of other inflammation and autoimmune diseases therapy.

  18. Treatment of dextran sodium sulfate-induced experimental colitis by adoptive transfer of peritoneal cells

    PubMed Central

    Liu, Ting; Ren, Jun; Wang, Wei; Wei, Xia-wei; Shen, Guo-bo; Liu, Yan-tong; Luo, Min; Xu, Guang-chao; Shao, Bin; Deng, Sen-yi; He, Zhi-yao; Liang, Xiao; Liu, Yu; Wen, Yan-Zhu; Xiang, Rong; Yang, Li; Deng, Hong-xin; Wei, Yu-quan

    2015-01-01

    The adoptive transfer of the natural regulatory B cells and macrophages should be a useful treatment for inflammation and autoimmune disease. However, it is usually difficult to isolate these cells from the tissues and expand them. Here, we investigated the feasibility of adoptively transferring peritoneal cells (PCs) as a treatment for DSS-induced colitis. We found that peritoneal cavity can provide an easily accessible site for harvesting enough number of PCs, namely, two-dose PCs for the treatment from a mouse in one operation. Adoptive therapy of these cells from healthy mice or those with disease is effectively in reducing the disease activity score. The natural B cells and macrophages of the infused PCs can selectively migrate to lesion sites and regulate the expression of Stat3, NF−κB, Smad3 and Smad7. Additionally, PCs exert dual activity of IL-10 and TGF-β secreted spontaneously by both peritoneal B cells and macrophages, which in turn enhance the induction of regulatory B cells and Macrophages in microenvironment of inflammation. Moreover, PCs can re-establish immunological tolerance in the OVA-immunized mice. Thus, our findings provide a new strategy for colitis therapy and could be of importance in additional exploration of other inflammation and autoimmune diseases therapy. PMID:26565726

  19. Lysophosphatidylcholine Triggers TLR2- and TLR4-Mediated Signaling Pathways but Counteracts LPS-Induced NO Synthesis in Peritoneal Macrophages by Inhibiting NF-κB Translocation and MAPK/ERK Phosphorylation

    PubMed Central

    Carneiro, Alan Brito; Iaciura, Bruna Maria Ferreira; Nohara, Lilian Lie; Lopes, Carla Duque; Veas, Esteban Mauricio Cordero; Mariano, Vania Sammartino; Bozza, Patricia Torres; Lopes, Ulisses Gazos; Atella, Georgia Correa; Almeida, Igor Correia; Silva-Neto, Mário Alberto Cardoso

    2013-01-01

    Background Lysophosphatidylcholine (LPC) is the main phospholipid component of oxidized low-density lipoprotein (oxLDL) and is usually noted as a marker of several human diseases, such as atherosclerosis, cancer and diabetes. Some studies suggest that oxLDL modulates Toll-like receptor (TLR) signaling. However, effector molecules that are present in oxLDL particles and can trigger TLR signaling are not yet clear. LPC was previously described as an attenuator of sepsis and as an immune suppressor. In the present study, we have evaluated the role of LPC as a dual modulator of the TLR-mediated signaling pathway. Methodology/Principal Findings HEK 293A cells were transfected with TLR expression constructs and stimulated with LPC molecules with different fatty acid chain lengths and saturation levels. All LPC molecules activated both TLR4 and TLR2-1 signaling, as evaluated by NF-қB activation and IL-8 production. These data were confirmed by Western blot analysis of NF-қB translocation in isolated nuclei of peritoneal murine macrophages. However, LPC counteracted the TLR4 signaling induced by LPS. In this case, NF-қB translocation, nitric oxide (NO) synthesis and the expression of inducible nitric oxide synthase (iNOS) were blocked. Moreover, LPC activated the MAP Kinases p38 and JNK, but not ERK, in murine macrophages. Interestingly, LPC blocked LPS-induced ERK activation in peritoneal macrophages but not in TLR-transfected cells. Conclusions/Significance The above results indicate that LPC is a dual-activity ligand molecule. It is able to trigger a classical proinflammatory phenotype by activating TLR4- and TLR2-1-mediated signaling. However, in the presence of classical TLR ligands, LPC counteracts some of the TLR-mediated intracellular responses, ultimately inducing an anti-inflammatory phenotype; LPC may thus play a role in the regulation of cell immune responses and disease progression. PMID:24312681

  20. Structure of the chromosomal gene for granulocyte-macrophage colony stimulating factor: comparison of the mouse and human genes.

    PubMed Central

    Miyatake, S; Otsuka, T; Yokota, T; Lee, F; Arai, K

    1985-01-01

    A cDNA clone that expresses granulocyte-macrophage colony stimulating factor (GM-CSF) activity in COS-7 cells has been isolated from a pcD library prepared from mRNA derived from concanavalin A-activated mouse helper T cell clones. Based on homology with the mouse GM-CSF cDNA sequence, the mouse GM-CSF gene was isolated. The human GM-CSF gene was also isolated based on homology with the human GM-CSF cDNA sequence. The nucleotide sequences determined for the genes and their flanking regions revealed that both the mouse and human GM-CSF genes are composed of three introns and four exons. The organization of the mouse and human GM-CSF genes are highly homologous and strong sequence homology between the two genes is found both in the coding and non-coding regions. A 'TATA'-like sequence was found 20-25 bp upstream from the transcription initiation site. In the 5'-flanking region, there is a highly homologous region extending 330 bp upstream of the putative TATA box. This sequence may play a role in regulation of expression of the GM-CSF gene. These structures are compared with those of different lymphokine genes and their regulatory regions. Images Fig. 2. Fig. 6. PMID:3876930

  1. Dose-dependent transitions in Nrf2-mediated adaptive response and related stress responses to hypochlorous acid in mouse macrophages

    SciTech Connect

    Woods, Courtney G.; Fu Jingqi; Xue Peng; Hou Yongyong; Pluta, Linda J.; Yang Longlong; Zhang Qiang; Thomas, Russell S.; Andersen, Melvin E.; Pi Jingbo

    2009-07-01

    Hypochlorous acid (HOCl) is potentially an important source of cellular oxidative stress. Human HOCl exposure can occur from chlorine gas inhalation or from endogenous sources of HOCl, such as respiratory burst by phagocytes. Transcription factor Nrf2 is a key regulator of cellular redox status and serves as a primary source of defense against oxidative stress. We recently demonstrated that HOCl activates Nrf2-mediated antioxidant response in cultured mouse macrophages in a biphasic manner. In an effort to determine whether Nrf2 pathways overlap with other stress pathways, gene expression profiling was performed in RAW 264.7 macrophages exposed to HOCl using whole genome mouse microarrays. Benchmark dose (BMD) analysis on gene expression data revealed that Nrf2-mediated antioxidant response and protein ubiquitination were the most sensitive biological pathways that were activated in response to low concentrations of HOCl (< 0.35 mM). Genes involved in chromatin architecture maintenance and DNA-dependent transcription were also sensitive to very low doses. Moderate concentrations of HOCl (0.35 to 1.4 mM) caused maximal activation of the Nrf2 pathway and innate immune response genes, such as IL-1{beta}, IL-6, IL-10 and chemokines. At even higher concentrations of HOCl (2.8 to 3.5 mM) there was a loss of Nrf2-target gene expression with increased expression of numerous heat shock and histone cluster genes, AP-1-family genes, cFos and Fra1 and DNA damage-inducible Gadd45 genes. These findings confirm an Nrf2-centric mechanism of action of HOCl in mouse macrophages and provide evidence of interactions between Nrf2, inflammatory, and other stress pathways.

  2. Functional macrophage heterogeneity in a mouse model of autoimmune CNS pathology

    PubMed Central

    London, Anat; Benhar, Inbal; Mattapallil, Mary J.; Mack, Matthias; Caspi, Rachel R.; Schwartz, Michal

    2013-01-01

    Functional macrophage heterogeneity is well appreciated outside the CNS in wound healing and cancer, and was recently also demonstrated in several CNS compartments following “sterile” insults. Yet, such heterogeneity was largely overlooked in the context of inflammatory autoimmune pathology, in which macrophages were mainly associated with disease induction and propagation. Here, we show the diversity of monocyte-derived macrophages along the course of experimental autoimmune uveitis (EAU), an inflammatory condition affecting the ocular system, serving a model for CNS autoimmune pathology. Disease induction resulted in the appearance of a distinct myeloid population in the retina, and in the infiltration of monocyte-derived macrophages that were absent from control eyes. During the disease course, the frequency of CX3CR1high infiltrating macrophages that express markers associated with inflammation-resolving activity was increased, along with a decrease in the frequency of inflammation-associated, Ly6C+ macrophages. Inhibition of monocyte infiltration at the induction phase of EAU prevented disease onset, while monocyte depletion at the resolution phase resulted in a decrease in Foxp3+ regulatory T cells, and in exacerbated disease. Thus, monocyte-derived macrophages display distinct phenotypes throughout the disease course, even in an immune-induced pathology, reflecting their differential roles in disease induction and resolution. PMID:23447691

  3. Intravital Imaging of Axonal Interactions with Microglia and Macrophages in a Mouse Dorsal Column Crush Injury

    PubMed Central

    Evans, Teresa A.; Barkauskas, Deborah S.; Myers, Jay T.; Huang, Alex Y.

    2014-01-01

    Traumatic spinal cord injury causes an inflammatory reaction involving blood-derived macrophages and central nervous system (CNS)-resident microglia. Intra-vital two-photon microscopy enables the study of macrophages and microglia in the spinal cord lesion in the living animal. This can be performed in adult animals with a traumatic injury to the dorsal column. Here, we describe methods for distinguishing macrophages from microglia in the CNS using an irradiation bone marrow chimera to obtain animals in which only macrophages or microglia are labeled with a genetically encoded green fluorescent protein. We also describe a injury model that crushes the dorsal column of the spinal cord, thereby producing a simple, easily accessible, rectangular lesion that is easily visualized in an animal through a laminectomy. Furthermore, we will outline procedures to sequentially image the animals at the anatomical site of injury for the study of cellular interactions during the first few days to weeks after injury. PMID:25489963

  4. Modulatory effect of plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone) on macrophage functions in BALB/c mice. I. Potentiation of macrophage bactericidal activity.

    PubMed

    Abdul, K M; Ramchender, R P

    1995-09-01

    The modulatory ability of plumbagin, a natural product from Plumbago zeylanica, was studied on peritoneal macrophages of BALB/c mice. The macrophage functions evaluated were bactericidal activity, hydrogen peroxide and superoxide anion release. The bactericidal capacity of in vivo plumbagin-treated mouse macrophages was estimated against Staphylococcus aureus. In low doses plumbagin exerted a constant increase in bactericidal activity throughout the study period whereas with a high dose a higher response was observed up to six weeks. But in the next two weeks a considerable decline in the bactericidal activity was noticed compared to low dose. Plumbagin was also seen to exert a similar response on oxygen radical release by macrophages in vivo showing a clear correlation between oxygen radical release and the bactericidal activity. The data indicate that plumbagin augments the macrophage bactericidal activity by potentiating the oxyradical release at low concentration whereas at the higher concentration it has inhibitory activity.

  5. Inhibition of mouse B16 melanoma by sodium butyrate correlated to tumor associated macrophages differentiation suppression

    PubMed Central

    Xiong, Fen; Mou, Yun-Zhu; Xiang, Xiao-Yan

    2015-01-01

    Objective: As one member of the histone deacetylase inhibitor (HDACi) family, Sodium butyrate (NaB) was found out that could be used as a differentiation inducer of much cancer cell. But its effects on tumor microenvironment cells are not well recognized. The goal of this research is to investigate the effect of NaB on B16 melanoma and analysis its relevant mechanism. Methods: We observed the effect of sodium butyrate on B16 melanoma in vivo and in vitro. MTT method was performed to detect cell apoptosis rate after treatment. Tumor associated macrophage infiltration condition was detected by flow cytometry. Western-blotting and immunohistochemical method were used to detect the expression of tumor associated macrophage cytokines. Results: A certain concentration of sodium butyrate could effectively inhibit B16 melanoma growth in vivo and in vitro, and this inhibition effects related to the suppression of tumor associated macrophage differentiation. At the same time we observed the relevant macrophage factors were down-regulated compared to the control. Conclusion: Sodium butyrate could effectively inhibit B16 melanoma growth through suppressing tumor associated macrophage proliferation and reduce relevant pro-tumor macrophage factors expression, which may help to promote the clinical study of melanoma epigenetic therapy. PMID:26064327

  6. Microbiological aspects of peritonitis associated with continuous ambulatory peritoneal dialysis.

    PubMed Central

    von Graevenitz, A; Amsterdam, D

    1992-01-01

    The process of continuous ambulatory peritoneal dialysis has provided a useful, relatively inexpensive, and safe alternative for patients with end-stage renal disease. Infectious peritonitis, however, has limited a more widespread acceptance of this technique. The definition of peritonitis in this patient population is not universally accepted and does not always include the laboratory support of a positive culture (or Gram stain). In part, the omission of clinical microbiological findings stems from the lack of sensitivity of earlier microbiological efforts. Peritonitis results from decreased host phagocytic efficiency with depressed phagocytosis and bactericidal capacity of peritoneal macrophages. During episodes of peritonitis, fluid movement is reversed, away from the lymphatics and peritoneal membrane and toward the cavity. As a result, bloodstream infections are rare. Most peritonitis episodes are caused by bacteria. Coagulase-negative staphylococci are the most frequently isolated organisms, usually originating from the skin flora, but a wide array of microbial species have been documented as agents of peritonitis. Clinical microbiology laboratories need to be cognizant of the diverse agents so that appropriate primary media can be used. The quantity of dialysate fluid that is prepared for culture is critical and should constitute at least 10 ml. The sensitivity of the cultural approach depends on the volume of dialysate, its pretreatment (lysis or centrifugation), the media used, and the mode of incubation. The low concentration of microorganisms in dialysate fluids accounts for negative Gram stain results. Prevention of infection in continuous ambulatory peritoneal dialysis patients is associated with the socioeconomic status of the patient, advances in equipment (catheter) technology, and, probably least important, the application of prophylactic antimicrobial agents. PMID:1735094

  7. Berteroin Present in Cruciferous Vegetables Exerts Potent Anti-Inflammatory Properties in Murine Macrophages and Mouse Skin

    PubMed Central

    Jung, Yoo Jin; Jung, Jae In; Cho, Han Jin; Choi, Myung-Sook; Sung, Mi-Kyung; Yu, Rina; Kang, Young-Hee; Park, Jung Han Yoon

    2014-01-01

    Berteroin (5-methylthiopentyl isothiocyanate) is a sulforaphane analog present in cruciferous vegetables, including Chinese cabbage, rucola salad leaves, and mustard oil. We examined whether berteroin exerts anti-inflammatory activities using lipopolysaccharide (LPS)-stimulated Raw 264.7 macrophages and 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced mouse skin inflammation models. Berteroin decreased LPS-induced release of inflammatory mediators and pro-inflammatory cytokines in Raw 264.7 macrophages. Berteroin inhibited LPS-induced degradation of inhibitor of κBα (IκBα) and nuclear factor-κB p65 translocation to the nucleus and DNA binding activity. Furthermore, berteroin suppressed degradation of IL-1 receptor-associated kinase and phosphorylation of transforming growth factor β activated kinase-1. Berteroin also inhibited LPS-induced phosphorylation of p38 MAPK, ERK1/2, and AKT. In the mouse ear, berteroin effectively suppressed TPA-induced edema formation and down-regulated iNOS and COX-2 expression as well as phosphorylation of AKT and ERK1/2. These results demonstrate that berteroin exhibits potent anti-inflammatory properties and suggest that berteroin can be developed as a skin anti-inflammatory agent. PMID:25393510

  8. Mercury intake by inflammatory phagocytes: in vivo cytology of mouse macrophages and neutrophils by X-ray elemental microanalysis coupled with scanning electron microscopy.

    PubMed

    Cunha, Elisabete M; Oliveira, Maria João R; Ferreira, Paula G; Aguas, Artur P

    2004-08-01

    Phagocytes remove and store mercury (Hg) that enters the body. Macrophages and granulocytes respond in opposite ways to Hg: macrophages loose cell viability, and neutrophils become protected from apoptosis. We have investigated the cytology of early intake of Hg by macrophages and neutrophils after a short period (2-4 min) of in vivo exposure to HgCl2. The two types of phagocytes were attracted either to a subcutaneous air pouch or to the peritoneal cavity of BALB/c mice by in situ BSA injection. BSA caused, 72 hours later, inflammatory exudates where neutrophils (air-pouch cavity) or macrophages (peritoneal cavity) were the predominant cell type. A lethal dose of HgCl2 (25 mg) was then injected in the two inflammatory cavities. The mice died 2-4 min later and the cell exudates were harvested and studied by scanning electron microscopy coupled with X-ray elemental microanalysis (SEM-XRM). More than half of the phagocytes showed ingested Hg; a higher percentage of macrophages (around 70%) than neutrophils (around 50%) were positive for the metal. Intracellular particles of Hg were spheroid and presented a small diameter (less than 20 nm). They could be seen in large numbers inside phagocytes (up to 20-30 Hg dots per cell); they were scattered throughout the cytoplasm of the cells. The ability of phagocytes to ingest Hg increased as the BSA-induced inflammation progressed. We conclude that (i) Hg is quickly ingested as small particles by phagocytes; (ii) endocytosis of Hg increases with the degree of activation of phagocytes; and (iii) phagocytes internalize Hg by pinocytosis.

  9. Alternatively activated RAW264.7 macrophages enhance tumor lymphangiogenesis in mouse lung adenocarcinoma.

    PubMed

    Zhang, Bicheng; Wang, Jun; Gao, Juan; Guo, Yan; Chen, Xi; Wang, Baocheng; Gao, Jianfei; Rao, Zhiguo; Chen, Zhengtang

    2009-05-01

    Tumor-associated macrophages (TAMs) have been implicated in promoting tumor progression and invasion. The onset and maintenance of tumor angiogenesis and lymphangiogenesis also seem to be partly driven by a group of polarized alternatively activated macrophages (aaMphi) in lung adenocarcinoma. Here, the aaMphi and classically activated macrophages (caMphi) were obtained using RAW264.7 cells via IL-4 and IFN-gamma + LPS treatment, respectively. Co-inoculation of aaMphi with Lewis lung carcinoma (LLC) cells promoted tumor growth, increased lymph node metastasis, and reduced the survival in C57BL/6 mice bearing LLC. Furthermore, the effects of the activated macrophages on the lymphangiogenesis-related properties of lymphatic endothelial cells (LECs) were investigated in vitro. When LECs were cultured in macrophages conditioned medium or in a co-culture system of macrophages and LECs, aaMphi significantly promoted proliferation, migration, and tube-like formation of LECs. We identified high VEGF-C expression in aaMphi and low expression in caMphi as well as unactivated macrophages by ELISA and Western blotting. In LECs, co-culture with aaMphi resulted in a significant increase of mRNA levels of specific lymphatic marker VEGF receptor-3 and the homeobox gene Prox-1, as well as lymphangiogenic factor VEGF-C rather than VEGF-D by quantitative RT-PCR. Furthermore, enhanced LECs migration and capillary formation by co-culture with aaMphi were significantly inhibited by rVEGF receptor-3/Fc chimera. In conclusion, these data show that aaMphi play a critical role in tumor-induced lymphangiogenesis through up-regulating VEGF-C and increasing lymphangiogenesis-related behavior of LECs, which may contribute to lymphatic invasion in lung adenocarcinoma.

  10. Pulmonary Surfactant Phosphatidylglycerol Inhibits Mycoplasma pneumoniae-stimulated Eicosanoid Production from Human and Mouse Macrophages*

    PubMed Central

    Kandasamy, Pitchaimani; Zarini, Simona; Chan, Edward D.; Leslie, Christina C.; Murphy, Robert C.; Voelker, Dennis R.

    2011-01-01

    Mycoplasma pneumoniae is a human pathogen causing respiratory infections that are also associated with serious exacerbations of chronic lung diseases. Membranes and lipoproteins from M. pneumoniae induced a 4-fold increase in arachidonic acid (AA) release from RAW264.7 and a 2-fold increase in AA release from primary human alveolar macrophages. The bacterial lipoprotein mimic and TLR2/1 agonist Pam3Cys and the TLR2/6 agonist MALP-2 produced effects similar to those elicited by M. pneumoniae in macrophages by inducing the phosphorylation of p38MAPK and p44/42ERK1/2 MAP kinases and cyclooxygenase-2 (COX-2) expression. M. pneumoniae induced the generation of prostaglandins PGD2 and PGE2 from RAW264.7 cells and thromboxane B2 (TXB2) from human alveolar macrophages. Anti-TLR2 antibody completely abolished M. pneumoniae-induced AA release and TNFα secretion from RAW264.7 cells and human alveolar macrophages. Disruption of the phosphorylation of p44/42ERK1/2 or inactivation of cytosolic phospholipase A2α (cPLA2α) completely inhibited M. pneumoniae-induced AA release from macrophages. The minor pulmonary surfactant phospholipid, palmitoyl-oleoyl-phosphatidylglycerol (POPG), antagonized the proinflammatory actions of M. pneumoniae, Pam3Cys, and MALP-2 by reducing the production of AA metabolites from macrophages. The effect of POPG was specific, insofar as saturated PG, and saturated and unsaturated phosphatidylcholines did not have significant effect on M. pneumoniae-induced AA release. Collectively, these data demonstrate that M. pneumoniae stimulates the production of eicosanoids from macrophages through TLR2, and POPG suppresses this pathogen-induced response. PMID:21205826

  11. Mutation of neutralizing/antibody-dependent enhancing epitope on spike protein and 7b gene of feline infectious peritonitis virus: influences of viral replication in monocytes/macrophages and virulence in cats.

    PubMed

    Takano, Tomomi; Tomiyama, Yoshika; Katoh, Yasuichiroh; Nakamura, Michiyo; Satoh, Ryoichi; Hohdatsu, Tsutomu

    2011-03-01

    We previously prepared neutralizing monoclonal antibody (MAb)-resistant (mar) mutant viruses using a laboratory strain feline infectious peritonitis virus (FIPV) 79-1146 (Kida et al., 1999). Mar mutant viruses are mutated several amino acids of the neutralizing epitope of Spike protein, compared with the parent strain, FIPV 79-1146. We clarified that MAb used to prepare mar mutant viruses also lost its activity to enhance homologous mar mutant viruses, strongly suggesting that neutralizing and antibody-dependent enhancing epitopes are present in the same region in the strain FIPV 79-1146. We also discovered that amino acid mutation in the neutralizing epitope reduced viral replication in monocytes/macrophages. We also demonstrated that the mutation or deletion of two nucleotides in 7b gene abrogate the virulence of strain FIPV 79-1146.

  12. Trypanosoma cruzi: the immunological induction of macrophage plasminogen activator requires thymus-derived lymphocytes

    PubMed Central

    1977-01-01

    In this article we describe methods in which unstimulated mouse peritoneal macrophages were induced to secrete high livels of plasminogen activator under in vitro conditions. The exposure of sensitized peritoneal or spleen cell populations from Trypanosoma cruzi- infected animals to either viable or heat-killed trypanosomes lead to the release of an inducing factor(s). Maximal levels of plasminogen activator secretion are achieved by the incubation of such factors (s) with unstimulated macrophages for 48 h. A significant increase in enzyme secretion was already observed after a 24 h incubation. The production of the inducing factor(s) by sensitized cells was immunologically specific and unrelated antigens did not stimulate the production of the factor(s) by sensitized peritoneal or spleen cell populations. The inducing factor(s) was produced by nylon-wool- fractionated spleen and peritoneal cells which had been depleted of marcrophages. Pretreatment of sensitized spleen cells with anti-theta serum and C abolished the production of the activating factor(s). The active supernatant fluids were able to induce secretion of macrophage plasminogen activator across H-2 barriers. Attempts to induce trypanocidal activity in unstimulated macrophages have not been successful. PMID:327013

  13. Macrophage/epithelial cell CCL2 contributes to rhinovirus-induced hyperresponsiveness and inflammation in a mouse model of allergic airways disease.

    PubMed

    Schneider, Dina; Hong, Jun Young; Bowman, Emily R; Chung, Yutein; Nagarkar, Deepti R; McHenry, Christina L; Goldsmith, Adam M; Bentley, J Kelley; Lewis, Toby C; Hershenson, Marc B

    2013-02-01

    Human rhinovirus (HRV) infections lead to exacerbations of lower airways disease in asthmatic patients but not in healthy individuals. However, underlying mechanisms remain to be completely elucidated. We hypothesized that the Th2-driven allergic environment enhances HRV-induced CC chemokine production, leading to asthma exacerbations. Ovalbumin (OVA)-sensitized and -challenged mice inoculated with HRV showed significant increases in the expression of lung CC chemokine ligand (CCL)-2/monocyte chemotactic protein (MCP)-1, CCL4/macrophage inflammatory protein (MIP)-1β, CCL7/MCP-3, CCL19/MIP-3β, and CCL20/MIP3α compared with mice treated with OVA alone. Inhibition of CCL2 with neutralizing antibody significantly attenuated HRV-induced airways inflammation and hyperresponsiveness in OVA-treated mice. Immunohistochemical stains showed colocalization of CCL2 with HRV in epithelial cells and CD68-positive macrophages, and flow cytometry showed increased CCL2(+), CD11b(+) cells in the lungs of OVA-treated, HRV-infected mice. Compared with lung macrophages from naïve mice, macrophages from OVA-exposed mice expressed significantly more CCL2 in response to HRV infection ex vivo. Pretreatment of mouse lung macrophages and BEAS-2B human bronchial epithelial cells with interleukin (IL)-4 and IL-13 increased HRV-induced CCL2 expression, and mouse lung macrophages from IL-4 receptor knockout mice showed reduced CCL2 expression in response to HRV, suggesting that exposure to these Th2 cytokines plays a role in the altered HRV response. Finally, bronchoalveolar macrophages from children with asthma elaborated more CCL2 upon ex vivo exposure to HRV than cells from nonasthmatic patients. We conclude that CCL2 production by epithelial cells and macrophages contributes to HRV-induced airway hyperresponsiveness and inflammation in a mouse model of allergic airways disease and may play a role in HRV-induced asthma exacerbations.

  14. Preferential pharmacological inhibition of macrophage ACAT increases plaque formation in mouse and rabbit models of atherogenesis.

    PubMed

    Perrey, S; Legendre, C; Matsuura, A; Guffroy, C; Binet, J; Ohbayashi, S; Tanaka, T; Ortuno, J C; Matsukura, T; Laugel, T; Padovani, P; Bellamy, F; Edgar, A D

    2001-04-01

    The cholesteryl ester, foam cell-enriched vulnerable plaque is a principle pharmacological target for reducing athero-thrombosis. Acyl CoA:cholesterol Acyl Transferase (ACAT) catalyzes the esterification of free cholesterol in intestine, liver, adrenal and macrophages, leading in the latter cells to intracellular cholesteryl ester accumulation and foam cell formation in the arterial intima. Previous studies suggested the existence of several isoforms of ACAT with different tissue distribution and this has largely been confirmed by molecular cloning of ACAT-1 and ACAT-2. We developed a series of ACAT inhibitors that preferentially inhibited macrophage ACAT relative to hepatic or intestinal ACAT based on in vitro assays and ex vivo bioavailability studies. Four of these compounds were tested in three models of atherosclerosis at oral doses shown to give sufficient bioavailable monocyte/macrophage ACAT inhibitory activity. In fat-fed C57BL/6 mice, chow fed apo E-/- mice and KHC rabbits, the various ACAT inhibitors had either no effect or increased indices of atherosclerotic foam cell formation. Direct and indirect measurements suggest that the increase in plaque formation may have been related to inhibition of macrophage ACAT possibly leading to cytotoxic effects due to augmented free cholesterol. These results suggest that pharmacological inhibition of macrophage ACAT may not reduce, but actually aggravate, foam cell formation and progression.

  15. The insect peptide CopA3 inhibits lipopolysaccharide-induced macrophage activation.

    PubMed

    Nam, Hyo Jung; Oh, Ah Reum; Nam, Seung Taek; Kang, Jin Ku; Chang, Jong Soo; Kim, Dae Hong; Lee, Ji Hye; Hwang, Jae Sam; Shong, Ko Eun; Park, Mi Jung; Seok, Heon; Kim, Ho

    2012-10-01

    We recently demonstrated that the insect peptide CopA3 (LLCIALRKK), a disulfide-linked dimeric peptide, exerts antimicrobial and anti-inflammatory activities in a mouse colitis model. Here, we examined whether CopA3 inhibited activation of macrophages by LPS. Exposure of an unseparated mouse peritoneal cell population or isolated peritoneal macrophages to LPS markedly increased secretion of IL-6 and TNF-α; these effects were significantly inhibited by CopA3 treatment. The inhibitory effect of CopA3 was also evident in murine macrophage cell line, RAW 264.7. Western blotting revealed that LPS-induced activation of STAT1 and STAT5 in macrophages was significantly inhibited by CopA3. Inhibition of JAK (STAT1/STAT5 kinase) with AG490 markedly reduced the production of IL-6 and TNF-α in macrophages. Collectively, these observations suggest that CopA3 inhibits macrophage activation by inhibiting activating phosphorylations of the transcription factors, STAT1 and STAT5, and blocking subsequent production of IL-6 and TNF-α and indicate that CopA3 may be useful as an immune-modulating agent.

  16. Genetic Control of the Innate Resistance of Mice to Salmonella typhimurium: Expression of the Ity Gene in Peritoneal Macrophages Isolated In Vitro

    DTIC Science & Technology

    1984-07-20

    Statistical Analysis 67 RESULTS Configuration of the _In Vitro Salmonella Infection Assay 68 I. Assessment of the cellular composition of resident... Salmonella Infection Assay I. Assessment of the cellular composition of resident adherent macrophages at the time of infection The methods used for...point of Salmonella infection . At that time, the macrophage cultures were overlaid with 500 pi/well of the lidocaine solution, and incubated at 37° C

  17. Differences between Mycobacterium-Host Cell Relationships in Latent Tuberculous Infection of Mice Ex Vivo and Mycobacterial Infection of Mouse Cells In Vitro.

    PubMed

    Ufimtseva, Elena

    2016-01-01

    The search for factors that account for the reproduction and survival of mycobacteria, including vaccine strains, in host cells is the priority for studies on tuberculosis. A comparison of BCG-mycobacterial loads in granuloma cells obtained from bone marrow and spleens of mice with latent tuberculous infection and cells from mouse bone marrow and peritoneal macrophage cultures infected with the BCG vaccine in vitro has demonstrated that granuloma macrophages each normally contained a single BCG-Mycobacterium, while those acutely infected in vitro had increased mycobacterial loads and death rates. Mouse granuloma cells were observed to produce the IFNγ, IL-1α, GM-CSF, CD1d, CD25, CD31, СD35, and S100 proteins. None of these activation markers were found in mouse cell cultures infected in vitro or in intact macrophages. Lack of colocalization of lipoarabinomannan-labeled BCG-mycobacteria with the lysosomotropic LysoTracker dye in activated granuloma macrophages suggests that these macrophages were unable to destroy BCG-mycobacteria. However, activated mouse granuloma macrophages could control mycobacterial reproduction in cells both in vivo and in ex vivo culture. By contrast, a considerable increase in the number of BCG-mycobacteria was observed in mouse bone marrow and peritoneal macrophages after BCG infection in vitro, when no expression of the activation-related molecules was detected in these cells.

  18. [The modulation of low-level laser on polarization of mouse bone marrow-derived macrophages].

    PubMed

    Dai, Chen; Song, Jiwei; Liang, Zhuowen; Zhang, Qian; Zhang, Kun; Wang, Zhe; Hu, Xueyu

    2016-08-01

    Objective To investigate the influence of 810 nm low-level laser of different energy on the polarization of macrophages. Methods The macrophages were isolated from the bone borrow of BALB/c mice and cultured in macrophage colony stimulating factor (M-CSF) conditioned cultural medium. The expression of F4/80 was examined by flow cytometry for identification. After lipopolysaccharide-γ interferon (LPS-IFN-γ) induced polarization status in the macrophages, the mRNA expressions of inducible nitric oxide synthase (iNOS), arginase 1 (Arg1) and CD86 were detected by reverse transcription PCR, and the protein expressions of iNOS and Arg1 were tested by Western blotting. Thereafter, the M1 macrophages were exposed to 810 nm low-level laser of (1, 2, 3, 4) J/cm(2), and then the cell viability was evaluated by MTT assay; the expressions of iNOS and Arg1 were observed by immunofluorescent cytochemical staining; the mRNA and protein levels of iNOS and Arg1 were studied by reverse transcription PCR and Western blotting. Results Flow cytometry showed that the percentage of F4/80 positive cells cultured with M-CSF conditioned medium was 99.9%. The mRNA and protein levels of iNOS and CD86 in macrophages were both significantly raised after induction by LPS-IFN-γ. Compared with the control cells, the viability of M1 cells significantly decreased when the energy of the low-level laser exposure was 4 J/cm(2), while the viability remained unchanged when the energy was 1, 2 or 3 J/cm(2). Immunocytochemistry revealed that the percentage of Arg1 positive cells that represent M2 macrophages was not significantly different from the control group when the irradiation dose was 1 or 2 J/cm(2), however, the Arg1 positive cells significantly increased and the iNOS positive cells that represent M1 macrophages significantly decreased when the irradiation dose was 3 or 4 J/cm(2). When the irradiation dose was 1 or 2 J/cm(2), the mRNA and protein levels of iNOS and Arg1 remained unchanged

  19. Cellular plasticity of inflammatory myeloid cells in the peritoneal foreign body response.

    PubMed

    Mooney, Jane E; Rolfe, Barbara E; Osborne, Geoffrey W; Sester, David P; van Rooijen, Nico; Campbell, Gordon R; Hume, David A; Campbell, Julie H

    2010-01-01

    Implantation of sterile foreign objects in the peritoneal cavity of an animal initiates an inflammatory response and results in encapsulation of the objects by bone marrow-derived cells. Over time, a multilayered tissue capsule develops with abundant myofibroblasts embedded in extracellular matrix. The present study used the transgenic MacGreen mouse to characterize the time-dependent accumulation of monocyte subsets and neutrophilic granulocytes in the inflammatory infiltrate and within the tissue capsule by their differential expression of the csf1r-EGFP transgene, F4/80, and Ly6C. As the tissue capsule developed, enhanced green fluorescent protein-positive cells changed from rounded to spindle-shaped morphology and began to co-express the myofibroblast marker alpha-smooth muscle actin. Expression increased with time: at day 14, 11.13 +/- 0.67% of tissue capsule cells co-expressed these markers, compared with 50.77 +/- 12.85% of cells at day 28. The importance of monocyte/macrophages in tissue capsule development was confirmed by clodronate-encapsulated liposome removal, which resulted in almost complete abrogation of capsule development. These results confirm the importance of monocyte/macrophages in the tissue response to sterile foreign objects implanted in the peritoneal cavity. In addition, the in vivo plasticity of peritoneal macrophages and their ability to transdifferentiate from a myeloid to mesenchymal phenotype is demonstrated.

  20. Cellular Plasticity of Inflammatory Myeloid Cells in the Peritoneal Foreign Body Response

    PubMed Central

    Mooney, Jane E.; Rolfe, Barbara E.; Osborne, Geoffrey W.; Sester, David P.; van Rooijen, Nico; Campbell, Gordon R.; Hume, David A.; Campbell, Julie H.

    2010-01-01

    Implantation of sterile foreign objects in the peritoneal cavity of an animal initiates an inflammatory response and results in encapsulation of the objects by bone marrow-derived cells. Over time, a multilayered tissue capsule develops with abundant myofibroblasts embedded in extracellular matrix. The present study used the transgenic MacGreen mouse to characterize the time-dependent accumulation of monocyte subsets and neutrophilic granulocytes in the inflammatory infiltrate and within the tissue capsule by their differential expression of the csf1r-EGFP transgene, F4/80, and Ly6C. As the tissue capsule developed, enhanced green fluorescent protein-positive cells changed from rounded to spindle-shaped morphology and began to co-express the myofibroblast marker α-smooth muscle actin. Expression increased with time: at day 14, 11.13 ± 0.67% of tissue capsule cells co-expressed these markers, compared with 50.77 ± 12.85% of cells at day 28. The importance of monocyte/macrophages in tissue capsule development was confirmed by clodronate-encapsulated liposome removal, which resulted in almost complete abrogation of capsule development. These results confirm the importance of monocyte/macrophages in the tissue response to sterile foreign objects implanted in the peritoneal cavity. In addition, the in vivo plasticity of peritoneal macrophages and their ability to transdifferentiate from a myeloid to mesenchymal phenotype is demonstrated. PMID:20008135

  1. Blueberries reduce pro-inflammatory cytokine TNF-alpha and IL-6 production in mouse macrophages by inhibiting NF Kappa B activation and the MAPK pathway

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Blueberries (BB) have been reported to attenuate atherosclerosis in apoE deficient (ApoE-/-) mice. The aim of this study was to evaluate the effects of BB in reducing pro-inflammatory cytokine production in mouse macrophages. ApoE-/- mice were fed AIN-93G diet (CD) or CD formulated to contain 1% fre...

  2. Depletion of liver and splenic macrophages reduces the lethality of Shiga toxin-2 in a mouse model

    PubMed Central

    Palermo, M S; Alves Rosa, M S; Van Rooijen, N; Isturiz, M A

    1999-01-01

    The haemolytic uraemic syndrome (HUS) is a clinical syndrome consisting of haemolytic anaemia, thrombocytopenia, and acute renal insufficiency. HUS is the most frequent cause of acute renal failure in childhood. It has been previously suggested that the presence of Shiga toxin (Stx) is necessary but not sufficient for HUS development, and cytokines such as tumour necrosis factor-alpha (TNF-α) and IL-1β appear to be necessary to develop the syndrome. Since the mononuclear phagocytic system (MPS) is the major source of these cytokines, macrophages might be one of the relevant targets for Stx action in the pathophysiology of HUS. In this study our objective was to examine the role of the hepatic and splenic macrophages in a mouse model of HUS induced by injection of Shiga toxin type-2 (Stx2) or Stx2 plus lipopolysaccharide (LPS). For this purpose, depletion of mice macrophages by liposome-encapsulated clodronate (lip-clod), followed by injection of STx2 or Stx2 plus LPS, was assayed. In this study we show that depletion of hepatic and splenic macrophages by clodronate treatment induces a survival of 50% in animals treated with Stx2 alone or in presence of LPS. This maximal effect was observed when lip-clod was injected 48–72 h before Stx2 injection. Biochemical and histological parameters show characteristics of the lesion produced by Stx2, discarding non-specific damage due to LPS or lip-clod. In addition, we determined that the toxic action of Stx2 is similar in BALB/c and N:NIH nude mice, indicating the T cell compartment is not involved in the Stx2 toxicity. Briefly, we demonstrate that macrophages play a central role in the pathophysiology of HUS, and that the systemic production of cytokines by liver and/or spleen is for Stx2 to manifest its full cytotoxic effect. In addition, the toxicity of Stx2 alone, or in presence of LPS, is independent of the T cell compartment. PMID:10361235

  3. Genome-wide siRNA screen of genes regulating the LPS-induced NF-κB and TNF-α responses in mouse macrophages

    PubMed Central

    Li, Ning; Katz, Samuel; Dutta, Bhaskar; Benet, Zachary L.; Sun, Jing; Fraser, Iain D.C.

    2017-01-01

    The mammalian innate immune system senses many bacterial stimuli through the toll-like receptor (TLR) family. Activation of the TLR4 receptor by bacterial lipopolysaccharide (LPS) is the most widely studied TLR pathway due to its central role in host responses to gram-negative bacterial infection and its contribution to endotoxemia and sepsis. Here we describe a genome-wide siRNA screen to identify genes regulating the mouse macrophage TNF-α and NF-κB responses to LPS. We include a secondary validation screen conducted with six independent siRNAs per gene to facilitate removal of off-target screen hits. We also provide microarray data from the same LPS-treated macrophage cells to facilitate downstream data analysis. These data provide a resource for analyzing gene function in the predominant pathway driving inflammatory signaling and cytokine expression in mouse macrophages. PMID:28248925

  4. Macrophage-derived LIF and IL1B regulate alpha(1,2)fucosyltransferase 2 (Fut2) expression in mouse uterine epithelial cells during early pregnancy.

    PubMed

    Jasper, Melinda J; Care, Alison S; Sullivan, Brad; Ingman, Wendy V; Aplin, John D; Robertson, Sarah A

    2011-01-01

    Macrophages accumulate within stromal tissue subjacent to the luminal epithelium in the mouse uterus during early pregnancy after seminal fluid exposure at coitus. To investigate their role in regulating epithelial cell expression of fucosylated structures required for embryo attachment and implantation, fucosyltransferase enzymes Fut1, Fut2 (Enzyme Commission number [EC] 2.4.1.69), and Fut4 (EC 2.4.1.214) and Muc1 and Muc4 mRNAs were quantified by quantitative real-time PCR in uterine epithelial cells after laser capture microdissection in situ or after epithelial cell coculture with macrophages or macrophage-secreted factors. When uterine macrophage recruitment was impaired by mating with seminal plasma-deficient males, epithelial cell Fut2 expression on Day 3.5 postcoitus (pc) was reduced compared to intact-mated controls. Epithelial cell Fut2 was upregulated in vitro by coculture with macrophages or macrophage-conditioned medium (MCM). Macrophage-derived cytokines LIF, IL1B, and IL12 replicated the effect of MCM on Fut2 mRNA expression, and MCM-stimulated expression was inhibited by anti-LIF and anti-IL1B neutralizing antibodies. The effects of acute macrophage depletion on fucosylated structures detected with lectins Ulex europaeus 1 (UEA-1) and Lotus tetragonolobus purpureas (LTP), or LewisX immunoreactivity, were quantified in vivo in Cd11b-dtr transgenic mice. Depletion of macrophages caused a 30% reduction in luminal epithelial UEA-1 staining and a 67% reduction in LewisX staining in uterine tissues of mice hormonally treated to mimic early pregnancy. Together, these data demonstrate that uterine epithelial Fut2 mRNA expression and terminal fucosylation of embryo attachment ligands is regulated in preparation for implantation by factors including LIF and IL1B secreted from macrophages recruited during the inflammatory response to insemination.

  5. Peritonitis - secondary

    MedlinePlus

    ... Bacteria may enter the peritoneum through a hole (perforation) in an of the organ digestive tract. The ... function tests X-rays or CT scan Peritoneal fluid culture Urinalysis Treatment Often, surgery is needed to ...

  6. Inhibitory effects of devil's claw (secondary root of Harpagophytum procumbens) extract and harpagoside on cytokine production in mouse macrophages.

    PubMed

    Inaba, Kazunori; Murata, Kazuya; Naruto, Shunsuke; Matsuda, Hideaki

    2010-04-01

    Successive oral administration (50 mg/kg) of a 50% ethanolic extract (HP-ext) of devil's claw, the secondary root of Harpagophytum procumbens, showed a significant anti-inflammatory effect in the rat adjuvant-induced chronic arthritis model. HP-ext dose-dependently suppressed the lipopolysaccharide (LPS)-induced production of inflammatory cytokines [interleukin-1beta (IL-1beta), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-alpha)] in mouse macrophage cells (RAW 264.7). Harpagoside, a major iridoid glycoside present in devil's claw, was found to be one of the active agents in HP-ext and inhibited the production of IL-1beta, IL-6, and TNF-alpha by RAW 264.7.

  7. Cytokine response in mouse bone marrow derived macrophages after infection with pathogenic and non-pathogenic Rift Valley fever virus.

    PubMed

    Roberts, Kimberly K; Hill, Terence E; Davis, Melissa N; Holbrook, Michael R; Freiberg, Alexander N

    2015-07-01

    Rift Valley fever virus (RVFV) is the most pathogenic member of the genus Phlebovirus within the family Bunyaviridae, and can cause severe disease in humans and livestock. Until recently, limited information has been published on the cellular host response elicited by RVFV, particularly in macrophages and dendritic cells, which play critical roles in stimulating adaptive and innate immune responses to viral infection. In an effort to define the initial response of host immunomodulatory cells to infection, primary mouse bone marrow derived macrophages (BMDM) were infected with the pathogenic RVFV strain ZH501, or attenuated strains MP-12 or MP-12 based Clone13 type (rMP12-C13 type), and cytokine secretion profiles examined. The secretion of T helper (Th)1-associated antiviral cytokines, chemokines and various interleukins increased rapidly after infection with the attenuated rMP12-C13 type RVFV, which lacks a functional NSs virulence gene. In comparison, infection with live-attenuated MP-12 encoding a functional NSs gene appeared to cause a delayed immune response, while pathogenic ZH501 ablates the immune response almost entirely. These data demonstrate that NSs can inhibit components of the BMDM antiviral response and supports previous work indicating that NSs can specifically regulate the type I interferon response in macrophages. Furthermore, our data demonstrate that genetic differences between ZH501 and MP-12 reduce the ability of MP-12 to inhibit antiviral signalling and subsequently reduce virulence in BMDM, demonstrating that viral components other than NSs play a critical role in regulating the host response to RVFV infection.

  8. Cytokine response in mouse bone marrow derived macrophages after infection with pathogenic and non-pathogenic Rift Valley fever virus

    PubMed Central

    Roberts, Kimberly K.; Hill, Terence E.; Davis, Melissa N.; Holbrook, Michael R.

    2015-01-01

    Rift Valley fever virus (RVFV) is the most pathogenic member of the genus Phlebovirus within the family Bunyaviridae, and can cause severe disease in humans and livestock. Until recently, limited information has been published on the cellular host response elicited by RVFV, particularly in macrophages and dendritic cells, which play critical roles in stimulating adaptive and innate immune responses to viral infection. In an effort to define the initial response of host immunomodulatory cells to infection, primary mouse bone marrow derived macrophages (BMDM) were infected with the pathogenic RVFV strain ZH501, or attenuated strains MP-12 or MP-12 based Clone13 type (rMP12-C13 type), and cytokine secretion profiles examined. The secretion of T helper (Th)1-associated antiviral cytokines, chemokines and various interleukins increased rapidly after infection with the attenuated rMP12-C13 type RVFV, which lacks a functional NSs virulence gene. In comparison, infection with live-attenuated MP-12 encoding a functional NSs gene appeared to cause a delayed immune response, while pathogenic ZH501 ablates the immune response almost entirely. These data demonstrate that NSs can inhibit components of the BMDM antiviral response and supports previous work indicating that NSs can specifically regulate the type I interferon response in macrophages. Furthermore, our data demonstrate that genetic differences between ZH501 and MP-12 reduce the ability of MP-12 to inhibit antiviral signalling and subsequently reduce virulence in BMDM, demonstrating that viral components other than NSs play a critical role in regulating the host response to RVFV infection. PMID:25759029

  9. Distribution of macrophages, osteoclasts and the B-lymphocyte lineage in osteolytic metastasis of mouse mammary carcinoma.

    PubMed

    Li, Minqi; Sasaki, Tomoyo; Ono, Katsuhiro; de Freitas, Paulo Henrique Luiz; Sobhan, Ubaidus; Kojima, Taku; Shimomura, Junko; Oda, Kimimitsu; Amizuka, Norio

    2007-06-01

    The purpose of this study was to examine the localization of macrophages, B-lymphocytes and osteoclasts in tumoral lesions of mammary carcinoma metastasized to bone of non-immunocompromised mice. Mouse mammary carcinoma cells (BALB/c-MC) were injected through the left cardiac ventricle into 5-week-old female wild-type Balb/c mice. The femora and tibiae of mice with metastasized cancer were extracted, and thereafter processed for histochemical analyses. The foci of metastasized tumor cells occupied the metaphyseal area, and the cell death zones could be identified within the tumor mass. Abundant tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts were found among the alkaline phosphatase (ALP)-reactive osteoblastic cell layer that covered the bone surface neighboring the metastatic lesion. In contrast, F4/80-positive macrophages/monocytes were localized adjacent to, or invading the metastatic tissue. In addition, some F4/80-positive cells were found in the aforementioned cell death zones. Unlike F4/80-positive cells, CD45R-positive B-lymphocytes did not accumulate at the surfaces of the tumor lesions, nor infiltrate into them, but were found scattered over bone marrow. Interestingly, some CD45R-positive cells were observed close to TRAP-positive osteoclasts in the stromal tissue surrounding the tumor lesion. Our findings suggest that, in the bone metastatic lesions of non-immunocompromised mice, F4/80-positive macrophages/monocytes accumulated on and/or infiltrated into the tumor nests, while CD45R-positive B-lymphocytes were associated with osteoclasts, rather than attacking metastatic tumor cells.

  10. Identification of polymorphisms and sequence variants in the human homologue of the mouse natural resistance-associated macrophage protein gene

    SciTech Connect

    Liu, Jing; Fujiwara, T.M.; Buu, N.T.; Sanchez, F.O.; Cellier, M.; Paradis, A.J.; Frappier, D.; Skamene, E.; Gros, P.; Morgan, K.

    1995-04-01

    The most common mycobacterial disease in humans is tuberculosis, and there is evidence for genetic factors in susceptibility to tuberculosis. In the mouse, the Bcg gene controls macrophage priming for activation and is a major gene for susceptibility to infection with mycobacteria. A candidate gene for Bcg was identified by positional cloning and was designated {open_quotes}natural resistance-associated macrophage protein gene{close_quotes} (Nramp1), and the human homologue (NRAMP1) has recently been cloned. Here we report (1) the physical mapping NRAMP1 close to VIL in chromosome region 2q35 by PCR analysis of somatic cell hybrids and YAC cloning and (2) the identification of nine sequence variants in NRAMP1. Of the four variants in the coding region, there were two missense mutations and two silent substitutions. The missense mutations were a conservative alanine-to-valine substitution at codon 318 in exon9 and an aspartic acid-to-asparagine substitution at codon 543 in the predicted cytoplasmic tail of the NRAMP1 protein. A microsatellite was located in the immediate 5{prime} region of the gene, three variants were in introns, and one variant was located in the 3{prime} UTR. The allele frequencies of each of the nine variants were determined in DNA samples of 60 Caucasians and 20 Asians. In addition, we have physically linked two highly polymorphic microsatellite markers, D2S104 and D2S173, to NRAMP1 on a 1.5-Mb YAC contig. These molecular markers will be useful to assess the role of NRAMP1 in susceptibility to tuberculosis and other macrophage-mediated diseases. 40 refs., 3 figs., 2 tabs.

  11. Determination of tolerable fatty acids and cholera toxin concentrations using human intestinal epithelial cells and BALB/c mouse macrophages.

    PubMed

    Tamari, Farshad; Tychowski, Joanna; Lorentzen, Laura

    2013-05-30

    The positive role of fatty acids in the prevention and alleviation of non-human and human diseases have been and continue to be extensively documented. These roles include influences on infectious and non-infectious diseases including prevention of inflammation as well as mucosal immunity to infectious diseases. Cholera is an acute intestinal illness caused by the bacterium Vibrio cholerae. It occurs in developing nations and if left untreated, can result in death. While vaccines for cholera exist, they are not always effective and other preventative methods are needed. We set out to determine tolerable concentrations of three fatty acids (oleic, linoleic and linolenic acids) and cholera toxin using mouse BALB/C macrophages and human intestinal epithelial cells, respectively. We solubilized the above fatty acids and used cell proliferation assays to determine the concentration ranges and specific concentrations of the fatty acids that are not detrimental to human intestinal epithelial cell viability. We solubilized cholera toxin and used it in an assay to determine the concentration ranges and specific concentrations of cholera toxin that do not statistically decrease cell viability in BALB/C macrophages. We found the optimum fatty acid concentrations to be between 1-5 ng/μl, and that for cholera toxin to be < 30 ng per treatment. This data may aid future studies that aim to find a protective mucosal role for fatty acids in prevention or alleviation of cholera infections.

  12. Inhibition of PI3Kδ reduces kidney infiltration by macrophages and ameliorates systemic lupus in the mouse.

    PubMed

    Suárez-Fueyo, Abel; Rojas, José M; Cariaga, Ariel E; García, Esther; Steiner, Bart H; Barber, Domingo F; Puri, Kamal D; Carrera, Ana C

    2014-07-15

    Systemic lupus erythematosus (SLE) is a human chronic inflammatory disease generated and maintained throughout life by autoreactive T and B cells. Class I phosphoinositide 3-kinases (PI3K) are heterodimers composed of a regulatory and a catalytic subunit that catalyze phosphoinositide-3,4,5-P3 formation and regulate cell survival, migration, and division. Activity of the PI3Kδ isoform is enhanced in human SLE patient PBLs. In this study, we analyzed the effect of inhibiting PI3Kδ in MRL/lpr mice, a model of human SLE. We found that PI3Kδ inhibition ameliorated lupus progression. Treatment of these mice with a PI3Kδ inhibitor reduced the excessive numbers of CD4(+) effector/memory cells and B cells. In addition, this treatment reduced serum TNF-α levels and the number of macrophages infiltrating the kidney. Expression of inactive PI3Kδ, but not deletion of the other hematopoietic isoform PI3Kγ, reduced the ability of macrophages to cross the basement membrane, a process required to infiltrate the kidney, explaining MRL/lpr mice improvement by pharmacologic inhibition of PI3Kδ. The observations that p110δ inhibitor prolonged mouse life span, reduced disease symptoms, and showed no obvious secondary effects indicates that PI3Kδ is a promising target for SLE.

  13. Targeted delivery of glucocorticoids to macrophages in a mouse model of multiple sclerosis using inorganic-organic hybrid nanoparticles.

    PubMed

    Montes-Cobos, Elena; Ring, Sarah; Fischer, Henrike J; Heck, Joachim; Strauß, Judith; Schwaninger, Markus; Reichardt, Sybille D; Feldmann, Claus; Lühder, Fred; Reichardt, Holger M

    2017-01-10

    Glucocorticoids (GC) are widely used to treat acute relapses in multiple sclerosis (MS) patients, but their application is accompanied by side effects due to their broad spectrum of action. Here, we report on the therapeutic option to apply GC via inorganic-organic hybrid nanoparticles (IOH-NP) with the composition [ZrO](2+)[(BMP)0.9(FMN)0.1](2-) (designated BMP-NP with BMP: betamethasone phosphate; FMN: flavinmononucleotide). We found that these BMP-NP have an increased cell type-specificity compared to free GC while retaining full therapeutic efficacy in a mouse model of MS. BMP-NP were preferentially taken up by phagocytic cells and modulated macrophages in vivo more efficiently than T cells. When GC were applied in the form of BMP-NP, treatment of neuroinflammatory disease in mice exclusively depended on the control of macrophage function whereas effects on T cells and brain endothelial cells were dispensable for therapeutic efficacy. Importantly, BMP-NP were not only active in mice but also showed strong activity towards monocytes isolated from healthy human volunteers. We conclude that application of GC via IOH-NP has the potential to improve MS therapy in the future.

  14. Total absence of colony-stimulating factor 1 in the macrophage-deficient osteopetrotic (op/op) mouse.

    PubMed

    Wiktor-Jedrzejczak, W; Bartocci, A; Ferrante, A W; Ahmed-Ansari, A; Sell, K W; Pollard, J W; Stanley, E R

    1990-06-01

    Osteopetrotic (op/op) mutant mice suffer from congenital osteopetrosis due to a severe deficiency of osteoclasts. Furthermore, the total number of mononuclear phagocytes is extremely low in affected mice. Serum, 11 tissues, and different cell and organ conditioned media from op/op mice were shown to be devoid of biologically active colony-stimulating factor 1 (CSF-1), whereas all of these preparations from littermate control +/+ and +/op mice contained the growth factor. The deficiency was specific for CSF-1 in that serum or conditioned media from op/op mice possessed elevated levels of at least three other macrophage growth factors. Partial correction of the op/op defect was observed following intraperitoneal implantation of diffusion chambers containing L929 cells, which in culture produce CSF-1 as their sole macrophage growth factor. No rearrangement of the CSF-1 gene in op/op mice was detected by Southern analysis. However, in contrast to control lung fibroblasts, which contained 4.6- and 2.3-kilobase CSF-1 mRNAs, only the 4.6-kilobase species was detected in op/op cells. An alteration in the CSF-1 gene is strongly implicated as the primary defect in op/op mice because they do not contain detectable CSF-1, their defect is correctable by administration of CSF-1, the op locus and the CSF-1 gene map within the same region of mouse chromosome 3, their CSF-1 mRNA biosynthesis is altered, and the op/op phenotype is consistent with the phenotype expected in a CSF-1 deficient mouse.

  15. Phagocytosis of aggregated lipoprotein by macrophages: Low density lipoprotein receptor-dependent foam-cell formation

    SciTech Connect

    Suits, A.G.; Chait, A.; Aviram, M.; Heinecke, J.W. )

    1989-04-01

    Low density lipoprotein (LDL) modified by incubation with phospholipase C (PLC-LDL) aggregates in solution and is rapidly taken up and degraded by human and mouse macrophages, producing foam cells in vitro. Human, mouse, and rabbit macrophages degraded {sup 125}I-labeled PLC-LDL ({sup 125}I-PLC-LDL) more rapidly than native {sup 125}I-labeled LDL ({sup 125}I-LDL), while nonphagocytic cells such as human fibroblasts and bovine aortic endothelial cells degraded {sup 125}I-PLC-LDL more slowly than {sup 125}I-LDL. This suggested the mechanism for internalization of PLC-LDL was phagocytosis. When examined by electron microscopy, mouse peritoneal macrophages appeared to be phagocytosing PLC-LDL. The uptake and degradation of {sup 125}I-PLC-LDL by human macrophages was inhibited >80% by the monoclonal antibody C7 (IgG2b) produced by hybridoma C7, which blocks the ligand binding domain of the LDL receptor. Similarly, methylation of {sup 125}I-LDL ({sup 125}I-MeLDL) prior to treatment with phospholipase C decreased its subsequent uptake and degradation by human macrophages by >90%. The uptake and degradation of phospholipase C-modified {sup 125}I-MeLDL by macrophages could be restored by incubation of the methylated lipoprotein with apoprotein E, a ligand recognized by the LDL receptor. These results indicate that macrophages internalize PLC-LDL by LDL receptor-dependent phagocytosis.

  16. Macrophage Wnt-Calcineurin-Flt1 signaling regulates mouse wound angiogenesis and repair.

    PubMed

    Stefater, James A; Rao, Sujata; Bezold, Katie; Aplin, Alfred C; Nicosia, Roberto F; Pollard, Jeffrey W; Ferrara, Napoleone; Lang, Richard A

    2013-03-28

    The treatment of festering wounds is one of the most important aspects of medical care. Macrophages are important components of wound repair, both in fending off infection and in coordinating tissue repair. Here we show that macrophages use a Wnt-Calcineurin-Flt1 signaling pathway to suppress wound vasculature and delay repair. Conditional mutants deficient in both Wntless/GPR177, the secretory transporter of Wnt ligands, and CNB1, the essential component of the nuclear factor of activated T cells dephosporylation complex, displayed enhanced angiogenesis and accelerated repair. Furthermore, in myeloid-like cells, we show that noncanonical Wnt activates Flt1, a naturally occurring inhibitor of vascular endothelial growth factor-A-mediated angiogenesis, but only when calcineurin function is intact. Then, as expected, conditional deletion of Flt1 in macrophages resulted in enhanced wound angiogenesis and repair. These results are consistent with the published link between enhanced angiogenesis and enhanced repair, and establish novel therapeutic approaches for treatment of wounds.

  17. Molecular Responses of Mouse Macrophages to Copper and Copper Oxide Nanoparticles Inferred from Proteomic Analyses*

    PubMed Central

    Triboulet, Sarah; Aude-Garcia, Catherine; Carrière, Marie; Diemer, Hélène; Proamer, Fabienne; Habert, Aurélie; Chevallet, Mireille; Collin-Faure, Véronique; Strub, Jean-Marc; Hanau, Daniel; Van Dorsselaer, Alain; Herlin-Boime, Nathalie; Rabilloud, Thierry

    2013-01-01

    The molecular responses of macrophages to copper-based nanoparticles have been investigated via a combination of proteomic and biochemical approaches, using the RAW264.7 cell line as a model. Both metallic copper and copper oxide nanoparticles have been tested, with copper ion and zirconium oxide nanoparticles used as controls. Proteomic analysis highlighted changes in proteins implicated in oxidative stress responses (superoxide dismutases and peroxiredoxins), glutathione biosynthesis, the actomyosin cytoskeleton, and mitochondrial proteins (especially oxidative phosphorylation complex subunits). Validation studies employing functional analyses showed that the increases in glutathione biosynthesis and in mitochondrial complexes observed in the proteomic screen were critical to cell survival upon stress with copper-based nanoparticles; pharmacological inhibition of these two pathways enhanced cell vulnerability to copper-based nanoparticles, but not to copper ions. Furthermore, functional analyses using primary macrophages derived from bone marrow showed a decrease in reduced glutathione levels, a decrease in the mitochondrial transmembrane potential, and inhibition of phagocytosis and of lipopolysaccharide-induced nitric oxide production. However, only a fraction of these effects could be obtained with copper ions. In conclusion, this study showed that macrophage functions are significantly altered by copper-based nanoparticles. Also highlighted are the cellular pathways modulated by cells for survival and the exemplified cross-toxicities that can occur between copper-based nanoparticles and pharmacological agents. PMID:23882024

  18. Lipophilic derivative of muramyl dipeptide is more active than muramyl dipeptide in priming macrophages to release superoxide anion.

    PubMed Central

    Pabst, M J; Cummings, N P; Shiba, T; Kusumoto, S; Kotani, S

    1980-01-01

    Mouse peritoneal macrophages, when treated with a lipophilic derivative of muramyl dipeptide either in vitro or in vivo by intraperitoneal injection, showed a more than fivefold increase in their ability to generate superoxide anion after stimulation of the macrophages with phorbol myristate acetate. This response was more than twice that observed with the parent molecule, muramyl dipeptide (MDP). Unlike MDP, which has a systemic effect, the lipophilic derivative, [B30]-MDP, did not alter the response of peritoneal macrophages when given subcutaneously in the flank, suggesting that [B30]-MDP remains localized at the site of injection. The enhanced effect of [B30]-MDP over MDP appeared to be due to the inherent lipophilicity of the molecule, and was probably not due to either stimulation of T lymphocytes or activation of the alternative pathway of complement. PMID:6260655

  19. Degradation of connective tissue matrices by macrophages. II. Influence of matrix composition on proteolysis of glycoproteins, elastin, and collagen by macrophages in culture

    SciTech Connect

    Jones, P.A.; Werb, Z.

    1980-12-01

    Thioglycollate-elicited mouse peritoneal macrophages were cultured in contact with the mixture of extracellular matrix proteins produced by rat smooth muscle cells in culture. Both live macrophages and their conditioned media hydrolyzed glycoproteins, elastin, and collagen. Live macrophages also degraded extracellular connective tissue proteins secreted by endothelial cells and fibroblasts. The glycoproteins in the matrix markedly inhibited the rate of digestion of the other macromolecules, particularly elastin. When plasminogen was added to the matrix, activation of plasminogen to plasmin resulted in the hydrolysis of the glycoprotein components, which then allowed the macrophage elastase easier access to its substrate, elastin. Thus, although plasmin has no direct elastinolytic activity, its presence accelerated the rate of hydrolysis of elastin and therefore the rate of matrix degradation. These findings may be important in an understanding of disease states, such as emphysema and atherosclerosis, that are characterized by the destruction of connective tissue.

  20. Difference in the toxicity mechanism between ion and nanoparticle forms of silver in the mouse lung and in macrophages.

    PubMed

    Arai, Yuta; Miyayama, Takamitsu; Hirano, Seishiro

    2015-02-03

    The health effects of silver nanoparticles (AgNPs) have not been well investigated, despite AgNPs now being widely used in consumer products. We investigated the metabolic behavior and toxicity of AgNPs in comparison to silver nitrate (AgNO3) both in vivo and in vitro. AgNPs (20 nm diameter) suspended in 1% albumin solution or AgNO3 solution was injected into the mouse lung. Less than 1% of the initial dose of AgNPs and more than 7% of the initial dose of AgNO3 was recovered in the liver 4h after administration, suggesting that the ionic form of silver was absorbed by the lung tissue and entered the systemic circulation more efficiently than AgNPs. The pro-inflammatory cytokine, IL-1β, and neutrophils in bronchoalveolar lavage fluid (BALF) increased following intratracheal instillation of AgNPs or AgNO3. AgNO3 recruited more neutrophils in the alveolar space than did AgNPs. In the in vitro study, AgNO3 was more cytotoxic than 20, 60, or 100 nm diameter AgNPs in a mouse macrophage cell line (J774.1). To investigate the intracellular distribution of Ag in detail, J774.1 cells were exposed to AgNO3 or 20 nm AgNPs and the distribution of Ag to cytosolic proteins was investigated using HPLC-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS). Ag was mainly distributed to metallothioneins (MT) and to high molecular weight proteins in AgNO3- and AgNPs-exposed cells, respectively. Confocal laser microscopic examination of LysoTracker(®)-labeled cells indicated that AgNPs were colocalized with lysosomes in J774.1 cells. These results suggest that AgNPs were transported to lysosomes and only gradually dissolved in the macrophages, causing milder inflammatory stimulation in the mouse lung compared to AgNO3.

  1. Preservation Analysis of Macrophage Gene Coexpression Between Human and Mouse Identifies PARK2 as a Genetically Controlled Master Regulator of Oxidative Phosphorylation in Humans

    PubMed Central

    Codoni, Veronica; Blum, Yuna; Civelek, Mete; Proust, Carole; Franzén, Oscar; Björkegren, Johan L. M.; Le Goff, Wilfried; Cambien, Francois; Lusis, Aldons J.; Trégouët, David-Alexandre

    2016-01-01

    Macrophages are key players involved in numerous pathophysiological pathways and an in-depth characterization of their gene regulatory networks can help in better understanding how their dysfunction may impact on human diseases. We here conducted a cross-species network analysis of macrophage gene expression data between human and mouse to identify conserved networks across both species, and assessed whether such networks could reveal new disease-associated regulatory mechanisms. From a sample of 684 individuals processed for genome-wide macrophage gene expression profiling, we identified 27 groups of coexpressed genes (modules). Six modules were found preserved (P < 10−4) in macrophages from 86 mice of the Hybrid Mouse Diversity Panel. One of these modules was significantly [false discovery rate (FDR) = 8.9 × 10−11] enriched for genes belonging to the oxidative phosphorylation (OXPHOS) pathway. This pathway was also found significantly (FDR < 10−4) enriched in susceptibility genes for Alzheimer, Parkinson, and Huntington diseases. We further conducted an expression quantitative trait loci analysis to identify SNP that could regulate macrophage OXPHOS gene expression in humans. This analysis identified the PARK2 rs192804963 as a trans-acting variant influencing (minimal P-value = 4.3 × 10−8) the expression of most OXPHOS genes in humans. Further experimental work demonstrated that PARK2 knockdown expression was associated with increased OXPHOS gene expression in THP1 human macrophages. This work provided strong new evidence that PARK2 participates to the regulatory networks associated with oxidative phosphorylation and suggested that PARK2 genetic variations could act as a trans regulator of OXPHOS gene macrophage expression in humans. PMID:27558669

  2. Counter-regulatory paracrine actions of FGF-23 and 1,25(OH)2 D in macrophages.

    PubMed

    Han, Xiaobin; Li, Linqiang; Yang, Jiancheng; King, Gwendalyn; Xiao, Zhousheng; Quarles, Leigh Darryl

    2016-01-01

    Mechanisms underlying the association between fibroblastic growth factor 23 (FGF-23) and inflammation are uncertain. We found that FGF-23 was markedly up-regulated in LPS/INF-γ-induced proinflammatory M1 macrophages and Hyp mouse-derived peritoneal macrophages, but not in IL-4-induced M2 anti-inflammatory macrophages. NF-КB and JAK/STAT1 pathways mediated the increased transcription of FGF-23 in response to M1 polarization. FGF-23 stimulated TNF-α, but not IL-6, expression in M0 macrophages and suppressed Arginase-1 expression in M2 macrophages through FGFR-mediated mechanisms. 1,25(OH)2 D stimulated Arginase-1 expression and inhibited FGF-23 stimulation of TNF-α. FGF-23 has proinflammatory paracrine functions and counter-regulatory actions to 1,25(OH)2 D on innate immune responses.

  3. Counter-regulatory paracrine actions of FGF-23 and 1,25(OH)2D in macrophages

    PubMed Central

    Han, Xiaobin; Li, Linqiang; Yang, Jiancheng; King, Gwendalyn; Xiao, Zhousheng; Quarles, Leigh Darryl

    2016-01-01

    Mechanisms underlying the association between fibroblastic growth factor 23 (FGF-23) and inflammation are uncertain. We found that FGF-23 was markedly up-regulated in LPS/INF-γ-induced proinflammatory M1 macrophages and Hyp mouse-derived peritoneal macrophages, but not in IL-4-induced M2 anti-inflammatory macrophages. NF-κB and JAK/STAT1 pathways mediated the increased transcription of FGF-23 in response to M1 polarization. FGF-23 stimulated TNF-α, but not IL-6, expression in M0 macrophages and suppressed Arginase-1 expression in M2 macrophages through FGFR-mediated mechanisms. 1,25(OH)2D stimulated Arginase-1 expression and inhibited FGF-23 stimulation of TNF-α. FGF-23 has proinflammatory paracrine functions and counter-regulatory actions to 1,25(OH)2D on innate immune responses. PMID:26762170

  4. In vitro stimulation of macrophages by quadrol [N,N,N',N'-tetrakis(2-hydroxypropyl)ethylenediamine].

    PubMed

    Bhide, M V; Patel, S; Rowland, E C; Smith, D J

    1985-01-01

    Mouse peritoneal macrophages, when exposed to Quadrol [N,N,N',N'-tetrakis(2-hydroxypropyl)ethylenediamine] in vitro, show a dose dependent enhanced spreading over a four-hour period. In vitro Quadrol induced phagocytosis of polystyrene beads was found to be time and concentration dependent. The rate and extent of the enhancement of phagocytosis was comparable to that observed for lipopolysaccharide and tuftsin.

  5. 2-Deoxy-D-glucose inhibits intracellular multiplication and promotes intracellular killing of Legionella pneumophila in A/J mouse macrophages.

    PubMed Central

    Ogawa, M; Yoshida, S; Mizuguchi, Y

    1994-01-01

    Legionella pneumophila can grow intracellularly in A/J mouse macrophages. 2-Deoxy-D-glucose (2dG) (0.1, 1, and 10 mM) inhibited intracellular multiplication and promoted intracellular killing of L. pneumophila dose dependently when it was added to the culture medium of macrophage monolayers, whereas it did not inhibit the bacterial growth in buffered yeast extract broth, which was used for an L. pneumophila culture. The effect of 2dG was reversible because the surviving bacteria resumed intracellular multiplication after the washing away of 2dG from the culture. The effect of 2dG was also competitively inhibited by high concentrations of glucose. The inhibitory effect of 2dG was not attributed to the inhibition of bacterial phagocytosis by macrophages. Furthermore, sodium fluoride (0.1 and 1 mM), cycloheximide (0.1 and 1 microgram/ml), and tunicamycin (1, 2, and 5 micrograms/ml) did not promote the killing of L. pneumophila in macrophages, implying that the inhibitory effect of 2dG cannot be attributed to the inhibition of glycolysis, protein synthesis, and protein glycosylation in macrophages. We suggest that 2dG promotes intracellular killing of L. pneumophila by activating some novel killing mechanism of macrophages. PMID:8262638

  6. Peritoneal Dialysis

    PubMed Central

    Al-Natour, Mohammed; Thompson, Dustin

    2016-01-01

    Peritoneal dialysis is becoming more important in the management of patients with end-stage renal disease. Because of the efforts of the “Fistula First Breakthrough Initiative,” dialysis venous access in the United States has become focused on promoting arteriovenous fistula creation and reducing the number of patients who start dialysis with a tunneled catheter. This is important because tunneled catheters can lead to infection, endocarditis, and early loss of more long-term access. When planned for, peritoneal dialysis can offer patients the opportunity to start dialysis at home without jeopardizing central access or the possibilities of eventual arteriovenous fistula creation. The purpose of this review is to highlight the indications, contraindications, and procedural methods for implanting peritoneal dialysis catheters in the interventional radiology suite. PMID:27011420

  7. The Salmonella virulence plasmid enhances Salmonella-induced lysis of macrophages and influences inflammatory responses.

    PubMed Central

    Guilloteau, L A; Wallis, T S; Gautier, A V; MacIntyre, S; Platt, D J; Lax, A J

    1996-01-01

    The Salmonella dublin virulence plasmid mediates systemic infection in mice and cattle. Here, we analyze the interaction between wild-type and plasmid-cured Salmonella strains with phagocytes in vitro and in vivo. The intracellular recovery of S. dublin from murine peritoneal and bovine alveolar macrophages cultured in the presence of gentamicin in vitro was not related to virulence plasmid carriage. However, the virulence plasmid increased the lytic activity of S. dublin, Salmonella typhimurium, and Salmonella choleraesuis for resident or activated mouse peritoneal macrophages. Lysis was not mediated by spv genes and was abolished by cytochalasin D treatment. Peritoneal and splenic macrophages were isolated from mice 4 days after intraperitoneal infection with wild-type or plasmid-cured S. dublin strains. The wild-type strain was recovered in significantly higher numbers than the plasmid-cured strain. However, the intracellular killing rates of such cells cultured in vitro for both S. dublin strains were not significantly different. Four days after infection, there was a lower increase of phagocyte numbers in the peritoneal cavities and spleens of mice infected with the wild-type strain compared with the plasmid-cured strain. The virulence plasmid influenced the survival of macrophages in vitro following infection in vivo as assessed by microscopy. Cells from mice infected with the plasmid-cured strain survived better than those from mice infected with the wild-type strain. This is the first report demonstrating an effect of the virulence plasmid on the interaction of Salmonella strains with macrophages. Plasmid-mediated macrophage dysfunction could influence the recruitment and/or the activation of phagocytic cells and consequently the net growth of Salmonella strains during infection. PMID:8757880

  8. Salvianolic Acid A Attenuates Cell Apoptosis, Oxidative Stress, Akt and NF-κB Activation in Angiotensin-II Induced Murine Peritoneal Macrophages.

    PubMed

    Li, Ling; Xu, Tongda; Du, Yinping; Pan, Defeng; Wu, Wanling; Zhu, Hong; Zhang, Yanbin; Li, Dongye

    2016-01-01

    We discuss the role of Salvianolic acid A(SAA), one of the main effective components in Salvia Miltiorrhiza (known as 'Danshen' in traditional Chinese medicine), in apoptotic factors, the production of oxidative products, and the expression of Akt and NF-κB in angiotensin II (Ang II)-mediated murine macrophages. In the present study, Ang II was added to mice abdominal macrophages with or without addition of SAA. After cell identification, apoptosis was measured by DNA strand break level with TdT-mediated dUTP nick-end labeling (TUNEL) staining, and the expression of Bcl-2 and Bax. Intracellular concentrations of superoxide dismutase (SOD) and malondialdehyde (MDA) were also measured. Western blotting determined the expression of Akt, p-Akt, NF-κB and p-NF-κB. Ly294002 (the inhibitor of PI3K) was used to determine the mechanism of SAA. Ang II (1 µM) significantly increased the number of TUNEL-positive cells and Bax expression, but reduced Bcl-2 expression. These effects were antagonized when the cells were pretreated with SAA. SAA decreased MDA, but increased SOD in the cell lysis solution treated with Ang II. It markedly reduced the level of p-NF-κB, as also p-Akt, which was partly blocked by Ly294002. SAA prevents Ang IIinduced apoptosis, oxidative stress and related protein expression in the macrophages. It also inhibits the activation of Akt.

  9. Functional expression of P2X family receptors in macrophages is affected by microenvironment in mouse T cell acute lymphoblastic leukemia

    SciTech Connect

    Chen, Shayan; Feng, Wenli; Yang, Xiao; Yang, Wanzhu; Ru, Yongxin; Liao, Jinfeng; Wang, Lina; Lin, Yongmin; Ren, Qian; Zheng, Guoguang

    2014-04-18

    Highlights: • We study the impact of leukemic microenvironment on P2X family receptors in Mφs. • Bone marrow and spleen Mφs are studied in Notch1-induced mouse leukemia model. • Increased expression of P2X7R is found in Mφs during the development of leukemia. • Elevated P2X7R-mediated calcium response is found in Mφs at late stage of leukemia. • More apoptotic Mφs are found in bone marrow and spleen at late stage of leukemia. - Abstract: Nucleotides are important players in intercellular signaling communication network. P2X family receptors (P2XRs) are ATP-gated plasma membrane ion channels with diverse biological functions. Macrophages are important components in the microenvironment of hematopoiesis participating in both physiological and pathological processes. However, the role of P2XRs in macrophages in leukemia has not been established. Here we investigated expression pattern and functions of P2XRs in macrophages from bone marrow (BM) and spleen of Notch1-induced T-ALL mice. Real-time PCR showed that P2XRs except P2X5R were expressed in BM and spleen macrophages. Furthermore, with the development of leukemia, the expression of P2X7R increased in both BM and spleen macrophages whereas expression of P2X1R increased in spleen macrophages. Live cell imaging recoding the Ca{sup 2+} response demonstrated that P2X7R expressed in macrophages was functional. TUNEL and electron microscopy analysis found that apoptotic macrophages were frequently observed in BM and spleen at late stage of leukemia, which was partly contributed by the activation of overexpressed P2X7R. Our results suggested that the intercellular communication mediated by nucleotides might orchestrate in the pathological process of leukemia and could be a potential target for the treatment of leukemia.

  10. The Mouse Cytomegalovirus Gene m42 Targets Surface Expression of the Protein Tyrosine Phosphatase CD45 in Infected Macrophages

    PubMed Central

    Thiel, Nadine; Keyser, Kirsten A.; Oduro, Jennifer D.; Wagner, Karen; Halenius, Anne; Lenac Roviš, Tihana; Brinkmann, Melanie M.; Jonjić, Stipan; Cicin-Sain, Luka

    2016-01-01

    The receptor-like protein tyrosine phosphatase CD45 is expressed on the surface of cells of hematopoietic origin and has a pivotal role for the function of these cells in the immune response. Here we report that following infection of macrophages with mouse cytomegalovirus (MCMV) the cell surface expression of CD45 is drastically diminished. Screening of a set of MCMV deletion mutants allowed us to identify the viral gene m42 of being responsible for CD45 down-modulation. Moreover, expression of m42 independent of viral infection upon retroviral transduction of the RAW264.7 macrophage cell line led to comparable regulation of CD45 expression. In immunocompetent mice infected with an m42 deletion mutant lower viral titers were observed in all tissues examined when compared to wildtype MCMV, indicating an important role of m42 for viral replication in vivo. The m42 gene product was identified as an 18 kDa protein expressed with early kinetics and is predicted to be a tail-anchored membrane protein. Tracking of surface-resident CD45 molecules revealed that m42 induces internalization and degradation of CD45. The observation that the amounts of the E3 ubiquitin ligases Itch and Nedd4 were diminished in cells expressing m42 and that disruption of a PY motif in the N-terminal part of m42 resulted in loss of function, suggest that m42 acts as an activator or adaptor for these Nedd4-like ubiquitin ligases, which mark CD45 for lysosomal degradation. In conclusion, the down-modulation of CD45 expression in MCMV-infected myeloid cells represents a novel pathway of virus-host interaction. PMID:27926943

  11. Proteomic Identification and Quantification of S-glutathionylation in Mouse Macrophages Using Resin-Assisted Enrichment and Isobaric Labeling

    PubMed Central

    Su, Dian; Gaffrey, Matthew J.; Guo, Jia; Hatchell, Kayla E.; Chu, Rosalie K.; Clauss, Therese R. W.; Aldrich, Joshua T.; Wu, Si; Purvine, Sam; Camp, David G.; Smith, Richard D.; Thrall, Brian D.; Qian, Wei-Jun

    2014-01-01

    S-glutathionylation (SSG) is an important regulatory posttranslational modification on protein cysteine (Cys) thiols, yet the role of specific cysteine residues as targets of modification is poorly understood. We report a novel quantitative mass spectrometry (MS)-based proteomic method for site-specific identification and quantification of S-glutathionylation across different conditions. Briefly, this approach consists of initial blocking of free thiols by alkylation, selective reduction of glutathionylated thiols and covalent capture of reduced thiols using thiol affinity resins, followed by on-resin tryptic digestion and isobaric labeling with iTRAQ (isobaric tags for relative and absolute quantitation) for MS-based identification and quantification. The overall approach was initially validated by application to RAW 264.7 mouse macrophages treated with different doses of diamide to induce glutathionylation. A total of 1071 Cys-sites from 690 proteins were identified in response to diamide treatment, with ~90% of the sites displaying >2-fold increases in SSG-modification compared to controls. This approach was extended to identify potential SSG- modified Cys-sites in response to H2O2, an endogenous oxidant produced by activated macrophages and many pathophysiological stimuli. The results revealed 364 Cys-sites from 265 proteins that were sensitive to S-glutathionylation in response to H2O2 treatment, thus providing a database of proteins and Cys-sites susceptible to this modification under oxidative stress. Functional analysis revealed that the most significantly enriched molecular function categories for proteins sensitive to SSG modifications were free radical scavenging and cell death/survival. Overall the results demonstrate that our approach is effective for site-specific identification and quantification of SSG-modified proteins. The analytical strategy also provides a unique approach to determining the major pathways and cellular processes most susceptible

  12. Lipid IVa incompletely activates MyD88-independent Toll-like receptor 4 signaling in mouse macrophage cell lines.

    PubMed

    Ogura, Norihiko; Muroi, Masashi; Sugiura, Yuka; Tanamoto, Ken-ichi

    2013-04-01

    We investigated the difference in the effect of synthetic lipid A compounds on MyD88-dependent and -independent Toll-like receptor 4 (TLR4) signaling in mouse macrophage cells. At higher concentrations, Escherichia coli-type hexa-acylated lipid A 506, Salmonella-type hepta-acylated lipid A 516, the lipid A precursor lipid IVa and monophosphoryl lipid A induced similar levels of production of the MyD88-dependent cytokine IL-1β although their potencies varied, whereas the maximum production of the MyD88-independent cytokine RANTES induced by lipid IVa was less than 50% that of other lipid A compounds. A maximum level of NF-κB activation, which is involved in IL-1β gene transcription, was also induced to a similar level by these four lipid A compounds, while the maximum level of IFN-β promoter activity induced during MyD88-independent signaling was also less than 50% for lipid IVa stimulation compared with other lipid A compounds. Early IκBα phosphorylation activated by MyD88-dependent signaling was similarly induced by 506 and lipid IVa, whereas lipid IVa barely stimulated the phosphorylation of IRF3, a MyD88-independent transcription factor, although efficient phosphorylation was observed with 506 stimulation. These results indicate that lipid IVa has limited activity toward MyD88-independent signaling of TLR4, in macrophage cell lines, despite having efficient activity in the MyD88-dependent pathway.

  13. Proteomic Identification and Quantification of S-glutathionylation in Mouse Macrophages Using Resin-Assisted Enrichment and Isobaric Labeling

    SciTech Connect

    Su, Dian; Gaffrey, Matthew J.; Guo, Jia; Hatchell, Kayla E.; Chu, Rosalie K.; Clauss, Therese RW; Aldrich, Joshua T.; Wu, Si; Purvine, Samuel O.; Camp, David G.; Smith, Richard D.; Thrall, Brian D.; Qian, Weijun

    2014-02-11

    Protein S-glutathionylation (SSG) is an important regulatory posttranslational modification of protein cysteine (Cys) thiol redox switches, yet the role of specific cysteine residues as targets of modification is poorly understood. We report a novel quantitative mass spectrometry (MS)-based proteomic method for site-specific identification and quantification of S-glutathionylation across different conditions. Briefly, this approach consists of initial blocking of free thiols by alkylation, selective reduction of glutathionylated thiols and enrichment using thiol affinity resins, followed by on-resin tryptic digestion and isobaric labeling with iTRAQ (isobaric tags for relative and absolute quantitation) for MS-based identification and quantification. The overall approach was validated by application to RAW 264.7 mouse macrophages treated with different doses of diamide to induce glutathionylation. A total of 1071 Cys-sites from 690 proteins were identified in response to diamide treatment, with ~90% of the sites displaying >2-fold increases in SSG-modification compared to controls.. This approach was extended to identify potential SSG modified Cys-sites in response to H2O2, an endogenous oxidant produced by activated macrophages and many pathophysiological stimuli. The results revealed 364 Cys-sites from 265 proteins that were sensitive to S-glutathionylation in response to H2O2 treatment. These proteins covered a range of molecular types and molecular functions with free radical scavenging, and cell death and survival included as the most significantly enriched functional categories. Overall the results demonstrate that our approach is effective for site-specific identification and quantification of S-glutathionylated proteins. The analytical strategy also provides a unique approach to determining the major pathways and cell processes most susceptible to glutathionylation at a proteome-wide scale.

  14. Impairment of macrophage eicosanoid and nitric oxide production by an alkaloid from Sinomenium acutum.

    PubMed

    Liu, L; Riese, J; Resch, K; Kaever, V

    1994-11-01

    The effects of sinomenine (7,8-didehydro-4-hydroxy-3,7-dimethoxy-17-methyl- 9 alpha,13 alpha,14 alpha-morphinan-6-one), a pure alkaloid extracted from the Chinese medical plant Sinomenium acutum, on different macrophage capacities were investigated in vitro using resident mouse peritoneal macrophages and the macrophage-like cell line RAW 264.7. Sinomenine markedly decreased prostaglandin E2 and leukotriene C4 synthesis of macrophages stimulated by zymosan or calcium ionophore and also significantly inhibited the nitric oxide production of RAW 264.7 cells activated by interferon-gamma/lipopolysaccharide. It can be considered that these effects are part of the analgesic, anti-inflammatory, and antirheumatic mechanisms of sinomenine.

  15. Histone H2B as a functionally important plasminogen receptor on macrophages

    PubMed Central

    Das, Riku; Burke, Tim

    2007-01-01

    Plasminogen (Plg) facilitates inflammatory cell recruitment, a function that depends upon its binding to Plg receptors (Plg-Rs). However, the Plg-Rs that are critical for cell migration are not well defined. Three previously characterized Plg-Rs (α-enolase, annexin 2, and p11) and a recently identified Plg-R (histone H2B [H2B]) were assessed for their contribution to Plg binding and function on macrophages. Two murine macrophage cell lines (RAW 264.7 and J774A.1) and mouse peritoneal macrophages induced by thioglycollate were analyzed. All 4 Plg-Rs were present on the surface of these cells and showed enhanced expression on the thioglycollate-induced macrophages compared with peripheral blood monocytes. Using blocking Fab fragments to each Plg-R, H2B supported approximately 50% of the Plg binding capacity, whereas the other Plg-Rs contributed less than 25%. Anti-H2B Fab also demonstrated a major role of this Plg-R in plasmin generation and matrix invasion. When mice were treated intravenously with anti-H2B Fab, peritoneal macrophage recruitment in response to thioglycollate was reduced by approximately 45% at 24, 48, and 72 hours, with no effect on blood monocyte levels. Taken together, these data suggest that multiple Plg-Rs do contribute to Plg binding to macrophages, and among these, H2B plays a very prominent and functionally important role. PMID:17690254

  16. Silencing of VAMP3 expression does not affect Brucella melitensis infection in mouse macrophages

    PubMed Central

    Castañeda-Ramírez, Alfredo; Puente, José L.; González-Noriega, Alfonso; Verdugo-Rodríguez, Antonio

    2012-01-01

    It has been proposed that intracellular pathogens may interfere with expression or function of proteins that mediate vesicular traffic in order to survive inside cells. Brucella melitensis is an intracellular pathogen that evades phagosome-lysosome fusion, surviving in the so-called Brucella-containing vacuoles (BCV). Vesicle-associated membrane protein 3 (VAMP3) is a v-SNARE protein that promotes the exocytosis of the proinflammatory cytokine TNF at the phagocytic cup when docking to its cognate t-SNARE proteins syntaxin-4 and SNAP-23 at the plasma membrane. We determined the expression level of VAMP3 in J774.1 murine macrophages stimulated with B. melitensis lipopolysaccharide (LPS) and detected a transitory increase of VAMP3 mRNA expression at 30 min. A similar result was obtained when cells were incubated in the presence of LPS from Salmonella enterica serovar Minnesota (SeM). This increase of VAMP3 mRNA was also observed on infected cells with B. melitensis even after one hour. In contrast, infection with Salmonella enterica serovar Enteritidis (SeE) did not cause such increase, suggesting that membrane components other than LPS modulate VAMP3 expression differently. To determine the effect of VAMP3 inhibition on macrophages infection, the expression of VAMP3 in J774.A1 cells was silenced and then infected with wild-type B. melitensis. Although a slight decrease in the rate of recovery of surviving bacteria was observed between 12 h and 36 h post-infection with B. melitensis, this was not significant indicating that VAMP3 is not involved in Brucella survival. PMID:23076244

  17. Silencing of VAMP3 expression does not affect Brucella melitensis infection in mouse macrophages.

    PubMed

    Castañeda-Ramírez, Alfredo; Puente, José L; González-Noriega, Alfonso; Verdugo-Rodríguez, Antonio

    2012-08-15

    It has been proposed that intracellular pathogens may interfere with expression or function of proteins that mediate vesicular traffic in order to survive inside cells. Brucella melitensis is an intracellular pathogen that evades phagosome-lysosome fusion, surviving in the so-called Brucella-containing vacuoles (BCV). Vesicle-associated membrane protein 3 (VAMP3) is a v-SNARE protein that promotes the exocytosis of the proinflammatory cytokine TNF at the phagocytic cup when docking to its cognate t-SNARE proteins syntaxin-4 and SNAP-23 at the plasma membrane. We determined the expression level of VAMP3 in J774.1 murine macrophages stimulated with B. melitensis lipopolysaccharide (LPS) and detected a transitory increase of VAMP3 mRNA expression at 30 min. A similar result was obtained when cells were incubated in the presence of LPS from Salmonella enterica serovar Minnesota (SeM). This increase of VAMP3 mRNA was also observed on infected cells with B. melitensis even after one hour. In contrast, infection with Salmonella enterica serovar Enteritidis (SeE) did not cause such increase, suggesting that membrane components other than LPS modulate VAMP3 expression differently. To determine the effect of VAMP3 inhibition on macrophages infection, the expression of VAMP3 in J774.A1 cells was silenced and then infected with wild-type B. melitensis. Although a slight decrease in the rate of recovery of surviving bacteria was observed between 12 h and 36 h post-infection with B. melitensis, this was not significant indicating that VAMP3 is not involved in Brucella survival.

  18. Tissue damage drives co-localization of NF-κB, Smad3, and Nrf2 to direct Rev-erb sensitive wound repair in mouse macrophages

    PubMed Central

    Eichenfield, Dawn Z; Troutman, Ty Dale; Link, Verena M; Lam, Michael T; Cho, Han; Gosselin, David; Spann, Nathanael J; Lesch, Hanna P; Tao, Jenhan; Muto, Jun; Gallo, Richard L; Evans, Ronald M; Glass, Christopher K

    2016-01-01

    Although macrophages can be polarized to distinct phenotypes in vitro with individual ligands, in vivo they encounter multiple signals that control their varied functions in homeostasis, immunity, and disease. Here, we identify roles of Rev-erb nuclear receptors in regulating responses of mouse macrophages to complex tissue damage signals and wound repair. Rather than reinforcing a specific program of macrophage polarization, Rev-erbs repress subsets of genes that are activated by TLR ligands, IL4, TGFβ, and damage-associated molecular patterns (DAMPS). Unexpectedly, a complex damage signal promotes co-localization of NF-κB, Smad3, and Nrf2 at Rev-erb-sensitive enhancers and drives expression of genes characteristic of multiple polarization states in the same cells. Rev-erb-sensitive enhancers thereby integrate multiple damage-activated signaling pathways to promote a wound repair phenotype. DOI: http://dx.doi.org/10.7554/eLife.13024.001 PMID:27462873

  19. Use of the short-term inflammatory response in the mouse peritoneal cavity to assess the biological activity of leached vitreous fibers.

    PubMed Central

    Donaldson, K; Addison, J; Miller, B G; Cullen, R T; Davis, J M

    1994-01-01

    We used a special-purpose glass microfiber sample, Johns-Manville Code 100/475, to study the effects of various acid and alkali treatments on biological activity as assessed by inflammation in the mouse peritoneal cavity, the leaching of Si, and the phase contrast optical microscopy (PCOM) fiber number. We used mild and medium treatments with oxalic acid and Tris buffer and harsh treatment with concentrated HCl and NaOH. Mild oxalic acid and Tris treatment for 2 weeks had no effect on any of the end-points, but prolonging the mild oxalic acid treatment time to 2 months reduced the biological activity and the fiber number. Medium oxalic acid treatment reduced the biological activity and the fiber number and caused a loss of Si. Medium Tris alkali treatment reduced the PCOM-countable fibers and the biological activity but did not cause a substantial loss of Si. Harsh treatment with strong HCl did not affect the fiber number or cause leaching but the biological activity was reduced; strong NaOH reduced the fiber number and biological activity, and caused marked leaching of Si. The medium oxalic acid conditions (pH 1.4) were more acid than those found in lung cells but produced the same effects (reduction in fiber number and biological activity) as the more physiological mild treatment (pH 4.0), when prolonged. This study suggests that medium oxalic acid treatment can be used as a short-term assay to compare loss of Si, reduction in fiber number, and change in biological activity of vitreous fibers.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7882922

  20. Hepatitis B Virus Infection and Immunopathogenesis in a Humanized Mouse Model: Induction of Human-Specific Liver Fibrosis and M2-Like Macrophages

    PubMed Central

    Bility, Moses T.; Cheng, Liang; Zhang, Zheng; Luan, Yan; Li, Feng; Chi, Liqun; Zhang, Liguo; Tu, Zhengkun; Gao, Yanhang; Fu, Yangxin; Niu, Junqi; Wang, Fusheng; Su, Lishan

    2014-01-01

    The mechanisms of chronic HBV infection and immunopathogenesis are poorly understood due to a lack of a robust small animal model. Here we report the development of a humanized mouse model with both human immune system and human liver cells by reconstituting the immunodeficient A2/NSG (NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ mice with human HLA-A2 transgene) with human hematopoietic stem cells and liver progenitor cells (A2/NSG-hu HSC/Hep mice). The A2/NSG-hu HSC/Hep mouse supported HBV infection and approximately 75% of HBV infected mice established persistent infection for at least 4 months. We detected human immune responses, albeit impaired in the liver, chronic liver inflammation and liver fibrosis in infected animals. An HBV neutralizing antibody efficiently inhibited HBV infection and associated liver diseases in humanized mice. In addition, we found that the HBV mediated liver disease was associated with high level of infiltrated human macrophages with M2-like activation phenotype. Importantly, similar M2-like macrophage accumulation was confirmed in chronic hepatitis B patients with liver diseases. Furthermore, gene expression analysis showed that induction of M2-like macrophage in the liver is associated with accelerated liver fibrosis and necrosis in patients with acute HBV-induced liver failure. Lastly, we demonstrate that HBV promotes M2-like activation in both M1 and M2 macrophages in cell culture studies. Our study demonstrates that the A2/NSG-hu HSC/Hep mouse model is valuable in studying HBV infection, human immune responses and associated liver diseases. Furthermore, results from this study suggest a critical role for macrophage polarization in hepatitis B virus-induced immune impairment and liver pathology. PMID:24651854

  1. Hepatitis B virus infection and immunopathogenesis in a humanized mouse model: induction of human-specific liver fibrosis and M2-like macrophages.

    PubMed

    Bility, Moses T; Cheng, Liang; Zhang, Zheng; Luan, Yan; Li, Feng; Chi, Liqun; Zhang, Liguo; Tu, Zhengkun; Gao, Yanhang; Fu, Yangxin; Niu, Junqi; Wang, Fusheng; Su, Lishan

    2014-03-01

    The mechanisms of chronic HBV infection and immunopathogenesis are poorly understood due to a lack of a robust small animal model. Here we report the development of a humanized mouse model with both human immune system and human liver cells by reconstituting the immunodeficient A2/NSG (NOD.Cg-Prkdc(scid) Il2rg(tm1Wjl)/SzJ mice with human HLA-A2 transgene) with human hematopoietic stem cells and liver progenitor cells (A2/NSG-hu HSC/Hep mice). The A2/NSG-hu HSC/Hep mouse supported HBV infection and approximately 75% of HBV infected mice established persistent infection for at least 4 months. We detected human immune responses, albeit impaired in the liver, chronic liver inflammation and liver fibrosis in infected animals. An HBV neutralizing antibody efficiently inhibited HBV infection and associated liver diseases in humanized mice. In addition, we found that the HBV mediated liver disease was associated with high level of infiltrated human macrophages with M2-like activation phenotype. Importantly, similar M2-like macrophage accumulation was confirmed in chronic hepatitis B patients with liver diseases. Furthermore, gene expression analysis showed that induction of M2-like macrophage in the liver is associated with accelerated liver fibrosis and necrosis in patients with acute HBV-induced liver failure. Lastly, we demonstrate that HBV promotes M2-like activation in both M1 and M2 macrophages in cell culture studies. Our study demonstrates that the A2/NSG-hu HSC/Hep mouse model is valuable in studying HBV infection, human immune responses and associated liver diseases. Furthermore, results from this study suggest a critical role for macrophage polarization in hepatitis B virus-induced immune impairment and liver pathology.

  2. Dialysis - peritoneal

    MedlinePlus

    ... health. Some people feel more comfortable having a health care provider handle their treatment. You and your provider can decide what is best for you. TYPES OF PERITONEAL DIALYSIS PD gives you more flexibility because you do not have to go to ...

  3. Murine Coronavirus Mouse Hepatitis Virus Is Recognized by MDA5 and Induces Type I Interferon in Brain Macrophages/Microglia ▿

    PubMed Central

    Roth-Cross, Jessica K.; Bender, Susan J.; Weiss, Susan R.

    2008-01-01

    The coronavirus mouse hepatitis virus (MHV) induces a minimal type I interferon (IFN) response in several cell types in vitro despite the fact that the type I IFN response is important in protecting the mouse from infection in vivo. When infected with MHV, mice deficient in IFN-associated receptor expression (IFNAR−/−) became moribund by 48 h postinfection. MHV also replicated to higher titers and exhibited a more broad tissue tropism in these mice, which lack a type I IFN response. Interestingly, MHV induced IFN-β in the brains and livers, two main targets of MHV replication, of infected wild-type mice. MHV infection of primary cell cultures indicates that hepatocytes are not responsible for the IFN-β production in the liver during MHV infection. Furthermore, macrophages and microglia, but not neurons or astrocytes, are responsible for IFN-β production in the brain. To determine the pathway by which MHV is recognized in macrophages, IFN-β mRNA expression was quantified following MHV infection of a panel of primary bone marrow-derived macrophages generated from mice lacking different pattern recognition receptors (PRRs). Interestingly, MDA5, a PRR thought to recognize primarily picornaviruses, was required for recognition of MHV. Thus, MHV induces type I IFN in macrophages and microglia in the brains of infected animals and is recognized by an MDA5-dependent pathway in macrophages. These findings suggest that secretion of IFN-β by macrophages and microglia plays a role in protecting the host from MHV infection of the central nervous system. PMID:18667505

  4. Adenosine A2A receptor signaling attenuates LPS-induced pro-inflammatory cytokine formation of mouse macrophages by inducing the expression of DUSP1.

    PubMed

    Köröskényi, Krisztina; Kiss, Beáta; Szondy, Zsuzsa

    2016-07-01

    Adenosine is known to reduce inflammation by suppressing the activity of most immune cells. Previous studies have shown that lipopolysaccharide (LPS) stimulated mouse macrophages produce adenosine, and the adenosine A2A receptor (A2AR) signaling activated in an autocrine manner attenuates LPS-induced pro-inflammatory cytokine formation. It has been suggested that A2AR signaling inhibits LPS-induced pro-inflammatory cytokine production through a unique cAMP-dependent, but PKA- and Epac-independent signaling pathway. However, the mechanism of inhibition was not identified so far. Here we report that LPS stimulation enhances A2AR expression in mouse bone marrow derived macrophages, and loss of A2ARs results in enhanced LPS-induced pro-inflammatory response. Loss of A2ARs in A2AR null macrophages did not alter the LPS-induced NF-κB activation, but an enhanced basal and LPS-induced phosphorylation of MAP kinases (especially that of JNKs) was detected in A2AR null cells. A2AR signaling did not alter the LPS-induced phosphorylation of their upstream kinases, but by regulating adenylate cyclase activity it enhanced the expression of dual specific phosphatase (DUSP)1, a negative regulator of MAP kinases. As a result, lower basal and LPS-induced DUSP1 mRNA and protein levels can be detected in A2AR null macrophages. Silencing of DUSP1 mRNA expression resulted in higher basal and LPS-induced JNK phosphorylation and LPS-induced pro-inflammatory cytokine formation in wild type macrophages, but had no effect on that in A2AR null cells. Our data indicate that A2AR signaling regulates both basal and LPS-induced DUSP1 levels in macrophages via activating the adenylate cyclase pathway.

  5. Apocynin suppresses the progression of atherosclerosis in apoE-deficient mice by inactivation of macrophages

    SciTech Connect

    Kinoshita, Hiroyuki; Matsumura, Takeshi; Ishii, Norio; Fukuda, Kazuki; Senokuchi, Takafumi; Motoshima, Hiroyuki; Kondo, Tatsuya; Taketa, Kayo; Kawasaki, Shuji; Hanatani, Satoko; Takeya, Motohiro; Nishikawa, Takeshi; Araki, Eiichi

    2013-02-08

    Highlights: ► We examined the anti-athrogenic effect of apocynin in atherosclerotic model mice. ► Apocynin prevented atherosclerotic lesion formation. ► Apocynin suppressed ROS production in aorta and in macrophages. ► Apocynin suppressed cytokine expression and cell proliferation in macrophages. ► Apocynin may be beneficial compound for the prevention of atherosclerosis. -- Abstract: Production of reactive oxygen species (ROS) and other proinflammatory substances by macrophages plays an important role in atherogenesis. Apocynin (4-hydroxy-3-methoxy-acetophenone), which is well known as a NADPH oxidase inhibitor, has anti-inflammatory effects including suppression of the generation of ROS. However, the suppressive effects of apocynin on the progression of atherosclerosis are not clearly understood. Thus, we investigated anti-atherosclerotic effects of apocynin using apolipoprotein E-deficient (apoE{sup –/–}) mice in vivo and in mouse peritoneal macrophages in vitro. In atherosclerosis-prone apoE{sup –/–} mice, apocynin suppressed the progression of atherosclerosis, decreased 4-hydroxynonenal-positive area in atherosclerotic lesions, and mRNA expression of monocyte chemoattractant protein-1 (MCP-1) and interleukin-6 (IL-6) in aorta. In mouse peritoneal macrophages, apocynin suppressed the Ox-LDL-induced ROS generation, mRNA expression of MCP-1, IL-6 and granulocyte/macrophage colony-stimulating factor, and cell proliferation. Moreover, immunohistochemical studies revealed that apocynin decreased the number of proliferating cell nuclear antigen-positive macrophages in atherosclerotic lesions of apoE{sup –/–} mice. These results suggested that apocynin suppressed the formation of atherosclerotic lesions, at least in part, by inactivation of macrophages. Therefore, apocynin may be a potential therapeutic material to prevent the progression of atherosclerosis.

  6. Expression of macrophage migration inhibitory factor in the mouse neocortex and posterior piriform cortices during postnatal development.

    PubMed

    Zhang, Wei; Li, Lingling; Wang, Jiutao; An, Lei; Hu, Xinde; Xie, Jiongfang; Yan, Runchuan; Chen, Shulin; Zhao, Shanting

    2014-11-01

    Macrophage migration inhibitory factor (MIF) functions as a pleiotropic protein, participating in a vast array of cellular and biological processes. Abnormal expression of MIF has been implicated in many neurological diseases, including Parkinson's disease, epilepsy, Alzheimer's Disease, stroke, and neuropathic pain. However, the expression patterns of mif transcript and MIF protein from the early postnatal period through adulthood in the mouse brain are still poorly understood. We therefore investigated the temporal and spatial expression of MIF in the mouse neocortex during postnatal development in detail and partially in posterior piriform cortices (pPC). As determined by quantitative real-time PCR (qPCR), mif transcript gradually increased during development, with the highest level noted at postnatal day 30 (P30) followed by a sharp decline at P75. In contrast, Western blotting results showed that MIF increased constantly from P7 to P75. The highest level of MIF was at P75, while the lowest level of MIF was at P7. Immunofluorescence histochemistry revealed that MIF-immunoreactive (ir) cells were within the entire depth of the developed neocortex, and MIF was heterogeneously distributed among cortical cells, especially at P7, P14, P30, and P75; MIF was abundant in the pyramidal layer within pPC. Double immunostaining showed that all the mature neurons were MIF-ir and all the intensely stained MIF-ir cells were parvalbumin positive (Pv +) at adult. Moreover, it was demonstrated that MIF protein localized in the perikaryon, processes, presynaptic structures, and the nucleus in neurons. Taken together, the developmentally regulated expression and the subcellular localization of MIF should form a platform for an analysis of MIF neurodevelopmental biology and MIF-related nerve diseases.

  7. Oxidized and Original article degraded mitochondrial polynucleotides (DeMPs), especially RNA, are potent immunogenic regulators in primary mouse macrophages.

    PubMed

    Saxena, Abhinav R; Gao, Linda Y; Srivatsa, Shachi; Bobersky, Elizabeth Z; Periasamy, Sivakumar; Hunt, Danielle T; Altman, Kyle E; Crawford, Dana R

    2017-03-01

    Certain mitochondrial components can act as damage-associated molecular patterns (DAMPs) or danger signals, triggering a proinflammatory response in target (usually immune) cells. We previously reported the selective degradation of mitochondrial DNA and RNA in response to cellular oxidative stress, and the immunogenic effect of this DNA in primary mouse astrocytes. Here, we extend these studies to assess the immunogenic role of both mitochondrial DNA and RNA isolated from hydrogen peroxide (HP) treated HA1 cells (designated "DeMPs" for degraded mitochondrial polynucleotides) using mouse bone marrow derived macrophages (BMDMs), a conventional immune cell type. DeMPs and control mitochondrial DNA (cont mtDNA) and RNA (cont mtRNA) were transfected into BMDMs and cell-free media analyzed for the presence of proinflammatory cytokines (IL-6, MCP-1, and TNFα) and Type I interferon (IFN-α and IFN-β). Cont mtDNA induced IL-6 and MCP-1 production, and this effect was even greater with DeMP DNA. A similar response was observed for Type I interferons. An even stronger induction of proinflammatory cytokine and type 1 interferons was observed for cont mtRNA. However, contrary to DeMP DNA, DeMP RNA attenuated rather than potentiated the cont mtRNA cytokine inductions. This attenuation effect was not accompanied by an IL-10 or TGFβ anti-inflammatory response. All DeMP effects were observed at multiple oxidant concentrations. Finally, DeMP production and immunogenicity overlaps with cellular adaptive response and so may contribute to cellular oxidant protection. These results provide new insight into the immunogenicity of mitochondrial polynucleotides, and identify new roles and selective consequences of cellular oxidation.

  8. Interaction of murine macrophage-membrane proteins with components of the pathogenic fungus Histoplasma capsulatum

    PubMed Central

    Taylor, M L; Duarte-Escalante, E; Reyes-Montes, M R; Elizondo, N; Maldonado, G; Zenteno, E

    1998-01-01

    The interaction of macrophage-membrane proteins and histoplasmin, a crude antigen of the pathogenic fungus Histoplasma capsulatum, was studied using murine peritoneal macrophages. Membrane proteins were purified via membrane attachment to polycationic beads and solubilized in Tris–HCl/SDS/DTT/glycerol for protein extraction; afterwards they were adsorbed or not with H. capsulatum yeast or lectin binding-enriched by affinity chromatography. Membrane proteins and histoplasmin interactions were detected by ELISA and immunoblotting assays using anti-H. capsulatum human or mouse serum and biotinylated goat anti-human or anti-mouse IgG/streptavidin-peroxidase system to reveal the interaction. Results indicate that macrophage-membrane proteins and histoplasmin components interact in a dose-dependent reaction, and adsorption of macrophage-membrane proteins by yeast cells induces a critical decrease in the interaction. Macrophage-membrane glycoproteins with terminal d-galactosyl residues, purified by chromatography with Abrus precatorius lectin, bound to histoplasmin; and two bands of 68 kD and 180 kD of transferred membrane protein samples interacted with histoplasmin components, as revealed by immunoblot assays. Specificity for β-galactoside residues on the macrophage-membrane was confirmed by galactose inhibition of the interaction between macrophage-membrane proteins and histoplasmin components, in competitive ELISA using sugars, as well as by enzymatic cleavage of the galactoside residues. PMID:9737672

  9. Genome-wide analysis of TIAR RNA ligands in mouse macrophages before and after LPS stimulation

    PubMed Central

    Kharraz, Yacine; Lefort, Anne; Libert, Frédérick; Mann, Christopher J.; Gueydan, Cyril; Kruys, Véronique

    2016-01-01

    TIA-1 related protein (TIAR) is a RNA-binding protein involved in several steps of gene expression such as RNA splicing Aznarez et al. (2008) [1] and translation Piecyk et al. (2000) [2]. TIAR contains three RNA recognition motifs (RRMs) allowing its interaction with specific sequences localized in the untranslated regions (UTRs) of several mRNAs. In myeloid cells, TIAR has been shown to bind and regulate the translation and stability of various mRNA-encoding proteins important for the inflammatory response, such as TNFα Piecyk et al. (2000), Gueydan et al. (1999) [2], [3], Cox-2 Cok et al. (2003) [4] or IL-8 Suswam et al. (2005) [5]. Here, we generated two macrophage-like RAW 264.7 cell lines expressing either a tagged full-length TIAR protein or a RRM2-truncated mutant unable to bind RNA with high affinity Dember et al. (1996), Kim et al. (2013) . By a combination of RNA-IP and microarray analysis (RIP-chip), we identified mRNAs specifically bound by the full-length protein both in basal conditions and in response to LPS (GSE77577). PMID:26981431

  10. Genome-wide analysis of TIAR RNA ligands in mouse macrophages before and after LPS stimulation.

    PubMed

    Kharraz, Yacine; Lefort, Anne; Libert, Frédérick; Mann, Christopher J; Gueydan, Cyril; Kruys, Véronique

    2016-03-01

    TIA-1 related protein (TIAR) is a RNA-binding protein involved in several steps of gene expression such as RNA splicing Aznarez et al. (2008) [1] and translation Piecyk et al. (2000) [2]. TIAR contains three RNA recognition motifs (RRMs) allowing its interaction with specific sequences localized in the untranslated regions (UTRs) of several mRNAs. In myeloid cells, TIAR has been shown to bind and regulate the translation and stability of various mRNA-encoding proteins important for the inflammatory response, such as TNFα Piecyk et al. (2000), Gueydan et al. (1999) [2], [3], Cox-2 Cok et al. (2003) [4] or IL-8 Suswam et al. (2005) [5]. Here, we generated two macrophage-like RAW 264.7 cell lines expressing either a tagged full-length TIAR protein or a RRM2-truncated mutant unable to bind RNA with high affinity Dember et al. (1996), Kim et al. (2013) . By a combination of RNA-IP and microarray analysis (RIP-chip), we identified mRNAs specifically bound by the full-length protein both in basal conditions and in response to LPS (GSE77577).

  11. Production of mouse granulocyte-macrophage colony-stimulating factor by gateway technology and transgenic rice cell culture.

    PubMed

    Liu, Yu-Kuo; Huang, Li-Fen; Ho, Shin-Lon; Liao, Chun-Yu; Liu, Hsin-Yi; Lai, Ying-Hui; Yu, Su-May; Lu, Chung-An

    2012-05-01

    To establish a production platform for recombinant proteins in rice suspension cells, we first constructed a Gateway-compatible binary T-DNA destination vector. It provided a reliable and effective method for the rapid directional cloning of target genes into plant cells through Agrobacterium-mediated transformation. We used the approach to produce mouse granulocyte-macrophage colony-stimulating factor (mGM-CSF) in a rice suspension cell system. The promoter for the αAmy3 amylase gene, which is induced strongly by sugar depletion, drove the expression of mGM-CSF. The resulting recombinant protein was fused with the αAmy3 signal peptide and was secreted into the culture medium. The production of rice-derived mGM-CSF (rmGM-CSF) was scaled up successfully in a 2-L bioreactor, in which the highest yield of rmGM-CSF was 24.6 mg/L. Due to post-translational glycosylation, the molecular weight of rmGM-CSF was larger than that of recombinant mGM-CSF produced in Escherichia coli. The rmGM-CSF was bioactive and could stimulate the proliferation of a murine myeloblastic leukemia cell line, NSF-60.

  12. Involvement of the MyD88-independent pathway in controlling the intracellular fate of Burkholderia pseudomallei infection in the mouse macrophage cell line RAW 264.7.

    PubMed

    Tangsudjai, S; Pudla, M; Limposuwan, K; Woods, D E; Sirisinha, S; Utaisincharoen, P

    2010-05-01

    Burkholderia pseudomallei is a facultative intracellular Gram-negative bacterium which is capable of surviving and multiplying inside macrophages. B. pseudomallei strain SRM117, a LPS mutant which lacks the O-antigenic polysaccharide moiety, is more susceptible to macrophage killing during the early phase of infection than is its parental wild type strain (1026b). In this study, it was shown that the wild type is able to induce expression of genes downstream of the MyD88-dependent (ikappabzeta, il-6 and tnf-alpha), but not of the MyD88-independent (inos, ifn-beta and irg-1), pathways in the mouse macrophage cell line RAW 264.7. In contrast, LPS mutant-infected macrophages were able to express genes downstream of both pathways. To elucidate the significance of activation of the MyD88-independent pathway in B. pseudomallei-infected macrophages, the expression of TBK1, an essential protein in the MyD88-independent pathway, was silenced prior to the infection. The results showed that silencing the tbk1 expression interferes with the gene expression profile in LPS mutant-infected macrophages and allows the bacteria to replicate intracellularly, thus suggesting that the MyD88-independent pathway plays an essential role in controlling intracellular survival of the LPS mutant. Moreover, exogenous IFN-gamma upregulated gene expression downstream of the MyD88-independent pathway, and interfered with intracellular survival in both wild type and tbk1-knockdown macrophages infected with either the wild type or the LPS mutant. These results suggest that gene expression downstream of the MyD88-independent pathway is essential in regulating the intracellular fate of B. pseudomallei, and that IFN-gamma regulates gene expression through the TBK1-independent pathway.

  13. Critical role for interleukin-1beta (IL-1beta) during Chlamydia muridarum genital infection and bacterial replication-independent secretion of IL-1beta in mouse macrophages.

    PubMed

    Prantner, Daniel; Darville, Toni; Sikes, James D; Andrews, Charles W; Brade, Helmut; Rank, Roger G; Nagarajan, Uma M

    2009-12-01

    Recent findings have implicated interleukin-1beta (IL-1beta) as an important mediator of the inflammatory response in the female genital tract during chlamydial infection. But how IL-1beta is produced and its specific role in infection and pathology are unclear. Therefore, our goal was to determine the functional consequences and cellular sources of IL-1beta expression during a chlamydial genital infection. In the present study, IL-1beta(-/-) mice exhibited delayed chlamydial clearance and decreased frequency of hydrosalpinx compared to wild-type (WT) mice, implying an important role for IL-1beta both in the clearance of infection and in the mediation of oviduct pathology. At the peak of IL-1beta secretion in WT mice, the major producers of IL-1beta in vivo are F4/80(+) macrophages and GR-1(+) neutrophils, but not CD45(-) epithelial cells. Although elicited mouse macrophages infected with Chlamydia muridarum in vitro secrete minimal IL-1beta, in vitro prestimulation of macrophages by Toll-like receptor (TLR) ligands such as lipopolysaccharide (LPS) purified from Escherichia coli or C. trachomatis L2 prior to infection greatly enhanced secretion of IL-1beta from these cells. By using LPS-primed macrophages as a model system, it was determined that IL-1beta secretion was dependent on caspase-1, potassium efflux, and the activity of serine proteases. Significantly, chlamydia-induced IL-1beta secretion in macrophages required bacterial viability but not growth. Our findings demonstrate that IL-1beta secreted by macrophages and neutrophils has important effects in vivo during chlamydial infection. Additionally, prestimulation of macrophages by chlamydial TLR ligands may account for the elevated levels of pro-IL-1beta mRNA observed in vivo in this cell type.

  14. C60 fullerene localization and membrane interactions in RAW 264.7 immortalized mouse macrophages

    NASA Astrophysics Data System (ADS)

    Russ, K. A.; Elvati, P.; Parsonage, T. L.; Dews, A.; Jarvis, J. A.; Ray, M.; Schneider, B.; Smith, P. J. S.; Williamson, P. T. F.; Violi, A.; Philbert, M. A.

    2016-02-01

    There continues to be a significant increase in the number and complexity of hydrophobic nanomaterials that are engineered for a variety of commercial purposes making human exposure a significant health concern. This study uses a combination of biophysical, biochemical and computational methods to probe potential mechanisms for uptake of C60 nanoparticles into various compartments of living immune cells. Cultures of RAW 264.7 immortalized murine macrophage were used as a canonical model of immune-competent cells that are likely to provide the first line of defense following inhalation. Modes of entry studied were endocytosis/pinocytosis and passive permeation of cellular membranes. The evidence suggests marginal uptake of C60 clusters is achieved through endocytosis/pinocytosis, and that passive diffusion into membranes provides a significant source of biologically-available nanomaterial. Computational modeling of both a single molecule and a small cluster of fullerenes predicts that low concentrations of fullerenes enter the membrane individually and produce limited perturbation; however, at higher concentrations the clusters in the membrane causes deformation of the membrane. These findings are bolstered by nuclear magnetic resonance (NMR) of model membranes that reveal deformation of the cell membrane upon exposure to high concentrations of fullerenes. The atomistic and NMR models fail to explain escape of the particle out of biological membranes, but are limited to idealized systems that do not completely recapitulate the complexity of cell membranes. The surprising contribution of passive modes of cellular entry provides new avenues for toxicological research that go beyond the pharmacological inhibition of bulk transport systems such as pinocytosis.There continues to be a significant increase in the number and complexity of hydrophobic nanomaterials that are engineered for a variety of commercial purposes making human exposure a significant health concern

  15. C60 fullerene localization and membrane interactions in RAW 264.7 immortalized mouse macrophages.

    PubMed

    Russ, K A; Elvati, P; Parsonage, T L; Dews, A; Jarvis, J A; Ray, M; Schneider, B; Smith, P J S; Williamson, P T F; Violi, A; Philbert, M A

    2016-02-21

    There continues to be a significant increase in the number and complexity of hydrophobic nanomaterials that are engineered for a variety of commercial purposes making human exposure a significant health concern. This study uses a combination of biophysical, biochemical and computational methods to probe potential mechanisms for uptake of C60 nanoparticles into various compartments of living immune cells. Cultures of RAW 264.7 immortalized murine macrophage were used as a canonical model of immune-competent cells that are likely to provide the first line of defense following inhalation. Modes of entry studied were endocytosis/pinocytosis and passive permeation of cellular membranes. The evidence suggests marginal uptake of C60 clusters is achieved through endocytosis/pinocytosis, and that passive diffusion into membranes provides a significant source of biologically-available nanomaterial. Computational modeling of both a single molecule and a small cluster of fullerenes predicts that low concentrations of fullerenes enter the membrane individually and produce limited perturbation; however, at higher concentrations the clusters in the membrane causes deformation of the membrane. These findings are bolstered by nuclear magnetic resonance (NMR) of model membranes that reveal deformation of the cell membrane upon exposure to high concentrations of fullerenes. The atomistic and NMR models fail to explain escape of the particle out of biological membranes, but are limited to idealized systems that do not completely recapitulate the complexity of cell membranes. The surprising contribution of passive modes of cellular entry provides new avenues for toxicological research that go beyond the pharmacological inhibition of bulk transport systems such as pinocytosis.

  16. Toxicity and Oxidative Stress Induced by Semiconducting Polymer Dots in RAW264.7 Mouse Macrophages

    PubMed Central

    Jin, Yuhui; Hu, Xiaoge; Hayden, Sarah; Zhang, Xuanjun; Gao, Xiaohu; Kavanagh, Terrance J.; Chiu, Daniel T.

    2015-01-01

    The rapid development and acceptance of PDots for biological applications depends on an in depth understanding of their cytotoxicity. In this paper, we performed a comprehensive study of PDot cytotoxicity at both the gross cell effect level (such as cell viability, proliferation and necrosis) and more subtle effects (such as redox stress) on RAW264.7 cells, a murine macrophage cell line with high relevance to in vivo nanoparticle disposition. The redox stress measurements assessed were inner mitochondrial membrane lipid peroxidation (nonyl-acridine orange, NAO), total thiol level (monobromobimane, MBB), and pyridine nucleotide redox status (NAD(P)H autofluorescence). Because of the extensive work already performed with QDots on nanotoxicity and also because of their comparable size, QDots were chosen as a comparison/reference nanoparticle for this study. The results showed that PDots exhibit cytotoxic effects to a much lesser degree than their inorganic analogue (QDots) and are much brighter, allowing for much lower concentrations to be used in various biological applications. In addition, at lower dose levels (2.5 nM to 10 nM) PDot treatment resulted in higher total thiol level than those found with QDots. At higher dose levels (20 nM to 40 nM) QDots caused significantly higher thiol levels in RAW264.7 cells, than was seen with PDots, suggesting that QDots elicit compensation to oxidative stress by upregulating GSH synthesis. At the higher concentrations of QDots, NAD(P)H levels showed an initial depletion, then repletion to a level that was greater than vehicle controls. PDots showed a similar trend but this was not statistically significant. Because PDots elicit less oxidative stress and cytotoxicity at low concentrations than QDots, and because they exhibit superior fluorescence at these low concentrations, PDots are predicted to have enhanced utility in biomedical applications. PMID:25978523

  17. Wear particles generated from studded tires and pavement induces inflammatory reactions in mouse macrophage cells.

    PubMed

    Lindbom, John; Gustafsson, Mats; Blomqvist, Göran; Dahl, Andreas; Gudmundsson, Anders; Swietlicki, Erik; Ljungman, Anders G

    2007-06-01

    Health risks associated with exposure to airborne particulate matter (PM) have been shown epidemiologically as well as experimentally, pointing to both respiratory and cardiovascular effects. These health risks are of increasing concern in society, and to protect public health, a clarification of the toxic properties of particles from different sources is of importance. Lately, wear particles generated from traffic have been recognized as a major contributing source to the overall particle load, especially in the Nordic countries where studded tires are used. The aim of this study was to further investigate and compare the ability to induce inflammatory mediators of different traffic-related wear particles collected from an urban street, a subway station, and studded tire-pavement wear. Inflammatory effects were measured as induction of nitric oxide (NO), IL-6, TNF-alpha, arachidonic acid (AA), and lipid peroxidation after exposure of the murine macrophage like cell line RAW 264.7. In addition, the redox potential of the particles was measured in a cell-free system. The results show that all particles tested induce IL-6, TNF-alpha, and NO, and those from the urban street were the most potent ones. In contrast, particles collected from a subway station were most potent to induce lipid peroxidation, AA release, and formation of ROS. Particles from studded tire-pavement wear, generated using a road simulator, were able to induce inflammatory cytokines, NO, lipid peroxidation, and ROS formation. Interestingly, particles generated from pavement containing granite as the main stone material were more potent than those generated from pavement containing quartzite as the main stone material.

  18. Toxicity and oxidative stress induced by semiconducting polymer dots in RAW264.7 mouse macrophages

    NASA Astrophysics Data System (ADS)

    Ye, Fangmao; White, Collin C.; Jin, Yuhui; Hu, Xiaoge; Hayden, Sarah; Zhang, Xuanjun; Gao, Xiaohu; Kavanagh, Terrance J.; Chiu, Daniel T.

    2015-05-01

    The rapid development and acceptance of PDots for biological applications depends on an in depth understanding of their cytotoxicity. In this paper, we performed a comprehensive study of PDot cytotoxicity at both the gross cell effect level (such as cell viability, proliferation and necrosis) and more subtle effects (such as redox stress) on RAW264.7 cells, a murine macrophage cell line with high relevance to in vivo nanoparticle disposition. The redox stress measurements assessed were inner mitochondrial membrane lipid peroxidation (nonyl-acridine orange, NAO), total thiol level (monobromobimane, MBB), and pyridine nucleotide redox status (NAD(P)H autofluorescence). Because of the extensive work already performed with QDots on nanotoxicity and also because of their comparable size, QDots were chosen as a comparison/reference nanoparticle for this study. The results showed that PDots exhibit cytotoxic effects to a much lesser degree than their inorganic analogue (QDots) and are much brighter, allowing for much lower concentrations to be used in various biological applications. In addition, at lower dose levels (2.5 nM to 10 nM) PDot treatment resulted in higher total thiol level than those found with QDots. At higher dose levels (20 nM to 40 nM) QDots caused significantly higher thiol levels in RAW264.7 cells, than was seen with PDots, suggesting that QDots elicit compensation to oxidative stress by upregulating GSH synthesis. At the higher concentrations of QDots, NAD(P)H levels showed an initial depletion, then repletion to a level that was greater than vehicle controls. PDots showed a similar trend but this was not statistically significant. Because PDots elicit less oxidative stress and cytotoxicity at low concentrations than QDots, and because they exhibit superior fluorescence at these low concentrations, PDots are predicted to have enhanced utility in biomedical applications.

  19. C60 Fullerene Localization and Membrane Interactions in RAW 264.7 Immortalized Mouse Macrophages

    PubMed Central

    Russ, K. A.; Elvati, P.; Parsonage, T. L.; Dews, A.; Jarvis, J. A.; Ray, M.; Schneider, B.; Smith, P. J. S.; Williamson, P. T. F.; Violi, A.; Philbert, M. A.

    2016-01-01

    There continues to be a significant increase in the number and complexity of hydrophobic nanomaterials that are engineered for a variety of commercial purposes making human exposure a significant health concern. This study uses a combination of biophysical, biochemical and computational methods to probe potential mechanisms for uptake of C60 nanoparticles into various compartments of living immune cells. Cultures of RAW 264.7 immortalized murine macrophage were used as a canonical model of immune-competent cells that are likely to provide the first line of defense following inhalation. Modes of entry studied were endocytosis/pinocytosis and passive permeation of cellular membranes. The evidence suggests marginal uptake of C60 clusters is achieved through endocytosis/pinocytosis, and that passive diffusion into membranes provides a significant source of biologically-available nanomaterial. Computational modeling of both a single molecule and a small cluster of fullerenes predicts that low concentrations of fullerenes enter the membrane individually and produce limited perturbation; however, at higher concentrations the clusters in the membrane causes deformation of the membrane. These findings are bolstered by nuclear magnetic resonance (NMR) of model membranes that reveal deformation of the cell membrane upon exposure to high concentrations of fullerenes. The atomistic and NMR models fail to explain escape of the particle out of biological membranes, but are limited to idealized systems that do not completely recapitulate the complexity of cell membranes. The surprising contribution of passive modes of cellular entry provides new avenues for toxicological research that go beyond the pharmacological inhibition of bulk transport systems such as pinocytosis. PMID:26866469

  20. Peritoneal carcinomatosis

    PubMed Central

    Coccolini, Federico; Gheza, Federico; Lotti, Marco; Virzì, Salvatore; Iusco, Domenico; Ghermandi, Claudio; Melotti, Rita; Baiocchi, Gianluca; Giulini, Stefano Maria; Ansaloni, Luca; Catena, Fausto

    2013-01-01

    Several gastrointestinal and gynecological malignancies have the potential to disseminate and grow in the peritoneal cavity. The occurrence of peritoneal carcinomatosis (PC) has been shown to significantly decrease overall survival in patients with liver and/or extraperitoneal metastases from gastrointestinal cancer. During the last three decades, the understanding of the biology and pathways of dissemination of tumors with intraperitoneal spread, and the understanding of the protective function of the peritoneal barrier against tumoral seeding, has prompted the concept that PC is a loco-regional disease: in absence of other systemic metastases, multimodal approaches combining aggressive cytoreductive surgery, intraperitoneal hyperthermic chemotherapy and systemic chemotherapy have been proposed and are actually considered promising methods to improve loco-regional control of the disease, and ultimately to increase survival. The aim of this review article is to present the evidence on treatment of PC in different tumors, in order to provide patients with a proper surgical and multidisciplinary treatment focused on optimal control of their locoregional disease. PMID:24222942

  1. PERITONEAL ABSORPTION

    PubMed Central

    Hahn, P. F.; Miller, L. L.; Robscheit-Robbins, F. S.; Bale, W. F.; Whipple, G. H.

    1944-01-01

    The absorption of red cells from the normal peritoneum of the dog can be demonstrated by means of red cells labeled with radio-iron incorporated in the hemoglobin of these red cells. Absorption in normal dogs runs from 20 to 100 per cent of the amount given within 24 hours. Dogs rendered anemic by bleeding absorb red cells a little less rapidly—ranging from 5 to 80 per cent of the injected red cells. Doubly depleted dogs (anemic and hypoproteinemic) absorb even less in the three experiments recorded. This peritoneal absorption varies widely in different dogs and even in the same dog at different times. We do not know the factors responsible for these variations but there is no question about active peritoneal absorption. The intact red cells pass readily from the peritoneal cavity into lymph spaces in diaphragm and other areas of the peritoneum. The red cells move along the lymphatics and through the lymph glands with little or no phagocytosis and eventually into the large veins through the thoracic ducts. PMID:19871404

  2. Immunostimulatory early phenotype of tumor-associated macrophages does not predict tumor growth outcome in an HLA-DR mouse model of prostate cancer.

    PubMed

    Riabov, Vladimir; Kim, David; Chhina, Surmeet; Alexander, Richard B; Klyushnenkova, Elena N

    2015-07-01

    Tumor-associated macrophages (TAM) were shown to support the progression of many solid tumors. However, anti-tumor properties of TAM were also reported in several types of cancer. Here, we investigated the phenotype and functions of TAM in two transgenic mouse models of prostate cancer that display striking differences in tumor growth outcome. Mice expressing prostate-specific antigen (PSA) as a self-antigen specifically in prostate (PSAtg mice) rejected PSA-expressing transgenic adenocarcinoma of mouse prostate (TRAMP) tumors. However, the introduction of HLA-DRB1*1501 (DR2b) transgene presenting PSA-derived peptides in a MHC class II-restricted manner exacerbated the growth of TRAMP-PSA tumors in DR2bxPSA F 1 mice. Despite the difference in tumor growth outcome, tumors in both strains were equally and intensively infiltrated by macrophages on the first week after tumor challenge. TAM exhibited mixed M1/M2 polarization and simultaneously produced pro-inflammatory (TNFα, IL1β) and anti-inflammatory (IL10) cytokines. TAM from both mouse strains demonstrated antigen-presenting potential and pronounced immunostimulatory activity. Moreover, they equally induced apoptosis of tumor cells. In vivo depletion of macrophages in DR2bxPSA F 1 but not PSAtg mice aggravated tumor growth suggesting that macrophages more strongly contribute to anti-tumor immunity when specific presentation of PSA to CD4+ T cells is possible. In summary, we conclude that in the early stages of tumor progression, the phenotype and functional properties of TAM did not predict tumor growth outcome in two transgenic prostate cancer models. Furthermore, we demonstrated that during the initial stage of prostate cancer development, TAM have the potential to activate T cell immunity and mediate anti-tumor effects.

  3. 9-cis β-Carotene Increased Cholesterol Efflux to HDL in Macrophages

    PubMed Central

    Bechor, Sapir; Zolberg Relevy, Noa; Harari, Ayelet; Almog, Tal; Kamari, Yehuda; Ben-Amotz, Ami; Harats, Dror; Shaish, Aviv

    2016-01-01

    Cholesterol efflux from macrophages is a key process in reverse cholesterol transport and, therefore, might inhibit atherogenesis. 9-cis-β-carotene (9-cis-βc) is a precursor for 9-cis-retinoic-acid (9-cis-RA), which regulates macrophage cholesterol efflux. Our objective was to assess whether 9-cis-βc increases macrophage cholesterol efflux and induces the expression of cholesterol transporters. Enrichment of a mouse diet with βc from the alga Dunaliella led to βc accumulation in peritoneal macrophages. 9-cis-βc increased the mRNA levels of CYP26B1, an enzyme that regulates RA cellular levels, indicating the formation of RA from βc in RAW264.7 macrophages. Furthermore, 9-cis-βc, as well as all-trans-βc, significantly increased cholesterol efflux to high-density lipoprotein (HDL) by 50% in RAW264.7 macrophages. Likewise, food fortification with 9-cis-βc augmented cholesterol efflux from macrophages ex vivo. 9-cis-βc increased both the mRNA and protein levels of ABCA1 and apolipoprotein E (APOE) and the mRNA level of ABCG1. Our study shows, for the first time, that 9-cis-βc from the diet accumulates in peritoneal macrophages and increases cholesterol efflux to HDL. These effects might be ascribed to transcriptional induction of ABCA1, ABCG1, and APOE. These results highlight the beneficial effect of βc in inhibition of atherosclerosis by improving cholesterol efflux from macrophages. PMID:27447665

  4. 9-cis β-Carotene Increased Cholesterol Efflux to HDL in Macrophages.

    PubMed

    Bechor, Sapir; Zolberg Relevy, Noa; Harari, Ayelet; Almog, Tal; Kamari, Yehuda; Ben-Amotz, Ami; Harats, Dror; Shaish, Aviv

    2016-07-19

    Cholesterol efflux from macrophages is a key process in reverse cholesterol transport and, therefore, might inhibit atherogenesis. 9-cis-β-carotene (9-cis-βc) is a precursor for 9-cis-retinoic-acid (9-cis-RA), which regulates macrophage cholesterol efflux. Our objective was to assess whether 9-cis-βc increases macrophage cholesterol efflux and induces the expression of cholesterol transporters. Enrichment of a mouse diet with βc from the alga Dunaliella led to βc accumulation in peritoneal macrophages. 9-cis-βc increased the mRNA levels of CYP26B1, an enzyme that regulates RA cellular levels, indicating the formation of RA from βc in RAW264.7 macrophages. Furthermore, 9-cis-βc, as well as all-trans-βc, significantly increased cholesterol efflux to high-density lipoprotein (HDL) by 50% in RAW264.7 macrophages. Likewise, food fortification with 9-cis-βc augmented cholesterol efflux from macrophages ex vivo. 9-cis-βc increased both the mRNA and protein levels of ABCA1 and apolipoprotein E (APOE) and the mRNA level of ABCG1. Our study shows, for the first time, that 9-cis-βc from the diet accumulates in peritoneal macrophages and increases cholesterol efflux to HDL. These effects might be ascribed to transcriptional induction of ABCA1, ABCG1, and APOE. These results highlight the beneficial effect of βc in inhibition of atherosclerosis by improving cholesterol efflux from macrophages.

  5. Plasma membrane appearance of phosphatidylethanolamine in stimulated macrophages

    SciTech Connect

    Sandra, A.; Cai, J. )

    1991-07-01

    Mouse peritoneal macrophages were labeled with (1-3H)ethanolamine, and the presence of radioactive (3H)phosphatidylethanolamine (PE) at the plasma membrane was monitored by reacting the cells with trinitrobenzene sulfonic acid (TNBS) under nonpenetrating conditions. Macrophages stimulated with either the calcium ionophore A23187 or zymosan demonstrated a larger proportion of radiolabeled PE in the plasma membrane than control, nonstimulated cells. In experiments in which macrophages were labeled with ethanolamine for increasing times, appearance of membrane 3(H)PE was stimulated as early as after 2 hr of labeling. Macrophages labeled for 24 hr, then stimulated and returned to fresh medium still reflected a higher amount of membrane 3(H)PE at 2 hr after the stimulation, suggesting stimulation results in long-term alterations in plasma membrane lipids. Protease-peptone-elicited macrophages, which are not stimulated by zymosan or ionophore, did not exhibit an increase in membrane 3(H)PE upon stimulation. The size of the TNBS-accessible radiolabeled PE pool increased proportionately with a second stimulation; however, a subsequent labeling of the cells with TNBS after brief warming increased the TNBS-accessible pool in control cells only. As shown in previous studies, macrophage stimulation resulted in an increased incorporation of lipid precursors into phospholipid. The mass of plasma membrane Tnp-PE relative to mass of PE was not increased in ionophore-treated macrophages in contrast to a small (approximately 22%) increase in zymosan-treated cells. These results are suggestive of alterations in lipid synthesis in stimulated macrophages and possible long-term changes in the structure and function of the plasma membrane of macrophages following stimulation.

  6. Pleiotrophin triggers inflammation and increased peritoneal permeability leading to peritoneal fibrosis.

    PubMed

    Yokoi, Hideki; Kasahara, Masato; Mori, Kiyoshi; Ogawa, Yoshihisa; Kuwabara, Takashige; Imamaki, Hirotaka; Kawanishi, Tomoko; Koga, Kenichi; Ishii, Akira; Kato, Yukiko; Mori, Keita P; Toda, Naohiro; Ohno, Shoko; Muramatsu, Hisako; Muramatsu, Takashi; Sugawara, Akira; Mukoyama, Masashi; Nakao, Kazuwa

    2012-01-01

    Long-term peritoneal dialysis induces peritoneal fibrosis with submesothelial fibrotic tissue. Although angiogenesis and inflammatory mediators are involved in peritoneal fibrosis, precise molecular mechanisms are undefined. To study this, we used microarray analysis and compared gene expression profiles of the peritoneum in control and chlorhexidine gluconate (CG)-induced peritoneal fibrosis mice. One of the 43 highly upregulated genes was pleiotrophin, a midkine family member, the expression of which was also upregulated by the solution used to treat mice by peritoneal dialysis. This growth factor was found in fibroblasts and mesothelial cells within the underlying submesothelial compact zones of mice, and in human peritoneal biopsy samples and peritoneal dialysate effluent. Recombinant pleiotrophin stimulated mitogenesis and migration of mouse mesothelial cells in culture. We found that in wild-type mice, CG treatment increased peritoneal permeability (measured by equilibration), increased mRNA expression of TGF-β1, connective tissue growth factor and fibronectin, TNF-α and IL-1β expression, and resulted in infiltration of CD3-positive T cells, and caused a high number of Ki-67-positive proliferating cells. All of these parameters were decreased in peritoneal tissues of CG-treated pleiotrophin-knockout mice. Thus, an upregulation of pleiotrophin appears to play a role in fibrosis and inflammation during peritoneal injury.

  7. Helicobacter pylori cell translocating kinase (CtkA/JHP0940) is pro-apoptotic in mouse macrophages and acts as auto-phosphorylating tyrosine kinase.

    PubMed

    Tenguria, Shivendra; Ansari, Suhail A; Khan, Nooruddin; Ranjan, Amit; Devi, Savita; Tegtmeyer, Nicole; Lind, Judith; Backert, Steffen; Ahmed, Niyaz

    2014-11-01

    The Helicobacter pylori gene JHP0940 has been shown to encode a serine/threonine kinase which can induce cytokines in gastric epithelial cells relevant to chronic gastric inflammation. Here we demonstrate that JHP0940 can be secreted by the bacteria, triggers apoptosis in cultured mouse macrophages and acts as an auto-phosphorylating tyrosine kinase. Recombinant JHP0940 protein was found to decrease the viability of RAW264.7 cells (a mouse macrophage cell line) up to 55% within 24h of co-incubation. The decreased cellular viability was due to apoptosis, which was confirmed by TUNEL assay and Fas expression analysis by flow-cytometry. Further, we found that caspase-1 and IL-1beta were activated upon treatment with JHP0940. These results point towards possible action through the host inflammasome. Our in vitro studies using tyrosine kinase assays further demonstrated that JHP0940 acts as auto-phosphorylating tyrosine kinase and induces pro-inflammatory cytokines in RAW264.7 cells. Upon exposure with JHP0940, these cells secreted IL-1beta, TNF-alpha and IL-6, in a dose- and time-dependent manner, as detected by ELISA and transcript profiling by q-RT-PCR. The pro-inflammatory, pro-apoptotic and other regulatory responses triggered by JHP0940 lead to the assumption of its possible role in inducing chronic inflammation for enhanced bacterial persistence and escape from host innate immune responses by apoptosis of macrophages.

  8. Oral administration of lipopolysaccharides activates B-1 cells in the peritoneal cavity and lamina propria of the gut and induces autoimmune symptoms in an autoantibody transgenic mouse

    PubMed Central

    1994-01-01

    About a half of the antierythrocyte autoantibody transgenic (autoAb Tg) mice, in which almost all B cells are detected in the spleen, lymph nodes, and Peyer's patches, but not in the peritoneal cavity, suffer from autoimmune hemolytic anemia. The occurrence of this disease is strongly linked to production of autoAb by activated peritoneal B-1 cells in the Tg mice. In this study, we have shown that oral administration of lipopolysaccharides (LPS) activated B-1 cells in the lamina propria of the gut as well as the peritoneal cavity in the healthy Tg mice and induced the autoimmune symptoms in all the Tg mice. The activation of peritoneal and lamina propria B-1 cells by enteric LPS is found not only in the anti-RBC autoAb Tg mice and normal mice but also in the aly mice which congenitally lack lymph nodes and Peyer's patches. These results suggest that B-1 cells in the two locations may form a common pool independent of Peyer's patches and lymph nodes, and can be activated by enteric thymus-independent antigens or polyclonal activators such as LPS. The induction of autoimmune hemolytic anemia in the Tg mice by enteric LPS through the activation of B-1 cells in the lamina propria of gut and in the peritoneal cavity suggests that B-1 cells and bacterial infection may play a pathogenic role in the onset of autoimmune diseases. PMID:8006578

  9. Anti-inflammatory effect of tetrahydrocoptisine from Corydalis impatiens is a function of possible inhibition of TNF-α, IL-6 and NO production in lipopolysaccharide-stimulated peritoneal macrophages through inhibiting NF-κB activation and MAPK pathway.

    PubMed

    Li, Weifeng; Huang, Huimin; Zhang, Yanmin; Fan, Ting; Liu, Xia; Xing, Wei; Niu, Xiaofeng

    2013-09-05

    The extracts or constituents from Corydalis impatiens are known to have many pharmacological activities. Tetrahydrocoptisine (THC), a protoberberine compound from Corydalis impatiens, was found to possess a potent anti-inflammatory effect in different acute or chronic inflammation model animals. Pretreatment with THC (i.p.) inhibited the paw and ear edema in the carrageenan-induced paw edema assay and xylene-induced ear edema assay, respectively. In the lipopolysaccharide (LPS)-induced systemic inflammation model, THC significantly inhibited serum tumor necrosis factor-alpha (TNF-α) release in mice. To clarify its possible molecular mechanisms underlying this anti-inflammatory effect, we investigated the effect of THC on LPS-induced responses in peritoneal macrophages. Our data demonstrated that THC significantly inhibited LPS-induced TNF-α, interleukin-6(IL-6) and nitric oxide (NO) production. THC inhibited the production of TNF-α and IL-6 by down-regulating LPS-induced IL-6 and TNF-α mRNA expression. Furthermore, it attenuated the phosphorylation of p38 mitogen-activated protein kinase (p38MAPK) and phosphorylation of extracellular signal-regulated kinase1/2 (ERK1/2) as well as the expression of nuclear factor kappa B(NF-κB), in a concentration-dependent manner. Taken together, our data suggest that THC is an active anti-inflammatory constituent by inhibition of TNF-α, IL-6 and NO production possibly via down-regulation of NF-κB activation, phospho-ERK1/2 and phospho-p38MAPK signal pathways.

  10. T cells and macrophages responding to oxidative damage cooperate in pathogenesis of a mouse model of age-related macular degeneration.

    PubMed

    Cruz-Guilloty, Fernando; Saeed, Ali M; Duffort, Stephanie; Cano, Marisol; Ebrahimi, Katayoon B; Ballmick, Asha; Tan, Yaohong; Wang, Hua; Laird, James M; Salomon, Robert G; Handa, James T; Perez, Victor L

    2014-01-01

    Age-related macular degeneration (AMD) is a major disease affecting central vision, but the pathogenic mechanisms are not fully understood. Using a mouse model, we examined the relationship of two factors implicated in AMD development: oxidative stress and the immune system. Carboxyethylpyrrole (CEP) is a lipid peroxidation product associated with AMD in humans and AMD-like pathology in mice. Previously, we demonstrated that CEP immunization leads to retinal infiltration of pro-inflammatory M1 macrophages before overt retinal degeneration. Here, we provide direct and indirect mechanisms for the effect of CEP on macrophages, and show for the first time that antigen-specific T cells play a leading role in AMD pathogenesis. In vitro, CEP directly induced M1 macrophage polarization and production of M1-related factors by retinal pigment epithelial (RPE) cells. In vivo, CEP eye injections in mice induced acute pro-inflammatory gene expression in the retina and human AMD eyes showed distinctively diffuse CEP immunolabeling within RPE cells. Importantly, interferon-gamma (IFN-γ) and interleukin-17 (IL-17)-producing CEP-specific T cells were identified ex vivo after CEP immunization and promoted M1 polarization in co-culture experiments. Finally, T cell immunosuppressive therapy inhibited CEP-mediated pathology. These data indicate that T cells and M1 macrophages activated by oxidative damage cooperate in AMD pathogenesis.

  11. Impaired tumor growth in colony-stimulating factor 1 (CSF-1)-deficient, macrophage-deficient op/op mouse: evidence for a role of CSF-1-dependent macrophages in formation of tumor stroma.

    PubMed

    Nowicki, A; Szenajch, J; Ostrowska, G; Wojtowicz, A; Wojtowicz, K; Kruszewski, A A; Maruszynski, M; Aukerman, S L; Wiktor-Jedrzejczak, W

    1996-01-03

    Macrophages have been suggested to play a major role in the immune response to cancer. They have also been suggested to stimulate the formation of tumor stroma and to promote tumor vascularization. The availability of the op/op mouse, which has no endogenous colony-stimulating factor 1 (CSF-1) and which possesses a profound macrophage deficiency, provides a new model to verify these notions. Subcutaneous growth of transplantable Lewis lung cancer (LLC) is markedly impaired in the op/op mice compared with normal littermates. Treatment of tumor-bearing op/op mice with human recombinant CSF-1 corrects this impairment. Histological analysis of tumors grown in op/op and normal mice revealed marked differences. Tumors grown in op/op mice display a decreased mitotic index and pronounced necrosis, particularly hemorrhagic. Moreover, particularly in the op/op tumors, peculiar sinusoid-like abortive vessels (not filled with blood) have been observed. These tumors, in contrast to tumors grown in normal mice, are almost deprived of regular arteries and veins. In contrast to tumors grown in normal mice, they exhibit almost no Sirius red-stained collagenous fibers and Gomori silver-stained reticular fibers. Our data suggest that the CSF-1-dependent macrophage subpopulation missing in op/op mice plays a primary role in supporting tumor stroma formation and tumor vascularization in murine LLC tumors.

  12. Effects of DMSA-coated Fe3O4 magnetic nanoparticles on global gene expression of mouse macrophage RAW264.7 cells.

    PubMed

    Liu, Yingxun; Chen, Zhongping; Gu, Ning; Wang, Jinke

    2011-08-28

    Fe(3)O(4) magnetic nanoparticles (MNPs) coated with 2,3-dimercaptosuccinnic acid (DMSA) are considered to be a promising nanomaterial with biocompatibility. In the present study, the effects of DMSA-coated Fe(3)O(4) MNPs on the expression of all identified mouse genes, which regulate various cellular biological processes, were determined to establish whether this nanoparticle is cytotoxic to mammalian cells. Mouse macrophage RAW264.7 cells were treated with 100μg/ml of DMSA-coated Fe(3)O(4) MNPs for 4, 24 and 48h, and the global gene expression was detected via Affymetrix Mouse Genome 430 2.0 GeneChips(®) microarrays. It was found that gene expression of 711, 545 and 434 transcripts was significantly altered by 4-, 24- and 48-h treatments, respectively. Of these genes, 27 were consistently upregulated and 6 were consistently downregulated at the three treatment durations. Bioinformatic analysis of all differentially expressed genes revealed that this nanoparticle can strongly activate inflammatory and immune responses and can inhibit the biosynthesis and metabolism of RAW264.7 cells at a dose of 100μg/ml. These results demonstrated that DMSA-coated Fe(3)O(4) MNPs display cytotoxicity in this type of macrophage at high doses.

  13. [Pathophysiology of peritonitis].

    PubMed

    Beyer, K; Menges, P; Keßler, W; Heidecke, C-D

    2016-01-01

    Despite intensive research efforts peritonitis leading to subsequent sepsis remains associated with a high mortality. The initial effector cells are the locally residing cells of the peritoneum, such as mesothelial cells, mast cells, macrophages and lymphocytes. Through the secretion of chemokines, an influx of neutrophils initially takes place followed by monocytes. The latter can differentiate into inflammatory macrophages. The non-directed activity of neutrophilic granulocytes is limited by the induction of apoptotic programs. Through the breaching of cytokines, bacteria and microbial products into the circulation, a systemic reaction in the sense of systemic inflammatory response syndrome (SIRS) or sepsis arises. This is viewed as a concomitant derailing of inflammatory as well as anti-inflammatory responses, which leads to extensive apoptosis of lymphocytes. The presentation of apoptotic cells leads to a strong immunosuppression. Due to the coexistence of hyperinflammation and immunosuppression, exact knowledge of the current immune status of the patient is a prerequisite in the development of immunotherapies for the treatment of sepsis.

  14. Amphiphilic polymer-coated CdSe/ZnS quantum dots induce pro-inflammatory cytokine expression in mouse lung epithelial cells and macrophages.

    PubMed

    Lee, Vivian; McMahan, Ryan S; Hu, Xiaoge; Gao, Xiaohu; Faustman, Elaine M; Griffith, William C; Kavanagh, Terrance J; Eaton, David L; McGuire, John K; Parks, William C

    2015-05-01

    Quantum dots (Qdots) are semiconductor nanoparticles with size-tunable fluorescence capabilities with diverse applications. Qdots typically contain cadmium or other heavy metals, hence raising concerns of their potential toxicity, especially in occupational settings where inhalation of nanomaterials may increase the risk of lung disease. Accordingly, we assessed the effects of tri-n-octylphosphine oxide, poly(maleic anhydride-alt-1-tetradecene) (TOPO-PMAT) coated CdSe/ZnS Qdots on mouse lung epithelial cells and macrophages. Mouse tracheal epithelial cells (MTEC), grown as organotypic cultures, bone marrow-derived macrophages (BMDM), and primary alveolar macrophages (AM) were derived from C57BL/6J or A/J mice and treated with TOPO-PMAT CdSe/ZnS Qdots (10-160 nM) for up to 24 h. Cadmium analysis showed that Qdots remained in the apical compartment of MTEC cultures, whereas they were avidly internalized by AM and BMDM, which did not differ between strains. In MTEC, Qdots selectively induced expression (mRNA and protein) of neutrophil chemokines CXCL1 and CXCL2 but only low to no detectable levels of other factors assessed. In contrast, 4 h exposure to Qdots markedly increased expression of CXCL1, IL6, IL12, and other pro-inflammatory factors in BMDM. Higher inflammatory response was seen in C57BL/6J than in A/J BMDM. Similar expression responses were observed in AM, although overall levels were less robust than in BMDM. MTEC from A/J mice were more sensitive to Qdot pro-inflammatory effects while macrophages from C57BL/6J mice were more sensitive. These findings suggest that patterns of Qdot-induced pulmonary inflammation are likely to be cell-type specific and genetic background dependent.

  15. Effect of low power laser irradiation on macrophage phagocytic capacity

    NASA Astrophysics Data System (ADS)

    Lu, Cuixia; Song, Sheng; Tang, Yu; Zhou, Feifan

    2011-03-01

    Phagocytosis and subsequent degradation of pathogens by macrophages play a pivotal role in host innate immunity in mammals. Laser irradiation has been found to produce photobiological effects with evidence of interference with immunological functions. However, the effects of laser on the immune response have not been extensively characterized. In this study, we focused our attention on the effects of He-Ne laser on the phagocytic activity of macrophages by using flow cytometry (FCM). After irradiating at fluence of 0, 1, 2 J/cm2 with He-Ne laser (632.8 nm, 3mw), the cells were incubated with microsphere and then subjected to FACS analysis. The results showed that Low-power laser irradiation (LPLI) leads to an increase in phagocytosis on both mouse peritoneal macrophages and the murine macrophage-like cell line RAW264.7. In addition, we demonstrated that LPLI increased phagocytosis of microsphere in a dose-dependent manner, reaching a maximum at fluence of 2 J/cm2. Taken together, our results indicated that Low-power laser irradiation with appropriate dosage can enhance the phagocytosis of macrophage, and provided a theoretical base for the clinical use of the He-Ne laser.

  16. Arachidonic acid metabolism in glutathione-deficient macrophages.

    PubMed Central

    Rouzer, C A; Scott, W A; Griffith, O W; Hamill, A L; Cohn, Z A

    1982-01-01

    Mouse resident peritoneal macrophages were treated with the glutathione (GSH) synthesis inhibitor buthionine sulfoximine to deplete intracellular GSH. The arachidonic acid metabolites released by the GSH-depleted macrophages in response to a zymosan challenge were analyzed by HPLC. Buthionine sulfoximine treatment resulted in inhibition of both prostaglandin E2 and leukotriene C synthesis that was directly related to the degree of GSH depletion. Macrophages in which GSH levels were reduced to 3% of normal exhibited reductions to 4% and 1%, respectively, in PGE2 and LTC formation. The total quantity of cyclooxygenase metabolites secreted by GSH-deficient macrophages was identical to that of control cells as a result of increased synthesis of prostacyclin and, to a lesser extent, 12-L-hydroxy-5,8,10-heptadecatrienoic acid. Total lipoxygenase products were decreased, however; increased formation of hydroxyicosatetraenoic acids only partially compensated for the deficit in leukotriene C production. These findings extent our earlier observations on the inhibition of leukotriene C synthesis in GSH-depleted macrophages and confirm with intact cells the previously suggested role of GSH in prostaglandin E2 formation. PMID:6803245

  17. The M2 macrophages induce autophagic vascular disorder and promote mouse sensitivity to urethane-related lung carcinogenesis.

    PubMed

    Li, G-G; Guo, Z-Z; Ma, X-F; Cao, N; Geng, S-N; Zheng, Y-Q; Meng, M-J; Lin, H-H; Han, G; Du, G-J

    2016-06-01

    Tumor vessels are known to be abnormal, with typically aberrant, leaky and disordered vessels. Here, we investigated whether polarized macrophage phenotypes are involved in tumor abnormal angiogenesis and what is its mechanism. We found that there was no difference in chemotaxis of polarized M1 and M2 macrophages to lewis lung carcinoma (LLC) cells and that either M1 or M2 macrophage-conditioned media had no effect on LLC cell proliferation. Unexpectedly, the M2 but not M1 macrophage-conditioned media promoted the proliferation of human umbilical vein endothelial cells (HUVECs) and simultaneously increased endothelial cell permeability in vitro and angiogenic index in the chick embryo chorioallantoic membrane (CAM). The treatment with M2 but not M1 macrophage-conditioned media increased autophagosomes as well as microtubule-associated protein light chain 3B (LC3-B) expression (a robust marker of autophagosomes) but decreased p62 protein expression (a selective autophagy substrate) in HUVECs, the treatment with chloroquine that blocked autophagy abrogated the abnormal angiogenic efficacy of M2 macrophage-conditioned media. These results were confirmed in urethane-induced lung carcinogenic progression. Urethane-induced lung carcinogenesis led to more M2 macrophage phenotype and increased abnormal angiogenesis concomitant with the upregulation of LC3-B and the downregulation of p62. Clodronate liposome-induced macrophage depletion, chloroquine-induced autophagic prevention or salvianolic acid B-induced vascular protection decreased abnormal angiogenesis and lung carcinogenesis. In addition, we found that the tendency of age-related M2 macrophage polarization also promoted vascular permeability and carcinogenesis in urethane carcinogenic progression. These findings indicate that the M2 macrophages induce autophagic vascular disorder to promote lung cancer progression, and the autophagy improvement represents an efficacious strategy for abnormal angiogenesis and cancer

  18. Disruption of Lipid Rafts Interferes with the Interaction of Toxoplasma gondii with Macrophages and Epithelial Cells

    PubMed Central

    Cruz, Karla Dias; Cruz, Thayana Araújo; Veras de Moraes, Gabriela; Paredes-Santos, Tatiana Christina; Attias, Marcia; de Souza, Wanderley

    2014-01-01

    The intracellular parasite Toxoplasma gondii can penetrate any warm-blooded animal cell. Conserved molecular assemblies of host cell plasma membranes should be involved in the parasite-host cell recognition. Lipid rafts are well-conserved membrane microdomains that contain high concentrations of cholesterol, sphingolipids, glycosylphosphatidylinositol, GPI-anchored proteins, and dually acylated proteins such as members of the Src family of tyrosine kinases. Disturbing lipid rafts of mouse peritoneal macrophages and epithelial cells of the lineage LLC-MK2 with methyl-beta cyclodextrin (MβCD) and filipin, which interfere with cholesterol or lidocaine, significantly inhibited internalization of T. gondii in both cell types, although adhesion remained unaffected in macrophages and decreased only in LLC-MK2 cells. Scanning and transmission electron microscopy confirmed these observations. Results are discussed in terms of the original role of macrophages as professional phagocytes versus the LLC-MK2 cell lineage originated from kidney epithelial cells. PMID:24734239

  19. Detection of disseminated peritoneal tumors by fluorescein diacrylate in mice

    NASA Astrophysics Data System (ADS)

    Harada, Yoshinori; Furuta, Hirokazu; Murayama, Yasutoshi; Dai, Ping; Fujikawa, Yuta; Urano, Yasuteru; Nagano, Tetsuo; Morishita, Koki; Hasegawa, Akira; Takamatsu, Tetsuro

    2009-02-01

    Tumor invasion to the peritoneum is a poor prognostic factor in cancer patients. Accurate diagnosis of disseminated peritoneal tumors is essential to accurate cancer staging. To date, peritoneal washing cytology during laparotomy has been used for diagnosis of peritoneal dissemination of gastrointestinal cancer, but its sensitivity has not been satisfactory. Thus, a more direct approach is indispensable to detect peritoneal dissemination in vivo. Fluorescein diacrylate (FDAcr) is an esterase-sensitive fluorescent probe derived from fluorescein. In cancer cells, fluorescent fluorescein generated by exogenous application of FDAcr selectively deposits owing to its stronger hydrolytic enzyme activity and its lower leakage rate. We examined whether FDAcr can specifically detect disseminated peritoneal tumors in athymic nude mouse models. Intraperitoneally administered FDAcr revealed disseminated peritoneal microscopic tumors not readily recognized on white-light imaging. These results suggest that FDAcr is a useful probe for detecting disseminated peritoneal tumors.

  20. Interleukin-17 is not required for classical macrophage activation in a pulmonary mouse model of Cryptococcus neoformans infection.

    PubMed

    Hardison, Sarah E; Wozniak, Karen L; Kolls, Jay K; Wormley, Floyd L

    2010-12-01

    Cryptococcus neoformans is an opportunistic fungal pathogen that causes disease in individuals with suppressed cell-mediated immunity. Recent studies in our laboratory have shown that increases in pulmonary Th1-type and interleukin-17A (IL-17A) cytokine production, classical macrophage activation, and sterilizing immunity are elicited in response to infection with a gamma interferon (IFN-γ)-producing C. neoformans strain, H99γ. IL-17A-treated macrophages, compared to IL-4-treated macrophages, have been demonstrated to exhibit increased microbicidal activity in vitro, a characteristic consistent with classical macrophage activation. The purpose of these studies is to determine the role of IL-17A in the induction of classically activated macrophages following infection with C. neoformans. Immunohistochemistry and real-time PCR were used to characterize the macrophage activation phenotype in lung tissues of mice treated with isotype control or anti-IL-17A antibodies and given an experimental pulmonary infection with C. neoformans strain H99γ. The pulmonary fungal burden was resolved, albeit more slowly, in mice depleted of IL-17A compared to the fungal burden in isotype control-treated mice. Nonetheless, no difference in classical macrophage activation was observed in IL-17A-depleted mice. Similarly, classical macrophage activation was evident in mice deficient in IL-17A or the IL-17 receptor A, which mediates IL-17A signaling, following pulmonary infection with wild-type C. neoformans strain H99 or H99γ. These studies suggest that IL-17A may play a role in the early immune response to C. neoformans but is not required for classical macrophage activation in mice experimentally infected with C. neoformans.

  1. Enhancement of macrophage-mediated tumor cell killing by bacterial outer membrane proteins (porins).

    PubMed Central

    Weinberg, J B; Ribi, E; Wheat, R W

    1983-01-01

    Various microbial products are known to influence the function of mouse peritoneal macrophages. Lipopolysaccharide (LPS) and certain lipid A-associated proteins are known to enhance the tumoricidal effects of macrophages. The purpose of this study was to determine whether porins (outer membrane proteins) of Salmonella typhimurium G30/C21 would influence the activity of macrophages from lipid A-responsive and -unresponsive mice. Porins, extracted by a combined sodium dodecyl sulfate-EDTA method from cell walls, were free of LPS as determined by Limulus amebocyte lysate assay and appeared as a band at approximately 36,000 molecular weight on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In tumor cell killing assays done under LPS-free conditions, the porins in doses of 1 to 10 ng/ml enhanced the tumoricidal effect of macrophages from bacillus Calmette-Guérin-infected C3H/HeN or C3H/HeJ mice. Protein-free LPS enhanced the tumoricidal activity of macrophages from bacillus Calmette-Guérin-infected C3H/HeN but not C3H/HeJ mice. The tumoricidal-enhancing activity of protein-free LPS was blocked by the lipid A-binding antibiotic polymyxin B sulfate, but the effects of porins were not altered by the polymyxin B sulfate. These results suggest that porins, proteins known to alter membrane function, may alter macrophage function by interaction with macrophage membranes. Images PMID:6311745

  2. Acid Sphingomyelinase Mediates Oxidized-LDL Induced Apoptosis in Macrophage via Endoplasmic Reticulum Stress

    PubMed Central

    Zhao, Min; Pan, Wei; Shi, Rui-zheng; Bai, Yong-ping; You, Bo-yang; Zhang, Kai; Fu, Qiong-mei; Schuchman, Edward H.

    2016-01-01

    Aim: Macrophage apoptosis is a vital event in advanced atherosclerosis, and oxidized low-density lipoprotein (ox-LDL) is a major contributor to this process. Acid sphingomyelinase (ASM) and ceramide are also involved in the induction of apoptosis, particularly in macrophages. Our current study focuses on ASM and investigates its role in ox-LDL-induced macrophage apoptosis. Methods: Human THP-1 and mouse peritoneal macrophages were cultured in vitro and treated with ox-LDL. ASM activity and ceramide levels were quantified using ultra performance liquid chromatography. Protein and mRNA levels were analyzed using Western blot analysis and quantitative realtime PCR, respectively. Cell apoptosis was determined using Hoechst staining and flow cytometry. Results: Ox-LDL-induced macrophage apoptosis was triggered by profound endoplasmic reticulum (ER) stress, leading to an upregulation of ASM activity and ceramide levels at an early stage. ASM was inhibited by siRNA or desipramine (DES), and/or ceramide was degraded by recombinant acid ceramidase (AC). These events attenuated the effect of ox-LDL on ER stress. In contrast, recombinant ASM upregulated ceramide and ER stress. ASM siRNA, DES, recombinant AC, and ER stress inhibitor 4-phenylbutyric acid were blocked by elevated levels of C/EBP homologous protein (CHOP); ox-LDL induced elevated levels of CHOP. These events attenuated macrophage apoptosis. Conclusion: These results indicate that ASM/ceramide signaling pathway is involved in ox-LDL-induced macrophage apoptosis via ER stress pathway. PMID:26923251

  3. Schisandrin B inhibits cell growth and induces cellular apoptosis and autophagy in mouse hepatocytes and macrophages: implications for its hepatotoxicity

    PubMed Central

    Zhang, Yi; Zhou, Zhi-Wei; Jin, Hua; Hu, Chengbin; He, Zhi-Xu; Yu, Zhi-Ling; Ko, Kam-Ming; Yang, Tianxin; Zhang, Xueji; Pan, Si-Yuan; Zhou, Shu-Feng

    2015-01-01

    A number of drugs and herbal compounds have been documented to cause hepatoxicity. Schisandrin B (Sch B) is an active dibenzocyclooctadiene isolated from Schisandrae fructus, with a wide array of pharmacological activities. However, the potential hepatotoxicity of Sch B is a major safety concern, and the underlying mechanism for Sch B-induced liver toxic effects is not fully elucidated. In the present study, we aimed to investigate the liver toxic effects and the molecular mechanisms of Sch B in mouse liver and macrophage cells. The results have shown that Sch B exhibits potent grow inhibitory, proapoptotic, and proautophagic effects in AML-12 and RAW 264.7 cells. Sch B markedly arrested cells in G1 phase in both cell lines, accompanied by the down-regulation of cyclin dependent kinase 2 (CDK2) and cyclin D1 and up-regulation of p27 Kip1 and checkpoint kinase 1. Furthermore, Sch B markedly increased the apoptosis of AML-12 and RAW 264.7 cells with a decrease in the expression of B-cell lymphoma-extra-large and (Bcl-xl) B-cell lymphoma 2 (Bcl-2), but an increase in the expression of B-cell lymphoma 2-associated X protein (Bax). Sch B promoted the cleavage of caspase 3 and poly-adenosine diphosphate-ribose polymerase (PARP) in both cell lines. Additionally, Sch B significantly induced autophagy of AML-12 and RAW 264.7 cells. Sch B inhibited the activation of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway, as indicated by their altered phosphorylation, contributing to the proautophagic effect of Sch B. Taken together, our findings show that the inducing effects of Sch B on cell cycle arrest, apoptosis, and autophagy may contribute to its liver toxic effects, which might provide a clue for the investigation of the molecular toxic targets and underlying mechanisms for Sch B-induced hepatotoxicity in herbal consumers. More studies are warranted to fully delineate the underlying mechanisms, efficacy, and

  4. The Effects of Paracoccidioides brasiliensis Infection on GM-CSF- and M-CSF-Induced Mouse Bone Marrow-Derived Macrophage from Resistant and Susceptible Mice Strains

    PubMed Central

    de Souza Silva, Calliandra; Tavares, Aldo Henrique; Sousa Jeronimo, Marcio; Soares de Lima, Yasmin; da Silveira Derengowski, Lorena; Lorenzetti Bocca, Anamélia; Silva-Pereira, Ildinete

    2015-01-01

    Considering the importance of macrophages as the first line of defense against fungal infection and the different roles played by the two M1- and M2-like polarized macrophages, we decided to evaluate the effects of Paracoccidioides brasiliensis infection on GM-CSF- and M-CSF-induced bone marrow-derived macrophages (BMM) from the A/J and B10.A mouse strains, an established model of resistance/susceptibility to PCM, respectively. Upon differentiation, the generated GM- or M-BMMs were characterized by morphological analyses, gene expression profiles, and cytokines production. Our main results demonstrate that GM-BMMs derived from A/J and B.10 produced high levels of pro- and anti-inflammatory cytokines that may contribute to generate an unbalanced early immune response. In accordance with the literature, the B10.A susceptible mice lineage has an innate tendency to polarize into M1-like phenotype, whereas the opposite phenotype occurs in A/J resistance mice. In this context, our data support that susceptibility and resistance are strongly correlated with M1 and M2 polarization, respectively. PMID:26543326

  5. The Effects of Paracoccidioides brasiliensis Infection on GM-CSF- and M-CSF-Induced Mouse Bone Marrow-Derived Macrophage from Resistant and Susceptible Mice Strains.

    PubMed

    de Souza Silva, Calliandra; Tavares, Aldo Henrique; Sousa Jeronimo, Marcio; Soares de Lima, Yasmin; da Silveira Derengowski, Lorena; Bocca, Anamélia Lorenzetti; Silva-Pereira, Ildinete

    2015-01-01

    Considering the importance of macrophages as the first line of defense against fungal infection and the different roles played by the two M1- and M2-like polarized macrophages, we decided to evaluate the effects of Paracoccidioides brasiliensis infection on GM-CSF- and M-CSF-induced bone marrow-derived macrophages (BMM) from the A/J and B10.A mouse strains, an established model of resistance/susceptibility to PCM, respectively. Upon differentiation, the generated GM- or M-BMMs were characterized by morphological analyses, gene expression profiles, and cytokines production. Our main results demonstrate that GM-BMMs derived from A/J and B.10 produced high levels of pro- and anti-inflammatory cytokines that may contribute to generate an unbalanced early immune response. In accordance with the literature, the B10.A susceptible mice lineage has an innate tendency to polarize into M1-like phenotype, whereas the opposite phenotype occurs in A/J resistance mice. In this context, our data support that susceptibility and resistance are strongly correlated with M1 and M2 polarization, respectively.

  6. Targeting Nrf2 signaling improves bacterial clearance by alveolar macrophages in patients with COPD and in a mouse model.

    PubMed

    Harvey, Christopher J; Thimmulappa, Rajesh K; Sethi, Sanjay; Kong, Xiaoni; Yarmus, Lonny; Brown, Robert H; Feller-Kopman, David; Wise, Robert; Biswal, Shyam

    2011-04-13

    Patients with chronic obstructive pulmonary disease (COPD) have innate immune dysfunction in the lung largely due to defective macrophage phagocytosis. This deficiency results in periodic bacterial infections that cause acute exacerbations of COPD, a major source of morbidity and mortality. Recent studies indicate that a decrease in Nrf2 (nuclear erythroid-related factor 2) signaling in patients with COPD may hamper their ability to defend against oxidative stress, although the role of Nrf2 in COPD exacerbations has not been determined. Here, we test whether activation of Nrf2 by the phytochemical sulforaphane restores phagocytosis of clinical isolates of nontypeable Haemophilus influenza (NTHI) and Pseudomonas aeruginosa (PA) by alveolar macrophages from patients with COPD. Sulforaphane treatment restored bacteria recognition and phagocytosis in alveolar macrophages from COPD patients. Furthermore, sulforaphane treatment enhanced pulmonary bacterial clearance by alveolar macrophages and reduced inflammation in wild-type mice but not in Nrf2-deficient mice exposed to cigarette smoke for 6 months. Gene expression and promoter analysis revealed that Nrf2 increased phagocytic ability of macrophages by direct transcriptional up-regulation of the scavenger receptor MARCO. Disruption of Nrf2 or MARCO abrogated sulforaphane-mediated bacterial phagocytosis by COPD alveolar macrophages. Our findings demonstrate the importance of Nrf2 and its downstream target MARCO in improving antibacterial defenses and provide a rationale for targeting this pathway, via pharmacological agents such as sulforaphane, to prevent exacerbations of COPD caused by bacterial infection.

  7. Silencing CCR2 in Macrophages Alleviates Adipose Tissue Inflammation and the Associated Metabolic Syndrome in Dietary Obese Mice.

    PubMed

    Kim, Jongkil; Chung, Kunho; Choi, Changseon; Beloor, Jagadish; Ullah, Irfan; Kim, Nahyeon; Lee, Kuen Yong; Lee, Sang-Kyung; Kumar, Priti

    2016-01-26

    Adipose tissue macrophage (ATM)-mediated inflammation is a key feature contributing to the adverse metabolic outcomes of dietary obesity. Recruitment of macrophages to obese adipose tissues (AT) can occur through the engagement of CCR2, the receptor for MCP-1 (monocyte chemoattractant protein-1), which is expressed on peripheral monocytes/macrophages. Here, we show that i.p. administration of a rabies virus glycoprotein-derived acetylcholine receptor-binding peptide effectively delivers complexed siRNA into peritoneal macrophages and ATMs in a mouse model of high-fat diet-induced obesity. Treatment with siRNA against CCR2 inhibited macrophage infiltration and accumulation in AT and, therefore, proinflammatory cytokines produced by macrophages. Consequently, the treatment significantly improved glucose tolerance and insulin sensitivity profiles, and also alleviated the associated symptoms of hepatic steatosis and reduced hepatic triglyceride production. These results demonstrate that disruption of macrophage chemotaxis to the AT through cell-targeted gene knockdown strategies can provide a therapeutic intervention for obesity-related metabolic diseases. The study also highlights a siRNA delivery approach for targeting specific monocyte subsets that contribute to obesity-associated inflammation without affecting the function of other tissue-resident macrophages that are essential for host homeostasis and survival.

  8. Silencing CCR2 in Macrophages Alleviates Adipose Tissue Inflammation and the Associated Metabolic Syndrome in Dietary Obese Mice

    PubMed Central

    Kim, Jongkil; Chung, Kunho; Choi, Changseon; Beloor, Jagadish; Ullah, Irfan; Kim, Nahyeon; Lee, Kuen Yong; Lee, Sang-Kyung; Kumar, Priti

    2016-01-01

    Adipose tissue macrophage (ATM)-mediated inflammation is a key feature contributing to the adverse metabolic outcomes of dietary obesity. Recruitment of macrophages to obese adipose tissues (AT) can occur through the engagement of CCR2, the receptor for MCP-1 (monocyte chemoattractant protein-1), which is expressed on peripheral monocytes/macrophages. Here, we show that i.p. administration of a rabies virus glycoprotein-derived acetylcholine receptor-binding peptide effectively delivers complexed siRNA into peritoneal macrophages and ATMs in a mouse model of high-fat diet-induced obesity. Treatment with siRNA against CCR2 inhibited macrophage infiltration and accumulation in AT and, therefore, proinflammatory cytokines produced by macrophages. Consequently, the treatment significantly improved glucose tolerance and insulin sensitivity profiles, and also alleviated the associated symptoms of hepatic steatosis and reduced hepatic triglyceride production. These results demonstrate that disruption of macrophage chemotaxis to the AT through cell-targeted gene knockdown strategies can provide a therapeutic intervention for obesity-related metabolic diseases. The study also highlights a siRNA delivery approach for targeting specific monocyte subsets that contribute to obesity-associated inflammation without affecting the function of other tissue-resident macrophages that are essential for host homeostasis and survival. PMID:26812653

  9. Effects of linalool and eugenol on the survival of Leishmania (L.) infantum chagasi within macrophages.

    PubMed

    Dutra, Fernando L; Oliveira, Maurício M; Santos, Reinaldo S; Silva, Wagner Seixas; Alviano, Daniela S; Vieira, Danielle P; Lopes, Angela H

    2016-12-01

    The most commonly used drugs against visceral leishmaniasis are based on pentavalent antimonial compounds, which have played a fundamental role in therapy for over 70 years. However, the treatment is painful and has severe toxic side effects that can be fatal. Antimonial resistance is spreading and reaching alarming proportions. Linalool and eugenol have been shown to kill Leishmania (L.) amazonensis and Trypanosoma cruzi at low doses. In the present study, we demonstrate the effects of linalool and eugenol, components of essential oils, on Leishmania (L.) infantum chagasi, one of the causative agents of visceral leishmaniasis. We compared the effects of those compounds to the effects of glucantime, a positive control. In L. infantum chagasi killing assays, the LD50 for eugenol was 220μg/ml, and that for linalool was 550μg/ml. L. infantum chagasi was added to cultures of peritoneal mouse macrophages for four hours prior to drug treatment. Eugenol and linalool significantly decreased the number of parasites within the macrophages. Eugenol and linalool enhanced the activities of the L. infantum chagasi protein kinases PKA and PKC. Linalool also decreased L. infantum chagasi oxygen consumption. In conclusion, both linalool and eugenol promoted a decrease in the proliferation and viability of L. infantum chagasi. These effects were more pronounced during the interaction between the parasites and peritoneal mouse macrophages.

  10. Multiple bidirectional alterations of phenotype and changes in proliferative potential during the in vitro and in vivo passage of clonal mast cell populations derived from mouse peritoneal mast cells

    SciTech Connect

    Kanakura, Y.; Thompson, H.; Nakano, T.; Yamamura, T.; Asai, H.; Kitamura, Y.; Metcalfe, D.D.; Galli, S.J.

    1988-09-01

    Mouse peritoneal mast cells (PMC) express a connective tissue-type mast cell (CTMC) phenotype, including reactivity with the heparin-binding fluorescent dye berberine sulfate and incorporation of (35S) sulfate predominantly into heparin proteoglycans. When PMC purified to greater than 99% purity were cultured in methylcellulose with IL-3 and IL-4, approximately 25% of the PMC formed colonies, all of which contained both berberine sulfate-positive and berberine sulfate-negative mast cells. When these mast cells were transferred to suspension culture, they generated populations that were 100% berberine sulfate-negative, a characteristic similar to that of mucosal mast cells (MMC), and that synthesized predominantly chondroitin sulfate (35S) proteoglycans. When ''MMC-like'' cultured mast cells derived from WBB6F1-+/+ PMC were injected into the peritoneal cavities of mast cell-deficient WBB6F1-W/Wv mice, the adoptively transferred mast cell population became 100% berberine sulfate-positive. In methylcellulose culture, these ''second generation PMC'' formed clonal colonies containing both berberine sulfate-positive and berberine sulfate-negative cells, but exhibited significantly less proliferative ability than did normal +/+ PMC. Thus, clonal mast cell populations initially derived from single PMC exhibited multiple and bidirectional alterations between CTMC-like and MMC-like phenotypes. However, this process was associated with a progressive diminution of the mast cells' proliferative ability.

  11. Intranasal delivery of bone marrow-derived mesenchymal stem cells, macrophages, and microglia to the brain in mouse models of Alzheimer's and Parkinson's disease.

    PubMed

    Danielyan, Lusine; Beer-Hammer, Sandra; Stolzing, Alexandra; Schäfer, Richard; Siegel, Georg; Fabian, Claire; Kahle, Philipp; Biedermann, Tilo; Lourhmati, Ali; Buadze, Marine; Novakovic, Ana; Proksch, Barbara; Gleiter, Christoph H; Frey, William H; Schwab, Matthias

    2014-01-01

    In view of the rapid preclinical development of cell-based therapies for neurodegenerative disorders, traumatic brain injury, and tumors, the safe and efficient delivery and targeting of therapeutic cells to the central nervous system is critical for maintaining therapeutic efficacy and safety in the respective disease models. Our previous data demonstrated therapeutically efficacious and targeted delivery of mesenchymal stem cells (MSCs) to the brain in the rat 6-hydroxydopamine model of Parkinson's disease (PD). The present study examined delivery of bone marrow-derived MSCs, macrophages, and microglia to the brain in a transgenic model of PD [(Thy1)-h[A30P] αS] and an APP/PS1 model of Alzheimer's disease (AD) via intranasal application (INA). INA of microglia in naive BL/6 mice led to targeted and effective delivery of cells to the brain. Quantitative PCR analysis of eGFP DNA showed that the brain contained the highest amount of eGFP-microglia (up to 2.1 × 10(4)) after INA of 1 × 10(6) cells, while the total amount of cells detected in peripheral organs did not exceed 3.4 × 10(3). Seven days after INA, MSCs expressing eGFP were detected in the olfactory bulb (OB), cortex, amygdala, striatum, hippocampus, cerebellum, and brainstem of (Thy1)-h[A30P] αS transgenic mice, showing predominant distribution within the OB and brainstem. INA of eGFP-expressing macrophages in 13-month-old APP/PS1 mice led to delivery of cells to the OB, hippocampus, cortex, and cerebellum. Both MSCs and macrophages contained Iba-1-positive population of small microglia-like cells and Iba-1-negative large rounded cells showing either intracellular amyloid β (macrophages in APP/PS1 model) or α-synuclein [MSCs in (Thy1)-h[A30P] αS model] immunoreactivity. Here, we show, for the first time, intranasal delivery of cells to the brain of transgenic PD and AD mouse models. Additional work is needed to determine the optimal dosage (single treatment regimen or repeated

  12. NF-kappaB inhibitor dehydroxymethylepoxyquinomicin suppresses osteoclastogenesis and expression of NFATc1 in mouse arthritis without affecting expression of RANKL, osteoprotegerin or macrophage colony-stimulating factor.

    PubMed

    Kubota, Tetsuo; Hoshino, Machiko; Aoki, Kazuhiro; Ohya, Keiichi; Komano, Yukiko; Nanki, Toshihiro; Miyasaka, Nobuyuki; Umezawa, Kazuo

    2007-01-01

    Inhibition of NF-kappaB is known to be effective in reducing both inflammation and bone destruction in animal models of arthritis. Our previous study demonstrated that a small cell-permeable NF-kappaB inhibitor, dehydroxymethylepoxyquinomicin (DHMEQ), suppresses expression of proinflammatory cytokines and ameliorates mouse arthritis. It remained unclear, however, whether DHMEQ directly affects osteoclast precursor cells to suppress their differentiation to mature osteoclasts in vivo. The effect of DHMEQ on human osteoclastogenesis also remained elusive. In the present study, we therefore examined the effect of DHMEQ on osteoclastogenesis using a mouse collagen-induced arthritis model, and using culture systems of fibroblast-like synovial cells obtained from patients with rheumatoid arthritis, and of osteoclast precursor cells from peripheral blood of healthy volunteers. DHMEQ significantly suppressed formation of osteoclasts in arthritic joints, and also suppressed expression of NFATc1 along the inner surfaces of bone lacunae and the eroded bone surface, while serum levels of soluble receptor activator of NF-kappaB ligand (RANKL), osteoprotegerin and macrophage colony-stimulating factor were not affected by the treatment. DHMEQ also did not suppress spontaneous expression of RANKL nor of macrophage colony-stimulating factor in culture of fibroblast-like synovial cells obtained from patients with rheumatoid arthritis. These results suggest that DHMEQ suppresses osteoclastogenesis in vivo, through downregulation of NFATc1 expression, without significantly affecting expression of upstream molecules of the RANKL/receptor activator of NF-kappaB/osteoprotegerin cascade, at least in our experimental condition. Furthermore, in the presence of RANKL and macrophage colony-stimulating factor, differentiation and activation of human osteoclasts were also suppressed by DHMEQ, suggesting the possibility of future application of NF-kappaB inhibitors to rheumatoid arthritis

  13. Electron microscopy of Cowdria-infected macrophages suggests that in the absence of binary fission a mosaic of organisms develops from an amorphous electron dense matrix.

    PubMed

    Du Plessis, J L

    1999-03-01

    Electron microscopy of mouse peritoneal macrophages infected with the Kümm stock of Cowdria ruminantium suggests that in the final stage of intracellular growth, a mosaic of organisms develops from an amorphous matrix of varying electron density by a process in which double unit membranes portion off the Cowdria particles. This stage is preceded by inclusions consisting of a network of aggregated electron dense granules and these in turn by homogeneous dense bodies. The study failed to show how these dense bodies develop from internalized Cowdria particles introduced in the infective inoculum. The replication of the heartwater agent in macrophages differs from that in vascular endothelial cells in two important respects. First, at no stage during the course of development in macrophages is binary fission in evidence and second, in the absence of a limiting membrane the inclusions and colonies of organisms throughout the cycle of development in macrophages are in intimate contact with the host cell cytoplasm.

  14. Differential Cytotoxicity of Acetaminophen in Mouse Macrophage J774.2 and Human Hepatoma HepG2 Cells: Protection by Diallyl Sulfide

    PubMed Central

    Raza, Haider; John, Annie

    2015-01-01

    Non-steroidal anti-inflammatory drugs (NSAIDs), including acetaminophen (APAP), have been reported to induce cytotoxicity in cancer and non-cancerous cells. Overdose of acetaminophen (APAP) causes liver injury in humans and animals. Hepatic glutathione (GSH) depletion followed by oxidative stress and mitochondrial dysfunction are believed to be the main causes of APAP toxicity. The precise molecular mechanism of APAP toxicity in different cellular systems is, however, not clearly understood. Our previous studies on mouse macrophage J774.2 cells treated with APAP strongly suggest induction of apoptosis associated with mitochondrial dysfunction and oxidative stress. In the present study, using human hepatoma HepG2 cells, we have further demonstrated that macrophages are a more sensitive target for APAP—induced toxicity than HepG2 cells. Using similar dose- and time-point studies, a marked increase in apoptosis and DNA fragmentation were seen in macrophages compared to HepG2 cells. Differential effects of APAP on mitochondrial respiratory functions and oxidative stress were observed in the two cell lines which are presumably dependent on the varying degree of drug metabolism by the different cytochrome P450s and detoxification by glutathione S-transferase enzyme systems. Our results demonstrate a marked increase in the activity and expression of glutathione transferase (GST) and multidrug resistance (MDR1) proteins in APAP-treated HepG2 cells compared to macrophages. This may explain the apparent resistance of HepG2 cells to APAP toxicity. However, treatment of these cells with diallyl sulfide (DAS, 200 μM), a known chemopreventive agent from garlic extract, 24 h prior to APAP (10 μmol/ml for 18h) exhibited comparable cytoprotective effects in the two cell lines. These results may help in better understanding the mechanism of cytotoxicity caused by APAP and cytoprotection by chemopreventive agents in cancer and non-cancerous cellular systems. PMID:26714183

  15. Differential Cytotoxicity of Acetaminophen in Mouse Macrophage J774.2 and Human Hepatoma HepG2 Cells: Protection by Diallyl Sulfide.

    PubMed

    Raza, Haider; John, Annie

    2015-01-01

    Non-steroidal anti-inflammatory drugs (NSAIDs), including acetaminophen (APAP), have been reported to induce cytotoxicity in cancer and non-cancerous cells. Overdose of acetaminophen (APAP) causes liver injury in humans and animals. Hepatic glutathione (GSH) depletion followed by oxidative stress and mitochondrial dysfunction are believed to be the main causes of APAP toxicity. The precise molecular mechanism of APAP toxicity in different cellular systems is, however, not clearly understood. Our previous studies on mouse macrophage J774.2 cells treated with APAP strongly suggest induction of apoptosis associated with mitochondrial dysfunction and oxidative stress. In the present study, using human hepatoma HepG2 cells, we have further demonstrated that macrophages are a more sensitive target for APAP-induced toxicity than HepG2 cells. Using similar dose- and time-point studies, a marked increase in apoptosis and DNA fragmentation were seen in macrophages compared to HepG2 cells. Differential effects of APAP on mitochondrial respiratory functions and oxidative stress were observed in the two cell lines which are presumably dependent on the varying degree of drug metabolism by the different cytochrome P450s and detoxification by glutathione S-transferase enzyme systems. Our results demonstrate a marked increase in the activity and expression of glutathione transferase (GST) and multidrug resistance (MDR1) proteins in APAP-treated HepG2 cells compared to macrophages. This may explain the apparent resistance of HepG2 cells to APAP toxicity. However, treatment of these cells with diallyl sulfide (DAS, 200 μM), a known chemopreventive agent from garlic extract, 24 h prior to APAP (10 μmol/ml for 18h) exhibited comparable cytoprotective effects in the two cell lines. These results may help in better understanding the mechanism of cytotoxicity caused by APAP and cytoprotection by chemopreventive agents in cancer and non-cancerous cellular systems.

  16. The 5-lipoxygenase inhibitor, zileuton, suppresses prostaglandin biosynthesis by inhibition of arachidonic acid release in macrophages

    PubMed Central

    Rossi, A; Pergola, C; Koeberle, A; Hoffmann, M; Dehm, F; Bramanti, P; Cuzzocrea, S; Werz, O; Sautebin, L

    2010-01-01

    BACKGROUND AND PURPOSE Zileuton is the only 5-lipoxygenase (5-LOX) inhibitor marketed as a treatment for asthma, and is often utilized as a selective tool to evaluate the role of 5-LOX and leukotrienes. The aim of this study was to investigate the effect of zileuton on prostaglandin (PG) production in vitro and in vivo. EXPERIMENTAL APPROACH Peritoneal macrophages activated with lipopolysaccharide (LPS)/interferon γ (LPS/IFNγ), J774 macrophages and human whole blood stimulated with LPS were used as in vitro models and rat carrageenan-induced pleurisy as an in vivo model. KEY RESULTS Zileuton suppressed PG biosynthesis by interference with arachidonic acid (AA) release in macrophages. We found that zileuton significantly reduced PGE2 and 6-keto prostaglandin F1α (PGF1α) levels in activated mouse peritoneal macrophages and in J774 macrophages. This effect was not related to 5-LOX inhibition, because it was also observed in macrophages from 5-LOX knockout mice. Notably, zileuton inhibited PGE2 production in LPS-stimulated human whole blood and suppressed PGE2 and 6-keto PGF1α pleural levels in rat carrageenan-induced pleurisy. Interestingly, zileuton failed to inhibit the activity of microsomal PGE2 synthase1 and of cyclooxygenase (COX)-2 and did not affect COX-2 expression. However, zileuton significantly decreased AA release in macrophages accompanied by inhibition of phospholipase A2 translocation to cellular membranes. CONCLUSIONS AND IMPLICATION Zileuton inhibited PG production by interfering at the level of AA release. Its mechanism of action, as well as its use as a pharmacological tool, in experimental models of inflammation should be reassessed. PMID:20880396

  17. Wound healing: the effect of macrophage and tumour derived angiogenesis factors on skin graft vascularization.

    PubMed Central

    Arnold, F.; West, D.; Kumar, S.

    1987-01-01

    Angiogenic factors prepared from rat Walker 256 mammary carcinoma, (TAF) and activated mouse peritoneal macrophages (MAF), were tested for their ability to stimulate vascularization during healing. They were applied to one of a pair of bilaterally symmetrical, autologous, isotopic, full thickness skin grafts in mice. Blood flow to treated and untreated graft pairs was compared by their uptake of injected 86Rb Cl, at 3 and 7 days after grafting. No difference was detected after treatment with either agent. We conclude that while angiogenic factors are important in vascularization during healing, this normally occurs at a near maximal rate and cannot be further enhanced. PMID:2443156

  18. The tumor-educated-macrophage increase of malignancy of human pancreatic cancer is prevented by zoledronic acid.

    PubMed

    Hiroshima, Yukihiko; Maawy, Ali; Hassanein, Mohamed K; Menen, Rhiana; Momiyama, Masashi; Murakami, Takashi; Miwa, Shinji; Yamamoto, Mako; Uehara, Fuminari; Yano, Shuya; Mori, Ryutaro; Matsuyama, Ryusei; Chishima, Takashi; Tanaka, Kuniya; Ichikawa, Yasushi; Bouvet, Michael; Endo, Itaru; Hoffman, Robert M

    2014-01-01

    We previously defined macrophages harvested from the peritoneal cavity of nude mice with subcutaneous human pancreatic tumors as "tumor-educated-macrophages" (Edu) and macrophages harvested from mice without tumors as "naïve-macrophages" (Naïve), and demonstrated that Edu-macrophages promoted tumor growth and metastasis. In this study, Edu- and Naïve-macrophages were compared for their ability to enhance pancreatic cancer malignancy at the cellular level in vitro and in vivo. The inhibitory efficacy of Zoledronic acid (ZA) on Edu-macrophage-enhanced metastasis was also determined. XPA1 human pancreatic cancer cells in Gelfoam co-cultured with Edu-macrophages proliferated to a greater extent compared to XPA1 cells cultured with Naïve-macrophages (P = 0.014). XPA1 cells exposed to conditioned medium harvested from Edu culture significantly increased proliferation (P = 0.016) and had more migration stimulation capability (P<0.001) compared to cultured cancer cells treated with the conditioned medium from Naïve. The mitotic index of the XPA1 cells, expressing GFP in the nucleus and RFP in the cytoplasm, significantly increased in vivo in the presence of Edu- compared to Naïve-macrophages (P = 0.001). Zoledronic acid (ZA) killed both Edu and Naïve in vitro. Edu promoted tumor growth and metastasis in an orthotopic mouse model of the XPA1 human pancreatic cancer cell line. ZA reduced primary tumor growth (P = 0.006) and prevented metastasis (P = 0.025) promoted by Edu-macrophages. These results indicate that ZA inhibits enhanced primary tumor growth and metastasis of human pancreatic cancer induced by Edu-macrophages.

  19. Lysis of herpesvirus-infected cells by macrophages activated with free or liposome-encapsulated lymphokine produced by a murine T cell hybridoma.

    PubMed Central

    Koff, W C; Showalter, S D; Seniff, D A; Hampar, B

    1983-01-01

    Thioglycolate-induced mouse peritoneal macrophages were activated in vitro by the lymphokine designated macrophage-activating factor (MAF) produced by a murine T cell hybridoma to lyse herpes simplex virus type 2 (HSV-2)-infected murine target cells. Comparison of uninfected BALB/c 10E2 cells with HSV-2-infected 10E2 cells showed that macrophages activated with MAF selectively destroyed HSV-2-infected cells and left uninfected cells unharmed, as measured by an 18-h 51Cr-release assay. In contrast, macrophages treated with medium were as efficient as MAF-activated macrophages in suppressing the production of HSV-2 from virus-infected cells. These findings suggest that macrophages must attain an activated state to lyse HSV-2-infected cells. Finally, incubation of macrophages with liposomes containing MAF was shown to be a highly efficient method for activation of macrophages against HSV-2 infected cells. The ability to selectively destroy herpesvirus-infected cells in vitro by macrophages activated with liposome-encapsulated MAF suggests that the therapeutic efficacy of this treatment in vivo should be evaluated. PMID:6358037

  20. Peritoneal fluid analysis

    MedlinePlus

    ... at fluid that has built up in the space in the abdomen around the internal organs. This area is called the peritoneal space. ... sample of fluid is removed from the peritoneal space using a needle and syringe. Your health care ...

  1. Peritoneal fluid culture

    MedlinePlus

    Culture - peritoneal fluid ... sent to the laboratory for Gram stain and culture. The sample is checked to see if bacteria ... based on more than just the peritoneal fluid culture (which may be negative even if you have ...

  2. Macrophage recognition of toxic advanced glycosylation end products through the macrophage surface-receptor nucleolin.

    PubMed

    Miki, Yuichi; Dambara, Hikaru; Tachibana, Yoshihiro; Hirano, Kazuya; Konishi, Mio; Beppu, Masatoshi

    2014-01-01

    Advanced glycosylation end-products (AGEs) are non-enzymatically glycosylated proteins that play an important role in several diseases and aging processes, including angiopathy, renal failure, diabetic complications, and some neurodegenerative diseases. In particular, glyceraldehyde (GCA)- and glycolaldehyde (GOA)-derived AGEs are deemed toxic AGEs, due to their cytotoxicity. Recently, the shuttling-protein nucleolin has been shown to possess scavenger receptor-activity. Here, we investigated whether or not macrophages recognize toxic AGEs through nucleolin receptors expressed on their surface. Free amino acid groups and arginine residues found in bovine serum albumin (BSA) were time-dependently modified by incubation with GCA and GOA. In addition, average molecular size was increased by incubation with GCA and GOA. While GCA-treated BSA (GCA-BSA) and GOA-treated BSA (GOA-BSA) were recognized by thioglycollate-elicited mouse peritoneal macrophages in proportion to their respective aldehyde-modification ratios, aldehyde-untreated control-BSA was not. Surface plasmon-resonance analysis revealed that nucleolin strongly associated with GCA-BSA and GOA-BSA, but not with control-BSA. Further, pretreating macrophages with anti-nucleolin antibody, but not control-Immunoglobulin G, inhibited recognition of GCA-BSA and GOA-BSA by macrophages. Additionally, AGRO, a nucleolin-specific oligonucleotide aptamer, inhibited recognition of GCA-BSA and GOA-BSA. Moreover, nucleolin-transfected HEK293 cells recognized more GCA-BSA and GOA-BSA than control HEK cells did. Binding of nucleolin and GCA-BSA/GOA-BSA was also blocked by anti-nucleolin antibody at molecular level. These results indicate that nucleolin is a receptor that allows macrophages to recognize toxic AGEs.

  3. Intracellular multiplication of Paracoccidioides brasiliensis in macrophages: killing and restriction of multiplication by activated macrophages.

    PubMed Central

    Brummer, E; Hanson, L H; Restrepo, A; Stevens, D A

    1989-01-01

    The effect of coculturing yeast-form Paracoccidioides brasiliensis with murine cells was studied. Coculture of resident peritoneal or pulmonary macrophages with P. brasiliensis for 72 h dramatically enhanced fungal multiplication 19.3 +/- 2.4- and 4.7 +/- 0.8-fold, respectively, compared with cocultures with lymph node cells or complete tissue culture medium alone. Support of P. brasiliensis multiplication by resident peritoneal macrophages was macrophage dose dependent. Lysates of macrophages, supernatants from macrophage cultures, or McVeigh-Morton broth, like complete tissue culture medium, did not support multiplication of P. brasiliensis in 72-h cultures. Time course microscopic studies of cocultures in slide wells showed that macrophages ingested P. brasiliensis cells and that the ingested cells multiplied intracellularly. In sharp contrast to resident macrophages, lymphokine-activated peritoneal and pulmonary macrophages not only prevented multiplication but reduced inoculum CFU by 96 and 100%, respectively, in 72 h. Microscopic studies confirmed killing and digestion of P. brasiliensis ingested by activated macrophages in 48 h. These findings indicate that resident macrophages are permissive for intracellular multiplication of P. brasiliensis and that this could be a factor in pathogenicity. By contrast, activated macrophages are fungicidal for P. brasiliensis. Images PMID:2744848

  4. Effect of novel 1-alkyl-3-hydroxy-2-methylpyrid-4-one chelators on uptake and release of iron from macrophages

    SciTech Connect

    Brock, J.H.; Liceaga, J.; Arthur, H.M.; Kontoghiorghes, G.J. )

    1990-05-01

    The effect of several iron chelators on iron uptake and release by mouse peritoneal macrophages has been investigated. The 1,2-dimethyl (L1) and 1-ethyl-2-methyl (L1NEt) derivatives of 3-hydroxypyrid-4-one markedly enhanced iron mobilisation from macrophages pulsed with 59Fe-transferrin-antitransferrin immune complexes and were more effective than desferrioxamine, maltol, or mimosine. Release increased with increasing chelator concentration. None of the chelators donated significant amounts of iron to macrophages, and none showed any cytotoxic effect. The synthetic alpha-ketohydroxypyridine chelators may therefore be active in removing iron from the reticuloendothelial system as well as from hepatocytes, and indeed may be superior to desferrioxamine.

  5. Effect of novel 1-alkyl-3-hydroxy-2-methylpyrid-4-one chelators on uptake and release of iron from macrophages.

    PubMed

    Brock, J H; Licéaga, J; Arthur, H M; Kontoghiorghes, G J

    1990-05-01

    The effect of several iron chelators on iron uptake and release by mouse peritoneal macrophages has been investigated. The 1,2-dimethyl (L1) and 1-ethyl-2-methyl (L1NEt) derivatives of 3-hydroxypyrid-4-one markedly enhanced iron mobilisation from macrophages pulsed with 59Fe-transferrin-antitransferrin immune complexes and were more effective than desferrioxamine, maltol, or mimosine. Release increased with increasing chelator concentration. None of the chelators donated significant amounts of iron to macrophages, and none showed any cytotoxic effect. The synthetic alpha-ketohydroxypyridine chelators may therefore be active in removing iron from the reticuloendothelial system as well as from hepatocytes, and indeed may be superior to desferrioxamine.

  6. Glutamine Modulates Macrophage Lipotoxicity

    PubMed Central

    He, Li; Weber, Kassandra J.; Schilling, Joel D.

    2016-01-01

    Obesity and diabetes are associated with excessive inflammation and impaired wound healing. Increasing evidence suggests that macrophage dysfunction is responsible for these inflammatory defects. In the setting of excess nutrients, particularly dietary saturated fatty acids (SFAs), activated macrophages develop lysosome dysfunction, which triggers activation of the NLRP3 inflammasome and cell death. The molecular pathways that connect lipid stress to lysosome pathology are not well understood, but may represent a viable target for therapy. Glutamine uptake is increased in activated macrophages leading us to hypothesize that in the context of excess lipids glutamine metabolism could overwhelm the mitochondria and promote the accumulation of toxic metabolites. To investigate this question we assessed macrophage lipotoxicity in the absence of glutamine using LPS-activated peritoneal macrophages exposed to the SFA palmitate. We found that glutamine deficiency reduced lipid induced lysosome dysfunction, inflammasome activation, and cell death. Under glutamine deficient conditions mTOR activation was decreased and autophagy was enhanced; however, autophagy was dispensable for the rescue phenotype. Rather, glutamine deficiency prevented the suppressive effect of the SFA palmitate on mitochondrial respiration and this phenotype was associated with protection from macrophage cell death. Together, these findings reveal that crosstalk between activation-induced metabolic reprogramming and the nutrient microenvironment can dramatically alter macrophage responses to inflammatory stimuli. PMID:27077881

  7. Cinnamon polyphenol extract affects immune responses by regulating anti- and proinflammatory and glucose transporter gene expression in mouse macrophages

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tristetraprolin (TTP/TIS11/ZFP36) family proteins have anti-inflammatory effects by polyphenoldestabilizing pro-inflammatory mRNAs. TTP expression is induced by insulin and cinnamon extract (CPE) in adipocytes, by lipopolysaccharide (LPS) in macrophages, and by green tea extract in rats. This study ...

  8. Extracellularly occurring histone H1 mediates the binding of thyroglobulin to the cell surface of mouse macrophages.

    PubMed Central

    Brix, K; Summa, W; Lottspeich, F; Herzog, V

    1998-01-01

    Thyroglobulin is the major secretory protein of thyroid epithelial cells. Part of thyroglobulin reaches the circulation of vertebrates by transcytosis across the epithelial wall of thyroid follicles. Clearance of thyroglobulin from the circulation occurs within the liver via internalization of thyroglobulin by macrophages. Here we have analyzed the interaction of thyroglobulin with the cell surface of J774 macrophages with the aim to identify the possible thyroglobulin-binding sites on macrophages. Binding of thyroglobulin to J774 cells was saturated at approximately 100 nM thyroglobulin with a Kd of 50 nM, and it was competed by the ligand itself. Preincubation of J774 cells with thyroglobulin resulted in downregulation of thyroglobulin-binding sites, indicating internalization of thyroglobulin and its binding proteins. By affinity chromatography, two proteins from J774 cells were identified as thyroglobulin-binding proteins with an apparent molecular mass of approximately 33 kD. Unexpectedly, both proteins were identified as histone H1 by protein sequencing. The occurrence of histone H1 at the plasma membrane was further proven by biotinylation or immunolabeling of J774 cells. The in vitro interaction between histone H1 and thyroglobulin was analyzed by surface plasmon resonance that revealed a Kd at 46 nM. In situ, histone H1 was colocalized to FITC-Tg-containing endocytic compartments of Kupffer cells, i.e., liver macrophages. We conclude that histone H1 is detectable at the cell surface of macrophages where it serves as a thyroglobulin-binding protein and mediates thyroglobulin endocytosis. PMID:9664069

  9. Inhibition of eosinophil infiltration into the mouse peritoneal cavity by a traditional Chinese medicine, Bu-zhong-yi-qi-tang (Japanese name: Hochu-ekki-to).

    PubMed

    Kaneko, M; Kawakita, T; Nomoto, K

    1999-02-01

    Our previous study showed that the serum level of antigen-specific IgE antibodies in primary response was decreased by a traditional Chinese medicine, Bu-zhong-yi-qi-tang (Japanese name; Hochu-ekki-to, HOT). In this study, we examined inhibition of secondary IgE response and of eosinophil infiltration by HOT. BALB/c mice were intraperitoneally immunized with aluminum hydroxide adsorbed with DNP-KLH (DNP-KLH + alum) on day -14 and on day 0. In mice treated with HOT daily from day -14, the serum level of antigen-specific IgE antibodies after the secondary immunization was significantly decreased compared to that in mice not treated with HOT. Eosinophils increased in number after 6 and 24 hr, and CD4+ T cells in the peritoneal cavity increased in number 24 hr after the secondary immunization. HOT suppressed accumulation of eosinophils and CD4+ T cells in the peritoneal cavity. Furthermore, HOT suppressed the numbers of IL-4- and IL-5-producing cells 24 hr after the secondary immunization, but did not inhibit the number of IFN-gamma-producing cells. HOT also suppressed IL-5 mRNA expression. Furthermore, HOT also inhibited antigen-induced late-phase reaction (LPR) in the skin. These results suggested that HOT exhibited anti-allergic effects mainly by inhibiting Th2 cell responses.

  10. Studies on palauan medicinal herbs. II. Activation of mouse macrophages RAW 264.7 by Ongael, leaves of Phaleria cumingii (Meisn.) F. Vill. and its acylglucosylsterols.

    PubMed

    Matsuda, Hideaki; Tokunaga, Masashi; Iwahashi, Hiroyasu; Naruto, Shunsuke; Yagi, Hideki; Masuko, Takashi; Kubo, Michinori

    2005-05-01

    The extract of Ongael [leaves of Phaleria cumingii (MEISN.) F. VILL.], a Palauan medicinal herb, enhanced an in vitro phagocytic activity of mouse macrophages RAW 264.7 cells (RAW 264.7). Activity-guided fractionation of the Ongael extract by the in vitro phagocytosis assay using RAW 264.7 led to the isolation of a mixture of acylglucosylsterols (1) as an active constituent along with other inactive constituents, tetracosanol and mangiferin. On the basis of chemical modifications and spectral analyses, the compound 1 was deduced to be a mixture of the known 3-O-(6-O-acyl-beta-D-glucosyl)-beta-sitosterols, the acyl moiety being mainly palmitoyl (57%), oleoyl (12%) and alpha-linolenoyl (12%) with small amount of stearoyl (7%) and linoleoyl (4%).

  11. malvolio, the Drosophila homologue of mouse NRAMP-1 (Bcg), is expressed in macrophages and in the nervous system and is required for normal taste behaviour.

    PubMed Central

    Rodrigues, V; Cheah, P Y; Ray, K; Chia, W

    1995-01-01

    We report the sequence, expression pattern and mutant phenotype of malvolio (mvl), the Drosophila homologue of mammalian natural resistance-associated macrophage proteins (NRAMPs). In the mouse, this novel transporter is encoded by Bcg, a dominant gene that confers natural resistance to intracellular parasites. mvl was identified in a screen for mutants that affect taste behaviour. We show that loss-of-function as well as insertional mutants in mvl display defects in taste behaviour with no alterations in the physiology of the sensory neurons. Activity of the reporter enzyme beta-galactosidase, that reflects the expression pattern of mvl, is seen in mature sensory neurons and in macrophages. The conceptual translation of the mvl cDNA shows a striking similarity (65% identity) with human NRAMP with almost complete identity in a conserved consensus motif found in a number of ATP-coupled transporters. Based on its phenotype and expression pattern as well as its structural similarities to NRAMPs and a nitrate transporter in Aspergillus nidulans, we discuss a possible role for MVL in nitrite/nitrate transport and its implications. Images PMID:7621816

  12. Sulindac, a nonsteroidal anti-inflammatory drug, selectively inhibits interferon-{gamma}-induced expression of the chemokine CXCL9 gene in mouse macrophages

    SciTech Connect

    Sakaeda, Yoshiichi; Hiroi, Miki; Shimojima, Takahiro; Iguchi, Mayumi; Kanegae, Haruhide; Ohmori, Yoshihiro . E-mail: ohmori@dent.meikai.ac.jp

    2006-11-17

    Sulindac, a non-steroidal anti-inflammatory drug, has been shown to exert an anti-tumor effect on several types of cancer. To determine the effect of sulindac on intracellular signaling pathways in host immune cells such as macrophages, we investigated the effect of the drug on interferon gamma (IFN{gamma})-induced expression of signal transducer and activator of transcription 1 (STAT1) and other genes in mouse macrophage-like cell line RAW264.7 cells. Sulindac, but not aspirin or sodium salicylate, inhibited IFN{gamma}-induced expression of the CXC ligand 9 (CXCL9) mRNA, a chemokine for activated T cells, whereas the interferon-induced expression of CXCL10 or IFN regulatory factor-1 was not affected by sulindac. Luciferase reporter assay demonstrated that sulindac inhibited IFN{gamma}-induced promoter activity of the CXCL9 gene. Surprisingly, sulindac had no inhibitory effect on IFN{gamma}-induced STAT1 activation; however, constitutive nuclear factor {kappa}B activity was suppressed by the drug. These results indicate that sulindac selectively inhibited IFN{gamma}-inducible gene expression without inhibiting STAT1 activation.

  13. C-Phycocyanin inhibits 2-acetylaminofluorene-induced expression of MDR1 in mouse macrophage cells: ROS mediated pathway determined via combination of experimental and In silico analysis.

    PubMed

    Roy, Karnati R; Arunasree, Kalle M; Dhoot, Amit; Aparna, Rachamallu; Reddy, Gorla Venkateswara; Vali, Shireen; Reddanna, Pallu

    2007-03-15

    We studied the effects of C-Phycocyanin (C-PC), a biliprotein from Spirulina platensis on the 2-acetylaminofluorene (2-AAF)-induced expression of MDR1, encoded by the multidrug resistance (MDR1) gene, in mouse macrophage cell line (RAW 264.7). Our experimental and In silico studies revealed a significant inhibition of 2-AAF-induced expression of MDR1 protein in C-PC treated mouse macrophage cell line. MDR1 induction by 2-AAF was dependent on ROS (reactive oxygen species)-Akt (protein kinase B)-NF-kappaB (Nuclear factor kappa B) signaling pathway. Generation of ROS, phosphorylation of Akt and corresponding nuclear translocation of NF-kappaB, the events that play a major role in the induction of MDR1 expression, were decreased significantly in C-PC treated cells. NADPH oxidase inhibitor, DPI (Diphenyl iodide), and pharmacological inhibitor of Akt, Akt inhibitor IV, also showed a reduction in MDR1 expression, although not to the same extent as C-PC mediated inhibition of MDR1 expression. To further understand the mechanism, we created a computational model of the detailed ROS-Akt-NF-kappaB pathway. C-PC was modeled purely as a ROS scavenger and this representation matched the experimental trends accurately. Also the ROS levels determined through In silico investigation showed that C-PC was more effective in reduction of MDR1 expression than inhibitors of NADPH oxidase and Akt. Our experimental and In silico studies collectively suggest that 2-AAF induces MDR1 by ROS dependent pathway and C-PC is a potential negative regulator of MDR1 expression. This down regulation of MDR1 expression, induced by xenobiotics such as 2-AAF, suggests C-PC's usefulness in overcoming the drug resistance in cellular systems.

  14. Histone Deacetylase 7 Promotes Toll-like Receptor 4-dependent Proinflammatory Gene Expression in Macrophages*

    PubMed Central

    Shakespear, Melanie R.; Hohenhaus, Daniel M.; Kelly, Greg M.; Kamal, Nabilah A.; Gupta, Praveer; Labzin, Larisa I.; Schroder, Kate; Garceau, Valerie; Barbero, Sheila; Iyer, Abishek; Hume, David A.; Reid, Robert C.; Irvine, Katharine M.; Fairlie, David P.; Sweet, Matthew J.

    2013-01-01

    Broad-spectrum inhibitors of histone deacetylases (HDACs) constrain Toll-like receptor (TLR)-inducible production of key proinflammatory mediators. Here we investigated HDAC-dependent inflammatory responses in mouse macrophages. Of the classical Hdacs, Hdac7 was expressed at elevated levels in inflammatory macrophages (thioglycollate-elicited peritoneal macrophages) as compared with bone marrow-derived macrophages and the RAW264 cell line. Overexpression of a specific, alternatively spliced isoform of Hdac7 lacking the N-terminal 22 amino acids (Hdac7-u), but not the Refseq Hdac7 (Hdac7-s), promoted LPS-inducible expression of Hdac-dependent genes (Edn1, Il-12p40, and Il-6) in RAW264 cells. A novel class IIa-selective HDAC inhibitor reduced recombinant human HDAC7 enzyme activity as well as TLR-induced production of inflammatory mediators in thioglycollate-elicited peritoneal macrophages. Both LPS and Hdac7-u up-regulated the activity of the Edn1 promoter in an HDAC-dependent fashion in RAW264 cells. A hypoxia-inducible factor (HIF) 1 binding site in this promoter was required for HDAC-dependent TLR-inducible promoter activity and for Hdac7- and HIF-1α-mediated trans-activation. Coimmunoprecipitation assays showed that both Hdac7-u and Hdac7-s interacted with HIF-1α, whereas only Hdac7-s interacted with the transcriptional repressor CtBP1. Thus, Hdac7-u positively regulates HIF-1α-dependent TLR signaling in macrophages, whereas an interaction with CtBP1 likely prevents Hdac7-s from exerting this effect. Hdac7 may represent a potential inflammatory disease target. PMID:23853092

  15. The Impact of Serum Amyloid P-Component on Gene Expression in RAW264.7 Mouse Macrophages

    PubMed Central

    Xi, Dan; Zhao, Jinzhen; Liu, Jichen; Xiong, Haowei; He, Wenshuai; Hu, Jing; Lai, Wenyan; Guo, Zhigang

    2016-01-01

    Serum amyloid P-component (SAP) contributes to host defense and prevents fibrosis. Macrophages are the most abundant inflammatory cell type in atherosclerotic plaques. In the present study, using 3H-cholesterol-labeled counting radioactivity assay, we demonstrated that the apoAI-mediated cholesterol efflux in RAW264.7 macrophages was increased by SAP treatment in a time- and dose-dependent manner. We analyzed global gene expression changes upon SAP treatment using RNA sequencing. As a result, a total of 175 differentially expressed genes were identified, of which 134 genes were downregulated and 41 genes were upregulated in SAP treated cells compared to control cells. Quantitative RT-PCR analysis confirmed decreased expression of 5 genes and an increase in expression of 1 gene upon SAP treatment. Gene ontology analysis showed that genes involved in response to stimulus were significantly enriched in differentially expressed genes. Beyond protein-coding genes, we also identified 8 differentially expressed long noncoding RNAs. Our study may provide new insights into mechanisms underlying the functional role of SAP in macrophages. PMID:27239478

  16. MIF-driven activation of macrophages induces killing of intracellular Trypanosoma cruzi dependent on endogenous production of tumor necrosis factor, nitric oxide and reactive oxygen species.

    PubMed

    Cutrullis, Romina A; Petray, Patricia B; Corral, Ricardo S

    2017-02-01

    The proinflammatory cytokine macrophage migration inhibitory factor (MIF) is a key player in innate immunity. MIF has been considered critical for controlling acute infection by the protozoan Trypanosoma cruzi, but the underlying mechanisms are poorly understood. Our study aimed to analyze whether MIF could favor microbicidal activity of the macrophage, a site where T. cruzi grows and the initial effector cell against this parasite. Using murine macrophages infected in vitro, we examined the effect of MIF on their parasiticidal ability and attempted to identify inflammatory agents involved in MIF-induced protection. Our findings show that MIF is readily secreted from peritoneal macrophages upon T. cruzi infection. MIF activates both primary and J774 phagocytes boosting the endogenous production of tumor necrosis factor-alpha via mitogen-activated protein kinase p38 signaling, as well as the release of nitric oxide and reactive oxygen species, leading to enhanced pathogen elimination. MIF can also potentiate the effect of interferon-gamma on T. cruzi killing by J774 and mouse peritoneal macrophages, rendering these cells more competent in reducing intracellular parasite burden. The present results unveil a novel innate immune pathway that contributes to host defense and broaden our understanding of the regulation of inflammatory mediators implicated in early parasite containment that is decisive for resistance to T. cruzi infection.

  17. ROS sets the stage for macrophage differentiation.

    PubMed

    Covarrubias, Anthony; Byles, Vanessa; Horng, Tiffany

    2013-08-01

    While M1 macrophages are highly pro-inflammatory and microbicidal, M2 macrophages and the related tumor associated macrophages (TAMs) regulate tissue remodeling and angiogenesis and can display immunomodulatory activity. In July issue of Cell Research, Zhang et al. show that ROS production, critical for the activation and functions of M1 macrophages, is necessary for the differentiation of M2 macrophages and TAMs, and that antioxidant therapy blocks TAM differentiation and tumorigenesis in mouse models of cancer.

  18. Decrease of peritoneal inflammatory CD4(+), CD8(+), CD19(+) lymphocytes and apoptosis of eosinophils in a murine Taenia crassiceps infection.

    PubMed

    Zepeda, Nadia; Solano, Sandra; Copitin, Natalia; Fernández, Ana María; Hernández, Lilián; Tato, Patricia; Molinari, José L

    2010-10-01

    After an intraperitoneal infection of mice with Taenia crassiceps metacestodes, peritoneal inflammatory cells labeled with fluoresceinated MoAb anti-mouse were analyzed by flow cytometry. Apoptosis was studied by annexin A/PI, TUNEL assays, DNA laddering, caspase-3 activity, and electron microscopy. An important continuous decrease of CD4+, CD8+ and CD19+ lymphocytes, and an increase of eosinophils and macrophages throughout the observation time were found. Apoptosis of eosinophils was quantified during the observation period with a peak at 6 days post-infection (67.27%). In an additional experiment at 12 days post-infection using TUNEL staining, a high level of apoptosis of eosinophil (92.3%) and a significant decrease of CD4+, CD8+, and CD19+ lymphocytes were confirmed. Caspase-3 activity in peritoneal fluid, peritoneal cells' DNA fragmentation, and apoptosis of eosinophils and monocytes were found. The dramatic decrease of peritoneal inflammatory T and B cells and the high level of apoptosis of inflammatory eosinophils induced in mice by infection with T. crassiceps cysticerci may be important factors of the immunosuppression observed in cysticercosis.

  19. Resveratrol Protects Against Pathological Preterm Birth by Suppression of Macrophage-Mediated Inflammation.

    PubMed

    Furuya, Hitomi; Taguchi, Ayumi; Kawana, Kei; Yamashita, Aki; Inoue, Eri; Yoshida, Mitsuyo; Nakamura, Hiroe; Fujimoto, Asaha; Inoue, Tomoko; Sato, Masakazu; Nishida, Haruka; Nagasaka, Kazunori; Adachi, Katsuyuki; Hoya, Mari; Nagamatsu, Takeshi; Wada-Hiraike, Osamu; Yamashita, Takahiro; Osuga, Yutaka; Fujii, Tomoyuki

    2015-12-01

    Inflammatory cytokines play a major role in spontaneous preterm birth. Resveratrol has strong anti-inflammatory effects, but its effect on preterm birth in vivo is unknown. We investigated whether resveratrol protects against preterm birth in the lipopolysaccharide (LPS)-induced preterm mouse model. Twelve-day-old pregnant mice were fed 20 to 40 mg/kg resveratrol daily. On day 15, 10 μg of LPS was injected into uterine cervices. Resveratrol administration significantly decreased the rate of preterm birth. Resveratrol administration abolished LPS-induced elevation of tumor necrosis factor α (TNF-α) and interleukin (IL) 1β but not IL-6 levels. The TNF-α messenger RNA levels were decreased in the cervices of resveratrol-administered mice compared with controls. Resveratrol treatment suppressed the elevation in TNF-α and IL-1β levels in LPS-exposed peritoneal macrophages. Further resveratrol treatment eradicated the proinflammatory cytokine-mediated elevation in cyclooxygenase 2 (COX-2) in peritoneal macrophages. Resveratrol may protect against pathological preterm birth by suppression of elevated proinflammatory cytokines and consequent elevation of COX-2 in macrophages.

  20. Phagocytosis stimulates the release of a slow reacting substance in cultured macrophages.

    PubMed Central

    Bretz, U.; Dewald, B.; Payne, T.; Schnyder, J.

    1980-01-01

    1 A slow-reacting substance (SRS) was released from non-elicited mouse peritoneal macrophages during phagocytosis of zymosan particles, whereas no detectable SRS was produced by resting cells. 2 The macrophage SRS induced a delayed and slow contraction of the guinea-pig ileum but not of the chick rectum. 3 The myotonic activity was antagonized by low concentrations of FPL 55712 (sodium 7-[3-(4-acetyl-3-hydroxy-2-propylphenoxy)-2-hydroxypropoxy]-4-oxo-8-propyl-4H-1 -benzopyran-2 carboxylate) but was not affected by mepyramine or hyoscine, and was not associated with tachyphylaxis. 4 SRS release was increased by indomethacin and was abolished by the lipoxygenase and cyclooxygenase inhibitor, BW755C (3-amino-1-[m-(trifluoromethyl)-phenyl]-2-pyrazoline). 5 Addition of exogenous arachidonic acid or cysteine enhanced SRS production. PMID:6110461

  1. Cationic Antimicrobial Peptides and Biogenic Silver Nanoparticles Kill Mycobacteria without Eliciting DNA Damage and Cytotoxicity in Mouse Macrophages

    PubMed Central

    Mohanty, Soumitra; Jena, Prajna; Mehta, Ranjit; Pati, Rashmirekha; Banerjee, Birendranath; Patil, Satish

    2013-01-01

    With the emergence of multidrug-resistant mycobacterial strains, better therapeutic strategies are required for the successful treatment of the infection. Although antimicrobial peptides (AMPs) and silver nanoparticles (AgNPs) are becoming one of the popular antibacterial agents, their antimycobacterial potential is not fully evaluated. In this study, we synthesized biogenic-silver nanoparticles using bacterial, fungal, and plant biomasses and analyzed their antibacterial activities in combination with AMPs against mycobacteria. Mycobacterium smegmatis was found to be more susceptible to AgNPs compared to M. marinum. We found that NK-2 showed enhanced killing effect with NP-1 and NP-2 biogenic nanoparticles at a 0.5-ppm concentration, whereas LLKKK-18 showed antibacterial activity only with NP-2 at 0.5-ppm dose against M. smegmatis. In case of M. marinum NK-2 did not show any additive activity with NP-1 and NP-2 and LLKKK-18 alone completely inhibited the bacterial growth. Both NP-1 and NP-2 also showed increased killing of M. smegmatis in combination with the antituberculosis drug rifampin. The sizes and shapes of the AgNPs were determined by transmission electron microscopy and dynamic light scattering. AgNPs showed no cytotoxic or DNA damage effects on macrophages at the mycobactericidal dose, whereas treatment with higher doses of AgNPs caused toxicity and micronuclei formation in cytokinesis blocked cells. Macrophages actively endocytosed fluorescein isothiocyanate-labeled AgNPs resulting in nitric oxide independent intracellular killing of M. smegmatis. Apoptosis and cell cycle studies showed that treatment with higher dose of AgNPs arrested macrophages at the G1-phase. In summary, our data suggest the combined effect of biogenic-AgNPs and antimicrobial peptides as a promising antimycobacterial template. PMID:23689720

  2. Leptin promotes migration and invasion of breast cancer cells by stimulating IL-8 production in M2 macrophages

    PubMed Central

    Wang, Lin; Wang, Hong; Pang, Xueli; Li, Kuangfa; Dang, Weiqi; Tang, Hao; Wei, Lan; Su, Min; Tang, Cuiping; Chen, Tingmei

    2016-01-01

    This study aims to investigate the mechanisms underlying leptin-mediated crosstalk between tumor-associated macrophages (M2 macrophages) and breast cancer cells. THP1 human leukemic monocytes were induced to differentiate into M2 macrophages by PMA (100 nM) and IL-4 (20 ng/mL). Quantitative RT-PCR and Western blot revealed that leptin (100 nM) significantly increased the expression of leptin receptor (ObR) in the M2 macrophages (P < 0.01) and stimulated interleukin (IL)-8 expression in the M2 macrophages, mouse macrophage cells RAW264.7, and primary mouse peritoneal macrophages in a dose- and time-dependent manner. Leptin-induced IL-8 production was sensitive to the ERK inhibitor PD980590 (10 μmol/L), p38 MAPK inhibitor SB203580 (20 μmol/L), and anti-ObR neutralizing antibody (4 μg/mL). Leptin (100 ng/mL) substantially increased the phosphorylation of p38 and ERK1/2. Thus, leptin may induce IL-8 production in M2 macrophages by interacting with ObR to activate the p38 and ERK signaling pathways. Scratch and transwell chamber assay showed that both recombinant IL-8 and leptin-induced M2 macrophage-derived IL-8 promoted the migration and invasion of human breast cancer cells MCF7 and MDA-MB-231 (All P < 0.01). In a nude mice xenograft model of breast cancer (n = 5 per group), injection of leptin (0.1 μg/g) dramatically increased tumor volume and mass, reduced survival, exacerbated pulmonary metastasis, and elevated IL-8 and Ki67 expression in the tumor tissue (All P < 0.05) compared with PBS injection. Depletion of mouse macrophage by Clophosome®-clodronate liposome and injection of anti-mouse IL-8 neutralizing antibodies in the xenograft tumor significantly attenuated those leptin-mediated stimulations (All P < 0.05). These findings indicate that leptin may promote tumor growth and metastasis by stimulating IL-8 production in tumor-associated macrophage. PMID:27588409

  3. Linagliptin Ameliorates Methylglyoxal-Induced Peritoneal Fibrosis in Mice

    PubMed Central

    Nagai, Takuo; Doi, Shigehiro; Nakashima, Ayumu; Irifuku, Taisuke; Sasaki, Kensuke; Ueno, Toshinori; Masaki, Takao

    2016-01-01

    Recent studies have reported increases of methylglyoxal (MGO) in peritoneal dialysis patients, and that MGO-mediated inflammation plays an important role in the development of peritoneal fibrosis through production of transforming growth factor-β1 (TGF-β1). Linagliptin, a dipeptidyl peptidase-4 inhibitor, exerts anti-inflammatory effects independent of blood glucose levels. In this study, we examined whether linagliptin suppresses MGO-induced peritoneal fibrosis in mice. Male C57/BL6 mice were divided into three groups: control, MGO injection plus saline, and MGO injection plus linagliptin (n = 6 per group). Peritoneal fibrosis was induced by daily intraperitoneal injection of saline containing 40 mmol/L MGO for 21 days. Saline was administered intraperitoneally to the control group. Linagliptin (10 mg/kg) or saline were administrated by once-daily oral gavage from 3 weeks before starting MGO injections. Immunohistochemical staining revealed that linagliptin suppressed expression of α-smooth muscle actin and fibroblast-specific protein-1, deposition of type I and III collagen, and macrophage (F4/80) infiltration. Peritoneal equilibration testing showed improved peritoneal functions in mice treated with linagliptin. Peritoneal injection of MGO increased plasma levels of glucagon-like peptide-1 (GLP-1) in mice, and a further increase was observed in linagliptin-treated mice. Although MGO increased plasma glucose levels, linagliptin did not decrease plasma glucose levels. Moreover, linagliptin reduced the TGF-β1 concentration in the peritoneal fluid of MGO-treated mice. GLP-1 receptor (GLP-1R) was expressed in monocytes/macrophages and linagliptin suppressed GLP-1R expression in MGO-injected mice. These results suggest that oral administration of linagliptin ameliorates MGO-induced peritoneal fibrosis. PMID:27513960

  4. Burkholderia pseudomallei-induced expression of a negative regulator, sterile-alpha and Armadillo motif-containing protein, in mouse macrophages: a possible mechanism for suppression of the MyD88-independent pathway.

    PubMed

    Pudla, M; Limposuwan, K; Utaisincharoen, P

    2011-07-01

    Burkholderia pseudomallei, a causative agent of melioidosis, is a Gram-negative facultative intracellular bacterium that can survive and multiply in macrophages. Previously, we demonstrated that B. pseudomallei failed to activate gene expression downstream of the MyD88-independent pathway, particularly the expression of beta interferon (IFN-β) and inducible nitric oxide synthase (iNOS), leading to the inability of macrophages to kill this bacterium. In the present report, we extended our study to show that B. pseudomallei was able to activate sterile-α and Armadillo motif (SARM)-containing protein, a known negative regulator of the MyD88-independent pathway. Both live B. pseudomallei and heat-killed B. pseudomallei were able to upregulate SARM expression in a time-dependent manner in mouse macrophage cell line RAW 264.7. The expression of SARM required bacterial internalization, as it could be inhibited by cytochalasin D. In addition, the intracellular survival of B. pseudomallei was suppressed in SARM-deficient macrophages. Increased expression of IFN-β and iNOS and degradation of IκBα correlated with enhanced macrophage killing capability. These results demonstrated that B. pseudomallei modulated macrophage defense mechanisms by upregulating SARM, thus leading to the suppression of IFN-β and iNOS needed for bacterial elimination.

  5. Effect of methacrylic acid beads on the sonic hedgehog signaling pathway and macrophage polarization in a subcutaneous injection mouse model.

    PubMed

    Lisovsky, Alexandra; Zhang, David K Y; Sefton, Michael V

    2016-08-01

    Poly(methacrylic acid-co-methyl methacrylate) (MAA) beads promote a vascular regenerative response when used in diabetic wound healing. Previous studies reported that MAA beads modulated the expression of sonic hedgehog (Shh) and inflammation related genes in diabetic wounds. The aim of this work was to follow up on these observations in a subcutaneous injection model to study the host response in the absence of the confounding factors of diabetic wound healing. In this model, MAA beads improved vascularization in healthy mice of both sexes compared to control poly(methyl methacrylate) (MM) beads, with a stronger effect seen in males than females. MAA-induced vessels were perfusable, as evidenced from the CLARITY-processed images. In Shh-Cre-eGFP/Ptch1-LacZ non-diabetic transgenic mice, the increased vessel formation was accompanied by a higher density of cells expressing GFP (Shh) and β-Gal (patched 1, Ptch1) suggesting MAA enhanced the activation of the Shh pathway. Ptch1 is the Shh receptor and a target of the pathway. MAA beads also modulated the inflammatory cell infiltrate in CD1 mice: more neutrophils and more macrophages were noted with MAA relative to MM beads at days 1 and 7, respectively. In addition, MAA beads biased macrophages towards a MHCII-CD206+ ("M2") polarization state. This study suggests that the Shh pathway and an altered inflammatory response are two elements of the complex mechanism whereby MAA-based biomaterials effect vascular regeneration.

  6. IL4/PGE{sub 2} induction of an enlarged early endosomal compartment in mouse macrophages is Rab5-dependent

    SciTech Connect

    Wainszelbaum, Marisa J.; Proctor, Brandon M.; Pontow, Suzanne E.; Stahl, Philip D. . E-mail: pstahl@cellbiology.wustl.edu; Barbieri, M. Alejandro

    2006-07-15

    The endosomal compartment and the plasma membrane form a complex partnership that controls signal transduction and trafficking of different molecules. The specificity and functionality of the early endocytic pathway are regulated by a growing number of Rab GTPases, particularly Rab5. In this study, we demonstrate that IL4 (a Th-2 cytokine) and prostaglandin E{sub 2} (PGE{sub 2}) synergistically induce Rab5 and several Rab effector proteins, including Rin1 and EEA1, and promote the formation of an enlarged early endocytic (EEE) compartment. Endosome enlargement is linked to a substantial induction of the mannose receptor (MR), a well-characterized macrophage endocytic receptor. Both MR levels and MR-mediated endocytosis are enhanced approximately 7-fold. Fluid-phase endocytosis is also elevated in treated cells. Light microscopy and fractionation studies reveal that MR colocalizes predominantly with Rab5a and partially with Rab11, an endosomal recycling pathway marker. Using retroviral expression of Rab5a:S34N, a dominant negative mutant, and siRNA Rab5a silencing, we demonstrate that Rab5a is essential for the large endosome phenotype and for localization of MR in these structures. We speculate that the EEE is maintained by activated Rab5, and that the EEE phenotype is part of some macrophage developmental program such as cell fusion, a characteristic of IL4-stimulated cells.

  7. [Characteristics of postoperative peritonitis].

    PubMed

    Lock, J F; Eckmann, C; Germer, C-T

    2016-01-01

    Postoperative peritonitis is still a life-threatening complication after abdominal surgery and approximately 10,000 patients annually develop postoperative peritonitis in Germany. Early recognition and diagnosis before the onset of sepsis has remained a clinical challenge as no single specific screening test is available. The aim of therapy is a rapid and effective control of the source of infection and antimicrobial therapy. After diagnosis of diffuse postoperative peritonitis surgical revision is usually inevitable after intestinal interventions. Peritonitis after liver, biliary or pancreatic surgery is managed as a rule by means of differentiated therapy approaches depending on the severity.

  8. Peritoneal Fluid Analysis

    MedlinePlus

    ... tests for viruses, mycobacteria ( AFB testing in identifying tuberculosis ), and parasites Adenosine deaminase – rarely ordered for detecting tuberculosis in peritoneal fluid ^ Back to top When is ...

  9. IL-21 modulates release of proinflammatory cytokines in LPS-stimulated macrophages through distinct signaling pathways.

    PubMed

    Li, Su-nan; Wang, Wei; Fu, Shou-peng; Wang, Jian-fa; Liu, Hong-mei; Xie, Shan-shan; Liu, Bing-run; Li, Yang; Lv, Qing-kang; Li, Zhi-qiang; Xue, Wen-jing; Huang, Bing-xu; Chen, Wei; Liu, Ju-xiong

    2013-01-01

    The aim of this study was to investigate the anti-inflammatory effect of IL-21 on LPS-induced mouse peritoneal macrophages. The results showed that IL-21 significantly inhibited LPS-induced mRNA expression of IL-1β, TNF-α, and IL-6 in macrophages, but not of IFN-γ, IL-10, CCL5, or CXCL2. ELISA analysis showed that IL-21 also suppressed LPS-induced production of TNF-α and IL-6 in culture supernatants. Western blot analysis showed that IL-21 clearly inhibited ERK and IκBα phosphorylation and NF-κB translocation in LPS-stimulated macrophages, but it increased STAT3 phosphorylation. Flow cytometric and Western blot analysis showed that IL-21 decreased M1 macrophages surface markers expression of CD86, iNOS, and TLR4 in LPS-stimulated cells. All results suggested that IL-21 decreases IL-6 and TNF-α production via inhibiting the phosphorylation of ERK and translocation of NF-κB and promotes a shift from the M1 to M2 macrophage phenotype by decreasing the expression of CD86, iNOS, and TLR4 and by increasing STAT3 phosphorylation in LPS-stimulated cells.

  10. Glycocalyx-Mimicking Nanoparticles for Stimulation and Polarization of Macrophages via Specific Interactions.

    PubMed

    Su, Lu; Zhang, Weiyi; Wu, Xiulong; Zhang, Yufei; Chen, Xi; Liu, Guangwei; Chen, Guosong; Jiang, Ming

    2015-09-02

    Malignant tumors develop multiple mechanisms to impair and escape from antitumor immune responses, of which tumor-associated macrophages that often show immunosuppressive phenotype (M2), play a critical role in tumor-induced immunosuppression. Therefore, strategies that can reverse M2 phenotype and even enhance immune-stimulation function of macrophage would benefit tumor immunotherapy. In this paper, self-assembled glyco-nanoparticles (glyco-NPs), as artificial glycocalyx, have been found to be able to successfully induce the polarization of mouse primary peritoneal macrophages from M2 to inflammatory type (M1). The polarization change was evidenced by the decreased expression of cell surface signaling molecules CD206 and CD23, and the increased expression of CD86. Meanwhile, secretion of cytokines supported this polarization change as well. More importantly, this phenomenon is observed not only in vitro, but also in vivo. As far as we known, this is the first report about macrophage polarization being induced by synthetic nanomaterials. Moreover, preparation, characterization of these glyco-NPs and their interaction with the macrophages are also demonstrated.

  11. Killing of Aspergillus spores depends on the anatomical source of the macrophage.

    PubMed Central

    Schaffner, A; Douglas, H; Braude, A I; Davis, C E

    1983-01-01

    To resolve the controversy over the capacity of macrophages to kill or inhibit germination of Aspergillus spores, we compared this function in peritoneal and alveolar macrophages. Alveolar macrophages from rabbits killed 82 to 90% and completely digested 72 to 82% of spores of Aspergillus fumigatus in 30 h. In contrast, peritoneal macrophages could not even inhibit the germination of ingested spores; more than 85% transformed into mycelia within 24 h. Killing by alveolar macrophages was delayed for 3 to 6 h after phagocytosis and was independent of oxidative killing mechanisms and immune activation. The ability of alveolar macrophages to kill Aspergillus spores without modulation by T lymphocytes or the generation of oxygen intermediates points out that concepts built on studies of peritoneal macrophages may be misleading and underscores the importance of studying the role of macrophages in immunity with cells from the appropriate anatomical site. Images PMID:6642661

  12. Immunolocalization of acyl-coenzyme A:cholesterol O-acyltransferase in macrophages.

    PubMed

    Khelef, N; Buton, X; Beatini, N; Wang, H; Meiner, V; Chang, T Y; Farese, R V; Maxfield, F R; Tabas, I

    1998-05-01

    Macrophages in atherosclerotic lesions accumulate large amounts of cholesteryl-fatty acyl esters ("foam cell" formation) through the intracellular esterification of cholesterol by acyl-coenzyme A:cholesterol O-acyltransferase (ACAT). In this study, we sought to determine the subcellular localization of ACAT in macrophages. Using mouse peritoneal macrophages and immunofluorescence microscopy, we found that a major portion of ACAT was in a dense reticular cytoplasmic network and in the nuclear membrane that colocalized with the luminal endoplasmic reticulum marker protein-disulfide isomerase (PDI) and that was in a similar distribution as the membrane-bound endoplasmic reticulum marker ribophorin. Remarkably, another portion of the macrophage ACAT pattern did not overlap with PDI or ribophorin, but was found in as yet unidentified cytoplasmic structures that were juxtaposed to the nucleus. Compartments containing labeled beta-very low density lipoprotein, an atherogenic lipoprotein, did not overlap with the ACAT label, but rather were embedded in the dense reticular network of ACAT. Furthermore, cell-surface biotinylation experiments revealed that freshly harvested, non-attached macrophages, but not those attached to tissue culture dishes, contained approximately 10-15% of ACAT on the cell surface. In summary, ACAT was found in several sites in macrophages: a cytoplasmic reticular/nuclear membrane site that overlaps with PDI and ribophorin and has the characteristics of the endoplasmic reticulum, a perinuclear cytoplasmic site that does not overlap with PDI or ribophorin and may be another cytoplasmic structure or possibly a unique subcompartment of the endoplasmic reticulum, and a cell-surface site in non-attached macrophages. Understanding possible physiological differences of ACAT in these locations may reveal an important component of ACAT regulation and macrophage foam cell formation.

  13. Temporal Characterization of Microglia/Macrophage Phenotypes in a Mouse Model of Neonatal Hypoxic-Ischemic Brain Injury

    PubMed Central

    Hellström Erkenstam, Nina; Smith, Peter L. P.; Fleiss, Bobbi; Nair, Syam; Svedin, Pernilla; Wang, Wei; Boström, Martina; Gressens, Pierre; Hagberg, Henrik; Brown, Kelly L.; Sävman, Karin; Mallard, Carina

    2016-01-01

    Immune cells display a high degree of phenotypic plasticity, which may facilitate their participation in both the progression and resolution of injury-induced inflammation. The purpose of this study was to investigate the temporal expression of genes associated with classical and alternative polarization phenotypes described for macrophages and to identify related cell populations in the brain following neonatal hypoxia-ischemia (HI). HI was induced in 9-day old mice and brain tissue was collected up to 7 days post-insult to investigate expression of genes associated with macrophage activation. Using cell-markers, CD86 (classic activation) and CD206 (alternative activation), we assessed temporal changes of CD11b+ cell populations in the brain and studied the protein expression of the immunomodulatory factor galectin-3 in these cells. HI induced a rapid regulation (6 h) of genes associated with both classical and alternative polarization phenotypes in the injured hemisphere. FACS analysis showed a marked increase in the number of CD11b+CD86+ cells at 24 h after HI (+3667%), which was coupled with a relative suppression of CD11b+CD206+ cells and cells that did not express neither CD86 nor CD206. The CD11b+CD206+ population was mixed with some cells also expressing CD86. Confocal microscopy confirmed that a subset of cells expressed both CD86 and CD206, particularly in injured gray and white matter. Protein concentration of galectin-3 was markedly increased mainly in the cell population lacking CD86 or CD206 in the injured hemisphere. These cells were predominantly resident microglia as very few galectin-3 positive cells co-localized with infiltrating myeloid cells in Lys-EGFP-ki mice after HI. In summary, HI was characterized by an early mixed gene response, but with a large expansion of mainly the CD86 positive population during the first day. However, the injured hemisphere also contained a subset of cells expressing both CD86 and CD206 and a large population that

  14. Characterization of oak and birch dust-induced expression of cytokines and chemokines in mouse macrophage RAW 264.7 cells.

    PubMed

    Määttä, Juha; Majuri, Marja-Leena; Luukkonen, Ritva; Lauerma, Antti; Husgafvel-Pursiainen, Kirsti; Alenius, Harri; Savolainen, Kai

    2005-11-05

    Occupational exposure to wood dust is related to several respiratory diseases, such as allergic rhinitis, chronic bronchitis, and asthma. However, virtually nothing is known about molecular mechanisms behind wood dust-induced pulmonary inflammation. To elucidate the effects of wood dust exposure on cytokine and chemokine expression in murine macrophage cell line cells, mouse RAW 264.7 cells were exposed to two selected hardwood dusts, oak and birch. TiO2 and LPS were used as controls. Expression patterns of several cytokines, chemokines, and chemokine receptors were assessed by real-time quantitative PCR system and by ELISA. Exposure to birch dust caused a major increase in TNF-alpha and IL-6 protein levels whereas a weaker induction of TNF-alpha protein was found after exposure to oak dust. Inorganic TiO2 dust did not induce significant cytokine expression. With respect to the chemokines, a dose-dependent, about 10-fold induction of CCL2 mRNA and protein was found after exposure to birch dust. Oak dust induced weakly CCL2 protein. Similarly, birch dust induced a strong expression of CCL3, CCL4, and CXCL2/3 mRNA whereas only moderate levels of these chemokine mRNAs were detected after oak dust exposure. In contrast, expression of CCL24 mRNA was inhibited by more than 40-fold by both oak and birch dusts. TiO2 dust induced about five-fold expression of CCL3 and CCL4 mRNA but did not affect significantly other chemokines. These results suggest that exposure to birch or oak dusts may influence the development of the inflammatory process in the airways by modulating the expression of macrophage-derived cytokines and chemokines.

  15. Efficacy of liposomal gentamicin against Rhodococcus equi in a mouse infection model and colocalization with R. equi in equine alveolar macrophages.

    PubMed

    Burton, Alexandra J; Giguère, Steeve; Berghaus, Londa J; Hondalus, Mary K; Arnold, Robert D

    2015-04-17

    Rhodococcus equi, a facultative intracellular pathogen and an important cause of pneumonia in foals, is highly susceptible to killing by gentamicin in vitro. However, gentamicin is not effective in vivo, due to its poor cellular penetration. Encapsulation of drugs in liposomes enhances cellular uptake. The objectives of this study were to compare liposomal gentamicin and free gentamicin with respect to their uptake by equine macrophages and intracellular colocalization with R. equi and to compare the efficacies of liposomal gentamicin, free gentamicin and clarithromycin with rifampin for the reduction of R. equi CFU in a mouse model of infection. After ex vivo exposure, a significantly higher mean (±SD) percentage of equine alveolar macrophages contained liposomal gentamicin (91.9±7.6%) as opposed to free gentamicin (16.8±12.5%). Intracellular colocalization of drug and R. equi, as assessed by confocal microscopy, occurred in a significantly higher proportion of cells exposed to liposomal gentamicin (81.2±17.8%) compared to those exposed to free gentamicin (10.4±8.7%). The number of R. equi CFU in the spleen was significantly lower in mice treated with liposomal gentamicin compared to that of mice treated with free gentamicin or to untreated control mice. Treatment with liposomal gentamicin also resulted in a significantly greater reduction in the number of R. equi CFU in the liver compared to treatment with clarithromycin in combination with rifampin. These results support further investigation of liposomal gentamicin as a new treatment for infections caused by R. equi.

  16. Collagenase Production by Endotoxin-Activated Macrophages

    PubMed Central

    Wahl, Larry M.; Wahl, Sharon M.; Mergenhagen, Stephan E.; Martin, George R.

    1974-01-01

    Peritoneal exudate macrophages, when exposed to bacterial lipopolysaccharide in culture, were found to produce collagenase (EC 3.4.24.3). This enzyme was not detected in extracts of the macrophages or in media from nonstimulated macrophage cultures. Lipidcontaining fractions of the lipopolysaccharide, including a glycolipid from the rough mutant of Salmonella minnesota (R595) and lipid A, were potent stimulators of collagenase production. The lipid-free polysaccharide fraction had no effect. Cycloheximide prevented the production of collagenase by endotoxin-treated macrophages, suggesting that it was newly synthesized. Images PMID:4372628

  17. In Vitro and In Vivo Differences in Murine Third Complement Component (C3) Opsonization and Macrophage/Leukocyte Responses to Antibody-Functionalized Iron Oxide Nanoworms

    PubMed Central

    Wang, Guankui; Griffin, James I.; Inturi, Swetha; Brenneman, Barbara; Banda, Nirmal K.; Holers, V. Michael; Moghimi, Seyed Moein; Simberg, Dmitri

    2017-01-01

    Balancing surface functionalization and low immune recognition of nanomedicines is a major challenge. Opsonization with the third component of the complement protein (C3) plays a major role in immune cell recognition of nanomedicines. We used dextran-coated superparamagnetic iron oxide nanoworms (SPIO NWs) to study the effect of surface functionalization on C3 opsonization in mouse serum and subsequent macrophage/leukocyte recognition in vitro as well as on intravenous injection into mice. Previously, we found that in mouse serum, SPIO NWs became opsonized with C3 via complement lectin pathway. Crosslinking the dextran shell with epichlorohydrin significantly decreased C3 opsonization and uptake by mouse peritoneal macrophages. Crosslinked nanoworms (NWs) further functionalized with polyethylene glycol (PEG) or with PEG-antibody (Ab) (~160 IgG molecules/particle) did not show an increase in C3 opsonization and peritoneal macrophage uptake in vitro. Following tail vein injection into mice, plain crosslinked NWs and PEGylated crosslinked NWs showed very low C3 opsonization and mouse leukocyte uptake. However, Ab-decorated crosslinked NWs showed significant C3 opsonization and high level of complement-dependent uptake by leukocytes in mice. Decreasing the number of conjugated Abs to 46 IgG molecules/particle significantly reduced C3 opsonization and leukocyte uptake. Using fresh mouse lepirudin plasma rather than serum showed better correlation with C3 opsonization in vivo. The reason for this difference could be related to the known instability of complement classical pathway in mouse sera. Our data illustrate that fine-tuning in nanoparticle surface functionalization with Abs is required to avoid excessive complement activation and complement-mediated immune uptake in mice, and raise issues with in vitro immunological assays of nanomedicines intended to mimic in vivo conditions. PMID:28239384

  18. Induction of granulocyte-macrophage colony-stimulating activity in mouse skin by inflammatory agents and tumor promoters.

    PubMed Central

    Koury, M J; Balmain, A; Pragnell, I B

    1983-01-01

    The granulocyte-macrophage colony stimulating activity (GM-CSA) was assayed in acetic acid extracts of skin from mice which were topically treated with inflammatory and tumor-promoting diterpene esters. Extremely large increases in GM-CSA were found in skin treated with the strongly tumor-promoting 12-O-tetradecanoyl-phorbol-13-acetate (TPA) and the weakly promoting mezerein, while only a very slight increase was found with the non-promoting 4-O-methyl-TPA (4-OMe-TPA). Untreated areas of skin had very little GM-CSA. In the treated skins, the elevated GM-CSA was noted within a few hours and lasted for greater than 24 h after treatment. Although the levels of GM-CSA induced in the skin correspond to the degree of inflammation elicited by the respective treatments, the leukocytes in the acute inflammatory infiltrate did not appear to be responsible for the increased GM-CSA. Both epidermis and dermis had increased GM-CSA following TPA treatment of skin. Treatment of fibroblast and epithelial continuous cell lines with diterpene esters resulted in a similar pattern of GM-CSA induction in their supernatant media as that noted in the skin extracts. A large majority of the colonies stimulated by the diterpene-ester induced GM-CSA were composed of only macrophages. The results demonstrate that the topical administration of an inflammatory diterpene ester results in a rapid, marked yet local GM-CSA induction in the skin of treated mice. This indirect action in which diterpene esters induce in certain cells a growth regulatory factor for other types of cells may be an important element in carcinogenesis. Images Fig. 2. PMID:6605850

  19. Intracellular growth inhibition of Histoplasma capsulatum induced in murine macrophages by recombinant gamma interferon is not due to a limitation of the supply of methionine or cysteine to the fungus.

    PubMed Central

    Wu-Hsieh, B A; Howard, D H

    1992-01-01

    Recombinant murine gamma interferon (rMuIFN-gamma) stimulates mouse peritoneal macrophages to inhibit the intracellular growth of the zoopathogenic fungus Histoplasma capsulatum. In some systems, the inhibition of growth of an intracellular parasite by rIFN-gamma has been related to nutritional constraints induced in the host cells by the lymphokine. Such an explanation might apply to H. capsulatum because the fungus is a functional methionine-cysteine (Met-Cys) auxotroph at 37 degrees C; its sulfite reductase is repressed at that temperature. For this reason, we set about to examine whether or not the antihistoplasma state induced in rMuIFN-gamma is due to a restriction in the availability of Met-Cys. Omission of Met-Cys from the medium in which macrophages were cultivated prevented H. capsulatum from growing within them. Addition of Met or Cys to the macrophage cultures did not antagonize the inhibitory effect induced in the cells by rMuIFN-gamma. Thus, there was no evidence from our work that rMuIFN-gamma evokes the antihistoplasma effect in mouse peritoneal macrophages by limiting the supply of Met-Cys to the fungus. PMID:1730506

  20. A biocompatibility study on peritoneal dialysis solution bags for CAPD.

    PubMed

    Carozzi, S; Nasini, M G; Schelotto, C; Caviglia, P M; Santoni, O; Pietrucci, A

    1993-01-01

    Numerous factors related to the composition of peritoneal dialysis solutions (PDS) contribute to the pathogenesis of peritoneal fibrosis during continuous ambulatory peritoneal dialysis (CAPD). They include high osmolarity, low pH, and the presence of lactate, which may be responsible for stimulating the proliferation of peritoneal fibroblasts (PF) and for the toxicity on the peritoneal mesothelial cells (PMC). Similar effects could be hypothesized for the plasticizers released from the PDS bags, usually made of polyvinyl chloride (PVC), such as the acid esters of phthalic acid, particularly bis-(2-ethylhexyl) phthalate (BEHP). Recently, however, new BEHP-free bags (Clear-Flex, Bieffe, Italy) made of three layers (polyethylene, nylon, and polypropylene) have been introduced. The aim of this work is to evaluate in vitro the effects of samples of PDS contained in PVC bags (Bieffe) and in Clear-Flex bags on the proliferative capacity of peritoneal fibroblasts and peritoneal mesothelial cells, and the release of interferon gamma (IFN gamma), interleukin-1 (IL-1) and prostaglandin E2 (PGE2) from peritoneal T lymphocytes (PTLs) and macrophages (PM phi s). Results have shown that in the presence of PDS samples contained in PVC bags, the proliferative capacity of peritoneal fibroblasts was higher than in Clear-Flexbags. There was also an increased release of IFN-gamma and IL-1 from PTLs and PM phi s (cytokines that stimulate the collagen synthesis) and a decreased release of PGE2 (cytokines which inhibit the collagen synthesis). An inhibiting action on peritoneal mesothelial cells was also seen.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Effect of enterohaemorrhagic Escherichia coli O157:H7-specific enterohaemolysin on interleukin-1β production differs between human and mouse macrophages due to the different sensitivity of NLRP3 activation.

    PubMed

    Cheng, Yu-Li; Song, Li-Qiong; Huang, Yuan-Ming; Xiong, Yan-Wen; Zhang, Xiao-Ai; Sun, Hui; Zhu, Xin-Ping; Meng, Guang-Xun; Xu, Jian-Guo; Ren, Zhi-Hong

    2015-06-01

    Enterohaemorrhagic Escherichia coli (EHEC) O157:H7 infection in humans can cause acute haemorrhagic colitis and severe haemolytic uraemic syndrome. The role of enterohaemolysin (Ehx) in the pathogenesis of O157:H7-mediated disease in humans remains undefined. Recent studies have revealed the importance of the inflammatory response in O157:H7 pathogenesis in humans. We previously reported that Ehx markedly induced interleukin-1β (IL-1β) production in human macrophages. Here, we investigated the disparity in Ehx-induced IL-1β production between human and mouse macrophages and explored the underlying mechanism regarding the activation of NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasomes. In contrast to the effects on human differentiated THP-1 cells and peripheral blood mononuclear cells, Ehx exerted no effect on IL-1β production in mouse macrophages and splenocytes because of a disparity in pro-IL-1β cleavage into mature IL-1β upon caspase-1 activation. Additionally, Ehx significantly contributed to O157:H7-induced ATP release from THP-1 cells, which was not detected in mouse macrophages. Confocal microscopy demonstrated that Ehx was a key inducer of cathepsin B release in THP-1 cells but not in mouse IC-21 cells upon O157:H7 challenge. Inhibitor experiments indicated that O157:H7-induced IL-1β production was largely dependent upon caspase-1 activation and partially dependent upon ATP signalling and cathepsin B release, which were both involved in NLRP3 activation. Moreover, inhibition of K(+) efflux drastically diminished O157:H7-induced IL-1β production and cytotoxicity. The findings in this study may shed light on whether and how the Ehx contributes to the development of haemolytic uraemic syndrome in human O157:H7 infection.

  2. The time for surgery of peritonitis associated with peritoneal dialysis.

    PubMed

    Mihalache, O; Bugă, C; Doran, H; Catrina, E; Bobircă, F; Andreescu, A; Mustățea, P; Pătrașcu, T

    2016-01-01

    Peritonitis is the main complication of peritoneal dialysis (PD) and also an important factor for raising the cost of the method to the level of hemodialysis. Associated with PD, peritonitis is responsible for the increase of morbidity and mortality of the procedure and, at the same time, the main cause of the technique failure. Severe and prolonged peritonitis or repeated episodes of peritonitis lead to ultrafiltration failure. Peritonitis treatment should aim for a rapid remission of inflammation in order to preserve the peritoneal membrane functional integrity. The treatment of PD peritonitis consists mainly of antibiotic therapy, surgical intervention not being usually required. However, it is of outmost importance to differentiate the so-called "catheter related" peritonitis from secondary peritonitis due to visceral lesions, in which the surgical treatment comes first. The confusion between secondary and "catheter related" peritonitis may lead to serious errors in choosing the correct treatment, endangering the patient's life. The differential diagnosis between a refractory or secondary peritonitis in a peritoneal dialyzed patient may be very difficult. In front of a refractory PD peritonitis, surgical exploration must not be delayed. Also we have to keep in mind that the aim of peritonitis treatment is the saving of the peritoneal membrane and not the catheter.

  3. Transcriptional Regulation and Macrophage Differentiation.

    PubMed

    Hume, David A; Summers, Kim M; Rehli, Michael

    2016-06-01

    Monocytes and macrophages are professional phagocytes that occupy specific niches in every tissue of the body. Their survival, proliferation, and differentiation are controlled by signals from the macrophage colony-stimulating factor receptor (CSF-1R) and its two ligands, CSF-1 and interleukin-34. In this review, we address the developmental and transcriptional relationships between hematopoietic progenitor cells, blood monocytes, and tissue macrophages as well as the distinctions from dendritic cells. A huge repertoire of receptors allows monocytes, tissue-resident macrophages, or pathology-associated macrophages to adapt to specific microenvironments. These processes create a broad spectrum of macrophages with different functions and individual effector capacities. The production of large transcriptomic data sets in mouse, human, and other species provides new insights into the mechanisms that underlie macrophage functional plasticity.

  4. Interleukin-33 drives activation of alveolar macrophages and airway inflammation in a mouse model of acute exacerbation of chronic asthma.

    PubMed

    Bunting, Melissa M; Shadie, Alexander M; Flesher, Rylie P; Nikiforova, Valentina; Garthwaite, Linda; Tedla, Nicodemus; Herbert, Cristan; Kumar, Rakesh K

    2013-01-01

    We investigated the role of interleukin-33 (IL-33) in airway inflammation in an experimental model of an acute exacerbation of chronic asthma, which reproduces many of the features of the human disease. Systemically sensitized female BALB/c mice were challenged with a low mass concentration of aerosolized ovalbumin for 4 weeks to induce chronic asthmatic inflammation and then received a single moderate-level challenge to trigger acute airway inflammation simulating an asthmatic exacerbation. The inflammatory response and expression of cytokines and activation markers by alveolar macrophages (AM) were assessed, as was the effect of pretreatment with a neutralizing antibody to IL-33. Compared to chronically challenged mice, AM from an acute exacerbation exhibited significantly enhanced expression of markers of alternative activation, together with enhanced expression of proinflammatory cytokines and of cell surface proteins associated with antigen presentation. In parallel, there was markedly increased expression of both mRNA and immunoreactivity for IL-33 in the airways. Neutralization of IL-33 significantly decreased both airway inflammation and the expression of proinflammatory cytokines by AM. Collectively, these data indicate that in this model of an acute exacerbation of chronic asthma, IL-33 drives activation of AM and has an important role in the pathogenesis of airway inflammation.

  5. NADPH oxidase-derived reactive oxygen species are essential for differentiation of a mouse macrophage cell line (RAW264.7) into osteoclasts.

    PubMed

    Sasaki, Hideyuki; Yamamoto, Hironori; Tominaga, Kumiko; Masuda, Kiyoshi; Kawai, Tomoko; Teshima-Kondo, Shigetada; Rokutan, Kazuhito

    2009-02-01

    Reactive oxygen species (ROS) derived from NADPH oxidase (Nox) homologues have been suggested to regulate osteoclast differentiation. However, no bone abnormalities have been documented in Nox1 deficient, Nox2 deficient, or Nox3 mutant mice. During receptor activator of nuclear factor-kappaB ligand (RANKL)-stimulated differentiation of a mouse macrophage cell line (RAW264.7) into osteoclasts, mRNA levels of Nox enzymes (Nox1-4) and their adaptor proteins were monitored by real-time reverse transcriptase PCR. RAW264.7 cells constitutively expressed abundant Nox2 mRNA and small amounts of Nox1 and Nox3 transcripts. RANKL markedly attenuated Nox2 mRNA expression in association with reciprocal up-regulation of Nox1 and Nox3 transcripts. Introduction of small interference RNA targeting p67(phox) or p22(phox) into RAW264.7 cells effectively down-regulated ROS generation and significantly suppressed the RANKL-stimulated differentiation, which was assessed by appearance of tartrate resistant acid phosphatase (TRAP)-positive, multinucleated cells having an ability to form resorption pits on calcium phosphate thin film-coated disks, and by expression of osteoclast marker genes (TRAP, cathepsin K, Atp6i, ClC-7, and NFATc1). Our results suggest that RANKL may stimulate switching between Nox homologues during osteoclast differentiation, and Nox-derived ROS may be crucial for RANKL-induced osteoclast differentiation.

  6. Lurbinectedin induces depletion of tumor-associated macrophages, an essential component of its in vivo synergism with gemcitabine, in pancreatic adenocarcinoma mouse models.

    PubMed

    Céspedes, María Virtudes; Guillén, María José; López-Casas, Pedro Pablo; Sarno, Francesca; Gallardo, Alberto; Álamo, Patricia; Cuevas, Carmen; Hidalgo, Manuel; Galmarini, Carlos María; Allavena, Paola; Avilés, Pablo; Mangues, Ramón

    2016-12-01

    We explored whether the combination of lurbinectedin (PM01183) with the antimetabolite gemcitabine could result in a synergistic antitumor effect in pancreatic ductal adenocarcinoma (PDA) mouse models. We also studied the contribution of lurbinectedin to this synergism. This drug presents a dual pharmacological effect that contributes to its in vivo antitumor activity: (i) specific binding to DNA minor grooves, inhibiting active transcription and DNA repair; and (ii) specific depletion of tumor-associated macrophages (TAMs). We evaluated the in vivo antitumor activity of lurbinectedin and gemcitabine as single agents and in combination in SW-1990 and MIA PaCa-2 cell-line xenografts and in patient-derived PDA models (AVATAR). Lurbinectedin-gemcitabine combination induced a synergistic effect on both MIA PaCa-2 [combination index (CI)=0.66] and SW-1990 (CI=0.80) tumor xenografts. It also induced complete tumor remissions in four out of six patient-derived PDA xenografts. This synergism was associated with enhanced DNA damage (anti-γ-H2AX), cell cycle blockage, caspase-3 activation and apoptosis. In addition to the enhanced DNA damage, which is a consequence of the interaction of the two drugs with the DNA, lurbinectedin induced TAM depletion leading to cytidine deaminase (CDA) downregulation in PDA tumors. This effect could, in turn, induce an increase of gemcitabine-mediated DNA damage that was especially relevant in high-density TAM tumors. These results show that lurbinectedin can be used to develop 'molecularly targeted' combination strategies.

  7. Inhibition of LPS-induced TNF-α and NO production in mouse macrophage and inflammatory response in rat animal models by a novel Ayurvedic formulation, BV-9238.

    PubMed

    Dey, Debendranath; Chaskar, Sunetra; Athavale, Nitin; Chitre, Deepa

    2014-10-01

    Rheumatoid arthritis is a chronic crippling disease, where protein-based tumor necrosis factor-alpha (TNF-α) inhibitors show significant relief, but with potentially fatal side effects. A need for a safe, oral, cost-effective small molecule or phyto-pharmaceutical is warranted. BV-9238 is an Ayurvedic poly-herbal formulation containing specialized standardized extracts of Withania somnifera, Boswellia serrata, Zingiber officinale and Curcuma longa. The anti-inflammatory and anti-arthritic effects of BV-9238 were evaluated for inhibition of TNF-α and nitric oxide (NO) production, in lipopolysaccharide-stimulated, RAW 264.7, mouse macrophage cell line. BV-9238 reduced TNF-α and NO production, without any cytotoxic effects. Subsequently, the formulation was tested in adjuvant-induced arthritis (AIA) and carrageenan-induced paw edema (CPE) rat animal models. AIA was induced in rats by injecting Freund's complete adjuvant intra-dermally in the paw, and BV-9238 and controls were administered orally for 21 days. Arthritic scores in AIA study and inflamed paw volume in CPE study were significantly reduced upon treatment with BV-9238. These results suggest that the anti-inflammatory and anti-arthritic effects of BV-9238 are due to its inhibition of TNF-α, and NO, and this formulation shows promise as an alternate therapy for inflammatory disorders where TNF-α and NO play important roles.

  8. Anti-Inflammatory and Analgesic Effects of Pyeongwisan on LPS-Stimulated Murine Macrophages and Mouse Models of Acetic Acid-Induced Writhing Response and Xylene-Induced Ear Edema

    PubMed Central

    Oh, You-Chang; Jeong, Yun Hee; Cho, Won-Kyung; Ha, Jeong-Ho; Gu, Min Jung; Ma, Jin Yeul

    2015-01-01

    Pyeongwisan (PW) is an herbal medication used in traditional East Asian medicine to treat anorexia, abdominal distension, borborygmus and diarrhea caused by gastric catarrh, atony and dilatation. However, its effects on inflammation-related diseases are unknown. In this study, we investigated the biological effects of PW on lipopolysaccharide (LPS)-mediated inflammation in macrophages and on local inflammation in vivo. We investigated the biological effects of PW on the production of inflammatory mediators, pro-inflammatory cytokines and related products as well as the activation of nuclear factor kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs) in LPS-stimulated macrophages. Additionally, we evaluated the analgesic effect on the acetic acid-induced writhing response and the inhibitory activity on xylene-induced ear edema in mice. PW showed anti-inflammatory effects by inhibiting the production of nitric oxide (NO), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) and interleukin-1β (IL-1β). In addition, PW strongly suppressed inducible nitric oxide synthase (iNOS), a NO synthesis enzyme, induced heme oxygenase-1 (HO-1) expression and inhibited NF-κB activation and MAPK phosphorylation. Also, PW suppressed TNF-α, IL-6 and IL-1β cytokine production in LPS-stimulated peritoneal macrophage cells. Furthermore, PW showed an analgesic effect on the writhing response and an inhibitory effect on mice ear edema. We demonstrated the anti-inflammatory effects and inhibitory mechanism in macrophages as well as inhibitory activity of PW in vivo for the first time. Our results suggest the potential value of PW as an inflammatory therapeutic agent developed from a natural substance. PMID:25569097

  9. Anti-inflammatory and analgesic effects of pyeongwisan on LPS-stimulated murine macrophages and mouse models of acetic acid-induced writhing response and xylene-induced ear edema.

    PubMed

    Oh, You-Chang; Jeong, Yun Hee; Cho, Won-Kyung; Ha, Jeong-Ho; Gu, Min Jung; Ma, Jin Yeul

    2015-01-06

    Pyeongwisan (PW) is an herbal medication used in traditional East Asian medicine to treat anorexia, abdominal distension, borborygmus and diarrhea caused by gastric catarrh, atony and dilatation. However, its effects on inflammation-related diseases are unknown. In this study, we investigated the biological effects of PW on lipopolysaccharide (LPS)-mediated inflammation in macrophages and on local inflammation in vivo. We investigated the biological effects of PW on the production of inflammatory mediators, pro-inflammatory cytokines and related products as well as the activation of nuclear factor kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs) in LPS-stimulated macrophages. Additionally, we evaluated the analgesic effect on the acetic acid-induced writhing response and the inhibitory activity on xylene-induced ear edema in mice. PW showed anti-inflammatory effects by inhibiting the production of nitric oxide (NO), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) and interleukin-1β (IL-1β). In addition, PW strongly suppressed inducible nitric oxide synthase (iNOS), a NO synthesis enzyme, induced heme oxygenase-1 (HO-1) expression and inhibited NF-κB activation and MAPK phosphorylation. Also, PW suppressed TNF-α, IL-6 and IL-1β cytokine production in LPS-stimulated peritoneal macrophage cells. Furthermore, PW showed an analgesic effect on the writhing response and an inhibitory effect on mice ear edema. We demonstrated the anti-inflammatory effects and inhibitory mechanism in macrophages as well as inhibitory activity of PW in vivo for the first time. Our results suggest the potential value of PW as an inflammatory therapeutic agent developed from a natural substance.

  10. Macrophages generate reactive oxygen species in response to minimally oxidized LDL: TLR4- and Syk-dependent activation of Nox2

    PubMed Central

    Bae, Yun Soo; Lee, Jee Hyun; Choi, Soo Ho; Kim, Sunah; Almazan, Felicidad; Witztum, Joseph L.; Miller, Yury I.

    2009-01-01

    Oxidative modification of low-density lipoprotein (LDL) plays a causative role in the development of atherosclerosis. In this study, we demonstrate that minimally oxidized LDL (mmLDL) stimulates intracellular reactive oxygen species (ROS) generation in macrophages through NADPH oxidase 2 (gp91phox/Nox2), which in turn induces production of RANTES and migration of smooth muscle cells. Peritoneal macrophages from gp91phox/Nox2−/− mice or J774 macrophages in which Nox2 was knocked down by siRNA failed to generate ROS in response to mmLDL. Because mmLDL-induced cytoskeletal changes were dependent on TLR4, we analyzed ROS generation in peritoneal macrophages from wild type, TLR4−/−, or MyD88−/− mice and found that mmLDL-mediated ROS was generated in a TLR4-dependent, but MyD88-independent manner. Furthermore, we found that ROS generation required the recruitment and activation of spleen tyrosine kinase (Syk) and that mmLDL also induced PLCγ1 phosphorylation and PKC membrane translocation. Importantly, the PLCγ1 phosphorylation was reduced in J774 cells expressing Syk-specific shRNA. Nox2 modulated mmLDL activation of macrophages by regulating the expression of proinflammatory cytokines IL-1β, IL-6 and RANTES. We showed that purified RANTES was able to stimulate migration of mouse aortic smooth muscle cells (MASMC) and addition of neutralizing antibody against RANTES abolished the migration of MASMC stimulated by mmLDL-stimulated macrophages. These results suggest that mmLDL induces generation of ROS through sequential activation of TLR4, Syk, PLCγ1, PKC, and gp91phox/Nox2 and thereby stimulates expression of proinflammatory cytokines. These data help explain mechanisms by which endogenous ligands, such as mmLDL, can induce TLR4-dependent, proatherogenic activation of macrophages. PMID:19096031

  11. Mouse macrophage galactose-type lectin (mMGL) is critical for host resistance against Trypanosoma cruzi infection.

    PubMed

    Vázquez, Alicia; Ruiz-Rosado, Juan de Dios; Terrazas, Luis I; Juárez, Imelda; Gomez-Garcia, Lorena; Calleja, Elsa; Camacho, Griselda; Chávez, Ana; Romero, Miriam; Rodriguez, Tonathiu; Espinoza, Bertha; Rodriguez-Sosa, Miriam

    2014-01-01

    The C-type lectin receptor mMGL is expressed exclusively by myeloid antigen presenting cells (APC) such as dendritic cells (DC) and macrophages (Mφ), and it mediates binding to glycoproteins carrying terminal galactose and α- or β-N-acetylgalactosamine (Gal/GalNAc) residues. Trypanosoma cruzi (T. cruzi) expresses large amounts of mucin (TcMUC)-like glycoproteins. Here, we show by lectin-blot that galactose moieties are also expressed on the surface of T. cruzi. Male mMGL knockout (-/-) and wild-type (WT) C57BL/6 mice were infected intraperitoneally with 10(4) T. cruzi trypomastigotes (Queretaro strain). Following T. cruzi infection, mMGL-/- mice developed higher parasitemia and higher mortality rates compared with WT mice. Although hearts from T. cruzi-infected WT mice presented few amastigote nests, mMGL-/- mice displayed higher numbers of amastigote nests. Compared with WT, Mφ from mMGL-/- mice had low production of nitric oxide (NO), interleukin (IL)-12 and tumor necrosis factor (TNF)-α in response to soluble T. cruzi antigens (TcAg). Interestingly, upon in vitro T. cruzi infection, mMGL-/- Mφ expressed lower levels of MHC-II and TLR-4 and harbored higher numbers of parasites, even when mMGL-/- Mφ were previously primed with IFN-γ or LPS/IFN-γ. These data suggest that mMGL plays an important role during T. cruzi infection, is required for optimal Mφ activation, and may synergize with TLR-4-induced pathways to produce TNF-α, IL-1β and NO during the early phase of infection.

  12. Endogenous macrophage migration inhibitory factor reduces the accumulation and toxicity of misfolded SOD1 in a mouse model of ALS

    PubMed Central

    Leyton-Jaimes, Marcel F.; Benaim, Clara; Abu-Hamad, Salah; Kahn, Joy; Guetta, Amos; Bucala, Richard; Israelson, Adrian

    2016-01-01

    Mutations in superoxide dismutase (SOD1) cause amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease characterized by the loss of upper and lower motor neurons in the brain and spinal cord. It has been suggested that the toxicity of mutant SOD1 results from its misfolding and accumulation on the cytoplasmic faces of intracellular organelles, including the mitochondria and endoplasmic reticulum (ER) of ALS-affected tissues. Recently, macrophage migration inhibitory factor (MIF) was shown to directly inhibit the accumulation of misfolded SOD1 and its binding to intracellular membranes, but the role of endogenous MIF in modulating SOD1 misfolding in vivo remains unknown. To elucidate this role, we bred MIF-deficient mice with SOD1G85R mice, which express a dismutase-inactive mutant of SOD1 and are considered a model of familial ALS. We found that the accumulation of misfolded SOD1, its association with mitochondrial and ER membranes, and the levels of sedimentable insoluble SOD1 aggregates were significantly higher in the spinal cords of SOD1G85R-MIF−/− mice than in their SOD1G85R-MIF+/+ littermates. Moreover, increasing MIF expression in neuronal cultures inhibited the accumulation of misfolded SOD1 and rescued from mutant SOD1-induced cell death. In contrast, the complete elimination of endogenous MIF accelerated disease onset and late disease progression and shortened the lifespan of the SOD1G85R mutant mice. These findings indicate that MIF plays a significant role in the folding and misfolding of SOD1 in vivo, and they have implications for the potential therapeutic role of up-regulating MIF within the nervous system to modulate the selective accumulation of misfolded SOD1. PMID:27551074

  13. Methylglyoxal induced activation of murine peritoneal macrophages and surface markers of T lymphocytes in sarcoma-180 bearing mice: involvement of MAP kinase, NF-kappa beta signal transduction pathway.

    PubMed

    Pal, Aparajita; Bhattacharya, Iman; Bhattacharya, Kaushik; Mandal, Chitra; Ray, Manju

    2009-06-01

    Methylglyoxal profoundly stimulates host's immune response against tumor cell by producing reactive oxygen intermediates (ROI's) and reactive nitrogen intermediates (RNI's) [Bhattacharyya, N., Pal, A., Patra, S., Haldar, A.K., Roy, S., Ray, M., 2008. Activation of macrophages and lymphocytes by methylglyoxal against tumor cells in the host. Int. Immunophar. 8 (11), 1503-1512]. Present study indicated that methylglyoxal stimulates iNOS activation by p38 MAPK-NF-kappa beta dependent pathway and ROS production by ERK and JNK activation in sarcoma-180 tumor bearing mice. Proinflammatory cytokines, for macrophage activation, IL-6 and IL-1 beta were also increased. Production of TLR 4 and TLR 9, which acts through the same signaling pathway, were also upregulated. Hence, concluded that methylglyoxal augmented the IL-6 and IL-1 beta, expression of TLR 4 and TLR 9 and produced MAPKs, important regulators of ROIs and RNIs. Methylglyoxal treatment also increased M-CSF, an upregulator of macrophage production. CD8 and CD4 molecules, associated with T(C) and T(H) cells respectively, were also increased. Overall methylglyoxal treatment is important for enhancement of macrophages and lymphocyte activation or immunomodulation against sarcoma-180 tumor.

  14. Structural definition of a potent macrophage activating factor derived from vitamin D3-binding protein with adjuvant activity for antibody production.

    PubMed

    Yamamoto, N

    1996-10-01

    Incubation of human vitamin D3-binding protein (Gc protein), with a mixture of immobilized beta-galactosidase and sialidase, efficiently generated a potent macrophage activating factor, a protein with N-acetylgalactosamine as the remaining sugar. Stepwise incubation of Gc protein with immobilized beta-galactosidase and sialidase, and isolation of the intermediates with immobilized lectins, revealed that either sequence of hydrolysis of Gc glycoprotein by these glycosidases yields the macrophage-activating factor, implying that Gc protein carries a trisaccharide composed of N-acetylgalactosamine and dibranched galactose and sialic acid termini. A 3 hr incubation of mouse peritoneal macrophages with picomolar amounts of the enzymatically generated macrophage-activating factor (GcMAF) resulted in a greatly enhanced phagocytic activity. Administration of a minute amount (10-50 pg/mouse) of GcMAF resulted in a seven- to nine-fold enhanced phagocytic activity of macrophages. Injection of sheep red blood cells (SRBC) along with GcMAF into mice produced a large number of anti-SRBC antibody secreting splenic cells in 2-4 days.

  15. Macrophage Biochemistry, Activation and Function

    DTIC Science & Technology

    1981-01-01

    glucoeidase +8 . . Sulfatase c +8 Modified from Morahan, 1980. b(+)Exhibit@ activity; (-) lacks activity; (+) weak or marginal activity. ’References: (1...endoplasmic reticulum enzymes, sulfatase c and alkaline a-glucosidase. Dissociation of the lysosomal enzyme patterns from sulfatase c and alkaline r...1974; Beaufay et al., 1974). Peritoneal macrophages are deficient or contain inauf- • -𔃼 :’- 41 ficient quantities of the classical constituents to be

  16. Increased production of superoxide anion by macrophages exposed in vitro to muramyl dipeptide or lipopolysaccharide

    PubMed Central

    1980-01-01

    After in vitro exposure to lipopolysaccharide (LPS) or muramyl dipeptide (MDP), cultured resident mouse peritoneal macrophages were primed to display enhanced generation of superoxide anion (O2-) in response to stimulation by phorbol myristate acetate (PMA) or opsonized zymosan. Priming with LPS (1 microgram/ml) produced a sevenfold enhancement of PMA-stimulated O2- generation; priming was detected within 30 min and persisted for at least 4 d. Exposure to MDP (1 muM) primed the macrophages to double their O2- release; the response was first observed after 4 h and persisted for at least 3 d. The priming response was not observed with stereoisomers of MDP, which are inactive as adjuvants. LPS and MDP appeared to work directly on the macrophages rather than indirectly by interacting with adherent lymphocytes: (a) Addition of nonadherent cell populations that contained lymphocytes had no effect on the response. (b) The response was normal with cells from nude mice, which lack mature T lymphocytes. (c) Macrophages from C3H/HeJ mice, whose B lymphocytes fail to respond to LPS, were weak in their response to priming LPS; the addition of normal (C3Heb/FeJ) nonadherent cells had no effect on this weak response. (d) The macrophage-like cell line J774.1 also showed enhanced O2--generating capacity after a 4-h exposure to LPS or MDP. The O2--generating capacity of macrophages primed with LPS in vitro was equivalent to that previously observed with cells elicited in vivo by injection of LPS or activated by infection with Bacille Calmette-Guerin. The data suggest that previous exposure to bacterial products could prime macrophages to respond with increased production of toxic oxygen metabolites on contact with invading microorganisms or tumor cells. PMID:7350246

  17. Transdiaphragmatic peritoneal hernia complicating peritoneal dialysis: demonstration with spiral computed tomography peritoneography and peritoneal scintigraphy.

    PubMed

    Coche, Emmanuel; Lonneux, Max; Goffin, Eric

    2005-08-01

    The authors describe a rare case of peritoneal transdiaphragmatic hernia discovered immediately after a car accident in a young male patient on peritoneal dialysis. The potential role of CT peritoneography and peritoneal scintigraphy to demonstrate and understand thoracic complications of ambulatory peritoneal dialysis is discussed.

  18. Isoliquiritigenin, a flavonoid from licorice, blocks M2 macrophage polarization in colitis-associated tumorigenesis through downregulating PGE{sub 2} and IL-6

    SciTech Connect

    Zhao, Haixia; Zhang, Xinhua; Chen, Xuewei; Li, Ying; Ke, Zunqiong; Tang, Tian; Chai, Hongyan; Guo, Austin M.; Chen, Honglei; Yang, Jing

    2014-09-15

    M2 macrophage polarization is implicated in colorectal cancer development. Isoliquiritigenin (ISL), a flavonoid from licorice, has been reported to prevent azoxymethane (AOM) induced colon carcinogenesis in animal models. Here, in a mouse model of colitis-associated tumorigenesis induced by AOM/dextran sodium sulfate (DSS), we investigated the chemopreventive effects of ISL and its mechanisms of action. Mice were treated with AOM/DSS and randomized to receive either vehicle or ISL (3, 15 and 75 mg/kg). Tumor load, histology, immunohistochemistry, and gene and protein expressions were determined. Intragastric administration of ISL for 12 weeks significantly decreased colon cancer incidence, multiplicity and tumor size by 60%, 55.4% and 42.6%, respectively. Moreover, ISL inhibited M2 macrophage polarization. Such changes were accompanied by downregulation of PGE{sub 2} and IL-6 signaling. Importantly, depletion of macrophages by clodronate (Clod) or zoledronic acid (ZA) reversed the effects of ISL. In parallel, in vitro studies also demonstrated that ISL limited the M2 polarization of RAW264.7 cells and mouse peritoneal macrophages with concomitant inactivation of PGE{sub 2}/PPARδ and IL-6/STAT3 signaling. Conversely, exogenous addition of PGE{sub 2} or IL-6, or overexpression of constitutively active STAT3 reversed ISL-mediated inhibition of M2 macrophage polarization. In summary, dietary flavonoid ISL effectively inhibits colitis-associated tumorigenesis through hampering M2 macrophage polarization mediated by the interplay between PGE{sub 2} and IL-6. Thus, inhibition of M2 macrophage polarization is likely to represent a promising strategy for chemoprevention of colorectal cancer. - Highlights: • Isoliquiritigenin (ISL) prevents colitis-associated tumorigenesis. • ISL inhibits M2 macrophage polarization in vivo and in vitro. • ISL inhibits PGE{sub 2} and IL-6 signaling in colitis-associated tumorigenesis. • ISL may be an attractive candidate agent for

  19. Unmodified low density lipoprotein causes cholesteryl ester accumulation in J774 macrophages.

    PubMed

    Tabas, I; Weiland, D A; Tall, A R

    1985-01-01

    Cholesteryl ester (CE)-loaded macrophages (foam cells) are a prominent feature of atherosclerotic plaques. Previous studies have shown that human monocytes or resident mouse peritoneal macrophages accumulate CE in response to low density lipoprotein (LDL) only when the LDL has been appropriately chemically modified. By contrast, we report here that J774 macrophages accumulate large amounts of CE when incubated with unmodified LDL. The CE is stored in oil red O-positive droplets, which have the typical appearance of foam cell inclusions by electron microscopy. The fatty acid moieties of the cellular CE are enriched in oleate unlike those of LDL-CE, which are enriched in linoleate, indicating that the LDL-CE undergoes hydrolysis and reesterification by acyl CoA:cholesterol acyltransferase. Studies with 125I-labeled LDL at both 4 degrees C and 37 degrees C indicate that the LDL is internalized by a specific receptor that has several characteristics in common with the apolipoprotein B/E (apo B/E) receptor. However, in comparison with fibroblasts, the LDL receptor and 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase activity in J774 cells are relatively resistant to down-regulation by LDL or 25-hydroxycholesterol, leading to receptor-mediated CE storage. In addition, J774 cells appear to accumulate CE from LDL internalized by nonspecific means. Thus, macrophage-like cells can accumulate CE in response to unmodified LDL by both nonspecific and receptor-mediated processes.

  20. Characterization of Abcc4 gene amplification in stepwise-selected mouse J774 macrophages resistant to the topoisomerase II inhibitor ciprofloxacin.

    PubMed

    Marquez, Béatrice; Ameye, Geneviève; Vallet, Coralie M; Tulkens, Paul M; Poirel, Hélène A; Van Bambeke, Françoise

    2011-01-01

    Exposure of J774 mouse macrophages to stepwise increasing concentrations of ciprofloxacin, an antibiotic inhibiting bacterial topoisomerases, selects for resistant cells that overexpress the efflux transporter Abcc4 (Marquez et al. [2009] Antimicrob. Agents Chemother. 53: 2410-2416), encoded by the Abcc4 gene located on Chromosome 14qE4. In this study, we report the genomic alterations occurring along the selection process. Abcc4 expression progressively increased upon selection rounds, with exponential changes observed between cells exposed to 150 and 200 µM of ciprofloxacin, accompanied by a commensurate decrease in ciprofloxacin accumulation. Molecular cytogenetics experiments showed that this overexpression is linked to Abcc4 gene overrepresentation, grading from a partial trisomy of Chr 14 at the first step of selection (cells exposed to 100 µM ciprofloxacin), to low-level amplifications (around three copies) of Abcc4 locus on 1 or 2 Chr 14 (cells exposed to 150 µM ciprofloxacin), followed by high-level amplification of Abcc4 as homogeneous staining region (hsr), inserted on 3 different derivative Chromosomes (cells exposed to 200 µM ciprofloxacin). In revertant cells obtained after more than 60 passages of culture without drug, the Abcc4 hsr amplification was lost in approx. 70% of the population. These data suggest that exposing cells to sufficient concentrations of an antibiotic with low affinity for eukaryotic topoisomerases can cause major genomic alterations that may lead to the overexpression of the transporter responsible for its efflux. Gene amplification appears therefore as a mechanism of resistance that can be triggered by non-anticancer agents but contribute to cross-resistance, and is partially and slowly reversible.

  1. Lurbinectedin induces depletion of tumor-associated macrophages, an essential component of its in vivo synergism with gemcitabine, in pancreatic adenocarcinoma mouse models

    PubMed Central

    Céspedes, María Virtudes; Guillén, María José; López-Casas, Pedro Pablo; Sarno, Francesca; Gallardo, Alberto; Álamo, Patricia; Cuevas, Carmen; Hidalgo, Manuel; Galmarini, Carlos María; Allavena, Paola; Avilés, Pablo; Mangues, Ramón

    2016-01-01

    ABSTRACT We explored whether the combination of lurbinectedin (PM01183) with the antimetabolite gemcitabine could result in a synergistic antitumor effect in pancreatic ductal adenocarcinoma (PDA) mouse models. We also studied the contribution of lurbinectedin to this synergism. This drug presents a dual pharmacological effect that contributes to its in vivo antitumor activity: (i) specific binding to DNA minor grooves, inhibiting active transcription and DNA repair; and (ii) specific depletion of tumor-associated macrophages (TAMs). We evaluated the in vivo antitumor activity of lurbinectedin and gemcitabine as single agents and in combination in SW-1990 and MIA PaCa-2 cell-line xenografts and in patient-derived PDA models (AVATAR). Lurbinectedin-gemcitabine combination induced a synergistic effect on both MIA PaCa-2 [combination index (CI)=0.66] and SW-1990 (CI=0.80) tumor xenografts. It also induced complete tumor remissions in four out of six patient-derived PDA xenografts. This synergism was associated with enhanced DNA damage (anti-γ-H2AX), cell cycle blockage, caspase-3 activation and apoptosis. In addition to the enhanced DNA damage, which is a consequence of the interaction of the two drugs with the DNA, lurbinectedin induced TAM depletion leading to cytidine deaminase (CDA) downregulation in PDA tumors. This effect could, in turn, induce an increase of gemcitabine-mediated DNA damage that was especially relevant in high-density TAM tumors. These results show that lurbinectedin can be used to develop ‘molecularly targeted’ combination strategies. PMID:27780828

  2. Culture media-based selection of endothelial cells, pericytes, and perivascular-resident macrophage-like melanocytes from the young mouse vestibular system.

    PubMed

    Zhang, Jinhui; Chen, Songlin; Cai, Jing; Hou, Zhiqiang; Wang, Xiaohan; Kachelmeier, Allan; Shi, Xiaorui

    2017-03-01

    The vestibular blood-labyrinth barrier (BLB) is comprised of perivascular-resident macrophage-like melanocytes (PVM/Ms) and pericytes (PCs), in addition to endothelial cells (ECs) and basement membrane (BM), and bears strong resemblance to the cochlear BLB in the stria vascularis. Over the past few decades, in vitro cell-based models have been widely used in blood-brain barrier (BBB) and blood-retina barrier (BRB) research, and have proved to be powerful tools for studying cell-cell interactions in their respective organs. Study of both the vestibular and strial BLB has been limited by the unavailability of primary culture cells from these barriers. To better understand how barrier component cells interact in the vestibular system to control BLB function, we developed a novel culture medium-based method for obtaining EC, PC, and PVM/M primary cells from tiny explants of the semicircular canal, sacculus, utriculus, and ampullae tissue of young mouse ears at post-natal age 8-12 d. Each phenotype is grown in a specific culture medium which selectively supports the phenotype in a mixed population of vestibular cell types. The unwanted phenotypes do not survive passaging. The protocol does not require additional equipment or special enzyme treatment. The harvesting process takes less than 2 h. Primary cell types are generated within 7-10 d. The primary culture ECs, PCs, and PVM/M shave consistent phenotypes more than 90% pure after two passages (∼ 3 weeks). The highly purified primary cell lines can be used for studying cell-cell interactions, barrier permeability, and angiogenesis.

  3. Interactions between Streptomyces californicus and Stachybotrys chartarum can induce apoptosis and cell cycle arrest in mouse RAW264.7 macrophages

    SciTech Connect

    Penttinen, Piia . E-mail: Piia.Penttinen@ktl.fi; Pelkonen, Jukka; Huttunen, Kati; Toivola, Mika; Hirvonen, Maija-Riitta

    2005-02-01

    Exposure to complex mixtures of bacteria and fungi in moisture-damaged buildings is a potential cause of inflammatory related symptoms among occupants. The present study assessed interactions between two characteristic moldy house microbes Streptomyces californicus and Stachybotrys chartarum. Differences in cytotoxic and inflammatory responses in mouse (RAW264.7) macrophages were studied after exposure to the spores of co-cultivated microbes, the mixture of separately cultivated spores, and the spores of either of these microbes cultivated alone. The RAW264.7 cells were exposed to six doses (1 x 10{sup 4} to 3 x 10{sup 6} spores/ml) for 24 h, and the time course of the induced responses was evaluated after 4, 8, 16, and 24 h of exposure (1 x 10{sup 6} spores/ml). The cytotoxic potential of the spores was characterized by the MTT test, DNA content analysis, and enzyme assay for caspase-3 activity. The production of cytokines (IL-1{beta}, IL-6, IL-10, TNF{alpha}, and MIP2) was measured immunochemically and nitric oxide by the Griess method. Co-cultivation increased the ability of the spores to cause apoptosis by more than 4-fold and the proportion of RAW264.7 cells at the G{sub 2}/M stage increased nearly 2-fold when compared to the response induced by the mixture of spores. In contrast, co-cultivation decreased significantly the ability of the spores to trigger the production of NO and IL-6 in RAW264.7 cells. In conclusion, these data suggest that co-culture of S. californicus and S. chartarum can result in microbial interactions that significantly potentiate the ability of the spores to cause apoptosis and cell cycle arrest in mammalian cells.

  4. All Trans Retinoic Acid, Transforming Growth Factor β and Prostaglandin E2 in Mouse Plasma Synergize with Basophil-Secreted Interleukin-4 to M2 Polarize Murine Macrophages

    PubMed Central

    Elisia, Ingrid; Lam, Vivian; Hsu, Brian E.; Lai, June; Luk, Beryl; Samudio, Ismael; Krystal, Gerald

    2016-01-01

    In previous studies we found that macrophages (MФs) from SH2-containing inositol-5′-phosphatase (SHIP) deficient mice are M2 polarized while their wild type (WT) counterparts are M1 polarized and that this difference in MФ phenotype can be recapitulated during in vitro derivation from bone marrow if mouse plasma (MP), but not fetal calf serum, is added to standard M-CSF-containing cultures. In the current study we investigated the mechanism by which MP skews SHIP-/- but not +/+ MФs to an M2 phenotype. Our results suggest that SHIP-/- basophils constitutively secrete higher levels of IL-4 than SHIP+/+ basophils and this higher level of IL-4 is sufficient to skew both SHIP+/+ and SHIP-/- MФs to an M2 phenotype, but only when MP is present to increase the sensitivity of the MФs to this level of IL-4. MP increases the IL-4 sensitivity of both SHIP+/+ and -/- MФs not by increasing cell surface IL-4 or CD36 receptor levels, but by triggering the activation of Erk and Akt and the production of ROS, all of which play a critical role in sensitizing MФs to IL-4-induced M2 skewing. Studies to identify the factor(s) in MP responsible for promoting IL-4-induced M2 skewing suggests that all-trans retinoic acid (ATRA), TGFβ and prostaglandin E2 (PGE2) all play a role. Taken together, these results indicate that basophil-secreted IL-4 plays an essential role in M2 skewing and that ATRA, TGFβ and PGE2 within MP collaborate to dramatically promote M2 skewing by acting directly on MФs to increase their sensitivity to IL-4. PMID:27977740

  5. Anthocyanin-rich fractions from red raspberries attenuate inflammation in both RAW264.7 macrophages and a mouse model of colitis.

    PubMed

    Li, Li; Wang, Liyan; Wu, Zhiqin; Yao, Lijun; Wu, Yonghou; Huang, Lian; Liu, Kan; Zhou, Xiang; Gou, Deming

    2014-08-29

    Edible berries have a broad spectrum of biomedical functions, including improving immune responses and reducing risk for chronic diseases. In this study, the anti-inflammatory activities of crude extracts (CEs), anthocyanin-rich fractions (ARFs), and des-anthocyanin fractions (DAFs) from seven berries were evaluated based on their inhibitory effects on nitric oxide (NO) production in lipopolysaccharide (LPS)/IFN-γ-activated RAW264.7 macrophages. ARFs from red raspberries (RR-ARFs) exhibited the highest efficiency in suppressing NO synthesis. The anti-inflammatory properties were also demonstrated by reducing the expression levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin-1 beta (IL-1β) and IL-6 in RAW264.7 cells. The luciferase reporter assay demonstrated that the activities of NF-κB and AP-1 signaling pathways were significantly suppressed by RR-ARFs. Further studies showed that RR-ARFs decreased the phosphorylation of IKK, IκBα, p65 and JNK and the nuclear translocation of p65 in LPS/IFN-γ-stimulated RAW264.7 cells. In a mouse colitis model, dextran sulfate sodium (DSS)-induced weight loss and histological damage were significantly ameliorated by RR-ARFs treatment. Taken together, our results indicate that RR-ARFs attenuate inflammation both in vitro and in vivo primarily by inhibiting the activation of NF-κB and MAPKs. The anti-inflammatory of RR-ARFs could be harnessed and applied in animal agriculture, drug and food industries.

  6. Anthocyanin-rich fractions from red raspberries attenuate inflammation in both RAW264.7 macrophages and a mouse model of colitis

    PubMed Central

    Li, Li; Wu, Zhiqin; Yao, Lijun; Wu, Yonghou; Huang, Lian; Liu, Kan; Zhou, Xiang; Gou, Deming

    2014-01-01

    Edible berries have a broad spectrum of biomedical functions, including improving immune responses and reducing risk for chronic diseases. In this study, the anti-inflammatory activities of crude extracts (CEs), anthocyanin-rich fractions (ARFs), and des-anthocyanin fractions (DAFs) from seven berries were evaluated based on their inhibitory effects on nitric oxide (NO) production in lipopolysaccharide (LPS)/IFN-γ-activated RAW264.7 macrophages. ARFs from red raspberries (RR-ARFs) exhibited the highest efficiency in suppressing NO synthesis. The anti-inflammatory properties were also demonstrated by reducing the expression levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin-1 beta (IL-1β) and IL-6 in RAW264.7 cells. The luciferase reporter assay demonstrated that the activities of NF-κB and AP-1 signaling pathways were significantly suppressed by RR-ARFs. Further studies showed that RR-ARFs decreased the phosphorylation of IKK, IκBα, p65 and JNK and the nuclear translocation of p65 in LPS/IFN-γ-stimulated RAW264.7 cells. In a mouse colitis model, dextran sulfate sodium (DSS)-induced weight loss and histological damage were significantly ameliorated by RR-ARFs treatment. Taken together, our results indicate that RR-ARFs attenuate inflammation both in vitro and in vivo primarily by inhibiting the activation of NF-κB and MAPKs. The anti-inflammatory of RR-ARFs could be harnessed and applied in animal agriculture, drug and food industries. PMID:25167935

  7. Construction of chimeric phagosomes that shelter Mycobacterium avium and Coxiella burnetii (phase II) in doubly infected mouse macrophages: an ultrastructural study.

    PubMed

    de Chastellier, C; Thibon, M; Rabinovitch, M

    1999-08-01

    Dual infection of cells may divert pathogens to intracellular compartments different from those occupied in mono-infected cells. In the present studies, mouse bone marrow in vitro-derived macrophages were first infected with virulent Mycobacterium avium, which are normally singly lodged within tight phagosomes. These phagosomes do not mature; they undergo homotypic fusion with early endosomes and do not fuse with lysosomes. Seven days later, the cultures were superinfected with phase II (non-virulent) Coxiella burnetii, organisms sheltered in lysosome- (or prelysosome)-like, multi-occupancy phagosomes. The latter can attain large size and engage in efficient homo- and heterotypic fusion with other phagosomes. Cultures were fixed for transmission electron microscopy 6, 12, 24, and 48 h later. Other M. avium-infected cultures were superinfected with amastigotes of the trypanosomatid flagellate Leishmania amazonensis, which are also sheltered in lysosome- (or prelysosome)-like multi-occupancy vacuoles, and fixed at the same time periods. Chimeric phagosomes containing both M. avium and C. burnetii, were found already at 6 h and the proportion of M. avium that colocalized with C. burnetii in the same phagosomes reached over 90% after 48 h. In such phagosomes, both organisms were ultrastructurally well preserved. In contrast, colocalization of M. avium and L. amazonensis was rarely found. Speculative scenarios that could underlie the formation of chimeric phagosomes could involve delayed maturation of C. burnetii-containing phagosomes in presence of M. avium, which would allow for fusion of C. burnetii- and M. avium-containing phagosomes; the production, by C. burnetii, of molecules that upregulate the fusion of M. avium-containing phagosomes with those that contain C. burnetii; and the secretion of factors that could favour the survival of M. avium within chimeric vacuoles.

  8. Functionalized synchrotron in-line phase-contrast computed tomography: a novel approach for simultaneous quantification of structural alterations and localization of barium-labelled alveolar macrophages within mouse lung samples.

    PubMed

    Dullin, Christian; dal Monego, Simeone; Larsson, Emanuel; Mohammadi, Sara; Krenkel, Martin; Garrovo, Chiara; Biffi, Stefania; Lorenzon, Andrea; Markus, Andrea; Napp, Joanna; Salditt, Tim; Accardo, Agostino; Alves, Frauke; Tromba, Giuliana

    2015-01-01

    Functionalized computed tomography (CT) in combination with labelled cells is virtually non-existent due to the limited sensitivity of X-ray-absorption-based imaging, but would be highly desirable to realise cell tracking studies in entire organisms. In this study we applied in-line free propagation X-ray phase-contrast CT (XPCT) in an allergic asthma mouse model to assess structural changes as well as the biodistribution of barium-labelled macrophages in lung tissue. Alveolar macrophages that were barium-sulfate-loaded and fluorescent-labelled were instilled intratracheally into asthmatic and control mice. Mice were sacrificed after 24 h, lungs were kept in situ, inflated with air and scanned utilizing XPCT at the SYRMEP beamline (Elettra Synchrotron Light Source, Italy). Single-distance phase retrieval was used to generate data sets with ten times greater contrast-to-noise ratio than absorption-based CT (in our setup), thus allowing to depict and quantify structural hallmarks of asthmatic lungs such as reduced air volume, obstruction of airways and increased soft-tissue content. Furthermore, we found a higher concentration as well as a specific accumulation of the barium-labelled macrophages in asthmatic lung tissue. It is believe that XPCT will be beneficial in preclinical asthma research for both the assessment of therapeutic response as well as the analysis of the role of the recruitment of macrophages to inflammatory sites.

  9. Functionalized synchrotron in-line phase-contrast computed tomography: a novel approach for simultaneous quantification of structural alterations and localization of barium-labelled alveolar macrophages within mouse lung samples

    PubMed Central

    Dullin, Christian; dal Monego, Simeone; Larsson, Emanuel; Mohammadi, Sara; Krenkel, Martin; Garrovo, Chiara; Biffi, Stefania; Lorenzon, Andrea; Markus, Andrea; Napp, Joanna; Salditt, Tim; Accardo, Agostino; Alves, Frauke; Tromba, Giuliana

    2015-01-01

    Functionalized computed tomography (CT) in combination with labelled cells is virtually non-existent due to the limited sensitivity of X-ray-absorption-based imaging, but would be highly desirable to realise cell tracking studies in entire organisms. In this study we applied in-line free propagation X-ray phase-contrast CT (XPCT) in an allergic asthma mouse model to assess structural changes as well as the biodistribution of barium-labelled macrophages in lung tissue. Alveolar macrophages that were barium-sulfate-loaded and fluorescent-labelled were instilled intratracheally into asthmatic and control mice. Mice were sacrificed after 24 h, lungs were kept in situ, inflated with air and scanned utilizing XPCT at the SYRMEP beamline (Elettra Synchrotron Light Source, Italy). Single-distance phase retrieval was used to generate data sets with ten times greater contrast-to-noise ratio than absorption-based CT (in our setup), thus allowing to depict and quantify structural hallmarks of asthmatic lungs such as reduced air volume, obstruction of airways and increased soft-tissue content. Furthermore, we found a higher concentration as well as a specific accumulation of the barium-labelled macrophages in asthmatic lung tissue. It is believe that XPCT will be beneficial in preclinical asthma research for both the assessment of therapeutic response as well as the analysis of the role of the recruitment of macrophages to inflammatory sites. PMID:25537601

  10. A novel spontaneous mutation in the TAP2 gene unravels its role in macrophage survival.

    PubMed

    Lapenna, Antonio; Omar, Ibrahim; Berger, Michael

    2017-04-01

    We report a new mouse strain with a single point mutation in the type 2 transporter associated with antigen processing (TAP2). This strain randomly arose in one of our C57BL/6J mouse colonies and was initially discovered because of the lack of CD8(+) T cells in the periphery. Following our observation, we subsequently revealed a lack of cell surface MHC-I expression, derived from TAP2 protein deficiency. Our strain, named eightless, has a C to T substitution in exon 5 resulting in a glutamine to stop codon substitution at position 285 in the TAP2 protein. Interestingly, in addition to the expected lack of CD8(+) T cell phenotype, eightless mice have a diminished number of macrophages in their peritoneum. Moreover, following peritoneal inflammation, elicited eightless macrophages showed impaired survival both in vivo and ex vivo. Our study describes the first ever TAP2 complete knockout mouse strain and provides a possible explanation for why patients with TAP2 deficiency syndrome present clinical manifestations that would suggest a phagocyte defect rather than a lack of CD8(+) T cells.

  11. Migration Inhibitory Factor and Macrophage Bactericidal Function

    PubMed Central

    Simon, Harvey B.; Sheagren, John N.

    1972-01-01

    A homogeneous population of immunologically active lymphocytes was obtained from peritoneal exudates of guinea pigs with delayed hypersensitivity to bovine gamma globulin (BGG). The lymphocytes were cultured with and without BGG for 24 hr, and cell-free supernatant fluids were then assayed simultaneously for their ability to influence two in vitro parameters of macrophage function: migration from capillary tubes and bactericidal capacity. In four consecutive experiments, supernatants from antigenically stimulated lymphocytes exhibited substantial migration-inhibitory-factor activity without enhancing the ability of macrophages to kill Listeria monocytogenes. Lymphocyte lysates were inactive in both assays. Possible mechanisms of lymphocyte-macrophage interactions are discussed. PMID:4120244

  12. RNA and a cell wall component of Enterococcus faecalis IC-1 are required for phagocytosis and interleukin 12 production by the mouse macrophage cell line J774.1.

    PubMed

    Nakase, Junpei; Ukawa, Yuuichi; Takemoto, Syoji; Kubo, Takayoshi; Sagesaka, Yuko M; Aoki-Yoshida, Ayako; Totsuka, Mamoru

    2017-04-13

    Enterococcus faecalis is a resident lactic acid bacterium in the human intestine. Its immunostimulatory action was reported to be enhanced by heat sterilization. To investigate its beneficial actions, we evaluated the ability of 10 E. faecalis strains to induce interleukin-12 (IL-12) production in a mouse macrophage cell line, J774.1 and found that the strain, E. faecalis IC-1, had a potent IL-12-inducing ability. Furthermore, we investigated the underlying mechanism by treating IC-1 cells with RNase or lysozyme. Its activity almost disappeared and an antagonist of Toll-like receptor (TLR) 7 inhibited this activity. Moreover, lysozyme-treated IC-1 bacteria were not phagocytized by J774.1 cells, and did not induce IL-12 production. Based on our results, we propose that macrophages recognize the cell wall components of IC-1, leading to phagocytosis. The IC-1 RNA is then recognized by TLR7, which induces the production of IL-12.

  13. Recurrent peritoneal dialysis-related peritonitis caused by Microbacterium resistens.

    PubMed

    Gallois, Emmanuelle; Lamy, Thomas; Fines-Guyon, Marguerite; Lobbedez, Thierry; Cattoir, Vincent

    2014-05-01

    We report a case of a recurrent peritonitis due to Microbacterium resistens in a 71-year-old male patient undergoing peritoneal dialysis (PD). Importantly, this Gram-positive rod was intrinsically resistant to cephalosporins and vancomycin, classically used in PD-related peritonitis treatment. His infection resolved after several weeks of appropriate therapy (amoxicillin plus gentamicin) and PD catheter removal.

  14. [Characteristics of peritoneal exudate microflora in children with appendicular peritonitis].

    PubMed

    Bodnar, B M

    1997-01-01

    Bacteriological investigation of peritoneal exudate was conducted in 131 children with peritonitis. The greatest quantity of pathogenic and conventionally pathogenic Escherichias and bacteroids was revealed in March, April and September. In summer peritonitis was caused by pathogenic and conventionally pathogenic Escherichias in association with enterobacterias, staphylococci and other microorganisms.

  15. Homocysteine enhances MMP-9 production in murine macrophages via ERK and Akt signaling pathways

    SciTech Connect

    Lee, Seung Jin; Lee, Yi Sle; Seo, Kyo Won; Bae, Jin Ung; Kim, Gyu Hee; Park, So Youn; Kim, Chi Dae

    2012-04-01

    Homocysteine (Hcy) at elevated levels is an independent risk fa